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CHAPTER 1

Getting Started in 
Cryptography and 
Cryptanalysis
Knowledge is one of the most important aspects to consider when designing and 

implementing complex systems, such as companies, organizations, military operations, 

and so on. Information falling into the wrong hands can be a tragedy and can result 

in a huge loss of business or disastrous outcomes. To guarantee the security of 

communications, cryptography can be used to encode information in such a way that 

nobody will be able to decode it without having the legal right. Many ciphers have been 

broken when a flaw has been found in their design or enough computing power has 

been applied to break an encoded message. Cryptology, as you will see later, consists of 

cryptography and cryptanalysis.

With the rapid evolution of electronic communication, the number of issues raised 

by information security significantly increases every day. Messages that are shared over 

publicly accessible computer networks around the world must be secured and preserved 

and must get the proper security mechanisms to protect against abuse. The business 

requirement in the field of electronic devices and their communication consists of 

having digital signatures that can be recognized by law. Modern cryptography provides 

solutions to all these problems.

The idea for this book started from experiences in several directions: (1) 

cryptography courses for students (at the graduate and undergraduate levels) in 

computer science at the University of Bucharest and Titu Maiorescu University; (2) 

industry experience achieved at national and international companies; (3) ethical 

hacking best practices; and (4) security audits. The goal of this book is to present 

the most advanced cryptography and cryptanalysis techniques together with their 

https://doi.org/10.1007/978-1-4842-6586-4_1#DOI
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implementations using C++20. This book will offer a practical perspective, giving the 

readers the necessary tools to design cryptography and cryptanalysis techniques in 

terms of practice. Most of the implementations are in C++20 using the latest features 

and improvements of the programming language (see Chapter 6). The book is an 

advanced and exhaustive work, offering a comprehensive view of the most important 

topics in information security, cryptography, and cryptanalysis. The content of the 

book can be used in a wide spectrum of areas by many professionals, such as security 

experts with their audits, military experts and personnel, ethical hackers, teachers in 

academia, researchers, software developers, software engineers when security and 

cryptographic solutions must be implemented in a real business software environment, 

professors teaching student courses (undergraduate and graduate level, master’s degree, 

professional and academic doctoral degree), business analysts, and many more.

�Cryptography and Cryptanalysis
It is very important to understand the meanings of the main concepts involved in a 

secure communication process and to know their boundaries.

•	 Cryptology is the science or art of secret writings. The main goal is to 

protect and defend the secrecy and confidentiality of the information 

with the help of cryptographic algorithms.

•	 Cryptography is the defensive side of cryptology. The main objective 

is to create and design cryptographic systems and their rules. 

Cryptography is a special kind of art, the art of protecting information 

by transforming it into an unreadable format called ciphertext.

•	 Cryptanalysis is the offensive side of cryptology. Its main objective 

is to study the cryptographic systems to provide the necessary 

characteristics to fulfill the function for which they have been 

designed. Cryptanalysis can analyze the cryptographic systems of 

third parties through cryptograms to break them in order to obtain 

useful information for business purposes. Cryptanalysts, code 

breakers, and ethical hackers are the people who deal with the field 

of cryptanalysis.

Chapter 1  Getting Started in Cryptography and Cryptanalysis
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•	 A cryptographic primitive represents a well-established or low-

level cryptographic algorithm that is used to build cryptographic 

protocols. Examples of such routines include hash functions or 

encryption functions.

The book provides a deep examination of all three aspects from a practical point 

of view with references to the theoretical background by illustrating how a theoretical 

algorithm should be analyzed for implementation.

�Book Structure
The book is divided into 23 chapters in three parts (see Table 1-1): Part I: Foundations 

(Chapters 1-8), Part II: Pro Cryptography (Chapters 9-16), and Part III: Pro Cryptanalysis 

(Chapters 17-23). Figure 1-1 shows how to read the book and what chapters depend on 

each other.

The Part I: Foundations (Chapters 1-8) covers, from a beginner to advanced 

level and from theoretical to practical, the basic concepts of cryptography (Chapter 2). 

Chapter 3 covers a collection of key elements regarding complexity theory, probability 

theory, information theory, number theory, abstract algebra, and finite fields and how 

they can be implemented using C++20, showing their interaction with the cryptography 

and cryptanalysis algorithms.

Chapters 4 and Chapter 5 focus on integer arithmetic and floating-point arithmetic 

processing. These chapters are vital because other chapters and algorithms depend on 

the content of these chapters. Number representations and working with them via the 

memory of the computer can be a difficult task.

In Chapter 6, we discuss the newest features and enhancements of C++20. We 

give a presentation on how the new features and enhancements play an important 

role in developing cryptography and cryptanalysis algorithms and methods. We cover 

three-way comparisons, lambdas in unevaluated contexts, string literals, atomic smart 

pointers, <version> headers, ranges, coroutines, modules, and more.

Chapter 7 presents the most important guidelines for securing the coding process, 

keeping an important balance between security and usability based on the most 

expected scenarios based on trusted code. We cover important topics such as securing 

state data, security and user input, security-neutral code, and library codes that expose 

the protected resources.
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Chapter 8 introduces the cryptography model and services that are used by C++. 

We cover important topics like C++ basic implementations, object inheritance, how 

cryptography algorithms are implemented, stream design, configuring cryptography 

classes, how to choose cryptography algorithms, generating the keys for encryption 

and decryption, storing asymmetric keys in a key container, cryptographic signatures, 

ensuring data integrity using hash codes and functions, creating and designing 

cryptographic schemes, encryption of XML elements with symmetric keys, assuring and 

guaranteeing interoperability of the applications between different platforms, such as 

Windows, MacOS, UNIX/Linux, and more.

Part II: Pro Cryptography (Chapters 9-16) contains the most important modern 

cryptographic primitives. Chapters 9-16 discuss the advanced cryptography topics by 

showing implementations and how to approach this kind of advanced topic from a 

mathematical background to a real-life environment.

Chapter 9 discusses Cryptography Next Generation (CNG), which is used in the 

implementation of the Elliptic Curve Diffie-Hellman (ECDH) algorithm, and how to 

realize the necessary cryptographic operations.

Chapter 10 provides an introduction to the Lattice Cryptography Library and how it 

works, pointing out the importance of post-quantum cryptography. Implementations of 

key exchange protocols proposed by Alkim, Ducas, Poppelmann, and Schwabe [1] are 

discussed. We continue our discussion with an instantiation of Chris Peikert’s key exchange 

protocol [2]. We point out that the implementation is based on modern techniques for 

computing, known as the number theoretic transform (NTT). The implementations apply 

errorless fast convolution functions over successions of integer numbers.

Chapter 11 and Chapter 12 present two important cryptographic primitives, 

homomorphic and searchable encryption. For searchable encryption (SE), Chapter 11 

presents an implementation using C++20 and showing the advantages and disadvantages 

by removing the most common patterns from encrypted data. In Chapter 12, we discuss 

how to use the SEAL library for fully homomorphic encryption. The implementation is 

discussed based on the proposal of Shai Halevi and Victor Shoup in [3].

Chapter 13 covers the issues that are generated during the implementation of (ring) 

learning with errors cryptography mechanisms. We give as an example an implementation 

of the lattice-based key exchange protocol, a library that is used only for experiments.

Chapter 14 is based on the new concepts behind chaos-based cryptography and how 

they can be translated into practice. The chapter generates some new outputs and its 

contribution is important for the advancement of cryptography as it is a new topic that 

hasn’t received proper attention until now.
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Chapter 15 discusses new methods and their implementations for securing big 

data environments, big data analytics, access control methods (key management for 

access control), attributed-based access control, secure search, secure data processing, 

functional encryption, and multi-party computation.

Chapter 16 points out the security issues raised by applications that run in a cloud 

environment and how they can be resolved during the designing and implementation 

phase.

In Part III: Pro Cryptanalysis (Chapters 17-23), we deal with advanced cryptanalysis 

topics and we show how to pass the barrier between theory and practice, and how to think 

of cryptanalysis in terms of practice by eliminating the most vulnerable and critical points 

of a system or software application in a network or distributed environment.

Starting with Chapter 17 we provide an introduction to cryptanalysis by presenting 

the most important characteristics of cryptanalysis.

Chapter 18 shows the important criteria and standards used in cryptanalysis, how 

the tests of cryptographic systems are made, the process of selecting cryptographic 

modules, cryptanalysis operations, and classifications of cryptanalysis attacks.

In Chapter 19 and Chapter 20, we show how to implement and design linear and 

differential and integral cryptanalysis. We focus on techniques and strategies where the 

primary role is to show how to implement scripts for attacking linear and differential 

attacks.

Chapter 21 presents the most important attacks and how they can be designed 

and implemented using C++20. You study the behavior of software applications when 

they are exposed to different attacks and you exploit the source code. We also discuss 

software obfuscation and show why this is a critical aspect that needs to be taken into 

consideration by the personnel involved in implementing the process of the software. 

Also, we show how this analysis can lead to machine learning and artificial intelligence 

algorithms that can be used to predict future attacks against software applications that 

are running in a distributed or cloud environment.

In Chapter 22, we go through the text characterization methods and 

implementations. We discuss chi-squared statistics; identifying unknown ciphers; index 

of coincidence; monogram, bigram, and trigram frequency counts; quad ram statistics as 

a fitness measure; unicity distance; and word statistics as a fitness measure.

Chapter 23 presents the advantages and disadvantages of implementing the 

cryptanalysis methods, why they should have a special place when applications are 

developed in distributed environments, and how the data should be protected against 

such cryptanalysis methods.
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Table 1-1.  Book Structure

Part Chapter # Chapter Title

Part I

Foundations (Foundational  

Topics)

1 Getting Started in Cryptography and Cryptanalysis

2 Cryptography Fundamentals

3 Mathematical Background and Its Applicability

4 Large Integer Arithmetic

5 Floating-Point Arithmetic

6 New Features in C++20

7 Secure Coding Guidelines

8 Cryptography Libraries in C/C++20

Part II

Pro Cryptography

9 Elliptic-Curve Cryptography

10 Lattice-Based Cryptography

11 Searchable Encryption

12 Homomorphic Encryption

13 Ring Learning with Errors Cryptography

14 Chaos-Based Cryptography

15 Big Data Cryptography

16 Cloud Computing Cryptography

Part III

Pro Cryptanalysis

17 Getting Started with Cryptanalysis

18 Cryptanalysis Attacks and Techniques

19 Linear and Differential Cryptanalysis

20 Integral Cryptanalysis

21 Brute Force and Buffer Overflow Attacks

22 Text Characterization

23 Implementation and Practical Approach of

Cryptanalysis Methods
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�Internet Resources
The Internet offers a significant amount of resources that are very useful regarding the 

topics in this book. These resources will help you keep up with progress in the fields:

•	 Bill’s Security Site, https://asecuritysite.com/, contains various 

implementations of cryptographic algorithms. The website is 

created and updated by Bill Buchanan, a professor at the School of 

Computing at Edinburgh Napier University.

•	 Books by William Stallings [4] such as Cryptography and Network 

Security, (http://williamstallings.com/Cryptography/). His 

website contains an important set of tools and resources that he 

regularly updates, keeping in step with the most important advances 

in the field of cryptography.

Figure 1-1.  A roadmap for readers and professionals
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•	 Schneier on Security, www.schneier.com/, contains sections on 

books, essays, accurate news, talks, and academic resources.

�Forums and Newsgroups
Many USENET (quite deprecated but still very useful) newsgroups are dedicated to the 

important aspects of cryptography and network security. The most important are as 

follows:

•	 sci.crypt.research is one of the best groups for information about 

research ideas. It is a moderated newsgroup and its main purpose 

is to deal with research topics. Most of the topics are related to the 

technical aspects of cryptology.

•	 sci.crypt offers general discussions about cryptology and related 

topics.

•	 sci.crypt.random-numbers offers discussions about random 

number generators.

•	 alt.security offers general discussions on security topics.

•	 comp.security.misc offers general discussions on computer security 

topics.

•	 comp.security.firewalls offers discussions about firewalls and 

other related products.

•	 comp.security.announce covers CERT news and announcements.

•	 comp.risks offers discussions about the public risks from computers 

and users.

•	 comp.virus offers moderated discussions about computer viruses.

Also, there are many forums that deal with cryptography topics and news. The most 

important are as follows:

•	 Reddit: Cryptography News and Discussions [5]: The forum group 

contains general information and news about different topics related 

to cryptography and information security.
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•	 Security forums [6]: They cover vast topics and discussions about 

computer security and cryptography.

•	 TechGenix: Security [7]: One of the most updated forums with 

news related to cryptography and information security. The group is 

maintained by world-leading security professionals.

•	 Wilders Security Forums [8]: The forum contains discussions and 

news about the vulnerabilities of software applications due to bad 

implementations of cryptographic solutions.

•	 Security Focus [9]: The forum contains a series of discussions about 

vulnerabilities raised by the implementations of cryptographic 

algorithms.

•	 Security InfoWatch [10]: The discussions are related to data and 

information loss.

•	 TechRepublic: Security [11]: The forum contains discussions about 

practical aspects and methodologies that can be used when software 

applications are designed and implemented.

•	 Information Security Forum [12]: A world-leading forum in the 

field of information security and cryptography. The forum contains 

conferences plus hands-on and practical tutorials for solving 

solutions for security and cryptographic issues.

�Standards
Many of the cryptographic techniques and implementations described in this book 

follow the below standards. These standards have been developed and designed to 

cover the management practices and the entire architecture of security mechanisms, 

strategies, and services.

The most important standards covered by this book are as follows:

•	 National Institute of Standards and Technology (NIST): NIST is the 

US federal agency that deals with standards, science, and technologies 

related to the US government. Excepting the national goal, the NIST 

Federal Information Processing Standards (FIPS) and the Special 

Publications (SP) have a very important worldwide impact.

Chapter 1  Getting Started in Cryptography and Cryptanalysis



12

•	 Internet Society: ISOC is one of the most important professional 

membership societies, with organizational and individual members 

worldwide. The society provides leadership on the issues that 

confront the future perspective of the Internet and applications that 

are developed using security and cryptographic mechanisms, with 

respect for the responsible groups, such as the Internet Engineering 

Task Force (IETF) and the Internet Architecture Board (IAB).

•	 ITU-T: The International Telecommunication Union (ITU) is one of the 

most powerful organizations within the United Nations system. It works 

with governments and the private sector to coordinate and administer 

the global telecom networks and services. ITU-T represents one of the 

three sectors of ITU. The mission of ITU-T consists of the production 

of the standards that cover all fields of telecommunications. The 

standards proposed by ITU-T are known as recommendations.

•	 ISO: The International Organizations for Standardization is a 

worldwide federation that contains national standards bodies from 

over 140 countries. The ISO is a nongovernmental organization 

that promotes the development of standardization and activities 

to facilitate the international exchange of services to develop 

cooperation with intellectual, scientific, and technological activities. 

The results of the ISO are international agreements published as 

international standards.

�Conclusion
The era in which we are living is one of unimaginable evolution and incredible 

technologies that enable the instant flow of information at any time and any place. 

The secret consists of the convergence of the computer with networks; this forces the 

evolution and development of these incredible technologies from behind.

In this first chapter, we discussed the objectives of the book and its benefits. 

We explained the mission of the book, which is to address the practical aspects of 

cryptography and information security and its main intention in using the current work. 

The systems built upon advanced information technologies have a deep impact on our 

lives every day. These technologies are proving to be pervasive and ubiquitous.
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The book represents the first practical step of translating the most important 

theoretical cryptography algorithms and mechanisms into practice through one of the 

most powerful programming languages, C++20.

In this chapter, you learned the following:

•	 The differences between cryptography, cryptanalysis, and cryptology.

•	 The structure of the book in order to help you follow the content 

easier. A roadmap was introduced in order to show the dependencies 

of each chapter. Each chapter was presented in detail, pointing out 

the main objective.

•	 A list of newsgroups, websites, and USENETs resources was covered 

in order provide sources for the latest news about cryptography and 

information security.

•	 The most significant standards for cryptography and information 

security were presented. You will get used to the workflow of each 

standard.
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CHAPTER 2

Cryptography 
Fundamentals
Cryptographic history is incredibly long and fascinating. A great and comprehensive 

reference is The Code Book: The Secrets Behind Codebreaking [1] published in 2003, 

which provides a non-technical history of cryptography. In the book, the story of 

cryptography begins around 2000 BC, when the Egyptians used it for the first (known) 

time, and ends with our era. It presents the main aspects of cryptography and hiding 

information for each period that is covered and describes cryptography’s great 

contribution to both World Wars. Often, the art of cryptography is correlated with 

diplomacy, the military, and governments because its purpose is to keep safe sensitive 

data such as strategies or secrets regarding national security.

A crucial development in modern cryptography is the workpaper New Directions 

in Cryptography [2] proposed by Diffie and Hellman in 1976. The paper introduced a 

notion that changed how cryptography was seen: public-key cryptography. Another 

important contribution in this paper was the innovative way of exchanging keys; the 

security of the presented technique was based on the hardness assumption (basically, 

through the hardness assumption we refer to a problem that cannot be solved efficiently) 

of the discrete logarithm problem. Although the authors did not propose a practical 

implementation for their public-key encryption scheme, the idea was presented very 

clearly and started to get attention from the international cryptography community.

The first implementation of a public-key encryption scheme was made in 1978 by 

Rivest, Shamir, and Adleman, who proposed and implemented their encryption scheme, 

known nowadays as RSA [3]. The hardness assumption in RSA is the factoring of large 

integers. By looking in parallel at integer factorization for RSA and Shor’s algorithm, 

note that Shor’s Algorithm will run in polynomial time for quantum computers. This 

represents a significant challenge for any cryptographer who is using the hardness 

https://doi.org/10.1007/978-1-4842-6586-4_2#DOI
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assumption for factoring large integers. The increasing applications and interest in the 

factoring problem led to new factoring techniques. Important advances in this area 

were made in 1980, but none of the proposed techniques brought improvements to the 

security of RSA. Another important class of practical public-key encryption schemes 

was designed by ElGamal [4] in 1985. It was based on the hardness assumption of the 

discrete logarithm problem.

Another crucial contribution to public-key cryptography was the digital signature, 

which was adopted by the international standard ISO/IEC 9796 in 1991 [5]. The basis of 

the standard is the RSA public-key encryption scheme. A powerful scheme for digital 

signatures based on the discrete logarithm hardness assumption is the Digital Signature 

Standard, adopted by the United States Government in 1994.

Nowadays, the trends in cryptography include designing and developing new public-

key schemes, adding improvements to the existing cryptographic mechanisms, and 

elaborating on security proofs.

The objective of this book is to provide a view of the latest updates of the 

principles, techniques, algorithms, and implementations of the most important 

aspects of cryptography in practice. We will focus on the practical and applied 

aspects of cryptography. You will be warned about difficult subjects and those that 

present issues. You will be guided to a proper references where you will find best 

practices and solutions. Most of the aspects presented in the book will be followed by 

implementations. This objective is to not obscure the real nature of cryptography. The 

book offers strong material for both implementers and researchers. The book describes 

algorithms and software systems with their interactions.

�Information Security and Cryptography
In this book, we refer to the term and concept of information as to quantity. To go 

through the introduction to cryptography and to show its applicability in presenting 

algorithms and implementation technologies (such as C++), first you need to have a 

background in the issues that occur often in information security. When a particular 

transaction occurs, all parties involved in that transaction must be sure (or ensured) 

that specific objectives related to information security are met. A list of these security 

objectives is given in Table 2-1.

To define the issues regarding information security when the information is 

sent in a physical format (for example, documents), several protocols and security 
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mechanisms have been proposed. The objectives regarding information security may be 

accomplished by applying mathematical algorithms or work protocols on information 

that needs to be protected and additionally by following specific procedures and laws. 

An example of physical document protection is a sealed envelope (the mechanism of 

protection) that covers the letter (the information that needs to be protected) delivered 

by an authorized mail service (the trusted party). In this example, the protection 

mechanism has its limitations, but the technical framework has rigorous rules, through 

which any entity that opens the envelope without the right to so may be punished. There 

are situations in which the physical paper itself, which contains the information that 

needs to be protected, may have special characteristics that certify the originality of the 

data/information. For example, to refrain from the forging of bank notes, paper currency 

has special ink and matter.

Table 2-1.  Security Objectives

Security Objective Description

Privacy/confidentiality The information is kept secret against unauthorized entities.

Signature A technique that binds a signature by an entity (for example, a document)

Authorization The action of authorizing an entity to do or to be something, in order to 

send the information between the sender and the receiver

Message 
authentication

The process/characteristic through which the origin of the data is 

authenticated; another meaning is corroboration of the information source.

Data integrity The information is kept unaltered through techniques that keep away 

unauthorized entities or unknown means.

Entity authentication/
identification

The action of validating the identity of an entity, which may be a computer, 

person, credit card, etc.

Validation The action of making available a (limited) quantity of time for authorization 

for using or manipulating the data or resources

Certification The process of confirming the information by a trusted party, or 

acknowledgment of information by a trusted certification

Access control The action of restricting access to resources to authorized parties

Timestamping Metadata that stamps the time of creation or the existence of information

(continued)
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From a conceptual point of view, how the information is manipulated did not change 

overmuch. We are considering here storing, registering, interpreting, and recording 

data. However, a manipulation that changed significantly is copying and modifying 

the information. An important concept in information security is the signature, which 

represents the foundation for more processes, such as non-repudiation, data origin 

authentication, identification, and witnessing.

To achieve the security of information in electronic communication, the 

requirements introduced by the legal and technical skills should be followed. On the 

other hand, it is not guaranteed that the above objectives of protection are fulfilled 

accordingly. The technical part of the information security is assured by cryptography.

Cryptography is the field that studies the mathematical techniques and tools 

that are connected to information security such as confidentiality, integrity (data), 

authentication (entity), and the origin of the authentication. Cryptography not only 

provides the security of the information but also a specific set of techniques.

Security Objective Description

Witnessing The action of validating the creation/existence of the information, made by 

an entity that is not the creator of the data

Receipt The action of confirming the receiving of the information

Ownership The action of giving to an entity the legal rights to use or transfer a 

particular information/resource

Confirmation The action of validating the fact that certain services have been 

accomplished

Revocation The action of withdrawing certification or authorization

Non-repudiation The process of restraining the negation of other previous commitments or 

actions

Anonymity The action of making anonymous an entity's identity that is involved in a 

particular action/process

Table 2-1.  (continued)

Chapter 2  Cryptography Fundamentals



19

�Cryptography Goals
From the security objectives presented in Table 2-1, the following represent a basis from 

which can be derived the others:

•	 Privacy/confidentiality (Definitions 2.5 and 2.8)

•	 Data integrity (Definition 2.9)

•	 Authentication (Definition 2.7)

•	 Non-repudiation (Definition 2.6)

We will explain each of the four objectives in detail:

•	 Confidentiality is a service that is used to protect the content 

of the information from unauthorized entities and access. The 

confidentiality is assured through different techniques, from the use 

of mathematical algorithms to physical protection, which scramble 

the data into an incomprehensible form.

•	 Data integrity is a service that prevents unauthorized alteration of 

the information. Authorized entities should have the capability to 

discover and identify unauthorized manipulation of data.

•	 Authentication is a service that has an important role when data 

or application is authenticated. It implies identification. The 

authentication process is applied on both extremities that use the 

data (for example, the sender and the receiver). The rule is that 

each involved party should identify itself in the communication 

process. It is very important that both parties that are involved in the 

communication process should declare to each other their identity 

(the parties could be represented by a person or a system). At the 

same time, some characteristics of the data should accompany 

the data itself, such as its origin, content, the time of creation/

sending, etc. From this point of view, cryptography branches the 

authentication into two categories: authentication of the entity and 

authentication of the data origin. The data origin authentication 

leads to data integrity.
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•	 Non-repudiation is a service that prevents denials of previous actions 

made by an entity. When a conflict occurs because an entity denies 

its previous actions, it will be resolved by an existing trusted third 

party that will show the actions made over data.

One of the main goals of cryptography is to fulfill the four objectives described above 

on both sides, theory and practice.

�Cryptographic Primitives
During the book, we will present several fundamental cryptographic tools, called 

primitives. Examples of primitives are encryption schemes (Definitions 2.5 and 2.8), 

hash functions (Definition 2.9), and schemes for digital signatures (Definition 2.6). 

Figure 2-1 shows a schematic description of these primitives and the relation between 

them. We will use many of the cryptographic primitives during the book, and we will 

provide practical implementations every time we use them. Before using them in real-

life applications, the primitives should be subjected to an evaluation process in order to 

check if the below criteria are fulfilled:

•	 Level of security: It is slightly difficult to quantify the level of security. 

However, it can be quantified as the number of operations made in 

order to accomplish the desired objective. The level of security is 

usually defined based on the superior bound given by the volume of 

work necessary to defeat the objective.

•	 Functionality: To accomplish security objectives, in many situations 

the primitives are combined. You need to be sure that they work 

properly.

•	 Operation methods: When the primitives are used, they need different 

inputs and have different ways of working, resulting in different 

characteristics. In these situations, the primitives provide very different 

functionality that will depend on the mode of operation.

•	 Performance: This concept is related to the efficiency that a 

primitive can achieve in a specific and particular mode of operation.

•	 Ease of implementation: This concept is more a process than a 

criterion, and it refers to the primitive be used in practice.
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The application and the available resources give importance to each of the above 

criteria.

Cryptography may be seen as an art practiced by professionals and specialists who 

proposed and developed ad-hoc techniques whose purpose was to fulfill important 

information security requirements. In the last few decades, cryptography has suffered 

Figure 2-1.  Cryptographic primitives taxonomy
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the transition from art to science and discipline. Nowadays, there are dedicated 

conferences and events in many fields of cryptography and information security. 

There are also international professional associations, such as the International 

Association for Cryptologic Research (IACR), whose aim is to promote the best results 

of research in the area.

This book is about cryptography and cryptanalysis, implementing algorithms and 

mechanisms using C++ with respect to standards.

�Background of Mathematical Functions
This goal of the book IS NOT to be a monograph on abstract mathematics. However, 

getting familiar with some of the fundamental mathematical concepts is necessary and 

will prove to be very useful in practical implementations. One of the most important 

concepts that is fundamental to cryptography is the function in the mathematical sense. 

A function is also known in the literature as transformation or mapping.

�Functions: One-to-One, One-Way, Trapdoor One-Way
Let’s consider as a concept a set, which is a distinct set of objects, which are known 

as elements of that specific set. The following example represents set A, which has the 

elements a, b, c, this being denoted as A = {a, b, c}.

Definition 2.1 [18]. Cryptography is defined as the study of the mathematical 

techniques that are related to the aspects of the information security such as 

confidentiality, integrity (data), authentication (entity), and authentication of the data 

origin.

Definition 2.2 [18]. Let’s consider that two sets A and B and rule f are defining a 

function. The rule f will assign to each element in A an element in B. The set A is known 

as the domain that characterizes the function and B represents the codomain. If a 

represents an element from A, written as a ∈ A, the image of a is represented by the 

element in B with the help of rule f; the image b of a is noted by b = f (a). The standard 

notation for a function f from set A to set B is represented as f : A → B. If b ∈ B, then we 

have a preimage of b, which is an element a ∈ A for which f(a) = b. The entire set of 

elements in B that have at least one preimage is known as the image of f, noted as Im(   f ).

Example 2.3. ( function) Let’s consider sets A = {a, b, c} and B = {1, 2, 3, 4}, and the 

rule f from A to B as being defined as f(a) = 2, f(b) = 4, f(c) = 1. Figure 2-2 shows the 
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representation of the two sets A, B and the function f. The preimage of element 2 is a. 

The image of f is {1, 2, 4}.

Example 2.4. ( function) Let’s consider set A = {1, 2, 3, ……, 10} and consider f to be 

the rule that for each a ∈ A, f(a) = ra, where ra represents the remainder when a2 is being 

divided by 11.

	 f f1 1 6 3( ) = ( ) = 	

	 f f2 3 7 5( ) = ( ) = 	

	 f f3 9 8 9( ) = ( ) = 	

	 f f4 5 9 4( ) = ( ) = 	

	 f f5 3 10 1( ) = ( ) = 	

The image of f is represented by the set Y = {1, 3, 4, 5, 9}.

Figure 2-2.  Function f from a set A formed from three elements to a set B formed 
from five elements
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The scheme represents the main fundamental tool for thinking of a function (you 

can find it the literature as the functional diagram) as depicted in Figure 2-2, and each 

element from the domain A has precisely one arrow originated from it. For each element 

from codomain B we can have any number of arrows as being incident to it (including 

also zero lines).

Example 2.5. ( function) Let’s consider the following set defined as A = {1, 2, 3, …, 1050} 

and consider the f to be the rule f (a) = ra, where ra represents the remainder in the case 

when a2 is divided by 1050 + 1 for all a ∈ A. In this situation, it is not feasible to write down 

f explicitly as in Example 2.4. This being said, the function is completely defined by the 

domain and the mathematical description that characterize the rule f.

�One-to-One Functions

Definition 2.6 [18]. We will consider a function or transformation as 1 − 1 (one-to-one) 

if each of the elements that can be found within the codomain B is represented as the 

image of at most one element in the domain A.

Definition 2.7 [18]. Let’s consider that a function or transformation is onto if each of 

the elements found within the codomain B represents the image of at least one element 

that can be found in the domain. At the same time, function f : A → B is known as being 

onto if Im(f) = B.

Definition 2.8 [18]. Let’s consider a function f : A → B to be considered 1 − 1 and 

Im(f) = B. Then the function f is called bijection.

Conclusion 2.9 [18]. If f : A → B is considered 1 − 1, then f : A →  Im (f) represents the 

bijection. In special cases, if f : A → B is represented as 1 − 1, and A and B are represented 

as finite sets with the same size, then f represents a bijection.

Using the scheme and its representation, if f is a bijection, then each element from 

B has exactly one line that is incidental with it. The functions in Examples 2.3 and 2.4 

do not represent bijections. As you can see in Example 2.3, element 3 doesn’t have the 

image of any other element that can be found within the domain. In Example 2.4, each 

element from the codomain is identified with two preimages.

Definition 2.10 [18]. If f is a bijection from A to B, then it is a quite simple matter to 

define a bijection g from B to A as follows: for each b ∈ B, we define g(b) = a where a ∈ A 

and f(a) = b. The function g is obtained from f and it is called inverse function of f and it 

denoted as g = f −1.
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Example 2.11. (inverse function) Let’s consider sets A = {a, b, c, d, e} and 

Y = {1, 2, 3, 4, 5}, and consider the rule f which is given and represented by the lines from 

Figure 2-3.  Representation of bijection f and its inverse, g = f −1
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Figure 2-3. f represents a bijection and its inverse g is formed by reversing the sense of 

the arrows. The domain of g is represented by B and the codomain is A.

Note that if f is a bijection, f −1 is also a bijection. The bijections in cryptography are 

tools used for message encryption. The inverse transformations are used for decryption. 

The main condition for decryption is for transformations to be bijections.

