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Introduction

On Wall Street, the use of algorithmic trading and other computational techniques has 

skyrocketed in the last few years, as can be seen from the public interest in automated 

trading as well as the profits generated by these strategies. This growing trend 

demonstrates the importance of using software to analyze and trade markets in diverse 

areas of finance. One particular area that has been growing in importance during the last 

decade is options and derivatives trading.

Initially considered only as a niche investment strategy, derivatives have become 

one of the most common instruments for investors in all areas. Likewise, the interest in 

automated trading and analysis of such instruments has also increased considerably.

Along with scientists and economists, software engineers have greatly contributed 

to the development of advanced computational techniques using financial derivatives. 

Such techniques have been used at banks, hedge funds, pension funds, and other 

financial institutions. In fact, every day new systems are developed to give a trading 

advantage to the players in this industry.

This books attempts to provide the basic programming knowledge needed by C++ 

programmers working with options and derivatives in the financial industry. This is a 

hands-on book for programmers who want to learn how C++ is used to develop solutions 

for options and derivatives trading. In the book’s chapters, you’ll explore the main 

algorithms and programming techniques used in the implementation of systems and 

solutions for trading options and other derivatives.

Because of stringent performance characteristics, most of these trading systems are 

developed using C++ as the main implementation language. This makes the topic of this 

book relevant to everyone interested in acquiring the programming skills necessary in 

the financial industry.

In Options and Derivatives Programming in C++20, I cover the features of the language 

that are more frequently used to write financial software for options and derivatives. These 

features include the STL, templates, functional programming, and support for numerical 

libraries. New features introduced in the latest updates of the C++ standard are also 

covered, including additional functional techniques such as lambda functions, automatic 

type detection, custom literals, and improved initialization strategies for C++ objects.
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I also provide how-to examples that cover the major tools and concepts used to 

build working solutions for quantitative finance. The book teaches you how to employ 

advanced C++ concepts as well as the basic building libraries used by modern C++ 

developers, such as the STL, Boost, and QuantLib. I also discuss how to create correct 

and efficient applications, leveraging knowledge of object-oriented and template-based 

programming. I assume only a basic knowledge of C and C++. Throughout this book, a 

number of more advanced concepts, already mastered by experienced developers, will 

be introduced as needed.

In the process of writing this book, I was also concerned with providing value for 

readers who are trying to use their current programming knowledge in order to become 

proficient at the style of programming used in large banks, hedge funds, and other 

investment institutions. Therefore, the topics covered in the book are introduced in a 

logical and structured way. Even novice programmers will be able to absorb the most 

important topics and competencies necessary to develop in C++ for the problems 

occurring on the analysis of options and other financial derivatives.

In this book, we also discuss features introduced in the latest international standard, 

C++20. In this version of the standard, a number of simplifications and extensions of the 

core C++ language have been approved. You will learn about many of the features in the 

new standard, with examples to illustrate each major concept. An appendix has been 

included, with detailed information about standard features added to C++ during the 

last decade.

�Audience
This book is intended for readers who already have a working knowledge of programing 

in C, C++, or another mainstream language. These are usually professionals or advanced 

students in computer science, engineering, and mathematics, who have interest in 

learning about options and derivatives programming using the C++ language, for 

personal or for professional reasons. The book is also directed at practitioners of C++ 

programming in financial institutions, who would use the book as a ready-to-use 

reference of software development algorithms and best practices for this important area 

of finance.

Introduction
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Many readers are interested in a book that would describe how modern C++ 

techniques are used to solve practical problems arising when considering options on 

financial instruments and other derivatives. Being a multi-paradigm language, C++ 

usage may be slightly different in each area, so the skills that are useful for developing 

desktop applications, for example, are not necessarily the same ones used to write high-

performance software.

A large part of high-performance financial applications are written in C++, which 

means that programmers who want to enter this lucrative market need to acquire 

a working knowledge of specific parts of the language. This book attempts to give 

developers who want to develop their knowledge effectively this choice, while learning 

one of the most sought-after and marketable skillsets for modern financial application 

and high-performance software development.

This book is also targeted at students and new developers who have some 

experience with the C++ language and want to leverage that knowledge into financial 

software development. This book is written with the goal of reaching readers who need 

a concise, algorithms-based strategy, providing basic information through well-targeted 

examples and ready-to-use solutions. Readers will be able to directly apply the concepts 

and sample code to some of the most common problems faced regarding the analysis of 

options and derivative contracts.

�What You Will Learn
Here is a sample of topics that are covered in the following chapters:

•	 Fundamental problems in the options and derivatives market

•	 Options market models

•	 Derivative valuation problems

•	 Trading strategies for options and derivatives

•	 Pricing algorithms for derivatives

•	 Binomial method

•	 Differential equations method

•	 Black-Scholes model

Introduction
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•	 Quantitative finance algorithms for options and derivatives

•	 Linear algebra techniques

•	 Interpolation

•	 Calculating roots

•	 Numerical solution for PDEs

•	 Important features of C++ language as used in quantitative financial 

programming, such as

•	 Templates

•	 STL containers

•	 STL algorithms

•	 Boost libraries

•	 QuantLib

•	 New features of C++20

�Book Contents
Here is a quick overview of the major topics covered in each chapter:

•	 Chapter 1—“Options Concepts”: An option is a standard financial 

contract that derives its value from an underlying asset such as a 

stock. Options can be used to pursue multiple economic objectives, 

such as hedging against variations on the underlying asset, or 

speculating on the future price of a stock. Chapter 1 presents the 

basic concepts of options, including their advantages and challenges. 

It also explains how options can be modeled using C++. The main 

topics covered in this chapter are as follows:

•	 Basic definitions of options

•	 An introduction to options strategies

•	 Describing options with Greeks

•	 Sample code for options handling

Introduction
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•	 Chapter 2—“Financial Derivatives”: A derivative is a general term 

for a contract whose price is based on an underlying asset. In the 

previous decades, the financial industry created and popularized a 

large number of derivatives. Pricing and trading these derivatives is 

a large part of the work performed by trading desks throughout the 

world. Derivatives have been created based on diverse assets such 

as foreign currency, mortgage contracts, and credit default swaps. 

This chapter explores this type of financial instrument and presents 

a few C++ techniques to model specific derivatives. The main topics 

covered in this chapter are as follows:

•	 Credit default swaps

•	 Forex derivatives

•	 Interest rate derivatives

•	 Exotic derivatives

•	 Chapter 3—“Basic C++ Algorithms”: To become a proficient C++ 

developer, it is essential to have good knowledge of the basic 

algorithms used in your application area. Some basic algorithms for 

tasks such as vector processing, date and time handling, and data 

access and storage are useful in almost all applications involving 

options and other financial derivatives. This chapter surveys such 

algorithms and their implementation in C++, including the following 

topics:

•	 Date and time handling

•	 Vector processing

•	 Graphs and networks

•	 Fast data processing

•	 Chapter 4—“Object-Oriented Techniques”: For the last 30 years, 

object-oriented techniques have become the standard for software 

development. Since C++ fully supports OO programming, it is 

imperative that you have a good understanding of OO techniques in 

order to solve the problems presented by options and derivatives.

Introduction
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I present a summary of what you need to become proficient in the 

relevant OO techniques used in the financial industry. Some of 

the topics covered in this chapter are as follows:

•	 Problem partitioning

•	 Designing solutions using OO strategies

•	 OO implementation in C++

•	 Reusing OO components

•	 Chapter 5—“Design Patterns for Options Processing”: Design 

patterns are a set of common programming practices that can be 

used to simplify the solution of recurring problems. With the use 

of OO techniques, design patterns can be cleanly implemented as 

a set of classes that interact toward the solution of a common goal. 

In this chapter, you learn about the most common design patterns 

employed when working with financial options and derivatives, with 

specific examples. It covers the following topics:

•	 The importance of design patterns

•	 Factory pattern

•	 Visitor pattern

•	 Singleton pattern

•	 Less common patterns

•	 Chapter 6—“Template-Based Techniques”: C++ templates allow 

programmers to write code that works without modification on 

different data types. Through the careful use of templates, C++ 

programmers can write code with high performance and low 

overhead, without the need to employ more computationally 

expensive object-oriented techniques. This chapter explores a few 

template-oriented practices used in the solution of options- and 

derivatives-based financial problems:

•	 Motivating the use of templates

•	 Compile-time algorithms
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•	 Containers and smart pointers

•	 Template libraries

•	 Chapter 7—“STL for Derivatives Programming”: Modern financial 

programming in C++ makes heavy use of template-based algorithms. 

Many of the basic template algorithms are implemented in the 

standard template library (STL). This chapter discusses the STL and 

how it can be used in quantitative finance projects, in particular 

to solve options and financial derivative problems. You will get a 

clear understanding of how the STL interacts with other parts of the 

system, and how it imposes a certain structure on classes developed 

in C++.

•	 STL-based algorithms

•	 Functional techniques on STL

•	 STL containers

•	 Smart pointers

•	 Chapter 8—“Functional Programming Techniques”: Functional 

programming is a technique that focuses on the direct use of 

functions as first-class objects. This means that you are allowed to 

create, store, and call functions as if they were just another variable 

of the system. Recently, functional techniques in C++ have been 

greatly improved with the adoption of the new standard (C++20), 

particularly with the introduction of lambda functions. The following 

topics are explored in this chapter:

•	 Lambdas

•	 Functional templates

•	 Functions as first-class objects

•	 Managing state in functional programming

•	 Functional techniques for options processing
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•	 Chapter 9—“Linear Algebra Algorithms”: Linear algebra techniques 

are used throughout the area of financial engineering and, in 

particular, in the analysis of options and other financial derivatives. 

Therefore, it is important to understand how the traditional methods 

of linear algebra can be applied in C++. With this goal in mind, I 

present a few examples that illustrate how to use some of the most 

common linear algebra algorithms. In this chapter, you will also learn 

how to integrate existing LA libraries into your code.

•	 Implementing matrices

•	 Matrix decomposition

•	 Computing determinants

•	 Solving linear systems of equations

•	 Chapter 10—“Algorithms for Numerical Analysis”: Equations are 

some of the building blocks of financial algorithms for options and 

financial derivatives, and it is important to be able to efficiently 

calculate the solution for such mathematical models. In this chapter, 

you will see programming recipes for different methods of calculating 

equation roots and integrating functions, along with explanations 

of how they work and when they should be used. I also discuss 

numerical error and stability issues that present a challenge for 

developers in the area of quantitative financial programming.

•	 Basic numerical algorithms

•	 Root-finding algorithms

•	 Integration algorithms

•	 Reducing errors in numerical algorithms

•	 Chapter 11—“Models Based on Differential Equations”: Differential 

equations are at the heart of many techniques used in the analysis 

of derivatives. There are several processes for solving and analyzing 

PDEs that can be implemented in C++. This chapter presents 

programming recipes that cover aspects of PDE-based option 

modeling and application in C++. Topics covered include the 

following:
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•	 Basic techniques for differential equations

•	 Ordinary differential equations

•	 Partial differential equations

•	 Numerical algorithms for differential equations

•	 Chapter 12—“Basic Models for Options Pricing”: Options pricing is 

the task of determining the fair value of a particular option, given a 

set of parameters that exactly determine the option type. This chapter 

discusses some of the most popular models for options pricing. They 

include tree-based methods, such as binomial and trinomial trees. 

This chapter also discusses the famous Black-Scholes model, which 

is frequently used as the basis for the analysis of most options and 

derivative contracts.

•	 Binomial trees

•	 Trinomial trees

•	 Black-Scholes model

•	 Implementation strategies

•	 Chapter 13—“Monte Carlo Methods”: Among other programming 

techniques for equity markets, Monte Carlo simulation has a special 

place due to its wide applicability and easy implementation. These 

methods can be used to forecast prices or to validate options buying 

strategies, for example. This chapter provides programming recipes 

that can be used as part of simulation-based algorithms applied to 

options pricing.

•	 Probability distributions

•	 Random number generation

•	 Stochastic models for options

•	 Random walks

•	 Improving performance
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•	 Chapter 14—“Using C++ Libraries for Finance”: Writing good financial 

code is not an individual task. You frequently have to use libraries 

created by other developers and integrate them into your own work. In 

the world of quantitative finance, a number of C++ libraries have been 

used with great success. This chapter reviews some of these libraries 

and explains how they can be integrated into your own derivative-

based applications. Some of the topics covered include the following:

•	 Standard library tools

•	 QuantLib

•	 Boost math

•	 Boost lambda

•	 Appendix A—a quick summary of the changes introduced by C++20, 

for your reference.

�Example Code
The examples given in this book have all been tested on MacOS X using the Xcode 

7 IDE. The code uses only standard C++ techniques, so you should be able to build 

the given examples using any standards-compliant C++ compiler that implements the 

C++20 standard. For example, gcc is available on most platforms, and Microsoft Visual 

Studio will also work on Windows. The clang compiler is another option that is available 

in multiple platforms, including Windows, MacOS, and Linux.

If you use MacOS X and don’t have Xcode installed in your computer yet, you 

can download it for free from the Apple store or from the Apple developer website at 

http://developer.apple.com.

If you instead prefer to use gcc on Windows, you can download the MinGW 

distribution from the website www.mingw.org.

Once MinGW is installed, start the command prompt from the MinGW program 

group in the Start menu. Then, you can type gcc to check that the compiler is properly 

installed.

To download the source code for all examples in this book, visit the web page of the 

author at http://coliveira.net, or navigate to www.apress.com/9781484263143 and 

click the Download Source Code button.

Introduction
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CHAPTER 1

Options Concepts
In the last few decades, software development has become an integral part of the 

financial and investment industry. Advances in trading infrastructure, as well as the 

need for increased volume and liquidity, have prompted financial institutions to adopt 

computational techniques as part of their day-to-day operations. This means that 

there are many opportunities for computer scientists specializing in the design and 

development of automated strategies for trading and analyzing stocks, options, and 

other financial derivatives.

Options are among the several investment vehicles that are currently traded using 

automated methods, as you will learn in the following chapters. Given the mathematical 

structure and properties of options and related derivatives, it is possible to explore 

their features in a controlled way, which is ideal for the application of computational 

algorithms. In this book, I present many of the computational techniques currently used 

to develop strategies in order to trade options and other derivatives.

An option is a standard financial contract that derives its value from an underlying 

asset such as common stock, foreign currency, a basket of stocks, or a commodity. 

Options can be used to pursue multiple economic objectives, such as hedging against 

large variations on the underlying asset, or speculating on the future price of a stock. 

This chapter presents the basic concepts of options, along with supporting definitions. 

These concepts will be used in the next few chapters to describe algorithms and 

strategies with their implementation in C++20. In this chapter, I also give an overview 

of the use of C++ in the financial industry and how options can be modeled using this 

language.

https://doi.org/10.1007/978-1-4842-6315-0_1#DOI
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The following concepts are explored in the next sections:

•	 Basic definitions: You will learn fundamental definitions about  

option contracts and how they are used in the investment industry.

•	 Fundamental option strategies: Due to their flexibility, options can 

be combined in a surprisingly large number of investment strategies. 

You will learn about some of the most common option strategies and 

how to model them using C++.

•	 Option Greeks: One of the advantages of options investing is that it 

promotes a very analytical view of financial decisions. Each option 

is defined by a set of mathematical quantities called Greeks, which 

reflect the properties of an option contracts at each moment in time.

•	 Delta hedging: One of the ways to use options is to create a hedge for 

some other underlying asset positions. This is called delta hedging, 

and it is widely used in the financial industry. You will see how this 

investment technique works and how it can be modeled using C++.

�Basic Definitions
Let’s start with an overview of concepts and programming problems presented by 

options in the financial industry. Options are specialized trading instruments and 

therefore require their users to be familiar with a number of details about their 

operation. In this section, I introduce some basic definitions about options and their 

associated ideas. Before starting, take a quick look at Table 1-1 for a summary of the most 

commonly used concepts. These concepts are defined in more detail in the remaining 

parts of this section.
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Table 1-1.  Basic Concepts in Options Trading

Concept Definition

Call option An option contracts that gives its owner the right to buy the underlying asset 

for a predetermined price during certain time period.

Put option An option contracts that gives its owner the right to sell the underlying asset 

for a predetermined price during certain time period.

Underlying Asset whose price is used as the base of the option contracts.

Strike price The price at which option owners can buy or sell the underlying asset under 

the duration of the option contracts.

Expiration The last date of validity for the option contracts.

Settlement The act of liquidating the option contracts at the expiration date.

Intrinsic value Amount of option value that is directly derived from the underlying price.

Time value Amount of option value that is derived only from the time remaining in the 

option contracts.

Break-even price The price at which an investor will start to make a profit in the option.

Exercise The act of buying or selling the option underlying under the price determined 

by the option contracts.

American option An option style where their owners can exercise the option contracts at any 

moment between option purchase and option expiration.

European option An option style where option owners can exercise the option contracts only 

at expiration time.

ATM (At the money): Term that refers to options that have a strike price close to 

the current price for the underlying.

OTM (Out of the money): Term that refers to options that have a strike price above 

(for calls) or below (for puts) the current price of the underlying asset. These 

options have no intrinsic value.

ITM (In the money): Term that refers to options that have a strike price below 

(for calls) or above (for puts) the current price of the underlying asset. These 

options have an intrinsic value.
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Options can be classified according to several criteria. The features of these options 

determine every aspect of how they can be used, such as the quantity of underlying 

assets, the strike price, and the expiration, among others. There are two main types of 

option contracts: calls and puts. A call is a standard contract that gives its owner the right 

(but not the obligation) to buy an underlying instrument at a particular price. Similarly, a 

put is a standard contract that gives its owner the right (but not the obligation) to sell an 

underlying instrument at a predetermined price.

The strike price is the price at which the option can be exercised (i.e., the underlying 

can be bought or sold). For example, a call for IBM stock with strike $100 gives its owner 

the right to buy IBM stock at the price of $100. If the current price of IBM is greater than 

$100, the owner of such an option has the right to buy the stock at a price that is lower 

than the current price, which means that the call has a higher value as the value of IBM 

stock increases. This situation is exemplified in Figure 1-1. If the current price is lower 

than $100 at expiration, then the value of the option is zero, since there is no profit in 

exercising the contract. Clearly, the profit/loss calculation will depend on the price 

originally paid for the option and the final price at expiration.

As you have seen in this example, if you buy a call option your possible gain is 

unlimited, while your losses are limited to the value originally paid. This is advantageous 

when you’re trying to limit losses in a particular investment scenario. As long as you are 

okay with losing a limited amount of money paid for the option, you can profit from the 

unlimited upside potential of a call (if the underlying grows in price). Put options don’t 

have unlimited profit potential since the maximum gain happens when the underlying 

price is zero. However, they still benefit from the well-defined, limited loss vs. the 

possible large gains that can be incurred.

Figure 1-1.  Profit chart for a call option
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Expiration: The expiration is the moment when the option contracts ends its 

validity and a final value exchange can be performed. Each option will have a particular, 

predefined expiration. For example, certain index-based options expire in the morning 

of the third Friday of the month. Most stock-based options expire in practice at the end 

of the third Friday of the month (although they will frequently list the Saturday as the 

formal expiration day). More recently, several weekly-based option contracts have been 

made available for some of the most traded stocks and indices. And finally, a few highly 

liquid trading instruments (such as S&P index funds) have expirations twice a week. 

Each option contracts makes it clear when expiration is due, and investors need to plan 

accordingly on what to do before expiration date.

Settlement: The settlement is the agreed-on result of the option transaction at 

expiration, the specific time when the option contracts expires. The particular details of 

settlement depend on the type of underlying asset. For example, options on common 

stock settle at expiration day, when the owner of the option needs to decide to sell 

(for puts) or buy (for calls) a certain quantity of stock. For index-based options, the 

settlement is normally performed directly in cash, determined as the cash equivalent 

for a certain number of units of the index. Some options on futures may require the 

settlement on the underlying commodity, such as grain, oil, or sugar. Investors need 

to be aware of the requirement settlement for different option contracts. Trading 

brokerages will typically let investors know about the steps required to settle the options 

they’re currently holding.

Selling options: An investor can buy or sell a call option. When doing so, it is 

important to understand the difference between these two scenarios. For option buyers, 

the goal is to profit from the possible increase (in the case of calls) or decrease (in the 

case of puts) in value for the underlying. For option sellers, on the other hand, the goal 

is to profit from the lack of movement (increase for calls or decrease for puts). So, for 

example, if you sell calls against a stock, the intent is to profit in the case that the stock 

decreases in price or stays at a price lower than the strike price. If you sell a put option, 

the goal is to profit when the stock increases in price or stays higher than the strike price 

until expiration.

Option exercise: An option contracts can be used to buy or sell the underlying asset 

as dictated by the contract specification. This process of using the option to trade the 

underlying asset is called option exercising. If the option is a call, you can exercise it and 

buy the underlying asset at the specified price. If the option is a put, you can use the 

option to sell the underlying asset at the previously specified price. The price at which 
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the option is exercised is defined by the contract. For example, a call option for AAPL 

stock with a $100 strike allows its owner to buy the stock for the strike price, independent 

of the current price of AAPL.

Exercise style: Option contracts can have different exercise styles based on when 

exercising is allowed. There are two main types:

•	 American options: Can be exercised at any time until expiration. That 

is, the owner of the option can decide to exercise it at any moment, as 

long as the option has not expired.

•	 European options: Can be exercised only upon expiration date. This 

style is more common for contracts that are settled directly on cash, 

such as index-based options.

An option is defined as a derivative of an underlying instrument. The underlying 

instrument is the asset whose price is used as the basic value for an option contracts. 

There is no fixed restriction on the type of asset used as the underlying for an option 

contracts, but in practice options tend to be defined based on openly traded securities. 

Examples of securities that can be used as the underlying asset for commonly traded 

option contracts include the following:

•	 Common stock: Probably the most common way to use options is to 

trade call or put options on common stock. In this way, you can profit 

largely from price changes in stocks of well-known public companies 

such as Apple, IBM, Walmart, and Ford.

•	 Indices: An index, such as the Dow Industrials or the NASDAQ 100, 

can be used as the underlying for an option contracts. Options based 

on indices are traditionally settled on cash (as explained earlier), 

and each unit of value corresponds to multiples of the current index 

value.

•	 Currencies: A currency, usually traded using Forex platforms, can also 

be used as the underlying for option contracts. Common currency 

pairs involving the US dollar, euro, Japanese yen, and Swiss franc 

are traded 24 hours a day. The related options are traded on lots of 

currencies, which are defined according to the relative prices of the 

target currencies. Expiration varies similarly to stock options.
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•	 Commodities: Options can also be written on commodities contracts. 

A commodity is a common product that can be traded in large 

quantities, including agricultural products such as corn, coffee, and 

sugar; fuels such as gasoline and crude oil; and even index-based 

underlying assets such as the S&P 500. Options can be used to trade 

such commodities and trading exchanges now offer options for many 

of the commodity types.

•	 Futures: These are contracts for the future delivery of a particular 

asset. Many of the commodity types discussed previously are traded 

using future contracts, including gasoline, crude oil, sugar, coffee, 

and other products. The structure of future contracts is defined to 

simplify the trade of products that will only be available within a due 

period, such as next fall, for example.

•	 ETFs (exchange-traded funds) and ETN (exchange-traded notes): 

More recently, an increasing number of funds have started to trade 

using the same rules applicable to common stocks in standard 

exchanges. Such funds are responsible for maintaining a basket of 

assets, and their shares are traded daily on exchanges. Examples of 

well-known ETFs include funds that hold components of the S&P 

500, sectors of the economy, and even commodities and currency.

Options trading has traditionally been done on stock exchanges, just like other forms 

of stock and future trading. One of the most prominent options exchange is the Chicago 

Board Options Exchange (CBOE). Many other exchanges provide support and liquidity 

for the trading of options for many of the instruments listed here.

The techniques described in this book are useful for options with any of these 

underlying instruments. Therefore, you don’t need to worry if the algorithms are applied 

to stock options or the futures options, as long as you consider the peculiarities of these 

different contracts, such as their expiration and exercise.

Options can also be classified according to the relation between the strike price and 

the price of the underlying asset. There are three cases that are typically considered:

•	 An option is said to be out of the money (OTM) when the strike price 

is above the current price of the underlying asset for call options, or 

when the strike price is below the current price of the underlying 

asset for put options.
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•	 An option is said to be at the money (ATM) when the strike price is 

close to the current price of the underlying asset.

•	 An option is said to be in the money (ITM) when the strike price is 

below the current price of the underlying asset, for call options, or 

when the strike price is above the current price of the underlying 

asset, for put options.

Notice that OTM options are cheaper than a similar ATM option, since the OTM 

options (being away from the current price of the underlying) have a lower chance of 

profit than ATM options. Similarly, ATM options are cheaper than ITM options, because 

ATM options have less probability of making money than ITM options. Also notice that, 

when considering the relation between strike price and underlying price, the option 

price generally reflects the probability that the option will generate any profit.

A related concept is the intrinsic value of an option. The intrinsic value is the part 

of the value of an option that can be derived from the difference between strike price 

and the price of the underlying asset. For example, consider an ITM call option for a 

particular stock with a strike of $100. Assume that the current price for that stock is $102. 

Therefore, the price of the option must include the $2 difference between the strike and 

the price of the underlying, since the holder of a call option can exercise it and have an 

immediate value of $2. Similarly, ITM put options have intrinsic value when the current 

price of the underlying is below the strike price, using the same reasoning.

The break-even price is the price of the underlying on expiration at which the owner 

of an option will start to make a profit. The break-even price has to include not only 

the potential profit derived from an increase in intrinsic value but also the cost paid for 

the option. Therefore, for an investor to make a profit on a call option at expiration, the 

price of the underlying asset has to rise above the strike plus any cost paid for the option 

(and similarly it has to drop below the strike minus the option cost for put options). 

For example, if an $100 MSFT call option has a cost of $1, then the investor will have a 

net profit at expiration only when the price of MSFT rises above $101 (and this without 

considering transaction costs).

As part of the larger picture of investing, options have assumed an important role 

due to their flexibility and their profit potential. As a result, new programming problems 

introduced by the use of options and related derivatives have come to the forefront of the 

investment industry, including banks, hedge funds, and other financial institutions. As you 

will see in the next section, C++ is the ideal language to create efficient and elegant solutions 

to the programming problems occurring with options- and derivatives-based investing.
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�Option Greeks
One of the characteristics of financial derivatives is the use of derived quantitative 

measures that can be essential in the analysis and pricing of the product. In the case of 

options, a few important quantitative metrics are called Greeks, because most of these 

measures are referred to by Greek letters. These Greek quantities correspond to the 

variation of option price with respect to one or more variables, such as time, volatility, or 

underlying price.

The most well-known option Greek is delta. The delta of an option is defined as the 

amount of change in the price of an option when the underlying changes by one unit. 

Therefore, delta represents a rate of change of the option in relation to the change in 

the underlying, and it is essential to understand price variation in options. Consider, for 

example, an option for IBM stock that expires in 30 days. The strike price is $100, and the 

stock is currently trading at $100. Suppose that the price of the stock increases by $1. It 

is interesting to calculate the expected change in the option price. It turns out that when 

the underlying price is close to the strike price, the delta of a call option is close to 0.5. 

One can also think of this in terms of probabilities of the option getting in the money, in 

which case this means that the value of the option is equality probable to go up or down 

by the same quantity. Therefore, it makes sense that the change per unit of price will be 

just half of the change in the underlying asset.

The value of delta increases as the option becomes more and more in the money. In 

that case, the delta gets close to one, since each dollar of change will have a larger impact 

in the intrinsic value of the option. Conversely, the value of delta decreases as the option 

becomes more and more out of the money. In that case, delta gets closer to zero, since 

each dollar of change will have less impact on the value of an option that is out of the 

money.

The second option Greek is called gamma, and it is also related to delta. The gamma 

of an option is described as the rate of change of delta with a unit change in price of the 

underlying. As you have seen, delta changes in different ways when the option is in the 

money, out of the money, or at the money. But the rate of change of delta will also vary 

depending on other factors. For example, delta will change more quickly if the option 

is close to expiration, because there is so little time for a movement to happen. To see 

why this happens, consider the delta for an option that is 30 days before expiration and 

for a second option that is just one day before expiration. Delta is also dependent on 

time, because an option closer to expiration has less probability of change. As a result, 

the delta will move from zero to one more slowly if there are 30 days to go, because 
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there is still plenty of time left for other changes. But an option with only one day left to 

expiration will have a delta quickly moving from close to zero to near one, since there 

is no time left for future changes. This is described by saying that the first option has 

lower gamma than the second option. Other factors such as volatility can also change 

an option gamma. Figure 1-2 illustrates the value of gamma for a particular option at 

different times before expiration.

Another option Greek that is closely related to time is theta. The theta of an option 

is proportional to the time left to expiration, and its value decays when it gets closer to 

the expiration date. You can think of theta as a measure of time potential for the option. 

For option buyers, higher theta is a desirable feature, since buyers want more probability 

of changes for the options they own. On the other hand, option sellers benefit from 

decreased theta, so short-term options are ideal for sellers due to the lower theta.

Finally, we have an option Greek that is not really named after a Greek letter: vega. 

The vega of an option measures the amount of volatility of the underlying asset that is 

priced into an option. The higher the volatility, the more expensive an option has to be in 

order to account for the increased possibility of price changes. The differential equations 

that define the price of an option (as you will see in future chapters) take into account 

this volatility. Vega can be used to determine how much relative volatility is embedded 

in the option price. An important use of this measure is to help option buyers and 

Figure 1-2.  Value of gamma at different dates before expiration
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�Using C++20 for Options Programming
C++ has unique features that make it especially useful for programming software for 

the financial industry. With the new standard version of the language, C++20, these 

advantages became even more pronounced. Over the years, developers have migrated 

to C++ as a practical way to meet the requirements of intensive numeric, real-time 

algorithms used by the investment community. When it comes to creating decision 

support software for fast-paced investment strategies, it is very difficult to beat the C++ 

programming language in the areas of performance and stability.

While it is true that several newer programming languages are available for the 

implementation of financial software, very few of them provide the combination of 

advantages available when using C++. Let’s now look at some of the areas where C++ 

provides a unique advantage when compared to other programming languages that 

could be used to implement financial and investment software.

Table 1-2.  Option Greeks and Their Common Meanings

Greek Meaning

Delta Option price’s rate of change with respect to the price of the underlying asset.

Gamma Option delta’s rate of change with respect to the price of the underlying asset.

Rho Option price’s rate of change with respect to changes in interest rates.

Theta Option price’s rate of change with respect to time left to expiration.

Vega Option price’s rate of change with respect to the volatility of the underlying asset.

Lambda Option price’s rate of change with respect to percentual changes in the price of the 

underlying asset.

sellers determine if this implied volatility is consistent with their expectations for future 

changes in the price of the underlying.

There are other option Greeks that have been used in the academic community 

and in some financial applications; however, they are not as widely known as the ones 

mentioned here. You can see a summary of the most commonly used option Greeks in 

Table 1-2.
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�Availability
When looking for a programming language to implement investment software, one 

of the first concerns you need to address is the ability to run the code in a variety of 

computational environments. Targets for such investment software can range from small 

and mobile processors to large-scale parallel systems and supercomputers. Moreover, 

it is not uncommon to have to interact with different operating systems, including the 

common software platforms based on Linux, Windows, and MacOS.

Because modern computer systems are so heterogeneous, it makes economic sense 

to use languages that can be employed in a large variety of hardware and software 

configurations with little or no source code modifications. Financial programmers also 

work on different platforms, which makes it even more attractive to use software that can 

run in different computers and operating systems with little or no changes.

A strong characteristic of C++ is its wide availability over different platforms. Due 

to its early success as a multi-paradigm language, C++ has been ported to nearly any 

imaginable operating system and hardware combination. While other mainstream 

languages such as Java require the implementation of a complex runtime environment 

for proper operation, C++ was designed from the beginning with simplicity and 

portability in mind. The language does not require a runtime system, and only a minimal 

support system, provided by the C++ standard library, needs to work in order to support 

a new target. Therefore, it is relatively easy to port C++ compilers and build systems to 

new platforms with minimal changes.

Another advantage is the availability of multiple compilers provided by commercial 

vendors as well as free software. Given the importance of C++ applications, it is possible 

to find compilers with both free and commercial licenses, so that you can use the 

option that best suits your objectives. Open source developers can use state-of-the-art 

free compilers such as gcc and clang. Commercial groups, on the other hand, can take 

advantage of compilers licensed by companies such as Intel and IBM.

�Performance
It is a fact that programmers using C++ benefit from the high performance provided 

by the language. Because C++ was explicitly designed to require a minimum amount 

of overhead in most platforms, typical C++ programs run very efficiently, even without 

further optimization steps. Moreover, compilers for the language are known for their 

ability to aggressively apply optimizations that further improve performance. As a result, 
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programs coded in C++ will frequently outperform code created in other languages, even 

when this software has been heavily optimized.

Part of the performance advantage provided by C++ is the result of mature compilers 

and other building tools. Since C++ is such a well-established language, major 

companies and well-known open source projects have created optimized compilers for 

practically every major architecture. Common examples include gcc, Visual C++, LLVM 

clang, and Intel cc. Such compilers provide huge speed improvements in typical running 

time, frequently beating nonoptimized (and even optimized) code that is produced by 

other languages.

When considering performance, C++ shares the same philosophy of the C 

programming language. The general idea is to provide high-level features while 

whenever possible avoiding any overhead in the implementation of such features on 

common processors. This means that the features provided by C++ generally match very 

closely with low-level processor instructions.

Other solutions for improved performance in C++ include the use of templates in 

addition to runtime polymorphism. With templates, the compiler can generate code that 

matches the types used in a particular algorithm exactly. In this way, programs can avoid 

the large overhead of polymorphic code, which needs to made different runtime decisions 

depending on the particular type. Programmers can control algorithms in a much finer-

grained scale when using templates while still retaining the ability to use high-level types.

Last but not least, C++ simplifies the use of memory and other resources with the 

help of smart pointers and other techniques based on RAII (Resource Acquisition Is 

Initialization). These techniques allow C++ programs to control memory usage without 

having to rely on a runtime GC (garbage collection) system. Employing such strategies, 

C++ programmers can considerably reduce the overhead of frequently used dynamic 

allocation algorithms, without the need to resort to manual bookkeeping of memory and 

other resources.

�Standardization
Another great advantage of C++ is that it’s based on an international standard, which 

is recognized by practically every software vendor. Unlike some languages that are 

practically defined by an actual implementation or controlled by a powerful company, 

C++ has for decades being defined as the work of the C++ committee, which has 

representatives from major companies and organizations with an interest in the future 

development of the language.
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In fact, some of the big financial companies also have representatives in the C++ 

committee. This means that the future of C++ is not controlled by a single institution, 

such as what happens with Java (controlled by Oracle), Go (controlled by Google), C# 

(controlled by Microsoft), or Objective-C and Swift (controlled by Apple). The fact that 

the standards committee has members from several organizations protects C++ users 

from commercial manipulation that would benefit a single company, to the detriment of 

the larger community of programmers.

The C++ standards committee has been effective in improving the language in 

ways that address many of the modern needs of its users. For example, the last two 

version of the language standard (C++17 and C++20) introduced many changes that 

simplify common aspects of programming, such as simpler initialization methods, more 

advanced type detection, and generalized control structures.

The standard library has also been the target of many improvements over the last few 

years. A main focus has been the introduction of containers and smart pointers, which 

can be used to simplify a large part of modern applications. The standard library also has 

been augmented to support parallel and multithreaded algorithms, using primitives that 

can be reused on different operating systems and architectures.

It is necessary to remember that the standardization process has a few drawbacks 

too. One of the issues is the time it takes to introduce new features. Since the 

standardization process requires a lot of organization and formal meetings, it takes a few 

years before a new version of the standard is approved. This has been improved in the 

last decade, as the committee has decided to create new C++ releases every three years 

on average. Also, there is the risk of including features that go against previous design 

decisions. In this case, however, the committee has been very careful in introducing 

only features that have been thoroughly tested and considered to improve the language 

according to its design philosophy.

In general, having a standardized language has certainly helped the C++ community 

to grow and improve the whole programming ecosystem over the last few decades. This 

is just another reason why developers in financial institutions have embraced C++ as a 

language suitable for the implementation of options- and derivatives-based financial 

algorithms.
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�Expressiveness
Last but not least, C++ is multi-paradigm language that provides the expressiveness and 

features necessary for the implementation of complex software projects. Unlike some 

languages, which define themselves as following a single programming paradigm (such 

as object-oriented or functional), C++ allows the use of multiple paradigms in a single 

application. In this way, you can use the best approach for problem solving, independent 

of the underlying implementation techniques: object-oriented programming, functional 

programming, template-based programming, or just simple structured programming.

Because C++ allows programmers to express themselves using different paradigms, 

it makes easier to find a solution that matches the problem at hand, instead of 

demanding changes to the way you think to match language requirements. For example, 

a language such as Java, which is designated as object-oriented, requires programmers 

to create code based on objects and classes even when this does not match directly 

the fundamental requirements of the problem. In C++, on the other hand, you have a 

choice of using OO techniques as well as functional or even more traditional structured 

techniques, if this is what your algorithm requires.

The fact that you can use different techniques for different parts of your application 

also improves your ability to concentrate on algorithms, instead of on programing 

techniques. Sometimes, using a template-based strategy is the easiest way to achieve a 

particular algorithmic goal, and C++ allows you to do that without getting in your way. 

Other parts of the application may benefit from using objects, such as the GUI code. In 

each case, it is important to be able to express algorithms in the most natural way.

In this book, you will have the opportunity to use many of the features of C++ in 

different contexts. It will become clear that some features such as object-oriented 

programming are best used with a particular class of problems, whereas functional 

techniques may be the best approach in other situations. The fact that the C++ language 

provides the flexibility to tackle such distinct problems is a clear advantage.

�Modeling Options in C++
In this section, you will learn how to code a basic class that can later be used as a starting 

point for more complex options analysis and trading. In this first example, you will see a 

C++ class that can be used as the basis for a framework for options value calculation. The 

class is named GenericOption, since it can be used for any type of underlying, and for 
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calls and puts. Before I present how the class works, let’s review a basic concept of class 

design that is unique to the C++ language, and that will be followed on other examples in 

this book.

�Creating Well-Behaved Classes
One of the most important parts of designing classes in C++ is to make sure that they can 

combine appropriately with other libraries in the system. In particular, the C++ standard 

library, which includes the STL (standard template library), is the most important set 

of classes that you will encounter when developing C++ applications. It is essential that 

your classes play well with the classes and templates provided by the standard library.

To work properly with other parts of the C++ library, classes need to define (or use 

the default definition for) the four special member functions. These member functions 

are mainly used to create and copy objects and are required in general to guarantee their 

proper behavior. These four special member functions are as follows:

•	 The default constructor: Each class can have one or more constructors 

that define how to initialize objects of the class. The constructor is 

named after the class, and it can be overloaded so that you can create 

classes with different parameters. The constructor that receives 

no parameters is also known as the default constructor, and the 

compiler automatically creates one if you don’t supply it. Most of 

the time, you should avoid using the default constructor because it 

doesn’t properly initialize the native C++ types, such as the double 

and int variables. To avoid such issues, you should always provide a 

constructor for new classes.

•	 The copy constructor: This specialized constructor performs an 

initialization function similar to the default constructor. However, it 

is called only when creating new objects based on an existing object. 

The C++ compiler can also generate a default copy constructor, 

which automatically copies the values stored in the original object 

into the new object. However, the default copy constructor also has 

a problem: it doesn’t know the semantics of some values stored 

in the object. This causes issues when you’re storing a pointer to 
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allocated memory or some object that shouldn’t be copied. To avoid 

such problems, you should provide your own definition for the copy 

constructor; we recommend that you should always write a copy 

constructor for new classes.

•	 The destructor: A destructor is a member function called when 

the object is deallocated. It defines how data used by the class is 

released when the object is destroyed. Like the other special member 

functions, the compiler generates a default empty constructor. You 

should add your own constructor to properly handle the release 

of private data. This is especially important when a class contains 

virtual members, in which case the destructor should also be marked 

as virtual.

•	 The assignment operator: When copying data between objects, the 

assignment operator is invoked automatically. Even though this 

special method is not equivalent to a constructor, it does similar 

work. Therefore, you should apply the same strategy when dealing 

with the assignment operator and make sure that it properly handles 

initialization and copies of the required data members.

To avoid potential problems with C++ classes, it is best to include these four member 

functions in all the classes you create. They are pretty straightforward. The only member 

function that needs further explanation is the assignment operator. Suppose that you’re 

implementing a class called GenericOption. The assignment operator would read as 

follows:

GenericOption &GenericOption::operator=(const GenericOption &p)

{

    if (this != &p)

    {

        m_type = p.m_type;

        m_strike = p.m_strike;

    }

    return *this;

}
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The first instruction inside the method is an if statement that checks if the this 

pointer is different from the pointer for the passed object. The reason for this check is 

that you don’t want to perform the private data member assignment unless the objects 

in the left and right side of the assignment operator are different:

if (this != &p)

While performing the auto-assignment might not be a problem for some types 

of variables (especially for native data types such as int and float), it can be time-

consuming for complex objects that need to perform several steps during initialization 

and release. For example, if a member variable contains a large matrix, the assignment 

may trigger an expensive copy operation that would become unnecessary.

�Computing the Option Value at Expiration
Our first example class, GenericOption, provides only the minimum necessary to 

calculate the value of options at expiration. The first thing you should notice about this 

class is that it follows the recommended practice described in the previous section. 

Therefore, it contains a default constructor, a regular copy constructor, a destructor, and 

an assignment operator.

The main constructor of GenericOption does very little and is responsible only for 

the initialization of private variables. Although this is common in a simple class like this, 

using constructors with very few responsibilities is a pattern that should be adopted in 

many cases. Since constructors are called in various places in a program written in C++, 

it is important to make them as fast as possible—and relegate any complex operations to 

member functions that can be called after the object is created.

Tip A void designing classes with complex constructors. Constructors are 
frequently called for the creation of temporary objects and used when passing 
parameters by value, for example. Complex constructors can cause your code to 
run slower and make classes harder to maintain.

There are two types of options recognized by the GenericOption class. This is 

defined by the enumeration OptionType, which contains the values OptionType_Call 

and OptionType_Put. Depending on the value passed to the constructor, the object will 

behave accordingly as a call or as a put option. The constructor also requires the strike 
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value of the option and the cost of the option when it was bought. You will see later in 

this book how this option cost can be calculated from other parameters, but for now you 

can assume that the cost of the option is provided by the exchange.

The main functionality of the class is contained in two member functions: 

valueAtExpiration and profitAtExpiration. The first member function simply 

calculates the value of the option at the time of expiration, which in this case is the same 

as the intrinsic value. To perform this calculation, it needs to know the current price of 

the underlying asset. The member function valueAtExpiration first needs to determine 

if the option is a put or a call. In the case of a put, it takes the difference between the 

current price and the strike price as its value, with the value being zero when the strike 

is lower than the current price. In the case of a call, this calculation is reversed, with 

the value being zero when the strike price is higher than the current price. The full 

calculation can be coded as follows:

double GenericOption::valueAtExpiration(double underlyingAtExpiration)

{

    double value = 0.0;

    if (m_type == OptionType_Call)

    {

        if (m_strike < underlyingAtExpiration)

        {

            value = underlyingAtExpiration - m_strike;

        }

    }

    else  // it is an OptionType_Put

    {

        if (m_strike > underlyingAtExpiration)

        {

            value = m_strike - underlyingAtExpiration;

        }

    }

    return value;

}
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The profitAtExpiration function is similar to valueAtExpiration, but it also 

considers the price that was paid by the option. Thus, a profit in the option is achieved only 

after it surpasses the break-even price (for call options). The calculation uses the m_cost 

member variable to determine the price paid by the option, and it returns the net profit of 

the option (without considering transaction costs). The function can be coded as follows:

double GenericOption::profitAtExpiration(double underlyingAtExpiration)

{

    double value = 0.0;

    double finalValue = valueAtExpiration(underlyingAtExpiration);

    if (finalValue > m_cost)

    {

        value = finalValue - m_cost;

    }

    return value;

}

�Complete Listing
The complete code for the example described previously is shown in Listing 1-1 

and Listing 1-2. The code is split into a header file called GenericOption.h and an 

implementation file called GenericOption.cpp.

Listing 1-1.  Interface of the GenericOption Class

//

//  GenericOption.h

#ifndef __CppOptions__GenericOption__

#define __CppOptions__GenericOption__

#include <stdio.h>

//

// Option types based on direction: call or put

enum OptionType {

    OptionType_Call,

    OptionType_Put

};
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//

// Class the represents a generic option

//

class GenericOption {

public:

    GenericOption(double strike, OptionType type, double cost);

    GenericOption(const GenericOption &p);

    ~GenericOption();

    GenericOption &operator=(const GenericOption &p);

    double valueAtExpiration(double underlyingAtExpiration);

    double profitAtExpiration(double underlyingAtExpiration);

private:

    double m_strike;

    OptionType m_type;

    double m_cost;

};

#endif /* defined(__CppOptions__GenericOption__) */

Listing 1-2.  Implementation of the GenericOption class

//

//  GenericOption.cpp

#include "GenericOption.h"

#include <iostream>

using std::cout;

using std::endl;

// This is a constructor for this class

//

GenericOption::GenericOption(double strike, OptionType type, double cost)

: m_strike(strike),

  m_type(type),

  m_cost(cost)

{

}
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GenericOption::GenericOption(const GenericOption &p)

: m_strike(p.m_strike),

  m_type(p.m_type),

  m_cost(p.m_cost)

{

}

GenericOption::~GenericOption()

{

}

//

// Assignment operator

GenericOption &GenericOption::operator=(const GenericOption &p)

{

    if (this != &p)

    {

        m_type = p.m_type;

        m_strike = p.m_strike;

        m_cost = p.m_cost;

    }

    return *this;

}

//

// Computes the value of the option at expiration date.

// Value depends on the type of option (CALL or PUT) and strike.

//

double GenericOption::valueAtExpiration(double underlyingAtExpiration)

{

    double value = 0.0;

    if (m_type == OptionType_Call)

    {

        if (m_strike < underlyingAtExpiration)

        {

            value = underlyingAtExpiration - m_strike;
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        }

    }

    else  // it is an OptionType_Put

    {

        if (m_strike > underlyingAtExpiration)

        {

            value = m_strike - underlyingAtExpiration;

        }

    }

    return value;

}

//

// Return the profit (value at expiration minus option cost)

//

double GenericOption::profitAtExpiration(double underlyingAtExpiration)

{

    double value = 0.0;

    double finalValue = valueAtExpiration(underlyingAtExpiration);

    if (finalValue > m_cost)

    {

        value = finalValue - m_cost;

    }

    return value;

}

int main()

{

    GenericOption option(100.0, OptionType_Put, 1.1);

    double price1 = 120.0;

    double value = option.valueAtExpiration(price1);

    cout << " For 100PUT, value at expiration for price "

         << price1

         << " is "

         << value << endl;
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    double price2 = 85.0;

    value = option.valueAtExpiration(85.0);

    cout << " For 100PUT, value at expiration for price "

         << price2

         << " is "

         << value << endl;

    // Test profitAtExpiration

    auto limit = 120.0;

    for (auto price = 80.0; price <= limit; price += 0.1)

    {

        value = option.profitAtExpiration(price);

        cout << price << ", "  << value << endl;

    }

    return 0;

}

�Building and Testing
To compile the code presented in the last section, you need a standards-compliant 

C++ compiler. I have tested this code with gcc and LLVM clang, although most modern 

compilers should work without any problems. Here are the commands that I used to 

compile this on my machine:

gcc -o GenericOption.o -c GenericOption.cpp

gcc -o GenericOption GenericOption.o    # creates the executable

The executable file can then be used to run the sample application like this (I used 

the bash shell to run the application on UNIX):

$ ./GenericOption

 For 100PUT, value at expiration for price 120 is 0

 For 100PUT, value at expiration for price 85 is 15

80, 20

80.1, 18.8
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80.2, 18.7

80.3, 18.6

80.4, 18.5

80.5, 18.4

...

You can check the output to determine if the results match your expectations. I used 

the data to create a chart with the results, as shown in Figure 1-3. Since the example is 

a put, notice that the profit is negative for any price higher than the break-even price of 

$98.90. Below that value, the profit rises steadily, attaining its maximum value at price $0 

(not shown in the chart).

�Further References
In this chapter, I provided an introduction to most common concepts of options 

investing and how C++ programmers can model them. You can turn to several other 

sources for further clarity on the concepts introduced in this chapter. If you need 

additional information on options and related financial investments, here are a few 

books that cover not only the basics but also the mathematical details of options 

investing:

•	 Option Volatility & Pricing by Sheldon Natenberg, McGraw Hill, 1994. 

This is the standard reference on options and their properties. This 

book explains in great detail how options are defined, how option 

Greeks work, and their basic economic interpretation.

Figure 1-3.  Profit chart calculated with the GenericOption class for sample option 
with strike price $100
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•	 Investment Science by David Luenberger, Oxford University Press, 

1998. This is an undergraduate-level book that describes the basic 

theory of investment. Most of the book explains the fundamentals of 

fixed income investments, but the included algorithms can be used 

for other common problems in finance.

•	 Mathematics for Finance by Marek Capinski and Tomasz Zastawniak, 

Springer Press, 2011. This book is more for the mathematically 

inclined. It explains not only the basics of fixed income investments 

but also gives a lot of mathematical methods that are useful in their 

analysis. Many of these techniques are also used in the analysis of 

options-based investments.

•	 Investments by Zvi Bodie, Alex Kane, and Alan J. Marcus, McGraw 

Hill/Irwin, 2004. This is a standard textbook on investment theory 

that explains, among other topics, the ideas behind equity-based 

investments and their derivatives.

�Conclusion
In this chapter, I provided an overview of the themes and ideas that will be discussed in 

the remainder of the book. Options are basic financial vehicles that can serve multiple 

investment goals such as providing risk protection, supplying short-term income, 

or serving as a speculation method based on perceived future prices of a financial 

instrument.

I started with a basic description of options and how they fit in the landscape of the 

investment industry. You learned the most important properties of options and how they 

define standard contracts that are traded by stock, futures, and commodity exchanges. 

I also described how this information may be useful to software engineers who want 

to create solutions for the financial industry using C++ as the main implementation 

language.

You have seen how options can be described by option Greeks: a set of standard 

attributes associated with option contracts that can be used to determine properties of 

the option. In particular, these option Greeks are useful for evaluating the price at which 

options should be bought and sold, as you will see in the algorithms introduced in the 

later part of this book.
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This chapter also discussed the advantages of C++ as a language for financial and 

options-related programming. Many of the features of C++ make it an ideal language to 

implement algorithms and large-scale software packages to analyze and trade options. 

You have seen an example C++ class that can be used to compute the profit or loss for a 

single option contracts.

In the next chapter, you will learn about derivatives in general and how they expand 

on the ideas of standard options. You will also see how such financial derivatives can be 

modeled using the C++ language.

Chapter 1  Options Concepts



29
© Carlos Oliveira 2020 
C. Oliveira, Options and Derivatives Programming in C++20, https://doi.org/10.1007/978-1-4842-6315-0_2

CHAPTER 2

Financial Derivatives
Derivative is a general term used for contracts that have their price based on the 

properties of an underlying asset. In particular, options are a standardized type of 

derivatives that give the right to buy or sell the underlying asset at a particular price. 

Unlike options, however, general derivatives include a large number of nonstandard 

features that allow them to be created even for illiquid assets such as corporate credit 

risk or real estate mortgages.

In the last decades, the financial industry has created and popularized a multitude 

of derivatives to collateralize disparate assets, including items such as fixed income 

instruments, mortgage-backed securities, and risk of default. Pricing and trading of these 

derivatives has become a large part of the work performed daily in the trading desks of 

large banks by analysts and quantitative programmers.

This chapter focuses on characteristics of general derivatives and presents a few C++ 

techniques that are useful to model specific aspects of these financial instruments. This 

chapter also introduces you to topics that you will learn in more depth in the remainder 

of this book. The main items covered in the chapter are as follows:

•	 Models for derivative pricing: You will learn the basic ideas used to 

determine the price of various derivatives along with a few examples 

of how they are applied.

•	 Credit default swaps: A particular type of derivative where investors 

want to buy protection against the default of a third-party institution.

•	 Interest rate derivatives: A derivative in which the underlying asset is 

an interest rate that is paid in predefined time periods.

•	 FX derivatives: A quick introduction to some foreign exchange 

derivative contracts.

https://doi.org/10.1007/978-1-4842-6315-0_2#DOI
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•	 A Monte Carlo model for derivatives: You will explore a simple 

computation of Monte Carlo models for pricing derivatives in C++.

•	 Using the STL for derivative pricing: Using the STL makes it possible 

to create fast containers for generic objects, without incurring 

runtime inefficiencies.

�Models for Derivative Pricing
In the last chapter, you learned some basic information about options and how to 

use C++ to model these simple contracts. Recall that an option is a kind of financial 

derivative that is traded on exchanges and is defined by a standard agreement between 

buyers and sellers. General derivatives, however, are not restricted to the fixed 

requirements of a simple option contracts. In this section, you will learn more about 

generic derivatives, including how they are handled in the financial community.

In its general sense, a financial derivative is just a contract that assigns a value to a 

particular set of rights linked to an underlying asset. For example, options give the right 

to buy or sell an asset such as a stock or a commodity. But complex derivatives can be 

created if you want to perform a more exotic transaction between buyers and sellers. For 

example, credit default swaps are contractual exchanges that require a payment to occur 

only when a particular institution is in default (i.e., bankrupt). For another example, 

collateralized debt obligations will require payments that depend on the risk level of 

certain borrowers.

The common aspect shared between different derivatives is the way their prices are 

modeled, that is, the mathematical characteristics of price changes for these instruments. 

All derivatives that are traded in the market can be analyzed using a generalized random 

walk model that was discovered and applied in the twentieth century by American 

economists. Such a model for derivative pricing and their associated mathematical 

equations were developed and popularized by Robert Merton, in a work that was itself a 

generalization of the Nobel prize winning Black-Scholes model for options pricing.

In a random walk model, the prices of securities are studied under the assumption 

that their changes are random. That is, these prices can move up or down by a random 

value that is given by a normal distribution, as shown in Figure 2-1. While this is only 

an approximation of the complex market behavior, it is most of the time so close to 

what has been observed in the marketplace that models based on random walks have 
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been extremely successful. These models are frequently used in the financial industry 

to accurately determine prices for options and more complex derivatives. As a result, 

most of what you will learn in this book is in some way or another related to this pricing 

model, whether we’re using it to analyze existing derivatives or to trade them.

The first thing to understand about the random walk model for derivative pricing is 

that it results in a set of equations that determine the behavior of prices as time passes. 

This equation is, by the nature of its assumptions, probabilistic, but it can be solved to 

give a value for the fair price of a particular investment instrument.

The fair price, according to economic conventions, is the price at which neither the 

sellers nor the buyers would have an unfair advantage. In other words, both sides in the 

transaction are satisfied with the result, and there is no known way to extract more value 

from one of the sides in the transaction without breaking this equilibrium. Because the 

model used is probabilistic, this also means that each side of the transaction has the 

same probability of making money after the transaction is concluded. This fair price 

element of the model allows you to calculate a fixed value using only a probabilistic 

assumption about future expectations. A list of common derivative types is given in 

Table 2-1.

Figure 2-1.  An example of random walk
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Another consequence of fair pricing hypothesis is that the resulting theoretical 

model allows no arbitrage. Arbitrage is a method of making money in financial markets 

where you buy some asset for a price and immediately sell it for a higher price for a sure 

profit. This kind of arbitrage cannot be allowed in a financial model, because it indicates 

that the original price was unfair for at least one of the participants. It also corresponds 

to the known fact that, in liquid and free markets, opportunities for arbitrage will be 

nonexistent or disappear as soon as they are identified.

