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Introduction

On Wall Street, the use of algorithmic trading and other computational techniques has
skyrocketed in the last few years, as can be seen from the public interest in automated
trading as well as the profits generated by these strategies. This growing trend
demonstrates the importance of using software to analyze and trade markets in diverse
areas of finance. One particular area that has been growing in importance during the last
decade is options and derivatives trading.

Initially considered only as a niche investment strategy, derivatives have become
one of the most common instruments for investors in all areas. Likewise, the interest in
automated trading and analysis of such instruments has also increased considerably.

Along with scientists and economists, software engineers have greatly contributed
to the development of advanced computational techniques using financial derivatives.
Such techniques have been used at banks, hedge funds, pension funds, and other
financial institutions. In fact, every day new systems are developed to give a trading
advantage to the players in this industry.

This books attempts to provide the basic programming knowledge needed by C++
programmers working with options and derivatives in the financial industry. This is a
hands-on book for programmers who want to learn how C++ is used to develop solutions
for options and derivatives trading. In the book’s chapters, you'll explore the main
algorithms and programming techniques used in the implementation of systems and
solutions for trading options and other derivatives.

Because of stringent performance characteristics, most of these trading systems are
developed using C++ as the main implementation language. This makes the topic of this
book relevant to everyone interested in acquiring the programming skills necessary in
the financial industry.

In Options and Derivatives Programming in C++20, I cover the features of the language
that are more frequently used to write financial software for options and derivatives. These
features include the STL, templates, functional programming, and support for numerical
libraries. New features introduced in the latest updates of the C++ standard are also
covered, including additional functional techniques such as lambda functions, automatic
type detection, custom literals, and improved initialization strategies for C++ objects.
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I also provide how-to examples that cover the major tools and concepts used to
build working solutions for quantitative finance. The book teaches you how to employ
advanced C++ concepts as well as the basic building libraries used by modern C++
developers, such as the STL, Boost, and QuantLib. I also discuss how to create correct
and efficient applications, leveraging knowledge of object-oriented and template-based
programming. [ assume only a basic knowledge of C and C++. Throughout this book, a
number of more advanced concepts, already mastered by experienced developers, will
be introduced as needed.

In the process of writing this book, I was also concerned with providing value for
readers who are trying to use their current programming knowledge in order to become
proficient at the style of programming used in large banks, hedge funds, and other
investment institutions. Therefore, the topics covered in the book are introduced in a
logical and structured way. Even novice programmers will be able to absorb the most
important topics and competencies necessary to develop in C++ for the problems
occurring on the analysis of options and other financial derivatives.

In this book, we also discuss features introduced in the latest international standard,
C++20. In this version of the standard, a number of simplifications and extensions of the
core C++ language have been approved. You will learn about many of the features in the
new standard, with examples to illustrate each major concept. An appendix has been
included, with detailed information about standard features added to C++ during the
last decade.

Audience

This book is intended for readers who already have a working knowledge of programing
in C, C++, or another mainstream language. These are usually professionals or advanced
students in computer science, engineering, and mathematics, who have interest in
learning about options and derivatives programming using the C++ language, for
personal or for professional reasons. The book is also directed at practitioners of C++
programming in financial institutions, who would use the book as a ready-to-use
reference of software development algorithms and best practices for this important area
of finance.
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Many readers are interested in a book that would describe how modern C++
techniques are used to solve practical problems arising when considering options on
financial instruments and other derivatives. Being a multi-paradigm language, C++
usage may be slightly different in each area, so the skills that are useful for developing
desktop applications, for example, are not necessarily the same ones used to write high-
performance software.

A large part of high-performance financial applications are written in C++, which
means that programmers who want to enter this lucrative market need to acquire
a working knowledge of specific parts of the language. This book attempts to give
developers who want to develop their knowledge effectively this choice, while learning
one of the most sought-after and marketable skillsets for modern financial application
and high-performance software development.

This book is also targeted at students and new developers who have some
experience with the C++ language and want to leverage that knowledge into financial
software development. This book is written with the goal of reaching readers who need
a concise, algorithms-based strategy, providing basic information through well-targeted
examples and ready-to-use solutions. Readers will be able to directly apply the concepts
and sample code to some of the most common problems faced regarding the analysis of
options and derivative contracts.

What You Will Learn

Here is a sample of topics that are covered in the following chapters:

o Fundamental problems in the options and derivatives market
e Options market models
e Derivative valuation problems
o Trading strategies for options and derivatives

e Pricing algorithms for derivatives
e Binomial method
o Differential equations method

e Black-Scholes model

xvii
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Quantitative finance algorithms for options and derivatives
o Linear algebra techniques

o Interpolation

e (Calculating roots

o Numerical solution for PDEs

Important features of C++ language as used in quantitative financial

programming, such as
o Templates

e STL containers

o STLalgorithms

e Boostlibraries

¢ QuantLib

o New features of C++20

Book Contents

Here is a quick overview of the major topics covered in each chapter:

xviii

Chapter 1—“Options Concepts”: An option is a standard financial
contract that derives its value from an underlying asset such as a
stock. Options can be used to pursue multiple economic objectives,
such as hedging against variations on the underlying asset, or
speculating on the future price of a stock. Chapter 1 presents the
basic concepts of options, including their advantages and challenges.
It also explains how options can be modeled using C++. The main
topics covered in this chapter are as follows:

e Basic definitions of options

An introduction to options strategies

Describing options with Greeks

Sample code for options handling
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Chapter 2—“Financial Derivatives”: A derivative is a general term
for a contract whose price is based on an underlying asset. In the
previous decades, the financial industry created and popularized a
large number of derivatives. Pricing and trading these derivatives is
a large part of the work performed by trading desks throughout the
world. Derivatives have been created based on diverse assets such
as foreign currency, mortgage contracts, and credit default swaps.
This chapter explores this type of financial instrument and presents
a few C++ techniques to model specific derivatives. The main topics
covered in this chapter are as follows:

e Credit default swaps

o Forex derivatives

o Interest rate derivatives
e Exotic derivatives

Chapter 3—“Basic C++ Algorithms”: To become a proficient C++
developer, it is essential to have good knowledge of the basic
algorithms used in your application area. Some basic algorithms for
tasks such as vector processing, date and time handling, and data
access and storage are useful in almost all applications involving
options and other financial derivatives. This chapter surveys such
algorithms and their implementation in C++, including the following
topics:

o Date and time handling
e Vector processing

e Graphs and networks

o Fast data processing

Chapter 4—“Object-Oriented Techniques”: For the last 30 years,
object-oriented techniques have become the standard for software
development. Since C++ fully supports OO programming, it is
imperative that you have a good understanding of OO techniques in
order to solve the problems presented by options and derivatives.

Xix
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I present a summary of what you need to become proficient in the
relevant OO techniques used in the financial industry. Some of
the topics covered in this chapter are as follows:

e Problem partitioning

o Designing solutions using OO strategies
¢ 0O implementation in C++

¢ Reusing OO components

o Chapter 5—“Design Patterns for Options Processing”: Design
patterns are a set of common programming practices that can be
used to simplify the solution of recurring problems. With the use
of OO techniques, design patterns can be cleanly implemented as
a set of classes that interact toward the solution of a common goal.
In this chapter, you learn about the most common design patterns
employed when working with financial options and derivatives, with
specific examples. It covers the following topics:

o The importance of design patterns
o Factory pattern

e Visitor pattern

e Singleton pattern

e Less common patterns

o Chapter 6—“Template-Based Techniques”: C++ templates allow
programmers to write code that works without modification on
different data types. Through the careful use of templates, C++
programmers can write code with high performance and low
overhead, without the need to employ more computationally
expensive object-oriented techniques. This chapter explores a few
template-oriented practices used in the solution of options- and
derivatives-based financial problems:

e Motivating the use of templates

o Compile-time algorithms
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o Containers and smart pointers
o Template libraries

Chapter 7—“STL for Derivatives Programming”: Modern financial
programming in C++ makes heavy use of template-based algorithms.
Many of the basic template algorithms are implemented in the
standard template library (STL). This chapter discusses the STL and
how it can be used in quantitative finance projects, in particular

to solve options and financial derivative problems. You will get a
clear understanding of how the STL interacts with other parts of the
system, and how it imposes a certain structure on classes developed

in C++.

o STL-based algorithms

e Functional techniques on STL
o STL containers

o Smart pointers

Chapter 8—“Functional Programming Techniques”: Functional
programming is a technique that focuses on the direct use of
functions as first-class objects. This means that you are allowed to
create, store, and call functions as if they were just another variable
of the system. Recently, functional techniques in C++ have been
greatly improved with the adoption of the new standard (C++20),
particularly with the introduction of lambda functions. The following
topics are explored in this chapter:

e Lambdas

e Functional templates

o Functions as first-class objects

e Managing state in functional programming

e Functional techniques for options processing

xxi
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xxii

Chapter 9—“Linear Algebra Algorithms”: Linear algebra techniques
are used throughout the area of financial engineering and, in
particular, in the analysis of options and other financial derivatives.
Therefore, it is important to understand how the traditional methods
of linear algebra can be applied in C++. With this goal in mind, I
present a few examples that illustrate how to use some of the most
common linear algebra algorithms. In this chapter, you will also learn
how to integrate existing LA libraries into your code.

o Implementing matrices

e Matrix decomposition

e Computing determinants

e Solving linear systems of equations

Chapter 10— “Algorithms for Numerical Analysis”: Equations are
some of the building blocks of financial algorithms for options and
financial derivatives, and it is important to be able to efficiently
calculate the solution for such mathematical models. In this chapter,
you will see programming recipes for different methods of calculating
equation roots and integrating functions, along with explanations

of how they work and when they should be used. I also discuss
numerical error and stability issues that present a challenge for
developers in the area of quantitative financial programming.

e Basic numerical algorithms

e Root-finding algorithms

o Integration algorithms

e Reducing errors in numerical algorithms

Chapter 11—“Models Based on Differential Equations”: Differential
equations are at the heart of many techniques used in the analysis
of derivatives. There are several processes for solving and analyzing
PDEs that can be implemented in C++. This chapter presents
programming recipes that cover aspects of PDE-based option
modeling and application in C++. Topics covered include the
following:
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o Basic techniques for differential equations

e Ordinary differential equations

e Partial differential equations

o Numerical algorithms for differential equations

Chapter 12—“Basic Models for Options Pricing”: Options pricing is
the task of determining the fair value of a particular option, given a
set of parameters that exactly determine the option type. This chapter
discusses some of the most popular models for options pricing. They
include tree-based methods, such as binomial and trinomial trees.
This chapter also discusses the famous Black-Scholes model, which
is frequently used as the basis for the analysis of most options and
derivative contracts.

¢ Binomial trees

e Trinomial trees

¢ Black-Scholes model

o Implementation strategies

Chapter 13— “Monte Carlo Methods”: Among other programming
techniques for equity markets, Monte Carlo simulation has a special
place due to its wide applicability and easy implementation. These
methods can be used to forecast prices or to validate options buying
strategies, for example. This chapter provides programming recipes
that can be used as part of simulation-based algorithms applied to
options pricing.

o Probability distributions

e Random number generation
o Stochastic models for options
o Random walks

o Improving performance

xxiii
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o Chapter 14—“Using C++ Libraries for Finance”: Writing good financial
code is not an individual task. You frequently have to use libraries
created by other developers and integrate them into your own work. In
the world of quantitative finance, a number of C++ libraries have been
used with great success. This chapter reviews some of these libraries
and explains how they can be integrated into your own derivative-
based applications. Some of the topics covered include the following:

o Standard library tools
¢ QuantLib

e Boostmath

e Boostlambda

e Appendix A—a quick summary of the changes introduced by C++20,
for your reference.

Example Code

The examples given in this book have all been tested on MacOS X using the Xcode

7 IDE. The code uses only standard C++ techniques, so you should be able to build

the given examples using any standards-compliant C++ compiler that implements the
C++20 standard. For example, gcc is available on most platforms, and Microsoft Visual
Studio will also work on Windows. The clang compiler is another option that is available
in multiple platforms, including Windows, MacOS, and Linux.

If you use MacOS X and don’t have Xcode installed in your computer yet, you
can download it for free from the Apple store or from the Apple developer website at
http://developer.apple.com.

If you instead prefer to use gcc on Windows, you can download the MinGW
distribution from the website waw.mingw.org.

Once MinGW is installed, start the command prompt from the MinGW program
group in the Start menu. Then, you can type gcc to check that the compiler is properly
installed.

To download the source code for all examples in this book, visit the web page of the
author athttp://coliveira.net, or navigate to waw.apress.com/9781484263143 and
click the Download Source Code button.
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CHAPTER 1

Options Concepts

In the last few decades, software development has become an integral part of the
financial and investment industry. Advances in trading infrastructure, as well as the
need for increased volume and liquidity, have prompted financial institutions to adopt
computational techniques as part of their day-to-day operations. This means that
there are many opportunities for computer scientists specializing in the design and
development of automated strategies for trading and analyzing stocks, options, and
other financial derivatives.

Options are among the several investment vehicles that are currently traded using
automated methods, as you will learn in the following chapters. Given the mathematical
structure and properties of options and related derivatives, it is possible to explore
their features in a controlled way, which is ideal for the application of computational
algorithms. In this book, I present many of the computational techniques currently used
to develop strategies in order to trade options and other derivatives.

An option is a standard financial contract that derives its value from an underlying
asset such as common stock, foreign currency, a basket of stocks, or a commodity.
Options can be used to pursue multiple economic objectives, such as hedging against
large variations on the underlying asset, or speculating on the future price of a stock.
This chapter presents the basic concepts of options, along with supporting definitions.
These concepts will be used in the next few chapters to describe algorithms and
strategies with their implementation in C++20. In this chapter, I also give an overview
of the use of C++ in the financial industry and how options can be modeled using this
language.
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CHAPTER 1 OPTIONS CONCEPTS

The following concepts are explored in the next sections:

e Basic definitions: You will learn fundamental definitions about
option contracts and how they are used in the investment industry.

o Fundamental option strategies: Due to their flexibility, options can
be combined in a surprisingly large number of investment strategies.
You will learn about some of the most common option strategies and
how to model them using C++.

e Option Greeks: One of the advantages of options investing is that it
promotes a very analytical view of financial decisions. Each option
is defined by a set of mathematical quantities called Greeks, which
reflect the properties of an option contracts at each moment in time.

o Delta hedging: One of the ways to use options is to create a hedge for
some other underlying asset positions. This is called delta hedging,
and it is widely used in the financial industry. You will see how this
investment technique works and how it can be modeled using C++.

Basic Definitions

Let’s start with an overview of concepts and programming problems presented by
options in the financial industry. Options are specialized trading instruments and
therefore require their users to be familiar with a number of details about their
operation. In this section, I introduce some basic definitions about options and their
associated ideas. Before starting, take a quick look at Table 1-1 for a summary of the most
commonly used concepts. These concepts are defined in more detail in the remaining
parts of this section.
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Table 1-1. Basic Concepts in Options Trading

Concept Definition

Call option An option contracts that gives its owner the right to buy the underlying asset
for a predetermined price during certain time period.

Put option An option contracts that gives its owner the right to sell the underlying asset
for a predetermined price during certain time period.

Underlying Asset whose price is used as the base of the option contracts.

Strike price The price at which option owners can buy or sell the underlying asset under
the duration of the option contracts.

Expiration The last date of validity for the option contracts.

Settlement The act of liquidating the option contracts at the expiration date.

Intrinsic value

Time value

Break-even price

Exercise

American option

European option

ATM

0T™

™

Amount of option value that is directly derived from the underlying price.

Amount of option value that is derived only from the time remaining in the
option contracts.

The price at which an investor will start to make a profit in the option.

The act of buying or selling the option underlying under the price determined
by the option contracts.

An option style where their owners can exercise the option contracts at any
moment between option purchase and option expiration.

An option style where option owners can exercise the option contracts only
at expiration time.

(At the money): Term that refers to options that have a strike price close to
the current price for the underlying.

(Out of the money): Term that refers to options that have a strike price above
(for calls) or below (for puts) the current price of the underlying asset. These
options have no intrinsic value.

(In the money): Term that refers to options that have a strike price below
(for calls) or above (for puts) the current price of the underlying asset. These
options have an intrinsic value.




CHAPTER 1 OPTIONS CONCEPTS

Options can be classified according to several criteria. The features of these options
determine every aspect of how they can be used, such as the quantity of underlying
assets, the strike price, and the expiration, among others. There are two main types of
option contracts: calls and puts. A call is a standard contract that gives its owner the right
(but not the obligation) to buy an underlying instrument at a particular price. Similarly, a
put is a standard contract that gives its owner the right (but not the obligation) to sell an
underlying instrument at a predetermined price.

The strike price is the price at which the option can be exercised (i.e., the underlying
can be bought or sold). For example, a call for IBM stock with strike $100 gives its owner
the right to buy IBM stock at the price of $100. If the current price of IBM is greater than
$100, the owner of such an option has the right to buy the stock at a price that is lower
than the current price, which means that the call has a higher value as the value of IBM
stock increases. This situation is exemplified in Figure 1-1. If the current price is lower
than $100 at expiration, then the value of the option is zero, since there is no profit in
exercising the contract. Clearly, the profit/loss calculation will depend on the price
originally paid for the option and the final price at expiration.

Option Profit at Expiration
10 ; . -

Profit
o O N A o o

90 95 100 105 110
Price

Figure 1-1. Profit chart for a call option

As you have seen in this example, if you buy a call option your possible gain is
unlimited, while your losses are limited to the value originally paid. This is advantageous
when you're trying to limit losses in a particular investment scenario. As long as you are
okay with losing a limited amount of money paid for the option, you can profit from the
unlimited upside potential of a call (if the underlying grows in price). Put options don’t
have unlimited profit potential since the maximum gain happens when the underlying
price is zero. However, they still benefit from the well-defined, limited loss vs. the
possible large gains that can be incurred.

4
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Expiration: The expiration is the moment when the option contracts ends its
validity and a final value exchange can be performed. Each option will have a particular,
predefined expiration. For example, certain index-based options expire in the morning
of the third Friday of the month. Most stock-based options expire in practice at the end
of the third Friday of the month (although they will frequently list the Saturday as the
formal expiration day). More recently, several weekly-based option contracts have been
made available for some of the most traded stocks and indices. And finally, a few highly
liquid trading instruments (such as S&P index funds) have expirations twice a week.
Each option contracts makes it clear when expiration is due, and investors need to plan
accordingly on what to do before expiration date.

Settlement: The settlement is the agreed-on result of the option transaction at
expiration, the specific time when the option contracts expires. The particular details of
settlement depend on the type of underlying asset. For example, options on common
stock settle at expiration day, when the owner of the option needs to decide to sell
(for puts) or buy (for calls) a certain quantity of stock. For index-based options, the
settlement is normally performed directly in cash, determined as the cash equivalent
for a certain number of units of the index. Some options on futures may require the
settlement on the underlying commodity, such as grain, oil, or sugar. Investors need
to be aware of the requirement settlement for different option contracts. Trading
brokerages will typically let investors know about the steps required to settle the options
they’re currently holding.

Selling options: An investor can buy or sell a call option. When doing so, it is
important to understand the difference between these two scenarios. For option buyers,
the goal is to profit from the possible increase (in the case of calls) or decrease (in the
case of puts) in value for the underlying. For option sellers, on the other hand, the goal
is to profit from the lack of movement (increase for calls or decrease for puts). So, for
example, if you sell calls against a stock, the intent is to profit in the case that the stock
decreases in price or stays at a price lower than the strike price. If you sell a put option,
the goal is to profit when the stock increases in price or stays higher than the strike price
until expiration.

Option exercise: An option contracts can be used to buy or sell the underlying asset
as dictated by the contract specification. This process of using the option to trade the
underlying asset is called option exercising. If the option is a call, you can exercise it and
buy the underlying asset at the specified price. If the option is a put, you can use the
option to sell the underlying asset at the previously specified price. The price at which
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the option is exercised is defined by the contract. For example, a call option for AAPL
stock with a $100 strike allows its owner to buy the stock for the strike price, independent
of the current price of AAPL.

Exercise style: Option contracts can have different exercise styles based on when
exercising is allowed. There are two main types:

o American options: Can be exercised at any time until expiration. That
is, the owner of the option can decide to exercise it at any moment, as
long as the option has not expired.

o European options: Can be exercised only upon expiration date. This
style is more common for contracts that are settled directly on cash,
such as index-based options.

An option is defined as a derivative of an underlying instrument. The underlying
instrument is the asset whose price is used as the basic value for an option contracts.
There is no fixed restriction on the type of asset used as the underlying for an option
contracts, but in practice options tend to be defined based on openly traded securities.
Examples of securities that can be used as the underlying asset for commonly traded
option contracts include the following:

e Common stock: Probably the most common way to use options is to
trade call or put options on common stock. In this way, you can profit
largely from price changes in stocks of well-known public companies
such as Apple, IBM, Walmart, and Ford.

e Indices: An index, such as the Dow Industrials or the NASDAQ 100,
can be used as the underlying for an option contracts. Options based
on indices are traditionally settled on cash (as explained earlier),
and each unit of value corresponds to multiples of the current index

value.

e Currencies: A currency, usually traded using Forex platforms, can also
be used as the underlying for option contracts. Common currency
pairs involving the US dollar, euro, Japanese yen, and Swiss franc
are traded 24 hours a day. The related options are traded on lots of
currencies, which are defined according to the relative prices of the
target currencies. Expiration varies similarly to stock options.
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Commodities: Options can also be written on commodities contracts.
A commodity is a common product that can be traded in large
quantities, including agricultural products such as corn, coffee, and
sugar; fuels such as gasoline and crude oil; and even index-based
underlying assets such as the S&P 500. Options can be used to trade
such commodities and trading exchanges now offer options for many
of the commodity types.

Futures: These are contracts for the future delivery of a particular
asset. Many of the commodity types discussed previously are traded
using future contracts, including gasoline, crude oil, sugar, coffee,
and other products. The structure of future contracts is defined to
simplify the trade of products that will only be available within a due
period, such as next fall, for example.

ETFs (exchange-traded funds) and ETN (exchange-traded notes):
More recently, an increasing number of funds have started to trade
using the same rules applicable to common stocks in standard
exchanges. Such funds are responsible for maintaining a basket of
assets, and their shares are traded daily on exchanges. Examples of
well-known ETFs include funds that hold components of the S&P
500, sectors of the economy, and even commodities and currency.

Options trading has traditionally been done on stock exchanges, just like other forms

of stock and future trading. One of the most prominent options exchange is the Chicago

Board Options Exchange (CBOE). Many other exchanges provide support and liquidity

for the trading of options for many of the instruments listed here.

The techniques described in this book are useful for options with any of these

underlying instruments. Therefore, you don’t need to worry if the algorithms are applied

to stock options or the futures options, as long as you consider the peculiarities of these

different contracts, such as their expiration and exercise.

Options can also be classified according to the relation between the strike price and

the price of the underlying asset. There are three cases that are typically considered:

An option is said to be out of the money (OTM) when the strike price
is above the current price of the underlying asset for call options, or
when the strike price is below the current price of the underlying
asset for put options.
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e Anoption is said to be at the money (ATM) when the strike price is
close to the current price of the underlying asset.

e Anoption is said to be in the money (ITM) when the strike price is
below the current price of the underlying asset, for call options, or
when the strike price is above the current price of the underlying
asset, for put options.

Notice that OTM options are cheaper than a similar ATM option, since the OTM
options (being away from the current price of the underlying) have a lower chance of
profit than ATM options. Similarly, ATM options are cheaper than ITM options, because
ATM options have less probability of making money than ITM options. Also notice that,
when considering the relation between strike price and underlying price, the option
price generally reflects the probability that the option will generate any profit.

A related concept is the intrinsic value of an option. The intrinsic value is the part
of the value of an option that can be derived from the difference between strike price
and the price of the underlying asset. For example, consider an ITM call option for a
particular stock with a strike of $100. Assume that the current price for that stock is $102.
Therefore, the price of the option must include the $2 difference between the strike and
the price of the underlying, since the holder of a call option can exercise it and have an
immediate value of $2. Similarly, ITM put options have intrinsic value when the current
price of the underlying is below the strike price, using the same reasoning.

The break-even price is the price of the underlying on expiration at which the owner
of an option will start to make a profit. The break-even price has to include not only
the potential profit derived from an increase in intrinsic value but also the cost paid for
the option. Therefore, for an investor to make a profit on a call option at expiration, the
price of the underlying asset has to rise above the strike plus any cost paid for the option
(and similarly it has to drop below the strike minus the option cost for put options).

For example, if an $100 MSFT call option has a cost of $1, then the investor will have a
net profit at expiration only when the price of MSFT rises above $101 (and this without
considering transaction costs).

As part of the larger picture of investing, options have assumed an important role
due to their flexibility and their profit potential. As a result, new programming problems
introduced by the use of options and related derivatives have come to the forefront of the
investment industry, including banks, hedge funds, and other financial institutions. As you
will see in the next section, C++ is the ideal language to create efficient and elegant solutions
to the programming problems occurring with options- and derivatives-based investing.

8
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Option Greeks

One of the characteristics of financial derivatives is the use of derived quantitative
measures that can be essential in the analysis and pricing of the product. In the case of
options, a few important quantitative metrics are called Greeks, because most of these
measures are referred to by Greek letters. These Greek quantities correspond to the
variation of option price with respect to one or more variables, such as time, volatility, or
underlying price.

The most well-known option Greek is delta. The delta of an option is defined as the
amount of change in the price of an option when the underlying changes by one unit.
Therefore, delta represents a rate of change of the option in relation to the change in
the underlying, and it is essential to understand price variation in options. Consider, for
example, an option for IBM stock that expires in 30 days. The strike price is $100, and the
stock is currently trading at $100. Suppose that the price of the stock increases by $1. It
is interesting to calculate the expected change in the option price. It turns out that when
the underlying price is close to the strike price, the delta of a call option is close to 0.5.
One can also think of this in terms of probabilities of the option getting in the money, in
which case this means that the value of the option is equality probable to go up or down
by the same quantity. Therefore, it makes sense that the change per unit of price will be
just half of the change in the underlying asset.

The value of delta increases as the option becomes more and more in the money. In
that case, the delta gets close to one, since each dollar of change will have a larger impact
in the intrinsic value of the option. Conversely, the value of delta decreases as the option
becomes more and more out of the money. In that case, delta gets closer to zero, since
each dollar of change will have less impact on the value of an option that is out of the
money.

The second option Greek is called gamma, and it is also related to delta. The gamma
of an option is described as the rate of change of delta with a unit change in price of the
underlying. As you have seen, delta changes in different ways when the option is in the
money, out of the money, or at the money. But the rate of change of delta will also vary
depending on other factors. For example, delta will change more quickly if the option
is close to expiration, because there is so little time for a movement to happen. To see
why this happens, consider the delta for an option that is 30 days before expiration and
for a second option that is just one day before expiration. Delta is also dependent on
time, because an option closer to expiration has less probability of change. As a result,
the delta will move from zero to one more slowly if there are 30 days to go, because
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there is still plenty of time left for other changes. But an option with only one day left to
expiration will have a delta quickly moving from close to zero to near one, since there
is no time left for future changes. This is described by saying that the first option has
lower gamma than the second option. Other factors such as volatility can also change
an option gamma. Figure 1-2 illustrates the value of gamma for a particular option at
different times before expiration.

14
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Figure 1-2. Value of gamma at different dates before expiration

Another option Greek that is closely related to time is theta. The theta of an option
is proportional to the time left to expiration, and its value decays when it gets closer to
the expiration date. You can think of theta as a measure of time potential for the option.
For option buyers, higher theta is a desirable feature, since buyers want more probability
of changes for the options they own. On the other hand, option sellers benefit from
decreased theta, so short-term options are ideal for sellers due to the lower theta.

Finally, we have an option Greek that is not really named after a Greek letter: vega.
The vega of an option measures the amount of volatility of the underlying asset that is
priced into an option. The higher the volatility, the more expensive an option has to be in
order to account for the increased possibility of price changes. The differential equations
that define the price of an option (as you will see in future chapters) take into account
this volatility. Vega can be used to determine how much relative volatility is embedded
in the option price. An important use of this measure is to help option buyers and

10
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sellers determine if this implied volatility is consistent with their expectations for future
changes in the price of the underlying.

There are other option Greeks that have been used in the academic community
and in some financial applications; however, they are not as widely known as the ones
mentioned here. You can see a summary of the most commonly used option Greeks in
Table 1-2.

Table 1-2. Option Greeks and Their Common Meanings

Greek Meaning

Delta  Option price’s rate of change with respect to the price of the underlying asset.
Gamma Option delta’s rate of change with respect to the price of the underlying asset.
Rho Option price’s rate of change with respect to changes in interest rates.

Theta  Option price’s rate of change with respect to time left to expiration.

Vega  Option price’s rate of change with respect to the volatility of the underlying asset.

Lambda Option price’s rate of change with respect to percentual changes in the price of the
underlying asset.

Using C++20 for Options Programming

C++ has unique features that make it especially useful for programming software for
the financial industry. With the new standard version of the language, C++20, these
advantages became even more pronounced. Over the years, developers have migrated
to C++ as a practical way to meet the requirements of intensive numeric, real-time
algorithms used by the investment community. When it comes to creating decision
support software for fast-paced investment strategies, it is very difficult to beat the C++
programming language in the areas of performance and stability.

While it is true that several newer programming languages are available for the
implementation of financial software, very few of them provide the combination of
advantages available when using C++. Let’s now look at some of the areas where C++
provides a unique advantage when compared to other programming languages that
could be used to implement financial and investment software.

11
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Availability

When looking for a programming language to implement investment software, one

of the first concerns you need to address is the ability to run the code in a variety of
computational environments. Targets for such investment software can range from small
and mobile processors to large-scale parallel systems and supercomputers. Moreover,
itis not uncommon to have to interact with different operating systems, including the
common software platforms based on Linux, Windows, and MacOS.

Because modern computer systems are so heterogeneous, it makes economic sense
to use languages that can be employed in a large variety of hardware and software
configurations with little or no source code modifications. Financial programmers also
work on different platforms, which makes it even more attractive to use software that can
run in different computers and operating systems with little or no changes.

A strong characteristic of C++ is its wide availability over different platforms. Due
to its early success as a multi-paradigm language, C++ has been ported to nearly any
imaginable operating system and hardware combination. While other mainstream
languages such as Java require the implementation of a complex runtime environment
for proper operation, C++ was designed from the beginning with simplicity and
portability in mind. The language does not require a runtime system, and only a minimal
support system, provided by the C++ standard library, needs to work in order to support
a new target. Therefore, it is relatively easy to port C++ compilers and build systems to
new platforms with minimal changes.

Another advantage is the availability of multiple compilers provided by commercial
vendors as well as free software. Given the importance of C++ applications, it is possible
to find compilers with both free and commercial licenses, so that you can use the
option that best suits your objectives. Open source developers can use state-of-the-art
free compilers such as gcc and clang. Commercial groups, on the other hand, can take
advantage of compilers licensed by companies such as Intel and IBM.

Performance

Itis a fact that programmers using C++ benefit from the high performance provided

by the language. Because C++ was explicitly designed to require a minimum amount

of overhead in most platforms, typical C++ programs run very efficiently, even without
further optimization steps. Moreover, compilers for the language are known for their
ability to aggressively apply optimizations that further improve performance. As a result,

12
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programs coded in C++ will frequently outperform code created in other languages, even
when this software has been heavily optimized.

Part of the performance advantage provided by C++ is the result of mature compilers
and other building tools. Since C++ is such a well-established language, major
companies and well-known open source projects have created optimized compilers for
practically every major architecture. Common examples include gcc, Visual C++, LLVM
clang, and Intel cc. Such compilers provide huge speed improvements in typical running
time, frequently beating nonoptimized (and even optimized) code that is produced by
other languages.

When considering performance, C++ shares the same philosophy of the C
programming language. The general idea is to provide high-level features while
whenever possible avoiding any overhead in the implementation of such features on
common processors. This means that the features provided by C++ generally match very
closely with low-level processor instructions.

Other solutions for improved performance in C++ include the use of templates in
addition to runtime polymorphism. With templates, the compiler can generate code that
matches the types used in a particular algorithm exactly. In this way, programs can avoid
the large overhead of polymorphic code, which needs to made different runtime decisions
depending on the particular type. Programmers can control algorithms in a much finer-
grained scale when using templates while still retaining the ability to use high-level types.

Last but not least, C++ simplifies the use of memory and other resources with the
help of smart pointers and other techniques based on RAII (Resource Acquisition Is
Initialization). These techniques allow C++ programs to control memory usage without
having to rely on a runtime GC (garbage collection) system. Employing such strategies,
C++ programmers can considerably reduce the overhead of frequently used dynamic
allocation algorithms, without the need to resort to manual bookkeeping of memory and
other resources.

Standardization

Another great advantage of C++ is that it’s based on an international standard, which
is recognized by practically every software vendor. Unlike some languages that are
practically defined by an actual implementation or controlled by a powerful company,
C++ has for decades being defined as the work of the C++ committee, which has
representatives from major companies and organizations with an interest in the future
development of the language.

13
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In fact, some of the big financial companies also have representatives in the C++
committee. This means that the future of C++ is not controlled by a single institution,
such as what happens with Java (controlled by Oracle), Go (controlled by Google), C#
(controlled by Microsoft), or Objective-C and Swift (controlled by Apple). The fact that
the standards committee has members from several organizations protects C++ users
from commercial manipulation that would benefit a single company, to the detriment of
the larger community of programmers.

The C++ standards committee has been effective in improving the language in
ways that address many of the modern needs of its users. For example, the last two
version of the language standard (C++17 and C++20) introduced many changes that
simplify common aspects of programming, such as simpler initialization methods, more
advanced type detection, and generalized control structures.

The standard library has also been the target of many improvements over the last few
years. A main focus has been the introduction of containers and smart pointers, which
can be used to simplify a large part of modern applications. The standard library also has
been augmented to support parallel and multithreaded algorithms, using primitives that
can be reused on different operating systems and architectures.

It is necessary to remember that the standardization process has a few drawbacks
too. One of the issues is the time it takes to introduce new features. Since the
standardization process requires a lot of organization and formal meetings, it takes a few
years before a new version of the standard is approved. This has been improved in the
last decade, as the committee has decided to create new C++ releases every three years
on average. Also, there is the risk of including features that go against previous design
decisions. In this case, however, the committee has been very careful in introducing
only features that have been thoroughly tested and considered to improve the language
according to its design philosophy.

In general, having a standardized language has certainly helped the C++ community
to grow and improve the whole programming ecosystem over the last few decades. This
is just another reason why developers in financial institutions have embraced C++ as a
language suitable for the implementation of options- and derivatives-based financial
algorithms.

14
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Expressiveness

Last but not least, C++ is multi-paradigm language that provides the expressiveness and
features necessary for the implementation of complex software projects. Unlike some
languages, which define themselves as following a single programming paradigm (such
as object-oriented or functional), C++ allows the use of multiple paradigms in a single
application. In this way, you can use the best approach for problem solving, independent
of the underlying implementation techniques: object-oriented programming, functional
programming, template-based programming, or just simple structured programming.

Because C++ allows programmers to express themselves using different paradigms,
it makes easier to find a solution that matches the problem at hand, instead of
demanding changes to the way you think to match language requirements. For example,
a language such as Java, which is designated as object-oriented, requires programmers
to create code based on objects and classes even when this does not match directly
the fundamental requirements of the problem. In C++, on the other hand, you have a
choice of using OO techniques as well as functional or even more traditional structured
techniques, if this is what your algorithm requires.

The fact that you can use different techniques for different parts of your application
also improves your ability to concentrate on algorithms, instead of on programing
techniques. Sometimes, using a template-based strategy is the easiest way to achieve a
particular algorithmic goal, and C++ allows you to do that without getting in your way.
Other parts of the application may benefit from using objects, such as the GUI code. In
each case, it is important to be able to express algorithms in the most natural way.

In this book, you will have the opportunity to use many of the features of C++ in
different contexts. It will become clear that some features such as object-oriented
programming are best used with a particular class of problems, whereas functional
techniques may be the best approach in other situations. The fact that the C++ language
provides the flexibility to tackle such distinct problems is a clear advantage.

Modeling Options in C++

In this section, you will learn how to code a basic class that can later be used as a starting
point for more complex options analysis and trading. In this first example, you will see a
C++ class that can be used as the basis for a framework for options value calculation. The
class is named GenericOption, since it can be used for any type of underlying, and for
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calls and puts. Before I present how the class works, let’s review a basic concept of class
design that is unique to the C++ language, and that will be followed on other examples in
this book.

Creating Well-Behaved Classes

One of the most important parts of designing classes in C++ is to make sure that they can
combine appropriately with other libraries in the system. In particular, the C++ standard
library, which includes the STL (standard template library), is the most important set

of classes that you will encounter when developing C++ applications. It is essential that
your classes play well with the classes and templates provided by the standard library.

To work properly with other parts of the C++ library, classes need to define (or use
the default definition for) the four special member functions. These member functions
are mainly used to create and copy objects and are required in general to guarantee their
proper behavior. These four special member functions are as follows:

o Thedefault constructor: Each class can have one or more constructors
that define how to initialize objects of the class. The constructor is
named after the class, and it can be overloaded so that you can create
classes with different parameters. The constructor that receives
no parameters is also known as the default constructor, and the
compiler automatically creates one if you don’t supply it. Most of
the time, you should avoid using the default constructor because it
doesn’t properly initialize the native C++ types, such as the double
and int variables. To avoid such issues, you should always provide a
constructor for new classes.

e The copy constructor: This specialized constructor performs an
initialization function similar to the default constructor. However, it
is called only when creating new objects based on an existing object.
The C++ compiler can also generate a default copy constructor,
which automatically copies the values stored in the original object
into the new object. However, the default copy constructor also has
a problem: it doesn’t know the semantics of some values stored
in the object. This causes issues when you're storing a pointer to
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allocated memory or some object that shouldn’t be copied. To avoid
such problems, you should provide your own definition for the copy
constructor; we recommend that you should always write a copy

constructor for new classes.

The destructor: A destructor is a member function called when

the object is deallocated. It defines how data used by the class is
released when the object is destroyed. Like the other special member
functions, the compiler generates a default empty constructor. You
should add your own constructor to properly handle the release

of private data. This is especially important when a class contains
virtual members, in which case the destructor should also be marked
as virtual.

The assignment operator: When copying data between objects, the
assignment operator is invoked automatically. Even though this
special method is not equivalent to a constructor, it does similar
work. Therefore, you should apply the same strategy when dealing
with the assignment operator and make sure that it properly handles
initialization and copies of the required data members.

To avoid potential problems with C++ classes, it is best to include these four member

functions in all the classes you create. They are pretty straightforward. The only member

function that needs further explanation is the assignment operator. Suppose that you're

implementing a class called GenericOption. The assignment operator would read as

GenericOption &GenericOption::operator=(const GenericOption &p)

if (this != 8p)

m_type = p.m_type;
m strike = p.m_strike;

return *this;
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The first instruction inside the method is an if statement that checks if the this
pointer is different from the pointer for the passed object. The reason for this check is
that you don’t want to perform the private data member assignment unless the objects
in the left and right side of the assignment operator are different:

if (this != 8&p)

While performing the auto-assignment might not be a problem for some types
of variables (especially for native data types such as int and float), it can be time-
consuming for complex objects that need to perform several steps during initialization
and release. For example, if a member variable contains a large matrix, the assignment

may trigger an expensive copy operation that would become unnecessary.

Computing the Option Value at Expiration

Our first example class, GenericOption, provides only the minimum necessary to
calculate the value of options at expiration. The first thing you should notice about this
class is that it follows the recommended practice described in the previous section.
Therefore, it contains a default constructor, a regular copy constructor, a destructor, and
an assignment operator.

The main constructor of GenericOption does very little and is responsible only for
the initialization of private variables. Although this is common in a simple class like this,
using constructors with very few responsibilities is a pattern that should be adopted in
many cases. Since constructors are called in various places in a program written in C++,
it is important to make them as fast as possible—and relegate any complex operations to
member functions that can be called after the object is created.

Tip Avoid designing classes with complex constructors. Constructors are
frequently called for the creation of temporary objects and used when passing
parameters by value, for example. Complex constructors can cause your code to
run slower and make classes harder to maintain.

There are two types of options recognized by the GenericOption class. This is
defined by the enumeration OptionType, which contains the values OptionType Call
and OptionType Put. Depending on the value passed to the constructor, the object will
behave accordingly as a call or as a put option. The constructor also requires the strike
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value of the option and the cost of the option when it was bought. You will see later in
this book how this option cost can be calculated from other parameters, but for now you
can assume that the cost of the option is provided by the exchange.

The main functionality of the class is contained in two member functions:
valueAtExpiration and profitAtExpiration. The first member function simply
calculates the value of the option at the time of expiration, which in this case is the same
as the intrinsic value. To perform this calculation, it needs to know the current price of
the underlying asset. The member function valueAtExpiration first needs to determine
if the option is a put or a call. In the case of a put, it takes the difference between the
current price and the strike price as its value, with the value being zero when the strike
is lower than the current price. In the case of a call, this calculation is reversed, with
the value being zero when the strike price is higher than the current price. The full
calculation can be coded as follows:

double GenericOption::valueAtExpiration(double underlyingAtExpiration)

{

double value = 0.0;

if (m_type == OptionType Call)

{
if (m_strike < underlyingAtExpiration)
{
value = underlyingAtExpiration - m_strike;
}
}
else // it is an OptionType_ Put
{
if (m_strike > underlyingAtExpiration)
{
value = m_strike - underlyingAtExpiration;
}
}

return value;
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The profitAtExpiration function is similar to valueAtExpiration, butit also
considers the price that was paid by the option. Thus, a profit in the option is achieved only
after it surpasses the break-even price (for call options). The calculation uses them _cost
member variable to determine the price paid by the option, and it returns the net profit of
the option (without considering transaction costs). The function can be coded as follows:

double GenericOption::profitAtExpiration(double underlyingAtExpiration)
{

double value = 0.0;
double finalValue = valueAtExpiration(underlyingAtExpiration);
if (finalvalue > m cost)

{

value = finalValue - m cost;

}

return value;

}

Complete Listing

The complete code for the example described previously is shown in Listing 1-1
and Listing 1-2. The code is split into a header file called GenericOption.h and an
implementation file called GenericOption.cpp.

Listing 1-1. Interface of the GenericOption Class

//
// GenericOption.h

#ifndef _ CppOptions_ GenericOption
#define _ CppOptions GenericOption

#include <stdio.h>

//
// Option types based on direction: call or put
enum OptionType {
OptionType Call,
OptionType Put
}s
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//

// Class the represents a generic option
//

class GenericOption {

public:

OPTIONS CONCEPTS

GenericOption(double strike, OptionType type, double cost);

GenericOption(const GenericOption 8p);
~GenericOption();
GenericOption &operator=(const GenericOption 8p);

double valueAtExpiration(double underlyingAtExpiration);
double profitAtExpiration(double underlyingAtExpiration);

private:
double m_strike;
OptionType m_type;
double m_cost;

};
#tendif /* defined(__CppOptions_ GenericOption_ ) */

Listing 1-2. Implementation of the GenericOption class

//
// GenericOption.cpp

#include "GenericOption.h"
#include <iostream>

using std::cout;
using std::endl;

// This is a constructor for this class
//

GenericOption::GenericOption(double strike, OptionType type, double cost)

: m_strike(strike),

m_type(type),
m_cost(cost)

{
}
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GenericOption::GenericOption(const GenericOption &p)
: m_strike(p.m_strike),

m_type(p.m_type),

m_cost(p.m_cost)

{
}

GenericOption::~GenericOption()

{
}

//
// Assignment operator
GenericOption &GenericOption::operator=(const GenericOption &p)

{
if (this != 8&p)

{
m_type = p.m_type;
m_strike = p.m_strike;
m_cost = p.m_cost;
}
return *this;
}
//

// Computes the value of the option at expiration date.

// Value depends on the type of option (CALL or PUT) and strike.

//

double GenericOption::valueAtExpiration(double underlyingAtExpiration)

{

double value = 0.0;

if (m_type == OptionType Call)
{

if (m_strike < underlyingAtExpiration)

{

value = underlyingAtExpiration - m_strike;
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}
}
else // it is an OptionType_Put
{
if (m_strike > underlyingAtExpiration)
{
value = m_strike - underlyingAtExpiration;
}
}
return value;
}
//

// Return the profit (value at expiration minus option cost)
//
double GenericOption::profitAtExpiration(double underlyingAtExpiration)
{
double value = 0.0;
double finalValue = valueAtExpiration(underlyingAtExpiration);
if (finalvalue > m cost)

{
value = finalValue - m_cost;
}
return value;
}
int main()
{

GenericOption option(100.0, OptionType Put, 1.1);
double pricel = 120.0;
double value = option.valueAtExpiration(pricel);

cout << " For 100PUT, value at expiration for price "
<< price1
<« " is "

<< value << endl;
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double price2 = 85.0;
value = option.valueAtExpiration(85.0);
cout << " For 100PUT, value at expiration for price

<< price2

<« " is
<< value << endl;

// Test profitAtExpiration
auto limit = 120.0;
for (auto price = 80.0; price <= limit; price += 0.1)

{

value = option.profitAtExpiration(price);

cout << price << ", " <« value << endl;

}

return 0;

Building and Testing

To compile the code presented in the last section, you need a standards-compliant
C++ compiler. T have tested this code with gcc and LLVM clang, although most modern
compilers should work without any problems. Here are the commands that [ used to
compile this on my machine:

gcc -o GenericOption.o -c GenericOption.cpp
gcc -o GenericOption GenericOption.o # creates the executable

The executable file can then be used to run the sample application like this (I used
the bash shell to run the application on UNIX):

$ ./GenericOption

For 100PUT, value at expiration for price 120 is 0
For 100PUT, value at expiration for price 85 is 15

80, 20
80.1, 18.8
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80.2, 18.7
80.3, 18.6
80.4, 18.5
80.5, 18.4

You can check the output to determine if the results match your expectations. I used
the data to create a chart with the results, as shown in Figure 1-3. Since the example is
a put, notice that the profit is negative for any price higher than the break-even price of
$98.90. Below that value, the profit rises steadily, attaining its maximum value at price $0
(not shown in the chart).

Option Profit at Expiration
10 , . v

Profit

MO N oo o

90 95 100 105 110
Price

Figure 1-3. Profit chart calculated with the GenericOption class for sample option
with strike price $100

Further References

In this chapter, I provided an introduction to most common concepts of options
investing and how C++ programmers can model them. You can turn to several other
sources for further clarity on the concepts introduced in this chapter. If you need
additional information on options and related financial investments, here are a few
books that cover not only the basics but also the mathematical details of options
investing:

e Option Volatility & Pricing by Sheldon Natenberg, McGraw Hill, 1994.
This is the standard reference on options and their properties. This
book explains in great detail how options are defined, how option
Greeks work, and their basic economic interpretation.
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o Investment Science by David Luenberger, Oxford University Press,
1998. This is an undergraduate-level book that describes the basic
theory of investment. Most of the book explains the fundamentals of
fixed income investments, but the included algorithms can be used
for other common problems in finance.

e Mathematics for Finance by Marek Capinski and Tomasz Zastawniak,
Springer Press, 2011. This book is more for the mathematically
inclined. It explains not only the basics of fixed income investments
but also gives a lot of mathematical methods that are useful in their
analysis. Many of these techniques are also used in the analysis of
options-based investments.

o Investments by Zvi Bodie, Alex Kane, and Alan J. Marcus, McGraw
Hill/Trwin, 2004. This is a standard textbook on investment theory
that explains, among other topics, the ideas behind equity-based
investments and their derivatives.

Conclusion

In this chapter, I provided an overview of the themes and ideas that will be discussed in
the remainder of the book. Options are basic financial vehicles that can serve multiple
investment goals such as providing risk protection, supplying short-term income,

or serving as a speculation method based on perceived future prices of a financial
instrument.

I started with a basic description of options and how they fit in the landscape of the
investment industry. You learned the most important properties of options and how they
define standard contracts that are traded by stock, futures, and commodity exchanges.

I also described how this information may be useful to software engineers who want
to create solutions for the financial industry using C++ as the main implementation
language.

You have seen how options can be described by option Greeks: a set of standard
attributes associated with option contracts that can be used to determine properties of
the option. In particular, these option Greeks are useful for evaluating the price at which
options should be bought and sold, as you will see in the algorithms introduced in the
later part of this book.
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This chapter also discussed the advantages of C++ as a language for financial and
options-related programming. Many of the features of C++ make it an ideal language to
implement algorithms and large-scale software packages to analyze and trade options.
You have seen an example C++ class that can be used to compute the profit or loss for a
single option contracts.

In the next chapter, you will learn about derivatives in general and how they expand
on the ideas of standard options. You will also see how such financial derivatives can be

modeled using the C++ language.
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Financial Derivatives

Derivative is a general term used for contracts that have their price based on the
properties of an underlying asset. In particular, options are a standardized type of
derivatives that give the right to buy or sell the underlying asset at a particular price.
Unlike options, however, general derivatives include a large number of nonstandard
features that allow them to be created even for illiquid assets such as corporate credit
risk or real estate mortgages.

In the last decades, the financial industry has created and popularized a multitude
of derivatives to collateralize disparate assets, including items such as fixed income
instruments, mortgage-backed securities, and risk of default. Pricing and trading of these
derivatives has become a large part of the work performed daily in the trading desks of
large banks by analysts and quantitative programmers.

This chapter focuses on characteristics of general derivatives and presents a few C++
techniques that are useful to model specific aspects of these financial instruments. This
chapter also introduces you to topics that you will learn in more depth in the remainder
of this book. The main items covered in the chapter are as follows:

e Models for derivative pricing: You will learn the basic ideas used to
determine the price of various derivatives along with a few examples
of how they are applied.

o Credit default swaps: A particular type of derivative where investors
want to buy protection against the default of a third-party institution.

o Interest rate derivatives: A derivative in which the underlying asset is
an interest rate that is paid in predefined time periods.

e FXderivatives: A quick introduction to some foreign exchange

derivative contracts.
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e A Monte Carlo model for derivatives: You will explore a simple
computation of Monte Carlo models for pricing derivatives in C++.

o Using the STL for derivative pricing: Using the STL makes it possible
to create fast containers for generic objects, without incurring

runtime inefficiencies.

Models for Derivative Pricing

In the last chapter, you learned some basic information about options and how to

use C++ to model these simple contracts. Recall that an option is a kind of financial
derivative that is traded on exchanges and is defined by a standard agreement between
buyers and sellers. General derivatives, however, are not restricted to the fixed
requirements of a simple option contracts. In this section, you will learn more about
generic derivatives, including how they are handled in the financial community.

In its general sense, a financial derivative is just a contract that assigns a value to a
particular set of rights linked to an underlying asset. For example, options give the right
to buy or sell an asset such as a stock or a commodity. But complex derivatives can be
created if you want to perform a more exotic transaction between buyers and sellers. For
example, credit default swaps are contractual exchanges that require a payment to occur
only when a particular institution is in default (i.e., bankrupt). For another example,
collateralized debt obligations will require payments that depend on the risk level of
certain borrowers.

The common aspect shared between different derivatives is the way their prices are
modeled, that is, the mathematical characteristics of price changes for these instruments.
All derivatives that are traded in the market can be analyzed using a generalized random
walk model that was discovered and applied in the twentieth century by American
economists. Such a model for derivative pricing and their associated mathematical
equations were developed and popularized by Robert Merton, in a work that was itself a
generalization of the Nobel prize winning Black-Scholes model for options pricing.

In a random walk model, the prices of securities are studied under the assumption
that their changes are random. That is, these prices can move up or down by a random
value that is given by a normal distribution, as shown in Figure 2-1. While this is only
an approximation of the complex market behavior, it is most of the time so close to
what has been observed in the marketplace that models based on random walks have
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been extremely successful. These models are frequently used in the financial industry
to accurately determine prices for options and more complex derivatives. As a result,
most of what you will learn in this book is in some way or another related to this pricing

model, whether we’re using it to analyze existing derivatives or to trade them.
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Figure 2-1. An example of random walk

The first thing to understand about the random walk model for derivative pricing is
that it results in a set of equations that determine the behavior of prices as time passes.
This equation is, by the nature of its assumptions, probabilistic, but it can be solved to
give a value for the fair price of a particular investment instrument.

The fair price, according to economic conventions, is the price at which neither the
sellers nor the buyers would have an unfair advantage. In other words, both sides in the
transaction are satisfied with the result, and there is no known way to extract more value
from one of the sides in the transaction without breaking this equilibrium. Because the
model used is probabilistic, this also means that each side of the transaction has the
same probability of making money after the transaction is concluded. This fair price
element of the model allows you to calculate a fixed value using only a probabilistic
assumption about future expectations. A list of common derivative types is given in
Table 2-1.
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Table 2-1. A List of Common Derivatives

Derivative Type Description

Credit default swaps A contract that pays its holder in the case of default (bankruptcy) of a
target corporation.

Collateralized debt A financial product where debt is paid to investors according to levels

obligations of collateral risk from borrowers.

FX derivatives A derivative where the underlying asset is composed of foreign

currencies, with prices varying according to foreign exchange rates.

Interest rate derivatives A derivative in which the underlying asset is an interest rate that is
paid in predefined time periods.

Mortgage-backed security A type of derivative that is defined in terms of mortgage contracts.

Energy derivative Derivative in which the underlying asset is an energy product or
asset, such as oil, natural gas, coal, or electricity.