�One-Way Functions

In cryptography there are a certain types of functions that play an important role. Due to 

the rigor, a definition for a one-way function is given as follows.

Definition 2.12 [18]. Let’s consider a function f from a set A to a set B that is called a 

one-way function if f(a) proves to be simple and easy to be computed for all a ∈ A but for 

“essentially all” elements b ∈  Im (f) it is computationally infeasible to manage to find any 

a ∈ A in such way that f(a) = b.

Note 2.13 [18]. This note represents some additional notes and clarifications of the 

terms used in Definition 2.12.

	 1.	 For the terms easy and computationally infeasible, a rigorous 

definition is necessary but it will distract attention from the 

general idea that is being agreed upon. For the goal of this chapter, 

the simple and intuitive meaning is sufficient.

	 2.	 The words essentially all stand for the idea that there are a couple 

of values b ∈ B for which it is easy to find an a ∈ A in such way 

that b = f(a). As an example, one may compute b = f(a) for a small 

number of a values and then for these, the inverse is known by 

a table look-up. A different way to describe this property of a 

one-way function is as follows: for any random b ∈  Im (f) it is 

computationally feasible to have and find any a ∈ A in such way 

that f(a) = b.

The following examples will show the concept behind a one-way function.

Example 2.14. (one-way function) Consider A = {1, 2, 3, …, 16} and let’s define f(a) = ra 

for all the elements a ∈ A where ra represents the remainder when 3x will be divided  

with 17.

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f (a) 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1
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Let’s assume that we have a number situated between 1 and 16. We can see that 

is very easy to find the image of it under f. Without having the table in front of you, for 

example, for 7 it is hard to find a given that f(a) = 7. If the number that you are given is 3, 

then is quite easy to see that a = 1 is what you actually need.

Remember that this example is focused on very small numbers. The key thing here is 

that the amount of effort to measure f(a) is different than the amount of work in finding 

a given f(a). Also for large numbers, f(a) can be efficiently computed using the square-

and-multiply algorithm [20], where the process of finding a from f(a) is harder to find.

Example 2.15 [18]. (one-way function) A prime number is defined as a positive 

integer. The integer is bigger than 1 and its positive integers divisors are 1 and 

itself. Let’s take into consideration primes p = 50633 and q = 58411, compute 

n = pq = 50633 · 58411 = 2957524163, and consider A = {1, 2, 3, …, n − 1}. We will 

define a function f on A by f(a) = ra for each a ∈ A, where ra represents the remainder 

when x3 is divided by n. For example, let’s consider f(2489991 = 1981394214 since 

24899913 = 5881949859 · n + 1981394214. Computing f(a) represents a simple thing to be 

done, but reversing the procedure is quite difficult.

�Trapdoor One-Way Functions

Definitions 2.16 [18]. A trapdoor one-way function is represented as a one-way function 

f : A → B with an extra property that by having information (also known as trapdoor 

information) it will be much more feasible to have an identification for any given 

b ∈  Im (f), with an a ∈ A in such way that f(a) = b.

Example 2.15 shows the concept of a trapdoor one-way function. With extra 

information about the factors of n = 2957524163 it becomes much easier to invert the 

function. The factors of 2957524163 are large enough that it would be difficult to identify 

them by hand calculation. We should be able to identify the factors very easily with the 

help of a computer program. For example, if we have very big, distinct prime numbers 

(each number has about 200 decimal digits) p and q, with the technology of today, 

finding p and q from n is very difficult even with the most powerful quantum computers. 

This is the well-known factorization problem known as integer factorization problem.

One-way and one-way trapdoor functions form the fundamental basis for public-key 

cryptography. These principles are very important, and they will become much clearer later 

when you explore the implementation of cryptographic techniques. It is vital and important 

to understand these concepts from this section because they are the main methods and the 

primary foundation for the cryptography algorithms implemented later in this chapter.
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�Permutations
Permutation represents functions that are in cryptographic constructs.

Definition 2.17 [18]. Consider S to be a finite set formed of elements. A permutation 

p on S represents a bijection as defined in Definition 2.8. The bijection is represented 

from S to itself, p : S → S.

Example 2.18 [18]. This example represents a permutation example. Let’s consider 

the following permutation: S = {1, 2, 3, 4, 5}. The permutation p : S → S is defined as

	 p p p p p1 2 2 5 3 4 4 2 5 1( ) = ( ) = ( ) = ( ) = ( ) =, , , , 	

A permutation can be described in different ways. It can be written as above or as an 

array as in

	
p =

æ

è
ç

ö

ø
÷

1 2 345

3 5 4 21
,
	

in which the top row in the array is represented by the domain and the bottom row is 

represented by the image under p as mapping.

Since the permutations are bijections, they have inverses. If the permutation is 

written as an away (second form), its inverse can be easily found by interchanging the 

rows in the array and reordering the elements from the new top row and the bottom row 

accordingly. In this case, the inverse of p is defined as follows:

	
p- =

æ

è
ç

ö

ø
÷

1
1 2 345

5 4 132 	

Example 2.19 [18]. This example represents a permutation example. Let’s consider 

A to be the set of integers {0, 1, 2, …, p · q − 1} where p and q represent two distinct large 

primes. We need to suppose also that neither p − 1 nor q − 1 can be divisible by 3. The 

function p(a) = ra, in which ra represents the remainder when a3 is divided by pq, can be 

demonstrated and shown as being the inverse perumutation. The inverse permutation is 

computationally infeasible by the computers of today, unless p and q are known.

�Involutions
Involutions are known as functions having their own inverses.
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Definition 2.20 [18]. Let’s consider a finite set S and f defined as a bijection S to S,  

noted as f : S → S. In this case, the function f will be noted as an involution if f = f −1. 

Another way of defining this is f ( f (a)) = a for any a ∈ S.

Example 2.21 [18]. This example represents an involution case. Figure 2-4 shows 

an example of involution. Note that if j represents the image of i, then i represents the 

image of j.

�Concepts and Basic Terminology
It is very difficult to understand how cryptography was built using hard and abstract 

definitions when dealing with the scientific side of the field. In the following sections, we 

will list the most important terms and key concepts used in this chapter.

�Domains and Codomains Used for Encryption
•	   is shown as a finite set known as the alphabet of definition. We 

will consider as an example  ={ }01, , which represents the binary 

alphabet, an alphabet frequently used as definition.

•	   is a set known as the message space. The message space has the 

strings of symbols from an alphabet,  . As an example,   may 

have binary strings, English text, French text, etc.

Figure 2-4.  Representation of an involution with an set S with five elements
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•	   is the ciphertext space.   has strings of symbols from an alphabet, 

 , which is totally different from the alphabet defined for  . An 

element from   is called a ciphertext.

�Encryption and Decryption Transformations
•	 The set   is called key space. The elements of   are called keys.

•	 For each eÎ , there is a unique transformation Ee, representing a 

bijection from   to   (i.e., Ee :M C® ). Ee is called the encryption 

function or encryption transformation. If the encryption process is 

reversed, then Ee should be a bijection, such that each unique plain 

message is recovered from one unique ciphertext.

For each d Î , there is a transformation Dd, representing 

a bijection from   to   (i.e., Dd :C M® ). Dd is called a 

decryption function or decryption transformation.

•	 The process of encrypting the message mÎ  or the encryption of m 

consists of applying the transformation Ee over m.

•	 The process of decrypting the ciphertext cÎ  or the decryption of c 

consists of applying the transformation Dd over c.

•	 An encryption scheme has two important sets: E ee : Î{ } , which 

represents the set of the encryption transformations, and D dd : Î{ } ,  

which represents the set of the decryption transformations. The 

relationship between the elements of the two sets is the following: 

for each eÎ  exists a unique key d Î  in such that D Ed e= -1 ; in 

other words, we have the relationship Dd(Ee(m)) = m for all mÎ . 

Another term for encryption schemes is cipher.

•	 In the above definition, the encryption key e and the decryption key d 

form a pair, usually noted as (e, d). In symmetric encryption schemes, 

e and d are the same, while in asymmetric (or public-key) encryption 

schemes they are different.
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•	 To construct an encryption scheme, the following components are 

needed: the messages (or plain-texts) space  , the cipher-space  ,  

the keys space  , the set of encryption transformations E ee : Î{ } , 

and the set of decryption transformations D dd : Î{ } .

�The Participants in the Communication Process
The components involved in the communication process are the following (Figure 2-5):

•	 The entity (party) is that component that works with the information: 

sending, receiving, manipulating it. The entities/parties from 

Figure 2-5 are Alice, Bob, and Oscar. However, in real applications, 

the entities are not necessarily people; they may be authorities or 

computers, for example.

•	 The sender is one of the entities of a two-party communication and 

it initiates the transmission of the data. The sender from Figure 2-5 

is Alice.

•	 The receiver is the other entity of a two-party communication and 

it is the intended recipient of the information. The receiver from 

Figure 2-5 is Bob.

•	 The communication channel is the component through which the 

sender and the receiver communicate.

•	 The adversary is an unauthorized entity in a two-party 

communication and it is different from the sender and the receiver. 

Its objective is to break the security on the communication channel 

in order to access the information. Other terms for the adversary 

are1: enemy, attacker, opponent, eavesdropper, intruder, and 

interloper. It has different types (passive and active) and will behave 

differently according to aspects regarding the encryption scheme or 

its intentions. Often, the attacker clones and acts like the legitimate 

sender or the legitimate receiver.

1�Alice and Bob. Available online: https://en.wikipedia.org/wiki/Alice_and_Bob
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�Digital Signatures
In this book, another technique that we will work with is the digital signature. Digital 

signatures are very important in some processes, like authentication, authorization, 

or non-repudiation. The digital signature is used to map an individual’s identity with a 

piece of information. When “something” is digitally signed, it means that the message 

and the confidential information owned by an individual are converted into a tag called 

a signature.

The components of the signing process are

•	   is the set of messages that can be signed.

•	   is the set of signatures. They can have a form of binary strings with 

a predefined length.

•	 A represents the transformation between   and  , called a 

signing transformation, and it is made by entity A. The entity will 

keep A  secret and will use it to sign messages from  .

•	 VA is the transformation between M S´  to the set {true, false}. The 

Cartesian product M S´  contains the pair of elements (m, s) where 

mÎ  and sÎ . The transformation VA is public and it is used by 

different entities to check if the signatures were created by entity A.

Figure 2-5.  Example of two-party communication process applying encryption

Chapter 2  Cryptography Fundamentals



33

�Signing Process
Entity A, called the signer, creates a signature sÎ  for a particular message mÎ  

following these steps:

•	 Compute s = SA(m).

•	 Transmit the pair (m, s) to the desired receiver.

�Verification Process
When the receiver entity B wants to check if entity A created the signature s for the 

message m, it proceeds as follows:

•	 Obtain the verification function VA for the entity A.

•	 Compute u = VA(m, s).

•	 If u = true, then the signature was created by entity A; if u = false, then 

the signature was not created by entity A.

�Public-Key Cryptography
Public-key cryptography (PKC) has an important role in C++ when similar algorithms 

need to be incorporated. Many significant commercial libraries implement developer-

specific public-key cryptography solutions, such as [21-30].

Next, you will see how the public-key cryptography works. For this, recall that   is 

the key space. Let’s consider the set of the encryption transformations as E ee : Î{ }  

and the set of the decryption transformations as D dd : Î{ } . Further, let’s consider 

the pair of encryption and decryption transformations as (Ee, Dd), where Ee can be 

learned by anyone, for every e. From having Ee, determining Dd must be computationally 

unrealizable; in other words, from a random ciphertext cÎ  it’s impossible to find out 

the message mÎ , such that Ee(m) = c. This property is strong and it means that the 

corresponding decryption key d (which must be secret/private) may not be computed/

determined from either given e (which is public).

With the settings from above, take a look at Figure 2-6 and let’s consider the 

communication channel between two parties, namely Alice and Bob.
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•	 Bob chooses a pair of keys, (e, d).

•	 Bob makes the encryption key e publicly available, such that Alice 

can access it over any channel, and keeps secret and in safe the 

decryption key d. In the specialty literature, in PKC the encryption 

key is called the public key and the decryption key is called the  

secret/private key.

•	 When Alice wants to send a message mÎ  to Bob, she uses Bob’s 

public key e to determine the encryption transformation Ee, and 

then she applies it over m. Finally, Alice obtains the encryption 

c E me= ( )Î  and sends it to Bob.

•	 When Bob wants to decrypt the encrypted message cÎ  received 

from Alice, he uses his private key d to determine the transformation 

decryption Dd, and then he applies it over c. Finally, he obtains 

m D cd= ( )Î .

Figure 2-6.  The process of encryption using public-key mechanism
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There’s no need to keep the encryption key e secret; it can be made public. Every 

individual can then send encrypted messages to Bob, which can be decrypted only by 

Bob. Figure 2-7 illustrates the idea, where A1, A2, and A3 represents different entities. 

Remember if A1 destroys the message m1 after encrypting it to c1, then even A1 is in the 

position of not being able to recover m1 from c1.

Let’s take the following analog example to make it simple. Consider a metal box 

with the cover secured by a lock with a particular combination. Bob is the only one who 

knows how to open the lock. If the lock stays open and is made accessible to the public 

for different purposes, someone can put a message inside and lock the lock.

Figure 2-7.  How public-key encryption is used
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�Hash Functions
Hash functions are one of the primary primitives in modern cryptography. Also known 

as a one-way hash function, a hash function represents a computationally efficient 

function that maps the binary string to binary strings with an arbitrary length with a 

fixed length known as hash values.

As an example of implementation of a hash function (SHA-256, see Figure 2-8), 

we will examine the following implementation in C++ using C++20 new features (see 

Listing 2-1). The implementation is done in accordance with the NIST Standard2.

2�NIST Standard for Hash Functions implementations, https://csrc.nist.gov/projects/
hash-functions
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Figure 2-8.  Exemple of SHA-25 execution
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Listing 2-1.  Source Code for Implementation of SHA256

#include <iostream>       //** standard input/output library

#include <sstream>        //** templates and types for interoperation

                          //** between flow buffers and string objects

#include <bitset>         //** storing bits library

#include <vector>         //** for representing arrays as containers

#include <iomanip>        //** for manipulation of the parameters

#include <cstring>        //** for manipulation of the strings

using namespace std;      //** for avoiding writing "std::"

//** ASCII string will be converted as a binary representation

vector<unsigned long> binaryConversion(const string);

//** for addings padding's to messages and making sure that they are

//** multiple of 512 bits

vector<unsigned long> addPadOf512Bits(const vector<unsigned long>);

//** We will change the n 8 bit blocks to 32 bits words

vector<unsigned long> resizingTheBlock(vector<unsigned long>);

//** will contain the actual hash value

string computingTheHash(const vector<unsigned long>);

//** variables and constants using during debugging

string displayAsHex(unsigned long);

void outputTheBlockState(vector<unsigned long>);

string displayAsBinary(unsigned long);

const bool displayBlockStateAddOne = 0;

const bool displayDistanceFrom512Bit = 0;

const bool displayResultsOfPadding = false;

const bool displayWorkVariablesForT = 0;

const bool displayT1Computation = false;

const bool displayT2Computation = false;

const bool displayTheHashSegments = false;

const bool displayWt = false;
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//** defined in accordance with the NIST standard

#define ROTRIGHT(word,bits) (((word) >> (bits)) | ((word) << (32-(bits))))

#define SSIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))

#define SSIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))

#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))

#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

//** in accordance with the latest updates of the NIST standard

//** we will replace BSIG0 with EP0 and BSIG1 with EP0 in our

//** implementation

#define BSIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))

#define BSIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))

#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))

#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))

//** we will verify if the process of checking (testing) is enabled

//** by the missed arguments in the command line.

//** The steps are as follows:

//** (1) Take the ascii string and convert it in n 8 bit segments by

//** representing the ascii value of each independently character

//** (2) add paddings to the message in order to get a 512 bit long

//** (3) take separately each 8 bit ascii value and convert it to 32

//** bit words and create a combination of them.

//** (4) calculate the hash and get the vallue

//** (5) if we are doing test, take the result and compare it with  

//** expected result

int main(int argc, char* argv[])

{

      string theMessage = "";

      bool testing = 0;

      switch (argc) {

          case 1:

              �cout << "There is no input string found. The test will

              be run using random first three letters abc.\n";

                  theMessage = "abc";

                  testing = true;
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          break;

          case 2:

          if (strlen(argv[1]) > 55)

           {

               cout << "The string provided is biger than 55

               characters length. Enter a shorter string."

                       << " or message!\n";

               return 0;

          }

            theMessage = argv[1];

            break;

            default:

            cout << "There are too many items in the command line.";

            exit(-1);

            break;

     }

//** storing all the blocks

     vector<unsigned long> theBlocksArray;

     //** convert the message to a vector of strings by hacving it

//** represented it as a 8 bit variable

     theBlocksArray = binaryConversion(theMessage);

     //** add padd to it in order to get a full of 512 bits long

     theBlocksArray = addPadOf512Bits(theBlocksArray);

      //** create a separate combination of the 8 bit segments into

      //** single 32 bits sections

      theBlocksArray = resizingTheBlock(theBlocksArray);

      //** compute the hash using computingTheHash function

      string myHash = computingTheHash(theBlocksArray);
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     //** if testing is found on true the software app will execute

//** a self check by checking if the hash value computed for

//** "abc" is equal with the expected hash

     if (testing) {

          const string theCorrectHashForABC =

          "ba7816bf8f01cfea414140de5dae2223b00361a3961

          77a9cb410ff61f20015ad";

          if (theCorrectHashForABC.compare(myHash) != 0) {

               cout << "\tThe test didn't occur with success!\n";

               return(1); }

          else {

               cout << "\tTest has been done with success!\n";

               return(0); } }

     cout << myHash << endl;

     return 0;  }

//** the function purpose is to resize the blocks from 64 and 8 bit

//** to 16 and 32 bit sections. The function as input will take a

//** vector of individual 8 bit ascii values. As output we will get a

//** vector with 32 bit words that are found within a combination of

//** ascii values.

vector<unsigned long> resizingTheBlock(vector<unsigned long> 

inputOf8BitAsciiValues)

{

     vector<unsigned long>

outputOf32BitWordsCombinedAsAsciiValues(16);

     //** parse all 64 sections using a 4 step and mergem them

//** accordingly

     for(int i = 0; i < 64; i = i + 4) {

          //** create for beginning a big 32 bit section first

          bitset<32> temporary32BitSection(0);
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          //** create a shifting of the blocks on their assigned

//** positions

          temporary32BitSection = (unsigned long)

inputOf8BitAsciiValues[i] << 24;

temporary32BitSection |= (unsigned long)

inputOf8BitAsciiValues[i + 1] << 16;

          temporary32BitSection |= (unsigned long)

inputOf8BitAsciiValues[i + 2] << 8;

          temporary32BitSection |= (unsigned long)

inputOf8BitAsciiValues[i + 3];

          //** set the new 32 bit word within the proper output of

//** the array location

          outputOf32BitWordsCombinedAsAsciiValues[i/4] =

          temporary32BitSection.to_ulong(); }

     return outputOf32BitWordsCombinedAsAsciiValues; }

//** the function display the contents of all the blocks as binary

//** format. The function is used only for debugging purpose.

void outputTheBlockState(vector<unsigned long>

vectorOfCurrentBlocks) {

     cout << "---- The current State of the Block ----\n";

     for (int i = 0; i < vectorOfCurrentBlocks.size(); i++) {

          cout << "block[" << i << "] binary: " <<

displayAsBinary(vectorOfCurrentBlocks[i])

                << "     hex y: 0x" <<

displayAsHex(vectorOfCurrentBlocks[i]) << endl; }}

//** the function will display in hex format the content of the

//** blocks.

string displayAsHex(unsigned long input32BitBlock) {

     bitset<32> theBitSet(input32BitBlock);

     unsigned number = theBitSet.to_ulong();

     stringstream theStringStream;

     theStringStream << std::hex << std::setw(8) <<

std::setfill('0') << number;

Chapter 2  Cryptography Fundamentals



43

     string temporary;

     theStringStream >> temporary;

     return temporary; }

//** the function will show the content of the blocks in hex. We are

//** using this function in order to avoid changing the stream from

//** hexa to dec and reversed as well.

string displayAsBinary(unsigned long input32OrLessBitBlock) {

     bitset<8> theBitSet(input32OrLessBitBlock);

     return theBitSet.to_string(); }

//** based on the string, it will take the entire set of the

//** characters and converts them into ascii binary.

vector<unsigned long> binaryConversion(const string

inputOfAnyLength) {

     //** the vector used to store all the ascii characters

          vector<unsigned long> vectorBlockHoldingAsciiCharacters;

     //** take each character and convert the ascii character to

//** the binary representation

     for (int i = 0; i < inputOfAnyLength.size(); ++i) {

          //** create a temporary variable. Use it to store the 8

//** bit template for ascii value

bitset<8> bitSetOf8Bits(inputOfAnyLength.c_str()[i]);

          //** the template of 8 bit add it into the block

vectorBlockHoldingAsciiCharacters.

push_back(bitSetOf8Bits.to_ulong());}

     return vectorBlockHoldingAsciiCharacters; }

//** get the ascii values stored as a vector in binary and add padding to 

it in order to obtain a total of 512 bits.

vector<unsigned long> addPadOf512Bits(vector<unsigned long> 

vectorBlockHoldingAsciiCharacters) {

     //** you can keep the variables names as given in the NIST

     //** for our implementation I have used my personal names for

//** variables in order to get a uniqueness of the code
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//** the variable will store the length of the message in bits

int lengthOfMessageInBits = vectorBlockHoldingAsciiCharacters.size() * 8;

     int zeroesToAdd = 447 - lengthOfMessageInBits;

//** add another 8 bit block with the first bit being set to 1

     if(displayBlockStateAddOne)

          outputTheBlockState(vectorBlockHoldingAsciiCharacters);

     unsigned long t1Block = 0x80;

     vectorBlockHoldingAsciiCharacters.push_back(t1Block);

     if(displayBlockStateAddOne)

          outputTheBlockState(vectorBlockHoldingAsciiCharacters);

          outputTheBlockState(vectorBlockHoldingAsciiCharacters);

     //** we have 7 zeroes. We will need to substract 7 from

//** zeroesToAdd

     zeroesToAdd = zeroesToAdd - 7;

     //** debug mode. Find how much we need to get close to 512 bit

     if (displayDistanceFrom512Bit) {

          cout << "lengthOfMessageInBits = " <<

lengthOfMessageInBits << endl;

          cout << "zeroesToAdd = " << zeroesToAdd + 7 << endl; //

Plus 7 so this follows the paper. }

     //** debug mode

     if (displayDistanceFrom512Bit)

          cout << "adding " <<

zeroesToAdd / 8 << " empty eight bit blocks!\n";

//** add blocks of 8 bit length that will contains zero's

     for(int i = 0; i < zeroesToAdd / 8; i++)

          vectorBlockHoldingAsciiCharacters.push_back(0x00000000);

     //** we are finding ourself in 488 bits out 512 phase. Next

//** step is adding 1 in the binary representation in order to

//** form of eight bit blocks.
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     bitset<64> theBig64BlobBit(lengthOfMessageInBits);

     if (displayDistanceFrom512Bit)

          cout << "l in a 64 bit binary blob: \n\t" <<

theBig64BlobBit << endl;

     //** divide the 64 bit big into 8 bit segments

     string big_64bit_string = theBig64BlobBit.to_string();

     //** take the first block and push it on the 56 position

     bitset<8> temp_string_holder1(big_64bit_string.substr(0,8));

     vectorBlockHoldingAsciiCharacters.

push_back(temp_string_holder1.to_ulong());

     //** take the rest of the blocks with 8 bits length and push

     for(int i = 8; i < 63; i=i+8)     {

          bitset<8>

temporaryStringHolder2(big_64bit_string.substr(i,8));

vectorBlockHoldingAsciiCharacters.

push_back(temporaryStringHolder2.to_ulong()); }

     //** just show in the console everything in order to know what

//** is happening in this freakin code

     if (displayResultsOfPadding)     {

        cout << "Current 512 bit pre-processed hash in binary: \n";

               for(int i = 0; i < vectorBlockHoldingAsciiCharacters.size(); 

               i=i+4)

                    �cout << i << ": " << displayAsBinary(vectorBlockHolding

AsciiCharacters[i]) << "     "

                         �<< i + 1 << ": " << displayAsBinary(vectorBlock 

HoldingAsciiCharacters[i+1]) << "     "

                         �<< i + 2 << ": " << displayAsBinary(vectorBlock 

HoldingAsciiCharacters[i+2]) << "     "

                         �<< i + 3 << ": " << displayAsBinary(vectorBlock 

HoldingAsciiCharacters[i+3]) << endl;

         cout << "Current 512 bit pre-processed hash in hex: \n";

          �for(int i = 0; i < vectorBlockHoldingAsciiCharacters.size(); i=i+4)
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               �cout << i << ": " << "0x" + displayAsHex(vectorBlockHolding 

AsciiCharacters[i]) << "     "

                    �<< i + 1 << ": " << "0x" + displayAsHex(vectorBlock 

HoldingAsciiCharacters[i+1]) << "     "

                    �<< i + 2 << ": " << "0x" + displayAsHex(vectorBlock 

HoldingAsciiCharacters[i+2]) << "     "

                    �<< i + 3 << ": " << "0x" + displayAsHex(vectorBlock 

HoldingAsciiCharacters[i+3]) << endl; }

     return vectorBlockHoldingAsciiCharacters; }

//** the goal of the function is to compute the hash of the message

string computingTheHash(const vector<unsigned long>

blockOf512BitPaddedMessage)

{

     //** the following words are from the NIST standard.

     unsigned long constantOf32BitWords[64] = {

     �0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1, 

0x923f82a4,0xab1c5ed5,0xd807aa98,0x12835b01,0x243185be,0x550c7dc3, 

0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,0xe49b69c1,0xefbe4786, 

0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da, 

0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147, 

0x06ca6351,0x14292967,0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13, 

0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,0xa2bfe8a1,0xa81a664b, 

0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070, 

0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a, 

0x5b9cca4f,0x682e6ff3,0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208, 

0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 };

     //** the initial hash values

     unsigned long static InitialHashValueFor32Bit_0 = 0x6a09e667;

     unsigned long static InitialHashValueFor32Bit_1 = 0xbb67ae85;

     unsigned long static InitialHashValueFor32Bit_2 = 0x3c6ef372;

     unsigned long static InitialHashValueFor32Bit_3 = 0xa54ff53a;

     unsigned long static InitialHashValueFor32Bit_4 = 0x510e527f;

     unsigned long static InitialHashValueFor32Bit_5 = 0x9b05688c;

     unsigned long static InitialHashValueFor32Bit_6 = 0x1f83d9ab;

     unsigned long static InitialHashValueFor32Bit_7 = 0x5be0cd19;
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     unsigned long Word[64];

     for(int t = 0; t <= 15; t++)     {

          Word[t] = blockOf512BitPaddedMessage[t] & 0xFFFFFFFF;

          if (displayWt)

               cout << "Word[" << t << "]: 0x" <<

displayAsHex(Word[t]) << endl; }

     for(int t = 16; t <= 63; t++) {

          Word[t] = SSIG1(Word[t-2]) +

Word[t-7] + SSIG0(Word[t-15]) + Word[t-16];

          Word[t] = Word[t] & 0xFFFFFFFF;

          if (displayWt)

               cout << "Word[" << t << "]: " << Word[t]; }

     unsigned long temporary_1;

     unsigned long temporary_2;

     unsigned long a = InitialHashValueFor32Bit_0;

     unsigned long b = InitialHashValueFor32Bit_1;

     unsigned long c = InitialHashValueFor32Bit_2;

     unsigned long d = InitialHashValueFor32Bit_3;

     unsigned long e = InitialHashValueFor32Bit_4;

     unsigned long f = InitialHashValueFor32Bit_5;

     unsigned long g = InitialHashValueFor32Bit_6;

     unsigned long h = InitialHashValueFor32Bit_7;

     if(displayWorkVariablesForT)

          cout << "         A        B        C        D        "

               << "E        F        G        H        T1   T2\n";

     for( int t = 0; t < 64; t++) {

          //** according to the NIST Standard and Specification,

//** the BSIG1 is incorrect. We will replace it with EP1

          temporary_1 = h + EP1(e) + CH(e,f,g) +

constantOf32BitWords[t] + Word[t];
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          if ((t == 20) & displayT1Computation){

          cout << "h: 0x" << hex << h << "  dec:" << dec << h

                    << "  sign:" << dec << (int)h << endl;

          cout << "EP1(e): 0x" << hex << EP1(e) << "  dec:"

                << dec << EP1(e) << "  sign:" << dec << (int)EP1(e)

               << endl;

          cout << "CH(e,f,g): 0x" << hex << CH(e,f,g) << "  dec:"

                    << dec << CH(e,f,g) << "  sign:" << dec

                    << (int)CH(e,f,g) << endl;

          cout << "constantOf32BitWords[t]: 0x" << hex <<

constantOf32BitWords[t] << "  dec:" << dec

                    << constantOf32BitWords[t] << "  sign:" <<

     dec << (int)constantOf32BitWords[t] << endl;

          cout << "Word[t]: 0x" << hex << Word[t]

<< "  dec:" << dec << Word[t] << "  sign:" << dec

<< (int)Word[t] << endl;

          cout << "temporary_1 = 0x" << hex << temporary_1

<< "  dec:" << dec

               << temporary_1 << "  sign:" << dec <<

(int)temporary_1 << endl; }

          //** according to the NIST Standard and Specification,

//** the BSIG0 is incorrect. We will replace it with EP0

          temporary_2 = EP0(a) + MAJ(a,b,c);

          //** in order to get T2 we will display the variables

//** and operations

          if ((t == 20) & displayT2Computation) {

                  cout << "a: 0x" << hex << a << "  dec:" << dec << a

               << "  sign:" << dec << (int)a << endl;

             cout << "b: 0x" << hex << b << "  dec:" << dec << b

               << "  sign:" << dec << (int)b << endl;

             cout << "c: 0x" << hex << c << "  dec:" << dec << c

               << "  sign:" << dec << (int)c << endl;

             cout << "EP0(a): 0x" << hex << EP0(a) << "  dec:"

                << dec << EP0(a) << "  sign:" << dec << (int)EP0(a)

               << endl;
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             cout << "MAJ(a,b,c): 0x" << hex

                 << MAJ(a,b,c) << "  dec:"

               << dec << MAJ(a,b,c) << "  sign:" << dec

               << (int)MAJ(a,b,c) << endl;

   �cout << "temporary_2 = 0x" << hex << temporary_2 << "  dec:" << dec << 

temporary_2 << "  sign:" << dec << (int)temporary_2 << endl; }

          //** according to the NIST standard

          h = g;

          g = f;

          f = e;

//** Get the guarantee that we are still using 32 bits

          e = (d + temporary_1) & 0xFFFFFFFF;

          d = c;

          c = b;

          b = a;

//** Get the guarantee that we are still using 32 bits

          a = (temporary_1 + temporary_2) & 0xFFFFFFFF;

          //** display the content of each of the variable from

//** above according to the NIST standard.

      if (displayWorkVariablesForT)     {

             cout << "t= " << t << " ";

                 cout << displayAsHex (a) << " " << displayAsHex (b)

 << " " << displayAsHex (c) << " " << displayAsHex

(d) << " "   << displayAsHex (e) << " " << displayAsHex (f) << " " << 

displayAsHex (g) << " " << displayAsHex (h) << " " << endl; } }

//** display the content of each of the hash segment

     if(displayTheHashSegments) {

          cout << "InitialHashValueFor32Bit_0 = " << displayAsHex

(InitialHashValueFor32Bit_0) << " + " << displayAsHex (a) << " " << 

displayAsHex (InitialHashValueFor32Bit_0 + a) << endl;
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          cout << "InitialHashValueFor32Bit_1 = " << displayAsHex

(InitialHashValueFor32Bit_1) << " + " <<

displayAsHex (b) << " " << displayAsHex

(InitialHashValueFor32Bit_1 + b) << endl;

          cout << "InitialHashValueFor32Bit_2 = " << displayAsHex

                   (InitialHashValueFor32Bit_2) << " + " <<

 displayAsHex (c) << " " << displayAsHex

 (InitialHashValueFor32Bit_2 + c) << endl;

          cout << "InitialHashValueFor32Bit_3 = " << displayAsHex

                    (InitialHashValueFor32Bit_3) << " + " <<

                    displayAsHex (d) << " " << displayAsHex

                    (InitialHashValueFor32Bit_3 + d) << endl;

          cout << "InitialHashValueFor32Bit_4 = " << displayAsHex

                    (InitialHashValueFor32Bit_4) << " + " <<

                    displayAsHex (e) << " " << displayAsHex

                    (InitialHashValueFor32Bit_4 + e) << endl;

          cout << "InitialHashValueFor32Bit_5 = " << displayAsHex

                    (InitialHashValueFor32Bit_5) << " + " <<

                    displayAsHex (f) << " " << displayAsHex

                    (InitialHashValueFor32Bit_5 + f) << endl;

          cout << "InitialHashValueFor32Bit_6 = " << displayAsHex

                 (InitialHashValueFor32Bit_6) << " + " <<

   displayAsHex (g) << " " << displayAsHex

   (InitialHashValueFor32Bit_6 + g) << endl;

cout << "InitialHashValueFor32Bit_7 = " << displayAsHex

  (InitialHashValueFor32Bit_7) << " + " << displayAsHex

  (h) << " " << displayAsHex (InitialHashValueFor32Bit_7

  + h) << endl;

     }

     //** for each hash add all the variables in order be sure that

//** we are still on the page with the 32 bit values

     InitialHashValueFor32Bit_0 = (InitialHashValueFor32Bit_0 + a)

& 0xFFFFFFFF;
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     InitialHashValueFor32Bit_1 = (InitialHashValueFor32Bit_1 + b)

& 0xFFFFFFFF;

     InitialHashValueFor32Bit_2 = (InitialHashValueFor32Bit_2 + c)

& 0xFFFFFFFF;

     InitialHashValueFor32Bit_3 = (InitialHashValueFor32Bit_3 + d)

& 0xFFFFFFFF;

InitialHashValueFor32Bit_4 = (InitialHashValueFor32Bit_4 + e)

& 0xFFFFFFFF;

     InitialHashValueFor32Bit_5 = (InitialHashValueFor32Bit_5 + f)

& 0xFFFFFFFF;

     InitialHashValueFor32Bit_6 = (InitialHashValueFor32Bit_6 + g)

& 0xFFFFFFFF;

     InitialHashValueFor32Bit_7 = (InitialHashValueFor32Bit_7 + h)

& 0xFFFFFFFF;

     //** add the hash section in one piece one after the other in

//** order to obtain the 256 bit hash

     return displayAsHex(InitialHashValueFor32Bit_0) +

displayAsHex(InitialHashValueFor32Bit_1) + displayAsHex(InitialHashValue 

For32Bit_2) +   displayAsHex(InitialHashValueFor32Bit_3) + displayAsHex( 

InitialHashValueFor32Bit_4) + displayAsHex(InitialHashValueFor32Bit_5) +

                         displayAsHex(InitialHashValueFor32Bit_6) +

                        displayAsHex(InitialHashValueFor32Bit_7);

}

Hash functions are commonly used for digital signatures and in data integrity.  

