Practical
(++ Design

From Programming to Architecture

Adam B. Singer

Apress’

Practical C++ Design

From Programming to Architecture

Adam B. Singer

Apress’

Practical C++ Design: From Programming to Architecture

Adam B. Singer
The Woodlands, Texas, USA

ISBN-13 (pbk): 978-1-4842-3056-5 ISBN-13 (electronic): 978-1-4842-3057-2
DOI10.1007/978-1-4842-3057-2
Library of Congress Control Number: 2017954981

Copyright © 2017 by Adam B. Singer

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Michael Thomas
Coordinating Editor: Mark Powers
Copy Editor: Mary Behr

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484230565. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

For Terri, Caroline, and Rebecca

Table of Contents

About the AUROLccvcmmimmienminmsssssas s s nnnas Xi
About the Technical REVIEWETcussesssssssssssansssssnsssssnsssssnsssssnsssssnsssssnsssssnsssssnnssss xiii
g - [XV
Chapter 1: Defining the Case Studyc...cccimmnsmmmmmmsssssnmmmmssssmmmssssmmmssssnessssnmns 1
1.1 A Brief INTroduCTION ...t s 1
1.2 A Few Words About ReqUIremMeNtS........cccceviiirinnnne s s s s 2
1.3 Reverse Polish NOtation............coccvrniinrcn e 3
1.4 The Calculator’s ReqUIrEMENTS ..o e 5
1.5 The SOUICE COUEcoueerereereseriee e n e rnnnne s 6
Chapter 2: DecOmMPOSItIONcccerriiissmnmmmisssnsnmmsssssnnmmsssssssssssssnsssesssssnnnsssssnnnnsssssnnnnsssss 9
2.1 The Elements of a Good DeCOMPOSItIONcccceevvirierienennsrene s 10
2.2 Selecting an ArChitBCIUIE.ccvevreierrerere s s s a e e ne e 12
2.2.1 Multi-Tiered ArchiteCIUre.........ovvrriiirce s 12
2.2.2 Model-View-Controller (MVC) ArchiteCture.........cocucevrnrrninnnennsse s 14

2.2.3 Architectural Patterns Applied to the Calculator..........ccccvevninininncnsnc e 15

2.2.4 Choosing the Calculator’s ArChiteCUrecoocvrereresrnsesere s 16

2.3 INTBITACES ...cveerereeerrese s e p e e n e R p e e e nnne e 17
2.3.1 Calculator USE CASES........ccuuermsersrmssssisesssssssssss s ss s ss s sasssssssas 18
2.3.2 ANAIYSIS OF USE CASES.....errererrerersersessrseressessssessessesssssssessessesssssssessesssssssessessesssssnsessens 21
2.3.3 A Quick Note on Actual Implementationc.ccocvvevrnirninnnenns e 27

2.4 Assessment of Our Current DESIgNcovevrecernie s 28
2.5 NEXE SEEPS. i ——————————————— 28

TABLE OF CONTENTS

Chapter 3: The StacKccccvisemnmrmssnnnmmsssssnnmmssssssssessssssssessssnssssssssnssssssssnsnsssssnnnnssnss 31
3.1 Decomposition of the STaCK MOAUIE..........c.ccrrerrierireccrr e 31
3.2 THE STACK ClaSS.....eeueerrrerererereenerensesessesessese s sesesesse e ses e ssesessesesensesessssessessssssssensenens 34

3.2.1 The Singleton Pattern ... 34
3.2.2 The Stack Module as a Singleton Class...........cccvvrrnesenessnsessnsssse s ssssesenns 36
3.3 AdAING EVENTScecererieriesirsere st sa s s e e s st s s e 40
3.3.1 The ODSErVer PALIEIN.........cccvrrriecriririssessse s 41
3.3.2 The Stack as an Event PUDIISNE ... s 52
3.3.3 The Complete Stack INTErfacecccvvrerninininn s 53
3.4 A QUICK NOTE ON TESHING ...covreeereeerereressere s e e sr s nnnnens 54

Chapter 4: The Command DiSpatCherccccuusemmmmnssssnmmssssssnmmssssssnmnssssssnesssssssnnnns 57
4.1 Decomposition of the Command DiSpatCher............ccccvvvinnvnrninn s 57
4.2 The COMMANG CIASScccocrurmrmiiiriririssssss s s 58

4.2.1 The Command Pattern...........coovcevnnnnincnsessse s 58
4.2.2 More on Implementing Undo/RedO.........cccocererinerinienineninnnennsesess s sessssesens 59
4.2.3 The Command Pattern Applied to the Calculator.............ccovvvrvririennsnsnenesensenenne, 61
4.3 The Command REPOSITOIYcvoueerrrrererirrrenerresesessesese s sse e s e sse e e e sessssessenens 81
4.3.1 The CommandRepoSItory Class.........couvrrnerernnernsesesesesssesessesesssse s sesssssssssessssesenns 81
4.3.2 Registering Core COMMANAS........ccuvrveriererinsensessessesessessessessssessessessessssessessesssssssessesaes 87
4.4 The Command MaANAQETccccvrerrrrersererensnsersessessssessessessessssessessessessssessessessssessessesssssssessees 88
4.4.1 THE INTEITACE ... e 88
4.4.2 Implementing Undo and REdOccccvcrennnninenn s snas 89
4.5 The Command DiSPAICRErcccovcivriiirnrr e e e 91
4.5.1 The INTEITACEccerreceereceree e 92
4.5.2 Implementation DEtailScccvcerrrrrnieniennrrre s 93
4.6 Revisiting Earlier DECISIONScccvcerverereerinserienessssessese s sessese e ssssessessesssssssessessessssessesseses 95

TABLE OF CONTENTS

Chapter 5: The Command Line Interfacecccrvnssmnnnmssssnssmnssssssnsssssssssssssssssnsess 97
5.1 The User Interface ADSIraction..........coccoereeerecrrerre e 97
5.1.1 The ADSTract INTErACEccoreceerererecerr e e 98
5.1.2 User INterface EVENTSccoeerrcerercrerese s 101
5.2 The Concrete CLI ClaSssc.cucvvrerrnnenmsrenmssssesssssssssessssessnns 105
5.2.1 REQUIFBIMENTSecviiirierieriesirsere s sese s e se s e sse s st e s e ssesaesassessessesassessesaesaesssensesnens 105
5.2.2 THE CLI DESION....coteierrereerrererserersessssessessessessssessessessessssessesssssssessessessesessessessessssensessens 107
5.3 Tying It Together: AWorking Programccccvveverinienseenesenses e sessessee e sessesseesaessessens 112
Chapter 6: The Graphical User Interface.........cccccrusmrmsssmmmsssnssssssssssssnsssssssssssnsssas 115
6.1 REQUIFEMENTS......cc e e e e s e 115
6.2 BUIlAING GUIS.....cceeereeererreseriesersse s se e e e e e sssssse s sessssnssssesesssnenns 118
6.2.1 Building GUIS iN IDEScccoereerrssissssssssssssssssssssssssesesesssesesesssssssssssssssssssssssssssnnns 119
6.2.2 BUIlding GUIS iN COUEc.eoervererrerinseriereresessesessessesesessessesassessessessssessessesssssssensessens 120
6.2.3 Which GUI Building Method IS BELEI?........cccccvveriererrrererenensenesessssessessessessssessessens 121
6.3 MOCUIANZALION ..ot e 122
6.3.1 The CommandButton ADSEraction...........ccccoceeerrrcrerescr e 122
6.3.2 The CommandButton DESIgNccccvrererenmrnsmsrsesessse s s ses s sssessssesessssenns 123
6.3.3 The CommandButton INterface........c.ccurerernsennresinnness s 127
6.3.4 GEHiNG INPUL....c.eore e ne 129
6.3.5 The Design of the INpUtWidget ... 129
6.3.6 The Interface of the INPUEWIAGEL ... 131
OIS 1 1T 0 o 132
6.4.1 The Design of the DiSplay Classc.currerernserensesmsssesnsessssssesssesssssssssssessssessssssenns 134
6.4.2 A POOF DESION ...vcuvreerinesrnsesesse e s s ss s s s sr e s e nn s 134
6.4.3 An Improved Display DESIgN........cccucvrerierererseriesesesessesessessssesessessesessessesssssssessessens 135
8.5 THE MOUEeveeriririrese e p b e 136
6.6 The DiSplay ReUX........cccuirirerieninsire e ss e s s s s s s 138
6.7 Tying It Together: The Main WindOW.........c.ccoreierencrnscrerese s 139

vii

TABLE OF CONTENTS

LR T 10 oo < 141
6.9 AWOIKiNG Programcccoeeernserensenerenesessesessssessssesessesesssssssssesesssssssssssssssssssssssssssssssssnns 142
6.10 A Microsoft Windows BUild NOTE..........cccereerrenmrssernsesenese s sese s 144
Chapter 7: PIUGINS .uuccuiiissssessnmmmmmmmmssssssssssssmssssssssssssssnssssssssssssssnnsnsssssssssssssnnnnnnsness 145
7.1 WHaL IS @ PIUGINT ...t s 145
7.1.1 RUIES fOr CH+ PIUGINS ...cvevrereriesisserere e sessessessessssessessessesassessessessssessessesssssssensessens 146
7.2 Problem 1: The Plugin INTErfaceccccvcrvererverree s rercer e r s s s e saeas 149
7.2.1 The Interface for Discovering Commandsc.ccocvevvnieninnnnnsennene e sessesessens 149
7.2.2 The Interface for Adding New GUI BUHIONSccocooreecrnccnnenere e 154
7.2.3 Plugin Allocation and Deallocationcccuveernenesenesnsesessesess s sessesenns 156
7.2.4 The Plugin Command INtErfacecuccurrvrernrerrnesesnse s s sens 156
7.2.5 APLVEISIONING...cueiteiersererressrsersessesssssssessesssssssessessessessssessessssssssssessessessssessesssssssensessens 159
7.2.6 Making the Stack AVAIlADIEcccvverierererririere s sse e s saesessessesaens 160
7.3 Problem 2: Loading PIUGINScccocvirienininicne s se e s se e s sne s e s snes 161
7.3.1 Platform-Specific Plugin LOAdingccceevrernsererenernnernseseseseseseses e sessesenns 162
7.3.2 Loading, Using, and Closing a Shared LiDraryc.ccccovevmnenenisnesnsesessesssssesensesenns 162
7.3.3 A Design for Multi-Platform Code...........ccvvvrernrerrnenennsesnsesssesessse e e ssssesenns 164
7.4 Problem 3: Retrofitting PACAIC........cccvierrrerierierenersire s s sese s s ssssessessessesessesaesnes 177
7.4.1 MOdUule INTEITACES......coveeereeree et 178
7.4.2 Adding Plugin Buttons to the GUL............ccceorrininnsncn s 182
7.5 INnCOrporating PIUGINSccoeoerreerererereseressese s s se s s s 183
7.5.1 L0AdING PIUGINScoveerireririeserrene s sss e s ss s ss s s s sessssessssssessssenns 184
7.5.2 Injecting FUNCLONAIITYccecerrecerrcrrcse e 185
7.6 A CONCIEte PIUQIN...ccccvverreririereresesserese e sesessesaeses e ssessessssessessesaesassessesaessssessesaesassssnessenses 187
748 200 O o T 1 (=T TS 187
7.6.2 Source Code Dependency INVEISIONcccvcvcriennsnsne s ses s ssessssessessens 189
7.6.3 Implementing HyperbolicLnPlugin’s Functionality............ccocuerrenrnsennsenesnnesensenenns 190
A A\ LB oSS 193

viil

TABLE OF CONTENTS

Chapter 8: New Requirements........ccccivussmennmsssssnnnmssssssssssssssssssssssssnsssssssssssssssnnnnss 195
8.1 Fully Designed NeW FEAUIEScccviririninens st se s s se s s snas 195
8.1.1 BatCh OPerationcccvevnininiinnnrsse s s nne 196
8.1.2 St0red ProCRAUIEScceeereerree s 197
8.2 Designs Toward a More Useful CalCulator............couevnennenennsesnsesesssess s ssssesenns 211
8.2.1 ComMPIEX NUMDELS ...cccereerrerirereresiesesesessesessessessessesessessesaesassessessessesessessesasssssensessens 211
8.2.2 VAri@DIES.......cooereercerr 216
8.3 Some Interesting Extensions for Self-Exploration..........c.cccccvvvvnvenrecnnscnnsesereceresenens 221
8.3.1 High DPI SCAlNGccereeeereeeriererercsese e 221
8.3.2 DYNA@mIC SKINNING......cooveerrrrererreserrnsesesesessesesessessssssessssessssesssssssssssesssssssssssssssssssssssnns 221
8.3.3 FIOW CONTIOL.....ccueetereerrnernnsenesrese s s s e sr s e s sr s ssa e s s 222
8.3.4 An Alternative GUI LAyOULccccevererrerieresenseriesesessesessessesessessessessssessessesasssssensessens 222
8.3.5 A Graphing CalCUIALONccecvrererrrreriererrsesseresessesesse e ssesassessessessssessessesasssssensessens 222
8.3.6 A Plugin Management SyStem.........ccccccvrirrniennesinnsc e ses s 223
8.3.7 A Mobile Device INTErface..........ccoverrererenerrcrerese e 223
Appendix A: Acquiring, Building, and Executing pdCalc..........ccoussnmnmmmsssnnnnssssanns 225
A1 Getting the SOUICE COUEccovveeerererrese s nre e 225
A.2 DEPENUENCIES ...uerverreeeierereriesesseresse s e ses e s s e sa s st s e s be st st s s b s b e e s e s s be st e e e e e aesaene e e naennens 225
A.3 BUIIdING PACAICc..eoreerererierirrererere s s s e s sas e s e saesa e e s saesaess e e saesnens 226
A.3.1 USING QL Creatorccvuivevineninesensse s ss s se s e sessssesessessssenens 227
A.3.2 Using the COMMAN LINEccceeeerereririerireserescreseses e ses e sss e sessesessesessssesessessssenens 228
A.4 EXeCUting PACAICccevcerireirire s s e 229
A.4.1 USING Ot Cre@torccccvreeerensesesesessssesessessssssessesessssssssssssssssessssssesssssssensssssssssssssssenens 229
A.4.2 Using the COMMAN LINEccccvererrererrnsesnnesesesessssessssessssssessssessssessssssessssesssssssssenens 229
DN 0] (=T 100 T o O 230

ix

TABLE OF CONTENTS

Appendix B: Organization of the Source Codecccussemmrrmsssnnnsssssnnsssssssnsssssssnns 233
B.1 The SIC DIFECIOIY.....cccceierrecirsere s e r e p e 233
B.1.1 The PACaIC DIrECIONYccceueeereeerercrerere e s e 233
B.1.2 The pdCalc-simple-Cli DIr€CIOrY........cccvvreriinirie e 234
B.1.3 The pdCalc-simple-gui DIreCIOrY........coverernssnresrsesersse s s ssssesenns 234
B.1.4 The ULilitieS DIFECIOIYcccevvverrerere sttt enen 234
B.1.5 The backend DIir€CIOrYcccccvvriereririrrie s 234
B.1.6 The Cli DIrECIOIYcovecircireiesr e s 235
B.1.7 The gui DIr€CIOIYccoveeeeeer et 236
B.1.8 The pluging DIrCIONYcccvveerrermrrnerrsesesese s s e s s s s e e e sessssessssensnss 236

B.2 The teSt DIrECIOIYccceiiirircrire e e 236
B.2.1 The teStDriVEr DIFECIOIYccccveerrereririerrere e se s s e s se s sae e s e saeenes 237
B.2.2 The utilitieSTeSt DIr€CIOrYccvcrveririrrir e 237
B.2.3 The backendTest DIrCLOrycccvvevvvrrrierinsnsne s s 237
B.2.4 The CliTESt DIF@CIOIYcoveueeereecreeererere e 238
B.2.5 The gUITESt DIrECIOIY.....cccecvrerreerrrereseserrese s s nennis 238
B.2.6 The pluginsTest DireCIOry........cccvvvrrrerninernse s 238
RefereNCEeS.....ccurinrssassssnsssansssassssnsssanssssssssnsssansssn s s ssn s s snnsssm s s san s s snn s sn s nsnnnnnnnnsnnnnnnnns 239
INA@X iiiiiissnnnnnnnnnnnnssssssssnnnnnnnnmessssssssnnnnnnnnnsssssssssnnnnnnneessssssssnnnnnnnnnssssssssnnnnnnnnnnssssssns 243

About the Author

Adam B. Singer graduated first in his class at the Georgia Institute of Technology in
1999 with a bachelor’s degree in chemical engineering. He subsequently attended the
Massachusetts Institute of Technology on a National Defense, Science, and Engineering
Graduate Fellowship. He graduated from MIT with a Ph.D. in chemical engineering in
2004 after defending his thesis titled “Global Dynamic Optimization.” Since graduation,
Adam has been a member of the research and engineering staff at the ExxonMobil
Upstream Research Company,' where he has worked in software development, design,
and project management in areas such as optimization, reservoir simulation, decision
support under uncertainty, basin modeling, well log modeling, and process stratigraphy.
He has also served on and chaired committees designing in-house training in the

areas of technical software development and computational and applied mathematics.
He currently holds a joint supervisory position in both the Computational Sciences

and Stratigraphic and Reservoir Systems Functions. Adam additionally held the

title of adjunct assistant professor in the Department of Computational and Applied
Mathematics at Rice University from 2007-2012. In both 2006 and 2007, he taught a
graduate level course, CAAM 520, on computational science. The course focused on the
design and implementation of high performance parallel programs.

'The advice, information, and conclusions discussed in this book are those of the author and
have not been endorsed by, or reflect the opinions or practices of, ExxonMobil Corporation
or its affiliates.

xi

About the Technical Reviewer

Michael Thomas has worked in software development

for more than 20 years as an individual contributor, team
lead, program manager, and vice president of engineering.
Michael has more than 10 years of experience working with
mobile devices. His current focus is in the medical sector,
using mobile devices to accelerate information transfer
between patients and health care providers.

xiii

Preface

Throughout my career, I have mentored both students and fellow employees in
programming, and many of them have suggested that I write my thoughts down in book
form. However, I have typically responded with the rebuttal that I felt I had nothing novel
to present. Being a largely self-taught programmer, I have always been able to rattle off
a long list of books from which I have derived most of my knowledge. Therefore, what
could I write about that has not already been said?

I came to realize, however, that the majority of books that I encounter tend to focus
only on pieces of design or implementation rather than taking a holistic approach.
For example, if one wants to learn the C++ language, Stroustrup [24] or Lippman and
Lajoie [15] are excellent references. For learning C++ best practices, one need only read
the books by Sutter [25, 26, 27], Sutter and Alexandrescu [28], or Meyers [18, 17, 19].
Of course, learning to program extends well beyond C++. For data structures and
algorithms, there are always the classics by Knuth [11, 12, 13] or the more accessible and
concise book by Cormen et al [6]. To learn object-oriented analysis and design, the book
by Booch et al [4] is an excellent reference. Of course, design patterns can be learned
from Gamma et al [7], and general programming practices can be learned from many
books such as those by McConnell [16], Spinellis [23], or Kernighan and Pike [10].

Certainly, the deeper the specialty one seeks, the more esoteric the book one can
find (and should eventually read). This book is not such a book. Rather, I have striven to
write a book that operates from the premise that the reader already possesses a working
knowledge of the information encased in works such as the aforementioned titles. In this
book, I instead attempt to ground the reader’s theoretical knowledge of design through
practice using a single case study.

Target Audience

As mentioned above, the goal of this book is not to present any specific topic but rather
to explore the interrelationship of often compartmentalized subjects. The successful
combination of these components to form a cohesive, maintainable, elegant piece

of software is, in essence, design. As such, this book is intended to target practicing

PREFACE

professionals, in particular those who have several years of development experience but
who do not yet possess sufficient experience to architect independently a large software
project.

Because my intent is to emphasize the utilization of one’s existing knowledge
effectively to design software, I make little effort to explain individual topics in great
depth. I believe too many books classified as intermediate to advanced fail because the
author devotes too much content describing prerequisites. The result is a massive tome
filled with unnecessary detail for the advanced reader, while the beginner is left with a
long and complicated exposition that is still inaccessible because the beginner does not
possess sufficient knowledge or experience to grasp the subject regardless of the amount
of detail devoted to the description. I have, therefore, aimed for conciseness over
completeness. Often, I simply refer the reader to relevant material rather than myself
describing a background topic in great detail. While this strategy may indeed make this
book difficult for beginners, I hope experienced professionals appreciate both the brevity
of the book and its tone, which assumes the reader is competent at his or her craft.

Structure of the Book

Learning most tasks in programming requires hands-on experience and repetition;
design is no exception. My opinion is that design is best learned through a combination
of self-exploration and mentoring from an expert. For this reason, I have chosen to
organize this book as a study in design through the detailed working of a case study.
Instead of discussing design elements in the abstract, we will instead examine the
concrete application of design principles as they relate to the design and construction
of a simplistic (but not too simplistic) software project. Importantly, we will not only
examine successful results that led to the final implementation, but we will also spend
time considering alternatives, some of which are viable and others which are not. Where
multiple solutions may suffice, choosing one over the other is often either a matter of
context or just taste. Regardless, experience is usually the arbiter of such decisions, and
hopefully this book will enable the reader to learn from the author’s experiences without
having to repeat his mistakes. That is, [hope I have created a book that can serve as a
self-contained master class in design.

PREFACE

Language Selection

Design as an abstract concept can be taught in the absence of a particular programming
language. However, once committed to a concrete example, a specific language must be
chosen for the implementation. I decided to write the case study exclusively using C++.
While every line of the program does not appear in the text, all of the source code is
available for the reader to examine. Despite this book’s primary focus on design, reading
the source code is a good way to learn how implementation details in a specific language
enable or, at least, facilitate a chosen design. The source code also serves as a high quality
(Thope) exemplar of a modern C++ implementation of a complete user application. I highly
recommend reading and modifying the source code in conjunction with reading the text.

The decision to use C++ does not imply that C++ is the best choice for all programs,
and, in fact, it may not even be the best choice for the program examined in this book.
However, to ground the abstraction, a concrete language had to be selected. I chose
C++ because it is standardized, widely deployed, and available at zero cost on many
platforms. Selfishly, I also chose C++ because it is my most proficient language. While I
could, perhaps, have chosen another language meeting the aforementioned objective
criteria (e.g., Java), the resulting code would probably have been functional but non-
idiomatic due to my relative lack of expertise.

During the writing of this book, C++0x was ratified as C++11 and then updated as
C++14. Soon we will have C++17. This progression of standards occurring while I was
writing this book should give the reader an idea of how long it takes to write a book in
one’s “free time” at night! The ratification of these standards and the relative paucity
of design literature focused on using these new language and library features give me
the unique opportunity to highlight how these new language elements can be used
effectively in the design of a large scale program. That said, I have not gone out of my way
to incorporate modern C++ features where they are inappropriate just to demonstrate
usage. In some cases, new language features provide syntactic convenience (e.g., the
auto keyword), and, in these instances, I use these features without further mention as
they are now established elements of modern C++. In other instances, new language
features imply new design semantics afforded by the language (e.g., smart pointers).
Where new, modern C++ language or library features enable new design paradigms
expressible in the language, I have chosen to highlight these points in a sidebar.

The above said, the reader should not expect this to be a book that simply focuses
on various modern C++ features and how to use them effectively. Of particular note
will be the relative sparseness of templated classes and the complete lack of some

xvii

PREFACE

advanced features such as template metaprogramming. This intentional omission is not
meant to be a commentary on the importance of these language features or a critique

of their usefulness as design constructs. In fact, they are essential for specific domains,
particularly where efficiency and genericity dominate (e.g., the standard library, boost).
Rather, the lack of usage of any particular feature reflects my pragmatic approach toward
design: the appropriate language subset for a particular project should reflect only those
features required to express clearly and efficiently the developer’s intent. If your favorite
language feature is missing, it may be because I felt that its use in this context was less
clear than my chosen alternative. After all, we write programs in higher level languages
to be read and understood by other programmers. The task of designing, implementing,
maintaining, and extending code in a production environment is quite difficult in its own

right. Displays of unnecessary cleverness are generally neither warranted nor appreciated.

GUI Framework and Platforms

While graphical user interfaces (GUI) are not the primary focus of this book, our
program will eventually acquire one; hence, selecting a particular GUI framework
was necessary. I selected Qt for this purpose and have successfully tested the code
with versions 4 and 5. As with C++, Qt is widely deployed, cross platform, and free. As
with C++, again, selfishly, I chose Qt because I am experienced using desktop Qt and
personally enjoy using it. A big advantage of using Qt is that it makes nearly all of the
source code for the project platform-independent. Where platform independence
was not achievable, I encapsulated the platform-dependent code behind an abstract
interface. We'll explore this design pattern, in depth, in Chapter 7.

In general, I always strive to write standards-conforming, platform-independent
code. The source code in this book should compile with any C++14-compliant compiler
and on any platform where Qt is supported. That said, every platform and every
compiler somehow manage to have their own unique idiosyncrasies, and testing every
possible combination of platform and compiler is impossible. I personally have tested
the source code for this book on Windows 7, Windows 10, and Linux using gcc (the
mingw variant on Windows). I do not own an Apple computer, so I have not tested the
source code on Mac OS X. However, the code should work as is or require only very
minor changes to get it to compile there if that is your platform of choice. Any known
platform-specific code is compartmentalized and encapsulated; extension to other
platforms should be straightforward.

xviii

PREFACE

The Case Study

To this point, I have not yet mentioned the subject of the case study central to this book.
In my opinion, an ideal problem would be one that is not too daunting and yet not so
trivial that it needs no design. Additionally, the domain of the problem should be readily
understandable to any reader. For this reason, I have chosen to implement a stack-
based, Reverse Polish Notation (RPN) calculator that I named pdCalc, short for Practical
Design Calculator. Functionally, pdCalc was inspired by the HP48S calculator, an old
favorite calculator of mine from high school and college (that still sits on my desk today).
I cannot imagine any reader being unfamiliar with the basic operations of a calculator,
and making the calculator use RPN adds a little twist that I hope will make the project
interesting.

The Source Code

The source code (and supporting unit tests) for pdCalc is available, in its entirety, from
Apress’s GitHub repository. The easiest way to find the repository is via the Download
Source Code button located at www.apress.com/9781484230565. Appendix A describes,
in detail, how to download and build the source code. Although most readers will likely
prefer to download the source using a git client, the entire source code is also available
from GitHub as a single zip file.

The source code itself is licensed under the GNU Public License (GPL) version 3.

I hope you find the source code useful for learning about design and implementation.
Beyond its use as an educational aide for this book, you are, of course, free to do
anything you like with the source code within the rights granted to you by the GPL.

This book uses two distinct fonts, the standard font you are reading now and a fixed
width font used for source code. The fixed width font is demonstrated in the following list
of standard template library containers: vector, 1ist, and map. When clear from context,
to save space, I often omit namespaces and template arguments. When the discussion
requires a block of source code, it will be offset from the rest of the text as follows:

class ExampleClass

{
public:
// your implementation here

};

Xix

http://www.apress.com/9781484230565

PREFACE

In general, I tried to reproduce the code in the text identically to the code in the
repository. However, in some cases, parts of the source were deliberately omitted in the
text either for brevity or clarity. I have tried to note instances where the differences are
significant. Where the two differ, assume the code in the repository is the more correct
and complete version.

Contacting the Author

I suspect that as you read this book and explore the source code, you will invariably
have questions. Please feel free to contact me with questions about the content of
the book, questions about the source code, errors, or improvements to my design or
implementation. I can be contacted at PracticalDesignBook@gmail.com. I will make
my best effort to reply to all reasonable email related to pdCalc, but without knowing
the volume of email I'll receive, I can make no ironclad guarantee that I will be able
to respond to every request. If I find that there is a significant interest in a community
discussion of pdCalc and its design, I'll investigate establishing a web page to
accompany this book. Again, I can offer no promises.

Parting Advice

Finally, in addition to learning something, I hope that you, the reader, have fun with
the subject. My personal suggestion is to try to think about the design decisions
yourself before reading my solutions. If you are truly industrious, you may even want

to implement your own calculator using a completely different, possibly better design.
After all, as I said before, design is ultimately about both experience and taste, and your
experience and taste may differ significantly from mine.

CHAPTER 1

Defining the Case Study

1.1 A Brief Introduction

This book is about programming design. However, unlike many books on this topic, this
book teaches design by exploration rather than design by instruction. Typically, most
authors writing about some aspect of design establish principles they wish to convey, lay
out these principles in the abstract, and then proceed to give examples supporting the
current points. This is not such a book. Rather, this book defines a practical problem to
be solved, and proceeds to examine its solution in detail. That is, instead of deciding on a
topic and creating trivial examples to support its teaching, I have defined a hard problem
and then let the solution of this problem dictate what topics should be discussed.
Interestingly enough, the above approach is exactly how I would tell someone not
to learn a subject. I always stress that people should learn broad fundamentals first
and subsequently apply these principles to solving problems. However, this is not a
book meant to teach the principles of design. Rather, this is a book meant for someone
who already knows the fundamentals but wishes to deepen his knowledge of practice.
This is a book meant to teach someone the craft of designing and implementing a
realistic, albeit small, program from start to finish. This process involves more than
knowing elements of design. It involves understanding when and how to use what
you know, understanding how to decide between seemingly equivalent approaches,
and understanding the long-term implications of various decisions. This book is
not comprehensive in its coverage of data structures, algorithms, design patterns, or
C++ best practices; volumes of books exist to cover these topics. This is a book about
learning how to apply this knowledge to write code that is organized, cohesive, sensible,
purposeful, and pragmatic. In other words, this book is about learning to write code that
both gets the job done now (development) and allows others to continue to get the job
done in the future (maintenance). This, I have termed practical design.

© Adam B. Singer 2017
A. B. Singer, Practical C++ Design, DOI110.1007/978-1-4842-3057-2_1

CHAPTER 1 DEFINING THE CASE STUDY

In order to explore practical design, we need a case study. Ideally, the case study
problem should be

e Large enough to be more than trivial,
e Small enough to be tractable,
o Familiar enough to not require domain specific expertise, and

o Interesting enough to maintain the reader’s attention for the duration
of the book.

After taking the above criteria into consideration, I decided to select a stack-based,
Reverse Polish Notation (RPN) calculator as the case study. The details of the calculator’s
requirements will be defined below. I believe that the code for a fully functioning
calculator is significant enough that the detailed study of its design provides sufficient
material to cover a book. Yet, the project is small enough that the book can be a reasonable
length. Certainly, specialized domain expertise is not required. I suspect every reader of
this book has used a calculator and is well-versed in its basic functionality. Finally, I hope
that making the calculator RPN provides a suitable twist to stave off boredom.

1.2 A Few Words About Requirements

No matter how big or how small, all programs have requirements. Requirements are
those features, whether explicit or implicit, to which the program must comply. Entire
books have been written on gathering and managing software requirements (see, for
example, [28] or [21]). Typically, despite one’s best efforts, it is practically impossible to
gather all of the requirements upfront. Sometimes, the effort required is economically
infeasible. Sometimes, domain experts overlook what seem like obvious requirements
to them, and they simply neglect to relate all of their requirements to the development
team. Sometimes, requirements only become apparent after the program begins to take
shape. Sometimes, the customer does not understand his or her own requirements well
enough to articulate them to the development team. While some of these dilemmas
may be mitigated using agile development methods, the fact remains that many design
decisions, some of which may have far reaching implications, must occur before all of
the requirements are known.

CHAPTER 1 DEFINING THE CASE STUDY

In this book, you will not study techniques for gathering requirements; rather, the
requirements are simply given upfront. Well, most of them will be given upfront. A few of
the requirements have been explicitly reserved until a later chapter so that you can study
how your design might change to accommodate unknown future expansion. Certainly,
one could justly argue that since the author knows how the requirements will change,
the initial design will correctly “predict” the unforeseen features. While this criticism
is fair, I nonetheless argue that the thought process and discussion behind the design
decisions is still relevant. As a software architect, part of your job will be to anticipate
future requests. Although any request is possible, incorporating too much flexibility at
the outset is not economical. Designing for future expansion must always be considered
as a tradeoff between the cost difference for expressly accommodating expandability
upfront versus modifying the code later if a change is requested. Where a design should
land in the spectrum between simplicity and flexibility must ultimately be measured
against the likelihood of a feature request materializing and the feasibility of adding a
new feature if its incorporation is not considered at the beginning.

1.3 Reverse Polish Notation

I presume that anyone reading this book is familiar with the typical operation of a
calculator. However, unless you grew up using a Hewlett Packard calculator, you may be
unfamiliar with how a stack-based RPN calculator functions (see [5] if you are unfamiliar
with how a stack works). Simply stated, input numbers are pushed onto a stack, and
operations are performed on the numbers already on the stack. A binary operator, such
as addition, pops the top two numbers from the stack, adds the two numbers, and then
pushes the result onto the stack. A unary operator, such as the sine function, pops one
number from the top of the stack, uses this number as the operand, and pushes the
result onto the stack. For those familiar with basic compiler lingo, RPN functions as the
postfix notation of the operation (see [1] for a detailed discussion of postfix notation).
The following list describes my opinion of just a few of the advantages of Reverse Polish

Notation over conventional syntax:
e All operations can be expressed parentheses free.

e Multiple inputs and outputs can be visualized simultaneously.

CHAPTER 1 DEFINING THE CASE STUDY

o Large calculations can be trivially decomposed into multiple, simple
operations.

o Intermediate results can be trivially retained and reused.

While RPN will likely seem incredibly awkward at first, once you've become
accustomed to it, you will curse every calculator that does not employ it when you are
tasked with performing anything more complicated than simple arithmetic.

To ensure that the operation of an RPN calculator is clear, let’s examine a short
example. Suppose we wish to evaluate the following expression:

(4+7)*3+2
7

On a typical, non-RPN calculator, we would type ((4 + 7) * 3 + 2)/7 and then press
the = key. On an RPN calculator, we would instead type 4 7 + 3 * 2 + 7 /, where there is an
enter command following each number in order to push the input onto the stack. Note
that for many calculators, to reduce key entry, operations such as + may also function
to implicitly enter the previous number on the stack. Figure 1-1 shows the above
calculation performed step-by-step on an RPN calculator.

stack:

e

: =

4

4: 4: 4:
Gl L|e ‘zz J@ -
1: 7 1: 35 1: 2

Figure 1-1. An example calculation performed on an RPN calculator showing
intermediate steps. Counterintuitively, the top of the stack is at the bottom of the
screen.

CHAPTER 1 DEFINING THE CASE STUDY

1.4 The Calculator’s Requirements

Once you understand the nature of Reverse Polish Notation, the rest of the calculator’s
functionality should be straightforward from the requirements description. If RPN is still
unclear, I recommend spending some time clarifying this concept before proceeding.
Given that caveat, the requirements of the calculator are now defined as follows:

o The calculator will be stack-based; the stack size should not be hard
coded.

e The calculator will use RPN to perform operations.

o The calculator will exclusively operate on floating point numbers; a
technique for entering input numbers (including scientific notation)
should be implemented.

o The calculator will have the ability to undo and redo operations; the
undo/redo stack sizes should be unlimited.

o The calculator will have the ability to swap the top two elements of
the stack.

o The calculator will be able to drop (erase) an element from the top of
the stack.

o The calculator will be able to clear the entire stack.

o The calculator will be able to duplicate the element from the top of
the stack.

o The calculator will be able to negate the element from the top of the
stack.

e The calculator will implement the four basic arithmetic operations:
addition, subtraction, multiplication, and division. Division by 0 is
impermissible.

o The calculator will implement the three basic trigonometric functions
and their inverses: sin, cos, tan, arcsin, arccos, and arctan. Arguments
to the trigonometric functions will be given in radians.

e The calculator will implement functions for y* and {/; .

CHAPTER 1 DEFINING THE CASE STUDY

o The calculator will implement a runtime plugin structure to expand
the operations the calculator can perform.

o The calculator will implement both a command line interface (CLI)
and a graphical user interface (GUI).

o The calculator will not support infinity or imaginary numbers.

e The calculator will be fault tolerant (i.e., will not crash if the
user gives bad input) but does not need to handle floating point
exceptions.

Now that the calculator has requirements, it deserves a name. I chose to call the
calculator pdCalc, short for Practical Design Calculator. Please accept my apologies to
you for my lack of naming creativity.

The remainder of this book will examine, in detail, the complete design of a
calculator that satisfies the above requirements. In addition to describing the decisions
made for the final design, I will also discuss alternatives so you can understand why
the final decisions were made and what could have been the consequences of different
decisions. Note that the final design presented in this book is not the only design that
will meet the requirements, and it may not even be the best design that meets the
requirements. I encourage the ambitious reader to experiment with alternate designs
and extend the calculator to meet his or her own needs and interests.

1.5 The Source Code

Throughout the text of this book, you will be examining a lot of code snippets as we
design our calculator. Most of these code snippets are taken directly from pdCalc’s
GitHub source repository (see Appendix A for instruction for downloading the source
code). I will point out any significant differences between the code in the text and the
code in the repository. Occasionally, code snippets are comprised of small, contrived
examples. These code snippets are not part of pdCalc’s source repository. All of the code
is made available under the GPL version 3 [7]. I highly encourage you to experiment with
the source code and moditfy it in any way you see fit.

In order to build pdCalc, you will need access to a C++14 compliant compiler and
Qt (version 4 or 5). Since the project has an intrinsic Qt dependency (and because I like
the Qt Creator IDE), I used Qt project files for the build system and Qt Test for the unit

CHAPTER 1 DEFINING THE CASE STUDY

testing framework. I have built and tested the program on both Linux and Windows
using gcc/mingw, but the code should also build and execute on additional systems or
with additional compilers with little or no source code modification. Some tweaks to
the gmake project files will be necessary for porting to a different platform. Because I
expect that the audience for this book leans toward developers with years of experience,
I suspect that building the code from source will be a fairly trivial task. However, for
completeness, I have included build guidance in Appendix A. Additionally, I have
included Appendix B to explain the organization of pdCalc’s source code, libraries, and
executables. Although these two Appendices appear at the end of the book, you may
wish to read them first if you intend to build pdCalc and explore its full implementation
while reading the text.

CHAPTER 2

Decomposition

Software is complex, one of the most complex endeavors humankind has ever undertaken.
When you first read the requirements document for a large-scale programming project,
you may feel overwhelmed. That’s expected; the task is overwhelming! For this reason,
largescale programming projects typically begin with analysis.

The analysis phase of a project consists of the time spent exploring the problem
domain in order to understand the problem completely, clarify the requirements,
and resolve any ambiguities between the client’s and developer’s domains. Without
fully understanding the problem, you, as the architect or developer, have absolutely
no chance of developing a maintainable design. For the case study chosen for this
book, however, the domain should be familiar (if not, you may wish to pause here and
partake in an analysis exercise). Therefore, we will skip a formal, separate analysis
phase. That said, aspects of analysis can never be skipped entirely, and we will explore
several analysis techniques during the construction of our design. This intentional
coupling of analysis and design emphasizes the interplay between these two activities
to demonstrate that even for the simplest of problem domains, producing a good design
requires some formal techniques for analyzing the problem.

One of the most important techniques we have as software designers for addressing
inherent problem complexity is hierarchical decomposition. Most people tend to
decompose a problem in one of two ways: top down or bottom up. A top-down approach
starts by looking at the whole picture and subsequently subdividing the problem until
reaching the bottom-most level. In software design, the absolute bottom-most level is
individual function implementations. However, a top-down design might stop short
of implementation and conclude by designing objects and their public interfaces.

A bottom-up approach would start at the individual function or object level and
combine components repeatedly until eventually encompassing the entire design.

For our case study, both top-down and bottom-up approaches will be used at
various stages of the design. I find it practical to begin decomposition in a top-down

© Adam B. Singer 2017
A. B. Singer, Practical C++ Design, DOI10.1007/978-1-4842-3057-2_2

CHAPTER 2 DECOMPOSITION

fashion until bulk modules and their interfaces are defined, and then actually design
these modules from the bottom up. Before tackling the decomposition of our calculator,
let’s first begin by examining the elements of a good decomposition.

2.1 The Elements of a Good Decomposition

What makes a decomposition good? Obviously, we could just randomly split
functionality into different modules and group completely unconnected components.
Using the calculator as an example, we could place arithmetic operators and the GUI in
one module while placing trigonometric functions with the stack and error handling in
another module. This is a decomposition, just not a very useful one.

In general, a good design will display attributes of modularity, encapsulation,
cohesion, and low coupling. Many developers will have already seen many of the
principles of a good decomposition in the context of object-oriented design. After all,
breaking code into objects is itself a decomposition process. Let’s first examine these
principles in an abstract context. Subsequently, I'll ground the discussion by applying
these principles to pdCalc.

Modularity, or breaking components into independently interacting parts (modules),
is important for several reasons. First, it immediately allows one to partition a large,
complex problem into multiple, smaller, more tractable components. While trying to
implement code for the entire calculator at once would be difficult, implementing an
independently functioning stack is quite reasonable. Second, once components are split
into distinct modules, unit tests can be defined that validate individual modules instead of
requiring the entire program to be completed before testing commences. Third, for large
projects, if modules with clear boundaries and interfaces are defined, the development
effort can be divided between multiple programmers, preventing them from constantly
interfering with each others’ progress by needing to modify the same source files.

The remaining principles of good design, encapsulation, cohesion, and low coupling
all describe characteristics that modules should possess. Basically, they prevent
spaghetti code. Encapsulation, or information hiding, refers to the idea that once a
module is defined, its internal implementation (data structures and algorithms) remains
hidden from other modules. Correspondingly, a module should not make use of the
private implementation of any other module. That is not to say that modules should
not interact with each other. Rather, encapsulation insists that modules interact with
each other only through clearly defined, and, preferably, limited interfaces. This distinct

10

CHAPTER2 DECOMPOSITION

separation ensures that internal module implementation can be independently modified
without concern for breaking external, dependent code, provided the interfaces remain
fixed and the contracts guaranteed by the interfaces are met.

Cohesion refers to the idea that the code inside a module should be self-consistent
or, as the name implies, cohesive. That is, all of the code within a module should logically
fit together. Returning to our example of a poor calculator design, a module mixing
arithmetic code with user interface code would lack cohesion. No logical ties bind the
two concepts together (other than that they are both components of a calculator). While
a small code, like our calculator, would not be completely impenetrable if it lacked
cohesion, in general, a large, noncohesive code base is very difficult to understand,
maintain, and extend.

Poor cohesion can manifest in one of two ways: either code that should not be
together is crammed together or code that should be together is split apart. In the
first instance, code functionality is almost impossible to decompose into mentally
manageable abstractions because no clear boundaries exist between logical
subcomponents. In the latter situation, reading or debugging unfamiliar code (especially
for the first time) can be very frustrating because a typical execution path through the
code jumps from file to file in a seemingly random fashion. Either manifestation is
counterproductive, and I thus prefer cohesive code.

Finally, we'll examine coupling. Coupling represents the interconnectedness of
components, be it functional coupling or data coupling. Functional coupling occurs when
the logical flow of one module requires calling another module to complete its action.
Conversely, data coupling is when data is shared between individual modules either via
direct sharing (e.g., one or more modules point to some set of shared data) or via passing of
data (e.g., one module returning a pointer to an internal data structure to another module).
To argue for zero coupling is clearly absurd because this state would imply that no module
could communicate in any way with any other module. However, in good design, we
do strive for low coupling. How low should low be? The glib answer is as low as possible
while still maintaining the ability to function as necessary. The reality is that minimizing
coupling without detrimentally complicating code is a skill acquired with experience. As
with encapsulation, low coupling is enabled by ensuring that modules communicate with
each other only through cleanly defined, limited interfaces. Code that is highly coupled
is difficult to maintain because small changes in one module’s design may lead to many
unforeseen, cascading changes through seemingly unrelated modules. Note that whereas
encapsulation protects module A from internal implementation changes to module B, low
coupling protects module A from changes to the interface of module B.

11

CHAPTER 2 DECOMPOSITION

2.2 Selecting an Architecture

Although it is now tempting to follow the above guidelines and simply start decomposing
our calculator into what seem like sensible constituent components, it’s best to first see
if someone else has already solved our problem. Because similar problems tend to arise
frequently in programming, software architects have created a catalog of templates for
solving these problems; these archetypes are called patterns. Patterns typically come

in multiple varieties. Two categories of patterns that will be examined in this book are
design patterns [6] and architectural patterns.

Design patterns are conceptual templates used to solve similar problems that arise
during software design; they are typically applied to local decisions. We will encounter
design patterns repeatedly throughout this book during the detailed design of our
calculator. Our first top level of decomposition, however, requires a pattern of global
scope that will define the overarching design strategy, or, software architecture. Such
patterns are naturally referred to as architectural patterns.

Architectural patterns are conceptually similar to design patterns; the two differ
primarily in their domains of applicability. Whereas design patterns are typically applied
to particular classes or sets of related classes, architectural patterns typically outline the
design for an entire software system. Note that I refer to a software system rather than a
program because architectural patterns can extend beyond simple program boundaries
to include interfaces to hardware or the coupling of multiple independent programs.
Two architectural patterns of particular interest for our case study are the multi-tiered
architecture and the model-view-controller (MVC) architecture. We'll examine each
of these two patterns in the abstract before applying them to pdCalc. The successful
application of an architectural pattern to our case study will represent the first level of
decomposition for the calculator.

2.2.1 Multi-Tiered Architecture

In a multi-tiered, or n-tiered, architecture, components are arranged sequentially in
tiers. Communication is bidirectional via adjacent tiers, but nonadjacent tiers are not
permitted to communicate directly. An n-tiered architecture is depicted in Figure 2-1.

12

CHAPTER2 DECOMPOSITION

Figure 2-1. A multi-tiered architecture with arrows indicating communication

The most common form of the multi-tiered architecture is the three-tiered
architecture. The first tier is the presentation layer, which consists of all of the user
interface code. The second tier is the logic layer, which captures the so-called “business
logic” of the application. The third tier is the data layer, which, as the name implies,
encapsulates the data for the system. Very often, the three-tiered architecture is applied
as an enterprise-level platform, where each tier could represent not only a different
local process, but possibly a different process operating on a different machine. In such
a system, the presentation layer would be the client interface, whether it be a traditional
desktop application or a browser-based interface. The logic layer of the program could
run on either the client or server side of the application or, possibly, on both. Finally, the
data layer would be represented by a database that could be running locally or remotely.
However, as you shall see with pdCalc, the three-tiered architecture can also be applied
to a single desktop application.

Let’s examine how the three-tiered architecture obeys our general decomposition
principles. First and foremost, at the highest level of decomposition, the architecture
is modular. At least three modules, one for each tier, exist. However, the three-tiered
architecture does not preclude multiple modules from existing at each tier. If the
system were large enough, each of the primary modules would warrant subdivision.
Second, this architecture encourages encapsulation, at least between tiers. While one
could foolishly design a three-tiered architecture where adjacent tiers accessed private
methods of neighboring tiers, such a design would be counterintuitive and very brittle.
That said, in applications where the tiers coexist in the same process space, it is very easy
to intertwine the layers, and care must be taken to ensure this situation does not arise.
This separation is achieved by clearly delineating each layer via definitive interfaces.
Third, the three-tiered architecture is cohesive. Each tier of the architecture has a distinct

13

CHAPTER 2 DECOMPOSITION

task, which is not commingled with the tasks of the other tiers. Finally, the three-tiered
architecture truly shines as an example of limited coupling. By separating each of the
tiers via clearly defined interfaces, each tier can change independently of the others. This
feature is particularly important for applications that must execute on multiple platforms
(only the presentation layer changes platform to platform) or applications that undergo
unforeseen replacement of a given tier during their lifetimes (e.g., the database must be
changed due to a scalability problem).

2.2.2 Model-View-Controller (MVC) Architecture

In the Model-View-Controller architecture, components are decomposed into three
distinct elements aptly named the model, the view, and the controller. The model
abstracts the domain data, the view abstracts the user interface, and the controller
manages the interaction between the model and the view. Often, the MVC pattern is
applied locally to individual GUI widgets at the framework level where the design goal
is to separate the data from the user interface in situations where multiple distinct views
may be associated with the same data. For example, consider a scheduling application
with the requirement that the application must be able to store dates and times for
appointments, but the user may view these appointments in a calendar that can be
viewed by day, week, or month. Applying MVC, the appointment data is abstracted by a
model module (likely a class in an object-oriented framework), and each calendar style
is abstracted by a distinct view (likely three separate classes). A controller is introduced
to handle user events generated by the views and to manipulate the data in the model.
At first glance, MVC seems no different than the three-tiered architecture with
the model replacing the data layer, the view replacing the presentation layer, and
the controller replacing the business logic layer. The two architectural patterns are
different, however, in their interaction pattern. In the three-tiered architecture, the
communication between layers is rigidly linear. That is, the presentation and data
layers talk only bidirectionally to the logic layer, never to each other. In MVC, the
communication is triangular. While different MVC implementations differ in their exact
communication patterns, a typical implementation is depicted in Figure 2-2. In this
figure, the view can both generate events to be handled by the controller and get the data
to be displayed directly from the model. The controller handles events from the view, but
it can also directly manipulate either the model or the controller. Finally, the model can
be acted upon directly by either the view or the controller, but it can also generate events

14

CHAPTER2 DECOMPOSITION

to be handled by the view. A typical such event would be a state change event that would
cause the view to update its presentation to the user.

Figure 2-2. An MVC architecture with arrows indicating communication.
Solid lines indicate direct communication. Dashed lines indicate indirect
communication (e.g., via eventing) [30].

As we did with the three-tiered architecture, let’s now examine how MVC obeys the
general decomposition principles. First, an MVC architecture will usually be broken
into at least three modules: model, view, and controller. However, as with the three-
tiered architecture, a larger system will admit more modules because each of the model,
view, and controller will require subdivision. Second, this architecture also encourages
encapsulation. The model, view, and controller should only interact with each other
through clearly defined interfaces, where events and event handling are defined as
part of an interface. Third, the MVC architecture is cohesive. Each component has a
distinct, well-defined task. Finally, we ask if the MVC architecture is loosely coupled.
By inspection, this architectural pattern is more tightly coupled than the three-tiered
architecture because the presentation layer and the data layer are permitted to have
direct dependencies. In practice, these dependencies are often limited either through
loosely coupled event handling or via polymorphism with abstract bases classes.
Typically, however, this added coupling does usually relegate the MVC pattern to
applications in one memory space. This limitation directly contrasts with the flexibility of
the three-tiered architecture, which may span applications over multiple memory spaces.

2.2.3 Architectural Patterns Applied to the Calculator

Let’s now return to our case study and apply the two architectural patterns discussed
above to pdCalc. Ultimately we'll select one as the architecture for our application. As
previously described, a three-tiered architecture consists of a presentation layer, a logic

15

CHAPTER 2 DECOMPOSITION

layer, and a data layer. For the calculator, these tiers are clearly identified as entering
commands and viewing results (via either a graphical or command line user interface),
the execution of the commands, and the stack, respectively. For the MVC architecture, we
have the stack as the model, the user interface as the view, and the command dispatcher
as the controller. Both calculator architectures are depicted in Figure 2-3. Note that in
both the three-tiered and MVC architectures, the input aspects of the presentation layer
or view are responsible only for accepting the commands, not interpreting or executing
them. Enforcing this distinction alleviates a common problem developers create for
themselves: the mixing of the presentation layer with the logic layer.

(@) Three-Tiered Architecture (b) MVC Architecture

Figure 2-3. Calculator architecture options

2.2.4 Choosing the Calculator’s Architecture

From Figure 2-3, one quickly identifies that the two architectures partition the
calculator into identical modules. In fact, at the architectural level, these two competing
architectures differ only in their coupling. Therefore, in selecting between these

two architectures, we only need to consider the design tradeoffs between their two
communication patterns.

Obviously, the main difference between the three-tiered architecture and the MVC
architecture is the communication pattern between the user interface (UI) and the
stack. In the three-tiered architecture, the UI and stack are only allowed to communicate
indirectly through the command dispatcher. The biggest benefit of this separation is a
decrease in coupling in the system. The Ul and the stack need to know nothing about
the interface of the other. The disadvantage, of course, is that if the program requires
significant direct UI and stack communication, the command dispatcher will be
required to broker this communication, which decreases the cohesion of the command
dispatcher module. The MVC architecture has the exact opposite tradeoff. That is, at the

16

CHAPTER2 DECOMPOSITION

expense of additional coupling, the UI can directly exchange messages with the stack,
avoiding the awkwardness of the command dispatcher performing added functionality
unrelated to its primary purpose. Therefore, the architecture decision reduces to
examining whether or not the Ul frequently needs a direct connection to the stack.

In an RPN calculator, the stack acts as the repository for both the input and output for
the program. Frequently, the user will wish to see both the input and output exactly as it
appears on the stack. This situation favors the MVC architecture with its direct interaction
between the view and the data. That is, the calculator’s view does not require the command
dispatcher to translate the communication between the data and the user because no
transformation of the data is required. Therefore, I selected the model-view-controller as
the architecture for pdCalc. The advantages of the MVC architecture over the three-tiered
architecture are, admittedly, small for our case study. Had I instead chosen to use the
three-tiered architecture, pdCalc still would have had a perfectly valid design.