Inflation derivative Derivative contracts that have prices defined by the level of inflation
in a particular economy.

Another consequence of fair pricing hypothesis is that the resulting theoretical
model allows no arbitrage. Arbitrage is a method of making money in financial markets
where you buy some asset for a price and immediately sell it for a higher price for a sure
profit. This kind of arbitrage cannot be allowed in a financial model, because it indicates
that the original price was unfair for at least one of the participants. It also corresponds
to the known fact that, in liquid and free markets, opportunities for arbitrage will be
nonexistent or disappear as soon as they are identified.

Credit Default Swaps

A credit default swap (CDS) is a derivative that allows investors to bet on the solvency
of a particular institution. In this case, the underlying asset is defined as the value of a
business minus the liabilities it currently has. Solvency is then defined as the situation in
which the value of the business is superior to its liabilities.

Credit default swaps have been used as a way to protect large corporations against
the risk of default of a counterpart, which is a common risk suffered by contracts with
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large institutions. For example, the 2008 financial meltdown proved that counterpart risk
is very difficult to avoid when only a few participants dominate a large part of the market.
The ability to use mathematical techniques to model this type of risk is therefore very
important for institutions that deal with such large-scale operations.

In the recent years, most banks and other investment institutions have become
active in the development of CDS models as a way to mitigate such risks. Much of the
software for solving CDS pricing models is based on modern C++, which you will learn in
the next chapters.

Collateralized Debt Obligations

A collateralized debt obligation (CDO) is a financial derivative product based on the
cash flow of a collection of loans. The collateralization process makes it possible to split
the cash flows among different investors based on the characteristics of individual loan
originations.

In particular, CDOs are used to split cash flows based on the risk of each loan. Parts
of the cash flow are classified as low risk (e.g., loans that are labeled as AAA by credit
rating institutions) and sold for higher profit, while other parts of the package are sold as
higher-risk investments. CDOs have acquired a bad public reputation after the financial
crisis of 2008, but they remain a valuable tool for defining the risk associated with
particular investment classes (see Figure 2-2).
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Subprime Mortgage Originations

In 2006, $600 billion of subprime loans were originated, most of which were
securitized. That year, subprime lending accounted for 23.5% of all mortgage
originations.

IN BILLIONS OF DOLLARS
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Figure 2-2. Securitization levels of mortgage loans during the 1990s and 2000s
(from the official government publication, “Financial Crisis Inquiry Commission
Report”)

CDO pricing relies heavily on the derivative-pricing techniques that will be discussed
in this book. The development of Black-Scholes-Merton methods gave institutions
the ability to price more complicated products using similar ideas. By extending these
pricing methods to collateralized loans, quantitative trading desks have been able to
create a completely new category of financial products that are now used by most banks
and other financial institutions.

FX Derivatives

Derivatives based on foreign currencies are a relatively simple extension of the ideas
already used on options. The underlying price is defined by foreign exchanges. The basic
difference between such products and standard options is that they depend on the price
variation of currency pairs, such as USD/EUR.
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FX derivatives play an important role in markets that rely on foreign trade. For
example, it is used in the production planning of companies that need protection against
variations in currency prices. Most global companies that buy or sell products in a
foreign market will use FX derivatives as a tool to avoid the unpredictability of currency
fluctuations.

FX derivatives can also be an investment vehicle. Hedge funds have for a long time
used foreign exchange products as a way to hedge against possible losses in foreign
investments. They can also be used to speculate on the rise or fall of foreign currencies
as compared to local currencies. For all these reasons, the pace of development of
mathematical models for FX derivatives has been significant in the industry. Because of
the right volatility and near real-time needs of FX traders, C++ has become the language
of choice for developing applications that handle FX derivative pricing.

Derivative Modeling Equations

The equations that have been used to model the future price of derivatives are generally
called the Black-Scholes-Merton equations. These equations, which are based on
similar differential equations from physics, describe the properties of pricing models
when considering a number of input parameters. Here are the most commonly used
parameters for these differential equations:

o The price of the underlying asset: This is the price of the asset that is
the basis for the derivative. In the case of stock options, this is the
price of the stock at the present time.

o The current interest rates: Interest rates have an important role in
the modeling of derivatives, because they are the safest way to get
areturn on your money. The price of a derivative has to take in
consideration the prevailing interest rates and the money that the
investor could be earning in a risk-free investment.

o The strike price: The price at which a transfer of value will happen.
For call options, this is the price above which a profit is made. More
complex models will have different definitions for the strike price.
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o Volatility: The volatility for the underlying asset is very important in
derivative models, because it determines how fast the underlying
prices move. This information then can be used to calculate the
probabilities that are part of the general model for the derivative
price. Volatilities are described in terms of the standard deviation.

o Time left in the contract: Time is another important variable, because
the more time that’s left to expiration, the higher the probability
that the underlying asset will move in price. This directly affects the
probability of profit for the derivative.

These parameters are used as part of the differential equation that determines the
price of a derivative. Here is the basic equation that is generally called the Black-Scholes

model:

2
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This differential equation determines the relationship between the following

quantities:
e V:The price of the derivative
e t:Thetime
o o:The volatility
o S:The price of the underlying asset
o r:The current interest rate

This equation can be interpreted for different purposes, depending on the type of
contract you want to price. For example, when working with options, this equation will
result in a formula that returns the price of a call or put option, which will depend on the
desired strike. Moreover, the exact formula used will change depending on the type of
exercise: either an American- or European-style option. You will see in later chapters a
few examples of how the general equation can be used with different derivatives.
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Numerical Models

As discussed in the previous section, the existing models for options pricing are based
on the Black-Scholes equation, which describes the variation of derivative prices with
time, along with a number of other parameters. Later, Merton successfully expanded
this model to deal with other derivatives. All these models share the fact that prices are
assumed to be random and change according to a predefined probability distribution.

In order to solve these models, you have to develop a few techniques to calculate the
desired prices, given the set of input parameters required by the equations. There are
two main strategies that have been devised for this purpose: numerical methods and
simulation methods.

Numerical methods refer to a set of mathematical and computational techniques
to solve, or at least approximate, differential equations. While numerical methods
were invented to solve problems in physics and engineering, they have been recently
used with success to solve pricing problems for options and other derivatives. Many
of the techniques studied in this book are targeted at solving one or more parts of the
derivative-pricing models previously described.

Examples of mathematical tools that are used in the numerical solution of
complex derivative models include linear algebra, optimization, and approximation
methods, probability, numerical root calculation, and finite difference methods.
These mathematical tools can be used in isolation or combined to form more complex
algorithms for the solution of Black-Scholes equations.

The other side of solving numerical models is the development of fast algorithms.
While the mathematical tools are important, they need to be implemented in a fast and
efficient manner to be used in financial applications. Pricing models normally need
to be solved very often, and the performance and accuracy of solutions can make the
difference between a profitable and a losing financial transaction.

Binomial Trees

Another technique used to determine the price of derivatives is the method of binomial
trees. A binomial tree is a technique to organize the computation necessary to determine
derivative prices in a step-by-step fashion. The root of the tree is the original price. At
each node, there are two possible directions for the new price, which can be calculated
using a few equations.
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Once the complete tree has been calculated, it is possible to answer questions about
the fair price of the derivative at particular strike prices and time periods. The complete
algorithm for binomial trees has three main steps:

e Theforward phase: This phase happens when the tree is constructed,
starting at time zero with an initial price. Then, the total time is
divided into discrete steps and at each step a new set of nodes
is created. The nodes represent the two directions in which the
underlying price can change, either going up or down in value. This
phase ends when the tree nodes reach the maturity date.

e The payoff phase: In this phase, the profit (payout) of each node is
calculated. The calculation starts from the maturity date, since the
profit in that case is easy to calculate.

e The backward phase: In this phase, the computation of the payout
continues moving backward in time, using the values calculated in
the previous phase as the starting point. This process continues until
the initial node is reached.

Simulation Models

Simulation models, also called Monte Carlo models, are a different approach to solve
problems involving differential equations, such as the equations necessary for derivative
pricing. The main motivation behind simulation models is that the equations for
derivative pricing generally don’t have a closed mathematical solution. In that case, a
possible strategy is to run a simulation of the price evolution while considering that price
changes according to the random distribution assumed by the Black-Scholes equations.

Monte Carlo methods have a long history. Since the development of probability
theory, researchers have found that simulating a random event is a good way to learn
about a certain physical or engineering model. With the introduction of modern
computers, it is now possible to perform very complex simulations in an efficient way.
This is an area where using C++ is a big advantage, since simulation accuracy is directly
related to the number of repetitions of a basic random experiment.

To find the price of a derivative security, the basic step is to develop a random walk
model for the security. As discussed previously, derivatives are based on the idea that
underlying prices are always moving in an unpredictable, random way. A Monte Carlo
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algorithm will use this property to simulate the movements of the underlying asset for a
large number of times. The random fluctuations are determined with a random number
generator, according to the parameters that have been previously observed for the asset,
such as volatility, current interest rate, and observed price of the underlying instrument.

If the simulation is properly performed, a Monte Carlo algorithm will converge to a
particular value of derivative price, according to the assumptions of the Black-Scholes
model. The interpretation of these simulated runs can then be used to determine the
price of a particular contract.

Another consideration is that numeric and Monte Carlo methods are not necessarily
exclusive options. You can code numerical methods to solve a particular pricing problem
while at the same time using Monte Carlo methods for confirmation of the results. You
can also start using Monte Carlo methods to explore different scenarios and then code a
more precise numerical algorithm to find the solution of the more interesting scenarios.
Still another possibility is to use numerical algorithms to solve particular subproblems
and use a Monte Carlo simulation to put these values together in a more complicated
scenario. In summary, there are many ways to combine numerical algorithms and
simulation to achieve the desired results.

Using the STL

One of the main goals of C++ is to act as an efficient and high-level language for
application development. One of the tools used by programmers to achieve this goal is
the standard template library (STL). With the STL, it is possible to create fast containers
for generic objects, without incurring runtime inefficiencies.

The STL provides a list of software components that you can use in several contexts.
The library can be described as having three main groups of templates:

e Containers: A container is a template that provides generic logic to
handle a group of objects. They typically implement traditional data
structures using the facilities provided by C++ templates. Table 2-2
displays a quick list of containers provided with the STL and a short
description of each one.
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Table 2-2. List of STL Containers

Container Description

std::vector A dynamically allocated array of elements, where members are guaranteed to be
allocated contiguously.

std::1list A linked list data structure.

std::map An associative data structure, where elements are associated with keys of a
particular type.

std::multimap A version of std: :map template that can also contain repeated elements.
std: :queue A first-in last-out data structure.

std::dqueue A double queue, where elements can be added or removed from both sides of
the queue.

std::set A data structure that contains ordered values and provides quick lookup
functionalities.

std::multiset A data structure similar to set, but where elements can appear more than once.

o [terators: Along with containers,] you also need to manipulate the
contents of data structures stored in them. This is possible in the STL
by using iterators. With an iterator, you can easily access individual
elements in a container and perform common operations such as
inspecting, adding, removing, and modifying single elements.

e Algorithms: The last major piece of the STL is a set of algorithms
that have been optimized to each container. Because templates are
parameterized, the algorithms in the STL can be specialized for
each container, so that users can have the fastest algorithm for each
data type while using the same interface. This means that you just
need to learn a small set of algorithms that are applicable to several
containers. The STL templates will guarantee that you're using the
most efficient version for that particular container. Table 2-3 displays
a quick list of algorithms in the STL.

40



CHAPTER 2 FINANCIAL DERIVATIVES

Table 2-3. List of STL Algorithms

Algorithm Description

std::for_each Performs a given function for each element of the target container.

std::find Searches the container for a given element, given a range indicating
the beginning and end of the data sequence.

std::find if Similar to std: : find, but searches the container for a given element
satisfying a given predicate.

std::find first of Searches the container for the first match of a particular element,
given a range of elements.

std::count Counts the number of elements in the container defined by the given
parameter.

std::count_if Counts the number of elements in the container that satisfies a given
predicate.

std: :copy Copies elements from a given origin position to a destination.

std: :move Moves elements from a given origin position to a destination position.

std::reverse Reverses the current order of the container.

std::sort Sorts the container according to a comparison function.

std::binary_search Performs binary search for a particular element on a given container.

Generating a Random Walk

This section gives an example of using the STL and describes a simple way to generate

random walks in C++. While the method presented is not optimal, it shows most of the

elements necessary to create realistic random walks. In the later chapters, you learn

about the statistical techniques that can be used to create more realistic random walks,

suitable for derivative-pricing algorithms.

A random walk is a process that simulates stochastic movement. That is, under

arandom walk, a certain quantity can increase or decrease its value according to a

probabilistic rule. Random walks are important in the analysis of price movements: if we

assume that such movements are random (as we can assume at least for relatively small

timeframes), then a random walk can be used to model the change in prices for several

classes of financial assets. For example, the price of a set of stocks can be analyzed as a
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random walk, from which we can derive the probability of its change in the near future.
A random walk can be used not only as a practical simulation device (as we’'ll do in
this chapter) but also as a mathematical model, from which one can derive rules for
derivative pricing.

The class that we create in this section is called RandomWalkGenerator and it exposes
a main member function called generatelWalk(). This class has the single responsibility
of creating a sequence of numbers that represent a random walk. This means that
starting on a particular value (the initial price), the sequence will change according
to random increments, as determined by the given step parameter. Finally, the size of
the sequence (which corresponds to the time to expiration of a contract) is also given
as a parameter to the class. This results in a class with the following signature to the
constructor:

RandomWalkGenerator(int size, double start, double step);

The class contains three member variables controlling the behavior of the random
walk. They are as follows:

e m_numSteps: An integer that gives the number of steps desired

o m_stepSize: A double number that gives size of each step (in
percentage points)

e m_initialPrice: A double number that specifies the starting price

The main member function, generateWalk(), performs the task of sequentially
generating new steps in the price simulation. The function receives no parameters and
uses the member data already stored in the RandomWalkGenerator class.

The way the generateWalk() member function operates is based on the
std: :vector container, which is used to store all the intermediate prices created by
this Monte Carlo simulation process. The constructor used in this case is the default
constructor, which results in an empty vector, called walk.

The walk vector is then populated inside the for loop using vector: :push_back,

a member function of the std: :vector container that adds a new element at the end
of the vector, resizing the vector if more space is necessary. The fragment displayed as
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follows uses the value returned by the member function computeRandomStep(), starting
from the previous price stored in the local variable prev:

// Generates a random walk and stores the data in a std::vector
// that is returned at the end.
//
std: :vector<double> RandomiWalkGenerator::generateWalk()
{
std: :vector<double> walk;
double prev = m_initialPrice;

for (int i=0; i<m_numSteps; ++i)

{
double val = computeRandomStep(prev);
walk.push back(val);
prev = val;

}

return walk;

Finally, you can see the computeRandomStep member function, which generates a
new random price according to the given simulation arguments. The idea used in this
example is that there is a 1/3 chance that the price will change up, down, or stay the
same. [ use a simple random number generator to return uniformly generated numbers
(the standard function rand is not the best choice for such applications, but you'll learn
about better options in a latter chapter). The result is that you have a “three-sided dice”
that determines the direction of the next step in the simulation. Here is the complete
code for this member function:

// Returns a random step size, following the parameters given in the
// constructor.
//
double RandomWalkGenerator::computeRandomStep(double currentPrice)
{
const int num directions = 3;
int r = rand() % directions;
double option_value = currentPrice;
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if (r == 0)
{

option value += (m_stepSize * val);
}
else if (r == 1)
{

option value -= (m_stepSize * val);
}

return option value;

Finally, I present next a test stub that can be used to verify the correctness of the
code. It is always a great idea to perform some testing of the algorithm as you implement
it. This kind of testing can be used to avoid obvious mistakes as you code a complex
algorithm. The test case is to generate a random walk starting from price $30, for 100
steps with a step size of $0.01. Here is the code that’s used:

int main()

{
// 100 steps starting at $30
RandomWalkGenerator rw(100, 30, 0.01);
vector<double> walk = rw.generateWalk();

for (int i=0; i<walk.size(); ++1i)

{

cout << ", " << i< ", " << walk[i] << std::endl;

}

cout << endl;
return 0;

Complete Listing

The complete code for the example is listed next in Listing 2-1 and Listing 2-2. The code
is split into a header file called GenericOption.h and an implementation file called
GenericOption.cpp.
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Listing 2-1. Interface of the RandomWalkGenerator Class

//

//  RandomWalkGenerator.h

//

// Interface for random walk generator class.

#ifndef _ CppOptions RandomWalkGenerator
#idefine _ CppOptions__ RandomWalkGenerator

// The class uses a vector to hold the elements
// of the random walk, so they can be later plotted.
#include <vector>

//
// Simple random walk generating class. This class can be
// used for price simulation purposes.
//
class RandomWalkGenerator {
public:
//
// Class constructors
RandomWalkGenerator(int size, double start, double step);
RandomWalkGenerator(const RandomWalkGenerator &p);

// Destructor
~RandomWalkGenerator();

// Assignment operator
RandomWalkGenerator &operator=(const RandomWalkGenerator &p);

// Main method that returns a vector with
// values of the random walk
std::vector<double> generateWalk();

// Returns a single step of the random walk
double computeRandomStep(double currentPrice);
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private:
int m_numSteps; // the number of steps
double m_stepSize; // size of each step (in percentage points)
double m_initialPrice; // starting price

};
#tendif /* defined(__CppOptions_ RandomWalkGenerator ) */

Listing 2-2. Implementation of the RandomWalkGenerator Class

//

// RandomWalkGenerator.cpp

//

// Simple random walk implementation.

#include "RandomWalkGenerator.h"

#include <cstdlib>
#include <iostream>

using std::vector;
using std::cout;
using std::endl;

//

// Constructor. The supplied parameters represent the number
// of elements in the random walk, the initial price, and the
// step size for the random walk.

//

RandomWalkGenerator: :RandomWalkGenerator(int size, double start, double step)
: m_numSteps(size),

m_stepSize(step),

m_initialPrice(start)

{

}
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RandomiWalkGenerator: :RandomWalkGenerator (
const RandomWalkGenerator 8&p)
: m_numSteps(p.m_numSteps),
m_stepSize(p.m_stepSize),
m_initialPrice(p.m initialPrice)
{
}

RandomWalkGenerator: : “RandomWalkGenerator ()

{
}

RandomWalkGenerator &RandomWalkGenerator::operator=(
const RandomWalkGenerator &p)

{
if (this != 8&p)
{
m_numSteps = p.m_numSteps;
m_stepSize = p.m_stepSize;
m_initialPrice = p.m_initialPrice;
}
return *this;
}
//

// Returns a single step of the random walk
//

FINANCIAL DERIVATIVES

double RandomWalkGenerator::computeRandomStep(double currentPrice)

{

const int num directions = 3;
int r = rand() % num_directions;
double val = currentPrice;

if (r == 0)

{

val += (m_stepSize * val);
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else if (r == 1)

{
val -= (m_stepSize * val);
}
return val;
}
//

// This is the main method. It will generate random numbers within
// the constraints set by the constructor.
//
std: :vector<double> RandomWalkGenerator::generateWalk()
{
vector<double> walk;
double prev = m_initialPrice;

for (int i=0; i<m numSteps; ++i)

{
double val = computeRandomStep(prev);
walk.push back(val);
prev = val;
}
return walk;
}
//

// This is a testing stub. It generates a sequence of points
// following a random walk.
//
int main()
{
// 100 steps starting at $30
RandomWalkGenerator rw(100, 30, 0.01);
vector<double> walk = rw.generateWalk();
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for (int i=0; i<walk.size(); ++1i)

{

cout << ", " << i< ", " << walk[i] << std::endl;

}

cout << endl;
return 0;

Building and Testing

You can build the code presented in the last section using any standards-compliant C++

compiler. The code was tested on Linux and MacOS X. You can use a compiler such as gcc,

which is freely available on all major platforms. The commands used in this case were

cc++ -std=c++2a -o RandomWalkGenerator.o -c RandomWalkGenerator.cpp

cC++ -std=c++2a -o RandomWalkGenerator RandomWalkGenerator.o

The option -std=c++2a is used to select C++20 features in the compiler, since the

2020 standard was still not selected by default by the compiler at the time of writing.

The code contains a test stub that generates a sample random walk. You can run the

application to see the sequence of random prices created by the RandomWalkGenerator

class. Here is sample output from my machine:

10,

./RandomWalkGenerator

29.7,
29.403,
29.403,
29.403,
29.109,
29.109,
29.4001,
29.4001,
29.4001,
29.1061,
29.3971,
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Using the data provided in this sample output, it is easy to create a chart that shows
the price behavior over a simulated period of time, as shown in Figure 2-3. Notice how
this simple output looks similar to the behavior of a traded asset. You will later learn
to change the parameters in this type of simulation so that it more closely resembles a
particular asset class.

A Simple Random Walk

30
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285
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27
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Price

0 10 20 30 40 50 60 70 80 90100
Time

Figure 2-3. Profit chart A random walk produced by the application
RandomWalkGenerator

Further References

Derivatives are a broad subject, and several books have been written on theoretical and
practical aspects of these investment vehicles. Here is a quick list of references that can
be used to get additional information on this topic:

e Practical C++ Financial Programming by C. Oliveira. This book
covers most of the basic algorithms necessary for derivative pricing.
Examples in C++ are provided in each chapter.

o The “Financial Crisis Inquiry Commission Report,” which is a
publication of the US government (available at www.gpo.gov/
fdsys/pkg/GPO-FCIC/pdf/GPO-FCIC.pdf), provides an overview of
derivatives trading activity that lead to the financial crisis of 2008.

e Options, Futures, and Other Derivatives by John C. Hull. This is the
standard textbook introduction to derivatives.
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o Derivatives Markets by Robert L. McDonald. This book provides an
in-depth look at the several markets in which financial derivative
methods have been applied.

Conclusion

This chapter introduced the main ideas about generic financial derivatives. Derivatives
allow investors and traders to enter into contracts that are based on a particular asset
while having some of their rights defined by associated price levels of the underlying
asset along with certain parameters, such as interest rates, volatility, and time to
expiration. The concepts behind derivatives make it possible to create financial products
that uniquely target different patterns of risk and reward. Derivatives can be used in
practice to mitigate the risk associated with many credit- and asset-based transactions.
They can also be used to make risky and speculative bets on particular markets.

In this chapter, you have seen the basic ideas behind the models used for derivative
pricing. These models are ultimately based on the equations developed by the
economists Black, Scholes, and Merton. The resulting partial differential equations
determine with precision the price of the derivative as time passes while making a small
number of assumptions about the underlying assets. The main assumption used is that
the changes in the underlying asset are randomly distributed, with known volatility.

I described next the main approaches used to solve derivative-pricing models.

In general terms, you will be able to apply numerical algorithms, based on the exact
solution of mathematical equations, binary tree techniques, or Monte Carlo methods,
which are simulation algorithms that replicate the price movements of the desired
financial asset.

As an example of C++ programming for derivative pricing, I introduced a C++ class
that implements a random walk. This class illustrates how Monte Carlo methods operate
and will be later used as a basic algorithm for more complex pricing methods.

The next chapter introduces other basic algorithms used in the implementation
of option and derivative-pricing models. You will see how these algorithms can be
efficiently coded in C++20. I will also review some of the most used C++ libraries in
finance.
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Basic C++ Algorithms

To become a proficient software developer, it is essential that you understand the basic
algorithms used in your application area. This is especially applicable to financial
derivatives, where some basic problems and algorithms are recurring. In this chapter, I

examine some common algorithms encountered in C++ applications for analyzing and

processing options and derivatives.

Some of the basic algorithms in this area involve frequent tasks such as time series

processing, date and time handling, and data access and storage. While these algorithms

are useful in most applications, they are especially important in code that handles
financial data, such as options and other financial derivatives. This chapter will also

prepare you for the type of C++ coding skills that are necessary for more advanced topics

covered in the following chapters.

The chapter is organized so that you survey some basic algorithms and their

implementation in C++, including the following topics:

Date and time handling: Date representations are important for many
of the underlying algorithms used in financial engineering. You will
learn about the main operations performed on dates and how they
can be implemented in C++20.

Compact date implementation: Another aspect of date processing

is efficient memory use for long-time series. I discuss some of the
alternative representations for date objects and explain how they can
be implemented in C++20.

Networks and graphs: Data elements and their relationships are often
described as a network of connections. This is true for many of the
data entities used in financial analysis. You will see a quick overview
of networks and their representation using C++ and the STL, along
with an example of their use.

© Carlos Oliveira 2020

C. Oliveira, Options and Derivatives Programming in C++20, https://doi.org/10.1007/978-1-4842-6315-0_3
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Date and Time Handling

Among the basic algorithms employed on financial applications, date and time handling
is one of the most commonly used. Dates are needed to process time series, which can
span time periods ranging from a few minutes to several years. For this reason, it is
important to use date-handling data structures that are efficient and accurate so that you
don’t need to worry about the correctness of financial calculations depending on dates.

In this section, you'll learn about the most common ways to represent dates in C++
applications. This will also help you choose a date representation that matches the
requirements of your particular application.

The first thing is to realize that there are several ways to represent dates in a
computer program. The simplest technique is to use a class that directly stores the values
for day, month, and year. This is the representation used for the Date class, as introduced
in this section. A more compact representation of dates will be presented in the next
section.

Date Operations

A number of operations are commonly required to work on dates. Table 3-1 presents
some of the most common date operations that will be discussed in this chapter.

Table 3-1. List of Common Operations Performed on Date Objects

Operation Description

add Add a certain number of days to the current date.
subtract Subtract a certain number of days from the current date.
addTradingDays Add a number of trading days to the current date.
subtractTradingDays Subtract a number of trading days from the current date.
dateDifference Return the difference in days from the current date.

tradingDaysDifference Return the difference in trading days between two dates.
dayOfThelWeek Return the day of the week corresponding to the given date.

ishWeekDay True if the date is a weekday.

(continued)
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Table 3-1. (continued)

Operation Description

isHoliday True if the date is a holiday.

isTradingDay True if the date is a trading day.

islLeapYear True if the year is a leap year (i.e., it has 366 days).
nextDay Increment the current date to the next valid day.
nextTradingDay Increment the current date to the next valid trading day.

Let’s introduce a Date class that implements the operations described in Table 3-1.
The declaration for the Date class is the following:

class Date {
public:
Date(int year, int month, int day);
Date(const Date &p);
~Date();
Date 8operator=(const Date &p);

void setHolidays(const std::vector<Date> &days);
std::string month();
std::string dayOfWeek();

void add(int numDays);

void addTradingDays(int numDays);

void subtract(int numDays);

void subtractTradingDays(int numDays);
int dateDifference(const Date &date);
int tradingDateDifference(const Date &date);
DayOfTheWeek dayOfTheWeek();

bool isHoliday();

bool isWeekDay();

Date nextTradingDay();

bool isleapYear();

bool isTradingDay();

void print();
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Date 8operator ++();

Date &operator --();

bool operator<(const Date &d) const;

bool operator==(const Date &d);
private:

int m_year;

int m_month;

int m_day;

DayOfThelWeek m _weekDay;

std::vector<Date> m_holidays;

};

Notice that the data members for this class store the year, month, and day, which are
passed to the constructor. There are two other data members:

» m_weekDay, which stores the current day of the week (if it is known)

o m_holidays, which stores a list of given holidays

Computing the Day of the Week

The day of the week is calculated by adding days starting from January 1st, 1900, which
was a Monday. This process is improved by storing the result on m_weekDay so that

it doesn’t need to be recomputed. The member function, called dayOfTheleek(), is
implemented as follows:

DayOfTheleek Date::dayOfTheWeek()

{
if (m_weekDay != DayOfTheWeek UNKNOWN)

return m_weekDay;

int day = 1;
Date d(1900, 1, 1);
for (;d < *this; ++d)
{
if (day == 6) {
day = 0;
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else {
day++;

}
m_weekDay = static_cast<DayOfTheWeek>(day);

return m_weekDay;

Another important member function used throughout the class is operator++. This
member function is in fact the implementation of an operator, which overrides the
default autoincrement ++. It will update the object so that it represents the next valid
date. In most cases, only the m_day field needs to be incremented. However, when the
day is 28, 29, 30, or 31, both the month and day need to be updated. Then, the right thing
to do depends on the month, as shown in the following code fragment:

if (m_day == 31)
{

m_day = 1;

m_month++;
}
else if (m_day == 30 8&

std: :find(monthsWithThirtyOneDays.begin(),
monthsWithThirtyOneDays.end(), m_month)
== monthsWithThirtyOneDays.end())

{
m day = 1;
m_month++;
}
else if (m_day == 29 8& m_month == 2)
{
m_day = 1;
m_month++;
}
/1 ...
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Here, monthsWithThirtyOneDays is an std: : vector containing a set of months that
have 31 days. Other tests are analogous to this example. Similarly, operator-- adjusts
the current date to the previous valid date. If the current day is 1, it finds the right date
based on the number of days in the previous month.

The isTradingDay member function returns true if the current date is not a holiday
or a day of the weekend:

// Returns true if not a holiday or a day of the weekend.
//
bool Date::isTradingDay()

{
if (!isWeekDay()) return false;
if (m_holidays.size() == 0) return true;
if (isHoliday()) return false;
return true;
}

Note Notice that holidays are different per country, and when used in a realistic
application, this code should be updated to consider international holiday dates.

Most other functions are implemented based on these primitive functions. For
example, here is how you can add days to the current date:

void Date::add(int numDays)

{
for (int i=0; i<numDays; ++i)
{
++*this;
}
}
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And here is how you can add trading days to the current date. Initially, you find the
first trading day starting from the given date. Then, for each trading day, add one to the
current date and skip all upcoming nontrading days. The implementation is as follows:

void Date::addTradingDays(int numDays)

{
while (!isTradingDay())
{
++*this;
}
for (int i=0; i<numDays; ++1i)
{
++*this;
while (!isTradingDay())
{
++*this;
}
}
}

Complete Listing

Here you can find the complete code for the Date class. Listing 3-1 contains the header
file and Listing 3-2 shows the implementation file for Date.

Listing 3-1. Interface of the Date Class

//
// Date.h

#ifndef _ CppOptions Date
#define _ CppOptions Date

#include <vector>
#include <string>
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enum DayOfTheWeek {
DayOfThelWeek Sunday,
DayOfThelWeek Monday,
DayOfTheWeek Tuesday,
DayOfThelWeek Wednesday,
DayOfThelWeek Thursday,
DayOfTheWeek Friday,
DayOfThelWeek Saturday,
DayOfThelWeek UNKNOWN

}s

enum Month {
Month January = 1,
Month_February,
Month_March,
Month April,
Month_May,
Month June,
Month_July,
Month_August,
Month_September,
Month_October,
Month_November,
Month_December,

}s

class Date {
public:
Date(int year, int month, int day);
Date(const Date &p);
~Date();
Date &operator=(const Date 8&p);

void setHolidays(const std::vector<Date> &days);
std::string month();
std::string dayOfWeek();
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void add(int numDays);

void addTradingDays(int numDays);

void subtract(int numDays);

void subtractTradingDays(int numDays);
int dateDifference(const Date &date);
int tradingDateDifference(const Date &date);
DayOfTheWeek dayOfTheWeek();

bool isHoliday();

bool isWeekDay();

Date nextTradingDay();

bool islLeapYear();

bool isTradingDay();

void print();

Date 8operator ++();

Date &operator --();

bool operator<(const Date &d) const;

bool operator==(const Date &d);
private:

int m_year;

int m_month;

int m_day;

DayOfThelWeek m weekDay;

std::vector<Date> m_holidays;

};
#endif /* defined(__ CppOptions_ Date ) */

Listing 3-2. Implementation File of the Date Class

//
// Date.cpp
//  CppOptions

#include "Date.h"

#include <string>
#include <iostream>
#include <algorithm>

BASIC C++ ALGORITHMS
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using std::cout;
using std::endl;

using std::string;

Date::Date(int year, int month, int day)
: m_year(year),
m_month(month),
n_day(day),
m_weekDay (DayOfTheWeek UNKNOWN)
{
}

Date::~Date()

{
}

Date::Date(const Date 8&p)

: m_year(p.m_year),
m_month(p.m month),
m_day(p.m_day),
m_weekDay(p.m_weekDay),
m_holidays(p.m holidays)

{

}

Date &Date::operator=(const Date 8&p)

{
if (&p != this)

{
m_day = p.m_day;
m_month = p.m_month;
m_year = p.m_year;
m weekDay = p.m_weekDay;
m_holidays = p.m_holidays;
}

return *this;
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bool Date::operator<(const Date &d) const

{
if (m_year < d.m_year) return true;
if (m_year == d.m_year &% m month < d.m month) return true;
if (m_year == d.m_year &&% m month == d.m _month
8& m_day < d.m_day) return true;
return false;
}
bool Date::operator==(const Date &d)
{
return d.m_day == m_day && d.m_month == m_month
&&% d.m year == m year;
}
void Date::setHolidays(const std::vector<Date> &days)
{
m_holidays = days;
}
bool Date::isHoliday()
{
return std::find(m_holidays.begin(), m_holidays.end(), *this)
I= m_holidays.end();
}
// Convert enumeration values to month strings.
//
std::string Date::month()
{

switch (m_month) {

case Month_January: return "January";
case Month February: return "February";
case Month March: return "March";

case Month April: return "April";

case Month_May: return "May";

case Month June: return "June";

case Month July: return "July";
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case Month_August: return "August";

case Month September: return "September";

case Month October: return "October";

case Month November: return "November";

case Month December: return "December";

default: throw std::runtime_error("unknown month");

}
return "";
}
std::string Date::dayOfWeek()
{
switch (this->dayOfThelWeek()) {
case DayOfThelWeek Sunday: return "Sunday";
case DayOfThelWeek Monday: return "Monday";
case DayOfThelWeek Tuesday: return "Tuesday";
case DayOfThelWeek Wednesday: return "Wednesday";
case DayOfTheWeek Thursday: return "Thursday";
case DayOfTheWeek Friday: return "Friday";
case DayOfTheWeek Saturday: return "Saturday";
default: throw std::runtime_error("unknown day of week");
}
}
void Date::add(int numDays)
{
for (int i=0; i<numDays; ++i)
{
++*this;
}
}
void Date::addTradingDays(int numDays)
{
while (!isTradingDay())
{
++*this;
}
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for (int i=0; i<numDays; ++i)

{
++*this;
while (!isTradingDay())
{
++*this;
}
}
}
void Date::subtract(int numDays)
{
for (int i=0; i<numDays; ++1i)
{
--*this;
}
}
void Date::subtractTradingDays(int numDays)
{
while (!isTradingDay())
{
--*this;
}
for (int i=0; i<numDays; ++1i)
{
--*this;
while (!isTradingDay())
{
--*this;
}
}
}
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int Date::dateDifference(const Date &date)

{
Date d = *this;

if (d < date)

{
int diff=0;
while (d < date)
{
++d;
++diff;
}
return diff;
}
int diff=0;
while (date < d)
{
--d;
--diff;
}

return diff;

}

int Date::tradingDateDifference(const Date &date)
{
Date d = *this;
if (d < date)
{
int diff=0;
while (!d.isTradingDay()) ++d;
while (d < date)

{

++d;

++difef;

while (!d.isTradingDay()) ++d;
}
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return diff;

}

int diff=0;

while (!d.isTradingDay()) --d;
while (date < d)

{

__d;

--diff;

while (!d.isTradingDay()) --d;
}

return diff;

DayOfTheWeek Date::dayOfThelWeek()

{

}

if (m_weekDay != DayOfTheWeek UNKNOWN) return m weekDay;

int day = 1;
Date d(1900, 1, 1);
for (;d < *this; ++d)
{
if (day == 6) day = 0;
else day++;
}
m weekDay = static_cast<DayOfTheWeek>(day);
return m_weekDay;

bool Date::isWeekDay()

{

DayOfTheWeek dayOfWeek = dayOfTheWeek();

if (dayOfWeek == DayOfTheWeek Sunday || dayOfWeek == DayOfTheWeek

Saturday)
{

return false;
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return true;

}
bool Date::isTradingDay()
{
if (!isWeekDay()) return false;
if (m_holidays.size() == 0) return true;
if (isHoliday()) return false;
return true;
}
Date Date::nextTradingDay()
{
Date d = *this;
if (d.isTradingDay())
{
return ++d;
}
while (!d.isTradingDay())
{
++d;
}
return d;
}
bool Date::islLeapYear()
{
if (m_year % 4 != 0) return false;
if (m_year % 100 != 0) return true;
if (m_year % 400 != 0) return false;
return true;
}
Date &Date::operator--()
{

if (m weekDay != DayOfTheWeek UNKNOWN) // update weekday
{
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if (m_weekDay == DayOfTheWeek_ Sunday)
m_weekDay = DayOfTheWeek Saturday;
else
m_weekDay = static_cast<DayOfTheWeek>(m weekDay - 1);

}
if (m_day > 1)
{
m_day--;
return *this;
}
if (m_month == Month January)
{
m_month = Month December;
m_day = 31;
m_year--;
return *this;
}
m_month--;

if (m_month == Month February)
{

m_day = islLeapYear() ? 29 : 28;
return *this;

}

// List of months with 31 days
std: :vector<int> monthsWithThirtyOneDays = {
1, 3, 5, 7, 8, 10, 12
};
if (std::find(monthsWithThirtyOneDays.begin(),
monthsWithThirtyOneDays.end(), m month)
I= monthsWithThirtyOneDays.end())

m day = 31;
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else
{
m_day = 30;

}

return *this;
}
Date 8Date::operator++()
{

// List of months with 31 days
std: :vector<int> monthsWithThirtyOneDays = {
i, 3, 5, 7, 8, 10, 12

};
if (m_day == 31)
{
m day = 1;
m_month++;
}

else if (m_day == 30 8&
std: :find(monthsWithThirtyOneDays.begin(),
monthsWithThirtyOneDays.end(), m month)
== monthsWithThirtyOneDays.end())

{
m day = 1;
m_month++;
}
else if (m_day == 29 &% m_month == 2)
{
m_day = 1;
m_month++;
}

else if (m_day == 28 8& m_month == 2 && !isLeapYear())
{

m_day = 1;
m_month++;
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else

{

m_day++;

}

if (m_month > 12)

{
m _month = 1;
m_year++;

}

if (m weekDay != DayOfTheWeek UNKNOWN) // update weekday

{
if (m weekDay == DayOfTheWeek Saturday)

m_weekDay = DayOfTheWeek Sunday;

else
m_weekDay = static_cast<DayOfTheWeek>(m weekDay + 1);

}

return *this;
}
void Date::print()
{

cout << m_year << "/" << m_month << "/" << m_day << endl;
}
int main()
{

Date d(2015, 9, 12);

DayOfThelWeek wd = d.dayOfTheWeek();
cout << " day of the week: " << wd <<
<< d.dayOfWeek() << endl;

d.print();

d.add(25);
d.print();

d.addTradingDays(120);
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d.print();

cout << " day of the week: " << d.dayOfTheWeek()
<< " " << d.dayOfWeek() << endl;

return 0;

A Compact Date Representation

While the Date class presented in the previous section is an adequate implementation of
the concept of dates in C++, it still may not be perfect for all applications. One problem
with it is that you need to use integers to store each of the different parts of the date,
which include year, month, and day. In today’s common 64-bit CPU, this takes 24 bytes,
which is lot of space for such a small piece of information.

There are a few ways that you can improve the memory use for Date objects. In
this section, I explain how to do this using a simple format for date storage that uses a
character string. If you use four bytes for the year and two bytes for the month as well as
the day, the required memory is reduced to just 8 bytes. This format is also commonly
used as a date stamp in several applications, so it is easy to verify the correctness of a
particular date.

To show how this implementation works, I created a new class called DateCompact,
which is a compact representation of Date objects. I only present a few of the operations
required from this data type, to avoid duplication of the previous code, but you
can implement all other methods provided in the Date class using the underlying
representation provided by DateCompact.

The only date member of class DateCompact is a string, declared using the old-style
array type of C, for compactness:

char m_date[8];
Dates are stored using the following member functions:

void setYear(int y);
void setMonth(int m);
void setDay(int d);
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These dates can be retrieved using three corresponding methods:

int year();
int month();
int day();

For example, to store the year, you just need to convert the given number into a four-
character string:

void DateCompact::setYear(int year)

{
m date[3] = '0" + (year % 10); year /= 10;
m date[2] = '0' + (year % 10); year /= 10;
m date[1] = '0' + (year % 10); year /= 10;
m date[0] = '0' + (year % 10);

}

You need to add each number to the character '0' so that the resulting string is
printable. The reverse process is easy; you just need to add the characters in the right
way:

int DateCompact::year()

{
// (x - '0") computes the numeric value
// corresponding to each character.
return 1000 * (m_date[0] - '0') + 100 * (m_date[1] - '0")
+ 10 * (m_date[2] - '0') + (m_date[3] - '0');
}

The comparison operators can be easily implemented with the help of the strncmp
function from the C string library. The function strncmp returns a negative number if
the first argument is lexicographically less than the first, a positive number if the first
argument is greater than the second, and 0 if the two strings are equal. For example, the
equality operator can be implemented as follows:

bool DateCompact::operator==(const DateCompact &d) const
{

return strncmp(m date, d.m date, 8) == 0;
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Similarly, the less than operator has the following implementation:

bool DateCompact::operator<(const DateCompact &d) const

{
// strcmp returns negative values if the
// first argument is less than the second.
return strncmp(m_date, d.m date, 8) < 0;

}

Complete Listings

The full code for the DateCompact class, described in the previous section, is presented in
Listings 3-3 and 3-4.

Listing 3-3. Interface of the DateCompact Class

//
// DateCompact.h

#ifndef _ CppOptions DateCompact
#idefine _ CppOptions_ DateCompact

//
// A compact representation for dates, using a character string
//
class DateCompact {
public:
DateCompact(int year, int month, int day);
DateCompact(const DateCompact &p);
~DateCompact();
DateCompact &operator=(const DateCompact 8p);

void setYear(int y);
void setMonth(int m);
void setDay(int d);

int year();
int month();
int day();

74



CHAPTER 3
void print();

bool operator==(const DateCompact &d) const;
bool operator<(const DateCompact &d) const;

private:
char m_date[8];

};
#tendif /* defined(_ CppOptions DateCompact ) */

Listing 3-4. Implementation of the DateCompact Class

//

// DateCompact.cpp

//

// Implementation for the DateCompact class

#include "DateCompact.h"

#include <cstring>
#include <iostream>

using std::cout;
using std::endl;

DateCompact: :DateCompact(int year, int month, int day)
{

setYear(year);
setMonth(month);
setDay(day);

}

DateCompact: :DateCompact(const DateCompact 8p)

{
strcpy(m_date, p.m_date);

}

DateCompact: :~DateCompact()

{
}

BASIC C++ ALGORITHMS
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DateCompact 8DateCompact::operator=(const DateCompact &p)

{
if (& != this)

{
strcpy(m_date, p.m_date);
}
return *this;
}
//

// Use string comparison to determine if the dates are equal.
//
bool DateCompact::operator==(const DateCompact &d) const

{

return strncmp(m date, d.m date, 8) == 0;

}

// Use the strncmp function to determine if a date is less than the other.
bool DateCompact::operator<(const DateCompact &d) const

{
// strcmp returns negative values if the first
// argument is less than the second.
return strncmp(m_date, d.m_date, 8) < 0;

}

//

// Functions to calculate the year, month, and days as integers,
// based on the characters contained in the string 'm_date'.
//

int DateCompact::year()

{
// (x - '0") computes the numeric value
// corresponding to each character.
return 1000 * (m_date[0] - '0') + 100 * (m date[1] - '0")
+ 10 * (m_date[2] - '0") + (m date[3] - '0");
}
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int DateCompact::month()
{
return 10 * (m_date[4] - '0') + (m_date[5] - '0');
}
int DateCompact::day()
{
return 10 * (m_date[6] - '0') + (m_date[7] - '0');
}
void DateCompact::print()
{
// Copy the m_date string into a NULL terminated
// string (with 9 characters).
char s[9];
strncpy(s, m_date, 8);
s[8] = "\o'; // properly terminate the string
cout << s << endl;
}
//
// Calculate the string corresponding to the given numeric parameter.
//
void DateCompact::setYear(int year)
{
m date[3] = '0' + (year % 10);
year /= 10;
m date[2] = '0" + (year % 10);
year /= 10;
m date[1] = '0' + (year % 10);
year /= 10;
m date[0] = '0' + (year % 10);
}
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void DateCompact::setMonth(int month)

{
m date[5] = '0" + (month % 10); month /= 10;
m_date[4] = '0' + (month % 10); month /= 10;

}

void DateCompact::setDay(int day)

{
m_date[7] = '0" + (day % 10); day /= 10;
m_date[6] = '0' + (day % 10); day /= 10;

}

#include "Date.h"

int main()

{

DateCompact d(2008, 3, 17);
DateCompact e(2008, 5, 11);

cout << " size of DateCompact: " << sizeof(DateCompact) << endl;
d.print();
e.print();
if (d < e)
{
cout << " d is less than e " << endl;
}
else
{
cout << " d is not less than e " << endl;
}

Date date(2008, 3, 17);
cout << " size of Date:

<< sizeof(Date) << endl;

return O;
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Building and Testing

The previous code can be built using any standards-compliant C++ compiler. Here are
the commands used to build the application on MacOS X using gcc:

cc++ -std=c++2a -o DateCompact.o -c DateCompact.cpp
cc++ -std=c++2a -o Date.o -c Date.cpp

cc++ -o main DateCompact.o Date.o

The main function provides a quick test of the DateCompact class, which also
compares the size of the objects created using DateCompact and Date. Notice how Date
occupies much more memory than DateCompact.

./DateCompact

size of DateCompact: 8
20080317

20080511

d is less than e

size of Date: 48

Working with Networks

Network structures commonly appear in many fields of software development. Such
networks are ideal for representing the connections between entities as diverse as
people, investments, countries, or sale contracts. In financial applications, for example,
elements of a network may represent stocks or other asset classes. Connections between
elements of the network may represent correlation between assets, among other uses.
This type of algorithm is used in the analysis of investment portfolios, for example.

In this section, I provide an overview of networks and explain how they can be
presented in C++ applications. The particular example used demonstrates the way in
which such algorithms can be designed and implemented.

The problem presented here is called word production. A word is a sequence
of characters, and it can represent, among other things, stock tickers in a financial
application, for example. Therefore, IBM and CAT (stock tickers for companies IBM
and Caterpillar) may be viewed as application-specific words. These elements are then
stored in a dictionary of useful words. The word production problem determines how
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aword can be derived from another using a dictionary. For example, the word CAT
can be derived from the word CAR by just changing a single character. Complex string
production can be performed using multiple productions. Therefore, using this rule,
itis possible to connect elements of a dictionary using a set of links, where each link
represents a single word production.

In the string-production problem, you are given a starting and a destination word.
You also have a dictionary of words (e.g., a set of stock tickers that you may be interested
in trading). Then, the goal is to find the shortest set of productions that can connect the
initial word to the final word. For a concrete example, consider the dictionary containing
the words LOB, DAG, LOG, CAR, DOG, CAT, COB, CAB, and CAG. If you start from
the word CAT and end with the word DOG, a possible solution to the problem is this
sequence:

CAT, CAG, DAG, and DOG

This is not a unique solution, but it has minimum size (three productions). Another
candidate solution is

CAT, CAB, COB, LOB, LOG, DOG

This is also valid, but is clearly not the shortest solution, since it needs more
productions than the previous example. For simplicity, it is assumed that all words in the
dictionary have the same size.

Creating a Dictionary Class

The first step to solve this problem is to find an efficient representation for the
Dictionary object. For this purpose, I created a class that stores the set of words using a
vector called m_values. Here is the class definition:

class Dictionary {
public:
Dictionary(int wordSize);
~Dictionary() {}
Dictionary 8operator=(const Dictionary 8p); // not implemented
/7 ...
void addElement(const std::string 8&s);
void buildAdjancencyMatrix();
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bool contains(const std::string &s);
const std::vector<std::vector<bool> > 8adjList();
int elemPosition(const std::string &s);
int size() { return (int)m values.size(); }
std::string elemAtPos(int 1i);

private:
std::vector<std::string> m_values;
std::map<std::string, int> m_valuePositions;
std: :vector<std: :vector<bool> > m_adjacencylist;
int m_wordSize;

}s
There are other three member variables used by the class:

o m_wordSize is used to store the size of words in the dictionary.

o m_valuePositions is a variable used to store a mapping between
words and numeric positions.

e m_adjacencylist, an adjacency list.

The first step in the implementation is to define member functions that add elements
to the dictionary. For example, this is how you add new words to the dictionary:

void Dictionary::addElement(const string &s)

{
if (s.size() != m wordSize)
{
throw std::runtime_error("invalid string size");
}
m_values.push back(s);
m_valuePositions[s] = (int)m values.size() - 1;
cout << " added " << s << endl;
}

You can use member functions in std: : vector to interact with the underlying
m_values collection. In this case, the function uses push_back to add new words of the
right size. Notice that when a word is stored, the position of the word is also stored in a
std::map named m_valuePositions.
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The member function elementAtPos returns the word stored in a certain position of
the m_values vector:

string Dictionary::elemAtPos(int i)

{

return m_values[i];

The member function contains returns true if a word is already stored in the
dictionary. It uses the find member function of std: :map, which when given a mapm
returns the value associated with the given key when the element is found, or the value
m.end() when the element is not in the map.

bool Dictionary::contains(const string &s)

{

return m_valuePositions.find(s) != m_valuePositions.end();

Another feature of the Dictionary class is that it returns the position of an element
that has been stored in the vector m_values. To speed up this process, Dictionary
uses std::map m_valuePositions, which maps between strings and their respective
positions. Using this map, it is possible to define the member function elemPosition.
The implementation is straightforward:

int Dictionary::elemPosition(const string 8&s)

{

return m_valuePositions[s];

Finally, the Dictionary class is responsible for building an adjacency matrix, that is,
a matrix that stores the connectivity information for the network of words stored in this
dictionary. The way this works is that the matrix has size n by n, where n is the number
of words stored. The entries A; in the matrix are true or false, and true means that the
words stored at positions i and j differ by just one character.
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The first thing that you need to do is create the adjacency matrix for the given set of
words stored in the dictionary. This is done using the buildAdjacencyMatrix member
function:

void Dictionary::buildAdjancencyMatrix()

{
m_adjacencylList.clear();
int n = (int)m values.size();
for (int i=0; i<n; ++i)
{
m_adjacencylList.push_back(vector<bool>(n));
for (int j=0; j<n; ++j)
{
if (diffByOne(m values[i], m values[j]))
{
m_adjacencylList[i][]j] = true;
}
}
}
}

The original adjacency data is cleared and a loop is run through each pair of words
stored inm_values. Then, the algorithm checks if the words differ by just one character
using the diffByOne member function. If that is true, then the algorithm can set the
value of the adjacency to true. The diffByOne algorithm is also straightforward:

bool diffByOne(const string &a, const string &b)

{
if (a.size() != b.size()) return false;
int ndiff = 0;
for (unsigned i=0; i<a.length(); ++i)
{
if (a[i] != b[i]) ndiff++;
}
return ndiff == 1;
}
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You just need to count the number of different characters occurring in both strings.
The function returns true only if the number of differences is equal to one

Calculating a Shortest Path

The challenging part of this algorithm is to find the shortest path between the two
given nodes of the network, represented by the initial and final words. There are a few
alternative algorithms to find a shortest path, but this implementation uses the well-
known Dijkstra’s algorithm.

The central idea of this algorithm is to maintain the known distances starting from
the initial node. Then, at each iteration, you can look for the neighbors of a node and
see if at least one can reduce the known shortest path by traversing that node. If that
is possible, then the shortest path passing through that node is updated. This process
continues until all nodes in the network have been considered.

I present a simple implementation of this algorithm in the StringProduction class.
The definition of the class is as follows:

class StringProduction {
public:
StringProduction(Dictionary 8&d);
StringProduction(const StringProduction &p);
~StringProduction();
StringProduction &operator=(const StringProduction &p);

bool produces(const std::string &src,const std::string 8&dest,
std::vector<std::string> &path);
void shortest path(int v, int dest, int n,
std::vector<std: :string> &path);
std: :vector<int> recoverPath(int src, int dest,
const std::vector<int> &P, std::vector<int> 8path);
private:
Dictionary &m dic;

};

The StringProduction class keeps a reference to a dictionary, which contains all
the nodes in the network for use by the shortest-path algorithm. The central member
function for this class is shortest_path, which returns the shortest path between the
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two given words (which should be part of the underlying dictionary). The first part of the
function initializes the data structures used by the algorithm:

// Initialize the set of distances and the set of nodes
for (int i = 0; i <n; i++) {
Q.insert(i);
if (1 1=v) {
dist[i] = INF;

}

The object named Q has type std: : set, and it can quickly add and remove elements
that will later be checked by the algorithm. The loop is just adding all nodes to Q
and setting the initial distances in the vector dist to a large number (INF). The only
exception is the distance between the initial node v and itself, which is known to be zero.
Another important part of the algorithm is the so-called relaxation step, where the
distance is updated to the latest known shortest-path value:

for (int i=0; i<n; ++i){

if (A[ul[i]) { // nodes u and i are neighbors
int d = dist [u] + 1;
if (d < dist[i]) {
dist[i] = d;
prev[i] = u;

}

The vector prev stores the node that is known to be the previous one in the shortest-
path sequence. The last part of the algorithm is the path-recovery step, where the
complete path is retrieved using the information stored in prev:

vector<int> npath;

recoverPath(v, dest, prev, npath);

for (auto elem : npath) {
path.push_back(m dic.elemAtPos(elem));
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This algorithm uses the member function called recoverPath to find the numeric
sequence of nodes used in the shortest path. The for loop then uses that numeric
sequence to recover the words from the dictionary. The implementation of the
recoverPath method iterates through the previous nodes to construct a sequence:

vector<int> StringProduction::recoverPath(
int src, int dest, const vector<int> &P,
vector<int> &path){
int v = dest;
while (v != src) {
path.push back(v);
v = P[v];
}
path.push back(src);
std: :reverse(path.begin(),path.end());
return path;

Finally, the produces member function uses the algorithm explained previously to
find and return the shortest production. First, it checks that the initial and destination
words are stored in the dictionary. Then, the function shortest_path is called with the
right parameters. The word sequence is returned using the parameter path. The return
value is true if there is a valid sequence with size greater than zero.

bool StringProduction::produces(const string &src,
const string &dest, vector<string> &path) {

if (!m dic.contains(src) || !m dic.contains(dest))
return false;

shortest path(m dic.elemPosition(src),
m dic.elemPosition(dest), m dic.size(), path);

return path.size() > 0;
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Complete Listings

Here is the complete listing for the network-based algorithm described in the preceding
section. There are five files that contain the full solution. Two files are used for the
Dictionary class. Two other files are used for the StringProduction class. Finally, a
main file is provided so that you can run a test on the two classes. The files are displayed
in Listings 3-5-3-9.