A long message is generally hashed while dealing with digital signatures, and only the 

hash value is signed. The group that receives the message then hashes the message 

received and checks that the signature received is correct for this hash value. Below you 

can see a classification of the keyed cryptographic hash functions (see Table 2-2) and 

unkeyed cryptographic hash functions (see Table 2-3). Most of the functions are already 

implemented in C++ within the NIST Standard or other trusted resources, such as 

CrypTool3.

3�CrypTool, www.cryptool.org/en/
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Table 2-2.  Keyed Cryptographic Hash Functions

Name Length of the tag Type References

BLAKE2 Arbitrary Keyed hash function with prefix-MAC [31][42]

BLAKE3 Arbitrary Keyed hash function with supplied 

initializing vector (IV)

[32]

HMAC - - [33]

KMAC Arbitrary Based on Keccak [34][35]

MD6 512 bits Merkle tree with NLFSR [37]

PMAC - - [38]

UMAC - - [39]

Table 2-3.  Unkeyed Cryptographic Hash Functions

Name Length Type References

BLAKE-256 256 bits HAIFA structure [41] [40]

BLAKE-512 512 bits HAIFA structure [41] [40]

GOST 256 bits Hash [43]

MD2 128 bits Hash

MD4 128 bits Hash [44]

MD5 128 bits Merkle-Damgard construction [36] [45]

MD6 Up to 512 bits Merkle-tree NLFSR [37]

RIPEMD 128 bits Hash [46]

RIPEMD-128
RIPEMD-256
RIPEMD-160
RIPEMD-320

128 bits

-

160 bits

320 bits

Hash

Hash

Hash

Hash

[46][47][48]

SHA-1 160 bits Merkle-Damgard construction [36] [61]

(continued)
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�Case Studies
�Caesar Cipher Implementation in C++20
In this section, we will show a Caesar cipher implementation in C++20. The aim of this 

section is to explain how the above mentioned mathematical foundations can be useful 

during the implementation process and the advantages of understanding the basic 

mathematical mechanisms behind the algorithms. We will NOT dwell on the algorithm’s 

mathematical history in this book. For any readers who want to go deep into the 

mathematical history, references [6-18] are recommended.

The encryption process used by a Caesar cipher can be represented as modular 

arithmetic by first transforming the letters into numbers. For this, we will follow alphabet 

 = ¼{ } =A Z, , 25  in such way that A = 0, B = 1, …, Z = 25. The encryption of letter x is 

done by a shift n and mathematically can be described as

	 E x x nn ( ) = +( )mod 26 	

The decryption is done in a similar way,

	 D x x nn ( ) = -( )mod 26 	

Let’s start the implementation of the algorithm (see Figure 2-9 and Listing 2-2).

Name Length Type References

SHA-256
SHA-384
SHA-512

256 bits

384 bits

512 bits

Merkle-Damgard construction [50][51][54]

[52][54]

[53][54]

SHA-224 224 bits Merkle-Damgard construction [55]

SHA-3 (Keccak) Arbitrary Sponge function [50] [56][57]

Whirlpool 512 bits Hash [58][59][60]

Table 2-3.  (continued)

Chapter 2  Cryptography Fundamentals



54

The application is very simple and easy to interact with it.

Listing 2-2.  Source Code for a Caesar Cipher Implementation

#include <iostream>

using namespace std;

// This function receives text and shift and

// returns the encrypted text

string encrypt(string text, int s)

{

    string result = "";

    // traverse text

    for (int i=0;i<text.length();i++)

    {

        // apply transformation to each character

        // Encrypt Uppercase letters

        if (isupper(text[i]))

            result += char(int(text[i]+s-65)%26 +65);

    // Encrypt Lowercase letters

    else

        result += char(int(text[i]+s-97)%26 +97);

    }

    // Return the resulting string

    return result;

}

Figure 2-9.  The execution of a Caesar cipher
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// Driver program to test the above function

int main()

{

    string text="THEQUICKBROWNFOXJUMPSOVERTHELAZYDOG";

    int s = 4;

    cout << "Text : " << text;

    cout << "\nShift: " << s;

    cout << "\nCipher: " << encrypt(text, s);

    return 0;

}

�Vigenére Cipher Implementation in C++20
The Vigenére cipher (see Figure 2-10 and Listing 2-3) is one of the classic methods 

of encrypting alphabetic text using a sequence of different Caesar ciphers based on 

keyword keys. You can see it in some of the documentations as a type of polyalphabetic 

substitution.

A short algebraic description of the cipher is as follows. The numbers are taken as 

numbers (A = 0, B = 1, etc) and an addition operation is performed as modulo 26. The 

Vigenére encryption E using K as the key can be written as

	 C E M M Ki K i i i= ( ) = +( )mod 26 	

and decryption D using the key K as

	 M D C C Ki K i i i= ( ) = -( )mod 26 	

Figure 2-10.  Vigenére Cipher
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in which M = M1…Mn is the message, C = C1…Cn represents the ciphertext, and K = K1…Kn 

represents the key obtained by repeating the keyword [n/m] times in which m represents 

the keyword length.

Listing 2-3.  The Source Code of a Vigenére Cipher

#include <iostream>

#include <string>

using namespace std;

class Vigenere {

   public:

       //** represents the key

      string key;

       //** the constructor of the class

       //** the chosen key

       Vigenere(string chosenKey) {

       for (int i = 0; i < chosenKey.size(); ++i) {

         if (chosenKey[i] >= 'A' && chosenKey[i] <= 'Z')

            this->key += chosenKey[i];

         else if (chosenKey[i] >= 'a' && chosenKey[i] <= 'z')

            this->key += chosenKey[i] + 'A' - 'a';

      }

   }

   string encrypt(string t)

   {

      string encryptedOutput;

      for (int i = 0, j = 0; i < t.length(); ++i) {

         char c = t[i];

         if (c >= 'a' && c <= 'z')

            c += 'A' - 'a';

         else if (c < 'A' || c > 'Z')

            continue;

         //** added 'A' to bring it in range

         //** of ASCII alphabet [ 65-90 | A-Z ]
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         encryptedOutput += (c + key[j] - 2 * 'A') % 26 + 'A';

         j = (j + 1) % key.length();

      }

      return encryptedOutput;

   }

   string decrypt(string t) {

      string decryptedOutput;

      for (int i = 0, j = 0; i < t.length(); ++i) {

         char c = t[i];

         if (c >= 'a' && c <= 'z')

            c += 'A' - 'a';

         else if (c < 'A' || c > 'Z')

            continue;

         //** added 'A' to bring it in range of

         //** ASCII alphabet [65-90 | A-Z]

         decryptedOutput += (c - key[j] + 26) % 26 + 'A';

         j = (j + 1) % key.length();

      }

      return decryptedOutput;}};

int main() {

   Vigenere myVigenere("APRESS!WELCOME");

   string originalMessage

                   ="ThisisanexampleofvigenerecipherforApress";

   string enc = myVigenere.encrypt(originalMessage);

   string dec = myVigenere.decrypt(enc);

   cout << "Original Message: "<<originalMessage<< endl;

   cout << "Encrypted Message: " << enc << endl;

   cout << "Decrypted Message: " << dec << endl;

}
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�Conclusions
In this chapter, we gave a short introduction to the fundamentals of cryptographic 

primitives and mechanism. The chapter covered the following:

•	 Security and information security objectives

•	 The importance of the one-to-one, one-way, and trapdoor one-way 

functions in designing and implementing cryptographic functions

•	 Digital signatures and how they work

•	 Public-key cryptography and how it impacts developing applications

•	 Hash functions

•	 Case studies to illustrate the basic notions you need to know before 

advancing to high-level cryptographic concepts

The next chapter will go through the basics of probability theory, information theory, 

number theory, and finite fields. We will discuss their importance and how they are 

related during the implementation already existing in C++ and how they are useful for 

you as a developer.
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CHAPTER 3

Mathematical Background 
and Its Applicability
This chapter will discuss the importance of the probability theory and its tools for 

modern cryptography. We will show how the elements and notions from the probability 

theory can be implemented in real-life applications and programs, and we will 

explain the most important steps for a professional cryptographer to follow in the 

implementation process of cryptographic algorithms.

The application of the probability theory to cryptography represents one of 

the challenging sides of cryptography and cryptanalysis. Between 1941 and 1942, 

Alan Turing (1912-1954) wrote a paper titled “The Applications of Probability to 

Cryptography”1 (which was released by the Government Communications Headquarters 

(GCHQ) to the National Archives, HW/25/372). This paper describes the application of 

the probability theory to code cracking. He started his paper with the Vigenère cipher. 

Turing provided proofs for the practical side by introducing and designing a unique 

method, the goal of which was to hide the entire complexity of the mathematical 

apparatus in cryptography, reducing the process down to a simple exercise using 

regular addition and a bit of trial and error. The tools introduced by him in the paper 

were logarithms and probability. To fully understand how the tools were applied, it was 

necessary to understand how the cipher worked.

The notions introduced in this chapter will help you to understand the basic 

mathematics in order to have a full appreciation of the solutions developed later.

1�“The Applications of Probability to Cryptography,” https://arxiv.org/abs/1505.04714
2�Alan Turing Wartime Research Papers Released by GCHQ, https://discovery.
nationalarchives.gov.uk/details/r/C11510465

https://doi.org/10.1007/978-1-4842-6586-4_3#DOI
https://arxiv.org/abs/1505.04714
https://discovery.nationalarchives.gov.uk/details/r/C11510465
https://discovery.nationalarchives.gov.uk/details/r/C11510465
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We’ll present each mathematical concept via the equations and mathematical 

expressions we will use during the implementation of the algorithms, providing examples 

of the implementations in C++. The implementations will be presented as case studies, 

counted from 1 to 10 (see Figures 3-1 through 3-12 and Listings 3-1 through 3-13).

�Preliminaries
In this section, we will present the main concepts, giving the most appropriate 

definitions of experiment, probability distribution, event, complementary event, and 

mutually exclusiveness. The definitions are given in such way that you will find the 

intersection between theory and practice in a very fashionable and easy way to follow. 

The concepts described in this chapter will help you get a clear understanding and 

overview of the basic notions of what a cryptographic and cryptanalysis mechanism 

stands for and how it is projected using probabilities [1].

Definition 2.1 [1]. An experiment can be seen as a procedure that produces one 

of a mentioned set of outcomes. Each of the outcomes is individual. The ones that are 

possible are called simple events. The whole set formed out of the possible outcomes is 

known as a sample space.

In the following sections, we will discuss discrete sample spaces that have limited 

possible outcomes. We will write the simple events of a sample space as S labeled as s1, 

s2, …, sn.

Definition 2.2 [1]. The probability distribution K over S is defined by a 

sequence of numbers, k1, k2, …, kn ≥ 0, and the sum of those numbers is equal to 1 

(k1 + k2 + … + kn = 1). The number oi can be interpreted as the probability of gi. This is the 

outcome (result) of the processing experiment.

Definition 2.3 [1]. The event E represents a subset of the sample space S. In this 

situation, the probability that event E will occur, noted as P(E), is defined as the sum of 

the probabilities oi for all the simple events gi which belong to E. If gi ∈ S, P({si}) is simply 

denoted as P(si).

Definition 2.4 [1]. Let’s consider E as an event. The complementary event is defined 

as being the set of simple events that don’t belong to E, noted as E .
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Demonstration 2.1 [1]. If E ⊆ S represents an event, the following should be 

considered:

–– 0 ≤ P(E) ≤ 1. In addition, P(S) = 1 and P(ϕ) = 0, where ϕ represents an 

empty set.

–– P E P E( ) = - ( )1 .

–– If the results in S are just as likely, we can consider P E
E
S

( ) = .

Definition 2.5 [1]. Consider E1 and E2 two mutually exclusive events. They are 

mutually exclusive if P(E1 ⋂ E2) = 0. The showing nature of one or two events will have 

the chance to exclude the case that the other has the possibility of taking place.

Definition 2.6 [1]. Take as an example two events, E1 and E2.

–– P(E1) ≤ P(E2) will be if E1 ⊆ P(E2).

–– P(E1 ∪ E2) + P(E1 ∩ E2) = P(E1) + P(E2). Accordingly, if E1 and E2 are 

considered mutually exclusive, then the following expression takes 

place: P(E1 ∪ E2) = P(E1) + P(E2).

�Conditional Probability
Definition 2.7 [1]. Let’s consider E1 and E2 as being two events, with P(E2) > 0.  

The conditional probability for E1 to give E2 is written as P(E1| E2) and it is expressed as

	
P E E

P E E
P E1 2

1 2

2

|( ) = ( )
( )
Ç

.
	

P(E1| E2) measures the probability of how event E1 will take place, given that E2 has 

occurred.

Definition 2.8 [1]. Consider E1 and E2 as two events. Their relationship is one of 

independency if P(E1 ∩ E2) = P(E1)P(E2).

Definition 2.9 (Bayes’ Theorem) [1]. Assuming that we have two events, E1 and E2, 

with P(E2) > 0, then

	
P E E

P E P E E
P E1 2

1 2 1

2

|
|( ) = ( ) ( )

( )
.
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�Random Variables
Let’s take into consideration a sample space S that has the distribution probability of P.

Definition 2.10 [1]. Let X be a random variable. Declare a function that is applied 

on S for the set of real numbers. For each event si ∈ S, X, there will be a real number 

assigned X(si).

Definition 2.11 [1]. Let X be the random variable on S. The mean or expected value 

of X is defined as follows:

	
E X X s P s

s S
i i

i

( ) = ( ) ( )
Î
å .

	

For the C++ implementation of a mean or expected value, refer to Case Study 3: 

Computing the Mean of Probability Distribution.

Demonstration 2.12 [1]. Consider X to be a random variable on S. In this case, we 

have the following expression:

	
E X x P X x

x
( ) = =( )

Î
å


· .

	

Demonstration 2.13 [1]. Let’s consider the following random variables of S: X1, 

X2, …, Xm. The following are real numbers: a1, a2, …, am. Then we have the following 

expression to be satisfied:

	
E a X a E X

i

m

i i
i

m

i i
= =
å åæ

è
ç

ö

ø
÷ = ( )

1 1

.
	

Definition 2.14. Let’s consider X as a random variable. The variance of X of means μ 

is defined by the non-negative number that is expressed by

	
Var X E X( ) = -( )( )m 2

. 	

For the C++ implementation of the mean or expected value, refer to Case Study 4: 

Computing the Variance.

The standard deviation of X is defined by the non-negative square root of Var(X).

For the C++ implementation of the mean or expected value, refer to Case Study 5: 

Computing the Standard Deviation.
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�Birthday Problem
Definition 2.15 [1]. Consider two positive integers a, b with a ≥ b, where the number 

m(n) is defined as follows:

	 m m m m m nn( ) = -( ) -( )¼ - +( )1 2 1 . 	

Definition 2.15 [1]. Consider two non-negative integers a, b with a ≥ b. The Stirling 

number of the second kind, represented and noted as 
a
b

ì
í
î

ü
ý
þ

, is expressed as follows:

	

a
b b

b
i
i

i

n
b i aì

í
î

ü
ý
þ
= -( ) æ

è
ç

ö

ø
÷

=

-å1
1

0!
.
	

The case of 
0

0
1

ì
í
î

ü
ý
þ
=  is considered an exception.

Demonstration 2.16 [1]. As an example, let’s consider the classic occupancy 

problem by illustrating it with an urn that contains a balls. The balls are numbered (or 

labeled) from 1 to m. Let’s image a scenario in which b balls are extracted from the urn 

one at a time and replaced in the same time, and with their numbers listed. The chance 

(probability) for l different balls to have been drawn is

	
P a b l

b
l

a
a

l b
l

b1 1, ,( ) = ì
í
î

ü
ý
þ

£ £
( )
, .

	

The birthday problem represents a special case of the occupancy problem.

Demonstration 2.17 [1]. We take into consideration the birthday problem, where we 

have an jar with a balls that are numbered from 1 to a. Assume that a specific number of 

balls, h, are extracted from the urn one at a time and replaced, with their numbers listed.

Case 2.17.1 [1]. The probability of at least one coincidence, for example a ball that is 

drawn at least twice from the urn, is

	
P a h P a h h a

a
h m

h

h2 11 1 1, , ,( ) = - ( ) = - £ £
( )

, . 	

Case 2.17.2 [1]. Let’s consider h the number of balls extracted from the jar. If 

h O a= ( )  and a → ∞, then the following expression will take place:

	
P a h

h h
a

O
a

h
a2

2

1
1

2

1
1

2
,( )® - -

-( )
+

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷ » - -

æ

è
ç

ö

ø
÷exp exp .
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The demonstration that we provided explains why the probability distribution 

is known as the birthday surprise or birthday paradox. The probability that at least 

2 people in a room of 23 people have the same birthday is P2(365, 23) ≈ 0.507, which 

is surprisingly large. The quantity P2(365, h) increases as h increases. As an example, 

P2(365, 30) ≈ 0.706.

For the C++ implementation of the birthday paradox, refer to Case Study 4: Birthday 

Paradox.

�Information Theory
�Entropy
Let’s denote with X a random variable that takes on a finite set of values x1, x2, …, xn, with 

the probability P(X = xi) = pi, where 0 ≤ pi ≤ 1 for each i, 1 ≤ i ≤ n, in which the following 

sum expression take place:

	 i

n

ip
=
å =

1

1.
	

As well, let’s declare Y and Z random variables, which will take a finite set of values [1].

The entropy of A is defined as a mathematical measure that is characterized as the 

amount of information that is provided by observation o.

Definition 2.18 [1]. Let’s denote A as a random variable, so the entropy or 

uncertainty of A is defined by the expression

	

H A p p p
pj

m

j j
j

m

j
j

( ) = - =
æ

è
çç

ö

ø
÷÷

= =
å å

1 1

1
lg lg

	

where, through convention,

p p p
pi i i
i

· ·lg lg=
æ

è
ç

ö

ø
÷ =

1
0 , if pi = 0.

Definition 2.19 [1][5]. Let’s consider A and B, two random variables. The joint 

entropy is defined by expression

	
H A B P A a B b P A a B b

a b

, , ,( ) = = =( ) = =( )( )å
,

lg ,
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where a and b go through all of the values within the random variables, A and B.

Definition 2.20 [1]. Let’s consider two random variables A and B, and suppose that 

the conditional entropy of A given B = m is expressed as

	
H AB v P A mB v P A mB v

m

| | |=( ) = - = =( ) = =( )( )å lg ,
	

where m goes through all of the values within the random variable A. In this case, the 

conditional entropy of A given B, called also the equivocation of B about A, is declared as

	
H AB P B m H AB m

m

| |( ) = =( ) =( )å ,
	

where m (which is an index) goes through all of the values of B.

�Number Theory
�Integers
Starting from the idea that a set of integers {…, −3, −2, −1, 0, 1, 2, 3, …} is represented by 

the symbol ℤ, the following definitions will occur.

Definition 2.21 [1]. Let’s assume that we have two integers, x and y. We will start 

from the idea that x divides y if there exists an integer d in such way that y = x · d. If x is 

dividing y, then we can state that x ∣ y.

Definition 2.22 (Division algorithm for integers) [1]. Consider two integers, x and y 

with y ≥ 1. An ordinary long division of x by y holds the integers quot (quotient) and rem 

(remainder) in such way that

x = qout · y + rem, where 0 ≤ rem < y.

Definition 2.23 [1]. Consider d as integer. Note that the common divisor of x and y 

exists if d ∣ x and d ∣ y.

Definition 2.24 [1]. Assume that we have a non-negative integer e. The non-negative 

integer e is known as being the greatest common divisor (gcd) of the integers x and y. We 

note it as e =  gcd (x, y), if

	 a.	 e is a common divisor x and y;

	 b.	 d ∣ x and d ∣ y, then d ∣ e.
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Definition 2.25 [1]. Assume a non-negative integer e. The non-negative integer 

e is known as being the least common multiple (lcm) of integers x and y. We note it as 

e =  lcm (x, y), if

	 a.	 x ∣ e and y ∣ e;

	 b.	 x ∣ d and x ∣ d, then e ∣ d.

�Algorithms in ℤ
Let’s consider two non-negative integers, a and b, with a ≤ n. Note that the number of 

bits from the binary representation of n is represented as ⌊lg n⌋ + 1. This value will be 

approximated by lgn. The bit operations related to the four basic operations for integers 

using the classical algorithms are shown in Table 3-1.

Table 3-1.  The Bit Complexity of the Basic Operation in ℤ

Operation Bit Complexity

Addition              a + b O(lga + lgb) = O(lgn)

Subtraction         a − b O(lga + lgb) = O(lgn)

Multiplication     a · b O((lga)(lgb)) = O((lgn)2)

Division             a = q · b + r O((lgq)(lgb)) = O((lgn)2)

Demonstration 2.26 [1]. The integers a and b are positive numbers with a > b, so 

gcd(a, b) =  gcd (b, a mod b).

Algorithm 2.27 [1]. The Euclidean algorithm for computing the gcd for two 
integers

INPUT a and b two non negative integers with respect for a b: , - ³    

OUTPUT the: gcd

1 0.While b then¹

1 1. . mod , , .Set r a b a b b r¬ ¬ ¬

2. .Return a( )

Chapter 3  Mathematical Background and Its Applicability



73

The Euclidean algorithm can be extended so that it will not only yield the gcd of two 

integers a and b, but also integers x and y, which will satisfy ax + by = d.

Algorithm 2.28 [1]. Pseudocode for extended Euclidean algorithm

INPUT x and y non negative numbers with the following condit: , -      iion a b³

OUTPUT h x y and integers w z which satisfies xw yz h: gcd ,= ( ) + =,   

1 0. ,If y then=

h x¬

w¬1

z ¬ 0

return h w z, ,( ).

2 1 0 0 12 1 2 1. , , , .Declare and initialize w w z z  ¬ ¬ ¬ ¬

3 0. ,While y then>

3 1. . quotient x
y

¬

remainder x quotient y¬ - · ;

w w quotient w z z quotient z¬ - ¬ -2 1 2 1· ; · .

3 2. . x y¬

y remainder¬

w w2 1¬

w w1 ¬

z z2 1¬

z z1 ¬ .

4 2 2. , , .Set h x w w z z¬ ¬ ¬

return h w z, ,( ).
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In Case Study 7: (Extended) Euclidean Algorithm, we provide an implementation 

using C++ for both types of the algorithm, Euclidean and extended Euclidean algorithm.

�The Integer Modulo n
Consider p a positive integer.

Definition 2.30 [1]. Let i and j be two integers. We allege that g is congruent to j 

modulo q. The notation used is

i ≡ j (mod q), if q will divide (i − j).

So q is called the modulus of the congruence.

Definition 2.31 [1]. Consider n ∈ ℤq. The multiplicative inverse of n modulo q is 

represented by an integer x ∈ ℤq in such way that n x ≡ 1 (mod q). If there is an n that 

exists, then that n is unique, and we state that n is invertible, or a unit. The inverse of n is 

noted as n−1.

Case Study 8: Computing the Multiplicative Inverse under Modulo m provides a C++ 

implementation of a multiplicative inverse under modulo q.

Definition 2.32. Chine Remainder Theorem (CRT) [1]. The integers n1, n2, …, nk,  

represents a pairwise (occurring in pairs) that is relatively prime. Let’s consider the 

following system formed out of simultaneous congruences

	 j v gº ( )1 1mod 	

	 j v gº ( )2 2mod 	

	  	

	
l v gn kº ( )mod 	

as a system that has a unique solution modulo g = g1 g2⋯gk.

Case Study 9: Chinese Remainder Theorem provides a C++ implementation of the 

Chinese Remainder Theorem.

Definition 2.33. Gauss’s Algorithm [1]. As you saw in the Chinese Remainder 

Theorem, the solution y for concurrent congruences may be calculated as 

y b R L q
h

l

h h h=
=
å

1

· · mod , where Ri = q/qh and L R qh h i= -1 mod . The listed operations can be 

done in O((lgq)2) bit operations.
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�Algorithms ℤm

Consider a positive integer m. As you have seen, the addition of the elements of ℤm is 

defined as

	
x y m

x y if x y m
x y m if x y m

+( ) =
+ + <
+ - + ³

ì
í
î

mod
, ,

,
.
	

Algorithm 2.34 [1]. Pseudocode for computing the multiplicative inverses in ℤm

INPUT x m: Î 	

OUTPUT x m: -1 mod 	

1. Use the extended Euclidean algorithm and find the integer       ss w and z such
that xw nz h where h x n

 

,+ = = ( ), gcd 	

2 1 1. , . ,If h we will have x q which will not exist Else retur> -     mod nn w( ). 	

Algorithm 2.35 [1]. Repeated square-and-multiply algorithm for exponentiation 
in ℤm

INPUT x and integer t m whose binary representation is tm: ,Î £ <     0 ==
=
å
j

o

j
jt

0

2 .
	

OUTPUT x ml: mod 	

	 1.	 Set y ← 1. If t = 0, then return(y).

	 2.	 Set C ← x.

	 3.	 If t0 = 1, then set y ← x.

	 4.	 For j from 1 to k, do

	 4.1	 Set C ← C 2 mod m.

	 4.2	 If tj = 1, then set y ← C · y   mod  m.

	 5.	 Return(y).
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�The Legendre and Jacobi Symbols
In order to check if an integer is a quadratic residue in a specific modulo, the Legendre 

symbol is the perfect tool for this purpose.

Definition 2.36 [1]. Consider q an odd prime and x an integer. The Legendre symbol, 

noted as x
q

æ

è
ç

ö

ø
÷ is defined as

	

x
q

if q x
if x W

if x W
q

q

æ

è
ç

ö

ø
÷ = Î

- Î

ì

í
ï

î
ï

0

1

1

,

,

,

.

|

	

Properties 2.37. Properties of the Legendre Symbol [1]. The following properties 

will be considered. The following properties are known as the properties of the Legendre 

Symbol. For the following properties, consider m to be an odd prime. Let’s declare two 

integers x, y ∈ ℤ. The next properties specific to the Legendre symbol are listed as

	 1.	 x
m

x m
mæ

è
ç

ö
ø
÷ º ( )

-1
2 mod . In the particular case, 

1 1
m

æ
è
ç

ö
ø
÷ =  and 

-æ
è
ç

ö
ø
÷ = -( )

-1
1

1

2

m

m

.  Since −1 ∈ Wm if m ≡ 1 (mod 4) and - Î1 Wm  if 

m ≡ 3 (mod 4).

	 2.	 xy
m

x
m

y
m

æ
è
ç

ö
ø
÷ =

æ
è
ç

ö
ø
÷
æ
è
ç

ö
ø
÷. Since if x qÎ * , then x

m

2

1
æ

è
ç

ö

ø
÷ = .