�Credit Default Swaps
A credit default swap (CDS) is a derivative that allows investors to bet on the solvency 

of a particular institution. In this case, the underlying asset is defined as the value of a 

business minus the liabilities it currently has. Solvency is then defined as the situation in 

which the value of the business is superior to its liabilities.

Credit default swaps have been used as a way to protect large corporations against 

the risk of default of a counterpart, which is a common risk suffered by contracts with 

Table 2-1.  A List of Common Derivatives

Derivative Type Description

Credit default swaps A contract that pays its holder in the case of default (bankruptcy) of a 

target corporation.

Collateralized debt 

obligations

A financial product where debt is paid to investors according to levels 

of collateral risk from borrowers.

FX derivatives A derivative where the underlying asset is composed of foreign 

currencies, with prices varying according to foreign exchange rates.

Interest rate derivatives A derivative in which the underlying asset is an interest rate that is 

paid in predefined time periods.

Mortgage-backed security A type of derivative that is defined in terms of mortgage contracts.

Energy derivative Derivative in which the underlying asset is an energy product or 

asset, such as oil, natural gas, coal, or electricity.

Inflation derivative Derivative contracts that have prices defined by the level of inflation 

in a particular economy.
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large institutions. For example, the 2008 financial meltdown proved that counterpart risk 

is very difficult to avoid when only a few participants dominate a large part of the market. 

The ability to use mathematical techniques to model this type of risk is therefore very 

important for institutions that deal with such large-scale operations.

In the recent years, most banks and other investment institutions have become 

active in the development of CDS models as a way to mitigate such risks. Much of the 

software for solving CDS pricing models is based on modern C++, which you will learn in 

the next chapters.

�Collateralized Debt Obligations
A collateralized debt obligation (CDO) is a financial derivative product based on the 

cash flow of a collection of loans. The collateralization process makes it possible to split 

the cash flows among different investors based on the characteristics of individual loan 

originations.

In particular, CDOs are used to split cash flows based on the risk of each loan. Parts 

of the cash flow are classified as low risk (e.g., loans that are labeled as AAA by credit 

rating institutions) and sold for higher profit, while other parts of the package are sold as 

higher-risk investments. CDOs have acquired a bad public reputation after the financial 

crisis of 2008, but they remain a valuable tool for defining the risk associated with 

particular investment classes (see Figure 2-2).
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CDO pricing relies heavily on the derivative-pricing techniques that will be discussed 

in this book. The development of Black-Scholes-Merton methods gave institutions 

the ability to price more complicated products using similar ideas. By extending these 

pricing methods to collateralized loans, quantitative trading desks have been able to 

create a completely new category of financial products that are now used by most banks 

and other financial institutions.

�FX Derivatives
Derivatives based on foreign currencies are a relatively simple extension of the ideas 

already used on options. The underlying price is defined by foreign exchanges. The basic 

difference between such products and standard options is that they depend on the price 

variation of currency pairs, such as USD/EUR.

Figure 2-2.  Securitization levels of mortgage loans during the 1990s and 2000s 
(from the official government publication, “Financial Crisis Inquiry Commission 
Report”)
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FX derivatives play an important role in markets that rely on foreign trade. For 

example, it is used in the production planning of companies that need protection against 

variations in currency prices. Most global companies that buy or sell products in a 

foreign market will use FX derivatives as a tool to avoid the unpredictability of currency 

fluctuations.

FX derivatives can also be an investment vehicle. Hedge funds have for a long time 

used foreign exchange products as a way to hedge against possible losses in foreign 

investments. They can also be used to speculate on the rise or fall of foreign currencies 

as compared to local currencies. For all these reasons, the pace of development of 

mathematical models for FX derivatives has been significant in the industry. Because of 

the right volatility and near real-time needs of FX traders, C++ has become the language 

of choice for developing applications that handle FX derivative pricing.

�Derivative Modeling Equations
The equations that have been used to model the future price of derivatives are generally 

called the Black-Scholes-Merton equations. These equations, which are based on 

similar differential equations from physics, describe the properties of pricing models 

when considering a number of input parameters. Here are the most commonly used 

parameters for these differential equations:

•	 The price of the underlying asset: This is the price of the asset that is 

the basis for the derivative. In the case of stock options, this is the 

price of the stock at the present time.

•	 The current interest rates: Interest rates have an important role in 

the modeling of derivatives, because they are the safest way to get 

a return on your money. The price of a derivative has to take in 

consideration the prevailing interest rates and the money that the 

investor could be earning in a risk-free investment.

•	 The strike price: The price at which a transfer of value will happen. 

For call options, this is the price above which a profit is made. More 

complex models will have different definitions for the strike price.
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•	 Volatility: The volatility for the underlying asset is very important in 

derivative models, because it determines how fast the underlying 

prices move. This information then can be used to calculate the 

probabilities that are part of the general model for the derivative 

price. Volatilities are described in terms of the standard deviation.

•	 Time left in the contract: Time is another important variable, because 

the more time that’s left to expiration, the higher the probability 

that the underlying asset will move in price. This directly affects the 

probability of profit for the derivative.

These parameters are used as part of the differential equation that determines the 

price of a derivative. Here is the basic equation that is generally called the Black-Scholes 

model:
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This differential equation determines the relationship between the following 

quantities:

•	 V: The price of the derivative

•	 t: The time

•	 σ: The volatility

•	 S: The price of the underlying asset

•	 r: The current interest rate

This equation can be interpreted for different purposes, depending on the type of 

contract you want to price. For example, when working with options, this equation will 

result in a formula that returns the price of a call or put option, which will depend on the 

desired strike. Moreover, the exact formula used will change depending on the type of 

exercise: either an American- or European-style option. You will see in later chapters a 

few examples of how the general equation can be used with different derivatives.

Chapter 2  Financial Derivatives



37

�Numerical Models
As discussed in the previous section, the existing models for options pricing are based 

on the Black-Scholes equation, which describes the variation of derivative prices with 

time, along with a number of other parameters. Later, Merton successfully expanded 

this model to deal with other derivatives. All these models share the fact that prices are 

assumed to be random and change according to a predefined probability distribution.

In order to solve these models, you have to develop a few techniques to calculate the 

desired prices, given the set of input parameters required by the equations. There are 

two main strategies that have been devised for this purpose: numerical methods and 

simulation methods.

Numerical methods refer to a set of mathematical and computational techniques 

to solve, or at least approximate, differential equations. While numerical methods 

were invented to solve problems in physics and engineering, they have been recently 

used with success to solve pricing problems for options and other derivatives. Many 

of the techniques studied in this book are targeted at solving one or more parts of the 

derivative-pricing models previously described.

Examples of mathematical tools that are used in the numerical solution of 

complex derivative models include linear algebra, optimization, and approximation 

methods, probability, numerical root calculation, and finite difference methods. 

These mathematical tools can be used in isolation or combined to form more complex 

algorithms for the solution of Black-Scholes equations.

The other side of solving numerical models is the development of fast algorithms. 

While the mathematical tools are important, they need to be implemented in a fast and 

efficient manner to be used in financial applications. Pricing models normally need 

to be solved very often, and the performance and accuracy of solutions can make the 

difference between a profitable and a losing financial transaction.

�Binomial Trees
Another technique used to determine the price of derivatives is the method of binomial 

trees. A binomial tree is a technique to organize the computation necessary to determine 

derivative prices in a step-by-step fashion. The root of the tree is the original price. At 

each node, there are two possible directions for the new price, which can be calculated 

using a few equations.
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Once the complete tree has been calculated, it is possible to answer questions about 

the fair price of the derivative at particular strike prices and time periods. The complete 

algorithm for binomial trees has three main steps:

•	 The forward phase: This phase happens when the tree is constructed, 

starting at time zero with an initial price. Then, the total time is 

divided into discrete steps and at each step a new set of nodes 

is created. The nodes represent the two directions in which the 

underlying price can change, either going up or down in value. This 

phase ends when the tree nodes reach the maturity date.

•	 The payoff phase: In this phase, the profit (payout) of each node is 

calculated. The calculation starts from the maturity date, since the 

profit in that case is easy to calculate.

•	 The backward phase: In this phase, the computation of the payout 

continues moving backward in time, using the values calculated in 

the previous phase as the starting point. This process continues until 

the initial node is reached.

�Simulation Models
Simulation models, also called Monte Carlo models, are a different approach to solve 

problems involving differential equations, such as the equations necessary for derivative 

pricing. The main motivation behind simulation models is that the equations for 

derivative pricing generally don’t have a closed mathematical solution. In that case, a 

possible strategy is to run a simulation of the price evolution while considering that price 

changes according to the random distribution assumed by the Black-Scholes equations.

Monte Carlo methods have a long history. Since the development of probability 

theory, researchers have found that simulating a random event is a good way to learn 

about a certain physical or engineering model. With the introduction of modern 

computers, it is now possible to perform very complex simulations in an efficient way. 

This is an area where using C++ is a big advantage, since simulation accuracy is directly 

related to the number of repetitions of a basic random experiment.

To find the price of a derivative security, the basic step is to develop a random walk 

model for the security. As discussed previously, derivatives are based on the idea that 

underlying prices are always moving in an unpredictable, random way. A Monte Carlo 
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algorithm will use this property to simulate the movements of the underlying asset for a 

large number of times. The random fluctuations are determined with a random number 

generator, according to the parameters that have been previously observed for the asset, 

such as volatility, current interest rate, and observed price of the underlying instrument.

If the simulation is properly performed, a Monte Carlo algorithm will converge to a 

particular value of derivative price, according to the assumptions of the Black-Scholes 

model. The interpretation of these simulated runs can then be used to determine the 

price of a particular contract.

Another consideration is that numeric and Monte Carlo methods are not necessarily 

exclusive options. You can code numerical methods to solve a particular pricing problem 

while at the same time using Monte Carlo methods for confirmation of the results. You 

can also start using Monte Carlo methods to explore different scenarios and then code a 

more precise numerical algorithm to find the solution of the more interesting scenarios. 

Still another possibility is to use numerical algorithms to solve particular subproblems 

and use a Monte Carlo simulation to put these values together in a more complicated 

scenario. In summary, there are many ways to combine numerical algorithms and 

simulation to achieve the desired results.

�Using the STL
One of the main goals of C++ is to act as an efficient and high-level language for 

application development. One of the tools used by programmers to achieve this goal is 

the standard template library (STL). With the STL, it is possible to create fast containers 

for generic objects, without incurring runtime inefficiencies.

The STL provides a list of software components that you can use in several contexts. 

The library can be described as having three main groups of templates:

•	 Containers: A container is a template that provides generic logic to 

handle a group of objects. They typically implement traditional data 

structures using the facilities provided by C++ templates. Table 2-2 

displays a quick list of containers provided with the STL and a short 

description of each one.
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•	 Iterators: Along with containers,J you also need to manipulate the 

contents of data structures stored in them. This is possible in the STL 

by using iterators. With an iterator, you can easily access individual 

elements in a container and perform common operations such as 

inspecting, adding, removing, and modifying single elements.

•	 Algorithms: The last major piece of the STL is a set of algorithms 

that have been optimized to each container. Because templates are 

parameterized, the algorithms in the STL can be specialized for 

each container, so that users can have the fastest algorithm for each 

data type while using the same interface. This means that you just 

need to learn a small set of algorithms that are applicable to several 

containers. The STL templates will guarantee that you’re using the 

most efficient version for that particular container. Table 2-3 displays 

a quick list of algorithms in the STL.

Table 2-2.  List of STL Containers

Container Description

std::vector A dynamically allocated array of elements, where members are guaranteed to be 

allocated contiguously.

std::list A linked list data structure.

std::map An associative data structure, where elements are associated with keys of a 

particular type.

std::multimap A version of std::map template that can also contain repeated elements.

std::queue A first-in last-out data structure.

std::dqueue A double queue, where elements can be added or removed from both sides of 

the queue.

std::set A data structure that contains ordered values and provides quick lookup 

functionalities.

std::multiset A data structure similar to set, but where elements can appear more than once.
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�Generating a Random Walk
This section gives an example of using the STL and describes a simple way to generate 

random walks in C++. While the method presented is not optimal, it shows most of the 

elements necessary to create realistic random walks. In the later chapters, you learn 

about the statistical techniques that can be used to create more realistic random walks, 

suitable for derivative-pricing algorithms.

A random walk is a process that simulates stochastic movement. That is, under 

a random walk, a certain quantity can increase or decrease its value according to a 

probabilistic rule. Random walks are important in the analysis of price movements: if we 

assume that such movements are random (as we can assume at least for relatively small 

timeframes), then a random walk can be used to model the change in prices for several 

classes of financial assets. For example, the price of a set of stocks can be analyzed as a 

Table 2-3.  List of STL Algorithms

Algorithm Description

std::for_each Performs a given function for each element of the target container.

std::find Searches the container for a given element, given a range indicating 

the beginning and end of the data sequence.

std::find_if Similar to std::find, but searches the container for a given element 

satisfying a given predicate.

std::find_first_of Searches the container for the first match of a particular element, 

given a range of elements.

std::count Counts the number of elements in the container defined by the given 

parameter.

std::count_if Counts the number of elements in the container that satisfies a given 

predicate.

std::copy Copies elements from a given origin position to a destination.

std::move Moves elements from a given origin position to a destination position.

std::reverse Reverses the current order of the container.

std::sort Sorts the container according to a comparison function.

std::binary_search Performs binary search for a particular element on a given container.
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random walk, from which we can derive the probability of its change in the near future. 

A random walk can be used not only as a practical simulation device (as we’ll do in 

this chapter) but also as a mathematical model, from which one can derive rules for 

derivative pricing.

The class that we create in this section is called RandomWalkGenerator and it exposes 

a main member function called generateWalk(). This class has the single responsibility 

of creating a sequence of numbers that represent a random walk. This means that 

starting on a particular value (the initial price), the sequence will change according 

to random increments, as determined by the given step parameter. Finally, the size of 

the sequence (which corresponds to the time to expiration of a contract) is also given 

as a parameter to the class. This results in a class with the following signature to the 

constructor:

RandomWalkGenerator(int size, double start, double step);

The class contains three member variables controlling the behavior of the random 

walk. They are as follows:

•	 m_numSteps: An integer that gives the number of steps desired

•	 m_stepSize: A double number that gives size of each step (in 

percentage points)

•	 m_initialPrice: A double number that specifies the starting price

The main member function, generateWalk(), performs the task of sequentially 

generating new steps in the price simulation. The function receives no parameters and 

uses the member data already stored in the RandomWalkGenerator class.

The way the generateWalk() member function operates is based on the 

std::vector container, which is used to store all the intermediate prices created by 

this Monte Carlo simulation process. The constructor used in this case is the default 

constructor, which results in an empty vector, called walk.

The walk vector is then populated inside the for loop using vector::push_back, 

a member function of the std::vector container that adds a new element at the end 

of the vector, resizing the vector if more space is necessary. The fragment displayed as 

Chapter 2  Financial Derivatives



43

follows uses the value returned by the member function computeRandomStep(), starting 

from the previous price stored in the local variable prev:

// Generates a random walk and stores the data in a std::vector

// that is returned at the end.

//

std::vector<double> RandomWalkGenerator::generateWalk()

{

    std::vector<double> walk;

    double prev = m_initialPrice;

    for (int i=0; i<m_numSteps; ++i)

    {

        double val =  computeRandomStep(prev);

        walk.push_back(val);

        prev = val;

    }

    return walk;

}

Finally, you can see the computeRandomStep member function, which generates a 

new random price according to the given simulation arguments. The idea used in this 

example is that there is a 1/3 chance that the price will change up, down, or stay the 

same. I use a simple random number generator to return uniformly generated numbers 

(the standard function rand is not the best choice for such applications, but you’ll learn 

about better options in a latter chapter). The result is that you have a “three-sided dice” 

that determines the direction of the next step in the simulation. Here is the complete 

code for this member function:

// Returns a random step size, following the parameters given in the

// constructor.

//

double RandomWalkGenerator::computeRandomStep(double currentPrice)

{

    const int num_directions = 3;

    int r = rand() % directions;

    double option_value = currentPrice;
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    if (r == 0)

    {

        option_value += (m_stepSize * val);

    }

    else if (r == 1)

    {

        option_value -= (m_stepSize * val);

    }

    return option_value;

}

Finally, I present next a test stub that can be used to verify the correctness of the 

code. It is always a great idea to perform some testing of the algorithm as you implement 

it. This kind of testing can be used to avoid obvious mistakes as you code a complex 

algorithm. The test case is to generate a random walk starting from price $30, for 100 

steps with a step size of $0.01. Here is the code that’s used:

int main()

{

    // 100 steps starting at $30

    RandomWalkGenerator rw(100, 30, 0.01);

    vector<double> walk = rw.generateWalk();

    for (int i=0; i<walk.size(); ++i)

    {

        cout << ", " << i << ", " << walk[i] << std::endl;

    }

    cout << endl;

    return 0;

}

�Complete Listing
The complete code for the example is listed next in Listing 2-1 and Listing 2-2. The code 

is split into a header file called GenericOption.h and an implementation file called 

GenericOption.cpp.
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Listing 2-1.  Interface of the RandomWalkGenerator Class

//

//  RandomWalkGenerator.h

//

// Interface for random walk generator class.

#ifndef __CppOptions__RandomWalkGenerator__

#define __CppOptions__RandomWalkGenerator__

// The class uses a vector to hold the elements

// of the random walk, so they can be later plotted.

#include <vector>

//

// Simple random walk generating class. This class can be

// used for price simulation purposes.

//

class RandomWalkGenerator {

public:

    //

    // Class constructors

    RandomWalkGenerator(int size, double start, double step);

    RandomWalkGenerator(const RandomWalkGenerator &p);

    // Destructor

    ~RandomWalkGenerator();

    // Assignment operator

    RandomWalkGenerator &operator=(const RandomWalkGenerator &p);

    // Main method that returns a vector with

    // values of the random walk

    std::vector<double> generateWalk();

    // Returns a single step of the random walk

    double computeRandomStep(double currentPrice);
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private:

    int m_numSteps;     // the number of steps

    double m_stepSize;  // size of each step (in percentage points)

    double m_initialPrice; // starting price

};

#endif /* defined(__CppOptions__RandomWalkGenerator__) */

Listing 2-2.  Implementation of the RandomWalkGenerator Class

//

//  RandomWalkGenerator.cpp

//

//  Simple random walk implementation.

#include "RandomWalkGenerator.h"

#include <cstdlib>

#include <iostream>

using std::vector;

using std::cout;

using std::endl;

//

// Constructor. The supplied parameters represent the number

// of elements in the random walk, the initial price, and the

// step size for the random walk.

//

RandomWalkGenerator::RandomWalkGenerator(int size, double start, double step)

: m_numSteps(size),

m_stepSize(step),

m_initialPrice(start)

{

}
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RandomWalkGenerator::RandomWalkGenerator(

               const RandomWalkGenerator &p)

        : m_numSteps(p.m_numSteps),

m_stepSize(p.m_stepSize),

m_initialPrice(p.m_initialPrice)

{

}

RandomWalkGenerator::~RandomWalkGenerator()

{

}

RandomWalkGenerator &RandomWalkGenerator::operator=(

               const RandomWalkGenerator &p)

{

    if (this != &p)

    {

        m_numSteps = p.m_numSteps;

        m_stepSize = p.m_stepSize;

        m_initialPrice = p.m_initialPrice;

    }

    return *this;

}

//

// Returns a single step of the random walk

//

double RandomWalkGenerator::computeRandomStep(double currentPrice)

{

    const int num_directions = 3;

    int r = rand() % num_directions;

    double val = currentPrice;

    if (r == 0)

    {

        val += (m_stepSize * val);

    }
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    else if (r == 1)

    {

        val -= (m_stepSize * val);

    }

    return val;

}

//

// This is the main method. It will generate random numbers within

// the constraints set by the constructor.

//

std::vector<double> RandomWalkGenerator::generateWalk()

{

    vector<double> walk;

    double prev = m_initialPrice;

    for (int i=0; i<m_numSteps; ++i)

    {

        double val =  computeRandomStep(prev);

        walk.push_back(val);

        prev = val;

    }

    return walk;

}

//

// This is a testing stub. It generates a sequence of points

// following a random walk.

//

int main()

{

    // 100 steps starting at $30

    RandomWalkGenerator rw(100, 30, 0.01);

    vector<double> walk = rw.generateWalk();
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    for (int i=0; i<walk.size(); ++i)

    {

        cout << ", " << i << ", " << walk[i] << std::endl;

    }

    cout << endl;

    return 0;

}

�Building and Testing
You can build the code presented in the last section using any standards-compliant C++ 

compiler. The code was tested on Linux and MacOS X. You can use a compiler such as gcc, 

which is freely available on all major platforms. The commands used in this case were

cc++ -std=c++2a -o RandomWalkGenerator.o -c RandomWalkGenerator.cpp

cc++ -std=c++2a -o RandomWalkGenerator RandomWalkGenerator.o

The option -std=c++2a is used to select C++20 features in the compiler, since the 

2020 standard was still not selected by default by the compiler at the time of writing. 

The code contains a test stub that generates a sample random walk. You can run the 

application to see the sequence of random prices created by the RandomWalkGenerator 

class. Here is sample output from my machine:

$ ./RandomWalkGenerator

0, 29.7,

1, 29.403,

2, 29.403,

3, 29.403,

4, 29.109,

5, 29.109,

6, 29.4001,

7, 29.4001,

8, 29.4001,

9, 29.1061,

10, 29.3971,

...
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Using the data provided in this sample output, it is easy to create a chart that shows 

the price behavior over a simulated period of time, as shown in Figure 2-3. Notice how 

this simple output looks similar to the behavior of a traded asset. You will later learn 

to change the parameters in this type of simulation so that it more closely resembles a 

particular asset class.

�Further References
Derivatives are a broad subject, and several books have been written on theoretical and 

practical aspects of these investment vehicles. Here is a quick list of references that can 

be used to get additional information on this topic:

•	 Practical C++ Financial Programming by C. Oliveira. This book 

covers most of the basic algorithms necessary for derivative pricing. 

Examples in C++ are provided in each chapter.

•	 The “Financial Crisis Inquiry Commission Report,” which is a 

publication of the US government (available at www.gpo.gov/

fdsys/pkg/GPO-FCIC/pdf/GPO-FCIC.pdf), provides an overview of 

derivatives trading activity that lead to the financial crisis of 2008.

•	 Options, Futures, and Other Derivatives by John C. Hull. This is the 

standard textbook introduction to derivatives.

Figure 2-3.  Profit chart A random walk produced by the application 
RandomWalkGenerator
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•	 Derivatives Markets by Robert L. McDonald. This book provides an 

in-depth look at the several markets in which financial derivative 

methods have been applied.

�Conclusion
This chapter introduced the main ideas about generic financial derivatives. Derivatives 

allow investors and traders to enter into contracts that are based on a particular asset 

while having some of their rights defined by associated price levels of the underlying 

asset along with certain parameters, such as interest rates, volatility, and time to 

expiration. The concepts behind derivatives make it possible to create financial products 

that uniquely target different patterns of risk and reward. Derivatives can be used in 

practice to mitigate the risk associated with many credit- and asset-based transactions. 

They can also be used to make risky and speculative bets on particular markets.

In this chapter, you have seen the basic ideas behind the models used for derivative 

pricing. These models are ultimately based on the equations developed by the 

economists Black, Scholes, and Merton. The resulting partial differential equations 

determine with precision the price of the derivative as time passes while making a small 

number of assumptions about the underlying assets. The main assumption used is that 

the changes in the underlying asset are randomly distributed, with known volatility.

I described next the main approaches used to solve derivative-pricing models. 

In general terms, you will be able to apply numerical algorithms, based on the exact 

solution of mathematical equations, binary tree techniques, or Monte Carlo methods, 

which are simulation algorithms that replicate the price movements of the desired 

financial asset.

As an example of C++ programming for derivative pricing, I introduced a C++ class 

that implements a random walk. This class illustrates how Monte Carlo methods operate 

and will be later used as a basic algorithm for more complex pricing methods.

The next chapter introduces other basic algorithms used in the implementation 

of option and derivative-pricing models. You will see how these algorithms can be 

efficiently coded in C++20. I will also review some of the most used C++ libraries in 

finance.
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CHAPTER 3

Basic C++ Algorithms
To become a proficient software developer, it is essential that you understand the basic 

algorithms used in your application area. This is especially applicable to financial 

derivatives, where some basic problems and algorithms are recurring. In this chapter, I 

examine some common algorithms encountered in C++ applications for analyzing and 

processing options and derivatives.

Some of the basic algorithms in this area involve frequent tasks such as time series 

processing, date and time handling, and data access and storage. While these algorithms 

are useful in most applications, they are especially important in code that handles 

financial data, such as options and other financial derivatives. This chapter will also 

prepare you for the type of C++ coding skills that are necessary for more advanced topics 

covered in the following chapters.

The chapter is organized so that you survey some basic algorithms and their 

implementation in C++, including the following topics:

•	 Date and time handling: Date representations are important for many 

of the underlying algorithms used in financial engineering. You will 

learn about the main operations performed on dates and how they 

can be implemented in C++20.

•	 Compact date implementation: Another aspect of date processing 

is efficient memory use for long-time series. I discuss some of the 

alternative representations for date objects and explain how they can 

be implemented in C++20.

•	 Networks and graphs: Data elements and their relationships are often 

described as a network of connections. This is true for many of the 

data entities used in financial analysis. You will see a quick overview 

of networks and their representation using C++ and the STL, along 

with an example of their use.

https://doi.org/10.1007/978-1-4842-6315-0_3#DOI
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�Date and Time Handling
Among the basic algorithms employed on financial applications, date and time handling 

is one of the most commonly used. Dates are needed to process time series, which can 

span time periods ranging from a few minutes to several years. For this reason, it is 

important to use date-handling data structures that are efficient and accurate so that you 

don’t need to worry about the correctness of financial calculations depending on dates.

In this section, you’ll learn about the most common ways to represent dates in C++ 

applications. This will also help you choose a date representation that matches the 

requirements of your particular application.

The first thing is to realize that there are several ways to represent dates in a 

computer program. The simplest technique is to use a class that directly stores the values 

for day, month, and year. This is the representation used for the Date class, as introduced 

in this section. A more compact representation of dates will be presented in the next 

section.

�Date Operations
A number of operations are commonly required to work on dates. Table 3-1 presents 

some of the most common date operations that will be discussed in this chapter.

Table 3-1.  List of Common Operations Performed on Date Objects

Operation Description

add Add a certain number of days to the current date.

subtract Subtract a certain number of days from the current date.

addTradingDays Add a number of trading days to the current date.

subtractTradingDays Subtract a number of trading days from the current date.

dateDifference Return the difference in days from the current date.

tradingDaysDifference Return the difference in trading days between two dates.

dayOfTheWeek Return the day of the week corresponding to the given date.

isWeekDay True if the date is a weekday.

(continued)
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Let’s introduce a Date class that implements the operations described in Table 3-1. 

The declaration for the Date class is the following:

class Date {

public:

    Date(int year, int month, int day);

    Date(const Date &p);

    ~Date();

    Date &operator=(const Date &p);

    void setHolidays(const std::vector<Date> &days);

    std::string month();

    std::string dayOfWeek();

    void add(int numDays);

    void addTradingDays(int numDays);

    void subtract(int numDays);

    void subtractTradingDays(int numDays);

    int dateDifference(const Date &date);

    int tradingDateDifference(const Date &date);

    DayOfTheWeek dayOfTheWeek();

    bool isHoliday();

    bool isWeekDay();

    Date nextTradingDay();

    bool isLeapYear();

    bool isTradingDay();

    void print();

Operation Description

isHoliday True if the date is a holiday.

isTradingDay True if the date is a trading day.

isLeapYear True if the year is a leap year (i.e., it has 366 days).

nextDay Increment the current date to the next valid day.

nextTradingDay Increment the current date to the next valid trading day.

Table 3-1.  (continued)
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    Date &operator ++();

    Date &operator --();

    bool operator<(const Date &d) const;

    bool operator==(const Date &d);

private:

    int m_year;

    int m_month;

    int m_day;

    DayOfTheWeek m_weekDay;

    std::vector<Date> m_holidays;

};

Notice that the data members for this class store the year, month, and day, which are 

passed to the constructor. There are two other data members:

•	 m_weekDay, which stores the current day of the week (if it is known)

•	 m_holidays, which stores a list of given holidays

�Computing the Day of the Week
The day of the week is calculated by adding days starting from January 1st, 1900, which 

was a Monday. This process is improved by storing the result on m_weekDay so that 

it doesn’t need to be recomputed. The member function, called dayOfTheWeek(), is 

implemented as follows:

DayOfTheWeek Date::dayOfTheWeek()

{

    if (m_weekDay != DayOfTheWeek_UNKNOWN)

       return m_weekDay;

    int day = 1;

    Date d(1900, 1, 1);

    for (;d < *this; ++d)

    {

        if (day == 6) {

           day = 0;

        }
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        else {

           day++;

        }

    }

    m_weekDay = static_cast<DayOfTheWeek>(day);

    return m_weekDay;

}

Another important member function used throughout the class is operator++. This 

member function is in fact the implementation of an operator, which overrides the 

default autoincrement ++. It will update the object so that it represents the next valid 

date. In most cases, only the m_day field needs to be incremented. However, when the 

day is 28, 29, 30, or 31, both the month and day need to be updated. Then, the right thing 

to do depends on the month, as shown in the following code fragment:

    if (m_day == 31)

    {

        m_day = 1;

        m_month++;

    }

    else if (m_day == 30 &&

             std::find(monthsWithThirtyOneDays.begin(),

                       monthsWithThirtyOneDays.end(), m_month)

                    == monthsWithThirtyOneDays.end())

    {

        m_day = 1;

        m_month++;

    }

    else if (m_day == 29 && m_month == 2)

    {

        m_day = 1;

        m_month++;

    }

    // ...
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Here, monthsWithThirtyOneDays is an std::vector containing a set of months that 

have 31 days. Other tests are analogous to this example. Similarly, operator-- adjusts 

the current date to the previous valid date. If the current day is 1, it finds the right date 

based on the number of days in the previous month.

The isTradingDay member function returns true if the current date is not a holiday 

or a day of the weekend:

// Returns true if not a holiday or a day of the weekend.

//

bool Date::isTradingDay()

{

    if (!isWeekDay()) return false;

    if (m_holidays.size() == 0) return true;

    if (isHoliday()) return false;

    return true;

}

Note  Notice that holidays are different per country, and when used in a realistic 
application, this code should be updated to consider international holiday dates.

Most other functions are implemented based on these primitive functions. For 

example, here is how you can add days to the current date:

void Date::add(int numDays)

{

    for (int i=0; i<numDays; ++i)

    {

        ++*this;

    }

}
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And here is how you can add trading days to the current date. Initially, you find the 

first trading day starting from the given date. Then, for each trading day, add one to the 

current date and skip all upcoming nontrading days. The implementation is as follows:

void Date::addTradingDays(int numDays)

{

    while (!isTradingDay())

    {

        ++*this;

    }

    for (int i=0; i<numDays; ++i)

    {

        ++*this;

        while (!isTradingDay())

        {

            ++*this;

        }

    }

}

�Complete Listing
Here you can find the complete code for the Date class. Listing 3-1 contains the header 

file and Listing 3-2 shows the implementation file for Date.

Listing 3-1.  Interface of the Date Class

//

//  Date.h

#ifndef __CppOptions__Date__

#define __CppOptions__Date__

#include <vector>

#include <string>
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enum DayOfTheWeek {

    DayOfTheWeek_Sunday,

    DayOfTheWeek_Monday,

    DayOfTheWeek_Tuesday,

    DayOfTheWeek_Wednesday,

    DayOfTheWeek_Thursday,

    DayOfTheWeek_Friday,

    DayOfTheWeek_Saturday,

    DayOfTheWeek_UNKNOWN

};

enum Month {

    Month_January = 1,

    Month_February,

    Month_March,

    Month_April,

    Month_May,

    Month_June,

    Month_July,

    Month_August,

    Month_September,

    Month_October,

    Month_November,

    Month_December,

};

class Date {

public:

    Date(int year, int month, int day);

    Date(const Date &p);

    ~Date();

    Date &operator=(const Date &p);

    void setHolidays(const std::vector<Date> &days);

    std::string month();

    std::string dayOfWeek();
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    void add(int numDays);

    void addTradingDays(int numDays);

    void subtract(int numDays);

    void subtractTradingDays(int numDays);

    int dateDifference(const Date &date);

    int tradingDateDifference(const Date &date);

    DayOfTheWeek dayOfTheWeek();

    bool isHoliday();

    bool isWeekDay();

    Date nextTradingDay();

    bool isLeapYear();

    bool isTradingDay();

    void print();

    Date &operator ++();

    Date &operator --();

    bool operator<(const Date &d) const;

    bool operator==(const Date &d);

private:

    int m_year;

    int m_month;

    int m_day;

    DayOfTheWeek m_weekDay;

    std::vector<Date> m_holidays;

};

#endif /* defined(__CppOptions__Date__) */

Listing 3-2.  Implementation File of the Date Class

//

//  Date.cpp

//  CppOptions

#include "Date.h"

#include <string>

#include <iostream>

#include <algorithm>
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using std::cout;

using std::endl;

using std::string;

Date::Date(int year, int month, int day)

: m_year(year),

  m_month(month),

  m_day(day),

  m_weekDay(DayOfTheWeek_UNKNOWN)

{

}

Date::~Date()

{

}

Date::Date(const Date &p)

: m_year(p.m_year),

  m_month(p.m_month),

  m_day(p.m_day),

  m_weekDay(p.m_weekDay),

  m_holidays(p.m_holidays)

{

}

Date &Date::operator=(const Date &p)

{

    if (&p != this)

    {

        m_day = p.m_day;

        m_month = p.m_month;

        m_year = p.m_year;

        m_weekDay = p.m_weekDay;

        m_holidays = p.m_holidays;

    }

    return *this;

}
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bool Date::operator<(const Date &d) const

{

    if (m_year < d.m_year) return true;

    if (m_year == d.m_year && m_month < d.m_month) return true;

    if (m_year == d.m_year && m_month == d.m_month

                           && m_day < d.m_day) return true;

    return false;

}

bool Date::operator==(const Date &d)

{

    return d.m_day == m_day && d.m_month == m_month

                            && d.m_year == m_year;

}

void Date::setHolidays(const std::vector<Date> &days)

{

    m_holidays = days;

}

bool Date::isHoliday()

{

    return std::find(m_holidays.begin(), m_holidays.end(), *this)

                  != m_holidays.end();

}

// Convert enumeration values to month strings.

//

std::string Date::month()

{

    switch (m_month) {

        case Month_January:  return "January";

        case Month_February: return "February";

        case Month_March:  return "March";

        case Month_April:  return "April";

        case Month_May:    return "May";

        case Month_June:   return "June";

        case Month_July:   return "July";
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        case Month_August: return "August";

        case Month_September: return "September";

        case Month_October:   return "October";

        case Month_November:  return "November";

        case Month_December:  return "December";

        default: throw std::runtime_error("unknown month");

    }

    return "";

}

std::string Date::dayOfWeek()

{

    switch (this->dayOfTheWeek()) {

        case DayOfTheWeek_Sunday: return "Sunday";

        case DayOfTheWeek_Monday: return "Monday";

        case DayOfTheWeek_Tuesday: return "Tuesday";

        case DayOfTheWeek_Wednesday: return "Wednesday";

        case DayOfTheWeek_Thursday: return "Thursday";

        case DayOfTheWeek_Friday: return "Friday";

        case DayOfTheWeek_Saturday: return "Saturday";

        default: throw std::runtime_error("unknown day of week");

    }

}

void Date::add(int numDays)

{

    for (int i=0; i<numDays; ++i)

    {

        ++*this;

    }

}

void Date::addTradingDays(int numDays)

{

    while (!isTradingDay())

    {

        ++*this;

    }
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    for (int i=0; i<numDays; ++i)

    {

        ++*this;

        while (!isTradingDay())

        {

            ++*this;

        }

    }

}

void Date::subtract(int numDays)

{

    for (int i=0; i<numDays; ++i)

    {

        --*this;

    }

}

void Date::subtractTradingDays(int numDays)

{

    while (!isTradingDay())

    {

        --*this;

    }

    for (int i=0; i<numDays; ++i)

    {

        --*this;

        while (!isTradingDay())

        {

            --*this;

        }

    }

}
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int Date::dateDifference(const Date &date)

{

    Date d = *this;

    if (d < date)

    {

        int diff=0;

        while (d < date)

        {

            ++d;

            ++diff;

        }

        return diff;

    }

    int diff=0;

    while (date < d)

    {

        --d;

        --diff;

    }

    return diff;

}

int Date::tradingDateDifference(const Date &date)

{

    Date d = *this;

    if (d < date)

    {

        int diff=0;

        while (!d.isTradingDay()) ++d;

        while (d < date)

        {

            ++d;

            ++diff;

            while (!d.isTradingDay()) ++d;

        }
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        return diff;

    }

    int diff=0;

    while (!d.isTradingDay()) --d;

    while (date < d)

    {

        --d;

        --diff;

        while (!d.isTradingDay()) --d;

    }

    return diff;

}

DayOfTheWeek Date::dayOfTheWeek()

{

    if (m_weekDay != DayOfTheWeek_UNKNOWN) return m_weekDay;

    int day = 1;

    Date d(1900, 1, 1);

    for (;d < *this; ++d)

    {

        if (day == 6) day = 0;

        else day++;

    }

    m_weekDay = static_cast<DayOfTheWeek>(day);

    return m_weekDay;

}

bool Date::isWeekDay()

{

    DayOfTheWeek dayOfWeek = dayOfTheWeek();

    �if (dayOfWeek == DayOfTheWeek_Sunday || dayOfWeek == DayOfTheWeek_

Saturday)

    {

        return false;

    }
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    return true;

}

bool Date::isTradingDay()

{

    if (!isWeekDay()) return false;

    if (m_holidays.size() == 0) return true;

    if (isHoliday()) return false;

    return true;

}

Date Date::nextTradingDay()

{

    Date d = *this;

    if (d.isTradingDay())

    {

        return ++d;

    }

    while (!d.isTradingDay())

    {

        ++d;

    }

    return d;

}

bool Date::isLeapYear()

{

    if (m_year % 4 != 0) return false;

    if (m_year % 100 != 0) return true;

    if (m_year % 400 != 0) return false;

    return true;

}

Date &Date::operator--()

{

    if (m_weekDay != DayOfTheWeek_UNKNOWN) // update weekday

    {
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        if (m_weekDay == DayOfTheWeek_Sunday)

            m_weekDay = DayOfTheWeek_Saturday;

        else

            m_weekDay = static_cast<DayOfTheWeek>(m_weekDay - 1);

    }

    if (m_day > 1)

    {

        m_day--;

        return *this;

    }

    if (m_month == Month_January)

    {

        m_month = Month_December;

        m_day = 31;

        m_year--;

        return *this;

    }

    m_month--;

    if (m_month == Month_February)

    {

        m_day = isLeapYear() ? 29 : 28;

        return *this;

    }

    // List of months with 31 days

    std::vector<int> monthsWithThirtyOneDays = {

           1, 3, 5, 7, 8, 10, 12

    };

    if (std::find(monthsWithThirtyOneDays.begin(),

                  monthsWithThirtyOneDays.end(), m_month)

               != monthsWithThirtyOneDays.end())

    {

        m_day = 31;

    }
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    else

    {

        m_day = 30;

    }

    return *this;

}

Date &Date::operator++()

{

    // List of months with 31 days

    std::vector<int> monthsWithThirtyOneDays = {

        1, 3, 5, 7, 8, 10, 12

    };

    if (m_day == 31)

    {

        m_day = 1;

        m_month++;

    }

    else if (m_day == 30 &&

             std::find(monthsWithThirtyOneDays.begin(),

                       monthsWithThirtyOneDays.end(), m_month)

                    == monthsWithThirtyOneDays.end())

    {

        m_day = 1;

        m_month++;

    }

    else if (m_day == 29 && m_month == 2)

    {

        m_day = 1;

        m_month++;

    }

    else if (m_day == 28 && m_month == 2  && !isLeapYear())

    {

        m_day = 1;

        m_month++;

    }
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    else

    {

        m_day++;

    }

    if (m_month > 12)

    {

        m_month = 1;

        m_year++;

    }

    if (m_weekDay != DayOfTheWeek_UNKNOWN) // update weekday

    {

        if (m_weekDay == DayOfTheWeek_Saturday)

            m_weekDay = DayOfTheWeek_Sunday;

        else

            m_weekDay = static_cast<DayOfTheWeek>(m_weekDay + 1);

    }

    return *this;

}

void Date::print()

{

    cout << m_year << "/" << m_month << "/" << m_day << endl;

}

int main()

{

    Date d(2015, 9, 12);

    DayOfTheWeek wd = d.dayOfTheWeek();

    cout << " day of the week: " << wd <<  " "

         << d.dayOfWeek() <<   endl;

    d.print();

    d.add(25);

    d.print();

    d.addTradingDays(120);

Chapter 3  Basic C++ Algorithms



72

    d.print();

    cout << " day of the week: " << d.dayOfTheWeek()

         <<  " " << d.dayOfWeek() <<   endl;

    return 0;

}

�A Compact Date Representation
While the Date class presented in the previous section is an adequate implementation of 

the concept of dates in C++, it still may not be perfect for all applications. One problem 

with it is that you need to use integers to store each of the different parts of the date, 

which include year, month, and day. In today’s common 64-bit CPU, this takes 24 bytes, 

which is lot of space for such a small piece of information.

There are a few ways that you can improve the memory use for Date objects. In 

this section, I explain how to do this using a simple format for date storage that uses a 

character string. If you use four bytes for the year and two bytes for the month as well as 

the day, the required memory is reduced to just 8 bytes. This format is also commonly 

used as a date stamp in several applications, so it is easy to verify the correctness of a 

particular date.

To show how this implementation works, I created a new class called DateCompact, 

which is a compact representation of Date objects. I only present a few of the operations 

required from this data type, to avoid duplication of the previous code, but you 

can implement all other methods provided in the Date class using the underlying 

representation provided by DateCompact.

The only date member of class DateCompact is a string, declared using the old-style 

array type of C, for compactness:

    char m_date[8];

Dates are stored using the following member functions:

    void setYear(int y);

    void setMonth(int m);

    void setDay(int d);
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These dates can be retrieved using three corresponding methods:

    int year();

    int month();

    int day();

For example, to store the year, you just need to convert the given number into a four-

character string:

void DateCompact::setYear(int year)

{

    m_date[3] = '0' + (year % 10);  year /= 10;

    m_date[2] = '0' + (year % 10);  year /= 10;

    m_date[1] = '0' + (year % 10);  year /= 10;

    m_date[0] = '0' + (year % 10);

}

You need to add each number to the character '0' so that the resulting string is 

printable. The reverse process is easy; you just need to add the characters in the right 

way:

int DateCompact::year()

{

    // (x - '0')  computes the numeric value

    // corresponding to each character.

    return  1000 * (m_date[0] - '0') + 100 * (m_date[1] - '0')

            + 10 * (m_date[2] - '0') +       (m_date[3] - '0');

}

The comparison operators can be easily implemented with the help of the strncmp 

function from the C string library. The function strncmp returns a negative number if 

the first argument is lexicographically less than the first, a positive number if the first 

argument is greater than the second, and 0 if the two strings are equal. For example, the 

equality operator can be implemented as follows:

bool DateCompact::operator==(const DateCompact &d) const

{

    return strncmp(m_date, d.m_date, 8) == 0;

}
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Similarly, the less than operator has the following implementation:

bool DateCompact::operator<(const DateCompact &d) const

{

    // strcmp returns negative values if the

    // first argument is less than the second.

    return strncmp(m_date, d.m_date, 8) < 0;

}

�Complete Listings
The full code for the DateCompact class, described in the previous section, is presented in 

Listings 3-3 and 3-4.

Listing 3-3.  Interface of the DateCompact Class

//

//  DateCompact.h

#ifndef __CppOptions__DateCompact__

#define __CppOptions__DateCompact__

//

// A compact representation for dates, using a character string

//

class DateCompact {

public:

    DateCompact(int year, int month, int day);

    DateCompact(const DateCompact &p);

    ~DateCompact();

    DateCompact &operator=(const DateCompact &p);

    void setYear(int y);

    void setMonth(int m);

    void setDay(int d);

    int year();

    int month();

    int day();
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    void print();

    bool operator==(const DateCompact &d) const;

    bool operator<(const DateCompact &d) const;

private:

    char m_date[8];

};

#endif /* defined(__CppOptions__DateCompact__) */

Listing 3-4.  Implementation of the DateCompact Class

//

//  DateCompact.cpp

//

//  Implementation for the DateCompact class

#include "DateCompact.h"

#include <cstring>

#include <iostream>

using std::cout;

using std::endl;

DateCompact::DateCompact(int year, int month, int day)

{

    setYear(year);

    setMonth(month);

    setDay(day);

}

DateCompact::DateCompact(const DateCompact &p)

{

    strcpy(m_date, p.m_date);

}

DateCompact::~DateCompact()

{

}
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DateCompact &DateCompact::operator=(const DateCompact &p)

{

    if (&p != this)

    {

        strcpy(m_date, p.m_date);

    }

    return *this;

}

//

// Use string comparison to determine if the dates are equal.

//

bool DateCompact::operator==(const DateCompact &d) const

{

    return strncmp(m_date, d.m_date, 8) == 0;

}

// Use the strncmp function to determine if a date is less than the other.

bool DateCompact::operator<(const DateCompact &d) const

{

    // strcmp returns negative values if the first

    // argument is less than the second.

    return strncmp(m_date, d.m_date, 8) < 0;

}

//

// Functions to calculate the year, month, and days as integers,

// based on the characters contained in the string 'm_date'.

//

int DateCompact::year()

{

    // (x - '0')  computes the numeric value

    // corresponding to each character.

    return  1000 * (m_date[0] - '0') + 100 * (m_date[1] - '0')

            + 10 * (m_date[2] - '0') +       (m_date[3] - '0');

}
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int DateCompact::month()

{

    return  10 * (m_date[4] - '0') +  (m_date[5] - '0');

}

int DateCompact::day()

{

    return  10 * (m_date[6] - '0') +  (m_date[7] - '0');

}

void DateCompact::print()

{

    // Copy the m_date string into a NULL terminated

    // string (with 9 characters).

    char s[9];

    strncpy(s, m_date, 8);

    s[8] = '\0';             // properly terminate the string

    cout << s << endl;

}

//

// Calculate the string corresponding to the given numeric parameter.

//

void DateCompact::setYear(int year)

{

    m_date[3] = '0' + (year % 10);

    year /= 10;

    m_date[2] = '0' + (year % 10);

    year /= 10;

    m_date[1] = '0' + (year % 10);

    year /= 10;

    m_date[0] = '0' + (year % 10);

 }
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void DateCompact::setMonth(int month)

{

    m_date[5] = '0' + (month % 10);  month /= 10;

    m_date[4] = '0' + (month % 10);  month /= 10;

}

void DateCompact::setDay(int day)

{

    m_date[7] = '0' + (day % 10);  day /= 10;

    m_date[6] = '0' + (day % 10);  day /= 10;

}

#include "Date.h"

int main()

{

    DateCompact d(2008, 3, 17);

    DateCompact e(2008, 5, 11);

    cout << " size of DateCompact: " << sizeof(DateCompact) << endl;

    d.print();

    e.print();

    if (d < e)

    {

        cout << " d is less than e " << endl;

    }

    else

    {

        cout << " d is not less than e " << endl;

    }

    Date date(2008, 3, 17);

    cout << " size of Date: " << sizeof(Date) << endl;

    return 0;

}
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�Building and Testing
The previous code can be built using any standards-compliant C++ compiler. Here are 

the commands used to build the application on MacOS X using gcc:

cc++ -std=c++2a  –o DateCompact.o –c DateCompact.cpp

cc++ -std=c++2a  –o Date.o –c Date.cpp

cc++ –o main  DateCompact.o Date.o

The main function provides a quick test of the DateCompact class, which also 

compares the size of the objects created using DateCompact and Date. Notice how Date 

occupies much more memory than DateCompact.

./DateCompact

size of DateCompact: 8

20080317

20080511

 d is less than e

 size of Date: 48

�Working with Networks
Network structures commonly appear in many fields of software development. Such 

networks are ideal for representing the connections between entities as diverse as 

people, investments, countries, or sale contracts. In financial applications, for example, 

elements of a network may represent stocks or other asset classes. Connections between 

elements of the network may represent correlation between assets, among other uses. 

This type of algorithm is used in the analysis of investment portfolios, for example.

In this section, I provide an overview of networks and explain how they can be 

presented in C++ applications. The particular example used demonstrates the way in 

which such algorithms can be designed and implemented.

The problem presented here is called word production. A word is a sequence 

of characters, and it can represent, among other things, stock tickers in a financial 

application, for example. Therefore, IBM and CAT (stock tickers for companies IBM 

and Caterpillar) may be viewed as application-specific words. These elements are then 

stored in a dictionary of useful words. The word production problem determines how 
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a word can be derived from another using a dictionary. For example, the word CAT 

can be derived from the word CAR by just changing a single character. Complex string 

production can be performed using multiple productions. Therefore, using this rule, 

it is possible to connect elements of a dictionary using a set of links, where each link 

represents a single word production.

In the string-production problem, you are given a starting and a destination word. 

You also have a dictionary of words (e.g., a set of stock tickers that you may be interested 

in trading). Then, the goal is to find the shortest set of productions that can connect the 

initial word to the final word. For a concrete example, consider the dictionary containing 

the words LOB, DAG, LOG, CAR, DOG, CAT, COB, CAB, and CAG. If you start from 

the word CAT and end with the word DOG, a possible solution to the problem is this 

sequence:

CAT, CAG, DAG, and DOG

This is not a unique solution, but it has minimum size (three productions). Another 

candidate solution is

CAT, CAB, COB, LOB, LOG, DOG

This is also valid, but is clearly not the shortest solution, since it needs more 

productions than the previous example. For simplicity, it is assumed that all words in the 

dictionary have the same size.

�Creating a Dictionary Class
The first step to solve this problem is to find an efficient representation for the 

Dictionary object. For this purpose, I created a class that stores the set of words using a 

vector called m_values. Here is the class definition:

class Dictionary {

public:

    Dictionary(int wordSize);

    ~Dictionary() {}

    Dictionary &operator=(const Dictionary &p); // not implemented

    //   ...

    void addElement(const std::string &s);

    void buildAdjancencyMatrix();
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    bool contains(const std::string &s);

    const std::vector<std::vector<bool> > &adjList();

    int elemPosition(const std::string &s);

    int size() { return (int)m_values.size(); }

    std::string elemAtPos(int i);

private:

    std::vector<std::string> m_values;

    std::map<std::string, int> m_valuePositions;

    std::vector<std::vector<bool> > m_adjacencyList;

    int m_wordSize;

};

There are other three member variables used by the class:

•	 m_wordSize is used to store the size of words in the dictionary.

•	 m_valuePositions is a variable used to store a mapping between 

words and numeric positions.

•	 m_adjacencyList, an adjacency list.

The first step in the implementation is to define member functions that add elements 

to the dictionary. For example, this is how you add new words to the dictionary:

void  Dictionary::addElement(const string &s)

{

    if (s.size() != m_wordSize)

    {

        throw std::runtime_error("invalid string size");

    }

    m_values.push_back(s);

    m_valuePositions[s] = (int)m_values.size() - 1;

    cout << " added " << s << endl;

}

You can use member functions in std::vector to interact with the underlying 

m_values collection. In this case, the function uses push_back to add new words of the 

right size. Notice that when a word is stored, the position of the word is also stored in a 

std::map named m_valuePositions.
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The member function elementAtPos returns the word stored in a certain position of 

the m_values vector:

string Dictionary::elemAtPos(int i)

{

    return m_values[i];

}

The member function contains returns true if a word is already stored in the 

dictionary. It uses the find member function of std::map, which when given a map m 

returns the value associated with the given key when the element is found, or the value 

m.end() when the element is not in the map.

bool Dictionary::contains(const string &s)

{

    return m_valuePositions.find(s) != m_valuePositions.end();

}

Another feature of the Dictionary class is that it returns the position of an element 

that has been stored in the vector m_values. To speed up this process, Dictionary 

uses std::map m_valuePositions, which maps between strings and their respective 

positions. Using this map, it is possible to define the member function elemPosition. 

The implementation is straightforward:

int Dictionary::elemPosition(const string &s)

{

    return m_valuePositions[s];

}

Finally, the Dictionary class is responsible for building an adjacency matrix, that is, 

a matrix that stores the connectivity information for the network of words stored in this 

dictionary. The way this works is that the matrix has size n by n, where n is the number 

of words stored. The entries Aij in the matrix are true or false, and true means that the 

words stored at positions i and j differ by just one character.
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The first thing that you need to do is create the adjacency matrix for the given set of 

words stored in the dictionary. This is done using the buildAdjacencyMatrix member 

function:

void Dictionary::buildAdjancencyMatrix()

{

    m_adjacencyList.clear();

    int n = (int)m_values.size();

    for (int i=0; i<n; ++i)

    {

        m_adjacencyList.push_back(vector<bool>(n));

        for (int j=0; j<n; ++j)

        {

            if (diffByOne(m_values[i], m_values[j]))

            {

                m_adjacencyList[i][j] = true;

            }

        }

    }

}

The original adjacency data is cleared and a loop is run through each pair of words 

stored in m_values. Then, the algorithm checks if the words differ by just one character 

using the diffByOne member function. If that is true, then the algorithm can set the 

value of the adjacency to true. The diffByOne algorithm is also straightforward:

bool diffByOne(const string &a, const string &b)

{

    if (a.size() != b.size()) return false;

    int ndiff = 0;

    for (unsigned i=0; i<a.length(); ++i)

    {

        if (a[i] != b[i]) ndiff++;

    }

    return ndiff == 1;

}
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You just need to count the number of different characters occurring in both strings. 

The function returns true only if the number of differences is equal to one.

�Calculating a Shortest Path
The challenging part of this algorithm is to find the shortest path between the two 

given nodes of the network, represented by the initial and final words. There are a few 

alternative algorithms to find a shortest path, but this implementation uses the well-

known Dijkstra’s algorithm.

The central idea of this algorithm is to maintain the known distances starting from 

the initial node. Then, at each iteration, you can look for the neighbors of a node and 

see if at least one can reduce the known shortest path by traversing that node. If that 

is possible, then the shortest path passing through that node is updated. This process 

continues until all nodes in the network have been considered.

I present a simple implementation of this algorithm in the StringProduction class. 

The definition of the class is as follows:

class StringProduction {

public:

    StringProduction(Dictionary &d);

    StringProduction(const StringProduction &p);

    ~StringProduction();

    StringProduction &operator=(const StringProduction &p);

    bool produces(const std::string &src,const std::string &dest,

                        std::vector<std::string> &path);

    void shortest_path(int v, int dest, int n,

                       std::vector<std::string> &path);

    std::vector<int> recoverPath(int src, int dest,

               const std::vector<int> &P, std::vector<int> &path);

private:

    Dictionary &m_dic;

};

The StringProduction class keeps a reference to a dictionary, which contains all 

the nodes in the network for use by the shortest-path algorithm. The central member 

function for this class is shortest_path, which returns the shortest path between the 
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two given words (which should be part of the underlying dictionary). The first part of the 

function initializes the data structures used by the algorithm:

    // Initialize the set of distances and the set of nodes

    for (int i = 0; i <n; i++) {

        Q.insert(i);

        if (i != v) {

            dist[i] = INF;

        }

    }

The object named Q has type std::set, and it can quickly add and remove elements 

that will later be checked by the algorithm. The loop is just adding all nodes to Q 

and setting the initial distances in the vector dist to a large number (INF). The only 

exception is the distance between the initial node v and itself, which is known to be zero.