Listing 3-5. Interface of the Dictionary Class

//
// Dictionary.h

#ifndef _ StringProduction_Dictionary
#define _ StringProduction_ Dictionary

#include <string>
#include <vector>
#include <map>

//
// Stores the words in the dictionary and provides an adjacency matrix for
the words
class Dictionary {
public:

Dictionary(int wordSize);

~Dictionary() {}

Dictionary 8operator=(const Dictionary 8p); // not implemented
private:

Dictionary(const Dictionary &p); // not implemented
public:

void addElement(const std::string 8s);

void buildAdjancencyMatrix();

bool contains(const std::string &s);

const std::vector<std::vector<bool> > &adjList();

int elemPosition(const std::string &s);

int size() { return (int)m values.size(); }

std::string elemAtPos(int i);
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private:
std::vector<std::string> m_values;
std::map<std::string, int> m_valuePositions;
std::vector<std::vector<bool> > m_adjacencylist;
int m_wordSize;

};

#endif /* defined(__StringProduction Dictionary ) */

Listing 3-6. Implementation of the Dictionary Class

//
// Dictionary.cpp

#include "Dictionary.h"

#include <iostream>
#include <vector>
#include <map>
#include <set>
#include <queue>

using std::string;
using std::vector;
using std::set;
using std::map;
using std::cout;
using std::endl;
using std::cerr;

Dictionary::Dictionary(int wordSize)
: m_values(),

m_valuePositions(),
m_adjacencylList(),
m_wordSize(wordSize)

{

}
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const std::vector<std::vector<bool> > 8Dictionary::adjList()

{

return m_adjacencylist;

}
Dictionary 8Dictionary::operator=(const Dictionary &p)
{
if (&p != this)
{
m_adjacencylist = p.m_adjacencylist;
m_valuePositions = p.m valuePositions;
m_values = p.m_values;
m wordSize = p.m wordSize;
}
return *this;
}
//

// True if the words a and b differ by just one character
/!
bool diffByOne(const string &a, const string &b)

{

if (a.size() != b.size()) return false;

int ndiff = 0;

for (unsigned i=0; i<a.length(); ++i)

{

if (a[i] != b[i]) ndiff++;

}

return ndiff == 1;
}
bool Dictionary::contains(const string &s)
{

return m_valuePositions.find(s) != m valuePositions.end();
}
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int Dictionary::elemPosition(const string &s)

{

return m_valuePositions[s];

}

void Dictionary::addElement(const string &s)

{

if (s.size() != m_wordSize)

{

throw std::runtime_error("invalid string size");

}

m_values.push back(s);
m valuePositions[s] = (int)m values.size() - 1;

cout << " added " << s << endl;
}
string Dictionary::elemAtPos(int i)
{
return m_values[i];
}
void Dictionary::buildAdjancencyMatrix()
{

m_adjacencylList.clear();

int n = (int)m values.size();

for (int i=0; i<n; ++i)

{
m_adjacencylList.push_back(vector<bool>(n));
for (int j=0; j<n; ++j)

{
if (diffByOne(m values[i], m values[j]))
{

m_adjacencylList[i][]] = 1;

}

}

}
}
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Listing 3-7. Interface of the StringProduction Class

//
// StringProduction.h

#ifndef _ StringProduction__ StringProduction _
#define _ StringProduction__ StringProduction_ _

#include <vector>
#include <string>

class Dictionary;

class StringProduction {
public:
StringProduction(Dictionary 8&d);
StringProduction(const StringProduction &p);
~StringProduction();
StringProduction &operator=(const StringProduction 8p);

bool produces(const std::string &src, const std::string &dest,
std::vector<std::string> &path);
void shortest path(int v, int dest, int n, std::vector<std::string>
&path);
std: :vector<int> recoverPath(int src, int dest, const std::vector<int>
&P, std::vector<int> &path);

private:
Dictionary &m dic;

};
#tendif /* defined(__StringProduction_ StringProduction ) */

Listing 3-8. Implementation of the StringProduction Class

//
// StringProduction.cpp

#include "StringProduction.h”

#include "Dictionary.h"
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#include <algorithm>
#include <climits>
#include <map>
#include <set>

using std::vector;
using std::string;
using std::map;
using std::set;

StringProduction::StringProduction(Dictionary &d)
: m_dic(d)

{

}

StringProduction::StringProduction(const StringProduction &p)
: m dic(p.m_dic)

{

}

StringProduction: :~StringProduction()

{
}

StringProduction &StringProduction::operator=(const StringProduction &p)
{
if (&p != this) {
m dic = p.m_dic;
}

return *this;

}

//
// Recovers the path from a list of previous nodes (P)
vector<int> StringProduction::recoverPath(int src, int dest, const
vector<int> &P, vector<int> &path){
int v = dest;
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while (v != src) {

path.push back(v);

v = Plv];
}
path.push back(src);
std::reverse(path.begin(),path.end());
return path;

// Computes the shortest path.

// Node v is the source, dest is destination. If the path can be found, it
is stored on parameter path

void StringProduction::shortest path(int v, int dest, int n, vector<string>
8path)

{

const std::vector<std: :vector<bool> > 8A = m_dic.adjList(); // get the
adjacency matrix

path.clear();

vector<int> dist(n, 0);

vector<int> prev(n, 0);

set<int> Q; // set of nodes
const int INF = INT_MAX; // a large number

// Initialize the set of distances and the set of nodes
for (int i = 0; 1 <n; i++) {
Q.insert(i);
if (i!=v) {
dist[i] = INF;

}

// This is Dijkstra's algorithm
while (!Q.empty()) {

int min = INF;
int u = -1;
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for (set<int>::iterator it = Q.begin(); it != Q.end(); ++it) {
// Find the minimum value in queue
if (dist[*it] < min) {
min = dist[*it];

u = *it;

}

Q.erase(u); // remove min vertex u from set

// Relaxation step
for (int i=0; i<n; ++i){

if (A[ul[i]) | // this is a neighbor
int d = dist [u] + 1;
if (d < dist[i]) {
dist[i] = d;
prev[i] = u;

}

// Recover the path from vector prev

vector<int> npath;

recoverPath(v, dest, prev, npath);

for (auto elem : npath) {
path.push_back(m dic.elemAtPos(elem));

}

//

// Returns true if the word src produces dest using the

// dictionary dic. If true, then path will contain the path
// between src and dest.

//
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bool StringProduction::produces(const string &src,

}

const string &dest, vector<string> &path) {
if (!m_dic.contains(src) || !m dic.contains(dest)) return false;

shortest path(m dic.elemPosition(src),
m dic.elemPosition(dest), m dic.size(), path);

return path.size() > 0;

Listing 3-9. The main Function with a Simple Test for the StringProduction Class

//
//
//
//

main.cpp
StringProduction

#include "StringProduction.h"
#include "Dictionary.h"

#include <iostream>

using std::vector;
using std::string;

using std::cout;
using std::endl;

//

// main function is a test case for the algorithm.

//

int main(int argc, const char * argv[]) {

if (argc != 3) {
cout << "prog wordi word2" << endl;
return 1;

}

Dictionary dic(3);
dic.addElement("lob");
dic.addElement("dag");
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dic.addElement("log");
dic.addElement("car");
dic.addElement("dog");
dic.addElement("cat");
dic.addElement("cob");
dic.addElement("cab");
dic.addElement("cag");

dic.buildAdjancencyMatrix();

vector<string> path;
StringProduction sp(dic);
if (sp.produces(argv[1], argv[2], path)) {
cout << " -- the first string produces the second" << endl;

cout << " -- that path has size " << path.size() << ":\n";
for (unsigned i=0; i<path.size(); ++i) {

cout << path[i] << "; ";

}
} else {
cout << " the second string does not produce the second"
<< endl;
}
return O;

Building and Testing

You can build the code presented in the last section using any standards-compliant C++
compiler. I tested the code on Linux and MacOS X. The commands used to build the
project in gcc are the following:

gcc -o StringProduction.o -c StringProduction.cpp

gcc -o Dictionary.o -c Dictionary.cpp

gcc -0 main.o -c main.cpp

gcc -o StringProduction Dictionary.o StringProduction.o main.o
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The main function contains test code that creates a new Dictionary object, inserts
a small set of words, and uses the StringProduction class to calculate the shortest path.
Here is a sample of the generated output in my system:

./StringProduction cat dog

added lob

added dag

added log

added car

added dog

added cat

added cob

added cab

added cag

-- the first string produces the second
-- that path has size 4:
cat; cag; dag; dog;

A quick note about the complexity of this algorithm. As explained, the Dijkstra’s
algorithm for shortest-path calculation is used. The current implementation uses
a matrix of adjacencies, with complexity O(n?), where n is number of words in the
dictionary. This could be improved using more complex implementation schemes (such
as adjacency lists and priority queues); however, I decided to use the simplest data
structures in order to concentrate on the algorithm itself.

Conclusion

In this chapter, I presented a few basic algorithms implemented in C++20. These
algorithms provide examples of how to solve computational problems using C++ and
container from the STL. You read an overview of two interesting problems with financial
applications: date calculation and shortest paths on data networks.

The first two sections dealt with date representations and their associated
operations. Dates are needed in nearly all financial- and derivative-related applications.
They are an intrinsic part of time series for prices, volatility, and other financial
information used in the analysis of derivatives. You saw how to implement commonly
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used functions to manipulate dates, such as adding and subtracting dates, finding trade
dates, and computing date intervals. You have also learned how to design a compact
date representation, so that only a small amount of memory is necessary to store a large
number of date objects.

Finally, I discussed the common problem of implementing a network, with nodes
that represent individual data elements and connections between these nodes. I
discussed a simple problem based on a dictionary of strings, which can represent stocks
from a universe of interest, for example. Then, you learned how to create an algorithm
that calculates the shortest paths between elements of this basic dataset.

In the next chapter, you will see more examples of using C++ for financial
programming. This time, you will learn more about object-oriented techniques,
including how they can be used to create high-performance applications to process
options and derivative contracts.
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Object-Oriented
Techniques

For the last 30 years, object-oriented techniques have become the standard for software
design and development. Since C++ fully supports OO programming, it is essential

that you have a good understanding of OO techniques in order to solve many of the
challenges presented by options and derivatives programming.

This chapter presents a practical summary of the programming topics you need to
understand in order to become proficient in the relevant OO concepts and techniques
used in the field of options and derivatives analysis. Some of the topics covered in this
chapter include the following:

o Fundamental OO concepts in C++: A quick review of object-oriented
concepts as implemented in C++, with examples based on derivatives
and options

e Problem partitioning: How to partitioning a problem into classes and
related OO concepts, using specific C++ techniques

o Designing a solution: How to use classes and objects to solve
problems in financial engineering

e Reusing OO components: How to create reusable C++ components
that can be integrated to your own full-scale applications, or even
distributed as an external library
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00 Programming Concepts

Object-oriented programming provides set of principles that can facilitate the
development of computer software. Using OO programming techniques, you can
easily organize your code and create high-level abstractions for application logic
and commonly used component libraries. In this way, OO techniques can be used to
improve and reuse existing components, as well as simplify the overall development. 0O
programming promotes a way of creating software that uses logical elements operating
at a higher level of abstraction.

When considering different styles of software programming, it is important to
use tools and languages that provide an adequate level of support for the desired
programming style. C++ was designed to be a multi-paradigm programming language
(see Figure 4-1); therefore, it can properly support more than one style of programming,
including:

o Structured programming: In structured programming, code is
organized in terms of functions and data structures. Each function
uses standard control flow structures, such as for, while, do, and
if/then/else, to organize code. While this programming style was
previously used in isolation, nowadays it is more commonly used as
part of an OO or functional approach.

o Functional programming: In this style of programming, functions are
the most important element of composition. Functions are also used
as first-class citizens: they can be stored and passed as parameters to
other functions in this programming paradigm. The C++11 standard
has improved support for functional programming, as seen in
Chapter 8.

e Generic, or template-based programming: Templates allow
programmers to create parameterized types. Such types can be
used to implement concepts that are independent of the specific
type employed. A common example is a container class such as
std: :vector, which can be used to store values of any type in a

sequence of elements stored in contiguous memory.
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e Object-oriented programming: A programming style where code is
organized in classes and shared in the form of objects. In the OO
paradigm, objects can respond to operations that are implemented
as member functions in C++. Encapsulation and inheritance are

common mechanisms used to support the implementation of OO

systems.

Structured Programming 00 Programming Functional Programming Template Programming
Data structures Classes First-class functions Templates
Functions Polymorphism Closures Containers
Control flow Encapsulation Recursion Generic algorithms
for/while/do Virtual functions Currying vector/map/list
iffelse/switch Abstract functions Metaprogramming

Figure 4-1. A comparison of concepts used in four programming paradigms
enabled by C++

C++ offers complete support for OO concepts. Some of these support elements have
already been used in the previous chapters of this book, including classes, objects that
can be instantiated from these classes, as well as their members such as constructors,
and destructors, among others. In this chapter, you will learn more about OO concepts
that are frequently used in real-world applications, with examples that are directly used
in the implementation of options and derivatives in C++.

Remember that the main elements of OO programming can be summarized as

follows:

e Encapsulation: This concept refers to the division of programmatic
responsibilities into different language elements. C++ offers classes
that can be used to encapsulate desired functionality in a clear
way. When planning applications and coding them in C++, it is
always a good idea to determine the main concepts that need to be
represented as classes and encapsulate the related procedural code
into member functions of that class.
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e Inheritance: C++ allows programmers to extend a class with new
operations. This is possible through the concept of inheritance, when
anew class assumes all operations previously available in an existing
class, called its parent. Inheritance also allows programmers to add
new functionality to existing classes, through the inclusion of new
member functions that provide the required functionality.

e Polymorphism: Inherited classes in C++ extend available classes
through the addition of new member functions. Inherited classes also
modify the behavior of existing member functions that have been
marked with the virtual keyword. Polymorphism in C++ is defined
through the use of virtual functions, which are then dispatched using
avirtual function table, as implemented by most compilers.

Although C++ provides much more than pure OO programming, these elements
alone can nonetheless be used to create very complex and efficient applications in
various areas, such as the case of financial applications. In the remaining of this chapter,
you will see how these OO concepts can be utilized to solve problems occurring on

financial derivatives.

Note Software development using 00 techniques not only allows separation
between implementation and interface, but it also requires the clear definition of
such concepts. A good C++ programmer will excel at decomposing problems into
smaller components, which can then be coded into separate classes. While | can
only give examples of this process in this book, design and analysis of 00 software
is a complex and important phase that should be part of your effort during each
software project.

Encapsulation

The idea of encapsulation is to define abstract operations that can be implemented by
a single class. Once these operations have been made available, clients of a class can
use them without being exposed to the internal details of the implementation such as
variables, constants, and other internal code that is only used locally to implement the

required features.
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One of the important aspects of encapsulation is the ability to hide data, which
then becomes the member variables of the target class. Consider, for example, a class
that represents a credit default swap. The class should contain enough information to
determine how to store and trade such financial instruments. For an example of data

that must be encapsulated into such a class, you might want to consider the following:

o Underlying instrument: The financial instrument that is the basis for
the contract. It could be, for example, a set of bonds for a particular
company, cash, or some other preestablished financial instrument.

o Counterpart: The institution that is the target of the default swap
payments. The payment is generally made when the target institution
defaults.

e Payoffvalue: The monetary value of the default swap contract. This
payoffis transferred between institutions if the contract payment
condition is triggered.

o Term: The term of the contract, after which it ceases to exist.

e Spread cost: The recurring payment made by the buyer to maintain
the contract. Many contracts require equal payments of a spread that
is due at regular periods, such as every month or every year.

By using encapsulation to represent a CDS contract, a C++ developer can simply
create a class that contains all these data elements. For example, here is a simple CDS
class that represents the concepts described previously. We first present an enumeration
of possible underlying values.

Note An enum, such as CDSUnderlying, is a technique used in C and C++ to
define related constants with different integer values, which can later be reused in
the code.

enum CDSUnderlying {
CDSUnderlying Bond,
CDSUnderlying Cash,
// Other values here...

}s
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class CDSContract {
public:
CDSContract();
CDSContract(const CDSContract &p);
~CDSContract();
CDSContract &operator=(const CDSContract 8p);

// Other member functions here...

private:
std::string m_counterpart;
CDSUnderlying m_underlying;
double m_payoff;
int m_term;
double m_spreadCost;

};

With this definition, you encapsulate all the information that corresponds to a CDS
contract into a single class. Because the data members are private, this means that only
the class can directly access their state. The main advantage of such an arrangement
is that no code outside the CDSContract class is allowed to access the private data,
achieving true encapsulation.

If it is necessary to provide access to one or more data members of a class, there are
two options. The data member could be moved to the public section of the class, but
this would make it possible for the data member to change without knowledge of the
CDSContract class.

A better way of doing this is to provide an access member function in a case-by-case
way. You could, for example, allow the counterpart and payoff member variables to be
accessed by other objects through member functions, as shown here:

class CDSContract {
public:
CDSContract();
CDSContract(const CDSContract &p);
~CDSContract();
CDSContract &operator=(const CDSContract 8p);
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std::string counterpart() { return m_counterpart; }

void setCounterpart(const std::string &s) { m_counterpart = s; }
double payoff() { return m_payoff; }

void setPayoff(double payoff) { m_payoff = payoff; }

private:

s

std::string m_counterpart;
CDSUnderlying m_underlying;
double m_payoff;

int m_term;

double m_spreadCost;

Using this strategy, any change happening to the m_counterpart and m_payoff will

occur only through an operation on the CDSContract class. This means that the class can

react to any changes in these values, providing proper encapsulation of that data. For

example, suppose that you want to reset the payoff value whenever the counterpart for

the CDS contracts changes. This could be done the following way:

class (DSContract {
public:

/7 ...

std::string counterpart() { return m_counterpart; }
void setCounterpart(const std::string &s);

double payoff() { return m payoff; }

void setPayoff(double payoff) { m payoff = payoff; }

private:

};

std::string m_counterpart;
CDSUnderlying m_underlying;
double m_payoff;

int m_term;

double m_spreadCost;

static double kStandardPayoff;
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void CDSContract::setCounterpart(const std::string &s)
{

m_counterpaxt = s;

setPayoff(kStandardPayoff);

Whenever the counterpart for the contract changes, the class reacts by resetting the
payoff to a standard value (defined by the constant kStandardPayoff). That would not
be possible if them_counterpart data member were not properly encapsulated into the
CDSContract class.

Inheritance

The benefits of encapsulation make it easy to implement and maintain code written in
C++. However, it is commonly necessary to extend that code to handle situations that
could not be anticipated by the designer of the original class. In that case, you can use
inheritance as a powerful way to adapt your classes to new requirements.

With the use of inheritance, it is possible to create a new class that contains the same
data and behavior as an existing class. The new class is called a derived class and the
original class is called a base or parent class. For example, a loan-only credit default swap
is a CDS where the protection is based on secured loans made on the target entity.

This useful type of CDS could be modeled as a new class that inherits from the
original CDSContract class. If you need to create a derived class LoanOnlyCDSContract
from a base class CDSContract, the C++ syntax would be the following:

class LoanOnlyCDSContract : public CDSContract {
public:

// Constructors go here
void changeloanSource(const std::string &source);

private:
std::string m loanSource;

}s
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The public keyword is used to indicate that the public interface of the base class
CDSContract is still available to the new class. The changelLoanSource member function
is used to determine the source of the loan used by the CDS contract. The loan source is
then stored in the m_loanSource member variable.

Notice that inheritance creates a new class that has access to all of the public and
protected interfaces of the base class. So, you still can call any method from the original
CDSContract class when working with LoanOnlyCDSContract. On the other hand, private
functions and data members are not available to the derived class. If you envision that
a class could be used as the base for a hierarchy, it should provide access to some of the
nonpublic interface using protect variables and functions. As a result, inheritance also
requires a certain level of cooperation between base and derived classes.

Note Inheritance requires that the new class be used in a context similar to the
original class. Therefore, inheritance shouldn’t be used to create classes that have
just a superficial similarity to the original class. In particular, a class that inherits
from a base class could be used in the same code as the original class. If this is
not true for the new class you need, it is better to create a separate class with a
specialized interface.

Inheritance is the base technology used to accomplish many of the other techniques
available in OO programming. Therefore, ideas such as polymorphism and abstract
functions are possible due to the use of inheritance.

Polymorphism

While inheritance in itself provides a useful extension mechanism, its biggest advantage
is the possibility of changing the original behavior of the base class in specific situations.
In C++, this is enabled by using the virtual keyword to mark member functions that
have polymorphic behavior.

For example, suppose that the CDSContract class is required to calculate the contract
value at a particular date. This operation can be performed at the class level, but it will be
slightly different for each particular implementation. Concrete implementations of the
class may want to take into consideration particular factors that are not available at the
base class level, such as differences in underlying, contract structures, and calculation
models.
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For these and other reasons, determining the best way to calculate the contract value
may not be possible at the base class, and it must be delegated to derived class. Such
derived class will possess additional data that can be used to compute the contract price
with more precision than what is possible on the base class.

This behavioral change can be performed in the derived classes if you use C++
virtual mechanism. Syntactically, this polymorphic behavior can be implemented as
long as the member function is modified with the virtual keyword in the original class.
The virtual keyword is a C++ tool that allows functions to behave differently according
to the concrete instance that is executing the function call.

For example, to support the required polymorphic behavior to calculate the contract
value, the CDSContract base class should be coded as follows:

class (DSContract {
public:
CDSContract();
CDSContract(const CDSContract &p);
~CDSContract();
CDSContract &operator=(const CDSContract 8p);

std::string counterpart() { return m_counterpart; }
void setCounterpart(const std::string &s);

double payoff() { return m payoff; }

void setPayoff(double payoff) { m payoff = payoff; }
virtual double computeCurrentValue(const Date &d);

private:
std::string m_counterpart;
CDSUnderlying m_underlying;
double m_payoff;
int m_term;
double m_spreadCost;

static double kStandardPayoff;
};

The virtual double computeCurrentValue(const Date &d); line declares a new
member function that can be overridden by derived classes.
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Note Virtual methods need to be recognized by the compiler. Therefore, the
virtual keyword has to appear directly in the base class, not only in the derived
classes. If a member function is supposed to have polymorphic behavior, you

have to use virtual to signal this information to the compiler. Overriding a non-
virtual member function doesn’t create a polymorphic object and will result in a
warning in most compilers.

The classes derived from CDSContract can implement the virtual member function
declared previously, so that it can be invoked when instances of that derived class are
created. Here is how this can be done for the LoanOnlyCDSContract subclass.

The isTradingDay member function returns true if the current date is not a holiday
or a weekend day:

class LoanOnlyCDSContract : public CDSContract {
public:
// Constructors go here
void changeloanSource(const std::string 8&s);
virtual double computeCurrentValue(const Date &d);

private:
std::string m_loanSource;

s

The implementation for a virtual function, both in the base class and the derived
classes, is not different from the syntax used in other member functions. It is used in the
compiler to determine the correct way to handle virtual functions that are called.

The use of a virtual function is determined by its polymorphic invocation through
pointers and references. For example, consider the following code using CDSContract
and LoanOnlyCDSContract:

void useContract(bool isLOContract, Date &currentDate)

{
CDSContract *contract = nullptr;

if (isLOContract)

{
contract = new LoanOnlyCDSContract();
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else

{

contract = new CDSContract(); // normal CDS contract

}

contract->computeCurrentValue(currentDate);
delete contract;

The useContract function is passed two arguments: the Boolean value
isLOContract, which indicates that the contract used is a loan-only CDS. The second
argument is the current date for use of the contract. The first line in the function

CDSContract *contract = nullptr;

determines the base class of the object that will be created. As with any OO object

in C++, a pointer (or reference) to a base class can be used to point to objects of any
descent class. In this case, a pointer to the CDSContract class (being the base class) can
also be used to point to objects of type LoanOnlyCDSContract. The pointer is initialized
tonullptr.

Note The keyword nullptr was introduced in the C++11 standard. It provides a
way to initialize pointers with a null value without the use of a macro such as NULL
(which is used in C but normally avoided in C++), or the value 0, which can be
easily confused with a numeric expression.

The next lines determine the exact type that will be instantiated. If the isLOContract
flag is set to true, a new object of type LoanOnlyCDSContract is created using the new
keyword. Otherwise, the function creates an object of type CDSContract as the default
value. In a more complex application, types should not be encoded using flags, but
passed as a parameter or supplied by some of the part of the application.

The next line

contract->computeCurrentValue(currentDate);
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uses the pointer contract to perform a polymorphic call to computeCurrentValue. The
polymorphic call mechanism will determine the correct implementation for the member
function, depending on the exact class of the instance pointed to by the contract
pointer. The next section explains how this mechanism works in practice and how it
affects the creation and use of objects in C++.

Polymorphism and Virtual Tables

The first step in using polymorphism via virtual functions is to understand how they
differ from regular member functions. When a virtual function is called, the compiler
has to determine the type of call and translate it into binary code that will perform the
call to the correct implementation. This is done in C++ using the so-called virtual table
mechanism.

A virtual table is a vector of functions that is created for each class that uses at least
one virtual function. The virtual table stores the addresses of virtual functions that have
been declared for that particular type, as shown in Figure 4-2.

class A class B: public A class C: public A
Func {1 Func f1 Func f1
Func 2 Func 2 Func 2
Func f3 Func 3 Func f3
Func f4 Func f4 Func 4
Func f5 Func f5 Func f5

Figure 4-2. Virtual functions shared by classes A, B, and C and stored in their
respective virtual function tables

As shown in Figure 4-2, class A is the base class and it contains a number of virtual
functions, here denoted by the names f1 to 5. The slots in these tables store pointers
to the implementation used by the class. Two other classes—B and C—are declared as
derived classes via a public interface. This makes classes B and C inherit each a virtual
table that contains at least the same function pointers (derived classes can add more
virtual functions if they wish to do so).
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Each class can define its own version of the virtual function, and as a result, the
pointer to that function is stored in the corresponding location of the virtual table. The
virtual table is populated in the compiler as it creates the data structures necessary for
each class. At execution time, the virtual table is available for code executed by each of
the classes defined in this example.

During runtime, the code generated by the C++ compiler can retrieve the location in
the table where the function pointer is stored. Then, the function is called with the given
parameters. First, the compiler retrieves the location of the virtual table associated with
the class. Then, the compiler finds the function pointer at a predefined displacement
from the beginning of the table. Finally, the program makes an indirect call using the
function pointer stored at that location.

If you use this information to understand how C++ code works, you can see how
the CDSContract and its derived class would execute a call to the computeCurrentValue

member function, as shown in the following line of code:
contract->computeCurrentValue(currentDate);

The first step performed by the implementation is to find the virtual table for the
particular object that is stored in the contract pointer. Then, the slot corresponding
to the virtual function computeCurrentValue is searched, usually at a fixed distance
from the beginning of the vector as determined by the compiler. Finally, the function
pointer retrieved in this way is called indirectly, resulting in a function call to the correct
implementation.

Although the sequence of steps necessary to call a virtual function appear to be
complex, modern compilers can generate very efficient code using the virtual table
technique. By means of code optimization, virtual function calls frequently end up as
just a call to a function pointer.

Virtual Functions and Virtual Destructors

Another member function that can be annotated with the virtual keyword is the
destructor. As you may remember, a destructor is called automatically (in the code
generated by the compiler) when an object goes out of scope, with the objective of
reclaiming resources used by the object.

The destructor may also be used through the keyword delete. When a delete is
used, the code calls the destructor and frees the memory used by the object up to that
moment. As a result, the pointer is not valid after the delete is called.

112



CHAPTER 4  OBJECT-ORIENTED TECHNIQUES

Itis important to consider the role of the destructor when virtual functions are part
of a class. The reason is that object cleanup is a class-specific activity, which needs to be
overridden for each individual derived class that contains additional resources (such as
memory, network connections, or graphical contexts). As a result, the destructor usually
has different implementations that are necessary to perform the proper cleanup and
deallocation activities.

For these reasons, the correct way to handle destructors in polymorphic classes is to
use the virtual mechanism in their definition. This provides the means for each subclass
to call a specific destructor even when called from a base pointer.

For example, consider what happens when the destructor in the base class is not

virtual.

class CDSContract {
public:
CDSContract();
(DSContract(const CDSContract &p);
~CDSContract() { std::cout << " base class delete " << std::endl; }
CDSContract &operator=(const CDSContract 8p);

std::string counterpart() { return m_counterpart; }
void setCounterpart(const std::string &s);

double payoff() { return m payoff; }

void setPayoff(double payoff) { m payoff = payoff; }
virtual double computeCurrentValue(const Date 8&d);

/] ...
};

The derived class LoanOnlyCDSContract would have the following simple definition,
which just prints an informational message:

class LoanOnlyCDSContract : public CDSContract {
public:
LoanOnlyCDSContract() { std::cout << " derived class delete "
<< std::endl; }
// Constructors go here
void changeloanSource(const std::string &s);
virtual double computeCurrentValue(const Date 8d);
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private:
std::string m_loanSource;

};

If called from client code, these definitions may result in undefined behavior. For
example, consider the following fragment:

void useBasePtr(CDSContract *contract, Date &currentDate)
{

contract->computeCurrentValue(currentDate);

delete contract;

This code receives a pointer of type CDSContract, uses it to call a virtual function,
and then uses the delete operator on it. When called in the following way

void callBasePtr()
{
Date date(1,1,2010);
useBasePtr(new LoanOnlyCDSContract(), date);

the code has undefined behavior, because the compiler cannot guarantee that the
destructor of the derived class will be found and executed. From the compiler point of
view, a nonvirtual destructor doesn’t need to be called when the object is destroyed.

To fix this problem, the right thing to do is to declare the destructor as virtual in the
base class. A simple change in this definition can accomplish this:

class (DSContract {
public:
CDSContract() {}
CDSContract(const CDSContract &p);
virtual ~CDSContract() { std::cout << " base delete " << std::endl; }
CDSContract &operator=(const CDSContract 8p);

// ... other members here

};
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Once a virtual destructor has been declared in the base class, all descendant classes
will also contain a virtual destructor, independent of using the virtual keyword. This
is guaranteed by the presence of a virtual table containing the address of the destructor,
as described in the previous section. The result of the callBasePtr function after this
change is guaranteed to be the following:

$ ./CDSApp
derived class delete
base class delete

Abstract Functions

Another mechanism used to implement polymorphism in C++ is abstract functions.
Such abstract functions are closely related to virtual functions, but their presence marks
the containing class as an abstract class, which cannot be directly instantiated.

An abstract class is frequently used when a function should be provided in derived
classes, but there is no clear default behavior that could be provided by the base class.
This is a common situation when a base class provides only the framework for an
algorithm, with details that are purposefully left unspecified. The idea is that the derived
classes will necessarily provide the missing functionality that would make the derived
classes useful for a particular application.

The syntax for abstract functions is similar to the syntax for virtual functions. The
member function is preceded with the virtual keyword as previously seen. In addition,
the syntax = 0; is used to terminate the declaration of the abstract function. Notice
that only a declaration is needed, since no implementation is necessary for an abstract
function (although it can be provided if available).

For an example, consider that the CDSContract class has a member function
to process a credit event. In the world of credit default swaps, a credit event is what
happens when a company calls for bankruptcy. Processing this event is different for
each entity and CDS type; therefore, I would like to have such a member function as an
abstract virtual function:

class CDSContract {

public:
CDSContract() {}
CDSContract(const CDSContract 8p);
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virtual ~CDSContract() { std::cout << " base delete " << std::endl; }
CDSContract &operator=(const CDSContract 8p);

std::string counterpart() { return m_counterpart; }
void setCounterpart(const std::string &s);

double payoff() { return m payoff; }

void setPayoff(double payoff) { m payoff = payoff; }
virtual double computeCurrentValue(const Date 8&d);

virtual void processCreditEvent() = 0;

/] ...
}s

If a base class includes even one abstract virtual function, it becomes an abstract
class that cannot be itself instantiated. The reason is that the class can be thought of as
“incomplete,” since at least one of its virtual functions has no implementation. Given
these definitions, the following code would become invalid:

(DSContract *createSimpleContract()

{
CDSContract *contract = new CDSContract(); /// Wrong: CDSContract is
now Abstract
contract->setCounterpart("IBM");
return contract;
}

Once an abstract member function has been defined, the classes that are direct
descents are required to implement that function, or else they will become abstract
too. For example, the descendant class LoanOnlyCDSContract now has to implement
processCreditEvent in order to be used by client code. Even a trivial implementation
would allow LoanOnlyCDSContract to be instantiated.

class LoanOnlyCDSContract : public CDSContract {
public:
LoanOnlyCDSContract() { std::cout << " derived class delete "
<< std::endl; }
// Constructors go here
void changeloanSource(const std::string &s);

116



CHAPTER 4  OBJECT-ORIENTED TECHNIQUES
virtual double computeCurrentValue(const Date 8&d);

virtual void processCreditEvent();

private:
std::string m_loanSource;
b
void LoanOnlyCDSContract::processCreditEvent()
{
}

Abstract member functions can be freely used even inside the abstract class, where
the body of that member function is not defined. For example, this is a valid definition
for the CDSContract: :computeCurrentValue member function:

double CDSContract::computeCurrentValue(const Date &d)

{
if (!counterpart().empty())
{
processCreditEvent(); // make sure there is no credit event;
}
return calculateInternalValue(); // use an internal calculation
function
}

Building Class Hierarchies

One of the advantages of OO code is the ability to organize your application around
conceptual frameworks defined by classes. A class hierarchy allows the sharing of
common logic that can be easily reused in other contexts. Proper use of class hierarchy
can reduce the amount of code duplication and lead to applications that are more
understandable and easier to maintain.
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A class hierarchy can be developed around important concepts used by the
application. For example, in a derivatives-based application, the class CDSContract
would be a candidate to become the root of a class hierarchy. Figure 4-3 shows a possible
class hierarchy for CDS contracts, containing derived classes for the following types of
contracts:

e LoanOnlyCDSContract: CDS contracts that are based on loans to
other institutions and have special logic for processing these loans

o Hedged(DSContract: A CDS contract type where hedging is
performed using other asset classes with the goal of reducing
contract risk

o NakedCDSContract: A particular CDS contract where the contract
seller does not own the underlying asset negotiated in the contract

o FixedInterestCDSContract: A CDS type where the contract requires
a fixed interest rate for the duration of the specified agreement

o VariableInterestCDSContract: A type of CDS where the contracts
are defined using variable interest rates, using a well-known
benchmark for interest rates

o TaxAdvantagedCDSContract: A particular type of CDS contract that
takes advantage of a special tax structure

CDSContract
LoanOnlyCDSContract FixedInterestCDSContract
HedgedCDSContract VariablelnterestCDSContract
& .
NakedCDSContract TaxAdvantegedCDSContract

Figure 4-3. A class hierarchy rooted on the base class CDSContract
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All these CDS contract derivatives would benefit from code sharing from the base
class CDSContract. As a result, common functionality such as CDS pricing, contract
creation, and contract maintenance can be stored in a central place and used by as many
different types of CDS contracts as possible.

Although creating class hierarchies is a useful technique for code maintenance and
sharing, inheritance may not be the best strategy for code organization in some cases. It
is important to be able to identify the situations in which other approaches would work
better. Here are some potential disadvantages of using inheritance:

o Increased coupling between classes: Once you decide to use
inheritance, there is a big interdependence between classes. A small
change in the base class can affect all descendent classes. If there is
a situation where the base class can vary frequently in functionality
and responsibilities, then inheritance may not be the best solution.

e Physical dependencies at compilation time: In C++, inheritance also
creates a compile-time dependency between classes. To generate
correct code, the C++ compiler needs to access the definition of each
base class. This may result in increased compilation time, which is
sometimes undesirable, especially in large software projects.

o Increased information coupling: Class hierarchies may also require
developers to learn the multiple implementations of different classes
at different levels. This is necessary especially when classes are not
well designed and information about their operations is not clear.

Object Composition

Another strategy to organize and code using OO techniques is object composition.
Composition is an alternative to inheritance, where you can use the behavior of an
object without the dependency caused by direct class/subclass relationship.

To use object composition, you need to store the object that has the desired behavior
as a member variable for the containing object. This is the basic strategy, which can be
implemented in at least three ways in C++:

o Storing a pointer to an object: In this case, only a pointer to the
object is stored as part of the class. This option allows an object to be
created inside the class or passed as a parameter from a user of the
class and then stored in a member variable.
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o Storing a reference to an object: This option allows the class to receive
areference to an existing object, but doesn’t allow the object to be
created after the constructor is executed. A reference in C++ cannot
be reassigned, which leads to a requirement that the stored object
needs to be valid the whole time the container object exists.

o Storing the object directly as a member variable: In this case, the
containing class assumes complete responsibility for storing the
required object. Here, it is also necessary for the compiler to know
the exact size and type of the object stored as a member variable,
which reduces the flexibility of this method.

With object composition, a class can use the functionality provided by another class
without the use of inheritance.

For example, suppose that the CDSContract class needs a fast method for calculating
integrals. In this case, a good approach is to use an object-composition strategy to access
the functionality of integration, instead of adding this functionality to the base class.

You could do this, for example, by passing to the CDSContract constructor a pointer to a
MathIntegration object and storing that pointer as a member function. The code would
look like this:

class MathIntegration;

class (DSContract {
public:
CDSContract() {}
CDSContract(MathIntegration *mipt);
CDSContract(const CDSContract 8p);
virtual ~CDSContract() { std::cout << " base delete " << std::endl; }
(DSContract &operator=(const CDSContract &p);

// Other member functions here
private:

std::string m_counterpart;

CDSUnderlying m_underlying;

double m_payoff;

int m_term;
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double m_spreadCost;
MathIntegration *m_mipt;

static double kStandardPayoff;
}s

When necessary, the pointer could be used to access the functionality stored in
the MathIntegration class. The best thing about this kind of design is that there is
little coupling between the CDSContract and MathIntegration classes. Each one can
evolve separately, by adding new functions as necessary, without the need for mutual
dependencies.

Objects and C++20

Object orientation capabilities in C++ have been enhanced with the new features
introduced in the recent versions of the standard, particularly with C++20. The trend
in the language is to provide strong support for compile-time interfaces. This emphasis
makes it possible to write software that interacts with objects in a safer way while
reducing the amount of checking that needs to be done at runtime and, therefore,
increasing performance.

One example is the introduction of concepts. The concept feature is complex in
its full implementation and it will be explained later, but in a few words, it means that
programmers can now request features from objects at compilation time. For example, if
a function works with objects that contain dates, we can write the requirement that any
object passed to a certain function contains a is_date member function.

The concept feature of C++20 makes it possible to avoid some runtime checking of
object types by expressing such requirements at compilation time. Concepts also help in
the generation of clear requirements, with better error messages produced by compilers.

Here is a simple example of how objects in C++ interact with concepts:

#include <concepts>
#include <vector>

// Simple option contracts class
class OptionContract {

public:

virtual void sell() {
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// Sell implementation...

};

template <class OptionContainer>
void sellAllContracts(OptionContainer &oc)
requires std::same as<
typename OptionContainer::value type, OptionContract *»>
{
std::for_each(oc.begin(), oc.end(),
[](OptionContract* aContract) { aContract->sell(); } );

}

void useContracts() {
std: :vector<OptionContract*> contracts;
/...
sellAllContracts(contracts);

In this code fragment, the concepts header file is used to provide library support for
concepts. Then, we create a simple class called OptionContract. This class is responsible
for holding option contracts of a particular type, and it knows how to sell contracts using
the sell() member function. Later, a template function named sel1AllContracts is
introduced. The special feature of this function is that it contains a requires statement,
which can be used to specify clear requirements on types that it manipulates. In this
case, the code only requires that the parameter be a container that has same value
type as OptionContract *.In other words, the parameter must be a container for
OptionContract object pointers.

With this requirement in place, the code of the function is now able to safely call the
sell() method of the OptionContract class, since the compiler already knows that the
elements of the oc container must be of type OptionContract.

Conclusion

In this chapter, I presented an overview of OO concepts provided in C++ and how they
are used in the financial development community to solve problems occurring with
options and derivatives.
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The first part of this chapter summarized the basic characteristics of OO as
implemented in C++, including the main concepts of encapsulation, inheritance, and
polymorphism. You learned about the technique used in C++ to implement polymorphic
behavior through virtual functions. You also saw how virtual functions are stored in
virtual tables that are created for each class that contains virtual functions.

This chapter also presented some examples of using OO to efficiently solve common
problems in financial programming, as applied to options and derivatives. The next
chapter proceeds to template-based concepts and explains how they can be used to
create high-performance solutions to problems in the area of financial derivatives
processing.
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Design Patterns
for Options Processing

Design patterns are a set of common programming design elements that can be used
to simplify the solution of recurring problems. With the use of OO techniques, design
patterns can be cleanly implemented as a set of classes that work toward the solution of
a common goal. These designs can then be reused and shared across applications.
Over the last few years, design patterns have been developed for common problems
occurring in several areas of programming. When designing algorithms for options and
other derivatives, design patterns can provide solutions that are elegant and reusable
(when supporting libraries are employed). Thanks to the inherent ability of the C++
language to create efficient code, these solutions also have high performance.
In this chapter, you will learn about the most common design patterns employed
when working with financial options and derivatives, with specific examples of their
usage. The chapter covers the following topics:

e Overview of design patterns: You will learn how design patterns
can help in the development of complex applications, with the
ability to reuse common patterns of programming behavior. Using
design patterns can also make solutions more robust and easier
to understand, because patterns provide a common language
that allows developers to discuss complex problems. Such design
techniques have also been made available through libraries that
implement some of the best-known design patterns.
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e Factory method pattern: A factory method is a design pattern that
allows objects to be created in a polymorphic way, so the client
doesn’t need to know the exact type of the returned object, only the
base class that provides the desired interface. It also helps to hide a
complex set of creation steps to instantiate particular classes.

o Singleton pattern: The singleton pattern is used to model situations
in which you know that only one instance of a particular class can
validly exist. This is a situation that occurs in several applications,
and in finance, I present the example of a clearing house for options
trading.

o Observer pattern: Another common application of design patterns is in
processing financial events such as trades. The observer design patterns
allow you to decouple the classes that receive trading transactions from
the classes that process the results, which are the observers. Through
the observer design pattern, it is possible to simplify the logic and the
amount of code necessary to support these common operations, such
as the development of a trading ledger, for example.

o Visitor pattern: We also investigate the visitor pattern that allows
two or more class hierarchies to cooperate in performing dynamic
method dispatching.

Introduction to Design Patterns

Design patterns have been introduced as a set of programming practices that simplify
the implementation of common coding problems. As you study the behavior of 0O
applications, there are tasks and solution strategies that occur frequently and can be
captured as a set of reusable classes.

Object-oriented programming provides a set of principles that can facilitate the
development of computer software. Using OO programming techniques, you can
easily organize your code and create high-level abstractions for application logic
and commonly used component libraries. In this way, OO techniques can be used to
improve and reuse existing components, as well as simplify the overall development.
OO programming promotes a way of creating software that uses logical elements
operating at a higher level of abstraction.
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Here are some of the most common design patterns that can be used in software

development in general and for algorithms to process options and derivatives in particular,

as viewed in Figure 5-1:

Factory method: In the factory method design pattern, the objective
is to hide the complexity and introduce indirection when creating an
instance of a particular class. Instead of asking clients to perform the
initialization steps, factory methods provide a simple interface that
can be called to create the object and return a reference.

Singleton: A singleton is a class that can have at most one active
instance. The singleton design pattern is used to control access to this
single object and avoid creating copies of this unique instance.

Observer: The observer pattern allows objects to receive notifications
for important events occurring in the system. This pattern also
reduces the coupling between objects in the system, since the
generator of notification events doesn’t need to know the details of
the observers.

Visitor: The visitor pattern allows a member function of an object to
be called in response to another dynamic invocation implemented
in a separate class. The visitor pattern therefore provides the
mechanism for dispatching messages based on a combination of two
objects, instead of the single object-based dispatch that is common

with OO languages.
Singleton Factory Method
Visitor Abstract Factory
Adapter Decorator
Strategy Observer

Figure 5-1. A few common design patterns used in OO programming
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In the next few sections, you will see how these design patterns can be implemented
in C++, with examples of how they occur in options and derivatives applications.

The Factory Method Design Pattern

A factory design pattern is a technique used to indirectly create objects of a particular
class. This pattern is important because it is frequently useful to access newly allocated
objects without having to directly perform the work necessary to create them. For
example, using the factory method design pattern, it is possible to avoid the use of the
new keyword to create an object, along with the parameters required by the constructor.

The factory design pattern allows an object to be created through a member function
of the desired class, so that the client doesn’t need to create the object directly. This can
be useful for the following reasons:

e Most of the time, there is no need for the client to provide parameters
for construction of the object. For example, if the objects require
the allocation of additional resources, such as a file or a network
connection, the client is relieved from acquiring these resources.

e Sometimes the object depends on internal implementation details,
such as a private class, that are not available to clients. In this case,
providing a factory method is the only way to create new instances of
the object.

o The exact sequence of events necessary to create an object may
change. In that case, it is better to provide a factory method that hides
this complexity. Users of the class will not have to worry if the way the
object is created is updated.

e More importantly, factory methods can be used to simplify
polymorphic object creation. For example, when an object is created
using the new operator, the concrete type of the returned object
has to be known by the client. On some applications, this might be
undesirable, because the real type of the needed object could be
any one within a set of derived classes. Using a factory method, it
is possible to delegate the creation of the object so that the client
code doesn’t need to know about the concrete type. As a result, the
returned object may be any one of the subtypes of the original type.
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Factory methods in C++ are declared as static member functions. Such a member
function doesn’t depend on an instance of the class to be executed. The syntax for member
functions is simply ClassName: : functionName(), with parameters added as needed.

Note The factory method design pattern is also used as a foundation for more
complex design patterns. For example, you will notice that other patterns such
as singleton use a factory method to control the creation of new instances of a
particular class.

In options and derivatives applications, the factory method is commonly used. A
situation where the use of a factory method is desirable is when you need to load data
objects. The data source used can vary from a local file to a URL, and the parsing of
that data is not an important part of the overall algorithm. In that case, abstracting the
creation of the data source can be an important application of the factory method.

In the example that follows, you can see how a DataSource class can be
implemented. The goal of this class is to hide the process of creating a new data source,
so the clients have no access to the real constructor of the class. Instead, clients need
to use a factory method, which is implemented as a static member function of the
DataSource class.

When using factory methods, it is frequently useful to hide the real implementation
of the constructor. This can be done through careful use of the private modifier. The
goal is to grant access to the constructor only to the class itself (and to any declared
friends of the class). This is done to the standard constructor as well as to the copy
constructor.

The interface to the DataSource class is presented in Listing 5-1. Both constructors
and the assignment operator are declared as private. The destructor, however, needs
to be accessible so that the delete keyword can be called on allocated objects. The
readData member function is an interface for the main responsibility attributed to this
class, and its implementation will vary according to the read data source used. The
createInstance member function is a static function that creates and returns new
instances of the data type, functioning as the factory method.
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Listing 5-1. Declaration of the DataSource Class

//
// DataSource.hpp

#ifndef DataSource_hpp
#define DataSource hpp

#include <string>

class DataSource {
private:
DataSource(const std::string &name);
DataSource(const DataSource &p);
DataSource 8operator=(const DataSource 8&p);
public:
~DataSource(); // must be public so clients can use delete

static DataSource *createInstance();
void readData();

private:
std::string m_dataName;

};
#endif

The implementation of the DataSource class is shown in Listing 5-2. The
constructors and destructor are standard, considering the fact that the constructor is
private. The interesting part of the DataSource implementation is the getInstance
method, which returns a new data source. This implementation receives only one
parameter that is created by the method, but consider the general case in which a list of
complex or implementation-dependent objects need to be retrieved in order to call the
new operator for the DataSource class
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Note At the end of getInstance, the member function returns a pointer to
the newly created object. Another option is to return a smart pointer, such as
std::shared ptr, which would make it easier to manage the lifetime of the
allocated object.

Listing 5-2. Implementation of the DataSource Class

//
// DataSource.cpp

#include "DataSource.hpp"

DataSource: :DataSource(const std::string &name)
: m_dataName(name)

{
}

DataSource: :DataSource(const DataSource 8p)
: m_dataName(p.m_dataName)

{
}
DataSource 8DataSource::operator=(const DataSource 8p)
{
if (this != &p)
{
m_dataName = p.m_dataName;
}
return *this;
}
DataSource: :~DataSource()
{
}
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DataSource *DataSource::createInstance()

{
std::string sourceName;
// Complex method used here to find sourceName and other construction
parameters...
DataSource *ds = new DataSource(sourceName);
return ds;
}
void DataSource::readData()
{
// Read data here...
}
void useDataSource()
{
// DataSource *source = new DataSource(""); // this will not work!
DataSource *source = DataSource::createInstance();
source->readData();
// Do something else with data
delete source;
}

The Singleton Pattern

One of the simplest and most used design patterns is the singleton. With this design
pattern, a single object is used to represent a whole class, so that there is a central
location where services managed by that class can be directed.

Unlike standard classes, a singleton class represents a single resource that cannot be
replicated. Because of this, the singleton pattern restricts the ability to create new objects
of a particular class, using a few techniques that will be discussed later in this section.
C++ provides all the features necessary to implement singleton patterns with high
performance.

In programming, the notion of an entity that is unique across the application is
frequently encountered. An example in options programming is an entity called a
clearing house. A clearing house is an institution that provides clearing services for
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trades on options and derivatives. The clearing house makes sure that every trade has
collateral so that counterpart risk is reduced, among other attributions. For example, if a
trader sells options in a particular instrument, the clearing house will make sure that the
trader has enough margin to satisfy the requirements of that particular trade.

While a clearing house provides important services in the trading industry, most
applications need to connect to a single clearing house. Thus, creating a single object to
represent the clearing house is an obvious implementation technique for this situation.
Table 5-1 presents a few examples of objects that could be modeled using a singleton.

Table 5-1. Example Objects That Can Be Implemented As a Singleton Design
Pattern

Object Notes

Clearing house (finance) A single clearing house is used for all trades.
Root window (GUI) Each GUI application communicates with only one root window.

Operating system An object representing operating system services is unique through
the application.

Company CEO An object representing the CEO has only one instance.

Memory allocator (system  Each application uses a single memory allocator, which can be
services) represented by a singleton.

To implement a singleton in C++, the first step is to make sure that there is only
one object of that class in the application. To do this, it is necessary to disallow the
creation of new objects of that particular class. You can take advantage of the ability
provided by C++ to make class members inaccessible to users of the class through the
private keyword. Users then cannot use the new keyword to generate new objects of that
particular class.

On the other hand, it is necessary to create some mechanism for clients to access an
instance of the singleton class. This is usually done using a static member function that
returns the single existing object or creates a new object if necessary before returning
it. Using such an access member function, clients can access the public interface of the
singleton object. At the same time, they’re not allowed to create or manage the lifecycle
of that object.

133



CHAPTER 5  DESIGN PATTERNS FOR OPTIONS PROCESSING

Clearing House Implementation in C++

A possible implementation for the clearing house class using the singleton pattern is
presented in Listings 5-1 and 5-2. The class has two parts: the first part deals with the
management of the singleton object. This is done through the definition of private
constructor and destructors, as well as the presence of a static member function
getClearingHouse, which returns a reference to the singleton instance.

The second part of the implementation deals with the responsibilities of the clearing
house, represented here as the member function clearTrade. This function receives
as an argument a Trade object, which is not defined here but contains all the data
associated with the transaction.

Listing 5-3 shows the interface, which follows the singleton design pattern.

Listing 5-4 contains the implementation of the member functions declared in the class
interface, as well as the static member variable s_clearingHouse.