	 3.	 If x ≡ y (mod m), then x
m

y
m

æ
è
ç

ö
ø
÷ =

æ
è
ç

ö
ø
÷.

	 4.	 2
1

2 1

8

m

mæ
è
ç

ö
ø
÷ = -( )

-( )
. Since 2

1
m

æ
è
ç

ö
ø
÷ =  if m ≡ 1 or 7 (mod 8), and 

2
1

m
æ
è
ç

ö
ø
÷ = -  if m ≡ 3 or 5 (mod 8).

	 5.	 If m represent an odd prime distinct from p, we have

	

t
m

m
t

t mæ
è
ç

ö
ø
÷ =

æ
è
ç

ö
ø
÷ -( )

-( ) -( )
1

1 1

4 .
	

The Jacobi symbol represents a generalization of the Legendre Symbol for integers n 

that are not odd and are also not necessarily prime.
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Definition 2.38. Jacobi Definition [1]. Let m ≥ 3 represent an odd with a prime 

factorization as

	
m v v vh h

j
hj= ¼1 2

1 2 . 	

The Jacobi symbol 
x
m

æ
è
ç

ö
ø
÷  has the following expression:
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We need to take into consideration the fact that if n is prime, the Jacobi symbol will 

be a Legendre symbol.

Properties 2.39. Jacobi Symbol Properties [1]. Consider x ≥ 3 and y ≥ 3 to be odd 

integers, and i, j ∈ ℤ. The Jacobi symbol will have the following properties:

	 1.	
i
y

oræ

è
ç

ö

ø
÷ = -0 1 1, , . More than this, 

i
y
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ö
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gcd(i, y) ≠ 1.
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Algorithm 2.40. Pseudocode of Jacobi Symbol. Pseudocode for Legendre symbol [1]

	 JACOBI h k,( ) 	

	 INPUT Odd integer k and an integer h h k: ,³ £ <3 0  	

	
OUTPUT The Jacobi symbol h

k
:   

æ
è
ç

ö
ø
÷ 	

	 1.	 If h = 0, then return 0.

	 2.	 If h = 1, then return 1.

	 3.	 Write h = 2th1, where h1 is odd.

	 4.	 If t is even, then set g ← 1. Else set g ← 1 if k ≡ 1 or 7 (mod 8), 

or set g ←  − 1 if k ≡ 3 or 5 (mod 8).

	 5.	 If k ≡ 3 (mod 4) and h1 ≡ 3 (mod 4), then set g ←  − g.

	 6.	 Set k1 ← k mod h1.

	 7.	 If h1 = 1, then return(g); else return (g · JACOBI(k1, h1)).

�Finite Fields
�Basic Notions
Definition 2.41 [1]. Consider F to be a finite field that contains a finite number of 

elements. The order of F represents the number of elements in F.

Definition 2.42 [1]. The finite fields are characterized through a special uniqueness.

	 1.	 Let’s assume if P represents a finite field, then P will contain hj 

elements for a prime h and integer j ≥ 1.

	 2.	 For each prime power order hj, we have a unique finite field of 

order hj. The field is noted as hj
 or in some other literature 

references as GF(hj).

Definition 2.43 [1][5]. If Gh represents a finite field of order h = am, a is prime, then 

the characteristic of h  is p. More than this, h has a copy of ℤa as a subfield. Since h  can 

be viewed as an extension field of ℤa of degree m.
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�Polynomials and the Euclidean Algorithm
The below two algorithms represent the foundation for understanding how to compute 

the gcd for two polynomials, g(x) and h(x), both being in ℤp[x].

Algorithm 2.43. Euclidean Algorithm for ℤp[x] [1]

	
INPUT Two polynomials g x h x xp: ,( ) ( )Î [ ] 	

	 OUTPUT of g x and h x: gcd ( ) ( ) 	

	 1.	 While h(x) ≠ 0, then

set r(x) ← g(x) mod h(x), g(x) ← h(x), h(x) ← r(x).

	 2.	 Return g(x).

Algorithm 2.43. Extended Euclidean Algorithm for ℤp[x] [1]

	
INPUT Two polynomials g x h x xp: ,( ) ( )Î [ ] 	

	

OUTPUT d x g x h x and polynomials s x t x x wp: gcd , ,( ) = ( ) ( )( ) ( ) ( )Î [ ],   hhich will

satisfy s x g x t x h x d x

  

( ) ( ) + ( ) ( ) = ( ).

	 1.	 If h(x) = 0, then set d(x) ← g(x), s(x) ← 1, t(x) ← 0

		  return (d(x), s(x), t(x)).

	 2.	 Set s2(x) ← 1, s1(x) ← 0, t2(x) ← 0, t1(x) ← 1.

	 3.	 While h(x) ≠ 0, then

	 a.	 g(x) ← g(x) div h(x), r(x) ← g(x) − h(x)q(x)

	 b.	 s(x) ← s2(x) − q(x)s1(x), t(x) ← t2(x) − q(x)t1(x)

	 c.	 g(x) ← h(x), h(x) ← r(x)

	 d.	 s2(x) ← s1(x), s1(x) ← s(x), t2(x) ← t1(x), and t1(x) ← t(x).

	 4.	 Set d(x) ← g(x), s(x) ← s2(x), t(x) ← t2(x).

	 5.	 Return d(x), s(x), t(x)..
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�Case Study 1: Computing the Probability of an Event 
Taking Place

Listing 3-1.  Source Code

#include <iostream>

#include <vector>

#include <random>

#include <algorithm>

enum ColorTypes {

      Blue,

      NotBlue } ;

//** create a sequence container

typedef std::vector<ColorTypes> backpack;

backpack initializeBackpack(unsigned blue_balls, unsigned

                            differentBalls)

{

    backpack backpackOfBalls ;

    for (unsigned i=0; i<blue_balls; ++i)

         backpackOfBalls.emplace_back(Blue);

    for (unsigned i=0; i<differentBalls; ++i)

         backpackOfBalls.emplace_back(NotBlue);

    return backpackOfBalls; }

Figure 3-1.  Output for computing the probability
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void randomize(backpack & backpackOfBalls) {

      //** Mersenne Twister - pseudo-random generator

      //** on 32-bit number using the state size of 19937 bits/

      //** std:random_device() will help us to generate a

      //** non-deterministic random numbers

     static std::mt19937 engine((std::random_device()()));

            //** we will rearrange the elements in the

      //** following range [first, second] as follows fist =

      //** backpackOfBalls.begin() and second =

      //** backpackOfBalls.end()

      //** using "engine" declared above as a uniform random

      //** number generator

     std::shuffle(backpackOfBalls.begin(),

                   backpackOfBalls.end(), engine);

}

int main()

{

      //** constants initializations

      const unsigned theTotalOfSamples = 1000000;

      const unsigned blue_balls = 4;

      const unsigned differentBalls = 12;

      unsigned theFirstIsBlue = 0;

      unsigned bothAreBlue = 0;

      unsigned theSecondIsBlue = 0;

      auto backpackOfBalls = initializeBackpack(blue_balls,

                                                differentBalls) ;

      for (unsigned i=0; i<theTotalOfSamples; ++i)

      {

        randomize(backpackOfBalls);

        if (backpackOfBalls[0] == Blue)

            ++theFirstIsBlue;

        if (backpackOfBalls[1] == Blue)

            ++theSecondIsBlue;
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       if (backpackOfBalls[0]==Blue&&backpackOfBalls[1]==Blue)

            ++bothAreBlue;

    }

    float probabilityOfFirstBallToBeBlue =

                    static_cast<float>(theFirstIsBlue) /

                                      theTotalOfSamples;

    float probabilityForBothBallsToBeBlue =

                              static_cast<float>(bothAreBlue) /

                                            theTotalOfSamples;

    float probabilityForSecondBallToBeRed =

                            static_cast<float>(theSecondIsBlue) /

                                        theTotalOfSamples;

    std::cout << "Probability for the first ball to be blue: "

          << probabilityOfFirstBallToBeBlue * 100.0 << "%\n" ;

    std::cout<< "Probability for the second ball to be blue: "

         << probabilityForSecondBallToBeRed * 100.0 << "%\n" ;

    std::cout << "Probability for both balls to be blue: "

         << probabilityForBothBallsToBeBlue * 100.0 << "%\n" ;

}

�Case Study 2: Computing the Probability 
Distribution

Figure 3-2.  Output of the probability distribution
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Listing 3-2.  Source Code

//** this will be used for computing the distribution

#include <random>

#include <iostream>

using namespace std;

int main()  {

    //** declare default_random_engine object

    //** we will use it as a random number

    //** we will provide a seed for default_random_engine

    //** if a pseudo random is necessary

    default_random_engine gen;

    double x=0.0, y=1.0;

   //** initialization of the probability distribution

    uniform_real_distribution<double> dist(x, y);

    //** the number of experiments

    const int numberOfExperiments = 10000000;

    //** the number of ranges

    const int numberOfRanges = 100;

    int probability[numberOfRanges] = {};

    for (int k = 0; k < numberOfExperiments; ++k) {

        // using operator() function

        // to give random values

        double no = dist(gen);

        ++probability[int(no * numberOfRanges)]; }

    cout << "Probability of some ranges" << endl;

    //** show the probability distribution of some ranges

    //** after 1000 times values are generated

    cout << "0.50-0.51"<<" "<<

      (float)probability[50]/(float)numberOfExperiments<<endl;

    cout << "0.60-0.61"<<" "<<

      (float)probability[60]/(float)numberOfExperiments<<endl;

Chapter 3  Mathematical Background and Its Applicability



84

    cout << "0.45-0.46"<<" "<<

      (float)probability[45]/(float)numberOfExperiments<<endl;

    return 0;

}

�Case Study 3: Computing the Mean 
of the Probability Distribution

Listing 3-3.  Source Code

#include <iostream>

#include <string>

#include <random>

int main()

{

  //** the constant represents the number of experiments

  const int numberOfExperiments=10000;

  //** the constant represents the

Figure 3-3.  Output for the mean of theprobability distribution
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  //** maximum number of stars to distribute

  const int numberOfStarsToDistribute=100;

  std::default_random_engine g;

  std::normal_distribution<double> dist(6.0,3.0);

  int prob[10]={};

  for (int k=0; k<numberOfExperiments; ++k) {

    double no = dist(g);

    if ((no>=0.0)&&(no<10.0)) ++prob[int(no)];

  }

  std::cout << "the mean distribution (6.0,3.0):" << std::endl;

  for (int l=0; l<10; ++l) {

    std::cout << l << "-" << (l+1) << ": ";

    std::cout <<

           std::string(prob[l]*numberOfStarsToDistribute/

numberOfExperiments,'*') << std::endl;

  }

  return 0;

}

�Case Study 4: Computing the Variance

Figure 3-4.  Output of the variance
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Listing 3-4.  Source Code

#include<iostream>

using namespace std;

//** the below function is used

//** for computing the variance

int computingVariance(int n[], int h)    //**a=n, n=h

{

    //** will compute the mean

    //** average of the elements

    int sum = 0;

    for (int k = 0; k < h; k++)

        sum += n[k];

    double theMean = (double)sum /

                     (double)h;

    //** calculate the sum squared

    //** differences with the mean

    double squared_differences = 0;

    for (int t=0; t<h; t++)

        squared_differences += (n[t] - theMean) *

                                (n[t] - theMean);

    return squared_differences / h;

}

int main()

{

    int arr[] = {600, 470, 170, 430, 300};

    int n = sizeof(arr) / sizeof(arr[0]);

    cout << "The variance is: "

         << computingVariance(arr, n) << "\n";

    return 0;

}
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�Case Study 5: Computing the Standard Deviation

Listing 3-5.  Source Code

#include <iostream>

#include <cmath>

using namespace std;

float computeStandardDeviation(float data[]);

int main()

{

    int n;

    float elements_array[10];

Figure 3-5.  Output of the standard deviation
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    cout << "Add 10 elements: ";

    for(n = 0; n < 10; ++n)

        cin >> elements_array[n];

    cout << endl << "The Standard Deviation is = " <<

                   computeStandardDeviation(elements_array)<<endl;

    return 0;

}

float computeStandardDeviation(float elements_array[])

{

    float theSum = 0.0, theMean, theStandardDeviation = 0.0;

    int j,k;

    for(j = 0; j < 10; ++j)

    {

        theSum += elements_array[j];

    }

    theMean = theSum/10;

    for(k = 0; k < 10; ++k)

        theStandardDeviation += pow(elements_array[k] –

                                      theMean, 2);

    return sqrt(theStandardDeviation / 10);

}
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�Case Study 6: Birthday Paradox

Listing 3-6.  Source Code

#include <ctime>

#include <cstdlib>

#include <iostream>

using namespace std;

int main(int argc, const char *argv[])

{

   const int processes = 15000;

   short int no_of_birthdays[365];

   int processesWithSuccess;

Figure 3-6.  Output of the birthday computation
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   bool IsSharedBirthday;

   //** we will time(NULL) as seed to be used for the

   //** pseudo-random number generator srand()

   srand(time(NULL));

   for (int no_of_people=2;no_of_people<45;

++no_of_people)

   {

      processesWithSuccess = 0;

      for (int i = 0; i < processes; ++i)

      {

          //** all birthdays will be set to 0

         for (int j=0;j<365;no_of_birthdays[j++] = 0);

         IsSharedBirthday = false;

         for (int j = 0; j < no_of_people; ++j)

         {

            //** if our given birthday is shared (this

 //** means that is assigned for more than one

 //** person) this will be a shared birthday

 //** and we will need to stop verifying.

            if (++no_of_birthdays[rand() % 365] > 1){

               IsSharedBirthday = true;

               break;

            }

         }

         if (IsSharedBirthday) ++processesWithSuccess;

      }

      �cout << "The probability for " << no_of_people << "people from the 

same room to share the same birthday is \t"<<(float(processesWithSucc

ess)/ float(processes))<<endl;

   }

   return 0;

}
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�Case Study 7: (Extended) Euclidean Algorithm

Listing 3-7.  Source Code

//** NOTE: bits/stdc++ does not represent

//** a standard header file of GNU C++ library.

//** If the code will be compiled with other

//** compilers than GCC it will fail

#include<stdio.h>

using namespace std;

//** the function will compute

//** the GCD for two number

int g(int x, int y)  {

    if (x == 0)

        return y;

    return g(y % x, x);

}

int main()

{

    int x = 10, y = 15;

    cout << "Euclid GCD(" << x << ", "

         << y << ") = " << g(x, y)

                        << endl;

Figure 3-7.  Output of the Euclidean Algorithm
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    x = 35, y = 10;

    cout << "Euclid GCD(" << x << ", "

         << y << ") = " << g(x, y)

                        << endl;

    x = 31, y = 2;

    cout << " EuclidGCD(" << x << ", "

         << y << ") = " << g(x, y)

                        << endl;

    return 0;

}

Listing 3-8.  Source Code

#include <bits/stdc++.h>

using namespace std;

//** computing extended euclidean algorithm

int g_e(int x, int y, int *w, int *z)

{

    //** this is the basic or ideal case

    if (x == 0)

    {

        *w = 0;

        *z = 1;

        return y;

    }

Figure 3-8.  Output of the extended Euclidean algorithm
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     //** variables for storing the results

     //** for the recursive call

    int a1, b1;

    int g = g_e(y%x, x, &a1, &b1);

    //** with help of the recursive call

      //** update a and b with the results

    *w = b1 - (y/x) * a1;

    *z = a1;

    return g;

}

// Driver Code

int main()

{

    int a, b, w = 35, y = 15;

    int g = g_e(w, y, &a, &b);

    cout << "g_e(" << w << ", " << y<< ") = " << g << endl;

    return 0;

}

�Case Study 8: Computing the Multiplicative Inverse 
Under Modulo q

Figure 3-9.  Output of the modular multiplicative inverse (a basic and tricky form 
of the implementation)
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Listing 3-9.  Code for Computing the Modular Multiplicative Inverse (Tricky 

Method)

#include<iostream>

using namespace std;

//** this represents the basic method or tricky method

//** for finding modulo multiplicative inverse of

//** x under modulo m

int modulo_inverse(int x, int m)

{

    x = x%m;

    for (int y=1; y<m; y++)

       if ((x*y) % m == 1)

          return y;

}

int main()

{

    int x = 3, m = 11;

    cout << modulo_inverse(x, m);

    return 0;

}

Listing 3-10.  Source Code

#include<iostream>

using namespace std;

//** function for computing extended euclidean algorithm

int gcd_e(int x, int y, int *w, int *z);

Figure 3-10.  Output of the modular multiplicative inverse (when the number is 
coprime)
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void modulo_inverse(int h, int modulo)

{

    int i, j;

    int g = gcd_e(h, modulo, &i, &j);

    if (g != 1)

        cout << "There is no inverse.";

    else

    {

         //** we add the modulo in

        //** order to handle negative i

        int result = (i%modulo + modulo) % modulo;

        cout << "The modular multiplicative inverse is " <<

                                                  result;

    }

}

//** we will compute the extended euclidean algorithm

int gcd_e(int h, int k, int *w, int *z) {

    //** the "happy" case

    if (h == 0){

        *w = 0, *z = 1;

        return k; }

     //** storing results of our recurive invoke

    int a1, b1;    //** x1=a1, y1=b1

    int g = gcd_e(k%h, h, &a1, &b1);

    //** with recursive invocation results

    //** we will update x and y

    *w = b1 - (k/h) * a1;

    *z = a1;

    return g;

}
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int main()

{

    int x = 3, modulo = 11;

    modulo_inverse(x, modulo);

    return 0;

}

�Case Study 9: Chinese Remainder Theorem

Listing 3-11.  Source Code

#include<iostream>

using namespace std;

int inverse(int x, int modulo)

{

    int modulo0 = modulo, k, quotient;

    int a0 = 0, a1 = 1;

    if (modulo == 1)

       return 0;

    //** we will apply extended euclidean algorithm

    while (x > 1)

    {

        quotient = x / modulo;

        k = modulo;

        //** modulo represents the remainder

        //** continue with the process same as

Figure 3-11.  Ouput for the Chinese Remainder Theorem
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        //** euclid's algorithm

        modulo = x%modulo, x=k;

        k = a0;

        a0 = a1 - quotient * a0;

        a1 = k;

    }

    //** make a1 positive

    if (a1 < 0)

       a1 += modulo0;

    return a1;

}

int lookForMinX(int numbers[], int remainders[], int l)

{

    //** computing the product for all the numbers

    int product = 1;

    for (int j = 0; j < l; j++)

        product *= numbers[j];

    //** we initialize the result with 0

    int result = 0;

    //** apply the formula mentioned above

    for (int j = 0; j < l; j++)

    {

        int pp = product / numbers[j];

       result += remainders[j] * inverse(pp, numbers[j]) * pp;

    }

    return result % product;

}

int main(void) {

    int numbers[] = {3, 4, 5};

    int remainders[] = {2, 3, 1};

    int k = sizeof(numbers)/sizeof(numbers[0]);
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    cout << "x is " << lookForMinX(numbers, remainders, k);

    return 0;

}

�Case Study 10: The Legendre Symbol

Figure 3-12.  Output of the Legendre symbol
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The source code for the implementation of the Legendre symbol is structured in two 

files:

•	 legendre.cpp (see Listing 3-12)

•	 legendre.h (see Listing 3-13)

To compile the source code, the following command needs to be run:

g++ -std=c++2a legendre.cpp –o legendre

Listing 3-12.  Source Code (legendre.cpp)

#include <iostream>

#include "legendre.h"

using namespace std ;

using namespace LegendreStorage::Legendre ;

int main()

{

  double p_n;

  cout.precision(5) ;

  for (unsigned int v = 0 ; v <= 5 ; v++)

  {

    for (double b = -1.0 ; b <= 1.0 ; b = b + 0.1)

    {

      p_n = Polynom_n<double>(v, b) ;

      cout << "P" << v << "(" << b << ") = " << p_n << endl ;

    }

    cout << endl ;

  }

  return 0 ;

}
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Listing 3-13.  Source Code for the Legendre Symbol (legendre.h)

#ifndef __LEGENDRESYMBOL_H__

#define __LEGENDRESYMBOL_H__

namespace LegendreStorage {

  namespace Legendre{

    //** when n=0

    template <class T> inline auto Polynom0(const T& x){

      return static_cast<T>(1);

    }

    //** when n=1

    template <class T> inline auto Polynom1(const T& x){

      return x;

    }

    //** when n=2

    template <class T> inline auto Polynom2(const T& x){

      return ((static_cast<T>(3)*x*x) -

       static_cast<T>(1)) / static_cast<T>(2);

    }

    //** polynom(x)

    template <class T> inline auto Polynom_n(unsigned int h,

                                            const T& y)

    {

      switch(h){

        case 0:

          return Polynom0<T>(y);

        case 1:

          return Polynom1<T>(y);

        case 2:

          return Polynom2<T>(y);

        default:

          break;}

Chapter 3  Mathematical Background and Its Applicability



101

      auto polynom_1(Polynom2<T>(y));

      auto polynom_2(Polynom1<T>(y));

      T polynom;

      for (auto a=3u; a<=h; ++a){

         polynom = ((static_cast<T>((2 * a) - 1)) * y *

                                             polynom_1

         - (static_cast<T>(a - 1) * polynom_2)) /

                                   static_cast<T>(a);

        polynom_2 = polynom_1;

        polynom_1 = polynom;      }

      return polynom;   }}}

#endif

�Conclusion
This chapter discussed the importance of some mathematical tools that are used in 

most modern cryptography algorithms. We showed how they can be implemented and 

we explained the important steps of the algorithms. We also covered the important 

aspects of mathematical foundations, such as the probability theory, information theory, 

number theory, and finite fields.

For each mathematical foundation, we presented the necessary equations and 

mathematical expressions that are used in the implementation of the algorithms. Each 

equation or mathematical expression was demonstrated through a software application 

implemented in C++, entitled as a case study. Each case study demonstrated the skills 

and knowledge required by you in order to develop secure and reliable code. By reaching 

to the end of the chapter, you should now understand of the important notions and 

terms, the programming concepts and algorithms used, both theoretical and practical, 

and how to move from theory to practice in a very short time.
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CHAPTER 4

Large Integer Arithmetic
This chapter will cover the arithmetic operations and explain how to work with large 

integers. Some cryptographic algorithms require big integers that don’t fit within the 

normal size of variables, such as int. We will give a quick overview of big integers and 

some of the libraries that are used to work with them.

In implementing complex cryptography algorithms, the operations with large 

integers can be very difficult to perform. The limitations can be due to hardware 

equipment (e.g. processor, RAM memory) or programming languages.

In C/C++, an integer is represented as 32 bits. Out of the 32 bits, only 31 can be used 

to represent positive integer arithmetic. In cryptography, we can deal with numbers that 

are up to two billion, 2 · 109.

Some compilers, such as GNU C++ or g++, offer a long long type. This provides the 

ability to represent integers around 9 quintillion, 9 · 1018. For most simple cryptographic 

operations, this is good, but some cryptographic algorithms require more digits in 

their integer representation. Let’s consider as an example the RSA (Rivest-Shamir-

Adleman) public-key encryption cryptosystem, which requires around 300 digits. If we 

are dealing with specific real events and their probabilities, the computation often will 

involve numbers that are very large. The output and achieving the main result might be 

appropriate for C/C++. Compared with other complex computations, we will have very 

large numbers.

As an interesting example, consider the chances of winning the lottery jackpot with 

one ticket. The combinations are of 50 taken 6 at a time, “50 choose 6” is 
50

50 6 6

!

! !-( ) ×( )
.  

The resulting number is 15.890.700, so the chances for winning are 1/15.890.700. Using the 

C/C++ programming language, the number 15.890.700 can be easily represented. However, 

this could be tricky and we could easily fall for naiveté during the implementation of 50! 

(computed using Calculator from Windows), which is 3.041409320171e+64 or 30,414,093,2

01,713,378,043,612,608,166,064,768,844,377,641,568,960,512,000,000,000,000

https://doi.org/10.1007/978-1-4842-6586-4_4#DOI
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Using C/C++ to represent that number will be almost impossible, even on a 64-bit 

platform.

�Big Integers
In the following sections, we will examine a couple of algorithms that can be used for 

arithmetic operations using big integers. Remember, when working with cryptography 

algorithms and security mechanisms, implementation can be very tricky when dealing 

with big integers. Below, we will show a step-by-step methodology of how to work with 

big numbers.

We will transform a standard integer using different computations in a big integer. 

In order to accomplish this, we will write a function named transformIntToBigInt(A, 

123). The function goal is to initialize A as A[0]=3, A[1]=2, A[2]=1, and zeroes for the 

remaining positions as A[3,...N-1]. Listing 4-1 shows to accomplish the statement from 

above by using a simple implementation in C/C++. The BASE represents the bit sign. 

Listing 4-1.  Transforming a Standard Integer Using Different Computations in a 

Big Integer1

void transformIntToBigInt(int BigNo[], int number)

{

     Int k;

     int bitSign;

     int BASE;

     //** start indexing with 0 position

     k = 0;

     //** if we still have something left

     //** within the number, continue

     while (number) {

          //** insert the digit that is least significant

          //** into BigNo[k] number

1�The code is meant to be a sketch of a function that will transform a simple integer to a big 
integer. The source code will not compile without a proper adjustment for a real cryptographic 
application.
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          BigNo[k++] = number % bitSign;

          //** we don't need the least significant bit

          number /= BASE;

     }

     //** complete the remain of the array with zeroes

     while (k < N)

        BigNo[k++] = 0;

}

The algorithm from Listing 4-1 has O(N) space and time.

Let’s continue our journey by looking at the possibility of adding 1 to a big int. This is 

a very useful operation and it is quite frequently used in cryptography. The advantage is 

that it is much easier than the full addition. See Listing 4-2. 

Listing 4-2.  Adding 1 to a big int2

void increment (int BigNo [])

{

    Int  i;

    int N;

    int BASE;

    //* start indexing with least significant digit

    i = 0;

    while (i < N)

    {

        //* increment the digit

        BigNo[i]++;

        //** if it overflows

        if (BigNo[i] == BASE)

2�The code is meant to be a sketch of a function that will transform a simple integer to a big 
integer. The source code will not compile without a proper adjustment for a real cryptographic 
application.
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        {

              //** make it zero and move the index to next

              BigNo[i] = 0;

              i++;

        }

        else

           //** else, we are done!

           break;

    }

}

The algorithm illustrated in Listing 4-2 takes O(n) for the worst case possible (just 

imagine something like 999999999999999999999999….) and Ω(1) for the best case. The 

best case is when we don’t have any overflow on the least significant digit.

Moving forward, let’s look at a method for adding two big integers. In this case, we 

want to add two big integers in two different arrays, BigNo1[0,..., N-1]  

and BigNo2[0,...,N-1]. The output result will be saved in another array, 

BigNo3[0,...,N-1]. The algorithm is quite basic; there is nothing fancy about it.  

See Listing 4-3. 

Listing 4-3.  Addition Algorithm3

void addition(int BigNo1[], int BigNo2[], int BigNo3[])

{

    Int  j, overflowCarry, sum;

    int carry, N, BASE;

    //** There is no need to carry yet

    carry = 0;

    //** move from the least to the most significant digit

    for (j=0; j<N; j++)

3�The code is meant to be a sketch of a function that will transform a simple integer to a big 
integer. The source code will not compile without a proper adjustment for a real cryptographic 
application.
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    {

        //** the digit from j'th position of BigNo3[]

        //** represents the sum of j'th digits of

        //** BigNo1[] and BigNo2[] plus the overvflow carry

        sum = BigNo1[j] + BigNo2[j] + overflowCarry;

        //** if the sum will go out of the base then

        //** we will find ourself in an overflow situation

        if (sum >= BASE)

        {

               carry = 1;

               //** adjust in such way that

               //** the sum will fit within a digit

               sum -= BASE;

        }

        else

              //** otherwise no carryOverflow

              carry = 0;

        //** add the result in the same sum variable

        BigNo3[j] = sum;

     }

     //** if we are getting to the

     //** end we can expect an overflow

     if (carry)

         printf ("There is an overflow in the addition!\n");

}

Let’s continue with multiplication. We will use a basic method to multiply two large 

numbers, X and Y, multiplying each digit of X with each digit of Y, so the output will be a 

partial product. The output result will be shifted to the left for every new digit. Function 

multiplyingOneDigit will multiply an entire big integer with a single digit. The result 

will be placed in a new large integer. Function left_shifting will shift the number to 

the left a certain number of spaces. It will be multiplied using bi, where b is base and 

i represents the numbers of spaces. Let’s have a quick look at the algorithm, which is 

shown in Listing 4-4. 
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Listing 4-4.  Multiplication4

void multiply (int BigInt1[], int BigInt2[], int BigInt3[])

{

     int length_of_integer;

     int  x, y, P[length_of_integer];

     //** C will store the sum of

     //** partial products.  It's initially 0.

     transformIntToBigInt (BigInt3, 0);

     //* for each digit in BigInt1

     for (x=0; x<length_of_integer; x++)

     {

          //** multiply BigInt2 by digit [x]

          multiplyUsingOneDigit (BigInt2, P, BigInt1[x]);

          //** left shifting the partial product with i bytes

          leftShifting(P, x);

          //** add the output result to the current sum

          addResult(BigInt3, P, BigInt3);

     }

}

Moving forward, we will examine a function whose purpose is to multiply by a single 

digit. See Listing 4-5. 

4�The code is meant to be a sketch of a function that will transform a simple integer to a big 
integer. The source code will not compile without a proper adjustment for a real cryptographic 
application.
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Listing 4-5.  Multiplying Using a Single Digit5

void multiplyUsingOneDigit (int BigOne1[], int BigOne2[],

                                                  int number) {

     int  k, carryOverflow;

     int N, BASE;

      //** there is nothing related to

      //** extra overflow to be added at this moment

      carryOverflow = 0;

     //** for each digit, starting with least significant...

     for (k=0; k<N; k++){

          //** multiply the digit by number,

          //** putting the result in BigOne2

          BigOne2[k] = number * BigOne1[k];

          //** adding extra any overflow that is taking

          //** place starting with the last digit

          BigOne2[k] += carryOverflow;

          //** product is too big to fit in a digit

          if (BigOne2[k] >= BASE) {

               //** handle the overflow

               carryOverflow = BigOne2[k] / BASE;

               BigOne2[k] %= BASE;

          }

          else

               //** no overflow

               carryOverflow = 0;

     }

     if (carryOverflow)

          printf ("During the multiplication

                  we experienced an overflow!\n");

}

5�The code is meant to be a sketch of a function that will transform a simple integer to a big integer. 
The source code will not compile without a proper adjustment for a real cryptographic application.
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We will continue with a functional that will shift to the left a specific number of 

spaces, as shown in Listing 4-6. 

Listing 4-6.  Shifting to the Left a Specific Number of Spaces6

void leftShifting (int BigInt1[], int number) {

     int i;

     //** moving starting from left to right,

     //** we will move anything with left n spaces

     for (i=N-1; i>= number; i--)

          BigInt1[i] = BigInt1[i- number];

     //** complete the last n digits with zeros

     while (i >= 0) BigInt1[i--] = 0;

}

�Big Integer Libraries
There are several libraries and frameworks that deal with high numbers. For some, 

the development process was suspended, but they are still used in cryptography 

applications.