Another important part of the algorithm is the so-called relaxation step, where the 

distance is updated to the latest known shortest-path value:

        for (int i=0; i<n; ++i){

            if (A[u][i]) {           // nodes u and i are neighbors

                int d = dist [u] + 1;

                if (d < dist[i]) {

                    dist[i] = d;

                    prev[i] = u;

                }

            }

        }

    }

The vector prev stores the node that is known to be the previous one in the shortest-

path sequence. The last part of the algorithm is the path-recovery step, where the 

complete path is retrieved using the information stored in prev:

    vector<int> npath;

    recoverPath(v, dest, prev, npath);

    for (auto elem : npath) {

       path.push_back(m_dic.elemAtPos(elem));

    }
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This algorithm uses the member function called recoverPath to find the numeric 

sequence of nodes used in the shortest path. The for loop then uses that numeric 

sequence to recover the words from the dictionary. The implementation of the 

recoverPath method iterates through the previous nodes to construct a sequence:

vector<int> StringProduction::recoverPath(

            int src, int dest, const vector<int> &P,

            vector<int> &path){

    int v = dest;

    while (v != src) {

        path.push_back(v);

        v = P[v];

    }

    path.push_back(src);

    std::reverse(path.begin(),path.end());

    return path;

}

Finally, the produces member function uses the algorithm explained previously to 

find and return the shortest production. First, it checks that the initial and destination 

words are stored in the dictionary. Then, the function shortest_path is called with the 

right parameters. The word sequence is returned using the parameter path. The return 

value is true if there is a valid sequence with size greater than zero.

bool StringProduction::produces(const string &src,

          const string &dest, vector<string> &path) {

    if (!m_dic.contains(src) || !m_dic.contains(dest))

       return false;

    shortest_path(m_dic.elemPosition(src),

                  m_dic.elemPosition(dest), m_dic.size(), path);

    return path.size() > 0;

}
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�Complete Listings
Here is the complete listing for the network-based algorithm described in the preceding 

section. There are five files that contain the full solution. Two files are used for the 

Dictionary class. Two other files are used for the StringProduction class. Finally, a 

main file is provided so that you can run a test on the two classes. The files are displayed 

in Listings 3-5–3-9.

Listing 3-5.  Interface of the Dictionary Class

//

//  Dictionary.h

#ifndef __StringProduction__Dictionary__

#define __StringProduction__Dictionary__

#include <string>

#include <vector>

#include <map>

//

// Stores the words in the dictionary and provides an adjacency matrix for 

the words

class Dictionary {

public:

    Dictionary(int wordSize);

    ~Dictionary() {}

    Dictionary &operator=(const Dictionary &p); // not implemented

private:

    Dictionary(const Dictionary &p);            // not implemented

public:

    void addElement(const std::string &s);

    void buildAdjancencyMatrix();

    bool contains(const std::string &s);

    const std::vector<std::vector<bool> > &adjList();

    int elemPosition(const std::string &s);

    int size() { return (int)m_values.size(); }

    std::string elemAtPos(int i);
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private:

    std::vector<std::string> m_values;

    std::map<std::string, int> m_valuePositions;

    std::vector<std::vector<bool> > m_adjacencyList;

    int m_wordSize;

};

#endif /* defined(__StringProduction__Dictionary__) */

Listing 3-6.  Implementation of the Dictionary Class

//

//  Dictionary.cpp

#include "Dictionary.h"

#include <iostream>

#include <vector>

#include <map>

#include <set>

#include <queue>

using std::string;

using std::vector;

using std::set;

using std::map;

using std::cout;

using std::endl;

using std::cerr;

Dictionary::Dictionary(int wordSize)

: m_values(),

m_valuePositions(),

m_adjacencyList(),

m_wordSize(wordSize)

{

}
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const std::vector<std::vector<bool> > &Dictionary::adjList()

{

    return m_adjacencyList;

}

Dictionary &Dictionary::operator=(const Dictionary &p)

{

    if (&p != this)

    {

        m_adjacencyList = p.m_adjacencyList;

        m_valuePositions = p.m_valuePositions;

        m_values = p.m_values;

        m_wordSize = p.m_wordSize;

    }

    return *this;

}

//

// True if the words a and b differ by just one character

//

bool diffByOne(const string &a, const string &b)

{

    if (a.size() != b.size()) return false;

    int ndiff = 0;

    for (unsigned i=0; i<a.length(); ++i)

    {

        if (a[i] != b[i]) ndiff++;

    }

    return ndiff == 1;

}

bool Dictionary::contains(const string &s)

{

    return m_valuePositions.find(s) != m_valuePositions.end();

}
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int Dictionary::elemPosition(const string &s)

{

    return m_valuePositions[s];

}

void  Dictionary::addElement(const string &s)

{

    if (s.size() != m_wordSize)

    {

        throw std::runtime_error("invalid string size");

    }

    m_values.push_back(s);

    m_valuePositions[s] = (int)m_values.size() - 1;

    cout << " added " << s << endl;

}

string Dictionary::elemAtPos(int i)

{

    return m_values[i];

}

void Dictionary::buildAdjancencyMatrix()

{

    m_adjacencyList.clear();

    int n = (int)m_values.size();

    for (int i=0; i<n; ++i)

    {

        m_adjacencyList.push_back(vector<bool>(n));

        for (int j=0; j<n; ++j)

        {

            if (diffByOne(m_values[i], m_values[j]))

            {

                m_adjacencyList[i][j] = 1;

            }

        }

    }

}
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Listing 3-7.  Interface of the StringProduction Class

//

//  StringProduction.h

#ifndef __StringProduction__StringProduction__

#define __StringProduction__StringProduction__

#include <vector>

#include <string>

class Dictionary;

class StringProduction {

public:

    StringProduction(Dictionary &d);

    StringProduction(const StringProduction &p);

    ~StringProduction();

    StringProduction &operator=(const StringProduction &p);

    �bool produces(const std::string &src, const std::string &dest, 

std::vector<std::string> &path);

    �void shortest_path(int v, int dest, int n, std::vector<std::string> 

&path);

    �std::vector<int> recoverPath(int src, int dest, const std::vector<int> 

&P, std::vector<int> &path);

private:

    Dictionary &m_dic;

};

#endif /* defined(__StringProduction__StringProduction__) */

Listing 3-8.  Implementation of the StringProduction Class

//

//  StringProduction.cpp

#include "StringProduction.h"

#include "Dictionary.h"
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#include <algorithm>

#include <climits>

#include <map>

#include <set>

using std::vector;

using std::string;

using std::map;

using std::set;

StringProduction::StringProduction(Dictionary &d)

: m_dic(d)

{

}

StringProduction::StringProduction(const StringProduction &p)

: m_dic(p.m_dic)

{

}

StringProduction::~StringProduction()

{

}

StringProduction &StringProduction::operator=(const StringProduction &p)

{

    if (&p != this) {

        m_dic = p.m_dic;

    }

    return *this;

}

//

// Recovers the path from a list of previous nodes (P)

vector<int> StringProduction::recoverPath(int src, int dest, const 

vector<int> &P, vector<int> &path){

    int v = dest;
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    while (v != src) {

        path.push_back(v);

        v = P[v];

    }

    path.push_back(src);

    std::reverse(path.begin(),path.end());

    return path;

}

//

// Computes the shortest path.

// Node v is the source, dest is destination. If the path can be found, it 

is stored on parameter path

void StringProduction::shortest_path(int v, int dest, int n, vector<string> 

&path)

{

    const std::vector<std::vector<bool> > &A = m_dic.adjList(); // �get the 

adjacency matrix

    path.clear();

    vector<int> dist(n, 0);

    vector<int> prev(n, 0);

    set<int> Q;              // set of nodes

    const int INF = INT_MAX; // a large number

    // Initialize the set of distances and the set of nodes

    for (int i = 0; i <n; i++) {

        Q.insert(i);

        if (i != v) {

            dist[i] = INF;

        }

    }

    // This is Dijkstra's algorithm

    while (!Q.empty()) {

        int min = INF;

        int u = -1;
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        for (set<int>::iterator it = Q.begin(); it != Q.end(); ++it) {

            // Find the minimum value in queue

            if (dist[*it] < min) {

                min = dist[*it];

                u = *it;

            }

        }

        Q.erase(u);   // remove min vertex u from set

        // Relaxation step

        for (int i=0; i<n; ++i){

            if (A[u][i]) {              // this is a neighbor

                int d = dist [u] + 1;

                if (d < dist[i]) {

                    dist[i] = d;

                    prev[i] = u;

                }

            }

        }

    }

    // Recover the path from vector prev

    vector<int> npath;

    recoverPath(v, dest, prev, npath);

    for (auto elem : npath) {

       path.push_back(m_dic.elemAtPos(elem));

    }

}

//

// Returns true if the word src produces dest using the

// dictionary dic. If true, then path will contain the path

// between src and dest.

//
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bool StringProduction::produces(const string &src,

            const string &dest, vector<string> &path) {

    if (!m_dic.contains(src) || !m_dic.contains(dest)) return false;

    shortest_path(m_dic.elemPosition(src),

                  m_dic.elemPosition(dest), m_dic.size(), path);

    return path.size() > 0;

}

Listing 3-9.  The main Function with a Simple Test for the StringProduction Class

//

//  main.cpp

//  StringProduction

//

#include "StringProduction.h"

#include "Dictionary.h"

#include <iostream>

using std::vector;

using std::string;

using std::cout;

using std::endl;

//

// main function is a test case for the algorithm.

//

int main(int argc, const char * argv[]) {

    if (argc != 3) {

        cout << "prog word1 word2" << endl;

        return 1;

    }

    Dictionary dic(3);

    dic.addElement("lob");

    dic.addElement("dag");
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    dic.addElement("log");

    dic.addElement("car");

    dic.addElement("dog");

    dic.addElement("cat");

    dic.addElement("cob");

    dic.addElement("cab");

    dic.addElement("cag");

    dic.buildAdjancencyMatrix();

    vector<string> path;

    StringProduction sp(dic);

    if (sp.produces(argv[1], argv[2], path)) {

        cout << " -- the first string produces the second" << endl;

        cout << " -- that path has size " << path.size()   << ":\n";

        for (unsigned i=0; i<path.size(); ++i) {

            cout << path[i] << "; ";

        }

    } else {

        cout << " the second string does not produce the second"

             << endl;

    }

    return 0;

}

�Building and Testing
You can build the code presented in the last section using any standards-compliant C++ 

compiler. I tested the code on Linux and MacOS X. The commands used to build the 

project in gcc are the following:

gcc -o StringProduction.o -c StringProduction.cpp

gcc -o Dictionary.o –c Dictionary.cpp

gcc -o main.o –c main.cpp

gcc -o StringProduction Dictionary.o StringProduction.o main.o
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The main function contains test code that creates a new Dictionary object, inserts 

a small set of words, and uses the StringProduction class to calculate the shortest path. 

Here is a sample of the generated output in my system:

./StringProduction cat dog

added lob

added dag

added log

added car

added dog

added cat

added cob

added cab

added cag

-- the first string produces the second

-- that path has size 4:

cat; cag; dag; dog;

A quick note about the complexity of this algorithm. As explained, the Dijkstra’s 

algorithm for shortest-path calculation is used. The current implementation uses 

a matrix of adjacencies, with complexity O(n2), where n is number of words in the 

dictionary. This could be improved using more complex implementation schemes (such 

as adjacency lists and priority queues); however, I decided to use the simplest data 

structures in order to concentrate on the algorithm itself.

�Conclusion
In this chapter, I presented a few basic algorithms implemented in C++20. These 

algorithms provide examples of how to solve computational problems using C++ and 

container from the STL. You read an overview of two interesting problems with financial 

applications: date calculation and shortest paths on data networks.

The first two sections dealt with date representations and their associated 

operations. Dates are needed in nearly all financial- and derivative-related applications. 

They are an intrinsic part of time series for prices, volatility, and other financial 

information used in the analysis of derivatives. You saw how to implement commonly 
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used functions to manipulate dates, such as adding and subtracting dates, finding trade 

dates, and computing date intervals. You have also learned how to design a compact 

date representation, so that only a small amount of memory is necessary to store a large 

number of date objects.

Finally, I discussed the common problem of implementing a network, with nodes 

that represent individual data elements and connections between these nodes. I 

discussed a simple problem based on a dictionary of strings, which can represent stocks 

from a universe of interest, for example. Then, you learned how to create an algorithm 

that calculates the shortest paths between elements of this basic dataset.

In the next chapter, you will see more examples of using C++ for financial 

programming. This time, you will learn more about object-oriented techniques, 

including how they can be used to create high-performance applications to process 

options and derivative contracts.
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CHAPTER 4

Object-Oriented 
Techniques
For the last 30 years, object-oriented techniques have become the standard for software 

design and development. Since C++ fully supports OO programming, it is essential 

that you have a good understanding of OO techniques in order to solve many of the 

challenges presented by options and derivatives programming.

This chapter presents a practical summary of the programming topics you need to 

understand in order to become proficient in the relevant OO concepts and techniques 

used in the field of options and derivatives analysis. Some of the topics covered in this 

chapter include the following:

•	 Fundamental OO concepts in C++: A quick review of object-oriented 

concepts as implemented in C++, with examples based on derivatives 

and options

•	 Problem partitioning: How to partitioning a problem into classes and 

related OO concepts, using specific C++ techniques

•	 Designing a solution: How to use classes and objects to solve 

problems in financial engineering

•	 Reusing OO components: How to create reusable C++ components 

that can be integrated to your own full-scale applications, or even 

distributed as an external library

https://doi.org/10.1007/978-1-4842-6315-0_4#DOI
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�OO Programming Concepts
Object-oriented programming provides set of principles that can facilitate the 

development of computer software. Using OO programming techniques, you can 

easily organize your code and create high-level abstractions for application logic 

and commonly used component libraries. In this way, OO techniques can be used to 

improve and reuse existing components, as well as simplify the overall development. OO 

programming promotes a way of creating software that uses logical elements operating 

at a higher level of abstraction.

When considering different styles of software programming, it is important to 

use tools and languages that provide an adequate level of support for the desired 

programming style. C++ was designed to be a multi-paradigm programming language 

(see Figure 4-1); therefore, it can properly support more than one style of programming, 

including:

•	 Structured programming: In structured programming, code is 

organized in terms of functions and data structures. Each function 

uses standard control flow structures, such as for, while, do, and 

if/then/else, to organize code. While this programming style was 

previously used in isolation, nowadays it is more commonly used as 

part of an OO or functional approach.

•	 Functional programming: In this style of programming, functions are 

the most important element of composition. Functions are also used 

as first-class citizens: they can be stored and passed as parameters to 

other functions in this programming paradigm. The C++11 standard 

has improved support for functional programming, as seen in 

Chapter 8.

•	 Generic, or template-based programming: Templates allow 

programmers to create parameterized types. Such types can be 

used to implement concepts that are independent of the specific 

type employed. A common example is a container class such as 

std::vector, which can be used to store values of any type in a 

sequence of elements stored in contiguous memory.
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•	 Object-oriented programming: A programming style where code is 

organized in classes and shared in the form of objects. In the OO 

paradigm, objects can respond to operations that are implemented 

as member functions in C++. Encapsulation and inheritance are 

common mechanisms used to support the implementation of OO 

systems.

C++ offers complete support for OO concepts. Some of these support elements have 

already been used in the previous chapters of this book, including classes, objects that 

can be instantiated from these classes, as well as their members such as constructors, 

and destructors, among others. In this chapter, you will learn more about OO concepts 

that are frequently used in real-world applications, with examples that are directly used 

in the implementation of options and derivatives in C++.

Remember that the main elements of OO programming can be summarized as 

follows:

•	 Encapsulation: This concept refers to the division of programmatic 

responsibilities into different language elements. C++ offers classes 

that can be used to encapsulate desired functionality in a clear 

way. When planning applications and coding them in C++, it is 

always a good idea to determine the main concepts that need to be 

represented as classes and encapsulate the related procedural code 

into member functions of that class.

Figure 4-1.  A comparison of concepts used in four programming paradigms 
enabled by C++
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•	 Inheritance: C++ allows programmers to extend a class with new 

operations. This is possible through the concept of inheritance, when 

a new class assumes all operations previously available in an existing 

class, called its parent. Inheritance also allows programmers to add 

new functionality to existing classes, through the inclusion of new 

member functions that provide the required functionality.

•	 Polymorphism: Inherited classes in C++ extend available classes 

through the addition of new member functions. Inherited classes also 

modify the behavior of existing member functions that have been 

marked with the virtual keyword. Polymorphism in C++ is defined 

through the use of virtual functions, which are then dispatched using 

a virtual function table, as implemented by most compilers.

Although C++ provides much more than pure OO programming, these elements 

alone can nonetheless be used to create very complex and efficient applications in 

various areas, such as the case of financial applications. In the remaining of this chapter, 

you will see how these OO concepts can be utilized to solve problems occurring on 

financial derivatives.

Note S oftware development using OO techniques not only allows separation 
between implementation and interface, but it also requires the clear definition of 
such concepts. A good C++ programmer will excel at decomposing problems into 
smaller components, which can then be coded into separate classes. While I can 
only give examples of this process in this book, design and analysis of OO software 
is a complex and important phase that should be part of your effort during each 
software project.

�Encapsulation
The idea of encapsulation is to define abstract operations that can be implemented by 

a single class. Once these operations have been made available, clients of a class can 

use them without being exposed to the internal details of the implementation such as 

variables, constants, and other internal code that is only used locally to implement the 

required features.
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One of the important aspects of encapsulation is the ability to hide data, which 

then becomes the member variables of the target class. Consider, for example, a class 

that represents a credit default swap. The class should contain enough information to 

determine how to store and trade such financial instruments. For an example of data 

that must be encapsulated into such a class, you might want to consider the following:

•	 Underlying instrument: The financial instrument that is the basis for 

the contract. It could be, for example, a set of bonds for a particular 

company, cash, or some other preestablished financial instrument.

•	 Counterpart: The institution that is the target of the default swap 

payments. The payment is generally made when the target institution 

defaults.

•	 Payoff value: The monetary value of the default swap contract. This 

payoffis transferred between institutions if the contract payment 

condition is triggered.

•	 Term: The term of the contract, after which it ceases to exist.

•	 Spread cost: The recurring payment made by the buyer to maintain 

the contract. Many contracts require equal payments of a spread that 

is due at regular periods, such as every month or every year.

By using encapsulation to represent a CDS contract, a C++ developer can simply 

create a class that contains all these data elements. For example, here is a simple CDS 

class that represents the concepts described previously. We first present an enumeration 

of possible underlying values.

Note A n enum , such as CDSUnderlying, is a technique used in C and C++ to 
define related constants with different integer values, which can later be reused in 
the code.

enum CDSUnderlying {

    CDSUnderlying_Bond,

    CDSUnderlying_Cash,

    // Other values here...

};
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class CDSContract {

public:

    CDSContract();

    CDSContract(const CDSContract &p);

    ~CDSContract();

    CDSContract &operator=(const CDSContract &p);

    // Other member functions here...

private:

    std::string m_counterpart;

    CDSUnderlying m_underlying;

    double m_payoff;

    int m_term;

    double m_spreadCost;

};

With this definition, you encapsulate all the information that corresponds to a CDS 

contract into a single class. Because the data members are private, this means that only 

the class can directly access their state. The main advantage of such an arrangement 

is that no code outside the CDSContract class is allowed to access the private data, 

achieving true encapsulation.

If it is necessary to provide access to one or more data members of a class, there are 

two options. The data member could be moved to the public section of the class, but 

this would make it possible for the data member to change without knowledge of the 

CDSContract class.

A better way of doing this is to provide an access member function in a case-by-case 

way. You could, for example, allow the counterpart and payoff member variables to be 

accessed by other objects through member functions, as shown here:

class CDSContract {

public:

    CDSContract();

    CDSContract(const CDSContract &p);

    ~CDSContract();

    CDSContract &operator=(const CDSContract &p);
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    std::string counterpart() { return m_counterpart; }

    void setCounterpart(const std::string &s) { m_counterpart = s;    }

    double payoff() { return m_payoff;   }

    void setPayoff(double payoff) { m_payoff = payoff; }

private:

    std::string m_counterpart;

    CDSUnderlying m_underlying;

    double m_payoff;

    int m_term;

    double m_spreadCost;

};

Using this strategy, any change happening to the m_counterpart and m_payoff will 

occur only through an operation on the CDSContract class. This means that the class can 

react to any changes in these values, providing proper encapsulation of that data. For 

example, suppose that you want to reset the payoff value whenever the counterpart for 

the CDS contracts changes. This could be done the following way:

class CDSContract {

public:

    // ...

    std::string counterpart() { return m_counterpart; }

    void setCounterpart(const std::string &s);

    double payoff() { return m_payoff;   }

    void setPayoff(double payoff) { m_payoff = payoff; }

private:

    std::string m_counterpart;

    CDSUnderlying m_underlying;

    double m_payoff;

    int m_term;

    double m_spreadCost;

    static double kStandardPayoff;

};
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void CDSContract::setCounterpart(const std::string &s)

{

    m_counterpart = s;

    setPayoff(kStandardPayoff);

}

Whenever the counterpart for the contract changes, the class reacts by resetting the 

payoff to a standard value (defined by the constant kStandardPayoff). That would not 

be possible if the m_counterpart data member were not properly encapsulated into the 

CDSContract class.

�Inheritance
The benefits of encapsulation make it easy to implement and maintain code written in 

C++. However, it is commonly necessary to extend that code to handle situations that 

could not be anticipated by the designer of the original class. In that case, you can use 

inheritance as a powerful way to adapt your classes to new requirements.

With the use of inheritance, it is possible to create a new class that contains the same 

data and behavior as an existing class. The new class is called a derived class and the 

original class is called a base or parent class. For example, a loan-only credit default swap 

is a CDS where the protection is based on secured loans made on the target entity.

This useful type of CDS could be modeled as a new class that inherits from the 

original CDSContract class. If you need to create a derived class LoanOnlyCDSContract 

from a base class CDSContract, the C++ syntax would be the following:

class LoanOnlyCDSContract : public CDSContract {

public:

    // Constructors go here

    void changeLoanSource(const std::string &source);

private:

    std::string m_loanSource;

};
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The public keyword is used to indicate that the public interface of the base class 

CDSContract is still available to the new class. The changeLoanSource member function 

is used to determine the source of the loan used by the CDS contract. The loan source is 

then stored in the m_loanSource member variable.

Notice that inheritance creates a new class that has access to all of the public and 

protected interfaces of the base class. So, you still can call any method from the original 

CDSContract class when working with LoanOnlyCDSContract. On the other hand, private 

functions and data members are not available to the derived class. If you envision that 

a class could be used as the base for a hierarchy, it should provide access to some of the 

nonpublic interface using protect variables and functions. As a result, inheritance also 

requires a certain level of cooperation between base and derived classes.

Note I nheritance requires that the new class be used in a context similar to the 
original class. Therefore, inheritance shouldn’t be used to create classes that have 
just a superficial similarity to the original class. In particular, a class that inherits 
from a base class could be used in the same code as the original class. If this is 
not true for the new class you need, it is better to create a separate class with a 
specialized interface.

Inheritance is the base technology used to accomplish many of the other techniques 

available in OO programming. Therefore, ideas such as polymorphism and abstract 

functions are possible due to the use of inheritance.

�Polymorphism
While inheritance in itself provides a useful extension mechanism, its biggest advantage 

is the possibility of changing the original behavior of the base class in specific situations. 

In C++, this is enabled by using the virtual keyword to mark member functions that 

have polymorphic behavior.

For example, suppose that the CDSContract class is required to calculate the contract 

value at a particular date. This operation can be performed at the class level, but it will be 

slightly different for each particular implementation. Concrete implementations of the 

class may want to take into consideration particular factors that are not available at the 

base class level, such as differences in underlying, contract structures, and calculation 

models.
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For these and other reasons, determining the best way to calculate the contract value 

may not be possible at the base class, and it must be delegated to derived class. Such 

derived class will possess additional data that can be used to compute the contract price 

with more precision than what is possible on the base class.

This behavioral change can be performed in the derived classes if you use C++ 

virtual mechanism. Syntactically, this polymorphic behavior can be implemented as 

long as the member function is modified with the virtual keyword in the original class. 

The virtual keyword is a C++ tool that allows functions to behave differently according 

to the concrete instance that is executing the function call.

For example, to support the required polymorphic behavior to calculate the contract 

value, the CDSContract base class should be coded as follows:

class CDSContract {

public:

    CDSContract();

    CDSContract(const CDSContract &p);

    ~CDSContract();

    CDSContract &operator=(const CDSContract &p);

    std::string counterpart() { return m_counterpart; }

    void setCounterpart(const std::string &s);

    double payoff() { return m_payoff;   }

    void setPayoff(double payoff) { m_payoff = payoff; }

    virtual double computeCurrentValue(const Date &d);

private:

    std::string m_counterpart;

    CDSUnderlying m_underlying;

    double m_payoff;

    int m_term;

    double m_spreadCost;

    static double kStandardPayoff;

};

The virtual double computeCurrentValue(const Date &d); line declares a new 

member function that can be overridden by derived classes.
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Note  Virtual methods need to be recognized by the compiler. Therefore, the 
virtual keyword has to appear directly in the base class, not only in the derived 
classes. If a member function is supposed to have polymorphic behavior, you 
have to use virtual to signal this information to the compiler. Overriding a non-
virtual member function doesn’t create a polymorphic object and will result in a 
warning in most compilers.

The classes derived from CDSContract can implement the virtual member function 

declared previously, so that it can be invoked when instances of that derived class are 

created. Here is how this can be done for the LoanOnlyCDSContract subclass.

The isTradingDay member function returns true if the current date is not a holiday 

or a weekend day:

class LoanOnlyCDSContract : public CDSContract {

public:

    // Constructors go here

    void changeLoanSource(const std::string &s);

    virtual double computeCurrentValue(const Date &d);

private:

    std::string m_loanSource;

};

The implementation for a virtual function, both in the base class and the derived 

classes, is not different from the syntax used in other member functions. It is used in the 

compiler to determine the correct way to handle virtual functions that are called.

The use of a virtual function is determined by its polymorphic invocation through 

pointers and references. For example, consider the following code using CDSContract 

and LoanOnlyCDSContract:

void useContract(bool isLOContract, Date &currentDate)

{

    CDSContract *contract = nullptr;

    if (isLOContract)

    {

        contract = new LoanOnlyCDSContract();

    }
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    else

    {

        contract = new CDSContract(); // normal CDS contract

    }

    contract->computeCurrentValue(currentDate);

    delete contract;

}

The useContract function is passed two arguments: the Boolean value 

isLOContract, which indicates that the contract used is a loan-only CDS. The second 

argument is the current date for use of the contract. The first line in the function

CDSContract *contract = nullptr;

determines the base class of the object that will be created. As with any OO object 

in C++, a pointer (or reference) to a base class can be used to point to objects of any 

descent class. In this case, a pointer to the CDSContract class (being the base class) can 

also be used to point to objects of type LoanOnlyCDSContract. The pointer is initialized 

to nullptr.

Note T he keyword nullptr was introduced in the C++11 standard. It provides a 
way to initialize pointers with a null value without the use of a macro such as NULL 
(which is used in C but normally avoided in C++), or the value 0, which can be 
easily confused with a numeric expression.

The next lines determine the exact type that will be instantiated. If the isLOContract 

flag is set to true, a new object of type LoanOnlyCDSContract is created using the new 

keyword. Otherwise, the function creates an object of type CDSContract as the default 

value. In a more complex application, types should not be encoded using flags, but 

passed as a parameter or supplied by some of the part of the application.

The next line

contract->computeCurrentValue(currentDate);
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uses the pointer contract to perform a polymorphic call to computeCurrentValue. The 

polymorphic call mechanism will determine the correct implementation for the member 

function, depending on the exact class of the instance pointed to by the contract 

pointer. The next section explains how this mechanism works in practice and how it 

affects the creation and use of objects in C++.

�Polymorphism and Virtual Tables
The first step in using polymorphism via virtual functions is to understand how they 

differ from regular member functions. When a virtual function is called, the compiler 

has to determine the type of call and translate it into binary code that will perform the 

call to the correct implementation. This is done in C++ using the so-called virtual table 

mechanism.

A virtual table is a vector of functions that is created for each class that uses at least 

one virtual function. The virtual table stores the addresses of virtual functions that have 

been declared for that particular type, as shown in Figure 4-2.

As shown in Figure 4-2, class A is the base class and it contains a number of virtual 

functions, here denoted by the names f1 to f5. The slots in these tables store pointers 

to the implementation used by the class. Two other classes—B and C—are declared as 

derived classes via a public interface. This makes classes B and C inherit each a virtual 

table that contains at least the same function pointers (derived classes can add more 

virtual functions if they wish to do so).

Figure 4-2.  Virtual functions shared by classes A, B, and C and stored in their 
respective virtual function tables
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Each class can define its own version of the virtual function, and as a result, the 

pointer to that function is stored in the corresponding location of the virtual table. The 

virtual table is populated in the compiler as it creates the data structures necessary for 

each class. At execution time, the virtual table is available for code executed by each of 

the classes defined in this example.

During runtime, the code generated by the C++ compiler can retrieve the location in 

the table where the function pointer is stored. Then, the function is called with the given 

parameters. First, the compiler retrieves the location of the virtual table associated with 

the class. Then, the compiler finds the function pointer at a predefined displacement 

from the beginning of the table. Finally, the program makes an indirect call using the 

function pointer stored at that location.

If you use this information to understand how C++ code works, you can see how 

the CDSContract and its derived class would execute a call to the computeCurrentValue 

member function, as shown in the following line of code:

contract->computeCurrentValue(currentDate);

The first step performed by the implementation is to find the virtual table for the 

particular object that is stored in the contract pointer. Then, the slot corresponding 

to the virtual function computeCurrentValue is searched, usually at a fixed distance 

from the beginning of the vector as determined by the compiler. Finally, the function 

pointer retrieved in this way is called indirectly, resulting in a function call to the correct 

implementation.

Although the sequence of steps necessary to call a virtual function appear to be 

complex, modern compilers can generate very efficient code using the virtual table 

technique. By means of code optimization, virtual function calls frequently end up as 

just a call to a function pointer.

�Virtual Functions and Virtual Destructors
Another member function that can be annotated with the virtual keyword is the 

destructor. As you may remember, a destructor is called automatically (in the code 

generated by the compiler) when an object goes out of scope, with the objective of 

reclaiming resources used by the object.

The destructor may also be used through the keyword delete. When a delete is 

used, the code calls the destructor and frees the memory used by the object up to that 

moment. As a result, the pointer is not valid after the delete is called.
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It is important to consider the role of the destructor when virtual functions are part 

of a class. The reason is that object cleanup is a class-specific activity, which needs to be 

overridden for each individual derived class that contains additional resources (such as 

memory, network connections, or graphical contexts). As a result, the destructor usually 

has different implementations that are necessary to perform the proper cleanup and 

deallocation activities.

For these reasons, the correct way to handle destructors in polymorphic classes is to 

use the virtual mechanism in their definition. This provides the means for each subclass 

to call a specific destructor even when called from a base pointer.

For example, consider what happens when the destructor in the base class is not 

virtual.

class CDSContract {

public:

    CDSContract();

    CDSContract(const CDSContract &p);

    ~CDSContract() { std::cout << " base class delete " << std::endl; }

    CDSContract &operator=(const CDSContract &p);

    std::string counterpart() { return m_counterpart; }

    void setCounterpart(const std::string &s);

    double payoff() { return m_payoff;   }

    void setPayoff(double payoff) { m_payoff = payoff; }

    virtual double computeCurrentValue(const Date &d);

// ...

};

The derived class LoanOnlyCDSContract would have the following simple definition, 

which just prints an informational message:

class LoanOnlyCDSContract : public CDSContract {

public:

    �LoanOnlyCDSContract() { std::cout << " derived class delete "  

<< std::endl; }

    // Constructors go here

    void changeLoanSource(const std::string &s);

    virtual double computeCurrentValue(const Date &d);
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private:

    std::string m_loanSource;

};

If called from client code, these definitions may result in undefined behavior. For 

example, consider the following fragment:

void useBasePtr(CDSContract *contract, Date &currentDate)

{

    contract->computeCurrentValue(currentDate);

    delete contract;

}

This code receives a pointer of type CDSContract, uses it to call a virtual function, 

and then uses the delete operator on it. When called in the following way

void callBasePtr()

{

    Date date(1,1,2010);

    useBasePtr(new LoanOnlyCDSContract(), date);

}

the code has undefined behavior, because the compiler cannot guarantee that the 

destructor of the derived class will be found and executed. From the compiler point of 

view, a nonvirtual destructor doesn’t need to be called when the object is destroyed.

To fix this problem, the right thing to do is to declare the destructor as virtual in the 

base class. A simple change in this definition can accomplish this:

class CDSContract {

public:

    CDSContract() {}

    CDSContract(const CDSContract &p);

    virtual ~CDSContract() { std::cout << " base delete " << std::endl; }

    CDSContract &operator=(const CDSContract &p);

    // ... other members here

};
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Once a virtual destructor has been declared in the base class, all descendant classes 

will also contain a virtual destructor, independent of using the virtual keyword. This 

is guaranteed by the presence of a virtual table containing the address of the destructor, 

as described in the previous section. The result of the callBasePtr function after this 

change is guaranteed to be the following:

$ ./CDSApp

 derived class delete

 base class delete

�Abstract Functions
Another mechanism used to implement polymorphism in C++ is abstract functions. 

Such abstract functions are closely related to virtual functions, but their presence marks 

the containing class as an abstract class, which cannot be directly instantiated.

An abstract class is frequently used when a function should be provided in derived 

classes, but there is no clear default behavior that could be provided by the base class. 

This is a common situation when a base class provides only the framework for an 

algorithm, with details that are purposefully left unspecified. The idea is that the derived 

classes will necessarily provide the missing functionality that would make the derived 

classes useful for a particular application.

The syntax for abstract functions is similar to the syntax for virtual functions. The 

member function is preceded with the virtual keyword as previously seen. In addition, 

the syntax = 0; is used to terminate the declaration of the abstract function. Notice 

that only a declaration is needed, since no implementation is necessary for an abstract 

function (although it can be provided if available).

For an example, consider that the CDSContract class has a member function 

to process a credit event. In the world of credit default swaps, a credit event is what 

happens when a company calls for bankruptcy. Processing this event is different for 

each entity and CDS type; therefore, I would like to have such a member function as an 

abstract virtual function:

class CDSContract {

public:

    CDSContract() {}

    CDSContract(const CDSContract &p);
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    virtual ~CDSContract() { std::cout << " base delete " << std::endl; }

    CDSContract &operator=(const CDSContract &p);

    std::string counterpart() { return m_counterpart; }

    void setCounterpart(const std::string &s);

    double payoff() { return m_payoff;   }

    void setPayoff(double payoff) { m_payoff = payoff; }

    virtual double computeCurrentValue(const Date &d);

    virtual void processCreditEvent() = 0;

    // ...

};

If a base class includes even one abstract virtual function, it becomes an abstract 

class that cannot be itself instantiated. The reason is that the class can be thought of as 

“incomplete,” since at least one of its virtual functions has no implementation. Given 

these definitions, the following code would become invalid:

CDSContract *createSimpleContract()

{

    �CDSContract *contract = new CDSContract();   /// �Wrong: CDSContract is 

now Abstract

    contract->setCounterpart("IBM");

    return contract;

}

Once an abstract member function has been defined, the classes that are direct 

descents are required to implement that function, or else they will become abstract 

too. For example, the descendant class LoanOnlyCDSContract now has to implement 

processCreditEvent in order to be used by client code. Even a trivial implementation 

would allow LoanOnlyCDSContract to be instantiated.

class LoanOnlyCDSContract : public CDSContract {

public:

    �LoanOnlyCDSContract() { std::cout << " derived class delete "  

<< std::endl; }

    // Constructors go here

    void changeLoanSource(const std::string &s);
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    virtual double computeCurrentValue(const Date &d);

    virtual void processCreditEvent();

private:

    std::string m_loanSource;

};

void LoanOnlyCDSContract::processCreditEvent()

{

}

Abstract member functions can be freely used even inside the abstract class, where 

the body of that member function is not defined. For example, this is a valid definition 

for the CDSContract::computeCurrentValue member function:

double CDSContract::computeCurrentValue(const Date &d)

{

    if (!counterpart().empty())

    {

        processCreditEvent(); // make sure there is no credit event;

    }

    return calculateInternalValue();  // �use an internal calculation 

function

}

�Building Class Hierarchies
One of the advantages of OO code is the ability to organize your application around 

conceptual frameworks defined by classes. A class hierarchy allows the sharing of 

common logic that can be easily reused in other contexts. Proper use of class hierarchy 

can reduce the amount of code duplication and lead to applications that are more 

understandable and easier to maintain.
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A class hierarchy can be developed around important concepts used by the 

application. For example, in a derivatives-based application, the class CDSContract 

would be a candidate to become the root of a class hierarchy. Figure 4-3 shows a possible 

class hierarchy for CDS contracts, containing derived classes for the following types of 

contracts:

•	 LoanOnlyCDSContract: CDS contracts that are based on loans to 

other institutions and have special logic for processing these loans

•	 HedgedCDSContract: A CDS contract type where hedging is 

performed using other asset classes with the goal of reducing 

contract risk

•	 NakedCDSContract: A particular CDS contract where the contract 

seller does not own the underlying asset negotiated in the contract

•	 FixedInterestCDSContract: A CDS type where the contract requires 

a fixed interest rate for the duration of the specified agreement

•	 VariableInterestCDSContract: A type of CDS where the contracts 

are defined using variable interest rates, using a well-known 

benchmark for interest rates

•	 TaxAdvantagedCDSContract: A particular type of CDS contract that 

takes advantage of a special tax structure

Figure 4-3.  A class hierarchy rooted on the base class CDSContract
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All these CDS contract derivatives would benefit from code sharing from the base 

class CDSContract. As a result, common functionality such as CDS pricing, contract 

creation, and contract maintenance can be stored in a central place and used by as many 

different types of CDS contracts as possible.

Although creating class hierarchies is a useful technique for code maintenance and 

sharing, inheritance may not be the best strategy for code organization in some cases. It 

is important to be able to identify the situations in which other approaches would work 

better. Here are some potential disadvantages of using inheritance:

•	 Increased coupling between classes: Once you decide to use 

inheritance, there is a big interdependence between classes. A small 

change in the base class can affect all descendent classes. If there is 

a situation where the base class can vary frequently in functionality 

and responsibilities, then inheritance may not be the best solution.

•	 Physical dependencies at compilation time: In C++, inheritance also 

creates a compile-time dependency between classes. To generate 

correct code, the C++ compiler needs to access the definition of each 

base class. This may result in increased compilation time, which is 

sometimes undesirable, especially in large software projects.

•	 Increased information coupling: Class hierarchies may also require 

developers to learn the multiple implementations of different classes 

at different levels. This is necessary especially when classes are not 

well designed and information about their operations is not clear.

�Object Composition
Another strategy to organize and code using OO techniques is object composition. 

Composition is an alternative to inheritance, where you can use the behavior of an 

object without the dependency caused by direct class/subclass relationship.

To use object composition, you need to store the object that has the desired behavior 

as a member variable for the containing object. This is the basic strategy, which can be 

implemented in at least three ways in C++:

•	 Storing a pointer to an object: In this case, only a pointer to the 

object is stored as part of the class. This option allows an object to be 

created inside the class or passed as a parameter from a user of the 

class and then stored in a member variable.
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•	 Storing a reference to an object: This option allows the class to receive 

a reference to an existing object, but doesn’t allow the object to be 

created after the constructor is executed. A reference in C++ cannot 

be reassigned, which leads to a requirement that the stored object 

needs to be valid the whole time the container object exists.

•	 Storing the object directly as a member variable: In this case, the 

containing class assumes complete responsibility for storing the 

required object. Here, it is also necessary for the compiler to know 

the exact size and type of the object stored as a member variable, 

which reduces the flexibility of this method.

With object composition, a class can use the functionality provided by another class 

without the use of inheritance.

For example, suppose that the CDSContract class needs a fast method for calculating 

integrals. In this case, a good approach is to use an object-composition strategy to access 

the functionality of integration, instead of adding this functionality to the base class. 

You could do this, for example, by passing to the CDSContract constructor a pointer to a 

MathIntegration object and storing that pointer as a member function. The code would 

look like this:

class MathIntegration;

class CDSContract {

public:

    CDSContract() {}

    CDSContract(MathIntegration *mipt);

    CDSContract(const CDSContract &p);

    virtual ~CDSContract() { std::cout << " base delete " << std::endl; }

    CDSContract &operator=(const CDSContract &p);

    // Other member functions here

private:

    std::string m_counterpart;

    CDSUnderlying m_underlying;

    double m_payoff;

    int m_term;
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    double m_spreadCost;

    MathIntegration *m_mipt;

    static double kStandardPayoff;

};

When necessary, the pointer could be used to access the functionality stored in 

the MathIntegration class. The best thing about this kind of design is that there is 

little coupling between the CDSContract and MathIntegration classes. Each one can 

evolve separately, by adding new functions as necessary, without the need for mutual 

dependencies.

�Objects and C++20
Object orientation capabilities in C++ have been enhanced with the new features 

introduced in the recent versions of the standard, particularly with C++20. The trend 

in the language is to provide strong support for compile-time interfaces. This emphasis 

makes it possible to write software that interacts with objects in a safer way while 

reducing the amount of checking that needs to be done at runtime and, therefore, 

increasing performance.

One example is the introduction of concepts. The concept feature is complex in 

its full implementation and it will be explained later, but in a few words, it means that 

programmers can now request features from objects at compilation time. For example, if 

a function works with objects that contain dates, we can write the requirement that any 

object passed to a certain function contains a is_date member function.

The concept feature of C++20 makes it possible to avoid some runtime checking of 

object types by expressing such requirements at compilation time. Concepts also help in 

the generation of clear requirements, with better error messages produced by compilers.

Here is a simple example of how objects in C++ interact with concepts:

#include <concepts>

#include <vector>

// Simple option contracts class

class OptionContract {

    public:

    virtual void sell() {
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        // Sell implementation...

    }

};

template <class OptionContainer>

void sellAllContracts(OptionContainer &oc)

  requires std::same_as<

          typename OptionContainer::value_type, OptionContract *>

{

  std::for_each(oc.begin(), oc.end(),

           [](OptionContract* aContract) { aContract->sell(); } );

}

void useContracts() {

    std::vector<OptionContract*> contracts;

    // ...

    sellAllContracts(contracts);

}

In this code fragment, the concepts header file is used to provide library support for 

concepts. Then, we create a simple class called OptionContract. This class is responsible 

for holding option contracts of a particular type, and it knows how to sell contracts using 

the sell() member function. Later, a template function named sellAllContracts is 

introduced. The special feature of this function is that it contains a requires statement, 

which can be used to specify clear requirements on types that it manipulates. In this 

case, the code only requires that the parameter be a container that has same value_

type as OptionContract *. In other words, the parameter must be a container for 

OptionContract object pointers.

With this requirement in place, the code of the function is now able to safely call the 

sell() method of the OptionContract class, since the compiler already knows that the 

elements of the oc container must be of type OptionContract.

�Conclusion
In this chapter, I presented an overview of OO concepts provided in C++ and how they 

are used in the financial development community to solve problems occurring with 

options and derivatives.
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The first part of this chapter summarized the basic characteristics of OO as 

implemented in C++, including the main concepts of encapsulation, inheritance, and 

polymorphism. You learned about the technique used in C++ to implement polymorphic 

behavior through virtual functions. You also saw how virtual functions are stored in 

virtual tables that are created for each class that contains virtual functions.

This chapter also presented some examples of using OO to efficiently solve common 

problems in financial programming, as applied to options and derivatives. The next 

chapter proceeds to template-based concepts and explains how they can be used to 

create high-performance solutions to problems in the area of financial derivatives 

processing.
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CHAPTER 5

Design Patterns 
for Options Processing
Design patterns are a set of common programming design elements that can be used 

to simplify the solution of recurring problems. With the use of OO techniques, design 

patterns can be cleanly implemented as a set of classes that work toward the solution of 

a common goal. These designs can then be reused and shared across applications.

Over the last few years, design patterns have been developed for common problems 

occurring in several areas of programming. When designing algorithms for options and 

other derivatives, design patterns can provide solutions that are elegant and reusable 

(when supporting libraries are employed). Thanks to the inherent ability of the C++ 

language to create efficient code, these solutions also have high performance.

In this chapter, you will learn about the most common design patterns employed 

when working with financial options and derivatives, with specific examples of their 

usage. The chapter covers the following topics:

•	 Overview of design patterns: You will learn how design patterns 

can help in the development of complex applications, with the 

ability to reuse common patterns of programming behavior. Using 

design patterns can also make solutions more robust and easier 

to understand, because patterns provide a common language 

that allows developers to discuss complex problems. Such design 

techniques have also been made available through libraries that 

implement some of the best-known design patterns.
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•	 Factory method pattern: A factory method is a design pattern that 

allows objects to be created in a polymorphic way, so the client 

doesn’t need to know the exact type of the returned object, only the 

base class that provides the desired interface. It also helps to hide a 

complex set of creation steps to instantiate particular classes.

•	 Singleton pattern: The singleton pattern is used to model situations 

in which you know that only one instance of a particular class can 

validly exist. This is a situation that occurs in several applications, 

and in finance, I present the example of a clearing house for options 

trading.

•	 Observer pattern: Another common application of design patterns is in 

processing financial events such as trades. The observer design patterns 

allow you to decouple the classes that receive trading transactions from 

the classes that process the results, which are the observers. Through 

the observer design pattern, it is possible to simplify the logic and the 

amount of code necessary to support these common operations, such 

as the development of a trading ledger, for example.

•	 Visitor pattern: We also investigate the visitor pattern that allows 

two or more class hierarchies to cooperate in performing dynamic 

method dispatching.

�Introduction to Design Patterns
Design patterns have been introduced as a set of programming practices that simplify 

the implementation of common coding problems. As you study the behavior of OO 

applications, there are tasks and solution strategies that occur frequently and can be 

captured as a set of reusable classes.

Object-oriented programming provides a set of principles that can facilitate the 

development of computer software. Using OO programming techniques, you can 

easily organize your code and create high-level abstractions for application logic 

and commonly used component libraries. In this way, OO techniques can be used to 

improve and reuse existing components, as well as simplify the overall development.  

OO programming promotes a way of creating software that uses logical elements 

operating at a higher level of abstraction.
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Here are some of the most common design patterns that can be used in software 

development in general and for algorithms to process options and derivatives in particular, 

as viewed in Figure 5-1:

•	 Factory method: In the factory method design pattern, the objective 

is to hide the complexity and introduce indirection when creating an 

instance of a particular class. Instead of asking clients to perform the 

initialization steps, factory methods provide a simple interface that 

can be called to create the object and return a reference.

•	 Singleton: A singleton is a class that can have at most one active 

instance. The singleton design pattern is used to control access to this 

single object and avoid creating copies of this unique instance.

•	 Observer: The observer pattern allows objects to receive notifications 

for important events occurring in the system. This pattern also 

reduces the coupling between objects in the system, since the 

generator of notification events doesn’t need to know the details of 

the observers.

•	 Visitor: The visitor pattern allows a member function of an object to 

be called in response to another dynamic invocation implemented 

in a separate class. The visitor pattern therefore provides the 

mechanism for dispatching messages based on a combination of two 

objects, instead of the single object-based dispatch that is common 

with OO languages.

Figure 5-1.  A few common design patterns used in OO programming
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In the next few sections, you will see how these design patterns can be implemented 

in C++, with examples of how they occur in options and derivatives applications.

�The Factory Method Design Pattern
A factory design pattern is a technique used to indirectly create objects of a particular 

class. This pattern is important because it is frequently useful to access newly allocated 

objects without having to directly perform the work necessary to create them. For 

example, using the factory method design pattern, it is possible to avoid the use of the 

new keyword to create an object, along with the parameters required by the constructor.

The factory design pattern allows an object to be created through a member function 

of the desired class, so that the client doesn’t need to create the object directly. This can 

be useful for the following reasons:

•	 Most of the time, there is no need for the client to provide parameters 

for construction of the object. For example, if the objects require 

the allocation of additional resources, such as a file or a network 

connection, the client is relieved from acquiring these resources.

•	 Sometimes the object depends on internal implementation details, 

such as a private class, that are not available to clients. In this case, 

providing a factory method is the only way to create new instances of 

the object.

•	 The exact sequence of events necessary to create an object may 

change. In that case, it is better to provide a factory method that hides 

this complexity. Users of the class will not have to worry if the way the 

object is created is updated.

•	 More importantly, factory methods can be used to simplify 

polymorphic object creation. For example, when an object is created 

using the new operator, the concrete type of the returned object 

has to be known by the client. On some applications, this might be 

undesirable, because the real type of the needed object could be 

any one within a set of derived classes. Using a factory method, it 

is possible to delegate the creation of the object so that the client 

code doesn’t need to know about the concrete type. As a result, the 

returned object may be any one of the subtypes of the original type.
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Factory methods in C++ are declared as static member functions. Such a member 

function doesn’t depend on an instance of the class to be executed. The syntax for member 

functions is simply ClassName::functionName(), with parameters added as needed.

Note T he factory method design pattern is also used as a foundation for more 
complex design patterns. For example, you will notice that other patterns such 
as singleton use a factory method to control the creation of new instances of a 
particular class.

In options and derivatives applications, the factory method is commonly used. A 

situation where the use of a factory method is desirable is when you need to load data 

objects. The data source used can vary from a local file to a URL, and the parsing of 

that data is not an important part of the overall algorithm. In that case, abstracting the 

creation of the data source can be an important application of the factory method.

In the example that follows, you can see how a DataSource class can be 

implemented. The goal of this class is to hide the process of creating a new data source, 

so the clients have no access to the real constructor of the class. Instead, clients need 

to use a factory method, which is implemented as a static member function of the 

DataSource class.

When using factory methods, it is frequently useful to hide the real implementation 

of the constructor. This can be done through careful use of the private modifier. The 

goal is to grant access to the constructor only to the class itself (and to any declared 

friends of the class). This is done to the standard constructor as well as to the copy 

constructor.

The interface to the DataSource class is presented in Listing 5-1. Both constructors 

and the assignment operator are declared as private. The destructor, however, needs 

to be accessible so that the delete keyword can be called on allocated objects. The 

readData member function is an interface for the main responsibility attributed to this 

class, and its implementation will vary according to the read data source used. The 

createInstance member function is a static function that creates and returns new 

instances of the data type, functioning as the factory method.
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Listing 5-1.  Declaration of the DataSource Class

//

//  DataSource.hpp

#ifndef DataSource_hpp

#define DataSource_hpp

#include <string>

class DataSource {

private:

    DataSource(const std::string &name);

    DataSource(const DataSource &p);

    DataSource &operator=(const DataSource &p);

public:

    ~DataSource();  // must be public so clients can use delete

    static DataSource *createInstance();

    void readData();

private:

    std::string m_dataName;

};

#endif

The implementation of the DataSource class is shown in Listing 5-2. The 

constructors and destructor are standard, considering the fact that the constructor is 

private. The interesting part of the DataSource implementation is the getInstance 

method, which returns a new data source. This implementation receives only one 

parameter that is created by the method, but consider the general case in which a list of 

complex or implementation-dependent objects need to be retrieved in order to call the 

new operator for the DataSource class.
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Note A t the end of getInstance, the member function returns a pointer to 
the newly created object. Another option is to return a smart pointer, such as 
std::shared_ptr, which would make it easier to manage the lifetime of the 
allocated object.

Listing 5-2.  Implementation of the DataSource Class

//

//  DataSource.cpp

#include "DataSource.hpp"

DataSource::DataSource(const std::string &name)

: m_dataName(name)

{

}

DataSource::DataSource(const DataSource &p)

: m_dataName(p.m_dataName)

{

}

DataSource &DataSource::operator=(const DataSource &p)

{

    if (this != &p)

    {

        m_dataName = p.m_dataName;

    }

    return *this;

}

DataSource::~DataSource()

{

}
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DataSource *DataSource::createInstance()

{

    std::string sourceName;

    �// Complex method used here to find sourceName and other construction 

parameters...

    DataSource *ds = new DataSource(sourceName);

    return ds;

}

void DataSource::readData()

{

    // Read data here...

}

void useDataSource()

{

    // DataSource *source = new DataSource(""); // this will not work!

    DataSource *source = DataSource::createInstance();

    source->readData();

    // Do something else with data

    delete source;

}

�The Singleton Pattern
One of the simplest and most used design patterns is the singleton. With this design 

pattern, a single object is used to represent a whole class, so that there is a central 

location where services managed by that class can be directed.

Unlike standard classes, a singleton class represents a single resource that cannot be 

replicated. Because of this, the singleton pattern restricts the ability to create new objects 

of a particular class, using a few techniques that will be discussed later in this section. 

C++ provides all the features necessary to implement singleton patterns with high 

performance.

In programming, the notion of an entity that is unique across the application is 

frequently encountered. An example in options programming is an entity called a 

clearing house. A clearing house is an institution that provides clearing services for 
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trades on options and derivatives. The clearing house makes sure that every trade has 

collateral so that counterpart risk is reduced, among other attributions. For example, if a 

trader sells options in a particular instrument, the clearing house will make sure that the 

trader has enough margin to satisfy the requirements of that particular trade.

While a clearing house provides important services in the trading industry, most 

applications need to connect to a single clearing house. Thus, creating a single object to 

represent the clearing house is an obvious implementation technique for this situation. 

Table 5-1 presents a few examples of objects that could be modeled using a singleton.

Table 5-1.  Example Objects That Can Be Implemented As a Singleton Design 

Pattern

Object Notes

Clearing house (finance) A single clearing house is used for all trades.

Root window (GUI) Each GUI application communicates with only one root window.

Operating system An object representing operating system services is unique through 

the application.

Company CEO An object representing the CEO has only one instance.

Memory allocator (system 

services)

Each application uses a single memory allocator, which can be 

represented by a singleton.

To implement a singleton in C++, the first step is to make sure that there is only 

one object of that class in the application. To do this, it is necessary to disallow the 

creation of new objects of that particular class. You can take advantage of the ability 

provided by C++ to make class members inaccessible to users of the class through the 

private keyword. Users then cannot use the new keyword to generate new objects of that 

particular class.

On the other hand, it is necessary to create some mechanism for clients to access an 

instance of the singleton class. This is usually done using a static member function that 

returns the single existing object or creates a new object if necessary before returning 

it. Using such an access member function, clients can access the public interface of the 

singleton object. At the same time, they’re not allowed to create or manage the lifecycle 

of that object.
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�Clearing House Implementation in C++
A possible implementation for the clearing house class using the singleton pattern is 

presented in Listings 5-1 and 5-2. The class has two parts: the first part deals with the 

management of the singleton object. This is done through the definition of private 

constructor and destructors, as well as the presence of a static member function 

getClearingHouse, which returns a reference to the singleton instance.

The second part of the implementation deals with the responsibilities of the clearing 

house, represented here as the member function clearTrade. This function receives 

as an argument a Trade object, which is not defined here but contains all the data 

associated with the transaction.

Listing 5-3 shows the interface, which follows the singleton design pattern.  