Listing 5-3. Header File for the ClearingHouse Class, Which Implements the
Singleton Design Pattern

//
// DesignPatterns.hpp
//  CppOptions

#ifndef DesignPatterns_hpp
#define DesignPatterns hpp

class Trade {

//
}s
class ClearingHouse {
private: // These are all private because this is a
singleton
ClearingHouse();

// The copy constructor is not implemented
ClearingHouse(const ClearingHouse 8p);
~ClearingHouse();

// Assignment operator is not implemented
ClearingHouse &operator=(const ClearingHouse 8p);
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public:
static ClearingHouse &getClearingHouse();

void clearTrade(const Trade 8);

private:
static ClearingHouse *s clearingHouse;

};
#tendif /* DesignPatterns hpp */

The implementation file contains the member function ClearingHouse: :getClear
ingHouse. This function first checks the static variable s_clearingHouse to determine if
it has been previously allocated. If the object doesn’t exist, then the static function can
create a new object, store it for further use, and return a reference.

The function useClearingHouse is an example of how the ClearingHouse class can
be used. The first step is to have a variable hold a reference to the singleton object. Then,
by calling the static function getClearingHouse, you can access the singleton. In this
example, the singleton is used to process another trade through the member function
clearTrade.

Listing 5-4. Implementation File for ClearingHouse Class, Which Uses the
Singleton Design Pattern

//
// DesignPatterns.cpp

#include "DesignPatterns.hpp"
ClearingHouse *ClearingHouse::s clearingHouse = nullptr;

ClearingHouse::ClearingHouse() // private constructor, cannot be used by

clients

{

}

ClearingHouse::~ClearingHouse() // this is private and cannot be used by
clients

{

}
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ClearingHouse &ClearingHouse::getClearingHouse()

{
if (!s_clearingHouse)
{
s_clearingHouse = new ClearingHouse();
}
return *s_clearingHouse;
}
void ClearingHouse::clearTrade(const Trade &t)
{
// Trade is processed here
}
void useClearingHouse()
{
Trade trade;
ClearingHouse &ch = ClearingHouse::getClearingHouse();
ch.clearTrade(trade);
}

The Observer Design Pattern

A frequent situation that occurs in complex systems is the occurrence of events that
trigger further actions. For example, an event that happens on financial systems is the
completion of an options trade. When a new trade is completed, several actions need to
be performed to update the system and reflect the new positions in the ledger.

The observer design pattern is a very powerful strategy to manage event updates,
based on a standard technique that gives clients the ability to listen to events and
updates to a particular object and react accordingly.

There are two parts of the observer design pattern (see Figure 5-2). First, there is an
observer, which implements an abstract interface capable of receiving notifications. The
abstract interface consists of a single member function, called notify. This member
function is called by the second part of the design pattern, the Subject, when a new
event occurs (the arrow between them means that the observer has a reference to the
Subject object).
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Observer <Abstract> Subject
notify() - addObserver()
removeObserver()

triggerNotifications()

ConcreteObserver

notify()

Figure 5-2. Simplified scheme of the observer design pattern

The Subject class has at least three member functions that enable the functionality
of the observer design pattern. The first function is addObserver, which takes as a
parameter a reference to an observer object. The addObserver function maintains the
reference in an internal list of objects that are interested in receiving notifications.

The second member function in the subject interface is removeObserver, which
simply removes a given observer from the notification list. Finally, there is a member
function called triggerNotifications thatis used to send the notifications to all objects
that registered with the Subject class.

The observer design pattern can readily be implemented in C++ using abstract
classes. You can see a sample implementation in Listings 5-5 and 5-6. The first class
that is considered is the Observer class. This class has the purpose of providing a simple
interface for the observer. Its only nontrivial member function is notify, which is an
abstract function called by the subject when a new event occurs. As a result, any class
deriving from observer needs to process the notification in a user-defined way.

The interface is the following:

class Observer {
public:

// Constructor and destructor definitions

virtual void notify() = 0;

};
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Note Consider how the Observer class is independent of any implementation
detail for the trading ledger system. This definition could be reused as part of a
design pattern’s library. Similar techniques can be used to simplify the creation of
other design patterns as well.

Next, it is necessary to define a class that implements the abstract observer interface.
In this case, the goal is to implement a trade observer, which can be specified in the
following way:

class TradeObserver : public Observer {

public:
TradeObserver(Tradingledger *t);
TradeObserver(const TradeObserver 8p);
~TradeObserver();
TradeObserver &operator=(const TradeObserver 8p);

void notify();

void processNewTrade();
private:

Trade m_trade;

Tradingledger *m ledger;

};

The constructor for this class receives as a parameter a pointer to the TradinglLedger
object, which will be defined later. The class provides an implementation for
notifications and a member function to process new trades. These two member

functions are implemented as follows:

void TradeObserver::notify()

{

this->processNewTrade();
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void TradeObserver::processNewTrade()

{
m_trade = m ledger->getlLastTrade();
// Do trading processing here

Here, the notification implementation just calls the processNewTrade function,
which stores the trade returned by the ledger object.

Finally, you can also see a definition for the TradinglLedger class. The class contains
the three member functions that comply with the subject interface (addObserver,
removeObserver, and triggerNotifications). The class also contains two simple

member functions to add and return trades, as shown in the following definitions:

class Tradingledger {
public:
Tradingledger();
Tradingledger(const Tradingledger 8p);
~Tradingledger();
Tradingledger &operator=(const TradinglLedger 8p);

void addObserver(std::shared ptr<Observer> observer);
void removeObserver(std::shared ptr<Observer> observer);
void triggerNotifications();

void addTrade(const Trade &t);
const Trade &getlastTrade();

private:
std: :set<std::shared_ptr<Observer>> m_observers;
Trade m_trade;

};

The addObserver and removeObserver functions operate with std: : shared ptr
templates for the observer object. The goal is to avoid unnecessary memory issues by
delegating the memory deallocation to shared pointers from the standard library.
These two functions operate as an interface to the internalm_observers container.
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The triggerNotification function can be implemented as follows:

void Tradingledger::triggerNotifications()

{
for (auto i : m _observers)
{
i->notify();
}
}

It simply loops through all elements stored in them_observers set and sends a
notification to these registered objects. Each such object that implements the observer
interface can now respond to the event as needed.

Complete Code

The complete example previously described can be seen in Listings 5-5 and 5-6. The first
file contains only the interface for the main classes used in the system. Listing 5-6 shows
the implementation of these classes, along with a sample main function that creates the
ledger and two observer objects.

Listing 5-5. Header File Containing Interfaces for the Observer Design Pattern

//
// Observer.hpp

#ifndef Observer hpp
#define Observer hpp

#include <set>
#include <memory>

class Observer {
public:
Observer();
Observer(const Observer &p);
~0Observer();
Observer &operator=(const Observer 8p); // not implemented
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virtual void notify() = 0;

}s
class Trade {

//

// .... Implementation not shown here
};

class Tradingledger;

class TradeObserver : public Observer {

public:
TradeObserver(Tradingledger *t);
TradeObserver(const TradeObserver 8p);
~TradeObserver();
TradeObserver &operator=(const TradeObserver 8p);

void notify();

void processNewTrade();
private:

Trade m_trade;

Tradingledger *m_ledger;
}s

class Tradingledger {
public:
Tradingledger();
Tradingledger(const Tradingledger 8p);
~TradinglLedger();
Tradingledger &operator=(const TradinglLedger 8p);

void addObserver(std::shared ptr<Observer> observer);
void removeObserver(std::shared ptr<Observer> observer);
void triggerNotifications();

void addTrade(const Trade &t);
const Trade 8getlLastTrade();
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private:
std: :set<std::shared_ptr<Observer>> m_observers;
Trade m_trade;

};
#fendif /* Observer hpp */

Listing 5-6. Implementation File with C++ Definitions for the Observer Design
Pattern

//
// Observer.cpp

#include "Observer.hpp"
using std::shared ptr;

typedef shared ptr<Observer> PObserver;
typedef shared ptr<TradeObserver> PTradeObserver;

Observer: :0bserver()

{
}

Observer: :Observer(const Observer &p)

{
}

Observer: :~Observer()

{
}

void Observer::notify()

{
}

TradeObserver: :TradeObserver (TradinglLedger *t)
: m_ledger(t)

{

}

142



CHAPTER 5  DESIGN PATTERNS FOR OPTIONS PROCESSING

TradeObserver: :TradeObserver(const TradeObserver &p)
: m_trade(p.m_trade),
m_ledger(p.m ledger)
{
}

TradeObserver: :~TradeObserver()

{
}

TradeObserver 8TradeObserver::operator=(const TradeObserver 8&p)

{
if (this != 8&p)

{
m trade = p.m_trade;
m ledger = p.m_ledger;
}
return *this;
}
void TradeObserver::notify()
{
this->processNewTrade();
}
void TradeObserver::processNewTrade()
{
m_trade = m_ledger->getlLastTrade();
// Do trading processing here
}

// -- Tradingledger implementation

Tradingledger: :Tradingledger()
{
}
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Tradingledger::Tradingledger(const Tradingledger &p)
: m_observers(p.m observers),
m_trade(p.m_trade)

{
}

Tradingledger: :~TradinglLedger()
{
}

Tradingledger &Tradingledger: :operator=(const TradinglLedger &p)

{
if (this != 8&p)

{

m_observers = p.m observers;
m trade = p.m_trade;

}

return *this;

}

void Tradingledger::addObserver (PObserver observer)

{

m_observers.insert(observer);

}

void Tradingledger::removeObserver(PObserver observer)

{

if (m observers.find(observer) != m_observers.end())

{

m_observers.erase(observer);
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void Tradingledger::triggerNotifications()

{
for (auto i : m _observers)
{
i->notify();
}
}
void Tradingledger::addTrade(const Trade &t)
{
m_trade = t;
this->triggerNotifications();
}
const Trade &Tradingledger::getlLastTrade()
{
return m_trade;
}
//

// Simple test stub for the Tradingledger and TradeObserver classes.
int main()

Tradingledger tl;
PTradeObserver observeri
PTradeObserver observer2

PTradeObserver(new TradeObserver(&tl));
PTradeObserver (new TradeObserver(&tl));

t1l.addObserver(observer1);
t1l.addObserver(observer2);

// Perform trading system here

Trade aTrade;
tl.addTrade(aTrade);

// Observers should receive a notification at this point
return 0;
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The Visitor Pattern

Another useful pattern that has been used in several real-life applications is the visitor
pattern. In this pattern, the goal is to allow dynamic dispatching of objects in two
separate hierarchies of types. This design pattern has application in many common
problems occurring in finance.

The problem solved by the visitor pattern is the application of dynamic rules to two
or more polymorphic objects at the same time. This is necessary because C++, like some
other object-oriented languages, uses single dispatch to process polymorphic calls.

Consider, for example, the case of a class representing derivative contracts. The class
can have several polymorphic (virtual) methods, including one for displaying the profit/
loss chart.

#include <list>
class ChartDisplay;

class SimpleDerivativeContract {

public:

virtual void chartProfitLoss(ChartDisplay *c);
};

class ChartDisplay {
public:
virtual void displayContracts(
std::list<SimpleDerivativeContract*> &contracts);
virtual void addToChart(SimpleDerivativeContract *c);

}s

The SimpleDerivativeContract class has a virtual method that is able to present
a chart with profit/loss for the position. But to do this, the derivative object needs
to coordinate with a second class, called ChartDisplay. Both ChartDisplay and
SimpleDerivativeContract have polymorphic methods that interact with each other, but
in C++ the virtual dispatch is done in just a single method. For example, ChartDisplay
might have specialized subclasses such as PDFChart and HTMLChart.

To make this possible, the visitor design pattern enables the dynamic interaction of
two classes by the use of virtual methods that call each other. In summary, one of the
objects becomes responsible to implement the visitation strategy, by which the virtual
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method on the second object is called. Here is the implementation of our example
classes:

void ChartDisplay::displayContracts(
std::list<SimpleDerivativeContract*> &contracts) {
for (auto c : contracts) {
c->chartProfitlLoss(this);

}
}
void SimpleDerivativeContract::chartProfitLoss(ChartDisplay *disp) {
/1 ...
// Use ChartDisplay virtual methods:
disp->addToChart(this);
}

The first method, displayContracts, is responsible for displaying each of the
contract objects stored in the container passed as parameter. To do this, the virtual
method chartProfitlLoss is called with the ChartDisplay as a parameter. On the other
hand, the charProfitLoss of method also calls a virtual method from ChartDisplay:
addToChart. This relation between the two methods is what makes the dual virtual
dispatch to work, allowing two separate hierarchies to work together in a dynamic
fashion:

class PDFDisplay : public ChartDisplay {
public:
virtual void addToChart(SimpleDerivativeContract *c) {
// Add contract to a PDF chart here

s

class HTMLDisplay : public ChartDisplay {
public:
virtual void addToChart(SimpleDerivativeContract *c) {
// Add contract to an HTML chart here

};
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Conclusion

Design patterns are commonly used to develop reusable code, especially when OO
techniques are employed. C++ provides strong support for the creation of classes that
follow designed patterns such as the ones discussed in the preceding sections.

In this chapter, you saw examples and implementation in C++ for three common
design patterns. First, I presented an overview of design patterns, listing some of the
patterns that are most commonly used in the implementation of algorithms for options
and derivatives. Then, you learned about the factory method design pattern, which is
one of the easiest and most widely used patterns of OO programming.

The singleton pattern is used when it is necessary to enforce the existence of a single
instance for a particular class. You saw the example of a clearing house implementation,
where the single instance must be accessible to all clients in the application.

The observer pattern is a third example of how to implement such designs in C++.
You saw how this pattern can be employed to solve the problem of trading processing.
Using this design pattern, it is possible to decouple the classes that receive the events
from specific classes that listen to the events and perform further processing.

While object-oriented design patterns provide several elegant solutions for
commonly found problems in financial programming, there are situations in which a
non-0O strategy may be a better solution. In these situations, C++ promotes the use of
templates, an implementation technique in which the compiler is allowed to generate
code based on parameterized types. In the next chapter, you will see several examples
in which template-based algorithms can be used to improve the performance and
flexibility of algorithms for options and derivatives trading.
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Template-Based
Techniques

C++ templates allow programmers to write generic code, which works without modification

on different data types. Through the careful use of templates, C++ programmers can

write expressive code with high performance and low overhead, without the need to rely

exclusively on more computationally expensive object-oriented techniques, such as the

design patterns presented in the previous chapter.
This chapter explores a few template-based programming practices that can be used
to solve options- and derivatives-based financial problems. Here are some of the topics

discussed in this chapter:

Understanding the use of templates: You will learn about the basics of
templates, including their syntax and how they can be implemented
as template functions or template classes.

Using compile-time algorithms: This is a quick overview of how
compile-time algorithms work, with some examples such as
recursive algorithms, which allow compile-time definitions that
depend on themselves recursively.

Containers and smart pointers: One of the most common uses of
templates is to maintain containers of objects. Smart pointers are
also frequently employed to simplify the code necessary for memory

management.

Best practices: You will learn a few best practices that will improve
your template-based code.

Templates in C++20: You will see how template code has become
simpler and more powerful in the recent revisions of the C++ standard.

© Carlos Oliveira 2020

C. Oliveira, Options and Derivatives Programming in C++20, https://doi.org/10.1007/978-1-4842-6315-0_6

149


https://doi.org/10.1007/978-1-4842-6315-0_6#DOI

CHAPTER 6  TEMPLATE-BASED TECHNIQUES

Introduction to Templates

A template is a mechanism to generate parameterized code, so that different versions of
the same programming definition (a class or a function) can be generated for the each
given parameter. A combination of parameters can also be used when required by the
algorithm. In C++, the parameters passed to a template may be a concrete data type
(native or user-defined data types) or an integer number, as you will see in the following
examples.

You have already seen how to use basic templates in some of the previous examples
that employed standard template library containers. Such containers include vectors,
maps, and sets, as provided by the C++ standard library. In this section, you will learn
more about the implementation of new templates and the features they can provide to
application programmers.

One of the applications of templates is to perform compile-time computations.
Performing some operations at compilation time instead of at runtime is a performance-
enhancing technique that can save a lot of CPU and make your application run more
smoothly. Examples of such cases include the use of integer recursive functions,
conditional code that depends on particular data types, and container objects and smart
pointers.

e Recursive functions: A recursive function based on integer numbers
can be easily calculated ahead of time using compile-time
techniques. For example, some numerical algorithms depend on the
use of factorials of numbers, which may be known at compilation
time. Transforming a runtime computation into a compile-time
transformation is an easy way to make your algorithms run faster.

o Compile-time polymorphism: Another example of compile-time
performance enhancement is the removal of conditional code
based on types. When different operations need to be performed
for different types, the standard procedure in OO code is to create
a hierarchy that provides a different implementation for each type
involved. With templates, you can replace this type of runtime
polymorphism with compilation-time polymorphism. In that case,
the right template is executed based on the type that is already
known at compilation time, and as a result, no decision is necessary
at runtime, avoiding extra computational effort.
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e Container objects: Container objects provide a big advantage to
template users. They simplify the coding required to maintain and
employ commonly used data containers. The STL provides several
containers based on templates that streamline the task of storing
objects using different memory allocation strategies. For example,
std: :map allows programmers to map from a key type to a value
type in a generic way. The use of templates also simplifies common
tasks such as iterating through the elements of the container. Since
templates know the type of objects stored at the time of compilation,
there is no need to use a cast or other time-consuming polymorphic
techniques such as is used by OO code.

o Smart pointers: Finally, templates also give C++ the ability to
automatically manage memory using smart pointers. A smart pointer
is a template that has the sole purpose of managing an object that
has been passed as a pointer. The exact semantics of a smart pointer
changes according to the particular template and the desired results,
including, for example, the ability to use reference counting, or to be
owned by a single client. The standard C++ library provides a small
number of smart pointers, such as std: :auto_ptr, std: :unique ptr,
and std: :shared ptr, among others.

Note A possible disadvantage of templates is the possibility of duplication of
generated code in the resulting binary application. For example, if a large template
has a type parameter, the compiler needs to duplicate the generated code for each
different type that is used. This has the potential of creating bloated executables
with several redundant compiled templates. Thankfully, modern computers have
enough memory that this is not a common concern, but as application sizes grow,
software developers need to consider this issue.

In the next few sections, you will see some examples of template-based techniques
and learn how these techniques can be effectively implemented in C++.
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Compilation-Time Polymorphism

One of the techniques you learned in the previous chapter is the use of polymorphism
based on object-oriented features such as the virtual keyword. One of the advantages of
templates is that they can be used to work with different types, while at the same time they
avoid the need for runtime checking that is inherent to the use of polymorphic classes.

With templates, you can use compile-time polymorphism in several situations
where types can be known by the compiler. This makes it possible to write code that’s
independent of the type used while at the same time avoid the expense of runtime
lookups.

An example that is commonly used in financial code is applying mathematical
operations to different datasets. This can be done in several ways, but templates can be used
to make the process efficient and transparent to the programmer. Consider the operation
of normalizing a dataset. To apply such an operation to different sets, you could create a
Normalize template, as demonstrated in the following code. First, you assume that there are
two implementations available for the normalization operation, one for vectors and another
for sets:

void array normalize(std::vector<double> &array);
void set normalize(std::set<double> 8&set);

The next part of this example shows the main template class, called Normalization.
This class provides the main declaration used. In a more complete implementation,
Normalization would also contain a number of static definitions other than a single
function, but that is enough to demonstrate the usefulness of the class template.

The member function normalize performs the work of normalization in a generic
way; therefore, it must receive as argument a type that is a template parameter:

template <class T>
class Normalization

{

public:
typedef T Type;
static void normalize(T &arg);
// Other methods here..

};
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Now, you're ready to implement as many specializations of the normalize function
as necessary. I present two specializations here, one using a vector of doubles and
another using a set of doubles. These two implementations use the regular functions that
have been declared previously, and their implementations are now shown here.

template <>
void Normalization<std::vector<double>>::normalize(std::vector<double> &a)

{

array normalize(a);

}

template <>
void Normalization<std::set<double>>::normalize(std::set<double> &a)

{

set _normalize(a);

Note Consider how the parameter list for the template is empty. This syntax
indicates that this is a specialization of a previously defined member function.

Notice how these definitions are independent of the original class definition. This
means that if you create a new type of normalization function that can be applied to a
particular type, the only thing you need to do is declare a new template specialization
that uses that function. Therefore, the Normalization class is essentially an open
definition that can be extended by any library that decides to implement a new
normalization strategy. And this can be done without any runtime overhead, since the
right normalization strategy will be chosen during compilation.

Finally, I present a template function that simplifies a call to the normalization
member function. This template function is called normalize and just calls the desired
static member function:

template <class T>
void normalize(T &val)

{

Normalization<T>::normalize(val);
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Here is an example of how such a function can be called for different types. The
compiler will generate optimal code by deciding which specialization of the class to use
and will make the call without runtime overhead:

void use normalize()

{
std::set<double> set;
std: :vector<double> array;
// Initialize variables here...
normalize(set);
normalize(array);

}

Template Functions

A template function is a C++ function that can be parameterized with the use of one or
more types or integral values. Using template functions, you can write generic functions
that work with any combination of the original parameters, expanding the domain of
application for the code contained in the original implementation.

Consider as a first example the function returning the maximum value between the
two given parameters. It is easy to write such a function for a particular data type. For
example, for integer parameters, this function can be written, in a verbose way, as

int int max(int a, int b)

{
if (a > b)
{
return a;
}
else
{
return b;
}
}
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To create a generic version of this function, you just need to create a template
function that is parameterized on the types used in the parameter list and return values:

template <class T>
T generic_max(T a, T b)

{
if (a > b)
{
return a;
}
else
{
return b;
}
}

With this template, you can not only compute the maximum of two integers, but you
can also do the same for any type that supports a comparison using the > operator. This
even includes nonnumeric types such as strings, as you will see next.

The string case is interesting in this example, because it also involves the discussion
of partial specialization. A partial specialization is a version of a template where one
or more of the parameters have been substituted by concrete types or values. You can
specialize the generic_max template function to handle zero-terminated strings using a

different implementation, as follows:

template <>
const char * generic_max(const char *a, const char *b)

{
if (strcmp(a, b) > 0)
{
return a;
}
else
{
return b;
}
}
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This syntax indicates that this is a specialization of the previously defined generic_
max function. The parameter type const char *is substituted directly in the function
implementation. This function in particular uses the strcmp function from the C
standard library to determine if a string is less than another.

Implementing Recursive Functions

One of the applications of compile-time computation through templates is the
implementation of recursive functions. A recursive function is one in which the result of
the operation for a particular value can be calculated based on another application of
the same function.

The reason why it is possible to use templates for computing recursive functions is
the ability of these C++ templates to take integral numbers as arguments. For example, a
trivial template that prints a static value can be defined using the number as a template
argument:

template <int N>
void printNumberPlusOne()

{
int a = N + 1;
std::cout << a << std::endl;
}
void usePrintTemplate()
{
printNumberPlusOne<10>();
}

Here, the integer N is passed not as a function argument but as a compile-time
parameter. This means that during compilation the value of N is already known as a
constant value, which eliminates the need for computation during runtime. This makes
the operation much more efficient than it would be the case of normal parameter
passing.

This example can be further expanded, using a recursive strategy to print N numbers
at compilation time. Here is a simple version that does this recursively:
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template<int N>
void printNumberRecursive() // general case

{

std::cout << N <« ;
printNumberRecursive<N-1>();

}
template<>
void printNumberRecursive<0>() // base case
{
std::cout << std::endl;
}
void usePrintRecursive()
{
printNumberRecursive<10>();
}

This template is implemented as a general case and a specialization (base case). The
general recursion case is what should be done in most cases, which in this case is print
the given template parameter N and call the same template with a smaller value N- 1.
The base case is what should happen to cause the recursion to stop. In this example, the
recursion stops when the value 0 is reached, in which case the template simply prints a
new line.

Taken together, these two cases for the printNumberRecursive template can print
the numbers from N to 0 using only compilation-time expressions. This means that all
calculations have already been done by the compiler, dramatically cutting down the
computation effort at runtime.

You can use the same strategy to compute more complex and useful recursive
functions. Table 6-1 shows a few common recursive functions that involve integer
numbers and that can be easily implemented using C++ templates. Notice how each of
these functions uses its own definitions in order to compute the next value.

157



CHAPTER6  TEMPLATE-BASED TECHNIQUES

Table 6-1. Common Integer Recursive Functions

Recursive Function Description

Factorial Calculate factorials of the form 1x2x3x...xn.

Fibonacci Calculate the general recursion An) = An—1) + An-2).
Triangular numbers Calculate the number of items in triangular formation.
Binomial coefficients Calculate the coefficients of polynomial equations of the

form (ax + b)n.

In a more complete example, consider the implementation of the summation of the
first N integer values, for a given parameter N. You can do this with a template function
that recursively calls itself. Thanks to templates, the C++ compiler can calculate such
values during compilation time. Here is an implementation of such a function:

template <int N>
int intSum()

{

return N + intSum<N-1>();

}

template <>
int intSum<o>()

{
return 0;
}
void useIntSum()
{
std::cout << intSum<20>() << std::endl;
}

As before, there is a general case for most values of N and a base case that is
used when the parameter is 0. The general case defines the template and its integer
parameter. The base case is a template specialization, so the exact argument value needs
to be provided.
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The intSum template in the general case returns the sum of the argument that was
originally passed and adds to that the value of intSum for N-1. Since all these calculations
are based on constant values at compilation time, the result is computed using the
compiler itself.

The specialization of intSum deals with the base case that terminates the recursion.
When the argument is 0, the value 0 is returned as the value of the sum. The function
useIntSuminstantiates the template, passing the value 20 as its parameter. The result is
then printed to standard output.

Recursive Functions and Template Classes

Recursive functions can also be implemented using template classes, instead of simple
functions. This is recommended when additional information is supposed to be stored
with the result of the function. A template class can also receive as a parameter an
integer number, along with specializations based on that template parameter.

Consider an example template class that computes the factorial of a number. The
logic of this type of computation is very similar to the functions you have seen before.
However, it gives you an opportunity to see how a template class works in this situation.

template <long N>
class Factorial

{
public:

enum

{

Argument = N

15

static long value();
b5

template <long N>
long Factorial<N>::value()

{

return N * Factorial<N-1>::value();

159



CHAPTER 6  TEMPLATE-BASED TECHNIQUES

template <>
long Factorial<0>::value()

{

std::cout << " factorial for argument " << fact.Argument << " is

return 1;
}
void useFactorial()
{
Factorial<8> fact;
<< fact.value() << std::endl;
}

The class Factorial shows how a template class can store useful values as part

of the class definition. The enumeration at the beginning of the class definition

contains a value called Argument, which stores the argument for further use as a value

of the enumeration. This exemplifies a feature that cannot be achieved by a simple

function: the use of a class may allow any value to be stored for further use, either as an

enumeration or a static variable. The way the template is expanded by the compiler is

shown in Figure 6-1.

template <3> class Factorial {
long value() {
return 3 * Factorial<2s::value();
};
};

template <2> class Factorial {
long value() {
return 2 * Factorial<1i>::value();
};
¥

template <1> class Factorial {
long value() {
return 1 * Factorial<0»::value();
s
I

template <0> class Factorial {
long value() {
return 1;
&
}s

Figure 6-1. An example of computation using template specialization. The
general case of the Factorial template is instantiated with the integer 3, and new
instantiations are used until the specialization for Factorial<0> is reached
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The Factorial class also contains a static function that computes the desired
factorial number. As in the previous examples, the function is implemented with a
general case for any integer number, and a base case, which is used when the 0 value is
passed.

The useFactorial function shows how to invoke the Factorial class for a particular
compile-time computation. The factorial of the value 8 is desired, so it is passed as the
single argument to the template class. The next line uses the Argument enumeration
value so it can retrieve the passed argument.

The value of the factorial is finally accessed using the value member function. Notice
that, as usual with templates, the value function is calculated at compilation time and
the result is replaced by the compiler at that particular point.

Containers and Smart Pointers

One of the most important applications of templates in C++ is the creation of data
containers. A container is a template-based object that maintains and provides access
to other underlying objects or data structures. For example, a common container used
in C++ is std: :vector, which is a representation of sequential memory that can be
accessed using a numeric index. Other more complex containers are provided in the STL
and in third-party libraries that are commonly used in financial applications.

Here are some of the best-known STL containers and the types of arguments that
they expect in the standard library. A short list of available containers is displayed in
Table 6-2.

Note All STL containers receive as a parameter a default Allocator type,
which determines how objects are allocated, such as using the global heap or
some other preallocated local memory. If this type is not supplied, the standard
allocator for the new keyword is used when creating objects.

e std::vector<T, Allocator>: The type T passed to std: :vector
represents the main type of each element stored in the vector. This
container guarantees that elements will be stored sequentially.
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std::map<K, T, allocator»: This template requires two
parameters. The first parameter represents the type of the key

and should be an immutable object. The second type represents
the object stored for each key. Maps have variations, such

as std: :unordered_map, where entries are unordered, and

std: :multimap, where each key can have more than one associated
entry.

std: :queue<T, Allocator>:A std::queue provides a first-in first-
out mechanism, and the argument T is the type of elements stored in
this container. This container also has a variant called std: :dequeue,
which allows elements to be removed from the front or back of the
queue.

std::stack<T, Allocator>: A template object that stores elements
in a first-in last-out mechanism. The elements are typically allocated
sequentially.

Table 6-2. Common STL Containers and Their Parameters

Container Type Description

std

std:

std:

std:

std:
std:

std

::vector

:map

:queue

:array

:1ist

set

::stack

Container in which elements are stored in sequential mode. Each element
must have the same type, as determined by the template parameter.

A container where each element is associated with a unique key. The container
allows searching by keys.

Afirst-in first-out container that has elements of the same type, the type being
the parameter to the template.

A simple sequential group of elements that can be indexed by a number. The
element type is passed as a template argument.

A linked list where each object has the same type.

A container that stores an unordered list of objects. Elements of set can be
retrieved efficiently.

A first-in last-out container where each element has the same type, as
determined by the template parameter.
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The second important application of templates in the C++ standard library is in the
implementation of smart pointers. A smart pointer enables you to manage the memory
of objects allocated in the heap. It does this through particular strategies such as using
reference counting, or restricting the access to the pointer and deleting the associated
memory at the end of the current scope (as is the case with std: :auto_ptr).

Smart pointers are possible due to the ability to generate specific code for each data
type passed as parameter. Thus, a std: :shared ptr<OptionsContract>, for example,
can be created to manage objects of type OptionsContract only.

Table 6-3 presents a few of the most common smart pointer templates. Some of these
templates have been available as part of the standard C++ library since C++11.

Table 6-3. Common Smart Pointer Templates

Smart Pointer Description
std:auto_ptr A smart pointer that provides automatic deallocation with single ownership
semantics.

std:shared ptr A smart pointer that provides a reference-counted memory management,
with shared ownership semantics.

std::unique _ptr A smart pointer that provides unique ownership of an object.

std::weak ptr A shared pointer that represents a weak reference to an object allocated in
the heap.

Avoiding Lengthy Template Instantiations

C++ templates are a powerful mechanism that can be used to create generic code. With
templates, it is also possible to remove undesirable code duplication, since the same
code can then be applied to data of different types.

On the flip side, however, templates can also create problems due to the potential
they have to slow down compilation times, when complex template rules are processed
during compilation. Also, because all the code in a template is generally available to the
compiler when processing translation units, it is difficult to provide separate compilation
for templates. An example of a library that is victim of this behavior is boost, where
typically all the functionality is included in header files. These header files are then
included each time the library is referenced in an implementation file, resulting in long
build times.
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Despite these shortcomings, in some situations, it is possible to reduce the amount
of work done by the compiler on behalf of templates. This section shows a simple
technique that can be used to achieve faster template compilation speeds when desired

instantiations are known ahead of time.

Preinstantiating Templates

Certain templates are used in only a reduced number of cases by design. For example,
consider a numerical library that creates code for different types of floating-point
numbers. Each class in the library can be instantiated with a particular floating-point
type, such as double, long double, or float. Consider, for instance, the following
definition:

// file mathop.h

//

// The template class for mathematical operations
//

template <class T>

class MathOperations

{
public:

static T squared(T value)

{

return value * value;

}

/...
};

This class can be used in the following way:

#include "mathop.h"
#include <iostream>

using std::cout;
using std::endl;
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MathOperations<double> mathOps;

double value = 2.5;

cout << "result: " << mathOps.squared(2.5) << endl;

Unfortunately, because the MathOperations class is a template class, you have to
include its complete definition as part of the header file, where it can be found in the
compiler whenever the class is instantiated.

One possible way to reduce the size of the header file is to preinstantiate the
template for the types that you know in advance.

The first step is to remove the implementation from the header file. This is clearly
possible, since you can implement class member functions outside the class declaration
(whether the class is a template or not). Then, you need to add the implementation
to a separate source file. Once this step is done, client code can use the template class
interface, but will not be able to generate code. Therefore, for this to work, you need to
instantiate the templates on the implementation file.

// file mathop.h

//
// The template class included by the applications
//
template <class T>
class MathOperations
{
public:
static T squared(T value);
/1 ...

};

// file mathop.cpp
#include "mathop.h"

//
// Template member function definition
//
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template <class T>
T MathOperations<T>::squared(T value)
{

return value * value;

}

//

// Function used to instantiate code for specific datatypes
//

void instantiateMathOps()

{
double d = MathOperations<double>::squared(2.0);
float f = MathOperations<float>::squared(2.0);
int i = MathOperations<int>::squared(2);
long 1 = MathOperations<long>::squared(2);
char c¢ = MathOperations<char>::squared(2);

}

In this example, I chose to instantiate five versions of the original template for
numeric types. The main limitation of this technique, as I mentioned, is that your clients
will not be able to generate templates for the additional types they may want to use.
However, in a few situations you may really want to restrict how these templates are
used, and this technique works as desired.

Templates in C++20

The latest updates of the C++ standards, of which C++20 is the latest, have introduced

a number of features that simplify and improve the use of templates. As usual, with

the release of a new version of the standard, you can still use every feature that was
discussed in the previous sections. However, C++20 adds new ways to use templates with
easier syntax and expanded functionality.

For example, a great feature that has been added in the last standard is the ability to
write template functions without the use of the template keyword. This functionality is
now available using the auto keyword as part of the function declaration.

Here is a case where a template function has become much easier to use:

#include <string>
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#include <iostream>

// This is a template that is instantiated depending on
// passed arguments.
auto apply add operator(auto x, auto y)

{
return x + y;

}

int main()

{
int x =1, y = 3;
std::string a{"hello "}, b{"world"};
std::cout << apply add operator(a,b) << "\n";
int res = apply add operator(1,3);
return 0;

}

The preceding code fragment shows how to create a generic function without the use
of the template keyword. The function apply add operator will take two arguments
and apply the operator plus to the two arguments, returning the result. This works for
any data type that supports the operator plus. In the preceding example, you can see
the application to variables of type std: :string and int. The compiler will take care of
choosing the right data types and generating the code as needed.

For comparison, the old way of doing this is to define the generic function using
template arguments, in the following way:

template <class T>
T apply add operator2(T x, T y)
{

return x + y;

However, since the standard C++17, there is no need to use template arguments
when in the presence of the automatic deduction keyword auto. This means that you
can write shorter function declarations and let the compiler do the heavy lift of defining
the exact types of the parameters passed to a generic function. Just as with automatic
variable declarations, the auto keyword can help you to avoid a large amount of
boilerplate that was needed in previous versions of C++.
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Conclusion

While object-oriented design patterns provide several elegant methods for the solution
of commonly found problems in financial programming, there are cases in which a
non-0OO strategy may be more indicated. In these situations, C++ promotes the use of
templates, an implementation technique in which the compiler is allowed to generate
code based on parameterized types.

In this chapter, you learned how to create new template classes and functions
that use the template facilities of C++. Among other things, you saw how to create
functions and classes that compute their results at compilation time. Compilation-time
polymorphism, an alternative to runtime polymorphism that uses the code-generation
capabilities of C++ templates, was also discussed.

The next chapter continues exploring templates in C++ with a more detailed view of
the standard template library and its algorithms.
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STL for Derivatives
Programming

Modern financial programming in C++ makes heavy use of template-based algorithms.
Many of the basic algorithms related to trading options and their derivatives are
implemented in terms of function and class templates. This is done due to the superior
advantages of templates in performance as well as their ability to improve code reuse.

Several template-based algorithms are implemented right into the standard
template library (STL), which is one of the main parts of C++ standard library. Therefore,
itis important to become familiar with the concepts of algorithms in the STL and to
understand how they can be used and extended to more complex applications.

In this chapter, I discuss STL algorithms and how they can be employed in
quantitative finance and other programming projects. In particular, I attempt to cover
how these template-based algorithms are used in practice to solve common problems
with options and other financial derivatives. After reading this chapter, you will get a
better understanding of how the STL interacts with other parts of the C++ libraries and
how it imposes a certain structure on classes developed in the language.

Here are some of the concepts discussed in this chapter:

e STL-based algorithms: Here, I present an introduction to the basic
concepts of algorithms in the STL, how they interact with the
container, and their basic performance characteristics.

e Functional techniques on STL: The STL algorithms can simplify your
code with the use of a functional style of programming, whereby you
can use functions as a first-class object of abstraction.
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o Working on STL containers: STL algorithms have been developed so
that they work in tandem with containers. You need to understand
the usage patterns of STL algorithms and how they can efficiently
employ the most common containers provided by the standard C++
library.

o Efficient iterators: Another way in which algorithms interact with
containers is through the use of iterators. Developers can use
iterators in flexible ways, thanks to the support available in the STL
algorithms.

o Improvements in C++20: You will also learn how the latest C++
standard has turned the STL into an even more efficient and easy-to-
use library.

Introduction to Algorithms in the STL

The STL offers a set of templates that can be used to solve some of the most common
problems encountered in C++ programming. Among such templates, you will find a list
of algorithms that implement tasks such as copying, sorting, selecting, iterating, and
adding elements to generic collections such as vectors, sets, maps, and their variations.
With STL algorithms, C++ designers created a set of template functions that
manipulate generic collections. Once these algorithms have been implemented as
templates, developers are free to use them for any class that satisfies the functional
requirements of its container. For example, based on the STL, you can create vectors
of any custom class and apply template algorithms such as sort and reverse to
manipulate these objects, without having to write any additional code. Table 7-1
presents a list of algorithm types available in the STL.
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Table 7-1. A List of Algorithm Types Available in the STL

Algorithm Type Description

Conditional testing  Performs a test of a given condition against elements of a container.
Algorithms include operations such as all of, any of, and none_of.

Iteration Performs an operation for each element of a container, such as the for_
each algorithm.

Searching Finds elements in a container: find, find_if, find_if not, find_
first of,and search.

Counting Returns the number of elements in a container: count and count_if.

Sorting Puts the elements of the container in a defined sorted order: sort,

stable_sort, and partial_sort.

Partitioning Partitions the container into two ranges according to a given property:
partition, partition_copy, and partition_stable.

Merge Performs the merge of two containers that have been previously sorted:
merge, set_union, set_intersection,and set_difference.

Binary search Implements a binary search for each STL container. Examples are lower
bound, upper_bound, and binary search.

The generic algorithms in the STL can be imported into a C++ application using the
<algorithm> header file. Most of these algorithms are implemented directly as templates
in the header file, so they can be available to any client code without the need of external
binary components.

The next few sections describe a few common tasks that are implemented as STL
algorithms and explain how they can be used from client code, including financial
applications.

Sorting

Sorting is a basic activity that is common to many algorithms. For this reason, sorting
templates have been created to deploy high-performance sorting algorithms without
much effort. Reusing sorting algorithms also allows programmers to avoid re-
creating well-known algorithms and the possibility of introducing mistakes into the
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implementation. STL algorithms provide just what you need in order to apply sorting
strategies to containers and other data structures.

The STL has a set of template algorithms that can perform sorting on many
different types of containers. The right algorithm should be selected according to
the desired properties of the container and the data stored in it. For this purpose, the
library gives you several options corresponding to the different desired tasks and their
properties. As a developer, you should become acquainted with these types of sorting
algorithms. Table 7-2 lists a set of algorithms commonly available from the STL (specific
implementations might add their own variants).

Table 7-2. A List of Sorting Algorithms Available in the STL

Sorting Algorithm Description

sort Generic sorting algorithm that can be used on most containers. This
should be used in the majority of cases.

stable sort A stable sorting procedure that maintains the relative positions of
elements in the container.

partial sort An algorithm that sorts only part of a given container.

partial sort copy An algorithm that performs partial sorting on a copy of the original
container.

is_sorted Returns true if the given container is already sorted. This is useful when

working with an unknown container.

nth_element An algorithm that sorts only one of the largest elements of a container.

The first type of sorting template is the generic sort function. This function can be
applied to a range of values that’s stored in the container, given by two iterators—one
for the start and another for the end of the range. As normally happens in the STL, the
container can be anything that can be iterated over, including arrays, vectors, maps,
sets, and other container templates. This sort of function can also take as a parameter
a comparison function, which is used to determine the proper order of objects in the
collection.

Consider, for example, a date type. The goal is to be able to sort objects of type date,
which are stored in a standard STL container. To be able to sort based on dates, however,
you need to provide a comparison function for the underlying date class. In C++, this is
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done through the use of a functional operator that overloads the standard comparison
operator. Here is a quick example:

class Date {
public:
// Other public methods here...

bool operator<(const Date &d);

int year() const { return m year; }
int month() const { return m month; }
int day() const { return m day; }

private:
int m_day;
int m_month;
int m_year;
};
bool Date::operator<(const Date 8&d)
{
if (m_year < d.m_year)
{
return true;
}
if (m_year == d.m_year and m_month < d.m_month)
{
return true;
}
if (m_year == d.m_year and m_month == d.m_month and
m_day < d.m_day)
{
return true;
}
return false;
}
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bool operator<(const Date &a, const Date 8&b)

{

return a < b;

Notice that there are two versions of the < operator. The first version is written as
amember function. This is necessary so that the operator has access to the private
member data of the date class. The second version of the < operator is a free function,
and it is necessary when the first argument is a constant object. The implementation of
the free function is directly based on the member function.

void sort dates()

{

vector<Date> dates;

// .... initialize the dates here

std::sort(dates.begin(), dates.end()); // perform comparison
}

The sort_dates function provides an example of using the standard sort template.
In this version, the default comparison is used, which in this case is implemented by
the < operator. You can, however, use a different comparison function, as shown in the
following example:

bool year comparison(const Date &a, const Date &b)

{

return a.year() < b.year();

Here, the specialized comparison is performed only using the date year fields you
stored in each date object. The comparison function can be called in the following way:

void sort dates()

{
vector<Date> dates;
/1 ....
// Performs comparison by year only
std::sort(dates.begin(), dates.end(), year comparison);
}
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In this instance, since you are using a specialized method of comparison, you need
to provide a comparison function explicitly. The result of this sorting procedure is a
sequence of dates where the elements appear in increasing order of year.

The preceding case can be used to exemplify the use of stable sorting. In a stable
sorting, elements that are equal with respect to the sorting strategy appear in the same
order as the input. This is an important feature in some sorting applications. Therefore,
if you want to maintain the relative sorting position of dates within a year, you should
instead use the stable_sort template function. This is exemplified in the modified code:

void stable sort dates()

{

vector<Date> dates;

// .... initialization here

// Performs comparison by year only,

// but relative order is maintained

std::stable sort(dates.begin(), dates.end(), year comparison);
}

Presenting Frequency Data

A simple application of sorting can be seen in the presentation of frequency data.
Suppose that you were given a vector of price observations, and the goal is to present
this pricing data according to the frequency in which it appears. This is an application
that is typically described as a data histogram, that is, the data is presented according to
increasing frequency.

To solve this problem, you can use STL containers and the sorting template
algorithm to reorganize results. The final function is named compute_ frequency.
The first step of the algorithm is to calculate the number of bins defined by the data
interval. To compute this, you'll use the variables start, end, and step size. Here is the
implementation:

//
//  stl alg.cpp
// Sorting algorithm for price data

#include <algorithm>
#include <vector>
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#include <cmath>
#include <iostream>

using std::vector;
using std::cout;
using std::endl;
using std::pair;

void compute frequency(vector<double> &prices, double start,
double end, double step)

int nbins = int(std::abs(end-start)/step);

vector<pair<int, int>> count(nbins, std::make pair(0,0));
for (int i=0; i<nbins; ++1i)
{

count[i].second = i;

}

for (int i=0; i<prices.size(); ++i)
{
if (start <= prices[i] && prices[i] <= end)
{
int pos = int((prices[i] - start)/step);
count[pos].first++;

}
std: :sort(count.begin(), count.end());

for (int i=0; i<nbins; ++1i)

{
int k = count[i].second;
cout << start + k * step <«

« ": << count[i].first;

<< start + (k+1) * step
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The vector count stores the frequency of each data interval. Each element of the
count vector has two members—the first member is the frequency and the second
member is the relative position of the interval. These two values are stored as a STL pair,
and the sequence of numbers is initialized in a for loop.

The next step is to store the frequency counts. This is done in a loop that iterates
through the given range, adding to the frequency of each data point. Finally, after the
frequencies are collected, you can sort them using the STL sort algorithm, which in this
case uses the begin and end functions to define the sorting range. Following this, the
frequencies are presented to standard output along with the respective ranges, which
have been saved in the index variable.

// Sample test of histogram algorithm
int frequency test()

{
vector<double> prices = {32.3, 34, 35.6, 39.2,
38.7, 31.17, 33.14 };
compute frequency(prices, 31.0, 39.0, 0.1);
return 0;
}

To test this code, I created a sample function frequency_test that calls the compute
frequency function with a few data points. The output of the code execution should look
like the following:

31-31.1: 0
31.2-31.3: 0
31.3-31.4: 0
31.4-31.5: 0
33.3-33.4: 0
// ... more data here ...
38.9-39: 0
31.1-31.2: 1
32.2-32.3: 1
33.1-33.2: 1
34-34.1: 1
35.6-35.7: 1
38.7-38.8: 1
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Figure 7-1 shows a histogram, computed from sample data processed by the function
frequency test. This kind of ranking function is useful when working with financial data
such as price volatility.
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Figure 7-1. Histogram displaying number of values computed in sample data
given function frequency_test

Copying Container Data

Another common application of template algorithms is to copy elements from one
container to another. This can be easily done using the copy template algorithm. This
algorithm can perform copies between containers of different types using common
conversion techniques already provided by the C++ language.

For example, it is possible to copy a container of integer numbers (int) into a second
container that maintains only numbers of type double. Consider the following code:

void copy int to double()

{

vector<int> ivector(100, 1);

vector<double> dvector(100);

std::copy(ivector.begin(), ivector.end(), dvector.begin());
}
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Here, the two vectors ivector and dvector have different types. The fact that you
have a template algorithm means that you don’t need to write separate functions to
handle every combination of types that could be presented as an argument to the copy
function.

Another useful ability provided by this template is to copy elements from an existing
container into the standard output. To do this, you need to wrap the standard output (or
any other stream, for that matter) with an std: :ostream_iterator object, which allows
you to iterate though an output stream. Here is an example of a simple way of displaying
the contents of an STL container:

void print prices()

{
vector<double> prices(100);
// Initialize prices here
std: :copy(prices.begin(), prices.end(),
std::ostream_iterator<double>(cout));
}

The print_prices function creates and initializes a vector of doubles. Then, it passes
the begin and end iterators for this vector as the first two parameters of find. Finally, the
third argument wraps the standard output stream into an iterator for data of type double.

If you need to simplify the use of find (and many other similar algorithms), you
could implement your own template algorithm that extracts the correct begin and
end iterators. For an example of how you can do this, consider the following template
function:

template <class T, class S >
typename T::const iterator find(const T &a, S val) {
return std::find (a.begin(), a.end(), val);
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This template function receives two template parameters—the first is a container
class and the second is a value type. The find template presented here will just call
std: :find and make sure that the first two arguments are the begin and end of the
passed container. This code could be called in a way similar to the previous example:

void find_value()

{
vector<int> values;
// ... initialize the vector
// Call our template
vector<int>::const_iterator result = find (values, 42);
if (result == values.end())
{
cout << " the value was not found " << endl;
}
else
{
cout << " the value found is " << *result << endl;
}
}

Finally, using std: : copy, it is also possible to transform a container template such as
list into a different container type, such as vector. This kind of transformation allows
programmers to easily convert containers of one type into another, without having to
create custom code for each case. Here is an example:

void from list to vector(const list<int> &1)

{
vector<int> values;
// Copy contents to destination array values
std::copy(1l.begin(), 1l.end(), values.begin());
// Do something with the vector here

}

180



CHAPTER 7  STL FOR DERIVATIVES PROGRAMMING

In this example, the function receives a std: : 1ist of integers and copies the content
stored in the list into a std::vector<int>. Since std: : copy is a template that works with
different container types, you can simply rely on the standard library to perform the
desired conversions.

Finding Elements

Finding elements in a container is another common operation that can be performed
with the help of STL algorithms. The find family of templates allows programmers to
search using different options. As usual, the find templates are optimized according to the
specific container to which they are applied, but this is done automatically by the STL.

First, you have the simple find algorithm. This algorithm takes as parameters two
iterators that specify the start and end of the target data. The next parameter is a constant
value that you want to find in the given container. If the value is found, the algorithm
returns an iterator pointing to the desired location. If the value is not found, the algorithm
returns the second iterator, named last. Here is an example of how this works:

void find value()

{
vector<int> values;
// ... initialize the vector
auto result = std::find(values.begin(),
values.end(), 42);
if (result == values.end())
{
cout << " the value was not found " << endl;
}
else
{
cout << " the value found is " << *result << endl;
}
}
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The find_value function is responsible for searching for a particular number inside
a vector of integers. The values variable is declared as a vector container and should be
initialized as desired. Next, you need to apply the find function using the beginning and
end iterators returned by values. Therefore, the previous example shows how to search
for a constant number. The return value of this function is then stored in a vector iterator.
If this variable corresponds to the end iterator, you know that the value was not found.
Otherwise, the value is printed using the contents pointed to by the returned iterator.

Another type of search is necessary if you use a conditional find. In this case, you
should use the find_if template function. This function enables you to use a predicate,
in other words, a conditional selection statement that is true only for the desired values.

Suppose, for example, that I try to search for a particular value inside of a container,
such that the value is greater than 100. This is possible by defining a specific predicate
and passing it as the last argument to the find_if function template. This can be done as
follows:

bool greater than_100(int num)

{
return num > 100;
}
void conditional find()
{
vector<int> values;
// ... initialize the vector
auto result = std::find_if(values.begin(),
values.end(), greater than 100);
if (result == values.end())
{
cout << " the value was not found " << endl;
}
else
{
cout << " the value found is " << *result << endl;
}
}
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First, I introduce a new predicate function called call _greater than_100. This
function simply returns true when the number passed as an argument is above 100.
Next, you can see the function conditional find. This function is similar to the
previous example, but it uses the find_if template function instead. The first and
second arguments to the find if function also determine the range of values tested. The
last argument is simply a pointer to the predicate function that was presented previously.

Another way to do the same thing is to use a lambda function, instead of a normal
function. A lambda function is a C++ functional element that can be built inline and can
be passed to other functions themselves as a parameter. For example, instead of creating
a separate function such as greater _than_100, one can pass the same comparison as
a lambda function. The syntax for this is to put square brackets at the beginning of the
function, instead of a function name:

[](int num){return num > 100;}

The empty brackets syntax makes it easy to remember that the function name is not
required. A complete version of the previous function that uses a lambda expression can
be written as follows:

void conditional find2()

{
std::vector<int> values;
// ... initialize the vector
auto result = std::find if(values.begin(), values.end(),
[1(int num){return num > 100;});
if (result == values.end())
{
std::cout << " the value was not found " << std::endl;
}
else
{
std::cout << " the value found is " << *result << std::endl;
}
}
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Note The last argument of find if can be a function or a functional object. A
functional object implements the function call operator and therefore can be called
using syntax similar to a call to a normal function. Such functional objects are
explained in the next chapter. In the case of find if, the last argument can also
be a lambda expression.

Selecting Option Data

This section shows an additional example of how STL functions can be used to speed up
option data processing. This example shows a simple implementation of options, where
one of the data members is the number of days until expiration.

Let the option class be defined as follows:

class StandardOption {

public:
StandardOption() : m_daysToExpiration() {}
StandardOption(int days);
StandardOption(const StandardOption &p);
~StandardOption();
StandardOption &operator=(const StandardOption &p);

int daysToExpiration() const { return m daysToExpiration; }

// Other function members here...
private:

int m_daysToExpiration;

// Other data members here...

};

StandardOption::StandardOption(int days)
: m_daysToExpiration(days)

{

}
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StandardOption: :StandardOption(const StandardOption 8&p)
: m_daysToExpiration(p.m daysToExpiration)

{

}

StandardOption: :~StandardOption()

{
}

StandardOption &StandardOption::operator=(const StandardOption 8&p)
{
if (this != 8&p)
{
m_daysToExpiration = p.m_daysToExpiration;

}

return *this;

This class presents a simplified version of a standard option. The number of days to
expiration is stored in the member variable m_daysToExpiration and is returned by the
daysToExpiration member function. You can also see a few of the standard member
functions provided by the class.