The libraries for working with big integers are as follows:

•	 Matt McCutchen7 proposed a very easy-to-use C++ library for 

calculations on big integers [1]. The code has very good explanations 

and it is easy to follow. The results obtained in symmetric and 

asymmetric cryptography algorithms were promising. Most of the 

results were compared with other tools for reference and checking, 

such as CryptTool.8

6�The code is meant to be a sketch of a function that will transform a simple integer to a big 
integer. The source code will not compile without a proper adjustment for a real cryptographic 
application.

7�Matt McCutchen’s web site, https://mattmccutchen.net/
8�CrypTool, www.cryptool.org/en/
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•	 L3HARRIS Geospatial Solutions offers the Big Integer Class [2], 

which is another library that is fast on computations.9

•	 Boost Library10 is another strong library used to achieve tasks 

based on linear algebra, pseudorandom number generation, 

multithreading, image processing, regular expressions, and unit 

testing. The library has an impressive set of independent libraries 

(around 160) and the documentation is well structured and quite 

easy to follow and use [3].

•	 GMP Library (GNU Multiple Precision Arithmetic Library) is another 

free library that can be used for random precision arithmetic.11 It 

offers support for operations based on signed integers, rational 

numbers, and floating point numbers (see Chapter 6 for more 

details). The only limitation of the library involves the available 

memory. The limits are 232 − 1 bits on 32-bit systems and 237 − 1 bits 

on 64-bit systems. The main interface is for C/C++, but there is also 

support for C#, .NET, and OCaml. (It can easily be ported for Haskell 

as well. For more details, take a look at [4], [5], and [11]). Also, there 

is important support for Ruby, PHP, Python, R, Perl, and the Wolfram 

Language. The main goals and targets of the library are cryptography 

software applications, security of the Internet, and algebra systems.

•	 LibBF Library [8] is used for working with floating point numbers 

represented in base 2. The library is based and implemented on the 

IEEE 754 standard [7]. The example provided on the library web page, 

TinyPI, is a very good example to show its power. This library will be 

examined further in Chapter 6.

•	 Bignum C++ Library [9], TTMath, allows both personal and commercial 

users to perform arithmetic operations. The types of integers supported 

are big unsigned integers, big signed integers, and biplying g floating 

point numbers. There is support for mathematical operations, such as 

adding, subtracting, dividing, and multiplying. See Listing 4-7.

9�L3HARRIS Geospatial Solutions, www.harrisgeospatial.com
10�Boost Library, www.boost.org
11�GMP Library, http://gmplib.org
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Listing 4-7.  Using ttmath::UInt<>

The current example, which is described as well on [10], it will create an 

object characterized by two words each. On a 32-bit platform the maximum 

value that can be held is 232 ∗ 2 − 1. Take note of the fact that the author 
shows that variables can be intitialized with string or if we are dealing 

with small values is using a standard type such as unsigned int.

#include <ttmath/ttmath.h>

#include <iostream>

int main()

{

     ttmath::UInt<2> firstA, secondB, thirdC;

     a = "8765";

     b = 3456;

     c = a*b;

     std::cout << thirdC << std::endl;

}<>

�Conclusion
The chapter discussed the general representation of big integers and their operations. 

We analyzed the most important big integer libraries, highlighting the advantages of the 

libraries for you when you are setting up an environment for developing cryptographic 

algorithms.
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CHAPTER 5

Floating-Point Arithmetic
As discussed in the previous chapter, working with big integers is an abstract art, and 

if the schemes are not implemented properly, the entire cryptographic algorithm or 

scheme can lead to a real disaster.

This chapter is dedicated to floating-point arithmetic and its importance for 

cryptography.

�Why Floating-Point Arithmetic?
Floating-point arithmetic represents a special type of arithmetic which requires caution 

due to the representations and methods of implementations. This type of arithmetic 

can be observed in chaos-based cryptography or homomorphic encryption, which is 

presented later in Chapter 14 and Chapter 12, respectively.

Computations using floating-point numbers can be found within systems that use 

small and very large real numbers. The process must be very fast during the computations.

A floating point variable is a special type of variable that is able to hold real numbers, 

such as 5420.0, − 4.213,or 0.045634. The floating part means that the decimal point can 

“float.”

C++ offers different floating point data types, such as float, double, and long double. 

As you know from C++ and integers, the language does not define any size for these 

types. With modern architectures, most of the floating point representations are with 

respect for the IEEE 754 standard for the binary representation format. According to 

this standard, a float type has 4 bytes, a double has 8 bytes, and a long double has 8 

bytes (same as the double), and it represents the 80-bit extended precision for the x86 

architectures (by padding, we have 12 bytes or 16 bytes).

When you work with floating values, always make sure that you include at least one 

decimal. This will help the compiler understand the difference between a floating-point 

number and an integer. Actually, this is very important for cryptographers.

https://doi.org/10.1007/978-1-4842-6586-4_5#DOI
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int a{4};           //** 4 is an integer

double b{3.0};      //** 3.0 represents a floating point (with no

                    //** suffix – double type by default)

float c{6.0f};      //** 6.0 represents a floating point (f is the

                    //** suffix which means a float type)

�Displaying Floating Point Numbers
Let’s consider the example in Listing 5-1.

Listing 5-1.  Displaying Common Float Numbers

#include <iostream>

using namespace std;

int main()

{

       cout << 5.0 << endl;

       cout << 6.7f << endl;

       cout << 9876543.21 << endl;

       return 0;

}

The output is shown in Figure 5-1.

Figure 5-1.  The output of common float numbers
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By looking on the output of the program, you can observe that in the first case, the 

output is 5 but the source code shows 5.0. This is happening because the fractional part 

is equal to 0. In the second case, the number printed is identical to the one from the 

source code. In the third case, the number is displayed using scientific notation, which is 

an important asset for cryptography algorithms.

�The Range of Floating Point Numbers
Let’s have a look at the IEEE 754 representation and consider the following sizes with 

their range and precision. See Table 5-1.

The 80-bit floating point on today’s processors is implemented using 12 or 16 bytes. 

The processors can handle this size easily.

�Floating Point Precision
Let’s consider the following example represented by the fraction 

1

3
. The decimal 

representation is 0.3333333… with an infinity of 3s.

Using a computer, a number with an infinite length would require infinite memory 

to store it. This limitation of the memory restricts the storage of a floating point number 

to a specific number of important digits. A floating point number and its precision 

define how many important digits can be represented without any information loss. 

Table 5-1.  IEEE 754 Standard Representation

Size Range Precision

4 bytes ±1.18 × 10−38 to ± 3.4 × 1038 6-9 are the most important digits. 

Usually around 7 digits.

8 bytes ±2.23 × 10−308 to ± 1.80 × 10308 15-18 are most important digits. 

Usually around 16 digits.

80-bits (usually using 

12 or 16 bytes)

±3.36 × 10−4932 to ± 1.18 × 104932 18-21 are most important digits.

16 bytes ±3.36 × 10−4932 to ± 1.18 × 104932 33-36 are most important digits.
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In cryptography, if we are outputting a floating point number, cout has an implicit 

precision of 6. In Figure 5-2, you can see how cout in Listing 5-2 truncates the values to 

six digits.

Listing 5-2.  Representation of Floating Point Precision

#include <iostream>

using namespace std;

int main()

{

    cout << 7.56756767f << endl;

    cout << 765.657667f << endl;

    cout << 345543.564f << endl;

    cout << 9976544.43f << endl;

    cout << 0.00043534345f << endl;

    return 0;

}

Remember that each of the cases from above will have only six important digits.

Note the fact that with std::cout in some of the cases the output will be represented 

using scientific notation. According to the compiler used, the exponent will usually be 

padded within a minimum number of digits. The number of digits for the exponent 

Figure 5-2.  Output of floating point precision
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that are displayed is based on the compiler used. For example, Visual Studio uses three 

and other compilers use two (they are implemented according to C99 instructions and 

standards).

The number of digits that represents floating point number and its precision are 

dependent on both the size and the specific value that is stored. The float values are 

represented with 6 and 9 digits as precision, with most values having a minimum of  

7 important digits. The double values are represented with 15 and 18 digits as precision. 

Long double values are represented with at least a precision of 15 or 33 important digits, 

which are dependent on how the bytes are occupied.

The code in Listing 5-3 overrides the default precision that cout or std::cout 

displays by using the setprecision() function. The setprecision() function is defined 

within the iomanip header. See Figure 5-3 for the output.

Listing 5-3.  Default Precision

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

     std::cout << std::setprecision(16);

     std::cout << 3.333333333333333333333333333333333f <<endl;

     std::cout << 3.333333333333333333333333333333333 << endl;

     return 0;

}

Figure 5-3.  Overriding the default precision
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In the above example, we set the precision to 16 digits. Each of the numbers is shown 

with a precision of 16 digits. The issues raised by the precision will not just impact the 

fractional number; they will impact any number that has multiple important digits.

�Next Level for Floating-Point Arithmetic
In Chapter 12, we will introduce a complex type of encryption. Homomorphic 

encryption is a special type of encryption that is used as a professional technology for 

privacy preserving and it outsources storage and computation. This type of encryption 

allows data to be encrypted and outsourced to commercial (or public) environments 

for processing purposes, all while the data are encrypted. Homomorphic encryption 

is derived from ring learning with errors (see Chapter 13) and related to private set 

intersection [1].

Moving on to complex cryptosystems, floating-point representation represents the 

core of the encryption/decryption mechanisms, finding the proper way to approximate a 

real number in such a way as to support a compromise between range and precision.

As mentioned, the “floating” term means that a number’s decimal point can float. 

This means that it can be set anywhere related to the important digits of the number. 

To be more exactly, when dealing with complex cryptosystems, such as homomorphic 

encryption, floating-point number a can be shown as four integers, such as

	 a d n f j= ± -· 	

where n represents the base, f represents the exponent, j represents the precision, and d 

represents the important or significand that must satisfy the following relation:

	 0 1£ £ -d n f 	

C++ offers floating-point manipulation with the functions fmod, remainder, and 

remquo. These functions can be found within the cmath header file. Starting with 

C++11, these basic functions are used for handling simple mathematical computations 

related to floating point numbers that are necessary for common programming and 

for cryptography (low and simple concepts). For advanced cryptography algorithms, 

the functions are quite limited and they don’t provide the necessary equipment for a 

cryptographer. To achieve complex computations with big real numbers, you can use 
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professional libraries such as Boost Multiprecision Library, TTMath, LibBF, GNU Multi-

Precision Library, and more. They will help you achieve complex tasks with complex 

cryptosystems.

�Conclusions
This chapter discussed the general representations of floating point numbers and how 

they are used in complex cryptosystems. We explained the importance of floating-

point arithmetic for complex cryptosystems, such as homomorphic encryption, chaos-

based cryptography, lattice-based cryptography or ring learning with errors. Without 

a proper understanding of floating-point arithmetic, advanced cryptosystems cannot 

be implemented properly. A wrong implementation can lead to a huge disaster for a 

commercial cloud computing or a big data environment.
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CHAPTER 6

New Features in C++20
In C++20, new features have been introduced. These new features will impact how 

the code is written by increasing the elegance, reliability, and security metrics. 

Cryptographers and information security engineers will find in these features new 

challenges and interesting concepts that can be incorporated in the source code of their 

implementations. In this chapter, we will cover the most important features and how 

they can be used in order to improve code for cryptographic applications.

The new features of C++20 are divided in three categories: language features, library 

features, and headers features. We will examine most of the features from a cryptography 

and cryptanalysis point of view and we will present how they can be used in the 

implementation of cryptographic algorithms.

�Feature Testing
According to the standard proposals, C++20 offers new features for testing by defining 

a set of macros specific to the preprocessor that corresponds to the C++ language. In 

the following sections, we will discuss two important features that can be used in the 

process of cryptographic algorithm implementation. These two features will help you 

to take control of the memory and how the cryptographic structures and operations are 

represented and designed.

�carries_dependency
Although carries_dependency was introduced in C++11, it’s worth a mention because 

it is useful in secure applications. In cryptography, working with memory can be a hard 

task in each of the steps of the algorithm. With help of carries_dependency we can skip 

the limitations and guards for memory [1].
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Starting with C++20, the std::memory_order enumeration class structure is as 

follows [1]:

enum class memory_order: {

    relaxed, consume, acquire, release, acq_rel, seq_cst

};

inline constexpr memory_order memory_order_relaxed =

                                      memory_order::relaxed;

inline constexpr memory_order memory_order_consume =

                                      memory_order::consume;

inline constexpr memory_order memory_order_acquire =

                                      memory_order::acquire;

inline constexpr memory_order memory_order_release =

                                      memory_order::release;

inline constexpr memory_order memory_order_acq_rel =

                                      memory_order::acq_rel;

inline constexpr memory_order memory_order_seq_cst =

                                      memory_order::seq_cst;

std::memory_order specifies how the memory is accessed, based on the most 

known atomic operations.

As an example, let’s consider a memory_order::relaxed inline instruction and look 

at how it can be used. As a warning, you should use it with caution because, according 

to the official documentation, “there are no synchronization or ordering constraints 

imposed on other reads or writes; only this operation’s atomicity is guaranteed.”1 This 

is very useful for complex cryptography algorithms and security schemes, such as 

searchable encryption, homomorphic encryption, or cryptosystems based on elliptic-

curve mathematics. In [1] there is a set of examples meant to explain how to work with 

the memory using memory_order. The first parameter of fetch_add represents the type of 

value accepted. This is essential if you don’t need any synchronization between reading 

or writing operations.

std::atomic<int> counter = {0}

counter.fetch_add(1, std::memory_order_relaxed)

1�https://en.cppreference.com/w/cpp/atomic/memory_order
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The constants memory_order_relaxed, memory_order_consume, and memory_order_

release are the ones most often used for the memory workload done by cryptographic 

implementations. It is very important to understand their meaning and how to work with 

them.

•	 memory_order_relaxed: It means that there is no synchronization for 

reading or writing operations.

•	 memory_order_consume: Cryptographic operations that use this 

constant are making a consume operation for the referred memory 

location.

•	 memory_order_release: No reading or writing within the current 

thread are not allowed for reordering.

In the next example, you can see how std::memory_order_release is used when 

you want to make a release on the memory for a variable. Note that in the example the 

cryptoKey variable represent a general case of storing a cryptographic key (public or 

private key). In this case, at any point of algorithm the key can be changed once it is 

released.

std::string* cryptoKey = new std::string("passkey");

ptr.store(p, std::memory_order_release)

�no_unique_address
The data member that is preceded by no_unique_address does not need to have an 

address that is different from all other data members of its class [2].

In the following example, you can see that there is an empty class, CryptographyOps. 

Following this class are two more classes, Encryption and Decryption. In the 

Encryption class, you can see Empty CryptographyOps, which means that the size must 

be at least 1 even if the type is an empty class, such as in this case. This is necessary in 

order to guarantee that the distinct objects and their addresses with the same type are 

always different. In the second class, Decryption, you add [[no_unique_address]] in 

front of the CryptographyOps class, which will make sure that a distinct address will not 

be provided.
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struct CryptographyOps {}; // empty class

struct Encryption {

    int i;

    CryptographyOps CryptoOps;

};

struct Decryption {

    int i;

    [[no_unique_address]] CryptographyOps CryptoOps;

};

�New Headers in C++20
In this section, we will cover the most important headers in C++20. They are meant to 

help to improve the development process in the field of cryptography.

�<concepts> Header
This new C++20 concept is a part of the concepts library. The concepts library contains 

fundamental concepts that can be used with the goal of performing compile-time 

validation. The validation is done with respect for the arguments of the templates and 

classes. As a second purpose, they realize the dispatching process on the properties of 

the types.

The header is structured in different concept categories, such as concepts related to 

the language core, concepts for comparisons, concepts related to the objects and how 

they are structured, and callable concepts.

�Core Language Concepts

Most of the concepts related to the core language are related to the objects and types. In 

cryptography, these are concepts such as std::floating_point, std::destructible, 

std::integral, std::signed_integral, and std::unsigned_integral. In the following 

sections, we’ll examine some examples to show how to work with these concepts in 

cryptography. Most of these concepts can be used in a cryptography implementation 

to check types and to make sure that you are on the same page with the types of classes, 

objects, structures, variables etc.
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std::floating_point

Let’s consider the following class declaration:

//** the class is a general class for working with cryptographic

//** operations related to floating numbers.

class FloatingClassExample {};

If we invoke

std::cout << std::floating_point<FloatingClassExample>::value;

the output will be false. But if we have

std::cout << std::floating_point<float>::value;

the output will be true.

std::destructible

In cryptography, once we reach the end of an operation (e.g. encryption or decryption) it 

is recommended that all functions, structures, classes, objects, and types be destroyed.

To achieve the destruction process using std::destructible, we just need to pass 

the type to destructible<> as follows:

class AESClass {};

std::cout << std::destructible<AESClass>::value;

The output of this will be true.

std::integral, std::signed_integral, std::unsigned_integral

The concepts are used in the same way as the examples listed above. Let’s consider the 

following type tests:

std::cout << integral<AESClass>::value;

std::cout << integral<int>::value;

std::cout << integral<float>::value;

The output will be false, true, and false. For signed_integral and unsigned_

integral, it’s the same.
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�Comparison Concepts

In C++20, there are four comparison concepts, equality_comparable, equality_

comparable_with, totally_ordered, and totally_ordered_with [4]. They work with 

comparison operators such as ==, !=, <, >, <=, >= over the specified type. There is a 

slight difference between the comparison concepts, despite the fact that both work with 

the mentioned operators. The concept totally_ordered is focused on the fact that the 

results of the concepts are yielded with a strict total order on the type [3] and totally_

ordered_with<operand1, operand2> is focused on mixed operands, which yield the 

results with a strict total order.

�Object Concepts

The object concepts refer to the main operations with objects, such as moving, 

swapping, and copying. There are four object concepts that work with operations on 

objects: movable, copyable, semiregular, and regular. These concepts are quite useful in 

cryptography, especially when dealing with complex cryptographic objects that must 

be moved, copied, or swapped during their execution of interchange process between 

different software infrastructures, operating systems, and software applications. In this 

way, we can increase the security of the interoperability of the applications.

As an example, let’s have a quick look over the following:

template <class AESCrypto>

concept_movable =

                std::is_object_v<AESCrypto> &&

                std::move_constructible<AESCrypto> &&

                std::assignable_from<AESCrypto&, AESCrypto> &&

                std::swappable<AESCrypto>;

�Callable Concepts

Firstly, let’s clear the fog around the callable term and define the callable concept as 

being “something” that can be called, such as a function. Usually, it’s object() or 

object(arguments). What makes an object callable is the overload of the operator() 

function.
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With C++20, the following concepts are covered: invocable/regular_invocable, 

predicate, relation, equivalence_relation, and strict_weak_order. In 

cryptography, we deal more with predicate and relation. Once these two concepts are 

fully understood, the rest of the concepts are easy.

With the predicate concept, the arguments provided will produce a Boolean result. 

Compared to the relation concept, we have the following example:

template<class AESCrypto, class Encryption, class Decryption>

concept relation=

       std::predicate<AESCrypto, Encryption, Decryption> &&

       std::predicate<AESCrypto, Decryption, Decryption> &&

       std::predicate<AESCrypto, Encryption, Decryption> &&

       std::predicate<AESCrypto, Decryption, Encryption>;

As you can observe, according to relation<AESCrypto, Encryption, Decryption> 

we have the fact the AESCrypto will define a binary relation in accordance with the set 

of expressions characterized by the type and value that are encoded by Encryption or 

Decryption.

�<compare> Header
The <compare> header [5] deals with comparing operators, and it is a component of the 

general utility library.

Starting with C++20, we have access through this header to powerful concepts 

(three_way_comparable and three_way_comparable_with), to classes (partial_

ordering, weak_ordering, and strong_ordering), and to customized point objects 

(strong_order, weak_order, and partial_order).

As you saw in the “Comparison Concepts” section, the mechanisms are the same. If 

you are working with complex applications that are using threads and the data used and 

transferred on those threads are sensitive, the sender and receiver could verify through 

comparison functions and concepts if the integrity of the data was sent and received 

properly. These functions extend the power of cryptography algorithms and give you a 

free hand to create complex mechanisms for comparing and working with sensitive data 

at both ends.
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�<format> Header
In cryptography, we deal with rules. We have rules for numbers representation, rules for 

strings, rules for characters, mathematical rules on expressions, and so on.

The <format> header extends its capabilities in C++20 by bringing new insights 

regarding how the formatting rules are defined and implemented. Although at the 

moment of writing this book, the format header is not yet included in the C++ standard 

library, it worth keeping it in mind for cryptography applications. Updates for the C++ 

libraries and features can be found at [6]

As an example, consider the program in Listing 6-1.

Listing 6-1.  The <format> Header

#include <format>

#include <iostream>

//** let's define a wrapper for class AESCryptography

template<class AESCryptography>

struct Encryption {

    AESCryptography value;

};

template<class AESCryptography, class CharAESCryptography>

struct

std::formatter<Encryption<AESCryptography>,

        CharAESCryptography>:

std::formatter<AESCryptography, CharAESCryptography>

{

    template<class FormatContext>

    auto format(Encryption<AESCryptography>

         encAESCrypto, FormatContext& theFormatContext)

    {

        return std::formatter<AESCryptography,

          CharAESCryptography>::format

             (encAESCrypto.value, theFormatContext);

    }

};
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int main()

{

    Encryption<int> encrypted = { 32 };

    std::cout << std::format("{:#x}", encrypted);

}

�Conclusion
In this chapter, we discussed the most important features in C++20 and how they can 

help professionals in the field of applied cryptography. We focused on the vital points 

of the implementation processes of a cryptographic algorithm. The features included in 

this chapter were designed to cover the main cryptographic operations with respect to 

memory and type comparisons:

•	 Features for testing the preprocessors for the C++20 language

•	 Memory insights and how you can manipulate them more 

professionally and elegantly

•	 The carries_dependency and no_unique_address concepts, which 

are very useful for working with memory

•	 The <concepts>, <compare>, and <format> headers and their 

strongest classes and functions, which can be used for dealing  

with cryptographic mechanisms such as key generation operations, 

encryption and decryption functions, and testing and validating 

types
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CHAPTER 7

Secure Coding Guidelines
Vulnerabilities in software applications often result in high costs. Some organizations 

pay more than $500,000 per security incident. To eliminate vulnerabilities from software 

applications, developers should focus on secure coding and thus avoid deploying any 

vulnerabilities in the production phase.

Writing secure source code is a difficult task. It is very important to understand the 

implications of the code that is being written and to have a checklist with the “things” 

that need to be checked. The checklist will help the developers pursue a fast verification 

of their code for well-known security problems. Usually, the verification is done by a 

security team and not by the software developers or engineers. A software developer 

cannot be objective with their own code.

The idea of a checklist should start from the following concept: verify the source 

code that will process data outside of its domain and take into consideration user input, 

the network communication, the process of the binary files, receiving output from 

database management systems or servers, etc.

When you work with a software application (desktop, web, or mobile), the idea that 

the application is secure because it was developed by a well-known company is just a 

myth. Don’t just trust and go on this path because most companies will end up spending 

a huge amount of the budget on security incidents, maintenance, consultancy, and audit 

sessions.

There are two environments in which a software application works and its behavior 

is different in each environment. The software application that is under analysis and 

the development process within the company represents its circle of trust (at least 

most companies think in this way, and they enjoy considering their infrastructure very 

resistant to security attacks). The behavior of the software application in that circle of 
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trust represents the most critical environment in which an application can be developed 

and tested. No developer, IT security officer, or software analyst should hack their own 

code. This environment is the comfort zone. Once the application leaves that comfort 

zone and enters the real environment, issues will start to take place. The trust boundary 

is hard and easy at the same time to be drawn. To create a line between the comfort 

zone and the real zone is not an easy task, especially if the application is running in a 

virtualized infrastructure, the cloud, or a big data environment.

In the comfort zone, a security threat is represented by the malicious end user. The 

malicious end user will aim to compromise the confidentiality and/or the integrity of the 

software application. One of the interesting concepts proposed is software obfuscation.

�Secure Coding Checklist
In this section, we will discuss and propose a secure coding checklist (it can be seen 

as a procedure as well). Table 7-1 shows an example of such a checklist and it can be 

developed as much as you want. The checklist contains minimal examples of items that 

can be checked when code is written in C++, no matter which operating system the code 

runs on. A frequent practice among developers is to suppress warnings, which is not 

beneficial.

In the “CERT Coding Standards and Rules” section, we will discuss the most 

important rules and list them in order so you can apply them to your process of 

developing cryptographic algorithms. Each rule is well explained within the guide.
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Table 7-1.  Example of a Secure Coding Checklist

No. # Item to be checked Description Yes/No Notes

1 Compiler warnings

Make sure that the compiler will output and a flag will be raised for receiving 

notifications of the potential errors listed for the following items:

✓  Wall

✓  Wmissing-declarations

✓  Wmissing-prototypes

✓  Wredundant-decls

✓  Wshadow

✓  Wstrict-prototypes

✓  Wformat=2

For more flags with their definitions and actions, refer to the “GCC Options 

to Request or Suppress Warnings” section [1]. It is very useful if complex 

cryptographic algorithms and security schemes are being implemented.

2 Allocate enough memory for buffer memory when working with 
strings.

Check the following functions if there is an upper limit for the destination buffer 

when a copy process is done until '\0\' (NULL) is met. In order to avoid 

this situation, the recommendation is to allocate enough memory space for the 

destination buffer before the data is copied there.

✓  strcpy()

✓  strcat()

✓  sprint()

✓  scanf()

✓  gets()

(continued)
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Table 7-1.  (continued)

No. # Item to be checked Description Yes/No Notes

3 Check for direct breaks of system security.

Checking for untrusted input will lead to a direct breach of the application security. 

With this step, you protect the application against malicious users and attackers 

exploiting your program using metachars.

✓  system()

✓  popen()

✓  fork(2)

✓  exec(2)

✓  s_popen()

✓  HXproc_* [2]

4 Check for the wrong size of parameters and getting unexpected 
results.

When complex programs are written, such as the implementation of SHA-256 

from Chapter 2, Listing 2-1, assigning a wrong size to one of the parameters or 

doing a wrong arithmetic operation can cause a serious pitfall and a fix should 

immediately be provided. Make sure that the size allocated for the parameters 

is the same size on the destination side. As a best practice, especially in 

implementing cryptography algorithms, it is better to work with size_t type. Be 

type-safe and don’t create overflows.

✓  strncpy()

✓  strncat()

✓  snprintf()

(continued)
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Table 7-1.  (continued)

No. # Item to be checked Description Yes/No Notes

5 Check if too much memory is allocated.

Allocating too much memory and external parameters represents a certain part 

of the size. If so, you are dealing with a wrong memory allocation and you will 

experience a denial-of-service. To avoid this from happening, it is better to follow 

the below criteria:

✓  malloc(), calloc(), alloca()

✓  No integer overflows

✓  Avoid arithmetical issues

✓  �Verification for any possible operation with untrusted integer that could 

lead for an integer overlow.

6 Avoid wrong casts.

Avoid coding like below. The compiler will think that malloc will return an int, 

which is totally incorrect. It will create a bug that can easily be exploited by 

hackers.

     char *a = malloc(10) – bad cast

class BaseClass {};

class DerivedClass: public BaseClass {};

BaseClass b; BaseClass* pb;

DerivedClass d; DerivedClass* pd;

//good cast

pb = dynamic_cast<BaseClass*>(&d);

//bad cast

pd = dynamic_cast<DerivedClass*>(&b);

(continued)
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�CERT Coding Standards
The CERT C++ Coding Standard was developed only for versions of the C++ 

programming language defined by the ISO/IEC 14882-2014 standard.

The coding standard is very well organized and it follows a certain structure: 

identifiers, noncompliant code examples and compliant solutions, exceptions, risk 

assessment, automated detection, related vulnerabilities, and related guidelines [7].

We will examine each item of the structure and we will explain the main objective 

and purpose.

Table 7-1.  (continued)

No. # Item to be checked Description Yes/No Notes

7 Avoid variable parameter lists.

When you are implementing security schemes based on strings, you may 

experience a new type of problem, which security analysts or ethical hackers 

enjoy playing with when performing tests. A simple test that is commonly used by 

ethical hackers to check untrusted data is to check if a function allows a variable 

as a list of parameters or arguments, such as printf(). The untrusted data 

(created by an ethical hacker) is directly used as a string format and not as an 

argument. Follow the below logic for any similar situations:

✓  �Wrong way: snprintf(buffer, sizeof(buffer), the_input_

of_the_user)

✓  �Right way: snprintf(buffer, sizeof(buffer), "%s", the_

input_of_the_user)

8 Operations with files

When handling files during cryptographic operations, try to use mkstemp().

9 File permissions

Not everyone should have the ability to read or write from or to a file. In order to 

create files with the correct permissions, make a habit of using unmask().

✓  At the beginning of the file use unmask(077).
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�Identifiers
Each identifier has three parts:

•	 A three-letter mnemonic that represents the section within the 

standard

•	 A numeric value of two digits in the range of 00 to 99

•	 The language that is associated with it, which is represented as a 

suffix (-CPP, -C, -J, -PL)

•	 –CPP: SEI CERT C++ Coding Standard [7]

•	 –C: SEI CERT C Coding Standard [8]

•	 –J: SEI CERT Oracle Coding Standard for Java [9]

•	 –PL: SEI CERT Perl Coding Standard [10]

The three-letter mnemonic is used to group related coding practices and to point out 

which category a related coding belongs to.

�Noncompliant Code Examples and Compliant Solutions
The examples of noncompliant code show the code that violates the guideline. It is very 

important to keep in mind that they are only examples. The removing process of all 

appearances of the example does not mean that the code we are analyzing is compliant 

with the SEI CERT standard.

�Exceptions
Exceptions are of an informative character and are not required to be followed. Any of 

the rules can have a set of exceptions which provide details about the circumstances in 

which the guideline is not necessary to be followed for ensuring the safety, security, or 

reliability of the software.

As for any type of exception, it doesn’t matter the programming language: the 

principle is the same. It’s necessary to pay extra attention to the exceptions and to catch 

any possible exception and to learn from it. Don’t ignore them, and don’t think that a 

programming language is perfect and doesn’t have any bugs or certain doors that can be 

exploited.
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�Risk Assessment
Each guideline from the CERT C++ Coding Standard has a risk assessment section. 

The purpose of the risk assessment section is to provide software developers 

with the potential consequences of not following or addressing a specific rule or 

recommendation. The risk assessment looks like a metric and its main purpose is to help 

the remediation process of the software applications and complex projects.