2.3 Interfaces

Although it might be tempting to declare the first level of decomposition complete with
the selection of the MVC architecture, we cannot yet declare victory. While we have
defined our three highest level modules, we must also define their public interfaces.
However, without utilizing some formal method for capturing all the data flows in our
problem, we are very likely to miss key necessary elements of our interface. We therefore
turn to an object-oriented analysis technique, the use case.

A use case is an analysis technique that generates a description of a specific action a user
has with a system. Essentially, a use case defines a workflow. Importantly, a use case does not
specify an implementation. The customer should be consulted during use case generation,
particularly in instances where a use case uncovers an ambiguity in the requirements.
Details concerning use cases and use case diagrams can be found in Booch et al [4].

For the purpose of designing interfaces for pdCalc’s high-level modules, we will
first define the use cases for an end user interacting with the calculator. Each use case
should define a single workflow, and we should provide enough use cases to satisfy all
of the technical requirements for the calculator. These use cases can then be studied to
discover the minimal interactions required between the modules. These communication
patterns will define the modules’ public interfaces. An added benefit of this use case
analysis is that if our existing modules are insufficient to implement all of the workflows,
we will have uncovered the need for additional modules in our top-level design.

17

CHAPTER 2 DECOMPOSITION

2.3.1 Calculator Use Cases

Let’s create the use cases for our requirements. For consistency, use cases are created in
the order in which they appear in the requirements.

2.3.1.1 Use Case: User Enters a Floating Point Number onto
the Stack

Scenario: The user enters a floating point number onto the stack.
After entry, the user can see the number on the stack.

Exception: The user enters an invalid floating point number. An
error condition is displayed.

2.3.1.2 Use Case: User Undoes Last Operation

Scenario: The user enters the command to undo the last
operation. The system undoes the last operation and displays the

previous stack.

Exception: There is no command to undo. An error condition is
displayed.

2.3.1.3 Use Case: User Redoes Last Operation

Scenario: The user enters the command to redo the last operation.
The system redoes the last operation and displays the new stack.

Exception: There is no command to redo. An error condition is
displayed.

2.3.1.4 Use Case: User Swaps Top Stack Elements

Scenario: The user enters the command to swap the top two
elements on the stack. The system swaps the top two elements on
the stack and displays the new stack.

Exception: The stack does not have at least two numbers. An error
condition is displayed.

18

CHAPTER2 DECOMPOSITION

2.3.1.5 Use Case: User Drops the Top Stack Element

Scenario: The user enters the command to drop the top element
from the stack. The system drops the top element from the stack

and displays the new stack.

Exception: The stack is empty. An error condition is displayed.

2.3.1.6 Use Case: User Clears the Stack

Scenario: The user enters the command to clear the stack.
The system clears the stack and displays the empty stack.

Exception: None. Let clear succeed even for an empty stack
(by doing nothing).

2.3.1.7 Use Case: User Duplicates the Top Stack Element

Scenario: The user enters the command to duplicate the top
element on the stack. The system duplicates the top element on
the stack and displays the new stack.

Exception: The stack is empty. An error condition is displayed.

2.3.1.8 Use Case: User Negates the Top Stack Element

Scenario: The user enters the command to negate the top element
on the stack. The system negates the top element on the stack and

displays the new stack.

Exception: The stack is empty. An error condition is displayed.

2.3.1.9 Use Case: User Performs an Arithmetic Operation

Scenario: The user enters the command to add, subtract, multiply, or
divide. The system performs the operation and displays the new stack.

Exception: The stack size is insufficient to support the operation.

An error condition is displayed.

Exception: Division by zero is detected. An error condition is
displayed.
19

CHAPTER 2 DECOMPOSITION

2.3.1.10 Use Case: User Performs a Trigonometric Operation

Scenario: The user enters the command for sin, cos, tan, arcsin,
arccos, or arctan. The system performs the operation and displays

the new stack.

Exception: The stack size is insufficient to support the operation.

An error condition is displayed.

Exception: The input for the operation is invalid (e.g., arctan(—50)
produces an imaginary result). An error condition is displayed.

2.3.1.11 Use Case: User Performs y*

Scenario: The user enters the command for y*. The system
performs the operation and displays the new stack.

Exception: The stack size is insufficient to support the operation.

An error condition is displayed.

Exception: The input for the operation is invalid (e.g., —1°°
produces an imaginary result). An error condition is displayed.

2.3.1.12 Use Case: User Performs iy

Scenario: The user enters the command for {/; . The system
performs the operation and displays the new stack.

Exception: The stack size is insufficient to support the operation.
An error condition is displayed.

Exception: The input for the operation is invalid (e.g., ¥-1
produces an imaginary result). An error condition is displayed.

2.3.1.13 Use Case: User Loads a Plugin

Scenario: The user places a plugin into the plugins directory.
The system loads the plugin on startup, making the plugin
functionality available.

Exception: The plugin cannot be loaded. An error condition is

displayed.

20

CHAPTER2 DECOMPOSITION

2.3.2 Analysis of Use Cases

We will now analyze the use cases for the purpose of developing C++ interfaces for
pdCalc’s modules. Keep in mind that the C++ language does not formally define a
module concept. Therefore, think of an interface conceptually as the publicly facing
function signatures to a collection of classes and functions grouped logically to define a
module. For the sake of brevity, the std namespace prefix is omitted in the text.

Let’s examine the use cases in order. As the public interface is developed, it will be
entered into Table 2-2. The exception will be for the first use case, whose interface will
be described in Table 2-1. By using a separate table for the first use case, we’ll be able to
preserve the errors we’ll make on the first pass for comparison to our final product. By
the end of this section, the entire public interface for all of the modules will have been
developed and cataloged.

We begin with the first use case: entering a floating point number. The
implementation of the user interface will take care of getting the number from the user
into the calculator. Here, we are concerned with the interface required to get the number
from the UI onto the stack.

Regardless of the path the number takes from the Ul to the stack, we must eventually
have a function call for pushing numbers onto the stack. Therefore, the first part of
our interface is simply a function on the stack module, push(), for pushing a double
precision number onto the stack. We enter this function into Table 2-1. Note that the
table contains the complete function signature, while the return type and argument
types are omitted in the text.

Now, we must explore our options for getting the number from the user interface
module to the stack module. From Figure 2-3b, we see that the UT has a direct link to the
stack. Therefore, the simplest option would be to push the floating point number onto
the stack directly from the UI using the push() function we just defined. Is this a good
idea?

By definition, the command dispatcher module, or the controller, exists to process
commands the user enters. Should entering a number be treated differently than, for
example, the addition command? Having the UI bypass the command dispatcher and
directly enter a number onto the stack module violates the principle of least surprise (also
referred to as the principle of least astonishment). Essentially, this principle states that
when a designer is presented with multiple valid design options, the correct choice is the
one that conforms to the user’s intuition. In the context of interface design, the user is

21

CHAPTER 2 DECOMPOSITION

another programmer or designer. Here, any programmer working on our system would
expect all commands to be handled identically, so a good design will obey this principle.

To avoid violating the principle of least surprise, we must build an interface that
routes a newly entered number from the UI through the command dispatcher. We
again refer to Figure 2-3b. Unfortunately, the UI does not have a direct connection to
the command dispatcher, making direct communication impossible. It does, however,
have an indirect pathway. Thus, our only option is for the Ul to raise an event (you'll
study events in detail in Chapter 3). Specifically, the Ul must raise an event indicating
that a number has been entered, and the command dispatcher must be able to receive
this event (eventually, via a function call in its public interface). Let’s add two more
functions to Table 2-1, one for the numberEntered() event raised by the UI and one for
the numberEntered() event handling function in the command dispatcher.

Once the number has been accepted, the Ul must display the revised stack. This
is accomplished by the stack signaling that it has changed, and the view requesting n
elements from the stack and displaying them to the user. We must use this pathway
because the stack only has an indirect communication channel to the UI. We add
three more functions to Table 2-1: a stackChanged() event on the stack module, a
stackChanged() event handler on the UJ, and a getElements() function on the stack
module (see the “Modern C++ Design Note” sidebar on move semantics to see options
for the getElements () function signature). Unlike the entering of the number itself,
itis reasonable to have the Ul directly call the stack’s function for getting elements in
response to the stackChanged() event. This is, in fact, precisely how we want a view to
interact with its data in the MVC pattern.

Of course, the aforementioned workflow assumes the user entered a valid number.
For completeness, however, the use case also specifies that error checking must be
performed on number entry. Therefore, the command dispatcher should actually check
the validity of the number before pushing it onto the stack, and it should signal the user
interface if an error has occurred. The Ul should correspondingly be able to handle
error events. That’s two more functions for Table 2-1: an error () event on the command
dispatcher, and a function, displayError(), on the UI, for handling the error event. Note
that we could have selected an alternative error handling design by leaving the UI to
perform its own error checking and only raise a number entered event for valid numbers.
However, for improved cohesion, I prefer placing the “business logic” of error checking
in the controller rather than in the interface.

22

CHAPTER2 DECOMPOSITION

Phew! That completes our analysis of the first use case. In case you got lost,
remember that all of the functions and events just described are summarized in Table 2-1.
Now just 12 more exciting use cases to go to complete our interface analysis! Don’t
worry, the drudgery will end shortly. We will soon derive a design that can consolidate
almost all of the use cases into a unified interface.

Table 2-1. Public Interfaces Derived from the Analysis of the Use Case for Entering
a Floating Point Number onto the Stack

Functions Events
User Interface void displayError(const string®) numberEntered(double)
void stackChanged()
Command void numberEntered(double) error(string)
Dispatcher
Stack void push(double) stackChanged()

void getElements(n, vector<double>8)

Before proceeding immediately to the next use case, let’s pause for a moment and
discuss two decisions we just implicitly made about error handling. First, the user
interface handles errors by catching events rather than by catching exceptions. Because
the user interface cannot directly send messages to the command dispatcher, the UI
can never wrap a call to the command dispatcher in a try block. This communication
pattern immediately eliminates using C++ exceptions for inter-module error handling
(note that it does not preclude using exceptions internally within a single module). In
this case, since number entry errors are trapped in the command dispatcher, we could
have notified the Ul directly using a callback. However, this convention is not sufficiently
general, for it would break down for errors detected in the stack since the stack has no
direct communication with the UI. Second, we have decided that all errors, regardless
of cause, will be handled by passing a string to the UI describing the error rather than
making a class hierarchy of error types. This decision is justified because the Ul never
tries to differentiate between errors. Instead, the Ul simply serves as a conduit to display

error messages verbatim from other modules.

23

CHAPTER 2 DECOMPOSITION

MODERN C++ DESIGN NOTE: MOVE SEMANTICS

In Table 2-1, the stack has the function void getElements(n, vector<double>8),
which enables callers to fill a vector with the top n elements from the stack. However, the
interface of the function tells us nothing about how the elements are actually added to the
vector. Are they added at the front? Are they added at the back? Is it presumed that the
vector is already sized correctly and the new elements are entered using operator[]? Are
old elements erased from the vector before the new ones are added? Hopefully, this ambiguity
will be resolved by developer documentation (good luck with that one). In the absence of
further information, one would likely conclude that new elements were simply pushed to the
back of the vector.

Beginning with C++11, however, the above interface ambiguity can be resolved semantically
by the language itself. Rvalue references and move semantics allow us to make this interface
decision very explicit. We can now efficiently (that is, without copying the vector or

relying on the compiler to implement the return value optimization) implement the function
vector<double> getElements(n) .Atemporary vector is created internally in the
function, and its contents are moved into the caller on function return. The interface contract is
now explicit; A new vector of size nwill be returned and filled with the top n elements on

the stack.

To not bloat the interface in the text, both variants of the function do not explicitly appear in
the tables defining the interface. However, both variants do appear in the source code. This
convention will often be used in this book. Where multiple helper calls performing the same
operation are useful in the implementation, both appear there, but only one variant appears in
the text. This omission is acceptable for the illustrative purposes of this book, but this omission
would not be acceptable for a detailed design specification for a real project.

The next two use cases, undo and redo of operations, are sufficiently similar that
we can analyze them simultaneously. First, we must add two new events to the user
interface: one for undo and one for redo. Correspondingly, we must add two event
handling functions in the command dispatcher for undo and redo, respectively. Before
simply adding these functions to Table 2-2, let’s take a step back and see if we can

simplify.

24

CHAPTER2 DECOMPOSITION

Table 2-2. Public Interfaces for the Entire First Level Decomposition

Functions Events
User Interface void postMessage(const string®) commandEntered(string)
void stackChanged()
Command void commandEntered(const stringd) error(string)
Dispatcher
Stack void push(double) stackChanged()

void getElements(n, vector<double>d) error(string)
double pop()
void swapTop()

At this point, you should begin to see a pattern emerging from the user interface events
being added to the table. Each use case adds a new event of the form commandEntered(),
where command has thus far been replaced by number, undo, or redo. In subsequent use
cases, command might be replaced with operations such as swap, add, sin, exp, etc. Rather
than continue to bloat the interface by giving each command a new event in the Ul and a
corresponding event handler in the command dispatcher, we instead replace this family of
commands with the rather generic sounding UI event commandEntered() and the partner
event handler commandEntered() in the command dispatcher. The single argument for
this event/handler pair is a string, which encodes the given command. In the case of a
number entered, the argument is the ASCII representation of the number.

Combining all of the Ul command events into one event with a string argument
instead of issuing each command as an individual event serves several design purposes.
First, and most immediately evident, this choice declutters the interface. Rather than
needing individual pairs of functions in the UI and the command dispatcher for each
individual command, we now need only one pair of functions for handling events
from all commands. This includes the known commands from the requirements and
any unknown commands that might derive from future extensions. However, more
importantly, this design promotes cohesion because now the UI does not need to
understand anything about any of the events it triggers. Instead, the deciphering of the
command events is placed in the command dispatcher, where this logic naturally belongs.
Creating one commandEntered() event for commands even has direct implications on
the implementations of commands, graphical user interface buttons, and plugins. I will
reserve those discussions for when you encounter those topics in Chapters 4, 6, and 7.

25

CHAPTER 2 DECOMPOSITION

We now return to our analysis of the undo and redo use cases. As described above,
we will forgo adding new command events in Table 2-2 for each new command
we encounter. Instead, we add the commandEntered() event to the Ul and the
commandEntered() event handler to the command dispatcher. This event/handler pair
will suffice for all commands in all use cases. The stack, however, does not yet possess
all of the necessary functionality to implement every command. For example, in order to
undo pushes onto the stack, we will need to be able to pop numbers from the stack. Let’s
add a pop () function to the stack in Table 2-2. Finally, we note that a stack error could
occur if we attempted to pop an empty stack. We, therefore, add a generic error () event
to the stack to mirror the error event on the command dispatcher.

We move to our next use case, swapping the top of the stack. Obviously, this
command will reuse the commandEntered() and error() patterns from the previous
use cases, so we only need to determine if a new function needs to be added to the
stack’s interface. Obviously, swapping the top two elements of the stack could either be
implemented via a swapTop() function on the stack or via the existing push() and pop()
functions. Somewhat arbitrarily, I chose to implement a separate swapTop() function, so
I added it to Table 2-2. This decision was probably subconsciously rooted in my natural
design tendency to maximize efficiency (the majority of my professional projects are
high-performance numerical simulations) at the expense of reuse. In hindsight, that
might not be the better design decision, but this example demonstrates that sometimes
design decisions are based on nothing more than the instincts of a designer as colored
by his or her individual experiences.

At this point, a quick scan of the remaining use cases shows that, other than loading
a plugin, the existing module interfaces defined by Table 2-2 are sufficient to handle all
user interactions with the calculator. Each new command only adds new functionality
internal to the command dispatcher, the logic of which will be detailed in Chapter 4.
Therefore, the only remaining use case to examine concerns loading plugins for pdCalc.
The loading of plugins, while complex, is minimally invasive to the other modules in
the calculator. Other than command and user interface injection (you’ll encounter
these topics in Chapter 7), the plugin loader is a standalone component. We therefore
defer the design of its interface (and the necessary corresponding changes to the other
interfaces) until we are ready to implement plugins.

Deferring the design of a significant portion of the top-level interface is a somewhat
risky proposition, and one to which design purists might object. Pragmatically, however,
I have found that when enough of the major elements have been designed, you need

26

CHAPTER2 DECOMPOSITION

to start coding. The design will change as the implementation progresses anyway, so
seeking perfection by overworking the initial design is mostly futile. Of course, neither
should one completely abandon all upfront design in an agile frenzy!

The above said, a few caveats exist for adopting a strategy of delaying the design of
a major component. First, if the delayed portion of the design will materially impact the
architecture, the delay may potentially cause significant rework later. Second, delaying
parts of the design prolongs the stabilization of the interfaces. Such delays may or may
not be problematic on large teams working independently on connected components.
Knowing what can and what cannot be deferred comes only with experience. If you are
uncertain as to whether the design of a component can be safely deferred or not, you
are much better off erring on the side of caution and performing a little extra design and
analysis work upfront to minimize the impact to the overall architecture. Poor designs
impacting the architecture of a program will impact development for the duration of a
project. They cause much more significant rework than poor implementations, and in
the worst case scenario, poor design decisions become economically infeasible to fix.
Sometimes, they can only be fixed in a major rewrite, which may never occur.

Before completing the analysis of the use cases, let’s compare the interface
developed in Table 2-1 for the first use case with the interface developed in Table 2-2
encompassing all of the use cases. Surprisingly, Table 2-2 is only marginally longer than
Table 2-1. This is a testament to the design decision to abstract commanding into one
generic function instead of individual functions for each command. Simplifying the
communication patterns between modules is one of the many time-saving advantages
of designing code instead of just hacking away. The only other differences between the
first interface and the complete interface are the addition of a few stack functions and
the modification of a few function names (e.g., renaming the displayError() function to
postMessage() to increase the generality of the operation).

2.3.3 A Quick Note on Actual Implementation

For the purposes of this text, the interfaces developed, as exemplified by Table 2-2,
represent idealizations of the actual interfaces deployed in the code. The actual code
may differ somewhat in the syntax, but the semantic intent of the interface will always
be preserved. For example, in Table 2-2, we have defined the interface to get n elements
asvoid getElements(n, vector<double>&), which is a perfectly serviceable interface.
However, using new features of modern C++ (see the sidebar on move semantics),

27

CHAPTER 2 DECOMPOSITION

the implementation makes use of rvalue references and move construction by also
providing vector<double> getElements(n) as a logically equivalent, overloaded interface.
Defining good C++ interfaces is a highly nontrivial task; I know of at least one
excellent book dedicated entirely to this subject [20]. Here in this book, I only provide
a sufficient level of detail about the interfaces needed to clearly explain the design. The
available source code demonstrates the intricacies necessary for developing efficient
C++ interfaces. In a very small project, allowing developers some latitude in adapting
the interface can usually be tolerated and is often beneficial as it allows implementation
details to be delayed until they can be practically determined. However, in a large-scale
development, in order to prevent absolute chaos between independent teams, it is wise
to finalize the interfaces as soon as practical before implementation begins.

2.4 Assessment of Our Current Design

Before beginning the detailed design of our three major components, let’s stop and
assess our current design against the criteria we identified in the beginning of this
chapter. First, having defined three distinct modules, our design is clearly modular.
Second, each module acts as a cohesive unit, with each module dedicated to one
specific task. User interface code belongs to one module, operational logic belongs to
another, and data management belongs to yet another, separate module. Additionally,
each module encapsulates all its own features. Finally, the modules are loosely coupled,
and where coupling is necessary, it is through a set of clearly defined, concise, public
interfaces. Not only does our top-level architecture meet our good design criteria, but
it also conforms to a well-known and well-studied architectural design pattern that
has been successfully used for decades. At this point, we have reaffirmed the quality
of our design and should feel very comfortable proceeding to the next step in our
decomposition, the design of the individual components.

2.5 Next Steps

Where do we go from here? We have now established the overall architecture of our
calculator, but how do we tackle the task of choosing which component to design and
implement first? In a corporate setting, with a large-scale project, the likelihood would
be that many modules would be designed and coded simultaneously. After all, isn’t that

28

CHAPTER2 DECOMPOSITION

one of the primary reasons for creating distinct modules separated cleanly by interfaces?
Of course, for our project, the modules will be handled sequentially, with some level of
iteration to make a posteriori improvements. Therefore, we must choose one module to
design and build first.

Of the three modules, the most logical starting point is the module with the fewest
dependencies on the other modules. From Figure 2-3, we see that, in fact, the stack is the
only module that has no dependencies on the interfaces of the other modules. The only
outward pointing arrow from the stack is dashed, which means that the communication
is indirect via eventing. Although the figure makes this decision pictorially obvious, one
would likely reach the same conclusion without the architecture diagram. The stack is
essentially an independent data structure that is easy to implement and test in isolation.
Once the stack has been completed and tested, it can be integrated into the design and
testing of the remaining modules. We therefore begin our next level of decomposition by
designing and implementing the stack.

29

CHAPTER 3

The Stack

The stack is the first module of the calculator that we will design and implement.
Although I defined the module’s public interface in Chapter 2, I said very little about

its implementation. In C++, the module is not a defined language concept. Therefore,
we are essentially left to decompose the stack into a logical grouping of functions and
classes and call this our module. Hence, this is where we begin. If you're a little rusty

on the mechanics of the stack data structure, now would be a great time to consult your
favorite data structures and algorithms book. My personal favorite is the one by Cormen
etal [5].

3.1 Decomposition of the Stack Module

The first question to ask in decomposing the stack module is, “Into how many pieces
should the stack be divided?” In object-oriented parlance, we ask, “How many objects
do we need, and what are they?” In this case, the answer is fairly obvious: one, the stack
itself. Essentially, the entire stack module is the manifestation of a single data structure,
which can easily be encapsulated by a single class. The public interface for this class was
already described in Chapter 2.

The second question one might ask is, “Do I even need to build a class at all or can
Ijust use the Standard Template Library (STL) stack class directly?” This is actually a
very good question. All design books preach that you should never write your own data
structure when you can use one from a library, especially when the data structure can
be found in the STL, which is guaranteed to be a part of a standards-conforming C++
distribution. Indeed, this is sage advice, and we should not rewrite the mechanics of
the stack data structure. However, neither should we use the STL stack directly as the
stack in our system. Instead, we will write our own stack class that encapsulates an STL
container as a private member.

31
© Adam B. Singer 2017

A. B. Singer, Practical C++ Design, DOI 10.1007/978-1-4842-3057-2_3

CHAPTER 3 THE STACK

Suppose we chose to implement our stack module using an STL stack. Several
reasons exist for preferring encapsulating an STL container (or a data structure from any
vendor) versus direct utilization. First, by wrapping the STL stack, we put in an interface
guard for the rest of the calculator. That is, we are insulating the other calculator modules
from potential changes to the underlying stack implementation by separating the stack’s
interface from its implementation (remember encapsulation?). This precaution can
be particularly important when using vendor software because this design decision
localizes changes to the wrapper’s implementation rather than to the stack module’s
interface. In the event that the vendor modifies its product’s interface (vendors are
sneaky like that) or you decide to exchange one vendor’s product for another’s, these
changes will only locally impact your stack module’s implementation and not affect
the stack module’s callers. Even when the underlying implementation is standardized,
such as the ISO standardized STL stack, the interface guard enables you to change the
underlying implementation without affecting dependent modules. For example, what if
you changed your mind and later decided to reimplement your stack module using, for
example, a vector instead of a stack.

The second reason to wrap an STL container instead of using it directly is that this
decision allows us to limit the interface to exactly match our requirements. In Chapter 2,
we expended a significant amount of effort designing a limited, minimal interface for
the stack module capable of satisfying all of pdCalc’s use cases. Often, an underlying
implementation may provide more functionality than you actually wish to expose. If
we were to choose the STL stack directly as our stack module, this problem would
not be severe because the STL stack’s interface is, not surprisingly, very similar to the
interface we have defined for the calculator’s stack. However, suppose we selected Acme
Corporation’s RichStack class with its 67 public member functions to be used unwrapped
as our stack module. A junior developer who neglected to read the design spec may
unknowingly violate some implicit design contract of our stack module by calling a
RichStack function that should not have been publicly exposed in the application’s
context. While such abuse may be inconsistent with the module’s documented interface,
one should never rely on other developers actually reading or obeying the documentation
(sad, but true). If you can forcibly prevent a misuse from occurring via a language
construct that the compiler can enforce (e.g., access limitation), do so.

The third reason to wrap an STL container is to expand or modify the functionality
of an underlying data structure. For example, for pdCalc, we need to add two functions
(getElements() and swapTop()) not present on the STL stack class and transform the

32

CHAPTER 3 THE STACK

error handling from standard exceptions to our custom error events. Thus, the wrapper
class enables us to modify the STL's standard container interface so that we can conform
to our own internally designed interface rather than being bound by the functionality
provided to us by the STL.

As one might expect, the encapsulation scenario described above occurs quite
frequently and has therefore been codified as a design pattern, the adapter (wrapper)
pattern [6]. As described by Gamma et al, the adapter pattern is used to convert the
interface of a class into another interface that clients expect. Often, the adapter provides
some form of transformational capabilities, thereby also serving as a broker between
otherwise incompatible classes.

In the original description of the pattern, the adapter is abstracted to allow a single
message to wrap multiple distinct adaptees via polymorphism using an adapter class
hierarchy. For the needs of pdCalc’s stack module, one simple concrete adapter class
suffices.

Remember, design patterns exist to assist in design and communication. Try not
to get caught in the trap of implementing patterns exactly as they are prescribed in
texts. Use the literature as a guide to help clarify your design, but, ultimately, prefer to
implement the simplest solution that fits your application rather than the solution that
most closely resembles the academic ideal.

A final question we should ask is, “Should my stack be generic (i.e., templated)?”
The answer here is a resounding maybe. In theory, designing an abstract data structure
to encapsulate any data type is sound practice. If the end goal of the data structure is
to appear in a library or to be shared by multiple projects, the data structure should be
generalized. However, in the context of a single project, I do not recommend making
data structures generic, at least not at first. Generic code is harder to write, more difficult
to maintain, and more difficult to test. Unless multiple type usage scenarios exist
upfront, I find writing generic code to not be worth the bother. I've finished too many
projects where I spent extra time designing, implementing, and testing a generic data
structure only to use it for one type. Realistically, if you have a non-generic data structure
and suddenly discover you do need to use it for a different type, the refactoring necessary
is not usually more difficult than had the class been designed to be generic from the
outset. Furthermore, the existing tests will be easily adapted to the generic interface,
providing a baseline for correctness established by a single type. We will, therefore,
design our stack to be double specific.

33

CHAPTER 3 THE STACK

3.2 The Stack Class

Now that we have established that our module will consist of one class, an adapter

for an underlying stack data structure, let’s design it. One of the first questions to be
asked when designing a class is, “How will this class be used?” For example, are you
designing an abstract base class to be inherited and thus be used polymorphically? Are
you designing a class primarily as a plain old data (POD) repository? Will many different
instances of this class exist at any given time? What is the lifetime of any given instance?
Who will typically own instances of this class? Will instances be shared? Will this class
be used concurrently? By asking these and other similar questions, we uncover the
following list of functional requirements for our stack:

¢ Only one stack should exist in the system.
o The stack’s lifetime is the lifetime of the application.

e Both the Ul and the command dispatcher need to access the stack;
neither should own the stack.

e Stack access is not concurrent.

Anytime the first three criteria above are met, the class is an excellent candidate for
the singleton pattern [6].

3.2.1 The Singleton Pattern

The singleton pattern is used to create a class where only one instance should ever exist
in the system. The singleton class is not owned by any of its consumers, but neither is
the single instance of the class a global variable (however, some argue that the singleton
pattern is global data in disguise). In order to not rely on the honor system, language
mechanics are employed to ensure only a single instantiation can ever exist.

Additionally, in the singleton pattern, the lifetime of the instance is often from the
time of first instantiation until program termination. Depending on the implementation,
singletons can be created either to be thread safe or suitable for single threaded
applications only. An excellent discussion concerning different C++ singleton
implementations can be found in Alexandrescu [2]. For our calculator, we'll use the
simplest implementation that satisfies our goals.

In order to derive a simple singleton implementation, we refer to our knowledge of
the C++ language. First, as previously discussed, no other class owns a singleton instance

34

CHAPTER 3 THE STACK

nor is the singleton’s instance a global object. This implies that the singleton class
needs to own its single instance, and the ownership access should be private. In order
to prevent other classes from instantiating our singleton, we will also need to make its
constructors and assignment operators either private or deleted. Second, knowing that
only one instance of the singleton should exist in the system immediately implies that
our class should hold its instance statically. Finally, other classes will need access to this
single instance, which we can provide via a public static function. Combining the above
points, we construct the shell for the singleton class shown in Listing 3-1.

Listing 3-1. The Shell for the Singleton Class

class Singleton
{
public:
static Singleton& Instance
{
static Singleton instance;
return instance;

}
void foo(){ /* does foo things */ }

private:
// prevent public instantiation, copying, assignment, movement,
// & destruction
Singleton() { /* constructor */ }
Singleton(const Singleton&) = delete;
Singletond operator=(const Singletond) = delete;
Singleton(Singleton8&) = delete;
Singleton8& operator=(Singleton88) = delete;
~Singleton() { /* destructor */ }

};

The static instance of the Singleton class is held at function scope instead of
class scope to prevent uncontrollable instantiation order conflicts in the event that
one singleton class’s constructor depends on another singleton. The details of C++’s
instantiation ordering rules are beyond the scope of this book, but a detailed discussion
in the context of singletons can be found in Alexandrescu [2].

35

CHAPTER 3 THE STACK

Note that due to the lack of locking surrounding the access to the one instance, our
model singleton is currently only suitable for a single threaded environment. In this age
of multicore processors, is such a limitation wise? For pdCalc, absolutely! Our simple
calculator has no need for multi-threading. Programming is hard. Multi-threaded
programming is much harder. Never turn a simpler design problem into a harder one
unless it’s absolutely necessary.

Now that we have the shell of a Singleton class, let’s see how to use it. In order to
access the instance and call the foo() function, we simply use the following code:

Singleton::Instance().foo();

On the first function call to the Instance() function, the instance variable is
statically instantiated and a reference to this object is returned. Because objects statically
allocated at function scope remain in memory until program termination, the instance
object is not destructed at the end of the Instance() function’s scope. On future calls to
Instance(), instantiation of the instance variable is skipped (it’s already constructed
and in memory from the previous function call), and a reference to the instance variable
is simply returned. Note that while the underlying singleton instance is held statically,
the foo() function itself is not static.

The inquisitive reader may now question, “Why bother holding an instance of the
class at all? Why not instead simply make all data and all functions of the Singleton class
static?” The reason is because the singleton pattern allows us to use the Singleton class
where instance semantics are required. One particular important usage of these semantics
is in the implementation of callbacks. For example, take Qt’s signals and slots mechanism
(you'll encounter signals and slots in Chapter 6), which can be loosely interpreted as a
powerful callback system. In order to connect a signal in one class to a slot in another,
we must provide pointers to both class instances. If we had implemented our singleton
without a private instantiation of the Singleton class (that is, utilizing only static data and
static functions), using our Singleton class with Qt’s signals and slots would be impossible.

3.2.2 The Stack Module as a Singleton Class

We now possess the basic design for our stack module. We have decided that the entire
module will be encapsulated in one class, which essentially acts as an adapter for an STL
container. We have decided that our one class fits the model criteria for a singleton, and
this singleton class will have the public interface designed in Chapter 2. Combining each
of these design elements gives us the initial declaration for our class, shown in Listing 3-2.

36

CHAPTER 3 THE STACK

Listing 3-2. The Stack as a Singleton

class Stack
{
class StackImpl;
public:
static Stack8 Instance();
void push(double);
double pop();
void getElements(int, vector<double>8) const;
void swapTop();

private:
Stack();
~Stack();
// appropriate blocking of copying, assigning, moving...
unique_ptr<StackImpl> pimpl_;
}s

Because the focus of this book is on design, the implementation for each member
function is not provided in the text unless the details are particularly instructive or
highlight a key element of the design. As a reminder, the complete implementation for
pdCalc can be downloaded from the GitHub repository. Occasionally, the repository
source code will be a more sophisticated variant of the idealized interfaces appearing in
the text. This will be the general format for the remainder of this book.

For those readers unfamiliar with the pimpl idiom (placing the implementation of
one class in a separate private implementation class), the pimpl member variable will
seem very mysterious. Don’t fret. You'll review this principle in a section below.

Before temporarily departing the discussion of the Stack class’s design, let’s take
a brief detour and discuss a relevant implementation detail. We spent a lot of time
reviewing the importance of using the adapter pattern in the Stack’s design to hide the
underlying data structure. One of the justifications for this decision was that it offered
the ability to seamlessly alter the underlying implementation without impacting classes
dependent upon the Stack’s interface. The question is, “Why might the underlying
implementation of the Stack change?”

In my first version of the Stack’s implementation, I selected the obvious choice
for the underlying data structure, the STL stack. However, I quickly encountered

37

CHAPTER 3 THE STACK

an efficiency problem using the STL stack. Our Stack class’s interface provides a
getElements() function that enables the user interface to view the contents of the
calculator’s stack. Unfortunately, the STL stack’s interface provides no similar function.
The only way to see an element other than the top element of an STL stack is to
successively pop the stack until the element of interest is reached. Obviously, because
we are only trying to see the elements of the stack and not alter the stack itself, we’ll
need to immediately push all the entries back onto the stack. Interestingly enough, for
our purposes, the STL stack turns out to be an unsuitable data structure to implement a
stack! There must be a better solution.

Fortunately, the STL provides another data structure suitable for our task, the
double-ended queue, or deque. The deque is an STL data structure that behaves similarly
to a vector, except the deque permits pushing elements onto both its front and its back.
Whereas the vector is optimized to grow while still providing a contiguity guarantee, the
deque is optimized to grow and shrink rapidly by sacrificing contiguity. This feature is
precisely the design tradeoff necessary to implement a stack efficiently. In fact, the most
common method to implement an STL stack is simply to wrap an STL deque (yes, just
like our Stack, the STL's stack is also an example of the adapter pattern). Fortuitously,
the STL deque also admits nondestructive iteration, the additional missing requirement
from the STL stack that we needed to implement our Stack’s getElements() method.
It’s good that I used encapsulation to hide the Stack’s implementation from its interface.
After realizing the limitations of visualizing an STL stack, I was able to change the Stack
class’s implementation to use an STL deque with no impact to any of pdCalc’s other
modules.

3.2.2.1 The Pimpl Idiom

If you choose to look at the GitHub repository version of pdCalc’s implementation,

you will notice that many of the actual class implementations are hidden by the pimpl
idiom (a C++ specialization of the bridge pattern). For those unfamiliar with this term,
itis shorthand notation for pointer to implementation. In practice, instead of declaring
all of a class’s implementation in a header file, you instead forward declare a pointer

to a “hidden” implementation class, and fully declare and define this “hidden” class in
the implementation file. Containing and using an incomplete type (the pimpl variable)
is permissible provided the pimpl variable is only dereferenced in the source file
containing its complete declaration. For example, consider class A below with a public

38

CHAPTER 3 THE STACK

interface consisting of functions f() and g() ; a private implementation with functions
u(),v(), andw(); and private datav_andm _:

class A

{

public:
void f();
void g();

private:
void u();
void v();
void w();
vector<double> v_;
map<string, int> m_;

s

Instead of visually exposing the private interface of A to consumers of this class, using
the pimpl idiom, we write

class A
{
class AImpl;
public:
void f();
void g();

private:
unique_ptr<AImpl> pimpl_;
}s

where u, v, w, v_, and m_ are now all part of class AImpl, which is both declared and
defined only in the implementation file associated with class A. To ensure AImpl cannot
be accessed by any other classes, we declare this implementation class to be a private
class wholly defined within A. Sutter and Alexandrescu [27] give a brief explanation of
the advantages of the pimpl idiom. One of the main advantages is that by moving the
private interface of class A from A.h to A.cpp, we no longer need to recompile any code
consuming class A when only A’s private interface changes. For large-scale software
projects, the time savings during compilation can be significant.

39

CHAPTER 3 THE STACK

Personally, I use the pimpl idiom in the majority of the code that I write. The
exception to my general rule is for code that has a very limited private interface or code
that is computationally intensive (i.e., code where the indirection overhead of the pimpl
is significant). In addition to the compilation benefits of not having to recompile files
including A.h when only class AImpl changes, I find that the pimpl idiom adds significant
clarity to the code. This clarity derives from the ability to hide helper functions and
classes in implementation files rather than listing them in header files. In this manner,
header files truly reflect only the bare essentials of the interface and thus prevent class
bloat, at least at the visible interface level. For any other programmer simply consuming
your class, the implementation details are visually hidden and therefore do not distract
from your hopefully well-documented, limited, public interface.

Before moving on to completing the Stack’s interface, note that the use of the pimpl
idiom here completely hides the selection of the underlying stack data structure from
a user of the Stack class. This selection is an implementation detail and should be
hidden from the user. The pimpl idiom enables us to hide it completely, even from visual
inspection. The pimpl idiom truly is the epitome of encapsulation.

3.3 Adding Events

The final element necessary to build a Stack conforming to the stack interface from
Chapter 2 is the implementation of events. Eventing is a form of weak coupling that
enables one object, the notifier or publisher, to signal any number of other objects, the
listeners or subscribers, that something interesting has occurred. The coupling is weak
because neither the notifier nor the listener need to know directly about the other’s
interface. How events are implemented is both language and library dependent, and
even within a given language, multiple options may exist. For example, in C#, events are
part of the core language, and event handling is relatively easy. In C++, we are not so
lucky and must implement our own eventing system or rely on a library providing this
facility.

The C++ programmer has several published library options for handling events;
prominent among these choices are boost and Qt. The boost library supports signals
and slots, a statically typed mechanism for a publisher to signal events to subscribers
via callbacks. Qt, on the other hand, provides both a full event system and a dynamically
typed event callback mechanism, which, coincidentally, is also referred to as signals
and slots. Both libraries are well-documented, well-tested, well-respected, and

40

CHAPTER 3 THE STACK

available for open source and commercial use. Either library would be a viable option
for implementing events in our calculator. However, for both instructive purposes and
to minimize the dependency of our calculator’s backend on external libraries, we will
instead implement our own eventing system. The appropriate decision to make when
designing your own software is very situationally dependent, and you should examine
the pros and cons of using a library versus building custom event handling for your
individual application. That said, the default position, unless you have a compelling
reason to do otherwise, should be to use a library.

3.3.1 The Observer Pattern

Because eventing is such a commonly implemented C++ feature, you can rest assured
that a design pattern describing eventing exists; this pattern is the observer. The observer
pattern is a standard method for the abstract implementation of publishers and listeners.
As the name of the pattern implies, here, the listeners are referred to as observers.

In the pattern as described by Gamma et al [6], a concrete publisher implements an
abstract publisher interface, and concrete observers implement an abstract observer
interface. Notionally, the implementation is via public inheritance. Each publisher
owns a container of its observers, and the publisher’s interface permits attaching and
detaching observers. When an event occurs (is raised), the publisher iterates over its
collection of observers and notifies each one that an event has occurred. Via virtual
dispatch, each concrete observer handles this notify message according to its own
implementation.

Observers can receive state information from publishers in one of two ways. First, a
concrete observer can have a pointer to the concrete publisher it is observing. Through
this pointer, the observer can query the publisher’s state at the time the event occurred.
This mechanism is known as pull semantics. Alternatively, push semantics can be
implemented, whereby the publisher pushes state information to the observer along
with the event notification. A simplified class diagram for the observer pattern exhibiting
push semantics is found in Figure 3-1.

41

CHAPTER 3 THE STACK

Publisher

-observers: list<Observer> Observer
+attach(Observer): void
+detach(): Observer
#raise(State): void

+notify(State): void

ConcretePublisher ConcreteObserver
-state: State -notify(State): void

Figure 3-1. A simplified version of the class diagram for the observer pattern as it
is implemented for pdCalc. The diagram illustrates push semantics for event data.

3.3.1.1 Enhancing the Observer Pattern Implementation

In the actual implementation for our calculator, several additional features have been
added beyond the abstraction depicted in Figure 3-1. First, in the figure, each publisher
owns a single list of observers that are all notified when an event occurs. However, this
implementation implies either that publishers have only one event or that publishers
have multiple events, but no way of disambiguating which observers get called for each
event. A better publisher implementation instead holds an associative array to lists of
observers. In this manner, each publisher can have multiple distinct events, each of
which only notifies observers interested in watching that particular event. While the
key in the associative array can technically be any suitable data type that the designer
chooses, I chose to use strings for the calculator. That is, the publisher distinguishes
individual events by a name. This choice enhances readability and enables runtime
flexibility to add events (versus, say, choosing enumeration values as keys).

Once the publisher class can contain multiple events, the programmer needs the
ability to specify the event by name when attach() or detach() is called. These method
signatures must therefore be modified appropriately from how they appear in Figure 3-1
to include an event name. For attachment, the method signature is completed by
adding the name of the event. The caller simply calls the attach() method with the
concrete observer instance and the name of the event to which this observer is attaching.
Detaching an observer from a publisher, however, requires slightly more sophisticated
mechanics. Since each event within a publisher can contain multiple observers, the
programmer requires the ability to differentiate observers for detachment. Naturally, this

42

CHAPTER 3 THE STACK

requirement leads to naming observers, as well, and the detach() function signature
must be modified to accommodate both the observer’s and event’s names.

In order to facilitate detaching observers, observers on each event should be stored
indirectly and referenced by their names. Thus, rather than storing an associative array
of lists of observers, we instead choose to use an associative array of associative arrays of
observers.

In modern C++, the programmer has a choice of using either a map or an unordered_
map for a standard library implementation of an associative array. The canonical
implementation of these two data structures are the red-black tree and the hash table,
respectively. Since the ordering of the elements in the associative array is not important,
I selected the unordered map for pdCalc’s Publisher class. However, for the likely small
number of observers subscribing to each event, either data structure would have been
an equally valid choice.

To this point, we have not specified precisely how observers are stored in the
publisher, only that they are somehow stored in associative arrays. Because observers
are used polymorphically, language rules require them to be held by either pointer or
reference. The question then becomes, should publishers own the observers or simply
refer to observers owned by some other class? If we choose the reference route (by either
reference or raw pointer), a class other than the publisher would be required to own
the memory for the observers. This situation is problematic because it is not clear who
should own the observers in any particular instance. Therefore, every developer would
probably choose a different option, and the maintenance of the observers over the long
term would descend into chaos. Even worse, if the owner of an observer released the
observer’s memory without also detaching the observer from the publisher, triggering
the publisher’s event would cause a crash because the publisher would hold an invalid
reference to the observer. For these reasons, I prefer having the publisher own the
memory for its observers.

Having eschewed referencing, we must use owning semantics, and, because of
the C++ mechanics of polymorphism, we must implement ownership via pointers. In
modern C++, unique ownership of a pointer type is achieved via the unique_ptr
(see the “Modern C++ Design Note” sidebar on owning semantics to understand the
design implications). Putting all of the above advice together, we are able to design the
final public interface for the Publisher class, as shown in Listing 3-3.

43

CHAPTER 3 THE STACK

Listing 3-3. The Final Public Interface for the Publisher Class

// Publisher.h
class Observer;

class Publisher
{
class PublisherImpl
public:
void attach(const string® eventName,
unique ptr<Observer> observer);
unique ptr<Observer> detach(const string8 eventName,
const string& observerName);
/1 ...
private:
unique_ptr<PublisherImpl> publisherImpl ;

};
The implementation details of event storage become

// Publisher.cpp
class Publisher::PublisherImpl

{
/...
private :
using ObserverslList = unordered map<string, unique_ ptr<Observer>>;
using Events = unordered map<string, ObserverslList>;
Events events_;
};

The interface for the Observer class is quite a bit simpler than the interface for the
Publisher class. However, because I have not yet described how to handle event data,
we are not yet ready to design the Observer’s interface. I will address both event data and
the Observer class’s interface in Section 3.3.1.2 below.

44

CHAPTER 3 THE STACK

MODERN C++ DESIGN NOTE: OWNING SEMANTICS AND UNIQUE_PTR

In C++, the notion of owning an object implies the responsibility for deleting its memory
when the object is no longer required. Prior to C++11, although anyone could implement his
own smart pointer (and many did), the language itself expressed no standard semantics for
pointer ownership (excepting auto_ptr, which has since been deprecated). Passing memory
by native pointers was more of a trust issue. That is, if you “newed” a pointer and passed it
via raw pointer to a library, you hoped the library deleted the memory when it was finished
with it. Alternatively, the documentation for the library might inform you to delete the memory
after certain operations were performed. Without a standard smart pointer, in the worst case
scenario, your program leaked memory. In the best case scenario, you had to interface to a
library using a nonstandard smart pointer.

C++11 corrected the problem of unknown pointer ownership by standardizing a set of

smart pointers largely borrowed from the boost libraries. The unique_ptr finally allows
programmers to implement unique ownership correctly (hence the deprecation of auto _ptr).
Essentially, the unique ptr ensures that only one instance of a pointer exists at any one time.
For the language to enforce these rules, copy and non-moving assignment for unique_ptrs
are not implemented. Instead, move semantics are employed to ensure transfer of ownership
(explicit function calls can also be used to manage the memory manually). Josuttis [8] provides
an excellent detailed description of the mechanics of using the unique_ptr. An important
point to remember is not to mix pointer types between unique ptrs and raw pointers.

From a design perspective, the unique_ptr implies that we can write interfaces, using
standard C++, that unequivocally express unique ownership semantics. As was seen in the
discussion of the observer pattern, unique ownership semantics are important in any design
where one class creates memory to be owned by another class. For example, in the calculator’s
eventing system, while the publisher of an event should own its observers, a publisher will
rarely have enough information to create its observers. It is therefore important to be able to
create the memory for the observers in one location but be able to pass ownership of that
memory to another location, the publisher. The unique_ptr provides that service. Because
the observers are passed to the publisher via a unique_ptr, ownership is transferred to the
publisher, and the observer’s memory is deleted by the smart pointer when the publisher no
longer needs the observer. Alternatively, any class may reclaim an observer from the publisher.
Since the detach() method returns the observer in a unique_ptr, the publisher clearly
relinquishes ownership of the observer’s memory by transferring it back to the caller.

45

CHAPTER 3 THE STACK

The above implementation of the observer pattern explicitly enforces a design where
the publisher owns its observers. The most natural way to use this implementation
involves creating small, dedicated, intermediary Observer classes that themselves hold
pointers or references to the actual classes that should respond to an event. For example,
from Chapter 2, we know that pdCalc’s user interface is an observer of the Stack class.
However, do we really want the user interface to be an (publicly inherit from) Observer
that is owned by the Stack as depicted in Figure 3-2a? No. A better solution is depicted
in Figure 3-2c. Here, the Stack owns a stack ChangeEvent observer, which in turn notifies
the UserInterface when the stack changes. This pattern enables the Stack and the
UserInterface to remain truly independent. More will be said about this topic when you
study our first user interface in Chapter 5.

(a) Publisher owns observer. (b) Publisher shares observer.

| Userlnterfacel Userinterface

(c) Publisher owns intermediary to observer.

Stack <>——>|ChangeEvent | Userinterface

Figure 3-2. Different ownership strategies for the observer pattern

Modern C++ does admit yet another sensible alternative for the ownership semantics
of the observer pattern: shared ownership. As stated above, it is unreasonable for the
Stack to own the user interface. Some, however, might consider it equally unreasonable
to create an extra ChangeEvent intermediary class instead of directly making the user
interface an observer. The only middle ground option available seems to be for the Stack
to refer to the user interface. Previously, though, I stated that having a publisher refer to
its observers is unsafe because the observers could disappear from under the publisher,
leaving a dangling reference. Can this dangling reference problem be solved?

Fortunately, modern C++ once again comes to the rescue with shared semantics
(as depicted in Figure 3-2b). In this scenario, observers are shared using a shared ptr
(see the sidebar on shared ptrs below), while the publisher retains a reference to observers
with aweak_ptr (arelative of the shared ptr).weak ptrs are designed specifically to
mitigate the problem of dangling references to shared objects. This design for shared
observer ownership by publishers is described by Meyers [19] in Item 20. Personally, I
prefer the design that uses owning semantics and a lightweight, dedicated observer class.

46

CHAPTER 3 THE STACK

3.3.1.2 Handling Event Data

In describing the observer pattern, I mentioned that two distinct paradigms exist for
handling event data: pull and push semantics. In pull semantics, the observer is simply
notified that an event has occurred. The observer then has the additional responsibility
of acquiring any additional data that might be required. The implementation is quite
simple. The observer maintains a reference to any object from which it might need to
acquire state information, and the observer calls member functions to acquire this state
in response to the event.

Pull semantics have several advantages. First, the observer can choose at the time
of handling the event exactly what state it wants to acquire. Second, no unnecessary
resources are consumed in passing potentially unused arguments to observers. Third,
pull semantics are easy to implement because events do not need to carry data.
However, pull semantics also have disadvantages. First, pull semantics increase coupling
because observers need to hold references to and understand the state acquisition
interfaces of publishers. Second, observers only have access to the public interfaces of
publishers. This access restriction precludes observers from obtaining private data from
publishers.

In contrast to pull semantics, push semantics are implemented by having the
publisher send state data relevant to an event when that event is raised. Observers then
receive this state data as the arguments to the notify callback. The interface enforces
push semantics by making the notify function pure virtual in the abstract Observer
base class.

Push semantics for event handling also have both advantages and disadvantages.
The first advantage is that push semantics decrease coupling. Neither publishers
nor observers need to know about each others’ interfaces. They need only obey the
abstract eventing interface. Second, the publisher can send private information to the
observers when it pushes state. Third, the publisher, as the object raising the event, can
send precisely the data needed to handle the event. The main disadvantages of push
semantics are that they are slightly more difficult to implement and potentially carry
unnecessary overhead in situations where the observer does not require the state data
that the publisher pushes. Finally, note that a design that uses push semantics can
always be trivially augmented with pull semantics for special cases by adding a callback
reference to the pushed data. The reverse is not true since push semantics require
dedicated infrastructure within the event handling mechanism.

47

CHAPTER 3 THE STACK

Based on the tradeoffs between push and pull semantics described above, I chose
to implement push semantics for the event handling for pdCalc. The main disadvantage
of push semantics is the potential computational overhead of the implementation.
However, since our application is not performance intensive, the decreased coupling this
pattern exhibits and the argument control the publisher maintains outweigh the slight
performance overhead. Our task now becomes designing an implementation for passing
event data via push semantics.

In order to implement push semantics for event handling, one must standardize
the interface for passing arguments from publisher to observer when an event is raised.
Ideally, each publisher/observer pair would agree on the types of the arguments to be
passed, and the publisher would call the appropriate member function on the observer
when an event was raised. However, this ideal situation is effectively impossible within
our publisher/observer class hierarchy because concrete publishers are not aware of the
interfaces of concrete observers. Concrete publishers can only raise events generically by
calling the raise() function in the Publisher base class. The raise() function, in turn,
polymorphically notifies a concrete observer through the Observer base class’s virtual
notify() function. We, therefore, seek a generic technique for passing customized data
via the abstract raise/notify interface.

The solution to our dilemma is rather simple. We create a parallel object hierarchy
for event data and pass the event data from publisher to observer via this abstract state
interface. The base class in this hierarchy, EventData, is an empty class that contains only
avirtual destructor. Each event that requires arguments then subclasses this base class
and implements whatever data handling scheme is deemed appropriate. When an event
is raised, the publisher passes the data to the observer through an EventData base class
pointer. Upon receipt of the data, the concrete observer downcasts the state data to the
concrete data class and subsequently extracts the necessary data via the derived class’s
concrete interface. While the concrete publisher and concrete observer do have to agree
on the interface for the data object, neither concrete publisher nor concrete observer is
required to know the interface of the other. Thus, we maintain loose coupling.

To solidify the ideas above, let’s examine how the calculator’s Stack implements
state data. Recall from Chapter 2 that the Stack implements two events, the
stackChanged() event and the error (string) event. The stackChanged() event is
uninteresting in this context since the event carries no data. The error event, however,
does carry data. Consider the class hierarchy for the Stack’s error condition shown in
Listing 3-4.

48

CHAPTER 3 THE STACK

Listing 3-4. The Event Data Hierarchy

// Publisher.h
class EventData
{
public:
virtual ~EventData();

};

// Stack.h

class StackEventData : public EventData

{

public:
enum class ErrorConditions { Empty, TooFewArguments };
StackEventData(ErrorConditions e) : err (e) { }

static const char* Message(ErrorConditions ec);
const char* message() const;
ErrorConditions error() const { return err ; }

private:
ErrorConditions err_;

}s

The StackEventData class defines how the Stack’s event data is packaged and sent
to classes observing the Stack. When an error occurs within the stack module, the Stack
class raises an event and pushes information about that event to its observers. In this
instance, the Stack creates an instance of StackEventData specifying the type of error in
the constructor. This enumerated type comprising the finite set of error conditions can
be converted to a string using the message () function. The observers are then free to use
or ignore this information when they are notified about the event’s occurrence. If you
were paying attention, yes, I subtly just changed the signature for the error() interface
from string to EventData.