Listing 5-4 contains the implementation of the member functions declared in the class 

interface, as well as the static member variable s_clearingHouse.

Listing 5-3.  Header File for the ClearingHouse Class, Which Implements the 

Singleton Design Pattern

//

//  DesignPatterns.hpp

//  CppOptions

#ifndef DesignPatterns_hpp

#define DesignPatterns_hpp

class Trade {

    //  ....

};

class ClearingHouse {

private:                   // �These are all private because this is a 

singleton

    ClearingHouse();

    // The copy constructor is not implemented

    ClearingHouse(const ClearingHouse &p);

    ~ClearingHouse();

    // Assignment operator is not implemented

    ClearingHouse &operator=(const ClearingHouse &p);
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public:

    static ClearingHouse &getClearingHouse();

    void clearTrade(const Trade &);

private:

    static ClearingHouse *s_clearingHouse;

};

#endif /* DesignPatterns_hpp */

The implementation file contains the member function ClearingHouse::getClear

ingHouse. This function first checks the static variable s_clearingHouse to determine if 

it has been previously allocated. If the object doesn’t exist, then the static function can 

create a new object, store it for further use, and return a reference.

The function useClearingHouse is an example of how the ClearingHouse class can 

be used. The first step is to have a variable hold a reference to the singleton object. Then, 

by calling the static function getClearingHouse, you can access the singleton. In this 

example, the singleton is used to process another trade through the member function 

clearTrade.

Listing 5-4.  Implementation File for ClearingHouse Class, Which Uses the 

Singleton Design Pattern

//

//  DesignPatterns.cpp

#include "DesignPatterns.hpp"

ClearingHouse *ClearingHouse::s_clearingHouse = nullptr;

ClearingHouse::ClearingHouse()   // �private constructor, cannot be used by 

clients

{

}

ClearingHouse::~ClearingHouse()  // �this is private and cannot be used by 

clients

{

}
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ClearingHouse &ClearingHouse::getClearingHouse()

{

    if (!s_clearingHouse)

    {

        s_clearingHouse = new ClearingHouse();

    }

    return *s_clearingHouse;

}

void ClearingHouse::clearTrade(const Trade &t)

{

     // Trade is processed here

}

void useClearingHouse()

{

    Trade trade;

    ClearingHouse &ch = ClearingHouse::getClearingHouse();

    ch.clearTrade(trade);

}

�The Observer Design Pattern
A frequent situation that occurs in complex systems is the occurrence of events that 

trigger further actions. For example, an event that happens on financial systems is the 

completion of an options trade. When a new trade is completed, several actions need to 

be performed to update the system and reflect the new positions in the ledger.

The observer design pattern is a very powerful strategy to manage event updates, 

based on a standard technique that gives clients the ability to listen to events and 

updates to a particular object and react accordingly.

There are two parts of the observer design pattern (see Figure 5-2). First, there is an 

observer, which implements an abstract interface capable of receiving notifications. The 

abstract interface consists of a single member function, called notify. This member 

function is called by the second part of the design pattern, the Subject, when a new 

event occurs (the arrow between them means that the observer has a reference to the 

Subject object).
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The Subject class has at least three member functions that enable the functionality 

of the observer design pattern. The first function is addObserver, which takes as a 

parameter a reference to an observer object. The addObserver function maintains the 

reference in an internal list of objects that are interested in receiving notifications.

The second member function in the subject interface is removeObserver, which 

simply removes a given observer from the notification list. Finally, there is a member 

function called triggerNotifications that is used to send the notifications to all objects 

that registered with the Subject class.

The observer design pattern can readily be implemented in C++ using abstract 

classes. You can see a sample implementation in Listings 5-5 and 5-6. The first class 

that is considered is the Observer class. This class has the purpose of providing a simple 

interface for the observer. Its only nontrivial member function is notify, which is an 

abstract function called by the subject when a new event occurs. As a result, any class 

deriving from observer needs to process the notification in a user-defined way.

The interface is the following:

class Observer {

public:

    // Constructor and destructor definitions

    virtual void notify() = 0;

};

Figure 5-2.  Simplified scheme of the observer design pattern

Chapter 5  Design Patterns for Options Processing



138

Note  Consider how the Observer class is independent of any implementation 
detail for the trading ledger system. This definition could be reused as part of a 
design pattern’s library. Similar techniques can be used to simplify the creation of 
other design patterns as well.

Next, it is necessary to define a class that implements the abstract observer interface. 

In this case, the goal is to implement a trade observer, which can be specified in the 

following way:

class TradeObserver : public Observer {

public:

    TradeObserver(TradingLedger *t);

    TradeObserver(const TradeObserver &p);

    ~TradeObserver();

    TradeObserver &operator=(const TradeObserver &p);

    void notify();

    void processNewTrade();

private:

    Trade m_trade;

    TradingLedger *m_ledger;

};

The constructor for this class receives as a parameter a pointer to the TradingLedger 

object, which will be defined later. The class provides an implementation for 

notifications and a member function to process new trades. These two member 

functions are implemented as follows:

void TradeObserver::notify()

{

    this->processNewTrade();

}

Chapter 5  Design Patterns for Options Processing



139

void TradeObserver::processNewTrade()

{

    m_trade = m_ledger->getLastTrade();

    // Do trading processing here

}

Here, the notification implementation just calls the processNewTrade function, 

which stores the trade returned by the ledger object.

Finally, you can also see a definition for the TradingLedger class. The class contains 

the three member functions that comply with the subject interface (addObserver, 

removeObserver, and triggerNotifications). The class also contains two simple 

member functions to add and return trades, as shown in the following definitions:

class TradingLedger {

public:

    TradingLedger();

    TradingLedger(const TradingLedger &p);

    ~TradingLedger();

    TradingLedger &operator=(const TradingLedger &p);

    void addObserver(std::shared_ptr<Observer> observer);

    void removeObserver(std::shared_ptr<Observer> observer);

    void triggerNotifications();

    void addTrade(const Trade &t);

    const Trade &getLastTrade();

private:

    std::set<std::shared_ptr<Observer>> m_observers;

    Trade m_trade;

};

The addObserver and removeObserver functions operate with std::shared_ptr 

templates for the observer object. The goal is to avoid unnecessary memory issues by 

delegating the memory deallocation to shared pointers from the standard library. 

These two functions operate as an interface to the internal m_observers container.
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The triggerNotification function can be implemented as follows:

void TradingLedger::triggerNotifications()

{

    for (auto i : m_observers)

    {

        i->notify();

    }

}

It simply loops through all elements stored in the m_observers set and sends a 

notification to these registered objects. Each such object that implements the observer 

interface can now respond to the event as needed.

�Complete Code
The complete example previously described can be seen in Listings 5-5 and 5-6. The first 

file contains only the interface for the main classes used in the system. Listing 5-6 shows 

the implementation of these classes, along with a sample main function that creates the 

ledger and two observer objects.

Listing 5-5.  Header File Containing Interfaces for the Observer Design Pattern

//

//  Observer.hpp

#ifndef Observer_hpp

#define Observer_hpp

#include <set>

#include <memory>

class Observer {

public:

    Observer();

    Observer(const Observer &p);

    ~Observer();

    Observer &operator=(const Observer &p); // not implemented
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    virtual void notify() = 0;

};

class Trade {

    //

    // .... Implementation not shown here

};

class TradingLedger;

class TradeObserver : public Observer {

public:

    TradeObserver(TradingLedger *t);

    TradeObserver(const TradeObserver &p);

    ~TradeObserver();

    TradeObserver &operator=(const TradeObserver &p);

    void notify();

    void processNewTrade();

private:

    Trade m_trade;

    TradingLedger *m_ledger;

};

class TradingLedger {

public:

    TradingLedger();

    TradingLedger(const TradingLedger &p);

    ~TradingLedger();

    TradingLedger &operator=(const TradingLedger &p);

    void addObserver(std::shared_ptr<Observer> observer);

    void removeObserver(std::shared_ptr<Observer> observer);

    void triggerNotifications();

    void addTrade(const Trade &t);

    const Trade &getLastTrade();
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private:

    std::set<std::shared_ptr<Observer>> m_observers;

    Trade m_trade;

};

#endif /* Observer_hpp */

Listing 5-6.  Implementation File with C++ Definitions for the Observer Design 

Pattern

//

//  Observer.cpp

#include "Observer.hpp"

using std::shared_ptr;

typedef shared_ptr<Observer> PObserver;

typedef shared_ptr<TradeObserver> PTradeObserver;

Observer::Observer()

{

}

Observer::Observer(const Observer &p)

{

}

Observer::~Observer()

{

}

void Observer::notify()

{

}

TradeObserver::TradeObserver(TradingLedger *t)

: m_ledger(t)

{

}
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TradeObserver::TradeObserver(const TradeObserver &p)

: m_trade(p.m_trade),

  m_ledger(p.m_ledger)

{

}

TradeObserver::~TradeObserver()

{

}

TradeObserver &TradeObserver::operator=(const TradeObserver &p)

{

    if (this != &p)

    {

        m_trade = p.m_trade;

        m_ledger = p.m_ledger;

    }

    return *this;

}

void TradeObserver::notify()

{

    this->processNewTrade();

}

void TradeObserver::processNewTrade()

{

    m_trade = m_ledger->getLastTrade();

    // Do trading processing here

}

// -- TradingLedger implementation

TradingLedger::TradingLedger()

{

}
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TradingLedger::TradingLedger(const TradingLedger &p)

: m_observers(p.m_observers),

  m_trade(p.m_trade)

{

}

TradingLedger::~TradingLedger()

{

}

TradingLedger &TradingLedger::operator=(const TradingLedger &p)

{

    if (this != &p)

    {

        m_observers = p.m_observers;

        m_trade = p.m_trade;

    }

    return *this;

}

void TradingLedger::addObserver(PObserver observer)

{

    m_observers.insert(observer);

}

void TradingLedger::removeObserver(PObserver observer)

{

    if (m_observers.find(observer) != m_observers.end())

    {

        m_observers.erase(observer);

    }

}
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void TradingLedger::triggerNotifications()

{

    for (auto i : m_observers)

    {

        i->notify();

    }

}

void TradingLedger::addTrade(const Trade &t)

{

    m_trade = t;

    this->triggerNotifications();

}

const Trade &TradingLedger::getLastTrade()

{

    return m_trade;

}

//

//  Simple test stub for the TradingLedger and TradeObserver classes.

int main()

{

    TradingLedger tl;

    PTradeObserver observer1 = PTradeObserver(new TradeObserver(&tl));

    PTradeObserver observer2 = PTradeObserver(new TradeObserver(&tl));

    tl.addObserver(observer1);

    tl.addObserver(observer2);

    // Perform trading system here

    Trade aTrade;

    tl.addTrade(aTrade);

    // Observers should receive a notification at this point

    return 0;

}
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�The Visitor Pattern
Another useful pattern that has been used in several real-life applications is the visitor 

pattern. In this pattern, the goal is to allow dynamic dispatching of objects in two 

separate hierarchies of types. This design pattern has application in many common 

problems occurring in finance.

The problem solved by the visitor pattern is the application of dynamic rules to two 

or more polymorphic objects at the same time. This is necessary because C++, like some 

other object-oriented languages, uses single dispatch to process polymorphic calls.

Consider, for example, the case of a class representing derivative contracts. The class 

can have several polymorphic (virtual) methods, including one for displaying the profit/

loss chart.

#include <list>

class ChartDisplay;

class SimpleDerivativeContract {

  public:

  virtual void chartProfitLoss(ChartDisplay *c);

};

class ChartDisplay {

public:

   virtual void displayContracts(

                 std::list<SimpleDerivativeContract*> &contracts);

   virtual void addToChart(SimpleDerivativeContract *c);

};

The SimpleDerivativeContract class has a virtual method that is able to present 

a chart with profit/loss for the position. But to do this, the derivative object needs 

to coordinate with a second class, called ChartDisplay. Both ChartDisplay and 

SimpleDerivativeContract have polymorphic methods that interact with each other, but 

in C++ the virtual dispatch is done in just a single method. For example, ChartDisplay 

might have specialized subclasses such as PDFChart and HTMLChart.

To make this possible, the visitor design pattern enables the dynamic interaction of 

two classes by the use of virtual methods that call each other. In summary, one of the 

objects becomes responsible to implement the visitation strategy, by which the virtual 
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method on the second object is called. Here is the implementation of our example 

classes:

void ChartDisplay::displayContracts(

    std::list<SimpleDerivativeContract*> &contracts) {

    for (auto c : contracts) {

        c->chartProfitLoss(this);

    }

}

void SimpleDerivativeContract::chartProfitLoss(ChartDisplay *disp) {

      // ...

      // Use ChartDisplay virtual methods:

      disp->addToChart(this);

}

The first method, displayContracts, is responsible for displaying each of the 

contract objects stored in the container passed as parameter. To do this, the virtual 

method chartProfitLoss is called with the ChartDisplay as a parameter. On the other 

hand, the charProfitLoss of method also calls a virtual method from ChartDisplay: 

addToChart. This relation between the two methods is what makes the dual virtual 

dispatch to work, allowing two separate hierarchies to work together in a dynamic 

fashion:

class PDFDisplay : public ChartDisplay {

public:

    virtual void addToChart(SimpleDerivativeContract *c) {

        // Add contract to a PDF chart here

    }

};

class HTMLDisplay : public ChartDisplay {

public:

    virtual void addToChart(SimpleDerivativeContract *c) {

        // Add contract to an HTML chart here

    }

};
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�Conclusion
Design patterns are commonly used to develop reusable code, especially when OO 

techniques are employed. C++ provides strong support for the creation of classes that 

follow designed patterns such as the ones discussed in the preceding sections.

In this chapter, you saw examples and implementation in C++ for three common 

design patterns. First, I presented an overview of design patterns, listing some of the 

patterns that are most commonly used in the implementation of algorithms for options 

and derivatives. Then, you learned about the factory method design pattern, which is 

one of the easiest and most widely used patterns of OO programming.

The singleton pattern is used when it is necessary to enforce the existence of a single 

instance for a particular class. You saw the example of a clearing house implementation, 

where the single instance must be accessible to all clients in the application.

The observer pattern is a third example of how to implement such designs in C++. 

You saw how this pattern can be employed to solve the problem of trading processing. 

Using this design pattern, it is possible to decouple the classes that receive the events 

from specific classes that listen to the events and perform further processing.

While object-oriented design patterns provide several elegant solutions for 

commonly found problems in financial programming, there are situations in which a 

non-OO strategy may be a better solution. In these situations, C++ promotes the use of 

templates, an implementation technique in which the compiler is allowed to generate 

code based on parameterized types. In the next chapter, you will see several examples 

in which template-based algorithms can be used to improve the performance and 

flexibility of algorithms for options and derivatives trading.
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CHAPTER 6

Template-Based 
Techniques
C++ templates allow programmers to write generic code, which works without modification 

on different data types. Through the careful use of templates, C++ programmers can 

write expressive code with high performance and low overhead, without the need to rely 

exclusively on more computationally expensive object-oriented techniques, such as the 

design patterns presented in the previous chapter.

This chapter explores a few template-based programming practices that can be used 

to solve options- and derivatives-based financial problems. Here are some of the topics 

discussed in this chapter:

•	 Understanding the use of templates: You will learn about the basics of 

templates, including their syntax and how they can be implemented 

as template functions or template classes.

•	 Using compile-time algorithms: This is a quick overview of how 

compile-time algorithms work, with some examples such as 

recursive algorithms, which allow compile-time definitions that 

depend on themselves recursively.

•	 Containers and smart pointers: One of the most common uses of 

templates is to maintain containers of objects. Smart pointers are 

also frequently employed to simplify the code necessary for memory 

management.

•	 Best practices: You will learn a few best practices that will improve 

your template-based code.

•	 Templates in C++20: You will see how template code has become 

simpler and more powerful in the recent revisions of the C++ standard.

https://doi.org/10.1007/978-1-4842-6315-0_6#DOI
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�Introduction to Templates
A template is a mechanism to generate parameterized code, so that different versions of 

the same programming definition (a class or a function) can be generated for the each 

given parameter. A combination of parameters can also be used when required by the 

algorithm. In C++, the parameters passed to a template may be a concrete data type 

(native or user-defined data types) or an integer number, as you will see in the following 

examples.

You have already seen how to use basic templates in some of the previous examples 

that employed standard template library containers. Such containers include vectors, 

maps, and sets, as provided by the C++ standard library. In this section, you will learn 

more about the implementation of new templates and the features they can provide to 

application programmers.

One of the applications of templates is to perform compile-time computations. 

Performing some operations at compilation time instead of at runtime is a performance-

enhancing technique that can save a lot of CPU and make your application run more 

smoothly. Examples of such cases include the use of integer recursive functions, 

conditional code that depends on particular data types, and container objects and smart 

pointers.

•	 Recursive functions: A recursive function based on integer numbers 

can be easily calculated ahead of time using compile-time 

techniques. For example, some numerical algorithms depend on the 

use of factorials of numbers, which may be known at compilation 

time. Transforming a runtime computation into a compile-time 

transformation is an easy way to make your algorithms run faster.

•	 Compile-time polymorphism: Another example of compile-time 

performance enhancement is the removal of conditional code 

based on types. When different operations need to be performed 

for different types, the standard procedure in OO code is to create 

a hierarchy that provides a different implementation for each type 

involved. With templates, you can replace this type of runtime 

polymorphism with compilation-time polymorphism. In that case, 

the right template is executed based on the type that is already 

known at compilation time, and as a result, no decision is necessary 

at runtime, avoiding extra computational effort.
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•	 Container objects: Container objects provide a big advantage to 

template users. They simplify the coding required to maintain and 

employ commonly used data containers. The STL provides several 

containers based on templates that streamline the task of storing 

objects using different memory allocation strategies. For example, 

std::map allows programmers to map from a key type to a value 

type in a generic way. The use of templates also simplifies common 

tasks such as iterating through the elements of the container. Since 

templates know the type of objects stored at the time of compilation, 

there is no need to use a cast or other time-consuming polymorphic 

techniques such as is used by OO code.

•	 Smart pointers: Finally, templates also give C++ the ability to 

automatically manage memory using smart pointers. A smart pointer 

is a template that has the sole purpose of managing an object that 

has been passed as a pointer. The exact semantics of a smart pointer 

changes according to the particular template and the desired results, 

including, for example, the ability to use reference counting, or to be 

owned by a single client. The standard C++ library provides a small 

number of smart pointers, such as std::auto_ptr, std::unique_ptr, 

and std::shared_ptr, among others.

Note A  possible disadvantage of templates is the possibility of duplication of 
generated code in the resulting binary application. For example, if a large template 
has a type parameter, the compiler needs to duplicate the generated code for each 
different type that is used. This has the potential of creating bloated executables 
with several redundant compiled templates. Thankfully, modern computers have 
enough memory that this is not a common concern, but as application sizes grow, 
software developers need to consider this issue.

In the next few sections, you will see some examples of template-based techniques 

and learn how these techniques can be effectively implemented in C++.
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�Compilation-Time Polymorphism
One of the techniques you learned in the previous chapter is the use of polymorphism 

based on object-oriented features such as the virtual keyword. One of the advantages of 

templates is that they can be used to work with different types, while at the same time they 

avoid the need for runtime checking that is inherent to the use of polymorphic classes.

With templates, you can use compile-time polymorphism in several situations 

where types can be known by the compiler. This makes it possible to write code that’s 

independent of the type used while at the same time avoid the expense of runtime 

lookups.

An example that is commonly used in financial code is applying mathematical 

operations to different datasets. This can be done in several ways, but templates can be used 

to make the process efficient and transparent to the programmer. Consider the operation 

of normalizing a dataset. To apply such an operation to different sets, you could create a 

Normalize template, as demonstrated in the following code. First, you assume that there are 

two implementations available for the normalization operation, one for vectors and another 

for sets:

void array_normalize(std::vector<double> &array);

void set_normalize(std::set<double> &set);

The next part of this example shows the main template class, called Normalization. 

This class provides the main declaration used. In a more complete implementation, 

Normalization would also contain a number of static definitions other than a single 

function, but that is enough to demonstrate the usefulness of the class template.

The member function normalize performs the work of normalization in a generic 

way; therefore, it must receive as argument a type that is a template parameter:

template <class T>

class Normalization

{

public:

    typedef T Type;

    static void normalize(T &arg);

    // Other methods here…

};
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Now, you’re ready to implement as many specializations of the normalize function 

as necessary. I present two specializations here, one using a vector of doubles and 

another using a set of doubles. These two implementations use the regular functions that 

have been declared previously, and their implementations are now shown here.

template <>

void Normalization<std::vector<double>>::normalize(std::vector<double> &a)

{

    array_normalize(a);

}

template <>

void Normalization<std::set<double>>::normalize(std::set<double> &a)

{

    set_normalize(a);

}

Note  Consider how the parameter list for the template is empty. This syntax 
indicates that this is a specialization of a previously defined member function.

Notice how these definitions are independent of the original class definition. This 

means that if you create a new type of normalization function that can be applied to a 

particular type, the only thing you need to do is declare a new template specialization 

that uses that function. Therefore, the Normalization class is essentially an open 

definition that can be extended by any library that decides to implement a new 

normalization strategy. And this can be done without any runtime overhead, since the 

right normalization strategy will be chosen during compilation.

Finally, I present a template function that simplifies a call to the normalization 

member function. This template function is called normalize and just calls the desired 

static member function:

template <class T>

void normalize(T &val)

{

    Normalization<T>::normalize(val);

}
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Here is an example of how such a function can be called for different types. The 

compiler will generate optimal code by deciding which specialization of the class to use 

and will make the call without runtime overhead:

void use_normalize()

{

    std::set<double> set;

    std::vector<double> array;

    // Initialize variables here...

    normalize(set);

    normalize(array);

}

�Template Functions
A template function is a C++ function that can be parameterized with the use of one or 

more types or integral values. Using template functions, you can write generic functions 

that work with any combination of the original parameters, expanding the domain of 

application for the code contained in the original implementation.

Consider as a first example the function returning the maximum value between the 

two given parameters. It is easy to write such a function for a particular data type. For 

example, for integer parameters, this function can be written, in a verbose way, as

int int_max(int a, int b)

{

    if (a > b)

    {

        return a;

    }

    else

    {

        return b;

    }

}
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To create a generic version of this function, you just need to create a template 

function that is parameterized on the types used in the parameter list and return values:

template <class T>

T generic_max(T a, T b)

{

    if (a > b)

    {

        return a;

    }

    else

    {

        return b;

    }

}

With this template, you can not only compute the maximum of two integers, but you 

can also do the same for any type that supports a comparison using the > operator. This 

even includes nonnumeric types such as strings, as you will see next.

The string case is interesting in this example, because it also involves the discussion 

of partial specialization. A partial specialization is a version of a template where one 

or more of the parameters have been substituted by concrete types or values. You can 

specialize the generic_max template function to handle zero-terminated strings using a 

different implementation, as follows:

template <>

const char * generic_max(const char *a, const char *b)

{

    if (strcmp(a, b) > 0)

    {

        return a;

    }

    else

    {

        return b;

    }

}
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This syntax indicates that this is a specialization of the previously defined generic_

max function. The parameter type const char * is substituted directly in the function 

implementation. This function in particular uses the strcmp function from the C 

standard library to determine if a string is less than another.

�Implementing Recursive Functions
One of the applications of compile-time computation through templates is the 

implementation of recursive functions. A recursive function is one in which the result of 

the operation for a particular value can be calculated based on another application of 

the same function.

The reason why it is possible to use templates for computing recursive functions is 

the ability of these C++ templates to take integral numbers as arguments. For example, a 

trivial template that prints a static value can be defined using the number as a template 

argument:

template <int N>

void printNumberPlusOne()

{

    int a = N + 1;

    std::cout << a << std::endl;

}

void usePrintTemplate()

{

    printNumberPlusOne<10>();

}

Here, the integer N is passed not as a function argument but as a compile-time 

parameter. This means that during compilation the value of N is already known as a 

constant value, which eliminates the need for computation during runtime. This makes 

the operation much more efficient than it would be the case of normal parameter 

passing.

This example can be further expanded, using a recursive strategy to print N numbers 

at compilation time. Here is a simple version that does this recursively:
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template<int N>

void printNumberRecursive()     // general case

{

    std::cout << N << " ";

    printNumberRecursive<N-1>();

}

template<>

void printNumberRecursive<0>()  //  base case

{

    std::cout << std::endl;

}

void usePrintRecursive()

{

    printNumberRecursive<10>();

}

This template is implemented as a general case and a specialization (base case). The 

general recursion case is what should be done in most cases, which in this case is print 

the given template parameter N and call the same template with a smaller value N-1. 

The base case is what should happen to cause the recursion to stop. In this example, the 

recursion stops when the value 0 is reached, in which case the template simply prints a 

new line.

Taken together, these two cases for the printNumberRecursive template can print 

the numbers from N to 0 using only compilation-time expressions. This means that all 

calculations have already been done by the compiler, dramatically cutting down the 

computation effort at runtime.

You can use the same strategy to compute more complex and useful recursive 

functions. Table 6-1 shows a few common recursive functions that involve integer 

numbers and that can be easily implemented using C++ templates. Notice how each of 

these functions uses its own definitions in order to compute the next value.
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In a more complete example, consider the implementation of the summation of the 

first N integer values, for a given parameter N. You can do this with a template function 

that recursively calls itself. Thanks to templates, the C++ compiler can calculate such 

values during compilation time. Here is an implementation of such a function:

template <int N>

int intSum()

{

    return N + intSum<N-1>();

}

template <>

int intSum<0>()

{

    return 0;

}

void useIntSum()

{

    std::cout << intSum<20>() << std::endl;

}

As before, there is a general case for most values of N and a base case that is 

used when the parameter is 0. The general case defines the template and its integer 

parameter. The base case is a template specialization, so the exact argument value needs 

to be provided.

Table 6-1.  Common Integer Recursive Functions

Recursive Function Description

Factorial Calculate factorials of the form 1×2×3×...×n.

Fibonacci Calculate the general recursion F(n) = F(n – 1) + F(n – 2).

Triangular numbers Calculate the number of items in triangular formation.

Binomial coefficients Calculate the coefficients of polynomial equations of the 

form (ax + b)n.
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The intSum template in the general case returns the sum of the argument that was 

originally passed and adds to that the value of intSum for N-1. Since all these calculations 

are based on constant values at compilation time, the result is computed using the 

compiler itself.

The specialization of intSum deals with the base case that terminates the recursion. 

When the argument is 0, the value 0 is returned as the value of the sum. The function 

useIntSum instantiates the template, passing the value 20 as its parameter. The result is 

then printed to standard output.

�Recursive Functions and Template Classes
Recursive functions can also be implemented using template classes, instead of simple 

functions. This is recommended when additional information is supposed to be stored 

with the result of the function. A template class can also receive as a parameter an 

integer number, along with specializations based on that template parameter.

Consider an example template class that computes the factorial of a number. The 

logic of this type of computation is very similar to the functions you have seen before. 

However, it gives you an opportunity to see how a template class works in this situation.

template <long N>

class Factorial

{

public:

    enum

    {

        Argument = N

    };

    static long value();

};

template <long N>

long Factorial<N>::value()

{

    return N * Factorial<N-1>::value();

}
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template <>

long Factorial<0>::value()

{

    return 1;

}

void useFactorial()

{

    Factorial<8> fact;

    std::cout << " factorial for argument " << fact.Argument << " is "

              <<  fact.value() << std::endl;

}

The class Factorial shows how a template class can store useful values as part 

of the class definition. The enumeration at the beginning of the class definition 

contains a value called Argument, which stores the argument for further use as a value 

of the enumeration. This exemplifies a feature that cannot be achieved by a simple 

function: the use of a class may allow any value to be stored for further use, either as an 

enumeration or a static variable. The way the template is expanded by the compiler is 

shown in Figure 6-1.

Figure 6-1.  An example of computation using template specialization. The 
general case of the Factorial template is instantiated with the integer 3, and new 
instantiations are used until the specialization for Factorial<0> is reached
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The Factorial class also contains a static function that computes the desired 

factorial number. As in the previous examples, the function is implemented with a 

general case for any integer number, and a base case, which is used when the 0 value is 

passed.

The useFactorial function shows how to invoke the Factorial class for a particular 

compile-time computation. The factorial of the value 8 is desired, so it is passed as the 

single argument to the template class. The next line uses the Argument enumeration 

value so it can retrieve the passed argument.

The value of the factorial is finally accessed using the value member function. Notice 

that, as usual with templates, the value function is calculated at compilation time and 

the result is replaced by the compiler at that particular point.

�Containers and Smart Pointers
One of the most important applications of templates in C++ is the creation of data 

containers. A container is a template-based object that maintains and provides access 

to other underlying objects or data structures. For example, a common container used 

in C++ is std::vector, which is a representation of sequential memory that can be 

accessed using a numeric index. Other more complex containers are provided in the STL 

and in third-party libraries that are commonly used in financial applications.

Here are some of the best-known STL containers and the types of arguments that 

they expect in the standard library. A short list of available containers is displayed in 

Table 6-2.

Note A ll STL containers receive as a parameter a default Allocator type, 
which determines how objects are allocated, such as using the global heap or 
some other preallocated local memory. If this type is not supplied, the standard 
allocator for the new keyword is used when creating objects.

•	 std::vector<T, Allocator>: The type T passed to std::vector 

represents the main type of each element stored in the vector. This 

container guarantees that elements will be stored sequentially.
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•	 std::map<K, T, allocator>: This template requires two 

parameters. The first parameter represents the type of the key 

and should be an immutable object. The second type represents 

the object stored for each key. Maps have variations, such 

as std::unordered_map, where entries are unordered, and 

std::multimap, where each key can have more than one associated 

entry.

•	 std::queue<T, Allocator>: A std::queue provides a first-in first-

out mechanism, and the argument T is the type of elements stored in 

this container. This container also has a variant called std::dequeue, 

which allows elements to be removed from the front or back of the 

queue.

•	 std::stack<T, Allocator>: A template object that stores elements 

in a first-in last-out mechanism. The elements are typically allocated 

sequentially.

Table 6-2.  Common STL Containers and Their Parameters

Container Type Description

std::vector Container in which elements are stored in sequential mode. Each element 

must have the same type, as determined by the template parameter.

std::map A container where each element is associated with a unique key. The container 

allows searching by keys.

std::queue A first-in first-out container that has elements of the same type, the type being 

the parameter to the template.

std::array A simple sequential group of elements that can be indexed by a number. The 

element type is passed as a template argument.

std::list A linked list where each object has the same type.

std:set A container that stores an unordered list of objects. Elements of set can be 

retrieved efficiently.

std::stack A first-in last-out container where each element has the same type, as 

determined by the template parameter.
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The second important application of templates in the C++ standard library is in the 

implementation of smart pointers. A smart pointer enables you to manage the memory 

of objects allocated in the heap. It does this through particular strategies such as using 

reference counting, or restricting the access to the pointer and deleting the associated 

memory at the end of the current scope (as is the case with std::auto_ptr).

Smart pointers are possible due to the ability to generate specific code for each data 

type passed as parameter. Thus, a std::shared_ptr<OptionsContract>, for example, 

can be created to manage objects of type OptionsContract only.

Table 6-3 presents a few of the most common smart pointer templates. Some of these 

templates have been available as part of the standard C++ library since C++11.

�Avoiding Lengthy Template Instantiations
C++ templates are a powerful mechanism that can be used to create generic code. With 

templates, it is also possible to remove undesirable code duplication, since the same 

code can then be applied to data of different types.

On the flip side, however, templates can also create problems due to the potential 

they have to slow down compilation times, when complex template rules are processed 

during compilation. Also, because all the code in a template is generally available to the 

compiler when processing translation units, it is difficult to provide separate compilation 

for templates. An example of a library that is victim of this behavior is boost, where 

typically all the functionality is included in header files. These header files are then 

included each time the library is referenced in an implementation file, resulting in long 

build times.

Table 6-3.  Common Smart Pointer Templates

Smart Pointer Description

std:auto_ptr A smart pointer that provides automatic deallocation with single ownership 

semantics.

std:shared_ptr A smart pointer that provides a reference-counted memory management, 

with shared ownership semantics.

std::unique_ptr A smart pointer that provides unique ownership of an object.

std::weak_ptr A shared pointer that represents a weak reference to an object allocated in 

the heap.
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Despite these shortcomings, in some situations, it is possible to reduce the amount 

of work done by the compiler on behalf of templates. This section shows a simple 

technique that can be used to achieve faster template compilation speeds when desired 

instantiations are known ahead of time.

�Preinstantiating Templates
Certain templates are used in only a reduced number of cases by design. For example, 

consider a numerical library that creates code for different types of floating-point 

numbers. Each class in the library can be instantiated with a particular floating-point 

type, such as double, long double, or float. Consider, for instance, the following 

definition:

// file mathop.h

//

// The template class for mathematical operations

//

template <class T>

class MathOperations

{

public:

   static T squared(T value)

   {

      return value * value;

   }

  // ...

};

This class can be used in the following way:

#include "mathop.h"

#include <iostream>

using std::cout;

using std::endl;
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MathOperations<double> mathOps;

double value = 2.5;

cout << "result: " << mathOps.squared(2.5) << endl;

Unfortunately, because the MathOperations class is a template class, you have to 

include its complete definition as part of the header file, where it can be found in the 

compiler whenever the class is instantiated.

One possible way to reduce the size of the header file is to preinstantiate the 

template for the types that you know in advance.

The first step is to remove the implementation from the header file. This is clearly 

possible, since you can implement class member functions outside the class declaration 

(whether the class is a template or not). Then, you need to add the implementation 

to a separate source file. Once this step is done, client code can use the template class 

interface, but will not be able to generate code. Therefore, for this to work, you need to 

instantiate the templates on the implementation file.

// file mathop.h

//

// The template class included by the applications

//

template <class T>

class MathOperations

{

public:

   static T squared(T value);

   // ...

};

// file mathop.cpp

#include "mathop.h"

//

// Template member function definition

//
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template <class T>

T MathOperations<T>::squared(T value)

{

   return value * value;

}

//

// Function used to instantiate code for specific datatypes

//

void instantiateMathOps()

{

   double d = MathOperations<double>::squared(2.0);

   float f = MathOperations<float>::squared(2.0);

   int i = MathOperations<int>::squared(2);

   long l = MathOperations<long>::squared(2);

   char c = MathOperations<char>::squared(2);

}

In this example, I chose to instantiate five versions of the original template for 

numeric types. The main limitation of this technique, as I mentioned, is that your clients 

will not be able to generate templates for the additional types they may want to use. 

However, in a few situations you may really want to restrict how these templates are 

used, and this technique works as desired.

�Templates in C++20
The latest updates of the C++ standards, of which C++20 is the latest, have introduced 

a number of features that simplify and improve the use of templates. As usual, with 

the release of a new version of the standard, you can still use every feature that was 

discussed in the previous sections. However, C++20 adds new ways to use templates with 

easier syntax and expanded functionality.

For example, a great feature that has been added in the last standard is the ability to 

write template functions without the use of the template keyword. This functionality is 

now available using the auto keyword as part of the function declaration.

Here is a case where a template function has become much easier to use:

#include <string>
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#include <iostream>

// This is a template that is instantiated depending on

// passed arguments.

auto apply_add_operator(auto x, auto y)

{

    return x + y;

}

int main()

{

    int x = 1, y = 3;

    std::string a{"hello "}, b{"world"};

    std::cout << apply_add_operator(a,b) << "\n";

    int res = apply_add_operator(1,3);

    return 0;

}

The preceding code fragment shows how to create a generic function without the use 

of the template keyword. The function apply_add_operator will take two arguments 

and apply the operator plus to the two arguments, returning the result. This works for 

any data type that supports the operator plus. In the preceding example, you can see 

the application to variables of type std::string and int. The compiler will take care of 

choosing the right data types and generating the code as needed.

For comparison, the old way of doing this is to define the generic function using 

template arguments, in the following way:

template <class T>

T apply_add_operator2(T x, T y)

{

    return x + y;

}

However, since the standard C++17, there is no need to use template arguments 

when in the presence of the automatic deduction keyword auto. This means that you 

can write shorter function declarations and let the compiler do the heavy lift of defining 

the exact types of the parameters passed to a generic function. Just as with automatic 

variable declarations, the auto keyword can help you to avoid a large amount of 

boilerplate that was needed in previous versions of C++.
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�Conclusion
While object-oriented design patterns provide several elegant methods for the solution 

of commonly found problems in financial programming, there are cases in which a 

non-OO strategy may be more indicated. In these situations, C++ promotes the use of 

templates, an implementation technique in which the compiler is allowed to generate 

code based on parameterized types.

In this chapter, you learned how to create new template classes and functions 

that use the template facilities of C++. Among other things, you saw how to create 

functions and classes that compute their results at compilation time. Compilation-time 

polymorphism, an alternative to runtime polymorphism that uses the code-generation 

capabilities of C++ templates, was also discussed.

The next chapter continues exploring templates in C++ with a more detailed view of 

the standard template library and its algorithms.
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CHAPTER 7

STL for Derivatives 
Programming
Modern financial programming in C++ makes heavy use of template-based algorithms. 

Many of the basic algorithms related to trading options and their derivatives are 

implemented in terms of function and class templates. This is done due to the superior 

advantages of templates in performance as well as their ability to improve code reuse.

Several template-based algorithms are implemented right into the standard 

template library (STL), which is one of the main parts of C++ standard library. Therefore, 

it is important to become familiar with the concepts of algorithms in the STL and to 

understand how they can be used and extended to more complex applications.

In this chapter, I discuss STL algorithms and how they can be employed in 

quantitative finance and other programming projects. In particular, I attempt to cover 

how these template-based algorithms are used in practice to solve common problems 

with options and other financial derivatives. After reading this chapter, you will get a 

better understanding of how the STL interacts with other parts of the C++ libraries and 

how it imposes a certain structure on classes developed in the language.

Here are some of the concepts discussed in this chapter:

•	 STL-based algorithms: Here, I present an introduction to the basic 

concepts of algorithms in the STL, how they interact with the 

container, and their basic performance characteristics.

•	 Functional techniques on STL: The STL algorithms can simplify your 

code with the use of a functional style of programming, whereby you 

can use functions as a first-class object of abstraction.
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•	 Working on STL containers: STL algorithms have been developed so 

that they work in tandem with containers. You need to understand 

the usage patterns of STL algorithms and how they can efficiently 

employ the most common containers provided by the standard C++ 

library.

•	 Efficient iterators: Another way in which algorithms interact with 

containers is through the use of iterators. Developers can use 

iterators in flexible ways, thanks to the support available in the STL 

algorithms.

•	 Improvements in C++20: You will also learn how the latest C++ 

standard has turned the STL into an even more efficient and easy-to-

use library.

�Introduction to Algorithms in the STL
The STL offers a set of templates that can be used to solve some of the most common 

problems encountered in C++ programming. Among such templates, you will find a list 

of algorithms that implement tasks such as copying, sorting, selecting, iterating, and 

adding elements to generic collections such as vectors, sets, maps, and their variations.

With STL algorithms, C++ designers created a set of template functions that 

manipulate generic collections. Once these algorithms have been implemented as 

templates, developers are free to use them for any class that satisfies the functional 

requirements of its container. For example, based on the STL, you can create vectors 

of any custom class and apply template algorithms such as sort and reverse to 

manipulate these objects, without having to write any additional code. Table 7-1 

presents a list of algorithm types available in the STL.
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The generic algorithms in the STL can be imported into a C++ application using the 

<algorithm> header file. Most of these algorithms are implemented directly as templates 

in the header file, so they can be available to any client code without the need of external 

binary components.

The next few sections describe a few common tasks that are implemented as STL 

algorithms and explain how they can be used from client code, including financial 

applications.

�Sorting
Sorting is a basic activity that is common to many algorithms. For this reason, sorting 

templates have been created to deploy high-performance sorting algorithms without 

much effort. Reusing sorting algorithms also allows programmers to avoid re-

creating well-known algorithms and the possibility of introducing mistakes into the 

Table 7-1.  A List of Algorithm Types Available in the STL

Algorithm Type Description

Conditional testing Performs a test of a given condition against elements of a container. 

Algorithms include operations such as all_of, any_of, and none_of.

Iteration Performs an operation for each element of a container, such as the for_

each algorithm.

Searching Finds elements in a container: find, find_if, find_if_not, find_

first_of, and search.

Counting Returns the number of elements in a container: count and count_if.

Sorting Puts the elements of the container in a defined sorted order: sort, 

 stable_sort, and partial_sort.

Partitioning Partitions the container into two ranges according to a given property: 

partition, partition_copy, and partition_stable.

Merge Performs the merge of two containers that have been previously sorted: 

merge, set_union, set_intersection, and set_difference.

Binary search Implements a binary search for each STL container. Examples are lower_

bound, upper_bound, and binary_search.
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implementation. STL algorithms provide just what you need in order to apply sorting 

strategies to containers and other data structures.

The STL has a set of template algorithms that can perform sorting on many 

different types of containers. The right algorithm should be selected according to 

the desired properties of the container and the data stored in it. For this purpose, the 

library gives you several options corresponding to the different desired tasks and their 

properties. As a developer, you should become acquainted with these types of sorting 

algorithms. Table 7-2 lists a set of algorithms commonly available from the STL (specific 

implementations might add their own variants).

The first type of sorting template is the generic sort function. This function can be 

applied to a range of values that’s stored in the container, given by two iterators—one 

for the start and another for the end of the range. As normally happens in the STL, the 

container can be anything that can be iterated over, including arrays, vectors, maps, 

sets, and other container templates. This sort of function can also take as a parameter 

a comparison function, which is used to determine the proper order of objects in the 

collection.

Consider, for example, a date type. The goal is to be able to sort objects of type date, 

which are stored in a standard STL container. To be able to sort based on dates, however, 

you need to provide a comparison function for the underlying date class. In C++, this is 

Table 7-2.  A List of Sorting Algorithms Available in the STL

Sorting Algorithm Description

sort Generic sorting algorithm that can be used on most containers. This 

should be used in the majority of cases.

stable_sort A stable sorting procedure that maintains the relative positions of 

elements in the container.

partial_sort An algorithm that sorts only part of a given container.

partial_sort_copy An algorithm that performs partial sorting on a copy of the original 

container.

is_sorted Returns true if the given container is already sorted. This is useful when 

working with an unknown container.

nth_element An algorithm that sorts only one of the largest elements of a container.
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done through the use of a functional operator that overloads the standard comparison 

operator. Here is a quick example:

class Date {

public:

    // Other public methods here...

    bool operator<(const Date &d);

    int year()  const { return m_year;  }

    int month() const { return m_month; }

    int day()   const { return m_day;   }

private:

    int m_day;

    int m_month;

    int m_year;

};

bool Date::operator<(const Date &d)

{

    if (m_year < d.m_year)

    {

        return true;

    }

    if (m_year == d.m_year and m_month < d.m_month)

    {

        return true;

    }

    if (m_year == d.m_year and m_month == d.m_month and

        m_day < d.m_day)

    {

        return true;

    }

    return false;

}
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bool operator<(const Date &a, const Date &b)

{

    return a < b;

}

Notice that there are two versions of the < operator. The first version is written as 

a member function. This is necessary so that the operator has access to the private 

member data of the date class. The second version of the < operator is a free function, 

and it is necessary when the first argument is a constant object. The implementation of 

the free function is directly based on the member function.

void sort_dates()

{

    vector<Date> dates;

    // ....  initialize the dates here

    std::sort(dates.begin(), dates.end()); //  perform comparison

}

The sort_dates function provides an example of using the standard sort template. 

In this version, the default comparison is used, which in this case is implemented by 

the < operator. You can, however, use a different comparison function, as shown in the 

following example:

bool year_comparison(const Date &a, const Date &b)

{

    return a.year() < b.year();

}

Here, the specialized comparison is performed only using the date year fields you 

stored in each date object. The comparison function can be called in the following way:

void sort_dates()

{

    vector<Date> dates;

    // ....

    // Performs comparison by year only

    std::sort(dates.begin(), dates.end(), year_comparison);

}
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In this instance, since you are using a specialized method of comparison, you need 

to provide a comparison function explicitly. The result of this sorting procedure is a 

sequence of dates where the elements appear in increasing order of year.

The preceding case can be used to exemplify the use of stable sorting. In a stable 

sorting, elements that are equal with respect to the sorting strategy appear in the same 

order as the input. This is an important feature in some sorting applications. Therefore, 

if you want to maintain the relative sorting position of dates within a year, you should 

instead use the stable_sort template function. This is exemplified in the modified code:

void stable_sort_dates()

{

    vector<Date> dates;

    // .... initialization here

    // Performs comparison by year only,

    // but relative order is maintained

    std::stable_sort(dates.begin(), dates.end(), year_comparison);

}

�Presenting Frequency Data
A simple application of sorting can be seen in the presentation of frequency data. 

Suppose that you were given a vector of price observations, and the goal is to present 

this pricing data according to the frequency in which it appears. This is an application 

that is typically described as a data histogram, that is, the data is presented according to 

increasing frequency.

To solve this problem, you can use STL containers and the sorting template 

algorithm to reorganize results. The final function is named compute_frequency. 

The first step of the algorithm is to calculate the number of bins defined by the data 

interval. To compute this, you’ll use the variables start, end, and step size. Here is the 

implementation:

//

//  stl_alg.cpp

//  Sorting algorithm for price data

#include <algorithm>

#include <vector>
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#include <cmath>

#include <iostream>

using std::vector;

using std::cout;

using std::endl;

using std::pair;

void compute_frequency(vector<double> &prices, double start,

                       double end, double step)

{

    int nbins = int(std::abs(end-start)/step);

    vector<pair<int, int>> count(nbins, std::make_pair(0,0));

    for (int i=0; i<nbins; ++i)

    {

        count[i].second = i;

    }

    for (int i=0; i<prices.size(); ++i)

    {

        if (start <= prices[i]  && prices[i] <= end)

        {

            int pos = int((prices[i] - start)/step);

            count[pos].first++;

        }

    }

    std::sort(count.begin(), count.end());

    for (int i=0; i<nbins; ++i)

    {

        int k = count[i].second;

        cout << start + k * step << "-" << start + (k+1) * step

             << ": "  << count[i].first;

    }

}
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The vector count stores the frequency of each data interval. Each element of the 

count vector has two members—the first member is the frequency and the second 

member is the relative position of the interval. These two values are stored as a STL pair, 

and the sequence of numbers is initialized in a for loop.

The next step is to store the frequency counts. This is done in a loop that iterates 

through the given range, adding to the frequency of each data point. Finally, after the 

frequencies are collected, you can sort them using the STL sort algorithm, which in this 

case uses the begin and end functions to define the sorting range. Following this, the 

frequencies are presented to standard output along with the respective ranges, which 

have been saved in the index variable.

// Sample test of histogram algorithm

int frequency_test()

{

    vector<double> prices = {32.3, 34, 35.6, 39.2,

                             38.7, 31.17, 33.14 };

    compute_frequency(prices, 31.0, 39.0, 0.1);

    return 0;

}

To test this code, I created a sample function frequency_test that calls the compute_

frequency function with a few data points. The output of the code execution should look 

like the following:

31-31.1: 0

31.2-31.3: 0

31.3-31.4: 0

31.4-31.5: 0

33.3-33.4: 0

// ...  more data here ...

38.9-39: 0

31.1-31.2: 1

32.2-32.3: 1

33.1-33.2: 1

34-34.1: 1

35.6-35.7: 1

38.7-38.8: 1
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Figure 7-1 shows a histogram, computed from sample data processed by the function 

frequency test. This kind of ranking function is useful when working with financial data 

such as price volatility.

�Copying Container Data
Another common application of template algorithms is to copy elements from one 

container to another. This can be easily done using the copy template algorithm. This 

algorithm can perform copies between containers of different types using common 

conversion techniques already provided by the C++ language.

For example, it is possible to copy a container of integer numbers (int) into a second 

container that maintains only numbers of type double. Consider the following code:

void copy_int_to_double()

{

    vector<int> ivector(100, 1);

    vector<double> dvector(100);

    std::copy(ivector.begin(), ivector.end(), dvector.begin());

}

Figure 7-1.  Histogram displaying number of values computed in sample data 
given function frequency_test
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Here, the two vectors ivector and dvector have different types. The fact that you 

have a template algorithm means that you don’t need to write separate functions to 

handle every combination of types that could be presented as an argument to the copy 

function.

Another useful ability provided by this template is to copy elements from an existing 

container into the standard output. To do this, you need to wrap the standard output (or 

any other stream, for that matter) with an std::ostream_iterator object, which allows 

you to iterate though an output stream. Here is an example of a simple way of displaying 

the contents of an STL container:

void print_prices()

{

    vector<double> prices(100);

    // Initialize prices here

    std::copy(prices.begin(), prices.end(),

              std::ostream_iterator<double>(cout));

}

The print_prices function creates and initializes a vector of doubles. Then, it passes 

the begin and end iterators for this vector as the first two parameters of find. Finally, the 

third argument wraps the standard output stream into an iterator for data of type double.

If you need to simplify the use of find (and many other similar algorithms), you 

could implement your own template algorithm that extracts the correct begin and 

end iterators. For an example of how you can do this, consider the following template 

function:

template <class T, class S >

typename T::const_iterator find(const T &a, S val) {

    return std::find (a.begin(), a.end(), val);

}

Chapter 7  STL for Derivatives Programming



180

This template function receives two template parameters—the first is a container 

class and the second is a value type. The find template presented here will just call 

std::find and make sure that the first two arguments are the begin and end of the 

passed container. This code could be called in a way similar to the previous example:

void find_value()

{

    vector<int> values;

    // ...  initialize the vector

    // Call our template

    vector<int>::const_iterator result = find (values, 42);

    if (result == values.end())

    {

        cout << " the value was not found " << endl;

    }

    else

    {

        cout << " the value found is " << *result << endl;

    }

}

Finally, using std::copy, it is also possible to transform a container template such as 

list into a different container type, such as vector. This kind of transformation allows 

programmers to easily convert containers of one type into another, without having to 

create custom code for each case. Here is an example:

void from_list_to_vector(const list<int> &l)

{

    vector<int> values;

    // Copy contents to destination array values

    std::copy(l.begin(), l.end(), values.begin());

    // Do something with the vector here

}
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In this example, the function receives a std::list of integers and copies the content 

stored in the list into a std::vector<int>. Since std::copy is a template that works with 

different container types, you can simply rely on the standard library to perform the 

desired conversions.

�Finding Elements
Finding elements in a container is another common operation that can be performed 

with the help of STL algorithms. The find family of templates allows programmers to 

search using different options. As usual, the find templates are optimized according to the 

specific container to which they are applied, but this is done automatically by the STL.

First, you have the simple find algorithm. This algorithm takes as parameters two 

iterators that specify the start and end of the target data. The next parameter is a constant 

value that you want to find in the given container. If the value is found, the algorithm 

returns an iterator pointing to the desired location. If the value is not found, the algorithm 

returns the second iterator, named last. Here is an example of how this works:

void find_value()

{

    vector<int> values;

    // ...  initialize the vector

    auto result = std::find(values.begin(),

                            values.end(), 42);

    if (result == values.end())

    {

        cout << " the value was not found " << endl;

    }

    else

    {

        cout << " the value found is " << *result << endl;

    }

}
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The find_value function is responsible for searching for a particular number inside 

a vector of integers. The values variable is declared as a vector container and should be 

initialized as desired. Next, you need to apply the find function using the beginning and 

end iterators returned by values. Therefore, the previous example shows how to search 

for a constant number. The return value of this function is then stored in a vector iterator. 

If this variable corresponds to the end iterator, you know that the value was not found. 

Otherwise, the value is printed using the contents pointed to by the returned iterator.

Another type of search is necessary if you use a conditional find. In this case, you 

should use the find_if template function. This function enables you to use a predicate, 

in other words, a conditional selection statement that is true only for the desired values.

Suppose, for example, that I try to search for a particular value inside of a container, 

such that the value is greater than 100. This is possible by defining a specific predicate 

and passing it as the last argument to the find_if function template. This can be done as 

follows:

bool greater_than_100(int num)

{

    return num > 100;

}

void conditional_find()

{

    vector<int> values;

    // ...  initialize the vector

    auto result = std::find_if(values.begin(),

                               values.end(), greater_than_100);

    if (result == values.end())

    {

        cout << " the value was not found " << endl;

    }

    else

    {

        cout << " the value found is " << *result << endl;

    }

}
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First, I introduce a new predicate function called call_greater_than_100. This 

function simply returns true when the number passed as an argument is above 100. 

Next, you can see the function conditional_find. This function is similar to the 

previous example, but it uses the find_if template function instead. The first and 

second arguments to the find_if function also determine the range of values tested. The 

last argument is simply a pointer to the predicate function that was presented previously.

Another way to do the same thing is to use a lambda function, instead of a normal 

function. A lambda function is a C++ functional element that can be built inline and can 

be passed to other functions themselves as a parameter. For example, instead of creating 

a separate function such as greater_than_100, one can pass the same comparison as 

a lambda function. The syntax for this is to put square brackets at the beginning of the 

function, instead of a function name:

   [](int num){return num > 100;}

The empty brackets syntax makes it easy to remember that the function name is not 

required. A complete version of the previous function that uses a lambda expression can 

be written as follows:

void conditional_find2()

{

    std::vector<int> values;

    // ...  initialize the vector

    auto result =  std::find_if(values.begin(), values.end(),

                                [](int num){return num > 100;});

    if (result == values.end())

    {

        std::cout << " the value was not found " << std::endl;

    }

    else

    {

        std::cout << " the value found is " << *result << std::endl;

    }

}
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Note T he last argument of find_if can be a function or a functional object. A 
functional object implements the function call operator and therefore can be called 
using syntax similar to a call to a normal function. Such functional objects are 
explained in the next chapter. In the case of find_if, the last argument can also 
be a lambda expression.

�Selecting Option Data
This section shows an additional example of how STL functions can be used to speed up 

option data processing. This example shows a simple implementation of options, where 

one of the data members is the number of days until expiration.

Let the option class be defined as follows:

class StandardOption {

public:

    StandardOption() : m_daysToExpiration() {}

    StandardOption(int days);

    StandardOption(const StandardOption &p);

    ~StandardOption();

    StandardOption &operator=(const StandardOption &p);

    int daysToExpiration() const { return m_daysToExpiration; }

    // Other function members here...

private:

    int m_daysToExpiration;

    // Other data members here...

};

StandardOption::StandardOption(int days)

: m_daysToExpiration(days)

{

}
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StandardOption::StandardOption(const StandardOption &p)

: m_daysToExpiration(p.m_daysToExpiration)

{

}

StandardOption::~StandardOption()

{

}

StandardOption &StandardOption::operator=(const StandardOption &p)

{

    if (this != &p)

    {

        m_daysToExpiration = p.m_daysToExpiration;

    }

    return *this;

}

This class presents a simplified version of a standard option. The number of days to 

expiration is stored in the member variable m_daysToExpiration and is returned by the 

daysToExpiration member function. You can also see a few of the standard member 

functions provided by the class.

The goal of this example is—given a container of StandardOptions objects—to find 

a set of options that are close to expiration (in this case, closeness is defined as a ten-day 

period before expiration). The first step in this process is to define a predicate function (a 

function returning a Boolean value), which will be called is_expiring.

bool is_expiring(const StandardOption &opt)

{

    return opt.daysToExpiration() < 10;

}

This function simply determines the number of days until expiration, and if it 

corresponds to the given criterion, the predicate returns true.
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This predicate can be used to find all the objects of type StandardOption that satisfy 

the property of being close to expiration. Here is how this can be done, with the help of 

STL algorithms:

vector<StandardOption>

find_expiring_options(vector<StandardOption> &options)

{

    vector<StandardOption> result(options.size());

    std::copy_if(options.begin(), options.end(),

                 result.begin(), is_expiring);

    if (result.size())

    {

        cout << " no expiring option was found " << endl;

    }

    return result;

}

First, a new vector is declared to hold the results. The final size of this vector is at 

most the size of the options vector. To perform the search, you can use the std::copy_

if algorithm. This template algorithm copies values from the given range into the 

destination (result), whenever the element satisfies the given predicate function. Since 

you are passing a function that is true only for options close to expiration, the resulting 

vector will contain only near-expiration options, which are returned as the result at the 

end of the function.