Each rule and recommendation has a priority. In order to assign a priority, it is 

recommended to understand IEC 60812 [11]. The priority is evaluated and assigned 

using a metric that is characterized by three types of analysis: failure mode, effects, and 

criticality. Each rule also has a value that is assigned on a scale between 1 and 3, such as 

severity, likelihood, and remediation cost (see Table 7-2).

Table 7-2.  Assigning Values for Each Rule [7]

Severity: What are the consequences if the rule is ignored?
Value Meaning Examples of different vulnerabilities

1 Low Denial-of-service attack, unexpected termination

2 Medium Information disclosure without any intention will lead to the violation of the 

data integrity.

3 High Running code randomly

Likelihood: Statistically speaking, what is the probability of a flaw being introduced in the code by 

avoiding and ignoring the rule specifications and leading to a vulnerability that could be exploited by 

a malicious user?

Value Definition

1 Unlikely

2 Probable

3 Likely

Remediation cost: What are the costs to follow and comply with the rule?

Value Definition Detection Correction

1 High Manual Manual

2 Medium Automatic Manual

3 Low Automatic Automatic
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For each of the rules the values are multiplied together. The metric in Table 7-3 

gives you a measure that can be useful for prioritizing the rules within the application. 

The values are from 1 to 27. From all 27 values, only 10 different values occur and are 

available in most of the cases: 1, 2, 3, 4, 6, 8, 9, 12, 18, and 27. Table 7-3 lists the possible 

interpretations and meanings of the priorities and levels.

�Automated Detection
The rules and recommendations have sections that describe the automated detection 

process. The mentioned sections have a set of tools which can be used as analyzers to 

help automatically diagnose any violations. The Secure Coding Validation Suite [12] can 

be used to perform tests on the ability of analyzers to provide a diagnosis on a violation 

of the rules specified with ISO/IEC TS 17961:2013 [14], which is related to the rules of the 

SEI CERT C Coding Standard [13].

�Related Guidelines
This section has a special slot when software applications are developed. According to 

the standard, the “Related Guidelines” section contains links, technical specifications, 

and guideline collections such as Information Technology – Programming Languages, 

Their Environments and System Software Interfaces – C Secure Coding Rules 

[14]; Information Technology – Programming Languages – Guidance to Avoiding 

Vulnerabilities in Programming Languages through Language Selection and Use [15]; 

MISRA C++ 2008: Guidelines for the Use of the C++ Language in Critical Systems [16]; and 

CWE IDs in MITRE’s Common Weakness Enumeration (CWE) [17]. [18]

Table 7-3.  Levels and Priorities [7]

Level Priorities Possible Interpretation

L1 12, 18, 27 High severity, likely, inexpensive to fix

L2 6, 8, 9 Medium severity, portable, medium cost to fix

L3 1, 2, 3, 4 Low severity, unlikely, expensive to repair
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�Rules
In the following sections, we will give a short overview of the main rules that strongly 

apply to the implementation of cryptographic algorithms and security schemes using 

C++20. It is best to follow these rules. Note that we will examine only six out the 10 rules. 

All the explanations and examples are provided within the guide [19].

For some rules, there are also rules from the C programming language that apply 

to C++. The following rules can be used within the procedure explained in the Secure 

Coding Guidelines in Table 7-1.

The duty of any information security officer, security analyst, or ethical hacker is to 

improve the code by following such a checklist. Further, the checklist also can be used 

by developers as a guide when they are developing critical cryptographic algorithms. 

It is recommended to do a code review on the sections of the algorithm that are quite 

vulnerable and to make sure that the rules (Rules 1 through 7) are followed as much as 

possible (see Tables 7-4 through 7-9).

Following these rules will give you as a security analyst or ethical hacker a certain 

level of trust that the security mechanisms (cryptographic algorithms, security protocols, 

security schemes, and other cryptographic primitives) have been implemented properly 

and common vulnerabilities have been eliminated.

�Rule 1 - Declarations and Initializations (DCL)

Table 7-4.  Rule 1 – Declarations and Initializations [19]

Rule Title

DCL50-CPP Do not define a C-style variadic function.

DCL51-CPP Do not declare or define a reserved identifier.

DCL52-CPP Never qualify a reference type with const or volatile.

DCL53-CPP Do not write syntactically ambiguous declarations.

DCL54-CPP Overload allocation and deallocation functions as a pair in the same scope.

DCL55-CPP Avoid information leakage when passing a class object across a trust boundary.

DCL56-CPP Avoid cycles during initialization of static objects.

DCL57-CPP Do not let exceptions escape from destructors or deallocation functions.

(continued)
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�Rule 2 - Expressions (EXP)

Rule Title

DCL58-CPP Do not modify the standard namespaces.

DCL59-CPP Do not define an unnamed namespace in a header file.

DCL60-CPP Obey the one-definition rule.

DCL30-C Declare objects with appropriate storage durations.

DCL39-C Avoid information leakage when passing a structure across a trust boundary.

DCL40-C Do not create incompatible declarations of the same function or object.

Table 7-4.  (continued)

Table 7-5.  Rule 2 – Expressions [19]

Rule Title

EXP50-CPP Do not depend on the order of evaluation for side effects.

EXP51-CPP Do not delete an array through a pointer of the incorrect type.

EXP52-CPP Do not rely on side effects in unevaluated operands.

EXP53-CPP Do not read uninitialized memory.

EXP54-CPP Do not access an object outside of its lifetime.

EXP55-CPP Do not access a cv-qualified object through a cv-unqualified type.

EXP56-CPP Do not call a function with a mismatched language linkage.

EXP57-CPP Do not cast or delete pointers to incomplete classes.

EXP58-CPP Pass an object of the correct type to va_start.

EXP59-CPP Use offsetof() on valid types and members.

EXP60-CPP Do not pass a nonstandard-layout type object across execution boundaries.

EXP61-CPP A lambda object must not outlive any of its reference captured objects.

EXP62-CPP Do not access the bits of an object representation that are not part of the object's 

value representation.

EXP63-CPP Do not rely on the value of a moved-from object.
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�Rule 3 - Integers (INT)

�Rule 5 - Characters and Strings (STR)

Table 7-6.  Rule 3 – Integers [19]

Rule Title

INT50-CPP Do not cast to an out-of-range enumeration value.

INT30-C Ensure that unsigned integer operations do not wrap.

INT31-C Ensure that integer conversions do not result in lost or misinterpreted data.

INT32-C Ensure that operations on signed integers do not result in overflow.

INT33-C Ensure that division and remainder operations do not result in divide-by-zero errors.

INT34-C Do not shift an expression by a negative number of bits or by greater than or equal to 

the number of bits that exist in the operand.

INT35-C Do not call a function with a mismatched language linkage.

INT36-C Converting a pointer to integer or integer to pointer

Table 7-7.  Rule 5 – Characters and Strings [19]

Rule Title

STR50-CPP Guarantee that storage for strings has sufficient space for character data and the null 

terminator.

STR51-CPP Do not attempt to create a std::string from a null pointer.

STR52-CPP Use valid references, pointers, and iterators to reference elements of a basic_string.

STR53-CPP Range check element access.

STR30-C Do not attempt to modify string literals.

STR31-C Guarantee that storage for strings has sufficient space for character data and the null 

terminator.

(continued)
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�Rule 6 - Memory Management (MEM)

Rule Title

STR32-C Do not pass a non-null-terminated character sequence to a library function that 

expects a string.

STR34-C Cast characters to unsigned char before converting to larger integer sizes.

STR37-C Arguments to character-handling functions must be representable as an unsigned char.

STR38-C Do not confuse narrow and wide character strings and functions.

Table 7-7.  (continued)

Table 7-8.  Rule 6 – Memory Management [19]

Rule Title

MEM50-CPP Do not access freed memory.

MEM51-CPP Properly deallocate dynamically allocated resources.

MEM52-CPP Detect and handle memory allocation errors.

MEM53-CPP Explicitly construct and destruct objects when manually managing object lifetime.

MEM54-CPP Provide placement new with properly aligned pointers to sufficient storage capacity.

MEM55-CPP Honor replacement dynamic storage management requirements.

MEM56-CPP Do not store an already-owned pointer value in an unrelated smart pointer.

MEM57-CPP Avoid using default operator new for over-aligned types.

MEM30-C Do not access freed memory.

MEM31-C Free dynamically allocated memory when no longer needed.

MEM34-C Only free memory allocated dynamically.

MEM35-C Allocate sufficient memory for an object.

MEM36-C Do not modify the alignment of objects by calling realloc().
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�Rule 7 - Input/Output (FIO)

�Conclusion
In this chapter, you learned about rules and recommendations. You pursued a journey 

through the most important security aspects that need to be taken into consideration in 

the process of developing cryptographic algorithms and security schemes.

Table 7-9.  Rule 7 – Input/Output [19]

Rule Title

FIO50-CPP Do not alternately input and output from a file stream without an intervening 

positioning call.

FIO51-CPP Close files when they are no longer needed.

FIO30-C Exclude user input from format strings.

FIO32-C Do not perform operations on devices that are only appropriate for files.

FIO34-C Distinguish between characters read from a file and EOF or WEOF.

FIO37-C Do not assume that fgets() or fgetws() returns a nonempty string when 

successful.

FIO38-C Do not copy a FILE object.

FIO39-C Do not alternately input and output from a stream without an intervening flush or 

positioning call.

FIO40-C Reset strings on fgets() or fgetws() failure.

FIO41-C Do not call getc(), putc(), getwc(), or putwc() with a stream argument that 

has side effects.

FIO42-C Close files when they are no longer needed.

FIO44-C Only use values for fsetpos() that are returned from fgetpos().

FIO45-C Avoid TOCTOU race conditions while accessing files.

FIO46-C Do not access a closed file.

FIO47-C Use valid format strings.
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It is very important to understand the difference between a rule and a 

recommendation. The general idea is that a rule has to follow a specific amount of 

criteria compared to a recommendation, which is a suggestion for improving code 

quality.

You now have enough knowledge to perform a security analysis of the source 

code, create a secure coding checklist, filter those aspects that are vital for your 

application, and instruct the developers on how to proceed when they are implementing 

cryptographic algorithms and written related source code.
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CHAPTER 8

Cryptography Libraries 
in C/C++20
The objective of this chapter is to provide a comprehensive list of C++ libraries that can 

be used with success with the new features of C++20. This chapter is very useful when 

you need to access a specific implementation of a particular functionality. You don’t 

need to search different online resources and you have access to source code that you 

can use and improve upon.

�Overview of Cryptography Libraries
Table 8-1 lists the most important cryptography libraries. The selection was based on two 

metrics: time execution and flexibility, and access to the source code based on open source 

licenses. Having access to source code is very useful because you can compare your work 

and algorithms to other algorithms and implementations and thereby improve your work.

Table 8-1.  Main C/C++ Libraries

Library Title Developer/Industry Programming Language Open Source References

OpenSSL OpenSSL Project C X [1][2][3]

Crypto++ Crypto C++ Project C++ X [7][8]

Botan Jack Lloyd C++ X [5]

Libcrypt GnuPC Commmunity C X [9][10]

GnuTLS Simon Josefsson

Nikos Mavrogiannopoulos

C X [11][12]

Cryptlib Peter Gutmann C X [13]

https://doi.org/10.1007/978-1-4842-6586-4_8#DOI
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For each of the libraries we will introduce the best implementations of the 

cryptographic primitives (such as key generation and exchange, elliptic-curve 

cryptography, public key cryptography, hash functions, MAC algorithms, block 

ciphers, etc.).

�Hash Functions
Table 8-2 shows the cryptography libraries and their features within different hash 

functions. In Chapter 2, we provided a simple and basic implementation of a SHA-256 

hash function and you learned how to make an implementation of a hash function from 

scratch.

In this section, we will randomly pick a hash function from a library (e.g. a 

MD5 implementation from OpenSSL) and we will provide some comments on the 

implementation. It is very important to mention that the implementation provided for 

the MD5 hash function is already implemented in OpenSSL and this will be done with 

respect for the original implementation from [4]. The first thing to do is download the 

file openssl-1.1.1g.tar.gz and extract the content in order to have access to the source 

code. Once it is extracted, navigate to the crypto folder following the path openssl-

1.1.1g\crypto. In this way, you will have access to the source code files of all the 

cryptographic algorithms implemented within the library. See Figure 8-1.

Table 8-2.  Existance of Hash Functions Within Cryptography Libraries

Library Title MD5 SHA-1 SHA-2 SHA-3 Whirlpool GOST BLAKE2

OpenSSL X X X X X X X

Crypto++ X X X X X X X

Botan X X X X X X X

Libcrypt X X X X X X X

GnuTLS The library represents the implementation of TLS, SSL, and DTLS protocols.

Cryptlib X X X X X - -
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�MD5 Hash Function Overview

We picked this example because it is a simple algorithm so it’s easy to follow and to 

understand. The implementation of MD5 contains three files (two C/C++ files and one 

header file) and an ASM folder with three files written in the PERL language. The PERL 

files are optimizations for four platforms, 586, x86, x64 and sparc. See Figure 8-2.

�Public Key Cryptography
Most of the libraries include implementations of different standards of PKCS (Public Key 

Cryptography Standards) and they are well tested (see Table 8-3).

Figure 8-1.  Downloading the openssl-1.1.1g.tar.gz file with source code

Figure 8-2.  Example of a MD5 hash in action for a file
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In order to use public key cryptography using OpenSSL, follow the below example 

to see the workflow. Assume that there are two users, Alice and Bob, who communicate 

with each other. The communication workflow is as follows.

Step 1. Alice generates a private key, alicePrivKey.pem with 2048 bits. See Figure 8-3.

openssl genrsa -out alicePrivKey.pem 2048

Step 2. Alice extracts the public key alicePublicKey.pem and sends it to Bob. See 

Figure 8-4.

openssl rsa -pubout -in alicePrivKey.pem -out alicePublicKey.pem

Table 8-3.  Existance of Public Key Cryptography Protocols Within Cryptography 

Libraries

Library Title PKCS#1 PKCS#5 PKCS#8 PKCS#12 IEEE P1363 ASN.1

OpenSSL X X X X - X

Crypto++ X X X - X X

Botan X X X - X X

Libcrypt X X X X X X

Cryptlib X X X X - -

Figure 8-3.  Generating a private key
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Step 3. Bob encrypts the message and sends BobMessageToAllice.txt to Alice.

openssl rsautl -encrypt -in cleartext -out encryptedWithAlicePubKey -inkey 

alicePublicKey.pem -pubin

Step 4: Alice decrypts the message from Bob.

openssl rsautl -decrypt -in encryptedWithAlicePubKey -inkey alicePrivKey.pem

�Elliptic-Curve Cryptography (ECC)
One of the most utilized key exchange protocols based on elliptic curves is ECDH 

(Elliptic Curve Diffie-Hellman); see Table 8-4. The purpose of this protocol is to set a 

shared secret key used in the encryption process without needing to send it directly to 

each of the partners within the communication process.

In order to avoid the mathematic apparatus behind the protocol, we will summarize 

the workflow of the protocol as follows so that you have a clear overview of the domain 

parameters that are exchanged between the communication partners (Alice and Bob):

Figure 8-4.  Extracting the public key

Table 8-4.  Existance of Elliptic-Curve Cryptography Within Cryptography 

Libraries

Library Title NIST SECG ECDSA ECDH GOST R 34.10

OpenSSL X X X X X

Crypto++ X X X X -

Botan X X X X X

Libcrypt X X X X X

Cryptlib X X X X -
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•	 Alice generates a private key and a public key with the parameters of 

the domain.

•	 Bob generates a private key and a public key with the domain 

parameters set above.

•	 Both users exchange their public keys.

•	 Alice computes using the public key of Bob and the shared function is 

characterized by a shared secret, known as the derived key of B.

•	 Bob does the same thing with the public key of Alice. The shared 

function is characterized by a shared secret, known as the derived 

key of A.

•	 Alice now uses the derived key of Bob to encrypt the message.

•	 Bob uses the derived key of Alice to encrypt the message.

•	 Both users can decrypt the message using their own private key.

�Creating ECDH Keys

First, it is quite important to check what OpenSSL support you have on your machine related 

to ECDH keys. To achieve these primary tasks, run the command openssl ecparam -list_

curves (see Figure 8-5). The command will provide a full list of curves that you can use. Most 

of them are implemented properly with respect for their standards. Their implementation in 

OpenSSL and the recent updates using C++20’s new features make them easy to follow.

Figure 8-5.  Getting a list of curves
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There is a faster way to create the keypair by using the following command (see 

Figure 8-6): openssl ecparam -name prime256v1 -genkey -noout -out key.pem.

This will output something like

-----BEGIN EC PRIVATE KEY-----

MHcCAQEEIKPvG4c8qipI+aZmV3SVnYCZ/QxVfsbJ1CFk4H1uHhFJoAoGCCqGSM49

AwEHoUQDQgAEjQZtq0qt7r8aBkdxVvXxoJC4BdvoPIVBHlsIfw7+GIWm0AJNzFg5

IHbZQF6OhNdWguSl4/Mug24NvGG4PapIhg==

-----END EC PRIVATE KEY-----

If you want to see the details of the EC parameter, run the following command: 

openssl ec -in key.pem -text -noout. The command will output something like 

Figure 8-7.

Figure 8-6.  Generating a keypair

Figure 8-7.  Showing the details of the EC parameter
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�OpenSSL
�Configuration and Installing OpenSSL
In order to configure and properly install OpenSSL, depending on the OS platform that is 

used, refer to the sections below and follow the steps accordingly.

�Installing OpenSSL on Windows 32/64

Step 1: Download the binaries for OpenSSL [3]. Download the latest version of OpenSSL 

Windows Installer by going to https://slproweb.com/products/Win32OpenSSL.html. 

Scroll down until you reach the Download Win32/Win64 OpenSSL option (see Figure 8-8).

Step 2: Double click and run Win64OpenSSL-1_1_1g.exe (see Figure 8-9).

Step 3: Accept the license agreement and click Next. See Figure 8-10.

Figure 8-8.  Download section of OpenSLL

Figure 8-9.  Setup of OpenSSL
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Step 4: Specify the path where it should be installed and click Next. See Figure 8-11.

Figure 8-10.  OpenSSL license agreement
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Step 5: Leave the screen as is and click Next. See Figure 8-12.

Figure 8-11.  Setting up the path where OpenSSL will be installed

Figure 8-12.  The location of the program shortcuts
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Step 6. Leave everything as is and click Next. See Figure 8-13.

Step 7: You’re ready for installation so click Install. See Figure 8-14.

Figure 8-13.  Additional tasks to perform

Figure 8-14.  Acknowledgment of the installation process and settings
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Step 8: Installation progress. Remember that if you haven’t installed Microsoft Visual 

C++ Redistributable (x64) it will ask you to install it. See Figure 8-15.

Step 9: Finishing the process of installation. Leave everything as is and click Finish. 

See Figure 8-16.

Figure 8-15.  OpenSSL installation progress

Figure 8-16.  Completing the process of installation
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Step 10: Configure and set up the environment variables for OpenSSL.

Step 11: Run the environment variables. Go to System Properties and click 

Environment Variables. See Figure 8-17.

Step 11: The environment variable for OpenSSL will be added in System Variables. 

Click the New button shown in Figure 8-18.

Figure 8-17.  System properties
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Step 12: Configure the OPENSSL_CONF variable. See Figure 8-19.

Step 13: Configure and modify the path variable accordingly. Select from System 

Variables the Path variable and click Edit. See Figure 8-20.

Figure 8-18.  Environment variables

Figure 8-19.  A new system variable
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Step 14: In the Edit environment variable section, click New and Browse. See 

Figure 8-21.

Figure 8-20.  Environment variables ➤ Path variable
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Step 15: Select the path to the OpenSSL bin folder and click Ok. The new path has 

been added with success. Close everything. If you have the Command window open, 

close it and reopen it again for the update to be done accordingly. Otherwise, it will not 

work. See Figure 8-22.

Figure 8-21.  Editing the environment variable
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Step 16: Open Command (cmd.exe). Run the openssl command. If the OpenSSL ➤ 

prompter appears in the window, it means that you have the first sign of success. See 

Figure 8-23.

Step 17: Run the second command, version. Make sure that everything is set 

properly. If the version and date are returned as shown in Figure 8-24, you can declare 

yourself successful.

Figure 8-22.  Verifying that the path for OpenSSL has been added

Figure 8-23.  Checking OpenSSL, first step
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�Installing OpenSSL on Linux – Ubuntu Flavor

Usually, OpenSSL comes already installed on Linux – Ubuntu. For this step-by-step 

guide we used Ubuntu 18.04.3 LTS version (codename: bionic).

Before proceeding with the installation, check the version of OpenSSL already 

installed by running openssl version -a in the terminal. See Figure 8-25.

If you don’t see it, it means that the OpenSSL was not installed or configured 

properly. Proceed as follows to install and configure OpenSSL.

Figure 8-24.  Checking OpenSSL, second step

Figure 8-25.  Checking the OpenSSL version
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Step 1: Update the Ubuntu system to the latest packages by running the following 

command in the terminal: sudo apt-get update && sudo apt-get upgrade. You will 

be asked to answer with Y or N in order to continue. Choose Y (Yes). See Figure 8-26.

Step 3: Install the packages required for compiling. This is a very vital step. Proceed 

with caution. The command is sudo apt install build-essential checkinstall 

zlib1g-dev -y. See Figure 8-27.

Figure 8-26.  Updating the Ubuntu system with the latest packages

Figure 8-27.  Installing the packages required for compilation
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Step 4: Download OpenSSL. At the moment of writing this chapter, the version was 

1.1.1g. For this, follow the commands shown below and in Figure 8-28 and Figure 8-29.

cd /usr/local/src/

and

sudo wget https://www.openssl.org/source/openssl-1.1.1g.tar.gz

Step 5: Extract the downloaded file. To achieve this, use the following command 

(shown in Figure 8-30):

sudo tar -xf openssl-1.1.1g.tar.gz.

Figure 8-28.  Location of OpenSSL installation

Figure 8-29.  Getting the right package for installation
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Step 6: Navigate to the directory where the file has been extracted. See Figure 8-31.

Step 7: Install OpenSSL using the following commands (shown in Figures 8-32 

through 8-35):

sudo ./config –prefix =/usr/local/ssl –openssldir=/usr/local/ssl shared zlib

Figure 8-30.  Extracting the downloaded file

Figure 8-31.  Location of the extracted file
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sudo make

sudo make test

Figure 8-32.  OpenSSL installation

Figure 8-33.  Running sudo make
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sudo make install

Step 8: Configure the OpenSSL shared libraries. First, you need to navigate to the  

/etc/ld.so.conf.d directory and create the configuration file openssl-1.1.1g.conf 

manually. The commands are as follows (shown in Figures 8-36 through 8-39):

cd /etc/ld/so/conf.d/

Figure 8-35.  Running sudo make install

Figure 8-34.  Running sudo make test
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sudo nano openssl-1.1.1g.conf

Figure 8-36.  OpenSSL shared libraries configuration

Figure 8-37.  Editing the configuration file
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sudo ldconfig -v

Step 9: Configure the OpenSSL binary. This step is very sensitive. You add the binary 

or the new version of OpenSSL installed (which is located at /usr/local/ssl/bin/

openssl) over the default OpenSSL binary.

First, you create a backup of the binary files by running the following command:

sudo mv /usr/bin/c_rehash /usr/bin/c_rehash.backup

Second, you edit the /etc/environment file using vim. See Figure 8-40.

Figure 8-39.  Verifying the configuration file

Figure 8-38.  Editing the configuration file
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Ensure that you have save the file before you exit.

Third, reload the OpenSSL environment and verify the PATH bin directory using the 

following commands (shown in Figure 8-41):

source /etc/environment

echo $PATH

For the final step, verify the installation of the last stable version of OpenSSL by using 

the commands from below and shown in Figure 8-42:

which openssl

openssl version -a

Figure 8-40.  Editing the environment path

Figure 8-41.  Reloading the environment path
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�Botan
Botan [5] represents another powerful library that can be used in the command line 

as OpenSSL. The algorithms are quite vast and contain very powerful and modern 

implementations (including C++20 features). The feature of Botan that differentiates it 

from the rest of the libraries is the modules that are implemented for the Transport Layer 

Security (TLS) protocol. The features that are implemented with Botan made it a real 

candidate for inspiration and guidance among professionals. The documentation is easy 

to follow.

The commands and instruction are the same as the ones from OpenSSL with minor 

differences related to public key algorithms.

�CrypTool
A great software product for cryptography developed using C++ is CrypTool (CT) [6], 

version 1. The latest stable release for version CT1 is 1.4.41 and it can be downloaded 

from CrypTool’s official website1. After downloading, launch the executable and follow 

the instruction to install it. When CT1 is opened, the main window looks like Figure 8-43.

1�www.cryptool.org/en/ct1-downloads

Figure 8-42.  Verifying the installation
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The first example that we will look at is the classical cipher, Caesar. It can be selected 

from Encrypt/Decrypt ➤ Symmetric (classic) ➤ Caesar/Rot - 13… Before selecting 

the Caesar cipher, first close the startingexample-en.txt window and open a new 

clean window from File ➤ New. In the opened window, type the sentence This is an 

example of Caesar cipher using CrypTool 1. See Figure 8-44.

Figure 8-43.  Main window in CrypTool 1
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Open the Settings window for the Caesar cipher, as described above. It should look 

like Figure 8-45a.

Figure 8-44.  The text in a new CT1 window

Figure 8-45.  (a) The default settings for the Caesar cipher. (b) The chosen settings 
for the Caesar cipher
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The window contains a short description of the cipher. Note that Rot-13 is 

a particular case of the Caesar cipher that shifts a particular letter 13 positions 

(considering that the number of the letters in the English alphabet is 26, then its half is 

13, hence the name of Rot-13). Use the default variant, Caesar. On the right side, you 

can choose the index for the first letter of the alphabet, A; it can be either 0 or 1. Further, 

you should choose the key, which represents the number of positions a particular letter 

is shifted to the right in the alphabet. The key can be an alphabet letter or a number. 

Chose the character option and let’s say the key is M. Figure 8-45b shows the changes in 

the Properties of the chosen encryption section. Observe that A is mapped to M (0 is 

the position of A, which is shifted 12 positions, i.e. 0+12=12; the 12th letter of the English 

alphabet is M) and so on. Now press the Encrypt button. You should obtain the result 

shown in Figure 8-46.

Note that the cipher is not case sensitive. Such additional settings can be accessed 

by pressing Text Option from the Key Entry: Caesar/ROT-13 window and can be seen in 

the left-hand window in Figure 8-47. In this window, you keep unchanged the characters 

that are not in the alphabet. Note that the characters 1 and . and even the spaces were 

not encrypted. Further, you can choose uppercase sensitivity, you can extend the 

alphabet, and you can set a reference for statistical use (see the right-hand window in 

Figure 8-47).

Figure 8-46.  Encryption using the Caesar cipher
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Now let’s return to the example. Close the Unnamed-1 window (or make sure that 

the emphasized window is Caesar encryption of <Unnamed1>, key <M, KEY OFFSET: 

0> and let’s decrypt the result of the Caesar encryption obtained in Figure 8-47. For 

this, choose the Caesar cipher from the menu, and pick the same settings as in the 

encryption. Note that Caesar is a symmetric cipher, which means that the same key is 

used for both encryption and decryption, therefore you set the key entry as an alphabet 

character and choose M and press the Decrypt button. The result is shown in Figure 8-48.

Figure 8-47.  Text options

Chapter 8  Cryptography Libraries in C/C++20



182

The next encryption system we will look at is RSA. Choose Encrypt/Decrypt ➤ 

Asymmetric ➤ RSA Demonstrator. The RSA Demonstrator window should look like 

Figure 8-49.

Figure 8-48.  The decryption using a Caesar cipher

Figure 8-49.  RSA demonstration
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Keep the default option of computing both the public key and the private key. 

Choose the parameters for the scheme. You can provide two prime numbers yourself, 

or you can generate two prime numbers using the generator. Click the Generate prime 

numbers button. The window should look like the left-hand window in Figure 8-50.

Here, you can choose between three prime generators. Choose Fermat Test, set 

the lower limit to 212 and the upper limit to 215 for both p and q and opt for independent 

primes, and then press the Generate prime numbers button (right-hand window 

in Figure 8-50). To use these prime numbers, press the Apply primes button. After 

generating the prime number, note that the public and secret values were computed 

(left-hand window in Figure 8-50). Keep the default public key as 216 + 1, check the text 

option for the Input field, and type this: This text is encrypted using RSA. Press the 

Encrypt button. The result should look like Figure 8-51.

Figure 8-50.  The prime number generator for RSA
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Now, to decrypt, you should not close the window and you need to be a little careful. 

For decryption, copy the text resulted in the field: Encryption into ciphertext c[i]=m[i]^e 

(mod N). Your encrypted text should look as follows (and shown in the left-hand window 

of Figure 8-52):

212901699 # 120812360 # 045225910 # 168182322 # 103916866 # 349246149 # 

027823531 # 310207436 # 009232756 # 131763739 # 089946941

Figure 8-51.  Encrypted text using RSA
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Further, check numbers for the Input and paste it. Then press the Decrypt button. 

The decryption is shown in the right-hand window of Figure 8-52. You should obtain the 

same plain text that you encrypted previously.

These are just two simple examples of how to use CrypTool 1. It provides many more 

encryption schemes and examples, and it can be used for attack simulations or to collect 

different statistical information.

�Conclusion
In this chapter, we provide a brief list of C++ libraries and we showed how to install them 

on the Windows operating system or on Ubuntu. The most useful libraries developed in 

C++ are OpenSSL, Botan, and CrypTool.

By the end of this chapter, you learned the following:

•	 How to access the most important open source cryptography 

libraries and frameworks

•	 How the main cryptographic operations work and how you can 

interact with those libraries and frameworks

Figure 8-52.  Decryption using RSA
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•	 How you can access their source code with the goal of comparing the 

implementations of the algorithms

•	 How to learn from other professional developers (e.g. OpenSSL, 

Botan, etc.) the best practices for developing cryptographic 

algorithms
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CHAPTER 9

Elliptic-Curve 
Cryptography
Elliptic-curve cryptography (ECC) represents a public-key cryptography approach. It is 

based on the algebraic structure of elliptic curves over finite fields. ECC can be used in 

cryptography applications and primitives, such as key agreement, digital signature, and 

pseudo-random generators. It can also be used for operations such as encryption through 

a combination between key agreements with a symmetric encryption scheme. Some other 

interesting usages can be seen in several types of integer factorization algorithms that are 

based on elliptic curves (EC), with applications in cryptography, such as Lenstra Elliptic-

Curve Factorization (L-ECC) [1]. Elliptic curves appeared for the first time in Diophantus’ 

works [3], and it is a subject that has remained close to Diophantine geometry [2].

The starting point of elliptic-curve cryptography starts in public key cryptography 

(PKC). Using PKC in ECC, we have a dedicated, special case of manipulating the points 

of the elliptic curve and how they are generated. The manipulation consists of two cases, 

multiplication and addition.

The main advantage of ECC is that we can obtain a certain level of security based 

on using shorter keys, comparing with most other cryptographic algorithms that would 

require more resources for the same level of security.