As a concrete example, suppose an error is triggered because an empty stack is
popped. In order to raise this event, the Stack calls the following code (the actual
implementation is slightly different because the Stack is wrapped in a pimpl):

parent .raise(Stack::StackError, make shared<StackEventData>(
StackEventData: :ErrorConditions::Empty));

49

CHAPTER 3 THE STACK

The first argument to the raise() function is a static string that resolves to "error".
Recall that in order to handle multiple events, the publisher names each event. Here,
the Stack: :StackError static variable holds the name of this event. A variable is
used instead of directly using the string to prevent runtime errors being caused by
mistyping the event name. The second argument to the raise() function creates the
StackEventData instance and initializes it with the empty stack error condition. Note that
the implementation passes event data using a shared ptr. This decision is discussed
below in the sidebar concerning sharing semantics. Although the StackObserver class
has not yet been introduced, I note for completeness that an event can be interpreted
with code typified by the following:

StackObserver: :notify(shared ptr<EventData> d)
{

shared_ptr<StackEventData> p = dynamic_pointer_ cast<StackEventData>(d);

if(p)
{
// do something with the data

}

else

{
// uh oh, what event did we just catch?!

}
}

MODERN C++ DESIGN NOTE: SHARING SEMANTICS AND SHARED_PTR

Whereas unique_ptr enables the programmer to express, safely, unique ownership, shared
ptr enables the programmer to express, safely, shared ownership. Prior to the C++11
standard, C++ enabled data sharing by either raw pointer or reference. Because references for
class data could only be initialized during construction, for late binding data, only raw pointers
could be used. Therefore, often two classes shared a single piece of data by each containing a
raw pointer to a common object. The problem with that scenario is, of course, that it is unclear
which object owns the shared object. In particular, this ambiguity implies uncertainty about
when such a shared object can safely be deleted and which owning object ultimately should
free the memory. shared_ptrs rectify this dilemma at the standard library level.

50

CHAPTER 3 THE STACK

shared_ptr implements sharing semantics via reference counting. As new objects point

to a shared ptr, the internal reference count increases (enforced via constructors and
assignment). When a shared ptr goes out of scope, its destructor is called, which decrements
the internal reference count. When the count goes to zero, the destruction of the final shared _
ptr triggers reclamation of the underlying memory. As with unique_ptr, explicit member
function calls can also be used to manage memory manually. Josuttis [8] provides an excellent
detailed description of the mechanics of using shared ptr.As with unique_ptr, one must
be careful not to mix pointer types. The exception to this rule, of course, is mixed usage with
weak _ptr. Additionally, reference counting carries both time and space overhead, so the reader
should familiarize himself with these tradeoffs before deploying shared pointers.

In terms of design considerations, the shared ptr construct enables the programmer to
share heap memory without directly tracking the ownership of the objects. For the calculator,
passing event data by value is not an option. Because the event data objects exist in a
hierarchy, passing event data objects by value would cause slicing. However, using raw
pointers (or references) to pass event data would also be problematic because the lifetime

of these data objects cannot be known among the classes sharing them. Naturally, the
publisher allocates the memory when it raises an event. Since an observer may wish to retain
the memory after completion of event handling, the publisher cannot simply deallocate the
memory after the event has been handled. Moreover, because multiple observers can be called
for any given event, neither can the publisher transfer unique ownership of the data to any
given observer. Therefore, the shared_ptr standardized in C++11 offers the ideal semantics
for handling this situation.

Now that you understand event data, let’s finally write the abstract Observer interface.

It is, unsurprisingly, exactly what you might have been expecting. See Listing 3-5.

Listing 3-5. The Abstract Observer Interface

class Observer

public :
explicit Observer(const string& name);
virtual ~Observer();

virtual void notify(shared ptr<EventData») = 0;

51

CHAPTER 3 THE STACK

3.3.2 The Stack as an Event Publisher

The final step in constructing the Stack is simply to put all of the pieces together.
Listing 3-1 shows the Stack as a singleton. In order to implement events, we simply
modify this code to inherit from the Publisher base class. We now must ask ourselves,
should this inheritance be public or private?

Typically, in object-oriented programming, one uses public inheritance to indicate
the is-a relationship. That is, public inheritance expresses the relationship that a
derived class is a type of or specialization of a base class. More precisely, the is-a
relationship obeys the Liskov Substitutability Principle (LSP) [29], which states that (via
polymorphism) a function that takes a base class pointer (reference) as an argument
must be able to accept a derived class pointer (reference) without knowing it. Succinctly,
a derived class must be usable wherever a base class can be used, interchangeably.
When people refer to inheritance, they are generally referring to public inheritance.

Private inheritance is used to express the implements-a relationship. Private
inheritance, simply, is used to embed the implementation of one class into the private
implementation of another. It does not obey the LSP, and, in fact, the C++ language does
not permit substitution of a derived class for a base class if the inheritance relationship
is private. For completeness, the closely related protected inheritance is semantically
the same as private inheritance. The only difference is that in private inheritance, the
base class implementation becomes private in the derived class while in protected
inheritance, the base class implementation becomes protected in the derived class.

Our question has now been refined to, is the Stack a Publisher or does the Stack
implement a Publisher? The answer is yes and yes. That was unhelpful, so how do we
choose?

In order to disambiguate whether we should use public or private inheritance in this
instance, we must delve deeper into the usage of the Stack class. Public inheritance,
or the is-a relationship, would indicate our intent to use the stack polymorphically
as a publisher. However, this is not the case. While the Stack class is a publisher, it is
not a publisher in the context that it could be substituted for a Publisher in an LSP
sense. Therefore, we should use private inheritance to indicate the intent to use the
implementation of the Publisher within the Stack. Equivalently, we can state that the
Stack provides the Publisher service. If you've been following along with the repository
source code, you might have noticed a big hint that private inheritance was the answer.
The Publisher class was implemented with a nonvirtual, protected destructor, making it
unusable for public inheritance.

52

CHAPTER 3 THE STACK

Readers familiar with object-oriented design may wonder why I didn’t ask the
ubiquitous has-a question, which indicates ownership or the aggregation relationship.
That is, why shouldn’t the Stack simply own a Publisher and reuse its implementation
instead of privately inheriting from it? Many designers prefer almost exclusively to use
aggregation in place of private inheritance, arguing that when given an equivalent choice
between these two, one should always prefer the language feature leading to looser
coupling (inheritance is a stronger relationship than aggregation). This opinion has
merit. Personally, though, I simply prefer to accept the technique that trades off stronger
coupling for greater clarity. I believe that private inheritance more clearly states the design
intent of implementing the Publisher service than does aggregation. This decision has no
right or wrong answer. In your code, you should prefer the style that suits your tastes.

An additional consequence of privately inheriting from the Publisher class is
that the attach() and detach() methods of the Publisher become private. However,
they need to be part of the public interface for the Stack if any other class intends to
subscribe to the Stack’s events. Thus, the implementer must choose to utilize either
using statements or forwarding member functions to hoist attach() and detach() into
the public interface of the Stack. Either approach is acceptable in this context, and the
implementer is free to use his or her personal preference.

3.3.3 The Complete Stack Interface

We are finally ready to write the complete Stack public interface. See Listing 3-6.

Listing 3-6. The Complete Stack Public Interface

class Stack : private Publisher
{
public:

static Stack& Instance();

void push(double, bool suppressChangeEvent = false);
double pop(bool suppressChangeEvent = false);

void swapTop();

vector<double> getElements(size t n) const;

using Publisher::attach;
using Publisher::detach;
b5
53

CHAPTER 3 THE STACK

As described in this chapter, the Stack is a singleton class (note the Instance()
method) that implements the Publisher service (note the private inheritance of the
Publisher class and the hoisting of the attach() and detach() methods into the
public interface). The Stack class’s public section, in conjunction with the EventData
class described in Listing 3-2, encompasses the complete interface of the stack module
introduced in Table 2-2 in Chapter 2. While I have not yet described any concrete
observers for the Stack, we have fully defined our event system for pdCalc, which
is based on the tried and true observer pattern. At this point, we are ready to design
pdCalc’s next component, the command dispatcher module.

3.4 A Quick Note on Testing

Before concluding this first chapter introducing source code for pdCalc, I should pause
a moment and say a few words about testing. Although testing is by no means a central
exploratory topic of this book, it is nonetheless an integral part of any high quality
implementation. Alongside the source code for the calculator found on GitHub, I have
also included all of my automated unit testing code. Because I chose to use Qt for the
graphic user interface framework for pdCalc (see Chapter 6), the Qt Test framework was
a natural choice on which to build pdCalc’s unit test suite. Primarily, this choice does
not add any additional library dependencies on the project, and the test framework is
guaranteed to work on all platforms to which Qt has been ported. That said, any one of
the many high quality C++ unit test frameworks would have sufficed equally well.
Personally, I find unit testing to be indispensable when programming even small
projects. First and foremost, unit tests provide a means to ensure your code functions as
expected. Second, unit testing enables you to see a module working correctly long before
a user interface is developed. Early testing enables early bug detection, and a well-
known fact of software engineering is that earlier bug detection leads to exponentially
cheaper bug fixing costs. I also find that seeing modules fully working early in the
development cycle is oddly motivational. Finally, unit tests also enable you to know that
your code functions the same before and after code changes. As iteration is an essential
element of design and implementation, your code will change numerous times, even
after you think you've completed it. Running comprehensive unit tests automatically
at every build will ensure that new changes have not unpredictably broken any existing
functioning units.

54

CHAPTER 3 THE STACK

Because I value testing very highly (it’s one of the first lessons I try to teach to new
professional developers), I strove to ensure completeness in the testing of pdCalc’s code.
Not only does the test code provide an exemplar (I hope) for the reader, but it also assured
me that my code was correct throughout the code development portion of writing this
book. However, despite my best intentions to write error free code, and even after an
irrational number of reviews of the source code, I am certain that bugs still exist in the
final product. Please feel free to email me any and all errors that you find. I will make my
best effort to incorporate corrections in real time to the code in the GitHub repository and
give proper attribution to the first reader who reports any of my bugs to me.

55

CHAPTER 4

The Command Dispatcher

The command dispatcher is the centerpiece of the calculator. As the controller in the
MVC framework, the command dispatcher is responsible for the entire business logic
of the application. This chapter addresses not only the specific design of the command
dispatcher module for the calculator but also, more broadly, the flexible design of a
loosely coupled command infrastructure.

4.1 Decomposition of the Command Dispatcher

The first question we asked when decomposing the stack was, “Into how many
components should the stack be divided?” We ask the same question now for the
command dispatcher. To answer this question, let’s consider the functionality that the
command dispatcher must encapsulate. The function of the command dispatcher is to

1. Store a collection of known commands,
2. Receive and interpret requests for these commands,

3. Dispatch command requests (including the ability to undo
and redo), and

4. Perform the actual operation (including updating the
calculator’s state).

In Chapter 2, I discussed the principle of cohesion. At the class level, designing for
cohesion implies that each class should only do one thing, and, presumably, do it well.
At the topmost decomposition level, the command dispatcher indeed does only one
thing: it interprets commands. At the task level, however, from our list of functionality
above, it clearly must execute multiple tasks. Therefore, we decompose the command

57
© Adam B. Singer 2017

A. B. Singer, Practical C++ Design, DOI10.1007/978-1-4842-3057-2_4

CHAPTER 4 THE COMMAND DISPATCHER

dispatcher into several distinct classes, one for each major task it must perform. Hence,
we have the following classes:

1. CommandRepository: Stores the list of available commands

2. CommandDispatcher: Receives and interprets requests to execute
commands

3. CommandManager: Dispatches commands and manages
undo and redo

4. Command hierarchy: Executes commands

The remainder of this chapter is devoted to describing the design and salient
implementation details for the above list of classes and class hierarchies.

4.2 The Command Class

At this stage in the decomposition, I find it more useful to switch to a bottom-up
approach to design. In a strictly top-down approach, we would probably start with the
CommandDispatcher, the class that receives and interprets command requests, and work
our way down to the commands themselves. However, in this bottom-up approach,

we will begin by studying the design of the commands themselves. We begin with the
abstraction known as the command pattern.

4.2.1 The Command Pattern

The command pattern is a simple, but very powerful, behavioral pattern that
encapsulates a request in the form of an object. Structurally, the pattern is implemented
as an abstract command base class that provides an interface for executing a request.
Concrete commands simply implement the interface. In the most trivial case, the
abstract interface consists solely of a command to execute the request that the command
encapsulates. The class diagram for the trivial implementation is shown in Figure 4-1.

58

CHAPTER 4 THE COMMAND DISPATCHER

Command

+execute(): void

ConcreteCommand

-execute(): void

Figure 4-1. The simplest hierarchy for the command pattern

Essentially, the pattern does two things. First, it decouples the requester of a
command from the dispatcher of the command. Second, it encapsulates the request for
an action, which might otherwise be implemented by a function call, into an object. This
object can carry state and posses an extended lifetime beyond the immediate lifetime of
the request itself.

Practically, what do these two features give us? First, because the requester is
decoupled from the dispatcher, the logic for executing a command does not need to
reside in the same class or even the same module as the class responsible for executing
the command. This obviously decreases coupling, but it also increases cohesion since
a unique class can be created for each unique command the system must implement.
Second, because requests are now encapsulated in command objects with a lifetime
distinct from the lifetime of the action, commands can be both delayed in time (for
example, queuing commands) and undone. The undo operation is made possible
because already executed commands can be retained with sufficient data to restore
the state to the instant before the command was executed. Of course, combining the
queuing ability with the undo ability permits the creation of an unlimited undo/redo for
all requests implementing the command pattern.

4.2.2 More on Implementing Undo/Redo

One of the requirements for pdCalc is to implement unlimited undo and redo
operations. Most books state that undo can be implemented via the command pattern by
merely augmenting the abstract command interface with an undo command. However,
this simplistic treatment glosses over the actual details necessary to properly implement
the undo feature.

59

CHAPTER 4 THE COMMAND DISPATCHER

Implementing undo and redo involves two distinct steps. First (and obviously), undo
and redo must be implemented correctly in the concrete command classes. Second, a
data structure must be implemented to track and store the command objects as they are
dispatched. Naturally, this data structure must preserve the order in which the commands
were executed and be capable of dispatching a request to undo, redo, or execute a new
command. This undo/redo data structure is described in detail in Section 4.4 below.

The implementation of undo and redo are discussed presently.

Implementing undo and redo operations themselves is usually straightforward. The
redo operation is the same as the command’s execute function. Provided that the state
of the system is the same before the first time a command is executed and after undo has
been called, then implementing the redo command is essentially free. This, of course,
immediately implies that implementing undo is really about reverting the state of the
system to immediately before the command was first executed.

Undo can be implemented by two similar but slightly distinct mechanisms, each
responsible for restoring the system’s state in different ways. The first mechanism
does exactly what the name undo implies: it takes the current state of the system
and literally reverses the process of the forward command. Mathematically, that is,
undo is implemented as the inverse operation to execute. For example, if the forward
operation were to take the square root of the number on the top of the stack, then the
undo operation would be to take the square of the number on the top of the stack. The
advantage of this method is that no extra state information needs to be stored in order
to be able to implement undo. The disadvantage is that the method does not work for
all possible commands. Let’s examine the converse of our previous example. That is,
consider taking the square of the number on the top of the stack. The undo operation
would be to take the square root of the result of the squaring operation. However, was
the original number the positive or negative root of the square? Without retaining
additional state information, the inversion method breaks down.

The alternative to implementing undo as an inverse operation is to preserve the state
of the system before the command is first executed and then implement the undo as a
reversion to this prior state. Returning to our example of squaring a number, the forward
operation would both compute the square, but also save the top number on the stack.
The undo operation would then be implemented by dropping the result from the stack
and pushing the saved state from before the forward operation was performed. This
procedure is enabled by the command pattern since all commands are implemented
as instantiations of concrete command classes that are permitted to carry state. An
interesting feature of this method of implementing undo is that the operation itself need

60

CHAPTER 4 THE COMMAND DISPATCHER

not have a mathematical inverse. Notice that in our example, the undo did not even need
to know what the forward operation was. It simply needed to know how to replace the
top element from the stack with the saved state.

Which mechanism to use in your application really depends on the distinct
operations your application performs. When operations have no inverses, storing the
state is the only option. When the inverse operation is overly expensive to compute,
storing the state is usually the better implementation. When storage of the state is
expensive, implementing undo via inversion is preferred, assuming an inverse operation
exists. Of course, since each command is implemented as a separate class, a global
decision for how undo is implemented need not be made for the entire system. The
designer of a given command is free to choose the method most appropriate for that
particular operation on a command-by-command basis. In some cases, even a hybrid
approach (both storing and inverting separate parts of the operation) may be optimal.

In the next section, we will examine the choice that I made for pdCalc.

4.2.3 The Command Pattern Applied to the Calculator

In order to execute, undo, and redo all of the operations in the calculator, we will
implement the command pattern, and each calculator operation will be encapsulated
by its own concrete class deriving from an abstract Command class. From the discussion
above concerning the command pattern, we can see that two decisions must be made in
order to apply the pattern to the calculator. First, we must decide what operations must
be supported by every command. This collection of operations will define the abstract
interface of the Command base class. Second, we must choose a strategy for how undo

will be supported. To be precise, this decision is always deferred to the implementer of

a particular concrete command. However, by choosing either state reconstruction or
command inversion upfront, we can implement some infrastructure to simplify undo for

command implementers. We'll tackle these two issues consecutively.

4.2.3.1 The Command Interface

Choosing what public functions to include in the abstract Command class is identical to
defining the interface for all commands in the calculator. Therefore, this decision must
not be taken lightly. While each concrete command will perform a distinct function, all
concrete commands must be substitutable for each other (recall the LSP). Because we
want interfaces to be minimal but complete, we must determine the fewest number of
functions that can abstractly express the operations needed for all commands.

61

CHAPTER 4 THE COMMAND DISPATCHER

The first two commands to be included are the most obvious and easiest to define.
They are execute() and undo(), the functions for performing the forward and inverse
operations of the command, respectively. These two functions return void and require
no arguments. No arguments are needed because all of the data for the calculator
is handled via the Stack class, which is globally accessible via the singleton pattern.
Additionally, the Command class will need a constructor and a destructor. Because the
class is intended to be an interface class with virtual functions, the destructor should be
virtual. Listing 4-1 illustrates our first attempt at an interface.

Listing 4-1. A First Attempt at the Command Interface

class Command

{

public:
virtual ~Command();
void execute();
void undo();

protected:
Command();

private:
virtual void executeImpl() = 0;
virtual void undoImpl() = 0;

}s

In Listing 4-1, the reader will immediately notice that the constructor is protected,
both execute() and undo() are public and nonvirtual, and separate executeImpl()
and undoImpl() virtual functions exist. The reason the constructor is protected is to
signal to an implementer that the Command class cannot be directly instantiated. Of
course, because the class contains pure virtual functions, the compiler prevents direct
instantiation of the Command class anyway. Making the constructor protected is somewhat
superfluous. Defining the public interface using a combination of virtual and nonvirtual
functions, on the other hand, deserves a more detailed explanation.

Defining the public interface for a class via a mixture of public nonvirtual functions
and private virtual functions is a design principle known as the non-virtual interface
(NVI) pattern. The NVI pattern states that polymorphic interfaces should always be
defined using non-virtual public functions that forward calls to private virtual functions.

62

CHAPTER 4 THE COMMAND DISPATCHER

The reasoning behind this pattern is quite simple. Since a base class with virtual functions
acts as an interface class, clients should be accessing derived class functionality only
through the base class’s interface via polymorphism. By making the public interface non-
virtual, the base class implementer reserves the ability to intercept virtual function calls
before dispatch in order to add preconditions or postconditions to the execution of all
derived class implementations. Making the virtual functions private forces consumers to
use the non-virtual interface. In the trivial case where no precondition or postcondition

is needed, the implementation of the non-virtual function reduces to a forwarding call to
the virtual function. The additional verbosity of insisting on the NVI pattern even in the
trivial case is warranted because it preserves design flexibility for future expansion at zero
computational overhead since the forwarding function call can be inlined. A more in-depth
rationale behind the NVI pattern is discussed in detail in Sutter [27].

Let’s now consider if either execute() or undo() requires preconditions or
postconditions; we start with execute(). From a quick scan of the use cases in Chapter 2,
we can see that many of the actions pdCalc must complete can only be performed if
a set of preconditions are first satisfied. For example, to add two numbers, we must
have two numbers on the stack. Clearly, addition has a precondition. From a design
perspective, if we trap this precondition before the command is executed, we can handle
precondition errors before they cause execution problems. We’ll definitely want to
check preconditions as part of our base class execute() implementation before calling
executeImpl().

What precondition or preconditions must be checked for all commands? Maybe,
as with addition, all commands must have at least two numbers on the stack? Let’s
examine another use case. Consider taking the sine of a number. This command only
requires one number to be on the stack. Ah, preconditions are command-specific. The
correct answer to our question concerning the general handling of preconditions is to
ask derived classes to check their own preconditions by having execute() first call a
checkPreconditionsImpl() virtual function.

What about postconditions for execute()? It turns out that if the preconditions for
each command are satisfied, then all of the commands are mathematically well-defined.
Great, no postcondition checks are necessary! Unfortunately, mathematical correctness
is insufficient to ensure error-free computations with floating point numbers. For
example, floating point addition can result in positive overflow when using the double
precision numbers required by pdCalc even when the addition is mathematically
defined. Fortunately, however, our requirements from Chapter 1 stated that floating

63

CHAPTER 4 THE COMMAND DISPATCHER

point errors can be ignored. Therefore, we are technically excepted from needing to
handle floating point errors and do not need a postcondition check after all.

To keep the code relatively simple, I chose to adhere to the requirements and ignore
floating point exceptions in pdCalc. If I had instead wanted to be proactive in the design
and trap floating point errors, a checkPostconditions() function could have been used.
Because floating point errors are generic to all commands, the postcondition check
could have been handled at the base class level.

Understanding our precondition and postcondition needs, using the NVI pattern, we
are able to write the following simple implementation for execute() shown in Listing 4-2.

Listing 4-2. A Simple Implementation for execute()

void Command::execute()

{
checkPreconditionsImpl();
executeImpl();
return;

}

Given that checkPreconditionsImpl() and executeImpl() must both be
consecutively called and handled by the derived class, couldn’t we just lump both of
these operations into one function call? We could, but that decision would lead to a
suboptimal design. First, by lumping these two operations into one executeImpl()
function call, we would lose cohesion by asking one function to perform two distinct
operations. Second, by using a separate checkPreconditionsImpl() call, we could
choose either to force derived class implementers to check for preconditions
(by making checkPrecodnitionsImpl() pure virtual) or to provide, optionally,

a default implementation for precondition checks. Finally, who is to say that
checkPreconditionsImpl() and executeImpl() will dispatch to the same derived class?
Remember, hierarchies can be multiple levels deep.

Analogously to the execute() function, one might assume that precondition checks
are needed for undoing commands. However, it turns out that we never actually have to
check for undo preconditions because they will always be true by construction. That is,
since an undo command can only be called after an execute command has successfully
completed, the precondition for undo() is guaranteed to be satisfied (assuming,
of course, a correct implementation of execute()). As with forward execution, no
postcondition checks are necessary for undo().

64

CHAPTER 4 THE COMMAND DISPATCHER

The analysis of preconditions and postconditions for execute() and undo() resulted
in the addition of only one function to the virtual interface, checkPreconditionImpl().
However, in order for the implementation of this function to be complete, we must
determine the correct signature of this function. First, what should be the return value
for the function? Either we could choose to make the return value void and handle
failure of the precondition via an exception or make the return value a type that
could indicate that the precondition was not met (e.g., a boolean returning false on
precondition failure or an enumeration indicating the type of failure that occurred). For
pdCalc, I chose to handle precondition failures via exceptions. This strategy enables
a greater degree of flexibility because the error does not need to be handled by the
immediate caller, the execute() function. Additionally, the exception can be designed
to carry a customized, descriptive error message that can be extended by a derived
command. This contrasts with using an enumerated type, which would have to be
completely defined by the base class implementer.

The second item we must address in specifying the signature of checkPrecondition
Impl() is to choose whether the function should be pure virtual or have a default
implementation. While it is true that most commands will require some precondition
to be satisfied, this is not true of every command. For example, entering a new number
onto the stack does not require a precondition. Therefore, checkPreconditionImpl()
should not be a pure virtual function. Instead, it is given a default implementation of
doing nothing, which is equivalent to stating that preconditions are satisfied.

Because errors in commands are checked via the checkPreconditionImpl()
function, a proper implementation of any command should not throw an exception
except from checkPreconditionImpl(). Therefore, for added interface protection,
each pure virtual function in the Command class should be marked noexcept. For
brevity, I often skip this keyword in the text; however, noexcept does appear in the
implementation. This specifier is really only important in the implementation of plugin
commands, which are discussed in Chapter 7.

The next set of functions to be added to the Command class are functions for copying
objects polymorphically. This set includes a protected copy constructor, a public non-
virtual clone() function, and a private cloneImpl() function. At this point in the design,
the rationale for why commands must be copyable cannot be adequately justified.
However, the reasoning will become clear when we examine the implementation of the
CommandRepository. For continuity’s sake, however, I'll discuss the implementation of
the copy interface presently.

65

CHAPTER 4 THE COMMAND DISPATCHER

For class hierarchies designed for polymorphic usage, a simple copy constructor
is insufficient, and copies of objects must be performed by a cloning virtual function.
Consider the following abbreviated command hierarchy showing only the copy

constructors:

class Command
{
protected:
Command(const Command8);

}s

class Add : public Command
{
public:
Add(const Add8);
};

Our objective is to copy Commands that are used polymorphically. Let’s take the
following example where we hold an Add object via a Command pointer:

Command* p = new Add;

By definition, a copy constructor takes a reference to its own class type as its
argument. Because in a polymoprhic setting we do not know the underlying type, we
must attempt to call the copy constructor as follows:

auto p2 = new Command{*p};

The above construction is illegal and will not compile. Because the Command class is
abstract (and its copy constructor is protected), the compiler will not allow the creation
of a Command object. However, not all hierarchies have abstract base classes, so one
might be tempted to try this construction in those cases where it is legal. Beware. This
construction would slice the hierarchy. That is, p2 would be constructed as a Command
instance, not an Add instance, and any Add state from p would be lost in the copy.

Given that we cannot directly use a copy constructor, how do we copy classes in a
polymorphic setting? The solution is to provide a virtual clone operation that can be
used as follows:

Command* p2 = p->clone();

66

CHAPTER 4 THE COMMAND DISPATCHER

Here, the nonvirtual clone() function dispatches the cloning operation to the
derived class’s cloneImpl() function, whose implementation is simply to call its own
copy constructor with a dereferenced this pointer as its argument. For the example
above, the expanded interface and implementation would be as follows:

class Command

{
public:
Command* clone() const { return cloneImpl(); }
protected:
Command(const Command&) { }
private:
virtual Command* cloneImpl() const = 0;
};
class Add : public Command
{
public:
Add(const Add& rhs) : Command{rhs} { }
private:
Add* cloneImpl() const { return new Add{*this}; }
};

The only interesting implementation feature here is the return type for the
cloneImpl() function. Notice that the base class specifies the return type as Command*,
while the derived class specifies the return type as Add*. This construction is called
return type covariance, a rule which states that an overriding function in a derived
class may return a type of greater specificity than the return type in the virtual interface.
Covariance allows a cloning function to always return the specific type appropriate
to the hierarchy level from which cloning was called. This feature is important for
implementations that have public cloning functions and allow cloning calls to be made
from all levels in the hierarchy.

I chose to round out the command interface with a help message function and a
corresponding virtual implementation function. The intent of this help function is to

67

CHAPTER 4 THE COMMAND DISPATCHER

enforce that individual command implementers provide brief documentation for the
commands that can be queried through a help command in the user interface. The help
function is not essential to the functionality of the commands, and its inclusion as part of
the design is optional. However, it’s always nice to provide some internal documentation
for command usage, even in a program as simplistic as a calculator.

Combining all of the above information, we can finally write the complete abstract
interface for our Command class; see Listing 4-3.

Listing 4-3. The Complete Abstract Interface for the Command Class

class Command
{
public:
virtual ~Command();
void execute();
void undo();
Command* clone() const;
const char* helpMessage() const;

protected:
Command();
Command(const Command8);

private:
virtual void checkPreconditionsImpl() const;
virtual void executeImpl() noexcept = 0;
virtual void undoImpl() noexcept = 0;
virtual Command* cloneImpl() const = 0;
virtual const char* helpMessageImpl() const noexcept = 0;

};

If you look at the source code in Command. h, you will also see a virtual deallocate()
function. This function is exclusively used for plugins, and its addition to the interface
will be discussed in Chapter 7.

68

CHAPTER 4 THE COMMAND DISPATCHER

MODERN C++ DESIGN NOTE: THE OVERRIDE KEYWORD

The override keyword was introduced in C++11. Functionally, it prevents a common error
that is often surprising to new C++ programmers. Consider the following code snippet:

class Base
{
public:
virtual void foo(int);

};

class Derived : public Base
{
public:
void foo(double);
}s

Base* p = new Derived;
p->foo(2.1);

Which function is called? Most novice C++ programmers assume that Derived: : foo()

is called because they expect that Derived’s foo() is overriding Base’s implementation.
However, because the signature of the foo() function differs between the base and derived
classes, Base’s foo() actually hides Derived’s implementation since overloading cannot
occur across scope boundaries. Therefore, the call, p->foo(), will call Base’s foo()
regardless of the argument’s type. Interestingly enough, for the same reason

Derived d;
d->foo(2);

can never call anything but Derived’s foo().

69

CHAPTER 4 THE COMMAND DISPATCHER

In C++03 and C++11, the above code behaves in exactly the same confusing, but technically
correct, way. However, starting in C++11, a derived class may optionally mark overriding
functions with the override keyword:

class Derived : public Base
{
public:

void foo(double) override;

};

Now, the compiler will flag the declaration as an error because the programmer explicitly
declared that the derived function should override. Thus, the addition of the override
keyword prevents a perplexing bug from occurring by allowing the programmer to
disambiguate his intentions.

From a design perspective, the override keyword explicitly marks the function as being an
override. While this may not seem important, it is quite useful when working on a large code
base. When implementing a derived class whose base class is in another distinct part of the
code, it is convenient to know which functions override base class functions and which do not
without having to look at the base class’s declaration.

4.2.3.2 The Undo Strategy

Having defined the abstract interface for our commands, we next move on to designing
the undo strategy. Technically, because the undo() command in our interface is a pure
virtual, we could simply waive our hands and claim that the implementation of undo

is each concrete command’s problem. However, this would be both inelegant and
inefficient. Instead, we seek some functional commonality for all commands (or at least
groupings of commands) that might enable us to implement undo at a higher level than
at each leaf node in the command hierarchy.

As previously discussed, undo can be implemented either via command inversion or
state reconstruction (or some combination of the two). Command inversion was already
shown to be problematic because the inverse problem is ill-posed (specifically, it has
multiple solutions) for some commands. Let’s therefore examine state reconstruction as

a generalized undo strategy for pdCalc.

70

CHAPTER 4 THE COMMAND DISPATCHER

We begin our analysis by considering a use case, the addition operation. Addition
removes two elements from the stack, adds them together, and returns the result. A
simple undo could be implemented by dropping the result from the stack and restoring
the original operands, provided these operands were stored by the execute() command.
Now, consider subtraction, or multiplication, or division. These commands can also
be undone by dropping their result and restoring their operands. Could it be so simple
to implement undo for all commands that we would simply need to store the top
two values from the stack during execute() and implement undo by dropping the
command’s result and restoring the stored operands? No. Consider sine, cosine, and
tangent. They each take one operand from the stack and return a single result. Consider
swap. It takes two operands from the stack and returns two results (the operands in the
opposite order). A perfectly uniform strategy for undo cannot be implemented over all
commands. That said, we shouldn’t just give up hope and return to implementing undo
individually for every command.

Just because all commands in our calculator must descend from the Command class,
no rule requires this inheritance to be the direct inheritance depicted in Figure 4-1.
Consider, instead, the command hierarchy depicted in Figure 4-2. While some
commands still directly inherit from the Command base class, we have created two new
subclasses from which more specialized commands can be inherited. In fact, as will be
seen shortly, these two new base classes are themselves abstract.

|UnaryCommand| |0therCommands| |Swap| |BinaryCommand|

|Sin| |Cos| |OtherUnary| |0therBinary| |Sub| |Add|

Figure 4-2. A multi-level hierarchy for the calculator’s command pattern

Our preceding use case analysis identified two significant subcategories of
operations that implement undo uniformly for their respective members: binary
commands (commands that take two operands and return one result) and unary
commands (commands that take one operand and return one result). Thus, we can
simplify our implementation significantly by generically handling undo for these two
classes of commands. While commands not fitting into either the unary or binary

71

CHAPTER 4 THE COMMAND DISPATCHER

command family will still be required to implement undo() individually, these two
subcategories account for about 75% of the core commands of the calculator. Creating
these two abstractions will save a significant amount of work.

Let’s examine the UnaryCommand class. By definition, all unary commands require
one argument and return one value. For example, f(x) = sin(x) takes one number, x, from
the stack and returns the result, f(x), onto the stack. As previously stated, the reason for
considering all unary functions together as a family is because regardless of the function,
all unary commands implement both forward execution and undo identically, differing
only in the functional form of f. Additionally, they also all must minimally meet the same
precondition. Namely, there must be at least one element on the stack.

In code, the above common traits of unary commands are enforced by overriding
executeImpl(), undoImpl(), and checkPreconditionsImpl() in the UnaryCommand
base class and creating a new unaryOperation() pure virtual that delegates the
precise implementation of each command to a further derived class. The result is a
UnaryCommand class with the following declaration in Listing 4-4.

Listing 4-4. The UnaryCommand Class

class UnaryCommand : public Command
{
public:

virtual ~UnaryCommand();

protected:
void checkPreconditionsImpl() const override;
UnaryCommand() { }
UnaryCommand(const UnaryCommand&);

private:
void executeImpl() override;
void undoImpl() override;
virtual double unaryOperation(double top) const = 0;

double top_;
};

72

CHAPTER 4 THE COMMAND DISPATCHER

For completeness, let’s examine the implementation of the three overridden
functions from Command. Checking the precondition is trivial; we ensure at least one
element is on the stack. If not, an exception is thrown:

void UnaryCommand: :checkPreconditionsImpl() const
{
if(Stack::Instance().size() < 1)
throw Exception{"Stack must have one element"};

The executeImpl() command is also quite straightforward:

void UnaryCommand: :executeImpl()

{
top_ = Stack::Instance().pop(true);
Stack::Instance().push(unaryOperation(top_));

}

The top element is popped from the stack and stored in the UnaryCommand’s state for
the purposes of undo. Remember, because we have already checked the precondition,
we can be assured that unaryOperation() will complete without an error. Commands
with special preconditions will still need to implement checkPreconditionsImpl(),
but they can at least delegate the unary precondition check upward to UnaryCommand’s
checkPreconditionImpl() function. In one fell swoop, we then dispatch the unary
function operation to a further derived class and push its result back onto the stack.

The only peculiarity in UnaryCommand’s executeImpl() function is the boolean
argument to the stack’s pop command. This boolean optionally suppresses the emission
of a stack changed event. Because we know that the following push command to the
stack will immediately alter the stack again, there is no need to issue two subsequent
stack changed events. The suppression of this event permits the command implementer
to lump the action of the command into one user-apparent event. Although this boolean
argument to Stack’s pop () was not part of the original design, this functionality can be
added to the Stack class now as a convenience. Remember, design is iterative.

73

CHAPTER 4 THE COMMAND DISPATCHER
The final member function to examine is undoImpl():

void UnaryCommand: :undoImpl()

{
Stack::Instance().pop(true);
Stack: :Instance().push(top);

}

This function also has the expected obvious implementation. The result of the unary
operation is dropped from the stack, and the previous top element, which was stored in
the top_ member of the class during the execution of executeImpl(), is restored to
the stack.

As an example of using the UnaryCommand class, we present a partial implementation

of the sine command:

class Sine : public UnaryCommand
{
private:
double unaryOperation(double t) const override { return std::sin(t); }

};

Clearly, the advantage of using the UnaryCommand as a base class instead of
the highest level Command class is that we have removed the need to implement
undoImpl() and checkPreconditionsImpl(), and we replaced the implementation
of executeImpl() with the slightly simpler unaryOperation(). Not only do we
need less code overall, but because the implementations of undoImpl() and
checkPreconditionsImpl() would be identical over all unary commands, we reduce
code repetition as well, which is always a positive.

Binary commands are implemented in an analogous manner to unary commands.
The only difference is that the function for executing the operation takes two commands
as operands and correspondingly must store both of these values for undo. The
complete definition for the BinaryCommand class can be found alongside the Command and
UnaryCommand classes in the Command. h header file found in the source code from the
GitHub repository.

74

CHAPTER 4 THE COMMAND DISPATCHER

4.2.3.3 Concrete Commands

Defining the Command, UnaryCommand, and BinaryCommand classes above completed
the abstract interface for using the command pattern in the calculator. Getting these
interfaces correct encompasses the lion’s share of the design for commands. However, at
this point, our calculator is yet to have a single concrete command (other than the partial
Sine class implementation). This section will finally rectify that problem, and the core
functionality of our calculator will begin to take shape.

The core commands of the calculator are all defined in the CoreCommands . h file,
and their implementations can be found in the corresponding CoreCommands . cpp file.
What are core commands? [have defined the core commands to be the set of commands
that encompass the functionality distilled from the requirements listed in Chapter 1. A
unique core command exists for each distinct action the calculator must perform. Why
did I term these the core commands? They are the core commands because they are
compiled and linked alongside the calculator and are therefore available immediately
when the calculator loads. They are, in fact, an intrinsic part of the calculator. This is
in contrast to plugin commands, which may be optionally loaded by the calculator
dynamically during runtime. Plugin commands are discussed in detail in Chapter 7.

While one might suspect that we now need to perform an analysis to determine the
core commands, it turns out that this analysis has already been done. Specifically, the
core commands were defined by the actions described in the use cases from Chapter 2.
The astute reader will even recall that the exception listings in the use cases define each
command’s precondition. Therefore, with reference to the use cases as necessary, one
can trivially derive the core commands. For convenience, they are all listed in Table 4-1.

Table 4-1. The Core Commands Listed by Their Immediate Abstract Base Class

Command UnaryCommand BinaryGommand
EnterCommand Sine Add
SwapTopOfStack Cosine Subtract
DropTopOfStack Tangent Multiply
Duplicate Arcsine Divide
ClearStack Arccosine Power

Arctangent Root

Negate

75

CHAPTER 4 THE COMMAND DISPATCHER

In comparing the list of core commands above to the use cases from Chapter 2, one
notes the conspicuous absence of undo and redo as commands even though they are
both actions the user can request the calculator to perform. These two “commands” are
special because they act on other commands in the system. For this reason, they are not
implemented as commands in the command pattern sense. Instead, they are handled
intrinsically by the yet-to-be-discussed CommandManager, which is the class responsible
for requesting commands, dispatching commands, and requesting undo and redo
actions. The undo and redo actions (as opposed to the undo and redo operations
defined by each command) will be discussed in detail in Section 4.4 below.

The implementation of each core command, including the checking of
preconditions, the forward operation, and the undo implementation, is relatively
straightforward. Most of the command classes can be implemented in about 20 lines of
code. The interested reader is referred to the repository source code if he or she wishes
to examine the details.

4.2.3.4 An Alternative to Deep Command Hierarchies

Creating a separate Command class for each operation is a very classical way of
implementing the command pattern. Modern C++, however, gives us a very compelling
alternative that enables us to flatten the hierarchy. Specifically, we can use lambda
expressions (see sidebar) to encapsulate operations instead of creating additional
derived classes and then use the standard function class (see sidebar) to store

these operations in a class at the UnaryCommand or BinaryCommand level. To make the
discussion concrete, let’s consider an alternative partial design to the BinaryCommand
class, shown in Listing 4-5.

Listing 4-5. An Alternative Partial Design

class BinaryCommandAlternative final : public Command
{
using BinaryCommandOp = double(double, double);
public:
BinaryCommandAlternative(const string& help,
function<BinaryCommandOp> f);

76

CHAPTER 4 THE COMMAND DISPATCHER

private:
void checkPreconditionsImpl() const override;
const char* helpMessageImpl() const override;
void executeImpl() override;
void undoImpl() override;

double top_;

double next_;

string helpMsg_;
function<BinaryCommandOp> command_;

s

Now, instead of an abstract BinaryCommand that implements executeImpl() by
deferral to a binaryOperation() virtual function, we declare a concrete and final
(see sidebar) class that accepts a callable target and implements executeImpl() by
invoking this target. In fact, the only material difference between BinaryCommand
and BinaryCommandAlternative is a subtle difference in the implementation of the
executeImpl() command; see Listing 4-6.

Listing 4-6. A Subtle Difference

void BinaryCommandAlternative::executeImpl()

{
top_ = Stack::Instance().pop(true);

next = Stack::Instance().pop(true);
// invoke callable target instead of virtual dispatch:
Stack: :Instance().push(command (next , top));

Now, as an example, instead of declaring a Multiply class and instantiating a
Multiply object, like

auto mult = new Multiply;
we create a BinaryCommandAlternative capable of multiplication, as in

auto mult = new BinaryCommandAlternative{ "help msg",
[](double d, double f){ return d * f; } };

77

CHAPTER 4 THE COMMAND DISPATCHER

For completeness, I mention that because no classes further derive from
BinaryCommandAlternative, we must handle help messages directly in the constructor
rather than in a derived class. Additionally, as implemented, BinaryCommandAlternative
only handles the binary precondition. However, additional preconditions could be
handled in an analogous fashion to the handling of the binary operation. That is, the
constructor could accept and store a lambda to execute the precondition test after the
test for two stack arguments in checkPreconditionImpl().

Obviously, unary commands could be handled similarly to binary commands
through the creation of a UnaryCommandAlternative class. With enough templates,

I'm quite certain you could even unify binary and unary commands into one class. Be
forewarned, though. Too much cleverness, while impressive at the water cooler, does not
usually lead to maintainable code. Keeping separate classes for binary commands and
unary commands in this flattened command hierarchy probably strikes an appropriate
balance between terseness and understandability.

The implementation difference between BinaryCommand's executeImpl() and
BinaryCommandAlternative's executeImpl() is fairly small. However, you should not
understate the magnitude of this change. The end result is a significant design difference
in the implementation of the command pattern. Is one better than the other in the
general case? I do not think such a statement can be made unequivocally; each design
has tradeoffs. The BinaryCommand strategy is the classic implementation of the command
pattern, and most experienced developers will recognize it as such. The source code is
very easy to read, maintain, and test. For every command, exactly one class is created that
performs exactly one operation. The BinaryCommandAlternative, on the other hand, is
very concise. Rather than having 7 classes for n operations, only one class exists, and each
operation is defined by a lambda in the constructor. If paucity of code is your objective, this
alternative style is hard to beat. However, because lambdas are, by definition, anonymous
objects, some clarity is lost by not naming each binary operation in the system.

Which strategy is better for pdCalc, the deep command hierarchy or the shallow
command hierarchy? Personally, I prefer the deep command hierarchy because of
the clarity that naming each object brings. However, for such simple operations, like
addition and subtraction, I think one could make a good argument that the reduced
line count improves clarity more than what is lost through anonymity. Because of my
personal preference, I implemented most of the commands using the deep hierarchy
and the BinaryCommand class. Nonetheless, I did implement multiplication via the
BinaryCommandAlternative to illustrate the implementation in practice. In a production

78

CHAPTER 4 THE COMMAND DISPATCHER

system, I would highly recommend choosing one strategy or the other. Implementing
both patterns in the same system is certainly more confusing than adopting one, even if
the one chosen is deemed suboptimal.

MODERN C++ DESIGN NOTE: LAMBDAS, STANDARD FUNCTION, AND THE FINAL KEYWORD

Lambdas, standard function, and the final keyword are actually three independent
modern C++ concepts. I'll therefore address them separately.

Lambdas:

Lambdas (more formally, lambda expressions) can be thought of as anonymous function
objects. The easiest way to reason about lambdas is to consider their function object
equivalent. The syntax for defining a lambda is given by the following:

[capture-list|(argument-list){function-body}

The above lambda syntax identically equates to a function object that stores the capture-list as
member variables via a constructor and provides an operator() const member function
with arguments provided by argument-list and a function body provided by function-body.

The return type of the operator () is generally deduced from the function body, but it can be
manually specified using the alternative function return type syntax (i.e., -> ret between the
argument list and the function body), if desired.

Given the equivalence between a lambda expression and a function object, lambdas do

not actually provide new functionality to C++. Anything that can be done in C++11 with a
lambda can be done in C++03 with a different syntax. What lambdas do provide, however,

is a compelling, concise syntax for the declaration of inline, anonymous functions. Two very
common use cases for lambdas are as predicates for STL algorithms and targets for C++11
asynchronous tasks. Some have even argued that the lambda syntax is so compelling that
there is no longer a need to write for loops in high-level code since they can be replaced with
a lambda and an algorithm. Personally, | find this point of view too extreme.

In the alternative design to binary commands, you saw yet another use for lambdas. They can
be stored in objects and then called on demand to provide different options for implementing
algorithms. In some respects, this paradigm encodes a micro-application of the strategy pattern.
To avoid confusion with the command pattern, | specifically did not introduce the strategy
pattern in the main text. The interested reader is referred to Gamma et al [6] for details.

79

CHAPTER 4 THE COMMAND DISPATCHER

Standard function:

The function class is part of the C++ standard library. This class provides a generic wrapper
around any callable target converting this callable target into a function object. Essentially, any
C++ construct that can be called like a function is a callable target. This includes functions,
lambdas, and member functions.

Standard function provides two very useful features. First, it provides a generic facility

for interfacing with any callable target. That is, in template programing, storing a callable
target in a function object unifies the calling semantics on the target independent of the
underlying type. Second, function enables the storage of otherwise difficult-to-store types,
like lambda expressions. In the design of the BinaryCommandAlternative, we made use
of the function class to store lambdas to implement small algorithms to overlay the strategy
pattern onto the command pattern. Although not actually utilized in pdCalc, the generic nature
of the function class actually enables the BinaryCommandAlternative constructor to
accept callable targets other than lambdas.

The final Keyword:

The final keyword, introduced in C++11, enables a class designer to declare either that a
class cannot be inherited from or a virtual function may not be further overridden. For those
programmers coming from either C# or Java, you’ll know that C++ is late to the game in
finally (pun intended) adding this facility.

Before C++11, nasty hacks needed to be used to prevent further derivation of a class.
Beginning with C++11, the final keyword enables the compiler to enforce this constraint.
Prior to C++11, many C++ designers argued that the final keyword was unnecessary.

A designer wanting a class to be non-inheritable could just make the destructor non-virtual,
thereby implying that deriving from this class was outside the designer’s intent. Anyone who
has seen code inheriting from STL containers will know how well developers tend to follow
intent not enforced by the compiler. How often have you heard a fellow developer say, “Sure,
that’s a bad idea, in general, but, don’t worry, it’s fine in my special case.” This oft-uttered
comment is almost inevitably followed by a week-long debugging session to track down
obscure bugs.

Why might you want to prevent inheriting from a class or overriding a previously declared
virtual function? Likely because you have a situation where inheritance, while being well-
defined by the language, simply makes no sense logically. A concrete example of this is
pdCalc’s BinaryCommandAlternative class. While you could attempt to derive from it and

80

CHAPTER 4 THE COMMAND DISPATCHER

override the executeImpl() member function (without the final keyword in place, that is),
the intent of the class is to terminate the hierarchy and provide the binary operation via a
callable target. Inheriting from BinaryCommandAlternative is outside the scope of its
design. Preventing derivation is therefore likely to prevent subtle semantic errors

4.3 The Command Repository

Our calculator now has all of the commands required to meet its requirements. However,
we have not yet defined the infrastructure necessary for storing commands and
subsequently accessing them on demand. In this section, we’ll explore several design
strategies for storing and retrieving commands.

4.3.1 The CommandRepository Class

At first glance, instantiating a new command seems like a trivial problem to solve. For
example, if a user requests the addition of two numbers, the following code will perform
this function:

Command* cmd = new Add;
cmd->execute();

Great! Problem solved, right? Not really. How is this code called? Where does this
code appear? What happens if new core commands are added (i.e., requirements
change)? What if new commands are added dynamically (as in plugins)? What seems
like an easy problem to solve is actually more complex than initially expected. Let’s
explore possible design alternatives by answering the above questions.

First, we ask the question of how the code is called. Part of the calculator’s
requirements are to have both a command line interface (CLI) and a graphical user
interface (GUI). Clearly, the request to initialize a command will derive somewhere in
the user interface in response to a user’s action. Let’s consider how the user interface
would handle subtraction. Suppose that the GUI has a subtraction button, and when this
button is clicked, a function is called to initialize and execute the subtraction command
(we'll ignore undo, momentarily). Now consider the CLI. When the subtraction token
is recognized, a similar function is called. At first, one might expect that we could call
the same function, provided it existed in the business logic layer instead of in the user
interface layer. However, the mechanism for GUI callbacks makes this impossible

81

CHAPTER 4 THE COMMAND DISPATCHER

because it would force an undesired dependency in the business logic layer on the

GUT’s widget library (e.g., in Qt, a button callback is a slot in a class, which requires the
callback’s class to be a Q_OBJECT). Alternatively, the GUI could deploy double indirection
to dispatch each command (each button click would call a function which would call a
function in the business logic layer). This scenario seems both inelegant and inefficient.

While the above strategy appears rather cumbersome, this initialization scheme
has a structural deficit much deeper than inconvenience. In the model-view-controller
architecture we have adopted for pdCalc, the views are not permitted direct access to the
controller. Since the commands rightly belong to the controller, direct initialization of
commands by the Ul violates our foundational architecture.

How do we solve this new problem? Recall from Table 2-2 that the command
dispatcher’s only public interface is the event handling function commandEntered(const
string8). This realization actually answers the first two questions we originally posed:
how is the initialization and execution code called and where does it reside? This code
must be triggered indirectly via an event from the Ul to the command dispatcher with
the specific command encoded via a string. The code itself must reside in the command
dispatcher. Note that this interface has the additional benefit of removing duplication
between the CLI and the GUI in creating new commands. Now both user interfaces
can simply create commands by raising the commandEntered event and specifying the
command by string. You'll see how each user interface implements raising this event in
Chapters 5 and 6, respectively.

From the above analysis, we are motivated to add a new class to the command
dispatcher with the responsibility of owning and allocating commands. We'll call this
class the CommandRepository. For the moment, we’ll assume that another part of the
command dispatcher (the CommandDispatcher class) receives the commandEntered()
event and requests the appropriate command from the CommandRepository (via
the commandEntered()’s string argument), and yet another component of the
command dispatcher (the CommandManager class) subsequently executes the command
(and handles undo and redo). That is, we have decoupled the initialization and
storage of commands from their dispatch and execution. The CommandManager and
CommandDispatcher classes are the subjects of upcoming sections. For now, we'll focus
on command storage, initialization, and retrieval.

82

CHAPTER 4 THE COMMAND DISPATCHER
We begin with the following skeletal interface for the CommandManager class:

class CommandRepository
{
public:
unique_ptr<Command> allocateCommand(const stringd) const;

s

From the interface above, we see that given a string argument, the repository allocates
the corresponding command. The interface employs a smart pointer return type to make
explicit that the caller owns the memory for the newly constructed command.

Let’s now consider what an implementation for allocateCommand () might look like.
This exercise will assist us in modifying the design for more flexibility.

unique_ptr<Command> CommandRepository::allocateCommand(const string& c)
const
{

if(c == "+") return make_unique<Add>();

else if(c == "-") return make_unique<Subtract>();

// ... all known commands ...

else return nullptr;

The above interface is simple and effective, but it is limited by requiring a priori
knowledge of every command in the system. In general, such a design would be highly
undesirable and inconvenient for several reasons. First, adding a new core command to the
system would require modifying the repository’s initialization function. Second, deploying
runtime plugin commands would require a completely different implementation. Third,
this strategy creates unwanted coupling between the instantiation of specific commands
and their storage. Instead, we would prefer a design where the CommandRepository relies
only on the abstract interface defined by the Command base class.

The above problem is solved by application of a simple pattern known as the
prototype pattern [6]. The prototype pattern is a creational pattern where a prototype
object is stored, and new objects of this type are created simply by copying the prototype.
Now, consider a design that treats our CommandRepository as merely a container
of command prototypes. Furthermore, let the prototypes all be stored by Command
pointer, say, in a hash table, using a string as the key (maybe the same string raised in

83

CHAPTER 4 THE COMMAND DISPATCHER

the commandEntered() event). Then, new commands could be added (or removed)
dynamically by adding (or removing) a new prototype command. To implement this
strategy, we make the following additions to our CommandRepository class:

class CommandRepository
{
public:
unique _ptr<Command> allocateCommand(const string&) const;
void registerCommand(const string® name, unique ptr<Command> c);

private:
using Repository = unordered map<string, unique_ptr<Command>>;
Repository repository ;

};
The implementation for registering a command is quite simple:

void CommandRepository::registerCommand(const string& name,
unique_ptr<Command> c)
{
if(repository .find(name) != repository .end())
// handle duplicate command error
else
repository .emplace(name, std::move(c));

Here, we check whether or not the command is already in the repository. If it is, then
we handle the error. If not, then we move the command argument into the repository,
where the command becomes the prototype for the command name. Note that the use of
unique_ptr indicates that registering a command transfers ownership of this prototype
to the command repository. In practical usage, the core commands are all registered
via a function in the CoreCommands . cpp file, and a similar function exists inside each
plugin to register the plugin commands (we’ll see this interface when we examine the
construction of plugins in Chapter 7). These functions are called during initialization
of the calculator and during plugin initialization, respectively. Optionally, the
command repository can be augmented with a deregister command with the obvious
implementation.