The goal of this example is—given a container of StandardOptions objects—to find
a set of options that are close to expiration (in this case, closeness is defined as a ten-day
period before expiration). The first step in this process is to define a predicate function (a
function returning a Boolean value), which will be called is_expiring.

bool is expiring(const StandardOption &opt)
{

return opt.daysToExpiration() < 10;

This function simply determines the number of days until expiration, and if it
corresponds to the given criterion, the predicate returns true.
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This predicate can be used to find all the objects of type StandardOption that satisfy
the property of being close to expiration. Here is how this can be done, with the help of
STL algorithms:

vector<StandardOption>
find_expiring options(vector<StandardOption> &options)
{
vector<StandardOption> result(options.size());
std::copy if(options.begin(), options.end(),
result.begin(), is_expiring);
if (result.size())
{

cout << " no expiring option was found " << endl;

}

return result;

First, a new vector is declared to hold the results. The final size of this vector is at
most the size of the options vector. To perform the search, you can use the std: :copy
if algorithm. This template algorithm copies values from the given range into the
destination (result), whenever the element satisfies the given predicate function. Since
you are passing a function that is true only for options close to expiration, the resulting
vector will contain only near-expiration options, which are returned as the result at the
end of the function.

STL Improvements in C++20

The changes in the C++ language introduced with the C++20 standard (as well as C++11
and C++14) have made the use of the STL templates much more straightforward. The
first feature, introduced in C++11 but amplified in the last standard, is the use of the auto
keyword. The auto keyword can be used to substitute for complex types whenever the
true type can be deduced by the compiler. For example, code such as this

std::vector<std::string>::iterator it = std::find_if (myvector.begin(),
myvector.end(), IsUpperCase);
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can now be substituted by the much simpler version:

auto it = std::find_if (myvector.begin(),
myvector.end(), IsUpperCase);

But in C++20, you can also do the same to return types of functions:

auto find_my value(auto myvector) -> auto {
return std::find_if (myvector.begin(),
myvector.end(), IsUpperCase);

This feature makes it much easier to work with the complex data types declared in
the STL header files. Another simplification that was introduced in C++17 is the ability to
deduce types for template classes. For example, instead of writing

std: :vector<int> int vector = {1, 2, 3, 4};
one can now simply remove the type specification for the template argument:
std::vector int vector = {1, 2, 3, 4};

This is possible because the compiler can now easily determine the type of the
vector container from the type of the initialization expression.

Conclusion

Templates allow programmers to create concise code that works on different data types.
Given the advantage of templates, it is possible to create generic algorithms, which are
also implemented in the core STL library. In this chapter, you learned about several
template algorithms available in the C++ standard library. You also learned how to
combine these algorithms to create efficient code for financial problems.

First, you saw how to use the most basic functional templates found in the
STL. These include templates for tasks such as sorting, coping, iterating, and
accumulating values restored in a STL container.

Later, you saw examples of how to combine those functional templates into working
algorithms. Template algorithms allow programmers to take full advantage of existing
high-performance programming techniques coded by implementers of the C++ template
library.
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The use of template algorithms leads to a different style of programming, which
does not rely solely on object-oriented features. Newer versions of C++ also support
functional programming. In the functional programming style, problems are solved
using combinations of functions and functional objects. In these types of programs,
functions are also treated as first-class objects. Treating functions this way can give you
a more flexible method to organize code and solve problems. In the next chapter, I will
explore the functional style and show how it can be used to solve financial problems
occurring in options and derivatives.
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Functional Programming
Techniques

Functional programming is an implementation strategy that focuses on the direct use of
functions as first-class objects. This means that in a functional program you are allowed
to create, store, and call functions and otherwise use them as if they were just another
variable of the system. Functional code also simplifies programming decisions because
it avoids changing state and mutable data. This type of functional manipulation allows
programs to more closely express the desired behavior of the system and is particularly
suitable to some application areas.

Functional programming is especially useful in the development of mathematical
software and in the processing of large datasets, as is the case in the analysis options
and derivatives. It can also be successfully used in the development of multithreaded
systems, since it helps in the maintenance of lock-free code.

While the practice of functional programming was possible in previous versions of
C++, such techniques have more recently been greatly improved with the adoption of
the new language standards (from C++11 to C++20), particularly with the introduction
of lambda functions. With lambda functions, programmers can now create temporary
functions in place and pass them as arguments during the call to other functions.

Such features have made it easier to apply functional programing techniques to C++
applications.

In this chapter, you will learn how to use functional programming strategies to
solve typical problems that occur in algorithms for trading options and derivatives. The
following topics are explored in this chapter:

o Functional objects: A functional object allows an instance of a class
to be called with the same syntax as a function, by using the function
call operator.
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o Functional templates: The STL has support for functional
programming through the use of functional templates. With them,
programmers can pass functions as parameters, as well as compose

functions.

e Lambda functions: With the introduction of C++11, a new syntax
was created to represent unnamed functions, also known as lambda
functions. You will see how to use lambdas in C++ and learn how they
simplify the creation and maintenance of functional code.

o Functional techniques for options processing: Throughout the
chapter, you will see examples of how these functional programming
techniques can be effectively used to solve some problems occurring
in the analysis of options and derivatives.

Functional Programming Concepts

Functional programming has its roots in the analysis of mathematical algorithms,
where functions are the main abstraction. Such functions are typically used to compute
results based on mathematical properties of numbers. Functions can be used to express
mathematical algorithms as well as used as an effective abstraction for the creation of
complex algorithms in several areas.

In particular, functional programming uses functions as building blocks to create
solutions for computational problems. Using this programming technique, you can
call functions as well as perform operations on them, including composition, partial
application, currying, and filtering, among others. You will see examples of these
operations later in this chapter.

Here are a few advantages of using functional programming in C++:

o Itis possible to compose functions to achieve complex behavior from
a few simple base functions. Functional composition can be more
easily done when functions are treated as a first-class object, instead
of as an isolated element of the language.

190



CHAPTER 8  FUNCTIONAL PROGRAMMING TECHNIQUES

o Functional programming doesn’t depend on complex states stored
inside objects. Functions are generally transparent, and they depend
on arguments that are passed at each function call. In comparison,
objects are complex and store a lot of context that may be hard
to validate and understand. The use of functional programming
techniques favors the creation of simpler code with less state, since
the state needs to be passed at each function call.

e Operations such as memoization can be easily performed when
functions are first-class objects. With memoization, it is possible to
cache the values of function calls, so that the next time a result can
be immediately returned. This can be done because functions don’t
store any mutable state.

e No complex hierarchy of objects is necessary. Unlike OO
programming, functional techniques are not based on hierarchies
and therefore require no knowledge of the internal relationships of
classes. Functions are independent of each other and can be applied

in any sequence.

In the next few sections, you will see examples of these functional concepts applied
to C++ through different techniques. First, you will see how to use function objects for
this purpose. Then, you will see how to use external libraries such as boost: : lambda.
Finally, you will see how to implement functional programming techniques using C++
lambda functions.

Function Objects

The first step toward working with functional programming in C++ is to use a flexible
representation for functions. One of the most common techniques for doing this is to use
function objects. A function object (also known as a functor) is a C++ concept that allows
programmers to create class instances that behave as if they were functions. The key for
this concept to work is the overloading of the function call operator (represented in C++
by a pair of matching parentheses).
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The function call operator can be defined as a member function in each class that
needs to simulate a function call. The function call operator is called automatically from
the compiler when the function call syntax is used. Consider the following example
of how this process works. The OptionComparion class defines instances of a function
object that compares two financial option contracts (defined here using the class
SimpleOption), as defined here:

// A simple option representation
class SimpleOption {
public:
// Other definitions here
int daysToExpiration() const { return m_daysToExpiration; }
private:
int m_daysToExpiration;

};

The first part of the code declares a class that contains option contracts data. In this
example, SimpleOption contains only the number of days to expiration. In a normal
application, this class would contain a complete representation of the attributes of an
option.

class OptionComparison {

public:
OptionComparison(bool directionLess);
OptionComparison(const OptionComparison 8&p);
~OptionComparison();
OptionComparison &operator=(const OptionComparison 8p);

bool operator()(const SimpleOption &o1, const SimpleOption &o2);
private:
bool m_directionless;

};

The OptionComparison class is the main focus of this example, since it declares a
data type that can be used as a comparison function.

For the purposes here, the most important part of OptionComparison is the
declaration of a member function to handle the function call syntax, using operator().
In this example, the arguments passed to the function call operator are two objects of
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type SimpleOption that you want to compare. The following code shows the details of
the implementation for OptionComparison class:

OptionComparison::OptionComparison(bool directionLess)
: m_directionlLess(directionLess)

{
}

OptionComparison::OptionComparison(const OptionComparison &p)
: m_directionLess(p.m directionLess)

{

}

OptionComparison::~OptionComparison()
{
}

OptionComparison &0ptionComparison::operator=(
const OptionComparison 8&p)

{
if (this != &p)
{
m_directionlLess = p.m directionless;
}
return *this;
}

bool OptionComparison::operator()(const SimpleOption 801,
const SimpleOption &02)

bool result = false;

// Check components of optl and opt2.

// In practice this could be more complex.
if (m_directionLess)

{

result = ol.daysToExpiration() < o2.daysToExpiration();
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else

{

result = ol.daysToExpiration() > o2.daysToExpiration();

}

return result;

The first part of the implementation contains a few standard member functions
that are required by C++. The next part of the implementation, containing operator(),
shows how the comparison functionality is handled by this class. In this simple case, the
class considers them_directionless flag to determine if a less than test should be used.
Otherwise, the function uses a greater than test and returns the results.

The following function shows how to use OptionComparison:

void test compare()

{
OptionComparison comparison(true);
SimpleOption a, b;
/1 ...
// Initialize options a and b here...
if (comparison(a, b))
{
std::cout << " a is less than b " << std::endl;
}
else
{
std::cout << " b is less than a " << std::endl;
}
}

The first line of test_compare creates a new instance of the comparator object.
Then, the code creates two SimpleOption objects and initializes them as necessary.
The comparison object is then called as if it were a function, using operator ().
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The strategy displayed here can be used to simulate functions with different
signatures by creating the appropriate version of the operator (). Also, a single class
can decide to implement several versions of the operator (), depending on the ways in
which it expects to be called.

Functional Predicates in the STL

As you learned in the previous section, objects can be used to simulate functions in
C++ through the definition (or overloading) of the function call operator. This flexible
mechanism can be used to create code that behaves as a function but encapsulates
complex properties, as any object can do.

Based on the use of function objects, you can build a different style of programming.
To facilitate the creation of functional code in this style, the authors of the STL provide a
set of basic function templates and classes that automate many common tasks. Some of
these template functions are listed in Table 8-1.

Table 8-1. List of Functional Templates Provided by the STL

Functional Template Description

equal to Compares two parameters and determines equality between them.

Greater Compares the two given parameters and returns true if the first
parameter is greater than the second.

greater_equal Compares the two given parameters and returns true if the first
parameter is greater than or equal to the second.

Less Compares the two given parameters and returns true if the first
parameter is less than the second.

less equal Compares the two given parameters and returns true if the first
parameter is less than or equal to the second.

logical and Receives two Boolean parameters and returns true if both parameters
evaluate to true.

logical or Receives two Boolean parameters and returns true if at least one of the

parameters evaluates to true.

(continued)
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Table 8-1. (continued)

Functional Template Description

logical not Receives a Boolean parameter and returns true if the parameter
evaluates to false.

Plus A functional template that receives two numeric parameters and returns
their sum.

Minus A functional template that receives two numeric parameters and returns

the first minus the second.

Negate A functional template that receives a single numeric parameter and
returns the negative of that value.

Divides A functional template that receives two numeric parameters and returns
the value of the first parameter divided by the second.

Bind Receives a function or functional object as a parameter and binds
the parameters to that function to constant values or to variable
placeholders.

The goal of the functional objects included in the STL is to provide a set of basic
operations for creating new functional objects. Notice that through the combination
of the given objects, it is possible to create complex functions to encode application-
dependent logic. You can freely combine these functional templates to define larger
expressions in a way that represents the desired functionality.

Note Be aware of the differences between using functional objects and normal
C++ operations. A C++ computation specified with operators such as * and +
cannot be passed as parameters to other functions, because they are immediately
executed in place. Functional objects, on the other hand, form expressions that
can be passed to other functions. Moreover, the process of putting these functional
objects together is performed by the compiler. This ability to create complex
expressions and pass them to other functional objects and templates makes these
STL templates useful for the purpose of functional programming.

196



CHAPTER 8  FUNCTIONAL PROGRAMMING TECHNIQUES

Consider the following examples of using these functional templates in C++. The first
example shows how to use these functional templates to create a sorting predicate.

#include <functional>

void test operator()

{ using namespace std;
vector<int> numbers = { 3, 4, 2, 1, 6 };
sort(numbers.begin(), numbers.end(), greater<int>() );
}

Here, you first create a sequence of integer values and store it in the variable
numbers. In this case, the code is taking advantage of the initialization syntax of C++11,
which allows for the sequence type to be left unspecified, while the result is stored in a
std::vector.

The next step is to call std: : sort on the sequence of numbers. As you have seen
before, the last argument of std: : sort is a comparison function. Here, you can pass a
functional object declared in functional.h, therefore freeing you from having to define
a separate function.

Another simple application is to transform two sequences into a third sequence. For
example, one can use the plus function to add elements from two lists:

void test transform()

{

using namespace std;

auto list1 = { 3, 4, 2, 1, 6 };
auto list2 = { 4, 1, 5, 3, 2 };

vector<int> result(listi.size());

transform(list1.begin(), listi.end(),
list2.begin(), result.begin(), plus<int>() );
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// Use transformed list here...

copy(result.begin(), result.end(),
ostream iterator<int>(cout, ", "));

// Prints 7, 5, 7, 4, 8,

This example shows you how to take two lists and perform an arithmetic operation
with its respective elements. The operation in this case is the plus functional template,
which adds two values and returns the sum. The first step is to create the two sequences.
You can use the auto keyword to simplify the declaration of these sequences; they will be
represented as vectors of integers. A result vector is also necessary, as declared in the
next line of code.

The next step is to use the std: : transform function to perform a transformation
from the two source sequences into the destination sequence. Each step of the
transformation uses the std: :plus function. The result of this process is then sent to the
standard output using the std: : copy template function.

You could moditfy this example to perform any of the arithmetic or logical operations
available in the functional header file, including adding, subtracting, multiplying, and
dividing. More complex operations could be performed by combining these functions.

Note In general, the transform function template is very useful when you
want to perform a common action to a list of elements. By using transfoxrm, you
can reduce the number of explicit for loops in your code, making the resulting
program easier to understand.

The Bind Function

In the last section, you saw that several common operations are provided in the standard
library using the mechanisms of functional programming. With these templates, you
can write transformations to lists of data without having to program explicit loops or use
other imperative programming techniques.

However, just using the primitive operations such as subtract and divide is not
enough to create complex application logic. Another thing that you can do using the
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techniques of functional programming is bind parameter values for a given function, so
that you can have a new, modified function as a result.

Consider, for example, the std: : plus<T> function provided in the functional
header file. It can be used to add two numbers and can be applied to members of
separate containers using the transform function template. A simple modification
of this function is to have a constant number as the first parameter, so that the
resulting function is in fact adding a constant value each time it is applied. Functional
programming allows functions to be modified in this way, before they are applied to the
required data.

The solution in the STL is provided through the std: :bind function. With std: :bind,
you can bind a particular value to one of the arguments of a given template function. By
doing this, you can create as many different functions as there are new combinations of
arguments.

To use std: :bind, you need to determine the function to be modified and specify
one or more values that will be bound to the function arguments. Among these bound
parameters, you can also refer to the arguments supplied by the user of the function, at
the time that the function is called. These arguments are called placeholder arguments,
and named as the special variables 1, 2, 3, andso on.

Consider the following example of the std: :bind function:

void use bind()

{

using namespace std;
using namespace std::placeholders;

auto list1 = { 3, 4, 2, 1, 6 };
vector<int> result(listi.size());

// Add 3 to each element of the list
transform(listi.begin(), listil.end(),
result.begin(), bind(plus<int>(), 1, 3));

copy(result.begin(), result.end(),
ostream iterator<int>(cout, ", "));

// Prints 6, 7, 5, 4, 9,
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In this example, the goal is to use a modification of the std: : plus function, so that
each element of the list is added to the value 3, resulting in a new vector with the results.
The example is similar to what you have seen in the previous code fragment, but the
bind template now modifies the plus function.

The first two lines of the example are importing std and std: :placeholders
namespaces. The std: :placeholder namespace allows you to write the name of
placeholder variables _1 or _2. Then, the original list is created and a result vector is
allocated.

The transform function performs the desired changes, and bind is used to create
the operation applied to each element of the 1ist1 vector. As seen in the previous
example, there are two arguments for std: : plus. These arguments need to be specified
in sequence. This is indicated with the second and third parameters of std: :bind. The
first argument is supposed to be the placeholder for the first parameter. The second
argument is bound to a constant number.

The std: :bind template can be used in more complex situations. For example, it can
be used to find member functions for existing classes. The following example shows how
bind can be used to create a variation of a member function for the SimpleOption class:

class SimpleOption {
public:
// Other definitions here

double getInTheMoneyProbability(int numDays, double
currentUnderlyingPrice) const;

15
auto computeInTheMoneyProblExample(
const std::vector<SimpleOption> &options) -> std::vector<double>
using namespace std;
using namespace std::placeholders;
double currentPrice = 100.0;
vector<double> probabilities(options.size());

auto inTheMoneyCalc = bind(
&SimpleOption::getInTheMoneyProbability, 1, 2, currentPrice);
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transform(options.begin(), options.end(),
probabilities.begin(), inTheMoneyCalc);

return probabilities;

This assumes that SimpleOption contains a member function that calculates
the probability that a particular option will be in the money, given a number of
days before expiration and the current underlying price. Moreover, the goal is to
create a function that will receive a vector of options and return the associated
probabilities for the specific case of two days before expiration. The function is called
getInTheMoneyProblExample in the previous fragment.

To do this using the STL functional algorithms, you need to find a way to express the
desired condition as a functional object and pass the resulting object to std: : transform.
This can done with the help of std: :bind. The idea is to use std: :bind to bind the value of
the first argument, which in this case is the number 2. Then, the placeholder 1 indicates
that the argument passed to the resulting function is used as the second argument to
getInTheMoneyProbability. The bound function is then saved to a variable called
inTheMoneyCalc and used as an argument to transform, applied to the options vector.

Lambda Functions in C++20

As you saw in the previous sections, classes, templates, and objects can be used to
represent functions and other functional objects. Unfortunately, using classes for
functional programming requires you to define a separate function outside of the current
place where it is being used, thus making the process more difficult than it needs to be.
Functional templates such as std: :plus and std: :multiplies help make this easier, but
itis still not as easy as writing plain C++ code.

Other languages such as Lisp and Python have simplified this task with the concept
of unnamed functions, also called lambdas. These unmanned functions can be passed
as parameters to other functions and objects and can be freely combined into more
complex functions. This way, functional programming techniques become much easier
to implement and test, when compared to languages in which functions can be created
only as a static entity.

One of the big changes since C++11 (and improved in C++20) was the introduction
of lambda functions as a syntactical element. With the addition of lambda functions, it
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is now possible to create unnamed functions that can be saved as variables or passed
as parameters to other functions. This considerably simplifies the task of applying
functional techniques in C++ programs, as you will see in the next few examples.

A C++lambda is a piece of C++ code that can be saved and/or passed as a parameter
to other functions. With lambdas, the compiler has enough information to understand
that the function will run later, probably in an environment that is dependent of the
current function.

The syntax of lambda functions starts with a pair of square brackets, followed by
arguments and a block of code. Here is an example:

void use lambda()

{
auto fun = [](double x, double y) { return x + y; };
double res = fun(4, 5);
std::cout << " result is " << res << std::endl;

}

Here, the lambda function is introduced by [ ], followed by parameters of type
double. The function simply adds the two given parameters. The compiler can deduce
the result type for this lambda function. However, you can also declare the return type as
part of the code, using the -> syntax:

auto fun = [](double x, double y) -> double { return x + y; };

Lambda functions can also refer to variables that have been declared outside the
block of the lambda function. This makes them much more convenient than standard
functions, which are independent of the surrounding variables. This process is called
lambda capture, and it allows a lambda function to access the data stored even in a local
variable, after the current function has returned.

There are two types of lambda capture:

e Lambda capture by value: Allows lambda functions to use the value
stored in a variable that is accessible at the moment of the lambda
declaration. The value can be used even after the original variable
no longer exists. This is indicated by adding the name of the variable
inside the square brackets that introduce the lambda function.
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e Lambda capture by reference: This allows a lambda function to
modify the variable itself, instead of just using its value. This type of
capture is indicated with an & operator before the name of the desired

variable.

Here is an example of both cases of lambda capture:

void use lambda2()

{
int offset = 5;
auto funl = [ offset](double x, double y)
{ return x + y + offset; };
auto fun2 = [offset](double x, double y)
{ return x + y + offset; };
double res = funi(4, 5);
std::cout << " result is " << res << std::endl;
offset = 10;
std::cout << " result of funi is "
std::cout << " result of fun2 is " << fun2(4, 5) << std
}

The function named fun1 has been created with a capture of the offset variable.

<< fun1(4, 5) << std

This capture is by value only, so it will always reflect the original value of that variable,

in this case the number 5. The second lambda function fun2 captures the variable

offset by reference. This means that each time fun2 is called, it will use a reference to

the updated value of the offset. When the variable offset changes from 5 to 10, this will

change the results produced by fun2, but will not change the results of the application of

funi, as shown in the following output:

result is 14
result of funi is 14
result of fun2 is 19
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A lambda function can also be passed as an argument to other functions. When this
happens, the compiler creates a template object of type std: : function<> that stores all
the information used by the lambda function. You can create new functions that receive
lambdas and freely use them in your code. The compiler will automatically convert a
lambda into an object during the function call. Consider the following example:

void use function(std::function<int(int,int)> f)

{
auto res = f(2,3);
std::cout << " the function returns the value "
<< res << std::endl;
}

This function just receives a std: : function object and displays its result
when applied to the values 2 and 3. The important part of this code is noticing that
std: : function defines both the return type and the types for each of the parameters of
the given function. You can see how this information is used in the compiler with two
sample lambda functions that are passed to use_function as follows:

void test use function()

{
auto f1 = [] (int a, int b) { return a + b; };
auto f2 = [] (int a, int b) { return a * b; };
use_function(f1);
use_function(f2);

}

When called, test_use_function will produce the following results, as expected:

the function returns the value 5
the function returns the value 6

Complete Code

The complete code for this chapter is implemented in the Functional.hpp and
Functional.cpp files. The functional techniques presented here have as dependencies
only the main STL header files.
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//
//  Functional.hpp

#ifndef Functional hpp
#define Functional hpp

class SimpleOption {
public:
// Other definitions here
int daysToExpiration() const { return m_daysToExpiration; }

double getInTheMoneyProbability(int numDays, double
currentUnderlyingPrice) const ;

private:
int m_daysToExpiration;

};

class OptionComparison {

public:
OptionComparison(bool directionLess);
OptionComparison(const OptionComparison &p);
~OptionComparison();
OptionComparison &operator=(const OptionComparison &p);

bool operator()(const SimpleOption &o1, const SimpleOption &02);
private:
bool m_directionlLess;

b5
#endif /* Functional hpp */

//
//  Functional.cpp

#include "Functional.hpp"

#include <iostream>
#include <vector>

#include <functional> // for functional STL code
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//
// Class SimpleOption
//

double SimpleOption::getInTheMoneyProbability(int numDays, double
currentUnderlyingPrice) const

{
return 0; // implementation here
}
//
// Class OptionComparison
//

OptionComparison: :OptionComparison(bool directionLess)
: m_directionLess(directionLess)

{
}

OptionComparison: :OptionComparison(const OptionComparison &p)
: m_directionLess(p.m directionLess)

{
}

OptionComparison::~OptionComparison()
{
}

OptionComparison &0ptionComparison::operator=(const OptionComparison 8&p)

{
if (this != 8&p)

{

m _directionLess = p.m directionlLess;

}

return *this;
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bool OptionComparison::operator()(const SimpleOption &o1, const
SimpleOption &02)
{

bool result = false;

// Check components of optl and opt2. In practice this could be more
complex.
if (m_directionLess)

{

result = ol.daysToExpiration() < o2.daysToExpiration();

}

else

{

result

ol.daysToExpiration() > o2.daysToExpiration();

}

return result;

}

void test compare()

{

OptionComparison comparison(true);

SimpleOption a, b;
/1 ...

if (comparison(a, b))
{

std::cout << " a is less than b " << std::endl;

}

else

{

std::cout << " b is less than a " << std::endl;
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void test operator()

{

}

using namespace std;
vector<int> numbers = { 3, 4, 2, 1, 6 };

sort(numbers.begin(), numbers.end(), greater<int>() );

void test transform()

{

}

using namespace std;

auto list1 = { 3, 4, 2, 1, 6 };
auto list2 = { 4, 1, 5, 3, 2 };

vector<int> result(listi.size());

transform(listi.begin(), listi.end(), list2.begin(), result.begin(),
plus<int>() );

// Use transformed list here...
copy(result.begin(), result.end(), std::ostream iterator<int>(cout, ", "));

// Prints 7, 5, 7, 4, 8,

void use bind()

{

208

using namespace std;
using namespace std::placeholders;

auto list1 ={ 3, 4, 2, 1, 6 };
vector<int> result(listi.size());

// Add 3 to each element of the list
transform(list1.begin(), listi.end(), result.
begin(), bind(plus<int>(), 1, 3));

copy(result.begin(), result.end(), std::ostream iterator<int>(cout, ", "));
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// Prints 6, 7, 5, 4, 9,
}

auto computeInTheMoneyProblExample(const std::vector<SimpleOption>
8options) -> std::vector<double>

{
using namespace std;
using namespace std::placeholders;
double currentPrice = 100.0;
vector<double> probabilities(options.size());
auto inTheMoneyCalc = bind(8&SimpleOption::getInTheMoneyProbability, 1,
2, currentPrice);
transform(options.begin(), options.end(), probabilities.begin(),
inTheMoneyCalc);
return probabilities;
}
void use_ lambda()
{
auto fun = [](double x, double y) -> double { return x + y; };
double res = fun(4, 5);
std::cout << " result is " << res << std::endl;
}
void use lambda2()
{

int offset = 5;

auto funl = [ offset](double x, double y) -> double
{ return x + y + offset; };
auto fun2 = [&offset](double x, double y) -> double

{ return x + y + offset; };

double res = funi(4, 5);
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std::cout << " result is << res << std::endl;

offset = 10;
std::cout << " result of funi is " << funi(4, 5) << std::endl;
std::cout << " result of fun2 is " << fun2(4, 5) << std::endl;

}
void use_function(std::function<int(int,int)> f)
{
auto res = f(2,3);
std::cout << " the function returns the value " << res << std::endl;
}
void test use function()
{
auto f1 = [] (int a, int b) { return a + b; };
auto f2 = [] (int a, int b) { return a * b; };
use_function(f1);
use_function(f2);
}
//
// The main entry point for the test application
//
int main()
{
test_use_function();
return 0;
}

You can compile this code using any standards-compliant compiler, such as gcc
(which is available for all major platforms). The following command line can be used to
compile the application called Functional:

g++ -std=gnu++11 -o Functional Functional.cpp
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Conclusion

Using templates is a good way to organize your code into generic functions that work
across different data types. However, it’s only when you start to compose these functions
that you start to reap the benefits of a functional programming style. Functional tools in
the STL and other libraries allow programmers to use functions as first-class objects.

In this chapter, you learned a few of the techniques available for programmers who
want to explore functional programming in C++. Some of these techniques include the
use of functional objects, which implement the function call operator to simulate native
functions. The STL provides several template functions that support the use of functional
objects.

You have also seen how to create and use lambda functions, a new syntactical
element introduced in C++11. With lambda functions, programmers can create
unnamed functions that can be saved as variables or passed as parameters to other
functions. Even more interestingly, such lambda functions can refer to variables that
occur in the environment in which they were created. In this way, lambda functions
reduce the need to create additional classes just for the purpose of simulating function
calls.

This chapter concludes the book’s overview of C++ programming techniques
used on derivatives programming. In the next chapter, you will start to learn about
mathematical tools that can be used to price and analyze options and other derivatives.
In particular, you will learn about linear programming methods and their C++

implementations.
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Linear Algebra Algorithms

Linear algebra (LA) techniques are used throughout the area of financial engineering
and, in particular, in the analysis of options and other financial derivatives. These
techniques are used, for example, to calculate the value of large portfolios, or to quickly
price derivative instruments. This chapter contains an overview of LA algorithms and
their implementation in C++.

Linear algebra algorithms consist of simple operations on sets of values arranged as
vectors or matrices. There is a rich mathematical theory behind the use of vectors and
matrices. Although it is out of the scope here to explain this mathematical theory, it is
nonetheless essential to understand how such algorithm can be implemented in C++.

It is important to recognize how the traditional methods of linear algebra can be
translated to a multi-paradigm language such as C++. As a high-performance language,
C++ has been used by software engineers to efficiently encode numerical algorithms,
such as the ones used in linear algebra. With this goal in mind, this chapter presents
a few examples that illustrate how to use some of the most common linear algebra
algorithms. In this chapter, you will also learn how to integrate the following types of LA
algorithms into your code:

o Vector operations: Operations on vectors are some of the most
common ways to explore linear algebra algorithms.

o Implementing matrices: A matrix is a set of numbers ordered in a two-
dimensional array. Even though matrices are very common, there is
no standard support for matrices in the C++ library. In this chapter,
you will see how to easily create a matrix class that supports many of
the most common matrix operations.
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CHAPTER 9

LINEAR ALGEBRA ALGORITHMS

Using linear algebra libraries: There is a set of LA functions, named

BLAS (Basic Linear Algebra Subprograms), that have become a de
facto standard in the world of numerical computing. You will see in
this chapter how to use BLAS and similar implementations, which
provide the basic blocks used by most LA software (both free and
commercial) available nowadays.

Vector Operations

As you will see in the following examples, linear algebra is concerned about the

mathematical properties of vector spaces. Many of the operations either produce vectors
or take vectors as their arguments. Therefore, the first step to properly use LA algorithms

is to have a good implementation of vectors.
Notice that, on the positive side, the C++ standard library already contains an

optimized container called std: : vector, which you have used extensively in the last
few chapters. On the other hand, std: : vector doesn’t implement some of the most

important operations that are conventionally used in linear algebra algorithms. The first

step in implementing such an algorithm is therefore to provide such missing operations.
There are two kinds of mathematical operations that are needed when using vectors:

Operations between numbers and vectors: Some mathematical
operations involve a single number (also called a scalar number)
and a vector as arguments. For example, you may need to multiply
a vector by a scalar, or add the same number to each entry in the
vector. Such operations are not available in std: :vector, but are
so common that they should be supported by any linear algebra
software package.

Operations between two or more vectors::Another class or
mathematical operations take two or more vectors and calculate a
result based on their values. A common example is a vector product,
where all members in both vectors are pairwise multiplied and finally
added. Other operations like vector summation are also commonly
used.

The next few examples will show how to implement some of these operations using

the existing containers of the STL, such as std: :vector.
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Scalar-to-Vector Operations

Scalar operations on vectors allow a vector to be modified by a single scalar number. The
two most common scalar operations are scalar addition and scalar multiplication. You
can use these operations as building blocks for more complex operations, which will be
explored in the following sections.

Because the std: :vector class is already part of the STL, the strategy used here
is to create free functions (not members of a particular class) that operate on vector
containers. This way, you are free to continue to use the well-known functions available
for std: : vector when necessary. You can also overload these functions with other types
if you feel the need to extend these definitions.

The scalar addition to vectors consists in adding the same constant number to each
component of the vector. This can be implemented in the following way:

#include <iostream>
#include <vector>
typedef std::vector<double> Vector;

Vector add(double num, const Vector &v)
{
int n = (int)v.size();
Vector result(n);
for (int i=0; i<n; ++i)
{
result[i] = v[i] + num;

}

return result;

The first statement is a typedef that allows you to use the type name Vector instead
of std: :vector in this and the other examples in this chapter. Another advantage of
using such a typedef in numerical algorithms like this is the possibility of changing
the definition of Vector if necessary. In such a case, all the code would still compile to
comply with another vector type with just a few or no changes.
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The add function creates a new Vector with a size equal to the length of the
argument vector. Then, it fills the resulting vector with the original plus the number in
the first argument. Next, you can see the scalar multiplication operation:

Vector multiply(double num, const Vector &v)
{
int n = (int)v.size();
Vector result(n);
for (int i=0; i<n; ++i)
{
result[i] = v[i] * num;

}

return result;

The multiply function is implemented similarly to add. It receives a double number
and a vector. The resulting vector is created as the same size as the argument v. The
resultant vector is computed element by element to comply with the definition of the
scalar product operation.

These two functions create and return a new vector. This is an effective way to
perform the operations, but it can be less than optimal when used in inner loops of
complex algorithms. One way to speed up this process is to create a version of these
functions that modify the vector in place. That is, one of the vectors is passed using a
non-const reference, and it is modified to contain the result of the calculation.

Here is the scalar addition function, implemented as an in-place modifying
operation:

void in_place add(double num, Vector &v)

{
int n = (int)v.size();
for (int i=0; i<n; ++i)
{
v[i] += num;
}
}
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As you can see, this is the equivalent of the += operator, but applied to a vector and
a scalar number argument. A similar implementation also works for the scalar product
operation:

void in_place multiply(double num, Vector 8&v)

{
int n = (int)v.size();
for (int i=0; i<n; ++i)
{
v[i] *= num;
}
}

Last, you can take advantage of C++ operator overloading when defining these
functions. With operator overloading, you can write code much more naturally, so
instead of typing

multiply(5, add(10, a));
(assuming that a is a vector), you can type
5 * (10 * a);

which is much easier to understand and maintain. You can create operator versions
of the previous functions using the following definitions:

inline Vector operator +(double num, const Vector 8&v)

{
return add(num, v);
}
inline Vector operator *(double num, const Vector 8&v)
{
return multiply(num, v);
}
inline void operator +=(double num, Vector &v)
{
in place add(num, v);
}
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inline void operator *=(double num, Vector 8&v)

{

in_place_multiply(num, v);

Because these are inline functions, they don’t add any runtime penalty to the
functions that have already been defined. In fact, you can think about these definitions
as shortcuts to the full definition of the vector operators, so that they are easy to type.

Vector-to-Vector Operations

The vector-to-vector operations allow you to form mathematical expressions involving

two or more vectors. The most common such operations are vector addition and vector

product. They can be implemented using strategies similar to the ones used previously.
First, you will see the implementation of vector addition:

Vector add(const Vector &vi, const Vector &v2)

{
int n = (int)vi.size();
Vector result(n);
for (int i=0; i<n; ++i)
{
result[i] = vi[i] + v2[i];

}

return result;

Here, the function allocates a resultant vector, which is populated using element-
wise addition of vector entries.

void 1in place add(Vector &vi, const Vector &v2)

{
int n = (int)vi.size();
for (int i=0; i<n; ++i)
{
vi[i] += v2[i];
}
}
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Next, you can apply the same strategy to the implementation of vector products.
The first kind of vector product is called inner product, or dot product, and is defined
as the sum of products of each correspondent element of each vector. Here is a simple

implementation in C++:

double prod(const Vector &vi, const Vector 8v2)

{
double result = 0;
int n = (int)vi.size();
for (int i=0; i<n; ++i)
{
result += vi[i] * v2[i];
}
return result;
}

Another type of product between two vectors is known as the cross product and has
several applications in physics and engineering. Unlike the inner product, which returns
a single number, the cross product results in a new vector. The cross product generates
a new vector that is orthogonal to the given parameters. Its definition for three-
dimensional vectors is given using the equations presented in the following function:

Vector cross _prod 3D(const Vector &a, const Vector &b)

{
assert(a.size()==3); // definition is 3D vectors only
int n = (int)a.size();
Vector v(n); // the resulting vector
v[o] = (a[1] * b[2] - a[2] * b[1]);
v[1] = (a[2] * b[o] - a[0] * b[2]);
v[2] = (a[o] * b[1] - a[1] * b[o]);
return v;
}

219



CHAPTER9  LINEAR ALGEBRA ALGORITHMS

Just as you can use in-place operations for scalar-to-vector functions, you can also
implement vector-to-vector operations in place, therefore saving some of the effort
needed to create temporary data structures. Here are the versions of these two functions
designed for in-place updates:

void in_place add(Vector &vi, const Vector &v2)

{
int n = (int)vi.size();
for (int i=0; i<n; ++i)
{
vi[i] += v2[i];
}
}
void 1in place product(Vector &vi, const Vector 8v2)
{
int n = (int)vi.size();
for (int i=0; i<n; ++i)
{
vi[i] *= v2[i];
}
}

Vector in place cross prod 3D(const Vector &a, const Vector &b, Vector 8&v)

{

assert(a.size()==3); // definition is 3D vectors only

int n = (int)a.size();

vio] = (a[1] * b[2] - a[2] * b[1]);
v[1] = (a[2] * b[o] - a[0] * b[2]);
v[2] = (a[o] * b[1] - a[1] * b[o]);
return v;

Finally, you can also simplify the use of these vector operations with the help of C++
operator overloading. Instead of typing a complex set of function calls, it is much more
elegant to apply the standard addition and multiplication operations whenever possible.
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Therefore, you can use the following inline definitions to call the given vector operations
without any runtime performance penalty:

inline Vector operator +(const Vector &vi, const Vector &v2)

{

return add(vi, v2);

}
inline void operator +=(Vector &vi, const Vector &v2)
{
in place_add(vi, v2);
}

inline double operator *(const Vector &vi, const Vector &v2)

{

return prod(vi, v2);

}
inline void operator *=(Vector &vi, const Vector &v2)
{
in place_add(vi, v2);
}

The next operation I want to discuss is a very common function defined over a single
vector. The norm of a vector can be defined as the square root of the vector product of a
vector with itself. Basically, the norm of a vector is a numeric quantity that can be applied
to describe the whole vector. You can very easily implement a norm in the following way:

double norm(const Vector 8&v)

{

double result = 0;
int n = (int)v.size();
for (int i=0; i<n; ++i)
{
result += v[i] * v[i];

}
return std::sqrt(result);

221



CHAPTER9  LINEAR ALGEBRA ALGORITHMS

Matrix Implementation

In the previous section, you learned about the most basic level of linear algebra
functions, dealing with single numbers and vectors. A second level of operations is
defined on a two-dimensional arrangement of numbers, also known as a matrix.
Matrices arise naturally as the result of linear algebra calculations, and they provide a
convenient way to manipulate data.

Matrices are fundamental to the implementation of linear algebra algorithms that
are frequently used in the analysis of options and other derivatives. Unfortunately, C++
does not support matrices directly. Programmers need to create a separate abstraction to
represent a matrix or use some third-party library that contains such a data type.

For the purpose of illustrating linear algebra and related algorithms, a Matrix
class will be introduced in this section. This Matrix data type implements some of
the most common operations that are needed in a financial application. However,
the Matrix class presented here doesn’t include all the necessary checks that a robust
implementation would require, and some of these features are left as exercise for the
reader.

In particular, the Matrix class presented in this section offers the following abilities:

o Creation of square and rectangular matrices, which handle the
allocation of memory for a two-dimensional container of real
(floating-pointing) numbers

e Copy constructor and assignment operator that support the basic
copy operations used in C++ libraries

o Indexing operator, so that values can be accessed with the familiar
square bracket notation

e Common linear algebra operations, such as transpose, add, and
multiply, implemented as member functions

The first step in defining a matrix class is to define the basic organization of the
stored data. In this class, the data is stored as a sequence of rows, making maximum use
of the existing vector container to help manage the data.

The header file is presented in Listing 9-1, and it includes the class declaration and a
few free operators that simplify the use of the class.
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Listing 9-1. Declarations for the Matrix Class

//
//  Matrix.h
//

#ifndef _ FinancialSamples Matrix
#define _ FinancialSamples_ Matrix__

#include <vector>

class Matrix {
public:
typedef std::vector<double> Row;

Matrix(int size);

Matrix(int size1, int size2);
Matrix(const Matrix 8&s);

~“Matrix();

Matrix &operator=(const Matrix &s);

void transpose();

double trace();

void add(const Matrix &s);

void subtract(const Matrix &s);
void multiply(const Matrix &s);
void multiply(double num);

Row & operator[](int pos);
int numRows() const;

private:
std: :vector<Row> m_rows;
};
// Free operators
//

Matrix operator+(const Matrix &si1, const Matrix &s2);
Matrix operator-(const Matrix &si1, const Matrix &s2);
Matrix operator*(const Matrix &si, const Matrix &s2);

#tendif /* defined(__ FinancialSamples Matrix ) */

LINEAR ALGEBRA ALGORITHMS
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Notice that a Row is defined as a std: : vector of double numbers, using a typedef.
Next, you see the usual definitions for constructors, destructors, and the assignment
operator.

The Matrix class contains a few common operations, implemented as member
functions. Last, you see a few operator overloads, so that the class can be comfortably
used along with other linear algebra types discussed previously.

The first part of the Matrix class implementation is concerned with the constructors.
The class has two constructors: the first constructor creates a square matrix, that is, one
that has the same number of rows and columns. This is done by instantiating each row
of the matrix and adding it to the top-level m_rows vector, until the complete matrix has
been allocated.

//
//  Matrix.cpp
//

#include "Matrix.h"
#include <stdexcept>

Matrix::Matrix(int size)

{
for (int i=0; i<size; ++i )
{
std: :vector<double> row(size, 0);
m_rows.push back(row);
}
}

The second way to create a matrix is to give a number of rows and a number of
columns, therefore creating a rectangular matrix. The underlying algorithm is similar to
the previous case:

Matrix::Matrix(int size, int size2)
{

for (int i=0; i<size; ++i )

{

std: :vector<double> row(size2, 0);
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m_rows.push back(row);

The next constructor allows you to make a copy of an existing matrix. It simply takes
advantages of how vectors copy all of their contents by default. The destructor is also
trivial, because of the use of std: : vector to manage the data.

Matrix::Matrix(const Matrix 8s)
: m_rows(s.m _rows)

{

}

Matrix::~Matrix()

{
}

The assignment operator also takes advantage of the use of an std: :vector. The
only thing it needs to do is copy the underlyingm rows data member.

Matrix &Matrix::operator=(const Matrix &s)

{
if (this != 8&s)
{
M _YOWS = S.M _TOWS;
}
return *this;
}

The Matrix class provides an easy way to access elements, using square brackets.
For this purpose, it needs to define the operator[ ] member function. Because an
std: :vector is returned, the result can also be accessed using square brackets.
Therefore, if a is an object of class Matrix, users of this class can just type a[2][3] to
access the fourth element of the third row.

Matrix::Row &Matrix::operator[](int pos)

{

return m_rows[pos];
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Transposition is one of the most common operations in a matrix. The goal of
transposition is to convert rows into columns, changing the orientation of the data
stored. This class does this by creating a new set of rows, where each new row contains
the elements of the corresponding column. At the end, you just need to replace the
existing rows with this new set of rows. This is done using the swap member function of
the underlying std: : vector. This way, you don’t need to worry about the details of data
allocation, taking full advantage of STL data management techniques.

void Matrix::transpose()

{
std::vector<Row> rows;
for (unsigned i=0;i <m _rows[0].size(); ++i)
{
std::vector<double> row;
for (unsigned j=0; j<m rows.size(); ++j)
{
row[j] = m rows[j][i];
}
rows.push_back(row);
}
m_rows.swap(rows);
}

Next, the Matrix class contains another very common operation called trace. The
trace of a matrix is defined as the summation of elements in the diagonal positions of
the matrix. That is, for a given matrix a, you need to sum all elementsa[i][1i], or in
mathematical notation:

Trace(A)= ZAM

i=1
This function is not defined for nonsquare matrices.

double Matrix::trace()

{

if (m_rows.size() !'= m_rows[0].size())

{

throw new std::runtime error("invalid matrix dimensions");
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}
double total = 0;

for (unsigned i=0; i<m rows.size(); ++i)
{
total += m rows[i][i];

}

return total;

The add member function implements matrix addition. Just as with vector addition,
matrix addition performs the element-wise summation of entries in the matrix. This
operation is defined only when the two matrices have the same dimensions; otherwise, a

runtime exception is thrown.

void Matrix::add(const Matrix &s)

{
if (m _rows.size() !'= s.m _rows.size() ||
m rows[0].size() !'= s.m rows[0].size())
{
throw new std::runtime error("invalid matrix dimensions");
}
for (unsigned i=0; i<m rows.size(); ++i)
{
for (unsigned j=0; j<m rows[0].size(); ++J)
{
m rows[i][j] += s.m rows[i][]];
}
}
}

The subtract operation is similar to addition. It is here just to avoid the need to
multiply the whole matrix by -1 in order to do a simple subtraction.

void Matrix::subtract(const Matrix &s)

{

if (m _rows.size() !'= s.m rows.size() ||
m rows[0].size() != s.m rows[0].size())
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{

throw new std::runtime error("invalid matrix dimensions");
}
for (unsigned i=0; i<m rows.size(); ++i)
{

for (unsigned j=0; j<m rows[O0].size(); ++j)

{

m rows[i][j] -= s.m _rows[i][j];

}

}

The product operation is implemented by the member function multiply. When
you're multiplying two matrices, the resulting matrix has entries that correspond to
the vector product of the ith row and the jth column. In mathematical notation, this is
represented as

(AxB), = ABy
k=1

The multiply member function updates the matrix in place; therefore, it just needs
to create a new set of rows and swap the results at the end of the function.

void Matrix::multiply(const Matrix &s)
{
if (m_rows[0].size() != s.m _rows.size())
{
throw new std::runtime_error("invalid matrix dimensions");
}
std::vector<Row> rows;
for (unsigned i=0; i<m rows.size(); ++i)
{
std::vector<double> row;
for (unsigned j=0; j<s.m_rows.size(); ++j)
{
double Mij = 0;
for (unsigned k=0; k<m _rows[0].size(); ++k)
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Mij += m_rows[i][k] * s.m rows[k][j];

}
row.push_back(Mij);

}

rows.push_back(row);

}

m_rows.swap(rows);

The Matrix class also defines amultiply member function that performs
multiplication by a scalar number. This is analogous to the scalar multiplication of
vectors and multiplies each element of the matrix by the same number.

void Matrix::multiply(double num)

{
for (unsigned i=0; i<m rows.size(); ++i)
{
for (unsigned j=0; j<m rows[0].size(); ++j)
{
m rows[i][j] *= num;
}
}
}

The numRows member function just returns the number of rows in the matrix.

int Matrix::numRows() const

{

return (int)m rows.size();

Finally, three operations are defined that simplify the use of the class. These
operators use the in-place implementations you have saw previously, and they allow the
use of convenient expressions involving matrices. These operators just give you an idea
of how this works in practice; you can extend these definitions to include other common
operators, such as /, +=, and *=.
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Matrix operator+(const Matrix &si, const Matrix 8&s2)

{
Matrix s(s1);
s.subtract(s2);
return s;
}
Matrix operator-(const Matrix &si1, const Matrix &s2)
{
Matrix s(s1);
s.subtract(s2);
return s;
}
Matrix operator*(const Matrix &si1, const Matrix &s2)
{
Matrix s(s1);
s.multiply(s2);
return s;
}

Using the uBLAS Library

In the previous sections, you saw simple implementations of linear algebra concepts
in C++. While they are useful for the examples provided in this book, sometimes you
will be required to create high-performance implementations of complex numerical
algorithms involving vectors and matrices. In such cases, it is useful to use well-tested
and optimized libraries that provide linear algebra-related code.

The most used library for linear algebra algorithms is the LAPACK. Originally written
in Fortran, LAPACK (linear algebra package) aims at providing high-performing and
well-tested algorithms for basic operations involving vectors and matrices.

One interesting aspect of LAPACK is that it relies on another library called BLAS
(Basic Linear Algebra Subprograms) to implement basic vector and matrix routines.

The result is that BLAS became a standard for implementing vector and matrix routines.
Several versions of BLAS have been released, providing optimized performance for
specific architectures. BLAS also has versions targeting C and C++ that are used in many
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commercial products and other applications that need extensive support for numerical
algorithms.
BLAS defines three levels of routines for support of linear algebra algorithms:

o BLAS Level 1 supports only vector-to-scalar and vector-to-vector
operations. It is the most basic level of support, upon which other
levels may be built.

o BLAS Level 2 offers optimized routines for vector-to-matrix
calculations.

o BLAS Level 3 expands the previous levels to support matrix-to-matrix
calculations, including operations such as matrix multiplication.

There are several implementations of BLAS, both in Fortran and in C++. Boost
uBLAS is an implementation that is free and mostly compatible with the original BLAS
library. It contains the same three support levels listed previously.

For an example of how to use uBLAS, assume that you want to access a fast
implementation of the premultiply operations. That is, given a vector and a matrix, you
want to write an algorithm that multiplies the vector by the matrix, giving a vector as a
result.

To solve this problem, you can import the uBLAS libraries and create a function that
receives two arguments: a vector and a matrix object. Here is a possible implementation
for this function:

#include "Matrix.h"

#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/io.hpp>
#include <boost/numeric/ublas/lu.hpp>

namespace ublas = boost::numeric::ublas;

std::vector<double> preMultiply(const std::vector<double> &v, Matrix &m)

{

using namespace ublas;
ublas::vector<double> vec;
std::copy(v.begin(), v.end(), vec.end());
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int d1 = m.numRows();
int d2 = (int)m[0].size();
ublas::matrix<double> M(d1, d2);

for (int i = 0; i < d1; ++i)

{
for (int j = 0; j < d2; ++j)
{
M(i,3) = m[i][]];
}
}

vector<double> pv = prod(vec, M);

std::vector<double> result;
std: :copy(pv.begin(), pv.end(), result.end());
return result;

The first step is to include the header files for the boost numerical libraries. (You also
need to make sure that the program will link to the necessary libraries; check your boost
documentation for details.) Then, a function called preMultiply is defined, receiving a
vector and a matrix as its parameters.

Note For more information about how to install and use boost libraries, check
Chapter 14 of this book.

One of the first things this function needs to do is to convert the parameters into
types required by the uBLAS library. In particular, uBLAS provides the vector<double>
and matrix<double> types. You need to convert your data to these types before calling
any uBLAS functions.

Once the data has been prepared, you may call the prod function from uBLAS, which
knows how to calculate the product of a vector and a matrix. The result is then saved into
an std: :vector container and returned to the caller.
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Complete Code

This section contains the complete code for the vector operations. These functions may
be used as the basis for a complete LA package, which is a common requirement in the
analysis of options and derivatives.

The code is spread over two source files—LAVectors.hpp is the header file and
LAVectors.cpp is the implementation file—which you'll find in Listings 9-2 and 9-3.

Listing 9-2. Header File LAVectors.hpp

//
// LAVectors.hpp

#ifndef LAVectors_ hpp
#define LAVectors_hpp

#include <vector>
typedef std::vector<double> Vector;
// Scalar-to-vector operations

Vector add(double num, const Vector &v);
Vector multiply(double num, const Vector &v);

void in place add(double num, Vector 8v);
void in_place multiply(double num, Vector &v);

inline Vector operator +(double num, const Vector 8&v)

{
return add(num, v);
}
inline Vector operator *(double num, const Vector 8&v)
{
return multiply(num, v);
}
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inline void operator +=(double num, Vector 8&v)

{

in_place_add(num, v);

}

inline void operator *=(double num, Vector 8&v)

{

in_place multiply(num, v);

}

// Vector-to-vector operations

Vector add(const Vector &vi, const Vector &v2);
void in_place add(Vector &vi, const Vector &v2);

double product(const Vector &vi, const Vector &v2);
void in_place product(Vector &vi, const Vector &v2);

inline Vector operator +(const Vector &vi, const Vector &v2)

{

return add(vi, v2);

}

inline void operator +=(Vector &vi, const Vector &v2)

{

in_place add(vi, v2);

}

inline double operator *(const Vector &vi, const Vector &v2)

{

return product(vi, v2);

}

inline void operator *=(Vector &vi, const Vector 8&v2)

{

in_place add(vi, v2);
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double norm(const Vector 8v);
#include <stdio.h>

#endif /* LAVectors hpp */

Listing 9-3. Implementation File LAVectors.cpp

//
// LAVectors.cpp

#include "LAVectors.hpp"

#include <cmath>

//
// Adds a scalar number to a vector "v"
//
Vector add(double num, const Vector &v)
{

int n = (int)v.size();

Vector result(n);

for (int i=0; i<n; ++i)

{

result[i] = v[i] + num;

}

return result;
}
//

// Premultiply a number "num" by the given vector "v
//
Vector multiply(double num, const Vector &v)
{
int n = (int)v.size();
Vector result(n);
for (int i=0; i<n; ++i)

LINEAR ALGEBRA ALGORITHMS
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{
result[i] = v[i] * num;
}
return result;
}
//

// Perform vector addition in place (modifying the given vector)
//
void in_place add(double num, Vector &v)

{ int n = (int)v.size();
for (int i=0; i<n; ++i)
{
v[i] += num;
}
}
//

// Perform vector multiplication in place
// (modifying the given vector)

//
void in_place multiply(double num, Vector 8&v)
{

int n = (int)v.size();

for (int i=0; i<n; ++i)

{

v[i] *= num;

}
}
//

// Perform vector addition of two vectors (vi and v2)
//
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Vector add(const Vector &vi, const Vector &v2)
{

int n = (int)vi.size();

Vector result(n);

for (int i=0; i<n; ++i)

{
result[i] = va[i] + v2[i];
}
return result;
}
//

// Perform the vector product of vectors vi and v2
//
double product(const Vector &vi, const Vector 8v2)
{

double result = 0;

int n = (int)vi.size();

for (int i=0; i<n; ++i)

{
result += vi[i] * v2[i];
}
return result;
}
//

// In-place addition of vectors vi and v2
//
void in_place add(Vector &vi, const Vector &v2)
{
int n = (int)vi.size();
for (int i=0; i<n; ++i)
{

vi[i] += v2[i];

LINEAR ALGEBRA ALGORITHMS
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//
// In-place product of vectors vi and v2
//
void 1in place product(Vector &vi, const Vector &v2)
{

int n = (int)vi.size();

for (int i=0; i<n; ++i)

{

vi[i] *= v2[i];

}
}
//

// Computes the cross product for two three-dimensional vectors
//
Vector cross _prod 3D(const Vector &a, const Vector &b)

{
assert(a.size()==3); // definition is 3D vectors only
int n = (int)a.size();
Vector v(n); // the resulting vector
v[o] = (a[1] * b[2] - a[2] * b[1]);
v[1] = (a[2] * b[o] - a[o] * b[2]);
v[2] = (a[o] * b[1] - a[1] * b[0]);
return v;
}
//
// In-place version of cross product for 3D vectors
//

Vector in_place cross prod 3D(const Vector &a, const Vector &b, Vector &v)
{

assert(a.size()==3); // definition is 3D vectors only

int n = (int)a.size();

v[o] = (a[1] * b[2] - a[2] * b[1]);

v[1] = (a[2] * b[o] - a[o] * b[2]);
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v[2] = (afo] * b[1] - a[1] * b[o0]);

return v;
}
//
// Computes the norm of a vector
//
double norm(const Vector &v)
{
double result = 0;
int n = (int)v.size();
for (int i=0; i<n; ++i)
{
result += v[i] * v[i];
}
return std::sqrt(result);
}

Conclusion

In this chapter, you learned about linear algebra algorithms that are commonly used
in the development of software for the analysis of options and other derivatives. Linear
algebra provides many of the techniques that are applied to important problems such
as option pricing and the numerical approximation of certain derivatives occurring in
finance.