The second advantage is that in some cases, elliptic-curve cryptography is quite 

resistant against certain attacks. These attacks are designed and developed with respect 

to integer factorization and discrete logarithms, and have proved to be unsuccessful.

Before proceeding further with a practical implementation, some basic theoretical 

notions will be presented in order to get you familiarized with elliptic-curve 

cryptography notions and how they work. The following section describes the required 

notions that will be found as well in the implementation section, where you’ll find 

Listing 9-1 and Listing 9-2.
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�Theoretical Fundamentals
In this section, we will describe the main foundation that must be understood before 

proceeding further with the practical implementation. The graphical content and the 

representations of some of the equations are taken and cited from [4].

Let’s start with the following example, in which we assume that we have a collection 

of balls and we arrange them to look like a regular pyramid, in such way that on the top 

level we have only one ball, on the next level we have four balls, on the next level nine 

balls, and so on (see Figure 9-1).

One logical question you might ask is, if the pyramid collapses, is there a way of 

rearranging the balls into a squared matrix? If the pyramid has only three levels, the 

rearranging process cannot be done because there are 1 + 4 + 9 = 19 balls, which is not a 

perfect square. If we have a single ball, the pyramid will be organized with one level and 

a squared matrix with one line and one column.

If the pyramid has the x height, then we will have

	
1 2 3

1 2 1

6
2 2 2 2+ + +¼ =

+( ) +( )
x

x x x
balls. 	

Figure 9-1.  Pyramid of balls [4]
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The intention is that the number is a perfect square number. To do this, we will need 

to resolve the following equation:

y
x x x2 1 2 1

6
=

+( ) +( )
 in ℕ.

Such an equation represents the elliptic curve equation. See Figure 9-2.

The y
x x x2 1 2 1

6
=

+( ) +( )
 equation shown in Figure 9-2 can be solved using the 

Diophantus method, using points we know to find other points. Using (0, 0) and (1, 1) 

points, we can obtain the following straight equation: y = x. When we intersect the 

obtained curve with the equation of the line, we get the following relation:

	
x

x x x
x x x2 3 21 2 1

6

1

3

1

3

1

6
=

+( ) +( )
= + + 	

which is equivalent to

	
x x x3 23

2

1

2
0- + = . 	

Figure 9-2.  Graphic for y
x x x2 1 2 1

6
=

+( ) +( )  [4]
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We know already two roots of this equation, x = 0 and x = 1, which are the 

coordinates on the Ox axis of the intersection points between the equation of the line 

and the curve. For three real numbers, a, b, c, we know

	 x a x b x c x a b c x ab ac bc x abc-( ) -( ) -( ) = + + +( ) + + +( ) -3 2 . 	

In our situation, for roots 0, 1, x we will obtain 0 1
3

2
+ + =x , finding the coordinate 

point 
1

2

1

2
,æ

è
ç

ö
ø
÷. Because of the symmetry of the curve, we have also the coordinate point 

1

2

1

2
,-æ

è
ç

ö
ø
÷.

Continuing with the technique illustrated above for points 
1

2

1

2
,-æ

è
ç

ö
ø
÷  and (1, 1), we 

will obtain the equation of the line y = 3x − 2, which will intersect the given curve, getting 

the following:

	
3 2

1 2 1

6
2

x
x x x

-( ) =
+( ) +( )

	

equivalent to

	
x x3 251

2
0- +¼= . 	

We already know the roots 
1

2
 and 1, so we will obtain

	

1

2
1

51

2
+ + =x , 	

from which we have x = 24 and y = 70, which means

	 1 2 3 24 702 2 2 2 2+ + +¼+ = . 	

If there are 4900 balls, they can be arranged as a pyramid with a height of 24 and they 

can be arranged in a squared pyramid with 24 lines and 24 columns.

�Weierstrass Equation
In the next section, the practical solution will be provided using the Weierstrass equation.
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Definition 9-1. Let’s consider elliptic curve E as being the following set: 

{(x, y)| y2 = x3 + Ax + B}, in which the elements A, B, x, y are elements from the field K, 

defined as K P QÎ{ }Q R C Z Z, , , ,  , where p represents a prime number, q = pk, k ≥ 1, and A, 

B are constants.

Definition 9-2. An equation that is defined according to Definition 9-1 is called a 

Weierstrasss equation.
Definition 9-3. If K is a field and A, B ∈ K, we will say that E is defined over the field K. 

For the points that have their coordinates in L ⊆ K, we will write E(L). By definition, to this 

set we will add a point that doesn’t belong to the affine plane, a point that is noted with ∞:

	
E L x y L L y x Ax B( ) = ¥{ }È ( )Î ´ = + +{ }, , 3 3

	

Intuitively, it is useful to think of the graph of the elliptic curve over the field of real 

numbers. This has two basic forms, as shown in Figure 9-3. The equation y2 = x3 − x has 

three real roots, and the equation y2 = x3 + x has one single real root. It is not allowed to 

have multiple roots so we need to mention the following condition: 4A3 + 27B2 ≠ 0.

Figure 9-3.  The basic two forms of the elliptic curve over a real numbers field [4]
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If the roots are r1, r2, r3, then

	
r r r r r r A B1 2 1 3 2 3

2 3 24 27-( ) -( ) -( )( ) = - +( ). 	

Definition 9-4. The general form of an elliptic equation over a K field is called the 

Weierstrass generalized equation and it has the form

	 y a xy a y x a x a x a2
1 3

3
2

2
4 6+ + = + + + 	

where a1…a6 are constants from K. This form is very useful, especially when we proceed 

later with the implementation.

The generalized Weierstrass equation is useful for fields with two or three 

characteristics. For fields with a different characteristic, we will obtain

	
y

a x a
x a

a
x a

a a
x

a
+ +æ

è
ç

ö
ø
÷ = + +

æ

è
ç

ö

ø
÷ + +æ

è
ç

ö
ø
÷ + +1 3

2
3

2
1
2

2
4

1 3 3
2

2 2 4 2 4
aa6

æ

è
ç

ö

ø
÷ ,

	

which is equivalent to

	 y x a x a x a1
2 3

2
2

4 6= + + +¢ ¢ ¢ , 	

with y y
a

x
a

1
1 3

2 2
= + +  and a a a2 4 6

¢ ¢ ¢, ,  being constants. For fields with characteristic 

different than three, we have

	
x x

a
1

2

3
= +

¢

. 	

We will obtain

	 y x Ax B1
2

1
3

1= + + , 	

where A and B are constants.

�Group Law
When it comes to a practical implementation, group law is very important for working 

with operations between points. There is a theorem that needs to be followed in order to 

have a proper implementation. Theorem 9-1 describes the properties of an elliptic curve. 

The properties have been implemented in Listing 9-2.
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Theorem 9-1. Adding points on elliptic curve E has the following properties:

	 1.	 (Commutativity) P1 + P2 = P2 + P1, ∀ P1, P2 ∈ E;

	 2.	 (Neutral element) P +  ∞  = P, ∀ P ∈ E;

	 3.	 (Inverse existence) ∀P ∈ E, ∃ P′ ∈ E in such way that P + P′ = ∞. 

The P′ point is noted usually with −P.

	 4.	 (Associativity) (P1 + P2) + P3 = P1 + (P2 + P3), ∀P1, P2, P3 ∈ E.

�Practical Implementation
This section discuss the practical implementation of ECC using C++20 and provides a 

basic implementation of ECC step by step.

The example (see Figure 9-4, Listing 9-1, and Listing 9-2) that we have provided 

represents the implementation of an elliptic curve over a finite field with order P. The 

following elliptic curve equation will be used for our implementation:

	 y P x ax b P2 3mod mod= + + . 	

The implementation is structured in two parts:

•	 Implementation of the Field Finite Element Engine (FFE_Engine.

hpp) – Listing 9-1: The file contains the signatures for the following 

operations and functions:

•	 int ExtendedGreatestCommongDivisor(): The function 

computes the extended greater common divisor.

•	 int InverseModular(): The function’s purpose is to solve the 

linear congruence equation x × z =  = 1 (mod n);.

•	 FFE operator-() const: The operator represents the negation 

operation.

•	 FFE& operator=(int i): The operator deals with the assignation 

with an integer.

•	 FFE<P>& operator=(const FFE<P>& rhs): The operator for 

assignation from the field element
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•	 FFE<P>& operator*=(const FFE<P>& rhs): Implementation for 

the *= operator for assignation from the field element

•	 friend bool operator==(const FFE<P>& lhs, const FFE<P>& 

rhs): Implementation of the == operator for assignation from the 

field element

•	 friend FFE<P> operator/(const FFE<P>& lhs, const 

FFE<P>& rhs): Implementation for the / operator for assignation 

from the field element as form (x,y).

•	 friend FFE<P> operator+(const FFE<P>& lhs, const 

FFE<P>& rhs): Implementation for the + operator for assignation 

from the field element as form (x,y).

•	 friend FFE<P> operator-(const FFE<P>& lhs, const 

FFE<P>& rhs): Implementation for the - operator for assignation 

from the field element as form (x,y).

•	 friend FFE<P> operator+(const FFE<P>& lhs, int i): 

Implementation for the a + int operator for assignation from the 

field element as form (x,y).

•	 friend FFE<P> operator+(int i, const FFE<P>& rhs): 

Implementation for the int + a operator for assignation from the 

field element as form (x,y).

•	 friend FFE<P> operator*(int n, const FFE<P>& rhs): 

Implementation for the int ∗ a operator for assignation from the 

field element as form (x,y).

•	 friend FFE<P> operator*(const FFE<P>& lhs, const 

FFE<P>& rhs): Implementation for the a ∗ b operator for 

assignation from the field element as form (x,y).

•	 template<int T>

friend ostream& operator<<(ostream& os, const  

FFE<T>& g): The operator ostream is used for showing and 

displaying in readable format.
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•	 The main program, listed in Listing 9-2: The file contains the 

main implementation for elliptic-curve cryptography. In the 

main program, a special focus is on the implementation of 

the operators listed above. Another important aspect for this 

implementation is that at the beginning of the program you 

can observe that the curve is defined over a finite field (a Galois 

field) and that any point within the elliptic curve is formed from 

two elements that are within the Galois fields. These points are 

created once there is a declaration instance of the elliptic curve 

itself. To perform the elliptic curve implementation, we need the 

following two declarations: typedef EllipticCurve<OrderFFE_

EC> this_t and typedef class EllipticCurve<OrderFFE_

EC>::EllipticCurvePoint point_t. Once we have these 

declarations, we can proceed further with the representation of 

the Weierstrass equation as y2 = x3 + ax + b, as represented below 

through the constructor of the EllipticCurve class:

//** the Weierstrass equation as y^2 = x^3 + ax + b

EllipticCurve(int CoefA, int CoefB)

     : ECParameterA(CoefA),

      ECParameterB(CoefB),

      tableOfPoints(),

      tableFilledComputated(false)

{}

The next step is to compute the points and to set true for the 

tableFilledComputated Boolean variable, used to indicate if the table with points 

has been filled or not for further computation. The rest of the functions are pretty 

straightforward and represent basic cryptographic operations between Alice and Bob, 

and also Oscar (the malicious third party who will try to decrypt the message).
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Listing 9-1.  Implementation of the Field Finite Element Engine (FFE_Engine)

namespace EllipticCurveCryptography

{

        //** basic functions for

        //** Finite Field Elements (FFE)

Figure 9-4.  The output of the example
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        namespace HelperFunctionFFE

        {

            //** Computing Extended GCD gives g = a*u + b*v

            int ExtendedGreatestCommongDivisor(int a, int b,

                                               int& u, int &v)

            {

                u = 1;

                v = 0;

                int g = a;

                int u1 = 0;

                int v1 = 1;

                int g1 = b;

                while (g1 != 0)

                {

                    //** division using integers

                    int q = g/g1;

                    int t1 = u - q*u1;

                    int t2 = v - q*v1;

                    int t3 = g - q*g1;

                    u = u1; v = v1; g = g1;

                    u1 = t1; v1 = t2; g1 = t3;

                }

                return g;

            }

                    //** providing solution and solving

                    //** the linear congruence equation

                    //** x * z == 1 (mod n) for z

                    int InvMod(int x, int n)

                    {

                          //** "%" represents the remainder

                          //** function, 0 <= x % n < |n|

                          x = x % n;

                          int u,v,g,z;

                          g = ExtendedGreatestCommongDivisor(x, n,u,v);
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                if (g != 1)

                {

                       //** x and n has to be primes

                       //** in order to exist an x^-1 mod n

                       z = 0;

                }

                else

                    z = u % n;

                return z;

            }

        }

             //** represents the element from a Galois field

             //** we will use a specific behaviour for the

             //** modular function in which (-n) mod m will

             //** return a negative number.

             //** The implementation is done in such way that

             //** it will offer a support for the basic

             //** arithmetic operations, such as:

             //** + (addition), - (subtraction), / (division)

             //** and scalar multiplication.

             //** The P served as an argument represents the

             //** order for the field.

             template<int P>

             class FFE

              {

              int i_;

            void assign(int i)

            {

                i_ = i;

                if ( i<0 )

                {

                    //** The correction behaviour

                    //** is important.

                    //** Using (-i) mod p we will make sure
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                    //** that the behaviour is the proper one.

                    i_ = (i%P) + 2*P;

                }

                i_ %= P;

            }

            public:

                //** the constructor

                FFE()

                 : i_(0)

                {}

                //** another constructor

                explicit FFE(int i)

                {

                    assign(i);

                }

                //** copying the constructor

                FFE(const FFE<P>& rhs)

                 : i_(rhs.i_)

                {

                }

                //** providing access to

                //** the raw integer

                int i() const { return i_; }

                //** implementation for negation operator

                FFE  operator-() const

                {

                    return FFE(-i_);

                }
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                //** assignation  assign from integer

                FFE& operator=(int i)

                {

                    assign(i);

                    return *this;

                }

                //** assignation from from field element

                FFE<P>& operator=(const FFE<P>& rhs)

                {

                    i_ = rhs.i_;

                    return *this;

                }

                //** implementation of "*=" operator

                FFE<P>& operator*=(const FFE<P>& rhs)

                {

                    i_ = (i_*rhs.i_) % P;

                    return *this;

                }

                //** implementation of "==" operator

                friend bool operator==(const FFE<P>& lhs,

                                       const FFE<P>& rhs)

                {

                    return (lhs.i_ == rhs.i_);

                }

                //** implementation of "==" operator

                friend bool operator==(const FFE<P>& lhs,

                                       int rhs)

                {

                    return (lhs.i_ == rhs);

                }

Chapter 9  Elliptic-Curve Cryptography



203

                //** implementation of "!=" operator

                friend bool operator!=(const FFE<P>& lhs, int rhs)

                {

                    return (lhs.i_ != rhs);

                }

                // implementation of "a/b" operator

                friend FFE<P> operator/(const FFE<P>& lhs,

                                        const FFE<P>& rhs)

                {

                    return FFE<P>( lhs.i_ *

                        HelperFunctionFFE::InvMod(rhs.i_,P));

                }

                   //** implementation of "a+b" operator

                friend FFE<P> operator+(const FFE<P>& lhs,

                                        const FFE<P>& rhs)

                {

                    return FFE<P>( lhs.i_ + rhs.i_);

                }

                //** implementation of "a-b" operator

                friend FFE<P> operator-(const FFE<P>& lhs,

                                        const FFE<P>& rhs)

                {

                    return FFE<P>(lhs.i_ - rhs.i_);

                }

                // implementation of "a + int" operator

                friend FFE<P> operator+(const FFE<P>& lhs, int i)

                {

                    return FFE<P>( lhs.i_+i);

                }
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                //** implementation of "int + a" operator

                friend FFE<P> operator+(int i, const FFE<P>& rhs)

                {

                    return FFE<P>( rhs.i_+i);

                }

                //** implementation of "int * a" operator

                friend FFE<P> operator*(int n, const FFE<P>& rhs)

                {

                    return FFE<P>( n*rhs.i_);

                }

                //** implementation of "a * b"

                friend FFE<P> operator*(const FFE<P>& lhs,

                                        const FFE<P>& rhs)

                {

                    return FFE<P>( lhs.i_ * rhs.i_);

                }

                //** the operator ostream for

                //** showing and displaying in

                //** readable format

                template<int T>

                friend ostream& operator<<(ostream& os,

                                           const FFE<T>& g)

                {

                    return os << g.i_;

                }

        };

}
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Listing 9-2.  Implementation of the Main Program

//** Leave everything as it is.

//** Don't change the order of the inputs or namespaces.

#include <cstdlib>

#include <iostream>

#include <vector>

using namespace std;

#include <math.h>

#include "FFE_Engine.hpp"

namespace EllipticCurveCryptography

{

        //** Elliptic Curve over a finite field of order P:

        //** y^2 mod P = x^3 + ax + b mod P

        template<int OrderFFE_EC> class EllipticCurve

        {

            public:

                //** this curve is defined over the finite

                //** field (Galois field) Fp, this is the

                //** typedef of elements in it

                typedef FFE<OrderFFE_EC> ffe_element;

                 //** any point on elliptic curve is formed

                 //** from two elements that are within Fp

                 //**field (Galois Field). The points are

                 //** created once we declare an instance of

                 //** Elliptic Curve itself.

                 class EllipticCurvePoint

                 {

                     friend class EllipticCurve<OrderFFE_EC>;

                     typedef FFE<OrderFFE_EC> ffe_element;

                     ffe_element xCoordValue_;

                     ffe_element yCoordValue_;

                     EllipticCurve *ellipticCurve_;
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                     //** core of the doubling multiplier

                     //** algorithm (see below)

                     //** multiplies acc by m as a series of

                     //** "2*accumulatorContainer's"

                     void DoublingMultiplierAlgorithm(int

                                  multiplier, EllipticCurvePoint&

                                  accumulatorContainer)

                     {

                        if (multiplier > 0)

                        {

                            EllipticCurvePoint doublingValue =

                                            accumulatorContainer;

                            for (int counter=0; counter <

                                             multiplier; ++counter)

                            {

                              //** doubling step

                               doublingValue += doublingValue;

                            }

                            accumulatorContainer =

                                         doublingValue;

                        }

                    }

                    //** Implementation of doubling

                    //** multiplier algorithm.

                    //** The process stands on multiplying

                    //** intermediateResultAccumulator for

                    //** storing the intermediate

                    //** results with inputScalar.

                    //** This is done through

                    //** expansion in multipliple

                    //** by 2 between the first of the

                    //** binary represtantion of inputScalar.
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                    EllipticCurvePoint MultiplyUsingScalar(int

                          inputScalar, const EllipticCurvePoint&

                          intermediateResultAccumulator)

                    {

                        EllipticCurvePoint 

                               accumulatorContainer =

                               intermediateResultAccumulator;

                        EllipticCurvePoint outputResult =

                                      EllipticCurvePoint(0,0,

                                            *ellipticCurve_);

                        int i = 0, j = 0;

                        int iS = inputScalar;

                        while(iS)

                        {

                            if (iS&1)

                            {

      //** Setting up the bit.

      //** The computation is done by following the formula:

      //** accumulatorContainer = 2^(i-j)*accumulatorContainer

     DoublingMultiplierAlgorithm(i-j,accumulatorContainer);

     outputResult += accumulatorContainer;

      //** last setting for the bit

     j = i;

                            }

                            iS >>= 1;

                            ++i;

                        }

                        return outputResult;

                    }

                    //** the function deals with

                    //** adding two points on the curve
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                    //** xCoord1, yCoord1, xCoord2=x2,

                    //** yCoord2=y2

                    void ECTwoPointsAddition(ffe_element

                                 xCoord1, ffe_element yCoord1,

                                 ffe_element xCoord2, ffe_element

                                 yCoord2, ffe_element & xCoordR,

                                 ffe_element & yCoordR) const

                    {

                        //** dealing with sensitives cases

                        //** for implying addition identity

                        if (xCoord1==0 && yCoord1==0)

                        {

                            xCoordR = xCoord2;

                            yCoordR = yCoord2;

                            return;

                        }

                        if (xCoord2==0 && yCoord2==0)

                        {

                            xCoordR = xCoord1;

                            yCoordR = yCoord1;

                            return;

                        }

                        if (yCoord1==-yCoord2)

                        {

                            xCoordR = yCoordR = 0;

                            return;

                        }

                        //** deal with the additions

                        ffe_element s;
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                        if (xCoord1 == xCoord2 && yCoord1 == yCoord2)

                        {

                            //** computing 2*P

                            s = (3*(xCoord1.i()*xCoord1.i()) +

                                         ellipticCurve_->a()) /

                                        (2*yCoord1);

                            xCoordR = ((s*s) - 2*xCoord1);

                        }

                        else

                        {

                            //** computing P+Q

                            s = (yCoord1 - yCoord2) / (xCoord1

                                                     - xCoord2);

                            xCoordR = ((s*s) - xCoord1 –

                                                       xCoord2);

                        }

                        if (s!=0)

                        {

                            yCoordR = (-yCoord1 + s*(xCoord1 –

                                                     xCoordR));

                        }

                        else

                        {

                            xCoordR = yCoordR = 0;

                        }

                    }

                    EllipticCurvePoint(int xPoint, int yPoint)

                    : xCoordValue_(xPoint),

                      yCoordValue_(yPoint),

                      ellipticCurve_(0)

                    {}
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                    EllipticCurvePoint(int xPoint, int yPoint,

                                 EllipticCurve<OrderFFE_EC> &

                                 EllipticCurve)

                     : xCoordValue_(xPoint),

                       yCoordValue_(yPoint),

                       ellipticCurve_(&EllipticCurve)

                    {}

                    EllipticCurvePoint(const ffe_element&

                                 xPoint, const ffe_element& yPoint,

                                 EllipticCurve<OrderFFE_EC> &

                                 EllipticCurve)

                     : xCoordValue_(xPoint),

                       yCoordValue_(yPoint),

                       ellipticCurve_(&EllipticCurve)

                    {}

                public:

                    static EllipticCurvePoint ONE;

                    //** constructor

                    EllipticCurvePoint(const

                                EllipticCurvePoint& rhsPoint)

                    {

                        xCoordValue_ = rhsPoint.xCoordValue_;

                        yCoordValue_ = rhsPoint.yCoordValue_;

                        ellipticCurve_ =

                                     rhsPoint.ellipticCurve_;

                    }

                    //** the assignment process

                    EllipticCurvePoint& operator=(const

                                EllipticCurvePoint& rhsPoint)

                    {

                        xCoordValue_ = rhsPoint.xCoordValue_;

                        yCoordValue_ = rhsPoint.yCoordValue_;

                        ellipticCurve_ =

                                     rhsPoint.ellipticCurve_;
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                        return *this;

                    }

                    //** access x component as element of Fp

                    ffe_element GetX() const { return

                                             xCoordValue_; }

                    //** access y component as element of Fp

                    ffe_element GetY() const { return

                                             yCoordValue_; }

                    //** calculate the order of this point by

                    //** brute-force additions

                    unsigned int

                                ComputingOrderBruteForceAddition

                                (unsigned int maximum_period = ~0) const

                    {

                        EllipticCurvePoint ecPoint = *this;

                        unsigned int order = 0;

                        while(ecPoint.xCoordValue_ != 0 &&

                                  ecPoint.yCoordValue_ != 0)

                        {

                            ++order;

                            ecPoint += *this;

                            if (order > maximum_period) break;

                        }

                        return order;

                    }

                    //** negation operator (-) that

                    //** gives the inverse of a point

                    EllipticCurvePoint operator-()

                    {

                        return

                                 EllipticCurvePoint(xCoordValue_,

                                     -yCoordValue_);

                    }
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                    //** equal (==) operator

                    friend bool operator==(const

                          EllipticCurvePoint& lhsPoint,

                          const EllipticCurvePoint& rhsPoint)

                    {

                        return (lhsPoint.ec_ == rhsPoint.ec_)

                                && (lhsPoint.x_ == rhsPoint.x_) &&

                                (lhsPoint.y_ == rhsPoint.y_);

                    }

                    //** different (!=) operator

                    friend bool operator!=(const

                                 EllipticCurvePoint& lhsPoint, const

                                 EllipticCurvePoint& rhsPoint)

                    {

                        return (lhsPoint.ec_ != rhsPoint.ec_)

                                 || (lhsPoint.x_ != rhsPoint.x_) ||

                                 (lhsPoint.y_ != rhsPoint.y_);

                    }

                    //** Implementation of a + b operator

                    friend EllipticCurvePoint operator+(const

                                 EllipticCurvePoint& lhsPoint,

                                 const EllipticCurvePoint& rhsPoint)

                    {

                        ffe_element xResult, yResult;

                                       lhsPoint.ECTwoPointsAddition(

                                       lhsPoint.xCoordValue_,

                                       lhsPoint.yCoordValue_,

                                       rhsPoint.xCoordValue_,

                                       rhsPoint.yCoordValue_,

                                       xResult,yResult);

                        return

                                    EllipticCurvePoint(xResult,

                                               yResult,

                                              *lhsPoint.ellipticCurve_);

                    }
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                    //** multiplying with scalar * int

                    friend  EllipticCurvePoint operator*(int

                                     scalar, const

                                       EllipticCurvePoint& rhsPoint)

                    {

                        return

                                        EllipticCurvePoint(rhsPoint).

                                             operator*=(scalar);

                    }

                    //** Implementation of += operator

                    EllipticCurvePoint& operator+=(const

                                   EllipticCurvePoint& rhsPoint)

                    {

                                ECTwoPointsAddition(xCoordValue_,

                                yCoordValue_,rhsPoint.xCoordValue_,

                                rhsPoint.yCoordValue_,xCoordValue_,

                                yCoordValue_);

                        return *this;

                    }

                    //** Implementation of *= int operator

                    EllipticCurvePoint& operator*=(int scalar)

                    {

                        return (*this =

                             MultiplyUsingScalar(scalar,*this));

                    }

                    //** display and print the point

                    //** using ostream

                    friend ostream& operator <<(ostream& os,

                                    const EllipticCurvePoint& p)

                    {

                        return (os << "(" << p.xCoordValue_ <<

                                ", " << p.yCoordValue_ << ")");

                    }

                };
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                //** performing the elliptic

                //** curve implementation

                typedef EllipticCurve<OrderFFE_EC> this_t;

                typedef class

                         EllipticCurve<OrderFFE_EC>::

                              EllipticCurvePoint point_t;

                //** the Weierstrass equation

                //** as y^2 = x^3 + ax + b

                EllipticCurve(int CoefA, int CoefB)

                : ECParameterA(CoefA),

                  ECParameterB(CoefB),

                  tableOfPoints(),

                  tableFilledComputated(false)

                {

                }

                //** compute all the points

                //** (from the group of elements) for

                //** Weierstrass equation. Note the

                //** fact that if we are

                //** having a high order for the curve,

                //** the computation process

                //** will take some time

                void CalculatePoints()

                {

                    int x_val[OrderFFE_EC];

                    int y_val[OrderFFE_EC];

                    for (int counter = 0; counter <

                         OrderFFE_EC; ++counter)

                    {

                        int nsq = counter*counter;

                        x_val[counter] = ((counter*nsq) +

                                 ECParameterA.i() * counter +

                                 ECParameterB.i()) % OrderFFE_EC;

                        y_val[counter] = nsq % OrderFFE_EC;

                    }
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                    for (int counter1 = 0; counter1 <

                         OrderFFE_EC; ++counter1)

                    {

                        for (int counter2 = 0; counter2 <

                             OrderFFE_EC; ++counter2)

                        {

                            if (x_val[counter1] ==

                                y_val[counter2])

                            {

                                      tableOfPoints.push_back(Ellip

                                      ticCurvePoint(counter1,

                                      counter2,*this));

                            }

                        }

                    }

                    tableFilledComputated = true;

                }

                //** obtain the point (from the group of

                //** elements) for the curve

                EllipticCurvePoint operator[](int n)

                {

                    if ( !tableFilledComputated )

                    {

                        CalculatePoints();

                    }

                    return tableOfPoints[n];

                }

                //** the number og the elements

                //** in the group

                size_t Size() const { return

                                tableOfPoints.size(); }
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                //** the degree of the point for

                //** the elliptic curve

                int Degree() const { return OrderFFE_EC; }

                //** the "a" parameter, as an element of Fp

                FFE<OrderFFE_EC> a() const { return

                                          ECParameterA; }

                //** the "b" paramter, as an element of Fp

                FFE<OrderFFE_EC> b() const { return

                                            ECParameterB; }

                //** print and show the elliptic curve in a

                //** readable format using ostream  human

                //** readable form

                template<int ECT>

                friend ostream& operator <<(ostream& os, const

                                   EllipticCurve<ECT>& EllipticCurve);

                //** print and display all the elements

                //** of the elliptic curve group

                ostream& PrintTable(ostream &os,

                                    int columns=4);

                private:

                    typedef std::vector<EllipticCurvePoint>

                                             TableWithPoints;

                    //** table with the points

                    TableWithPoints tableOfPoints;

                    //** first parameter of the

                   //** elliptic curve equation

                   FFE<OrderFFE_EC> ECParameterA;

                    //** second parameter of the

                    //** elliptic curve equation

                     FFE<OrderFFE_EC> ECParameterB;
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                    //** boolean value to show if the

                    //** table has been computed

                    bool tableFilledComputated;

        };

        template<int ECT>

            typename EllipticCurve<ECT>::EllipticCurvePoint

                          EllipticCurve<ECT>::EllipticCurvePoint::

                          ONE(0,0);

        template<int ECT>

        ostream& operator <<(ostream& os, const

                         EllipticCurve<ECT>& EllipticCurve)

        {

            os << "y^2 mod " << ECT << " = (x^3" << showpos;

            if ( EllipticCurve.ECParameterA != 0 )

            {

                os << EllipticCurve.ECParameterA << "x";

            }

            if ( EllipticCurve.ECParameterB.i() != 0 )

            {

                os << EllipticCurve.ECParameterB;

            }

            os << noshowpos << ") mod " << ECT;

            return os;

        }

        template<int P>

        ostream& EllipticCurve<P>::PrintTable(ostream &os,

                                               int columns)

        {

            if (tableFilledComputated)

            {

                int col = 0;

Chapter 9  Elliptic-Curve Cryptography



218

                typename

                         EllipticCurve<P>::TableWithPoints::

                         iterator iter = tableOfPoints.begin();

                for ( ; iter!=tableOfPoints.end(); ++iter )

                {

                    os << "(" << (*iter).xCoordValue_.i() <<

                    ", " << (*iter).yCoordValue_.i() << ") ";

                    if ( ++col > columns )

                    {

                        os << "\n";

                        col = 0;

                    }

                }

            }

            else

            {

                os << "EllipticCurve, F_" << P;

            }

            return os;

        }

}

namespace utils

{

    float   frand()

    {

        static float norm = 1.0f / (float)RAND_MAX;

        return (float)rand()*norm; 

    }

    int irand(int min, int max)

    {

        return min+(int)(frand()*(float)(max-min));

    }

}
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using namespace EllipticCurveCryptography;

using namespace utils;

int main(int argc, char *argv[])

{

    typedef EllipticCurve<163> elliptic_curve;

    elliptic_curve myEllipticCurve(1,1);

    cout << "Basic Example of using Elliptic Curve

                 Cryptography using C++20. Apress, 2020\n\n";

    //** display some informations about the

    //** elliptic curve and display some of the properties

    cout << "Equation of the elliptic curve: " <<

                                     myEllipticCurve << "\n";

    //** compute the points for the elliptic

    //** curve for equation from the above

    myEllipticCurve.CalculatePoints();

    cout << "\nList of the points (x,Y) for the curve (i.e.