84

CHAPTER 4 THE COMMAND DISPATCHER
Using our new design, we can rewrite the allocateCommand() function as follows:

unique ptr<Command> CommandRepository::allocateCommand(const string& name)
const
{

auto it = repository .find(name);

if(it != repository .end())

{

return unique_ptr<Command>(it->second->clone());

}

else return nullptr;

Now, if the command is found in the repository, a copy of the prototype is returned.
If the command is not found, a nullptr is returned (alternatively, an exception could
be thrown). The copy of the prototype is returned in a unique_ptr, indicating that the
caller now owns this copy of the command. Note the use of the clone() function from
the Command class. The clone function was originally added to the Command class with
the promise of future justification. As is now evident, we require the clone() function
in order to copy Commands polymoprhically for our implementation of the prototype
pattern. Of course, had we not had the foresight to implement a cloning function for all
commands at the time that the Command class was designed, it could easily be added now.
Remember, you won't get the design perfect on the first pass, so get used to the idea of
iterative design.

Essentially, registerCommand() and allocateCommand() embody the minimally
complete interface for the CommandRepository class. However, if you examine the included
source code for this class, you will see some differences. First, additional functions
have been added to the interface. The additional functions are mostly convenience and
syntactic sugar. Second, the entire interface is hidden behind a pimpl. Third, I use an
alias, CommandPtr, instead of directly using unique_ptr<Command>. For the purposes of this
chapter, just think of CommandPtr as being defined by the following using statement:

using CommandPtr = std::unique_ptr<Command>;

The real alias, which can be found in Command. h, is slightly more complicated. It will
be explained in detail in Chapter 7. Correspondingly, I use a function MakeCommandPtx ()
rather than make_unique<Command> () to create CommandPtrs

85

CHAPTER 4 THE COMMAND DISPATCHER

Finally, the only other part of the interface from the repository code not already
discussed that impacts the design is the choice to make the CommandRepository a
singleton. The reason for this decision is simple. Regardless of how many different
command dispatchers exist in the system (interestingly enough, we’ll eventually see
a case for having multiple command dispatchers), the prototypes for functions never
change. Therefore, making the CommandRepository a singleton centralizes the storage,
allocation, and retrieval of all commands for the calculator.

MODERN C++ DESIGN NOTE: UNIFORM INITIALIZATION

You might have noticed that | routinely use curly braces for initialization. For developers
who have been programming in C++ for a long time, the use of curly braces to initialize a
class (i.e., call its constructor) may appear odd. While we are accustomed to a list syntax for
initializing arrays, as in

int a[] = { 1, 2, 3 }3

using curly braces to initialize classes is a new feature in C++11. While parentheses may
still be used for calling constructors, the new syntax using curly braces, called uniform
initialization, is the preferred syntax for modern C++. While the two initialization mechanisms
functionally perform the same task, the new syntax has three advantages:

1. Uniform initialization is non-narrowing:

class A { A(int a); };
A a(7.8); // ok, truncates
A a{7.8}; // error, narrows

2. Uniform initialization (combined with initializer lists) permits initializing user
defined types with lists:

vector <double> v{ 1.1, 1.2, 1.3 }; // valid since C++11;
initializes vector with 3 doubles

3. Uniform initialization is never mistakenly parsed as a function:

struct B { B(); void foo(); };
B b(); // Are you declaring a function that returns a B?
b.foo(); // error, requesting foo() in non-class type b

86

CHAPTER 4 THE COMMAND DISPATCHER

B b2{}; // ok, default construction
b2.foo(); // ok, call B::foo()

There is only one big caveat when using uniform initialization: a list constructor is always
called before any other constructor. The canonical example comes from the STL vector
class, which has an initializer list constructor and a separate constructor accepting an integer
to define the vector’s size. Because initializer list constructors are called before any other
constructor if curly braces are used, there are the following different behaviors:

vector<int> v(3); // vector, size 3, all elements initialized to 0
vector<int> v{3}; // vector with 1 element initialized to 3

Fortunately, the above situation does not arise often. However, when it does, you must
understand the difference between uniform initialization and function style initialization.

From a design perspective, the main advantage of uniform initialization is that user defined
types may be designed to accept lists of identically typed values for construction. Therefore,
containers, such as vectors, may be statically initialized with a list of values rather than
default initialized followed by successive assignment. This modern C++ feature enables
initialization of derived types to use the same syntax for initialization as built-in array types, a
syntactical feature missing in C++03.

4.3.2 Registering Core Commands

We have now defined the core commands of the calculator and a class for loading and
serving the commands on demand. However, we have not discussed a method for
loading the core commands into the CommandRepository. In order to function properly,
the loading of all the core commands must only be performed once, and it must be
performed before the calculator is used. Essentially, this defines an initialization
requirement for the command dispatcher module. A finalization function is not needed
since deregistering the core commands when exiting the program is unnecessary.

The best place to call an initialization operation for the command dispatcher
isin the main() function of the calculator. Therefore, we simply create a global
RegisterCoreCommands () function, declare it in the CoreCommands . h header, implement
it in the CoreCommands . cpp file, and call it from main(). The reason to create a global
function instead of registering the core commands in the CommandRepository’s
constructor is to avoid coupling the CommandRepository with the derived classes of the

87

CHAPTER 4 THE COMMAND DISPATCHER

command hierarchy. The registration function, of course, could be called something
like InitCommandDispatcher(), but I prefer a name that more specifically describes the
functionality.

Implicitly, we have just extended the interface to the command dispatcher (originally
defined in Table 2-2), albeit fairly trivially. Should we have been able to anticipate this
part of the interface in advance? Probably not. This interface update was necessitated by
a design decision at a level significantly more detailed than the high-level decomposition
of Chapter 2. I find slightly modifying a key interface during development to be an
acceptable way of designing a program. A design strategy requiring immutability is
simply too rigid to be practical. However, note that easy acceptance of a key interface
modification during development is in contrast with the acceptance of a key interface
modification after release, a decision that should only be made after significant
consideration for how the change will affect clients already using your code.

4.4 The Command Manager

Having designed the command infrastructure and created a repository for the storage,
initialization, and retrieval of commands in the system, we are now ready to design

a class with responsibility for executing commands on demand and managing undo
and redo. This class is called the CommandManager. Essentially, it manages the lifetime
of commands by calling the execute() function on each command and subsequently
retaining each command in a manner appropriate for implementing unlimited undo
and redo. We'll start by defining the interface for the CommandManager and conclude the
section by discussing the strategy for implementing unlimited undo and redo.

4.4.1 The Interface

The interface for the CommandManager is remarkably simple and straightforward. The
CommandManager needs an interface for accepting commands to be executed, for
undoing commands, and for redoing commands. Optionally, one could also include an
interface for querying the available number of undo and redo operations, which might
be important for the implementation of a GUI (e.g., for redo size equals zero, grey out the
redo button). Once a command is passed to the CommandManager, the CommandManager
owns the lifetime of the command. Therefore, the interface for the CommandManager

88

CHAPTER 4 THE COMMAND DISPATCHER

should enforce owning semantics. Combining, we have the following complete interface
for the CommandManager:

class CommandManager
{
public:
size t getUndoSize() const;
size t getRedoSize() const;
void executeCommand(unique_ptr<Command> c);
void undo();
void redo();

s

In the actual code listed in CommandManager . h, the interface additionally defines
an enum class for selecting the undo/redo strategy during construction. I've included
this option for illustrative purposes only. A production code would simply implement
one undo/redo strategy and not make the underlying data structure customizable at

construction.

4.4.2 Implementing Undo and Redo

To implement unlimited undo and redo, we must have a dynamically growable data
structure capable of storing and revisiting commands in the order they were executed.
Although one could contrive many different data structures to satisfy this requirement,
we'll examine two equally good strategies. Both strategies have been implemented for
the calculator and can be seen in the CommandManager . cpp file.

Consider the data structure in Figure 4-3, which I have termed the list strategy. After a
command is executed, it is added to a list (the implementation could be a 1ist, vector,
or other suitable ordered container), and a pointer (or index) is updated to point to the
last command executed. Whenever undo is called, the command currently pointed
to is undone, and the pointer moves to the left (the direction of earlier commands).
When redo is called, the command pointer moves to the right (the direction of later
commands), and the newly-pointed-to command is executed. Boundary conditions
exist when the current command pointer reaches either the far left (no more commands
exist to be undone) or far right (no more commands exist to be redone). These boundary
conditions can be handled either by disabling the mechanism that enables the user to

89

CHAPTER 4 THE COMMAND DISPATCHER

call the command (e.g., grey out the undo or redo button, respectively) or by simply
ignoring an undo or redo command that would cause the pointer to overrun the
boundary. Of course, every time a new command is executed, the entire list to the right
of the current command pointer must be flushed before the new command is added

to the undo/redo list. This flushing of the list is necessary to prevent the undo/redo list
from becoming a tree with multiple redo branches.

Current
Command Pointer

Undo Redo
/’\\ /‘\\
\\,’ ‘_/
1 1
| |
\4 \4

Undo/Redo New
List <— | command

Figure 4-3. The undo/redo list strategy

As an alternative, consider the data structure in Figure 4-4, which I have termed
the stack strategy. Instead of maintaining a list of commands in the order in which they
were executed, we maintain two stacks, one for the undo commands and one for the
redo commands. After a new command is executed, it is pushed onto the undo stack.
Commands are undone by popping the top entry from the undo stack, undoing the
command, and pushing the command onto the redo stack. Commands are redone by
popping the top entry from the redo stack, executing the command, and pushing the
command onto the undo stack. Boundary conditions exist and are trivially identified by
the sizes of the stacks. Executing a new command requires flushing the redo stack.

90

CHAPTER 4 THE COMMAND DISPATCHER

Redo

New

Command w — N
Push Pop Push Pop

Undo Stack Redo Stack

Figure 4-4. The Undo/Redo Stack Strategy

Practically, choosing between implementing undo and redo via either the stack
or list strategy is largely a personal preference. The list strategy requires only one data
container and less data movement. However, the stack strategy is slightly easier to
implement because it requires no indexing or pointer shifting. That said, both strategies
are fairly easy to implement and require very little code. Once you have implemented
and tested either strategy, the CommandManager can easily be reused in future projects
requiring undo and redo functionality, provided commands are implemented via the
command pattern. For even more generality, the CommandManager could be templated
on the abstract Command class. For simplicity, I chose to implement the included
CommandManager specifically for the abstract Command class previously discussed.

4.5 The Command Dispatcher

The final component of the command dispatcher module is the CommandDispatcher
class itself. Although this class might more aptly be named the CommandInterpreter,

I have retained the name CommandDispatcher to emphasize that this class serves as the
command dispatcher module’s interface to the rest of the calculator. That is, as far as
the other modules are concerned, the CommandDispatcher class is the entirety of the
command dispatcher module.

As previously stated, the CommandDispatcher class serves two primary roles. The
first role is to serve as the interface to the command dispatcher module. The second
role is to interpret each command, request the appropriate command from the
CommandRepository, and pass each command to the CommandManager for execution. We
address these two roles sequentially.

91

CHAPTER 4 THE COMMAND DISPATCHER

4.5.1 The Interface

For all the complications in the implementation of the command dispatcher module,
the interface to the CommandDispatcher class is remarkably simple (as are most good
interfaces). As discussed in Chapter 2, the command dispatcher’s interface consists
entirely of a single function used to execute a command; the command itself is specified
by a string argument. This function is, naturally, the executeCommand() event handler
previously discussed. Thus, the CommandDispatcher class’s interface is given by the
following:

class CommandDispatcher
{
public:
CommandDispatcher(UserInterfaced ui);
void executeCommand(const stringd& command);

private:
unique_ptr<CommandDispatcherImpl> pimpl_;

};

Recall that the fundamental architecture of the calculator is based on the
model-view-controller pattern and that the CommandDispatcher is permitted to
have direct access to both the model (stack) and view (user interface). Thus, the
CommandDispatcher’s constructor takes a reference to an abstract UserInterface
class, the details of which are discussed in Chapter 5. A direct reference to the
stack is unneeded since the stack was implemented as a singleton. As per my usual
convention, the actual implementation of the CommandDispatcher is deferred to a private
implementation class, CommandDispatcherImpl.

An alternative design to the one above would be to make the CommandDispatcher
class an observer directly. As discussed in Chapter 3, I prefer designs that use
intermediary event observers. In Chapter 5, I'll discuss the design and implementation
of a CommandIssuedObserver proxy class to broker events between user interfaces and
the CommandDispatcher class.

92

CHAPTER 4 THE COMMAND DISPATCHER

4.5.2 Implementation Details

Typically in this book, I do not discuss the implementation details contained in a pimpl
class. In this case, though, the implementation of the CommandDispatcherImpl class

is particularly instructive. The main function of the CommandDispatcherImpl class is

to implement the function executeCommand(). This function must receive command
requests, interpret these requests, retrieve commands, request execution of commands,
and gracefully handle unknown commands. Had we started our decomposition of the
command dispatcher module from the top down, trying to implement this function
cleanly would have been exceedingly difficult. However, due to our bottom-up approach,
the implementation of executeCommand() is largely an exercise in gluing together
existing components. Consider the following implementation, where the

manager _ object is an instance of the CommandManager class, as shown in Listing 4-7.

Listing 4-7. The Implementation of executeCommand()

1 void CommandDispatcher: :CommandDispatcherImpl::executeCommand(const string&
2 command)

3 {

4 double d;

5 if(isNum(command, d))
6 manager .executeCommand(MakeCommandPtr<EnterNumber>(d));
7

8

9

else if(command == "undo")
manager_.undo();

else if(command == "redo")
10 manager_.redo();
11 else
12 {
13 auto c = CommandRepository::Instance().allocateCommand(command);
14 if(lc)
15 {
16 ostringstream oss;
17 0ss << "Command " << command << " is not a known command";
18 ui_.postMessage(oss.str());
19 }

93

CHAPTER 4 THE COMMAND DISPATCHER

20 else

21 {

22 try

23 {

24 manager _.executeCommand(std::move(c));
25 }

26 catch(Exceptiond e)

27 {

28 ui_.postMessage(e.what());
29 }

30 }

31 }

32

33 return;

34}

Lines 5-10 handle special commands. A special command is any command that is
not entered in the command repository. In the code above, this includes entering a new
number, undo, and redo. If a special command is not encountered, then it is assumed
that the command can be found in the command repository. This request is made in
line 13. If nullptr is returned from the command repository, the error is handled in
lines 16-18. Otherwise, the command is executed by the command manager. Note that
the execution of commands is handled in a try/catch block. In this manner, we are able
to trap errors caused by command precondition failures and report these errors in the
user interface. The CommandManager’s implementation ensures that commands failing a
precondition are not entered onto the undo stack (trivially, by order of execution).

The actual implementation of executeCommand() found in CommandDispatcher.cpp
differs slightly from the code above. First, the actual implementation includes two
additional special commands. The first of these additional special commands is help.
The help command can be issued to print a brief explanatory message for all of the
commands currently in the command repository. While the implementation generically
prints the help information to the user interface, I only exposed the help command
in the CLI (i.e., my GUI's implementation does not have a help button). The second
special command deals with the handling of stored procedures. Stored procedures are

94

CHAPTER 4 THE COMMAND DISPATCHER

explained in Chapter 8. Additionally, I placed the try/catch block in its own function.
This was done simply to shorten the executeCommand () function and separate the logic
of command interpretation from command execution.

4.6 Revisiting Earlier Decisions

At this point, we have finished two of the main modules of our calculator: the stack and
the command dispatcher. Let’s revisit our original design to discuss a significant subtle
deviation that has arisen.

Recall from Chapter 2 that our original design handled errors by raising events
in the stack and command dispatcher, and these events were to be handled by the
user interface. The reason for this decision was for consistency. While the command
dispatcher has a reference to the user interface, the stack does not. Therefore, we
decided to simply let both modules notify the user interface of errors via events. The
astute reader will notice, however, that the command dispatcher, as designed above,
never raises exceptions. Instead, it directly calls the user interface when errors occur.
Have we not then broken the consistency that was intentionally designed into the
system? No. Actually, we implicitly redesigned the error handling mechanism of the
system during the design of the command dispatcher so that no error events are ever
raised by either the stack or the command dispatcher. Let’s examine why.

As I just stated, it is obvious from its implementation that the command dispatcher
does not raise error events, but what happened to stack events? We didn’t change the
Stack class’s source code, so how did error events get eliminated? In the original design,
the stack indirectly notified the user interface when errors occurred by raising events.
The two possible stack error conditions were popping an empty stack and swapping
the top two elements of an insufficiently sized stack. While designing the commands, I
realized that if a command triggered either of these error conditions, the user interface
would be notified, but the command dispatcher would not be (it is not an observer
of stack events). In either error scenario, a command would have completed, albeit
unsuccessfully, and been placed erroneously on the undo stack. I then realized that
either the command dispatcher would have to trap stack errors and prevent erroneous
placement onto the undo stack, or commands should not be permitted to make stack
errors. As the final design demonstrates, I chose the easier and cleaner implementation
of using preconditions before executing commands to prevent stack errors from

occurring, thus implicitly suppressing stack errors.

95

CHAPTER 4 THE COMMAND DISPATCHER

The big question is, why didn’t I change the text describing the original design and
the corresponding code to reflect the change in the error reporting? Simply stated, I
wanted the reader to see that mistakes do occur. Design is an iterative process, and
a book trying to teach design by example should embrace that fact rather than hide
it. Designs should be somewhat fluid (but maybe with a high viscosity). It is much
better to change a bad design decision early than to stick with it despite encountering
evidence demonstrating flaws in the original design. The later a bad design is changed,
the higher the cost will be in fixing it, and the more pain the developers will incur while
trying to implement a mistake. As for changing the code itself, I would have removed
the superfluous code from the Stack class in a production system when I performed
the refactor unless the Stack class was being designed for reuse in another program
that handled errors via events. After all, as a generic design, the mechanism of reporting
errors by raising events is not flawed. In hindsight, this mechanism was simply not right
for pdCalc.

96

CHAPTER 5

The Command Line
Interface

This is a very exciting chapter. While command line interfaces (CLIs) may not have the
cachet of modern graphical user interfaces (GUIs), especially those of phones or tablets,
the CLI is still a remarkably useful and effective user interface. This chapter details the
design and implementation of the command line interface for pdCalc. By the end of
this chapter, we will, for the first time, have a functioning (albeit feature incomplete)

calculator, which is a significant milestone in our development.

5.1 The User Interface Abstraction

While we could design a fully functioning CLI in isolation, we know from our
requirements that the feature complete calculator must have both a CLI and a
GUIL. Therefore, our overall design will be better served by first considering the
commonality between these two interfaces and factoring this functionality into a
common abstraction. Let’s consider two design alternatives to constructing a user
interface abstraction, a top-down approach and a bottom-up approach.

Designing an abstract interface before considering the concrete types is akin to top-
down design. In terms of a user interface, you first consider the barest essentials to which
any UI must conform and create an abstract interface based on this minimalist concept.
Refinement to the interface becomes necessary when the abstract concept misses
something required to implement a concrete type.

Designing an abstract interface after considering the concrete types is akin to
bottom-up design. Again, in terms of a user interface, you first consider the needs of
all the concrete types (CLI and GUJ, in this case), look for the commonality between
all types, and then distill the common features into an abstraction. Refinement to the

97
© Adam B. Singer 2017

A. B. Singer, Practical C++ Design, DOI10.1007/978-1-4842-3057-2_5

CHAPTER5 THE COMMAND LINE INTERFACE

interface becomes necessary when you add a new concrete type that requires additional
features not considered when the abstraction was originally distilled.

Which strategy is better, in general, for creating an abstract interface: top down
or bottom up? As is typical, the answer depends on the particular situation, personal
comfort, and style. In this particular scenario, we are better served starting from the
abstraction and working downward toward the concrete types (the top-down approach).
Why? In this instance, the top-down approach is essentially free. The user interface is
one of pdCalc’s high-level modules, and we already defined the abstract interface for
the Ul in Chapter 2 when we performed our initial decomposition. Let’s now turn the
abstract module interface into a practical object-oriented design.

5.1.1 The Abstract Interface

The point of having an abstract interface for the Ul is to enable the rest of the program
to interact with the user interface without regard to whether the current interface is
graphical, command line, or something else entirely. Ideally, we will be able to factor the
abstract interface to the minimum number of functions required to use each concrete
interface. Any functions sharing an implementation can be defined in the base class,
while any functions requiring unique implementations based on the concrete type can
be declared as virtual in the abstract base class and defined in the derived classes. The
concept is fairly straightforward, but, as usual, the devil is in the details.

Consider the hierarchy depicted in Figure 5-1. Our goal is to design a minimal but
complete interface, consistent with the Liskov Substitutability Principle, for pdCalc’s
UserInterface class that will work for both the CLI and the GUI. As previously
discussed, we already defined a high-level interface for this Ul in Chapter 2. Let’s start
from this predefined interface and refactor as necessary.

Userinterface

T

CLI GUI

Figure 5-1. A minimal interface hierarchy

98

CHAPTER5 THE COMMAND LINE INTERFACE

Referring to Table 2-2 in Chapter 2, you see that the complete interface for the
UserInterface class consists of two event handling functions, postMessage() and
stackChanged(), and one UserInterface raised event, commandEntered(). Interestingly,
the UserInterface class is a publisher, an observer, and an abstract user interface.

The two event handling functions, postMessage() and stackChanged(), are
straightforward at the interface level. As we have done with previous observers, we
will simply add these two functions to the public interface of the UserInterface class
and create proxy observer classes to broker the communication by the publisher and
the actual observer. These proxies are discussed in detail in Section 5.1.2.2 below.
Concrete user interfaces must handle the implementations for event handling uniquely
based on how the individual Ul interacts with the user. Hence, postMessage()
and stackChanged() must both be pure virtual. Because there is no need for the
UserInterface class to interject during event handling, I chose, for simplicity, to forgo
the NVI pattern. However, as was discussed in Chapter 4, one could instead use the NVI
pattern with trivial forwarding nonvirtual interface functions.

The UserInterface class’s role as a publisher is slightly more complicated than
its role as an observer. As you saw in Chapter 3 when designing the Stack class, the
Stack implemented the publisher interface rather than substituted as a publisher. We
therefore concluded that inheritance from the Publisher class should be private. For
the UserInterface class, the relationship to the Publisher class is similar except the
UserInterface class itself is not the publisher. The UserInterface class is an abstract
interface for user interfaces in the system and is inheriting from the Publisher class
only to enforce the notion that user interfaces must implement the publisher interface
themselves. Both the CLI and the GUI classes will need to access public functions from
Publisher (for example, to raise events). Thus, the protected mode of inheritance is
appropriate in this instance.

Further recall from Chapter 3 that in order for the Stack class to implement the
publisher interface, once we used private inheritance, we needed to hoist the Publisher
class’s attach() and detach() functions into the Stack’s public interface. The same is
true here using protected inheritance. The question, however, is should the hoisting
occur in the UserInterface class or in its derived classes? To answer this question, we
need to ask how particular user interfaces will be used by pdCalc. Clearly, either a CLI
or a GUI “is-a” UserInterface. Therefore, concrete user interfaces will publicly inherit
from UserInterface and be expected to obey the LSP. Attaching or detaching events to
or from a particular user interface must therefore be able to be accomplished without

99

CHAPTER5 THE COMMAND LINE INTERFACE

knowing the underlying Ul type. Thus, the attach() and detach() functions must be
visible as part of UserInterface’s public interface. Interestingly, in a rather unique
implementation of the observer pattern, part of the publisher interface is implemented
at the UserInterface level, while another part of the publisher interface is implemented
at the derived class level.

Combining all of the above points, we can finally define the UserInterface class as
shown in Listing 5-1.

Listing 5-1. The UserInterface Class

class UserInterface : protected Publisher
{
public:

UserInterface();

virtual ~UserInterface();

virtual void postMessage(const stringd m) = 0;
virtual void stackChanged() = 0;

using Publisher::attach;
using Publisher::detach;

static const string CommandEntered;

};

The CommandEntered string is the name of the command entered event. It is needed
for attaching or detaching this event and can be given any name unique to events in the
UserInterface class.

For completeness, I show the final user interface hierarchy in Figure 5-2. The
class diagram illustrates the relationship between the CLI, the GUI, the abstract
UserInterface class, and the publisher interface. Remember that the inheritance
between the UserInterface class and the Publisher class is protected, so a
UserInterface (or subsequent derived class) cannot be used as a Publisher. As
previously stated, however, the intent for the inheritances between the concrete CLI and
GUI classes and the abstract UserInterface class are public, allowing an instantiation of
either concrete type to be substituted as a UserInterface.

100

CHAPTER5 THE COMMAND LINE INTERFACE

Publisher

i

Userinterface

T
| |

CLI GUI

Figure 5-2. The user interface hierarchy

5.1.2 User Interface Events

Defining the UserInterface class does not complete the interface for the UI. Because
the UserInterface class is an event publisher, we must also define the event data

class that corresponds to the commandEntered() event. Additionally, defining the
UserInterface class finally completes a publisher/observer pair, so we are finally ready
to design and implement event proxy classes to broker events between the user interface
and both the command dispatcher and the stack.

In Chapter 4, you saw that all commands are delivered to the command dispatcher
via events. Specifically, the Ul raises an event containing a specific command encoded as
a string argument, the CommandDispatcher receives this event, and the string argument
is passed to the CommandRepository, where a concrete command is retrieved for
processing. As far as the command dispatcher is concerned, handling commandEntered()
events is the same, irrespective of whether the encoded command string derives from
the CLI or the GUL

Likewise, when the Stack class raises a stackChanged() event, the Stack is indifferent
to the particular UserInterface that handles this event. We are therefore motivated to
treat the issuing of commandEntered() events and the handling of stackChanged() events
uniformly at the UserInterface class level in the user interface hierarchy.

We begin by examining the common infrastructure for raising commandEntered()
events. The commandEntered() event is registered for all user interfaces in the
constructor of the UserInterface class. Therefore, any derived user interface class
can simply raise this event by calling the raise() function defined by the Publisher
interface, which, by protected inheritance, is part of any concrete Ul's implementation.

101

CHAPTER5 THE COMMAND LINE INTERFACE

The signature of the raise() function requires the name of the event and the event’s
data. Because the event’s name is predefined in the UserInterface’s constructor, the
only additional functionality required to raise a command entered event is a common
CommandData class. Let’s now look at its design.

5.1.2.1 Command Data

In Chapter 3, we designed our event system to use push semantics for passing event
data. Recall that push semantics simply means that the publisher creates an object
containing the necessary information to handle an event and pushes that object to the
observers when an event is raised. The event data object must publicly inherit from the
abstract EventData class. Observers receive the event data through the abstract interface
when the event is raised, and they retrieve the data by downcasting the event data to the
appropriate derived class.

For command entered events, the event data is trivially a string containing either
a number to be entered on the stack or the name of a command to be issued. The
CommandData class simply needs to accept a string command on construction, store this
command, and provide a function for observers to retrieve the command. The entire

implementation is given in Listing 5-2.

Listing 5-2. The Complete Implementation for the CommandData Class

class CommandData : public EventData

{

public:
CommandData(const string& s) : command (s) { }
const string& command() const { return command ; }

private:
string command_;

};

While the mechanics for determining how and when to raise a CommandEntered
event is somewhat different between the CLI and the GUI, both raise events by ultimately
calling Publisher's raise() function with a CommandData argument encoded with the
particular command being issued. That is, for some command string, cmd, the following

102

CHAPTER5 THE COMMAND LINE INTERFACE

code raises a commandEntered() event in the CLI, the GUI, or any other user interface
that might inherit from UserInterface:

raise(UserInterface::CommandEntered, make shared<CommandData>(cmd));

Now that we can raise Ul events, let’s see how they're handled.

5.1.2.2 User Interface Observers

The goal for this subsection is to construct the mechanics to enable classes to listen to
events. Because the abstract user interface is both a source and sink for events, the Ul
serves as an ideal candidate to demonstrate how publishers and observers interact with
each other.

In Chapter 3, we saw that observers are classes that register for and listen to events
raised by publishers. Thus far, we have encountered both the CommandDispatcher and
UserInterface classes that both need to observe events. While it is possible to make
the CommandDispatcher or UserInterface an observer directly, I prefer constructing
a dedicated observer intermediary between the publisher and the class that needs to
observe an event. I have often nebulously referred to this intermediary as a proxy. I am
now ready to give a more concrete meaning to this term.

The proxy pattern [6] is a design pattern that uses a class, the proxy, to serve as the
interface for something else. The something else, let’s call it the target, is not strictly
defined. It could be a network connection, a file, an object in memory, or, as in our
case, simply another class. Often, the proxy pattern is used when the underlying
target is impossible, inconvenient, or expensive to replicate. The proxy pattern uses a
class buffer to allow the system to perceive the target as an object independent of its
underlying composition. In our context, we are using the proxy pattern simply to buffer
communication between publishers and observers.

Why are we bothering with the proxy pattern here? This strategy has several distinct
advantages. First, it increases clarity in the target class’s public interface by replacing
a generically named notify() function with a descriptively named event handling
function. Second, an otherwise unnecessary inheritance from the Observer class is
removed. Eliminating this dependency reduces coupling, increases cohesion, and
facilitates reuse of the target in a setting where it is not an observer. Third, using a proxy
class eliminates the ambiguity that arises for a target class that needs to listen to multiple
events. Without using proxy classes, an observer would be required to disambiguate

103

CHAPTER5 THE COMMAND LINE INTERFACE

events in its single notify() function. Using an individual proxy for each event enables
each event to call a unique handler function in the target object. The main disadvantage
of implementing the observer pattern using a proxy is the slight cost of one extra
indirection for handling each event. However, in situations where using the observer
pattern is appropriate, the cost of an extra indirection is negligible.

Using the proxy pattern for implementing the observer pattern leads to the
following two classes for handling commandEntered() and stackChanged()
events: CommandIssuedObserver and StackUpdatedObserver, respectively. The
CommandIssuedObserver mediates between commandEntered() events raised by the
UI and observation in the command dispatcher. The StackUpdatedObserver mediates
between stackChanged() events raised by the stack and observation in the UL The
implementation for both of these classes is relatively straightforward and very similar.
By way of example, let’s examine the implementation for CommandIssuedObserver. See
Listing 5-3.

Listing 5-3. The Declaration for CommandIssuedObserver

class CommandIssuedObserver : public Observer

{

public:
CommandIssuedObserver(CommandDispatcher8 ce);
void notifyImpl(shared ptr<EventData>) override;

private:
CommandDispatcherd ce ;

};

Because it mediates events between the Ul as a publisher and the CommandDispatcher
as the target of the observer, the CommandIssuedObserver’s constructor takes a reference
to a CommandDispatcher instance, which it retains to call back to the command dispatcher
when the Ul raises a commandEntered() event. Recall that the CommandIssuedObserver
will be stored by the Ul in the Publisher’s event symbol table when the observer is
attached to the event. The implementation of notifyImpl() is simply a dynamic cast
of the EventData parameter to a specific CommandData instance followed by a call to
CommandDispatcher’s commandEntered() function.

104

CHAPTER5 THE COMMAND LINE INTERFACE

Of course, before an event is triggered, the CommandIssuedObserver must be
registered with the Ul For completeness, the following code illustrates how to
accomplish this task:

ui.attach(UserInterface::CommandEntered,
make_unique<CommandIssuedObserver>(ce));

where ui is a UserInterface reference. Note that since the attach() function
was intentionally hoisted into the abstract UserInterface scope, attaching through
areference allows us to reuse the same call for both the CLI and the GUI. That is,
registering events is accomplished through the abstract Ul interface, which greatly
simplifies user interface setup in pdCalc’s main() routine. The declaration and
registration of StackUpdatedObserver is analogous.

The complete implementation of the observer proxy classes can be found in
AppObservers.cpp. While the usage of the observer proxies is intertwined with the
event-observing classes, the proxies are not part of the interface for the target classes.
Hence, they are included in their own file. The attachment of the proxies to events
is performed in main. cpp. This code structure preserves the loose binding between
publishers and observers. Specifically, publishers know which events they can raise, but
not who will observe them, while observers know which events they will watch, but not
who raises them. Code external to both publishers and their observers binds the two
together.

5.2 The Concrete CLI Class

The remainder of this chapter is devoted to detailing the CLI concrete class. Let’s start by
re-examining the CLI's requirements.

5.2.1 Requirements

The requirements for pdCalc indicate that the calculator must have a command line
interface, but what, precisely, is a CLI? My definition for a command line interface is any
user interface to a program that responds to user commands interactively through text.
Even if your definition for a command line interface is somewhat different, I believe we
can certainly agree that a broad requirement simply indicating a program should have a
CLI is woefully insufficient.

105

CHAPTER5 THE COMMAND LINE INTERFACE

In a production development situation, when you encounter a requirement too
vague to design a component, you should immediately seek clarification from your
client. Notice I said when and not if. Regardless of how much effort you place upfront
trying to refine requirements, you always have incomplete, inconsistent, or changing
requirements. This usually arises for a few reasons. Sometimes, it is due to a conscious
effort not to spend the upfront time refining requirements. Sometimes, it arises from an
inexperienced team member not understanding how to gather requirements properly.
Often, however, it simply arises because the end user doesn’t know what he or she truly
wants or needs until the product starts to take shape. I find this true even for small
development projects for which I am my own customer! While you as the implementer
always retain the expedient option of refining a requirement without engaging your
customer, my experience indicates that this path invariably leads to rewriting the code
repeatedly: once for what you thought the user wanted, once for what the user thought
he wanted, and once for what the user actually wanted.

Obviously, for our case study, we only have a hypothetical end user, so we’ll simply
do the refinement ourselves. We specify the following:

1. The CLI should accept a text command for any command defined
for the calculator (those that exists in the command repository
plus undo, redo, help, and exit).

2. The help command should display a list of all available commands
and a short explanatory message.

3. The CLI should accept space-separated commands in the
order in which they should be processed. Recall that this order
corresponds to Reverse Polish Notation. All commands on a line
are processed after return is pressed.

4. After commands are processed, the interface should display at
most the top four elements of the stack plus the stack’s current

size.

Surprisingly, the minimal requirements listed above are sufficient to build a simple
CLI. While these requirements are somewhat arbitrary, something specific needed to be
chosen in order to describe a design and implementation. If you don'’t like the resultant
CLI T highly encourage you to specify your own requirements and modify the design and

implementation accordingly.

106

CHAPTER5 THE COMMAND LINE INTERFACE

5.2.2 The CLI Design

The design of the CLI is remarkably simple. Because our overall architectural design
placed the entire “business logic” of the calculator in the back end, the front end is
merely a thin layer that does nothing more than accept and tokenize input from the
user, pass that input to the controller sequentially, and display the results. Let’s begin by
describing the interface.

5.2.2.1 The Interface

From the analysis we performed earlier in the chapter, we know that the concrete CLI class
will inherit from the abstract UserInterface class. This inheritance is public because the
CLI “is a” UserInterface and must substitute as one. Hence, the CLI must implement the
UserInterface’s two abstract pure virtual functions, postMessage() and stackChanged().
These two methods are only called polymorphically through a UserInterface reference;
therefore, both methods become part of the private interface of the CLI. Other than
construction and destruction, the only functionality that the CLI needs to expose publicly
is a command that starts its execution. This function drives the entire CLI and only returns
(normally) when the user requests to quit the program. Combining the above, the entire
interface for the CLI can be given by the code in Listing 5-4.

Listing 5-4. The Entire Interface for the CLI

class Cli : public UserInterface

{
class CliImpl;

public:
Cli(istreamd in, ostream& out);
~Cli();

void execute(bool suppressStartupMessage = false, bool echo = false);

private:
void postMessage(const stringd m) override;
void stackChanged() override;

unique_ptr<CliImpl> pimpl_;
};

107

CHAPTER5 THE COMMAND LINE INTERFACE

While the interface is mostly self-explanatory, the arguments to both the constructor
and the execute() function are worth explaining. To meet the requirements described
above, the execute() function could be written with no arguments. The two arguments
included in the interface are simply optional features that can be turned on. The first
argument dictates whether or not a banner is displayed when the CLI starts. The second
argument controls command echoing. If echo is set to true, then each command is
repeated before displaying the result. Both of these features could be hard coded in the
CLI, but I chose to add them as arguments to the execute () method for added flexibility.

The arguments to the constructor are slightly less obvious than the arguments to
the execute() command. Almost by definition, a CLI takes input from cin and outputs
results to cout or maybe cerr. However, hard coding these standard I/O streams
arbitrarily limits the usage of this class to that of a traditional CLI. Usually, I advocate
limiting functionality to exactly what you need instead of anticipating more general
usage. However, using C++ stream I/0 is one of my few exceptions to my rule of thumb.

Let’s discuss why using references to base class C++ I/0 streams is generally a
good design practice. First, the desire to use different I/O modes is quite common.
Specifically, redirection to or from files is a frequently requested modification to a CLI. In
fact, you'll see this request in Chapter 8! Second, implementing the generic versus
specific interface adds virtually no complexity. For example, instead of directly writing
to cout, one simply keeps a reference to an output stream and writes to that instead. In
the base case, this reference simply points to cout. Finally, using arbitrary stream input
and output greatly simplifies testing. While the program may instantiate the C11i class
using cin and cout, tests can instantiate the C11i class with either a file stream or a string
stream. In this manner, interactive stream inputs and outputs can be simulated using
strings or files. This strategy simplifies testing of the Cl1i class since inputs can be easily
passed in and outputs easily captured as strings rather than through standard input and
output.

5.2.2.2 The Implementation

The implementation of the C11i class is worth examining to observe the simplicity
enabled by the modularity of pdCalc’s design. The entire implementation of the C1i class
is effectively contained in the execute() and postMessage() member functions. The
execute() function drives the CLIL It presents a startup message to the end user, waits
for commands to be entered, tokenizes these commands, and raises events to signal to
the command dispatcher that a new command has been entered. The stackChanged()

108

CHAPTER5 THE COMMAND LINE INTERFACE

function is an observer proxy callback target that writes the top of the stack to the
command line after the stackChanged() event is raised. Essentially, the CLI reduces to
two I/0 routines where execute() handles input and stackChanged() handles output.
Let’s look at the implementations for these two functions starting with the execute()
function shown in Listing 5-5.

Listing 5-5. The execute() Function

void Cli::CliImpl::execute(bool suppressStartupMessage, bool echo)

{
if (!suppressStartupMessage) startupMessage();

for(string line; getline(in_, line, '\n');)
{
Tokenizer tokenizer{line};
for(const autod i : tokenizer)
{
if(echo) out << i << endl;
if(i == "exit" || i == "quit")
return;
else
parent .raise(CommandEntered, make shared<CommandData>(i));
}
}

return;

}

The main algorithm for the CLI is fairly simple. First, the CLI waits for the user to
input a line. Second, this input line is tokenized by the Tokenizer class. The CLI then
loops over each token in the input line and raises an event with the token string as the
event’s data. The CLI terminates when it encounters either a quit or an exit token.

The only piece of the execute() function not previously explained is the Tokenizer
class. Simply, the Tokenizer class is responsible for taking a string of text and splitting
this string into individual space-separated tokens. Neither the CLI nor the Tokenizer
determines the validity of tokens. Tokens are simply raised as events for the command
dispatcher to process. Note that as an alternative to writing your own, many libraries
(boost, for example) provide simple tokenizers.

109

CHAPTER5 THE COMMAND LINE INTERFACE

Given the simplicity of the tokenization algorithm (see the implementation in
Tokenizer.cpp), why did I design the Tokenizer as a class instead of as a function
returning a vector of strings? Realistically, both designs functionally work, and both
designs are equally easy to test and maintain. However, I prefer the class design because
it provides a distinct type for the Tokenizer. Let’s examine the advantages of creating a
distinct type for tokenization.

Suppose we wanted to tokenize input in function foo() but process tokens in a
separate function, bar (). Consider the following two possible pairs of functions to
achieve this goal:

// use a Tokenizer class
Tokenizer foo(const stringd);
void bar(const Tokenizer&);

// use a vector of strings
vector<string> foo(const stringd);
void bar(const vector<string>&);

First, using a Tokenizer class, the signatures for both foo() and bar () immediately
inform the programmer the intent of the functions. We know these functions
involve tokenization. Using a vector of strings leaves ambiguity without further
documentation (I intentionally did not provide names for the arguments). More
importantly, however, typing the tokenizer enables the compiler to ensure that bar ()
can only be called with a Tokenizer class as an argument, thus preventing a programmer
from accidentally calling bar () with an unrelated collection of strings. Another
benefit of the class design is that a Tokenizer class encapsulates the data structure
that represents a collection of tokens. This encapsulation shields the interface to bar ()
from a decision to change the underlying data structure from, for example, a vector of
stringsto alist of strings. Finally, a Tokenizer class can encapsulate additional state
information about tokenization (e.g., the original, pre-tokenized input), if desired.
A collection of strings is obviously limited to carrying only the tokens themselves.

Now let’s examine a simplified implementation of the stackChanged() function,
shown in Listing 5-6.

110

CHAPTER 5 THE COMMAND LINE INTERFACE
Listing 5-6. The stackChanged Function

void Cli::CliImpl::stackChanged()
{
unsigned int nElements{4};
auto v = Stack::Instance().getElements(nElements);
ostringstream oss;
size t size = Stack::Instance().size();

oss << "stack\n";
size t j{ v. size() };
for(auto i = v.rbegin(); i != v.rend(); ++1i)

{
0SS << j << ":\t" << *i << "\n";
-3

}

postMessage(oss. str());

The implementation in C1i. cpp differs only in the fanciness of the printing. Note
that whenever the stack changes, the CLI simply picks the top four (as specified in our
requirements) entries of the stack (getElements() returns the minimum of nElements
and the size of the stack), formats them in an ostringstream, and passes a string
message to the postMessage() function. For the CLI, postMessage() simply writes the
string to the output stream.

Before we move on, let’s pause and reflect on how clean and brief the
implementation for the CLI is. This simplicity is a direct result of pdCalc’s overall
design. Whereas many user interfaces intermix the business logic with the display
code, we meticulously designed these two layers to be independent. Interpretation
and processing of commands (the business logic) resides entirely in the command
dispatcher. Therefore, the CLI is only responsible for accepting commands, tokenizing
commands, and reporting results. Furthermore, based on the design of our event system,
the CLI has no direct coupling to the command dispatcher, a decision consistent with
our MVC architecture. The command dispatcher does have a direct link to the user
interface, but because of our abstraction, the command dispatcher binds to an abstract
UserInterface rather than a specific user interface implementation. In this way, the

111

CHAPTER5 THE COMMAND LINE INTERFACE

Cli perfectly substitutes as a UserInterface (application of the LSP) and can trivially
be swapped in or out as any one of many unique views to the calculator. While this
flexibility may seem like overkill for the design of a calculator, the modularity of all of
the components is beneficial from both a testing and separation of concerns standpoint
even if the calculator were not slated to have another user interface.

5.3 Tying It Together: A Working Program

Before we conclude this chapter on the CLI, it is worthwhile to write a simple main
program that ties all of the components together to demonstrate a working calculator.
pdCalc’s actual implementation in main. cpp is significantly more complicated

because it handles multiple user interfaces and plugins. Eventually, we will build up to
understanding the full implementation in main.cpp, but for now, the code in Listing 5-7
will enable us to execute a working calculator with a command line interface (of course,
including the appropriate header files):

Listing 5-7. A Working Calculator

int main()

{

Cli cli{cin, cout};
CommandDispatcher ce{cli};
RegisterCoreCommands(cli);

cli.attach(UserInterface::CommandEntered,
make_unique<CommandIssuedObserver>(ce));

Stack::Instance().attach(Stack::StackChanged,
make_unique<StackUpdatedObserver>(cli));

cli.execute();

return 0;

}

112

CHAPTER5 THE COMMAND LINE INTERFACE

Due to the modularity of the design, the entire calculator can be set up, assembled,
and executed in just six executable statements! The logic within the main() function is
easy to follow. From a maintenance perspective, any new programmer to the project
would easily be able trace the calculator’s logic and see that the functionality for each
module is clearly divided into distinct abstractions. As will be seen in future chapters, the
abstraction is even more powerful as more modules are added.

To get you started quickly, a project is included in the repository source code that
builds an executable, pdCalc-simple-cli, using the above main() function as the
application’s driver. The executable is a standalone CLI that includes all of the features
discussed up to this point in the book.

In the next chapter, we’ll consider the design of the graphical user interface for our
calculator. As soon as the GUI is complete, many users will quickly dismiss the CLI as
simply an exercise or a relic from a previous era. Before doing so, I'd like to encourage
the reader not to be so quick to judge the humble CLI. CLIs are very efficient interfaces,
and they are typically much easier to script for tasks requiring large deployments or
automation. As for pdCalc, personally, I prefer the CLI to the GUI due to its ease of use.
Of course, maybe that is just an indication that I, too, am a relic from a previous era.

113

CHAPTER 6

The Graphical User
Interface

In this chapter, we will explore the design of the graphical user interface (GUI) for
pdCalc. Whenever one designs a GUI, a widget platform needs to be selected. As
previously noted, I have chosen to use Qt for the creation of the GUI. That said, this is
not a how-to chapter on using Qt to design an interface. Rather, I assume that the reader
has a working knowledge of Qt, and the chapter itself focuses on design aspects of the
GUL. In fact, as much as possible, I will refer the reader to the source code to see detailed
aspects of the widget implementations. Any discussion of the Qt implementation is
either merely incidental or worthy of particular emphasis. If you have no interest in GUI
design, this chapter can be skipped entirely with virtually no loss in continuity.

6.1 Requirements

In Chapter 5, we began our analysis of the command line interface (CLI) by deriving an
interface abstraction that would be used by both the CLI and the GUI. Obviously, we will
reuse this interface here, and we therefore already know the abstract interface to which
our overall user interface must conform. We thus begin this chapter by defining the
requirements for the GUI specialization.

As with the CLI, we quickly discover that the requirements from Chapter 1 are
woefully inadequate for specifying a graphical user interface. The given requirements
are only functional. That is, we know what buttons and operations the calculator should
support, but we know nothing about the expected appearance.

115
© Adam B. Singer 2017

A. B. Singer, Practical C++ Design, DOI10.1007/978-1-4842-3057-2_6

CHAPTER6 THE GRAPHICAL USER INTERFACE

In a commercial project, one would (hopefully) engage the client, a graphic artist,
and a human computer interactions expert to assist in designing the GUI. For our case
study, it suffices to fully specify our own requirements:

1. The GUI should have a window that displays both input and
output. The output is the top six entries of the current stack.

2. 'The GUI should have clickable buttons for entering numbers and
all supported commands.

3. The GUI should have a status display area for displaying error
messages.

The above requirements still do not explain what the calculator should actually look
like. For that, we need a picture. Figure 6-1 shows the working calculator as it appears
on my Linux desktop (Kubuntu 16.10 using Qt 5.7.1). To show the finished GUI as a
prototype for designing the GUI is most certainly “cheating.” Hopefully, this shortcut
does not detract from the realism of the case study too much. Obviously, one would
not have a finished product at this stage in the development. In a production setting,
one might have mock-ups drawn either by hand or with a program such as Microsoft
PowerPoint, Adobe Illustrator, Inkscape, etc. Alternatively, maybe the GUI is being
modeled from a physical object, and the designer either has photographs or direct
access to that object. For example, one might be designing a GUI to replace a physical
control system, and the requirements specify that the interface must display identical
dials and gauges (to reduce operator retraining costs).

116

CHAPTER 6 THE GRAPHICAL USER INTERFACE

X & pdCale) €3]
(61
LT
q:
=
o
]
undo redo proc
asin acos atan root
sin cos tan pow
FWap clear
Enter eex Bksp shift
7 8 9 /
4 5 6 2
1 2 3 =
] +/- +

Figure 6-1. The GUI on Linux with no plugins

The GUI for pdCalc was inspired by my HP48S calculator. For those familiar with
any of the Hewlett-Packard calculators in this series, the interface will feel somewhat
familiar. For those not familiar with this series of calculators (likely, the majority of
readers), the following description explains the basic behavior of the GUI.

The top third of the GUI is a dedicated input/output (I/0O) window. The I/O window
displays labels for the top six stack levels on the left, with the top of the stack being at
the bottom of the window. Values on the stack appear on the right side of the window
on the line corresponding to the number’s location on the stack. As the user enters a
number, the stack reduces to showing only the top five stack elements, while the number
being entered is displayed left justified on the bottom line. A number is terminated and
entered onto the stack by pressing the enter button.

Assuming sufficient input, an operation takes place as soon as the button is pressed.
Ifinsufficient input is present, an error message is displayed above the I/O window. With
respect to commands, a valid number in the input area is treated as the top number

117

CHAPTER6 THE GRAPHICAL USER INTERFACE

on the stack. That is, applying an operation while entering a number is equivalent to
pressing Enter and then applying the operation.

To economize on space, some buttons have a shifted operation above and to the left
of the button itself. These shifted operations can be activated by first pressing the shift
button and then pressing the button below the shifted text. Pressing the shift button
places the calculator in shift mode until a button with a shifted operation is pressed or
until the shift button is pressed again. For clarity, a shifted operation is often the inverse
of the operation on the button.

To ease input, many buttons are bound to keyboard shortcuts. Numbers are activated
by pressing the corresponding number key, the enter button is activated by pressing the
enter key, shift is activated by pressing the s key, backspace is activated by pressing the
backspace key, the exponentiation operation is activated by pressing the e key, and the four
basic arithmetic operations (+, -, *, /) are activated by pressing the corresponding keys.

Finally, a few operations are semi-hidden. When not entering numbers, the
backspace button drops the top entry from the stack, while the enter button duplicates
the top entry on the stack. Some of these combinations are not intuitive and therefore
might not represent very good GUI design. However, they do mimic the input used on the
HP48S. If you have never used an HP48 series calculator before, I highly suggest building
and familiarizing yourself with the GUI from the GitHub repository before continuing.

If you're wondering what a proc key does, it executes stored procedures. It is one of
the “new” requirements we’ll encounter in Chapter 8.

One’s first critique about the GUI might be that it is not very pretty. I agree. The
purpose of the GUI in this chapter is not to demonstrate advanced Qt features. Rather,
the purpose is to illustrate how to design a code base to be modular, robust, reliable, and
extensible. Adding code to make the GUI more attractive rather than functional would
distract from this message. Of course, the design permits a prettier GUI, so feel free to
make your own pretty GUI on top of the provided infrastructure.

We now have sufficient detail to design and implement the calculator’s GUI. However,
before we begin, a short discussion on alternatives for building GUTs is warranted.

6.2 Building GUIs

Essentially, two distinct paths exist for building a GUI: construct the GUI in an integrated
development environment (IDE) or construct the GUI in code. Here, Iloosely use the
term code to indicate building the GUI by text, whether it be by using a traditional

118

CHAPTER 6 THE GRAPHICAL USER INTERFACE

programming language like C++ or a declarative markup syntax like XML. Of course,
between the two extremes is the hybrid approach, which utilizes elements from both
IDEs and code.

6.2.1 Building GUIs in IDEs

If all you need is a simple GUI, then, certainly, designing and building your GUI in

an IDE is the easier route. Most IDEs have a graphical interface for laying out visual
elements onto a canvas, which, for example, might represent a dialog box or a widget.
Once a new canvas is set up, the user visually builds the GUI by dragging and dropping
existing widgets onto the canvas. Existing widgets consist of the built-in graphical
elements of the GUI toolkit (e.g., a push button) as well as custom widgets that have been
enabled for drag-and-drop in the IDE framework. Once the layout is complete, actions
can be tied together either graphically or with a little bit of code. Ultimately, the IDE
creates code corresponding to the graphically laid out GUI, and this IDE-created code is
compiled with the rest of your source code.

Building a GUI using an IDE has both advantages and disadvantages. Some of the
advantages are as follows. First, because the process is visual, you can easily see the
GUTI’s appearance as you perform the layout. This is in direct contrast with writing code
for the GUI, where you only see the look of the GUI after compiling and executing the
code. The difference is very much akin to the difference between using a WYSIWYG
text editor like Microsoft Word and a markup language like LaTeX for writing a paper.
Second, the IDE works by automatically generating code behind the scenes, so the
graphical approach can significantly reduce the amount of coding required to write
a GUL. Third, IDEs typically list the properties of a GUI element in a property sheet,
making it trivial to stylize a GUI without constantly consulting the API documentation.
This is especially useful for rarely used features.

Some of the disadvantages to using an IDE to build a GUI are as follows. First, you are
limited to the subset of the API that the IDE chooses to expose. Sometimes the full API
is exposed, and sometimes it is not. If you need functionality that the IDE’s author chose
not to grant you, you'll be forced into writing your own code. That is, the IDE may limit
fine-tuned control of GUI elements. Second, for repetitive GUI elements, you may have
to perform the same operation many times (e.g., clicking to make text red in all push
buttons), while in code, it’s easy to encapsulate any repeated task in a class or function
call. Third, using the IDE to design a GUI limits the GUI to decisions that can be made

119

CHAPTER6 THE GRAPHICAL USER INTERFACE

at compile time. If you need to dynamically change the structure of a GUI, you'll need to
write code for that. Fourth, designing a GUI in an IDE ties your code to a specific vendor
product. In a corporate environment, this may not be a significant concern because the
development environment may be uniform throughout the company. However, for an
open source, distributed project, not every developer who might want to contribute to
your codebase will want to be restricted to the same IDE you chose.