�STL Improvements in C++20
The changes in the C++ language introduced with the C++20 standard (as well as C++11 

and C++14) have made the use of the STL templates much more straightforward. The 

first feature, introduced in C++11 but amplified in the last standard, is the use of the auto 

keyword. The auto keyword can be used to substitute for complex types whenever the 

true type can be deduced by the compiler. For example, code such as this

std::vector<std::string>::iterator it = std::find_if (myvector.begin(), 

myvector.end(), IsUpperCase);
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can now be substituted by the much simpler version:

auto it = std::find_if (myvector.begin(),

                       myvector.end(), IsUpperCase);

But in C++20, you can also do the same to return types of functions:

auto find_my_value(auto myvector) -> auto {

    return std::find_if (myvector.begin(),

                         myvector.end(), IsUpperCase);

}

This feature makes it much easier to work with the complex data types declared in 

the STL header files. Another simplification that was introduced in C++17 is the ability to 

deduce types for template classes. For example, instead of writing

std::vector<int> int_vector = {1, 2, 3, 4};

one can now simply remove the type specification for the template argument:

std::vector int_vector = {1, 2, 3, 4};

This is possible because the compiler can now easily determine the type of the 

vector container from the type of the initialization expression.

�Conclusion
Templates allow programmers to create concise code that works on different data types. 

Given the advantage of templates, it is possible to create generic algorithms, which are 

also implemented in the core STL library. In this chapter, you learned about several 

template algorithms available in the C++ standard library. You also learned how to 

combine these algorithms to create efficient code for financial problems.

First, you saw how to use the most basic functional templates found in the 

STL. These include templates for tasks such as sorting, coping, iterating, and 

accumulating values restored in a STL container.

Later, you saw examples of how to combine those functional templates into working 

algorithms. Template algorithms allow programmers to take full advantage of existing 

high-performance programming techniques coded by implementers of the C++ template 

library.
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The use of template algorithms leads to a different style of programming, which 

does not rely solely on object-oriented features. Newer versions of C++ also support 

functional programming. In the functional programming style, problems are solved 

using combinations of functions and functional objects. In these types of programs, 

functions are also treated as first-class objects. Treating functions this way can give you 

a more flexible method to organize code and solve problems. In the next chapter, I will 

explore the functional style and show how it can be used to solve financial problems 

occurring in options and derivatives.
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CHAPTER 8

Functional Programming 
Techniques
Functional programming is an implementation strategy that focuses on the direct use of 

functions as first-class objects. This means that in a functional program you are allowed 

to create, store, and call functions and otherwise use them as if they were just another 

variable of the system. Functional code also simplifies programming decisions because 

it avoids changing state and mutable data. This type of functional manipulation allows 

programs to more closely express the desired behavior of the system and is particularly 

suitable to some application areas.

Functional programming is especially useful in the development of mathematical 

software and in the processing of large datasets, as is the case in the analysis options 

and derivatives. It can also be successfully used in the development of multithreaded 

systems, since it helps in the maintenance of lock-free code.

While the practice of functional programming was possible in previous versions of 

C++, such techniques have more recently been greatly improved with the adoption of 

the new language standards (from C++11 to C++20), particularly with the introduction 

of lambda functions. With lambda functions, programmers can now create temporary 

functions in place and pass them as arguments during the call to other functions. 

Such features have made it easier to apply functional programing techniques to C++ 

applications.

In this chapter, you will learn how to use functional programming strategies to 

solve typical problems that occur in algorithms for trading options and derivatives. The 

following topics are explored in this chapter:

•	 Functional objects: A functional object allows an instance of a class 

to be called with the same syntax as a function, by using the function 

call operator.
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•	 Functional templates: The STL has support for functional 

programming through the use of functional templates. With them, 

programmers can pass functions as parameters, as well as compose 

functions.

•	 Lambda functions: With the introduction of C++11, a new syntax 

was created to represent unnamed functions, also known as lambda 

functions. You will see how to use lambdas in C++ and learn how they 

simplify the creation and maintenance of functional code.

•	 Functional techniques for options processing: Throughout the 

chapter, you will see examples of how these functional programming 

techniques can be effectively used to solve some problems occurring 

in the analysis of options and derivatives.

�Functional Programming Concepts
Functional programming has its roots in the analysis of mathematical algorithms, 

where functions are the main abstraction. Such functions are typically used to compute 

results based on mathematical properties of numbers. Functions can be used to express 

mathematical algorithms as well as used as an effective abstraction for the creation of 

complex algorithms in several areas.

In particular, functional programming uses functions as building blocks to create 

solutions for computational problems. Using this programming technique, you can 

call functions as well as perform operations on them, including composition, partial 

application, currying, and filtering, among others. You will see examples of these 

operations later in this chapter.

Here are a few advantages of using functional programming in C++:

•	 It is possible to compose functions to achieve complex behavior from 

a few simple base functions. Functional composition can be more 

easily done when functions are treated as a first-class object, instead 

of as an isolated element of the language.
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•	 Functional programming doesn’t depend on complex states stored 

inside objects. Functions are generally transparent, and they depend 

on arguments that are passed at each function call. In comparison, 

objects are complex and store a lot of context that may be hard 

to validate and understand. The use of functional programming 

techniques favors the creation of simpler code with less state, since 

the state needs to be passed at each function call.

•	 Operations such as memoization can be easily performed when 

functions are first-class objects. With memoization, it is possible to 

cache the values of function calls, so that the next time a result can 

be immediately returned. This can be done because functions don’t 

store any mutable state.

•	 No complex hierarchy of objects is necessary. Unlike OO 

programming, functional techniques are not based on hierarchies 

and therefore require no knowledge of the internal relationships of 

classes. Functions are independent of each other and can be applied 

in any sequence.

In the next few sections, you will see examples of these functional concepts applied 

to C++ through different techniques. First, you will see how to use function objects for 

this purpose. Then, you will see how to use external libraries such as boost::lambda. 

Finally, you will see how to implement functional programming techniques using C++ 

lambda functions.

�Function Objects
The first step toward working with functional programming in C++ is to use a flexible 

representation for functions. One of the most common techniques for doing this is to use 

function objects. A function object (also known as a functor) is a C++ concept that allows 

programmers to create class instances that behave as if they were functions. The key for 

this concept to work is the overloading of the function call operator (represented in C++ 

by a pair of matching parentheses).

Chapter 8  Functional Programming Techniques



192

The function call operator can be defined as a member function in each class that 

needs to simulate a function call. The function call operator is called automatically from 

the compiler when the function call syntax is used. Consider the following example 

of how this process works. The OptionComparion class defines instances of a function 

object that compares two financial option contracts (defined here using the class 

SimpleOption), as defined here:

// A simple option representation

class SimpleOption {

public:

    // Other definitions here

    int daysToExpiration() const { return m_daysToExpiration; }

private:

    int m_daysToExpiration;

};

The first part of the code declares a class that contains option contracts data. In this 

example, SimpleOption contains only the number of days to expiration. In a normal 

application, this class would contain a complete representation of the attributes of an 

option.

class OptionComparison {

public:

    OptionComparison(bool directionLess);

    OptionComparison(const OptionComparison &p);

    ~OptionComparison();

    OptionComparison &operator=(const OptionComparison &p);

    bool operator()(const SimpleOption &o1, const SimpleOption &o2);

private:

    bool m_directionLess;

};

The OptionComparison class is the main focus of this example, since it declares a 

data type that can be used as a comparison function.

For the purposes here, the most important part of OptionComparison is the 

declaration of a member function to handle the function call syntax, using operator(). 

In this example, the arguments passed to the function call operator are two objects of 
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type SimpleOption that you want to compare. The following code shows the details of 

the implementation for OptionComparison class:

OptionComparison::OptionComparison(bool directionLess)

: m_directionLess(directionLess)

{

}

OptionComparison::OptionComparison(const OptionComparison &p)

: m_directionLess(p.m_directionLess)

{

}

OptionComparison::~OptionComparison()

{

}

OptionComparison &OptionComparison::operator=(

                  const OptionComparison &p)

{

    if (this != &p)

    {

        m_directionLess = p.m_directionLess;

    }

    return *this;

}

bool OptionComparison::operator()(const SimpleOption &o1,

                                  const SimpleOption &o2)

{

    bool result = false;

    // Check components of opt1 and opt2.

    // In practice this could be more complex.

    if (m_directionLess)

    {

        result = o1.daysToExpiration() < o2.daysToExpiration();

    }
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    else

    {

        result = o1.daysToExpiration() > o2.daysToExpiration();

    }

    return result;

}

The first part of the implementation contains a few standard member functions 

that are required by C++. The next part of the implementation, containing operator(), 

shows how the comparison functionality is handled by this class. In this simple case, the 

class considers the m_directionLess flag to determine if a less than test should be used. 

Otherwise, the function uses a greater than test and returns the results.

The following function shows how to use OptionComparison:

void test_compare()

{

    OptionComparison comparison(true);

    SimpleOption a, b;

    // ...

    // Initialize options a and b here...

    if (comparison(a, b))

    {

        std::cout << " a is less than b " << std::endl;

    }

    else

    {

        std::cout << " b is less than a " << std::endl;

    }

}

The first line of test_compare creates a new instance of the comparator object.  

Then, the code creates two SimpleOption objects and initializes them as necessary.  

The comparison object is then called as if it were a function, using operator ().
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The strategy displayed here can be used to simulate functions with different 

signatures by creating the appropriate version of the operator (). Also, a single class 

can decide to implement several versions of the operator(), depending on the ways in 

which it expects to be called.

�Functional Predicates in the STL
As you learned in the previous section, objects can be used to simulate functions in 

C++ through the definition (or overloading) of the function call operator. This flexible 

mechanism can be used to create code that behaves as a function but encapsulates 

complex properties, as any object can do.

Based on the use of function objects, you can build a different style of programming. 

To facilitate the creation of functional code in this style, the authors of the STL provide a 

set of basic function templates and classes that automate many common tasks. Some of 

these template functions are listed in Table 8-1.

Table 8-1.  List of Functional Templates Provided by the STL

Functional Template Description

equal_to Compares two parameters and determines equality between them.

Greater Compares the two given parameters and returns true if the first 

parameter is greater than the second.

greater_equal Compares the two given parameters and returns true if the first 

parameter is greater than or equal to the second.

Less Compares the two given parameters and returns true if the first 

parameter is less than the second.

less_equal Compares the two given parameters and returns true if the first 

parameter is less than or equal to the second.

logical_and Receives two Boolean parameters and returns true if both parameters 

evaluate to true.

logical_or Receives two Boolean parameters and returns true if at least one of the 

parameters evaluates to true.

(continued)
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The goal of the functional objects included in the STL is to provide a set of basic 

operations for creating new functional objects. Notice that through the combination 

of the given objects, it is possible to create complex functions to encode application-

dependent logic. You can freely combine these functional templates to define larger 

expressions in a way that represents the desired functionality.

Note  Be aware of the differences between using functional objects and normal 
C++ operations. A C++ computation specified with operators such as * and + 
cannot be passed as parameters to other functions, because they are immediately 
executed in place. Functional objects, on the other hand, form expressions that 
can be passed to other functions. Moreover, the process of putting these functional 
objects together is performed by the compiler. This ability to create complex 
expressions and pass them to other functional objects and templates makes these 
STL templates useful for the purpose of functional programming.

Functional Template Description

logical_not Receives a Boolean parameter and returns true if the parameter 

evaluates to false.

Plus A functional template that receives two numeric parameters and returns 

their sum.

Minus A functional template that receives two numeric parameters and returns 

the first minus the second.

Negate A functional template that receives a single numeric parameter and 

returns the negative of that value.

Divides A functional template that receives two numeric parameters and returns 

the value of the first parameter divided by the second.

Bind Receives a function or functional object as a parameter and binds 

the parameters to that function to constant values or to variable 

placeholders.

Table 8-1.  (continued)
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Consider the following examples of using these functional templates in C++. The first 

example shows how to use these functional templates to create a sorting predicate.

#include <functional>

void test_operator()

{

    using namespace std;

    vector<int> numbers = { 3, 4, 2, 1, 6 };

    sort(numbers.begin(), numbers.end(), greater<int>() );

}

Here, you first create a sequence of integer values and store it in the variable 

numbers. In this case, the code is taking advantage of the initialization syntax of C++11, 

which allows for the sequence type to be left unspecified, while the result is stored in a 

std::vector.

The next step is to call std::sort on the sequence of numbers. As you have seen 

before, the last argument of std::sort is a comparison function. Here, you can pass a 

functional object declared in functional.h, therefore freeing you from having to define 

a separate function.

Another simple application is to transform two sequences into a third sequence. For 

example, one can use the plus function to add elements from two lists:

void test_transform()

{

    using namespace std;

    auto list1 = { 3, 4, 2, 1, 6 };

    auto list2 = { 4, 1, 5, 3, 2 };

    vector<int> result(list1.size());

    transform(list1.begin(), list1.end(),

              list2.begin(), result.begin(), plus<int>() );
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    // Use transformed list here...

    copy(result.begin(), result.end(),

         ostream_iterator<int>(cout, ", "));

    // Prints 7, 5, 7, 4, 8,

}

This example shows you how to take two lists and perform an arithmetic operation 

with its respective elements. The operation in this case is the plus functional template, 

which adds two values and returns the sum. The first step is to create the two sequences. 

You can use the auto keyword to simplify the declaration of these sequences; they will be 

represented as vectors of integers. A result vector is also necessary, as declared in the 

next line of code.

The next step is to use the std::transform function to perform a transformation 

from the two source sequences into the destination sequence. Each step of the 

transformation uses the std::plus function. The result of this process is then sent to the 

standard output using the std::copy template function.

You could modify this example to perform any of the arithmetic or logical operations 

available in the functional header file, including adding, subtracting, multiplying, and 

dividing. More complex operations could be performed by combining these functions.

Note I n general, the transform function template is very useful when you 
want to perform a common action to a list of elements. By using transform, you 
can reduce the number of explicit for loops in your code, making the resulting 
program easier to understand.

�The Bind Function
In the last section, you saw that several common operations are provided in the standard 

library using the mechanisms of functional programming. With these templates, you 

can write transformations to lists of data without having to program explicit loops or use 

other imperative programming techniques.

However, just using the primitive operations such as subtract and divide is not 

enough to create complex application logic. Another thing that you can do using the 
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techniques of functional programming is bind parameter values for a given function, so 

that you can have a new, modified function as a result.

Consider, for example, the std::plus<T> function provided in the functional 

header file. It can be used to add two numbers and can be applied to members of 

separate containers using the transform function template. A simple modification 

of this function is to have a constant number as the first parameter, so that the 

resulting function is in fact adding a constant value each time it is applied. Functional 

programming allows functions to be modified in this way, before they are applied to the 

required data.

The solution in the STL is provided through the std::bind function. With std::bind, 

you can bind a particular value to one of the arguments of a given template function. By 

doing this, you can create as many different functions as there are new combinations of 

arguments.

To use std::bind, you need to determine the function to be modified and specify 

one or more values that will be bound to the function arguments. Among these bound 

parameters, you can also refer to the arguments supplied by the user of the function, at 

the time that the function is called. These arguments are called placeholder arguments, 

and named as the special variables _1, _2, _3, and so on.

Consider the following example of the std::bind function:

void use_bind()

{

    using namespace std;

    using namespace std::placeholders;

    auto list1 = { 3, 4, 2, 1, 6 };

    vector<int> result(list1.size());

    //  Add 3 to each element of the list

    transform(list1.begin(), list1.end(),

              result.begin(), bind(plus<int>(), _1, 3));

    copy(result.begin(), result.end(),

         ostream_iterator<int>(cout, ", "));

    // Prints 6, 7, 5, 4, 9,

}
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In this example, the goal is to use a modification of the std::plus function, so that 

each element of the list is added to the value 3, resulting in a new vector with the results. 

The example is similar to what you have seen in the previous code fragment, but the 

bind template now modifies the plus function.

The first two lines of the example are importing std and std::placeholders 

namespaces. The std::placeholder namespace allows you to write the name of 

placeholder variables _1 or _2. Then, the original list is created and a result vector is 

allocated.

The transform function performs the desired changes, and bind is used to create 

the operation applied to each element of the list1 vector. As seen in the previous 

example, there are two arguments for std::plus. These arguments need to be specified 

in sequence. This is indicated with the second and third parameters of std::bind. The 

first argument is supposed to be the placeholder for the first parameter. The second 

argument is bound to a constant number.

The std::bind template can be used in more complex situations. For example, it can 

be used to find member functions for existing classes. The following example shows how 

bind can be used to create a variation of a member function for the SimpleOption class:

class SimpleOption {

public:

    // Other definitions here

    �double getInTheMoneyProbability(int numDays, double 

currentUnderlyingPrice) const;

};

auto computeInTheMoneyProblExample(

     const std::vector<SimpleOption> &options) -> std::vector<double>

{

    using namespace std;

    using namespace std::placeholders;

    double currentPrice = 100.0;

    vector<double> probabilities(options.size());

    auto inTheMoneyCalc = bind(

      &SimpleOption::getInTheMoneyProbability, _1, 2, currentPrice);
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    transform(options.begin(), options.end(),

              probabilities.begin(), inTheMoneyCalc);

    return probabilities;

}

This assumes that SimpleOption contains a member function that calculates 

the probability that a particular option will be in the money, given a number of 

days before expiration and the current underlying price. Moreover, the goal is to 

create a function that will receive a vector of options and return the associated 

probabilities for the specific case of two days before expiration. The function is called 

getInTheMoneyProblExample in the previous fragment.

To do this using the STL functional algorithms, you need to find a way to express the 

desired condition as a functional object and pass the resulting object to std::transform. 

This can done with the help of std::bind. The idea is to use std::bind to bind the value of 

the first argument, which in this case is the number 2. Then, the placeholder _1 indicates 

that the argument passed to the resulting function is used as the second argument to 

getInTheMoneyProbability. The bound function is then saved to a variable called 

inTheMoneyCalc and used as an argument to transform, applied to the options vector.

�Lambda Functions in C++20
As you saw in the previous sections, classes, templates, and objects can be used to 

represent functions and other functional objects. Unfortunately, using classes for 

functional programming requires you to define a separate function outside of the current 

place where it is being used, thus making the process more difficult than it needs to be. 

Functional templates such as std::plus and std::multiplies help make this easier, but 

it is still not as easy as writing plain C++ code.

Other languages such as Lisp and Python have simplified this task with the concept 

of unnamed functions, also called lambdas. These unmanned functions can be passed 

as parameters to other functions and objects and can be freely combined into more 

complex functions. This way, functional programming techniques become much easier 

to implement and test, when compared to languages in which functions can be created 

only as a static entity.

One of the big changes since C++11 (and improved in C++20) was the introduction 

of lambda functions as a syntactical element. With the addition of lambda functions, it 
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is now possible to create unnamed functions that can be saved as variables or passed 

as parameters to other functions. This considerably simplifies the task of applying 

functional techniques in C++ programs, as you will see in the next few examples.

A C++ lambda is a piece of C++ code that can be saved and/or passed as a parameter 

to other functions. With lambdas, the compiler has enough information to understand 

that the function will run later, probably in an environment that is dependent of the 

current function.

The syntax of lambda functions starts with a pair of square brackets, followed by 

arguments and a block of code. Here is an example:

void use_lambda()

{

    auto fun = [](double x, double y) { return x + y; };

    double res = fun(4, 5);

    std::cout << " result is "  << res << std::endl;

}

Here, the lambda function is introduced by [], followed by parameters of type 

double. The function simply adds the two given parameters. The compiler can deduce 

the result type for this lambda function. However, you can also declare the return type as 

part of the code, using the -> syntax:

    auto fun = [](double x, double y) -> double { return x + y; };

Lambda functions can also refer to variables that have been declared outside the 

block of the lambda function. This makes them much more convenient than standard 

functions, which are independent of the surrounding variables. This process is called 

lambda capture, and it allows a lambda function to access the data stored even in a local 

variable, after the current function has returned.

There are two types of lambda capture:

•	 Lambda capture by value: Allows lambda functions to use the value 

stored in a variable that is accessible at the moment of the lambda 

declaration. The value can be used even after the original variable 

no longer exists. This is indicated by adding the name of the variable 

inside the square brackets that introduce the lambda function.
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•	 Lambda capture by reference: This allows a lambda function to 

modify the variable itself, instead of just using its value. This type of 

capture is indicated with an & operator before the name of the desired 

variable.

Here is an example of both cases of lambda capture:

void use_lambda2()

{

    int offset = 5;

    auto fun1 = [ offset](double x, double y)

                         { return x + y + offset; };

    auto fun2 = [&offset](double x, double y)

                         { return x + y + offset; };

    double res = fun1(4, 5);

    std::cout << " result is "  << res << std::endl;

    offset = 10;

    std::cout << " result of fun1 is "  << fun1(4, 5) << std::endl;

    std::cout << " result of fun2 is "  << fun2(4, 5) << std::endl;

}

The function named fun1 has been created with a capture of the offset variable. 

This capture is by value only, so it will always reflect the original value of that variable, 

in this case the number 5. The second lambda function fun2 captures the variable 

offset by reference. This means that each time fun2 is called, it will use a reference to 

the updated value of the offset. When the variable offset changes from 5 to 10, this will 

change the results produced by fun2, but will not change the results of the application of 

fun1, as shown in the following output:

 result is 14

 result of fun1 is 14

 result of fun2 is 19

Chapter 8  Functional Programming Techniques



204

A lambda function can also be passed as an argument to other functions. When this 

happens, the compiler creates a template object of type std::function<> that stores all 

the information used by the lambda function. You can create new functions that receive 

lambdas and freely use them in your code. The compiler will automatically convert a 

lambda into an object during the function call. Consider the following example:

void use_function(std::function<int(int,int)> f)

{

    auto res = f(2,3);

    std::cout << " the function returns the value "

              << res << std::endl;

}

This function just receives a std::function object and displays its result 

when applied to the values 2 and 3. The important part of this code is noticing that 

std::function defines both the return type and the types for each of the parameters of 

the given function. You can see how this information is used in the compiler with two 

sample lambda functions that are passed to use_function as follows:

void test_use_function()

{

    auto f1 = [] (int a, int b) { return a + b; };

    auto f2 = [] (int a, int b) { return a * b; };

    use_function(f1);

    use_function(f2);

}

When called, test_use_function will produce the following results, as expected:

 the function returns the value 5

 the function returns the value 6

�Complete Code
The complete code for this chapter is implemented in the Functional.hpp and 

Functional.cpp files. The functional techniques presented here have as dependencies 

only the main STL header files.
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//

//  Functional.hpp

#ifndef Functional_hpp

#define Functional_hpp

class SimpleOption {

public:

   // Other definitions here

   int daysToExpiration() const { return m_daysToExpiration; }

   �double getInTheMoneyProbability(int numDays, double 

currentUnderlyingPrice) const ;

private:

   int m_daysToExpiration;

};

class OptionComparison {

public:

   OptionComparison(bool directionLess);

   OptionComparison(const OptionComparison &p);

   ~OptionComparison();

   OptionComparison &operator=(const OptionComparison &p);

   bool operator()(const SimpleOption &o1, const SimpleOption &o2);

private:

   bool m_directionLess;

};

#endif /* Functional_hpp */

//

//  Functional.cpp

#include "Functional.hpp"

#include <iostream>

#include <vector>

#include <functional>   // for functional STL code
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//

// Class SimpleOption

//

double SimpleOption::getInTheMoneyProbability(int numDays, double 

currentUnderlyingPrice) const

{

    return 0; // implementation here

}

//

//  Class OptionComparison

//

OptionComparison::OptionComparison(bool directionLess)

: m_directionLess(directionLess)

{

}

OptionComparison::OptionComparison(const OptionComparison &p)

: m_directionLess(p.m_directionLess)

{

}

OptionComparison::~OptionComparison()

{

}

OptionComparison &OptionComparison::operator=(const OptionComparison &p)

{

    if (this != &p)

    {

        m_directionLess = p.m_directionLess;

    }

    return *this;

}
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bool OptionComparison::operator()(const SimpleOption &o1, const 

SimpleOption &o2)

{

    bool result = false;

    �// Check components of opt1 and opt2. In practice this could be more 

complex.

    if (m_directionLess)

    {

        result = o1.daysToExpiration() < o2.daysToExpiration();

    }

    else

    {

        result = o1.daysToExpiration() > o2.daysToExpiration();

    }

    return result;

}

void test_compare()

{

    OptionComparison comparison(true);

    SimpleOption a, b;

    // ...

    if (comparison(a, b))

    {

        std::cout << " a is less than b " << std::endl;

    }

    else

    {

        std::cout << " b is less than a " << std::endl;

    }

}
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void test_operator()

{

    using namespace std;

    vector<int> numbers = { 3, 4, 2, 1, 6 };

    sort(numbers.begin(), numbers.end(), greater<int>() );

}

void test_transform()

{

    using namespace std;

    auto list1 = { 3, 4, 2, 1, 6 };

    auto list2 = { 4, 1, 5, 3, 2 };

    vector<int> result(list1.size());

    �transform(list1.begin(), list1.end(), list2.begin(), result.begin(), 

plus<int>() );

    // Use transformed list here...

    �copy(result.begin(), result.end(), std::ostream_iterator<int>(cout, ", "));

    // Prints 7, 5, 7, 4, 8,

}

void use_bind()

{

    using namespace std;

    using namespace std::placeholders;

    auto list1 = { 3, 4, 2, 1, 6 };

    vector<int> result(list1.size());

    //  Add 3 to each element of the list

    �transform(list1.begin(), list1.end(), result.

begin(),  bind(plus<int>(), _1, 3));

    copy(result.begin(), result.end(), std::ostream_iterator<int>(cout, ", "));
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    // Prints 6, 7, 5, 4, 9,

}

auto computeInTheMoneyProblExample(const std::vector<SimpleOption> 

&options) -> std::vector<double>

{

    using namespace std;

    using namespace std::placeholders;

    double currentPrice = 100.0;

    vector<double> probabilities(options.size());

    �auto inTheMoneyCalc = bind(&SimpleOption::getInTheMoneyProbability, _1, 

2, currentPrice);

    �transform(options.begin(), options.end(), probabilities.begin(), 

inTheMoneyCalc);

    return probabilities;

}

void use_lambda()

{

    auto fun = [](double x, double y) -> double { return x + y; };

    double res = fun(4, 5);

    std::cout << " result is "  << res << std::endl;

}

void use_lambda2()

{

    int offset = 5;

    auto fun1 = [ offset](double x, double y) -> double

                         { return x + y + offset; };

    auto fun2 = [&offset](double x, double y) -> double

                         { return x + y + offset; };

    double res = fun1(4, 5);
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    std::cout << " result is "  << res << std::endl;

    offset = 10;

    std::cout << " result of fun1 is "  << fun1(4, 5) << std::endl;

    std::cout << " result of fun2 is "  << fun2(4, 5) << std::endl;

}

void use_function(std::function<int(int,int)> f)

{

    auto res = f(2,3);

    std::cout << " the function returns the value "  << res << std::endl;

}

void test_use_function()

{

    auto f1 = [] (int a, int b) { return a + b; };

    auto f2 = [] (int a, int b) { return a * b; };

    use_function(f1);

    use_function(f2);

}

//

// The main entry point for the test application

//

int main()

{

    test_use_function();

    return 0;

}

You can compile this code using any standards-compliant compiler, such as gcc 

(which is available for all major platforms). The following command line can be used to 

compile the application called Functional:

g++ -std=gnu++11 -o Functional Functional.cpp
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�Conclusion
Using templates is a good way to organize your code into generic functions that work 

across different data types. However, it’s only when you start to compose these functions 

that you start to reap the benefits of a functional programming style. Functional tools in 

the STL and other libraries allow programmers to use functions as first-class objects.

In this chapter, you learned a few of the techniques available for programmers who 

want to explore functional programming in C++. Some of these techniques include the 

use of functional objects, which implement the function call operator to simulate native 

functions. The STL provides several template functions that support the use of functional 

objects.

You have also seen how to create and use lambda functions, a new syntactical 

element introduced in C++11. With lambda functions, programmers can create 

unnamed functions that can be saved as variables or passed as parameters to other 

functions. Even more interestingly, such lambda functions can refer to variables that 

occur in the environment in which they were created. In this way, lambda functions 

reduce the need to create additional classes just for the purpose of simulating function 

calls.

This chapter concludes the book’s overview of C++ programming techniques 

used on derivatives programming. In the next chapter, you will start to learn about 

mathematical tools that can be used to price and analyze options and other derivatives. 

In particular, you will learn about linear programming methods and their C++ 

implementations.
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CHAPTER 9

Linear Algebra Algorithms
Linear algebra (LA) techniques are used throughout the area of financial engineering 

and, in particular, in the analysis of options and other financial derivatives. These 

techniques are used, for example, to calculate the value of large portfolios, or to quickly 

price derivative instruments. This chapter contains an overview of LA algorithms and 

their implementation in C++.

Linear algebra algorithms consist of simple operations on sets of values arranged as 

vectors or matrices. There is a rich mathematical theory behind the use of vectors and 

matrices. Although it is out of the scope here to explain this mathematical theory, it is 

nonetheless essential to understand how such algorithm can be implemented in C++.

It is important to recognize how the traditional methods of linear algebra can be 

translated to a multi-paradigm language such as C++. As a high-performance language, 

C++ has been used by software engineers to efficiently encode numerical algorithms, 

such as the ones used in linear algebra. With this goal in mind, this chapter presents 

a few examples that illustrate how to use some of the most common linear algebra 

algorithms. In this chapter, you will also learn how to integrate the following types of LA 

algorithms into your code:

•	 Vector operations: Operations on vectors are some of the most 

common ways to explore linear algebra algorithms.

•	 Implementing matrices: A matrix is a set of numbers ordered in a two-

dimensional array. Even though matrices are very common, there is 

no standard support for matrices in the C++ library. In this chapter, 

you will see how to easily create a matrix class that supports many of 

the most common matrix operations.
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•	 Using linear algebra libraries: There is a set of LA functions, named 

BLAS (Basic Linear Algebra Subprograms), that have become a de 

facto standard in the world of numerical computing. You will see in 

this chapter how to use BLAS and similar implementations, which 

provide the basic blocks used by most LA software (both free and 

commercial) available nowadays.

�Vector Operations
As you will see in the following examples, linear algebra is concerned about the 

mathematical properties of vector spaces. Many of the operations either produce vectors 

or take vectors as their arguments. Therefore, the first step to properly use LA algorithms 

is to have a good implementation of vectors.

Notice that, on the positive side, the C++ standard library already contains an 

optimized container called std::vector, which you have used extensively in the last 

few chapters. On the other hand, std::vector doesn’t implement some of the most 

important operations that are conventionally used in linear algebra algorithms. The first 

step in implementing such an algorithm is therefore to provide such missing operations.

There are two kinds of mathematical operations that are needed when using vectors:

•	 Operations between numbers and vectors: Some mathematical 

operations involve a single number (also called a scalar number) 

and a vector as arguments. For example, you may need to multiply 

a vector by a scalar, or add the same number to each entry in the 

vector. Such operations are not available in std::vector, but are 

so common that they should be supported by any linear algebra 

software package.

•	 Operations between two or more vectors::Another class or 

mathematical operations take two or more vectors and calculate a 

result based on their values. A common example is a vector product, 

where all members in both vectors are pairwise multiplied and finally 

added. Other operations like vector summation are also commonly 

used.

The next few examples will show how to implement some of these operations using 

the existing containers of the STL, such as std::vector.

Chapter 9  Linear Algebra Algorithms



215

�Scalar-to-Vector Operations
Scalar operations on vectors allow a vector to be modified by a single scalar number. The 

two most common scalar operations are scalar addition and scalar multiplication. You 

can use these operations as building blocks for more complex operations, which will be 

explored in the following sections.

Because the std::vector class is already part of the STL, the strategy used here 

is to create free functions (not members of a particular class) that operate on vector 

containers. This way, you are free to continue to use the well-known functions available 

for std::vector when necessary. You can also overload these functions with other types 

if you feel the need to extend these definitions.

The scalar addition to vectors consists in adding the same constant number to each 

component of the vector. This can be implemented in the following way:

#include <iostream>

#include <vector>

typedef std::vector<double> Vector;

Vector add(double num, const Vector &v)

{

    int n = (int)v.size();

    Vector result(n);

    for (int i=0; i<n; ++i)

    {

        result[i] = v[i] + num;

    }

    return result;

}

The first statement is a typedef that allows you to use the type name Vector instead 

of std::vector in this and the other examples in this chapter. Another advantage of 

using such a typedef in numerical algorithms like this is the possibility of changing 

the definition of Vector if necessary. In such a case, all the code would still compile to 

comply with another vector type with just a few or no changes.
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The add function creates a new Vector with a size equal to the length of the 

argument vector. Then, it fills the resulting vector with the original plus the number in 

the first argument. Next, you can see the scalar multiplication operation:

Vector multiply(double num, const Vector &v)

{

    int n = (int)v.size();

    Vector result(n);

    for (int i=0; i<n; ++i)

    {

        result[i] = v[i] * num;

    }

    return result;

}

The multiply function is implemented similarly to add. It receives a double number 

and a vector. The resulting vector is created as the same size as the argument v. The 

resultant vector is computed element by element to comply with the definition of the 

scalar product operation.

These two functions create and return a new vector. This is an effective way to 

perform the operations, but it can be less than optimal when used in inner loops of 

complex algorithms. One way to speed up this process is to create a version of these 

functions that modify the vector in place. That is, one of the vectors is passed using a 

non-const reference, and it is modified to contain the result of the calculation.

Here is the scalar addition function, implemented as an in-place modifying 

operation:

void in_place_add(double num, Vector &v)

{

    int n = (int)v.size();

    for (int i=0; i<n; ++i)

    {

        v[i] += num;

    }

}
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As you can see, this is the equivalent of the += operator, but applied to a vector and 

a scalar number argument. A similar implementation also works for the scalar product 

operation:

void in_place_multiply(double num, Vector &v)

{

    int n = (int)v.size();

    for (int i=0; i<n; ++i)

    {

        v[i] *= num;

    }

}

Last, you can take advantage of C++ operator overloading when defining these 

functions. With operator overloading, you can write code much more naturally, so 

instead of typing

multiply(5, add(10, a));

(assuming that a is a vector), you can type

5 * (10 * a);

which is much easier to understand and maintain. You can create operator versions 

of the previous functions using the following definitions:

inline Vector operator +(double num, const Vector &v)

{

    return add(num, v);

}

inline Vector operator *(double num, const Vector &v)

{

    return multiply(num, v);

}

inline void operator +=(double num, Vector &v)

{

    in_place_add(num, v);

}
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inline void operator *=(double num, Vector &v)

{

    in_place_multiply(num, v);

}

Because these are inline functions, they don’t add any runtime penalty to the 

functions that have already been defined. In fact, you can think about these definitions 

as shortcuts to the full definition of the vector operators, so that they are easy to type.

�Vector-to-Vector Operations
The vector-to-vector operations allow you to form mathematical expressions involving 

two or more vectors. The most common such operations are vector addition and vector 

product. They can be implemented using strategies similar to the ones used previously.

First, you will see the implementation of vector addition:

Vector add(const Vector &v1, const Vector &v2)

{

    int n = (int)v1.size();

    Vector result(n);

    for (int i=0; i<n; ++i)

    {

        result[i] = v1[i] + v2[i];

    }

    return result;

}

Here, the function allocates a resultant vector, which is populated using element-

wise addition of vector entries.

void  in_place_add(Vector &v1, const Vector &v2)

{

    int n = (int)v1.size();

    for (int i=0; i<n; ++i)

    {

        v1[i] += v2[i];

    }

}
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Next, you can apply the same strategy to the implementation of vector products. 

The first kind of vector product is called inner product, or dot product, and is defined 

as the sum of products of each correspondent element of each vector. Here is a simple 

implementation in C++:

double prod(const Vector &v1, const Vector &v2)

{

    double result = 0;

    int n = (int)v1.size();

    for (int i=0; i<n; ++i)

    {

        result += v1[i] * v2[i];

    }

    return result;

}

Another type of product between two vectors is known as the cross product and has 

several applications in physics and engineering. Unlike the inner product, which returns 

a single number, the cross product results in a new vector. The cross product generates 

a new vector that is orthogonal to the given parameters. Its definition for three-

dimensional vectors is given using the equations presented in the following function:

Vector cross_prod_3D(const Vector &a, const Vector &b)

{

    assert(a.size()==3); // definition is 3D vectors only

    int n = (int)a.size();

    Vector v(n);  // the resulting vector

    v[0] = (a[1] * b[2] - a[2] * b[1]);

    v[1] = (a[2] * b[0] - a[0] * b[2]);

    v[2] = (a[0] * b[1] - a[1] * b[0]);

    return v;

}
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Just as you can use in-place operations for scalar-to-vector functions, you can also 

implement vector-to-vector operations in place, therefore saving some of the effort 

needed to create temporary data structures. Here are the versions of these two functions 

designed for in-place updates:

void  in_place_add(Vector &v1, const Vector &v2)

{

    int n = (int)v1.size();

    for (int i=0; i<n; ++i)

    {

        v1[i] += v2[i];

    }

}

void  in_place_product(Vector &v1, const Vector &v2)

{

    int n = (int)v1.size();

    for (int i=0; i<n; ++i)

    {

        v1[i] *= v2[i];

    }

}

Vector in_place_cross_prod_3D(const Vector &a, const Vector &b, Vector &v)

{

assert(a.size()==3); // definition is 3D vectors only

    int n = (int)a.size();

    v[0] = (a[1] * b[2] - a[2] * b[1]);

    v[1] = (a[2] * b[0] - a[0] * b[2]);

    v[2] = (a[0] * b[1] - a[1] * b[0]);

    return v;

}

Finally, you can also simplify the use of these vector operations with the help of C++ 

operator overloading. Instead of typing a complex set of function calls, it is much more 

elegant to apply the standard addition and multiplication operations whenever possible. 
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Therefore, you can use the following inline definitions to call the given vector operations 

without any runtime performance penalty:

inline Vector operator +(const Vector &v1, const Vector &v2)

{

    return add(v1, v2);

}

inline void  operator +=(Vector &v1, const Vector &v2)

{

    in_place_add(v1, v2);

}

inline double operator *(const Vector &v1, const Vector &v2)

{

    return prod(v1, v2);

}

inline void  operator *=(Vector &v1, const Vector &v2)

{

    in_place_add(v1, v2);

}

The next operation I want to discuss is a very common function defined over a single 

vector. The norm of a vector can be defined as the square root of the vector product of a 

vector with itself. Basically, the norm of a vector is a numeric quantity that can be applied 

to describe the whole vector. You can very easily implement a norm in the following way:

double norm(const Vector &v)

{

    double result = 0;

    int n = (int)v.size();

    for (int i=0; i<n; ++i)

    {

        result += v[i] * v[i];

    }

    return std::sqrt(result);

}
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�Matrix Implementation
In the previous section, you learned about the most basic level of linear algebra 

functions, dealing with single numbers and vectors. A second level of operations is 

defined on a two-dimensional arrangement of numbers, also known as a matrix. 

Matrices arise naturally as the result of linear algebra calculations, and they provide a 

convenient way to manipulate data.

Matrices are fundamental to the implementation of linear algebra algorithms that 

are frequently used in the analysis of options and other derivatives. Unfortunately, C++ 

does not support matrices directly. Programmers need to create a separate abstraction to 

represent a matrix or use some third-party library that contains such a data type.

For the purpose of illustrating linear algebra and related algorithms, a Matrix 

class will be introduced in this section. This Matrix data type implements some of 

the most common operations that are needed in a financial application. However, 

the Matrix class presented here doesn’t include all the necessary checks that a robust 

implementation would require, and some of these features are left as exercise for the 

reader.

In particular, the Matrix class presented in this section offers the following abilities:

•	 Creation of square and rectangular matrices, which handle the 

allocation of memory for a two-dimensional container of real 

(floating-pointing) numbers

•	 Copy constructor and assignment operator that support the basic 

copy operations used in C++ libraries

•	 Indexing operator, so that values can be accessed with the familiar 

square bracket notation

•	 Common linear algebra operations, such as transpose, add, and 

multiply, implemented as member functions

The first step in defining a matrix class is to define the basic organization of the 

stored data. In this class, the data is stored as a sequence of rows, making maximum use 

of the existing vector container to help manage the data.

The header file is presented in Listing 9-1, and it includes the class declaration and a 

few free operators that simplify the use of the class.
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Listing 9-1.  Declarations for the Matrix Class

//

//  Matrix.h

//

#ifndef __FinancialSamples__Matrix__

#define __FinancialSamples__Matrix__

#include <vector>

class Matrix {

public:

    typedef std::vector<double> Row;

    Matrix(int size);

    Matrix(int size1, int size2);

    Matrix(const Matrix &s);

    ~Matrix();

    Matrix &operator=(const Matrix &s);

    void transpose();

    double trace();

    void add(const Matrix &s);

    void subtract(const Matrix &s);

    void multiply(const Matrix &s);

    void multiply(double num);

    Row & operator[](int pos);

    int numRows() const;

private:

    std::vector<Row> m_rows;

};

// Free operators

//

Matrix operator+(const Matrix &s1, const Matrix &s2);

Matrix operator-(const Matrix &s1, const Matrix &s2);

Matrix operator*(const Matrix &s1, const Matrix &s2);

#endif /* defined(__FinancialSamples__Matrix__) */
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Notice that a Row is defined as a std::vector of double numbers, using a typedef. 

Next, you see the usual definitions for constructors, destructors, and the assignment 

operator.

The Matrix class contains a few common operations, implemented as member 

functions. Last, you see a few operator overloads, so that the class can be comfortably 

used along with other linear algebra types discussed previously.

The first part of the Matrix class implementation is concerned with the constructors. 

The class has two constructors: the first constructor creates a square matrix, that is, one 

that has the same number of rows and columns. This is done by instantiating each row 

of the matrix and adding it to the top-level m_rows vector, until the complete matrix has 

been allocated.

//

//  Matrix.cpp

//

#include "Matrix.h"

#include <stdexcept>

Matrix::Matrix(int size)

{

    for (int i=0; i<size; ++i )

    {

        std::vector<double> row(size, 0);

        m_rows.push_back(row);

    }

}

The second way to create a matrix is to give a number of rows and a number of 

columns, therefore creating a rectangular matrix. The underlying algorithm is similar to 

the previous case:

Matrix::Matrix(int size, int size2)

{

    for (int i=0; i<size; ++i )

    {

        std::vector<double> row(size2, 0);
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        m_rows.push_back(row);

    }

}

The next constructor allows you to make a copy of an existing matrix. It simply takes 

advantages of how vectors copy all of their contents by default. The destructor is also 

trivial, because of the use of std::vector to manage the data.

Matrix::Matrix(const Matrix &s)

: m_rows(s.m_rows)

{

}

Matrix::~Matrix()

{

}

The assignment operator also takes advantage of the use of an std::vector. The 

only thing it needs to do is copy the underlying m_rows data member.

Matrix &Matrix::operator=(const Matrix &s)

{

    if (this != &s)

    {

        m_rows = s.m_rows;

    }

    return *this;

}

The Matrix class provides an easy way to access elements, using square brackets. 

For this purpose, it needs to define the operator[] member function. Because an 

std::vector is returned, the result can also be accessed using square brackets. 

Therefore, if a is an object of class Matrix, users of this class can just type a[2][3] to 

access the fourth element of the third row.

Matrix::Row &Matrix::operator[](int pos)

{

    return m_rows[pos];

}
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Transposition is one of the most common operations in a matrix. The goal of 

transposition is to convert rows into columns, changing the orientation of the data 

stored. This class does this by creating a new set of rows, where each new row contains 

the elements of the corresponding column. At the end, you just need to replace the 

existing rows with this new set of rows. This is done using the swap member function of 

the underlying std::vector. This way, you don’t need to worry about the details of data 

allocation, taking full advantage of STL data management techniques.

void Matrix::transpose()

{

    std::vector<Row> rows;

    for (unsigned i=0;i <m_rows[0].size(); ++i)

    {

        std::vector<double> row;

        for (unsigned j=0; j<m_rows.size(); ++j)

        {

            row[j] = m_rows[j][i];

        }

        rows.push_back(row);

    }

    m_rows.swap(rows);

}

Next, the Matrix class contains another very common operation called trace. The 

trace of a matrix is defined as the summation of elements in the diagonal positions of 

the matrix. That is, for a given matrix a, you need to sum all elements a[i][i], or in 

mathematical notation:

	
Trace A A
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This function is not defined for nonsquare matrices.

double Matrix::trace()

{

    if (m_rows.size() != m_rows[0].size())

    {

        throw new std::runtime_error("invalid matrix dimensions");
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    }

    double total = 0;

    for (unsigned i=0; i<m_rows.size(); ++i)

    {

        total += m_rows[i][i];

    }

    return total;

}

The add member function implements matrix addition. Just as with vector addition, 

matrix addition performs the element-wise summation of entries in the matrix. This 

operation is defined only when the two matrices have the same dimensions; otherwise, a 

runtime exception is thrown.

void Matrix::add(const Matrix &s)

{

    if (m_rows.size() != s.m_rows.size() ||

        m_rows[0].size() != s.m_rows[0].size())

    {

        throw new std::runtime_error("invalid matrix dimensions");

    }

    for (unsigned i=0; i<m_rows.size(); ++i)

    {

        for (unsigned j=0; j<m_rows[0].size(); ++j)

        {

            m_rows[i][j] += s.m_rows[i][j];

        }

    }

}

The subtract operation is similar to addition. It is here just to avoid the need to 

multiply the whole matrix by -1 in order to do a simple subtraction.

void Matrix::subtract(const Matrix &s)

{

    if (m_rows.size() != s.m_rows.size() ||

        m_rows[0].size() != s.m_rows[0].size())
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    {

        throw new std::runtime_error("invalid matrix dimensions");

    }

    for (unsigned i=0; i<m_rows.size(); ++i)

    {

        for (unsigned j=0; j<m_rows[0].size(); ++j)

        {

            m_rows[i][j] -= s.m_rows[i][j];

        }

    }

}

The product operation is implemented by the member function multiply. When 

you’re multiplying two matrices, the resulting matrix has entries that correspond to 

the vector product of the ith row and the jth column. In mathematical notation, this is 

represented as
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The multiply member function updates the matrix in place; therefore, it just needs 

to create a new set of rows and swap the results at the end of the function.

void Matrix::multiply(const Matrix &s)

{

    if (m_rows[0].size() != s.m_rows.size())

    {

        throw new std::runtime_error("invalid matrix dimensions");

    }

    std::vector<Row> rows;

    for (unsigned i=0; i<m_rows.size(); ++i)

    {

        std::vector<double> row;

        for (unsigned j=0; j<s.m_rows.size(); ++j)

        {

            double Mij = 0;

            for (unsigned k=0; k<m_rows[0].size(); ++k)
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            {

                Mij += m_rows[i][k] * s.m_rows[k][j];

            }

            row.push_back(Mij);

        }

        rows.push_back(row);

    }

    m_rows.swap(rows);

}

The Matrix class also defines a multiply member function that performs 

multiplication by a scalar number. This is analogous to the scalar multiplication of 

vectors and multiplies each element of the matrix by the same number.

void Matrix::multiply(double num)

{

    for (unsigned i=0; i<m_rows.size(); ++i)

    {

        for (unsigned j=0; j<m_rows[0].size(); ++j)

        {

            m_rows[i][j] *= num;

        }

    }

}

The numRows member function just returns the number of rows in the matrix.

int Matrix::numRows() const

{

    return (int)m_rows.size();

}

Finally, three operations are defined that simplify the use of the class. These 

operators use the in-place implementations you have saw previously, and they allow the 

use of convenient expressions involving matrices. These operators just give you an idea 

of how this works in practice; you can extend these definitions to include other common 

operators, such as /, +=, and *=.
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Matrix operator+(const Matrix &s1, const Matrix &s2)

{

    Matrix s(s1);

    s.subtract(s2);

    return s;

}

Matrix operator-(const Matrix &s1, const Matrix &s2)

{

    Matrix s(s1);

    s.subtract(s2);

    return s;

}

Matrix operator*(const Matrix &s1, const Matrix &s2)

{

    Matrix s(s1);

    s.multiply(s2);

    return s;

}

�Using the uBLAS Library
In the previous sections, you saw simple implementations of linear algebra concepts 

in C++. While they are useful for the examples provided in this book, sometimes you 

will be required to create high-performance implementations of complex numerical 

algorithms involving vectors and matrices. In such cases, it is useful to use well-tested 

and optimized libraries that provide linear algebra–related code.

The most used library for linear algebra algorithms is the LAPACK. Originally written 

in Fortran, LAPACK (linear algebra package) aims at providing high-performing and 

well-tested algorithms for basic operations involving vectors and matrices.

One interesting aspect of LAPACK is that it relies on another library called BLAS 

(Basic Linear Algebra Subprograms) to implement basic vector and matrix routines. 

The result is that BLAS became a standard for implementing vector and matrix routines. 

Several versions of BLAS have been released, providing optimized performance for 

specific architectures. BLAS also has versions targeting C and C++ that are used in many 

Chapter 9  Linear Algebra Algorithms



231

commercial products and other applications that need extensive support for numerical 

algorithms.

BLAS defines three levels of routines for support of linear algebra algorithms:

•	 BLAS Level 1 supports only vector-to-scalar and vector-to-vector 

operations. It is the most basic level of support, upon which other 

levels may be built.

•	 BLAS Level 2 offers optimized routines for vector-to-matrix 

calculations.

•	 BLAS Level 3 expands the previous levels to support matrix-to-matrix 

calculations, including operations such as matrix multiplication.

There are several implementations of BLAS, both in Fortran and in C++. Boost 

uBLAS is an implementation that is free and mostly compatible with the original BLAS 

library. It contains the same three support levels listed previously.

For an example of how to use uBLAS, assume that you want to access a fast 

implementation of the premultiply operations. That is, given a vector and a matrix, you 

want to write an algorithm that multiplies the vector by the matrix, giving a vector as a 

result.

To solve this problem, you can import the uBLAS libraries and create a function that 

receives two arguments: a vector and a matrix object. Here is a possible implementation 

for this function:

#include "Matrix.h"

#include <boost/numeric/ublas/matrix.hpp>

#include <boost/numeric/ublas/io.hpp>

#include <boost/numeric/ublas/lu.hpp>

namespace ublas = boost::numeric::ublas;

std::vector<double> preMultiply(const std::vector<double> &v, Matrix &m)

{

    using namespace ublas;

    ublas::vector<double> vec;

    std::copy(v.begin(), v.end(), vec.end());
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    int d1 = m.numRows();

    int d2 = (int)m[0].size();

    ublas::matrix<double> M(d1, d2);

    for (int i = 0; i < d1; ++i)

    {

        for (int j = 0; j < d2; ++j)

        {

            M(i,j) = m[i][j];

        }

    }

    vector<double> pv = prod(vec, M);

    std::vector<double> result;

    std::copy(pv.begin(), pv.end(), result.end());

    return result;

}

The first step is to include the header files for the boost numerical libraries. (You also 

need to make sure that the program will link to the necessary libraries; check your boost 

documentation for details.) Then, a function called preMultiply is defined, receiving a 

vector and a matrix as its parameters.

Note  For more information about how to install and use boost libraries, check 
Chapter 14 of this book.

One of the first things this function needs to do is to convert the parameters into 

types required by the uBLAS library. In particular, uBLAS provides the vector<double> 

and matrix<double> types. You need to convert your data to these types before calling 

any uBLAS functions.

Once the data has been prepared, you may call the prod function from uBLAS, which 

knows how to calculate the product of a vector and a matrix. The result is then saved into 

an std::vector container and returned to the caller.
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�Complete Code
This section contains the complete code for the vector operations. These functions may 

be used as the basis for a complete LA package, which is a common requirement in the 

analysis of options and derivatives.

The code is spread over two source files—LAVectors.hpp is the header file and 

LAVectors.cpp is the implementation file—which you’ll find in Listings 9-2 and 9-3.

Listing 9-2.  Header File LAVectors.hpp

//

//  LAVectors.hpp

#ifndef LAVectors_hpp

#define LAVectors_hpp

#include <vector>

typedef std::vector<double> Vector;

// Scalar-to-vector operations

Vector add(double num, const Vector &v);

Vector multiply(double num, const Vector &v);

void in_place_add(double num, Vector &v);

void in_place_multiply(double num, Vector &v);

inline Vector operator +(double num, const Vector &v)

{

    return add(num, v);

}

inline Vector operator *(double num, const Vector &v)

{

    return multiply(num, v);

}
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inline void operator +=(double num, Vector &v)

{

    in_place_add(num, v);

}

inline void operator *=(double num, Vector &v)

{

    in_place_multiply(num, v);

}

// Vector-to-vector operations

Vector add(const Vector &v1, const Vector &v2);

void  in_place_add(Vector &v1, const Vector &v2);

double product(const Vector &v1, const Vector &v2);

void  in_place_product(Vector &v1, const Vector &v2);

inline Vector operator +(const Vector &v1, const Vector &v2)

{

    return add(v1, v2);

}

inline void  operator +=(Vector &v1, const Vector &v2)

{

    in_place_add(v1, v2);

}

inline double operator *(const Vector &v1, const Vector &v2)

{

    return product(v1, v2);

}

inline void  operator *=(Vector &v1, const Vector &v2)

{

    in_place_add(v1, v2);

}
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double norm(const Vector &v);

#include <stdio.h>

#endif /* LAVectors_hpp */

Listing 9-3.  Implementation File LAVectors.cpp

//

//  LAVectors.cpp

#include "LAVectors.hpp"

#include <cmath>

//

// Adds a scalar number to a vector "v"

//

Vector add(double num, const Vector &v)

{

    int n = (int)v.size();

    Vector result(n);

    for (int i=0; i<n; ++i)

    {

        result[i] = v[i] + num;

    }

    return result;

}

//

// Premultiply a number "num" by the given vector "v"

//

Vector multiply(double num, const Vector &v)

{

    int n = (int)v.size();

    Vector result(n);

    for (int i=0; i<n; ++i)
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    {

        result[i] = v[i] * num;

    }

    return result;

}

//

// Perform vector addition in place (modifying the given vector)

//

void in_place_add(double num, Vector &v)

{

    int n = (int)v.size();

    for (int i=0; i<n; ++i)

    {

        v[i] += num;

    }

}

//

// Perform vector multiplication in place

// (modifying the given vector)

//

void in_place_multiply(double num, Vector &v)

{

    int n = (int)v.size();

    for (int i=0; i<n; ++i)

    {

        v[i] *= num;

    }

}

//

// Perform vector addition of two vectors  (v1 and v2)

//
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Vector add(const Vector &v1, const Vector &v2)

{

    int n = (int)v1.size();

    Vector result(n);

    for (int i=0; i<n; ++i)

    {

        result[i] = v1[i] + v2[i];

    }

    return result;

}

//

// Perform the vector product of vectors v1 and v2

//

double product(const Vector &v1, const Vector &v2)

{

    double result = 0;

    int n = (int)v1.size();

    for (int i=0; i<n; ++i)

    {

        result += v1[i] * v2[i];

    }

    return result;

}

//

// In-place addition of vectors v1 and v2

//

void  in_place_add(Vector &v1, const Vector &v2)

{

    int n = (int)v1.size();

    for (int i=0; i<n; ++i)

    {

        v1[i] += v2[i];

    }

}
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//

// In-place product of vectors v1 and v2

//

void  in_place_product(Vector &v1, const Vector &v2)

{

    int n = (int)v1.size();

    for (int i=0; i<n; ++i)

    {

        v1[i] *= v2[i];

    }

}

//

// Computes the cross product for two three-dimensional vectors

//

Vector cross_prod_3D(const Vector &a, const Vector &b)

{

    assert(a.size()==3); // definition is 3D vectors only

    int n = (int)a.size();

    Vector v(n);  // the resulting vector

    v[0] = (a[1] * b[2] - a[2] * b[1]);

    v[1] = (a[2] * b[0] - a[0] * b[2]);

    v[2] = (a[0] * b[1] - a[1] * b[0]);

    return v;

}

//

// In-place version of cross product for 3D vectors

//

Vector in_place_cross_prod_3D(const Vector &a, const Vector &b, Vector &v)

{

    assert(a.size()==3); // definition is 3D vectors only

    int n = (int)a.size();

    v[0] = (a[1] * b[2] - a[2] * b[1]);

    v[1] = (a[2] * b[0] - a[0] * b[2]);
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    v[2] = (a[0] * b[1] - a[1] * b[0]);

    return v;

}

//

// Computes the norm of a vector

//

double norm(const Vector &v)

{

    double result = 0;

    int n = (int)v.size();

    for (int i=0; i<n; ++i)

    {

        result += v[i] * v[i];

    }

    return std::sqrt(result);

}

�Conclusion
In this chapter, you learned about linear algebra algorithms that are commonly used 

in the development of software for the analysis of options and other derivatives. Linear 

algebra provides many of the techniques that are applied to important problems such 

as option pricing and the numerical approximation of certain derivatives occurring in 

finance.