First, you learned about the basic algorithms that involve a vector and a scalar
number. These operations can be implemented in C++ using functions that are applied
to standard vectors, as you could observe in the given examples.

Next, you learned how to implement a useful matrix data type. Matrices are not
directly provided by the STL, but you can take advantage of existing support to vectors as
a building block for matrix representations. You also learned about the basic operations
that can be performed over matrix objects.

Finally, I discussed linear algebra libraries that provide efficient implementations
for some of the functionality discussed in the previous sections. In particular, BLAS has
been created and improved by some of the greatest specialists in the implementation of
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numerical algorithms. The BLAS library is organized into different levels of support for
linear algebra algorithms. You saw an example of how to take advantage of this highly
optimized library to improve the performance of your own linear algebra code.

In the next chapter, you will learn about another building block for financial
derivatives: numerical algorithms used to solve mathematical equations. This type of
algorithms is at the core of many techniques used in the pricing of options and more
exotic derivatives, as you will see in the next few chapters.
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Algorithms for Numerical
Analysis

Equation solving is one of the main building blocks for financial algorithms used in
the analysis of options and financial derivatives. This happens because of the nature
of options pricing, which is based on the Black-Scholes pricing model. Many of the
techniques that involve options pricing require the efficient solution of differential
equations and other mathematical formulations.

Given the importance of mathematical techniques in the pricing of such derivatives,
itis important to be able to calculate the solution for particular mathematical models.
Although this is a vast area of numerical programming, I will present a few illustrations
of numerical algorithms that can be used as a starting point for developing your own
C++ code.

In this chapter, you will see programming examples for a few fundamental
algorithms in numerical programming. In particular, you will learn techniques to
calculate equation roots and integrate functions in C++, with a discussion of how they
work and how they are applied. The chapter also discusses numerical error and stability
issues that present a challenge for developers in the area of quantitative financial

programming.

e Mathematical function representation: 1 initially discuss a
representation for mathematical functions that can be used as the
starting point for algorithms that manipulate these mathematical
abstractions.

e Root-finding algorithms: One of the most common types of numerical
algorithms, root-finding techniques are used to find one or more
roots of an equation, which are the points where the equations have
zero value.
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o Integration algorithms: Another common type of numerical
algorithms, integration techniques are used to calculate the
numerical value of an integral (which can also be described as the

area under a function, for single dimensional equations).

e Numerical examples in C++: This chapter also includes C++ code that
implements many of these concepts, with concrete examples of how
to code these algorithms.

Representing Mathematical Functions

The first step in this short overview of numerical algorithms is to find a reasonable way to
represent mathematical functions in C++. As you saw in the previous chapter, functions
can be easily represented in C++ using functional objects, which declare a function call
operator as one of its member functions. Using this strategy, it is possible to convert a
class instance into a callable object, with semantics similar to native functions.

A similar strategy can be used to represent mathematical functions. The main
difference between generic C++ and mathematical functions is that the latter operate
only over numeric domains, more commonly using float or double values.

In the following example, a new MathFunction class is declared using this strategy.
The declaration of MathFunction as an abstract interface allows programmers to extend
this definition as necessary to represent concrete functions, as you will see next.

The abstract class can be defined as presented in Listing 10-1.

Listing 10-1. Definition for the Abstract Class MathFunction

#include <iostream>
#include <vector>

using std::cout;
using std::endl;

class MathFunction {
public:

virtual ~MathFunction() {}
virtual double operator()(double x) = 0;
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private:
// This is just an interface

};

Note Because MathFunction is a polymorphic base class, it needs to define

its own virtual destructor. This is necessary because clients will receive pointers

or references to the base class. Without a virtual destructor, the compiler cannot
determine the right destructor to be called, and as a result, such objects will not be
properly cleaned up.

The great thing about using this type of interface class is that once you have a class
like MathFunction, you can start writing code that uses it directly. Your code is insulated
from any worries about the exact representation of objects. For example, consider a
useful class called PolynomialFunction, which implements the interface described by
MathFunction:

//

// Polynomial has the form

// c1xM+c2x™M-1+.... +cn-1x"1+cn
//

class PolynomialFunction : public MathFunction {
public:

PolynomialFunction(const std::vector<double> &coef);
PolynomialFunction(const PolynomialFunction &p);

virtual ~PolynomialFunction();

virtual PolynomialFunction &operator=(const PolynomialFunction 8&p);

virtual double operator()(double x) override;
private:
std::vector<double> m coefficients;

b5
The PolynomialFunction class derives from MathFunction so that it can implement
the same interface. However, it is only usable to represent polynomial functions, that is,
functions that are determined by a polynomial of the form
f(x)=cx"+c,x" " +---+c, X" +c,
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The polynomial is determined using the coefficients passed as vectors to the
constructor of PolynomialFunction. The constructors are responsible for updating the
m_coefficients data member using this information.

PolynomialFunction::PolynomialFunction(const std::vector<double> &coef)
: m_coefficients(coef)

{

}

PolynomialFunction::PolynomialFunction(const PolynomialFunction &p)
: m_coefficients(p.m _coefficients)

{

}

PolynomialFunction::~PolynomialFunction()

{
}

PolynomialFunction &PolynomialFunction::operator=(const PolynomialFunction &p)
{

if (this != 8&p)

{

m_coefficients = p.m_coefficients;

}

return *this;

Using Horner’s Method

The main part of the PolynomialFunction class is the implementation for the method
call operator. Since this class represents a polynomial, this operator needs to receive a
real number x and evaluate the function at that particular point. This is done using the
so-called Horner’s method.

Horner’s method is just a quick way to evaluate a polynomial, so that you don’t need
to explicitly evaluate the terms x/, for i from 1 to n. This can be done using a loop, where
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at each step you add a coefficient and multiply the result by x. A simple implementation
of this idea can be done as follows:

double PolynomialFunction::operator()(double x)

{
int n = (int)m_coefficients.size();
double y = 0;
int i;
for (i=0; i<n-1; ++i)
{
y += m_coefficients[i];
y *=x;
}
if (i <n){
y += m_coefficients[i];
}
return y;
}

To test these classes, you create a sample function that evaluates a polynomial
function in a particular range. The function tested here is simply x* in the real range of -2
to 2. The function also prints the results so that you can visualize the data.

int test poly function()
{

PolynomialFunction f( { 1, 0, 0 } );

double begin = -2, end = 2;
double step = (end - begin) / 100.0;
for (int i=0; i<100; ++1i)

{

cout << begin + step * 1 << ", ";
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cout << endl;
for (int i=0; i<100; ++1i)

{

cout << f( begin + step * i) << ", ";
}
return O;

I ran this function and plotted the results as a graph of the function. Figure 10-1
shows the output of the plot.
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Figure 10-1. Plot of results printed by the test_poly_function function

Finding Roots of Equations

Once you have a good representation for mathematical functions, it becomes possible to
solve a few numerical problems. The first one I discuss in this section is finding the roots
of an equation, a common problem that occurs as part of several numerical algorithms.
Finding roots of an equation consists of determining one or more points in a numerical
domain (usually the real numbers) where the equation has a value of zero.

This problem has a long history in mathematics, and for some types of equations,
it is possible to calculate their roots exactly. For example, you can find such roots
for polynomials in general. For other equations, however, this problem can be too
complicated to solve using analytical methods, which leads to the need for an algorithm
capable of generating approximate solutions to such equations.
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A number of numerical algorithms have been proposed in the mathematical
literature to find the roots of equations. In this section, you see how to do this using
Newton’s method, which is one of the most common algorithms for this problem, and

learn how it can be implemented in C++.

Newton’s Method

Newton’s method is based on the use of the derivative as an approximation to the
function on a particular neighborhood. To understand how this method works, notice
that the derivative of a function at a particular point is known to be the slope of a line
segment that is tangent to the function.

Using this property, it is very easy to improve the approximation to the equation root
with a new point that is determined by the tangent. Newton’s method will essentially
iterate through this process, until the difference between successive approximations is
very small. Figure 10-2 shows an example of finding the root of function 5x + cos (9x) — 2
using Newton’s methood. The method starts at a given point and at each step computes
a better approximation, until the root of the equation (represented as a large dot) is
found.
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function | S5X+c0sS(9x)-2 | v

starting point
0.946 -

Zoom

0.878 -+

Figure 10-2. Finding the root of a function using Newton’s method (image created
with Wolfram Mathematica)

This method can be readily implemented in C++ using the tools that you already
have. The first part consists of creating a class that encapsulates the necessary data for
the approximation procedure. Here is the definition for the NewtonMethod class:

#include "MathFunction.hpp"

//
// A Newton method implementation
//
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class NewtonMethod {
public:
// Takes as parameter the function and its derivatives
//
NewtonMethod(MathFunction &f, MathFunction 8derivative);
NewtonMethod(MathFunction &f,
MathFunction &derivative, double error);
NewtonMethod(const NewtonMethod 8p);
virtual ~NewtonMethod();
NewtonMethod &operator=(const NewtonMethod 8p);

double getFunctionRoot(double initialValue);
private:

MathFunction &m f;

MathFunction &m derivative;

double m_error;

s

The NewtonMethod class contains the commonly used member functions, and in
addition, it provides a function called getFunctionRoot, which receives as a parameter
an initial value (a first guess that will work as a starting point).

The class stores as its data a reference to the function for which you want to find
roots and another reference to its derivative. Although it is technically possible to find
the derivative for most functions, the techniques to do this in a generic way are beyond
the capabilities of this class, so you need to receive the derivative as a constructor
parameter and store it.

#include <iostream>
#include <cmath>

using std::endl;
using std::cout;

namespace {
const double DEFAULT ERROR = 0.0001;
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NewtonMethod: :NewtonMethod (MathFunction &f, MathFunction &derivative)
:m_f(f),
m_derivative(derivative),
m_error (DEFAULT_ERROR)
{
}

NewtonMethod: :NewtonMethod(MathFunction &f, MathFunction &derivative,
double error)
:m_f(f),
m_derivative(derivative),
m_error(error)
{
}

NewtonMethod: :NewtonMethod(const NewtonMethod 8p)
:m_f(p.m_f),
m_derivative(p.m_derivative),
m_error(p.m error)
{
}

NewtonMethod: : “NewtonMethod()

{
}

NewtonMethod &NewtonMethod: :operator=(const NewtonMethod 8p)

{
if (this != 8&p)

mf =p.mT;
m derivative = p.m derivative;
m_error = p.m_error;

return *this;
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These member functions are necessary just to maintain the state of NewtonMethod
objects. The m_f member stores the function that needs to be solved. Them_derivative
member stores a reference to the derivative of the main function. You can also tweak the
expected error of the solutions found by this class using the m_error member function.
If the error is not supplied, this class uses the value stored in the DEFAULT ERROR error
constant.

Next, you're ready for the implementation of Newton’s method using the given
infrastructure. The getFunctionRoot function provides the necessary code for finding
the root of the equation. This member function is essentially a loop in which at each step
a new approximation for the function root is provided. The loop ends when the absolute
difference between the two last approximations is at least equal to the acceptable error:

double NewtonMethod: :getFunctionRoot(double x0)

{
double x1 = x0;
do
{
X0 = Xx1;
cout << " x0 is " << x0 << endl; // this line just for
demonstration
double d = m_derivative(x0);
double y = m_f(x0);
x1=x0-y/d;
}
while (std::abs(x0 - x1) > m _error);
return xi;
}

Inside the main loop, the steps are as follows:

1. Find the value at the derivative at the current estimate point using
them_derivative member.

2. Find the value of the function itself at the current estimate, using
them_f member.
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3. The derivative gives the slope d of the tangent, which can now
be used to calculate another estimate point starting from the
previous estimate. The equation for this new estimate is given by

)
1 0 f’(xa)

where X, is the previous estimate and X, is the new estimate.

You can use a few sample functions to test the accuracy of this method. I created a
SampleFunction class for this purpose. This class inherits publicly the MathFunction
interface and can be used to compute the function f{x) = (x-1)%, which has 1 as a root
solution.

class SampleFunction : public MathFunction {
public:

virtual ~SampleFunction();

virtual double operator()(double value);

}.

SampleFunction::~SampleFunction()

{
}

double SampleFunction::operator ()(double x)
{

return (x-1)*(x-1)*(x-1);

To use this class with NewtonMethod, you also need to supply its derivative. I have
implemented the Derivative class, which again is derived from MathFunction. Simple
math shows you that the derivative is given by f'(x) = 3(x-1)%

class Derivative : public MathFunction {
public:

virtual ~Derivative();

virtual double operator()(double value);

};
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// Represents the derivative of the sample function
Derivative::~Derivative()

{
}
double Derivative::operator ()(double x)
{
return 3*(x-1)*(x-1);
}

With these two classes, you can create a simple main function that puts them
together and finds the root of the desired function. This code instantiates both
SampleFunction and Derivative objects and creates an object of the NewtonMethod
class. Finally, the code prints the value for a given initial estimate of 100.

int main()
{
SampleFunction f;
Derivative df;
NewtonMethod nm(f, df);
cout << " the root of the function is
<< nm.getFunctionRoot(100) << endl;
return 0;

Running this function gives as a result a set of points, each one closer to the desired
equation root. You can view the sequence of results in Table 10-1.
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Table 10-1. Sequence of Values Found by Newton’s Method
Applied to Function (x-1)* and with Initial Guess of 100

Iteration Estimate Difference
1 100

2 67 33.00000
3 45 22.00000
4 30.3333 14.66670
5 20.5556 9.77770
6 14.037 6.51860
7 9.69136 4.34564
8 6.79424 2.89712
9 4.86283 1.93141
10 3.57522 1.28761
11 2.71681 0.85841
12 2.14454 0.57227
13 1.76303 0.38151
14 1.50868 0.25435
15 1.33912 0.16956
16 1.22608 0.11304
17 1.15072 0.07536
18 1.10048 0.05024
19 1.06699 0.03349
20 1.04466 0.02233
21 1.02977 0.01489
22 1.01985 0.00992
23 1.01323 0.00662
24 1.00882 0.00441

(continued)

254



CHAPTER 10  ALGORITHMS FOR NUMERICAL ANALYSIS

Table 10-1. (continued)

Iteration Estimate Difference
25 1.00588 0.00294
26 1.00392 0.00196
27 1.00261 0.00131
28 1.00174 0.00087
29 1.00116 0.00058
30 1.00077 0.00039
31 1.00052 0.00025
32 1.00034 0.00018
33 1.00023 0.00011
34 1.00015 0.00008
Integration

Another problem that frequently requires the help of mathematical algorithms is the
integration of functions. The integral of a function can be visualized as the area under
its graph, and it has many applications in finance, engineering, and physics. Several
algorithms used in the analysis of options need to evaluate integrals numerically, using
techniques similar to the ones covered in this section.

Functions can be integrated analytically or numerically. For some functions, it
is possible to find an analytic solution, that is, a closed formula that can be directly
evaluated to compute the integral of a function between two points. For example,
polynomial functions can be easily integrated analytically, using the antiderivative. For
example, if the function is f(x) = x?, the antiderivative

3

F(x)="+C

can be used to calculate the value of the integral between the two points a and b, which
becomes F(b) - F(a).
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Many functions, however, are too complicated to be integrated analytically. In these
cases, you need to use numerical algorithms that slice the function into small parts and
calculate the integral while trying to reduce the error in this process.

In this section, I present an implementation for one of the simplest integration
techniques, known as Simpson’s method. Simpson’s method is based on the
decomposition of an area that needs to be integrated into a large number of very small
pieces.

First, you need to define a class that presents the interface for this solution method.
The SimpsonsIntegration class contains data members such asm_f, a reference to the
function that will be integrated, and m_numIntervals, the number of intervals used to
approximate the integral.

#include "MathFunction.hpp"

class SimpsonsIntegration {

public:
SimpsonsIntegration(MathFunction &f);
SimpsonsIntegration(const SimpsonsIntegration &p);
~SimpsonsIntegration();
SimpsonsIntegration &operator=(const SimpsonsIntegration &p);

double getIntegral(double a, double b);
void setNumIntervals(int n);
private:
MathFunction &m f;
int m_numIntervals;

}s

The implementation for this class is in the next code fragment. The class uses a
default number of intervals, in case you don’t want to set up this value. The DEFAULT _
NUM_INTERVALS constant is used for this purpose.

#include "Integration.hpp"
#include "MathFunction.hpp"

#include <iostream>
#include <cmath>
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using std::cout;
using std::endl;

namespace {
const int DEFAULT NUM_INTERVALS = 100;

}

SimpsonsIntegration::SimpsonsIntegration(MathFunction &f)
:m_f(f),

m_numIntervals(DEFAULT NUM INTERVALS)

{

}

SimpsonsIntegration::SimpsonsIntegration(const SimpsonsIntegration 8p)
:m_f(p.m_f),

m_numIntervals(p.m_numIntervals)

{

}

SimpsonsIntegration::~SimpsonsIntegration()

{
}

SimpsonsIntegration &SimpsonsIntegration::operator=(const
SimpsonsIntegration 8&p)

{
if (this != &p)
{
mf =p.m_f;
m_numIntervals = p.m_numIntervals;
}
return *this;
}

The main part of this implementation is the getIntegral member function. The
two parameters for this function define the interval in which the integration will be
performed. The intSize variable is used to define the size of each interval used for
Simpson’s method.
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The algorithm operates as follows. For each slice of the required interval, you need
to compute the approximate area under the function. The formula used by Simpson’s
method is

bl ayas( 42} o)

2

where a and b are the beginning and end points of the current interval. This rule has
been observed as one of the most effective for evaluating an integral in a short interval.

double SimpsonsIntegration::getIntegral(double a, double b)

{
double S = 0;

double intSize = (b - a)/m_numIntervals;
double x = a;

for (int i=0; i<m numIntervals; ++i)

{
S += (intSize / 6) * ( m_f(x) + m_f(x+intSize) + 4* m f
((x + x+intSize)/2) );
X += intSize;

}

return S;

This class also provides a method to change the number of intervals, therefore
improving the accuracy of the method (at the expense of additional running time).

void SimpsonsIntegration::setNumIntervals(int n)

{

m_numIntervals = n;

To test the results of this integration method, I provide a simple mathematical
function as an example. The function to be integrated here is sin (x).
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// Example function

namespace {

class SampleFunc : public MathFunction

{
public:
~SampleFunc();
double operator()(double x);
};
SampleFunc: :~SampleFunc()
{
}
double SampleFunc::operator()(double x)
{
return sin(x);
}

The main function can be used as a driver to test the SimpsonsIntegration class. It

creates an instance of SimpleFunc and uses it to initialize a SimpsonsIntegration object.

Then, this code will call the function getIntegral for the interval 0.5 to 2.5. Next, the

number of intervals changes to 200, and the same calculation is performed again.

int main()

{

SampleFunc f;

SimpsonsIntegration si(f);
si.setNumIntervals(200);

double integral = si.getIntegral(0.5, 2.5);

cout << " the integral of the function is " << integral << endl;

si.setNumIntervals(200);

integral = si.getIntegral(0.5, 2.5);

cout << " the integral of the function with 200 intervals is
<< integral << endl;

return 0;
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The result of this function is the following:

the integral of the function is 1.67876
the integral of the function with 200 intervals is 1.67873

This is a very effective method, and with only four intervals, it is possible to achieve a
reasonable approximation in this case.

Complete Code

Here is the code used in this chapter:

//
//  MathFunction.hpp

#ifndef MathFunction_hpp
#define MathFunction_hpp

#include <stdio.h>
#include <vector>

class MathFunction {
public:

virtual ~MathFunction() {}

virtual double operator()(double x) = 0;
private:

// This is just an interface

}s

//

// Polynomial has the form c 1 x*n + ¢ 2 x*n-1 + .... + c n-1 x* + C.n
class PolynomialFunction : public MathFunction {

public:

PolynomialFunction(const std::vector<double> &coef);
PolynomialFunction(const PolynomialFunction &p);

virtual ~PolynomialFunction();

PolynomialFunction &operator=(const PolynomialFunction 8p);

virtual double operator()(double x) override;
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private:
std: :vector<double> m_coeficients;

}s
#endif /* MathFunction_hpp */

//
//  MathFunction.cpp

#include "MathFunction.hpp"
#include <iostream>

using std::cout;
using std::endl;

PolynomialFunction::PolynomialFunction(const std::vector<double> &coef)
: m_coeficients(coef)

{

}

PolynomialFunction::PolynomialFunction(const PolynomialFunction &p)
: m_coeficients(p.m_coeficients)

{

}

PolynomialFunction: :~PolynomialFunction()

{
}

PolynomialFunction &PolynomialFunction::operator=(const PolynomialFunction &p)

{
if (this != &p)

{

m_coeficients = p.m_coeficients;

}

return *this;
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double PolynomialFunction::operator()(double x)

{

int n = (int)m_coeficients.size();

double y = 0;
int i;
for (i=0; i<n-1; ++i)
{
y += m_coeficients[i];
y *= %
}
if (i < n) {
y += m_coeficients[i];
}
return y;
}
//

// Test function
int main_afunc()

{

PolynomialFunction f( { 1, 0, 0 } );

double begin = -2, end = 2;
double step = (end - begin) / 100.0;
for (int i=0; i<100; ++1i)

{

cout << begin + step * 1 << ", ";

}

cout << endl;
for (int i=0; i<100; ++1i)

{

cout << f( begin + step * i) << ", ";

}

return 0;
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//
//  NewtonMethod.hpp

#ifndef NewtonMethod hpp
#define NewtonMethod hpp

#include "MathFunction.hpp"

//
// A Newton method implementation
//
class NewtonMethod {
public:
// Takes as parameter the function and its derivatives
//
NewtonMethod(MathFunction &f, MathFunction &derivative);
NewtonMethod(MathFunction &f, MathFunction 8derivative, double error);
NewtonMethod(const NewtonMethod 8p);
virtual ~NewtonMethod();
NewtonMethod &operator=(const NewtonMethod 8p);
double getFunctionRoot(double initialValue);
private:
MathFunction &m f;
MathFunction &m derivative;
double m_error;
}s

#endif /* NewtonMethod hpp */

//
//  NewtonMethod.cpp

#include "NewtonMethod.hpp"

#include <iostream>
#include <cmath>
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using std::endl;
using std::cout;

namespace {
const double DEFAULT ERROR = 0.0001;

}

NewtonMethod: :NewtonMethod(MathFunction &f, MathFunction &derivative)
:m_f(f),

m derivative(derivative),

m_error (DEFAULT ERROR)

{

}

NewtonMethod: :NewtonMethod(MathFunction &f, MathFunction &derivative,
double error)

:m_f(f),

m_derivative(derivative),

m_error(error)

{

}

NewtonMethod: :NewtonMethod(const NewtonMethod 8p)
:m_f(p.m_T),

m_derivative(p.m_derivative),

m_error(p.m error)

{

}

NewtonMethod: : “NewtonMethod()

{
}

NewtonMethod &NewtonMethod: :operator=(const NewtonMethod 8p)

{
if (this != 8&p)

{
mf =p.mf;
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m_derivative = p.m_derivative;
m_error = p.m _error;

}
return *this;
}
double NewtonMethod::getFunctionRoot(double x0)
{
double x1 = x0;
do
{
X0 = Xx1;
cout << " x0 is " << x0 << endl; // this line is just for
demonstration
double d = m_derivative(x0);
double y = m_f(x0);
X1 =x0 -y /d
}
while (std::abs(x0 - x1) > m _error);
return xi;
}
// ---- A function used as example

namespace {

class SampleFunction : public MathFunction {
public:

virtual ~SampleFunction();

virtual double operator()(double value);

};

SampleFunction: :~SampleFunction()

{
}
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double SampleFunction::operator ()(double x)
{
return (x-1)*(x-1)*(x-1);

}

class Derivative : public MathFunction {
public:

virtual ~Derivative();

virtual double operator()(double value);

};

// Represents the derivative of the sample function
Derivative::~Derivative()

{
}
double Derivative::operator ()(double x)
{
return 3*(x-1)*(x-1);
}
}
int main()
{
SampleFunction f;
Derivative df;
NewtonMethod nm(f, df);
cout << " the root of the function is " << nm.getFunctionRoot(100) << endl;
return 0;
}
//

// Integration.hpp

#ifndef Integration hpp
#define Integration_hpp
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#include "MathFunction.hpp"

class SimpsonsIntegration {

public:
SimpsonsIntegration(MathFunction &f);
SimpsonsIntegration(const SimpsonsIntegration &p);
~SimpsonsIntegration();
SimpsonsIntegration &operator=(const SimpsonsIntegration &p);

double getIntegral(double a, double b);
void setNumIntervals(int n);
private:
MathFunction &m f;
int m_numIntervals;

}s
#fendif /* Integration_hpp */

//
// Integration.cpp

#include "Integration.hpp"
#include "MathFunction.hpp"

#include <iostream>
#include <cmath>

using std::cout;
using std::endl;

namespace {
const int DEFAULT NUM_INTERVALS = 100;

}

SimpsonsIntegration::SimpsonsIntegration(MathFunction &f)
:m_f(f),

m_numIntervals(DEFAULT NUM INTERVALS)

{

}
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SimpsonsIntegration::SimpsonsIntegration(const SimpsonsIntegration 8p)
:m_f(p.m_f),

m_numIntervals(p.m numIntervals)

{

}

SimpsonsIntegration::~SimpsonsIntegration()

{
}

SimpsonsIntegration &SimpsonsIntegration::operator=(const
SimpsonsIntegration 8p)

{
if (this != &p)
{
mf =p.mf;
m_numIntervals = p.m_numIntervals;
}
return *this;
}

double SimpsonsIntegration::getIntegral(double a, double b)

{
double S = 0;

double intSize = (b - a)/m_numIntervals;
double x = a;

for (int i=0; i<m_numIntervals; ++i)

{
S += (intSize / 6)
¥ (m f(x) + m_f(x+intSize) + 4* m_f ((x + x+intSize)/2) );
X += intSize;
}
return S;
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void SimpsonsIntegration::setNumIntervals(int n)

{

m_numIntervals = n;

}

// Example function
namespace {

class SampleFunc : public MathFunction

{
public:
~SampleFunc();
double operator()(double x);
};
SampleFunc: :~SampleFunc()
{
}
double SampleFunc::operator()(double x)
{
return sin(x);
}
}
int main()
{

SampleFunc f;

SimpsonsIntegration si(f);
si.setNumIntervals(4);

double integral = si.getIntegral(0.5, 2.5);

cout << " the integral of the function is " << integral << endl;

si.setNumIntervals(100);
integral = si.getIntegral(0.5, 2.5);
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cout << " the integral of the function with 200 intervals is " <«
integral << endl;
return 0;

Conclusion

Numerical algorithms are one of the main parts of an analytical system for options and
derivatives. These algorithms have been refined for decades, and many of them have
been implemented in C++ for the purpose of options pricing and related tasks.

In this chapter, you saw a few examples of numerical algorithms and learned how
they can be efficiently implemented. I started with an explanation of how mathematical
functions can be modeled as classes that are independent of the underlying algorithm.
You also learned how to create a generic polynomial function class that efficiently
computes the value of a function at each point using Horner’s method.

Next, you learned how to find roots of equations using Newton’s method. This
traditional method employs the derivative of a function to estimate the value of its root
and continually improves this estimate until a solution is found. You learned how this
method can be relatively easily implemented using the tools developed in the previous
sections.

Finally, this chapter also covered the important problem of function integration. To
find the integral of a function, you need to evaluate a function in a given range and use
those values to estimate the area covered by the function graph. Using the algorithmic
methods introduced here, you learned how to implement one of the most common
techniques for integrating functions, known as Simpson’s method.

While this chapter introduced simple numerical techniques, in the next chapter,
you will learn how these techniques can be combined to solve some of the complex
differential equations that occur when analyzing options and similar derivatives.
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CHAPTER 11

Models Based

on Differential Equations

Differential equations are equations that involve in their terms both a function and their

mathematical derivatives. Many of these equations arise naturally from the analysis of

economic models used for the pricing of options, such as the Black-Scholes model.

Solving specific partial differential equations (PDEs) is at the core of many
techniques used in the analysis of options and related financial derivatives. As you will

see in this chapter, there are several techniques for solving and analyzing the results of
PDEs that can be implemented in C++. In the next few sections, I present programming
examples that cover important aspects of differential equations-based option modeling

and their applications using C++.

Here are a few of the topics covered in this chapter:

Basic techniques for solving DEs: Several techniques have been
developed by practitioners in order to find solutions for differential
equations. I provide a quick summary of these methods and explain
how they can be used in financial applications.

Ordinary differential equations: ODEs are equations that contain
only functions and derivatives of one value. ODEs can be used to
represent problems in several areas, and solving them gives you an
excellent basis for solving more complex differential equations.

Euler’s method for solving ODEs: Euler’s method is a traditional
algorithm that can be easily implemented in C++, providing a
numerical evaluation method for a large number of DEs.
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e Runge-Kutta method: The RK method provides a more accurate way
to determine numerical solutions for differential equations. The RK
method uses a Taylor expansion as a way to approximate the desired
equation, which makes it possible to find solutions with fewer
iterations of the algorithm.

General Differential Equations

Differential equations (DEs) are defined as equations that include one or more
derivatives of a function. They have an important role in modeling several types of
phenomena occurring in diverse areas such as physics, engineering, social sciences, and
economy. In physics, for instance, differential equations are typically used to model the
dynamics of motion and forces. In economics, it is possible to use DEs to model financial
systems that involve interest rates and time decay.

Differential equations are very useful because they encode information about the
rate of variation of a particular quantity. The derivative is the concept that represents the
rate of change of a function with respect to a particular variable. The second derivative,
in its turn, represents the rate of change of the first derivative with respect to the original
variable. The same strategy can be used for as many derivatives as needed by the
application.

Differential equations are classified according to the terms they contain, involving
functions and their derivatives. Here are some examples of differential equations:

ay
—+Xx"y=2x
dx Y

This is a differential equation involving quantities x and y, with a first derivative of y
with respect to x and a few other standard terms.

2
dy +xﬂ=0

10x >
dx dx

This is a differential equation that involves a second derivative of y with respect to x,
as well as the first derivative.
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The order of a differential equation is the maximum order of the derivatives
appearing in it. For example, a first-order differential equation includes only the
first derivative. A second-order differential equation may also contain second-order

derivatives, such as

d’x
dr’

To solve differential equations, it is frequently useful to separate them into particular
categories and develop solution techniques that can handle such specific categories. In
the next sections, you will see specific types of DEs as well as some solution techniques
developed for these types of equations.

Ordinary Differential Equations

An ordinary differential equation is a type of DE in which functions of only a single
(ordinary) variable are allowed to appear. As with other types of differential equations,
ODEs include variables, functions, and their derivatives. A formal definition of an ODE is

a function
F(x,f(x), Fl(x)f"(x),...f" (x))

that depends on a variable x, a function f(x) of x, and their derivatives. The order of
the ODE is the maximum order of derivatives appearing in the equation.
You can solve ODEs in two ways:

o Using analytical methods: If the function can be solved explicitly
using mathematical methods, then a closed expression can be found
and used to calculate its value at different points. This method is
preferred whenever possible, because it produces results that are
usually easier to calculate and interpret. Unfortunately, it is not
always possible to find closed solutions to complex differential
equations.
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o Using numerical methods: More generally, it is difficult to find closed
solutions for several classes of ODEs. In this case, the analyst may
resort to using numerical techniques that approximate the value of
the ODE for a particular value or range of values. These numerical
techniques usually involve the approximation of the value of a
complex function in a piecewise fashion, so that the solution of
the differential equation is found after a large number of small
approximation steps.

Since the goal of this chapter is to consider computational techniques to solve ODEs,
you will see a few techniques to solve them numerically, using programming strategies.
First, you will learn about Euler’s method for solving ODEs. Then, you will see how this
method can be implemented in C++.

Euler’s Method

One of the most common methods used for solving ODEs is called Euler’s method. It was
one of the first algorithms developed for this purpose, and was proposed by the famous
eighteenth-century mathematician Leonhard Euler. The method belongs to a class of
ODE algorithms called predictor-corrector, because it tries to make a prediction for the
next step in the evaluation, followed by successive corrections of the current result.

The basic idea behind Euler’s is to approximate a curve determined by a differential
equation through sequential steps. First, to start the solution process, you need to
represent the ODE in its most generic form:

y'=F(x,y)

Here, y = f{x) is a function that depends on the variable x, and y' is the derivative of
fx) with respect to x. The general goal of the method is to improve the approximation
step by step, using a simple formula to calculate small increments and using the result
as the next starting point. Figure 11-1 shows an example of how the general approach
works, when applied to the sample differential equation dT(t)/dt=-k A T.
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100

| analytical —
\ Euler's method: 10 steps

20 s e ——
0 20 40 60 80 100

Figure 11-1. Euler’s method applied to function dT(t)/dt = -k A T, with ten steps

Each step starts at a known place of the solution space and moves into the required
direction by a small quantity. If you denote by c the desired destination point and start
moving from location x, in N steps, then the increment h can be calculated as follows:

h:(c_xo)
N

Now, at each step of this algorithm, you will have the current location (at the
beginning the location is (x,, },), a given parameter passed to the algorithm), and the
goal is to compute the next location that approximates the real curve. As long as h is
small enough, this new location can be calculated by taking the derivative of the curve,
given by y', which represents the slope of the equation, and using a simple line segment
to move in that direction. This is fairly easy to calculate numerically, as you will see next.

The equation needed to implement this idea is the following:

F(xye)+ f(x +hy+hf(x,,.,.,))
2

V=Y., th

In other words, at each step, you're adding to the previous result a quantity that
depends on the step size and the average value of the target function at two points: the
current point and the next incremental point. You can think of the averaging (dividing
by two) as a correction of the procedure, which will make it closer to the real value that
needs to be computed.
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Implementing the Method

Euler’s method can be implemented with little effort. First, you need to update the
MathFunction class so that it can also be used when a variable and an initial condition
are provided. This requires that the function call operator take two parameters
instead of one, such as was presented in the last chapter. I coded this as a class called
DEMathFunction, with this interface:

class DEMathFunction {
public:

virtual ~DEMathFunction() {}
virtual double operator()(double x, double y) = 0; // version with two
variables
private:
// This is just an interface.

};

The new version of operator () takes as parameters the value of coordinates x and
y. Now, you can implement versions of this class for each desired function. Here is an
example that will later be used with the main implementation:

class EulerMethodSampleFunction : public DEMathFunction {
public:

double operator()(double x, double y);
};

double EulerMethodSampleFunction::operator()(double x, double y)
{

return 3 * x +2 *y + 1;

The main class implementing Euler’s method is presented next. The interface
contains a single function called solve, which receives four parameters:

e The number of steps used by the algorithm

¢ The initial x value
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o Theinitial y value (which represents the initial condition of the
function)

e The target value for the ODE, which is the coordinate for which the

solution is required

The class also contains a data member to store the instance of DEMathFunction,
which is used to compute new values for the desired function.

//
// EulersMethod.hpp

#ifndef EulersMethod hpp
#define EulersMethod_hpp

class DEMathFunction ({
public:

virtual ~DEMathFunction() {}
virtual double operator()(double x, double y) = 0; // version with two
variables
private:
// This is just an interface.

};

class EulersMethod {

public:
EulersMethod(DEMathFunction &f);
EulersMethod(const EulersMethod &p);
~EulersMethod();
EulersMethod &operator=(const EulersMethod &p);

double solve(int n, double x0, double y0, double c);
private:
DEMathFunction &m_f;

};
#endif /* EulersMethod hpp */
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The implementation of the EulersMethod class contains the steps of the algorithm
explained in the previous section. First, here are some of the required methods used by
the class:

//
// EulersMethod.cpp

#include "EulersMethod.hpp"
#include <iostream>

using std::cout;
using std::endl;

EulersMethod: : EulersMethod (DEMathFunction &f)
:m_f(f)

{

}

EulersMethod: :EulersMethod(const EulersMethod &p)
:m f(p.m_f)

{

}

EulersMethod: : ~EulersMethod()

{
}

EulersMethod &EulersMethod: :operator=(const EulersMethod &p)

{
if (this != &p)

{
mf =p.mf;

}

return *this;
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Next, the solve function contains the main algorithm for Euler’s method. The
algorithm assumes that x0 is the initial coordinate and yO0 is the corresponding initial
value for that coordinate.

double EulersMethod::solve(int n, double x0, double yo, double c)

{
// problem : y' = f(x,y) ; y(x0) = yo

auto x = x0;
auto y = yo0;
auto h = (c - x0)/n;

cout << " h is " << h << endl;

for (int i=0; i<n; ++i)

{
double F = m f(x, y);
auto G = m f(x + h, y + h*F);
cout << " F: " <<« F << "G "< G
// Update values of x, y
X += h;
y += h * (F + G)/2;
cout << " x: " << x << "y " <<y << endl;
}
return y;

The first part of the algorithm uses the given values to calculate the desired
increment h. Then, for each step, the algorithm will calculate the function at the current
point (x,y), as well as at the next incremental point (x + k,y + hF). The values of x and y
are then updated according to the equation presented in the previous section.
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You can quickly test the implementation with the help of the
EulerMethodSampleFunction class. Here is the sample code necessary to instantiate the
class and use it to test the method:

int test euler()

{
EulerMethodSampleFunction f;
EulersMethod m(f);
double res = m.solve (100, 0, 0.25, 2);
cout << " result is " << res << endl;
return O;

}

The sample function is instantiated in the first line, and the resulting function object
is passed to EulersMethod class. The member function solve is called, with a few initial
parameters. The results are printed as the last step. Table 11-1 shows the sequence of
values obtained when you run the test function.

Table 11-1. Results of Euler’s Method Iterations for the Test Code for the
EulersMethod Class

i F X y i F x 'y i F X y

1.5 0.02 0.2812 34 9.72643 0.68 3.57223 67 40.5109 1.34 18.6025
16224 0.04 0.314897 35 10.1845 0.7 3.7806 68 42.2249 1.36 19.4645
1.74979 0.06 0.351193 36 10.6612 0.72 3.99868 69 44.0089 1.38 20.3628
1.88239 0.08 0.390193 37 11.1574 0.74 4.2269 70 45.8657 1.4 21.2991
2.02039 0.1 0.432009 38 11.6738 0.76 4.46564 71 47.7982 1.42 22.2748
2.16402 0.12 0.476755 39 122113 0.78 4.71535 72 49.8096 1.44 23.2915
2.31351 0.14 0.524551 40 12.7707 0.8 4.97647 73 51.903 1.46 24.3509
24691 0.16 0.575521 41 13.3529 0.82 5.24947 74 54.0818 1.48 25.4548
2.63104 0.18 0.629794 42 13.9589 0.84 5.53484 75 56.3496 1.5 26.6049
2.79959 0.2 0.687505 43 14.5897 0.86 5.83306 76 58.7098 1.52 27.8032

297501 0.22 0.748796 44 15.2461 0.88 6.14469 77 61.1664 1.54 29.0516
(continued)
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Table 11-1. (continued)

i F X y i F x 'y i F x 'y

12 3.15759 0.24 0.81381 45 159294 09 6.47025 78 63.7232 1.56 30.3522
13 3.34762 0.26 0.882702 46 16.6405 0.92 6.81031 79 66.3843 1.58 31.707
14 3.5454 0.28 0.955628 47 17.3806 0.94 7.16548 80 69.154 1.6 33.1183
15 3.75126 0.3 1.03275 48 18.151 0.96 7.53636 81 72.0367 1.62 34.5885
16 3.96551 0.32 1.11425 49 18.9527 0.98 7.92359 82 75.037 1.64 36.1198
17 41885 0.34 1.2003 50 19.7872 1 8.32785 83 78.1597 1.66 37.7149
18 4.42059 0.36 1.29108 51 20.6557 1.02 8.74983 84 81.4098 1.68 39.3763
19 466215 0.38 1.38678 52 21.5597 1.04 9.19024 85 84.7925 1.7 41.1066
20 491357 0.4 148762 53 22.5005 1.06 9.64985 86 88.3132 1.72 42.9088
21 517524 0.42 15938 54 23.4797 1.08 10.1294 87 91.9776 1.74 44.7858
22 5.44759 0.44 1.70553 55 24.4989 1.1 10.6298 88 95.7915 1.76 46.7405
23 5.73105 0.46 1.82304 56 25.5596 1.12 11.1518 89 99.761 1.78 48.7762
24 6.02608 0.48 1.94657 57 26.6637 1.14 11.6964 90 103.892 1.8 50.8962
25 6.33314 0.5 2.07637 58 27.8127 116 122643 91 108.192 1.82 53.104
26 6.65274 0.52 2.21268 59 29.0087 1.18 12.8567 92 112.668 1.84 55.403
27 6.98537 0.54 2.35578 60 30.2535 1.2 13.4745 93 117.326 1.86 57.797
28 7.33157 0.56 2.50595 61 31.549 1.22 141187 94 122174 1.88 60.29
29 7.6919 0.58 2.66346 62 32.8974 1.24 147904 95 127.22 1.9 62.8859
30 8.06693 0.6 2.82863 63 34.3008 1.26 15.4907 96 132.472 1.92 65.5889
31 8.45726 0.62 3.00176 64 35.7615 1.28 16.2209 97 137.938 1.94 68.4034
32 8.86351 0.64 3.18317 65 37.2817 1.3 16.982 98 143.627 1.96 71.334
33 9.28635 0.66 3.37321 66 38.864 1.32 17.7754 99 149.548 1.98 74.3854

Euler’s method is a simple technique that finds solutions to several ODE problem:s.
However, in terms of quality of approximation, it requires a large number of steps, which
can also cause numerical errors and instability. To avoid these problems, more precise
methods have been proposed for solving ODEs, as you will learn next.
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The Runge-Kutta Method

The next technique for solving ODEs is an extension of Euler’s method called the Runge-
Kutta (RK) method (named after its inventors). This technique is an effective way to
improve the accuracy of Euler’s method and reduce the possibility of the numerical
errors that are common when using a linear approximation.

The main idea of the RK method is to use a higher-order approximation for the
given functions, instead of relying on linear interpolation, as you saw with the previous
algorithm. By doing this, the RK method can achieve faster convergence, in many cases
using a smaller number of steps to achieve the same results. This is an advantage both in
terms of reduced computational time as well as higher accuracy.

As explained in the book Computational Physics: An introductory course by
Fitzpatrick:

There are two main reasons why Euler’s method is not generally used in
scientific computing. Firstly, the truncation error per step associated with
this method is far larger than those associated with other, more advanced,
methods (for a given value of h). Secondly, Euler’s method is too prone to
numerical instabilities.

The methods most commonly employed by scientists to integrate ODEs
were first developed by the German mathematicians C.D.T. Runge and
M.W. Kutta in the latter half of the nineteenth century. The basic reasoning
behind so-called Runge-Kutta methods is outlined in the following.

The main reason that Euler’s method has such a large truncation error per
step is that in evolving the solution from xn to xn+1 the method only evalu-
ates derivatives at the beginning of the interval: i.e., at xn. The method is,
therefore, very asymmetric with respect to the beginning and the end of the
interval.

We can construct a more symmetric integration method by making an
Euler-like trial step to the midpoint of the interval, and then using the values
of both x and y at the midpoint to make the real step across the interval.

For additional details of the method, remember that to solve an ODE you have to
consider a very general form that is amenable to solution, using the following relation:

y'=f(xy)

Here, y’ is the derivative of the function and f(x,y) is a function of variable x (the
independent variable) and y.
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As before, given a starting point for the calculation and the number of steps, it
is possible to easily calculate the size of the increment £ for each iteration of the RK
method, using the equation

In its basic design, the RK method has the same structure of Euler’s algorithm. The
main difference is how the RK method approximates the function to generate the next
step of the algorithm. While Euler’s method just uses a linear interpolation, the RK
method can use any one of a family of approximating equations.

The RK method can be implemented using one of several approximation strategies,
but they are frequently calculated as a Taylor series applied to the original function. The
Taylor method is a basic tool from calculus that provides a family of approximations
for functions around a particular starting value. For example, using the simplest Taylor
approximation, you can compute the next (x,y) values in the following way:

X, =X,+h

h h
Yin =V +hf(x[ +§’yt +§f(xz’yt))
Another possibility is to use higher-order approximations, that is, versions of the
Taylor series that contain additional terms. By adding more terms of higher order, it is

possible to achieve a more accurate result in fewer steps. Here is another commonly
used approximation, this time based on a fourth-order expansion:

kl zhf(xt'yz)

h k.
k,=hf| x,+—=y,+—=
2 f( oV 2)

h k
k, :hf(xt +§,y, +?2)
k,=hf(x,+h,y, +k,)

1
V=Y, +€(k1 +2k, +2k, +k,)
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Runge-Kutta Implementation

To implement this algorithm, it is possible to extend the Euler’s method class. To avoid
dependencies between these two methods, I decided to implement a separate class
called RungeKuttaMethod.

Here is the interface of the RungeKuttaMethod class. It exposes the solve method,
which is used to compute the desired value of the function.

//
// (Class providing an interface for RungeKutta method

class RungeKuttaMethod {
public:
RungeKuttaMethod(DEMathFunction &f);
RungeKuttaMethod(const RungeKuttaMethod &p);
~RungeKuttaMethod();
RungeKuttaMethod &operator=(const RungeKuttaMethod &p);
double solve(int n, double x0, double yo0, double c);
private:
DEMathFunction &m_func;

};

First, the common member functions of RungeKuttaMethod are implemented,
including the constructor that receives the DEMathFunction reference as a parameter.

//
//  RungeKutta.cpp

#include "RungeKutta.hpp"
#include <iostream>

using std::cout;
using std::endl;

RungeKuttaMethod: :RungeKuttaMethod (DEMathFunction &f)
: m_func(f)

{

}
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RungeKuttaMethod: :RungeKuttaMethod(const RungeKuttaMethod &p)
: m_func(p.m_func)

{

}

RungeKuttaMethod: : ~RungeKuttaMethod()

{
}

RungeKuttaMethod &RungeKuttaMethod: :operator=(
const RungeKuttaMethod 8&p)

{
if (this != 8&p)
{
m_func = p.m_func;
}
return *this;
}

The member function solve is used to compute the numerical value of the ODE,
given starting conditions and a target value. The function implements the Runge-Kutta
method with fourth-degree Taylor expansion, as described in the previous section.

The parameters for this member function are the following:

¢ The number of steps in the process, which indirectly also determines
the increment for each step

o The initial value for the variable x
o The initial corresponding y for the given value x

e The target value for which the ODE is being calculated

// Runge-Kutta method with fourth-order approximation
//
double RungeKuttaMethod::solve(int n, double x0, double yo, double c)
{
// Initial conditions
auto x = x0;

yo;

auto y

285



CHAPTER 11 MODELS BASED ON DIFFERENTIAL EQUATIONS
auto h = (c - x0)/n;

for (int i=0; i<n; ++i)

{
// Compute the intermediary steps
//
auto k1 = h * m_func(x, y);
auto k2 = h * m_func(x + (h/2), y + (k1/2));
auto k3 = h * m_func(x + (h/2), y + (k2/2));
auto k4 = h * m func(x + h, y + k3);
// Use terms to compute next step
X += h;
y += ( k1 + 2*k2 + 2*k3 + k4)/6;
cout << " x: " << x << "y: " <<y << endl;
}
return y;

As in the previous algorithm, the RK method starts by defining the initial conditions,
including the values for the variables x and y, and the size of the step determined by h.

The RK method then proceeds to compute each iteration of the algorithm. This
consists of successive terms of approximation, as described in the previous section.
These terms are then used to compute the new values for x and y.

To test the results of the RK method implementation, I provide a simple test function.
But first it is necessary to implement a function that will be later used in the test code:

class RungeKuttaSampleFunc : public DEMathFunction {
public:

double operator()(double x, double y);
};

double RungeKuttaSampleFunc::operator()(double x, double y)
{

return 3 * x +2 *y + 1;
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The RungeKuttaSampleFunc is derived from DEMathFunction, so it can be passed as
a parameter to the RungeKuttaMethod class. It is a simple polynomial function. The test
function is the following:

int test RKMethod()

{
RungeKuttaSampleFunc f;
RungeKuttaMethod m(f);
double res = m.solve (100, 0, 0.25, 2);
cout << " result is " << res << endl;
return 0;

}

This test code first instantiates the RungeKuttaSampleFunc class and then uses the
resulting instance to create a RungeKuttaMethod object. Next, the result of the function is
computed for some test parameters.

Complete Code

The complete listing for the RungeKuttaMethod class is shown in this section.
The code is divided into a header file and an implementation file, which appear in
Listings 11-1 and 11-2, respectively.

Listing 11-1. Header File for the RungeKuttaMethod Class

//
//  RungeKutta.hpp

#ifndef RungeKutta hpp
#fdefine RungeKutta_hpp

#include "EulersMethod.hpp"

class RungeKuttaMethod {

public:
RungeKuttaMethod(DEMathFunction &f);
RungeKuttaMethod(const RungeKuttaMethod 8p);
~RungeKuttaMethod();
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RungeKuttaMethod &operator=(const RungeKuttaMethod 8p);

double solve(int n, double x0, double y0, double c);
private:

DEMathFunction &m_func;

};
#endif /* RungeKutta_hpp */

Listing 11-2. Implementation File for the RungeKuttaMethod Class

//
//  RungeKutta.cpp

#include "RungeKutta.hpp"
#include <iostream>

using std::cout;
using std::endl;

RungeKuttaMethod: :RungeKuttaMethod (DEMathFunction &f)
: m_func(f)

{

}

RungeKuttaMethod: :RungeKuttaMethod(const RungeKuttaMethod &p)
: m_func(p.m_func)

{

}

RungeKuttaMethod: : ~RungeKuttaMethod()

{
}

RungeKuttaMethod &RungeKuttaMethod: :operator=(
const RungeKuttaMethod &p)

if (this != 8&p)
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m_func = p.m_func;
}

return *this;

}

// Runge-Kutta method with fourth-order approximation
//
double RungeKuttaMethod::solve(int n, double x0, double yo, double c)
{
// Initial conditions
auto x = x0;
auto y = yo0;
auto h = (c - x0)/n;

for (int i=0; i<n; ++i)

{
// Compute the intermediary steps
//
auto k1 = h * m_func(x, y);
auto k2 = h * m func(x + (h/2), y + (k1/2));
auto k3 = h * m_func(x + (h/2), y + (k2/2));
auto k4 = h * m func(x + h, y + k3);
// Use terms to compute next step
X += h;
y += ( k1 + 2*k2 + 2*k3 + k4)/6;
cout << " x: " << x << "y " <<y << endl;
}
return y;
}
/1] -----

class RungeKuttaSampleFunc : public DEMathFunction {
public:

double operator()(double x, double y);
b5
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double RungeKuttaSampleFunc::operator()(double x, double y)
{

return 3 * x + 2 *y + 1;

}

int main()

{
RungeKuttaSampleFunc f;
RungeKuttaMethod m(f);
double res = m.solve (100, 0, 0.25, 2);
cout << " result is " << res << endl;
return 0;

}

Conclusion

Solving differential equations is a task commonly required when analyzing complex
financial contracts. This is true due to the mathematical nature of options and
derivatives, which are based on the Black-Scholes model.

In this chapter, you saw a few examples of differential equations and learned how
they can be effectively solved using computational techniques. First, you learned about
Euler’s method, the simplest technique used to compute numerical solutions for ODEs.
Next, you learned about the Runge-Kutta method, a commonly used technique that
provides improved accuracy over Euler’s method, but still with great performance.