6.2.2 Building GUIs in Code

Building a GUI in code is exactly what the name implies. Rather than graphically placing
widgets on a canvas, you instead write code to interact with the GUI toolkit. Several
different options exist for how the code can be written, and often, more than one option
is available to you for any given GUI toolkit. First, you can almost always write source
code in the language of the toolkit. For example, in Qt, you can build your GUI entirely
by writing C++ in a very imperative style (i.e., you direct the GUI's behavior explicitly).
Second, some GUI toolkits permit a declarative style (i.e., you write markup code
describing the style of GUI elements, but the toolkit defines the elements’ behaviors).
Finally, some toolkits use a script-based interface for constructing a GUI (often
JavaScript or a JavaScript derivative syntax) perhaps in conjunction with a declarative
markup. In the context of this chapter, building a GUI in code refers exclusively to coding
in C++ against Qt’s desktop widget set.

As you might expect, building a GUI in code has nearly the opposite trade-offs
as building a GUI with an IDE. The advantages are as follows. First, the full API to
the widgets is completely exposed. Therefore, the programmer has as much fine-
tuned control as desired. If the widget library designer wanted a user to be able to do
something, you can do it in code. Second, repetitive GUI elements are easily managed
through the use of abstraction. For example, in designing a calculator, instead of having
to customize every button manually, we can create a button class and simply instantiate
it. Third, adding widgets dynamically at runtime is easy. For pdCalc, this advantage will
be important in fulfilling the requirement to support dynamic plugins. Fourth, designing
a GUI in code grants complete IDE independence, provided that the build system is
independent of the IDE.

While building a GUI in code has many advantages, disadvantages exist as well.
First, the layout is not visual. In order to see the GUI take shape, you must compile and
execute the code. If it looks wrong, you have to tweak the code, try again, and repeat

120

CHAPTER 6 THE GRAPHICAL USER INTERFACE

this process until you get it right. This can be exceedingly tedious and time consuming.
Second, you must author all of the code yourself. Whereas an IDE will autogenerate a
significant portion of the GUI code, particularly the parts related to the layout, when
you are writing code, you must do all the work manually. Finally, when writing a GUI
in code, you will not have access to all of a widget’s properties succinctly on a property
sheet. Typically, you'll need to consult the documentation more frequently. That said,
good IDE code completion can help significantly with this task. Someone may cry foul
to my last remark, claiming, “It’s unfair to indicate that using an IDE can mitigate a
disadvantage of not using an IDE.” Remember, unless you're writing your source code
in a pure text editor (unlikely), the code editor is still likely a sophisticated IDE. My
comparison is between building a GUI using an IDE’s graphical GUI layout tool versus
writing the code manually using a modern code editor, likely itself an IDE.

6.2.3 Which GUI Building Method Is Better?

The answer to the overly general question in the section header is, of course, neither.
Which technique is better for building a GUI is entirely context dependent. When you
encounter this question in your own coding pursuits, consult the trade-offs above, and
make the choice most sensible for your situation. Often, the best solution is a hybrid
strategy where some parts of the GUI will be laid out graphically while other parts of the
GUI will be built entirely from code.

A more specific question in our context is, “Which GUI building method is better for
pdCalc?” For this application, the trade-offs heavily favor a code-based approach. First,
the visual layout for the calculator is fairly trivial (a status window, a display widget, and
a grid of buttons) and easily accomplished in code. This fact immediately removes the
most significant advantage of the IDE approach: handling a complex layout visually.
Second, the creation and layout of the buttons is repetitive but easily encapsulated,
which is one of the advantages of a code-based approach. Finally, because the calculator
must support runtime plugins, the code approach works better for dynamically adding
widget elements (runtime discovered buttons).

In the remainder of this chapter, we’ll explore the design of pdCalc’s GUI in code. In
particular, the main emphasis will be on the design of components and their interfaces.
Because our focus is not on widget construction, many implementation details will be
glossed over. Never fear, however. If you are interested in the details, all of the code is
available for your perusal in the GitHub repository.

121

CHAPTER6 THE GRAPHICAL USER INTERFACE

6.3 Modularization

From the outset of this book, we have discussed decomposition strategies for the
calculator. Using the MVC architectural pattern, we split our design into a model, a view,
and a controller. In Chapter 4, we saw that one of the main components, the command
dispatcher, was split into subcomponents. Whereas the CLI was simple enough to not
need modularization, the GUI is sufficiently complex that decomposition is useful.

In Chapter 5, we determined that any user interface for our system must inherit
from the UserInterface abstract class. Essentially, the UserInterface class defines the
abstract interface of the view in the MVC pattern. While the GUI module must inherit
from UserInterface and hence present the same abstract interface to the controller, we
are free to decompose the internals of the GUI however we see fit. We’ll again use our
guiding principles of loose coupling and strong cohesion to modularize the GUI.

When I decompose a module, I first think in terms of strong cohesion. That s, I
attempt to break the module into small components that each do one thing (and do it
well). Let’s try that with the GUI. First, any Qt GUI must have a main window, defined
by inheriting OMainWindow. The main window is also the entry point to the MVC view,
so our main window must also inherit from UserInterface. The MainWindow is our
first class. Next, visually inspecting Figure 6-1, the calculator is obviously divided into
a component used for input (collection of buttons) and a component used for display.
We therefore add two more classes, the InputWidget and the Display. We've already
discussed that an advantage of using the code approach to building a GUT is to abstract
the repeated creation of buttons, so we’ll make a CommandButton class as well. Finally,
let’s add a component responsible for managing the look-and-feel of the calculator
(e.g., fonts, margins, spacing, etc.), which is aptly named the LookAndFeel class. A
component for stored procedure entry also exists, but we will delay the discussion of that
component until Chapter 8.

Let’s now look at the design of each class, starting with the CommandButton. We'll
discuss any necessary refinements to this initial decomposition if and when they arise.

6.3.1 The CommandButton Abstraction

I begin the discussion by describing how buttons are abstracted. This is a sensible place
to begin since buttons underlie the input mechanism for both numbers and commands
to the calculator.

122

CHAPTER 6 THE GRAPHICAL USER INTERFACE

Qt provides a push button widget class that displays a clickable button that emits
a signal when the button is clicked. This QPushButton class provides the basis for the
functionality that we require for number and command input. One prospective design
we could employ would be to use QPushButtons as-is. This design would require
explicitly writing code to connect each QPushButton manually to its own customized
slot. However, this approach is repetitive, tedious, and highly error-prone. Moreover,
some buttons need additional functionality not provided by the QPushButton API
(e.g., shifted input). Therefore, we instead seek a button abstraction for our program that
builds upon the QPushButton, supplements this Qt class with additional functionality,
but also simultaneously restricts the QPushButton’s interface to meet exactly our
requirements. We'll call this class the CommandButton.

In pattern parlance, we are proposing something that acts as both an adapter
and a facade. We saw the adapter pattern in Chapter 3. The facade pattern is a close
cousin. Whereas the adapter pattern is responsible for converting one interface
into another (possibly with some adaptation), the facade pattern is responsible
for providing a unified interface to a set of interfaces in a subsystem (often as a
simplification). Our CommandButton is tasked with doing both. We are both simplifying
the QPushButton interface to a restricted subset that pdCalc needs but simultaneously
adapting QPushButton's functionality to match the requirements of our problem.
So, is CommandButton a facade or an adapter? The difference is semantic; it shares
characteristics of each. Remember, it is important to understand the objectives of
different patterns and adapt them according to your needs. Try not to get lost in rote
implementations from the Gang of Four [6] for the sake of pattern purity.

6.3.2 The CommandButton Design

Introductory remarks aside, we still must determine what exactly our CommandButton
needs to do and how it will interact with the rest of the GUI In many ways, a
CommandButton looks and acts similarly to a QPushButton. For example, a CommandButton
must present a visual button that can be clicked, and after the button is clicked, it should
emit some kind of signal to let other GUI components know a click action has occurred.
Unlike a standard QPushButton, however, our CommandButton must support both a
standard and shifted state (e.g., a button that supports both sin and arcsin). This support
should be both visual (both states should be shown by our CommandButton widget) and
functional (click signals must describe both a standard click and a shifted click).

123

CHAPTER6 THE GRAPHICAL USER INTERFACE

We therefore have two design questions to answer. First, how do we design and
implement the widget to appear correctly on the screen? Second, how will the calculator,
in general, handle shifted operations?

Let’s first address the CommandButton appearance problem. Sure, we could
implement our button from scratch, paint the screen manually, and use mouse events to
trap button clicks, but that’s overkill for CommandButton. Instead, we seek a solution that
reuses Qt’s QPushButton class. We essentially have two options for reuse: inheritance and
encapsulation.

First, let’s consider reusing the QPushButton class in the CommandButton class’s
design via inheritance. This approach is reasonable since one could logically adopt the
viewpoint that a CommandButton “is-a” QPushButton. This approach, however, suffers
from an immediate deficiency. An “is-a” relationship implies public inheritance, which
means that the entire public interface of QPushButton would become part of the public
interface for CommandButton. However, we already determined that for simplicity within
pdCalc, we want CommandButton to have a restricted interface (the facade pattern). OK,
let’s try private inheritance and modify our viewpoint to an “implements-a” relationship
between CommandButton and QPushButton. Now we encounter a second deficiency.
Without public inheritance from QPushButton, CommandButton loses its indirect
inheritance of the QWidget class, a prerequisite in Qt for a class to be a user interface
object. Therefore, any implementation inheriting QPushButton privately would also
require public inheritance from QWidget. However, because QPushButton also inherits
from QWidget, the multiple inheritance of both of these classes by CommandButton would
lead to ambiguities and is thus disallowed. We must seek an alternative design.

Now, consider encapsulating a QPushButton within a CommandButton (i.e.,
CommandButton “has-a” QPushButton). We probably should have started with this option
since general practice indicates we should prefer encapsulation to inheritance whenever
possible. However, many developers tend to start with inheritance, and I wanted to
discuss the drawbacks of that approach without resorting merely to C++ canon. Aside
from breaking the strong inheritance relationship, choosing an encapsulation approach
overcomes the two drawbacks of using inheritance previously discussed. First, since
the QPushButton will be encapsulated within a CommandButton, we are free to expose
only those parts of the QPushButton interface (or none at all) that make sense for our
application. Second, by using encapsulation, we’ll avoid the multiple inheritance mess
of inheriting from both the QWidget and QPushButton classes simultaneously. Note that I
do not object, in principle, to designs that use multiple inheritance. Multiple inheritance
is simply ambiguous in this instance.

124

CHAPTER 6 THE GRAPHICAL USER INTERFACE

Encapsulating relationships can either take the form of composition or aggregation.
Which is right for the CommandButton class? Consider two classes, A and B, where A
is encapsulating B. In a composite relationship, B is an integral part of A. In code, the
relationship is expressed as follows:

class A
{
/...
private:
Bb;
};

In contrast, aggregation implies that A is merely using a B object internally. In code,
aggregation is expressed as follows:

class A
{
/1 ...
private:
B* b_; // or some suitable smart pointer or reference

};

For our application, I think aggregation makes more sense. That is, our
CommandButton uses a QPushButton rather than is composed from a QPushButton. The
difference is subtle, and an equally logical argument could be made for declaring the
relationship to be composition. That said, both designs work mechanically within Qt, so
your compiler really won't care how you choose to express the relationship.

Now that we have decided to aggregate the QPushButton within the CommandButton,
we can proceed with the overall design of the CommandButton class. Our CommandButton
must support both a primary and secondary command. Visually, I chose to display the
primary command on the button and the secondary command in blue above and to the
left of the button. (I'll discuss how the shifted state operates momentarily.) Therefore,
the CommandButton merely instantiates a QPushButton and a QLabel and places them
both in a QVBoxLayout. The QPushButton displays the text for the primary command,
and the QLabel displays the text for the shifted command. The layout is depicted in
Figure 6-2. To complete the design, as previously stated, in order to interact graphically
with the rest of the GUI, the CommandButton must publicly inherit from the QWdiget class.

125

CHAPTER6 THE GRAPHICAL USER INTERFACE

The design results in a reusable CommandButton widget class for a generic push button,
declaring both a primary and secondary command. Because the push button action is
achieved by using a QPushButton, the overall implementation of the CommandButton class
is remarkably simple.

CommandButton —
QVBoxLayout =

Label—
|Secondary Command Qtabe —l

QPushButton
Primary Command —I

Figure 6-2. The layout of the CommandButton

One final, small detail for reusing the QPushButton remains. Obviously, because the
QPushButton is encapsulated privately in the CommandButton, clients cannot externally
connect to the QPushButton’s clicked() signal, rendering it impossible for client code
to know when a CommandButton is clicked. This design is actually intentional. The
CommandButton will internally trap the QPushButton’s clicked() signal and subsequently
re-emit its own signal. The design of this public CommandButton signal is intricately
linked to the handling of the shifted state.

We now return to modeling the shifted state within the calculator. We have
two practical options. The first option is to have CommandButton understand when
the calculator is in the shifted state and only signal the correct shifted or unshifted
command. Alternatively, the second option is to have CommandButton signal with both
the shifted and unshifted commands and let the receiver of the signal sort out the
calculator’s current state. Let’s examine both options.

The first option, having CommandButton know if the calculator is in a shifted or
unshifted state, is fairly easy to implement. In one implementation, the shift button
notifies every button (via Qt signals and slots) when it is pressed, and the buttons
toggle between the shifted and unshifted state. If desired, one could even swap the text
in the shift position with the text on the button every time the shifted state is toggled.
Alternatively, the shift button can be connected to one slot that sets a global shift
state flag that buttons can query when they signal that a click has occurred. In either
implementation scenario, when the button is clicked, only the command for the current
state is signaled, and the receiver of this command eventually forwards the single
command out of the GUI via a commandEntered() event.

126

CHAPTER 6 THE GRAPHICAL USER INTERFACE

In the second option, the CommandButton is notrequired to know anything about
the calculator’s state. Instead, when a button is clicked, it signals the click with both
the shifted and unshifted states. Essentially, a button just informs its listeners when it
is clicked and provides both possible commands. The receiver is then responsible for
determining which of the possible commands to raise in the commandEntered() event.
The receiver presumably must be responsible for tracking the shifted state (or be able to
poll another class or variable holding that state).

For the CommandButton, both designs for handling the calculator’s state work fairly
well. However, personally, I prefer the design that does not require CommandButton
to know anything about the shifted state. In my opinion, this design promotes better
cohesion and looser coupling. The design is more cohesive because a CommandButton
should be responsible for displaying a clickable widget and notifying the system when the
button is clicked. Requiring CommandButton to understand calculator states encroaches
on the independence of their abstraction. Instead of just being generic clickable buttons
with two commands, the buttons become integrally tied to the concept of the calculator’s
global state. Additionally, by forcing CommandButton to understand the calculator’s state,
the coupling in the system is increased by forcing CommandButton to be unnecessarily
interconnected to either the shift button or to the class they must poll. The only advantage
gained by notifying every CommandButton when the shift button is pressed is the ability
to swap the labels for the primary and secondary commands. Of course, label swapping
could be implemented independently of the CommandButton’s signal arguments.

6.3.3 The CommandButton Interface

Getting the design right is the hard part. With the design in hand, the interface practically
writes itself. Let’s examine a simplified version of the CommandButton class’s definition,
shown in Listing 6-1.

Listing 6-1. The CommandButton Class

class CommandButton : public QWidget

{
Q OBJECT // needed by all Qt objects with signals and slots

public:
CommandButton(const string& dispPrimaryCmd, const string& primaryCmd,
const string® dispShftCmd, const string& shftCmd,
QWidget* parent = nullptr);
127

CHAPTER6 THE GRAPHICAL USER INTERFACE

CommandButton(const stringd dispPrimaryCmd, const string& primaryCmd,
QWidget* parent = nullptr);

private slots:
void onClicked();

signals:
void clicked(string primCmd, string shftCmd);

};

The CommandButton class has two constructors: the four-argument overload and
the two-argument overload. The four-argument overload permits specification of both
a primary command and a secondary command, while the two-argument overload
permits the specification of only a primary command. Each command requires two
strings for full specification. The first string equates to the text the label will present in
the GUI, either on the button or in the shifted command location. The second string
equates to the text command to be raised by the commandEntered() event. One could
simplify the interface by requiring these two strings to be identical. However, I chose
to add the flexibility of displaying a different text than that required by the command
dispatcher. Note that we require overloads instead of default arguments due to the
trailing parent pointer.

The only other public part of the interface is the clicked() signal that is emitted with
both the primary and shifted commands for the button. The rationale behind a two-
argument versus one-argument signal was previously discussed. Despite being private,
I also listed the onClicked() slot in CommandButton’s interface to highlight the private
slot that must be created to catch the internal QPushButton’s clicked() signal. The
onClicked() function’s sole purpose is to trap the QPushButton’s clicked() signal and
instead emit the CommandButton’s clicked() signal with the two function arguments.

If you look at the actual declaration of the CommandButton class in CommandButton.h,
you will see a few additional functions as part of CommandButton’s public interface. These
are simply forwarding functions that either change the appearance (e.g., text color)
or add visual elements (e.g., a tool tip) to the underlying QPushButton. While these
functions are part of CommandButton’s interface, they are functionally optional and are
independent of CommandButton’s underlying design.

128

CHAPTER 6 THE GRAPHICAL USER INTERFACE

6.3.4 Getting Input

The GUI is required to take two distinct types of inputs from the user: numbers and
commands. Both input types are entered by the user via CommandButtons (or keyboard
shortcuts mapped to these buttons) arranged in a grid. This collection of CommandButtons,
their layout, and their associated signals to the rest of the GUI compose the InputhWidget
class.

Command entry is conceptually straightforward. A CommandButton is clicked, and a
signal is emitted, reflecting the command for that particular button. Ultimately, another
part of the GUI will receive this signal and raise a commandEntered() event to be handled
by the command dispatcher.

Entering numbers is a bit more complicated than entering commands. In the CLI,
we had the luxury of simply allowing the user to type numbers and press enter when
the input was complete. In the GUI, however, we have no such built-in mechanism
(assuming we want a GUI more sophisticated than a CLI in a Qt window). While the
calculator does have a Command for entering numbers, remember that it assumes
complete numbers, not individual digits. Therefore, the GUI must have a mechanism for
constructing numbers.

Building a number consists of entering digits as well as special symbols such as the
decimal point, the plus/minus operator, or the exponentiation operator. Additionally,
as the user types, he might make errors, so we’ll want to enable basic editing (e.g.,
backspace), as well. The assembly of numbers is a two-step process. The InputhWidget
is only responsible for emitting the button clicks required for composing and editing
numbers. Another part of the GUI will receive these signals and assemble complete
number input.

6.3.5 The Design of the InputWidget

Conceptually, the design of the InputWidget class is straightforward. The widget must
display the buttons needed for generating and editing input, bind these buttons to
keys (if desired), and signal when these buttons are clicked. As previously mentioned,
the InputWidget contains buttons for both digit entry and command entry. Therefore,
it is responsible for the digits 0-9, the plus/minus button, the decimal button, the
exponentiation button, the enter button, the backspace button, the shift button, and a
button for each command. Recall that as an economization, the CommandButton class
permits two distinct commands per visual button.

129

CHAPTER6 THE GRAPHICAL USER INTERFACE

For consistency throughout the GUI, we’ll use the CommandButton exclusively as the
representation for all of the input buttons, even for buttons that neither issue commands
nor have secondary operations (e.g., the 0 button). How convenient that our design
for the CommandButton is so flexible! However, that decision still leaves us with two
outstanding design issues. How do we lay out the buttons visually, and what do we do
when a button is clicked?

Two options exist for placing buttons in the InputWidget. First, the InputiWidget
itself owns a layout, it places all the buttons in this internal layout, and then the
InputWidget itself can be placed somewhere on the main window. The alternative is for
the InputWidget to accept an externally owned layout during construction and place
its CommandButtons on that layout. In general, having the InputWidget own its own
layout is the superior design. It has improved cohesion and decreased coupling over
the alternative approach. The only exception where having the InputWidget accept an
external layout would be preferred would be if the design called for other classes to share
the same layout for the placement of additional widgets. In that special case, using a
shared layout owned externally to both classes would be cleaner.

Let’s now turn our attention to what happens when a button is clicked within
the InputhWidget. Because the InputWidget encapsulates the CommandButtons, the
clicked() signal for each CommandButton is not directly accessible to consumers of the
InputWidget class. Therefore, the InputWidget must catch all of its CommandButtons’
clicks and re-emit them. For calculator commands like sine or tangent, re-emitting
the click is a trivial forwarding command. In fact, Qt enables a shorthand notation
for connecting a CommandButton’s clicked() signal directly to an InputWidget
commandEntered() signal, forgoing the need to pass through a private slot in the
InputWidget. Digits, number editing buttons (e.g., plus/minus, backspace), and
calculator state buttons (e.g., shift) are better handled by catching the particular
clicked() signal from the CommandButton in a private slot in the InputWidget and
subsequently emitting a InputiWidget signal for each of these actions.

As just described, as each input button is pressed, the InputWidget must emit its
own signal. At one extreme, the InputWidget could have individual signals for each
internal CommandButton. At the other extreme, the InputWidget could emit only one
signal regardless of the button pressed and differentiate the action via an argument. As
expected, for our design, we’ll seek some middle ground that shares elements from each

extreme.

130

CHAPTER 6 THE GRAPHICAL USER INTERFACE

Essentially, the InputWidget accepts three distinct types of input: a modifier
(e.g., enter, backspace, plus/minus, shift), a scientific notation character (e.g., 0-9, decimal,
exponentiation), or a command (e.g., sine, cosine, etc.). Each modifier requires a unique
response; therefore, each modifier binds to its own separate signal. Scientific notation
characters, on the other hand, can be handled uniformly simply by displaying the
input character on the screen (the role of the Display class). Thus, scientific notation
characters are all handled by emitting a single signal that encodes the specific character
as an argument. Finally, commands are handled by emitting a single signal that simply
forwards the primary and secondary commands verbatim as function arguments to the
signal.

In constructing the signal handling, it is important to maintain the InputWidget as a
class for signaling raw user input to the rest of the GUI. Having the InputWidget interpret
button presses leads to problems. For example, suppose we designed the InputWidget
to aggregate characters and only emit complete, valid numbers. Since this strategy
implies that no signal would be emitted per character entry, characters could neither
be displayed nor edited until the number was completed. This situation is obviously
unacceptable, as a user would definitely expect to see each character on the screen as
she entered it.

Let’s now turn our attention to translating our design into a minimal interface for the
InputWidget.

6.3.6 The Interface of the InputWidget

Let’s begin the discussion of the InputWidget’s interface by presenting the class
declaration. As expected, our clear design leads to a straightforward interface.
See Listing 6-2.

Listing 6-2. The InputWidget

class InputWidget : public QWidget

{
Q OBJECT

public:
explicit InputWidget(QWidget* parent = nullptr);

131

CHAPTER6 THE GRAPHICAL USER INTERFACE

signals:
void characterEntered(char c);

void enterPressed();
void backspacePressed();
void plusMinusPressed();
void shiftPressed();

void commandEntered(string, string);

};

Essentially, the entire class interface is defined by the signals corresponding to
user input events. Specifically, we have one signal indicating entry of any scientific
notation character, one signal to forward command button clicks, and individual signals
indicating clicking of the backspace, enter, plus/minus, or shift buttons, respectively.

If you look in the GitHub repository source code in the InputhWidget.cpp file,
you will find a few additional public functions and signals. These extra functions are
necessary to implement two features introduced in subsequent chapters. First, an
addCommandButton() function and a setupFinalButtons() function are needed to
accommodate the dynamic addition of plugin buttons, a feature introduced in Chapter 7.
Second, a procedurePressed() signal is needed to indicate a user request to use a stored
procedure. Stored procedures are introduced in Chapter 8.

6.4 The Display

Conceptually, the calculator has two displays, one for input and one for output. This
abstraction can be implemented visually either as two separate displays or as one
merged input/output display. Both designs are perfectly valid; each is illustrated in
Figure 6-3.

132

CHAPTER 6 THE GRAPHICAL USER INTERFACE

(a) Separate input/output (b) Merged input/output

0.037
10

0.037
10

SN RAD

.23e-7

[1.23e-7 J

Figure 6-3. Input and output display options

Choosing one style of I/O versus the other ultimately reduces to the customer’s
preference. Having no particular affinity for either style, I chose a merged display
because it looks more like the display of my HP48S calculator. With a display style
chosen, let’s now focus on the design implications this choice implies.

With a separate on-screen widget for input and output, as seen in Figure 6-3a, the
choice to have separate input and output display classes would be obvious. The input
display would have slots to receive the InputWidget’s signals, and the output display would
have slots to receive completed numbers (from the input display) and stack updates. The
cohesion would be strong, and the separation of components would be appropriate.

Our design, however, calls for a commingled input/output display, as seen in
Figure 6-3b. The commingled design significantly alters the sensibility of using
independent input and output display classes. While lumping input and output display
concerns into one class does decrease the cohesion of the display, trying to maintain
two independent classes both pointing to the same on-screen widget would lead to
an awkward implementation. For example, choosing which class should own the
underlying Qt widget is arbitrary, likely resulting in a shared widget design (using a
shared_ptr, perhaps?). However, in this scenario, should the input or the output display
class initialize the on-screen widget? Would it make sense for the input display to signal
the output display if the input display shared a pointer to the single display widget? The
answer is simply that a two-class design is not tenable for a merged I/0 display widget
even though we might prefer to separate input and output display concerns.

The aforementioned discussion identifies a few interesting points. First, the
visual presentation of the design on screen can legitimately alter the design and
implementation of the underlying components. While this may seem obvious once
presented with a concrete GUI example, the indirect implication is that GUI class design
may need to change significantly if the on-screen widgets are changed only slightly.
Second, situations exist where the result is cleaner when the design directly contradicts

133

CHAPTER6 THE GRAPHICAL USER INTERFACE

the elements of good design postulated in Chapter 2. Obviously, the guidelines in
Chapter 2 are meant to aid the design process, not to serve as inviolable rules. That said,
my general advice is to aim to preserve clarity over adherence to guidelines, but only
violate best practices judiciously.

Now that we've decided to pursue a single I/O display with a single underlying
Display class, let’s look at its design.

6.4.1 The Design of the Display Class

I confess. My original design and implementation for the Display class was inept.
Instead of using proper analysis techniques and upfront design, I grew the design
organically (that is, alongside the implementation). However, as soon as my design
forced the Display class to emit commandEntered() signals for the GUI to function
properly, I knew the design had a “bad smell” to it. The class responsible for painting
numbers on the screen should probably not be interpreting commands. That said,
the implementation worked properly, so I left the code as it was and completed the
calculator. However, when I finally started writing about the design, I had so much
difficulty trying to formulate a rationale for my design that I finally had to admit to myself
that the design was fatally flawed and desperately needed a rewrite.

Obviously, after redesigning the display, I could have simply chosen to describe
only the improved product. However, I think it is instructive to study my first misguided
attempt, to discuss the telltale signs that the design had some serious problems, and
finally to see the design that eventually emerged after a night of refactoring. Possibly,
the most interesting lesson here is that bad designs can certainly lead to working code,
so never assume that working code is an indicator of a good design. Additionally, bad
designs, if localized, can be refactored, and sometimes refactoring should be undertaken
solely to increase clarity. Refactoring, of course, assumes your project schedule contains
enough contingency time to pause periodically just to pay down technical debt. Let’s
briefly study my mistake before returning to a better design.

6.4.2 A Poor Design

From the analysis above, we determined that the calculator should have one unified
Display class for handling both input and output. The fundamental mistake in my
design for the display derived from incorrectly interpreting that one Display class
implied no additional classes for orthogonal concerns. Hence, I proceeded to lump all

134

CHAPTER 6 THE GRAPHICAL USER INTERFACE

functionality not handled by the InputiWidget class into a single Display class. Let’s start
along that path. However, rather than completing the design and implementation as I
had previously done, we'll stop and redesign the class as soon as we see the first fatal
flaw emerge (which is what I should have done originally).

With a single Display class design, the Display is responsible for showing input
from the user and output from the calculation engine. Showing the output is trivial. The
Display class observes the stackChanged() event (indirectly, since it is not part of the
GUT’s external interface), and updates the screen display widget (a QLabel, in this case)
with the new stack values. Conceptually, showing the input is trivial as well. The Display
directly receives the signals emitted by the InputWidget class (e.g., characterEntered())
and updates the screen display widget with the current input. The simplicity of this
interaction belies the fundamental problem with this design, which is that the input is not
entered atomically for display. Instead, it is assembled over multiple signals by entering
several characters independently and finalizing the input by pressing the enter button.
This sequential construction of the input implies that the calculator must maintain an
active input state, and input state has no business existing in a display widget.

So what, aside from ideological aversion, is wrong with the Display class maintaining
an input state? Can’t we just view the state as simply a display input buffer? Let’s follow
through with this design to see why it is flawed. Consider, for example, the backspace
button, whose operation is overloaded based on the input state. If the current input buffer
is nonempty, the backspace button erases one character from this buffer. However, if the
current input buffer is empty, pressing the backspace button causes the issuance of the
command to drop the top number from the stack. Since, under this design, the Display
owns the input state and is the sink for the backspacePressed() signal, the Display must
be the source of the dropped number from the stack command. Once the Display starts
issuing commands, we’'ve completely given up on cohesion, and it’s time to find the pasta
sauce because spaghetti code ensues. From here, instead of just abandoning the design, I
doubled down, and my original design actually got worse. However, instead of proceeding
further along this misguided path, let’s simply move on to examining a better approach.

6.4.3 An Improved Display Design

Early in the discussion of the poor display design, I pointed out that the fatal mistake
came from assuming that a unified display necessitated a single class design. However,
as we've seen, this assumption was invalid. The emergence of state in the calculator
implies the need for at least two classes, one for the visual display and one for the state.

135

CHAPTER6 THE GRAPHICAL USER INTERFACE

Does this remind you of a pattern we’ve already seen? The GUI needs to maintain
an internal state (a model). We're currently in the midst of designing a display (a view).
We have already designed a class, the InputWidget, for accepting input and issuing
commands (a controller). Obviously, the GUI itself is nothing more than an embodiment
of a familiar pattern, the model-view-controller (MVC). Note that relative to the MVC
archetype seen in Figure 2-2 in Chapter 2, the GUI can replace direct communication
between the controller and the model with indirect communication. This minor change,
which promotes decreased coupling, is facilitated by Qt’s signals and slots mechanism.

We now divert our attention to the design of the newly introduced model class.
Upon completion of the model, we’ll return to the Display class to finish its now simpler
design and interface.

6.5 The Model

The model class, which I aptly called the GuiModel, is responsible for the state of the
GUL. In order to achieve this goal properly, the model must be the sink for all signals that
cause the state of the system to change, and it must be the source of all signals indicating
that the state of the system has changed. Naturally, the model is also the repository for
the state of the system, and it should provide facilities for other components of the GUI
to query the model’s state. Let’s look at GuiModel’s interface in Listing 6-3.

Listing 6-3. The GuiModel Interface

class GuiModel : public QObject

{
Q_OBJECT

public:
enum class ShiftState { Unshifted, Shifted };
struct State { /* discussed below */ };

GuiModel(QObject* parent = nullptr);
~GuiModel();

void stackChanged(const vector<double>& v);

const Stated getState() const;

136

CHAPTER 6 THE GRAPHICAL USER INTERFACE

public slots:
// called to toggle the calculator's shift state
void onShift();

// paired to InputWidget's signals

void onCharacterEntered(char c);

void onknter();

void onBackspace();

void onPlusMinus();

void onCommandEntered(string primaryCmd, string secondaryCmd);

signals:
void modelChanged();
void commandEntered(string s);
void errorDetected(string s);

s

The six slots in the GuiModel class all correspond to signals emitted by the
InputWidget class. The GuiModel interprets these requests, changes the internal state
as appropriate, and emits one or more of its own signals. Of particular note is the
commandEntered() signal. Whereas the GuiModel’s onCommandEntered() slot accepts
two arguments, the raw primary and secondary commands corresponding to the
CommandButton that was pressed, the GuiModel is responsible for interpreting the
shifted state of the GUI and only re-emitting a conmandEntered() signal with the active
command.

The remainder of the GuiModel interface involves the GUT’s state. We begin by
discussing the rationale behind the nested State struct. Rather than declare each piece
of the model’s state as a separate member within GuiModel, I find it much cleaner to
lump all of the state parameters into one struct. This design facilitates the querying of the
model’s state by permitting the entire system state to be returned by const reference with
one function call as opposed to requiring piecemeal access to individual state members.
I chose to nest the State struct because it is an intrinsic part of GuiModel that serves no
standalone purpose. Therefore, the State struct naturally belongs in GuiModel’s scope,
but its declaration must be publicly declared in order for other components of the GUI to
be able to query the state.

137

CHAPTER6 THE GRAPHICAL USER INTERFACE

The constituents of the State struct define the entire state of the GUI. In particular,
this State struct comprises a data structure holding a copy of the maximum number of
visible numbers on the stack, the current input buffer, an enumeration defining the shift
state of the system, and a Qt enumeration defining the validity of the input buffer. The
declaration is shown in Listing 6-4.

Listing 6-4. The State struct for the GuiModel

struct State
{
vector<double> curStack;
string curInput;
ShiftState shiftState;
QValidator::State curInputValidity;

};

An interesting question to ask is, why does the GuiModel’s State buffer the visible
numbers from the top of the stack? Given that the Stack class is a singleton, the Display
could access the Stack directly. However, the Display only observes changes in the
GuiModel (via the modelChanged() slot). Because state changes unrelated to stack
changes occur frequently in the GUI (e.g., character entry), the Display would be
forced to wastefully query the Stack on every modelChanged() event since the Display
is not a direct observer of the stackChanged() event. On the other hand, the GuiModel
is an observer of the stackChanged() event (indirectly via a function call from the
MainWindow). Therefore, the efficient solution is to have the GuiModel update a stack
buffer only when the calculator’s stack actually changes and give the Display class
access to this buffer, which is guaranteed by construction to be current, for updating the

screemn.

6.6 The Display Redux

We are now ready to return our attention to the Display class. Having placed all of the
state and state interactions in the GuiModel class, the Display class can be reduced
simply to an object that watches for model changes and displays the current state of
the calculator on the screen. Other than the constructor, the interface for the Display
class consists of only two functions: the slot to be called when the model changes,

138

CHAPTER 6 THE GRAPHICAL USER INTERFACE

and a member function to be called to show messages in the status area. The latter
function call is used to display errors detected within the GUI (e.g., invalid input) as
well as errors detected in the command dispatcher (as transmitted via UserInterface’s
postMessage()). The entire interface for the Display class is given in Listing 6-5.

Listing 6-5. The Display Class Interface

class Display : public QWidget
{
Q OBJECT
public:
explicit Display(const GuiModel® g, QWidget* parent = nullptr,
int nLinesStack = 6, int minCharWide = 25);

void showMessage(const stringd m);

public slots:
void onModelChanged();

};

The optional arguments to the Display class’s constructor simply dictate visual
appearance of the stack on the screen. Specifically, a client of the Display class has
flexibility over the number of stack lines to display and the minimum width (in units of
fixed width font characters) of the on screen display.

6.7 Tying It Together: The Main Window

The main window is a fairly small class that serves a big purpose. To be precise, it serves
three purposes in our application. First, as in most Qt-based GUIs, we need to provide

a class that publicly inherits from QMainWindow that acts, naturally, as the main GUI
window for the application. In particular, this is the class that is instantiated and shown
in the function that launches the GUI. Following my typical creative naming style, I
called this class the MainWindow. Second, the MainWindow serves as the interface class for
the view module of the calculator. That is, the MainWindow also must publicly inherit from
our abstract UserInterface class. Finally, the MainWindow class owns all of the previously
discussed GUI components and glues these components together as necessary. For all
practical purposes, gluing components together simply entails connecting signals to

139

CHAPTER6 THE GRAPHICAL USER INTERFACE

their corresponding slots. These straightforward implementation details can be found
in the MainWindow.cpp source code file. We'll spend the remainder of this section
discussing the MainWindow’s design and interface.

We've written a Qt application; it’s obvious that we’ll have a descendant of
OMainWindow somewhere. That, in and of itself, is not terribly interesting. What is
interesting, however, is the decision to use multiple inheritance to make the same
class also serve as the UserInterface to the rest of pdCalc. That said, is that truly an
interesting decision, or does it just seem provocative because some developers have a
moral aversion to multiple inheritance?

Indeed, I could have separated the QMainWindow and the UserInterface into two
separate classes. In a GUI where the main window was decorated with menus, toolbars,
and multiple underlying widgets, I perhaps would have separated the two. However, in
our GUI, the QMainWindow base serves no purpose other than to provide an entry point
for our Qt application. The MainWindow literally does nothing else in its QMainWindow role.
To therefore create a separate MainWindow class with the sole purpose of containing a
concrete specialization of a UserInterface class serves no purpose other than to avoid
multiple inheritance. While some may disagree, I think a lack of multiple inheritance, in
this instance, would actually complicate the design.

The situation described above is actually an archetypical example of where multiple
inheritance is an excellent choice. In particular, multiple inheritance excels in derived
classes whose multiple base classes exhibit orthogonal functionality. In our case, one
base class serves as the GUI entry point to Qt while the other base class serves as the
UserInterface specialization for pdCalc’s GUI view. Notice that neither base class
shares functionality, state, methods, or ancestors. Multiple inheritance is especially
sensible in situations where at least one of the base classes is purely abstract (a class with
no state and only pure virtual functions). The scenario of using multiple inheritance of
purely abstract bases is so useful that it is permitted in programming languages that do
not otherwise allow multiple inheritance (e.g., interfaces in both C# and Java).

The interface for the MainWindow consists simply of a constructor, the overrides
for the two pure virtual functions in the UserInterface class, and a few functions for
dynamically adding commands (you’ll encounter these functions in Chapter 7 when we
design plugins). For completeness, the interface for MainWindow is shown in Listing 6-6.

140

CHAPTER 6 THE GRAPHICAL USER INTERFACE

Listing 6-6. The Interface for MainWindow

class MainWindow : public QMainWindow, public UserInterface
{
class MainWindowImpl;
public:
MainWindow(int argc, char* argv[], QWidget* parent = nullptr);
void postMessage(const string& m) override;
void stackChanged() override;

// plugin functions ...
};

6.8 Look-and-Feel

Before we conclude this chapter with some sample code to execute the GUI, we must
return briefly to the final component of the GUI, the LookAndFeel class. The LookAndFeel
class simply manages the dynamically customizable appearance of the GUI, such as font
sizes and text colors. The interface is simple. For each point of customization, a function
exists to return the requested setting. For example, to get the font for the display, we
provide the following function:

class LookAndFeel

{

public:
// one function per customizable setting, e.g.,
const QFont& getDisplayFont() const;
/...

}s

Because we only need one LookAndFeel object in the calculator, the class is
implemented as a singleton.

A great question to ask is, “Why do we need this class at all?” The answer is that it
gives us the opportunity to dynamically modify the appearance of the calculator based
on the current environment, and it centralizes in memory access to the look-and-feel of
pdCalc. For example, suppose we had wanted to make our GUI DPI aware and choose
font sizes accordingly (I didn’t in the source code, but you might want to). With a static

141

CHAPTER6 THE GRAPHICAL USER INTERFACE

configuration file (or, the conceptual equivalent, registry settings), we would have to
customize the settings for each platform during the installation process. Either we would
have to build customization within the installer for each platform, or we would have to
write code to execute during the installation to create the appropriate static configuration
file dynamically. If we have to write code, why not just put it in the source where it
belongs? As an implementation decision, the LookAndFeel class could be designed
simply to read a configuration file and buffer the appearance attributes in memory
(alook-and-feel proxy object). That's the real power of the LookAndFeel class. It centralizes
the location of appearance attributes so that only one class needs to be changed to effect
global appearance changes. Maybe even more importantly, a LookAndFeel class insulates
individual GUI components from the implementation details defining how the GUI
discovers (and possibly adapts to) the settings on a particular platform.

The full implementation for the LookAndFeel class can be found in the in
LookAndFeel. cpp file. The current implementation is very simple. The LookAndFeel class
provides a mechanism for standardizing the GUTI’s look-and-feel, but no implementation
exists to allow user customization of the application. Chapter 8 briefly suggests some
possible extensions one could make to the LookAndFeel class to make pdCalc user
customizable.

6.9 A Working Program

We conclude this chapter with a working main() function for launching the GUI. Due to
additional requirements you'll encounter in Chapter 7, the actual main() function for
pdCalc is more complicated than the one listed below. However, the simplified version is
worth listing to illustrate how to tie pdCalc’s components together with the GUI to create
a functioning, standalone executable. See Listing 6-7.

Listing 6-7. A Working main() Function

int main(int argc, char* argv[])

{
QApplication app{argc, argv};
MainWindow gui{argc, argv};

CommandDispatcher ce{gui};

142

CHAPTER 6 THE GRAPHICAL USER INTERFACE
RegisterCoreCommands(gui);

gui.attach(UserInterface::CommandEntered,
make _unique<CommandIssuedObserver>(ce));

Stack: :Instance().attach(Stack::StackChanged,
make_unique<StackUpdatedObserver>(gui));

gui.setupFinalButtons();
gui.show();
gui.fixSize();

return app.exec();

Note the similarities between the main() function for executing the GUI above and
the main() function for executing the CLI listed at the conclusion of Chapter 5. The
likenesses are not accidental and are the result of pdCalc’s modular design.

As with the CLI, to get you started quickly, a project is included in the repository
source code that builds an executable, pdCalc-simple-gui, using the above main()
function as the application’s driver. The executable is a standalone GUI that includes all
of the features discussed up to this point in the book.

Before concluding this section, I'll make a few comments about the implementation
above. First, the QApplication class, calling show() on the gui, and the app.exec() call
are all boilerplate Qt code. As it concerns us here, those calls simply enable us to start
up the GUI and show it on the screen. Second, setupFinalButtons() is called on the
gui, but we never defined this function as part of MainWindow’s interface. This function is
needed to add the buttons correctly in the presence of plugins. With the standalone GUI
designed in this chapter, the setupFinalButtons() function is unnecessary. I included
this function in the code listing above so that the main() function above could be used
as-is with the existing GitHub repository code. Finally, the fixSize() function is also not
included in the interface built in this chapter. This function is an implementation detail
and contributes nothing to the GUI's design. The function is simply used to fix the size of
the GUI on screen and remove the ability to resize it. Again, the necessity of this function
arises due to plugins because we can only know the final geometry of the GUT after
plugins have added their buttons.

143

CHAPTER6 THE GRAPHICAL USER INTERFACE

6.10 A Microsoft Windows Build Note

pdCalc is designed to be both a GUI and a CLI. In Linux, no compile time distinction
exists between a console application (CLI) and a windowed application (GUI). A unified
application can be compiled with the same build flags for both styles. In Microsoft
Windows, however, creating an application that behaves as both a CLI and a GUI is not
quite as trivial because the operating system requires an application to declare during
compilation the usage of either the console or the Windows subsystem.

Why does the declaration of the subsystem matter on Windows? If an application is
declared to be a windowed application, if it is launched from a command prompt, the
application will simply return with no output (i.e., the application will appear as if it
never executed). However, when the application’s icon is double-clicked, the application
launches without a background console. On the other hand, if an application is declared
to be a console application, the GUI will appear when launched from a command
prompt, but the GUI will launch with a background console if opened by double-clicking
the application’s icon.

Conventionally, Microsoft Windows applications are designed for one subsystem
or the other. In the few instances where applications are developed with both a GUI
and a CLI, developers have created techniques to avoid the above problem. One such
technique creates two applications, a .com and an . exe, that the operating system can
appropriately call depending on the option selected via command line arguments.

In order to keep pdCalc’s code simple and cross platform, I ignored this problem and
simply built the GUI in the console mode (pdCalc-simple-gui, however, having no CLI, is
built in windowed mode). Indeed, this means that if the application is launched by double-
clicking pdCalc’s icon, an extra console window will appear in the background. If you intend
to use the application primarily as a GUI, the problem can be remedied by simply removing
the ability to use the console (e.g., comment out the linewin32:CONFIG += console in the
pdCalc.pro build file). If you need access to both the CLI and the GUI and the extraneous
console drives you crazy, you have two realistic options. First, search the Internet for one
of the techniques discussed above and give it a try. Personally, I've never gone that route.
Second, build two separate executables (maybe called pdCalc and pdCalc-cli) instead
of one executable capable of switching modes based on command line arguments. The
application’s flexible architecture trivially supports either decision.

144

CHAPTER 7

Plugins

You've probably read the chapter title, so you already know that this chapter is about
plugins, specifically their design and implementation. Additionally, plugins will afford us
the opportunity to explore design techniques to isolate platform-specific features. Before
we dive into the details, however, let’s begin by defining what a plugin is.

7.1 What Is a Plugin?

A plugin is a software component that enables new functionality to be added to a
program after the program’s initial compile. In this chapter, we’ll concentrate exclusively
on runtime plugins, that is, plugins built as shared libraries (e.g., a POSIX .so or
Windows .d11 file) that are discoverable and loadable at runtime.

Plugins are useful in applications for a myriad of different reasons. Here are just a few
examples. First, plugins are useful for allowing end users to add features to an existing
program without the need to recompile. Often, these are new features that were completely
unanticipated by the original application developers. Second, architecturally, plugins
enable separation of a program into multiple optional pieces that can be individually
shipped with a program. For example, consider a program (e.g., a web browser) that
ships with some base functionality but allows users to add specialty features (e.g., an ad
blocker). Third, plugins can be used for designing an application that can be customized
to a specific client. For example, consider an electronic health records system that needs
different functionality depending on whether the software is deployed at a hospital or
a physician’s individual practice. The necessary customizations could be captured by
different modules that plug into a core system. Certainly, one can think of many additional
applications for plugins.

In the context of pdCalc, plugins are shared libraries that provide new calculator
commands, and, optionally, new GUI buttons. How difficult could that task be? In Chapter 4,

we created numerous commands and saw that adding new ones was fairly trivial.

145
© Adam B. Singer 2017

A. B. Singer, Practical C++ Design, DOI10.1007/978-1-4842-3057-2_7

CHAPTER 7 PLUGINS

We simply inherited from the Command class (or one of its derived classes, such as
UnaryCommand or BinaryCommand), instantiated the command, and registered it with
the CommandRepository. For example, take the sine command, which is declared in
CoreCommands . h as follows:

class Sine : public UnaryCommand

{

// implement Command virtual members

};
and registered in CoreCommands . cpp by the line
registerCommand(ui, "sin", MakeCommandPtr<Sine>());

It turns out that this recipe can be followed almost exactly by a plugin command
except for one crucial step. Since the plugin command’s class name is unknown to
pdCalc at compile time, we cannot use the plugin class’s name for allocation.

This seemingly simple dilemma of not knowing the class names of plugin commands
leads to the first problem we’ll need to solve for plugins. Specifically, we’ll need to
establish an abstract interface by which plugin commands become discoverable to
and registered within pdCalc. Once we’ve agreed upon a plugin interface, we’ll quickly
encounter the second fundamental plugin problem, which is how do you dynamically
load a plugin to even make the names in the shared library available to pdCalc. To make
our lives more complicated, the solution to this second problem is platform dependent,
so we'll seek a design strategy that minimizes the platform dependency pain. The final
problem we’ll encounter is updating our existing code to add new commands and
buttons dynamically. Maybe surprisingly, this last problem is the easiest to solve. Before
we get started tackling our three problems, however, we need to consider a few rules for
C++ plugins.

7.1.1 Rules for C++ Plugins

Plugins are not conceptually part of the C++ language. Rather, plugins are a
manifestation of how the operating system dynamically loads and links shared libraries
(hence the platform-specific nature of plugins). For any nontrivially sized project,

the application is typically divided into an executable and several shared libraries
(traditionally, . so files in Unix, .dylib files in Mac OS X, and . d11 files in MS Windows).

146

CHAPTER 7 PLUGINS

Ordinarily, as C++ programmers, we remain blissfully unaware of the subtleties
this structure entails because the executable and libraries are built in a homogeneous
build environment (i.e., same compiler and standard libraries). For a practical plugin
interface, however, we have no such guarantee. Instead, we must program defensively
and assume the worst case scenario, which is that plugins are built in a different, but
compatible, environment to the main application. Here, we’ll make the relatively weak
assumption that the two environments, at minimum, share the same object model.
Specifically, we require that the two environments use the same layout for handling
the virtual function pointer (vptr). If you are unfamiliar with the concept of a virtual
function pointer, all the gory details can be found in Lippman [13]. While in principle,
C++ compiler writers may choose different vptr layouts, in practice, compilers typically
use compatible layouts, especially different versions of the same compiler. Without this
shared object model assumption, we would be forced to develop a C language-only
plugin structure. Note that we must also assume that sizeof(T) is the same size for all
types T in the main application and plugins. This eliminates, for example, having a 32-bit
application and a 64-bit plugin because these two platforms have different pointer sizes.

How does programming in a heterogeneous environment affect the available
programming techniques we can use? In the worst case scenario, the main application
might be built with both a different compiler and a different standard library. This
fact has several serious implications. First, we cannot assume that allocation and
deallocation of memory between plugins and the application are compatible. This
means any memory new-ed in a plugin must be delete-ed in the same plugin. Second,
we cannot assume that code from the standard library is compatible between any plugin
and the main application. Therefore, our plugin interface cannot contain any standard
containers. While library incompatibility might seem odd (it’s the standard library,
right?), remember that the standard specifies the interface, not the implementation
(subject to some restrictions, such as vectors occupying contiguous memory). For
example, different standard library implementations frequently have different string
implementations. Some prefer the small string optimization while others prefer using
copy-on-write. Third, while we have assumed a compatible layout for the vptr in
our objects, we cannot assume identical alignment. Therefore, plugin classes should
not inherit from main application classes that have member variables defined in the
base classes if these member variables are used in the main application. This follows
since the main application’s compiler may use a different memory offset to a member
variable than what was defined by the plugin’s compiler if each compiler uses different

147

CHAPTER 7 PLUGINS

alignment. Fourth, due to name mangling variances across different compilers, exported
interfaces must specify extern "C" linkage. The linkage requirement is bidirectional.
Plugins should not call application functions without extern "C" linkage, nor should
the application call plugin functions without extern "C" linkage. Note that because
non-inline, non-virtual member functions require linkage across compilation units
(as opposed to virtual functions, which are called via the vptr through an offset in the
virtual function table), the application should only call into plugin code through virtual
functions, and plugin code should not call base class non-inline, non-virtual functions
compiled in the main application. Finally, exceptions are rarely portable across the
binary interface between the main program and plugins, so we cannot throw exceptions
in a plugin and try to catch them in the main application.

That was a mouthful. Let’s recap by enumerating the rules for C++ plugins:

1. Memory allocated in a plugin must be deallocated in the same
plugin.

2. Standard library components cannot be used in plugin interfaces.

3. Assume incompatible alignment. Avoid plugins inheriting from
main application classes with member variables if the variables
are used in the main application.

4. Functions exported from a plugin (to be called by the main
application) must specify extern "C" linkage. Functions exported
from the main application (to be called by plugins) must specify
extern "C" linkage.

5. The main application should communicate with plugin-derived
classes exclusively via virtual functions. Plugin-derived classes
should not call non-inline, non-virtual main application base

class functions.

6. Do notlet exceptions thrown in plugins propagate to the main
application.

With these rules in mind, let’s return to the three fundamental problems we must
solve in order to design plugins.

148

CHAPTER 7 PLUGINS

7.2 Problem 1: The Plugin Interface

The plugin interface is responsible for several items. First, it must enable the discovery
of both new commands and new GUI buttons. We'll see that this functionality is most
effectively accomplished through a class interface. Second, the plugin must supporta C
linkage interface for allocating and deallocating the aforementioned plugin class. Third,
pdCalc should provide a PluginCommand class derived from Command to assist in correctly
writing plugin commands. Technically, a PLluginCommand class is optional, but providing
such an interface helps users conform to Plugin Rules 3 and 6. Fourth, it is worthwhile
for the plugin interface to provide a function for querying the API version that a plugin
supports. Finally, pdCalc must provide C linkage for any of the functions it must make
available for plugins to call. Specifically, plugin commands must be able to access the
stack. We'll address these issues in sequence starting with the interface for discovering
commands.

7.2.1 The Interface for Discovering Commands

The first problem we face is how to allocate commands from plugins when we know
neither what commands the plugin provides nor the names of the classes we’ll need to
instantiate. We'll solve this problem by creating an abstract interface to which all plugins
must conform that exports both commands and their names. First, let’s address what
functionality we'll need.

Recall from Chapter 4, that in order to load a new command into the calculator,
we must register it with the CommandRepository. By design, the CommandRepository
was specifically constructed to admit dynamic allocation of commands, precisely the
functionality we need for plugin commands. For now, we’ll assume that the plugin
management system has access to the register command (we’ll address this deficiency
in Section 7.4). The CommandRepository’s registration function requires a string name
for the command and a unique_ptr that serves as a prototype for the command. Since
pdCalc knows nothing a priori about the command names in a plugin, the plugin
interface must first make the names discoverable. Second, since C++ lacks reflection
as a language feature, the plugin interface must provide a way to create a prototype
command to be associated with each of the discovered names. Again, by design, the
abstract Command interface supports the prototype pattern via the clone() virtual member
function. Let’s see how these two prior design decisions effectively enable plugins.