First, you learned about the basic algorithms that involve a vector and a scalar 

number. These operations can be implemented in C++ using functions that are applied 

to standard vectors, as you could observe in the given examples.

Next, you learned how to implement a useful matrix data type. Matrices are not 

directly provided by the STL, but you can take advantage of existing support to vectors as 

a building block for matrix representations. You also learned about the basic operations 

that can be performed over matrix objects.

Finally, I discussed linear algebra libraries that provide efficient implementations 

for some of the functionality discussed in the previous sections. In particular, BLAS has 

been created and improved by some of the greatest specialists in the implementation of 
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numerical algorithms. The BLAS library is organized into different levels of support for 

linear algebra algorithms. You saw an example of how to take advantage of this highly 

optimized library to improve the performance of your own linear algebra code.

In the next chapter, you will learn about another building block for financial 

derivatives: numerical algorithms used to solve mathematical equations. This type of 

algorithms is at the core of many techniques used in the pricing of options and more 

exotic derivatives, as you will see in the next few chapters.
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CHAPTER 10

Algorithms for Numerical 
Analysis
Equation solving is one of the main building blocks for financial algorithms used in 

the analysis of options and financial derivatives. This happens because of the nature 

of options pricing, which is based on the Black-Scholes pricing model. Many of the 

techniques that involve options pricing require the efficient solution of differential 

equations and other mathematical formulations.

Given the importance of mathematical techniques in the pricing of such derivatives, 

it is important to be able to calculate the solution for particular mathematical models. 

Although this is a vast area of numerical programming, I will present a few illustrations 

of numerical algorithms that can be used as a starting point for developing your own 

C++ code.

In this chapter, you will see programming examples for a few fundamental 

algorithms in numerical programming. In particular, you will learn techniques to 

calculate equation roots and integrate functions in C++, with a discussion of how they 

work and how they are applied. The chapter also discusses numerical error and stability 

issues that present a challenge for developers in the area of quantitative financial 

programming.

•	 Mathematical function representation: I initially discuss a 

representation for mathematical functions that can be used as the 

starting point for algorithms that manipulate these mathematical 

abstractions.

•	 Root-finding algorithms: One of the most common types of numerical 

algorithms, root-finding techniques are used to find one or more 

roots of an equation, which are the points where the equations have 

zero value.
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•	 Integration algorithms: Another common type of numerical 

algorithms, integration techniques are used to calculate the 

numerical value of an integral (which can also be described as the 

area under a function, for single dimensional equations).

•	 Numerical examples in C++: This chapter also includes C++ code that 

implements many of these concepts, with concrete examples of how 

to code these algorithms.

�Representing Mathematical Functions
The first step in this short overview of numerical algorithms is to find a reasonable way to 

represent mathematical functions in C++. As you saw in the previous chapter, functions 

can be easily represented in C++ using functional objects, which declare a function call 

operator as one of its member functions. Using this strategy, it is possible to convert a 

class instance into a callable object, with semantics similar to native functions.

A similar strategy can be used to represent mathematical functions. The main 

difference between generic C++ and mathematical functions is that the latter operate 

only over numeric domains, more commonly using float or double values.

In the following example, a new MathFunction class is declared using this strategy. 

The declaration of MathFunction as an abstract interface allows programmers to extend 

this definition as necessary to represent concrete functions, as you will see next.

The abstract class can be defined as presented in Listing 10-1.

Listing 10-1.  Definition for the Abstract Class MathFunction

#include <iostream>

#include <vector>

using std::cout;

using std::endl;

class MathFunction {

public:

    virtual ~MathFunction() {}

    virtual double operator()(double x) = 0;
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private:

    // This is just an interface

};

Note  Because MathFunction is a polymorphic base class, it needs to define 
its own virtual destructor. This is necessary because clients will receive pointers 
or references to the base class. Without a virtual destructor, the compiler cannot 
determine the right destructor to be called, and as a result, such objects will not be 
properly cleaned up.

The great thing about using this type of interface class is that once you have a class 

like MathFunction, you can start writing code that uses it directly. Your code is insulated 

from any worries about the exact representation of objects. For example, consider a 

useful class called PolynomialFunction, which implements the interface described by 

MathFunction:

//

//  Polynomial has the form

//    c_1 x^n + c_2 x^n-1 + ....  + c_n-1 x^1 + c_n

//

class PolynomialFunction : public MathFunction {

public:

    PolynomialFunction(const std::vector<double> &coef);

    PolynomialFunction(const PolynomialFunction &p);

    virtual ~PolynomialFunction();

    virtual PolynomialFunction &operator=(const PolynomialFunction &p);

    virtual double operator()(double x) override;

private:

    std::vector<double> m_coefficients;

};

The PolynomialFunction class derives from MathFunction so that it can implement 

the same interface. However, it is only usable to represent polynomial functions, that is, 

functions that are determined by a polynomial of the form

	 f x c x c x c x cn n
n n( ) = + + + +-
-1 2

1
1

1 	
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The polynomial is determined using the coefficients passed as vectors to the 

constructor of PolynomialFunction. The constructors are responsible for updating the 

m_coefficients data member using this information.

PolynomialFunction::PolynomialFunction(const std::vector<double> &coef)

: m_coefficients(coef)

{

}

PolynomialFunction::PolynomialFunction(const PolynomialFunction &p)

: m_coefficients(p.m_coefficients)

{

}

PolynomialFunction::~PolynomialFunction()

{

}

PolynomialFunction &PolynomialFunction::operator=(const PolynomialFunction &p)

{

    if (this != &p)

    {

        m_coefficients = p.m_coefficients;

    }

    return *this;

}

�Using Horner’s Method
The main part of the PolynomialFunction class is the implementation for the method 

call operator. Since this class represents a polynomial, this operator needs to receive a 

real number x and evaluate the function at that particular point. This is done using the 

so-called Horner’s method.

Horner’s method is just a quick way to evaluate a polynomial, so that you don’t need 

to explicitly evaluate the terms xi, for i from 1 to n. This can be done using a loop, where 
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at each step you add a coefficient and multiply the result by x. A simple implementation 

of this idea can be done as follows:

double PolynomialFunction::operator()(double x)

{

    int n = (int)m_coefficients.size();

    double y = 0;

    int i;

    for (i=0; i<n-1; ++i)

    {

        y += m_coefficients[i];

        y *= x;

    }

    if (i < n) {

        y += m_coefficients[i];

    }

    return y;

}

To test these classes, you create a sample function that evaluates a polynomial 

function in a particular range. The function tested here is simply x2 in the real range of –2 

to 2. The function also prints the results so that you can visualize the data.

int test_poly_function()

{

    PolynomialFunction f( { 1, 0, 0 } );

    double begin = -2, end = 2;

    double step = (end - begin) / 100.0;

    for (int i=0; i<100; ++i)

    {

        cout <<  begin + step * i << ", ";

    }
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    cout << endl;

    for (int i=0; i<100; ++i)

    {

        cout << f( begin + step * i) << ", ";

    }

    return 0;

}

I ran this function and plotted the results as a graph of the function. Figure 10-1 

shows the output of the plot.

�Finding Roots of Equations
Once you have a good representation for mathematical functions, it becomes possible to 

solve a few numerical problems. The first one I discuss in this section is finding the roots 

of an equation, a common problem that occurs as part of several numerical algorithms. 

Finding roots of an equation consists of determining one or more points in a numerical 

domain (usually the real numbers) where the equation has a value of zero.

This problem has a long history in mathematics, and for some types of equations, 

it is possible to calculate their roots exactly. For example, you can find such roots 

for polynomials in general. For other equations, however, this problem can be too 

complicated to solve using analytical methods, which leads to the need for an algorithm 

capable of generating approximate solutions to such equations.

Figure 10-1.  Plot of results printed by the test_poly_function function
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A number of numerical algorithms have been proposed in the mathematical 

literature to find the roots of equations. In this section, you see how to do this using 

Newton’s method, which is one of the most common algorithms for this problem, and 

learn how it can be implemented in C++.

�Newton’s Method
Newton’s method is based on the use of the derivative as an approximation to the 

function on a particular neighborhood. To understand how this method works, notice 

that the derivative of a function at a particular point is known to be the slope of a line 

segment that is tangent to the function.

Using this property, it is very easy to improve the approximation to the equation root 

with a new point that is determined by the tangent. Newton’s method will essentially 

iterate through this process, until the difference between successive approximations is 

very small. Figure 10-2 shows an example of finding the root of function 5x +  cos (9x) − 2 

using Newton’s methood. The method starts at a given point and at each step computes 

a better approximation, until the root of the equation (represented as a large dot) is 

found.
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This method can be readily implemented in C++ using the tools that you already 

have. The first part consists of creating a class that encapsulates the necessary data for 

the approximation procedure. Here is the definition for the NewtonMethod class:

#include "MathFunction.hpp"

//

// A Newton method implementation

//

Figure 10-2.  Finding the root of a function using Newton’s method (image created 
with Wolfram Mathematica)
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class NewtonMethod {

public:

    // Takes as parameter the function and its derivatives

    //

    NewtonMethod(MathFunction &f, MathFunction &derivative);

    NewtonMethod(MathFunction &f,

                 MathFunction &derivative, double error);

    NewtonMethod(const NewtonMethod &p);

    virtual ~NewtonMethod();

    NewtonMethod &operator=(const NewtonMethod &p);

    double getFunctionRoot(double initialValue);

private:

    MathFunction &m_f;

    MathFunction &m_derivative;

    double m_error;

};

The NewtonMethod class contains the commonly used member functions, and in 

addition, it provides a function called getFunctionRoot, which receives as a parameter 

an initial value (a first guess that will work as a starting point).

The class stores as its data a reference to the function for which you want to find 

roots and another reference to its derivative. Although it is technically possible to find 

the derivative for most functions, the techniques to do this in a generic way are beyond 

the capabilities of this class, so you need to receive the derivative as a constructor 

parameter and store it.

#include <iostream>

#include <cmath>

using std::endl;

using std::cout;

namespace {

    const double DEFAULT_ERROR = 0.0001;

}

Chapter 10  Algorithms for Numerical Analysis



250

NewtonMethod::NewtonMethod(MathFunction &f, MathFunction &derivative)

: m_f(f),

  m_derivative(derivative),

  m_error(DEFAULT_ERROR)

{

}

NewtonMethod::NewtonMethod(MathFunction &f, MathFunction &derivative, 

double error)

: m_f(f),

  m_derivative(derivative),

  m_error(error)

{

}

NewtonMethod::NewtonMethod(const NewtonMethod &p)

: m_f(p.m_f),

  m_derivative(p.m_derivative),

  m_error(p.m_error)

{

}

NewtonMethod::~NewtonMethod()

{

}

NewtonMethod &NewtonMethod::operator=(const NewtonMethod &p)

{

    if (this != &p)

    {

        m_f = p.m_f;

        m_derivative = p.m_derivative;

        m_error = p.m_error;

    }

    return *this;

}
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These member functions are necessary just to maintain the state of NewtonMethod 

objects. The m_f member stores the function that needs to be solved. The m_derivative 

member stores a reference to the derivative of the main function. You can also tweak the 

expected error of the solutions found by this class using the m_error member function. 

If the error is not supplied, this class uses the value stored in the DEFAULT_ERROR error 

constant.

Next, you’re ready for the implementation of Newton’s method using the given 

infrastructure. The getFunctionRoot function provides the necessary code for finding 

the root of the equation. This member function is essentially a loop in which at each step 

a new approximation for the function root is provided. The loop ends when the absolute 

difference between the two last approximations is at least equal to the acceptable error:

double NewtonMethod::getFunctionRoot(double x0)

{

    double x1 = x0;

    do

    {

        x0 = x1;

        �cout << " x0 is " << x0 << endl;  // �this line just for 

demonstration

        double d = m_derivative(x0);

        double y = m_f(x0);

        x1 = x0 - y / d;

    }

    while (std::abs(x0 - x1) > m_error);

    return x1;

}

Inside the main loop, the steps are as follows:

	 1.	 Find the value at the derivative at the current estimate point using 

the m_derivative member.

	 2.	 Find the value of the function itself at the current estimate, using 

the m_f member.
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	 3.	 The derivative gives the slope d of the tangent, which can now 

be used to calculate another estimate point starting from the 

previous estimate. The equation for this new estimate is given by

	
x x

f x

f xo
1 0

0= -
( )
( )¢ 	

where x0 is the previous estimate and x1 is the new estimate.

You can use a few sample functions to test the accuracy of this method. I created a 

SampleFunction class for this purpose. This class inherits publicly the MathFunction 

interface and can be used to compute the function f(x) = (x–1)3, which has 1 as a root 

solution.

class SampleFunction : public MathFunction {

public:

    virtual ~SampleFunction();

    virtual double operator()(double value);

}.

SampleFunction::~SampleFunction()

{

}

double SampleFunction::operator ()(double x)

{

    return (x-1)*(x-1)*(x-1);

}

To use this class with NewtonMethod, you also need to supply its derivative. I have 

implemented the Derivative class, which again is derived from MathFunction. Simple 

math shows you that the derivative is given by f'(x) = 3(x–1)2.

class Derivative : public MathFunction {

public:

    virtual ~Derivative();

    virtual double operator()(double value);

};
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// Represents the derivative of the sample function

Derivative::~Derivative()

{

}

double Derivative::operator ()(double x)

{

    return 3*(x-1)*(x-1);

}

With these two classes, you can create a simple main function that puts them 

together and finds the root of the desired function. This code instantiates both 

SampleFunction and Derivative objects and creates an object of the NewtonMethod 

class. Finally, the code prints the value for a given initial estimate of 100.

int main()

{

    SampleFunction f;

    Derivative df;

    NewtonMethod nm(f, df);

    cout << " the root of the function is "

         << nm.getFunctionRoot(100) << endl;

    return 0;

}

Running this function gives as a result a set of points, each one closer to the desired 

equation root. You can view the sequence of results in Table 10-1.
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Iteration Estimate Difference

1 100

2 67 33.00000

3 45 22.00000

4 30.3333 14.66670

5 20.5556 9.77770

6 14.037 6.51860

7 9.69136 4.34564

8 6.79424 2.89712

9 4.86283 1.93141

10 3.57522 1.28761

11 2.71681 0.85841

12 2.14454 0.57227

13 1.76303 0.38151

14 1.50868 0.25435

15 1.33912 0.16956

16 1.22608 0.11304

17 1.15072 0.07536

18 1.10048 0.05024

19 1.06699 0.03349

20 1.04466 0.02233

21 1.02977 0.01489

22 1.01985 0.00992

23 1.01323 0.00662

24 1.00882 0.00441

Table 10-1.  Sequence of Values Found by Newton’s Method 

Applied to Function (x–1)3 and with Initial Guess of 100

(continued)
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�Integration
Another problem that frequently requires the help of mathematical algorithms is the 

integration of functions. The integral of a function can be visualized as the area under 

its graph, and it has many applications in finance, engineering, and physics. Several 

algorithms used in the analysis of options need to evaluate integrals numerically, using 

techniques similar to the ones covered in this section.

Functions can be integrated analytically or numerically. For some functions, it 

is possible to find an analytic solution, that is, a closed formula that can be directly 

evaluated to compute the integral of a function between two points. For example, 

polynomial functions can be easily integrated analytically, using the antiderivative. For 

example, if the function is f (x) = x2, the antiderivative

	
F x

x
C( ) = +

3

3 	

can be used to calculate the value of the integral between the two points a and b, which 

becomes F (b) – F(a).

Iteration Estimate Difference

25 1.00588 0.00294

26 1.00392 0.00196

27 1.00261 0.00131

28 1.00174 0.00087

29 1.00116 0.00058

30 1.00077 0.00039

31 1.00052 0.00025

32 1.00034 0.00018

33 1.00023 0.00011

34 1.00015 0.00008

Table 10-1.  (continued)
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Many functions, however, are too complicated to be integrated analytically. In these 

cases, you need to use numerical algorithms that slice the function into small parts and 

calculate the integral while trying to reduce the error in this process.

In this section, I present an implementation for one of the simplest integration 

techniques, known as Simpson’s method. Simpson’s method is based on the 

decomposition of an area that needs to be integrated into a large number of very small 

pieces.

First, you need to define a class that presents the interface for this solution method. 

The SimpsonsIntegration class contains data members such as m_f, a reference to the 

function that will be integrated, and m_numIntervals, the number of intervals used to 

approximate the integral.

#include "MathFunction.hpp"

class SimpsonsIntegration {

public:

    SimpsonsIntegration(MathFunction &f);

    SimpsonsIntegration(const SimpsonsIntegration &p);

    ~SimpsonsIntegration();

    SimpsonsIntegration &operator=(const SimpsonsIntegration &p);

    double getIntegral(double a, double b);

    void setNumIntervals(int n);

private:

    MathFunction &m_f;

    int m_numIntervals;

};

The implementation for this class is in the next code fragment. The class uses a 

default number of intervals, in case you don’t want to set up this value. The DEFAULT_

NUM_INTERVALS constant is used for this purpose.

#include "Integration.hpp"

#include "MathFunction.hpp"

#include <iostream>

#include <cmath>
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using std::cout;

using std::endl;

namespace  {

    const int DEFAULT_NUM_INTERVALS = 100;

}

SimpsonsIntegration::SimpsonsIntegration(MathFunction &f)

: m_f(f),

m_numIntervals(DEFAULT_NUM_INTERVALS)

{

}

SimpsonsIntegration::SimpsonsIntegration(const SimpsonsIntegration &p)

: m_f(p.m_f),

m_numIntervals(p.m_numIntervals)

{

}

SimpsonsIntegration::~SimpsonsIntegration()

{

}

SimpsonsIntegration &SimpsonsIntegration::operator=(const 

SimpsonsIntegration &p)

{

    if (this != &p)

    {

        m_f = p.m_f;

        m_numIntervals = p.m_numIntervals;

    }

    return *this;

}

The main part of this implementation is the getIntegral member function. The 

two parameters for this function define the interval in which the integration will be 

performed. The intSize variable is used to define the size of each interval used for 

Simpson’s method.
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The algorithm operates as follows. For each slice of the required interval, you need 

to compute the approximate area under the function. The formula used by Simpson’s 

method is
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where a and b are the beginning and end points of the current interval. This rule has 

been observed as one of the most effective for evaluating an integral in a short interval.

double SimpsonsIntegration::getIntegral(double a, double b)

{

    double S = 0;

    double intSize = (b - a)/m_numIntervals;

    double x = a;

    for (int i=0; i<m_numIntervals; ++i)

    {

        �S += (intSize / 6) * ( m_f(x) + m_f(x+intSize) + 4* m_f  

((x + x+intSize)/2) );

        x += intSize;

    }

    return S;

}

This class also provides a method to change the number of intervals, therefore 

improving the accuracy of the method (at the expense of additional running time).

void SimpsonsIntegration::setNumIntervals(int n)

{

    m_numIntervals = n;

}

To test the results of this integration method, I provide a simple mathematical 

function as an example. The function to be integrated here is sin (x).
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// Example function

namespace  {

    class SampleFunc : public MathFunction

    {

    public:

        ~SampleFunc();

        double operator()(double x);

    };

    SampleFunc::~SampleFunc()

    {

    }

    double SampleFunc::operator()(double x)

    {

        return sin(x);

    }

}

The main function can be used as a driver to test the SimpsonsIntegration class. It 

creates an instance of SimpleFunc and uses it to initialize a SimpsonsIntegration object. 

Then, this code will call the function getIntegral for the interval 0.5 to 2.5. Next, the 

number of intervals changes to 200, and the same calculation is performed again.

int main()

{

    SampleFunc f;

    SimpsonsIntegration si(f);

    si.setNumIntervals(200);

    double integral = si.getIntegral(0.5, 2.5);

    cout << " the integral of the function is " << integral << endl;

    si.setNumIntervals(200);

    integral = si.getIntegral(0.5, 2.5);

    cout << " the integral of the function with 200 intervals is "

         << integral << endl;

    return 0;

}
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The result of this function is the following:

 the integral of the function is 1.67876

 the integral of the function with 200 intervals is 1.67873

This is a very effective method, and with only four intervals, it is possible to achieve a 

reasonable approximation in this case.

�Complete Code
Here is the code used in this chapter:

//

//  MathFunction.hpp

#ifndef MathFunction_hpp

#define MathFunction_hpp

#include <stdio.h>

#include <vector>

class MathFunction {

public:

    virtual ~MathFunction() {}

    virtual double operator()(double x) = 0;

private:

    // This is just an interface

};

//

//  Polynomial has the form  c_1 x^n + c_2 x^n-1 + ....  + c_n-1 x^1 + c_n

class PolynomialFunction : public MathFunction {

public:

    PolynomialFunction(const std::vector<double> &coef);

    PolynomialFunction(const PolynomialFunction &p);

    virtual ~PolynomialFunction();

    PolynomialFunction &operator=(const PolynomialFunction &p);

    virtual double operator()(double x) override;
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private:

    std::vector<double> m_coeficients;

};

#endif /* MathFunction_hpp */

//

//  MathFunction.cpp

#include "MathFunction.hpp"

#include <iostream>

using std::cout;

using std::endl;

PolynomialFunction::PolynomialFunction(const std::vector<double> &coef)

: m_coeficients(coef)

{

}

PolynomialFunction::PolynomialFunction(const PolynomialFunction &p)

: m_coeficients(p.m_coeficients)

{

}

PolynomialFunction::~PolynomialFunction()

{

}

PolynomialFunction &PolynomialFunction::operator=(const PolynomialFunction &p)

{

    if (this != &p)

    {

        m_coeficients = p.m_coeficients;

    }

    return *this;

}
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double PolynomialFunction::operator()(double x)

{

    int n = (int)m_coeficients.size();

    double y = 0;

    int i;

    for (i=0; i<n-1; ++i)

    {

        y += m_coeficients[i];

        y *= x;

    }

    if (i < n) {

        y += m_coeficients[i];

    }

    return y;

}

//

// Test function

int main_afunc()

{

    PolynomialFunction f( { 1, 0, 0 } );

    double begin = -2, end = 2;

    double step = (end - begin) / 100.0;

    for (int i=0; i<100; ++i)

    {

        cout <<  begin + step * i << ", ";

    }

    cout << endl;

    for (int i=0; i<100; ++i)

    {

        cout << f( begin + step * i) << ", ";

    }

    return 0;

}
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//

//  NewtonMethod.hpp

#ifndef NewtonMethod_hpp

#define NewtonMethod_hpp

#include "MathFunction.hpp"

//

// A Newton method implementation

//

class NewtonMethod {

public:

    // Takes as parameter the function and its derivatives

    //

    NewtonMethod(MathFunction &f, MathFunction &derivative);

    NewtonMethod(MathFunction &f, MathFunction &derivative, double error);

    NewtonMethod(const NewtonMethod &p);

    virtual ~NewtonMethod();

    NewtonMethod &operator=(const NewtonMethod &p);

    double getFunctionRoot(double initialValue);

private:

    MathFunction &m_f;

    MathFunction &m_derivative;

    double m_error;

};

#endif /* NewtonMethod_hpp */

//

//  NewtonMethod.cpp

#include "NewtonMethod.hpp"

#include <iostream>

#include <cmath>
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using std::endl;

using std::cout;

namespace {

    const double DEFAULT_ERROR = 0.0001;

}

NewtonMethod::NewtonMethod(MathFunction &f, MathFunction &derivative)

: m_f(f),

m_derivative(derivative),

m_error(DEFAULT_ERROR)

{

}

NewtonMethod::NewtonMethod(MathFunction &f, MathFunction &derivative, 

double error)

: m_f(f),

m_derivative(derivative),

m_error(error)

{

}

NewtonMethod::NewtonMethod(const NewtonMethod &p)

: m_f(p.m_f),

m_derivative(p.m_derivative),

m_error(p.m_error)

{

}

NewtonMethod::~NewtonMethod()

{

}

NewtonMethod &NewtonMethod::operator=(const NewtonMethod &p)

{

    if (this != &p)

    {

        m_f = p.m_f;
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        m_derivative = p.m_derivative;

        m_error = p.m_error;

    }

    return *this;

}

double NewtonMethod::getFunctionRoot(double x0)

{

    double x1 = x0;

    do

    {

        x0 = x1;

        �cout << " x0 is " << x0 << endl;  // �this line is just for 

demonstration

        double d = m_derivative(x0);

        double y = m_f(x0);

        x1 = x0 - y / d;

    }

    while (std::abs(x0 - x1) > m_error);

    return x1;

}

// ---- A function used as example

namespace {

    class SampleFunction : public MathFunction {

    public:

        virtual ~SampleFunction();

        virtual double operator()(double value);

    };

    SampleFunction::~SampleFunction()

    {

    }
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    double SampleFunction::operator ()(double x)

    {

        return (x-1)*(x-1)*(x-1);

    }

    class Derivative : public MathFunction {

    public:

        virtual ~Derivative();

        virtual double operator()(double value);

    };

    // Represents the derivative of the sample function

    Derivative::~Derivative()

    {

    }

    double Derivative::operator ()(double x)

    {

        return 3*(x-1)*(x-1);

    }

}

int main()

{

    SampleFunction f;

    Derivative df;

    NewtonMethod nm(f, df);

    �cout << " the root of the function is " << nm.getFunctionRoot(100) << endl;

    return 0;

}

//

//  Integration.hpp

#ifndef Integration_hpp

#define Integration_hpp
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#include "MathFunction.hpp"

class SimpsonsIntegration {

public:

    SimpsonsIntegration(MathFunction &f);

    SimpsonsIntegration(const SimpsonsIntegration &p);

    ~SimpsonsIntegration();

    SimpsonsIntegration &operator=(const SimpsonsIntegration &p);

    double getIntegral(double a, double b);

    void setNumIntervals(int n);

private:

    MathFunction &m_f;

    int m_numIntervals;

};

#endif /* Integration_hpp */

//

//  Integration.cpp

#include "Integration.hpp"

#include "MathFunction.hpp"

#include <iostream>

#include <cmath>

using std::cout;

using std::endl;

namespace  {

    const int DEFAULT_NUM_INTERVALS = 100;

}

SimpsonsIntegration::SimpsonsIntegration(MathFunction &f)

: m_f(f),

m_numIntervals(DEFAULT_NUM_INTERVALS)

{

}
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SimpsonsIntegration::SimpsonsIntegration(const SimpsonsIntegration &p)

: m_f(p.m_f),

m_numIntervals(p.m_numIntervals)

{

}

SimpsonsIntegration::~SimpsonsIntegration()

{

}

SimpsonsIntegration &SimpsonsIntegration::operator=(const 

SimpsonsIntegration &p)

{

    if (this != &p)

    {

        m_f = p.m_f;

        m_numIntervals = p.m_numIntervals;

    }

    return *this;

}

double SimpsonsIntegration::getIntegral(double a, double b)

{

    double S = 0;

    double intSize = (b - a)/m_numIntervals;

    double x = a;

    for (int i=0; i<m_numIntervals; ++i)

    {

        S += (intSize / 6)

          * ( m_f(x) + m_f(x+intSize) + 4* m_f ((x + x+intSize)/2) );

        x += intSize;

    }

    return S;

}
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void SimpsonsIntegration::setNumIntervals(int n)

{

    m_numIntervals = n;

}

// Example function

namespace  {

    class SampleFunc : public MathFunction

    {

    public:

        ~SampleFunc();

        double operator()(double x);

    };

    SampleFunc::~SampleFunc()

    {

    }

    double SampleFunc::operator()(double x)

    {

        return sin(x);

    }

}

int main()

{

    SampleFunc f;

    SimpsonsIntegration si(f);

    si.setNumIntervals(4);

    double integral = si.getIntegral(0.5, 2.5);

    cout << " the integral of the function is " << integral << endl;

    si.setNumIntervals(100);

    integral = si.getIntegral(0.5, 2.5);

Chapter 10  Algorithms for Numerical Analysis



270

    �cout << " the integral of the function with 200 intervals is " << 

integral << endl;

    return 0;

}

�Conclusion
Numerical algorithms are one of the main parts of an analytical system for options and 

derivatives. These algorithms have been refined for decades, and many of them have 

been implemented in C++ for the purpose of options pricing and related tasks.

In this chapter, you saw a few examples of numerical algorithms and learned how 

they can be efficiently implemented. I started with an explanation of how mathematical 

functions can be modeled as classes that are independent of the underlying algorithm. 

You also learned how to create a generic polynomial function class that efficiently 

computes the value of a function at each point using Horner’s method.

Next, you learned how to find roots of equations using Newton’s method. This 

traditional method employs the derivative of a function to estimate the value of its root 

and continually improves this estimate until a solution is found. You learned how this 

method can be relatively easily implemented using the tools developed in the previous 

sections.

Finally, this chapter also covered the important problem of function integration. To 

find the integral of a function, you need to evaluate a function in a given range and use 

those values to estimate the area covered by the function graph. Using the algorithmic 

methods introduced here, you learned how to implement one of the most common 

techniques for integrating functions, known as Simpson’s method.

While this chapter introduced simple numerical techniques, in the next chapter, 

you will learn how these techniques can be combined to solve some of the complex 

differential equations that occur when analyzing options and similar derivatives.
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CHAPTER 11

Models Based 
on Differential Equations
Differential equations are equations that involve in their terms both a function and their 

mathematical derivatives. Many of these equations arise naturally from the analysis of 

economic models used for the pricing of options, such as the Black-Scholes model.

Solving specific partial differential equations (PDEs) is at the core of many 

techniques used in the analysis of options and related financial derivatives. As you will 

see in this chapter, there are several techniques for solving and analyzing the results of 

PDEs that can be implemented in C++. In the next few sections, I present programming 

examples that cover important aspects of differential equations–based option modeling 

and their applications using C++.

Here are a few of the topics covered in this chapter:

•	 Basic techniques for solving DEs: Several techniques have been 

developed by practitioners in order to find solutions for differential 

equations. I provide a quick summary of these methods and explain 

how they can be used in financial applications.

•	 Ordinary differential equations: ODEs are equations that contain 

only functions and derivatives of one value. ODEs can be used to 

represent problems in several areas, and solving them gives you an 

excellent basis for solving more complex differential equations.

•	 Euler’s method for solving ODEs: Euler’s method is a traditional 

algorithm that can be easily implemented in C++, providing a 

numerical evaluation method for a large number of DEs.
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•	 Runge-Kutta method: The RK method provides a more accurate way 

to determine numerical solutions for differential equations. The RK 

method uses a Taylor expansion as a way to approximate the desired 

equation, which makes it possible to find solutions with fewer 

iterations of the algorithm.

�General Differential Equations
Differential equations (DEs) are defined as equations that include one or more 

derivatives of a function. They have an important role in modeling several types of 

phenomena occurring in diverse areas such as physics, engineering, social sciences, and 

economy. In physics, for instance, differential equations are typically used to model the 

dynamics of motion and forces. In economics, it is possible to use DEs to model financial 

systems that involve interest rates and time decay.

Differential equations are very useful because they encode information about the 

rate of variation of a particular quantity. The derivative is the concept that represents the 

rate of change of a function with respect to a particular variable. The second derivative, 

in its turn, represents the rate of change of the first derivative with respect to the original 

variable. The same strategy can be used for as many derivatives as needed by the 

application.

Differential equations are classified according to the terms they contain, involving 

functions and their derivatives. Here are some examples of differential equations:

	

dy

dx
x y x+ =2 2 	

This is a differential equation involving quantities x and y, with a first derivative of y 

with respect to x and a few other standard terms.

	
10 0

2

2
x
d y

dx
x
dy

dx
+ =

	

This is a differential equation that involves a second derivative of y with respect to x, 

as well as the first derivative.
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The order of a differential equation is the maximum order of the derivatives 

appearing in it. For example, a first-order differential equation includes only the 

first derivative. A second-order differential equation may also contain second-order 

derivatives, such as

	

d x

dt

2

2 	

To solve differential equations, it is frequently useful to separate them into particular 

categories and develop solution techniques that can handle such specific categories. In 

the next sections, you will see specific types of DEs as well as some solution techniques 

developed for these types of equations.

�Ordinary Differential Equations
An ordinary differential equation is a type of DE in which functions of only a single 

(ordinary) variable are allowed to appear. As with other types of differential equations, 

ODEs include variables, functions, and their derivatives. A formal definition of an ODE is 

a function

	
F x f x f x f x f xn, , , , ,( ) ( ) ( ) ¼ ( )( )¢ ¢¢ 	

that depends on a variable x, a function f (x) of x, and their derivatives. The order of 

the ODE is the maximum order of derivatives appearing in the equation.

You can solve ODEs in two ways:

•	 Using analytical methods: If the function can be solved explicitly 

using mathematical methods, then a closed expression can be found 

and used to calculate its value at different points. This method is 

preferred whenever possible, because it produces results that are 

usually easier to calculate and interpret. Unfortunately, it is not 

always possible to find closed solutions to complex differential 

equations.
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•	 Using numerical methods: More generally, it is difficult to find closed 

solutions for several classes of ODEs. In this case, the analyst may 

resort to using numerical techniques that approximate the value of 

the ODE for a particular value or range of values. These numerical 

techniques usually involve the approximation of the value of a 

complex function in a piecewise fashion, so that the solution of 

the differential equation is found after a large number of small 

approximation steps.

Since the goal of this chapter is to consider computational techniques to solve ODEs, 

you will see a few techniques to solve them numerically, using programming strategies. 

First, you will learn about Euler’s method for solving ODEs. Then, you will see how this 

method can be implemented in C++.

�Euler’s Method
One of the most common methods used for solving ODEs is called Euler’s method. It was 

one of the first algorithms developed for this purpose, and was proposed by the famous 

eighteenth-century mathematician Leonhard Euler. The method belongs to a class of 

ODE algorithms called predictor-corrector, because it tries to make a prediction for the 

next step in the evaluation, followed by successive corrections of the current result.

The basic idea behind Euler’s is to approximate a curve determined by a differential 

equation through sequential steps. First, to start the solution process, you need to 

represent the ODE in its most generic form:

	
¢ = ( )y F x y, 	

Here, y = f(x) is a function that depends on the variable x, and y' is the derivative of 

f(x) with respect to x. The general goal of the method is to improve the approximation 

step by step, using a simple formula to calculate small increments and using the result 

as the next starting point. Figure 11-1 shows an example of how the general approach 

works, when applied to the sample differential equation dT(t)/dt = -k Δ T.

Chapter 11  Models Based on Differential Equations



275

Each step starts at a known place of the solution space and moves into the required 

direction by a small quantity. If you denote by c the desired destination point and start 

moving from location x0 in N steps, then the increment h can be calculated as follows:

	
h

c x

N
=

-( )0

	

Now, at each step of this algorithm, you will have the current location (at the 

beginning the location is (x0, y0), a given parameter passed to the algorithm), and the 

goal is to compute the next location that approximates the real curve. As long as h is 

small enough, this new location can be calculated by taking the derivative of the curve, 

given by y', which represents the slope of the equation, and using a simple line segment 

to move in that direction. This is fairly easy to calculate numerically, as you will see next.

The equation needed to implement this idea is the following:

	
y y h

f x y f x h y hf x y
t t

t t t t t= +
( )+ + + ( )( )

-
- - - - -

1
1 1 1 1 1

2

, , ,
	

In other words, at each step, you’re adding to the previous result a quantity that 

depends on the step size and the average value of the target function at two points: the 

current point and the next incremental point. You can think of the averaging (dividing 

by two) as a correction of the procedure, which will make it closer to the real value that 

needs to be computed.

Figure 11-1.  Euler’s method applied to function dT(t)/dt = -k Δ T, with ten steps
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�Implementing the Method
Euler’s method can be implemented with little effort. First, you need to update the 

MathFunction class so that it can also be used when a variable and an initial condition 

are provided. This requires that the function call operator take two parameters 

instead of one, such as was presented in the last chapter. I coded this as a class called 

DEMathFunction, with this interface:

class DEMathFunction   {

public:

    virtual ~DEMathFunction() {}

    �virtual double operator()(double x, double y) = 0; // �version with two 

variables

private:

    // This is just an interface.

};

The new version of operator() takes as parameters the value of coordinates x and 

y. Now, you can implement versions of this class for each desired function. Here is an 

example that will later be used with the main implementation:

class EulerMethodSampleFunction : public DEMathFunction {

public:

    double operator()(double x, double y);

};

double EulerMethodSampleFunction::operator()(double x, double y)

{

    return  3 * x + 2 * y + 1;

}

The main class implementing Euler’s method is presented next. The interface 

contains a single function called solve, which receives four parameters:

•	 The number of steps used by the algorithm

•	 The initial x value
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•	 The initial y value (which represents the initial condition of the 

function)

•	 The target value for the ODE, which is the coordinate for which the 

solution is required

The class also contains a data member to store the instance of DEMathFunction, 

which is used to compute new values for the desired function.

//

//  EulersMethod.hpp

#ifndef EulersMethod_hpp

#define EulersMethod_hpp

class DEMathFunction  {

public:

    virtual ~DEMathFunction() {}

    �virtual double operator()(double x, double y) = 0; // version with two 

variables

private:

    // This is just an interface.

};

class EulersMethod {

public:

    EulersMethod(DEMathFunction &f);

    EulersMethod(const EulersMethod &p);

    ~EulersMethod();

    EulersMethod &operator=(const EulersMethod &p);

    double solve(int n, double x0, double y0, double c);

private:

    DEMathFunction &m_f;

};

#endif /* EulersMethod_hpp */
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The implementation of the EulersMethod class contains the steps of the algorithm 

explained in the previous section. First, here are some of the required methods used by 

the class:

//

//  EulersMethod.cpp

#include "EulersMethod.hpp"

#include <iostream>

using std::cout;

using std::endl;

EulersMethod::EulersMethod(DEMathFunction &f)

: m_f(f)

{

}

EulersMethod::EulersMethod(const EulersMethod &p)

: m_f(p.m_f)

{

}

EulersMethod::~EulersMethod()

{

}

EulersMethod &EulersMethod::operator=(const EulersMethod &p)

{

    if (this != &p)

    {

        m_f = p.m_f;

    }

    return *this;

}
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Next, the solve function contains the main algorithm for Euler’s method. The 

algorithm assumes that x0 is the initial coordinate and y0 is the corresponding initial 

value for that coordinate.

double EulersMethod::solve(int n, double x0, double y0, double c)

{

    // problem :   y' = f(x,y) ;  y(x0) = y0

    auto x = x0;

    auto y = y0;

    auto h = (c - x0)/n;

    cout << " h is " << h << endl;

    for (int i=0; i<n; ++i)

    {

        double F = m_f(x, y);

        auto G = m_f(x + h, y + h*F);

        cout << " F: " << F << " G: " << G << "";

        // Update values of x, y

        x += h;

        y += h * (F + G)/2;

        cout << " x: " << x << " y: " << y << endl;

    }

    return y;

}

The first part of the algorithm uses the given values to calculate the desired 

increment h. Then, for each step, the algorithm will calculate the function at the current 

point (x,y), as well as at the next incremental point (x + h,y + hF). The values of x and y 

are then updated according to the equation presented in the previous section.
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You can quickly test the implementation with the help of the 

EulerMethodSampleFunction class. Here is the sample code necessary to instantiate the 

class and use it to test the method:

int test_euler()

{

    EulerMethodSampleFunction f;

    EulersMethod m(f);

    double res = m.solve (100, 0, 0.25, 2);

    cout << " result is " << res << endl;

    return 0;

}

The sample function is instantiated in the first line, and the resulting function object 

is passed to EulersMethod class. The member function solve is called, with a few initial 

parameters. The results are printed as the last step. Table 11-1 shows the sequence of 

values obtained when you run the test function.

Table 11-1.  Results of Euler’s Method Iterations for the Test Code for the 

EulersMethod Class

i F x y i F x y i F x y

1 1.5 0.02 0.2812 34 9.72643 0.68 3.57223 67 40.5109 1.34 18.6025

2 1.6224 0.04 0.314897 35 10.1845 0.7 3.7806 68 42.2249 1.36 19.4645

3 1.74979 0.06 0.351193 36 10.6612 0.72 3.99868 69 44.0089 1.38 20.3628

4 1.88239 0.08 0.390193 37 11.1574 0.74 4.2269 70 45.8657 1.4 21.2991

5 2.02039 0.1 0.432009 38 11.6738 0.76 4.46564 71 47.7982 1.42 22.2748

6 2.16402 0.12 0.476755 39 12.2113 0.78 4.71535 72 49.8096 1.44 23.2915

7 2.31351 0.14 0.524551 40 12.7707 0.8 4.97647 73 51.903 1.46 24.3509

8 2.4691 0.16 0.575521 41 13.3529 0.82 5.24947 74 54.0818 1.48 25.4548

9 2.63104 0.18 0.629794 42 13.9589 0.84 5.53484 75 56.3496 1.5 26.6049

10 2.79959 0.2 0.687505 43 14.5897 0.86 5.83306 76 58.7098 1.52 27.8032

11 2.97501 0.22 0.748796 44 15.2461 0.88 6.14469 77 61.1664 1.54 29.0516

(continued)
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Euler’s method is a simple technique that finds solutions to several ODE problems. 

However, in terms of quality of approximation, it requires a large number of steps, which 

can also cause numerical errors and instability. To avoid these problems, more precise 

methods have been proposed for solving ODEs, as you will learn next.

i F x y i F x y i F x y

12 3.15759 0.24 0.81381 45 15.9294 0.9 6.47025 78 63.7232 1.56 30.3522

13 3.34762 0.26 0.882702 46 16.6405 0.92 6.81031 79 66.3843 1.58 31.707

14 3.5454 0.28 0.955628 47 17.3806 0.94 7.16548 80 69.154 1.6 33.1183

15 3.75126 0.3 1.03275 48 18.151 0.96 7.53636 81 72.0367 1.62 34.5885

16 3.96551 0.32 1.11425 49 18.9527 0.98 7.92359 82 75.037 1.64 36.1198

17 4.1885 0.34 1.2003 50 19.7872 1 8.32785 83 78.1597 1.66 37.7149

18 4.42059 0.36 1.29108 51 20.6557 1.02 8.74983 84 81.4098 1.68 39.3763

19 4.66215 0.38 1.38678 52 21.5597 1.04 9.19024 85 84.7925 1.7 41.1066

20 4.91357 0.4 1.48762 53 22.5005 1.06 9.64985 86 88.3132 1.72 42.9088

21 5.17524 0.42 1.5938 54 23.4797 1.08 10.1294 87 91.9776 1.74 44.7858

22 5.44759 0.44 1.70553 55 24.4989 1.1 10.6298 88 95.7915 1.76 46.7405

23 5.73105 0.46 1.82304 56 25.5596 1.12 11.1518 89 99.761 1.78 48.7762

24 6.02608 0.48 1.94657 57 26.6637 1.14 11.6964 90 103.892 1.8 50.8962

25 6.33314 0.5 2.07637 58 27.8127 1.16 12.2643 91 108.192 1.82 53.104

26 6.65274 0.52 2.21268 59 29.0087 1.18 12.8567 92 112.668 1.84 55.403

27 6.98537 0.54 2.35578 60 30.2535 1.2 13.4745 93 117.326 1.86 57.797

28 7.33157 0.56 2.50595 61 31.549 1.22 14.1187 94 122.174 1.88 60.29

29 7.6919 0.58 2.66346 62 32.8974 1.24 14.7904 95 127.22 1.9 62.8859

30 8.06693 0.6 2.82863 63 34.3008 1.26 15.4907 96 132.472 1.92 65.5889

31 8.45726 0.62 3.00176 64 35.7615 1.28 16.2209 97 137.938 1.94 68.4034

32 8.86351 0.64 3.18317 65 37.2817 1.3 16.982 98 143.627 1.96 71.334

33 9.28635 0.66 3.37321 66 38.864 1.32 17.7754 99 149.548 1.98 74.3854

Table 11-1.  (continued)

Chapter 11  Models Based on Differential Equations



282

�The Runge-Kutta Method
The next technique for solving ODEs is an extension of Euler’s method called the Runge-

Kutta (RK) method (named after its inventors). This technique is an effective way to 

improve the accuracy of Euler’s method and reduce the possibility of the numerical 

errors that are common when using a linear approximation.

The main idea of the RK method is to use a higher-order approximation for the 

given functions, instead of relying on linear interpolation, as you saw with the previous 

algorithm. By doing this, the RK method can achieve faster convergence, in many cases 

using a smaller number of steps to achieve the same results. This is an advantage both in 

terms of reduced computational time as well as higher accuracy.

As explained in the book Computational Physics: An introductory course by 

Fitzpatrick:

There are two main reasons why Euler’s method is not generally used in 
scientific computing. Firstly, the truncation error per step associated with 
this method is far larger than those associated with other, more advanced, 
methods (for a given value of h). Secondly, Euler’s method is too prone to 
numerical instabilities.

The methods most commonly employed by scientists to integrate ODEs 
were first developed by the German mathematicians C.D.T.  Runge and 
M.W. Kutta in the latter half of the nineteenth century. The basic reasoning 
behind so-called Runge-Kutta methods is outlined in the following.

The main reason that Euler’s method has such a large truncation error per 
step is that in evolving the solution from xn to xn+1 the method only evalu-
ates derivatives at the beginning of the interval: i.e., at xn. The method is, 
therefore, very asymmetric with respect to the beginning and the end of the 
interval.

We can construct a more symmetric integration method by making an 
Euler-like trial step to the midpoint of the interval, and then using the values 
of both x and y at the midpoint to make the real step across the interval.

For additional details of the method, remember that to solve an ODE you have to 

consider a very general form that is amenable to solution, using the following relation:

	
¢ = ( )y f x y, 	

Here, y’ is the derivative of the function and f (x,y) is a function of variable x (the 

independent variable) and y.
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As before, given a starting point for the calculation and the number of steps, it 

is possible to easily calculate the size of the increment h for each iteration of the RK 

method, using the equation

	
h

c x

N
=

- 0

	

In its basic design, the RK method has the same structure of Euler’s algorithm. The 

main difference is how the RK method approximates the function to generate the next 

step of the algorithm. While Euler’s method just uses a linear interpolation, the RK 

method can use any one of a family of approximating equations.

The RK method can be implemented using one of several approximation strategies, 

but they are frequently calculated as a Taylor series applied to the original function. The 

Taylor method is a basic tool from calculus that provides a family of approximations 

for functions around a particular starting value. For example, using the simplest Taylor 

approximation, you can compute the next (x,y) values in the following way:
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Another possibility is to use higher-order approximations, that is, versions of the 

Taylor series that contain additional terms. By adding more terms of higher order, it is 

possible to achieve a more accurate result in fewer steps. Here is another commonly 

used approximation, this time based on a fourth-order expansion:
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�Runge-Kutta Implementation
To implement this algorithm, it is possible to extend the Euler’s method class. To avoid 

dependencies between these two methods, I decided to implement a separate class 

called RungeKuttaMethod.

Here is the interface of the RungeKuttaMethod class. It exposes the solve method, 

which is used to compute the desired value of the function.

//

//  Class providing an interface for RungeKutta method

class RungeKuttaMethod {

public:

    RungeKuttaMethod(DEMathFunction &f);

    RungeKuttaMethod(const RungeKuttaMethod &p);

    ~RungeKuttaMethod();

    RungeKuttaMethod &operator=(const RungeKuttaMethod &p);

    double solve(int n, double x0, double y0, double c);

private:

    DEMathFunction &m_func;

};

First, the common member functions of RungeKuttaMethod are implemented, 

including the constructor that receives the DEMathFunction reference as a parameter.

//

//  RungeKutta.cpp

#include "RungeKutta.hpp"

#include <iostream>

using std::cout;

using std::endl;

RungeKuttaMethod::RungeKuttaMethod(DEMathFunction &f)

: m_func(f)

{

}
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RungeKuttaMethod::RungeKuttaMethod(const RungeKuttaMethod &p)

: m_func(p.m_func)

{

}

RungeKuttaMethod::~RungeKuttaMethod()

{

}

RungeKuttaMethod &RungeKuttaMethod::operator=(

            const RungeKuttaMethod &p)

{

    if (this != &p)

    {

        m_func = p.m_func;

    }

    return *this;

}

The member function solve is used to compute the numerical value of the ODE, 

given starting conditions and a target value. The function implements the Runge-Kutta 

method with fourth-degree Taylor expansion, as described in the previous section.

The parameters for this member function are the following:

•	 The number of steps in the process, which indirectly also determines 

the increment for each step

•	 The initial value for the variable x

•	 The initial corresponding y for the given value x

•	 The target value for which the ODE is being calculated

// Runge-Kutta method with fourth-order approximation

//

double RungeKuttaMethod::solve(int n, double x0, double y0, double c)

{

    // Initial conditions

    auto x = x0;

    auto y = y0;
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    auto h = (c - x0)/n;

    for (int i=0; i<n; ++i)

    {

        // Compute the intermediary steps

        //

        auto k1 = h * m_func(x, y);

        auto k2 = h * m_func(x + (h/2), y + (k1/2));

        auto k3 = h * m_func(x + (h/2), y + (k2/2));

        auto k4 = h * m_func(x + h, y + k3);

        // Use terms to compute next step

        x += h;

        y += ( k1 + 2*k2 + 2*k3 + k4)/6;

        cout << " x: " << x << " y: " << y << endl;

    }

    return y;

}

As in the previous algorithm, the RK method starts by defining the initial conditions, 

including the values for the variables x and y, and the size of the step determined by h.

The RK method then proceeds to compute each iteration of the algorithm. This 

consists of successive terms of approximation, as described in the previous section. 

These terms are then used to compute the new values for x and y.

To test the results of the RK method implementation, I provide a simple test function. 

But first it is necessary to implement a function that will be later used in the test code:

class RungeKuttaSampleFunc : public DEMathFunction {

public:

    double operator()(double x, double y);

};

double RungeKuttaSampleFunc::operator()(double x, double y)

{

    return  3 * x + 2 * y + 1;

}
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The RungeKuttaSampleFunc is derived from DEMathFunction, so it can be passed as 

a parameter to the RungeKuttaMethod class. It is a simple polynomial function. The test 

function is the following:

int test_RKMethod()

{

    RungeKuttaSampleFunc f;

    RungeKuttaMethod m(f);

    double res = m.solve (100, 0, 0.25, 2);

    cout << " result is " << res << endl;

    return 0;

}

This test code first instantiates the RungeKuttaSampleFunc class and then uses the 

resulting instance to create a RungeKuttaMethod object. Next, the result of the function is 

computed for some test parameters.

�Complete Code
The complete listing for the RungeKuttaMethod class is shown in this section.  

The code is divided into a header file and an implementation file, which appear in 

Listings 11-1 and 11-2, respectively.

Listing 11-1.  Header File for the RungeKuttaMethod Class

//

//  RungeKutta.hpp

#ifndef RungeKutta_hpp

#define RungeKutta_hpp

#include "EulersMethod.hpp"

class RungeKuttaMethod {

public:

    RungeKuttaMethod(DEMathFunction &f);

    RungeKuttaMethod(const RungeKuttaMethod &p);

    ~RungeKuttaMethod();
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    RungeKuttaMethod &operator=(const RungeKuttaMethod &p);

    double solve(int n, double x0, double y0, double c);

private:

    DEMathFunction &m_func;

};

#endif /* RungeKutta_hpp */

Listing 11-2.  Implementation File for the RungeKuttaMethod Class

//

//  RungeKutta.cpp

#include "RungeKutta.hpp"

#include <iostream>

using std::cout;

using std::endl;

RungeKuttaMethod::RungeKuttaMethod(DEMathFunction &f)

: m_func(f)

{

}

RungeKuttaMethod::RungeKuttaMethod(const RungeKuttaMethod &p)

: m_func(p.m_func)

{

}

RungeKuttaMethod::~RungeKuttaMethod()

{

}

RungeKuttaMethod &RungeKuttaMethod::operator=(

            const RungeKuttaMethod &p)

{

    if (this != &p)
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    {

        m_func = p.m_func;

    }

    return *this;

}

// Runge-Kutta method with fourth-order approximation

//

double RungeKuttaMethod::solve(int n, double x0, double y0, double c)

{

    // Initial conditions

    auto x = x0;

    auto y = y0;

    auto h = (c - x0)/n;

    for (int i=0; i<n; ++i)

    {

        // Compute the intermediary steps

        //

        auto k1 = h * m_func(x, y);

        auto k2 = h * m_func(x + (h/2), y + (k1/2));

        auto k3 = h * m_func(x + (h/2), y + (k2/2));

        auto k4 = h * m_func(x + h, y + k3);

        // Use terms to compute next step

        x += h;

        y += ( k1 + 2*k2 + 2*k3 + k4)/6;

        cout << " x: " << x << " y: " << y << endl;

    }

    return y;

}

/// -----

class RungeKuttaSampleFunc : public DEMathFunction {

public:

    double operator()(double x, double y);

};
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double RungeKuttaSampleFunc::operator()(double x, double y)

{

    return  3 * x + 2 * y + 1;

}

int main()

{

    RungeKuttaSampleFunc f;

    RungeKuttaMethod m(f);

    double res = m.solve (100, 0, 0.25, 2);

    cout << " result is " << res << endl;

    return 0;

}

�Conclusion
Solving differential equations is a task commonly required when analyzing complex 

financial contracts. This is true due to the mathematical nature of options and 

derivatives, which are based on the Black-Scholes model.

In this chapter, you saw a few examples of differential equations and learned how 

they can be effectively solved using computational techniques. First, you learned about 

Euler’s method, the simplest technique used to compute numerical solutions for ODEs. 

Next, you learned about the Runge-Kutta method, a commonly used technique that 

provides improved accuracy over Euler’s method, but still with great performance.