This chapter can be used as an overview of the implementation of differential
equations in C++. In the next chapter, you will take a closer look at how these
mathematical models can be directly applied to option pricing. In particular, you will see
how these techniques can be used when pricing option contracts.
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Basic Models for Options
Pricing

Options pricing is the task of determining the fair value of a particular option, given a
set of parameters that exactly determine the features of the option contracts, such as its
expiration date, current volatility, and prevailing interest rates. Pricing options requires
the use of efficient algorithms, because of frequent changes in prices and market
volatility. For this reason, a number of models have been employed for this task in the
area of quantitative finance.

This chapter discusses some of the most popular models for options pricing. First,
there are models that use tree-based methods, such as binomial and trinomial trees.
Second, the most important mathematical model uses the Black-Scholes model, which
provides the theoretical basis for the analysis of most options and derivative contracts.

Here is a summary of the topics discussed in this chapter:

e Binomial trees: A binomial tree is a technique used to compute
option prices by simulating a number of probabilistic price changes
starting from the current stock price. Such prices are organized in a
tree-based structure and used to compute the option’s corresponding
price. You will see the calculations necessary to use these tree-based
algorithms for options pricing.

e Calculating American-style options: Options in the American style
give their buyers the ability to exercise the option at any time before
expiration. This exercise style needs to be reflected in the price of the
option.
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e Black-Scholes method: The most famous method for computing
option prices is based on the equations developed by Black and
Scholes. These differential equations can be solved using PDE
techniques, which are explored later in this chapter.

o Implementation strategies: You will see examples of implementation
techniques for the pricing methods described previously.

Lattice Models

The goal of options pricing is to compute the fair value of an option at a particular time.
This problem has been solved theoretically by Black and Scholes, the creators of the
famous PDE model that defines prices for options. However, solving complex PDEs is not
an easy job, and for this reason, several methods have been developed to perform this
computational task in less time.
A common class of algorithms for computing options prices is the lattice model.
A lattice model is a technique of calculating derivative prices that divides the solution
space into discrete steps. Each step corresponds to a small time increment and
corresponding price change. Starting this way from a given starting point, this technique
results in the creation of a tree of nodes that correspond to possible price changes.
There are a few particular methods that have been devised based on the general
strategy put forward by lattice models. The best-known such methods are as follows:

e Binomial model: In the binomial model, the possible changes are
organized in a tree rooted at the given starting point (the current
price). To each node of the tree, two nodes are added representing
two possible directions of movement: up (price increases) or down
(price decreases). For performance reasons, the binary tree can also
be created implicitly, where nodes are calculated only as needed for
the evaluation of the next time period.

o Trinomial model: The trinomial model is an extension of the
binomial model and it tries to improve the accuracy by considering
nodes where the price is unchanged. Depending on the volatility
of the underlying, such models can achieve higher accuracy than
binomial models, at the expense of a slight increase in computational
time.
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Mixed models have also been used that combine features of the binomial and
trinomial models, producing more complex lattice models for particular uses. In
this chapter, you learn how to implement a binomial model for options pricing. The
complete model is explained along with the equations frequently used to evaluate such
models.

Later, this general model is extended to handle American-style options, where the
owners of the option can exercise the option at any time before expiration. These models
also show how this type of algorithm can be efficiently coded in C++ using OO concepts.
In this particular case, you will see how to use inheritance to override parts of the class
according to the desired pricing strategy.

Binomial Model

The first model that’s discussed is called the binomial model for options pricing. In this
model, options prices are evaluated interactively. Possible values are organized in a
tree-based structure where the root is the original (unknown) price and leaves are the
possible prices at a particular target time.

Using this structure, the binomial model traverses the tree with the goal of
computing the desired price (the root value) starting from some known prices. The
natural way of doing this is to look at the values for the option at expiration date and use
these prices to compute the value at other times. Remember that at expiration price, the
value of an option is defined by contract. For example, if you are given the current stock
price (denoted by S) and the strike price (denoted by K), then the price of a call option at

expiration is given by

p.(S)=max(0,S-K)

For a put option, the price is also straightforward and determined by contract as

p,(S)=max(0,K-S)

The question, however, is which values of stock prices should be used in a tree-based
model to make it realistic? A possible answer to this question is that at each time step,
the stock price can move either up or down. The exact probabilities for this jump can
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be derived using a few mathematical assumptions, but the expressions most commonly
used are as follows:

e Change of value for an up move:

ol

o Change of value for a down move:

exp( o)

In these two expressions, on is a measure of the volatility of the stock (i.e., the typical
amount of movement) and t is time. These expressions allow you to construct a tree
where each node contains information about the time and the value of the stock at that
moment. The tree can be visualized as shown in Figure 12-1.
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Figure 12-1. A visualization of the binomial tree determined by possible stock
prices

Now consider the task of pricing a call option at a date immediately before
expiration. While the price is initially unknown, it cannot be very far away from the price
at expiration, since the time premium at this point is very small. A way to calculate this
value is to assume a probability for two events: either going up a small amount or going
down a small amount. With this probability, you can estimate the value of the option as
the expected value (the mean) based on these two possibilities.
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Using these observations, you can devise a method for calculating the price of an

option. The general algorithm can be described in the following way:

Calculate stock prices for the nodes of the tree, starting from the root
node at time zero and stock price given by the current known price.

Apply the equations for price fluctuations to create up and down
nodes starting from the root. The goal of this phase is to calculate the
stock prices for nodes at expiration time.

Start to compute the option prices from the leaves of the tree. These
leaves have a known price by definition of the option contracts. The
value of the option depends on three characteristics:

e The strike price
e The stock price
e Ifthe optionis a put or a call

Then, progress from nodes at expiration date toward earlier dates,
always using the expected value based on the known probabilities.
Repeat this process until you reach the root node.

Binomial Model Implementation

To implement an algorithm for the binomial model as previously described, I introduce

a class called BinomialModel. The class provides all the necessary steps for the

calculation of option prices, along with the ability to be extended to other open types, as

you will see later.

The first step is to provide an interface to the C++ class, as shown in the next code

fragment. The class contains a number of data members that are necessary for the

computation of options prices using the binomial model approach. Here are these data

members:

The expiration date, denoted asm_T.

The initial stock price, that is, the stock price at the root of the
binomial tree, denoted by m_S.

The interest rate, which is used as one of the factors necessary to
calculate future prices and is denoted asm_r.
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o The volatility, which is the volatility of the underlying stock, as
measured from stock prices in the last few days and denoted by
m_sigma.

e Thedividend yield, which is the amount of dividend paid by the
underlying stock during the desired period. This quantity is denoted

bym_q.

o The number of steps, used by the binomial method to determine the
depth of the tree. It is denoted by m_n.

o The type of option. This is the class record if the option type is a call
or put. This information is stored in the member variablem call, a
Boolean value.

The class BinomialModel also offers a member function that can be used to calculate
the option price, named optionPriceForStrike. This function receives as a parameter a
strike value and returns the option price corresponding to that strike.

A second function, computePriceStep, is used to compute option prices for a single
step. You will see later how this is implemented and extended for more complex option

types.

#include <vector>
#include <cmath>

using vec = std::vector<double>;

class BinomialModel {
public:
BinomialModel(const BinomialModel &p);
virtual ~BinomialModel();
BinomialModel &operator=(const BinomialModel &p);

BinomialModel(double T, // expiration time
double S, // stock price
double r, // interest rate
double sigma,

296



CHAPTER 12 BASIC MODELS FOR OPTIONS PRICING

double q, // dividend yield
int n, // number of steps
bool call

)5

double optionPriceForStrike(double K);
virtual void computePriceStep(int i, int j, double K, vec 8&prices,
double p u, double p d, double u);

protected:
double getStockPrice() { return m S; }
private:
double m_T; // expiration time
double m_S; // stock price
double m_r; // interest rate

double m_sigma; // volatility

double m _q; // dividend yield

int m_n; // number of steps

bool m_call; // true = call, false = put

s

The next few member functions are part of the constructor and destructor code.
They are used to properly initialize each of the data members in the BinomialModel
class.

BinomialModel: :BinomialModel (double T, double S, double r,
double sigma,
double q,
int n, bool call)
:m T(T),
m_S(S),
m_sigma(sigma),
m_n(n),
m_q(q),
m call(call)
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{
}

BinomialModel: :BinomialModel(const BinomialModel 8&p)
:m T(p.m_T),

m S(p.m_S),

m r(p.m 1),

m_sigma(p.m sigma),

m n(p.m_n),

m_q(p.m_q),
m call(p.m call)
{
}
BinomialModel: :~BinomialModel()
{
}

BinomialModel &BinomialModel::operator=(const BinomialModel &p)

{
if (this != 8p)

{
mT=p.mT;
mS=p.mS;
mr=p.mrx;
m_sigma = p.m_sigma;
mn=p.mn;
mg=p.m_g;
m_call = p.m_call;

}

return *this;

The computePriceStep member function is used to compute the immediate price
for a single step of the algorithm. The indices i and j represent the position in the
binomial tree. Other arguments are the necessary parameters used to calculate the price
of this step. Notice that this member function is declared as virtual, and it can be later
overridden for the use of American-style options.
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void BinomialModel::computePriceStep(int i, int j, double K,
vec 8prices, double p u,
double p d, double u)

prices[i] = p_u * prices[i] + p_d * prices[i+1];

The main member function in the BinomialModel class is the function that computes
the option price for a given strike, determined by the parameter K. The algorithm is
essentially a C++ implementation of the ideas presented in the previous section. The
first step is to calculate the price delta, using the period and the number of steps. Next,
the amount of price changes in the up side is calculated using the exp(m_sigma *
sqrt(delta)) expression.

Next, the function computes the probabilities of moving up or down in the binomial
tree, using the equations described previously. The probabilities are denoted by p_u and

p_d.

double BinomialModel::optionPriceForStrike(double K)

{

double delta = m.T / mn; // size of each step
double u = exp(m sigma * sqrt(delta));

double p u = (u * exp(-m r * delta) - exp(-m q * delta)) * u / (u*u - 1);
double p d = exp(-m r * delta) - p u;

vec prices(m_n);
//  Compute last day values (leaves of the tree)

for (int i= 0; i<m n; ++i)
{
if (m_call)
{
prices[i] = std::max(0.0, m_ S * pow(u, 2*i - m n) - K);
}

else

{
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prices[i] = std::max(0.0, K - m_S * pow(u, 2*i - m n));
}
}
for (int j = m_n-1; j>=0; --j)
{
for (int i = 0; i<j; ++i)
{
computePriceStep(i, j, K, prices, p u, p_d, u);
}
}

return prices[0];

The first for loop in this member function is responsible for computing the stock
price at the last level of the binomial tree. This is done using the property that defines the
price of an option at expiration. Therefore, there are two cases that need to be handled,
depending on if the option is a call or a put.

The last for loop is the main computation that traverses the binomial tree from the
last level to the root node. The step calculation is performed by the computePriceStep
member function. The main idea, which you can see by looking at that member
function, is to first compute the average (expected) price of the node. This is done by
taking the expected value of the known prices that have been previously calculated
according to the probabilities p_uand p_d.

After the option prices have been computed in this way, the algorithm will determine
the price at the root node. Therefore, the price required is stored in position zero of the
prices vector. The last line of this member function returns prices[0] as the desired

solution.

Note The pricing strategy presented in this section works for options that cannot
be exercised until the date of expiration. This type of option is commonly known
as a European-style option. For American-style options, which can normally be
exercised at any time, a slightly different pricing method needs to be used, as
shown in the next section.
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Pricing American-Style Options

This section presents a slight modification of the binomial method that can be used
to price American-style option contracts. An American-style option is defined in such
a way that buyers of such options can exercise their rights (i.e., buying or selling the
underlying) at any time until expiration. This is in contrast to what is called European-
style options, whereby option rights can be exercised only at expiration.

You can use the AmericanBinomialModel class to price American options. Looking
at the code, you can see clearly how American options differ from European ones in
terms of the option prices. The binomial model determines this by checking the possible
exercise price of the option and taking that value into consideration if it is higher than
the expected price.

The class interface is defined as follows. The public inheritance from BinomialModel
allows you to share the methods defined in that class. The resulting interface is very
simple because no additional member variables are necessary. It contains the standard
copy constructor, a constructor that forwards the received parameters to the base class,
and a destructor.

#include <vector>
#include <cmath>

using vec = std::vector<double>;

class AmericanBinomialModel : public BinomialModel {
AmericanBinomialModel(const BinomialModel &p);
~AmericanBinomialModel();
AmericanBinomialModel &operator=(const BinomialModel &p);

AmericanBinomialModel(double T, // expiration time
double S, // stock price
double r, // interest rate
double sigma,
double q, // dividend yield

int n, // number of steps
bool call
)s
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virtual void computePriceStep(int i, int j, double K, vec 8&prices,
double p u, double p d, double u);

};

The constructor just needs to forward the received parameters to the base class
BinomialModel

AmericanBinomialModel: : AmericanBinomialModel(const BinomialModel &p)
: BinomialModel(p)

{

}

AmericanBinomialModel: :~AmericanBinomialModel()

{
}

Because there are no extra member variables, the assignment operator can use the
nice trick of calling the operator on the superclass to do the assignment work, as follows:

AmericanBinomialModel &AmericanBinomialModel: :operator=(
const BinomialModel 8&p)

BinomialModel: :operator=(p); // no new data members in this class
return *this;

}

AmericanBinomialModel: :AmericanBinomialModel(double T, // expiration time
double S, // stock price
double r, // interest rate
double sigma,
double q, // dividend yield

int n, // number of steps
bool call)

: BinomialModel(T, S, r, sigma, g, n, call)

{

}
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Next, you can see the real change that characterizes American options. The
computePriceStep member function overrides the member function in the base class
and allows the price of an American option to be calculated.

The first thing to do here is to call the member function from the superclass, so you
don’t need to repeat the same code, with potential duplication errors. Then, the function
proceeds to calculate the exercise value. This is done by taking the adjusted stock price
and subtracting it from the strike price. If the calculated exercise price is higher than the
calculated price, then the price is updated with this exercise price. In other words, at
each moment the price of the option has to be the highest of the potential value and the
exercise value.

void AmericanBinomialModel: :computePriceStep(int i, int j, double K, vec
8prices, double p u, double p d, double u)

{
BinomialModel: :computePriceStep(i, j, K, prices, p_u, p_d, u);
// Compute exercise price for American option
//
double exercise = K - getStockPrice() * pow(u, 2*i - j);
if (prices[i] < exercise)
{
prices[i] = exercise;
}
}

Solving the Black-Scholes Model

The previous sections explored discrete methods used to compute the price of options.
These methods work by approximating the solution through the use of price trees, where
each node represents a discrete step into the solution of the problem.

While the binomial tree method is appropriate in many situations, it is sometimes
necessary to use a more rigorous method based on the Black-Scholes partial differential
equation (PDE). The model, developed by economists E. Black and M. Scholes in the
1970s, provides a full mathematical description of how option prices evolve over time
and with respect to the changes in the underlying prices. For this work, the Swedish Prize
of Economics (also popularly known as the Nobel) was awarded in 1997.
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The Black-Scholes model uses a few input parameters that describe the option and
the conditions under which prices evolve. The parameters are

o Expiration date

e Stock price

o Stockvolatility

o Interestrates (paid on short-term cash)
o Dividends paid by the underlying stock

Using these parameters, the model provides a partial differential equation that
contains the information necessary to determine the price of the option. The result from
this model can be summarized in the following PDE:

2
oV 1 ,u0V 0V

— s H1rS—=rV
or 2 oS oS

In this differential equation, the quantities represented are as follows:
e V:The price of the desired derivative
e f:Thetime
e o: The volatility of the underlying stock
o S:The stock price
e 1:The interest rate

If you know the previous information about the underlying security, such as
prices, interest rates, and previous volatility, the Black-Scholes equation allows you to
compute the value of a call or put option based on those assumptions. The solution of
this equation can be achieved using several methods, such as simulation techniques
and piecewise integration using numerical approximations. The next section presents
a simple numerical technique that can be applied to find solutions to the Black-Scholes
model.
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Numerical Solution of the Model

To solve the Black-Scholes model computationally, it is necessary to apply numerical
techniques to solve the associated PDE. It is important to note that there are several
methods used to compute this class of equations, with results that depend on the
required accuracy, computational effort, and implementation difficulty.

This section explores a simple strategy to solve the Black-Scholes model. The strategy
is based on what is called the forward method for the solution of PDEs. The forward
method is an extension of Euler’s method for the solution of ODEs, as described in the
previous chapter. Unlike Euler’s method, the forward method needs to find a solution for
a differential equation that contains more than one variable.

The forward method solves this problem by dividing the domain of the desired
equation into smaller, rectangular pieces, which can be easily computed. Once this is
completed, the algorithm propagates those values forward, and at each step, a small area
dS is considered.

For this method to work, it is necessary to provide a set of initial conditions for
the PDE. In the case of options pricing, the natural set of initial conditions is the price
at expiration, which is well known for each possible value of the stock. Therefore, the
implementation of the forward in fact starts from the expiration date and proceeds
backward in time to the desired date.

The C++ solution is implemented in the BlackScholesMethod class. This class
provides a simple interface, where the main member function is called solve, and it
returns the price at the desired date and under the conditions defined by the given
parameters.

class BlackScholesMethod {

public:
BlackScholesMethod(double expiration, double maxPrice, double strike,
double intRate);
BlackScholesMethod(const BlackScholesMethod &p);
~BlackScholesMethod();
BlackScholesMethod &operator=(const BlackScholesMethod &p);

std: :vector<double> solve(double volatility, int nx, int timeSteps);
private:
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double m_expiration;
double m _maxPrice;
double m_strike;
double m_intRate;

};

In the implementation file, which is listed next, you will first find the constructors
and assignment operator. These member functions just initialize the private variables,
which include

o Expiration date, denoted bym_expiration

e Maximum price that will be considered by the algorithm, denoted by
m_maxPrice

o Strike price, denoted by m_strike

o Currentinterest rate, denoted bym_intRate

#include "BlackScholes.hpp"

#include <cmath>
#include <algorithm>
#include <vector>
#include <iostream>
#include <iomanip>

using std::vector;
using std::cout;
using std::endl;
using std::setw;

BlackScholesMethod: :BlackScholesMethod(double expiration, double maxPrice,
double strike, double intRate)

: m_expiration(expiration),

m_maxPrice(maxPrice),

m_strike(strike),

m_intRate(intRate)

{

}
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BlackScholesMethod: :BlackScholesMethod(const BlackScholesMethod 8&p)
: m_expiration(p.m expiration),

m_maxPrice(p.m maxPrice),

m strike(p.m strike),

m_intRate(p.m intRate)

{

}

BlackScholesMethod: : ~BlackScholesMethod()

{
}

BlackScholesMethod 8BlackScholesMethod: :operator=(const BlackScholesMethod 8&p)

{
if (this != 8&p)

{
m_expiration = p.m_expiration;
m_maxPrice = p.m_maxPrice;
m strike = p.m_strike;
m_intRate = p.m_intRate;

}

return *this;

The solve method is the heart of the algorithm. The first part of this member
function is responsible for initializing common expressions that are used throughout the
algorithm. These expressions are stored in vectors a, b, and c. In mathematical notation,
these factors can be presented as

1 2
a, =5(nrdt —(nV) dt)
b, =1-rdt+(nV) dt

c,= %(nrdt +(nv) dt)
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The third for loop is the place where the initial conditions are prepared, by direct

calculation of the price at expiration date. The last loop is where the forward algorithm

is used. Each step of the loop will compute the contributions for that particular time

period, assuming that the period j-1 is known. At the end, the u vector, where the option

prices have been stored, is returned to the caller.

vector<double> BlackScholesMethod: :solve(double volatility, int nx, int

timeSteps)

{
double dt = m_expiration /(double)timeSteps;
double dx = m_maxPrice /(double)nx;
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vector<double> a(nx-1);
vector<double> b(nx-1);
vector<double> c(nx-1);

int i;

for (i =0; i< nx - 1; i++)

{
b[i] = 1.0 - m_intRate * dt - dt * pow(volatility * (i+1), 2);

}

for (i =0; i< nx - 2; i++)

{
c[i] = 0.5 * dt * pow(volatility * (i+1), 2) + 0.5 * dt * m_intRate
* (i+1);

}

for (i =1; 1 < nx - 1; i++)

{
a[i] = 0.5 * dt * pow(volatility * (i+1), 2) - 0.5 * dt * m_intRate
* (i+1);

}

vector<double> u((nx-1)*(timeSteps+1));
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double u0 = 0.0;
for (i =0; i< nx - 1; i++)
{
uo += dx;
u[i+0*(nx-1)] = std::max(uo - m_strike, 0.0);

}

for (int j
{

0; j < timeSteps; j++)

double

(s
1

(double)(j) * m_expiration /(double)timeSteps;

0.5 * dt * (nx - 1)
* (volatility*volatility * (nx-1) + m_intRate)
* (m_maxPrice-m strike * exp(-m_intRate*t ) );

double p

for (i =0; i < nx - 1; i++)

{

u[i+(j+1)*(nx-1)] = b[i] * u[i+j*(nx-1)];
}

for (i =0; i< nx - 2; i++)

{

u[i+(+1)*(nx-1)] += c[i] * u[i+1+j*(nx-1)];

}

for (i =1; i < nx - 1; i++)

{

u[i+(j+1)*(nx-1)] += a[i] * u[i-1+j*(nx-1)];

}

ulnx-2+(j+1)*(nx-1)] += p;

}

return u;

Finally, I present a simple test function that can be used to illustrate the use of
the BlackScholesMethod class. This function first initializes some parameters with
reasonable values. Then, it creates a new object of type BlackScholesMethod, passing to
the constructor some of the previously defined parameters.
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The blackSholes object is then used to solve the pricing problem. The result is a
vector of prices, one for each of the steps used by the algorithm (in practice, only the last
value would be used). Finally, the function prints the result so that you can inspect the
convergence of the algorithm.

void test bsmethod()

{
auto strike = 5.0;
auto intRate = 0.03;
auto sigma = 0.50;
auto t1 = 1.0;
auto numSteps = 11;
auto numDays = 29;
auto maxPrice = 10.0;
BlackScholesMethod blackScholes(t1, maxPrice, strike, intRate);
vector<double> u = blackScholes.solve(sigma, numSteps, numDays);
double minPrice = .0;
for (int 1i=0; i < numSteps-1; i++)
{
double s = ((numSteps-i-2) * minPrice+(i+1)*maxPrice)
/ (double)(numSteps-1);
cout <« " "< s " "
<< u[i+numDays*(numSteps-1)] << endl;
}
}

Complete Code

This section presents the complete code for the BlackScholesMethod class. The code
depends only on the STL and functions in the standard C++ library. As such, it can serve
as a first step toward a complete solution for options valuation processes.

The code is divided into a header file called BlackScholes.hpp and an associated
implementation file. These files are presented in Listings 12-1 and 12-2, respectively.
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Listing 12-1. Header File for the BlackScholesMethod Class

//
// BlackScholes.hpp

#ifndef BlackScholes hpp
#define BlackScholes hpp

#include <vector>

class BlackScholesMethod {

public:
BlackScholesMethod(double expiration, double maxPrice, double strike,
double intRate);
BlackScholesMethod(const BlackScholesMethod &p);
~BlackScholesMethod();
BlackScholesMethod &operator=(const BlackScholesMethod &p);

std: :vector<double> solve(double volatility, int nx, int timeSteps);
private:

double m_expiration;

double m _maxPrice;

double m_strike;

double m_intRate;
};
#endif /* BlackScholes hpp */

Listing 12-2. Implementation File for the BlackScholesMethod Class

//
// BlackScholes.cpp

#include "BlackScholes.hpp"

#include <cmath>
#include <algorithm>
#include <vector>
#include <iostream>
#include <iomanip>
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using std::vector;
using std::cout;
using std::endl;
using std::setw;

BlackScholesMethod: :BlackScholesMethod(double expiration, double maxPrice,
double strike, double intRate)

: m_expiration(expiration),

m_maxPrice(maxPrice),

m_strike(strike),

m_intRate(intRate)

{

}

BlackScholesMethod: :BlackScholesMethod(const BlackScholesMethod 8p)
: m_expiration(p.m_expiration),

m_maxPrice(p.m maxPrice),

m strike(p.m strike),

m_intRate(p.m intRate)

{

}

BlackScholesMethod: : ~BlackScholesMethod()

{
}

BlackScholesMethod 8BlackScholesMethod: :operator=(const BlackScholesMethod &p)

{
if (this != &p)

{
m_expiration = p.m_expiration;
m_maxPrice = p.m _maxPrice;
m strike = p.m_strike;
m_intRate = p.m_intRate;

}

return *this;
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vector<double> BlackScholesMethod: :solve(double volatility, int nx, int
timeSteps)

{

double dt = m_expiration /(double)timeSteps;
double dx = m maxPrice /(double)nx;

vector<double> a(nx-1);
vector<double> b(nx-1);
vector<double> c(nx-1);

int i;
for (i =0; 1 < nx - 1; i++)
{
b[i] = 1.0 - m_intRate * dt - dt
* pow(volatility * (i+1), 2);
}
for (i =0; i< nx - 2; i++)
{
c[i] = 0.5 * dt * pow(volatility * (i+1), 2) + 0.5
* dt * m_intRate * (i+1);
}
for (i =1; i < nx - 1; i++)
{
a[i] = 0.5 * dt * pow(volatility * (i+1), 2) - 0.5
* dt * m_intRate * (i+1);
}

vector<double> u((nx-1)*(timeSteps+1));

auto u0 = 0.0;
for (i =0; 1< nx - 1; i++)
{
uo += dx;
u[i+0*(nx-1)] = std::max(uo - m_strike, 0.0);
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for (int j = 0; j < timeSteps; j++)
{
double t = (double)(j) * m_expiration /(double)timeSteps;
double p = 0.5 * dt * (nx - 1)
* (volatility*volatility * (nx-1) + m_intRate)
* (m_maxPrice-m strike * exp(-m_intRate*t ) );
for (i =0; i< nx - 1; i++)
{
u[i+(j+1)*(nx-1)] = b[i] * u[i+j*(nx-1)];
}
for (i =0; i< nx - 2; i++)
{
u[i+(+1)*(nx-1)] += c[i] * u[i+1+j*(nx-1)];
}
for (i =1; i < nx - 1; i++)
{
u[i+(j+1)*(nx-1)] += a[i] * u[i-1+j*(nx-1)];
}
u[nx-2+(j+1)*(nx-1)] += p;
}
return u;
}
int main()
{

auto strike = 5.0;
auto intRate = 0.03;
auto sigma = 0.50;
auto t1 = 1.0;

auto numSteps = 11;
auto numDays = 29;
auto maxPrice = 10.0;

BlackScholesMethod blackScholes(t1, maxPrice, strike, intRate);
vector<double> u = blackScholes.solve(sigma, numSteps, numDays);
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double minPrice = .0;
for (int 1i=0; i < numSteps-1; i++)

{
double s = ((numSteps-i-2) * minPrice+(i+1)*maxPrice)
/ (double)(numSteps-1);
cout <« " " «<<s<< " "
<< u[i+numDays*(numSteps-1)] << endl;
}
return 0;

Conclusion

Options pricing is a very common problem that needs to be solved if you need to trade
these types of financial derivatives. Because underlying prices change so frequently, it is
very important that option prices be calculated efficiently. C++ is an ideal language for
encoding the solution to these pricing problems.

In this chapter, I provided an introduction to the most common strategies for
options pricing. The most popular techniques can be divided into lattice models, such
as binomial trees, and PDE-based algorithms, where the Black-Scholes model or some
close variation is solved through the use of numerical methods for PDEs.

The first sections of this chapter demonstrated the binomial method, with its
assumptions and mathematical ideas. You learned how these ideas can be used in C++
and encapsulated into a class. The model was extended to deal with American-style
options, where option buys have the ability to exercise the option at any time before the
(or at the) expiration date.

You also saw how to represent the options pricing problem in terms of the Black-
Scholes model, which uses a PDE that describes the changes in options pricing.

This model is solved using a method that discretizes the domain of the function and
calculates the result in a large number of small steps.

In the next chapter, you will learn about Monte Carlo methods, another strategy
that is commonly used to solve problems in the area of mathematical finance. In
particular, Monte Carlo methods can be used to efficiently solve some difficult problems
of derivative pricing without needing to directly compute probabilities, as used by the
methods discussed in this chapter.
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Monte Carlo Methods

Among programming techniques used for trading equity markets, Monte Carlo
simulation has a special place due to factors such as its wide applicability and easy
implementation. These methods can be used to implement strategies for market analysis
such as price forecasting, or to validate options trading strategies, for example.

A great advantage of the Monte Carlo methods is the fact that they can be used to
study complex events without the need to solve complicated mathematical models and
equations. Using the idea of simulation through the use of random numbers, Monte
Carlo methods offer the ability to study a large class of events, which would otherwise be
difficult to analyze using exact techniques.

This chapter provides an introduction to stochastic methods and how they be used
as part of simulation-based algorithms applied to options pricing. Here are a few of the
topics that will be covered in this chapter:

e Random number generation: Generating random numbers is a
basic step in creating algorithms that exploit stochastic behavior.
Monte Carlo methods require the use of effective random number
generation routines, which will be discussed in this chapter.

o Probability distributions: Monte Carlo algorithms are based on
the properties of stochastic events. Many of these events occur
according to well-known probability distributions. In C++, it is
possible to generate numbers according to many popular probability
distributions, as you will learn.

e Random walks: A random walk is a stochastic process where a
certain quantity can randomly change with equal probability to
positive or negative side. This makes random walk very useful for
modeling prices in financial markets, as well as for simulating trading
strategies.
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e Stochastic models for options pricing: Another application of random
walks is in the determination of option prices. Using a stochastic
method for this purpose is useful if you want to avoid the use of a
more complex exact or approximate model, such as the algorithms
described in the previous chapter.

Introduction to Monte Carlo Methods

A Monte Carlo algorithm is a computational procedure that uses random numbers to
simulate and study complex events. It is based on the idea that you can analyze the
results of an event by repeating it several times in different ways, with the help of a
computer or other technique to generate random numbers.

This idea behind Monte Carlo methods is not new, having been used for as long
as probability methods have been studied. For example, a well-known randomized
procedure to determine the area of a geometric shape is to throw darts at the figure. After
a while, you can count the percentage of darts inside the shape and use that percentage
to determine the area.

Despite their simplicity, Monte Carlo methods may be time-consuming, and they
require a large number of repetitions to achieve their goals. The recent development of
fast computers, however, made it possible to use such methods in an increasing number
of situations, making them practical and capable of finding solutions for problems where
explicit mathematical analysis is very difficult.

In general, Monte Carlo methods have been used for the solution of mathematical
and computational problems where it is difficult to perform direct observations.
Algorithms based on Monte Carlo methods use simulation strategies to determine
values that normally occur as the result of random events in several areas, including
the financial markets. In fact, the application of Monte Carlo to finance methods
is widespread. You will find many algorithms used in the analysis of options and
derivatives that exploit Monte Carlo techniques, for example:

e Options pricing: It is possible to use randomized algorithms to
determine the prices of options and other derivatives.

o Trade strategy analysis: Monte Carlo methods can be used to test
different trade strategies using simulated prices. This type of analysis
is invaluable, since it allows you to test trading techniques on a
large amount of data that is independent of the existing market

observations.
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e Analysis of bonds and other fixed income investments: Bonds and
their derivatives are tied to fluctuations of interest rates over different
time horizons. An effective way to study the behavior of bonds is to
construct stochastic models and use them to perform an analysis.

e Portfolio analysis: Another area where Monte Carlo methods are
useful is when studying a portfolio of investments. The stochastic
algorithm allows analysts to vary the rate of exposure to diverse
economic scenarios and try to determine the best allocation for a
portfolio.

In the next few sections, you will first learn the tools necessary to design and
implement Monte Carlo algorithms using the C++ language. You will also see examples
of how these tools can be used to analyze options and related instruments.

Random Number Generation

The first topic that is addressed is random number generation. True random numbers
are not possible to achieve in digital computers, but there are several techniques

to create sequences of pseudo-random numbers. These methods have been made
available through the standard C++ libraries, as will be covered in this section.

For C++ programmers, the main source of random number generation routines is
the <random> header file provided by the standard library. With these functions, you can
generate pseudo-random numbers that are well tested and that can be accessed through
an easy interface.

The first thing to learn about random number generation in the standard library is
the concept of generators. A generator can be viewed as a source of pseudo-random bits,
that is, an algorithm that is capable of returning numbers that are uniformly random.
The C++ library offers a small number of generators that can be used by programmers.
Here are some of the available generators:

e Mersenne twister: This is one of the most popular generators. It is
based on an algorithm that uses Mersenne prime numbers as the
period length of the sequence of pseudo-random numbers. The
Mersenne twister algorithm is considered to be one of the best
general-purpose generators of random numbers, and it is frequently
used in applications.
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e Linear congruential engine: This engine is based on a traditional
algorithm that uses simple addition, multiplication, and module
operations to produce numbers that have pseudo-random
properties. This generator is indicated when you need fast sequences
of random numbers, due to its efficiency. However, the linear
congruential algorithm is known to generate numbers that possess
some correlation.

o Subtract with carry: This is still another algorithm that is used to
generate random numbers in the standard library. The algorithm
is called lagged Fibonacci, and it uses a numeric sequence that has
properties that are similar to the famous Fibonacci sequence.

These generators represent three of the most common ways to generate random
numbers. Other techniques for random number generation have also been proposed in
the scientific literature. Table 13-1 shows some of the most commonly used algorithms
for random number generation.

Table 13-1. Algorithm for Pseudo-random Number Generation

Algorithm Description
Linear congruential Traditional method that uses modulo arithmetic.
Inversive congruential Uses the modular multiplicative inverse to generate new elements in

the sequence.

Mersenne twister Method developed in 1997; uses Mersenne primes to generate random
numbers.

WELL generators Well Equidistributed Long-Period Linear, based on the application for
operations on a binary field.

XorShift generators Fast method that uses exclusive-or operations to generate new random
numbers.

Linear feedback shift Method that uses a linear function over the existing sequence of values

1o generate the next random number.

Park-Miller generator A linear congruential generator that uses multiplicative groups of
integers under the modulo operation.
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The second part of the random generation library in C++ is the use of engine
instantiations. These instantiations can be viewed as a concrete implementation of a generic
algorithm. For example, consider the Mersenne twister engine, which is implemented as a
template called mersenne_twister engine.The easiest way to use this engine is to apply
an instantiation such as theminstd_rand (minimal standard pseudo-random number)
generator. This particular instantiation is defined by the C++ standard as

typedef linear_congruential engine<
uint_fast32_t,
48271,
0,
2147483647> minstd_rand;

The linear congruential engineis a common random generator engine that is
implemented by the standard library. A list of known engine instantiations in the C++
standard library is presented in Table 13-2. You can choose one of these instantiations as
a generator for your own algorithm, or you can create a new instantiation.

Table 13-2. A List of Generator Instantiations Available on the Standard Library

Generator Instantiation Parameters

default_random engine Random engine that is provided as a default option by the library
implementation.

knuth b Defined as typedef shuffle order engine <minstd_
rand0,256> knuth_b;.

minstd rand Minimal standard generator; it is an instantiation of 1inear
congruential_engine.

minstd rando Similar to the engine described previously, with particular
parameters.

mt19937 Mersenne twister generator.

mt19937_64 Mersenne twister generator for 64-bit types.

ranlux24 Uses the subtract-with-carry generator and returns values that

use a 24-bit representation.
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Note Random number generators can be freely instantiated in the standard
library. However, you should rarely need to define a new instantiation, unless you
have good knowledge about how the parameters for each generator work together.
A careful study of parameters is usually necessary to create a new generator, since
they are based on statistical properties that have been determined after careful
analysis made by researchers in the area.

The generators and their instantiations can be thought of as the original source for
pseudo-random bits. Once you have defined a source, it is possible to generate random
numbers according to a given probability distribution, as you will see in the next section.

Probability Distributions

A probability distribution is family of functions that defines the parameters for a
stochastic process. For example, the simplest distribution of random numbers is the
uniform distribution, where each value is generated with equal probability in a given
range. A particular case of the uniform distribution is Uniform[0, 1], where each number
is randomly generated with equal probability in the range between 0 and 1.

There are a small number of probability distributions that occur very frequently in
the analysis of natural events. These common distributions, which have been studied
in several branches of stochastic analysis, are now available as part of the C++ <random>
header in standard library. For examples of two common probability distributions,
see Figure 13-1 (which shows the normal distribution with mean 0 and standard
deviation 1), Figure 13-2 (which shows the exponential distribution with mean 1), and
Figure 13-3 (which shows the Chi-squared distribution).
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Figure 13-1. Probabilities defined by the normal distribution, with mean 0 and
standard deviation 1

Exponential Distrib.

0.9+
0.8Ff
0.7}
081
0.5}

0.4F
0.3F
0.2+
0.1

0.5

15

3 35 4

Figure 13-2. Probabilities defined by the exponential distribution, with mean 1

Consider the most common case of generating uniform random integer numbers

in a particular range. This can be easily handled in the standard library by using the

std::uniform_int_distribution template. This template is capable of creating integer

numbers that have uniform distribution as given by the two parameters: the initial

and maximum values. Here is an example of how to code a function that returns such

random integer numbers:
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#include <iostream>
#include <random>

using std::cout;

using std::endl;
std::default_random engine generator;
int get uniform_int(int max)

{

if (max < 1)

{

cout << "invalid parameter max "

<< max << endl;

throw std::runtime error("invalid parameter max");

}

std::uniform_int distribution<int> uint(0,max);

return uint(generator);
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Figure 13-3. Probabilities defined by the Chi-squared distribution
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The first step is to define a generator to use as the source of random bits. This is done
by instantiating an engine (done at the file scope). The std: :default_random engine
is the default generator selected by the compiler’s implementation. It should be a
reasonable choice, unless you want to be very specific about the generator for your code.

The get_uniform_int function generates a random integer between 0 and max,
where max is a parameter passed to the function. The function first checks if the
parameter is valid and throws an exception when that is not the case. The function then
uses the parameter to create an object of type uniform_int_distribution. This object
receives two parameters that define the distribution: the minimum and maximum
values. The resulting object is then used to generate the random number itself.

Note Traditional C and C++ code used to rely on the rand function to generate
random integer numbers. This usage is now deprecated because the algorithm
used in rand() is known to have weaknesses. In particular, the idea of using the
expression (rand() % N) to generate random integer numbers in the range 0 to
N-1 has been proved to be unreliable. Even though the numbers seem random
enough for most applications, it fails when you try to perform more complex
statistical analysis.

The sequence of steps to use the random number generators and distributions are
therefore summarized as follows:

o Find a suitable random engine and a corresponding generator
according to the needs of your application.

e Select a generator instantiation based on the random engine you
selected previously. If you don’t have any specific requirements, the
default_random_engine could be used.

e Select arandom distribution according to the needs of your
application. A common distribution is the uniform, which produces
numbers with the same probability in a given range.

o C(Create an object of the type determined by the probability
distribution. In the previous example, you used uniform int
distribution as the object type.
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o Theresulting object can now be called to generate pseudo-random
numbers, once the generator object is passed as the single parameter
for the call. This makes it possible to use generators of different types
or, more commonly, generators that are used for a specific function of
a thread.

Using Common Probability Distributions

This section will show a few examples of common probability distributions and how
they can be used in C++. As mentioned, random numbers can be generated according to
different probability functions. These families of functions are grouped according to the
parameters and shape of the distribution.

One of the simplest probability distributions is the Bernoulli distribution. This is
a family of probability distributions that model a yes/no scenario, an event that has
only two results. The only parameter for this distribution is the probability of the yes
result. The simplest example of this type of model is a coin toss, with parameter 0.5,
representing a fair probability of heads or tails.

In the next code example, the function coin_toss_experiment returns a vector of
Boolean values, representing the result of a set of fair coin tosses.

#include <iostream>
#include <random>
#include <vector>

using std::cout;
using std::endl;
using std::vector;

std: :default_random_engine generator;

vector<bool> coin_toss_experiment(int num_experiments)
{
if (num_experiments < 1)

{

cout << "invalid number of experiments
<< num_experiments << endl;
throw std::runtime error("invalid number of experiments");
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}

std::bernoulli distribution bernoulli(0.5);

vector<bool> results;
for (int i=0; i<num experiments; ++1i)

results.push _back(bernoulli(generator));

}

return results;

In this code, the first step is to use a generator, which in this case is std: :default_
random_engine allocated in the file scope, so it is available during the lifetime of
the application. The coin_toss_experiment function initially checks the validity
of the parameter num_experiments, which gives the number of tries in this random
experiment.

The function then allocates a new object from the Bernoulli distribution, with
parameter 0.5, which indicates that the yes/no event occurs with even probability for
each side. The random values are then generated in the loop, where the bernoulli
returns Boolean values according to the desired distribution behavior. The values are
stored in a vector<bool> container.

Another common distribution that is used to model natural events is the Poisson
distribution. This distribution arises commonly when observing the number of events
that occur in a period of time, under the assumption that these events are independent.
For example, the number of customers arriving at a coffee shop during a given period
could be modeled as a Poisson distribution. The mathematical expression used to model
the probability distribution of such events is given by

Ake*
p(k)=—

Here, kis the number events that are observed, and A is the parameter that
determines the results of the experiment, which can be interpreted as the average
number of events occurring in the given time period.
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In the C++ standard library, the Poisson distribution is made available through the
std:: poisson_distribution template. The parameter for this distribution is the mean,
usually represented as the mathematical variable A as in the previous equation.

The following is an example that can be used to analyze the number of customers
buying in a particular store in a time period. For instance, financial analysts perform this
type of study when they need to study the buying patterns at a particular business. The
code defines a function named num_customers_experiment:

#include <iostream>
#include <random>
#include <vector>

using std::cout;
using std::endl;
using std::vector;

vector<int> num_customers_experiment(double mean, int max, int ntries)

{

std::default_random engine generator;

vector<int> occurrences(max, 0);
std::poisson_distribution<int> poisson(mean);

for (int i=0; i<ntries; ++i)

{
int result = poisson(generator);
if (result < max) {
occurrences[result] ++;
}
}

return occurrences;

The num_customers_experiment function can generate a sequence of random values
based on the Poisson distribution and return a histogram of these values, that is, for each
value, it returns the number of times this value was observed.
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The algorithm is similar to what you have seen before with the Bernoulli distribution.
The first part is used to define the random generator, and it creates an object of type
std::poisson_distribution. The parameter passed represents the mean of the
distribution.

The for loop in the algorithm is used to build the histogram. At each step, a number
is generated according to the Poisson distribution. Then, if the resulting number is less
than the parameter max, that value is incremented in the list of occurrences.

The num_customers_experiment function is used in the next code fragment to print
the results of the calculation. These numbers have been saved and used to create the
chart displayed in Figure 13-4, which shows the observations between 0 and 20 and the
corresponding number of observations for 200 trials.

Num. of Occurrences
o

0

0 2 4 6 8 10 12 14 16 18 20
Observations

Figure 13-4. Histogram of the data returned by function num_customers_
experiment

int test _experiment()

{
auto data = num_customers experiment(10.5, 20, 200);
for (int i=0; i<int(data.size()); ++i)
{
cout << " event " << i << " occurred " << data[i] << " times" <«
endl;
}
}
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The next example shows how to generate and use random values drawn from the normal
distribution. The normal distribution, also known as Gaussian distribution, is one of the
most common probability distributions used to model real-world data. It is employed in data
analysis, in areas ranging from drug design to sociology. The normal distribution represents
the distribution of values that are naturally measured in populations. For example, the
heights of people living in a particular geographical area follow the normal distribution.

The bell-shaped probability graph of the normal distribution is determined by the
Gaussian equation, which takes as parameters the mean and the standard deviation of a
random variable. The equation is given by

p(x):;exp[_ﬂj

o~2n 20

In this equation, u is the mean value of these numbers, and ¢ is the standard
deviation, which is a measure of the variability of these random values.

In the following code example, you will see how to generate numbers that follow
the normal distribution. The get_normal_observations function returns a list of
numbers that have been generated according to the normal distribution according to the
parameters mean and stdev.

#include <iostream>
#include <random>
#include <vector>
#include <assert.h>

using std::cout;
using std::endl;
using std::vector;

vector<double> get normal observations(int n, double mean, double stdev)

{

std::default_random engine generator;

vector<double> values;
std::normal distribution<double> normaldist(mean, stdev);

for (int i=0; i<n; ++i)
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values.push_back(normaldist(generator));

}

return values;

The next function, test_normal, can be used to verify the correctness of this code.
The idea of this function is to use the generated values so that it can create a histogram
of the normal-distributed data. The first step of the algorithm is to call the get_normal
observations function and save the returned data. The next step is to get some
information about the received data, such as the minimum and maximum values. This is
done using the std: :minmax_element function, which returns a pair of iterators pointing
to the minimum and maximum values in the given range.

The algorithm creates a vector with elements corresponding to “bins,” that is, smaller
ranges where each observation is recorded. The size of each such bin is stored as the
variable h. The first loop then determines the number of elements in each such range so
that a histogram can be calculated.

The second loop is responsible for printing the results of the histogram. Each value is
printed along with the starting point of the corresponding range.

void test normal()

{

vector<double> nv = get normal observations(1000, 8, 2);

auto res = std::minmax_element(nv.begin(), nv.end());

double min = *(res.first);
double max = *(res.second);
int N = 100;

double h = (max - min)/double(N);
vector<int> values(N, 0);

for (int i=0; i<int(nv.size()); ++i)
{
double v = nv[i];
int pos = int((v - min) / h);
if (pos == N) pos--; // avoid the highest element

331



CHAPTER 13 MONTE CARLO METHODS

values[pos]++;
}
for (int i=0; i<N; ++i)
{
cout << min + (i*h) << " " << values[i] << endl;
}

The values created in this way have been plotted and are displayed in Figure 13-5.
The horizontal axis represents the value of each observation. The vertical axis represents
the number of occurrences of each observation.
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Figure 13-5. Histogram of values observed using the normal distribution with
mean 8

Creating Random Walks

One of the main applications of stochastic processes in finance is the study of prices
under random variations. This random process is called a random walk, since it implies
that changes happen at random as time passes. A random walk model can be used to
simulate market conditions and investigate the behavior of trade strategies, portfolios,
and market participants in general. In this section, you see how to create a simple
random walk using some of the facilities provided by C++.

A random walk can be designed with the use of a few simple rules that determine
the price fluctuations. Notice the exact rules used depend on the kind of market that you
need to simulate and the exact conditions that need to be replicated. In this example,
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I use a few computational commands that will simplify the task; the framework can be
readily extended to implement more complex scenarios.

The random walk starts at an initial price given as a parameter to the algorithm.
At each step, there are three possibilities for the random walk:

e A price decrease, which occurs with probability 1/3.
e A price increase, also happening with probability 1/3.
o The price remains unchanged.

The amount of increase or decrease is given by a parameter called stepSize.

These rules are implemented in the RandomWorkModel class. The class has an
interface that exposes two member functions. getWalk returns a vector with a set of steps
in the random walk.

//
//  RandomWalk.hpp

#ifndef RandomWalk hpp
#define RandomWalk hpp

#include <vector>

// Simple random walk for price simulation

class RandomWalkModel {

public:
RandomWalkModel(int size, double start, double step);
RandomWalkModel(const RandomWalkModel &p);
~RandomWalkModel();
RandomWalkModel &operator=(const RandomWalkModel &p);

std: :vector<double> getWalk();
private:
int random_integer(int max);

int m_numSteps; // number of steps
double m stepSize; // size of each step (in percentage)
double m_startPrice; // starting price

};
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#tendif /* defined(__FinancialSamples RandomWalk ) */

The class interface also contains the following member variables:

o The number of steps, m_numSteps, determines the number of steps
(time) in the random walk.

e The initial price is defined by the m_stepSize member variable.
o The starting price is defined by the m_startPrice member variable.

These member variables are initialized in the constructor of RandomWalkModel, as
shown in this code listing:

//
//  RandomWalk.cpp

#include "RandomWalk.hpp"

#include <cstdlib>
#include <iostream>
#include <random>

using std::vector;
using std::cout;
using std::endl;

std::default_random engine engine;

RandomWalkModel: :RandomWalkModel(int size, double start, double step)
: m_numSteps(size),
m stepSize(step),
m_startPrice(start)
{
}

RandomWalkModel: :RandomWalkModel(const RandomWalkModel &p)
: m_numSteps(p.m_numSteps),
m_stepSize(p.m stepSize),
m_startPrice(p.m_startPrice)
{
}

334



CHAPTER 13 MONTE CARLO METHODS

RandomWalkModel: : “RandomWalkModel()

{
}

RandomWalkModel &RandomWalkModel::operator=(const RandomWalkModel &p)

{
if (this != 8&p)

{
m_numSteps = p.m_numSteps;
m_stepSize = p.m_stepSize;
m_startPrice = p.m_startPrice;
}

return *this;

The random numbers needed by this code are generated using the random_integer
member function. This function just uses the standard library random number generator
std: :default_random_engine. It also uses the uniform distribution returning integer
values, as provided by the std: :uniform distribution template class.

int RandomWalkModel::random integer(int max)

{

std::uniform_int distribution<int> unif(0, max);
return unif(engine);

The random walk sequence is generated by the member function gethWalk.
The algorithm has a single loop that repeats the price generation according to the
m_numSteps variable. Inside the loop, the code selects a random integer between 0 and
2. Depending on the result, the code makes a decision to increase, decrease, or leave the
price unchanged. Each price is then added to a vector, and the vector is returned at the
end of the function.

std: :vector<double> RandomiWalkModel: :getWalk()
{

vector<double> walk;
double prev = m_startPrice;
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for (int i=0; i<m numSteps; ++i)

{
int r = random_integer(3);
cout << r << endl;
double val = prev;
if (r == 0) val += (m_stepSize * val);
else if (r == 1) val -= (m_stepSize * val);
walk.push back(val);
prev = val;
}

return walk;

This code can be tested using the test_random_walk function. This function simply
creates a RandomWalkModel object with 200 steps, starting at the $30 price and with steps
of $0.01.

int test random walk()

{
RandomWalkModel rw(200, 30, 0.01);
vector<double> walk = rw.getWalk();
for (int i=0; i<walk.size(); ++1i)
{
cout << ", " << walk[i];
}
cout << endl;
return 0;
}

The random walk generated by the test_random_walk function was saved, and using
that data, I plotted the results, as shown in Figure 13-6. Notice that, although this model
is very simple, the results are not very different from what is observed in the market.
Using this kind of synthetic data, you can test trading strategies and determine if they are
profitable in such randomized scenarios.
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Figure 13-6. A random walk generated by the RandomWalkModel class with
starting price of $30

Conclusion

In this chapter, I introduced a few examples of Monte Carlo techniques, which can be
used to solve complex problems through simulation of random events. These methods
are based on the use of pseudo-random values as a tool for the probabilistic analysis
of events. Such models also support the simulation of complex mathematical models,
including the evolution of stock prices, as well as their options and related derivative
instruments.

In the preceding sections, you learned about the building blocks of Monte Carlos
methods. First, you learned how to generate pseudo-random numbers using the C++
standard library. The random numbers can also be generated according to a predefined
probability distribution. The C++ standard library contains some of the best-known
probability distributions, which makes it easy to integrate these features into user
applications.

You also saw how to implement a simple random walk model. In a random walk,
values change by small increments in either negative or positive directions. The random
walk model can be used to analyze several financial instruments, ranging from fixed
income instruments to equities and derivatives.

The next chapter will cover additional library functions and classes that are
commonly used to analyze and develop solutions for options and derivatives.
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Using C++ Libraries for
Finance

Writing good financial code is a difficult task, one that cannot be done in isolation. As
a software engineer, you frequently need to collaborate with others to achieve your

development goals. You also need to use code that has been written by other groups. In

particular, developers are constantly using libraries created by other companies or open

source projects. Integrating these libraries into your own work is a major step to improve
productivity.

In the world of quantitative finance, a number of C++ libraries have been used with

great success. This chapter reviews some of these libraries and discusses how they can

be integrated into your own applications. Some of the topics covered in this chapter

include the following:

Boost introduction: The boost repository provides access to many
C++ libraries that are based on templates for higher efficiency. You
will learn how to install and use boost, as well as integrate particular
libraries in the repository to your own applications.

Boost odeint: The odeint library is a well-tested and efficient set of
algorithms for the solution of ordinary differential equations (ODEs).
You will learn about the different algorithms contained in odeint and
the different situations in which they can be employed.

QuantLib: The QuantLib library has been designed as a repository
for quantitative algorithms and assorted utilities for financial
applications. Many parts of this code can be used to simplify the
process of analyzing options and derivatives. You will learn how to
use this library and see a few of the most commonly used classes and
algorithms that are available in the QuantLib repository.

© Carlos Oliveira 2020

C. Oliveira, Options and Derivatives Programming in C++20, https://doi.org/10.1007/978-1-4842-6315-0_14
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Boost Libraries

In the last few years, the boost project has become well known for providing high-quality
libraries for C++ applications. As a result, the boost project is now the de facto repository
for extensions to the STL. In fact, many of the libraries that started as part of the

boost repository have been incorporated to the C++ standard, including, for example,
std::shared ptrandstd::unique_ptr. A few of the developers working on boost
libraries have also become part of the standard C++ committee.

The boost project focuses on using the modern features of the C++ language,
including, but not exclusively, the employment of templates for high performance. Many
of the libraries included in boost provide template-based interfaces that make the resulting
system much more flexible. For example, different algorithms can be specialized at the
template level, so that you can combine different algorithms through the use of templates,
when deciding on the optimal techniques to solve a specific problem. This is a much more
adaptable strategy, rather than relying on decisions made by library designers.