149

CHAPTER 7 PLUGINS

Based on the C++ plugin rules above, the only means we have to effect command
discovery is to encapsulate it as a pure virtual interface to which all plugins must
adhere. Ideally, our virtual function would return an associative container of unique_
ptr<CommandPtr> values keyed by strings. However, our C++ plugin rules also stipulate
that we cannot use standard containers, thus excluding string, map, unordered map,
and unique ptr. Rather than (poorly) reimplementing custom versions of any of these
containers, we'll just use a typically avoided, low-level facility available to us: arrays of
pointers.

The above design is enforced by creating a Plugin class to which all plugins must
conform. The purpose of this abstract class is to standardize plugin command discovery.
The class declaration is given by the following:

class Plugin
{
public:
Plugin();
virtual ~Plugin();

struct PluginDescriptor
int nCommands;
char** commandNames;
Command** commands;

};
virtual const PluginDescriptor® getPluginDescriptor() const = 0;

}s

We now have an abstract plugin interface that, when specialized, requires a derived
class to return a descriptor that provides the number of commands available, the names
of these commands, and prototypes of the commands themselves. Obviously, the
ordering of the command names must match the ordering of the command prototypes.
Unfortunately, with raw pointers and raw arrays, the ambiguity of who owns the
memory for the command names and command prototypes arises. Our inability to
use standard containers forces us into an unfortunate design: contract via comment.
Since our rules dictate that memory allocated in a plugin must be freed by the same
plugin, the best strategy is to decree that plugins are responsible for deallocation of

150

CHAPTER 7 PLUGINS

the PluginDescriptor and its constituents. As stated before, the memory contract is
“enforced” by comment.

Great, our problem is solved. We create a plugin, let’s call it M\yPlugin, that inherits
from Plugin. We'll see how to allocate and deallocate the plugin in Section 7.3 below.
Inside of MyPlugin, we create new commands by inheriting from Command as usual.
Since the plugin knows its own command names, unlike the main program, the
plugin can allocate its command prototypes with the new operator. Then, in order to
register all the plugin’s commands, we simply allocate a plugin descriptor with both
command names and command prototypes, return the descriptor by overriding
the getPluginDescriptor() function, and let pdCalc register the commands.

Since Commands must each implement a clone() function, pdCalc can copy the
plugin command prototypes via this virtual function to register them with the
CommandRepository. Trivially, string names for registration can be created from the
commandNames array. For an already allocated Plugin* p, the following code within
pdCalc could implement registration:

const Plugin::PluginDescriptor8 d = p->getPluginDesciptor();
for(int i = 0; i < d.nCommands; ++1i)
CommandRepository: :Instance().registerCommand(d.commandNames[i],
MakeCommandPtr(d.commands[i]->clone()));

At this point, you might recognize a dilemma with our plugins. Commands are
allocated in a plugin, copied upon registration with the CommandRepository in the
main program via a clone() call, and then ultimately deleted by the main program
when CommandRepository’s destructor executes. Even worse, every time a command
is executed, the CommandRepository clones its prototype, triggering a new statement in
the plugin via Command's clone() function. The lifetime of this executed command is
managed by the CommandManager through its undo and redo stacks. Specifically, when
a command is cleared from one of these stacks, delete is called in the main program
when the unique_ptr holding the command is destroyed. At least, that’s how it works
without some tweaking. As was alluded to in Chapter 4, CommandPtr is more than a
simple alias for unique_ptr<Command>.I'll now finally describe the mechanics behind
the CommandPtr alias and the MakeCommandPtr () function that allow correct plugin
command memory management.

Fundamentally, we first need a function to call delete in the appropriate
compilation unit. The easiest solution to this problem is to add a deallocate() virtual
function to the Command class. The responsibility of this function is to invoke delete

151

CHAPTER 7 PLUGINS

in the correct compilation unit when Commands are destroyed. For all core commands,
the correct behavior is simply to delete the class in the main program. Hence, we do

not make the deallocate() function pure virtual, and we give it the following default
implementation:

void Command::deallocate()

{
delete this;

}

For plugin commands, the override for the deallocate() has the same definition,
only the definition appears in the plugin’s compiled code (say, in a base class used
by commands in a particular plugin). Therefore, when deallocate() is invoked on a
Command pointer in the main application, the virtual function dispatch ensures that delete
is called from the correct compilation unit. Now we just need a mechanism to ensure that
we call deallocate() instead of directly calling delete when Commands are reclaimed.
Fortunately, it’s as if the standards committee anticipated our needs perfectly when they
designed unique_ptr. Let’s return to the CommandPtr alias to see how unique ptr canbe
used to solve our problem.

Remarkably few lines of code are necessary to define a CommandPtr alias and to
implement a MakeCommandPtr () function capable of invoking deallocate() instead of
delete. The code makes use of unique_ptr’s deleter object (see sidebar), which enables
a custom routine to be called to reclaim the resource held by the unique_ptr when the
unique_ptr’s destructor is invoked. Let’s look at the code:

inline void CommandDeleter(Command* p)

{
p->deallocate();

return;

}

using CommandPtr = unique_ptr<Command, decltype(&CommandDeleter)>;

inline auto MakeCommandPtr(Command* p)

{

return CommandPtr{p, &CommandDeleter};

}

152

CHAPTER 7 PLUGINS

A brief explanation of the dense code above is warranted. A CommandPtr is simply
an alias for a unique_ptr that contains a Command pointer that is reclaimed by calling the
CommandDeleter () function at destruction. The CommandDeleter () function invoked by
the unique_ptr is a simple inline function that calls the virtual deallocate() function
previously defined. To ease the syntactic burden of creating CommandPtrs, we introduce an
inlined MakeCommandPtx () helper function that constructs a CommandPtr from a Command
pointer. That'’s it. Now, just as before, unique_ptrs automatically manage the memory
for Commands. However, instead of directly calling delete on the underlying Command, the
unique_ptr’s destructor invokes the CommandDeleter function, which calls deallocate(),
which issues a delete on the underlying Command in the correct compilation unit.

If you look at the source code for MakeCommandPtr (), in addition to the version of the
function seen above that takes a Command pointer argument, you will see a very different
overload that uses a variadic template and perfect forwarding. This overloaded function
must exist due to a different semantic usage of MakeCommandPtr () in the construction
of stored procedures. We'll revisit the reasoning behind the two forms of the function in
Chapter 8. If the suspense is overwhelming, feel free to skip ahead to Section 8.1.2.

MODERN C++ DESIGN NOTE: UNIQUE_PTR DESTRUCTION SEMANTICS

The unique ptr<T,D> class template is a smart pointer that models unique ownership of
a resource. The most common usage specifies only the first template parameter, T, which
declares the type of pointer to be owned. The second parameter, D, specifies a custom
delete callable object that is invoked during the destruction of a unique_ptr. Let’s look at a
conceptual model for the destructor for unique_ptr:

template<typename T, typename D = default_delete<T>>
class unique ptr
{

™ P

Dd;

public:
~unique ptr()
{
d_(p_);
}
};
153

CHAPTER 7 PLUGINS

Rather than directly calling delete, unique ptr’s destructor passes the owned pointer to
the deleter using function call semantics. Conceptually, default delete is implemented as
follows:

template<typename T>
struct default delete
{
void operator()(T* p)
{
delete p;
}
b

That is, the default_delete simply deletes the underlying pointer contained by the
unique_ptr. However, by specifying a custom deleter callable object during construction
(the D template argument), unique_ptr can be used to free resources requiring customized
deallocation semantics. As a trivial example, combined with a lambda expression, unique
ptr’s delete semantics allow us to create a simple RAll (resource acquisition is initialization)
container class, MyOb7j, allocated by malloc():

MyObj* m = static_cast<MyObj*>(malloc(sizeof(MyObj)));

[1(Myobj* p){ free(p); };
unique ptr<MyObj, decltype(d)>{m, d};

auto d
auto p

Of course, our design for pdCalc shows another instance of the usefulness of the custom
delete semantics of unique_ptr. It should be noted that shared ptr also accepts a custom
deleter in an analogous fashion.

7.2.2 The Interface for Adding New GUI Buttons

Conceptually, dynamically adding buttons is not much different than dynamically
adding commands. The main application does not know what buttons need to be
imported from the plugin, so the Plugin interface must provide a virtual function
providing a button descriptor. Unlike commands, however, the plugin does not actually
need to allocate the button itself. Recall from Chapter 6 that the GUI CommandButton
widget only requires text for construction. In particular, it needs the push button’s
display text (optionally, the shifted state text) and the command text issued with the

154

CHAPTER 7 PLUGINS

clicked() signal. Therefore, even for plugin commands, the corresponding GUI button
itself resides entirely in the main application; the plugin must only provide text. This
leads to the following trivial interface in the Plugin class:

class Plugin
{
public:
struct PluginButtonDescriptor
{
int nButtons;
char** dispPrimaryCmd; // primary command label

char** primaryCmd; // primary command
char** dispShftCmd; // shifted command label
char** shftCmd; // shifted command

};
virtual const PluginButtonDescriptor* getPluginButtonDescriptor() const = 0;

};

Again, due to the rules we must follow for plugins, the interface must be comprised
of low-level arrays of characters rather than a higher level STL construct.

One interesting facet of the getPluginButtonDescriptor() function relative to
the getPluginDescriptor() is the decision to return a pointer rather than a reference.
The rationale behind this choice is that a plugin writer might wish to write a plugin
that exports commands that do not have corresponding GUI buttons (i.e., CLI-only
commands). The converse, of course, is nonsensical. That is, I cannot envision why
someone would write a plugin that exported buttons for nonexistent commands. This
practicality is captured in the return type for the two descriptor functions. Since both
functions are pure virtual, Plugin specializations must implement them. Because
getPluginDescriptor() returns a reference, it must export a non-null descriptor.
However, by returning a pointer to the descriptor, getPluginButtonDescriptor() is
permitted to return a nullptr indicating that the plugin exports no buttons. One might
argue that the getPluginButtonDescriptor() function should not be pure virtual
and instead provide a default implementation that returns a nullptr. This decision
is technically viable. However, by insisting a plugin author manually implement
getPluginButtonDescriptor(), the interface forces the decision to be made explicitly.

155

CHAPTER 7 PLUGINS

7.2.3 Plugin Allocation and Deallocation

Our original problem was that the main program did not know the class name of plugin
commands and therefore could not allocate them via a call to new. We solved this
problem by creating an abstract Plugin interface responsible for exporting command
prototypes, command names, and sufficient information for the GUI to create buttons.
Of course, to implement this interface, plugins must derive from the Plugin class,
thereby creating a specialization, the name of which the main application cannot know
in advance. Seemingly, we have made no progress and have returned to our original
problem.

Our new problem, similar as it may be to the original problem, is actually much
easier to solve. The problem is solved by creating a single extern "C" allocation/
deallocation function pair in each plugin with prespecified names that allocate/
deallocate the Plugin specialization class via the base class pointer. To satisfy these
requirements, we add the following two functions to the plugin interface:

extern "C" void* AllocPlugin();
extern "C" void DeallocPlugin(void*);

Obviously, the AllocPlugin() function allocates the Plugin specialization and
returns it to the main application, while the DeallocPlugin() function deallocates the
plugin once the main application is finished using it. Curiously, the A1locPlugin() and
DeallocPlugin() functions use void pointers instead of Plugin pointers. This interface
is necessary to preserve C linkage since an extern "C" interface must conform to C
types. An unfortunate consequence of maintaining C linkage is the necessity of casting.
The main application must cast the void* to a Plugin* before using it, and the shared
library must cast the void* back to a Plugin* before calling delete. Note, however,
that we do not need the concrete Plugin’s class name. Thus, the AllocPlugin()/
DeallocPlugin() function pair solves our problem.

7.2.4 The Plugin Command Interface

Technically, a special plugin command interface is not necessary. However, providing
such an interface facilitates writing plugin commands that obey the C++ Plugin Rules.
Specifically, by creating a PluginCommand interface, we assure plugin developers of two
key features. First, we provide an interface that guarantees that plugin commands do
not inherit from a command class that has any state (to avoid alignment problems).

156

CHAPTER 7 PLUGINS

This property is obvious by construction. Second, we adapt the
checkPreconditionsImpl() function to create an exception-free interface across the
plugin boundary. With this guidance in mind, here is the PluginCommand interface:

class PluginCommand : public Command

{
public:
virtual ~PluginCommand();
private:
virtual const char* checkPluginPreconditions() const noexcept = 0;
virtual PluginCommand* clonePluginImpl() const noexcept = 0;
void checkPreconditionsImpl() const override final;
PluginCommand* cloneImpl() const override final;
};

While only mentioned briefly in Chapter 4, all of the pure virtual functions in
the Command class are marked noexcept except for checkPreconditionsImpl()
and cloneImpl() (see the sidebar on keyword noexcept). Therefore, to ensure
that plugin commands do not originate exceptions, we simply implement the
checkPreconditionsImpl() and cloneImpl() functions at the PluginCommand
level of the hierarchy and create new, exception-free, pure virtual functions for
its derived classes to implement. checkPreconditionsImpl() and cloneImpl()
are both marked final in the PluginCommand class to prevent specializations
from inadvertently overriding either of these functions. The implementation for
checkPreconditionsImpl() can trivially be written as follows:

void PluginCommand::checkPreconditionsImpl() const

{
const char* p = checkPluginPreconditions();
if(p) throw Exception(p);
return;

}

Note that the key idea behind the implementation above is that the PluginCommand
class’s implementation resides in the main application’s compilation unit, while
any specializations of this class reside in the plugin’s compilation unit. Therefore,

157

CHAPTER 7 PLUGINS

via virtual dispatch, a call to checkPreconditionsImpl() executes in the main
application’s compilation unit, and this function in turn calls the exception-free
checkPluginPreconditions() function that resides in the plugin’s compilation
unit. If an error occurs, the checkPreconditionsImpl() function receives the error
via a nullptr return value and subsequently originates an exception from the main
application’s compilation unit rather than from the plugin’s compilation unit.

A similar trivial implementation for cloneImpl() can be found in Command.cpp.
Plugin commands that inherit from PluginCommand instead of Command, UnaryCommand,
or BinaryCommand are much more likely to avoid violating any of the C++ Plugin Rules
and are therefore much less likely to generate difficult-to-diagnose, plugin-specific
runtime errors.

MODERN C++ DESIGN NOTE: NOEXCEPT

The C++98 standard admits using exception specifications. For example, the following
specification indicates that the function foo() does not throw any exceptions (the throw
specification is empty):

void foo() throw();

Unfortunately, many problems existed with C++98 exception specifications. While they were
a noble attempt at specifying the exceptions a function could throw, they often did not behave
as expected. For example, the compiler never guaranteed exception specifications at compile
time but instead enforced this constraint through runtime checks. Even worse, declaring a

no throw exception specification could impact code performance. For these reasons and
more, many coding standards were written declaring that one should simply avoid exception
specifications (see, for example, Standard 75 in [27]).

While specifying which specifications a function can throw has proven not to be terribly
useful, specifying that a function cannot throw any exceptions can be an important interface
consideration. Fortunately, the C++11 standard remedied the exception specification mess by
introducing the noexcept keyword. For an in-depth discussion of the uses of the noexcept
specifier, see ltem 14 in [19]. For our discussion, we’ll concentrate on the keyword’s
usefulness in design.

158

CHAPTER 7 PLUGINS

Performance optimization aside, the choice to use noexcept in a function’s specification is
largely a matter of preference. For most functions, no exception specification is the norm. Even
if a function’s code does not itself emit exceptions, it is difficult to ensure statically that nested
function calls within a function do not emit any exceptions. Therefore, noexcept is enforced
at runtime rather than guaranteed at compile time. Thus, my personal recommendation is to
reserve the usage of the noexcept specifier for particular instances where making a strong
statement about the intent of a function is necessary. pdCalc’s Command hierarchy illustrates
several situations where not throwing an exception is important for correct operation. This
requirement is codified in the interface to inform developers that throwing exceptions will lead
to runtime faults.

7.2.5 API Versioning

Invariably, over the lifetime of a long-lived application, the specification for plugins
may change. This implies that a plugin written at one point in time may no longer
function with an updated API version. For an application shipped as a single unit, the
components composing the whole (i.e., the multiple shared libraries) are synchronized
by the development schedule. For a complete application, versioning is used to express
to the external world that the overall application has changed. However, because plugins
are designed to be standalone from the main application’s development, synchronizing
plugin releases with application releases may be impossible. Furthermore, the plugin
API may or may not change with each application release. Therefore, to ensure
compatibility, we must version the plugin API separately from the main application.
While you may not anticipate changing the plugin API in the future, if you don’t add the
ability to query plugins for their supported API version upfront as part of the API itself,
you’ll have to introduce a breaking change to add this feature later. Depending on your
requirements, such a breaking change may not be feasible, and you'll never be able to
add API versioning. Therefore, even if it’s not used initially, adding a function to query a
plugin’s supported API version in the plugin interface should be considered an implicit
requirement. As is hopefully apparent, the API version is distinct from the application’s
version.

The actual API version numbering scheme can be as simple or as complicated
as is deemed appropriate. On the simple side, it can be a single integer. On the more
complicated side, it can be a structure containing several integers for major version,

159

CHAPTER 7 PLUGINS

minor version, etc. For pdCalc, I chose a simple structure utilizing only a major version

and a minor version number. The interface code is given by the following:

class Plugin
{
public:
struct ApiVersion
{
int major;
int minor;

};

virtual ApiVersion apiVersion() const = 0;

};

Because pdCalc is at its first release, the main application requires no algorithm
more sophisticated than checking that a plugin is using API version 1.0. If this constraint
is violated, the offending plugin is not loaded.

7.2.6 Making the Stack Available

Part of the plugin interface consists of making plugins and their commands discoverable
to pdCalc. The other part of pdCalc’s plugin interface consists of making necessary parts
of pdCalc’s functionality available to plugins. Specifically, the implementation of new
commands requires access to pdCalc’s stack.

As we saw when we developed the core commands, commands require only very
basic access to the stack. Specifically, they need the ability to push elements onto the
stack, to pop elements off of the stack, and potentially to inspect elements from the stack
(to implement preconditions). Our strategy for making this functionality available to the
core commands was to implement the Stack class as a singleton with a public interface
that included push, pop, and inspection member functions. However, this design fails to
extend to plugin commands because it violates two of the C++ Plugin Rules. Namely, our
current interface does not conform to C linkage (the stack provides a C++ class interface)
and the current inspection function returns stack elements via an STL vector.

The solution to this problem is quite trivial. We simply add a new interface to the
stack (preferably in a specially designated header file) consisting of a collection of global
(outside the pdCalc namespace) extern "C" functions that translate between C linkage

160

CHAPTER 7 PLUGINS

and C++ class linkage (the adapter pattern again). Recall that since the Stack class was
implemented as a singleton, neither the plugins nor the global helper functions need to
own a Stack reference or pointer. The helper functions directly access the Stack through
its Instance() function. I chose to implement the following five functions in a separate
StackPluginInterface.h header file:

extern "C" void StackPush(double d, bool suppressChangeEvent);
extern "C" double StackPop(bool suppressChangeEvent);
extern "C" size t StackSize();

"C" double StackFirstElement();

"C" double StackSecondElement();

extern
extern

For simplicity, since my example plugin did not need deeper access to the stack than
the top two elements, I created only two inspection functions, StackFirstElement()
and StackSecondElement (), for getting the top two elements of the stack. If desired, a
function returning the elements of the stack to any depth could have been implemented.
To maintain extern "C" linkage, the implementer of such a function would need to
remember to use a raw array of doubles rather than an STL vector.

The complete, straightforward implementations for the above five functions appear
in the StackPluginInterface.cpp file. As an example, the implementation of the
StackSize() function is given by the following:

size t StackSize()
{

return pdCalc::Stack::Instance().size();

}

7.3 Problem 2: Loading Plugins

As previously stated, plugins are platform specific, and, inherently, the loading of plugins
requires platform-specific code. In this section, we will consider two topics. First, we’ll
address the platform-specific code necessary for loading libraries and their respective
symbols. Here, we’ll look at two platform interfaces: POSIX (Linux, UNIX, Mac OS X) and
win32 (MS Windows). Second, we’ll explore a design strategy to mitigate the source code
clutter often arising from the use of platform-specific code.

161

CHAPTER 7 PLUGINS

7.3.1 Platform-Specific Plugin Loading

In order to work with plugins, we only need three platform-specific functions: a
function to open a shared library, a function to close a shared library, and a function to
extract symbols from an opened shared library. Table 7-1 lists these functions and their
associated header file by platform. Let’s look at how these functions are used.

Table 7-1. Plugin functions for different platforms

POSIX win32
header dlfcn.h windows.h
load library dlopen() LoadLibrary()
close library dlclose() Freelibrary()

get library symbol ~ d1lsym() GetProcAddress()

7.3.2 Loading, Using, and Closing a Shared Library

The first step in using a plugin is asking the runtime system to open the library and make
its exportable symbols available to the current working program. The open command on
each platform requires the name of the shared library to be opened (POSIX also requires
a flag specifying the desired symbol binding, either lazy or immediate), and it returns an
opaque handle to the library, which is used to refer to the library in subsequent function
calls. On a POSIX system, the handle type is a void*, while on a win32 system, the handle
type is an HINSTANCE (which, after some unraveling, is a typedef for a void*). As an
example, the following code opens a plugin library, 1ibPlugin.so, on a POSIX system:

void* handle = dlopen("libPlugin.so", RTLD_LAZY);

where the RTLD_LAZY option simply tells the runtime system to perform lazy binding,
which resolves symbols as the code that references them is executed. The alternative
option is RTLD_NOW, which resolves all undefined symbols in the library before dlopen()
returns. The null pointer is returned if the open fails. A simple error handling scheme
skips loading any functionality from a null plugin, warning the user that opening the
plugin failed.

162

CHAPTER 7 PLUGINS

Aside from the different function names, the main platform-specific difference
for opening a plugin is the canonical naming convention employed by the different
platforms. For example, on Linux, shared libraries begin with 1ib and have a . so file
extension. On Windows, shared libraries (usually called dynamically linked libraries,
or simply DLLs) have no particular prefix and a . d11 file extension. On Mac OS X,
shared libraries conventionally are prefaced with 1ib and have the .dylib extension.
Essentially, this naming convention matters only in two places. First, the build system
should create plugins with an appropriate name for the respective platform. Second,
the call to open a plugin should specify the name using the correct format. Since plugin
names are specified at runtime, we need to ensure that plugin names are correctly
specified by the user supplying the plugin.

Once a plugin has been opened, we’ll need to export symbols from the shared library
in order to call the functions contained within the plugin. This export is accomplished by
calling either dlopen() or LoadLibrary() (depending on the platform), either of which
uses a plugin function’s string name to bind the plugin function to a function pointer.
The bound plugin function is then called in the main application indirectly via this
obtained function pointer.

In order to bind to a symbol in the shared library, we need to have a plugin handle
(the return value from opening a plugin), to know the name of the function in the plugin
we want to call, and to know the signature of the function we want to call. For pdCalc,
the first plugin function we need to call is AL1locPlugin() to allocate the embedded
Plugin class (see Section 7.2.3 above). Because this function is declared as part of the
plugin interface, we know both its name and its signature. As an example, on Windows,
for an already loaded plugin pointed to by HINSTANCE handle, we bind the plugin’s
AllocPlugin() function to a function pointer with the following code:

// function pointer of AllocPlugin 's type:

extern "C" { typedef void* (*PluginAllocator)(void); }

// bind the symbol from the plugin

auto alloc = GetProcAddress(handle, "AllocPlugin");

// cast the symbol from void* (return of GetProcAddress)

// to the function pointer type of AllocPlugin

PluginAllocator allocator{ reinterpret cast<PluginAllocator>(alloc) };

163

CHAPTER 7 PLUGINS
Subsequently, the plugin's Plugin specialization is allocated by the following:

// only dereference if the function was bound properly
if(allocator)
{

// dereference the allocator, call the function,

// cast the void* return to a Plugin*

auto p = static_cast<Plugin*>((*allocator)());

}

The concrete Plugin is now available for use (e.g., loading plugin commands,
querying the supported plugin API) through the abstract Plugin interface.

An analogous sequence of code is required to bind and execute the plugin’s
DeallocPlugin() function upon plugin deallocation. The interested reader is referred
to the platform-specific code in the GitHub repository for the details. Remember that
before deallocating a plugin, since commands allocated by the plugin are resident
in memory in the main application (but must be reclaimed in the plugin), a plugin
must not be closed until all of its commands are freed. Examples of plugin commands
resident in the main application’s memory space are command prototypes in the
CommandRepository and commands on the undo/redo stack in the CommandManager.

Since a plugin is an acquired resource, we should release it when we are finished
using it. This action is performed on a POSIX platform by calling d1close() and on a
win32 platform by calling FreeLibrary(). For example, the following code for a POSIX
system closes a shared library (the handle) that was opened with dlopen():

// only try to close a non-null library
if(handle) dlclose(handle);

Now that we have discussed the platform-specific mechanics of opening, using, and
closing plugins, let’s turn our attention to a design strategy that mitigates the inherent
complications of working with multi-platform source code.

7.3.3 A Design for Multi-Platform Code

Portability across platforms is a laudable goal for any software project. However,
achieving this goal while maintaining a readable codebase requires significant
forethought. In this section, we’ll examine some design techniques for achieving
platform portability while maintaining readability.

164

CHAPTER 7 PLUGINS

7.3.3.1 The Obvious Solution: Libraries

The obvious (and preferred) solution to the portability problem is to use a library
that abstracts platform dependencies for you. Using a high quality library for any
development scenario always saves you the effort of having to design, implement, test,
and maintain functionality required for your project. Using a library for cross-platform
development has the additional benefit of hiding platform-specific code behind a
platform-independent API. Such an AP], of course, allows you to maintain a single
codebase that works seamlessly across multiple platforms without littering the source
code with preprocessor directives. Although I did not explicitly discuss these merits in
Chapter 6, Qt’s toolkit abstraction provides a platform-independent API for building
a GUI, an otherwise platform-dependent task. In pdCalc, we used Qt to build a GUI
that compiles and executes on Windows and Linux (and, presumably OS X, although I
have not verified that fact) without changing a single line of the source code between
platforms.

Alas, the obvious solution is not always available. Many reasons exist for not
incorporating libraries in a project. First, many libraries are not free, and the cost
of a library may be prohibitive, especially if the license has usage fees in addition to
development fees. Second, a library’s license may be incompatible with a project’s
license. For example, maybe you are building a closed source code, but the only
available library has an incompatible open source license (or vice versa). Third,
libraries are frequently shipped without source code. Lacking source code makes
extending a library’s functionality impossible. Fourth, you might require support for a
library, but the vendor might not supply any. Fifth, a library may ship with an upgrade
cycle incompatible with your own. Sixth, a library might be incompatible with your
toolchain. Finally, a library may not exist at all for the functionality you are seeking.
Therefore, while using a library typically is the first choice to achieve portability, enough
counterexamples to using a library exist to merit discussing how to achieve portability
without one.

7.3.3.2 Raw Preprocessor Directives

Using raw preprocessor directives is undoubtedly the first method tried when
attempting to achieve cross-platform code. Nearly everyone who has written portable
code probably started this way. Simply, everywhere platform dependent code appears,

165

CHAPTER 7 PLUGINS

the platform-specific pieces are surrounded by preprocessor #ifdef directives. Let’s
take, for example, the runtime loading of a shared library in both Linux and Windows:

#ifdef POSIX

void* handle = dlopen("libPlugin.so", RTLD LAZY);
#elif WIN32

HINSTANCE handle = LoadlLibrary("Plugin.dll");
#endif

Don't forget the preprocessor directives surrounding the header files too:

#ifdef POSIX

#include <dlfcn.h>
#elif WIN32

#include <windows.h>
#endif

For a small number of platforms or for a very few instances, using raw preprocessor
directives can be tolerable. However, this technique scales poorly. As soon as either the
number of platforms or the number of code locations requiring platform-dependent
code increases, using raw preprocessor directives quickly becomes a mess. The code
becomes difficult to read, and finding all the platform-dependent locations when adding
a new platform becomes a nightmare. In even a medium sized project, sprinkling the
code with #ifdefs quickly becomes untenable.

7.3.3.3 (Slightly) More Clever Preprocessor Directives

Where platform APIs are different in name but identical in function call arguments
(more common than you might expect since similar functionality, unsurprisingly
enough, requires similar customizations), we can be a little more clever in our usage

of the preprocessor. Instead of placing the preprocessor directives at the site of every
platform-dependent function call and type declaration, we can instead create platform-
dependent macro names and define them in a centralized location. This idea is better
explained with an example. Let’s look at closing a shared library on Linux and Windows:

// some common header defining all platform dependent analogous symbols
#ifdef POSIX

#define HANDLE void*

#define CLOSE_LIBRARY dlclose

166

CHAPTER 7 PLUGINS

#elif WIN32
#define CLOSE_LIBRARY Freelibrary
#define HANDLE HINSTANCE

#endif

// in the code, for some shared library HANDLE handle
CLOSE_LIBRARY(handle);

This technique is significantly cleaner than the naive approach of sprinkling #ifdefs
at every function call invocation. However, it is severely limited by only working for
function calls with identical arguments. Obviously, we would still need an #ifdef at the
call site for opening a shared library because the POSIX call requires two arguments,
while the Windows call requires only one. Certainly, with the abstraction capabilities of
C++, we can do better.

7.3.3.4 A Build System Solution

An interesting idea that seems appealing at first is to separate platform-specific code
into platform-specific source files and then use the build system to choose the correct
file based on the platform. Let’s consider an example. Place all of the Unix-specific code
in a file called UnixImpl.cpp, and place all of the Windows-specific code in a file called
WindowsImpl.cpp. On each respective platform, code your build scripts to only compile
the appropriate platform-specific file. Using this technique, no platform preprocessor
directives are required since any given source file only contains source for one platform.
The above scheme suffers from two distinct drawbacks. First, the method only works
if you maintain identical interfaces (e.g., function names, class names, argument lists)
to your own source code across all platform-specific files on all platforms. This feat is
easier said than done, especially if you have independent teams working and testing on
each platform. Compounding the problem, because the compiler only sees the code for
a single platform at any given time, there is no language mechanism (e.g., type system) to
enforce these cross-platform interface constraints. Second, the mechanics of achieving
cross-platform compatibility are completely opaque to any developer examining the
source code on a single platform. On any one platform, only one of the many platform-
dependent source files effectively exists, and this source file supplies no hint of the
others’ existence. Of course, this latter problem exacerbates the former because the lack
of cross-platform source transparency coupled with the lack of language support for

167

CHAPTER 7 PLUGINS

the technique makes it nearly impossible to maintain interface consistency. For these
reasons, a pure build system solution is intractable.

With the downsides of this technique noted, we must be careful not to throw out the
baby with the bathwater, for the kernel of our final solution lies in a language supported
mechanism at the juxtaposition of both the preprocessor and the build system solutions.
This design technique is examined in the following section.

7.3.3.5 A Platform Factory Function

Scattering preprocessor macros throughout a code everywhere platform-specific
functionality is required is analogous to using integer flags and switch statements to
execute type-specific code. Not coincidentally, both problems have the same solution,
which is to build an abstract class hierarchy and execute specific functionality via
polymorphism.

We'll build our solution of designing a general cross-platform architecture in two
steps. First, we'll design a platform hierarchy for handling dynamic loading. Second,
we'll extend this specific solution into a framework for abstracting platform dependence
into a platform-independent interface. In both steps, we will employ a hybrid solution
that utilizes the build system in a type-safe manner through a minimum use of platform-
specific preprocessor directives. Along the way, we’ll encounter two additional,
important design patterns: the factory method and the abstract factory. Let’s start by
examining the platform-independent dynamic loading of plugins.

To address our specific problem, we start by first defining a platform-independent
abstract interface for a DynamicLoader base class. Our DynamiclLoader only needs to do
two things: allocate and deallocate plugins. The base class is therefore trivially defined as
follows:

class Dynamicloader

{
public:
virtual ~DynamiclLoader();

virtual Plugin* allocatePlugin(const string& pluginName) = 0;
virtual void deallocatePlugin(Plugin*) = 0;

};

The design intent of the above base class is that the hierarchy will be specialized by
platform.

168

CHAPTER 7 PLUGINS

Notice that the interface itself is platform independent. The platform-dependent
allocation and deallocation is an implementation detail handled by the platform-specific
derived classes of this interface through the virtual functions. Furthermore, because
each platform-specific implementation is wholly contained in a derived class, by placing
each derived class in a separate file, we can use the build system to selectively compile
only the file relevant for each platform, obviating the need for platform preprocessor
directives anywhere within the hierarchy. Even better, once a DynamicLoader has been
allocated, the interface abstracts away the platform-specific details of plugin loading,
and the consumer of a plugin need not be concerned with plugin loading details.
Loading just works. For the implementer of the derived classes of the DynamiclLoader,
the compiler can use type information to enforce interface consistency across platforms
since each derived class must conform to the interface specified by the abstract base
class, which is common to all platforms. The design is summarized pictorially in
Figure 7-1. The included source code for pdCalc implements platform-specific loaders
for a POSIX compliant system and for Windows.

DynamicLoader.h,
DynamicLoader.cpp
compiled on all platforms

|Dynamichoader|

PosinynamicLoaderl |WindowsDynamicLoader| |XDynamicLoader

. . '

1 1 1

1 1 1

1 1 1
PosixDynamicLoader.h, WindowsDynamicLoader.h, XDynamicLoader.h,
PosixDynamicLoader.cpp WindowsDynamicLoader.cpp XDynamicLoader.cpp
compiled only on POSIX compiled only on Windows compiled only on X
platforms platforms platforms

Figure 7-1. The dynamic loader hierarchy for platform-independent plugin
allocation and deallocation

The above design hides platform-specific details behind an abstract interface,
alleviating the need for a plugin consumer to understand how a plugin is loaded. That is,
of course, assuming that the plugin consumer instantiates the correct platform-specific
derived class, something that cannot be handled automatically by the DynamicLoader
hierarchy. Here, we introduce a new design pattern, the factory function, to solve the

169

CHAPTER 7 PLUGINS

problem of instantiating the correct derived class. Simply, the factory function is a
pattern that separates type creation from the logical point of instantiation.

Before progressing, I should point out the semantic difference between a factory
function and the factory method pattern, as defined by the Gang of Four [6]. Simply, the
factory method pattern implements a factory via a separate class hierarchy. A factory,
more generally, is any mechanism of separating the selection of the specific derived
class in a hierarchy from the point of logical instantiation. A factory function is a factory
composed of a single function rather than a separate creational hierarchy.

Typically, a factory is implemented by calling a function that takes a flag (an integer,
an enumeration, a string, etc.) to delimit the specialization of a hierarchy and returns
a base class pointer. Let’s examine an artificial example. Suppose we have a hierarchy
of Shapes with the derived classes Circle, Triangle, and Rectangle. Furthermore,
suppose we have defined the following enumerated class:

enum class ShapeType {Circle, Triangle, Rectangle};
The following factory function could be used to create shapes:

unique_ptr<Shape> shapeFactory(ShapeType t)

{
switch(t)
{
case ShapeType::Circle:
return make unique<Circle>();
case ShapeType::Triangle:
return make_unique<Triangle>();
case ShapeType::Rectangle:
return make _unique<Rectangle>();
}
}

A Circle could be created by the following function call:
auto s = shapeFactory(ShapeType::Circle);
Why is the above construction anymore useful than typing

auto s = make unique<Circle >();

170

CHAPTER 7 PLUGINS

Truthfully, it’s not. Instead, however, consider a factory function that accepts a
string argument instead of an enumerated type (replacing the switch statement with a
series of if statements). We can now construct a Circle with the following statement:

auto s = shapeFactory("circle");

The above is a much more useful construct than direct instantiation using a class
name because discovery of the value of the string argument to shapeFactory() can be
deferred to runtime. A typical usage of the simple factory method as described above
is to enable the condition defining which specialization is instantiated to appear in a
configuration file or an input file.

In our case, the factory is even simpler. Since our hierarchy is specialized by
platform, rather than passing in a flag to choose the appropriate derived class, we simply
make the selection by using preprocessor directives, as shown in Listing 7-1.

Listing 7-1. A Dynamic Loader Factory Function

unique ptr<DynamiclLoader> dynamiclLoaderFactory()
{
#ifdef POSIX

return make_unique<PosixDynamicLoader>();
#elif WIN32

return make_unique<WindowsDynamiclLoader>();
#else

return nullptr;

}

By compiling the dynamicLoaderFactory() function into its own source file, we
can achieve platform-independent plugin creation by isolating one set of preprocessor
directives in one source file. The factory function is then called to return the correct type
of DynamiclLoader at the site where plugin allocation or deallocation is needed. By having
the factory return a unique_ptr, we need not worry about memory leaks. The following
code snippet illustrates the platform-independent usage of the DynamicLoader:

// Question: What plaform?

auto loader = dynamiclLoaderFactory();

// Answer: Who cares?

auto plugin = (loader ? loader->allocatePlugin(pluginName) : nullptr);

171

CHAPTER 7 PLUGINS

For the purposes of pdCalc, we could stop with the DynamicLoader hierarchy and
our simple factory function. We only have the need to abstract one platform-dependent
feature (the allocation and deallocation of plugins), and the code above is sufficient
for this purpose. However, we've come this far, and it’s worth taking one extra step to
see a generalized implementation of platform independence applicable to situations
calling for a number of different platform-dependent features, even if it is not specifically
needed for our case study.

7.3.3.6 An Abstract Factory for Generalized Platform
Independent Code

As software developers, we are constantly faced with design challenges caused by
platform dependence. The following is an incomplete list of common platform-specific
programming tasks for a C++ developer: plugin loading, interprocess communication,
navigation of the file system (standardized in C++17), graphics, threading (standardized
in C++11), persistent settings, binary serialization, sizeof() built-in data types,

timers (standardized in C++11), and network communication. Most, if not all, of the
functionality on this list can be obtained through platform-independent APIs in libraries
such as boost or Qt. For me personally, the platform-specific feature that has caused the
most aggravation has been the humble directory separator (/ on a Posix system and \ on
a Windows system).

Suppose our calculator required the ability to read, write, and save persistent custom
settings (see Chapter 8 for some reasons why this might be necessary for a calculator).
Typically, Linux systems save settings in text files (for example, on Ubuntu, user settings
are saved in files in the . config directory in home), while on Windows systems, persistent
settings are saved in the system registry. In practice, the best solution would be to use an
existing library that has already implemented this abstraction (e.g., Qt’s QSettings class).
For instructional purposes, we’ll assume that no external libraries are available, and we’ll
examine a design that adds persistent settings (or any number of platform-dependent
functionality) alongside our existing dynamic loader. Our focus will be on the abstraction
rather than the specifics of the settings implementation on each platform.

The easy solution is to piggyback on our dynamic loader and simply add the
necessary settings interface directly into the DynamiclLoader class. Of course, we would
need to rename the class to something more generic, such as OsSpecificFunctionality,
with derived classes such as LinuxFuntionality and WindowsFunctionality. This
method is simple, fast, and quickly intractable; it is antithetical to cohesion. For any

172

CHAPTER 7 PLUGINS

sizable code, this technique eventually leads to uncontrollable bloat and thus a complete
lack of maintainability of the interface. Despite time pressures on projects, I recommend
always avoiding this quick solution because it merely increases your technical debt
and causes longer delays in the future than would be experienced in the present with a
proper solution.

Instead of bloating our existing DynamicLoader class, we instead take inspiration
from its design and create a separate, analogous settings hierarchy as depicted
in Figure 7-2. Again, we have the problem of instantiating a platform-specific
derived class on each unique platform. However, instead of adding an additional
settingslLoaderFactory() function to mirror the existing dynamicLoaderFactory()
function, we instead seek a generalized solution that enables indefinite functional
extension while preserving the single code point for platform selection. As expected,
we are not the first programmers to encounter this particular problem and a solution
already exists: the abstract factory pattern.

| PosixSettings | |WindowsSettings | | XSettings |

Figure 7-2. The settings hierarchy for platform-independent persistent settings

According to Gamma et al [6], an abstract factory “provides an interface for creating
families of related or dependent objects without specifying their concrete classes.”
Essentially, the pattern can be constructed in two steps:

1. Create independent hierarchies (families) for each of the related
objects (e.g., a dynamic loader hierarchy and a settings hierarchy,
related by their platform dependence).

2. Create a hierarchy, specializing on the dependent relationship
(e.g., the platform), that provides factory functions for each of the

families.

I find the above abstraction very difficult to comprehend without a concrete
example; therefore, let’s consider the problem we are trying to solve in pdCalc. As you
walk through this example, refer to the (overly complex) class diagram in Figure 7-3.

173

CHAPTER 7 PLUGINS

Recall that the overall goal of this abstraction is to create a single source location capable
of providing a platform-independent mechanism for creating any number of platform-
specific specializations.

PlatformFactory
pd‘zf!fj +createDynamicLoader(): DynamiclLoader*

+creaetSettings(): Settings*

PosixFactory WindowsFactory

I====71====7 -createDynamicLoader(): DynamicLoader* -createDynamicLoader(): DynamicLoader*
-createSettings(): Settings* -createSettings(): Settings*
T T

]

]

]

]

]

|

1 ! !

: e |
I |

;] |
1 |

|

I

- —>| PosinynamicLoaderl |WindowsDynamicLoader| | PosixSettingsl |WindowsSettings |<— -

Figure 7-3. The abstract factory pattern applied to pdCalc

As we've already seen, the platform-dependent functionality can be abstracted
into parallel, independent hierarchies. These hierarchies enable platform-dependent
implementations to be accessed through platform-independent base class interfaces
via polymorphism. For pdCalc, this pattern translates into providing platform-
agnostic Settings and DynamicLoader hierarchies to abstract persistent settings
and dynamic loading, respectively. For example, we can allocate and deallocate a
plugin polymorphically through the abstract DynamicLoader interface, provided the
system instantiates the correct underlying derived class (PosixDynamiclLoader or
WindowsDynamicLoader) based on the platform. This part of the abstract factory is
represented by the DynamiclLoader hierarchy in Figure 7-3.

The problem now reduces to instantiating the correct derived class based on the
current platform. Instead of providing separate factory functions to instantiate the
DynamiclLoader and Settings objects (a decentralized approach requiring separate
platform #ifdefs in each factory), we instead create a hierarchy that provides an abstract
interface for providing the factory functions necessary to create the DynamicLoader and
Settings objects. This abstract factory hierarchy (the PlatformFactory hierarchy in
Figure 7-3) is then specialized on the platform so that we have platform-specific derived
classes of the factory hierarchy that create platform-specific derived classes of the
functional hierarchies. This scheme centralizes the platform dependence into a single

174

CHAPTER 7 PLUGINS

factory function that instantiates the correct PlatformFactory specialization. In pdCalc’s
implementation, I chose to make the PlatformFactory a singleton and thereby “hide”
the PlatformFactory’s factory function in the Instance() function.

The abstract factory pattern might still not make a lot of sense, so let’s look at some
sample code, viewing the abstraction in a top-down fashion. Ultimately, the abstract factory
pattern enables us to write the following platform-independent, high-level code in pdCalc:

// PlatformFactory Instance returns either a PosixFactory or a

// WindowsFactory instance (based on the platform), which in turn
// creates the correct derived Dynamicloader

auto loader = PlatformFactory::Intance().createDynamicLoader();

// The correctly instantiated loader provides platform specific

// dynamic loading functionality polymorphically through a platform
// independent interface

auto plugin = loader->allocatePlugin(pName);

/1 ...

loader->deallocatePlugin(plugin);

// Same principle for settings ...

auto settings = PlatformFactory::Instance().createSettings();
settings->readSettingsFromDisk();

/1 ...

settings->commitSettingsToDisk();

Drilling down, the first function we’ll examine is the PlatformFactory’s Instance()
function, which returns either a PosixFactory or a WindowsFactory, depending on the
platform.

PlatformFactory8 PlatformFactory::Instance()

{
#ifdef POSIX

static PosixFactory instance;
#elif WIN32

static WindowsFactory instance;
#endif

return instance;

}

175

CHAPTER 7 PLUGINS

The above function is doing something subtle but clever, and it’s a trick worth
knowing. From the client’s perspective, PlatformFactory looks like an ordinary
singleton class. One calls the Instance() function, and a PlatformFactory reference
is returned. Clients then use the PlatformFactory’s public interface as they would any
other singleton class. However, because the Instance() member function returns a
reference, we are free to use the instance polymorphically. Since PosixFactory and
WindowsFactory both derive from PlatformFactory, the instance variable instantiated
is the specialization that matches the platform as defined by the #ifdef in the
implementation. We have cleverly disguised an implementation detail, the mechanics
of the abstract factory pattern, from the user of the class. Unless the client noticed that
the factory functions in the PlatformFactory are pure virtual, he would probably not
realize he was consuming an object-oriented hierarchy. Of course, the goal is not to
hide anything from the user in a nefarious plot to obscure the implementation. Rather,
this information hiding is utilized to reduce the complexity burden on the client of the
PlatformFactory.

We next examine the trivial implementations of the createDynamicLoader ()
functions in the PosixFactory and WindowsFactory classes (note the covariant return
type of the functions):

unique ptr<DynamiclLoader> PosixFactory::createDynamicLoader()

{

return make unique<PosixDynamiclLoader>();

}

unique ptr<DynamiclLoader> WindowsFactory::createDynamicLoader()

{

return make_unique<WindowsDynamiclLoader>();

}

Above, we've simply replaced the dynamic loader factory function (see Listing 7-1)

by a class hierarchy, replacing the platform #ifdefs with polymorphism. With only

one piece of functionality dependent on the platform, the replacement of a factory
function with an abstract factory is certainly overkill. However, for our example, we have
the independent DynamicLoader and Settings families both dependent on the same
platform criterion (in principle, we could have any number of such hierarchies), and the
abstract factory pattern allows us to centralize the platform dependency in one location
(here, in the PlatformFactory’s Instance() function) instead of scattering it through

176

CHAPTER 7 PLUGINS

multiple independent factory functions. From a maintenance standpoint, the value
proposition is similar to preferring polymorphism to switch statements.

The final pieces of the puzzle are the implementations of both the DynamicLoader
and Settings hierarchies. Fortunately, these implementations are identical to the ideas
outlined in Section 7.3.3, and I need not repeat their implementations here. Using the
abstract factory pattern indeed adds no inherent complication to the implementation
of platform-dependent functions. The pattern only adds mechanics around the
instantiation of these classes via a single factory hierarchy instead of a sequence of
factory functions.

In the source code in pdCalc’s repository, no Settings hierarchy (or its associated
readSettingsFromDisk() and commitSettingsToDisk() functionsin PlatformFactory)
implementation exists because pdCalc, as written, has no need for a persistent settings
abstraction. The Settings hierarchy was merely manufactured as a plausible example
to demonstrate concretely the mechanics and relevance of the abstract factory pattern.
That said, I did opt to include a full abstract platform factory implementation in pdCalc’s
code for the DynamicLoader alone just to illustrate a practical implementation of the
abstract factory pattern even though a simpler single factory function would have
sufficed and been preferred for production code.

7.4 Problem 3: Retrofitting pdCalc

We now turn to the final plugin problem, which is retrofitting the already developed
classes and interfaces to accommodate adding calculator functionality dynamically. This
problem is not about plugin management. Rather, the problem we are addressing here
is extending pdCalc’s module interfaces to accept plugin features. Essentially, where
Section 7.2 defined how to discover commands and buttons in a plugin, this section
describes how to incorporate these newly discovered commands into pdCalc.

Let’s begin by creating an interface to enable the injection of newly discovered
plugin commands. Recall from Chapter 4 how core commands are loaded into
the CommandRepository when the application starts. First, the main application
calls the RegisterCoreCommands () function. Second, within this function, the
registerCommand() function of the CommandRepository class is called for each core
command, registering the command’s name and a command prototype with the
CommandRepository. In Section 7.2, we developed an interface for exporting command
names and command prototypes from plugins. Obviously, to register these plugin

177

CHAPTER 7 PLUGINS

commands, we simply need to extend the command dispatcher module’s interface to
include the registerCommand() function. This interface extension, however, raises an
interesting question. What does it mean to extend a module interface in C++, a language

with no formal module definition?

7.4.1 Module Interfaces

Until now, we have not rigorously defined a mechanism for implementing or describing
modules. We have only loosely declared certain classes to be parts of certain modules
(e.g., the CommandRepository being part of the command dispatcher module). But what
does that really mean? The C++ language, as it currently stands, does not implement

a module concept. Therefore, the module is essentially a meta-language concept, and
the language itself gives very little help in the enforcement of a module interface. We

do, however, have a few basic options for defining modules and their interfaces. First,
encapsulate all classes not directly part of the interface in one source file and only
expose a limited module interface in a single header file. Second, build each module into
a separate DLL and use the DLL symbol export mechanism to selectively export interface
functions. Third, implicitly define module boundaries via declarations in documentation
and comments. Let’s explore each of these options.

7.4.1.1 Source Code Hiding

Let’s begin by discussing the encapsulation model that has always been available to C
programmers: hide non-public interface classes and functions in source files and do
not expose their interfaces in headers. This is the only mechanism that C++ provides
for truly hiding symbols (remember, access modifiers, such as private, cannot be used
for classes themselves, as would be possible in Java or C#). You've already seen this
mechanism employed in hiding class details behind the pimpl pattern.

At the module level, this encapsulation scheme implies that all of the source for
a module would have to reside in a single source file, and only the public parts of
the module’s interface would appear in a single module header file. For example, for
pdCalc’s command dispatcher module, only the CommandDispatcher and the Command
interface would appear in a single header, and the definitions of the CommandDispatcher
class as well as the declarations and definitions of all the concrete commands, the
CommandRepository, and the CommandManager would reside in a single source file. The
biggest disadvantage of source hiding is that it can lead to very large single files for

178

CHAPTER 7 PLUGINS

complicated modules. Large files create the dual dilemmas of being difficult to read due
to sheer size and having long compile times for minimal changes since all of the code
must be recompiled for any change in the module. The advantages of this technique are
that it can be natively implemented in the C++ language and it does not require each
module to reside in a separate dynamically linked library.

I have personally seen this strategy employed in at least one open source package.
While it does accomplish module interface hiding from a technical perspective, the
result is an entire library distributed as a single header file and a single source file. The
header file is over 3,000 lines long and the source file is nearly 20,000 lines long. I cannot
imagine this solution being optimally designed for readability or maintainability. This
open source package, to the best of my knowledge, has a single author. Readability
and maintainability for a team of developers were, therefore, unlikely to have been his
primary objectives.

7.41.2 DLL Hiding

If you are using C++, have a large code base, and want true hiding of a module’s
interface, using DLL hiding is the most reasonable option. Employing this option is,

of course, outside the scope of the C++ language itself. DLL hiding is based on the
operating system’s library format and implemented via compiler directives. Essentially,
the programmer decorates classes or functions with special compiler directives to
indicate whether a function is to be imported or exported from a DLL. The compiler
then creates a DLL that only publicly exports the appropriately marked symbols, and
code linking to the DLL must specify which symbols it intends to import. Since the same
header must be marked as an export while compiling the DLL and as an import while
compiling code using the DLL, the implementation is typically accomplished by using
compiler/OS-specific preprocessor directives. For example, in Windows, the following
code (or a similar variant) would be employed:

// Declspec .h
#ifdef BUILDING DLL

#define DECLSPEC _ declspec(export)
#else

#define DECLSPEC _ declspec(import)
#endif

179

CHAPTER 7 PLUGINS

The declaration of a function foo() that we want to export from our DLL would be

written as

#include "Declspec.h"
DECLSPEC void foo();

When the DLL is built, the preprocessor macro BUILDING DLL is defined;
therefore, the DECLSPEC macro expands to __declspec(export). When the DLL is
used, the BUILDING DLL macro is left undefined, and the DECLSPEC macro expands to
__declspec(import). Any function or class not decorated with the DECLSPEC macro
remains private to the DLL. GCC implements a similar mechanism using a slightly
different syntax.

Most Windows programmers are very familiar with the DLL hiding mechanism
for controlling module interfaces because globally hiding symbols in DLLs is the
default paradigm for Visual Studio. If a symbol is not decorated, it will not be exported
from the DLL. Therefore, to make a DLL that can be called from externally (is there
any other kind?), Windows programmers must manually export symbols using the
__declspec directive. Many UNIX programmers, however, are unfamiliar with DLL
hiding because the default shared library implementation publicly exports all symbols.
That s, in a typical UNIX or Linux system, no need exists to decorate symbols as an
export or an import in shared library code because all symbols in a shared library are
made publicly available to the calling program by the linker when the shared library is
loaded. Compiler command line options can reverse the default visibility from public to
private, if so desired, and symbols can be marked manually for either import or export
analogously to a Windows build.

I started this section by stating that if you want true hiding of a module’s interface
for a large C++ code base, using DLL hiding is the most reasonable option. It enables
avery fine level of granularity for module access control provided you are content to
devote a separate DLL to each module. The main disadvantages to this technique are
in readability, maintainability, and portability. Using the technique does require using
compiler and operating system-specific decorators that are not part of the C++ language
for each exportable function. While the extra DECLSPEC macro is not too unbearable
for each function or class, the definition of the macro can get unwieldy quickly when
accounting for multiple operating systems or multiple compilers. Additionally, diagnosing
problems caused by forgetting to define the correct preprocessor macro when building
or using a DLL can confound novice programmers. Finally, correctly implementing DLL
imports and exports in the presence of template code can be nontrivial.