This chapter can be used as an overview of the implementation of differential 

equations in C++. In the next chapter, you will take a closer look at how these 

mathematical models can be directly applied to option pricing. In particular, you will see 

how these techniques can be used when pricing option contracts.
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CHAPTER 12

Basic Models for Options 
Pricing
Options pricing is the task of determining the fair value of a particular option, given a 

set of parameters that exactly determine the features of the option contracts, such as its 

expiration date, current volatility, and prevailing interest rates. Pricing options requires 

the use of efficient algorithms, because of frequent changes in prices and market 

volatility. For this reason, a number of models have been employed for this task in the 

area of quantitative finance.

This chapter discusses some of the most popular models for options pricing. First, 

there are models that use tree-based methods, such as binomial and trinomial trees. 

Second, the most important mathematical model uses the Black-Scholes model, which 

provides the theoretical basis for the analysis of most options and derivative contracts.

Here is a summary of the topics discussed in this chapter:

•	 Binomial trees: A binomial tree is a technique used to compute 

option prices by simulating a number of probabilistic price changes 

starting from the current stock price. Such prices are organized in a 

tree-based structure and used to compute the option’s corresponding 

price. You will see the calculations necessary to use these tree-based 

algorithms for options pricing.

•	 Calculating American-style options: Options in the American style 

give their buyers the ability to exercise the option at any time before 

expiration. This exercise style needs to be reflected in the price of the 

option.
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•	 Black-Scholes method: The most famous method for computing 

option prices is based on the equations developed by Black and 

Scholes. These differential equations can be solved using PDE 

techniques, which are explored later in this chapter.

•	 Implementation strategies: You will see examples of implementation 

techniques for the pricing methods described previously.

�Lattice Models
The goal of options pricing is to compute the fair value of an option at a particular time. 

This problem has been solved theoretically by Black and Scholes, the creators of the 

famous PDE model that defines prices for options. However, solving complex PDEs is not 

an easy job, and for this reason, several methods have been developed to perform this 

computational task in less time.

A common class of algorithms for computing options prices is the lattice model. 

A lattice model is a technique of calculating derivative prices that divides the solution 

space into discrete steps. Each step corresponds to a small time increment and 

corresponding price change. Starting this way from a given starting point, this technique 

results in the creation of a tree of nodes that correspond to possible price changes.

There are a few particular methods that have been devised based on the general 

strategy put forward by lattice models. The best-known such methods are as follows:

•	 Binomial model: In the binomial model, the possible changes are 

organized in a tree rooted at the given starting point (the current 

price). To each node of the tree, two nodes are added representing 

two possible directions of movement: up (price increases) or down 

(price decreases). For performance reasons, the binary tree can also 

be created implicitly, where nodes are calculated only as needed for 

the evaluation of the next time period.

•	 Trinomial model: The trinomial model is an extension of the 

binomial model and it tries to improve the accuracy by considering 

nodes where the price is unchanged. Depending on the volatility 

of the underlying, such models can achieve higher accuracy than 

binomial models, at the expense of a slight increase in computational 

time.
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Mixed models have also been used that combine features of the binomial and 

trinomial models, producing more complex lattice models for particular uses. In 

this chapter, you learn how to implement a binomial model for options pricing. The 

complete model is explained along with the equations frequently used to evaluate such 

models.

Later, this general model is extended to handle American-style options, where the 

owners of the option can exercise the option at any time before expiration. These models 

also show how this type of algorithm can be efficiently coded in C++ using OO concepts. 

In this particular case, you will see how to use inheritance to override parts of the class 

according to the desired pricing strategy.

�Binomial Model
The first model that’s discussed is called the binomial model for options pricing. In this 

model, options prices are evaluated interactively. Possible values are organized in a 

tree-based structure where the root is the original (unknown) price and leaves are the 

possible prices at a particular target time.

Using this structure, the binomial model traverses the tree with the goal of 

computing the desired price (the root value) starting from some known prices. The 

natural way of doing this is to look at the values for the option at expiration date and use 

these prices to compute the value at other times. Remember that at expiration price, the 

value of an option is defined by contract. For example, if you are given the current stock 

price (denoted by S) and the strike price (denoted by K), then the price of a call option at 

expiration is given by

	 p S S Kc ( ) = -( )max 0, 	

For a put option, the price is also straightforward and determined by contract as

	
p S K Sp ( ) = -( )max 0, 	

The question, however, is which values of stock prices should be used in a tree-based 

model to make it realistic? A possible answer to this question is that at each time step, 

the stock price can move either up or down. The exact probabilities for this jump can 
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be derived using a few mathematical assumptions, but the expressions most commonly 

used are as follows:

•	 Change of value for an up move:

	
exp s t( ) 	

•	 Change of value for a down move:

	
exp -( )s t 	

In these two expressions, σn is a measure of the volatility of the stock (i.e., the typical 

amount of movement) and t is time. These expressions allow you to construct a tree 

where each node contains information about the time and the value of the stock at that 

moment. The tree can be visualized as shown in Figure 12-1.

Now consider the task of pricing a call option at a date immediately before 

expiration. While the price is initially unknown, it cannot be very far away from the price 

at expiration, since the time premium at this point is very small. A way to calculate this 

value is to assume a probability for two events: either going up a small amount or going 

down a small amount. With this probability, you can estimate the value of the option as 

the expected value (the mean) based on these two possibilities.

Figure 12-1.  A visualization of the binomial tree determined by possible stock 
prices

Chapter 12  Basic Models for Options Pricing



295

Using these observations, you can devise a method for calculating the price of an 

option. The general algorithm can be described in the following way:

•	 Calculate stock prices for the nodes of the tree, starting from the root 

node at time zero and stock price given by the current known price.

•	 Apply the equations for price fluctuations to create up and down 

nodes starting from the root. The goal of this phase is to calculate the 

stock prices for nodes at expiration time.

•	 Start to compute the option prices from the leaves of the tree. These 

leaves have a known price by definition of the option contracts. The 

value of the option depends on three characteristics:

•	 The strike price

•	 The stock price

•	 If the option is a put or a call

•	 Then, progress from nodes at expiration date toward earlier dates, 

always using the expected value based on the known probabilities. 

Repeat this process until you reach the root node.

�Binomial Model Implementation
To implement an algorithm for the binomial model as previously described, I introduce 

a class called BinomialModel. The class provides all the necessary steps for the 

calculation of option prices, along with the ability to be extended to other open types, as 

you will see later.

The first step is to provide an interface to the C++ class, as shown in the next code 

fragment. The class contains a number of data members that are necessary for the 

computation of options prices using the binomial model approach. Here are these data 

members:

•	 The expiration date, denoted as m_T.

•	 The initial stock price, that is, the stock price at the root of the 

binomial tree, denoted by m_S.

•	 The interest rate, which is used as one of the factors necessary to 

calculate future prices and is denoted as m_r.
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•	 The volatility, which is the volatility of the underlying stock, as 

measured from stock prices in the last few days and denoted by 

m_sigma.

•	 The dividend yield, which is the amount of dividend paid by the 

underlying stock during the desired period. This quantity is denoted 

by m_q.

•	 The number of steps, used by the binomial method to determine the 

depth of the tree. It is denoted by m_n.

•	 The type of option. This is the class record if the option type is a call 

or put. This information is stored in the member variable m_call, a 

Boolean value.

The class BinomialModel also offers a member function that can be used to calculate 

the option price, named optionPriceForStrike. This function receives as a parameter a 

strike value and returns the option price corresponding to that strike.

A second function, computePriceStep, is used to compute option prices for a single 

step. You will see later how this is implemented and extended for more complex option 

types.

#include <vector>

#include <cmath>

using vec = std::vector<double>;

class BinomialModel {

public:

    BinomialModel(const BinomialModel &p);

    virtual ~BinomialModel();

    BinomialModel &operator=(const BinomialModel &p);

    BinomialModel(double T, // expiration time

                  double S,   // stock price

                  double r,   // interest rate

                  double sigma,
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                  double q,   // dividend yield

                  int n,      // number of steps

                  bool call

    );

    double optionPriceForStrike(double K);

    virtual void computePriceStep(int i, int j, double K, vec &prices,

                                  double p_u, double p_d, double u);

protected:

    double getStockPrice() { return m_S; }

private:

    double m_T;     // expiration time

    double m_S;     // stock price

    double m_r;     // interest rate

    double m_sigma; // volatility

    double m_q;     // dividend yield

    int m_n;        // number of steps

    bool m_call;    // true = call, false = put

};

The next few member functions are part of the constructor and destructor code. 

They are used to properly initialize each of the data members in the BinomialModel 

class.

BinomialModel::BinomialModel(double T, double S, double r,

              double sigma,

              double q,

              int n, bool call)

: m_T(T),

  m_S(S),

  m_r(r),

  m_sigma(sigma),

  m_n(n),

  m_q(q),

  m_call(call)
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{

}

BinomialModel::BinomialModel(const BinomialModel &p)

: m_T(p.m_T),

  m_S(p.m_S),

  m_r(p.m_r),

  m_sigma(p.m_sigma),

  m_n(p.m_n),

  m_q(p.m_q),

  m_call(p.m_call)

{

}

BinomialModel::~BinomialModel()

{

}

BinomialModel &BinomialModel::operator=(const BinomialModel &p)

{

    if (this != &p)

    {

        m_T = p.m_T;

        m_S = p.m_S;

        m_r = p.m_r;

        m_sigma = p.m_sigma;

        m_n = p.m_n;

        m_q = p.m_q;

        m_call = p.m_call;

    }

    return *this;

}

The computePriceStep member function is used to compute the immediate price 

for a single step of the algorithm. The indices i and j represent the position in the 

binomial tree. Other arguments are the necessary parameters used to calculate the price 

of this step. Notice that this member function is declared as virtual, and it can be later 

overridden for the use of American-style options.
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void BinomialModel::computePriceStep(int i, int j, double K,

                                     vec &prices, double p_u,

                                     double p_d, double u)

{

    prices[i] = p_u * prices[i] + p_d * prices[i+1];

}

The main member function in the BinomialModel class is the function that computes 

the option price for a given strike, determined by the parameter K. The algorithm is 

essentially a C++ implementation of the ideas presented in the previous section. The 

first step is to calculate the price delta, using the period and the number of steps. Next, 

the amount of price changes in the up side is calculated using the exp(m_sigma * 

sqrt(delta)) expression.

Next, the function computes the probabilities of moving up or down in the binomial 

tree, using the equations described previously. The probabilities are denoted by p_u and 

p_d.

double BinomialModel::optionPriceForStrike(double K)

{

    double delta = m_T / m_n;   // size of each step

    double u = exp(m_sigma * sqrt(delta));

    double p_u = (u * exp(-m_r * delta) - exp(-m_q * delta)) * u / (u*u - 1);

    double p_d = exp(-m_r * delta) - p_u;

    vec prices(m_n);

    //  Compute last day values (leaves of the tree)

    for (int i= 0; i<m_n; ++i)

    {

        if (m_call)

        {

            prices[i] =  std::max(0.0, m_S * pow(u, 2*i - m_n) - K);

        }

        else

        {
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            prices[i] =  std::max(0.0, K - m_S * pow(u, 2*i - m_n));

        }

    }

    for (int j = m_n-1; j>=0; --j)

    {

        for (int i = 0; i<j; ++i)

        {

            computePriceStep(i, j, K, prices, p_u, p_d, u);

        }

    }

    return prices[0];

}

The first for loop in this member function is responsible for computing the stock 

price at the last level of the binomial tree. This is done using the property that defines the 

price of an option at expiration. Therefore, there are two cases that need to be handled, 

depending on if the option is a call or a put.

The last for loop is the main computation that traverses the binomial tree from the 

last level to the root node. The step calculation is performed by the computePriceStep 

member function. The main idea, which you can see by looking at that member 

function, is to first compute the average (expected) price of the node. This is done by 

taking the expected value of the known prices that have been previously calculated 

according to the probabilities p_u and p_d.

After the option prices have been computed in this way, the algorithm will determine 

the price at the root node. Therefore, the price required is stored in position zero of the 

prices vector. The last line of this member function returns prices[0] as the desired 

solution.

Note T he pricing strategy presented in this section works for options that cannot 
be exercised until the date of expiration. This type of option is commonly known 
as a European-style option. For American-style options, which can normally be 
exercised at any time, a slightly different pricing method needs to be used, as 
shown in the next section.
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�Pricing American-Style Options
This section presents a slight modification of the binomial method that can be used 

to price American-style option contracts. An American-style option is defined in such 

a way that buyers of such options can exercise their rights (i.e., buying or selling the 

underlying) at any time until expiration. This is in contrast to what is called European-

style options, whereby option rights can be exercised only at expiration.

You can use the AmericanBinomialModel class to price American options. Looking 

at the code, you can see clearly how American options differ from European ones in 

terms of the option prices. The binomial model determines this by checking the possible 

exercise price of the option and taking that value into consideration if it is higher than 

the expected price.

The class interface is defined as follows. The public inheritance from BinomialModel 

allows you to share the methods defined in that class. The resulting interface is very 

simple because no additional member variables are necessary. It contains the standard 

copy constructor, a constructor that forwards the received parameters to the base class, 

and a destructor.

#include <vector>

#include <cmath>

using vec = std::vector<double>;

class AmericanBinomialModel : public BinomialModel {

    AmericanBinomialModel(const BinomialModel &p);

    ~AmericanBinomialModel();

    AmericanBinomialModel &operator=(const BinomialModel &p);

    AmericanBinomialModel(double T, // expiration time

                  double S,   // stock price

                  double r,   // interest rate

                  double sigma,

                  double q,   // dividend yield

                  int n,      // number of steps

                  bool call

                  );
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    virtual void computePriceStep(int i, int j, double K, vec &prices,

                                  double p_u, double p_d, double u);

};

The constructor just needs to forward the received parameters to the base class 

BinomialModel.

AmericanBinomialModel::AmericanBinomialModel(const BinomialModel &p)

: BinomialModel(p)

{

}

AmericanBinomialModel::~AmericanBinomialModel()

{

}

Because there are no extra member variables, the assignment operator can use the 

nice trick of calling the operator on the superclass to do the assignment work, as follows:

AmericanBinomialModel &AmericanBinomialModel::operator=(

                 const BinomialModel &p)

{

    BinomialModel::operator=(p);  // no new data members in this class

    return *this;

}

AmericanBinomialModel::AmericanBinomialModel(double T, // expiration time

                      double S,   // stock price

                      double r,   // interest rate

                      double sigma,

                      double q,   // dividend yield

                      int n,      // number of steps

                      bool call)

: BinomialModel(T, S, r, sigma, q, n, call)

{

}

Chapter 12  Basic Models for Options Pricing



303

Next, you can see the real change that characterizes American options. The 

computePriceStep member function overrides the member function in the base class 

and allows the price of an American option to be calculated.

The first thing to do here is to call the member function from the superclass, so you 

don’t need to repeat the same code, with potential duplication errors. Then, the function 

proceeds to calculate the exercise value. This is done by taking the adjusted stock price 

and subtracting it from the strike price. If the calculated exercise price is higher than the 

calculated price, then the price is updated with this exercise price. In other words, at 

each moment the price of the option has to be the highest of the potential value and the 

exercise value.

void AmericanBinomialModel::computePriceStep(int i, int j, double K, vec 

&prices, double p_u, double p_d, double u)

{

    BinomialModel::computePriceStep(i, j, K, prices, p_u, p_d, u);

    // Compute exercise price for American option

    //

    double exercise = K - getStockPrice() * pow(u, 2*i - j);

    if (prices[i] < exercise)

    {

        prices[i] = exercise;

    }

}

�Solving the Black-Scholes Model
The previous sections explored discrete methods used to compute the price of options. 

These methods work by approximating the solution through the use of price trees, where 

each node represents a discrete step into the solution of the problem.

While the binomial tree method is appropriate in many situations, it is sometimes 

necessary to use a more rigorous method based on the Black-Scholes partial differential 

equation (PDE). The model, developed by economists F. Black and M. Scholes in the 

1970s, provides a full mathematical description of how option prices evolve over time 

and with respect to the changes in the underlying prices. For this work, the Swedish Prize 

of Economics (also popularly known as the Nobel) was awarded in 1997.
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The Black-Scholes model uses a few input parameters that describe the option and 

the conditions under which prices evolve. The parameters are

•	 Expiration date

•	 Stock price

•	 Stock volatility

•	 Interest rates (paid on short-term cash)

•	 Dividends paid by the underlying stock

Using these parameters, the model provides a partial differential equation that 

contains the information necessary to determine the price of the option. The result from 

this model can be summarized in the following PDE:
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In this differential equation, the quantities represented are as follows:

•	 V: The price of the desired derivative

•	 t: The time

•	 σ: The volatility of the underlying stock

•	 S: The stock price

•	 r: The interest rate

If you know the previous information about the underlying security, such as 

prices, interest rates, and previous volatility, the Black-Scholes equation allows you to 

compute the value of a call or put option based on those assumptions. The solution of 

this equation can be achieved using several methods, such as simulation techniques 

and piecewise integration using numerical approximations. The next section presents 

a simple numerical technique that can be applied to find solutions to the Black-Scholes 

model.
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�Numerical Solution of the Model
To solve the Black-Scholes model computationally, it is necessary to apply numerical 

techniques to solve the associated PDE. It is important to note that there are several 

methods used to compute this class of equations, with results that depend on the 

required accuracy, computational effort, and implementation difficulty.

This section explores a simple strategy to solve the Black-Scholes model. The strategy 

is based on what is called the forward method for the solution of PDEs. The forward 

method is an extension of Euler’s method for the solution of ODEs, as described in the 

previous chapter. Unlike Euler’s method, the forward method needs to find a solution for 

a differential equation that contains more than one variable.

The forward method solves this problem by dividing the domain of the desired 

equation into smaller, rectangular pieces, which can be easily computed. Once this is 

completed, the algorithm propagates those values forward, and at each step, a small area 

dS is considered.

For this method to work, it is necessary to provide a set of initial conditions for 

the PDE. In the case of options pricing, the natural set of initial conditions is the price 

at expiration, which is well known for each possible value of the stock. Therefore, the 

implementation of the forward in fact starts from the expiration date and proceeds 

backward in time to the desired date.

The C++ solution is implemented in the BlackScholesMethod class. This class 

provides a simple interface, where the main member function is called solve, and it 

returns the price at the desired date and under the conditions defined by the given 

parameters.

class BlackScholesMethod {

public:

    �BlackScholesMethod(double expiration, double maxPrice, double strike, 

double intRate);

    BlackScholesMethod(const BlackScholesMethod &p);

    ~BlackScholesMethod();

    BlackScholesMethod &operator=(const BlackScholesMethod &p);

    std::vector<double> solve(double volatility, int nx, int timeSteps);

private:
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    double m_expiration;

    double m_maxPrice;

    double m_strike;

    double m_intRate;

};

In the implementation file, which is listed next, you will first find the constructors 

and assignment operator. These member functions just initialize the private variables, 

which include

•	 Expiration date, denoted by m_expiration

•	 Maximum price that will be considered by the algorithm, denoted by 

m_maxPrice

•	 Strike price, denoted by m_strike

•	 Current interest rate, denoted by m_intRate

#include "BlackScholes.hpp"

#include <cmath>

#include <algorithm>

#include <vector>

#include <iostream>

#include <iomanip>

using std::vector;

using std::cout;

using std::endl;

using std::setw;

BlackScholesMethod::BlackScholesMethod(double expiration, double maxPrice,

                                       double strike, double intRate)

: m_expiration(expiration),

m_maxPrice(maxPrice),

m_strike(strike),

m_intRate(intRate)

{

}
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BlackScholesMethod::BlackScholesMethod(const BlackScholesMethod &p)

: m_expiration(p.m_expiration),

m_maxPrice(p.m_maxPrice),

m_strike(p.m_strike),

m_intRate(p.m_intRate)

{

}

BlackScholesMethod::~BlackScholesMethod()

{

}

BlackScholesMethod &BlackScholesMethod::operator=(const BlackScholesMethod &p)

{

    if (this != &p)

    {

        m_expiration = p.m_expiration;

        m_maxPrice = p.m_maxPrice;

        m_strike = p.m_strike;

        m_intRate = p.m_intRate;

    }

    return *this;

}

The solve method is the heart of the algorithm. The first part of this member 

function is responsible for initializing common expressions that are used throughout the 

algorithm. These expressions are stored in vectors a, b, and c. In mathematical notation, 

these factors can be presented as

	
a nrdt nV dtn = -( )( )1

2
2

	

	 b rdt nV dtn = - + ( )1
2

	

	
c nrdt nV dtn = + ( )( )1

2
2
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The third for loop is the place where the initial conditions are prepared, by direct 

calculation of the price at expiration date. The last loop is where the forward algorithm 

is used. Each step of the loop will compute the contributions for that particular time 

period, assuming that the period j-1 is known. At the end, the u vector, where the option 

prices have been stored, is returned to the caller.

vector<double> BlackScholesMethod::solve(double volatility, int nx, int 

timeSteps)

{

    double dt = m_expiration /(double)timeSteps;

    double dx = m_maxPrice /(double)nx;

    vector<double> a(nx-1);

    vector<double> b(nx-1);

    vector<double> c(nx-1);

    int i;

    for (i = 0; i < nx - 1; i++)

    {

        b[i] = 1.0 - m_intRate * dt - dt * pow(volatility * (i+1), 2);

    }

    for (i = 0; i < nx - 2; i++)

    {

        �c[i] = 0.5 * dt * pow(volatility * (i+1), 2) + 0.5 * dt * m_intRate 

* (i+1);

    }

    for (i = 1; i < nx - 1; i++)

    {

        �a[i] = 0.5 * dt * pow(volatility * (i+1), 2) - 0.5 * dt * m_intRate 

* (i+1);

    }

    vector<double> u((nx-1)*(timeSteps+1));
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    double u0 = 0.0;

    for (i = 0; i < nx - 1; i++)

    {

        u0 += dx;

        u[i+0*(nx-1)] = std::max(u0 - m_strike, 0.0);

    }

    for (int j = 0; j < timeSteps; j++)

    {

        double t = (double)(j) * m_expiration /(double)timeSteps;

        double p = 0.5 * dt * (nx - 1)

                       * (volatility*volatility * (nx-1) + m_intRate)

                       * (m_maxPrice-m_strike * exp(-m_intRate*t ) );

        for (i = 0; i < nx - 1; i++)

        {

            u[i+(j+1)*(nx-1)] = b[i] * u[i+j*(nx-1)];

        }

        for (i = 0; i < nx - 2; i++)

        {

            u[i+(j+1)*(nx-1)] += c[i] * u[i+1+j*(nx-1)];

        }

        for (i = 1; i < nx - 1; i++)

        {

            u[i+(j+1)*(nx-1)] += a[i] * u[i-1+j*(nx-1)];

        }

        u[nx-2+(j+1)*(nx-1)] += p;

    }

    return u;

}

Finally, I present a simple test function that can be used to illustrate the use of 

the BlackScholesMethod class. This function first initializes some parameters with 

reasonable values. Then, it creates a new object of type BlackScholesMethod, passing to 

the constructor some of the previously defined parameters.
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The blackSholes object is then used to solve the pricing problem. The result is a 

vector of prices, one for each of the steps used by the algorithm (in practice, only the last 

value would be used). Finally, the function prints the result so that you can inspect the 

convergence of the algorithm.

void test_bsmethod()

{

    auto strike = 5.0;

    auto intRate = 0.03;

    auto sigma = 0.50;

    auto t1 = 1.0;

    auto numSteps = 11;

    auto numDays = 29;

    auto maxPrice = 10.0;

    BlackScholesMethod blackScholes(t1, maxPrice, strike, intRate);

    vector<double> u = blackScholes.solve(sigma, numSteps, numDays);

    double minPrice = .0;

    for (int  i=0; i < numSteps-1; i++)

    {

        double s = ((numSteps-i-2) * minPrice+(i+1)*maxPrice)

                 / (double)(numSteps-1);

        cout << "  " << s << "  "

             << u[i+numDays*(numSteps-1)] << endl;

    }

}

�Complete Code
This section presents the complete code for the BlackScholesMethod class. The code 

depends only on the STL and functions in the standard C++ library. As such, it can serve 

as a first step toward a complete solution for options valuation processes.

The code is divided into a header file called BlackScholes.hpp and an associated 

implementation file. These files are presented in Listings 12-1 and 12-2, respectively.
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Listing 12-1.  Header File for the BlackScholesMethod Class

//

//  BlackScholes.hpp

#ifndef BlackScholes_hpp

#define BlackScholes_hpp

#include <vector>

class BlackScholesMethod {

public:

    �BlackScholesMethod(double expiration, double maxPrice, double strike, 

double intRate);

    BlackScholesMethod(const BlackScholesMethod &p);

    ~BlackScholesMethod();

    BlackScholesMethod &operator=(const BlackScholesMethod &p);

    �std::vector<double> solve(double volatility, int nx, int timeSteps);

private:

    double m_expiration;

    double m_maxPrice;

    double m_strike;

    double m_intRate;

};

#endif /* BlackScholes_hpp */

Listing 12-2.  Implementation File for the BlackScholesMethod Class

//

//  BlackScholes.cpp

#include "BlackScholes.hpp"

#include <cmath>

#include <algorithm>

#include <vector>

#include <iostream>

#include <iomanip>
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using std::vector;

using std::cout;

using std::endl;

using std::setw;

BlackScholesMethod::BlackScholesMethod(double expiration, double maxPrice,

                                       double strike, double intRate)

: m_expiration(expiration),

m_maxPrice(maxPrice),

m_strike(strike),

m_intRate(intRate)

{

}

BlackScholesMethod::BlackScholesMethod(const BlackScholesMethod &p)

: m_expiration(p.m_expiration),

m_maxPrice(p.m_maxPrice),

m_strike(p.m_strike),

m_intRate(p.m_intRate)

{

}

BlackScholesMethod::~BlackScholesMethod()

{

}

BlackScholesMethod &BlackScholesMethod::operator=(const BlackScholesMethod &p)

{

    if (this != &p)

    {

        m_expiration = p.m_expiration;

        m_maxPrice = p.m_maxPrice;

        m_strike = p.m_strike;

        m_intRate = p.m_intRate;

    }

    return *this;

}
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vector<double> BlackScholesMethod::solve(double volatility, int nx, int 

timeSteps)

{

    double dt = m_expiration /(double)timeSteps;

    double dx = m_maxPrice /(double)nx;

    vector<double> a(nx-1);

    vector<double> b(nx-1);

    vector<double> c(nx-1);

    int i;

    for (i = 0; i < nx - 1; i++)

    {

        b[i] = 1.0 - m_intRate * dt - dt

                   * pow(volatility * (i+1), 2);

    }

    for (i = 0; i < nx - 2; i++)

    {

        c[i] = 0.5 * dt * pow(volatility * (i+1), 2) + 0.5

                   * dt * m_intRate * (i+1);

    }

    for (i = 1; i < nx - 1; i++)

    {

        a[i] = 0.5 * dt * pow(volatility * (i+1), 2) - 0.5

                   * dt * m_intRate * (i+1);

    }

    vector<double> u((nx-1)*(timeSteps+1));

    auto u0 = 0.0;

    for (i = 0; i < nx - 1; i++)

    {

        u0 += dx;

        u[i+0*(nx-1)] = std::max(u0 - m_strike, 0.0);

    }
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    for (int j = 0; j < timeSteps; j++)

    {

        double t = (double)(j) * m_expiration /(double)timeSteps;

        double p = 0.5 * dt * (nx - 1)

                 * (volatility*volatility * (nx-1) + m_intRate)

                 * (m_maxPrice-m_strike * exp(-m_intRate*t ) );

        for (i = 0; i < nx - 1; i++)

        {

            u[i+(j+1)*(nx-1)] = b[i] * u[i+j*(nx-1)];

        }

        for (i = 0; i < nx - 2; i++)

        {

            u[i+(j+1)*(nx-1)] += c[i] * u[i+1+j*(nx-1)];

        }

        for (i = 1; i < nx - 1; i++)

        {

            u[i+(j+1)*(nx-1)] += a[i] * u[i-1+j*(nx-1)];

        }

        u[nx-2+(j+1)*(nx-1)] += p;

    }

    return u;

}

int main()

{

    auto strike = 5.0;

    auto intRate = 0.03;

    auto sigma = 0.50;

    auto t1 = 1.0;

    auto numSteps = 11;

    auto numDays = 29;

    auto maxPrice = 10.0;

    BlackScholesMethod blackScholes(t1, maxPrice, strike, intRate);

    vector<double> u = blackScholes.solve(sigma, numSteps, numDays);
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    double minPrice = .0;

    for (int  i=0; i < numSteps-1; i++)

    {

        double s = ((numSteps-i-2) * minPrice+(i+1)*maxPrice)

                 / (double)(numSteps-1);

        cout << "  " << s << "  "

             << u[i+numDays*(numSteps-1)] << endl;

    }

    return 0;

}

�Conclusion
Options pricing is a very common problem that needs to be solved if you need to trade 

these types of financial derivatives. Because underlying prices change so frequently, it is 

very important that option prices be calculated efficiently. C++ is an ideal language for 

encoding the solution to these pricing problems.

In this chapter, I provided an introduction to the most common strategies for 

options pricing. The most popular techniques can be divided into lattice models, such 

as binomial trees, and PDE-based algorithms, where the Black-Scholes model or some 

close variation is solved through the use of numerical methods for PDEs.

The first sections of this chapter demonstrated the binomial method, with its 

assumptions and mathematical ideas. You learned how these ideas can be used in C++ 

and encapsulated into a class. The model was extended to deal with American-style 

options, where option buys have the ability to exercise the option at any time before the 

(or at the) expiration date.

You also saw how to represent the options pricing problem in terms of the Black-

Scholes model, which uses a PDE that describes the changes in options pricing. 

This model is solved using a method that discretizes the domain of the function and 

calculates the result in a large number of small steps.

In the next chapter, you will learn about Monte Carlo methods, another strategy 

that is commonly used to solve problems in the area of mathematical finance. In 

particular, Monte Carlo methods can be used to efficiently solve some difficult problems 

of derivative pricing without needing to directly compute probabilities, as used by the 

methods discussed in this chapter.

Chapter 12  Basic Models for Options Pricing



317
© Carlos Oliveira 2020 
C. Oliveira, Options and Derivatives Programming in C++20, https://doi.org/10.1007/978-1-4842-6315-0_13

CHAPTER 13

Monte Carlo Methods
Among programming techniques used for trading equity markets, Monte Carlo 

simulation has a special place due to factors such as its wide applicability and easy 

implementation. These methods can be used to implement strategies for market analysis 

such as price forecasting, or to validate options trading strategies, for example.

A great advantage of the Monte Carlo methods is the fact that they can be used to 

study complex events without the need to solve complicated mathematical models and 

equations. Using the idea of simulation through the use of random numbers, Monte 

Carlo methods offer the ability to study a large class of events, which would otherwise be 

difficult to analyze using exact techniques.

This chapter provides an introduction to stochastic methods and how they be used 

as part of simulation-based algorithms applied to options pricing. Here are a few of the 

topics that will be covered in this chapter:

•	 Random number generation: Generating random numbers is a 

basic step in creating algorithms that exploit stochastic behavior. 

Monte Carlo methods require the use of effective random number 

generation routines, which will be discussed in this chapter.

•	 Probability distributions: Monte Carlo algorithms are based on 

the properties of stochastic events. Many of these events occur 

according to well-known probability distributions. In C++, it is 

possible to generate numbers according to many popular probability 

distributions, as you will learn.

•	 Random walks: A random walk is a stochastic process where a 

certain quantity can randomly change with equal probability to 

positive or negative side. This makes random walk very useful for 

modeling prices in financial markets, as well as for simulating trading 

strategies.
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•	 Stochastic models for options pricing: Another application of random 

walks is in the determination of option prices. Using a stochastic 

method for this purpose is useful if you want to avoid the use of a 

more complex exact or approximate model, such as the algorithms 

described in the previous chapter.

�Introduction to Monte Carlo Methods
A Monte Carlo algorithm is a computational procedure that uses random numbers to 

simulate and study complex events. It is based on the idea that you can analyze the 

results of an event by repeating it several times in different ways, with the help of a 

computer or other technique to generate random numbers.

This idea behind Monte Carlo methods is not new, having been used for as long 

as probability methods have been studied. For example, a well-known randomized 

procedure to determine the area of a geometric shape is to throw darts at the figure. After 

a while, you can count the percentage of darts inside the shape and use that percentage 

to determine the area.

Despite their simplicity, Monte Carlo methods may be time-consuming, and they 

require a large number of repetitions to achieve their goals. The recent development of 

fast computers, however, made it possible to use such methods in an increasing number 

of situations, making them practical and capable of finding solutions for problems where 

explicit mathematical analysis is very difficult.

In general, Monte Carlo methods have been used for the solution of mathematical 

and computational problems where it is difficult to perform direct observations. 

Algorithms based on Monte Carlo methods use simulation strategies to determine 

values that normally occur as the result of random events in several areas, including 

the financial markets. In fact, the application of Monte Carlo to finance methods 

is widespread. You will find many algorithms used in the analysis of options and 

derivatives that exploit Monte Carlo techniques, for example:

•	 Options pricing: It is possible to use randomized algorithms to 

determine the prices of options and other derivatives.

•	 Trade strategy analysis: Monte Carlo methods can be used to test 

different trade strategies using simulated prices. This type of analysis 

is invaluable, since it allows you to test trading techniques on a 

large amount of data that is independent of the existing market 

observations.
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•	 Analysis of bonds and other fixed income investments: Bonds and 

their derivatives are tied to fluctuations of interest rates over different 

time horizons. An effective way to study the behavior of bonds is to 

construct stochastic models and use them to perform an analysis.

•	 Portfolio analysis: Another area where Monte Carlo methods are 

useful is when studying a portfolio of investments. The stochastic 

algorithm allows analysts to vary the rate of exposure to diverse 

economic scenarios and try to determine the best allocation for a 

portfolio.

In the next few sections, you will first learn the tools necessary to design and 

implement Monte Carlo algorithms using the C++ language. You will also see examples 

of how these tools can be used to analyze options and related instruments.

�Random Number Generation
The first topic that is addressed is random number generation. True random numbers 

are not possible to achieve in digital computers, but there are several techniques 

to create sequences of pseudo-random numbers. These methods have been made 

available through the standard C++ libraries, as will be covered in this section.

For C++ programmers, the main source of random number generation routines is 

the <random> header file provided by the standard library. With these functions, you can 

generate pseudo-random numbers that are well tested and that can be accessed through 

an easy interface.

The first thing to learn about random number generation in the standard library is 

the concept of generators. A generator can be viewed as a source of pseudo-random bits, 

that is, an algorithm that is capable of returning numbers that are uniformly random. 

The C++ library offers a small number of generators that can be used by programmers. 

Here are some of the available generators:

•	 Mersenne twister: This is one of the most popular generators. It is 

based on an algorithm that uses Mersenne prime numbers as the 

period length of the sequence of pseudo-random numbers. The 

Mersenne twister algorithm is considered to be one of the best 

general-purpose generators of random numbers, and it is frequently 

used in applications.
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•	 Linear congruential engine: This engine is based on a traditional 

algorithm that uses simple addition, multiplication, and module 

operations to produce numbers that have pseudo-random 

properties. This generator is indicated when you need fast sequences 

of random numbers, due to its efficiency. However, the linear 

congruential algorithm is known to generate numbers that possess 

some correlation.

•	 Subtract with carry: This is still another algorithm that is used to 

generate random numbers in the standard library. The algorithm 

is called lagged Fibonacci, and it uses a numeric sequence that has 

properties that are similar to the famous Fibonacci sequence.

These generators represent three of the most common ways to generate random 

numbers. Other techniques for random number generation have also been proposed in 

the scientific literature. Table 13-1 shows some of the most commonly used algorithms 

for random number generation.

Table 13-1.  Algorithm for Pseudo-random Number Generation

Algorithm Description

Linear congruential Traditional method that uses modulo arithmetic.

Inversive congruential Uses the modular multiplicative inverse to generate new elements in 

the sequence.

Mersenne twister Method developed in 1997; uses Mersenne primes to generate random 

numbers.

WELL generators Well Equidistributed Long-Period Linear, based on the application for 

operations on a binary field.

XorShift generators Fast method that uses exclusive-or operations to generate new random 

numbers.

Linear feedback shift Method that uses a linear function over the existing sequence of values 

to generate the next random number.

Park-Miller generator A linear congruential generator that uses multiplicative groups of 

integers under the modulo operation.
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The second part of the random generation library in C++ is the use of engine 

instantiations. These instantiations can be viewed as a concrete implementation of a generic 

algorithm. For example, consider the Mersenne twister engine, which is implemented as a 

template called mersenne_twister_engine. The easiest way to use this engine is to apply 

an instantiation such as the minstd_rand (minimal standard pseudo-random number) 

generator. This particular instantiation is defined by the C++ standard as

typedef linear_congruential_engine<

          uint_fast32_t,

          48271,

          0,

          2147483647> minstd_rand;

The linear_congruential_engine is a common random generator engine that is 

implemented by the standard library. A list of known engine instantiations in the C++ 

standard library is presented in Table 13-2. You can choose one of these instantiations as 

a generator for your own algorithm, or you can create a new instantiation.

Table 13-2.  A List of Generator Instantiations Available on the Standard Library

Generator Instantiation Parameters

default_random_engine Random engine that is provided as a default option by the library 

implementation.

knuth_b Defined as typedef shuffle_order_engine <minstd_

rand0,256> knuth_b;.

minstd_rand Minimal standard generator; it is an instantiation of linear_

congruential_engine.

minstd_rand0 Similar to the engine described previously, with particular 

parameters.

mt19937 Mersenne twister generator.

mt19937_64 Mersenne twister generator for 64-bit types.

ranlux24 Uses the subtract-with-carry generator and returns values that 

use a 24-bit representation.
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Note R andom number generators can be freely instantiated in the standard 
library. However, you should rarely need to define a new instantiation, unless you 
have good knowledge about how the parameters for each generator work together. 
A careful study of parameters is usually necessary to create a new generator, since 
they are based on statistical properties that have been determined after careful 
analysis made by researchers in the area.

The generators and their instantiations can be thought of as the original source for 

pseudo-random bits. Once you have defined a source, it is possible to generate random 

numbers according to a given probability distribution, as you will see in the next section.

�Probability Distributions
A probability distribution is family of functions that defines the parameters for a 

stochastic process. For example, the simplest distribution of random numbers is the 

uniform distribution, where each value is generated with equal probability in a given 

range. A particular case of the uniform distribution is Uniform[0,1], where each number 

is randomly generated with equal probability in the range between 0 and 1.

There are a small number of probability distributions that occur very frequently in 

the analysis of natural events. These common distributions, which have been studied 

in several branches of stochastic analysis, are now available as part of the C++ <random> 

header in standard library. For examples of two common probability distributions,  

see Figure 13-1 (which shows the normal distribution with mean 0 and standard 

deviation 1), Figure 13-2 (which shows the exponential distribution with mean 1), and 

Figure 13-3 (which shows the Chi-squared distribution).
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Consider the most common case of generating uniform random integer numbers 

in a particular range. This can be easily handled in the standard library by using the 

std::uniform_int_distribution template. This template is capable of creating integer 

numbers that have uniform distribution as given by the two parameters: the initial 

and maximum values. Here is an example of how to code a function that returns such 

random integer numbers:

Figure 13-1.  Probabilities defined by the normal distribution, with mean 0 and 
standard deviation 1

Figure 13-2.  Probabilities defined by the exponential distribution, with mean 1
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#include <iostream>

#include <random>

using std::cout;

using std::endl;

std::default_random_engine generator;

int get_uniform_int(int max)

{

    if (max < 1)

    {

        cout  << "invalid parameter max " << max << endl;

        throw std::runtime_error("invalid parameter max");

    }

    std::uniform_int_distribution<int> uint(0,max);

    return uint(generator);

}

Figure 13-3.  Probabilities defined by the Chi-squared distribution
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The first step is to define a generator to use as the source of random bits. This is done 

by instantiating an engine (done at the file scope). The std::default_random_engine 

is the default generator selected by the compiler’s implementation. It should be a 

reasonable choice, unless you want to be very specific about the generator for your code.

The get_uniform_int function generates a random integer between 0 and max, 

where max is a parameter passed to the function. The function first checks if the 

parameter is valid and throws an exception when that is not the case. The function then 

uses the parameter to create an object of type uniform_int_distribution. This object 

receives two parameters that define the distribution: the minimum and maximum 

values. The resulting object is then used to generate the random number itself.

Note T raditional C and C++ code used to rely on the rand function to generate 
random integer numbers. This usage is now deprecated because the algorithm 
used in rand() is known to have weaknesses. In particular, the idea of using the 
expression (rand() % N) to generate random integer numbers in the range 0 to 
N-1 has been proved to be unreliable. Even though the numbers seem random 
enough for most applications, it fails when you try to perform more complex 
statistical analysis.

The sequence of steps to use the random number generators and distributions are 

therefore summarized as follows:

•	 Find a suitable random engine and a corresponding generator 

according to the needs of your application.

•	 Select a generator instantiation based on the random engine you 

selected previously. If you don’t have any specific requirements, the 

default_random_engine could be used.

•	 Select a random distribution according to the needs of your 

application. A common distribution is the uniform, which produces 

numbers with the same probability in a given range.

•	 Create an object of the type determined by the probability 

distribution. In the previous example, you used uniform_int_

distribution as the object type.

Chapter 13  Monte Carlo Methods



326

•	 The resulting object can now be called to generate pseudo-random 

numbers, once the generator object is passed as the single parameter 

for the call. This makes it possible to use generators of different types 

or, more commonly, generators that are used for a specific function of 

a thread.

�Using Common Probability Distributions
This section will show a few examples of common probability distributions and how 

they can be used in C++. As mentioned, random numbers can be generated according to 

different probability functions. These families of functions are grouped according to the 

parameters and shape of the distribution.

One of the simplest probability distributions is the Bernoulli distribution. This is 

a family of probability distributions that model a yes/no scenario, an event that has 

only two results. The only parameter for this distribution is the probability of the yes 

result. The simplest example of this type of model is a coin toss, with parameter 0.5, 

representing a fair probability of heads or tails.

In the next code example, the function coin_toss_experiment returns a vector of 

Boolean values, representing the result of a set of fair coin tosses.

#include <iostream>

#include <random>

#include <vector>

using std::cout;

using std::endl;

using std::vector;

std::default_random_engine generator;

vector<bool> coin_toss_experiment(int num_experiments)

{

    if (num_experiments < 1)

    {

        cout  << "invalid number of experiments "

              << num_experiments << endl;

        throw std::runtime_error("invalid number of experiments");
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    }

    std::bernoulli_distribution bernoulli(0.5);

    vector<bool> results;

    for (int i=0; i<num_experiments; ++i)

    {

        results.push_back(bernoulli(generator));

    }

    return results;

}

In this code, the first step is to use a generator, which in this case is std::default_

random_engine allocated in the file scope, so it is available during the lifetime of 

the application. The coin_toss_experiment function initially checks the validity 

of the parameter num_experiments, which gives the number of tries in this random 

experiment.

The function then allocates a new object from the Bernoulli distribution, with 

parameter 0.5, which indicates that the yes/no event occurs with even probability for 

each side. The random values are then generated in the loop, where the bernoulli 

returns Boolean values according to the desired distribution behavior. The values are 

stored in a vector<bool> container.

Another common distribution that is used to model natural events is the Poisson 

distribution. This distribution arises commonly when observing the number of events 

that occur in a period of time, under the assumption that these events are independent. 

For example, the number of customers arriving at a coffee shop during a given period 

could be modeled as a Poisson distribution. The mathematical expression used to model 

the probability distribution of such events is given by

	
p k

e

k

k k
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! 	

Here, k is the number events that are observed, and λ is the parameter that 

determines the results of the experiment, which can be interpreted as the average 

number of events occurring in the given time period.
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In the C++ standard library, the Poisson distribution is made available through the 

std:: poisson_distribution template. The parameter for this distribution is the mean, 

usually represented as the mathematical variable λ as in the previous equation.

The following is an example that can be used to analyze the number of customers 

buying in a particular store in a time period. For instance, financial analysts perform this 

type of study when they need to study the buying patterns at a particular business. The 

code defines a function named num_customers_experiment:

#include <iostream>

#include <random>

#include <vector>

using std::cout;

using std::endl;

using std::vector;

vector<int> num_customers_experiment(double mean, int max, int ntries)

{

    std::default_random_engine generator;

    vector<int> occurrences(max, 0);

    std::poisson_distribution<int> poisson(mean);

    for (int i=0; i<ntries; ++i)

    {

        int result = poisson(generator);

        if (result < max) {

            occurrences[result] ++;

        }

    }

    return occurrences;

}

The num_customers_experiment function can generate a sequence of random values 

based on the Poisson distribution and return a histogram of these values, that is, for each 

value, it returns the number of times this value was observed.
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The algorithm is similar to what you have seen before with the Bernoulli distribution. 

The first part is used to define the random generator, and it creates an object of type 

std::poisson_distribution. The parameter passed represents the mean of the 

distribution.

The for loop in the algorithm is used to build the histogram. At each step, a number 

is generated according to the Poisson distribution. Then, if the resulting number is less 

than the parameter max, that value is incremented in the list of occurrences.

The num_customers_experiment function is used in the next code fragment to print 

the results of the calculation. These numbers have been saved and used to create the 

chart displayed in Figure 13-4, which shows the observations between 0 and 20 and the 

corresponding number of observations for 200 trials.

int test_experiment()

{

    auto data = num_customers_experiment(10.5, 20, 200);

    for (int i=0; i<int(data.size()); ++i)

    {

        �cout << " event " << i << " occurred "  << data[i] << " times" << 

endl;

    }

}

Figure 13-4.  Histogram of the data returned by function num_customers_
experiment
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The next example shows how to generate and use random values drawn from the normal 

distribution. The normal distribution, also known as Gaussian distribution, is one of the 

most common probability distributions used to model real-world data. It is employed in data 

analysis, in areas ranging from drug design to sociology. The normal distribution represents 

the distribution of values that are naturally measured in populations. For example, the 

heights of people living in a particular geographical area follow the normal distribution.

The bell-shaped probability graph of the normal distribution is determined by the 

Gaussian equation, which takes as parameters the mean and the standard deviation of a 

random variable. The equation is given by
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In this equation, μ is the mean value of these numbers, and σ is the standard 

deviation, which is a measure of the variability of these random values.

In the following code example, you will see how to generate numbers that follow 

the normal distribution. The get_normal_observations function returns a list of 

numbers that have been generated according to the normal distribution according to the 

parameters mean and stdev.

#include <iostream>

#include <random>

#include <vector>

#include <assert.h>

using std::cout;

using std::endl;

using std::vector;

vector<double> get_normal_observations(int n, double mean, double stdev)

{

    std::default_random_engine generator;

    vector<double> values;

    std::normal_distribution<double> normaldist(mean, stdev);

    for (int i=0; i<n; ++i)

Chapter 13  Monte Carlo Methods



331

    {

        values.push_back(normaldist(generator));

    }

    return values;

}

The next function, test_normal, can be used to verify the correctness of this code. 

The idea of this function is to use the generated values so that it can create a histogram 

of the normal-distributed data. The first step of the algorithm is to call the get_normal_

observations function and save the returned data. The next step is to get some 

information about the received data, such as the minimum and maximum values. This is 

done using the std::minmax_element function, which returns a pair of iterators pointing 

to the minimum and maximum values in the given range.

The algorithm creates a vector with elements corresponding to “bins,” that is, smaller 

ranges where each observation is recorded. The size of each such bin is stored as the 

variable h. The first loop then determines the number of elements in each such range so 

that a histogram can be calculated.

The second loop is responsible for printing the results of the histogram. Each value is 

printed along with the starting point of the corresponding range.

void test_normal()

{

    vector<double> nv = get_normal_observations(1000, 8, 2);

    auto res = std::minmax_element(nv.begin(), nv.end());

    double min = *(res.first);

    double max = *(res.second);

    int N = 100;

    double h = (max - min)/double(N);

    vector<int> values(N, 0);

    for (int i=0; i<int(nv.size()); ++i)

    {

        double v = nv[i];

        int pos = int((v - min) / h);

        if (pos == N) pos--; // avoid the highest element
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        values[pos]++;

    }

    for (int i=0; i<N; ++i)

    {

        cout << min + (i*h) << " " << values[i] << endl;

    }

}

The values created in this way have been plotted and are displayed in Figure 13-5. 

The horizontal axis represents the value of each observation. The vertical axis represents 

the number of occurrences of each observation.

�Creating Random Walks
One of the main applications of stochastic processes in finance is the study of prices 

under random variations. This random process is called a random walk, since it implies 

that changes happen at random as time passes. A random walk model can be used to 

simulate market conditions and investigate the behavior of trade strategies, portfolios, 

and market participants in general. In this section, you see how to create a simple 

random walk using some of the facilities provided by C++.

A random walk can be designed with the use of a few simple rules that determine 

the price fluctuations. Notice the exact rules used depend on the kind of market that you 

need to simulate and the exact conditions that need to be replicated. In this example, 

Figure 13-5.  Histogram of values observed using the normal distribution with 
mean 8
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I use a few computational commands that will simplify the task; the framework can be 

readily extended to implement more complex scenarios.

The random walk starts at an initial price given as a parameter to the algorithm.  

At each step, there are three possibilities for the random walk:

•	 A price decrease, which occurs with probability 1/3.

•	 A price increase, also happening with probability 1/3.

•	 The price remains unchanged.

The amount of increase or decrease is given by a parameter called stepSize.

These rules are implemented in the RandomWorkModel class. The class has an 

interface that exposes two member functions. getWalk returns a vector with a set of steps 

in the random walk.

//

//  RandomWalk.hpp

#ifndef RandomWalk_hpp

#define RandomWalk_hpp

#include <vector>

// Simple random walk for price simulation

class RandomWalkModel {

public:

    RandomWalkModel(int size, double start, double step);

    RandomWalkModel(const RandomWalkModel &p);

    ~RandomWalkModel();

    RandomWalkModel &operator=(const RandomWalkModel &p);

    std::vector<double> getWalk();

private:

    int random_integer(int max);

    int m_numSteps;      // number of steps

    double m_stepSize;   // size of each step (in percentage)

    double m_startPrice; // starting price

};
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#endif /* defined(__FinancialSamples__RandomWalk__) */

The class interface also contains the following member variables:

•	 The number of steps, m_numSteps, determines the number of steps 

(time) in the random walk.

•	 The initial price is defined by the m_stepSize member variable.

•	 The starting price is defined by the m_startPrice member variable.

These member variables are initialized in the constructor of RandomWalkModel, as 

shown in this code listing:

//

//  RandomWalk.cpp

#include "RandomWalk.hpp"

#include <cstdlib>

#include <iostream>

#include <random>

using std::vector;

using std::cout;

using std::endl;

std::default_random_engine engine;

RandomWalkModel::RandomWalkModel(int size, double start, double step)

: m_numSteps(size),

  m_stepSize(step),

  m_startPrice(start)

{

}

RandomWalkModel::RandomWalkModel(const RandomWalkModel &p)

: m_numSteps(p.m_numSteps),

  m_stepSize(p.m_stepSize),

  m_startPrice(p.m_startPrice)

{

}
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RandomWalkModel::~RandomWalkModel()

{

}

RandomWalkModel &RandomWalkModel::operator=(const RandomWalkModel &p)

{

    if (this != &p)

    {

        m_numSteps = p.m_numSteps;

        m_stepSize = p.m_stepSize;

        m_startPrice = p.m_startPrice;

    }

    return *this;

}

The random numbers needed by this code are generated using the random_integer 

member function. This function just uses the standard library random number generator 

std::default_random_engine. It also uses the uniform distribution returning integer 

values, as provided by the std::uniform_distribution template class.

int RandomWalkModel::random_integer(int max)

{

    std::uniform_int_distribution<int> unif(0, max);

    return unif(engine);

}

The random walk sequence is generated by the member function getWalk.  

The algorithm has a single loop that repeats the price generation according to the 

m_numSteps variable. Inside the loop, the code selects a random integer between 0 and 

2. Depending on the result, the code makes a decision to increase, decrease, or leave the 

price unchanged. Each price is then added to a vector, and the vector is returned at the 

end of the function.

std::vector<double> RandomWalkModel::getWalk()

{

    vector<double> walk;

    double prev = m_startPrice;
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    for (int i=0; i<m_numSteps; ++i)

    {

        int r = random_integer(3);

        cout << r << endl;

        double val = prev;

        if (r == 0) val += (m_stepSize * val);

        else if (r == 1) val -= (m_stepSize * val);

        walk.push_back(val);

        prev = val;

    }

    return walk;

}

This code can be tested using the test_random_walk function. This function simply 

creates a RandomWalkModel object with 200 steps, starting at the $30 price and with steps 

of $0.01.

int test_random_walk()

{

    RandomWalkModel rw(200, 30, 0.01);

    vector<double> walk = rw.getWalk();

    for (int i=0; i<walk.size(); ++i)

    {

        cout << ", " << walk[i];

    }

    cout << endl;

    return 0;

}

The random walk generated by the test_random_walk function was saved, and using 

that data, I plotted the results, as shown in Figure 13-6. Notice that, although this model 

is very simple, the results are not very different from what is observed in the market. 

Using this kind of synthetic data, you can test trading strategies and determine if they are 

profitable in such randomized scenarios.
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�Conclusion
In this chapter, I introduced a few examples of Monte Carlo techniques, which can be 

used to solve complex problems through simulation of random events. These methods 

are based on the use of pseudo-random values as a tool for the probabilistic analysis 

of events. Such models also support the simulation of complex mathematical models, 

including the evolution of stock prices, as well as their options and related derivative 

instruments.

In the preceding sections, you learned about the building blocks of Monte Carlos 

methods. First, you learned how to generate pseudo-random numbers using the C++ 

standard library. The random numbers can also be generated according to a predefined 

probability distribution. The C++ standard library contains some of the best-known 

probability distributions, which makes it easy to integrate these features into user 

applications.

You also saw how to implement a simple random walk model. In a random walk, 

values change by small increments in either negative or positive directions. The random 

walk model can be used to analyze several financial instruments, ranging from fixed 

income instruments to equities and derivatives.

The next chapter will cover additional library functions and classes that are 

commonly used to analyze and develop solutions for options and derivatives.

Figure 13-6.  A random walk generated by the RandomWalkModel class with 
starting price of $30
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CHAPTER 14

Using C++ Libraries for 
Finance
Writing good financial code is a difficult task, one that cannot be done in isolation. As 

a software engineer, you frequently need to collaborate with others to achieve your 

development goals. You also need to use code that has been written by other groups. In 

particular, developers are constantly using libraries created by other companies or open 

source projects. Integrating these libraries into your own work is a major step to improve 

productivity.

In the world of quantitative finance, a number of C++ libraries have been used with 

great success. This chapter reviews some of these libraries and discusses how they can 

be integrated into your own applications. Some of the topics covered in this chapter 

include the following:

•	 Boost introduction: The boost repository provides access to many 

C++ libraries that are based on templates for higher efficiency. You 

will learn how to install and use boost, as well as integrate particular 

libraries in the repository to your own applications.

•	 Boost odeint: The odeint library is a well-tested and efficient set of 

algorithms for the solution of ordinary differential equations (ODEs). 

You will learn about the different algorithms contained in odeint and 

the different situations in which they can be employed.

•	 QuantLib: The QuantLib library has been designed as a repository 

for quantitative algorithms and assorted utilities for financial 

applications. Many parts of this code can be used to simplify the 

process of analyzing options and derivatives. You will learn how to 

use this library and see a few of the most commonly used classes and 

algorithms that are available in the QuantLib repository.

https://doi.org/10.1007/978-1-4842-6315-0_14#DOI
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�Boost Libraries
In the last few years, the boost project has become well known for providing high-quality 
libraries for C++ applications. As a result, the boost project is now the de facto repository 
for extensions to the STL. In fact, many of the libraries that started as part of the 
boost repository have been incorporated to the C++ standard, including, for example, 
std::shared_ptr and std::unique_ptr. A few of the developers working on boost 
libraries have also become part of the standard C++ committee.