Note that boost is not a finance library. Instead, it provides a large number of features
that are packaged in a few separate libraries. However, many of the components have
direct use in the implementation of financial applications. Its components can be used
to perform and simplify several tasks, such as:

e Solving ODEs: Ordinary differential equations appear frequently in
the solution of numerical problems in the area of finance. As you
have seen, to solve some options analysis models, it is necessary to
efficiently compute the value of ODEs. The odeint library gives you
access to such functionality, as you see in the next section.

e uBLAS: The Basic Linear Algebra System library provides a C++
interface to an advanced linear algebra library. uBLAS can be used to
support more complex matrix-related code, as well as the solution of
systems of equations.

e Multi-array: Many applications require the use of multidimensional
arrays when working in areas such as 3D animation, weather
predictions, and so on. The multi-array library provides an easy
interface for the creation and manipulation of arrays that can be
indexed using multiple indices.

o Managing file and directories: The <filesystem> header file contains
a set of templates that can be used to manage files and directories. It
handles different operating systems, so that you don’t need to rely on
system-specific libraries for common file-based operations.
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Note The filesystem library has become part of the C++ standard library

in the C++17 version. Previously, filesystem was part of the boost library, which
was needed to gain access to this functionality. However, you can still access this
library using boost, which makes it portable to earlier compilers.

The boost repository contains a large set of useful libraries for C++ development, including

the ones listed previously. In its current version, there are 136 libraries that cover all types

of tasks needed in modern programing. Table 14-1 shows a list of commonly used libraries

contained in the boost project repository, including a quick explanation of their usage.

Table 14-1. List of Commonly Used Boost Libraries

Library Description
Odeint Implements algorithms to solve ordinary differential equations (ODEs).
filesystem A set of classes to manipulate files and directories in an 0S-independent way.

Multi-array
MPI

Math

Graph

Functional
Algorithm
uBLAS

Variant

Sort
Regex

Python

Provides arrays with multiple dimensions; useful for scientific code.
Implements the Message Passing Interface, a standard for parallel processing.
A set of mathematical functions not included in the standard library.

A library that extends the STL and provides containers and algorithms to
handle graphs.

Provides templates that simplify functional programming techniques.
A set of generic algorithms that extends the algorithm header in the STL.
A modern C++ implementation of BLAS (Basic Linear Algebra Subprograms).

A container that safely stores a union container, capable of storing different
data types.

Implements several sorting strategies using templates for high performance.
Provides support for regular expressions in C++.

A set of templates and classes that allows interaction between Python and
C++ code.
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Installing Boost

The first step in using the boost libraries is to install them on your machine. Being an open
source repository, boost packages are made available through the Web and mirrored in
several websites. The canonical website for the repository is waw.boost.org, where you
can find instructions for installing boost in several architectures and operating systems.

The most common way to install boost is to download the compressed file
containing the headers and source files. Once the files are uncompressed, you can
use the main installation script that is provided, bootstrap.sh, to build and install the
software on the desired path in the local disk.

Another way to install boost libraries is to use third-party installers or package
managers. For example, if you use Linux, it is possible to install boost as a package using
the local package manager, such as dpkg on Debian systems. On Windows systems, you
can also install cygwin, which contains a package manager with several common C++
programming packages, including the boost libraries.

Installing from source is also easy. You just need to unzip the source files into a
location and use that directory as the include path for the compilation process. An
advantage of boost is that most of the libraries are implemented as header files (this is
also true for most of the STL). Therefore, there is no need for any compilation. A few
libraries, however, require a compilation step that can be performed using the bootstrap
script. You will need the build step if you need to use one of the following libraries:

e Boost.Filesystem

o Boost.IOStreams

e Boost.ProgramOptions
e Boost.Python

o Boost.Regex

e Boost.Serialization
o Boost.Signals

e Boost.Thread

e Boost.Wave
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Boost libraries are built using a C++ build system called bjam. The build script will
try to find bjam in your machine or build it. You can also download bjam from its binary
distribution located in boost.org/build.

In the next few sections, you will see how to use a few libraries available from boost.
First, you will see how to solve ordinary differential equations with the odeint library.

Solving ODEs with Boost

In the previous chapter, you saw how ordinary differential equations (ODEs) can be
implemented directly using C++ code. Due to how options are defined and represented,
ODE models arise naturally in the design of financial algorithms. As a result, being able
to quickly implement such methods is a great advantage for the quantitative software
developer. Moreover, it is much easier to reuse an ODE implementation that has already
been reviewed and thoroughly tested, especially considering that numerical errors are
hard to catch in many cases.

One of the components of the boost repository, the odeint library, deals specifically
with ODEs. With odeint, you can more easily create code to integrate ODEs, choosing
from a number of different algorithmic strategies. Figure 14-1 shows a screenshot of the
current web page for the odeint website, where its repository is maintained.

odeint
HomE
PERFORMANCE X d -
t e odaein
EXAMPLES :
€s in C++
HIGHLIGHTS
DownLoADS ODEINT isa modern C++ library for numerically solving Ordinary Differential Equations. It is developed in a generic way using
P taprog g which leads to extraordinary high flexibility at top performance. The numerical algorithms are
RESOURCES pl d independently y of the underlying arithmetics. This results in an incredible applicability of the library, especially in
..... dard envi For ple, odeint supports matrix types, arbitrary precision arithmetics and even can be easily
run on CUDA GPUs - check the Highlights to learn more.
Doc
Moreover, ODEINT provides a comfortable easy-to-use interface allowing for a quick and efficient implementation of
FEEDBACK numerical simulati Visit the impressively clear 30 lines Lorenz example.
build Ipassi ODEINT is a header only C++ library and the full source code is available for download. distributed under the highly liberal
Boost Software License. Hence, ODEINT is free, open source and can be used in both non-commercial and commercial
applications.

ATTENTION: Boost is changing its structure and is being modularized from one large svn repository to many small git
repository. Due to this modularaization we need to change the file structure of odeint. All headers are now located in a
subdirectory include. If you do not building odeint via bjam from this repository you only need change your include path.

Figure 14-1. Website of the odeint library, where you can download its latest version
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Table 14-2 presents a quick list of the integration techniques available when using
odeint. Some of these techniques have been discussed in the previous chapter. Others
are variations of the best-known algorithms and can provide performance advantages
for use in particular applications.

Table 14-2. List of Integration Techniques Available When Using odeint

Class Name Description

Euler Original Euler’s algorithm to solve ODEs.

runge_kuttas Uses the Runge-Kutta method, with fourth-order
approximation.

runge_kutta_cash_karps4 Runge-Kutta method.
runge kutta fehlberg78 Variation of Runge-Kutta that uses the Fehlberg algorithm.
adams_moulton A multistep algorithm for solving ODEs.

dense_output_runge kutta An implementation of Runge-Kutta that uses dense output.

bulirsch_stoer Based on the Bulirsch-Stoer algorithm, provides higher
accuracy in the solution of complex ODEs.

implicit_euler A variation of Euler’s algorithm in which the equation is
given in implicit form and requires the use of the associated
Jacobian.

The algorithms made available in the odeint library are implemented as separate
template classes. Each class corresponds to an algorithm or algorithmic concept.

The odeint library contains a set of integration methods that can be parameterized using
the provided templates. These templates make it possible to use different strategies
through the combination of the given algorithms and concepts.

One of the basic types of strategies classes available in odeint is a stepper. A stepper
is used to navigate through the solution space of the given ODE. This is an important
concept because ODEs are solved interactively, and the step size and direction
determine how a particular solution strategy will behave. Depending on the type of
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stepping strategy used, the resulting algorithm can perform a calculation that is faster or
more accurate. Here are the known stepper types provided by odeint:

o runge kutta4

o euler

o runge_kutta_cash karps54
e runge kutta dopris

o runge kutta_fehlberg78
o modified midpoint

e roOsenbrock4

Solving a Simple ODE

In this section, you will see how to use the concepts described previously to solve a
simple ODE in the standard form given by

y':f(xry)

Here, y is a function of x, y’is the first derivative of y, and f{x, y) is a general equation
that may depend both on x and y.

To use odeint, the first step is to include the main header file containing this library,
with

#include <boost/numeric/odeint.hpp>

To solve any ODE, you need first to determine the f{x, y) part of the system, that is, the
right side of the ODE equation. In this example, you will solve for the simple equation

3
,:_2+ y
25x 3/2x

y

This is done in the following code fragment:
#include "boosttest.hpp"

#include <iostream>
#include <boost/array.hpp>
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#include <boost/numeric/odeint.hpp>

//
// This is the equation at the right side of the ODE y' = f(x,y)
// It is evaluated in the inner steps of the algorithm.
//
void right side equation(double y, double &dydx, double x)
{
dydx = 3.0/(2.5*x*x) + y/(1.5%x);
}

An optional feature of odeint algorithm is the use of an observer. The observer is a
function that can be used to inspect each step of the algorithm. Using this information,
you can record the progression of the solution, or you can perform more complex
analysis if necessary. In this example, the observer simply prints the output, which will
later be used to plot the convergence of the solution.

// This function simply prints the current value of the interactive
// solution steps.
void write cout( const double &x , const double t )

{

cout << t << "\t' << x << endl;

Next, you need to define the stepper algorithm. In this case, the runge_kutta_
dopris, a basic stepper based on the Runge-Kutta method, was selected. This can be
done with a simple typedef to define the stepper_type.

// A stepper based on Runge-Kutta algorithm.
// The state type use is 'double’
typedef runge kutta dopriS<double> stepper type;

Finally, the main function is used to integrate the ODE under the given initial
conditions. The task is performed by the integrate adaptive function, which takes as
parameters the stepper, the ODE defining equation, state and step parameters, and a
function that prints the intermediate results.

// This solves the ODE described earlier with initial condition x(1) = o.
//
int main()
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{
double x = 0.0;
auto n = integrate adaptive(
make_controlled(1E-12, 1E-12, stepper type()), // instantiate the
stepper
right_side_equation, // equation
X, // initial state
1.0 , 10.0, 0.1, // start x, end x, and step size
write cout );
cout << " process completed after " << n << " steps \n";
return O;
}

I ran this code and used the output of the observer function to plot the convergence
of the results found by the ODE solver. The plot, displayed in Figure 14-2, shows how
solution values change as you move from 1.0 to 10.0 in the solution space.
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Figure 14-2. Results of the integrate _adaptive function from the odeint library

Creating Histograms with Boost

Another useful application for boost is the creation of support code such as histograms.
A histogram is a useful chart in financial applications that shows the frequency of

each particular value in a time sequence. This can be applied, for example, to prices of
underlying assets for an options analysis package.
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The boost library supports the use of histogram with the histogram.hpp template
header file and their declared classes and functions. The histogram class is the main data
type provided by boost for this purpose. Let’s consider a sample application of this class:

#include <boost/histogram.hpp>
#include <boost/histogram/ostream.hpp>
#include <cassert>

#include <iostream>

#include <sstream>

#include <string>

int main() {

using namespace boost::histogram;
std::ostringstream os;

auto h1 = make histogram(axis::regular<>(5, -1.0, 1.0, "axis 1"));
hi.at(0) = 2;

hi.at(1) = 4;
hi.at(2) = 3;
hi.at(4) = 1;

// 1D histograms are rendered as an ASCII drawing
std::cout << hi;
return O;

In this sample application, the boost/histogram header file is imported to provide
the required class and template definitions. The use of this class occurs on function
main. The make_histogram function is useful to instantiate a histogram class using
default value along with the passed parameters.

The parameters specified in the example determine that the axis for the histogram
is regular, with five partitions (bins), starting on value -1.0 and extending to value 1.0.
Then, a few values are added to some of the bins maintained by the histogram class.

The output of this sample code can be seen when the main function is executed, as
shown in Figure 14-3.
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histogram(regular(5, -1, 1, metadata="axis 1", options=underflow | overflow))
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Figure 14-3. Output from histogram example

The QuantLib Library

The second example of a library that is used in quantitative finance and options analysis
is the QuantLib library. QuantLib is a well-established repository of quantitative code for
C++. The library has been tested and used by many developers, which means that you
can take advantage of the hard work that went into creating and testing the algorithms.

Being an open source project, QuantLib is free and can be used by anyone by just
downloading and building the source code. The project also accepts contributed code,
which means that many people can fix bugs and participate in the improvement of the
library.

The QuantLib contains a wide assortment of classes that simplify certain tasks that
are necessary in quantitative algorithms for finance. A few areas covered by QuantLib are
the following:

e Date handling: Many algorithms for options and derivatives analysis
are based on dates. Therefore, accurate information about trading
dates, holidays, and other calendar-specific events are very important
for the correct results of such algorithms. QuantLib provides a
number of classes that encapsulate the concepts needed for data
handling in financial applications.

o Design patterns: The QuantLib library puts a lot of effort in following
well-established design patterns. Most algorithms use design
patterns that make them easier to understand and to maintain. For
this reason, QuantLib has a rich implementation of common design
patterns, including Singleton, Observer, Composite, and others.
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e Monte Carlo methods: A few of the classes provided by QuantLib
are used to simplify the implementation of Monte Carlo methods.
These classes make it easier to create, for example, random paths for
financial instruments, as well as similar models based on Brownian

motion.

e Pricing engines: Another area that is covered by QuantLib is
the implementation of efficient pricing engines for options and
derivatives. The library provides several techniques for options
pricing, which are carefully packaged into C++ classes. These pricing
engines include barrier option engines, Asian option engines, basket
option engines, and vanilla option engines.

o Optimizers: Another utility that is frequently employed in financial
applications is an optimization engine. The QuantLib library contains
a few classes dedicated to some common optimization strategies.
Using such optimization algorithms, it is possible to quickly solve
complex problems where the objective is to find the minimum or the

maximum of a given function.

In the remaining of this section, you will see a few examples using classes from
QuantLib. You will learn how to use some of the main classes available in the library and
integrate them to your applications.

Note On a macOS computer, you can easily install QuantLib using the brew
package manager with the following command:

brew install quantlib

Handling Dates

One of the most common tasks in financial algorithms is handling dates correctly. You
saw in Chapter 3 that there are several ways to store and transform values stored as
dates. The QuantLib library tries to simplify some of these tasks with the introduction of
carefully designed date and time classes.
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Managing holidays is one of the most difficult problems when using dates in financial
applications. Since the number of trading days constitutes part of the calculation,
when computing the price of an option, it becomes very important to have precise
representations of date intervals, considering which of those days are trading days.

First, let’s consider how to use the Date class provided by QuantLib, along with some
of the basic operations defined on that class. The basic way to construct an object of type
Date is to pass the desired date in the day-month-year format. Here is an example:

Date date1(10, Month::April, 2010);

This would create a date representing the tenth day of April 2010. Now, using a date
created in this way, it is possible to perform operations such as addition or subtraction
using the operators that have been overloaded by QuantLib.

void testDates()

{
Date date(10, Month::April, 2010);
cout << "original date: " << date << endl;
date += 2 * Days;
cout << "after 2 days: " << date << endl;
date += 3 * Months;
cout << "after 3 months: " << date << endl;
}

In this code, the operators are used to add a period of two days and three months,
respectively, to the original date. The Days and Month identifiers are simple data types
that concisely represent a time period and can be used to simplify the handling of
intervals.

Another simple operation on dates is incrementing and decrementing. This allows
you to quickly find the next or the previous day in a sequence, without needing to check
if these dates occur in different months or years. The following code shows an example
of how this works:

void nextAndPreviousDay()

{

Date date(28, Month::February, 2010);

cout << "original date: " << date << endl;
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date++;
cout << "next day:

<< date << endl;

date--;
cout << "previous day: " << date << endl;

Additional tools are provided to answer common questions related to dates. For
example, member functions of the Date class are used to determine if a particular date
occurs in a leap year, if it occurs at the end of the month, or if the date is a weekday.
These are exemplified by the code in the following section.

Working with Calendars

Another aspect of dates that causes a lot of confusion is handling local holidays. Each
country has nontrading days that are determined by holidays, which also change
according to the year in which they occur. To handle these issues, QuantLib provides a
set of Calendar objects. These calendars are localized and can be used to determine if a
particular date is a holiday.

The following example shows how to use the Calendar class in a typical C++
application:

void useCalendar()

{
Calendar cal = UnitedStates(UnitedStates::NYSE);
cout << " list of holidays " << endl;
for (auto date : Calendar::holidaylList(cal, Date(1, Month::Jan, 2010),
Date(1, Month::Jan, 2012)))
{
cout << " " << date;
}
cout << " is Jan 1 2010 a business day? "
<< cal.isBusinessDay(Date(1, Month::Jan, 2010)) << endl;
cout << " is Jan 1 2010 a holiday? "
<< cal.isHoliday(Date(1, Month::Jan, 2010)) << endl;
cout << " is Jan 1 2010 end of month? "
<< cal.isEndOfMonth(Date(1, Month::Jan, 2010)) << endl;
}
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The first line of the useCalendar function shows how to create a new calendar for
a particular region. In this case, the calendar corresponds to the United States and in
particular to the New York Stock Exchange.

With this calendar loaded, it is possible to answer a number of questions about dates
in the United States. For example, the next few lines show how to list all holidays with the
holidaylList function. The function receives as arguments the calendar and the desired
start and end date. The result is a container with all the holidays for the given period.

The next few lines show how to use QuantLib Calendar object to answer a few
common questions related to the day of the week and the month. The first call is to
isBusinessDay, and it returns true if the given date occurs in a business day (usually
Monday to Friday in most markets). The second member function is isHoliday, which
returns true only if the given date is a holiday.

Finally, you can see the member function isEnd0fMonth example. This function
returns true if the given date occurs at the end of a month, which may be an important
date in some kinds of financial contracts.

Another interesting feature of the Calendar class is that you can create and manage
your own calendars. This is necessary when creating code for countries that are not
already covered by the library, or when you're working on particular institutions or
markets that use a distinct calendar.

The main functions to manage calendar holidays are addHoliday and
removeHoliday. With these functions, you can create calendars that are specific to your
needs. The following example code shows how to use them:

Calendar createNewCalendar()

{
Calendar newCal = UnitedStates(UnitedStates::NYSE);

// Remove winter holiday
newCal.removeHoliday(Date(25, Month::December, 2016));

// Add international workers' day
newCal.addHoliday  (Date(1, Month::May, 2016));

cout << " list of holidays " << endl;
for (auto date : Calendar::holidaylList(newCa 1, Date(1, Month::Jan, 2016),
Date(31, Month::Dec, 2016)))

353



CHAPTER 14  USING C++ LIBRARIES FOR FINANCE

{

cout << << date;

}

return newCal;

This function starts with the creation of a new calendar object based on the US
calendar, more specifically using the NYSE list of holidays. The function then proceeds
to modify the original calendar, adding a common holiday and adding another so the
number of holidays remains the same. The code also prints the list of holidays for the
year 2016 to the standard output. Finally, the createNewCalendar function returns the
newly created calendar as the result.

Another important feature of the Calendar class provided by QuantLib is the ability
to determine the number of trading days between two dates. This is done using the
businessDaysBetween member function, which returns the number of business days in
a particular interval given to the function. A simple example can demonstrate how this
function works:

int getNumberOfDays(Date d1, Date d2)

{ Calendar usCal = UnitedStates(UnitedStates::NYSE);
int nDays = usCal.businessDaysBetween(d1, d2);
cout << " the interval size is " << nDays << endl;
return nDays;

}

In the beginning, the getNumberOfDays function creates a calendar using the US
locale. The next step is to determine the number of business days between two given
dates. Then, the function prints the value of this difference and returns that value as the
final result.
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Computing Solutions for Black-Scholes Equations

The next example of QuantLib is directly related to the problem of pricing options.
The main formula for pricing options is derived from the Black-Scholes differential
equations. This makes it really important to have a library that can quickly solve Black-
Scholes models, at least as an initial step for further analysis.

The QuantLib provides classes that are specifically designed to solve Black-
Scholes models. Unlike other ODE and PDE packages that can be used to solve general
differential equations (as seen in the previous section on boost), the QuantLib classes
target efficient techniques to solve a single model in particular. This results in a very
specialized algorithm that can be relied on for the efficient solution of Black-Scholes
models.

To benefit from options models used by the QuantLib, you need to instantiate two
classes:

e A class representing the option and the associated payoff: QuantLib
provides a set of classes for this purpose. An example of such a class
is PlainVanillaPayof+, which represents a common (vanilla) option
and its associated payoff.

e A class representing the pricing method: This class encapsulates the
algorithm that is used to compute the option price. This example
is interested in the class representing the Black-Scholes algorithm,
which is named the BlackScholes calculator.

These classes are exemplified in the following sample code, which includes a
function that performs the computation and an associated test function.

First, you need to create a simple storage area, where the necessary information for
the algorithm is stored. The BlackScholesParameters structure is used for this purpose.
The structure contains the following fields:

e The spot price for the underlying instrument
o The strike price for the desired option

o The current interest rate

o The forward interest rate

e The volatility of the underlying instrument
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The structure can be represented in the sample C++ code as

struct BlackScholesParameters {
double
double
double
double
double
double

}s

S0,
K3
1d;
rf;
tau;
vol;

Based on this information, it is possible to describe the use of Black-Scholes pricing

method using a C++ function. The function, called callBlackScholes, receives as a

parameter a single reference to a structure of type BlackScholesParameters.

void callBlackScholes(BlackScholesParameters 8bp)

{

// Create a vanilla option (standard option type)
boost::shared ptr<PlainVanillaPayoft>
vanillaPut(new QuantLib::PlainVanillaPayoff(Option::Put,bp.K));

// Compute discount rates
double cur disc = std::exp(-bp.rd * bp.tau); // current discount rate

double for disc

std::exp(-bp.rf * bp.tau); // forward discount rate

double stdev = bp.vol * std::sqrt(bp.tau); // standard deviation

BlackScholesCalculator putPricer(vanillaPut, bp.So, for disc, stdev,
cur_disc);

// Print option Greeks

cout
cout
cout
cout
cout
cout
cout
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"value:" << putPricer.value() << endl;

"delta:" << putPricer.delta() << endl;

"gamma:" << putPricer.gamma() << endl;
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This code works in the following way. The first instruction is necessary to create
a new object describing the required option. This is done with the instantiation of an
object of class PlainVanilllaPayoff, which indicates that the new option is of plain
vanilla type (i.e., it is a standard option). The arguments passed are the type of option
(either a call or a put) and the strike. These two parameters determine the type of
option that you're handling, independent of the current characteristics of the market.
The object of type PlainVanillaPayoff is stored in a shared ptr, which automatically
manages the lifetime of the object, cleaning up the pointer at the end of the scope of the
local variable.

The next part of the callBlackScholes function initializes some of the parameters
necessary to use the options pricer. The parameters include the current and forward
discount rate, which are computed from the given interest rate using an exponential
transformation. Another important parameter is the standard deviation, which measures
the volatility of the underlying instrument.

Once the parameters for the options pricing model are available, you can instantiate
the BlackScholesCalculator class, passing as parameters the object that describes the
option, the current price, and the other parameters discussed previously.

Using the object of type BlackScholesCalculator, you can retrieve important
information about the option price. The most important information is clearly the value
of option at a particular date, returned by the member function value. The option Greeks
also provide key information that can be used to make decisions about the option. The
Greeks calculated by the BlackScholesCalculator include the following:

o Thedelta: Represents the marginal change in value with respect to
the price of the underlying

o The gamma: Represents the marginal change in delta with respect to
the price of the underlying

o Thevega: Represents the marginal change in value with respect to the
change in volatility

o The theta: Represents the marginal change in value with respect to
the change in remaining time
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You can test this code using a function that uses a few common values for each of the
parameters and calls the callBlackScholes function. Here is an example of how this can
be done:

void testBlackScholes()

{
BlackScholesParameters bp;
bp.SO = 95.0; // current price
bp.K = 100.0; // strike
bp.rd = 0.026; // current rate of return
bp.rf = 0.017; // forward rate of return
bp.tau= 0.62; // tau (time greek)
bp.vol= 0.193; // volatility
callBlackScholes(bp);

}

Creating a C++ Interface

Based on the previous functions, it is easy to create a generic class that encapsulates

a vanilla Black-Scholes pricing strategy. I called this class BlackScholesPricer, and it

presents a simple interface that can be called without external references to QuantLib.
The class declaration contains a set of parameters that will be used in the

constructor, as shown in the next code listing:

class BlackScholesPricer {

public:
BlackScholesPricer(bool call, double price, double strike, double tau,
double r, double fr, double vol);
BlackScholesPricer(const BlackScholesPricer &p);
~BlackScholesPricer();
BlackScholesPricer &operator=(const BlackScholesPricer &p);

double value();

double delta();
double gamma();
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double theta();
double vega();
private:
double m_price;
double m_strike;
double m_tau;
double m_rate;
double m frate;
double m_vol;
double m_isCall;

boost::shared ptr<QuantLib::BlackScholesCalculator> m calc;

};

The constructor for BlackScholesPricer is responsible for initializing all the
parameters with the passed arguments. Inside the constructor, you can see the code that
initializes the payoff class. The option payoff can be a put or a call, depending on the
value of the first parameter.

Later, you will see these parameters being used to create a new
BlackScholesCalculator object. This object is stored in a shared pointer so that it can
be used to answer questions about the model.

BlackScholesPricer: :BlackScholesPricer(bool call, double price, double

strike, double tau, double r, double fr, double vol)

:m_price(price),

m_strike(strike),

m_tau(tau),

m rate(r),

m frate(fr),

m vol(vol),

m isCall(call)

{

boost::shared ptr<QuantlLib::PlainVanillaPayoft>
m_option (new QuantLib::PlainVanillaPayoff(

call ? QuantLib::Option::Call : QuantlLib::Option::Put,
strike));
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// Compute discount rates

std::exp(-m_rate * m_tau); // current discount rate
std::exp(-m_frate * m_tau); // forward discount rate
m_vol * std::sqrt(m_tau); // standard deviation

double cur disc
double for disc
double stdev

m_calc.reset(new QuantLib::BlackScholesCalculator(m option, m price,
for disc, stdev, cur disc));

}

BlackScholesPricer: :BlackScholesPricer(const BlackScholesPricer 8&p)
:m_price(p.m_price),

m strike(p.m strike),

m tau(p.m _tau),

m rate(p.m rate),

m frate(p.m frate),

m vol(p.m vol),

m_isCall(p.m isCall),

m calc(p.m calc)

{}
BlackScholesPricer::~BlackScholesPricer() {}

BlackScholesPricer 8BlackScholesPricer::operator=(const BlackScholesPricer &p)

{
if (this != 8&p)

{
m _price = p.m_price;
m_strike = p.m_strike;
m_tau = p.m_tau;
m_rate = p.m_rate;
m frate = p.m_frate;
m vol = p.m vol;
m isCall = p.m_isCall;
m_calc = p.m_calc;

}

return *this;

360



CHAPTER 14  USING C++ LIBRARIES FOR FINANCE

Using these definitions, the following member functions can be used to provide
access to the results of the pricing algorithm. They rely on them_calc member variable,
which already contains this stored information.

double BlackScholesPricer::value() { return m_calc->value(); }
double BlackScholesPricer::delta() { return m calc->delta(); }
double BlackScholesPricer::gamma() { return m_calc->gamma(); }
double BlackScholesPricer::theta() { return m calc->theta(m tau); }

double BlackScholesPricer::vega() { return m_calc->vega(m tau); }

Complete Code

Listing 14-1 shows the BlackScholesPrices class. It shows an example of how to create
an interface for the Black-Scholes component in QuantLib.

Listing 14-1. Implementation File BlackScholesPrices.cpp

#include <ql/quantlib.hpp>
#include <qgl/pricingengines/blackcalculator.hpp>

//
// The BlackScholesPricer class provides an interface to the QuantLib
// pricer component
//
class BlackScholesPricer {
public:
BlackScholesPricer(bool call, double price, double strike, double tau,
double r, double fr, double vol);
BlackScholesPricer(const BlackScholesPricer &p);
~BlackScholesPricer();
BlackScholesPricer 8operator=(const BlackScholesPricer &p);
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double
double
double
double
double
private:
double
double
double
double
double
double
double

value();
delta();

gamma();
theta();

vega();

m_price;
m strike;
m_tau;
m_rate;
m frate;
m vol;
m_isCall;

boost::shared ptr<QuantlLib::BlackScholesCalculator> m calc;
};

BlackScholesPricer: :BlackScholesPricer(bool call, double price, double
strike, double tau, double r, double fr, double vol)
:m_price(price),
m_strike(strike),
m_tau(tau),
m rate(r),
m frate(fr),
m vol(vol),
m isCall(call)
{
boost::shared ptr<Quantlib::PlainVanillaPayoff>
m option (new QuantLib::PlainVanillaPayoff(call ?
QuantLib::Option::Call : QuantLib::Option::Put, strike));

// Compute discount rates
double cur disc = std::exp(-m rate // current discount rate

// forward discount rate

* m_tau);

double for disc
double stdev
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m calc.reset(new QuantLib::BlackScholesCalculator(m option, m price,
for disc, stdev, cur disc));

}

BlackScholesPricer: :BlackScholesPricer(const BlackScholesPricer 8p)
:m_price(p.m_price),

m strike(p.m strike),

m tau(p.m _tau),

m rate(p.m rate),

m frate(p.m frate),

m vol(p.m vol),

m_isCall(p.m isCall),

m calc(p.m calc)

{}
BlackScholesPricer::~BlackScholesPricer() {}

BlackScholesPricer 8BlackScholesPricer::operator=(const BlackScholesPricer &p)
{
if (this != &p)
{
m_price = p.m_price;
m _strike = p.m_strike;
m tau = p.m_tau;
m rate = p.m rate;
m_frate = p.m_frate;
m_vol = p.m_vol;
m isCall = p.m_isCall;
m _calc = p.m_calc;
}

return *this;
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double BlackScholesPricer::value()

{

return m_calc->value();

}

double BlackScholesPricer::delta()
{

return m_calc->delta();

}

double BlackScholesPricer::gamma()

{

return m_calc->gamma();

}

double BlackScholesPricer::theta()
{

return m_calc->theta(m_tau);

}

double BlackScholesPricer::vega()
{

return m_calc->vega(m tau);

To compile this code, you need to install the QuantLib library for your platform and

add that library to the project. For example, using the gcc compiler, you need to use

the -1QuantLib option.

Conclusion

Using good libraries is an important aspect of effective software development. Financial

code, especially when options and derivatives are involved, requires the use of efficient

and well-tested algorithms. For this reason, it is important that developers be acquainted

with high-quality libraries that can be used to simplify the development process.
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In this chapter, you learned about some libraries, such as boost and QuantLib, which
have been successfully used to create financial applications handling options and other
derivatives. The first example was from the boost repository, which contains several
special-purpose libraries that use modern C++ features. The odeint library in particular,
which is contained in the boost repository, can be used to simplify the computation of
solutions to ODEs.

Another important library used in the financial software community is QuantLib.
This open source financial library provides many useful algorithms implemented in
modern, efficient C++. You saw examples of common utilities provided by QuantLib. The
most common classes are for date handling. These utility classes can handle business
calendars, date intervals, and sequences in a way that makes it possible to handle
financial applications.

You also saw how to use QuantLib to quickly create options and derivative models.
The BlackScholesCalculator class encapsulates the solution to the Black-Scholes
model. This model is the basis for most techniques that can be used to analyze prices
and variations of values for financial derivatives.

The next chapter will cover additional algorithms that can be used to process more
complex derivatives, with special attention to credit derivatives. These algorithms will be
compared and implemented in C++.
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Features of C++20

C++ is a language in constant evolution. Since the first release in the 1980s, new
concepts and techniques that started as research topics became an integral part of the
language. The latest revision of the C++ standard is C++20, which is itself a major
addition to previous standards such as C++11, C++14, and C++17. These updates to
C++ are already part of major compilers, so it is important to understand what these
modifications bring for developers.

In this appendix, I will provide a summary of the most important changes introduced
in these recent C++ standards. You will learn about the following topics:

o Auto-typed variables: A syntax that allows automatic type detection

e Lambdas: Creating functions in place and sharing variables from a
local environment

o User-defined literals: Creating literals with user-defined behavior

o Range-based for: A new form of the for loop which simplifies
container manipulation

e Ruvalue references: A new technique to implement move semantics
into user-defined types

e New function declarator syntax:A syntax for function where the return
type is automatically detected

o Delegating constructors: How to delegate class initialization to a
single constructor

o Inheriting constructors: Directly using constructors defined in a
parent class

o  Generalized attributes: How to declare attributes for C++ elements
using a unified syntax
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o Generalized constant expressions: Defining expressions that can be
used at compilation time by other expression, including templates

e Null pointer constant: A new constant that uniquely defines a null
pointer

» Right angle brackets: A simplification of template syntax, avoiding
common confusions with the shift operator

o Initializer lists: A general way to perform initialization of C++
variables

Automatic Type Detection

One of the main features of C++ is the use of types to check the program during
compilation time. This feature, known as strong type checking, allows programmers to
rely on the compiler to find many bugs that would take a lot of time to remove otherwise.
It is generally accepted that static checking is a useful feature, especially for large-scale
projects, where hundreds or even thousands of classes can be made available. With
static type checking, programmers are relieved from the task of checking manually if the
correct types are used.

Although type checking is so important for C++ practitioners, the need of naming
types at each variable and function declaration has become too burdensome for some
programmers. After all, every expression in C++ has a type, and with the introduction
of containers and other templates, it becomes sometimes difficult to write the proper
type of an expression. To avoid this problem, the C++ committee decided to use the auto
keyword to allow for automatic type detection in C++ expressions. This feature was first
introduced in C++11, but has been progressively extended through each standard until
C++20.

Automatic type deduction frees programmers from the need to indicate the type
of each variable when declaring it. The type deduction system works through the use
of information that is already available to the compiler at the moment an expression is
being parsed. For example, if a variable is created from a known constant, the compiler
can easily determine its type. On the other hand, if a variable is initialized to the result
of an expression, the compiler can also determine the type of the result and use it for the
variable. Here are some simple examples:
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void autoExample()

{

auto 1 = 1; // this is an integer

auto d = 2.0; // this is a float

auto d2 = d + 1; // this is also a float

auto str = "hello"; // this is a char *

cout << "integer : " << i << " float: "

<< d2 << " string " << str << endl;

}

Here, the first, second, and fourth variables are initialized using constants, so the
type is immediate. The third variable has its type determined through the result of the
expression given as initializer.

Another area where auto variables are very useful is when working with templates.
Many templates generate complex types, which are difficult to type and to remember.
It is very useful to be able to avoid typing these types with the help of the auto keyword.
Here is an example using an iterator to an STL container:

void autoTemporaryExample()

{
std::vector<std: :pair<int,std::string>> myVector;
// Without auto
for (std::vector< std::pair<int,std::string>>::iterator
it = myVector.begin();
it != myVector.end(); ++it)
{
// Do something here
}
// With auto
for (auto it = myVector.begin(); it != myVector.end(); ++it)
{
// Same thing here
}
}
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The first loop shows the type of the iterator used to visit all members of the container.
It is even harder to type than the original template name. The second loop shows how to
express the same thing using the auto keyword. Here, it is possible to avoid the name of
the template, which makes it much easier to understand what the code is doing.

Another way in which the auto keyword is used is to determine the parameter types
for template functions. This is a more recent use of auto, added in the C++20 standard,
but it follows the same pattern: the type of the parameter is determined by the compiler
as it determines this information from the actual parameters. Here is an example:

auto add_args(auto x, auto y) {
return x + y;

}
int main() {
int a = 10;
double b = 20;
auto res = add args(a, b);
return 0;
}

Notice that without the help of the auto operator, this would be declared in the
following way:

template <class A, class B>
A add args2(A x, By) {
return x + y;

}
int main() {
int a = 10;
double b = 20;
int res = add_args2(a,b);
return 0;
}
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Lambdas

A lambda is a function that can be created on the spot, without the need for a separate
top-level declaration. Lambda functions can, additionally, be allowed to retain references
to variables that exist at the same level in which they are introduced. A lambda function
can be saved in variables and passed to other functions, where they can be used as needed.
The variables that have been saved in the context can be used even after the original block
has finished. Here is a very simple example:

void lambdaExample()

{
auto avg = [](int a, int b) { return (a + b) / 2; };

cout << "the average of 3 and 5 is << avg(3, 5) << endl;

The syntax for lambda functions starts with an angle bracket. The return type doesn’t
need to be specified, and it is deduced from the variable or expression in the return
keyword. Here is an example where there is local variable capture.

void lambdaExample2()
{
double factor = 2.5;
auto scaledAvg = [&factor](int a, int b) {
return factor * (a + b) / 2;

15
auto modifiedAvg = [&](int a, int b) { return scaledAvg(a, b); };

cout << "the scaled average of 3 and 5 is
<< scaledAvg(3, 5) << endl;

cout << "this should be the same '
<< modifiedAvg(3, 5) << endl;

The example shows two lambda functions where there is variable capture. In the
first function, the factor variable is captured and becomes available to be used inside the
lambda function. The second example shows a lambda function where all local variables
are captured (indicated by the [&] notation). In this case, any local variable can be used,
including the scaledAvg variable.
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User-Defined Literals

You are familiar with literals for standard types such as int, float, or char. These literal
values allow one to initialize new variables as needed. C++11 introduces user-defined
literals, where a literal can be manipulated to perform any kind of preprocessing. This is
useful in the case that scalar numbers need to go though some kind of conversion before
they are used as initializers.

The syntax used for user-defined literals is similar to other operators. The operator
““keyword is used to introduced the new literal format. Consider an example where you
wish to define numeric literals that return the price in euros. This can be defined in the
following way:

long double operator

{

_eu(long double val)

return val / 1.24;

Notice the signature that contains the name operator ”’, followed by the suffix _eu. In
this case, you'll be using a fixed conversion value, but in general you could have a more
complex scheme for conversion from dollars to euros. Finally, you can use this user-
defined literal in the following way:

void showUserDefinedLiterals()

{
double price = 300; // price in dollars
long double priceInEU = 300.0_eu;

cout << " price in dollars:

<< " price in Euros: "

<< price
<< pricelnkU << endl;

Here, you first define a price without any conversion (in dollars). Then, you create
a second variable that corresponds to the same quantity, but using the user-defined
suffix _eu. Using this suffix, you will have a converted price in the priceInEU variable, as
printed at the end of the showUserDefinedLiterals function.
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Range-Based for

STL containers are some of the most used templates in any C++ system. These
containers are versatile and can be used to perform a large number of operations to
its components. In the previous versions of C++, it was possible to iterate through the
components of a container using an auxiliary iterator variable, for example:

void loopExamplel()
{

std::vector<std::pair<double,std::string>> v;

// Without auto
for (std::vector<std::pair<double,std::string>>::iterator it =
v.begin();

it 1= v.end(); ++it)

// Do something here

Or you can use an auto variable to simplify the preceding code a little. Still, there
is a lot of code necessary just to iterate over the elements of the container. The C++11
standard introduces a simpler way to do this, with the container-oriented for loop.
The syntax for this special case is simplified, so you don’t need to write the boundary
conditions (begin() and end()) for the container. Here is the example from earlier,

modified to use the new for loop.

void forLoopExample()

{
std::vector<std::pair<double,std::string>> vectorOfPairs;
for (auto &i : vectorOfPairs)
{
cout << " values are "
<< i.first << " and "
<< i.second << endl;
}
}
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Notice how the vectorOfPairs variable is now used only once in the second part of
the loop statement. The auto variable declaration avoids the need for a long template
declaration, which helps to keep the notation easy to read.

Rvalue References

One of the common performance issues with the use of containers and strings in C++ is

the fact that temporary variables need to be created in so many places:

¢ When moving elements between two containers, it is frequently
necessary to perform a copy and then delete the old elements.

e When implementing operators, it is often necessary to return new
objects each time an operation is performed, since the argument to
an operator (such as <<) may very well be a temporary object.

e When returning objects from functions, it becomes necessary to copy
the return object to a temporary, since it belonged to a function that
is finishing. If this temporary object is immediately assigned to a new
variable, then the temporary object is not used.

To help developers to tackle these issues, C++ designers decided to introduce a
notation for variables that are not named and that cannot be assigned outside of the
current context. Such variables are known as rvalues, because in any expression they
can only appear in the right side of the assignment. Examples of rvalues are immediate
values passed as parameters to functions and temporaries created during the evaluation
of expressions, among others.

The syntax for rvalues is similar to references, but with the && sign used instead of a
single & sign. Such declarations are useful mainly in the list of arguments for a function,

as well as in the return. Here are some examples of their use:

#include <string>
using std::string

void rvalExamp(string &&s)
{

cout << " string is " << s << endl;
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void rvalExamp(string &s)
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{
cout << " string lvalue: " << s << endl;

}

int main()

{
rvalExamp("a test string"); // calls rval version
string a = "string a ";
string b = "string b ";
rvalExamp(a + b); // calls rval version
string c = "another example";
rvalExamp(c); // calls 1lval version
return 0;

}

FEATURES OF C++20

In this example, any string (including temporary values) can be passed to the

function rvalExamp. The rvalue may be used with the knowledge that its temporary

value will be destroyed at the end of the function. On the other hand, you can also have

a version of the function that receives a standard lvalue reference. This version of the

function is called only when a lvalue is used as parameter (in this case it happens when

the parameter is a named variable).

An important case where rvalues may be useful is in the assignment operator. If the

parameter to the operator is a rvalue, then it is usually possible to optimize it by reducing

the number of allocations. This is shown in the following example:

#include <vector>
using std::vector;

class RvalTest {

public:
RValTest(int n);
RValTest(const RValTest 8x);
~RValTest();

RValTest 8operator=(RValTest &8p);
RValTest &operator=(RValTest &p);
private:

// this is for RVAL
// this is for LVAL
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vector<int> data;
b
RValTest::RValTest(int n)
: data(n, 0)
{

}

RValTest::RValTest(const RValTest &p)
: data(p.data)

{

}

RValTest::~RValTest()

{
}

RValTest &RValTest::operator=(RValTest 8&8p)

{
data.swap(p.data);
cout << " calling rval assignment " << endl;
return *this;

}

RValTest 8RValTest::operator=(RValTest 8&p)

{
if (this != 8&p)

{
data = p.data;
}
cout << " calling normal assignment " << endl;
return *this;
}
void useRValTest()
{

RValTest test(3);
RValTest test2(4);
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test2 = test; // use standard assignment
test = RValTest(5); // use rval assignment

The class RValTest knows when the assignment operator is called with a temporary.
In this case, you can just swap the elements of the data array, instead of performing
expensive data copy.

New Function Declarator Syntax and decltype

You have seen that the keyword auto was repurposed to allow for automatic type
deduction or variables. However, once this change has been made to how variables
are declared, soon you will also need to return such values. For example, consider the
following function:

void autoFunctExamplel(vector<int> &x)
{

auto iterator = x.begin();

// Do something with iterator

This works fine, and you don’t need to know the exact template type returned
by begin() to use it. However, a big problem arises if you need to return the variable
iterator. In that case, you need to somehow determine the type of iterator just to declare
the function, since the return type must be part of the signature.

To help solving this problem, C++11 introduced a new form of function declaration,
which uses auto instead of the name of the type. Still, do maintain the type checking
system the compiler needs to determine the type of a function. This is where the
decltype keyword comes in. The decltype operator returns the type of any expression
that is given as a parameter. Similarly to how sizeof returns information from a type,
decltype returns the type for a variable or other general expression.

Using decltype, you can now add a return type declaration to a function after the ->
operator, which may only appear right after the list of arguments to the function. Since at
this point the type of the arguments to the function are known, you can use them along
with decltype to define the return type. Here is an example based on the code presented
earlier:

auto autoFuncExample(vector<int> 8x) -> decltype(x.begin())
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{
auto iterator = x.begin();
// Do something with iterator
return iterator;

}

Now you can return the iterator without knowing its exact type, since it is
automatically calculated during compilation time.

The decltype operator is not restricted to appear in the declaration of a return type.
You can use anywhere a type may be required, although many times it can be
substituted by the auto keyword. For example, the variable declaration auto x = 1
is equivalent to decltype(1) x =1.But decltype can be used in other contexts,
such as sizeof(decltype(x.begin())), to determine the size of a deduced
type, where auto would not work.

Delegating Constructors

In older versions of C++, the problem of creating and maintaining initializers along with
constructors was well known. For example, you needed to initialize all scalar variables
in the same order that it appears in the class declaration. C++11 avoids this issue by
delegating the task of data initializing to other constructors.

A delegating constructor is simply one that can be used by other constructors,
to avoid the repetition of data initialization statements. For example, suppose you
have a class Dimensions with three member variables. You can have three different
constructors, each one accepting a different number of components for this dimension
object. To avoid repeating yourself during the initialization part, you can create a single
initializer constructor and call this constructor from the others. Here is a possible
implementation using C++11:

class Dimensions {
public:
Dimensions();
Dimensions(double x);
Dimensions(double x, double y);
Dimensions(double x, double y, double z);
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private:
double m x;
double m_y;
double m_z;
b5

Dimensions: :Dimensions()
: Dimensions(0, 0, 0)

{

}

Dimensions: :Dimensions(double x)
: Dimensions(x, 0, 0)

{

}

Dimensions: :Dimensions(double x, double y)
: Dimensions(x, y, 0)

{

}

Dimensions::Dimensions(double x, double y, double z)
:m x(x),
m_y(y),
m z(z)
{
}

The constructor Dimensions(double x, double y, double z) isthe only one that
can access the member variables directly, while the others are only using it to perform
indirect initialization.

Inheriting Constructors

Another common problem in earlier versions of C++ was the handling of constructors in
derived classes. Sometimes, a constructor derived from a class has constructors that are
identical to the constructors in the superclass. In this case, it was necessary to replicate
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all constructors in the subclass so that it would become available to clients. It seems
clear that this is an undesirable code replication, and it was addressed by the C++11
standard. Now, it is possible to employ the using keyword to introduce the constructors
existing in the base class. Here is an example, using the Dimensions class as its base:

class DimensionsDerived : public Dimensions {

public:
using Dimensions::Dimensions;
};
int main()
{
DimensionsDerived(1, 2, 4);
}

The new class can be created using the same constructors as the parent, since it
contains the using declaration for the base constructor.

Generalized Attributes

Attributes provide a standard syntax for the addition of annotations to elements
contained in C++ code. Most compilers use nonstandard mechanisms to determine
the attributes of certain elements. For example, if a function can be exported or not is
defined by attributes, which varied for each compiler vendor.

C++14 introduced a new syntax for attributes that can be used by any compiler
vendor. The attributes are introduced inside double brackets and contain annotation for
the element that is syntactically next to the attribute. Here is an example:

struct [[exported]] AttribSample

{
int memberA;
[[gnu::aligned (16)]]
double memberB;

};
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Note The list of available attributes is specific to each compiler. However, at
least for gcc it is possible to write custom plug-ins that are able to process these
attributes. For example, suppose that you create a plug-in to process GUI-based
classes in your code base. Running gcc with that plug-in will let you to perform
actions for each GUI class, such as generating additional code, creating resources
files to be used during runtime, and other related tasks.

Generalized Constant Expressions

In modern C++, we have a great emphasis on the use of templates and related compile-
time programming techniques. The STL and many other well-known libraries, such

as boost, depend heavily on templates. However, since template-based operations

are compile time by definition, they introduce the need for constant, compile-time
evaluated expressions. Such expressions have in common the fact that they evaluate to
constant values, so that all the results will be available at compilation time.

While normal C++ code can involve both runtime and compilation-time expressions,
it useful to guarantee that the value in a particular function is completely evaluated at
compilation time. This cannot be guaranteed with traditional function, however, which
motivated the standards committee to introduce constant expressions as a compiler-
enforced concept.

To guarantee that a function will evaluate only to constants that are available at
compiler time, you should use the new constexpr keyword. When this keyword is added
before a function declaration, the compiler will force its evaluation and emit an error
if the included expressions cannot be calculated at compile time. Here is a simple

example:

struct TestStruct {
int a;
char b;
double c;

}s

template <class T>
constexpr int testDataSize(T)
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{
return sizeof(T);
}
constexpr int minTestSize()
{
return 2 * testDataSize(TestStruct()) + 1;
}

The testDataSize function just shows how easy it is to create a compile-time
function. The return value calculated in the first function is the size of a test data
structure, which can later be used by other constant calculations. The second function
just calculates what is considered the minimum size for the test data in the application.
Results such as the ones presented earlier can be freely used on templates, as a way to
perform more complex calculations.

Null Pointer Constant

A null pointer is a pointer that doesn’t correspond to any valid address in the target
machine. Traditionally, null pointer values have been used to indicate that a pointer
is not in use. For functions return values, this usually means that the desired pointer is
invalid, among other possible uses.

C++ inherited from C the idea that null pointers are equivalent to the constant
zero, since this is an invalid pointer value in most computer architectures. In fact, the
preprocessor macro NULL is defined in previous versions of C and C++ as 0. The fact
that the 0 value can be confused with NULL in a numeric context, however, is one of
the problems inherent to this definition. To simplify the rules concerning null pointers,
the C++ committee decided to introduce a new keyword, nullptr, which can only be
interpreted as a pointer and not an integer or any other type that is related to the 0

constant.

void *testNull()
{

int *pi = new int;
if (pi == nullptr)
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return nullptr;

}

// *pi = 1 + nullptr; // this doesn't work, nullptr is not an integer
return pi;

The preceding code checks if a newly allocated variable is null. Notice that the
nullptr value cannot be used to simultaneously initialize an integer variable: it can only
be used in a pointer context.

Defaulted and Deleted Member Functions

Another new feature in C++ is the ability to clearly determine if a class will use or
disallow any of the default member functions provided by the compiler. Remember that
there are four member functions automatically provided when a class is created:

e The default constructor

e The copy constructor

e The destructor

o The assignment operator

Standard practice indicates that you should define these functions for every new
type, as you can see in the examples presented in this book. However, C++ gives another
option: you can use the default and delete keywords to determine which of these
member functions can be used by default (with the version created by the compiler) and
which versions should be discarded, for example:

class TestDefaults {
public:
TestDefaults() = default;
TestDefaults(int arg);
TestDefaults(const TestDefaults &) = delete;

// Other member functions here

s
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This class uses a default constructor, whose definition is written automatically
by the compiler, even though it has a nondefault constructor that receives a single
integer argument. This was not possible in previous versions of C++, where you could
either accept the default constructor or write it again in case you wanted two or more
constructors. Notice that you can, at the same time, reject the default copy constructor.
Therefore, the preceding declaration directly indicates that the type cannot be copied.

Another useful feature of default member functions is that you can introduce virtual
destructors without the need to write one. Remember that classes that include virtual
member functions also require virtual destructors in order to clean up resources in
each of the levels of the class hierarchy. The standard way of doing this is introducing
an empty virtual destructor, in order to allow for virtual destructors in the subclasses. In
C++11, you can use the default keyword to provide a default, virtual destructor. In the
previous example, this could be added in the following way:

class TestDefaults {
public:
TestDefaults() = default;
TestDefaults(int arg);
virtual ~TestDefaults() = default;
TestDefaults(const TestDefaults &) = delete;

// Other member functions here
};
Notice that you don’t need to explicitly write the destructor, since it will use the

default implementation. The derived classes, however, will enjoy the use of a virtual
destructor due to the definition in the base class.

Initializer Lists

One of the confusing aspects of C++ syntax is initialization. Different objects, such as
integers, structures, classes, and arrays, have slightly different ways to be initialized.
C++11, while maintaining the previous methods for variable initialization, introduces a
new way to perform initialization that is much more regular and can be applied to any
object in the language.

The syntax for initialization lists uses braces to surround one or more constants
or variables. These elements are then applied to the new variable and interpreted
according to its type. Here are a few examples:
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void initializationTest()
{
int x {}; // equivalent to int x = 0;
inty { 0 }; // same as above
const char *s { "var" };
double d { 2.4 };
struct StrTest {
int a;
double d;
char c;

15
StrTest structval { 2, 4.2, 'f' };

values are << X K KKy K «<'s
" " << structVal.a << endl;

cout << '

<< << d <<

class AClass {

public:
AClass(int v) : m val(v) {}
int m_val;

1
AClass obj = { 3 } ;

Notice that all these values can be easily initialized using the brace notation. Among
the advantages of this strategy is the fact that you can also initialize containers (such as
vectors) using lists of values enclosed in braces. Here is an example of this feature:

#include <map>
#include <vector>
Using std::vector;
using std::map;

void containerInitialization()

{

vector<int> vi = {1, 3, 5, 7, 9, 11 };

385



APPENDIXA  FEATURES OF C++20

for (auto &v : vi)

{

cout << v <« 5

}

map<int,double> m = { { 2, 3.0}, {4, 5.0} };
for (auto &v : m)

{

cout << v.first <« << v.second << ;

You can see from the preceding example how initialization lists can be effectively
used to pass data to standard containers found in the STL. Most containers in C++11 have
one or more constructors that can receive initialization lists. Finally, you can also create
classes that receive lists of parameters, using the class std::initializer_list. The compiler will
automatically fill the initializer_list container with the values passed to the constructor.

class MyClass {

public:
MyClass(std::initializer list<int> args);
vector<int> m_vector;

};
MyClass::MyClass(std::initializer list<int> args)
{
m_vector.insert(m vector.begin(), args.begin(), args.end());
}
void useClassInitializer()
{
MyClass myClass = { 2, 5, 6, 22, 34, 25 };
for (auto &v : myClass.m_vector)
{
cout <k« v <« " "
}
}
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