180

CHAPTER 7 PLUGINS

7.4.1.3 Implicit or Documentation Hiding

The technique that I have termed implicit hiding is nothing more than hiding the
interface by not documenting it. What does this mean in practice? Since the C++
language does not directly support modules, implicit hiding simply draws a logical
construct around a group of classes and functions, and declares those classes to
compose a module. The language allows any public function of any class to be called
from code external to the module. Therefore, the module’s public interface is “declared”
by only documenting those functions that should be called from the outside. From a
purely technical perspective, implicit hiding is no hiding at all!

Why would anyone choose implicit hiding over either source code hiding or DLL
hiding? Quite simply, the choice is made for expedience. Using implicit hiding allows
developers to organize classes and source code in a logical, readable, and maintainable
style. Each class (or group of closely related classes) can be grouped into its own header
and source file pair. This enables minimal inclusion of only necessary code, which leads
to faster compile times. Implicit hiding also does not force the boundary definitions for
inclusion into a particular shared library, which could be important if there is a design
goal of minimizing the number of individual shared libraries shipped with a package.

The problem with implicit hiding is, of course, that no language mechanism exists
to prevent the misuse of functions and classes not intended by the designer to be used
outside of a logical module. Is this a serious problem or not? Why might we want to
forcibly prevent users from calling part of the interface not deemed public? The main
design reason is that we do not want users to rely upon undocumented features since
the nonpublic interface is subject to change. Unsurprisingly, this reason is identical
to why we prize encapsulation in class design. That is, implementations should be
allowed to change independently of interfaces. So, how important is it to forcibly hide
the nonpublic interface? Ultimately, it depends on how much you trust the users of
your code to either not call undocumented interfaces or at least accept ownership of the
unplanned maintenance forced upon them by changes to undocumented interfaces.

7.4.1.4 Module Design for pdCalc

I chose to use implicit hiding in the design of pdCalc. For this project, I felt that the
benefits of simplicity outweighed the complications necessary to use one of the other
modes of module interface hiding. Which technique you choose for your own projects
will naturally reduce to your personal preferences. Given the relatively small code base

181

CHAPTER 7 PLUGINS

of pdCalc, the choice to use implicit hiding enables grouping classes by logic rather than
along module boundaries. Furthermore, implicit hiding allows lumping several of the
modules (e.g., command dispatcher, stack, and plugin management) into one shared,
back-end library.

My choice to use implicit hiding has a direct implication for solving the original
problem of extending the command dispatcher module’s interface to include the
registerCommand() function from the CommandRepository class. This extension can
simply be accomplished by decree, or, more precisely, by a documentation change.
Essentially, this function can be added to the interface by updating Table 2-2 in Chapter 2.

Implicit hiding does not have a specific language supported feature, so you cannot
point to one specific class and say, “This header defines the module’s interface.”

Instead, documentation is used to draw an implicit line around selected pieces of
the public classes and functions that define a module’s interface. Therefore, once the
documentation has been changed, the main() function can inject plugin commands
during plugin loading by calling CommandRepository’s existing registerCommand()
function. No code change is needed to retrofit pdCalc for plugin command injection.

7.4.2 Adding Plugin Buttons to the GUI

Recall at the outset of this section that we outlined two problems to be solved in
retrofitting pdCalc for plugins. The first problem, which we just solved, was how to add
plugin commands to the CommandRepository after a plugin is loaded. The solution
turned out to be quite trivial since we had already written the necessary function and
needed only to extend the module’s defined public interface. The second problem
involves retrofitting pdCalc to be able to add buttons to the GUI that correspond to
plugin commands.

By the design of our command dispatcher, once a command is registered, it can be
executed by any user interface raising a commandEntered() event with the command’s
name as the event’s argument. Hence, for the CLI, a plugin command can be executed
by the user by typing in its name. That is, plugin commands become immediately
accessible to the CLI as soon as they are registered. Making a plugin command
accessible in the GUI, of course, is slightly more complicated because a button that can
raise a commandEntered() event must be created for each discovered plugin command.

In Section 7.2, we defined an interface for labeling CommandButtons. Each plugin
provides a PluginButtonDescriptor that defines the primary command label, the

182

CHAPTER 7 PLUGINS

secondary command label, and the underlying commands associated with the labels.
Therefore, in order to add a new GUI button corresponding to a plugin command, we
must simply extend the interface of the GUI's MainWindow class to include a function for
adding buttons based on their labels:

class MainWindow : public QMainWindow, public UserInterface
{
public:
// Existing interface plus the following:
void addCommandButton(const stringd dispPrimaryCmd,
const string® primaryCmd, const stringd& dispShftCmd,
const string8 shftCmd);

};

Of course, this function will also need to lay out the buttons based on some suitable
algorithm. My trivial algorithm simply places buttons left to right with four buttons in a
row.

As was briefly mentioned in Chapter 6, the MainWindow class also includes a
setupFinalButtons() function and a fixSize() function. The setupFinalButtons()
function adds the undo, redo, and proc (see Chapter 8) buttons as the top row in the GUL
The fixSize() function forces the GUI's geometry to stay fixed at its current dimensions.
These operations can only logically be called after all plugin buttons have been added.

Unlike the registerCommand() function of the CommandRegistry, the
addCommandButton() was not a preexisting public function of the MainWindow class.
Therefore, we must add and implement this new function. In all likelihood, a modular
implementation of the GUI would have already had a similar function somewhere in
the GUI module, as this functionality was already required to create buttons for core
commands. Therefore, implementation of the addCommandButton() function might be as
trivial as forwarding this call from the MainWindow to the appropriate internal GUI class,
where the function may have already existed.

7.5 Incorporating Plugins

Thus far, we have discussed guidelines for C++ plugins, the plugin interface, plugin
command memory management, loading and unloading plugins, design patterns
for abstracting platform-dependent code behind interfaces, and retrofitting pdCalc

183

CHAPTER 7 PLUGINS

to enable plugin command and GUI injection. However, we have yet to discuss any
mechanism for finding plugins, actually loading and unloading plugins from disk,
managing the lifetime of plugins, or injecting plugin functionality into pdCalc. These
operations are performed by a PluginLoader class and the main() function of the
application, both of which are now described.

7.5.1 Loading Plugins

Loading plugins is accomplished by a PluginlLoader class. The PluginLoader

is responsible for finding plugin dynamic library files, loading the plugins into
memory, and serving the concrete Plugin specializations to pdCalc, on demand. The
PluginLoader is also responsible for deallocating plugin resources at the appropriate
times. As we've seen previously, a good design will implement automatic deallocation
via RAIL

The first step in loading plugins is determining which plugins should be loaded and
when. Really, only two practical options exist to answer this question. Either plugins
are loaded automatically by pdCalc when the program starts (e.g., files specified in a
configuration file or all DLLs in a specific directory), or plugins are loaded on demand
by direct user requests. Of course, these options are not mutually exclusive, and a
PluginLoader class could be designed that incorporates both options, possibly with the
ability for the user to direct which manually loaded plugins should be automatically
loaded in the future. There is no right or wrong answer to how plugins are loaded. The
decision must be addressed by the program’s requirements.

For simplicity, I chose to implement a plugin loader that automatically loads plugins
during pdCalc’s startup. The PluginLoader finds these plugins by reading an ASCII
configuration file comprised of lines of text each individually listing the file name of
a plugin. The configuration file is arbitrarily named plugins.pdp, and this file must
be located in the current executable path. Plugin files listed in plugins.pdp can be
specified using either a relative or absolute path. A more sophisticated plugin loader
implementation would probably store the location of the plugins file in an operating
system-specific configuration location (e.g., the Windows registry) and use a better file
format, such as XML. A good library, like Qt, can help you parse XML and find system-
specific configuration files using a platform-independent abstraction.

184

CHAPTER 7 PLUGINS

With the above plugin loader design constraints in mind, the PluginLoader interface
is quite trivial:

class Pluginloader

{

public:
void loadPlugins(UserInterface& ui, const string& pluginFileName);
const vector<const Plugin*> getPlugins();

};

The loadPlugins() function takes the name of the configuration file as input, loads
each library into memory, and allocates an instance of each library’s Plugin class. The
UserInterface reference is solely for error reporting. When the main() function is
ready to inject the plugins’ commands, the getPlugins() function is called to return a
collection of loaded Plugins. Of course, the loadPlugins() and getPlugins() functions
could be combined, but I prefer a design that enables the programmer to retain finer
tuned control over the timing of plugin loading versus plugin usage. My implementation
of the PluginLoader makes use of a few clever techniques for using RAII to manage the
automatic deallocation of the plugins. As the implementation here is orthogonal to the
design, the interested reader is referred to the PluginLoader. cpp source file for details.

7.5.2 Injecting Functionality

Having decided that plugins should be loaded automatically from a configuration file,
the most logical placement for plugin loading is somewhere in the main() function
call tree. Essentially, this loadPlugins() function simply puts together all of the pieces
we have previously discussed: loading plugin libraries, loading plugins, extracting
commands and buttons from the plugin descriptors, and injecting these commands
and buttons into pdCalc. Of course, a proper implementation will also perform error
checking on the plugins. For example, error checking might include checking the plugin
APIversion, ensuring the commands have not already been registered, and ensuring
the GUI buttons correspond to commands in the command repository. Listing 7-2 is a
skeleton of a function for loading plugins. Its inputs are a UserInterface reference for
reporting errors and a PluginlLoader reference.

185

CHAPTER 7 PLUGINS

Listing 7-2. A Fuction for Loading Plugins

void setupPlugins(UserInterfaced ui, PluginLoader& loader)
{

loader.loadPlugins(ui, "plugins.pdp");

auto plugins = loader.getPlugins();

for(auto p : plugins)
{
auto apiVersion = p->apiVersion();
// verify plugin API at correct level

// inject plugin commands into CommandRepository - recall
// the cloned command will auto release in the plugin
auto descriptor = p->getPluginDescriptor();
for(int i = 0; i < descriptor.nCommands; ++i)
{
registerCommand(ui, descriptor.commandNames[i],
MakeCommandPtr(descriptor.commands[i]->clone()));

}

// if gui, setup buttons
auto mw = dynamic_cast<MainWindow*>(&ui);

if(mw)
{
auto buttonDescriptor = p->getPluginButtonDescriptor();
if(buttonDescriptor)
{
for(int i = 0; i <buttonDescriptor->nButtons; ++i)
{

auto b = *buttonDescriptor;
// check validity of button commands
mw->addCommandButton(b.dispPrimaryCmd[i], b.primaryCmd[i],
b.dispShftCmd [i], b.shftCmd[i]);
}
}
}

186

CHAPTER 7 PLUGINS

}

return;

}

After a long chapter describing how to implement C++ plugins, the denouement is
somewhat anticlimactic, as most of the mechanics are handled at deeper layers of the
abstraction. Of course, this “boringness,” as you've learned in this book, is only achieved
through meticulous design. Simplicity is always more difficult to achieve than the code
itself indicates. Had any complications leaked through at this high-level abstraction, it
would surely have implied an inferior design.

7.6 A Concrete Plugin

After a long discussion explaining how to incorporate native C++ plugins into pdCalc,
we've finally reached the point where we can implement a concrete plugin. Based

on our requirements from Chapter 1, we need to write a plugin that adds commands

for the natural logarithm, its inverse exponentiation algorithm, and the hyperbolic
trigonometric functions. Of course, you should feel free to add plugins encompassing
any functionality you might like. For example, two interesting plugins might be a
probability plugin and a statistics plugin. The probability plugin could compute
permutations, combinations, factorials, and random numbers, while the statistics plugin
could compute mean, median, mode, and standard deviation. For now, however, we’ll

simply consider the design and implementation of our hyperbolic, natural log plugin.

7.6.1 Plugin Interface

The implementation of the HyperbolicLnPlugin is actually quite straightforward. We'll
begin with the interface for the class and then, uncharacteristically, examine a few
implementation details. The code chosen for further examination highlights particular
details relevant to native C++ plugins.

The interface for HyperbolicLnPlugin is given by the class definition specializing
the Plugin class and the required plugin allocation and deallocation functions;
see Listing 7-3.

187

CHAPTER 7 PLUGINS

Listing 7-3. The Interface for HyperbolicLnPlugin

class HyperbolicLnPlugin : public pdCalc::Plugin
{

class HyperbolicLnPluginImpl;
public:

HyperbolicLnPlugin();

~HyperbolicLnPlugin();

const PluginDescriptor8 getPluginDescriptor() const override;

const PluginButtonDescriptor* getPluginButtonDescriptor()
const override;

pdCalc::Plugin::ApiVersion apiVersion() const;

private:
unique_ptr<HyperbolicLnPluginImpl> pimpl_;
};

extern "C" void* AllocPlugin();
extern "C" void DeallocPlugin(void*);

As expected, the class implements the three pure virtual functions in the Plugin
class and defers the bulk of its implementation to a private implementation class. The
AllocPlugin() and DeallocPlugin() functions have their obvious implementations.
The AllocPlugin() simply returns a new HyperbolicLnPlugin instance, while the
DeallocPlugin() function casts its void* argument to a Plugin* and subsequently
calls delete on this pointer. Note that plugins are, by definition, not part of the main
program and should therefore not be part of the pdCalc namespace. Hence, the explicit
namespace qualification in a few locations.

The responsibility of the HyperbolicLnPluginImpl class is simply to serve
plugin descriptors on demand and manage the lifetime of the objects needed by the
descriptors. The PluginDescriptor provides command names and the corresponding
Commands implemented by the plugin. These Commands are described in Section 7.6.3
below. The PluginButtonDescriptor for the plugin simply lists the names of the
Commands as defined by the PluginDescriptor and the corresponding labels to appear
on the GUI buttons. Because the commands in the HyperbolicLnPlugin all have
natural inverses, we simply label each button with a forward command and attach the
secondary (shifted) command to the inverse. I used the obvious labels for the commands

188

CHAPTER 7 PLUGINS

provided by the plugin: sinh, asinh, cosh, acosh, tanh, atanh, 1n, and exp. Whether you
choose In for the primary and exp as the secondary or vice versa is simply a matter of
preference.

For reasons already discussed, plugin descriptors transfer content without using STL
containers. Where we would normally prefer to use vectors and unique_ptrs in the
interface to manage resources, we are forced instead to use raw arrays. Of course, the
encapsulation provided by the pimpl enables the implementation of whatever memory
management scheme we desire. For the HyperbolicLnPlugin, I chose a complicated
scheme of automatic memory management using strings, unique_ptrs, and vectors.
The advantage of using an RAIl memory management scheme is that we can be assured
that the plugin will not leak memory in the presence of exceptions (namely, an out-of-
memory exception thrown during construction). Realistically, I would not expect the
calculator to be executed in a low memory environment, and even if it were, it’s unclear
that leaking memory during plugin allocation would matter much since the user’s likely
next action in this situation would be to reboot his computer. Therefore, in retrospect, a
simpler memory management scheme with naked news in the constructor and deletes
in the destructor would probably have been more pragmatic.

7.6.2 Source Code Dependency Inversion

Surprisingly, the above class declaration for HyperbolicLnPlugin is indeed the complete
interface to the plugin. I say surprisingly because, at first glance, one might be surprised
that the plugin’s interface bears no relationship on the functionality the plugin provides.
Of course, this situation is exactly as it should be. The calculator functionality that

the plugin provides is indeed merely an implementation detail and can be contained
entirely within the plugin’s implementation file.

The above subtlety, namely that pdCalc knows only the interface to a plugin and
nothing about the functionality itself, should not be overlooked. As a matter of fact, this
source code dependency inversion is the entire point of plugin design. What exactly is
source code dependency inversion and why is it important? To answer this question, we
must first embark on a short history lesson.

Traditionally (think 1970s Fortran), code was extended by simply writing new
functions and subroutines. The primary design problem with this approach was that
requiring the main program to call new functions bound the main program to the
concrete interface of any extension. Thus, the main program became dependent

189

CHAPTER 7 PLUGINS

on interface changes defined by the whims of extension authors. That is, every new
extension defined a new interface to which the main program had to conform. This setup
was extremely brittle because the main program required constant modification to keep
pace with the changes to its extensions’ interfaces. Since each new extension required
unique modifications to the main program'’s source code, the complexity of the main
program’s code for handling extensions grew linearly with the number of extensions.

If that wasn’t bad enough, adding new functionality always required recompiling and
relinking the main program. In concrete terms, imagine a design for pdCalc that would
require modifying, recompiling, and relinking pdCalc’s source code every time a new
plugin command was added.

The above problem can be solved without object-oriented programming via function
pointers and callbacks, albeit in a somewhat inelegant and cumbersome fashion.
However, with the rise of object-oriented programming, specifically inheritance and
polymorphism, the solution to the dependency problem was solved in a type-safe
manner with language support. These techniques enabled the popularization of source
code dependency inversion. Specifically, source code dependency inversion states
that the main program defines an interface (e.g., the plugin interface we've studied in
this chapter) to which all extensions must conform. Under this strategy, the extensions
become subservient to the main program’s interface rather than the reverse. Hence,
the main program can be extended via plugins without modifying, recompiling, or
relinking the main program’s source code. More importantly, however, the interface
for extensibility is dictated by the application rather than its plugins. In concrete terms,
pdCalc provides the Plugin interface class to define the addition of new functionality,
but pdCalc is never aware of the implementation details of its extensions. A plugin that
does not conform to pdCalc’s interface is simply unable to inject new Commands.

7.6.3 Implementing HyperbolicLnPlugin’s Functionality

By this stage in the game, we know that the HyperbolicLnPlugin will provide its
functionality by implementing a command class for each operation. After implementing
a few of these classes, one would quickly notice that all of the commands in the plugin
are unary commands. Unfortunately, based on the third rule of C++ plugins (assume
incompatible alignment), we cannot inherit from the UnaryCommand class and instead
must inherit from the PluginCommand class. Note that our alignment assumption even
precludes using the UnaryCommand class via multiple inheritance, and we must

190

CHAPTER 7 PLUGINS

reimplement the unary command functionality in our HyperbolicLnPluginCommand
base class. While this does feel a bit duplicative, the rules for C++ plugins leave us with
no alternatives (although we could provide source code for a UnaryPluginCommand and a
UnaryBinaryCommand, but these would have to be separately compiled with each plugin).

We, therefore, finally arrive at the interface class from which all commands within
the HyperbolicLnPlugin derive; see Listing 7-4

Listing 7-4. The HyperbolicLnPluginCommand Class

class HyperbolicLnPluginCommand : public pdCalc::PluginCommand
{
public:
HyperbolicLnPluginCommand() {}
explicit HyperbolicLnPluginCommand(const HyperbolicLnPluginCommand& rhs);
virtual ~HyperbolicLnPluginCommand() {}
void deallocate() override;

protected:
const char* checkPluginPreconditions() const noexcept override;

private:
void executeImpl() noexcept override;
void undoImpl() noexcept override;
HyperbolicLnPluginCommand* clonePluginImpl() const noexcept override;

virtual HyperbolicLnPluginCommand* doClone() const = 0;
virtual double unaryOperation(double top) const = 0;

double top_;
};

As with the UnaryCommand class, the HyperbolicLnPluginCommand class
implements the pure virtual executeImpl() and undoImpl() commands, delegating
the command operation to the pure virtual unaryOperation() function. Additionally,
the HyperbolicLnPluginCommand class implements the checkPluginPreconditions()
function to ensure at least one number is on the stack before the command is called.
The function is protected so that a subclass can directly override the precondition
function if it must implement any additional preconditions yet still call the base class’s
checkPluginPreconditions() to make the unary command precondition check

191

CHAPTER 7 PLUGINS

The deallocate() and clonePluginImpl() functions have obvious implementations
but play critical roles in the plugin. The deallocate() function is simply implemented as

void HyperbolicLnPluginCommand: :deallocate()

{
delete this;

}

Recall that the point of the deallocate() function is to force memory deallocation
of the plugin’s commands in the plugin’s compilation unit. It is called via the
CommandDeleter () function when the unique_ptr holding a command is destroyed.

The clonePluginImpl() function is given by

HyperbolicLnPluginCommand*
HyperbolicLnPluginCommand: :clonePluginImpl() const noexcept
{
HyperbolicLnPluginCommand* p;
try
{
p = doClone();

}
catch(...)

{

return nullptr;

}

return p;

The sole purpose of this function is to adapt the cloning of a plugin command to
ensure that exceptions do not cross the memory boundary between the plugin and the
main application.

All that remains to complete the HyperbolicLnPlugin is to subclass
HyperbolicLnPluginCommand for each mathematical operation required in the plugin
and implement the few remaining pure virtual functions (unaryOperation(), doClone(),
and helpMessageImpl()). At this point, the implementation of these functions is no
different than the implementation of the unary functions of Chapter 4. The interested
reader is referred to the source code in HyperbolicLnPlugin.cpp for details.

192

CHAPTER 7 PLUGINS

7.7 Next Steps

After a rather long discussion about C++ plugins, and with the implementation of

the hyperbolic trigonometric and natural logarithm plugin, we have completed the
requirements for pdCalc set forth in Chapter 1. The calculator, as originally described,

is complete! Well, version 1.0 is complete, anyway. However, as experienced software
developers, we know that any “finished” product is just a temporary milestone before
the customer requests new features. The next chapter handles this exact situation, where
we'll modify our design to incorporate unplanned extensions.

193

CHAPTER 8

New Requirements

It’s a beautiful Monday morning, and you just stepped into work after a relaxing
weekend. After all, you just finished pdCalc on Friday, and now you are ready to ship.
Before you can sit down and have your morning cup of coffee, your project manager
steps into your office and says, “We’re not done. The client requested some new
features.”

The above scenario is all too common in software development. While new features
probably won’t be requested on the go live date, new features will almost inevitably
be requested well after you have completed large parts of both your design and your
implementation. Therefore, one should develop as defensively as practical to anticipate
extensibility. I say as defensively as practical rather than as defensively as possible because
overly abstract code can be as much of a detriment to development as overly concrete
code. Often, it is easier to simply rewrite inflexible code if the need arises than it is to
maintain highly flexible code for no reason. In practice, we seek to strike a balance for
code to be both simple and maintainable yet somewhat extensible.

In this chapter, we’ll explore modifying our code to implement features beyond the
design of the original requirements. The discussion of the new features introduced in
this chapter ranges from full design and implementation to design only to suggestions
merely for self-exploration. Let’s begin with two extensions that we’ll take from
requirements all the way through implementation.

8.1 Fully Designed New Features

In this section, we’ll examine two new features: batch operation of the calculator and
execution of stored procedures. Let’s begin with batch operation.

195
© Adam B. Singer 2017

A. B. Singer, Practical C++ Design, DOI10.1007/978-1-4842-3057-2_8

CHAPTER 8 NEW REQUIREMENTS

8.1.1 Batch Operation

For those few unfamiliar with the term, batch operation of any program is simply the
execution of the program, from beginning to end, without interaction from the user once
the program is launched. Most desktop programs do not run in batch mode. However,
batch operation is still very important in many branches of programming, such as
scientific computing. Perhaps of greater interest, for those of you employed by large
corporations, your payroll is probably run by a program operating in batch mode.

Let’s be honest. Batch operation for pdCalc, other than maybe for testing, is not a
very useful extension. I've included it mainly because it demonstrates how trivially a
well-designed CLI can be extended to add a batch mode.

Recall from Chapter 5 that pdCalc’s CLI has the following public interface:

class Cli : public UserInterface
{
class CliImpl;
public:
Cli(istream& in, ostream& out);
~C1i();

void execute(bool suppressStartupMessage = false, bool echo = false);

}s

To use the CLI, the class is constructed with cin and cout as the arguments, and
execute() is called with empty arguments:

Cli cli{cin, cout};
// setup other parts of the calculator
cli.execute();

How do we modify the C11i class to enable batch operation? Amazingly, we do not
need to modify the class’s code at all! By design, the CLI is essentially a parser that simply
takes space-separated character input from an input stream, processes the data through
the calculator, and generates character output to an output stream. Because we had the
forethought not to hard code these input and output streams as cin and cout, we can

196

CHAPTER 8 NEW REQUIREMENTS

convert the CLI to a batch processor by making the input and output streams to be file
streams as follows:

ifstream fin{inputFile};

ofstream fout{outputFile};

Cli cli{fin, fout};

// setup other parts of the calculator
cli.execute(true, true);

where inputFile and outputFile are file names that could be acquired through
command line arguments to pdCalc. Recall that the arguments to the execute()
function simply suppress the startup banner and echo commands to the output.

Yes, that really is it (but see main. cpp for a few implementation tricks). Our CLI was
built originally so that it could be converted to a batch processor simply by changing its
constructor arguments. You could, of course, argue that I, as the author, intentionally
designed the C11i class this way because I knew the calculator would be extended in
this manner. The reality is, however, that I simply construct all of my CLI interfaces with
stream inputs rather than hard coded inputs because this design makes the CLI more
flexible with nearly no additional cognitive burden.

Before leaving this section, I'll quickly note that the reality is that pdCalc’s CLI, with
an assist from the operating system, already had a batch mode. By redirecting input and
output at the command line, we can achieve the same results:

my prompt> cat inputFile | pdCalc --cli > outputFile

For Windows, simply replace the Linux cat command with the Windows type
command.

8.1.2 Stored Procedures

Adding a batch mode to pdCalc was, admittedly, a somewhat contrived example. The
added functionality was not terribly useful, and the code changes were trivial. In this
section, we'll examine a more interesting feature extension: stored procedures.

What is a stored procedure? In pdCalc, a stored procedure is a stored, repeatable
sequence of operations that operate on the current stack. Stored procedures provide a
technique to expand the calculator’s functionality by creating user-defined functions
from existing calculator primitives. You can think of executing a stored procedure as

197

CHAPTER 8 NEW REQUIREMENTS

being analogous to running a very simple program for the calculator. The easiest way to
understand the concept is to consider an example.

Suppose you need to frequently calculate the hypotenuse of a triangle. For the right
triangle depicted in Figure 8-1, we can compute the length of the hypotenuse, ¢, using
the Pythagorean formula: c=+a”+b” .

Figure 8-1. A right triangle

Suppose we had a triangle with sides a = 4, b = 3, and these values were entered onto
pdCalc’s stack. In the CLI, you would see the following:

Top 2 elements of stack (size = 2):
2: 3
1: 4

In order to compute c for this triangle, we would implement the following sequence of
instructions: dup * swap dup * + 2 root. After pressing enter, the final result would be

Top element of stack (size = 1):
1: 5

If the commands were entered one at a time, we would see the intermediate
resultant stack every time we pressed enter. Had we entered all of the commands on a
single line and then pressed enter, pdCalc would display each intermediate stack before
showing the final result. Note, of course, that this command sequence is not unique. The
same result could have been achieved using, for example, the command sequence 2 pow
swap 2 pow + 2 root.

If you are anything like me, if you had to compute hypotenuses with pdCalc repeatedly,
you would probably want to automate the operation after the first manual computation.
That is precisely what stored procedures allow. Not only does automation save time, but
itis also less error-prone since stored procedures that encapsulate many consecutive

198

CHAPTER 8 NEW REQUIREMENTS

commands can be written, tested, and subsequently reused. Provided the operation can be
assembled from pdCalc primitives (including plugin functions), stored procedures enable
extending the calculator’s functionality to compute simple formulas without needing to
write any C++ code. Now we just need to design and implement this new feature.

8.1.2.1 The User Interface

pdCalc has both a GUT and a CLI, so adding any user-facing feature will require

some modification to both user interface components. For stored procedures, the
modifications to the user interfaces are remarkably minor. First, a stored procedure is
simply a text file containing an ordered sequence of pdCalc instructions. Therefore, a
user can create a stored procedure using any plain text editor. Thus, unless you want to
provide a stored procedure text editor with syntax highlighting, the user interface for
stored procedures reduces to enabling their execution from the CLI and the GUL

Let’s first address incorporating stored procedures in the CLI. As previously stated,
stored procedures are simply text files in the file system. Recall that the CLI works by
tokenizing space-separated input and then passing each token individually to the
command dispatcher by raising an event. Therefore, a trivial method for accessing a
stored procedure is simply to pass the name of the stored procedure file to the CLI. This
file name will then be tokenized like any other command or number and passed to the
command dispatcher for processing. To ensure that the file name is interpreted by the
command dispatcher as a stored procedure rather than a command, we simply prepend
the symbol proc: to the file name and change the command dispatcher’s parser. For
example, for a stored procedure named hypotenuse.psp, we would issue the command
proc:hypotenuse.psp to the CLI. I adopted the file extension psp as a shorthand for
pdCalc stored procedure. Naturally, the file itself is an ordinary ASCII text file containing
a sequence of commands for calculating the hypotenuse of a right triangle, and you can
use the .txt extension if you prefer.

Recall that the GUI is designed to pass commands to the command dispatcher
identically to the CLI. Therefore, to use a stored procedure, we add a button that opens
a dialog to navigate the file system to find stored procedures. Once a stored procedure
is selected, we prepend proc: to the file name and raise a CommandEntered event.
Obviously, you can make your stored procedure selection dialog as fancy as you would
like. I opted for a simplistic design that permits typing the name of the file into an
editable combo box. For ease of use, the combo box is prepopulated with any files in the
current directory with a . psp extension.

199

CHAPTER 8 NEW REQUIREMENTS

8.1.2.2 Changes to the Command Dispatcher

Listing 8-1 is an abbreviated listing of CommandDispatcher’s executeCommand() function
including the logic necessary for parsing stored procedures. The omitted portions of the
code appear in Section 4.5.2.

Listing 8-1. CommandDispatcher’s executeCommand() Function

void CommandDispatcher: :CommandDispatcherImpl::executeCommand(const string&
command)
{
// handle numbers, undo, redo, help in nested if
/] ...
else if(command.size() > 6 88 command.substr(0, 5) == "proc:")
{
auto filename = command.substr(5, command.size() - 5);
handleCommand(MakeCommandPtr<StoredProcedure>(ui , filename));
}
// else statement to handle Commands from CommandRepository
/] ...

return;

From the code above, we see that the implementation simply peels off the proc:
from the string command argument to create the stored procedure filename, creates a
new StoredProcedure Command subclass, and executes this class. For now, we’ll assume
that making the StoredProcedure class a subclass of the Command class is the optimal
design. I'll discuss why this strategy is preferred and examine its implementation in the
following sections. However, before we get there, let’s discuss this new overload of the
MakeCommandPtr () function.

In Section 7.2.1, we first saw a version of MakeCommandPtr given by the following
implementation:

inline void CommandDeleter(Command* p)

{
p->deallocate();

return;

}
200

CHAPTER 8 NEW REQUIREMENTS
using CommandPtr = std::unique_ptr<Command, decltype(&CommandDeleter)s;

inline auto MakeCommandPtr(Command* p)

{

return CommandPtr{p, &CommandDeleter};

}

The above function is a helper function used to create CommandPtrs from raw
Command pointers. This form of the function is used to create a CommandPtr from the
cloning of an existing Command (e.g., as in CommandRepository: :allocateCommand()):

auto p = MakeCommandPtr(command->clone());

Semantically, however, in CommandDispatcherImpl: :executeCommand(), we
see a completely different usage, which is to construct an instance of a class derived
from Command. Certainly, we can meet this use case with the existing MakeCommandPtr
prototype. For example, we could create a StoredProcedure as follows:

auto c = MakeCommandPtr(new StoredProcedure{ui, filename});

However, whenever possible, it’s best not to pollute high-level code with naked news.
We therefore seek to implement an overloaded helper function that can perform this
construction for us. Its implementation is given by the following:

template<typename T, typename... Args>
auto MakeCommandPtr(Args88... args)
{

return CommandPtr{new T{std::forward<Args>(args)...}, &CommandDeleter};

}

Prior to C++11, no simple and efficient technique existed for constructing generic
types with variable numbers of constructor arguments, as is necessary to create any one
of the possible classes derived from the Command class, each having different constructor
arguments. Modern C++, however, provides an elegant solution to this problem using
variadic templates and perfect forwarding. This construct is the subject of the sidebar
below.

201

CHAPTER 8 NEW REQUIREMENTS

MODERN C++ DESIGN NOTE: VARIADIC TEMPLATES AND PERFECT FORWARDING

Variadic templates and perfect forwarding each solve different problems in C++. Variadic
templates enable type-safe generic function calls with unknown numbers of typed arguments.
Perfect forwarding enables correct type forwarding of arguments to underlying functions inside
of template functions. The mechanics of each of these techniques can be studied in your favorite
C++11 reference text (e.g., [23]). This sidebar shows a type-safe, generic design technique for
constructing concrete objects that require different numbers of constructor arguments. This
technique is enabled by the combination of variadic templates and perfect forwarding. Due to a
lack of naming creativity, | named this pattern the generic perfect forwarding constructor (GPFC).
Let’s begin by presenting the underlying problem that GPFC solves.

Let’s consider every author’s favorite overly simplified object-oriented programming example,
the shapes hierarchy:

class Shape

{
public:
virtual double area() const = 0;

};

class Circle : public Shape

{
public:

Circle(double r) : r {r} {}
double area() const override { return 3.14159 * r * r ; }

private:
double r_;

};

class Rectangle : public Shape

{
public:

Rectangle(double 1, double w) : 1 {1}, w {w} {}
double area() const override { return 1 * w ; }

202

CHAPTER 8 NEW REQUIREMENTS

private:
double 1 , w_;

b

In C++, substitutability, implemented as virtual dispatch, solves the problem of needing
to call a derived type’s specific implementation via a base class pointer using an interface
guaranteed by the base class. In the shapes example, substitutability implies the ability to
compute the area as follows:

double area(const Shaped s)

{

return s.area();

}

for any class derived from Shape. The exact interface for the virtual function is fully
prescribed, including the number and type of any function arguments (even in the vacuous
case as in the area() function in this example). The problem, however, is that object
construction can never be “virtualized” in this manner, and even if it could, it wouldn’t work
since the information necessary to construct an object (its arguments) is very frequently
different from one derived class to the next.

Enter the generic perfect forwarding constructor pattern. In this pattern, we use variadic
templates to provide a type-safe interface that can take any number of constructor arguments
with different types. The first template argument is always the type we want to construct.
Then, perfect forwarding is used to guarantee the arguments are passed to the constructor
with the correct types. Precisely why perfect forwarding is necessary in this situation derives
from how types are deduced in templates and is beyond the scope of this discussion (see [19]
for details). For our shapes example, applying the GPFC pattern results in the following
implementation:

template<typename T, typename... Args>
auto MakeShape(Args88... args)

{

return make _unique<T>(forward<Args>(args)...);

}

203

CHAPTER 8 NEW REQUIREMENTS

The following code illustrates how the MakeShape () function can be used to create different
types with different numbers of constructor arguments:

auto ¢ = MakeShape<Circle>(4.0);

auto r = MakeShape<Rectangle>(3.0, 5.0);

Note that the GPFC pattern also works for creating classes not related to each other in an
inheritance hierarchy. The GPFC pattern, in fact, is used by the make_unique() function
in the standard library for making unique_ptzs in an efficient, generic manner without
requiring a naked new. While they are, strictly speaking, distinct, I like to think of the GPFC
pattern as the generic analogue of the factory method.

8.1.2.3 Designing the StoredProcedure Class

We now return to the thorny problem of designing the StoredProcedure class. The

first question we ask is do we need a class at all. We already have a design for parsing
individual commands, executing them, and placing them on an undo/redo stack. Maybe
the correct answer is to treat a stored procedure in a manner similar to the treatment

of batch input. That is, during an interactive session (either GUI or CLI), handle stored
procedures by reading the stored procedure file, parsing it, and executing the commands
in batch (as we would a long line with multiple commands in the CLI) without
introducing a new StoredProcedure class.

The aforementioned design can be dismissed almost immediately after considering
the following very simple example. Suppose you implemented a stored procedure for
computing the area of a triangle. The stored procedure’s input would be the base and
height of the triangle on the stack. triangleArea.psp is given by the following:

*

0.5
*

If we did not have a StoredProcedure class, then each of the commands in
triangleArea.psp would be executed and entered, in order, on the undo/redo stack.
For the values 4 and 5 on the I/0 stack, forward execution of the stored procedure would
yield the correct result of 10 and an undo stack, as depicted in Figure 8-2. Based on
this undo stack, if the user tried to undo, rather than undoing the triangle area stored

204

CHAPTER 8 NEW REQUIREMENTS

procedure, the user would undo only the top operation on the stack, the final multiply.
The I/0 stack would read

4
5
0.5

(and the undo stack would have a * between the 5 and 0.5) instead of

4
5
0.5
5
4

Figure 8-2. The undo stack without a StoredProcedure class

To fully undo a stored procedure, the user needs to press undo n times, where n
is equal to the number of commands in the stored procedure. The same deficiency is
present for the redo operation. In my opinion, the expected behavior for undoing a
stored procedure should be to undo the entire procedure and leave the I/0 stack in its
state prior to executing the stored procedure. Hence, the design for handling stored
procedures not employing a StoredProcedure class fails to implement undo and redo
properly and must therefore be discarded.

8.1.2.4 The Composite Pattern

Essentially, in order to solve the undo/redo problem with stored procedures, we

need a special command that encapsulates multiple commands but behaves as a

single command. Fortunately, the composite pattern solves this dilemma. According

to Gamma et al [6], the composite pattern “lets clients treat individual objects and
compositions of objects uniformly.” Typically, the composite pattern refers to treed data

205

CHAPTER 8 NEW REQUIREMENTS

structures. I prefer a looser definition where the pattern may be applied to any data
structure admitting uniform treatment of composite objects.

Figure 8-3 illustrates the composite pattern in its general form. The Component
class is an abstract class that requires some action to be performed. This action can
be performed individually by a Leaf node or by a collection of Components known as a
Composite. Clients interact with objects in the component hierarchy polymorphically
through the Component interface. Both Leaf nodes and Composite nodes handle
doSomething() requests indistinguishably from the client’s point of view. Usually,
Composites implement doSomething() by simply calling the doSomething() command
for Components (either Leafs or nested Composites) it holds.

- Component
Client > P
+doSomething(): void
Leaf Composite
-doSomething(): void -doSomething(): void

Figure 8-3. General form of the composite pattern

In our particular concrete case, the Command class takes the role of the Component,
concrete commands such as Add or Sine take the role of Leaf nodes, and the
StoredProcedure class is the composite. The doSomething() command is replaced by
the executeImpl() and undoImpl() pair of pure virtual functions. I suspect combining
the command and composite patterns in this fashion is rather common.

Previously, we learned that in order to properly implement the undo/redo strategy for
stored procedures, a class design was necessary. Application of the composite pattern, as
described above, motivates subclassing the StoredProcedure class from the Command class.

Let’s now design a StoredProcedure class and examine its implementation as a
concrete application of the composite pattern.

8.1.2.5 A First Attempt

A common approach to implementing the composite pattern is via recursion. The
Composite class holds a collection of Components, often either via a simple vector or
perhaps something more complex such as nodes in a binary tree. The Composite’s

206

CHAPTER 8 NEW REQUIREMENTS

doSomething() function simply iterates over this collection calling doSomething() for
each Component in the collection. The Leaf nodes’ doSomething() functions actually
do something and terminate the recursion. Although not required, the doSomething()
function in the Component class is often pure virtual.

Let’s consider the above approach for implementing the composite pattern for
StoredProcedures in pdCalc. We have already established that pdCalc’s Command class is
the Component and that the concrete command classes, such as Add, are the Leaf classes.
Therefore, we need only to consider the implementation of the StoredProcedure class
itself. Note that since the current implementation of the Component and Leaf classes can
be used as is, the composite pattern can be trivially applied to extend the functionality of
an existing code base.

Consider the following skeletal design for the StoredProcedure class:

class StoredProcedure : public Command

{

private:
void executeImpl() noexcept override;
void undoImpl() noexcept override;

vector<unique_ptr<CommandPtr>> components_;

};
The executeImpl() command would be implemented as follows:

void StoredProcedure::executeImpl()

{
for(auto& i : components)
i->execute();
return;
}

undoImpl() would be implemented analogously but with a reverse iteration over the
component _ collection.

Does the above design solve the undo/redo problem previously encountered
when entering stored procedure commands directly onto the undo/redo stack
without a StoredProcedure class? Consider the undo stack shown in Figure 8-4 for the
triangleArea.psp example that we previously examined. The stored procedure, shown
as SP in the figure, appears as a single object in the undo stack rather than as individual

207

CHAPTER 8 NEW REQUIREMENTS

objects representing its constituent commands. Hence, when a user issues an undo
command, the CommandManager will undo the stored procedure as a single command by
calling the stored procedure’s undoImpl() function. This stored procedure’s undoImpl()
function, in turn, undoes the individual commands via iteration over its container

of Commands. This behavior is precisely what was desired, and this application of the
composite pattern indeed solves the problem at hand.

SP

4

Figure 8-4. The undo stack using a StoredProcedure class

To complete the implementation of the StoredProcedure class, we need to parse
the stored procedure file’s string commands (with error checking) and use them to
populate the StoredProcedure’s components vector. This operation could be written
in the StoredProcedure’s constructor, and the implementation would be both valid
and complete. We would now have a StoredProcedure class that could transform string
commands into Commands, store them in a container, and be able to execute and undo
these stored Commands on demand. In other words, we would have essentially rewritten
the command dispatcher! Instead, let’s consider an alternative design that implements
the StoredProcedure class by reusing the CommandDispatcher class.

8.1.2.6 A Final Design for the StoredProcedure Class

The goal in this design is to reuse the CommandDispatcher class as-is. Relaxing

this constraint and modifying the CommandDispatcher’s code can clean up the
implementation slightly, but the essence of the design is the same either way. Consider
the following modified skeletal design of the StoredProcedure class:

208

CHAPTER 8 NEW REQUIREMENTS

class StoredProcedure : public Command

{

private:

};

void executeImpl() noexcept override;
void undoImpl() noexcept override;

std::unique_ptr<Tokenizer> tokenizer ;
std: :unique_ptr<CommandDispatcher> ce_;
bool first = first;

The present design is almost identical to our previous design except the components

vector has been replaced by a CommandDispatcher, and the need for a tokenizer has

been made explicit. Good thing we wrote our tokenizer to be reusable in Chapter 5!

We are now prepared to see the complete implementations of executeImpl() and

undoImpl(). Note that while the below implementation does not use the canonical

version of the pattern seen above, this implementation of the StoredProcedure class is

still simply an application of the composite pattern. First, let’s examine executeImpl():

void StoredProcedure::executeImpl() noexcept

{

if(first)
{
for(auto ¢ : *tokenizer)
{
ce_->commandEntered(c);
}
first = false;
}
else
{

for(unsigned int i = 0; i < tokenizer ->nTokens(); ++i)
ce_->commandEntered("redo");

}

return;

209

CHAPTER 8 NEW REQUIREMENTS

The first time that executeImpl() is called, the tokens must be extracted from the
tokenizer and executed by the StoredProcedure’s own CommandDispatcher. Subsequent
calls to executeImpl() merely request the StoredProcedure’s CommandDispatcher
to redo the forward execution of each of the StoredProcedure’s commands.

Remember, StoredProcedure’s executeImpl() function will itself be called by pdCalc’s
CommandDispatcher; hence, our design calls for nested CommandDispatchers. Figure 8-5
shows this design for the triangle area stored procedure example, where CD represents
the CommandDispatcher.

StoredProcedure's
CommandDispatcher

Undo Stack

*

SP CD 0.5

5 *

4

pdCalc's
CommandDispatcher
Undo Stack

Figure 8-5. The undo stack using nested CommandDispatchers

The implementation of StoredProcedure’s undoImpl() is trivial:

void StoredProcedure::undoImpl () noexcept

{
for(unsigned int i = 0; i < tokenizer ->nTokens(); ++i)
ce_->commandEntered("undo");
return;
}

Undo is implemented by requesting the underlying CommandDispatcher to undo the
number of commands in the stored procedure.

Before concluding our discussion of the final StoredProcedure class, we should
consider tokenization of the commands within the StoredProcedure class. The tokenization

210

CHAPTER 8 NEW REQUIREMENTS

process for a StoredProcedure involves two steps. The stored procedure file must be
opened and read, followed by the actual tokenization of the text stream. This process
needs to be performed only once per StoredProcedure instantiation, at initialization.
Therefore, the natural placement for tokenization is in the StoredProcedure’s constructor.
However, placement of tokenization in the StoredProcedure’s constructor creates an
inconsistency with pdCalc’s error handling procedure for commands. In particular,
pdCalc assumes that commands can be constructed, but not necessarily executed,
without failure. If a command cannot be executed, the expectation is that this error

is handled by checking a command’s preconditions. Can tokenization fail? Certainly.

For example, tokenization would fail if the stored procedure file could not be opened.
Therefore, in order to maintain consistency in error handling, we implement tokenization
in StoredProcedure’s checkPreconditionsImpl() function, which will be called when
pdCalc’s CommandDispatcher first attempts to execute the stored procedure. Since
tokenization needs to be performed once, we only perform the operation on the first
execution of the checkPreconditionsImpl() function. The complete implementation can
be found in the StoredProcedure. cpp file.

8.2 Designs Toward a More Useful Calculator

Up until now, all of the discussion about pdCalc has focused on the design and
implementation of a completed code available for download from GitHub. The
remainder of this chapter, however, marks a departure from this style. Henceforth, we
will discuss only ideas for extensions and suggestions for how pdCalc might be modified
to accommodate these new features. Not only is working code not provided, but working
code was not created before writing these sections. Therefore, the designs I'm about to
discuss have not been tested, and the adventurous reader choosing to complete these
extensions may discover the ideas to be discussed are suboptimal, or, dare I say, wrong.
Welcome to the wild west of designing features from a blank slate! Experimentation and
iteration will be required.

8.2.1 Complex Numbers

The original design specification for the calculator called for double precision numbers,
and we designed and implemented the calculator explicitly to handle only double
precision numbers. However, requirements change. Suppose your colleague, an

211

CHAPTER 8 NEW REQUIREMENTS

electrical engineer, drops by your office, falls in love with your calculator, but requires a
calculator that handles complex (imaginary) numbers. That’s a reasonable request, so
let’s look at how we might refactor our calculator to satisfy this new feature.

Adding complex numbers requires four main modifications to pdCalc: using a
complex number representation internally instead of representing numbers as doubles,
changing input and output (and, by extension, parsing) to accommodate complex
numbers, modifying pdCalc’s stack to store complex numbers instead of doubles, and
modifying commands to perform their calculations on complex numbers instead of
real valued inputs. The first change, finding a C++ representation for complex numbers
is trivial; we’ll use std: : complex<double>. A number with only a real part will simply
be stored as a complex<double> with its imaginary part set to 0. The other three
changes are less trivial. Let’'s now look in more depth at some design options capable of
accommodating these changes.

8.2.1.1 Modifying Input and Output

Of all the required changes, modifying the I/O routines is actually the easiest. The first
item to be addressed is how will complex numbers be interpreted and presented. For
example, do we want a complex number, c, to be represented asc = re + im * i
(maybe the imaginary number should be j since the feature request came from an
electrical engineer). Perhaps we prefer using c = (re, im) or a variant that uses
angle brackets or square brackets instead. There is no correct answer to this question.
Although some choices might be easier to implement than others, since this choice is
merely a convention, in practice, we would defer resolution to our customer. For our
case study, we’ll simply adopt the convention ¢ = (re, im).

I'll only discuss modifying the command line version of the I/O. Once the
infrastructure to handle complex numbers is in place for the CLI, adapting the GUI
should be reasonably straightforward. The first problem that we encounter is the
Tokenizer class. The original design for this class simply tokenized by splitting input on
whitespace. However, for complex numbers, this scheme is insufficient. For example,
complex numbers would be tokenized differently based on whether or not a space was
inserted after the comma.

At some point, input becomes sufficiently complex that you'll need to employ a
language grammar and migrate the simple input routines to a “real” scanner and parser
(possibly using libraries such as lex and yacc). Some might argue that by adding complex
numbers, we have reached this level of complexity. However, I think that we can

212

CHAPTER 8 NEW REQUIREMENTS

probably scrape by with our existing simple input tokenizer if we modify the tokenize()
routine to scan for the (token and create one “number” token for anything between and
including the opening and closing parenthesis. Obviously, we would need to perform
some basic error checking to ensure correct formatting. Another alternative would be to
decompose the input stream based on regular expression matching. This is essentially
how lex operates, and I would investigate using lex or a similar library before writing a
sophisticated scanner from scratch.

The next input problem we encounter is parsing of numbers in
CommandDispatcherImpl’s executeCommand() function. Currently, a string argument
(the token) is passed to this function, and the string is parsed to determine if it is a
number or a command. Upon inspection, we can see that executeCommand () will work
for complex numbers if we modify isNum() to identify and return complex numbers
instead of floating point numbers. Finally, the EnterNumber command will need to be
updated to accept and store a complex<double>.

That takes care of modifying the input routines, but how do we modify the
output routines? Recall that the C11i class is an (indirect) observer of the Stack’s
stackChanged() event. Whenever the Stack raises this event, C1i’s stackChanged()
function will be called to output the current stack to the command line. Let’s examine
how C1i::stackChanged() is implemented. Essentially, the CLI calls back to the stack to
fill a container with the top nElements using the following function call:

auto v = Stack::Instance().getElements(nElements);

An ostringstream, oss, is then created and filled first with some stack metadata and
then with the stack elements using the following code:

size t j{ v.size() };
for(auto i = v.rbegin(); i != v.rend(); ++i)
{
0ss << J << ":\t" << *i << "\n";
=35
}

Finally, the oss’s underlying string is posted to the CLI. Amazingly enough, once
Stack’s getElements () function is modified to return a vector<complex<double>>,
Cli’s stackChanged() function will work as expected just by recompiling. Because of our
use of auto, and because operator<<() is overloaded for std: : complex, as long as we

213

CHAPTER 8 NEW REQUIREMENTS

are happy with the standard formatting of complex numbers, our output modifications
were completed without doing anything! That’s the beauty of well-designed and well-
implemented code.

8.2.1.2 Modifying the Stack

In Chapter 3, we originally designed the calculator’s stack to operate only on double
precision variables. Clearly, this limitation means the Stack class must now be
refactored in order to handle complex numbers. At the time, we questioned the logic
of hard coding the target data type for the stack, and I recommended not designing a
generic Stack class. My suggestion was, in general, to not design generic interfaces until
the first reuse case is clearly established.

Designing good generic interfaces is generally harder than designing specific
types, and, from my personal experience, I've found that serendipitous reuse of code
infrequently comes to fruition. However, for our Stack class, the time to reuse this data
structure for another data type has come, and it is prudent, at this point, to convert the
Stack’s interface into a generic interface rather than merely refactor the class to be hard
coded for complex numbers.

Making the Stack class generic is almost as easy as you might expect. The first step is
to make the interface itself generic by replacing explicit uses of double with our generic
type T. The interface becomes

template<typename T>

class Stack : private Publisher

{

public:
static Stack8 Instance();
void push(T, bool suppressChangeEvent = false);
double pop(bool suppressChangeEvent = false);
void swapTop();

std::vector<T> getElements(size t n) const;
void getElements(size t n, std::vector<T>&) const;

using Publisher::attach;
using Publisher::detach;

};

214

CHAPTER 8 NEW REQUIREMENTS

With a generic interface, using the pimpl pattern is no longer necessary. Recall that
use of the pimpl pattern enables us to hide the implementation of a class by referring to
its implementation indirectly via a pointer to an implementation class defined only in a
source file. However, in order to make the Stack generic, its implementation must also
be generic (since it must store any type, T, rather than the single known type, double).
This implies that StackImpl would also need to be templated. C++ rules insist that
this StackImpl<T>’s definition would need to be visible when Stack<T> is instantiated
for a particular T, hence dictating that StackImpl<T>’s definition appear in the header
file before Stack<T>. Once we've lost the ability to make StackImpl<T> private, we
no longer have a reason to use the pimpl pattern and instead just define the stack’s
implementation directly in the Stack<T>’s class.

In general, the required implementation changes are straightforward. Uses of double
are replaced with T, and the implementation itself is moved to the header file. Uses of the
Stack class within pdCalc obviously must be refactored to use the generic rather than
the non-templated interface.

The last part of the interface that requires modification is the five global extern "C"
helper functions added in Chapter 7 for exporting stack commands to plugins. Because
these functions must have C linkage, we cannot make them templates nor can they
return the C++ complex type in place of a double. The first problem is not quite as dire
as it may appear at first glance. While our goal is to make the Stack class generic and
reusable, the stack’s plugin interface does not need to be generic. For any particular
version of pdCalc, either one that operates on real numbers or one that operates on
complex numbers, only one particular instantiation of Stack<T> will exist in the system,
and this one instantiation will have a particular realization for T. Therefore, the C
linkage interface to the stack for pdCalc needs to only reflect the choice of T used in the
calculator. That is, the container is designed to be generic and reusable, but the interface
for plugins does not require this flexibility since it is not reused once a data format for
the calculator has been chosen.

Replacing the complex<double> representation in the C linkage interface to the
stack is straightforward. We have several options. First, we could replace each double
with a sequence of two doubles, one representing the real part and one representing the
complex part. Of course, since a function cannot return two doubles, we would have to
modify the functions returning a stack value to use pointer parameters in their argument
lists to “return” complex values. A second option would be to return complex numbers
through an array. Given my preference to eliminate raw pointers in interfaces when

215

CHAPTER 8 NEW REQUIREMENTS

possible, I consider this option suboptimal. A final solution, and my preferred choice,
would be to simply define a struct asin

struct Complex
{
double re;
double im;

};

to complement the interface functions, replacing the current use of double with Complex.
While this new Complex struct does duplicate the storage of the standard complex class,
we cannot use the standard complex class in a pure C interface.