The boost project focuses on using the modern features of the C++ language, 
including, but not exclusively, the employment of templates for high performance. Many 
of the libraries included in boost provide template-based interfaces that make the resulting 
system much more flexible. For example, different algorithms can be specialized at the 
template level, so that you can combine different algorithms through the use of templates, 
when deciding on the optimal techniques to solve a specific problem. This is a much more 
adaptable strategy, rather than relying on decisions made by library designers.

Note that boost is not a finance library. Instead, it provides a large number of features 
that are packaged in a few separate libraries. However, many of the components have 
direct use in the implementation of financial applications. Its components can be used 
to perform and simplify several tasks, such as:

•	 Solving ODEs: Ordinary differential equations appear frequently in 
the solution of numerical problems in the area of finance. As you 
have seen, to solve some options analysis models, it is necessary to 
efficiently compute the value of ODEs. The odeint library gives you 
access to such functionality, as you see in the next section.

•	 uBLAS: The Basic Linear Algebra System library provides a C++ 
interface to an advanced linear algebra library. uBLAS can be used to 
support more complex matrix-related code, as well as the solution of 
systems of equations.

•	 Multi-array: Many applications require the use of multidimensional 
arrays when working in areas such as 3D animation, weather 
predictions, and so on. The multi-array library provides an easy 
interface for the creation and manipulation of arrays that can be 
indexed using multiple indices.

•	 Managing file and directories: The <filesystem> header file contains 
a set of templates that can be used to manage files and directories. It 
handles different operating systems, so that you don’t need to rely on 

system-specific libraries for common file-based operations.
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Note T he filesystem library has become part of the C++ standard library 
in the C++17 version. Previously, filesystem was part of the boost library, which 
was needed to gain access to this functionality. However, you can still access this 
library using boost, which makes it portable to earlier compilers.

The boost repository contains a large set of useful libraries for C++ development, including 

the ones listed previously. In its current version, there are 136 libraries that cover all types 

of tasks needed in modern programing. Table 14-1 shows a list of commonly used libraries 

contained in the boost project repository, including a quick explanation of their usage.

Table 14-1.  List of Commonly Used Boost Libraries

Library Description

Odeint Implements algorithms to solve ordinary differential equations (ODEs).

filesystem A set of classes to manipulate files and directories in an OS-independent way.

Multi-array Provides arrays with multiple dimensions; useful for scientific code.

MPI Implements the Message Passing Interface, a standard for parallel processing.

Math A set of mathematical functions not included in the standard library.

Graph A library that extends the STL and provides containers and algorithms to 

handle graphs.

Functional Provides templates that simplify functional programming techniques.

Algorithm A set of generic algorithms that extends the algorithm header in the STL.

uBLAS A modern C++ implementation of BLAS (Basic Linear Algebra Subprograms).

Variant A container that safely stores a union container, capable of storing different 

data types.

Sort Implements several sorting strategies using templates for high performance.

Regex Provides support for regular expressions in C++.

Python A set of templates and classes that allows interaction between Python and 

C++ code.
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�Installing Boost
The first step in using the boost libraries is to install them on your machine. Being an open 

source repository, boost packages are made available through the Web and mirrored in 

several websites. The canonical website for the repository is www.boost.org, where you 

can find instructions for installing boost in several architectures and operating systems.

The most common way to install boost is to download the compressed file 

containing the headers and source files. Once the files are uncompressed, you can 

use the main installation script that is provided, bootstrap.sh, to build and install the 

software on the desired path in the local disk.

Another way to install boost libraries is to use third-party installers or package 

managers. For example, if you use Linux, it is possible to install boost as a package using 

the local package manager, such as dpkg on Debian systems. On Windows systems, you 

can also install cygwin, which contains a package manager with several common C++ 

programming packages, including the boost libraries.

Installing from source is also easy. You just need to unzip the source files into a 

location and use that directory as the include path for the compilation process. An 

advantage of boost is that most of the libraries are implemented as header files (this is 

also true for most of the STL). Therefore, there is no need for any compilation. A few 

libraries, however, require a compilation step that can be performed using the bootstrap 

script. You will need the build step if you need to use one of the following libraries:

•	 Boost.Filesystem

•	 Boost.IOStreams

•	 Boost.ProgramOptions

•	 Boost.Python

•	 Boost.Regex

•	 Boost.Serialization

•	 Boost.Signals

•	 Boost.Thread

•	 Boost.Wave
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Boost libraries are built using a C++ build system called bjam. The build script will 

try to find bjam in your machine or build it. You can also download bjam from its binary 

distribution located in boost.org/build.

In the next few sections, you will see how to use a few libraries available from boost. 

First, you will see how to solve ordinary differential equations with the odeint library.

�Solving ODEs with Boost
In the previous chapter, you saw how ordinary differential equations (ODEs) can be 

implemented directly using C++ code. Due to how options are defined and represented, 

ODE models arise naturally in the design of financial algorithms. As a result, being able 

to quickly implement such methods is a great advantage for the quantitative software 

developer. Moreover, it is much easier to reuse an ODE implementation that has already 

been reviewed and thoroughly tested, especially considering that numerical errors are 

hard to catch in many cases.

One of the components of the boost repository, the odeint library, deals specifically 

with ODEs. With odeint, you can more easily create code to integrate ODEs, choosing 

from a number of different algorithmic strategies. Figure 14-1 shows a screenshot of the 

current web page for the odeint website, where its repository is maintained.

Figure 14-1.  Website of the odeint library, where you can download its latest version
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Table 14-2 presents a quick list of the integration techniques available when using 

odeint. Some of these techniques have been discussed in the previous chapter. Others 

are variations of the best-known algorithms and can provide performance advantages 

for use in particular applications.

The algorithms made available in the odeint library are implemented as separate 

template classes. Each class corresponds to an algorithm or algorithmic concept.  

The odeint library contains a set of integration methods that can be parameterized using 

the provided templates. These templates make it possible to use different strategies 

through the combination of the given algorithms and concepts.

One of the basic types of strategies classes available in odeint is a stepper. A stepper 

is used to navigate through the solution space of the given ODE. This is an important 

concept because ODEs are solved interactively, and the step size and direction 

determine how a particular solution strategy will behave. Depending on the type of 

Table 14-2.  List of Integration Techniques Available When Using odeint

Class Name Description

Euler Original Euler’s algorithm to solve ODEs.

runge_kutta4 Uses the Runge-Kutta method, with fourth-order 

approximation.

runge_kutta_cash_karp54 Runge-Kutta method.

runge_kutta_fehlberg78 Variation of Runge-Kutta that uses the Fehlberg algorithm.

adams_moulton A multistep algorithm for solving ODEs.

dense_output_runge_kutta An implementation of Runge-Kutta that uses dense output.

bulirsch_stoer Based on the Bulirsch-Stoer algorithm, provides higher 

accuracy in the solution of complex ODEs.

implicit_euler A variation of Euler’s algorithm in which the equation is 

given in implicit form and requires the use of the associated 

Jacobian.
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stepping strategy used, the resulting algorithm can perform a calculation that is faster or 

more accurate. Here are the known stepper types provided by odeint:

•	 runge_kutta4

•	 euler

•	 runge_kutta_cash_karp54

•	 runge_kutta_dopri5

•	 runge_kutta_fehlberg78

•	 modified_midpoint

•	 rosenbrock4

�Solving a Simple ODE
In this section, you will see how to use the concepts described previously to solve a 

simple ODE in the standard form given by

	
¢ = ( )y f x y, 	

Here, y is a function of x, y' is the first derivative of y, and f(x, y) is a general equation 

that may depend both on x and y.

To use odeint, the first step is to include the main header file containing this library, 

with

#include <boost/numeric/odeint.hpp>

To solve any ODE, you need first to determine the f(x, y) part of the system, that is, the 

right side of the ODE equation. In this example, you will solve for the simple equation

	
¢ = +y

x

y

x

3

2 5 3 22. / 	

This is done in the following code fragment:

#include "boosttest.hpp"

#include <iostream>

#include <boost/array.hpp>
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#include <boost/numeric/odeint.hpp>

//
// This is the equation at the right side of the ODE   y' = f(x,y)
// It is evaluated in the inner steps of the algorithm.
//
void right_side_equation(double y, double &dydx, double x)
{
   dydx = 3.0/(2.5*x*x) + y/(1.5*x);
}

An optional feature of odeint algorithm is the use of an observer. The observer is a 
function that can be used to inspect each step of the algorithm. Using this information, 
you can record the progression of the solution, or you can perform more complex 
analysis if necessary. In this example, the observer simply prints the output, which will 
later be used to plot the convergence of the solution.

// This function simply prints the current value of the interactive
// solution steps.
void write_cout( const double &x , const double t )
{
   cout << t << '\t' << x << endl;
}

Next, you need to define the stepper algorithm. In this case, the runge_kutta_
dopri5, a basic stepper based on the Runge-Kutta method, was selected. This can be 
done with a simple typedef to define the stepper_type.

// A stepper based on Runge-Kutta algorithm.
// The state_type use is 'double'
typedef runge_kutta_dopri5<double> stepper_type;

Finally, the main function is used to integrate the ODE under the given initial 
conditions. The task is performed by the integrate_adaptive function, which takes as 
parameters the stepper, the ODE defining equation, state and step parameters, and a 
function that prints the intermediate results.

// This solves the ODE described earlier with initial condition x(1) = 0.
//

int main()
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{

   double x = 0.0;

   auto n = integrate_adaptive(

         �make_controlled(1E-12, 1E-12, stepper_type()),  // instantiate the 

stepper

         right_side_equation,            // equation

         x,                              // initial state

         1.0 , 10.0 , 0.1 ,              // start x, end x, and step size

         write_cout );

   cout << " process completed after "  << n << " steps \n";

   return 0;

}

I ran this code and used the output of the observer function to plot the convergence 

of the results found by the ODE solver. The plot, displayed in Figure 14-2, shows how 

solution values change as you move from 1.0 to 10.0 in the solution space.

�Creating Histograms with Boost
Another useful application for boost is the creation of support code such as histograms. 

A histogram is a useful chart in financial applications that shows the frequency of 

each particular value in a time sequence. This can be applied, for example, to prices of 

underlying assets for an options analysis package.

Figure 14-2.  Results of the integrate_adaptive function from the odeint library
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The boost library supports the use of histogram with the histogram.hpp template 

header file and their declared classes and functions. The histogram class is the main data 

type provided by boost for this purpose. Let’s consider a sample application of this class:

#include <boost/histogram.hpp>

#include <boost/histogram/ostream.hpp>

#include <cassert>

#include <iostream>

#include <sstream>

#include <string>

int main() {

  using namespace boost::histogram;

  std::ostringstream os;

  auto h1 = make_histogram(axis::regular<>(5, -1.0, 1.0, "axis 1"));

  h1.at(0) = 2;

  h1.at(1) = 4;

  h1.at(2) = 3;

  h1.at(4) = 1;

  // 1D histograms are rendered as an ASCII drawing

  std::cout << h1;

  return 0;

}

In this sample application, the boost/histogram header file is imported to provide 

the required class and template definitions. The use of this class occurs on function 

main. The make_histogram function is useful to instantiate a histogram class using 

default value along with the passed parameters.

The parameters specified in the example determine that the axis for the histogram 

is regular, with five partitions (bins), starting on value -1.0 and extending to value 1.0. 

Then, a few values are added to some of the bins maintained by the histogram class.

The output of this sample code can be seen when the main function is executed, as 

shown in Figure 14-3.
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�The QuantLib Library
The second example of a library that is used in quantitative finance and options analysis 

is the QuantLib library. QuantLib is a well-established repository of quantitative code for 

C++. The library has been tested and used by many developers, which means that you 

can take advantage of the hard work that went into creating and testing the algorithms.

Being an open source project, QuantLib is free and can be used by anyone by just 

downloading and building the source code. The project also accepts contributed code, 

which means that many people can fix bugs and participate in the improvement of the 

library.

The QuantLib contains a wide assortment of classes that simplify certain tasks that 

are necessary in quantitative algorithms for finance. A few areas covered by QuantLib are 

the following:

•	 Date handling: Many algorithms for options and derivatives analysis 

are based on dates. Therefore, accurate information about trading 

dates, holidays, and other calendar-specific events are very important 

for the correct results of such algorithms. QuantLib provides a 

number of classes that encapsulate the concepts needed for data 

handling in financial applications.

•	 Design patterns: The QuantLib library puts a lot of effort in following 

well-established design patterns. Most algorithms use design 

patterns that make them easier to understand and to maintain. For 

this reason, QuantLib has a rich implementation of common design 

patterns, including Singleton, Observer, Composite, and others.

Figure 14-3.  Output from histogram example
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•	 Monte Carlo methods: A few of the classes provided by QuantLib 

are used to simplify the implementation of Monte Carlo methods. 

These classes make it easier to create, for example, random paths for 

financial instruments, as well as similar models based on Brownian 

motion.

•	 Pricing engines: Another area that is covered by QuantLib is 

the implementation of efficient pricing engines for options and 

derivatives. The library provides several techniques for options 

pricing, which are carefully packaged into C++ classes. These pricing 

engines include barrier option engines, Asian option engines, basket 

option engines, and vanilla option engines.

•	 Optimizers: Another utility that is frequently employed in financial 

applications is an optimization engine. The QuantLib library contains 

a few classes dedicated to some common optimization strategies. 

Using such optimization algorithms, it is possible to quickly solve 

complex problems where the objective is to find the minimum or the 

maximum of a given function.

In the remaining of this section, you will see a few examples using classes from 

QuantLib. You will learn how to use some of the main classes available in the library and 

integrate them to your applications.

Note O n a macOS computer, you can easily install QuantLib using the brew 
package manager with the following command:

brew install quantlib

�Handling Dates
One of the most common tasks in financial algorithms is handling dates correctly. You 

saw in Chapter 3 that there are several ways to store and transform values stored as 

dates. The QuantLib library tries to simplify some of these tasks with the introduction of 

carefully designed date and time classes.
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Managing holidays is one of the most difficult problems when using dates in financial 

applications. Since the number of trading days constitutes part of the calculation, 

when computing the price of an option, it becomes very important to have precise 

representations of date intervals, considering which of those days are trading days.

First, let’s consider how to use the Date class provided by QuantLib, along with some 

of the basic operations defined on that class. The basic way to construct an object of type 

Date is to pass the desired date in the day-month-year format. Here is an example:

Date date1(10, Month::April, 2010);

This would create a date representing the tenth day of April 2010. Now, using a date 

created in this way, it is possible to perform operations such as addition or subtraction 

using the operators that have been overloaded by QuantLib.

void testDates()

{

   Date date(10, Month::April, 2010);

   cout << "original date: " << date << endl;

   date += 2 * Days;

   cout << "after 2 days: " << date << endl;

   date += 3 * Months;

   cout << "after 3 months: " << date << endl;

}

In this code, the operators are used to add a period of two days and three months, 

respectively, to the original date. The Days and Month identifiers are simple data types 

that concisely represent a time period and can be used to simplify the handling of 

intervals.

Another simple operation on dates is incrementing and decrementing. This allows 

you to quickly find the next or the previous day in a sequence, without needing to check 

if these dates occur in different months or years. The following code shows an example 

of how this works:

void nextAndPreviousDay()

{

   Date date(28, Month::February, 2010);

   cout << "original date: " << date << endl;
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   date++;
   cout << "next day: " << date << endl;

   date--;
   cout << "previous day: " << date << endl;
}

Additional tools are provided to answer common questions related to dates. For 
example, member functions of the Date class are used to determine if a particular date 
occurs in a leap year, if it occurs at the end of the month, or if the date is a weekday. 
These are exemplified by the code in the following section.

�Working with Calendars
Another aspect of dates that causes a lot of confusion is handling local holidays. Each 
country has nontrading days that are determined by holidays, which also change 
according to the year in which they occur. To handle these issues, QuantLib provides a 
set of Calendar objects. These calendars are localized and can be used to determine if a 
particular date is a holiday.

The following example shows how to use the Calendar class in a typical C++ 
application:

void useCalendar()
{
   Calendar cal = UnitedStates(UnitedStates::NYSE);

   cout << " list of holidays " << endl;
   for (auto date : Calendar::holidayList(cal, Date(1, Month::Jan, 2010),
                                               Date(1, Month::Jan, 2012)))
   {
      cout << " " << date;
   }

   cout << " is Jan 1 2010 a business day?  "
        << cal.isBusinessDay(Date(1, Month::Jan, 2010)) << endl;
   cout << " is Jan 1 2010 a holiday?  "
        << cal.isHoliday(Date(1, Month::Jan, 2010))     << endl;
   cout << " is Jan 1 2010 end of month?  "
        << cal.isEndOfMonth(Date(1, Month::Jan, 2010))  << endl;

}
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The first line of the useCalendar function shows how to create a new calendar for 

a particular region. In this case, the calendar corresponds to the United States and in 

particular to the New York Stock Exchange.

With this calendar loaded, it is possible to answer a number of questions about dates 

in the United States. For example, the next few lines show how to list all holidays with the 

holidayList function. The function receives as arguments the calendar and the desired 

start and end date. The result is a container with all the holidays for the given period.

The next few lines show how to use QuantLib Calendar object to answer a few 

common questions related to the day of the week and the month. The first call is to 

isBusinessDay, and it returns true if the given date occurs in a business day (usually 

Monday to Friday in most markets). The second member function is isHoliday, which 

returns true only if the given date is a holiday.

Finally, you can see the member function isEndOfMonth example. This function 

returns true if the given date occurs at the end of a month, which may be an important 

date in some kinds of financial contracts.

Another interesting feature of the Calendar class is that you can create and manage 

your own calendars. This is necessary when creating code for countries that are not 

already covered by the library, or when you’re working on particular institutions or 

markets that use a distinct calendar.

The main functions to manage calendar holidays are addHoliday and 

removeHoliday. With these functions, you can create calendars that are specific to your 

needs. The following example code shows how to use them:

Calendar createNewCalendar()

{

   Calendar newCal = UnitedStates(UnitedStates::NYSE);

   // Remove winter holiday

   newCal.removeHoliday(Date(25, Month::December, 2016));

   // Add international workers' day

   newCal.addHoliday   (Date(1,  Month::May, 2016));

   cout << " list of holidays " << endl;

   for (auto date : Calendar::holidayList(newCa l, Date(1,  Month::Jan, 2016),

                                                  Date(31, Month::Dec, 2016)))
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   {

      cout << " " << date;

   }

   return newCal;

}

This function starts with the creation of a new calendar object based on the US 

calendar, more specifically using the NYSE list of holidays. The function then proceeds 

to modify the original calendar, adding a common holiday and adding another so the 

number of holidays remains the same. The code also prints the list of holidays for the 

year 2016 to the standard output. Finally, the createNewCalendar function returns the 

newly created calendar as the result.

Another important feature of the Calendar class provided by QuantLib is the ability 

to determine the number of trading days between two dates. This is done using the 

businessDaysBetween member function, which returns the number of business days in 

a particular interval given to the function. A simple example can demonstrate how this 

function works:

int getNumberOfDays(Date d1, Date d2)

{

   Calendar usCal = UnitedStates(UnitedStates::NYSE);

   int nDays = usCal.businessDaysBetween(d1, d2);

   cout << " the interval size is "  << nDays << endl;

   return nDays;

}

In the beginning, the getNumberOfDays function creates a calendar using the US 

locale. The next step is to determine the number of business days between two given 

dates. Then, the function prints the value of this difference and returns that value as the 

final result.
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�Computing Solutions for Black-Scholes Equations
The next example of QuantLib is directly related to the problem of pricing options. 

The main formula for pricing options is derived from the Black-Scholes differential 

equations. This makes it really important to have a library that can quickly solve Black-

Scholes models, at least as an initial step for further analysis.

The QuantLib provides classes that are specifically designed to solve Black-

Scholes models. Unlike other ODE and PDE packages that can be used to solve general 

differential equations (as seen in the previous section on boost), the QuantLib classes 

target efficient techniques to solve a single model in particular. This results in a very 

specialized algorithm that can be relied on for the efficient solution of Black-Scholes 

models.

To benefit from options models used by the QuantLib, you need to instantiate two 

classes:

•	 A class representing the option and the associated payoff: QuantLib 

provides a set of classes for this purpose. An example of such a class 

is PlainVanillaPayoff, which represents a common (vanilla) option 

and its associated payoff.

•	 A class representing the pricing method: This class encapsulates the 

algorithm that is used to compute the option price. This example 

is interested in the class representing the Black-Scholes algorithm, 

which is named the BlackScholes calculator.

These classes are exemplified in the following sample code, which includes a 

function that performs the computation and an associated test function.

First, you need to create a simple storage area, where the necessary information for 

the algorithm is stored. The BlackScholesParameters structure is used for this purpose. 

The structure contains the following fields:

•	 The spot price for the underlying instrument

•	 The strike price for the desired option

•	 The current interest rate

•	 The forward interest rate

•	 The volatility of the underlying instrument
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The structure can be represented in the sample C++ code as

struct BlackScholesParameters {

   double S0;

   double K;

   double rd;

   double rf;

   double tau;

   double vol;

};

Based on this information, it is possible to describe the use of Black-Scholes pricing 

method using a C++ function. The function, called callBlackScholes, receives as a 

parameter a single reference to a structure of type BlackScholesParameters.

void callBlackScholes(BlackScholesParameters  &bp)

{

   // Create a vanilla option (standard option type)

   boost::shared_ptr<PlainVanillaPayoff>

      vanillaPut(new QuantLib::PlainVanillaPayoff(Option::Put,bp.K));

   // Compute discount rates

   double cur_disc = std::exp(-bp.rd  * bp.tau);  // current discount rate

   double for_disc = std::exp(-bp.rf  * bp.tau);  // forward  discount rate

   double stdev    = bp.vol * std::sqrt(bp.tau);  // standard deviation

   �BlackScholesCalculator putPricer(vanillaPut, bp.S0, for_disc, stdev, 

cur_disc);

   // Print option Greeks

   cout << "value:" << putPricer.value() << endl;

   cout << "delta:" << putPricer.delta() << endl;

   cout << "gamma:" << putPricer.gamma() << endl;

   cout << "vega:"  << putPricer.vega(bp.tau)  << endl;

   cout << "theta:" << putPricer.theta(bp.tau) << endl;

   cout << "delta Fwd:" << putPricer.deltaForward() << endl;

   cout << "gamma Fwd:" << putPricer.gammaForward() << endl;

}

Chapter 14  Using C++ Libraries for Finance



357

This code works in the following way. The first instruction is necessary to create 

a new object describing the required option. This is done with the instantiation of an 

object of class PlainVanilllaPayoff, which indicates that the new option is of plain 

vanilla type (i.e., it is a standard option). The arguments passed are the type of option 

(either a call or a put) and the strike. These two parameters determine the type of 

option that you’re handling, independent of the current characteristics of the market. 

The object of type PlainVanillaPayoff is stored in a shared_ptr, which automatically 

manages the lifetime of the object, cleaning up the pointer at the end of the scope of the 

local variable.

The next part of the callBlackScholes function initializes some of the parameters 

necessary to use the options pricer. The parameters include the current and forward 

discount rate, which are computed from the given interest rate using an exponential 

transformation. Another important parameter is the standard deviation, which measures 

the volatility of the underlying instrument.

Once the parameters for the options pricing model are available, you can instantiate 

the BlackScholesCalculator class, passing as parameters the object that describes the 

option, the current price, and the other parameters discussed previously.

Using the object of type BlackScholesCalculator, you can retrieve important 

information about the option price. The most important information is clearly the value 

of option at a particular date, returned by the member function value. The option Greeks 

also provide key information that can be used to make decisions about the option. The 

Greeks calculated by the BlackScholesCalculator include the following:

•	 The delta: Represents the marginal change in value with respect to 

the price of the underlying

•	 The gamma: Represents the marginal change in delta with respect to 

the price of the underlying

•	 The vega: Represents the marginal change in value with respect to the 

change in volatility

•	 The theta: Represents the marginal change in value with respect to 

the change in remaining time
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You can test this code using a function that uses a few common values for each of the 

parameters and calls the callBlackScholes function. Here is an example of how this can 

be done:

void testBlackScholes()

{

   BlackScholesParameters bp;

   bp.S0 = 95.0;     // current price

   bp.K  = 100.0;    // strike

   bp.rd = 0.026;    // current rate of return

   bp.rf = 0.017;    // forward rate of return

   bp.tau= 0.62;     // tau (time greek)

   bp.vol= 0.193;    // volatility

   callBlackScholes(bp);

}

�Creating a C++ Interface
Based on the previous functions, it is easy to create a generic class that encapsulates 

a vanilla Black-Scholes pricing strategy. I called this class BlackScholesPricer, and it 

presents a simple interface that can be called without external references to QuantLib.

The class declaration contains a set of parameters that will be used in the 

constructor, as shown in the next code listing:

class BlackScholesPricer {

public:

   �BlackScholesPricer(bool call, double price, double strike, double tau, 

double r, double fr, double vol);

   BlackScholesPricer(const BlackScholesPricer &p);

   ~BlackScholesPricer();

   BlackScholesPricer &operator=(const BlackScholesPricer &p);

   double value();

   double delta();

   double gamma();
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   double theta();

   double vega();

private:

   double m_price;

   double m_strike;

   double m_tau;

   double m_rate;

   double m_frate;

   double m_vol;

   double m_isCall;

   boost::shared_ptr<QuantLib::BlackScholesCalculator> m_calc;

};

The constructor for BlackScholesPricer is responsible for initializing all the 

parameters with the passed arguments. Inside the constructor, you can see the code that 

initializes the payoff class. The option payoff can be a put or a call, depending on the 

value of the first parameter.

Later, you will see these parameters being used to create a new 

BlackScholesCalculator object. This object is stored in a shared pointer so that it can 

be used to answer questions about the model.

BlackScholesPricer::BlackScholesPricer(bool call, double price, double 

strike, double tau, double r, double fr, double vol)

:m_price(price),

m_strike(strike),

m_tau(tau),

m_rate(r),

m_frate(fr),

m_vol(vol),

m_isCall(call)

{

   boost::shared_ptr<QuantLib::PlainVanillaPayoff>

      m_option (new QuantLib::PlainVanillaPayoff(

                   �call ? QuantLib::Option::Call : QuantLib::Option::Put, 

strike));
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   // Compute discount rates

   double cur_disc = std::exp(-m_rate  * m_tau);  // current discount rate

   double for_disc = std::exp(-m_frate * m_tau);  // forward  discount rate

   double stdev    = m_vol * std::sqrt(m_tau);    // standard deviation

   �m_calc.reset(new QuantLib::BlackScholesCalculator(m_option, m_price, 

for_disc, stdev, cur_disc));

}

BlackScholesPricer::BlackScholesPricer(const BlackScholesPricer &p)

:m_price(p.m_price),

m_strike(p.m_strike),

m_tau(p.m_tau),

m_rate(p.m_rate),

m_frate(p.m_frate),

m_vol(p.m_vol),

m_isCall(p.m_isCall),

m_calc(p.m_calc)

{}

BlackScholesPricer::~BlackScholesPricer() {}

BlackScholesPricer &BlackScholesPricer::operator=(const BlackScholesPricer &p)

{

   if (this != &p)

   {

      m_price = p.m_price;

      m_strike = p.m_strike;

      m_tau = p.m_tau;

      m_rate = p.m_rate;

      m_frate = p.m_frate;

      m_vol = p.m_vol;

      m_isCall = p.m_isCall;

      m_calc = p.m_calc;

   }

   return *this;

}
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Using these definitions, the following member functions can be used to provide 

access to the results of the pricing algorithm. They rely on the m_calc member variable, 

which already contains this stored information.

double BlackScholesPricer::value() { return m_calc->value(); }

double BlackScholesPricer::delta() { return m_calc->delta(); }

double BlackScholesPricer::gamma() { return m_calc->gamma(); }

double BlackScholesPricer::theta() { return m_calc->theta(m_tau); }

double BlackScholesPricer::vega()  { return m_calc->vega(m_tau);  }

�Complete Code
Listing 14-1 shows the BlackScholesPrices class. It shows an example of how to create 

an interface for the Black-Scholes component in QuantLib.

Listing 14-1.  Implementation File BlackScholesPrices.cpp

#include <ql/quantlib.hpp>

#include <ql/pricingengines/blackcalculator.hpp>

//

// The BlackScholesPricer class provides an interface to the QuantLib

// pricer component

//

class BlackScholesPricer {

public:

   �BlackScholesPricer(bool call, double price, double strike, double tau, 

double r, double fr, double vol);

   BlackScholesPricer(const BlackScholesPricer &p);

   ~BlackScholesPricer();

   BlackScholesPricer &operator=(const BlackScholesPricer &p);
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   double value();

   double delta();

   double gamma();

   double theta();

   double vega();

private:

   double m_price;

   double m_strike;

   double m_tau;

   double m_rate;

   double m_frate;

   double m_vol;

   double m_isCall;

   boost::shared_ptr<QuantLib::BlackScholesCalculator> m_calc;

};

BlackScholesPricer::BlackScholesPricer(bool call, double price, double 

strike, double tau, double r, double fr, double vol)

:m_price(price),

m_strike(strike),

m_tau(tau),

m_rate(r),

m_frate(fr),

m_vol(vol),

m_isCall(call)

{

   boost::shared_ptr<QuantLib::PlainVanillaPayoff>

      �m_option (new QuantLib::PlainVanillaPayoff(call ? 

QuantLib::Option::Call : QuantLib::Option::Put, strike));

   // Compute discount rates

   double cur_disc = std::exp(-m_rate  * m_tau);  // current discount rate

   double for_disc = std::exp(-m_frate * m_tau);  // forward discount rate

   double stdev    = m_vol * std::sqrt(m_tau);    // standard deviation
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   �m_calc.reset(new QuantLib::BlackScholesCalculator(m_option, m_price, 

for_disc, stdev, cur_disc));

}

BlackScholesPricer::BlackScholesPricer(const BlackScholesPricer &p)

:m_price(p.m_price),

m_strike(p.m_strike),

m_tau(p.m_tau),

m_rate(p.m_rate),

m_frate(p.m_frate),

m_vol(p.m_vol),

m_isCall(p.m_isCall),

m_calc(p.m_calc)

{}

BlackScholesPricer::~BlackScholesPricer() {}

BlackScholesPricer &BlackScholesPricer::operator=(const BlackScholesPricer &p)

{

   if (this != &p)

   {

      m_price = p.m_price;

      m_strike = p.m_strike;

      m_tau = p.m_tau;

      m_rate = p.m_rate;

      m_frate = p.m_frate;

      m_vol = p.m_vol;

      m_isCall = p.m_isCall;

      m_calc = p.m_calc;

   }

   return *this;

}
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double BlackScholesPricer::value()

{

   return m_calc->value();

}

double BlackScholesPricer::delta()

{

   return m_calc->delta();

}

double BlackScholesPricer::gamma()

{

   return m_calc->gamma();

}

double BlackScholesPricer::theta()

{

   return m_calc->theta(m_tau);

}

double BlackScholesPricer::vega()

{

   return m_calc->vega(m_tau);

}

To compile this code, you need to install the QuantLib library for your platform and 

add that library to the project. For example, using the gcc compiler, you need to use  

the –lQuantLib option.

�Conclusion
Using good libraries is an important aspect of effective software development. Financial 

code, especially when options and derivatives are involved, requires the use of efficient 

and well-tested algorithms. For this reason, it is important that developers be acquainted 

with high-quality libraries that can be used to simplify the development process.
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In this chapter, you learned about some libraries, such as boost and QuantLib, which 

have been successfully used to create financial applications handling options and other 

derivatives. The first example was from the boost repository, which contains several 

special-purpose libraries that use modern C++ features. The odeint library in particular, 

which is contained in the boost repository, can be used to simplify the computation of 

solutions to ODEs.

Another important library used in the financial software community is QuantLib. 

This open source financial library provides many useful algorithms implemented in 

modern, efficient C++. You saw examples of common utilities provided by QuantLib. The 

most common classes are for date handling. These utility classes can handle business 

calendars, date intervals, and sequences in a way that makes it possible to handle 

financial applications.

You also saw how to use QuantLib to quickly create options and derivative models. 

The BlackScholesCalculator class encapsulates the solution to the Black-Scholes 

model. This model is the basis for most techniques that can be used to analyze prices 

and variations of values for financial derivatives.

The next chapter will cover additional algorithms that can be used to process more 

complex derivatives, with special attention to credit derivatives. These algorithms will be 

compared and implemented in C++.
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APPENDIX A

Features of C++20
C++ is a language in constant evolution. Since the first release in the 1980s, new 
concepts and techniques that started as research topics became an integral part of the 
language. The latest revision of the C++ standard is C++20, which is itself a major 
addition to previous standards such as C++11, C++14, and C++17. These updates to 
C++ are already part of major compilers, so it is important to understand what these 
modifications bring for developers.

In this appendix, I will provide a summary of the most important changes introduced 

in these recent C++ standards. You will learn about the following topics:

•	 Auto-typed variables: A syntax that allows automatic type detection

•	 Lambdas: Creating functions in place and sharing variables from a 

local environment

•	 User-defined literals: Creating literals with user-defined behavior

•	 Range-based for: A new form of the for loop which simplifies 

container manipulation

•	 Rvalue references: A new technique to implement move semantics 

into user-defined types

•	 New function declarator syntax:A syntax for function where the return 

type is automatically detected

•	 Delegating constructors: How to delegate class initialization to a 

single constructor

•	 Inheriting constructors: Directly using constructors defined in a 

parent class

•	 Generalized attributes: How to declare attributes for C++ elements 

using a unified syntax
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•	 Generalized constant expressions: Defining expressions that can be 

used at compilation time by other expression, including templates

•	 Null pointer constant: A new constant that uniquely defines a null 

pointer

•	 Right angle brackets: A simplification of template syntax, avoiding 

common confusions with the shift operator

•	 Initializer lists: A general way to perform initialization of C++ 

variables

�Automatic Type Detection
One of the main features of C++ is the use of types to check the program during 

compilation time. This feature, known as strong type checking, allows programmers to 

rely on the compiler to find many bugs that would take a lot of time to remove otherwise. 

It is generally accepted that static checking is a useful feature, especially for large-scale 

projects, where hundreds or even thousands of classes can be made available. With 

static type checking, programmers are relieved from the task of checking manually if the 

correct types are used.

Although type checking is so important for C++ practitioners, the need of naming 

types at each variable and function declaration has become too burdensome for some 

programmers. After all, every expression in C++ has a type, and with the introduction 

of containers and other templates, it becomes sometimes difficult to write the proper 

type of an expression. To avoid this problem, the C++ committee decided to use the auto 

keyword to allow for automatic type detection in C++ expressions. This feature was first 

introduced in C++11, but has been progressively extended through each standard until 

C++20.

Automatic type deduction frees programmers from the need to indicate the type 

of each variable when declaring it. The type deduction system works through the use 

of information that is already available to the compiler at the moment an expression is 

being parsed. For example, if a variable is created from a known constant, the compiler 

can easily determine its type. On the other hand, if a variable is initialized to the result 

of an expression, the compiler can also determine the type of the result and use it for the 

variable. Here are some simple examples:
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void autoExample()

{

    auto i = 1;          // this is an integer

    auto d = 2.0;        // this is a float

    auto d2 = d + 1;     // this is also a float

    auto str = "hello";  // this is a char *

    cout << "integer : " << i << " float: "

         << d2           << " string " << str << endl;

}

Here, the first, second, and fourth variables are initialized using constants, so the 

type is immediate. The third variable has its type determined through the result of the 

expression given as initializer.

Another area where auto variables are very useful is when working with templates. 

Many templates generate complex types, which are difficult to type and to remember. 

It is very useful to be able to avoid typing these types with the help of the auto keyword. 

Here is an example using an iterator to an STL container:

void autoTemporaryExample()

{

    std::vector<std::pair<int,std::string>> myVector;

    // Without auto

    for (std::vector< std::pair<int,std::string>>::iterator

         it = myVector.begin();

         it != myVector.end(); ++it)

    {

        // Do something here

    }

    // With auto

    for (auto it = myVector.begin(); it != myVector.end(); ++it)

    {

        // Same thing here

    }

}
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The first loop shows the type of the iterator used to visit all members of the container. 

It is even harder to type than the original template name. The second loop shows how to 

express the same thing using the auto keyword. Here, it is possible to avoid the name of 

the template, which makes it much easier to understand what the code is doing.

Another way in which the auto keyword is used is to determine the parameter types 

for template functions. This is a more recent use of auto, added in the C++20 standard, 

but it follows the same pattern: the type of the parameter is determined by the compiler 

as it determines this information from the actual parameters. Here is an example:

auto add_args(auto x, auto y) {

    return x + y;

}

int main() {

    int a = 10;

    double b = 20;

    auto res = add_args(a, b);

    return 0;

}

Notice that without the help of the auto operator, this would be declared in the 

following way:

template <class A, class B>

A add_args2(A x, B y)  {

    return x + y;

}

int main() {

    int a = 10;

    double b = 20;

    int  res = add_args2(a,b);

    return 0;

}
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�Lambdas
A lambda is a function that can be created on the spot, without the need for a separate 
top-level declaration. Lambda functions can, additionally, be allowed to retain references 
to variables that exist at the same level in which they are introduced. A lambda function 
can be saved in variables and passed to other functions, where they can be used as needed. 
The variables that have been saved in the context can be used even after the original block 
has finished. Here is a very simple example:

void lambdaExample()
{
    auto avg = [](int a, int b) { return (a + b) / 2; };

    cout << "the average of 3 and 5 is "  << avg(3, 5) << endl;
}

The syntax for lambda functions starts with an angle bracket. The return type doesn’t 
need to be specified, and it is deduced from the variable or expression in the return 
keyword. Here is an example where there is local variable capture.

void lambdaExample2()
{
    double factor = 2.5;
    auto scaledAvg = [&factor](int a, int b) {
        return factor * (a + b) / 2;
    };

    auto modifiedAvg = [&](int a, int b) { return scaledAvg(a, b); };

    cout << "the scaled average of 3 and 5 is "
         << scaledAvg(3, 5) << endl;
    cout << "this should be the same "
         << modifiedAvg(3, 5) << endl;
}

The example shows two lambda functions where there is variable capture. In the 
first function, the factor variable is captured and becomes available to be used inside the 
lambda function. The second example shows a lambda function where all local variables 
are captured (indicated by the [&] notation). In this case, any local variable can be used, 

including the scaledAvg variable.
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�User-Defined Literals
You are familiar with literals for standard types such as int, float, or char. These literal 

values allow one to initialize new variables as needed. C++11 introduces user-defined 

literals, where a literal can be manipulated to perform any kind of preprocessing. This is 

useful in the case that scalar numbers need to go though some kind of conversion before 

they are used as initializers.

The syntax used for user-defined literals is similar to other operators. The operator 

““ keyword is used to introduced the new literal format. Consider an example where you 

wish to define numeric literals that return the price in euros. This can be defined in the 

following way:

long double operator "" _eu(long double val)

{

    return val / 1.24;

}

Notice the signature that contains the name operator ””, followed by the suffix _eu. In 

this case, you’ll be using a fixed conversion value, but in general you could have a more 

complex scheme for conversion from dollars to euros. Finally, you can use this user-

defined literal in the following way:

void showUserDefinedLiterals()

{

    double price = 300; // price in dollars

    long double priceInEU =  300.0_eu;

    cout << " price in dollars: "  << price

    << " price in Euros: " << priceInEU << endl;

 }

Here, you first define a price without any conversion (in dollars). Then, you create 

a second variable that corresponds to the same quantity, but using the user-defined 

suffix _eu. Using this suffix, you will have a converted price in the priceInEU variable, as 

printed at the end of the showUserDefinedLiterals function.
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�Range-Based for
STL containers are some of the most used templates in any C++ system. These 

containers are versatile and can be used to perform a large number of operations to 

its components. In the previous versions of C++, it was possible to iterate through the 

components of a container using an auxiliary iterator variable, for example:

void loopExample1()

{

    std::vector<std::pair<double,std::string>> v;

    // Without auto

    �for (std::vector<std::pair<double,std::string>>::iterator it = 

v.begin();

         it != v.end(); ++it)

    {

        // Do something here

    }

}

Or you can use an auto variable to simplify the preceding code a little. Still, there 

is a lot of code necessary just to iterate over the elements of the container. The C++11 

standard introduces a simpler way to do this, with the container-oriented for loop. 

The syntax for this special case is simplified, so you don’t need to write the boundary 

conditions (begin() and end()) for the container. Here is the example from earlier, 

modified to use the new for loop.

void forLoopExample()

{

    std::vector<std::pair<double,std::string>> vectorOfPairs;

    for (auto &i : vectorOfPairs)

    {

        cout << " values are "

             << i.first << " and "

             << i.second << endl;

    }

}
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Notice how the vectorOfPairs variable is now used only once in the second part of 

the loop statement. The auto variable declaration avoids the need for a long template 

declaration, which helps to keep the notation easy to read.

�Rvalue References
One of the common performance issues with the use of containers and strings in C++ is 

the fact that temporary variables need to be created in so many places:

•	 When moving elements between two containers, it is frequently 

necessary to perform a copy and then delete the old elements.

•	 When implementing operators, it is often necessary to return new 

objects each time an operation is performed, since the argument to 

an operator (such as <<) may very well be a temporary object.

•	 When returning objects from functions, it becomes necessary to copy 

the return object to a temporary, since it belonged to a function that 

is finishing. If this temporary object is immediately assigned to a new 

variable, then the temporary object is not used.

To help developers to tackle these issues, C++ designers decided to introduce a 

notation for variables that are not named and that cannot be assigned outside of the 

current context. Such variables are known as rvalues, because in any expression they 

can only appear in the right side of the assignment. Examples of rvalues are immediate 

values passed as parameters to functions and temporaries created during the evaluation 

of expressions, among others.

The syntax for rvalues is similar to references, but with the && sign used instead of a 

single & sign. Such declarations are useful mainly in the list of arguments for a function, 

as well as in the return. Here are some examples of their use:

#include <string>

using std::string

void rvalExamp(string &&s)

{

    cout << " string is " << s << endl;

}
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void rvalExamp(string &s)

{

    cout << " string lvalue: " << s << endl;

}

int main()

{

    rvalExamp("a test string");  // calls rval version

    string a = "string a ";

    string b = "string b ";

    rvalExamp(a + b);            // calls rval version

    string c = "another example";

    rvalExamp(c);                // calls lval version

    return 0;

}

In this example, any string (including temporary values) can be passed to the 

function rvalExamp. The rvalue may be used with the knowledge that its temporary 

value will be destroyed at the end of the function. On the other hand, you can also have 

a version of the function that receives a standard lvalue reference. This version of the 

function is called only when a lvalue is used as parameter (in this case it happens when 

the parameter is a named variable).

An important case where rvalues may be useful is in the assignment operator. If the 

parameter to the operator is a rvalue, then it is usually possible to optimize it by reducing 

the number of allocations. This is shown in the following example:

#include <vector>

using std::vector;

class RValTest {

public:

    RValTest(int n);

    RValTest(const RValTest &x);

    ~RValTest();

    RValTest &operator=(RValTest &&p);  // this is for RVAL

    RValTest &operator=(RValTest &p);   // this is for LVAL

private:
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    vector<int> data;

};

RValTest::RValTest(int n)

: data(n, 0)

{

}

RValTest::RValTest(const RValTest &p)

: data(p.data)

{

}

RValTest::~RValTest()

{

}

RValTest &RValTest::operator=(RValTest &&p)

{

    data.swap(p.data);

    cout << " calling rval assignment " << endl;

    return *this;

}

RValTest &RValTest::operator=(RValTest &p)

{

    if (this != &p)

    {

        data = p.data;

    }

    cout << " calling normal assignment " << endl;

    return *this;

}

void useRValTest()

{

    RValTest test(3);

    RValTest test2(4);
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    test2 = test;  // use standard assignment

    test = RValTest(5);  // use rval assignment

}

The class RValTest knows when the assignment operator is called with a temporary. 

In this case, you can just swap the elements of the data array, instead of performing 

expensive data copy.

�New Function Declarator Syntax and decltype
You have seen that the keyword auto was repurposed to allow for automatic type 

deduction or variables. However, once this change has been made to how variables 

are declared, soon you will also need to return such values. For example, consider the 

following function:

void autoFunctExample1(vector<int> &x)

{

    auto iterator = x.begin();

    // Do something with iterator

}

This works fine, and you don’t need to know the exact template type returned 

by begin() to use it. However, a big problem arises if you need to return the variable 

iterator. In that case, you need to somehow determine the type of iterator just to declare 

the function, since the return type must be part of the signature.

To help solving this problem, C++11 introduced a new form of function declaration, 

which uses auto instead of the name of the type. Still, do maintain the type checking 

system the compiler needs to determine the type of a function. This is where the 

decltype keyword comes in. The decltype operator returns the type of any expression 

that is given as a parameter. Similarly to how sizeof returns information from a type, 

decltype returns the type for a variable or other general expression.

Using decltype, you can now add a return type declaration to a function after the -> 

operator, which may only appear right after the list of arguments to the function. Since at 

this point the type of the arguments to the function are known, you can use them along 

with decltype to define the return type. Here is an example based on the code presented 

earlier:

auto autoFuncExample(vector<int> &x) -> decltype(x.begin())
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{

    auto iterator = x.begin();

    // Do something with iterator

    return iterator;

}

Now you can return the iterator without knowing its exact type, since it is 

automatically calculated during compilation time.

The decltype operator is not restricted to appear in the declaration of a return type. 
You can use anywhere a type may be required, although many times it can be 
substituted by the auto keyword. For example, the variable declaration auto x = 1 
is equivalent to decltype(1) x = 1. But decltype can be used in other contexts, 
such as sizeof(decltype(x.begin())), to determine the size of a deduced 
type, where auto would not work.

�Delegating Constructors
In older versions of C++, the problem of creating and maintaining initializers along with 

constructors was well known. For example, you needed to initialize all scalar variables 

in the same order that it appears in the class declaration. C++11 avoids this issue by 

delegating the task of data initializing to other constructors.

A delegating constructor is simply one that can be used by other constructors, 

to avoid the repetition of data initialization statements. For example, suppose you 

have a class Dimensions with three member variables. You can have three different 

constructors, each one accepting a different number of components for this dimension 

object. To avoid repeating yourself during the initialization part, you can create a single 

initializer constructor and call this constructor from the others. Here is a possible 

implementation using C++11:

class Dimensions {

public:

    Dimensions();

    Dimensions(double x);

    Dimensions(double x, double y);

    Dimensions(double x, double y, double z);
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private:

    double m_x;

    double m_y;

    double m_z;

};

Dimensions::Dimensions()

: Dimensions(0, 0, 0)

{

}

Dimensions::Dimensions(double x)

: Dimensions(x, 0, 0)

{

}

Dimensions::Dimensions(double x, double y)

: Dimensions(x, y, 0)

{

}

Dimensions::Dimensions(double x, double y, double z)

: m_x(x),

  m_y(y),

  m_z(z)

{

}

The constructor Dimensions(double x, double y, double z) is the only one that 

can access the member variables directly, while the others are only using it to perform 

indirect initialization.

�Inheriting Constructors
Another common problem in earlier versions of C++ was the handling of constructors in 

derived classes. Sometimes, a constructor derived from a class has constructors that are 

identical to the constructors in the superclass. In this case, it was necessary to replicate 
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all constructors in the subclass so that it would become available to clients. It seems 

clear that this is an undesirable code replication, and it was addressed by the C++11 

standard. Now, it is possible to employ the using keyword to introduce the constructors 

existing in the base class. Here is an example, using the Dimensions class as its base:

class DimensionsDerived : public Dimensions {

public:

    using Dimensions::Dimensions;

};

int main()

{

    DimensionsDerived(1, 2, 4);

}

The new class can be created using the same constructors as the parent, since it 

contains the using declaration for the base constructor.

�Generalized Attributes
Attributes provide a standard syntax for the addition of annotations to elements 

contained in C++ code. Most compilers use nonstandard mechanisms to determine 

the attributes of certain elements. For example, if a function can be exported or not is 

defined by attributes, which varied for each compiler vendor.

C++14 introduced a new syntax for attributes that can be used by any compiler 

vendor. The attributes are introduced inside double brackets and contain annotation for 

the element that is syntactically next to the attribute. Here is an example:

struct [[exported]] AttribSample

{

    int memberA;

    [[gnu::aligned (16)]]

    double memberB;

};
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Note T he list of available attributes is specific to each compiler. However, at 
least for gcc it is possible to write custom plug-ins that are able to process these 
attributes. For example, suppose that you create a plug-in to process GUI-based 
classes in your code base. Running gcc with that plug-in will let you to perform 
actions for each GUI class, such as generating additional code, creating resources 
files to be used during runtime, and other related tasks.

�Generalized Constant Expressions
In modern C++, we have a great emphasis on the use of templates and related compile-

time programming techniques. The STL and many other well-known libraries, such 

as boost, depend heavily on templates. However, since template-based operations 

are compile time by definition, they introduce the need for constant, compile-time 

evaluated expressions. Such expressions have in common the fact that they evaluate to 

constant values, so that all the results will be available at compilation time.

While normal C++ code can involve both runtime and compilation-time expressions, 

it useful to guarantee that the value in a particular function is completely evaluated at 

compilation time. This cannot be guaranteed with traditional function, however, which 

motivated the standards committee to introduce constant expressions as a compiler-

enforced concept.

To guarantee that a function will evaluate only to constants that are available at 

compiler time, you should use the new constexpr keyword. When this keyword is added 

before a function declaration, the compiler will force its evaluation and emit an error 

if the included expressions cannot be calculated at compile time. Here is a simple 

example:

struct TestStruct {

    int a;

    char b;

    double c;

};

template <class T>

constexpr int testDataSize(T)
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{

    return sizeof(T);

}

constexpr int minTestSize()

{

    return 2 * testDataSize(TestStruct()) + 1;

}

The testDataSize function just shows how easy it is to create a compile-time 

function. The return value calculated in the first function is the size of a test data 

structure, which can later be used by other constant calculations. The second function 

just calculates what is considered the minimum size for the test data in the application. 

Results such as the ones presented earlier can be freely used on templates, as a way to 

perform more complex calculations.

�Null Pointer Constant
A null pointer is a pointer that doesn’t correspond to any valid address in the target 

machine. Traditionally, null pointer values have been used to indicate that a pointer 

is not in use. For functions return values, this usually means that the desired pointer is 

invalid, among other possible uses.

C++ inherited from C the idea that null pointers are equivalent to the constant 

zero, since this is an invalid pointer value in most computer architectures. In fact, the 

preprocessor macro NULL is defined in previous versions of C and C++ as 0. The fact 

that the 0 value can be confused with NULL in a numeric context, however, is one of 

the problems inherent to this definition. To simplify the rules concerning null pointers, 

the C++ committee decided to introduce a new keyword, nullptr, which can only be 

interpreted as a pointer and not an integer or any other type that is related to the 0 

constant.

void *testNull()

{

    int *pi = new int;

    if (pi == nullptr)
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    {

        return nullptr;

    }

    // *pi = 1 + nullptr; // this doesn't work, nullptr is not an integer

    return pi;

}

The preceding code checks if a newly allocated variable is null. Notice that the 

nullptr value cannot be used to simultaneously initialize an integer variable: it can only 

be used in a pointer context.

�Defaulted and Deleted Member Functions
Another new feature in C++ is the ability to clearly determine if a class will use or 

disallow any of the default member functions provided by the compiler. Remember that 

there are four member functions automatically provided when a class is created:

•	 The default constructor

•	 The copy constructor

•	 The destructor

•	 The assignment operator

Standard practice indicates that you should define these functions for every new 

type, as you can see in the examples presented in this book. However, C++ gives another 

option: you can use the default and delete keywords to determine which of these 

member functions can be used by default (with the version created by the compiler) and 

which versions should be discarded, for example:

class TestDefaults {

public:

    TestDefaults() = default;

    TestDefaults(int arg);

    TestDefaults(const TestDefaults &) = delete;

    // Other member functions here

};
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This class uses a default constructor, whose definition is written automatically 

by the compiler, even though it has a nondefault constructor that receives a single 

integer argument. This was not possible in previous versions of C++, where you could 

either accept the default constructor or write it again in case you wanted two or more 

constructors. Notice that you can, at the same time, reject the default copy constructor. 

Therefore, the preceding declaration directly indicates that the type cannot be copied.

Another useful feature of default member functions is that you can introduce virtual 

destructors without the need to write one. Remember that classes that include virtual 

member functions also require virtual destructors in order to clean up resources in 

each of the levels of the class hierarchy. The standard way of doing this is introducing 

an empty virtual destructor, in order to allow for virtual destructors in the subclasses. In 

C++11, you can use the default keyword to provide a default, virtual destructor. In the 

previous example, this could be added in the following way:

class TestDefaults {

public:

    TestDefaults() = default;

    TestDefaults(int arg);

    virtual ~TestDefaults() = default;

    TestDefaults(const TestDefaults &) = delete;

    // Other member functions here

};

Notice that you don’t need to explicitly write the destructor, since it will use the 

default implementation. The derived classes, however, will enjoy the use of a virtual 

destructor due to the definition in the base class.

�Initializer Lists
One of the confusing aspects of C++ syntax is initialization. Different objects, such as 

integers, structures, classes, and arrays, have slightly different ways to be initialized. 

C++11, while maintaining the previous methods for variable initialization, introduces a 

new way to perform initialization that is much more regular and can be applied to any 

object in the language.

The syntax for initialization lists uses braces to surround one or more constants 

or variables. These elements are then applied to the new variable and interpreted 

according to its type. Here are a few examples:
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void initializationTest()

{

    int x {}; // equivalent to int x = 0;

    int y { 0 };  // same as above

    const char *s { "var"  };

    double d { 2.4 };

    struct StrTest {

        int a;

        double d;

        char c;

    };

    StrTest structVal { 2, 4.2, 'f' };

    cout << " values are "  << x << "  " << y << " "  << s

        << " "  << d << " " << structVal.a << endl;

    class AClass {

    public:

        AClass(int v) : m_val(v) {}

        int m_val;

    };

    AClass obj = { 3 } ;

}

Notice that all these values can be easily initialized using the brace notation. Among 

the advantages of this strategy is the fact that you can also initialize containers (such as 

vectors) using lists of values enclosed in braces. Here is an example of this feature:

#include <map>

#include <vector>

Using std::vector;

using std::map;

void containerInitialization()

{

    vector<int> vi = { 1, 3, 5, 7, 9, 11 };
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    for (auto &v : vi)

    {

        cout << v << " ";

    }

    map<int,double> m = { { 2, 3.0}, {4, 5.0} };

    for (auto &v : m)

    {

        cout << v.first << " " << v.second << " ";

    }

}

You can see from the preceding example how initialization lists can be effectively 

used to pass data to standard containers found in the STL. Most containers in C++11 have 

one or more constructors that can receive initialization lists. Finally, you can also create 

classes that receive lists of parameters, using the class std::initializer_list. The compiler will 

automatically fill the initializer_list container with the values passed to the constructor.

class MyClass {

public:

    MyClass(std::initializer_list<int> args);

    vector<int> m_vector;

};

MyClass::MyClass(std::initializer_list<int> args)

{

    m_vector.insert(m_vector.begin(), args.begin(), args.end());

}

void useClassInitializer()

{

    MyClass myClass = { 2, 5, 6, 22, 34, 25 };

    for (auto &v : myClass.m_vector)

    {

        cout << v << " ";

    }

}
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