8.2.1.3 Modifying Commands

Modifying commands to work with complex numbers is really quite easy since

the C++ library provides overloads for all of the mathematical operations

required by our calculator. Minus the syntactic changes of replacing Stack with
Stack<complex<double>> (hopefully we've aliased that somewhere) and swapping
complex<double> for double in BinaryCommand and UnaryCommand, most of the
commands remain unchanged. For example, clearing a stack of real numbers versus
clearing a stack of complex numbers is identical. Adding two complex numbers
versus adding two real numbers is identical, given operator overloading. Of course,
we might want to add additional commands such as complex conjugate, but even that
functionality is provided by the C++ complex class. In the event that a command you've
created uses an algorithm not supported natively by the complex class, you are likely
to encounter more mathematical difficulties than programmatic ones in modifying
commands to support complex numbers.

8.2.2 Variables

Earlier in this chapter, we implemented stored procedures as a method for storing a
simple instruction sequence. While stored procedures work fine for trivial operations
that only use each input once (e.g., the Pythagorean theorem), you'll very quickly run
into problems trying to implement more complicated formulas that use each input
more than once (e.g., the quadratic formula). To overcome this difficulty, you'll need to
implement the ability to store arguments in named variables.

216

CHAPTER 8 NEW REQUIREMENTS

Implementing variables in pdCalc will require several modifications to existing
components, including the addition of one prominent new component, a symbol table.
For simplicity in the example code, I have reverted to using a real number representation
for pdCalc. However, using complex numbers would add no additional design
complexity. Let’s now explore some possible design ideas for implementing variables.

8.2.2.1 Input and New Commands

Obviously, using variables will require some means of providing symbolic names.
Currently, our calculator only accepts numbers and commands as input. Inputting
any string that cannot be found in the CommandRepository results in an error. Recall,
however, that this error is generated in the CommandDispatcher, not in the tokenizer.
Therefore, we need to modify the CommandDispatcher to not reject strings but instead
to somehow place them on the stack. For now, we’ll assume that the stack can accept
strings in addition to numbers. I'll discuss the necessary modifications to the Stack
class in the upcoming sections. Again, I'll restrict our discussion to the command line
interface. The only additional complication posed by the graphical user interface is
providing a mechanism to input character strings in addition to numbers (perhaps a
virtual keyboard to accompany the virtual numeric keypad).

Technically, we could allow any string to represent a variable. However, we are
probably better served by restricting the allowable syntax to some subset of strings,
possibly delimited by a symbol to differentiate variable names from commands. Because
this choice is merely convention, you are free to choose whatever rules suit yours or your
users’ tastes. Personally, I would probably choose something like variable names must
begin with a letter and can contain any combination of letters, numbers, and possibly
a few special symbols such as the underscore. To eliminate confusion between variable
names and commands, I would enclose variables in either single or double quotation
marks.

Now that we’ve established the syntax for variables, we'll still need a mechanism
for taking a number from the stack and storing it into a variable. The simplest method
for accomplishing this task is to provide a new binary command, store, that removes a
number and a string from the stack and creates a symbol table entry linking this variable
name to this number. For example, consider the stack

4.5
2.9

X

217

CHAPTER 8 NEW REQUIREMENTS

Issuing the store command should result in an entry of x = 2.9 in the symbol table
and a resultant stack of

4.5

Implicitly, variables should be converted to numbers for use during calculations but
appear as names on the stack. We should also provide an explicit command, eval, to
convert a symbolic name into a number. For example, given the stack

X
issuing the eval command should result in the stack
2.9

Such a command should have a fairly obvious implementation: replace the variable
on the top of the stack with its value from the symbol table. Obviously, requesting the
evaluation of a variable not in the symbol table should result in an error. Evaluating
a number can either result in an error or, preferably, just return the number. You can
probably think of any number of fancy commands for working with variables
(e.g., list the symbol table). However, store and eval commands comprise the minimum

necessary command set to use variables.

8.2.2.2 Number Representation and the Stack

Until now, our stack has only needed to represent a single, unique type, either a real
or complex number. However, since variables and numbers can both be stored on the
stack, we need the ability for the stack to store both types simultaneously. We dismiss
immediately the notion of a stack that could handle two distinct types simultaneously
because this would lead quickly to chaos. Instead, we seek a uniform representation
capable of handling both number and variable types through a single interface.
Naturally, we turn to a hierarchy.

Consider the design expressed in the class diagram in Figure 8-6. This hierarchy
enables both Variables and Numbers to be used interchangeably as Values. This
polymorphic design solves three problems that we've already encountered. First,
Variables and Numbers can both be stored uniformly in a Stack<Value*> (likely using a
more appropriate smart pointer storage scheme). Second, when commands such as Add
or Sine need a number to perform an operation, they can pop Values from the stack and
request doubles through the virtual evaluate() function. Obviously, a Number directly

218

CHAPTER 8 NEW REQUIREMENTS

stores the double that it represents, while a Variable stores the variable’s name, which
can be converted to a numeric value via lookup in the variable symbol table. Finally,
subclasses of Value can return a string representation of their underlying value (either
a Number’s numeric value or a Variable’s name). This string conversion is necessary for
display on the I/0 stack.

Value

+evaluate(): double
+toString(): string

T

Number Variable
-number: double -name: string
+Number (number:double) +Variable(name:string)
-evaluate(): double -evaluate(): double
-toString(): string -toString(): string

Figure 8-6. A hierarchy capable of representing both numbers and variables
uniformly

8.2.2.3 The Symbol Table

At its core, a symbol table is merely a data structure that allows symbolic lookup by
pairing a key to a value (an associative array). In this case, the name of the variable serves
as the key and the numeric value serves as the value. The C++ standard library provides
this service directly through either a map or an unordered map, depending on the desired
underlying data structure. However, as in Chapter 3, I highly recommend against directly
using a standard library container as an external facing interface within a program.
Instead, one should employee the adapter pattern to encapsulate the library container
behind an interface defined by the application itself. This pattern adds no restrictions to
the users of a class, but it does permit the designer to restrict, expand, or later modify the
component’s interface independently of the interface of the underlying library container.
Therefore, the recommended design for a symbol table is to create a SymbolTable
class to wrap an unordered _map<string, double>. This underlying hash table provides
a storage type to map between the variable name as a string and the underlying
numeric value. The public interface for the SymbolTable class provides member

219

CHAPTER 8 NEW REQUIREMENTS

functions for adding and, optionally (we did not specify a command for clearing
variables), removing variables from the symbol table. The SymbolTable should probably
be implemented as a singleton since we only need one symbol table in the calculator.

8.2.2.4 A Trivial Extension: Numeric Constants

Once we've established the mechanics for storing user-defined variables, we can make
a trivial extension to provide user-defined constants. Constants are simply variables that
cannot be altered once set. Constants could be hard coded in pdCalc, added at program
launch through reading a constants file, or added dynamically during calculator
execution.

Obviously, in order to store a constant, we will need to add a new command; let’s
call it cstore. cstore works identically to store except that the command informs the
symbol table that the variable being stored cannot be changed. We have two obvious
options for implementation. First, inside the SymbolTable class, we add a second map
that indicates whether a given name represents a variable or a constant. The advantage
of this approach is that adding an additional map will require minimal implementation
changes to the existing code. The disadvantage is that this approach requires two
independent lookups for each call to the symbol table. The better approach is to modify
the original map to store the value type as an Entry instead of a double, where an Entry
is defined as

struct Entry
{

double val;
bool isConst;

s

Of course, to avoid hard coding the double type, we could, of course, template both
SymbolTable and Entry.

8.2.2.5 Functionality Enabled by Variables

Let’s examine what variables enable us to do. Consider the quadratic equation
ax*+bx+c = 0 with roots given by

_—bt\b*-4ac

2a

r

220

CHAPTER 8 NEW REQUIREMENTS

Where we formerly could not write a stored procedure for computing both roots, we
can now write the stored procedure

c" store "b" store "a" store "b" 2 pow 4 "a" "c" * * - sqrt "root" store
"b" - "root" +2a*/ "b" - "root" 2 a */

which will take three entries from the stack representing the coefficients a, b, c and
return two entries representing the roots of the quadratic equation. Now our calculator is
getting somewhere!

8.3 Some Interesting Extensions for Self-Exploration

This chapter concludes with a section listing a few interesting extensions to pdCalc
that you might consider trying on your own. In contrast to the previous section, I offer
no design ideas to get you started. I have provided merely a brief description of each
challenge.

8.3.1 High DPI Scaling

Monitors with extremely high pixel resolutions are becoming increasingly the norm.
Consider how you would modify the GUI for pdCalc to properly handle scaling for such
displays. Is this feature operating system independent or do we have another use for the
PlatformFactory from Chapter 7? Since version 5.6, Qt helps you out with this task via
an interface for high DPI scaling.

8.3.2 Dynamic Skinning

In Chapter 6, a class was introduced to manage the look-and-feel of the GUI. However,
the provided implementation only centralized the look-and-feel. It did not permit user
customization.

Users often want to customize the look-and-feel of their applications. Applications
that permit such changes are considered “skinable,” and each different look-and-feel
is a called a skin. Consider an interface and the appropriate implementation changes
necessary to the LookAndFeel class to enable skinning of pdCalc. Some possible options
include a dialog for customizing individual widgets or a mechanism to choose skins
from skin configuration files. Having a centralized class to handle the look-and-feel for

221

CHAPTER 8 NEW REQUIREMENTS

the application should make this change straightforward. Don’t forget to add a signal to
LookAndFeel so the other GUI elements will know when they need to repaint themselves
with a new appearance!

8.3.3 Flow Control

With variables, we greatly enhanced the flexibility of stored procedures. For computing
most formulas, this framework should prove sufficient. However, what if we wanted to
implement a recursive formula such as computing the factorial of a number? While we
have the ability to perform such complex computations via plugins, it would be nice to
extend this functionality to users of the calculator who are not also experienced C++
programmers. To accomplish this task, we would need to devise a syntax for flow control.
The simplest design would at least be able to handle looping and conditional operations.
Adding flow control to pdCalc would be a fairly significant enhancement in terms of both
added capability and implementation effort. It might be time to move to a real scanner
and parser!

8.3.4 An Alternative GUI Layout

The pdCalc GUI currently has a vertical orientation inspired by the HP48S calculator.
However, modern screen resolutions tend to be wider than they are tall, making the
vertical orientation suboptimal. Hard coding a horizontal orientation is no more
challenging than the original vertical orientation. Consider instead how to redesign
pdCalc to be able to switch between orientations at runtime. Maybe vertical orientation
is simply a different skin option?

8.3.5 A Graphing Calculator

The HP48 series of calculators were not merely scientific calculators, they were graphing
calculators. Although it might not be practical to implement a graphing calculator

for a computer when sophisticated standalone graphing programs exist, the exercise
might prove to be a lot of fun. Starting with version 5.7, Qt now includes a graphing
module to make this task significantly easier than it would have been previously. Given
this graphing widget set, the biggest challenge might simply be devising a method

for graphical input. If you're in the mood for a silly throwback to the 1970s, consider
implementing an ASCII graphing calculator for the CLI!

222

CHAPTER 8 NEW REQUIREMENTS

8.3.6 A Plugin Management System

Currently, plugins are loaded during pdCalc’s startup, and which plugins to load are
determined by reading shared library names from a text file. Plugins, once loaded,
cannot be unloaded. Consider implementing a dynamic plugin management system so
that plugins can be selected, loaded, and unloaded at runtime. You could even extend
the plugin interface to enable dynamic querying of plugin descriptions. I think the real
gotcha here will be in figuring out how to handle the unloading of a plugin that has one
of its commands currently on the undo/redo stack.

8.3.7 A Mobile Device Interface

In my original machinations for creating this book, I envisioned a chapter describing
how to extend pdCalc to an iOS or Android tablet. The Qt library can once again help you
with this task. The reason I did not include such a chapter in this book is that I do not
have any practical experience with tablet programming. I felt it would be disingenuous
to try to teach others how to design a tablet interface from my first-ever foray into

that design space. Well, it might have been an excellent example of a bad design!
Nonetheless, extending pdCalc to a tablet or smartphone interface is a worthy challenge,
and the last one I leave you with.

223

APPENDIX A

Acquiring, Building, and
Executing pdCalc

This appendix explains how to acquire and build pdCalc, the program described in this
book.

A.1 Getting the Source Code

The source code for pdCalc is hosted on Apress’s GitHub repository. The easiest way to
find the correct repository is through this book’s Apress website:

http://www.apress.com/us/book/9781484230565

Clicking the Download source code button will take you directly to the GitHub-
hosted site. Once there, you have two options for downloading the source code. The
first option is to use a git client (https://git-scm.com/) and clone the repository to
your local computer. For those familiar with managing source code with git, this is the
preferred source code acquisition method. Using git to clone the repository will enable
you to pull periodic bug updates from the online repository. Maybe you'll even decide to
contribute a bug fix to pdCalc yourself! The second option for acquiring the source code
is to download a single zip file of pdCalc from GitHub. Obviously, downloading a single
zip file makes updating the source code significantly more challenging than using git if
you have made any local changes.

A.2 Dependencies

Now that you have the source code, you'll probably want to build and execute pdCalc
and its unit test suite. Before that can be accomplished, however, you'll need to ensure
that you have an appropriate tool chain. Intentionally, pdCalc requires very few external

225
© Adam B. Singer 2017

A. B. Singer, Practical C++ Design, DOI110.1007/978-1-4842-3057-2

http://www.apress.com/us/book/9781484230565
https://git-scm.com/

APPENDIXA ACQUIRING, BUILDING, AND EXECUTING PDCALC

dependencies, in fact, only two, both of which can be obtained for Linux, Windows, or
Mac OS X at no cost. In order to build pdCalc, you will need a modern C++ compiler
(C++14 compliant) and Qt (version 4 or 5).

As someone willing to have read this book, you probably already have or know how
to get a C++ compiler. That said, for simplicity, the build system I provided for pdCalc
assumes use of the gcc compiler (mingw in Windows). If you do not have gcc on your
Linux system, it should be available through your system’s package manager. If that
fails, it can be downloaded from the Free Software Foundation’s website (https://gcc.
gnu.org/). On Windows, mingw is bundled with Qt as an optional component. I highly
recommend obtaining it through Qt’s installer.

On Linux, Qt, including its native integrated development environment (IDE)
named Qt Creater, can usually be obtained through the system'’s package manager. If
you go this route, ensure that you install the development packages for Qt and not just
the runtime libraries. For both Linux and Windows, Qt can also be downloaded from
http://www.qt.io/download/. Once you are on the website, select the Desktop and
Mobile edition, and then choose the version that is licensed appropriately for your
use. pdCalc is distributed under the GPL version 3, so the open source edition of Qt
is compatible. From Qt’s download page, you can select a fully downloadable binary
installer, a network-based binary installer, or the complete source code. Unless you are
experienced in building complex libraries from source, I recommend one of the binary
installers. On Windows, be sure to install the mingw compiled version of Qt as well as
the mingw tool chain. On all operating systems, while not strictly necessary, I highly
recommend also installing Qt Creator. Please be patient with the download. Qt, with its
many modules, is a powerful, but very sizable package.

A.3 Building pdCalc

To avoid additional dependencies, pdCalc uses gmake for its build system and Qt Test
for its unit test framework. Other good alternatives for these tasks are cmake for the build
system and any of boost test, cppunit, or Google Test for unit testing. To build pdCalc,
you can either configure and compile at the command line or use Qt Creator. Both
build methods rely on gmake. Therefore, before discussing how to build pdCalc, a brief
explanation of how qmake operates is warranted.

Using gmake to build a solution is a two-step process involving both qmake and
your tool chain’s native make tool. gmake itself does not directly call the compiler and

226

https://gcc.gnu.org/
https://gcc.gnu.org/
http://www.qt.io/download/

APPENDIXA ACQUIRING, BUILDING, AND EXECUTING PDCALC

linker. Rather, qmake is simply a cross-platform makefile generator. Therefore, in the
first step of the build process, gqmake reads project files and produces makefiles native
to the tool chain you're using. This step needs to be performed before the first build
and subsequently only after changes requiring modification to project files (e.g., the
addition of a new source file). In the second step, the object code is built using your tool
chain’s native make tool, which, in turn, calls the compiler and linker. For pdCalc, on a
Linux system, you'll use make, which will, in turn, use gcc for compiling and linking. On
a Windows system, you'll use mingw32-make, which will, in turn, use the mingw compiler
and linker.

Now that you understand how gmake works, let’s examine how to build pdCalc using
either Qt Creator or the command line.

A.3.1 Using Qt Creator

If your preference is to use Qt Creator, most of the complexity of using gqmake will be
hidden from you. To begin, simply launch the IDE, and open the pdCalc.pro project.
This file is located at the top level of the source tree.

The first time you open a qmake project file with Qt Creator, you will be presented
with a configuration list asking you which version of Qt to target. If you only have one
version of Qt on your computer, you may only have one option. If you expand the Details
button for your selected Qt version, you will be given the option to configure pdCalc for
debug, release, and profile and the option to select a folder as your out-of-source build
directory. Once you have selected your configuration options, click the Configure Project
button. If you need to change your configuration options later, Qt Creator has a tool for
that.

After Qt Creator configures your project, you will be presented with the edit mode
for the project. The edit mode of Qt Creator is a good tool for exploring the source code.
The complete source tree will appear in an expandable tree control on the left side of the
display, and individual files can be opened by clicking them. The source tree for pdCalc
is described in Appendix B.

Qt Creator works similarly to any other fully featured IDE you have probably used,
and a complete description of its usage is beyond the scope of this Appendix (see
http://doc.qt.io/qtcreator/ for the full manual). However, I will highlight a few
quick features to help get you started.

227

http://doc.qt.io/qtcreator/

APPENDIXA ACQUIRING, BUILDING, AND EXECUTING PDCALC

The first shortcut to learn is choosing which configuration of your project you want to
build and run. These options are selected by the monitor icon in the lower left corner of
the display. It will currently be labeled with the active project (pdCalc if it’s the only project
loaded) and the current configuration (e.g., Debug or Release). If you click this monitor
icon, a pane will open allowing you to select which configuration you wish to build and
which executable you wish to run. For pdCalc, you'll have four executable options: pdCalc,
pdCalc-simple-cli, pdCalc-simple-gui, and testDriver. pdCalc runs the full version of
pdCalc (the GUI by default), pdCalc-simple-cli runs the simple CLI constructed at the end
of Chapter 5, pdCalc-simple-gui runs the simple GUI constructed at the end of Chapter 6,
and testDriver runs the unit test suite. If you want to change the build or run configuration
options, you can click the Projects button (folder icon) on the left side of the display to
open the configuration panel. Clicking the Edit button will bring you back to edit mode.

pdCalc can be built either through the Build menu or by clicking the hammer icon
(at least that’s what it looks like to me) on the lower left side of the display. If you want to
watch the compiler output as it builds, press the Compile Output button on the bottom
of your screen. If you have any build issues, they can be found on the Issues tab of the
same information panel. Clicking one of these issues should take you to the offending
line of source code. Hopefully, pdCalc will build for you with no issues, no warnings, and
no errors. If you have build problems, see the “Troubleshooting” section below.

A.3.2 Using the Command Line

If Qt Creator is not for you, pdCalc can be built directly at the command line. gmake
supports out-of-source builds, which is the recommended strategy. Simply create a build
directory for each configuration of pdCalc that you wish to build, change your path to the
build directory, and issue the following command:

gmake -recursive CONFIG+=$CONFIG $PATH TO PDCALC

where $CONFIG can be replaced by either debug or release (default is debug if the CONFIG
option is not specified) and $PATH_TO_PDCALC should be replaced by the path to pdCalc’s
pdCalc.pro file.

The command above triggers gqmake to descend the pdCalc directory tree recursively
reading each project file and writing a corresponding makefile. If everything executes
normally, the output from the above command should be a sequence of lines informing
you which project files qmake read. After the makefiles are written, pdCalc can be

228

APPENDIXA ACQUIRING, BUILDING, AND EXECUTING PDCALC

built by issuing the make command for your system (make on Linux, mingw32-make on
Windows) in the same top-level directory from which the gmake command was issued.
The code should build cleanly with no warnings or errors.

A.4 Executing pdCalc

pdCalc, pdCalc-simple-cli, and pdCalc-simple-gui, and the unit test suite can be
executed from Qt Creator, the command line, or by double-clicking the executable (if all
of your library paths are correctly set). Let’s look at the details for the first two options.
Hopefully, double-clicking is self-explanatory.

A.4.1 Using Qt Creator

Using Qt Creator, the currently selected executable can be started by pressing the green
triangular run button in the lower left corner. The green triangle with the magnifying
glass will start the executable in Qt Creator’s interactive debugger. If the source code is
out of date, the project will be built before execution begins. If you currently have the
testDriver executable selected, the unit test suite will execute, and its output will appear
in the Application Output information panel. Hopefully, you will see details of individual
tests passing with a final message of “All tests passed.” If you currently have either the
pdCalc or pdCalc-simple-gui executable selected, the GUI should launch. If you have
the pdCalc-simple-cli executable selected, the CLI will launch in the Application Output
information panel. However, you cannot interact with the CLI using this panel, making
this mode of executing the CLI rather useless.

A.4.2 Using the Command Line

Due to slight differences in how shared libraries are handled, the Unix (including
Linux) and Windows builds target different directories for binaries. On a Unix system,
all executables are built in the bin directory and all shared libraries are built in the 1ib
directory. Therefore, pdCalc’s 1ib directory must be added to the library path before
the executables are launched. For example, for a command line execution of pdCalc on
Linux, one must first issue the following command:

export LD _LIBRARY PATH=$PATH TO PDCALC_LIB
229

APPENDIXA ACQUIRING, BUILDING, AND EXECUTING PDCALC

where $PATH_TO_PDCALC_L1IB is the relative or absolute path to the pdCalc 1ib directory.
As an example, $PATH_TO_PDCALC_LIB can besetto ../1ib for the relative path if
executing pdCalc from the bin directory.

Windows does not separate the shared library path from the executable path. This
lack of distinction implies that either the 1ib directory must be added to the main path
or that pdCalc’s libraries must reside in the bin directory. I selected the latter option for
pdCalc’s build on Windows. That is, both executables and dynamically linked libraries
are built directly into the bin directory.

A build of pdCalc creates four executables: pdCalc, pdCalc-simple-cli,
pdCalc-simple-gui, and testPdCalc (all have an .exe extension in Windows).
testPdCalc runs the unit test suite; it is a command line-only program. As each unit test
runs, you will see the names of the individual tests, the passage or failure of each test,
and some statistics for each unit test suite. If all of the tests pass, an “All tests passed”
message will be issued as the final output.

The pdCalc executable launches the complete calculator. It can be launched with the
--gui option to run the graphical user interface, the --cli option to run the command
line interface, or the --batch option to run the calculator in batch mode. Batch
operation requires an input file and, optionally, an output file. pdCalc can also be given
the - -help option to see a listing of the various modes of operation. If no command line
option is given, pdCalc defaults to launching the GUL

The pdCalc-simple-cli executable launches the simple CLI built at the end of
Chapter 5. The pdCalc-simple-gui executable launches the simple GUI built at the
end of Chapter 6. Strictly speaking, both of these executables are unnecessary. They are
provided merely as a convenience to the reader to be able to run pdCalc before it reaches
feature complete status. In agile terms, these feature-incomplete executables provide

stages of a minimum viable product.

A.5 Troubleshooting

For simplicity, the default gmake project files assume usage of a gcc-based compiler
(mingw in Windows). Theoretically, the source code should build without modification
on any platform using any C++14-compliant compiler compatible with Qt. Life in the
real world never seems to match this ideal. Therefore, some changes to the flags for
compiling and linking may be necessary if you choose to use a different compiler. In
particular, pdCalc cannot be built by the MSVC compiler provided with Microsoft’s

230

APPENDIXA ACQUIRING, BUILDING, AND EXECUTING PDCALC

Visual Studio using the default configuration. Additional modifications may also be
needed to support exporting names from DLLs using MSVC. If I receive enough reader
requests, I may extend the build system to include MSVC in a future update.

The above caveat stated, and despite considerable effort to ensure trouble-free
building of pdCalc, I still find that every different combination of Qt, gcc, environment
variables, operating system, and probably the weather manages to create some new,
wonderful build error. If you encounter build or runtime errors, I encourage you to make
an effort to diagnose and correct them yourself. Diagnosing and correcting build errors
are skills worth acquiring. This will also give you a greater appreciation for the thankless
soul on your team tasked with maintaining your cross-platform build system. Often the
problem is as trivial as conflicting compiler versions or incorrect/missing paths.

In building on Windows, I have found two confounding problems that I will detail
now to prevent anyone else from spending inordinate amounts of time debugging
them. First, I discovered an obscure qmake Windows-only bug. If you see “Fatal
error: MainWindow.moc: No such file or directory” in a Windows release build,
congratulations, you found it too. Try changing versions of Qt. The bug appears to be
fixed by version 5.9.1.

If you see the error “The system cannot find the file specified” during the building
of the hyperbolicLnPlugin, the build has failed to copy the plugins.pdp.win file to the
bin directory. This error indicates that mingw32-make has found sh.exe in your path
and is building using the sh.exe shell, but qmake has configured your project to use the
standard Windows shell, cmd. exe. If you cannot figure out why you have sh.exe in your
path, often the culprit is the installation of git. This problem can be fixed by any of the
following three different workarounds:

1. Remove sh.exe from your path and rebuild. This will cause
mingw32-make to correctly build using cmd. exe.

2. Manually copy the plugins.pdp.win file to the bin directory,
rename it plugins.pdp, delete line 16 (line beginning
win32:QMAKE PRE_LINK+=) from hyperbolicLnPlugin.pro, rerun
gmake, and then rerun mingw32-make.

231

APPENDIXA ACQUIRING, BUILDING, AND EXECUTING PDCALC

3. Modify line 16 of hyperbolicLnPlugin.pro to use the Unix cp
instead of the Windows copy command. To do this, simply replace
the line with

win32:QMAKE_PRE_LINK+=cp $$PWD /../plugins.pdp.win
$$HOME/bin/plugins.pdp

rerun gmake, and rerun mingw32-make.

Finally, I do understand that it can be extremely frustrating to invest time
(and possibly money) on a new book and find that you cannot build the accompanying
source code per the author’s instructions. If you've tried unsuccessfully to fix a build or
runtime error yourself and find yourself ready to throw your computer (or this book!) out
of the nearest window, just send me an email (PracticalDesignBook@gmail.com).I'll do
my best to get you up and running as quickly and as painlessly as possible.

232

APPENDIX B

Organization of the
Source Code

The easiest way to observe the source code is through an IDE such as Qt Creator. However,
this appendix is provided as a navigational guide to the source code tree. In addition to
the source code files listed in the tables below, the source tree also contains gqmake project
files, a few assorted configuration files, and a few baseline files for regression tests.

The root level in the source code tree contains two directories, src and test, which
contain the source code for pdCalc and the unit tests, respectively. Let’s look at these
directories separately.

B.1 The src Directory

The src directory subdivides into five directories: app, utilities, backend, ui, and
plugins. The app directory is a folder for containing the pdCalc, pdCalc-simple-cli,
and pdCalc-simple-gui directories. The ui directory is a folder for containing a c1i
directory and a gui directory. Each directory contains the files necessary for building
the respective module defined by the directory’s name. Each module compiles into a
distinct shared library encapsulating the module’s functionality. The exceptions are
the three subdirectories of the app directory, which contain source code for compiling
executables. Let’s now look at the files contained in each directory.

B.1.1 The pdCalc Directory

The pdCalc directory contains the source code that compiles into the pdCalc executable.
Notably, this directory contains the main() function located in main.cpp, which is the
entry point into the application.

233
© Adam B. Singer 2017

A. B. Singer, Practical C++ Design, DOI110.1007/978-1-4842-3057-2

APPENDIXB ORGANIZATION OF THE SOURCE CODE

B.1.2 The pdCalc-simple-cli Directory

The pdCalc-simple-cli directory contains the source code that compiles into the
simple CLI-only executable defined at the end of Chapter 5. This directory contains a
single file, main.cpp.

B.1.3 The pdCalc-simple-gui Directory

The pdCalc-simple-gui directory contains the source code that compiles into the
simple GUI-only executable defined at the end of Chapter 6. This directory contains a
single file, main. cpp.

B.1.4 The utilities Directory

The utilities directory contains generic, reusable components, none of which are
specifically associated with the calculator’s logic. Table B-1 lists the files contained in the
utilities directory.

Table B-1. Source Files in the utilities Directory

Header Files Source Files
Exception.h

Observer.h Observer.cpp
Publisher.h Publisher.cpp
Tokenizer.h Tokenizer.cpp
UserInterface.h UserInterface.cpp

B.1.5 The backend Directory

The backend directory contains all of the “business logic” for the calculator. From the
model-view-controller perspective, this director contains the model and the controller.
The backend directory also contains all of the logic for loading and managing plugins
as well as the observer intermediary classes. Table B-2 lists the files contained in the
backend directory.

234

APPENDIX B ORGANIZATION OF THE SOURCE CODE

Table B-2. Source Files in the backend Directory

Header Files

Source Files

AppObservers.h
Command. h
CommandDispatcher.h
CommandManager.h
CommandRepository.h
CoreCommands . h
Dynamicloader.h
PlatformFactory.h
Plugin.h
PluginLoader.h
PosixDynamiclLoader.h
PosixFactory.h

Stack.h
StackPluginInterface.h
StoredProcedure.h
WindowsDynamicLoader.h

WindowsFactory.h

AppObservers.cpp
Command.cpp
CommandDispatcher.cpp
CommandManager . cpp
CommandRepository.cpp
CoreCommands .cpp
DynamiclLoader.cpp

PlatformFactory.cpp

PluginLoader.cpp
PosixDynamiclLoader.cpp
PosixFactory.cpp
Stack.cpp
StackPluginInterface.cpp
StoredProcedure.cpp
WindowsDynamicLoader.cpp

WindowsFactory.cpp

B.1.6 The cli Directory

The cli directory contains the source code for the command line interface module. This

module is one of the simplest modules in pdCalc and only contains two files, C1i.h and

Cli.cpp.

235

APPENDIXB ORGANIZATION OF THE SOURCE CODE

B.1.7 The gui Directory

The gui directory contains the source code for the graphical user interface. The files in
this directory encompass the main GUI window, the GUI's input and output classes, and
the class governing the look-and-feel of the GUI. Table B-3 lists the source files found in
the gui directory.

Table B-3. Source Files in the gui Directory

Header Files Source Files
CommandButton.h CommandButton.cpp
Display.h Display.cpp

GuiModel.h GuiModel.cpp
InputWidget.h InputWidget.cpp
LookAndFeel.h LookAndFeel.cpp
MainWindow.h MainWindow.cpp
StoredProcedureDialog.h StoredProcedureDialog.cpp

B.1.8 The plugins Directory

The plugins directory is a placeholder directory for the source code for plugins to
pdCalc. It only includes one subdirectory, hyperbolicLnPlugin, which contains the
source code for the hyperbolic functions and natural logarithm plugin developed in this
book. The two source files in the hyperbolicPlugin directory are HyperbolicLnPlugin.h
and HyperbolicLnPlugin.cpp. The source code implementing plugin loading and
plugin management is all contained in the backend directory.

B.2 The test Directory

The test directory is the home directory for all of the unit tests for pdCalc. This directory
is simply a container for the following subdirectories, each of which tests the module
corresponding to its name: testDriver, utilitiesTest, backendTest, cliTest, guiTest,

236

APPENDIX B ORGANIZATION OF THE SOURCE CODE

pluginsTest. While I like to believe that I have been diligent in testing pdCalc thoroughly,
Iam certain of two things: I could have tested the code more, and bugs will be found after
publication. I now detail the contents of each of the directories under test.

B.2.1 The testDriver Directory

The testDriver directory contains a single source file, main. cpp. This file sets up the
Qt Test environment and registers all of the individual test modules. main.cpp compiles
into the testPdCalc executable (testPdCale.exe in Windows), which is responsible for

running all of the unit tests.

B.2.2 The utilitiesTest Directory

The utilitiesTest directory contains the files necessary for testing the utilities module.
The files contained in this directory are listed in Table B-4.

Table B-4. Source Files in theutilitiesTest Directory

Header Files Source Files
PublisherObserverTest.h PublisherObserverTest.cpp
TokenizerTest.h TokenizerTest.cpp

B.2.3 The backendTest Directory

The backendTest directory contains the source code for testing the backend module of
pdCalc. The files contained in this directory can be found in Table B-5. In addition to the
source code files, the directory also contains a hypotenuse file containing a test stored
procedure and the files plugins.unix.pdp and plugins.unix.win, which are plugin
loader files for the two respective operating systems.

237

APPENDIXB ORGANIZATION OF THE SOURCE CODE

Table B-5. Source Files in the backendTest Directory

Header Files Source Files
CommandDispatcherTest.h CommandDispatcherTest.cpp
CommandManagerTest.h CommandManagerTest.cpp
CommandRepositoryTest.h CommandRepositoryTest.cpp
CoreCommandsTest.h CoreCommandsTest.cpp
PluginlLoaderTest.h PluginlLoaderTest.cpp
StackTest.h StackTest.cpp
StoredProcedureTest.h StoredProcedureTest.cpp

B.2.4 The cliTest Directory

The cliTest directory contains the source code files necessary for testing the command
line interface. The two source files in this directory are CliTest.h and CliTest.cpp. In
addition to the source files, the cliTest directory contains a subdirectory, testCases.
The testCases directory contains input files and output baselines used in testing the
command line interface.

B.2.5 The guiTest Directory

It is difficult, in general, to test graphical user interfaces automatically. Only the Display
class within the GUI is automatically tested in pdCalc’s unit tests. The two source files
for testing the Display class, DisplayTest.h and DisplayTest.cpp, are found in the
guiTest directory.

B.2.6 The pluginsTest Directory

The pluginsTest directory contains the source files for testing the single plugin
included with pdCalc, the hyperbolic functions and natural logarithm plugin. These
tests are contained in the following two source files: HyperbolicLnPluginTest.h and
HyperbolicLnPluginTest.cpp.

238

References

1]

[6]

(8]

[9]

Aho, Alfred V., and Moica S. Lam, Ravi Sethi, and Jeffrey
D. Ullman. Compilers: Principles, Techniques, and Tools, second
edition. Boston, Massachusetts: Addison-Wesley, 2007.

Alexandrescu, Andrei. Modern C++ Design: Generic Programming

and Design Patterns Applied. Boston, Massachusetts: Addison-
Wesley, 2001.

Booch, Grady, and Robert A. Maksimchuk, Michael W. Engel,
Bobbi J. Young, Jim Conallen, and Kelli A. Houston. Object-
Oriented Analysis and Design with Applications, third edition.
Boston, Massachusetts: Addison-Wesley, 2007.

Booch, Grady, and James Rumbaugh and Ivar Jacobson. The
Unified Modeling Language User Guide. Boston, Massachusetts:
Addison-Wesley, 1999.

Cormen, Thomas H., and Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein. Introduction to Algorithms, third edition.
Cambridge, Massachusetts: The MIT Press, 2009.

Gamma, Erich, and Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-Oriented
Software. Boston, Massachusetts: Addison-Wesley, 1995.

Free Software Foundation, Inc. GNU Public Licence version 3,
June 2007. http://www.gnu.org/licenses/gpl.html.

Josuttis, Nicolai M. The C++ Standard Library: A Tutorial and
Reference, second edition. Upper Saddle River, New Jersey:
Addison-Wesley, 2012.

Kernighan, Brian W., and Rob Pike. The Practice of Programming.

Reading, Massachusetts: Addison-Wesley, 1999.

© Adam B. Singer 2017
A. B. Singer, Practical C++ Design, DOI10.1007/978-1-4842-3057-2

239

http://www.gnu.org/licenses/gpl.html

REFERENCES

240

[10]

[11]

[12]

(17]

(18]

[22]

Knuth, Donald E. The Art of Computer Programming: Volume 1,
Fundamental Algorithms, third edition. Boston, Massachusetts:
Addison-Wesley, 1997.

Knuth, Donald E. The Art of Computer Programming: Volume 2,
Seminumerical Algorithms, third edition. Boston, Massachusetts;
Addison-Wesley, 1998.

Knuth, Donald E. The Art of Computer Programming: Volume
3, Sorting and Searching, third edition. Boston, Massachusetts:
Addison-Wesley, 1998.

Lippman, Stanley B. Inside The C++ Object Model. Reading,
Massachusetts: Addison-Wesley, 1996.

Lippman, Stanley B., and Josée Lajoie. C++ Primer, third edition.
Reading, Massachusetts: Addison-Wesley, 1998.

McConnell, Steve. Code Complete, second edition. Redmond,
Washington: Microsoft Press, 2004.

Meyers, Scott. More Effective C++. Boston, Massachusetts:
Addison-Wesley, 1996.

Meyers, Scott. Effective STL. Boston, Massachusetts: Addison-
Wesley, 2001.

Meyers, Scott. Effective C++, third edition. Boston, Massachusetts:
Addison-Wesley, 2005.

Meyers, Scott. Effective Modern C++: 42 Specific Ways to Improve
Your Use of C++11 and C++14. Beijing, China: O’Reilly, 2015.

Reddy, Martin. API Design For C++. Amsterdam, The Netherlands:
Morgan Kaufmann, 2011.

Robertson, Suzanne and James Robertson. Mastering the
Requirements Process, second edition. Upper Saddle River, New
Jersey: Addison-Wesley, 2006.

Spinellis, Diomidis. Code Quality: The Open Source Perspective.
Boston, Massachusetts: Addison-Wesley, 2006.

23]

[24]

[25]

[26]

[27]

[29]

[30]

Stroustrup, Bjarne. The C++ Programming Language, fourth
edition. Upper Saddle River, New Jersey: Addison-Wesley, 2013.

Sutter, Herb. Exceptional C++. Boston, Massachusetts: Addison-
Wesley, 2000.

Sutter, Herb. More Exceptional C++. Boston, Massachusetts:
Addison-Wesley, 2002.

Sutter, Herb. Exceptional C++ Style. Boston, Massachusetts:
Addison-Wesley, 2005.

Sutter, Herb, and Andrei Alexandrescu. C++ Coding Standards:
101 Rules, Guidelines, and Best Practices. Boston, Massachusetts:
Addison-Wesley, 2005.

Wiegers, Karl E. Software Requirements. Redmond, Washington:
Microsoft Press, 2003.

Wikipedia. Liskov substitution principle. https://en.wikipedia.

org/wiki/Liskov_substitution_principle.

Wikipedia. Model-view-controller. https://en.wikipedia.org/
wiki/Model-View-Controller.

REFERENCES

241

https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Model-View-Controller
https://en.wikipedia.org/wiki/Model-View-Controller

Index

A

Abstract factory pattern, 173-177
Adapter pattern, 33, 37, 38
Aggregation, 125
Alternative GUI layout, 222
Analysis, 9, 17, 21-27
Architecture
model-view-controller, 12-14
multi-tiered, 12-14
n-tiered, 12, 13
three-tiered, 13-17
Author contact, xx

B

Batch operation, 195-197
Book structure, xvi
Bridge pattern, 38

C

CLI. See Command line interface
Cloning, 66-67, 85
Cohesion, 10-11, 16, 22, 25
Command
binary, 71, 74-76, 78, 79
class, 58, 60-62, 65, 66, 68, 71, 74, 76,
78, 82, 85, 87,91
hierarchy, 59, 71
pattern

© Adam B. Singer 2017

abstract, 58
applied, 61
registration, 88
unary, 71-75, 78
CommandButton
abstraction, 122-123
design, 123-127
interface, 127-128
Command data, 102-103
CommandDispatcher, 58, 82, 91-95
Command dispatcher, 16, 17, 21-26
Command line interface
class, 105-112
design, 107-112
implementation, 97, 106, 108-112
requirements, 97, 105-106, 111
CommandManager, 58, 76, 82, 83, 88, 89,
91, 93,94
CommandRepository, 58, 65, 81-87, 91
Complex numbers, 211-218
Composite pattern, 205-209
Composition, 125
Coupling, 9-12, 14-17, 28
Covariance, 67

D

Decomposition, 9-29
Dependencies, external, 225-226
Dependency inversion, 189-190

243

A. B. Singer, Practical C++ Design, DOI110.1007/978-1-4842-3057-2

INDEX

Deque, 38
Display
design, 134
improved design, 135-136
poor design, 134-135
Dynamic skinning, 221-222

E

Encapsulation, 10-11, 13, 15
Event data, 42, 44, 47-51
Events, 14-15, 22-26, 32, 33, 35, 40-54

F

Facade pattern, 123-124
Factory
function, 168-177
method, 168, 170, 171
pattern, 173-177
Final keyword, 79-81
Flow control, 222
Function, std, 74, 84, 85, 94

G

gcc, 226, 227, 230, 231
Github, xix, 6, 225
Graphical user interface
building, 118-121
declarative style, 120
imperative style, 120
modularization, 122-132
requirements, 115-118
Graphing calculator, 222
GUL. See Graphical user interface
GUI framework, xviii
GuiModel, 136-139

244

H

Has-a relationship, 53
Help function, 67-68
High DPI scaling, 221
HP48S, 117,118, 133

,J,K
IDE. See Integrated development
environment
Implements-a relationship, 52
Inheritance, 41, 52-54
InputWidget
design, 129-131
interface, 131-132
Integrated development environment,
118-121
Interfaces, 9-14, 17-29
Is-a relationship, 52

L

Lambda expressions, 76, 79, 80
Language selection, xvii-xviii

Liskov substitutability principle, 52, 61
Look-and-feel, 141-142

LSP. See Liskov substitutability principle

MainWindow, 138-141, 143
make, 226, 227, 229, 231, 232
mingw, 226, 227, 230
Mobile device interface, 223
Modularity, 10
Module interface styles
DLL hiding, 179-180
implicit hiding, 181

pdCalc, 181-182

source code hiding, 178-179
Move semantics, 22, 24, 27
Multi-platform design

abstract factory, 172-177

build system, 167-168

factory function, 168-172

libraries, 165

preprocessor directives, 165-167

N

Noexcept keyword, 158
Non-virtual interface pattern, 62-64

NVI pattern. See Non-virtual interface

pattern

O

Object-oriented design, 10
Observer pattern, 41-51, 54
Observers, 41-51, 54, 99,
101-105, 109
Override keyword, 69-70

P

Patterns
architectural, 12, 14-16, 28
design, 12, 28
pdCalc
building, 226-229
executing, 229-230
Perfect forwarding, 201-203
Pimpl idiom, 37-40
Plain old data, 34
Plugin management system, 223
Plugins
concrete example

implementation, 190-192
interface, 187-189
C++rules, 146-148
definition, 145-146
fundamental problems, 146, 148
incorporation
injection, 185-187
loading, 184-185
interface
adding GUI buttons, 154-155
allocation/deallocation, 156
API versioning, 159-160
command discovery, 149-153
commands, 156-158
stack availability, 160-161
loading, 161-177
retrofitting, 177-183
POD. See Plain old data
Pointer to implementation idiom.

See Pimpl idiom
Postcondition, 63-65
Postfix notation, 3
Precondition, 63-65, 72-73, 75, 76,

78, 94, 95
Principle of least astonishment.

See Principle of least surprise
Principle of least surprise, 21, 22
Prototype pattern, 83, 85
Proxy pattern, 103, 104
Publisher, 40-54, 101-105

Q

gmake, 226-232

Qt, xviii, 115, 116, 118, 120, 122-126,
129-130, 133, 136, 138-140,
143, 226-231

Qt Creator, 227-229

Qt Test, 226

INDEX

245

INDEX

R

RAIL See Resource acquisition is
initialization

Redo. See Undo

Requirements, 2-3, 5-6

Resource acquisition is initialization, 154,
184, 185, 189

Reverse Polish Notation, 2-5

RPN. See Reverse Polish Notation

S

Semantics
owning, 43, 45, 46
sharing, 50-51
Shift state, 126, 137, 138
Signals, 36, 40
Singleton pattern, 34-36, 62
Slots, 36, 40
Stack
data structure, 2-5
module, 21, 22, 29, 31-33, 36-40, 49, 54
STL, 31-33, 36-38
Stored procedures, 197-211
design, 204-205
user interface, 199
Strategy pattern, 79-80

246

T

Target audience, xv-xvi
Testing, 33, 54-55

U

Undo

implementation, 59-61, 89-91

strategy, 70-74, 90, 91
Uniform initialization, 86-87
unique_ptr

destruction semantics, 153-154
Use cases, 17-27
User interface

abstraction, 97-105, 107

events, 101-105

module, 16, 21-22

observers, 103-105

Vv

Variables, 216-222
Variadic templates, 201-204

W XY Z

Wrapper pattern. See Adapter pattern

	Table of Contents
	About the Author
	About the Technical Reviewer
	Preface
	Chapter 1: Defining the Case Study
	1.1 A Brief Introduction
	1.2 A Few Words About Requirements
	1.3 Reverse Polish Notation
	1.4 The Calculator’s Requirements
	1.5 The Source Code

	Chapter 2: Decomposition
	2.1 The Elements of a Good Decomposition
	2.2 Selecting an Architecture
	2.2.1 Multi-Tiered Architecture
	2.2.2 Model-View-Controller (MVC) Architecture
	2.2.3 Architectural Patterns Applied to the Calculator
	2.2.4 Choosing the Calculator’s Architecture

	2.3 Interfaces
	2.3.1 Calculator Use Cases
	2.3.1.1 Use Case: User Enters a Floating Point Number onto the Stack
	2.3.1.2 Use Case: User Undoes Last Operation
	2.3.1.3 Use Case: User Redoes Last Operation
	2.3.1.4 Use Case: User Swaps Top Stack Elements
	2.3.1.5 Use Case: User Drops the Top Stack Element
	2.3.1.6 Use Case: User Clears the Stack
	2.3.1.7 Use Case: User Duplicates the Top Stack Element
	2.3.1.8 Use Case: User Negates the Top Stack Element
	2.3.1.9 Use Case: User Performs an Arithmetic Operation
	2.3.1.10 Use Case: User Performs a Trigonometric Operation
	2.3.1.11 Use Case: User Performs yx
	2.3.1.12 Use Case: User Performs
	2.3.1.13 Use Case: User Loads a Plugin

	2.3.2 Analysis of Use Cases
	2.3.3 A Quick Note on Actual Implementation

	2.4 Assessment of Our Current Design
	2.5 Next Steps

	Chapter 3: The Stack
	3.1 Decomposition of the Stack Module
	3.2 The Stack Class
	3.2.1 The Singleton Pattern
	3.2.2 The Stack Module as a Singleton Class
	3.2.2.1 The Pimpl Idiom

	3.3 Adding Events
	3.3.1 The Observer Pattern
	3.3.1.1 Enhancing the Observer Pattern Implementation
	3.3.1.2 Handling Event Data

	3.3.2 The Stack as an Event Publisher
	3.3.3 The Complete Stack Interface

	3.4 A Quick Note on Testing

	Chapter 4: The Command Dispatcher
	4.1 Decomposition of the Command Dispatcher
	4.2 The Command Class
	4.2.1 The Command Pattern
	4.2.2 More on Implementing Undo/Redo
	4.2.3 The Command Pattern Applied to the Calculator
	4.2.3.1 The Command Interface
	4.2.3.2 The Undo Strategy
	4.2.3.3 Concrete Commands
	4.2.3.4 An Alternative to Deep Command Hierarchies

	4.3 The Command Repository
	4.3.1 The CommandRepository Class
	4.3.2 Registering Core Commands

	4.4 The Command Manager
	4.4.1 The Interface
	4.4.2 Implementing Undo and Redo

	4.5 The Command Dispatcher
	4.5.1 The Interface
	4.5.2 Implementation Details

	4.6 Revisiting Earlier Decisions

	Chapter 5: The Command Line Interface
	5.1 The User Interface Abstraction
	5.1.1 The Abstract Interface
	5.1.2 User Interface Events
	5.1.2.1 Command Data
	5.1.2.2 User Interface Observers

	5.2 The Concrete CLI Class
	5.2.1 Requirements
	5.2.2 The CLI Design
	5.2.2.1 The Interface
	5.2.2.2 The Implementation

	5.3 Tying It Together: A Working Program

	Chapter 6: The Graphical User Interface
	6.1 Requirements
	6.2 Building GUIs
	6.2.1 Building GUIs in IDEs
	6.2.2 Building GUIs in Code
	6.2.3 Which GUI Building Method Is Better?

	6.3 Modularization
	6.3.1 The CommandButton Abstraction
	6.3.2 The CommandButton Design
	6.3.3 The CommandButton Interface
	6.3.4 Getting Input
	6.3.5 The Design of the InputWidget
	6.3.6 The Interface of the InputWidget

	6.4 The Display
	6.4.1 The Design of the Display Class
	6.4.2 A Poor Design
	6.4.3 An Improved Display Design

	6.5 The Model
	6.6 The Display Redux
	6.7 Tying It Together: The Main Window
	6.8 Look-and-Feel
	6.9 A Working Program
	6.10 A Microsoft Windows Build Note

	Chapter 7: Plugins
	7.1 What Is a Plugin?
	7.1.1 Rules for C++ Plugins

	7.2 Problem 1: The Plugin Interface
	7.2.1 The Interface for Discovering Commands
	7.2.2 The Interface for Adding New GUI Buttons
	7.2.3 Plugin Allocation and Deallocation
	7.2.4 The Plugin Command Interface
	7.2.5 API Versioning
	7.2.6 Making the Stack Available

	7.3 Problem 2: Loading Plugins
	7.3.1 Platform-Specific Plugin Loading
	7.3.2 Loading, Using, and Closing a Shared Library
	7.3.3 A Design for Multi-Platform Code
	7.3.3.1 The Obvious Solution: Libraries
	7.3.3.2 Raw Preprocessor Directives
	7.3.3.3 (Slightly) More Clever Preprocessor Directives
	7.3.3.4 A Build System Solution
	7.3.3.5 A Platform Factory Function
	7.3.3.6 An Abstract Factory for Generalized Platform Independent Code

	7.4 Problem 3: Retrofitting pdCalc
	7.4.1 Module Interfaces
	7.4.1.1 Source Code Hiding
	7.4.1.2 DLL Hiding
	7.4.1.3 Implicit or Documentation Hiding
	7.4.1.4 Module Design for pdCalc

	7.4.2 Adding Plugin Buttons to the GUI

	7.5 Incorporating Plugins
	7.5.1 Loading Plugins
	7.5.2 Injecting Functionality

	7.6 A Concrete Plugin
	7.6.1 Plugin Interface
	7.6.2 Source Code Dependency Inversion
	7.6.3 Implementing HyperbolicLnPlugin’s Functionality

	7.7 Next Steps

	Chapter 8: New Requirements
	8.1 Fully Designed New Features
	8.1.1 Batch Operation
	8.1.2 Stored Procedures
	8.1.2.1 The User Interface
	8.1.2.2 Changes to the Command Dispatcher
	8.1.2.3 Designing the StoredProcedure Class
	8.1.2.4 The Composite Pattern
	8.1.2.5 A First Attempt
	8.1.2.6 A Final Design for the StoredProcedure Class

	8.2 Designs Toward a More Useful Calculator
	8.2.1 Complex Numbers
	8.2.1.1 Modifying Input and Output
	8.2.1.2 Modifying the Stack
	8.2.1.3 Modifying Commands

	8.2.2 Variables
	8.2.2.1 Input and New Commands
	8.2.2.2 Number Representation and the Stack
	8.2.2.3 The Symbol Table
	8.2.2.4 A Trivial Extension: Numeric Constants
	8.2.2.5 Functionality Enabled by Variables

	8.3 Some Interesting Extensions for Self-Exploration
	8.3.1 High DPI Scaling
	8.3.2 Dynamic Skinning
	8.3.3 Flow Control
	8.3.4 An Alternative GUI Layout
	8.3.5 A Graphing Calculator
	8.3.6 A Plugin Management System
	8.3.7 A Mobile Device Interface

	Appendix A: Acquiring, Building, and Executing pdCalc
	 A.1 Getting the Source Code
	 A.2 Dependencies
	 A.3 Building pdCalc
	A.3.1 Using Qt Creator
	 A.3.2 Using the Command Line

	 A.4 Executing pdCalc
	A.4.1 Using Qt Creator
	 A.4.2 Using the Command Line

	 A.5 Troubleshooting

	Appendix B: Organization of the Source Code
	 B.1 The src Directory
	B.1.1 The pdCalc Directory
	 B.1.2 The pdCalc-simple-cli Directory
	 B.1.3 The pdCalc-simple-gui Directory
	 B.1.4 The utilities Directory
	 B.1.5 The backend Directory
	 B.1.6 The cli Directory
	 B.1.7 The gui Directory
	 B.1.8 The plugins Directory

	 B.2 The test Directory
	B.2.1 The testDriver Directory
	 B.2.2 The utilitiesTest Directory
	 B.2.3 The backendTest Directory
	 B.2.4 The cliTest Directory
	 B.2.5 The guiTest Directory
	 B.2.6 The pluginsTest Directory

	References
	Index