                                        the group elements):\n";

    myEllipticCurve.PrintTable(cout,5);

    cout << "\n\n";

    elliptic_curve::EllipticCurvePoint P = myEllipticCurve[2];

    cout << "Randomly - Point P  = " << P << ", 2P = " <<

                                         (P+P) << "\n";

      elliptic_curve::EllipticCurvePoint Q =

                                          myEllipticCurve[3];

    cout << "Randomly - Point Q = " << Q << ", P+Q = " <<

                                                (P+Q) << "\n";

    elliptic_curve::EllipticCurvePoint R = P;

    R += Q;

    cout << "P += Q = " << R << "\n";

Chapter 9  Elliptic-Curve Cryptography



220

    R = P;

    R += R;

    cout << "P += P = 2P = " << R << "\n";

    cout << "\nEncryption of the message using

                   elliptic curve principles\n\n";

    //** as an example we will use Menes-Vanstone

    //** scheme that is based on elliptic

    //** curve for message encryption

    elliptic_curve::EllipticCurvePoint G = myEllipticCurve[0];

    while((G.GetY() == 0 || G.GetX() == 0) ||

                (G.ComputingOrderBruteForceAddition()<2))

    {

        int n = (int)(frand()*myEllipticCurve.Size());

        G = myEllipticCurve[n];

    }

    cout << "G = " << G << ", order(G) is " <<

                 G.ComputingOrderBruteForceAddition() << "\n";

    //** Suppose that Alice wish to communicate with Bob

    //** Alice and its public key

    int a = irand(1,myEllipticCurve.Degree()-1);

    //** generating the public key

    elliptic_curve::EllipticCurvePoint Pa = a*G;

    cout << "Alice - Public key (Pa) = " << a << "*" << G << "

                                         = " << Pa << endl;

    //** Bob and is public key

    int b = irand(1,myEllipticCurve.Degree()-1);

    //** the public key

    elliptic_curve::EllipticCurvePoint Pb = b*G;

    cout << "Bob - Public key (Pb) = " << b << "*" << G << " =

                                           " << Pb << endl;
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    //** Oscar - the eavesdropper and attacker

    int o = irand(1,myEllipticCurve.Degree()-1);;

    elliptic_curve::EllipticCurvePoint Po = o*G;

    cout << "Oscar - Public key (Po) = " << o << "*" << G << "

                                         = " << Po << endl;

    cout << "\n\n";

    //** Alice proceed with the encryption

    //** for her message and send it to Bob.

    //** To achieve this, the first step is

    //** to split the message into multiple

    //** parts which are encoded using Galois

    //** field (Fp), which is also the domain

    //** elliptic curve.

    int m1 = 19;

    int m2 = 72;

    cout << "The clear text message send by Alice to Bob: ("

                                << m1 << ", " << m2 << ")\n";

    //** proceed with encryption using the key of Bob

    elliptic_curve::EllipticCurvePoint Pk = a*Pb;

    elliptic_curve::ffe_element c1(m1*Pk.GetX());

    elliptic_curve::ffe_element c2(m2*Pk.GetY());

    //** the message that is encrypted is composed from:

    //** Pa - Alice public key

    //** c1,c2

    cout << "The message encrypted from Alice for Bob is

                     represented as {Pa,c1,c2} and its content is =

                     {" << Pa << ", " << c1 << ", " << c2 <<

                    "}\n\n";

    //** Bob compute the decryption for the message

    //** received from Alice, using her public key

    //** and the session value (integer b)

    Pk = b*Pa;

Chapter 9  Elliptic-Curve Cryptography



222

    elliptic_curve::ffe_element m1d  = c1/Pk.GetX();

    elliptic_curve::ffe_element m2d = c2/Pk.GetY();

    cout << "\tThe message decrypted by Bob from Alice is = ("

                          << m1d << ", " << m2d << ")" << endl;

    //** Oscar will intercept the message and

    //** and he/she will try to decrypt it

    //** using his/her key

    Pk = o*Pa;

    m1d = c1/Pk.GetX();

    m2d = c2/Pk.GetY();

    cout << "\nOscar decrypt the message from Alice = (" <<

                          m1d << ", " << m2d << ")" << endl;

    cout << endl;

}

�Conclusion
In this chapter, we discussed elliptic-curve cryptography and how it can be implemented 

in practice.

Since you’ve reached the end of this chapter, you can now

•	 Understand the theoretical fundamentals for implementing elliptic-

curve cryptography.

•	 Apply theoretical mechanisms and theorems for operations with 

group law in practice.

•	 Implement the basic operations and transpose them into practical 

elliptic-curve cryptography.
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CHAPTER 10

Lattice-Based 
Cryptography
In this chapter, you will get an overview of lattice-based cryptography. You will learn 

why lattices are important in the cryptography field and the challenges in using them. 

Further, you will explore a practical implementation that uses lattices, namely the GGH 

(Goldreich–Goldwasser–Halevi) encryption scheme [1].

Lattices are important in cryptography because the hardness assumption based 

on them is considered to be quantum resistant. In the last few years, the number of 

primitives in quantum cryptography has increased. While the traditional encryption 

systems, such as RSA, Diffie-Hellman, and elliptic-curve encryption systems, can be 

easily broken using quantum computers, encryption systems that use lattices are one of 

the few candidates that can resist in post-quantum cryptography.

However, using lattices in cryptography is not an easy task regarding the applicability 

and the practical implementations, because they are complex mathematical 

constructions that require a quite solid background of algebra and an understanding of 

abstract concepts.

�Mathematical Background
This section provides a short overview of the main elements and techniques that are 

required as minimum theoretical information about lattices and the mathematical 

background that a professional should know.

Take into consideration the space ℝn and a base in ℝn of the form b = (b1, …, bn), with 

b1, …, bn ∈ ℝ. A lattice has the following form:

	  b a b ai i i( ) = å Î{ }|  	
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In the above construction, ai is an integer number and bi is the ith element of the 

basis b. Moreover, it can be observed that  is the set of all linear combinations that 

have integer coefficients. An immediate example of a lattice is ℤn, generated by the 

standard basis in ℝn. Figure 10-1 shows a lattice in a Euclidean plane.

Examples of lattice problems are: shortest vector problem (SVP), closest vector 

problem (CVP), shortest independent vector problem (SIVP), GapSVP, GapCVP, 

bounded distance decoding, covering radius problem, and shortest basis problem. In 

cryptography, SVP and CVP are mainly used as hardness assumptions in cryptosystems.

For SVP, the following elements are given: a vector space V, a basis b in the vector 

space, and a norm N. Knowing the lattice  b( ), it is required to compute the shortest 

vector v ∈ V such that v’s norm in V represents the minimum distance defined in  . In 

other words, the vector v ∈ V should be found such that

	
v b= ( )( )l  	

In the above relation, ∥. ∥ represents the norm in V,  b( )  is the lattice defined over 

the basis b, and λ is the minimum distance defined in  b( ) . The relation gives the 

search variant of the SVP. The other two variants are

•	 Calculation: Find the minimum distance in lattice l  b( )( )  when 

given the basis b and lattice l  b( )( ) .

•	 Decision: Decide whether l  b d( )( ) £  or l  b d( )( ) >  when given 

the basis b, lattice l  b( )( ) , and a real value d > 0.

Figure 10-1.  A lattice in a Euclidean plane1

1�Source: https://en.wikipedia.org/wiki/Lattice_(group
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A generalization of SVP is CVP, where, informally speaking, given a vector v ∈ V, it is 

required to find the vector u in  b( )  which is nearest to v. Note that v is not necessarily 

in  b( ) . In some cases, there is an additional condition: the distance between v and u 

should not exceed a given value.

For more information about the lattices used in cryptography, you can consult [2], [3].

�Example
In this section, we present a GGH encryption scheme [1] that uses lattices. GGH is an 

asymmetric encryption scheme, namely it uses the public key for encryption and the 

private key for decryption. The algorithms of the cryptosystem are the well-known 

key generation, encryption and decryption. In the following, we present them as 

proposed in [1]:

•	 Key generation: Given a security parameter, generate a basis b in 

the lattice   defined over an n-dimensional space that has good 

properties (such as containing nearly orthogonal vectors) and a 

unimodular matrix A. The basis and the matrix compose the private 

key. The public key is computed as B = A ∙ b.

•	 Encryption: Given the message m = (m1, …, mn) and the error 

e = (e1, …, en), the encryption is c = m ∙ B + e.

•	 Decryption: Given the encryption c = (c1, …, cn), the message is 

computed in two steps:

	 1.	 Compute c ∙ b−1. This yields 

c ∙ b−1 = (m ∙ B + e)b−1 = m ∙ A ∙ b ∙ b−1 + e ∙ b−1 = m ∙ A + e ∙ b−1.

	 2.	 Remove e ∙ b−1 using a technique such as Babai rounding and 

compute m = m ∙ A ∙ A−1.

Further, we provide the implementation of the encryption and decryption for GGH 

(Listing 10-1), using as keys the following values:

	
b A=

æ

è
ç

ö

ø
÷ =

æ

è
ç

ö

ø
÷

17 0

0 19

2 3

3 5
;

	

The result is shown in Figure 10-2.
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Listing 10-1.  Encryption and Decryption Algorithm of the GGH Cryptosystem

#include <iostream>

#include "math.h"

using namespace std;

void encrypt(double message[100], double public_B[100][100], double error_

vals[100], int dimension, double output_encrypted_text[100]);

void decrypt(int dimension, double encrypted_message[100], double private_

basis[100][100], double unimodular_matrix[100][100], double output_

message[100]);

double matrix_determinant(double square_matrix[100][100], int dimension);

void matrix_inverse(double matrix[100][100], int dimension, double output_

inverse[100][100]);

void matrix_multiplication(double matrix1[100][100], double matrix2[100]

[100], double output[100][100], int dimension) ;

void matrix_addition(double matrix1[100][100], double matrix2[100][100], 

double output_sum[100][100], int dimension);

void get_cofactor(double matrix[100][100], double aux[100][100], int p,  

int q, int n);

void adjoint_matrix(double matrix[100][100], double adjoint[100][100],  

int dimension);

bool inverse_matrix(double matrix[100][100], double inv_matrix[100][100], 

int dimension);

Figure 10-2.  The result of Listing 10-1
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void vector_to_matrix(double v[100], int dimension, double output_

matrix[100][100]);

void matrix_to_vector(double matrix[100][100], double output_v[100], int 

dimension);

void print_matrix(double matrix[100][100], int n, string message);

void print_vector(double vect[100], int n, string message);

void print_message(string message);

int main()

{

    int message_length = 2;

    �double b[100][100] = {{17.0, 0.0}, {0.0, 19.0}}; // the private  

basis -> b

    double b_inverse[100][100];

    inverse_matrix(b, b_inverse, message_length);

    �double A[100][100] = {{2.0, 3.0}, {3.0, 5.0}}; // the private 

unimodular matrix -> A

    double A_inverse[100][100];

    inverse_matrix(A, A_inverse, message_length);

    double B[100][100]; // the public key -> B

    matrix_multiplication(A, b, B, message_length);

    // Encryption

    double enc_message[100]; // stores the encryption of the message -> c

    double message[100] = {2, -5}; // the message -> m

    double error_vals[100] = {1, -1}; // the error values -> e

    print_vector(message, message_length, "message");

    encrypt(message, B, error_vals, message_length, enc_message);

    print_vector(enc_message, message_length, "encrypted message");

    // Decryption

    double recovered_message[100];

    decrypt(message_length, enc_message, b, A, recovered_message);

    print_vector(recovered_message, message_length, "recovered message");

}
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// Auxiliary function that prints a matrix on the console

void print_matrix(double matrix[100][100], int n, string message)

{

    cout<<endl<<"***"<<message<<"***"<<endl;

    for(int i = 0; i < n; i++)

    {

        for(int j = 0; j < n; j++ )

            cout<<matrix[i][j]<<"    ";

        cout<<endl;

    }

    cout<<endl;

}

// Auxiliary function that prints a vector on the console

void print_vector(double vect[100], int n, string message)

{

    cout<<endl<<"***"<<message<<"***"<<endl;

    for(int i = 0; i < n; i++)

    {

         cout<<vect[i]<<"    ";

    }

    cout<<endl;

}

// Auxiliary function that prints a string message on the console

void print_message(string message)

{

    cout<<endl<<"***"<<message<<"***"<<endl;

}

void encrypt(double message[100], double public_B[100][100], double error_

vals[100], int dimension, double output_encrypted_text[100])

{

    // c=m∙B+e
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    �double aux_message[100][100], aux_enc_message[100][100], aux_error_

vals[100][100];

    vector_to_matrix(message, dimension, aux_message);

    // Compute m∙B -> aux_enc_message
    �matrix_multiplication(aux_message, public_B, aux_enc_message, dimension);

    vector_to_matrix(error_vals, dimension, aux_error_vals);

    // Compute m∙B+e -> output_encrypted_text
    �matrix_addition(aux_enc_message, aux_error_vals, aux_enc_message, 

dimension);

    matrix_to_vector(aux_enc_message, output_encrypted_text, dimension);

}

void decrypt(int dimension, double encrypted_message[100], double private_

basis[100][100], double unimodular_matrix[100][100], double output_

message[100])

{

    // (1) Compute c * (b^(-1))

    // (2) Remove e * (b^(-1))

    // (3) Compute m * A * (A^(-1))

    double aux_enc_message[100][100], aux_message[100][100];

    double recovered_message[100][100];

    // Compute the inverse of the basis -> b_inverse

    double b_inverse[100][100];

    inverse_matrix(private_basis, b_inverse, dimension);

    // Compute the inverse of the unimodular matrix -> A_inverse

    double A_inverse[100][100];

    inverse_matrix(unimodular_matrix, A_inverse, dimension);

    // (1) Compute c * (b^(-1)) -> aux_enc_message

    vector_to_matrix(encrypted_message, dimension, aux_enc_message);

    �matrix_multiplication(aux_enc_message, b_inverse, aux_message, 

dimension);
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    // (2) Remove e * (b^(-1)) from aux_enc_message

    // �Basically, the value aux_message[i][j] is rounded to the neareast 

integer

    for (int i=0; i<2; i++)

    {

        for (int j=0; j<2; j++)

            aux_message[i][j] = round(aux_message[i][j]);

    }

    // (3) Compute m * A * (A^(-1))

    �matrix_multiplication(aux_message, A_inverse, recovered_message, 

dimension);

    matrix_to_vector(recovered_message, output_message, dimension);

}

// Computes the matrix multiplication between two matrices

void matrix_multiplication(double matrix1[100][100], double matrix2[100]

[100], double output[100][100], int dimension)

{

    for (int i = 0; i < dimension; i++)

    {

        for (int j = 0; j < dimension; j++)

        {

            output[i][j] = 0;

            for (int k = 0; k < dimension; k++)

                output[i][j] += matrix1[i][k] *  matrix2[k][j];

        }

    }

}

// Computes the matrix sum between two matrices

void matrix_addition(double matrix1[100][100], double matrix2[100][100], 

double output_sum[100][100], int dimension)

{

    for(int i = 0; i < dimension; ++i)

        for(int j = 0; j < dimension; ++j)

            output_sum[i][j] = matrix1[i][j] + matrix2[i][j];
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}

// Computes the cofactor of the element matrix[p][q]

void get_cofactor(double matrix[100][100], double aux[100][100], int p, int 

q, int n)

{

    int i = 0, j = 0;

    for (int row = 0; row < n; row++)

    {

        for (int col = 0; col < n; col++)

        {

            if (row != p && col != q)

            {

                aux[i][j++] = matrix[row][col];

                if (j == n - 1)

                {

                    j = 0;

                    i++;

                }

            }

        }

    }

}

// computes the determinant of a square matrix

double matrix_determinant(double square_matrix[100][100], int dimension)

{

   double matrix_det = 0.0;

   double aux_matrix[100][100];

   if (dimension == 1)

      return square_matrix[0][0];

   if (dimension == 2)

      �return ((square_matrix[0][0] * square_matrix[1][1]) - (square_

matrix[1][0] * square_matrix[0][1]));
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   else

   {

      for (int k = 0; k < dimension; k++) {

         int aux_i = 0;

         for (int i = 1; i < dimension; i++) {

            int aux_j = 0;

            for (int j = 0; j < dimension; j++) {

               if (j == k)

               continue;

               aux_matrix[aux_i][aux_j] = square_matrix[i][j];

               aux_j++;

            }

            aux_i++;

         }

         �matrix_det = matrix_det + (pow(-1.0, k) * square_matrix[0][k] * 

matrix_determinant( aux_matrix, dimension - 1 ));

      }

   }

   return matrix_det;

}

// Computes the adjoint of a matrix

void adjoint_matrix(double matrix[100][100], double adjoint[100][100],  

int dimension)

{

    if (dimension == 1)

    {

        adjoint[0][0] = 1;

        return;

    }

    int sign = 1;

    double aux[100][100];
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    for (int i=0; i<dimension; i++)

    {

        for (int j=0; j<dimension; j++)

        {

            get_cofactor(matrix, aux, i, j, dimension);

            sign = ((i + j) % 2 == 0) ? 1 : -1;

            �adjoint[j][i] = (sign)*(matrix_determinant(aux, dimension - 1));

        }

    }

}

// Computes the inverse of a matrix

bool inverse_matrix(double matrix[100][100], double inv_matrix[100][100], 

int dimension)

{

    double det = matrix_determinant(matrix, dimension);

    if (det == 0)

    {

        return false;

    }

    double adj[100][100];

    adjoint_matrix(matrix, adj, dimension);

    for (int i=0; i<dimension; i++)

        for (int j=0; j<dimension; j++)

        {

            if(adj[i][j] / det == -0)

                adj[i][j] = 0.0;

            inv_matrix[i][j] = adj[i][j] / det;

        }

    return true;

}
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// �This function "converts" a vector (seen as a matrix with 1 line and 

*dimension* columns) into a matrix

// The obtained matrix has on the first line the elements of the vector

// The remaning lines (*dimension* - 1) contanis 0

// �This "conversion" is useful in the operations with matrices (addition, 

multiplication)

void vector_to_matrix(double v[100], int dimension, double output_

matrix[100][100])

{

    for(int i = 0; i < dimension; i++)

    {

        output_matrix[0][i] = v[i];

    }

    for(int i = 1; i < dimension; i++)

        for (int j = 0; j < dimension; j++)

        {

            output_matrix[i][j] = 0;

        }

}

// This function "converts" a matrix into a vector

// All lines of the matrix has values of 0, except for the first line

// The first line of the matrix becomes the vector

void matrix_to_vector(double matrix[100][100], double output_v[100], int 

dimension)

{

    for(int i = 0; i < dimension; i++)

    {

        output_v[i] = matrix[0][i];

    }

}
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�Conclusion
In this chapter, we discussed lattice-based cryptography and its importance. At the end 

of this chapter, you now know the following:

•	 The importance of lattice-based cryptography and its impact on the 

future of cryptography

•	 How to encrypt and decrypt using GGH cryptosystem

•	 How to implement practical functions and methods related to lattices 

and matrices
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CHAPTER 11

Searchable Encryption
Searchable encryption (SE) is an encryption technique that allows outsourcing the 

encrypted data to possible untrustworthy third-party service providers, while at the 

same time allowing the users to apply searching operations directly over the encrypted 

data safely and securely. Searchable encryption can be considered a type of fully 

homomorphic encryption, which will be discussed in Chapter 12.

To understand the searchable encryption technique, consider the following scenario. 

There is a set of documents owned by data owner A, which is stored on a server, but these 

documents are allowed to be accessed (in a specific way that will be detailed immediately) 

by data user B. To keep them secure, A encrypts the documents using B’s public key and 

then stores them on the server. In this scenario, B has permission only to search in the 

documents (note that the documents are in an encrypted format) or to read them (note 

that B can read a document only after it is retrieved from the server and decrypted). Let’s 

say B wants to retrieve from the server any documents that contain a specific keyword, for 

example, “programming.” To do this, B constructs a value called a trapdoor based on the 

query word “programming” and the secret key that B owns and then submits the trapdoor 

value to the server. The server will perform the search algorithm given by the searchable 

encryption scheme and will send the result (in encrypted format) to B.

Another more practical example is the following: a software solution that needs at 

some point the social security numbers (SSNs) of their customers is developed by an 

entity. The rules and good practices suggest that the SSNs be encrypted when working 

with them. This can be challenging because the employees will work with the SSNs, such 

as when they need to search for a user account. A solution is that the employees search 

for a particular SSN through the encrypted SSNs (without decrypting them in any way). 

A searchable encryption scheme would make this possible.

Now that you have a view of searchable encryption, it is worth saying that it has great 

potential, letting the data user search for specific content over encrypted data. An immediate 

application of searchable encryption is in the healthcare domain, where patients’ 
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medical files can be searched in an encrypted form. Other applications are in education, 

business, and basically in any domain that requires search processes through data.

�Components
The components of a searchable encryption scheme are as follows: the entities and the 

algorithms. In this section, we present these components in a detailed view.

�Entities
When a software solution is implemented, more aspects should be clarified before 

the implementation itself: the clients who will use the application, the entity that will 

maintain it, the type of data, the roles supported by the application, and so on.

In a system that uses a searchable encryption scheme, the following entities are 

involved in the whole process:

•	 Data owner: The data owner, who is assumed to be a trusted party, 

has a number of n documents ={D1, …, Dn}, which are characterized 

by keywords (note that these keywords are not metadata). Both 

the documents and the keywords will be outsourced. Prior to 

outsourcing the documents (and the keywords, which are often 

organized into a structure called index structure) on the server, they 

are encrypted by the data owner using an encryption algorithm of a 

searchable encryption scheme.

•	 Data user: The data user, who is an authorized user of the data, may 

trigger the search process. Using the query keyword for which the 

search will be made, the data user generates a trapdoor value that will 

be used when searching over the encrypted data. Also, the data user 

may decrypt the documents from the search process if the data user 

possesses the private key. Note that the data owner can be a data user.

•	 Server: The server, which is considered semi-trusted or honest-but-

curious, stores the encrypted data and performs the search algorithms 

based on the trapdoor value that it receives from the data user. 

Semi-trusted or honest-but-curious means that it performs the search 

algorithms as instructed but can analyze the data that was given to it.
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�Types
From the cryptographic point of view, searchable encryption schemes can be categorized 

as follows: symmetric searchable encryption (SSE) schemes and public encryption with 

keywords search (PEKS) schemes. Symmetric searchable encryption schemes use just a key 

for the encryption or decryption of the content and additionally in other specific algorithms, 

as you will see below. Public encryption schemes with keyword search use two keys, namely 

a public key to encrypt content and a private (or secret) key to decrypt the encrypted content.

The SSE schemes contain the following algorithms [1]:

•	 KeyGeneration: The data owner runs this algorithm. The input is a 

security parameter λ, and the output is the secret key SK.

•	 BuildIndex: The data owner runs this algorithm. Its purpose is to 

generate a structure of indices that will contain the keywords that 

describe the documents. The input is the secret key SK and the set 

of documents D that will be stored on the server, while the output 

is an index structure I. Specifically, this algorithm begins with an 

empty index structure and for every document of the set, it appends 

to the index structure some keywords that describe the current 

document. Note that the keywords are encrypted using the secret 

key SK in a specific way that can be different from the encryption of 

the documents before being added to the index structure. The index 

structure can be a tree, a hash table, a list, etc.

•	 Trapdoor: The data user runs this algorithm. The input for the 

trapdoor algorithm is the desired query keyword kw, for which the 

search process is triggered, and the secret key SK, while the output is 

a value Tkw called trapdoor. Note that the trapdoor algorithm does not 

just encrypt the query keyword kw. Instead, it adds a noise value or 

works with something of control.

•	 Search: The server runs the search algorithm. The input for the 

search algorithm is the trapdoor value Tkw obtained from the previous 

algorithm and the index structure I obtained from the BuildIndex 

algorithm. Note that the search algorithm does not just try to match 

the trapdoor Tkw in I. The search algorithm should specify how the 

trapdoor value Tkw is searched in the index structure (remember that 

Tkw is not a simple encryption of a plain keyword).
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If the search algorithm returns one or more documents that contain the query 

keyword, the documents are sent to the data user, or else the server sends a proper 

message. Note that the encryption and decryption algorithms are not listed above. That 

is because two different encryption schemes can be chosen by the data owner, namely 

one to encrypt the documents and one for the searchable encryption scheme. This 

situation is possible because the searchable encryption scheme does not directly involve 

the documents. All algorithms of an SSE scheme work only with the keywords and/or the 

index structure of encrypted keywords.

A little different from the SSE version, the algorithms of a PEKS scheme are as follows [2]:

•	 KeyGeneration: This algorithm is similar to the KeyGeneration from 

SSE, and the data owner runs this algorithm, too. The input is also a 

security parameter λ, while this time the output of the key generation 

is a pair of keys, namely the public and the private keys, (PK, SK).

•	 Encryption: The data owner runs this algorithm, for which the public 

key PK and a keyword KW are the input values, while the output is 

the encrypted value SW of KW.

•	 Trapdoor: Similar to the trapdoor algorithm from SSE, the data user 

runs this algorithm to generate the trapdoor value. The input is the 

secret key SK and the query keyword KW for which the search is 

made, while the output is the trapdoor value TKW corresponding to 

the keyword KW.

•	 Test: The server runs the test algorithm, for which the input is the 

public key PK, an encrypted value C (representing the encryption of 

a keyword KW’), and the trapdoor value TKW. The output of the test 

algorithm is 1 if KW’ = KW, and 0 otherwise.

The same remarks apply for the trapdoor and the test algorithm; the algorithms do 

not just offer encryption or simple matches, respectively. Still, the above algorithms for 

the SSE schemes and PEKS schemes are presented according to their introductions in 

this field in early works [1] and [2]. Since then, the algorithms were adapted alongside the 

options that the search process supported. Namely, multiple keywords search is allowed 

in some works, others enable fuzzy search (which allows small typos or inconsistencies  

of the format) based on keywords [3, 4], and yet others enable a semantic search  
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(the search process returns documents that contain keywords from the semantic field 

of the query keyword) [5], etc. Other works focus on the documents (specifically, the 

documents can be updated directly on the server, without it being necessary to retrieve 

them from the server, decrypt, update, encrypt, and store them again on the server); 

other works focus on the index structure that can be updated directly on the server [6]. 

However, the algorithms that are contained by any searchable encryption scheme are the 

trapdoor and the search/test algorithm, and, of course, the encryption and decryption.

�Security Characteristics
There are some things that need to be protected in a searchable encryption such as 

the search pattern and the access pattern. The search pattern is the information that 

can be discovered from the fact that two different search results belong to the same 

query keywords. The access pattern is the set of documents resulting from a trapdoor 

corresponding to a given keyword KW. Besides, searchable encryption schemes should 

meet security requirements related to search queries, too. According to [7], SE schemes 

should have the following characteristics: controlled searching (search queries may be 

submitted only by authorized users), encrypted queries (the query search itself should 

be encrypted before being submitted to the server), and query isolation (the server 

learns nothing from the queries that it receives).

The SSE schemes should be IND1-CKA and/or IND2-CKA (chosen keyword attack 

for indexes) resistant, which means that the index structure cannot be compromised. 

In IND1-CKA, the same number of keywords is chosen for all documents used in the 

build index structure, while in IND2-CKA the documents can be described by a different 

number of keywords. On the other hand, the PEKS scheme should be resistant to the 

chosen keyword attack (which is a challenge between an attacker and the structure that 

manages the PEKS scheme).

Recently introduced security requirements are forward and backward privacy for the 

dynamic SE schemes, which allow inserting, updating, or deleting to be applied over the 

set of documents or the keywords directly on the server, without the need of decrypting 

them. Backward and forward privacies refer to the information that can be discovered in 

the process of inserting/deleting/updating. Backward privacy refers to the information 

that is discovered when the search is made for a keyword for which documents have 

been deleted before the current search, while forward privacy means that the current 

update operation is not related to previous operations.
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�An Example
The following example [18] shows that searchable encryption (SE) is a very powerful 

encryption technique. The advantage is that the user may search for keywords within 

encrypted documents. Recall that the participants to the system are the data user, who 

owns a set of documents S = {D1, …, Dn}, prepares the system by generating the keys, 

encrypts the documents and the keywords, and stores them on a cloud server; the data 

owner, who is allowed to submit search queries on the cloud server; and the cloud server, 

which stores the documents in an encrypted format and runs the search algorithm.

The work [18] uses elliptic curves (see Chapter 9) in the searchable encryption 

scheme. Nowadays, elliptic curves are used in important areas such as blockchains ([14], 

[15]) or the Internet of Things ([16], [17]).

Figure 11-1 [18] shows an example of a searchable encryption scheme that uses 

elliptic-curve cryptography and is designed for a big data environment (see Chapter 15). 

In the work [18], the Elliptic Curve Digital Signature Algorithm (ECDSA) is used to secure 

the content of courses available for students on an e-learning platform. The security 

parameter (λ) for the key generation algorithm of the searchable encryption scheme is 

the private key from the ECDSA algorithm.

At this moment, there is no practical implementation of a searchable encryption 

scheme that can be used in a real environment, due to the technique’s complexity, 

although there are attempts. After an in-depth study of the current research, we could 

not find at this moment a practical implementation in the form of a library, module, or 

framework. For implementing a searchable encryption scheme, several basic guidelines 

should be taken into consideration before beginning the implementation:

•	 The architecture of the software application (server, database, 

services, etc.)

•	 The hardware components and the way they are managed for the 

current applications, which include security and cryptographic 

techniques

•	 The architecture should be designed such that processes within the 

searchable encryption are represented as independent algorithms 

such that their deployment is made correctly between the end users 

and the existing network infrastructure.
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Figure 11-1.  [18]. An example of practical searchable encryption scheme
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Note that the searchable encryption scheme presented in Figure 11-1 is partitioned 

in more steps. Every step is an algorithm that can be considered a separate instance 

from the searchable encryption scheme. Further, the instances can be implemented as 

software modules or services or IoT devices (for example, devices like Intel NUC PC or 

a Raspberry PI). The distribution and deployment of the software modules or services 

among the users can be realized through a distributed network, for example, on a cloud 

computing network or a regular network for small and medium business architectures.

The algorithms below [18] show the steps from Figure 11-1, which present a 

searchable encryption for a big data environment. Before implementing the steps, it is 

necessary to understand how the steps are organized as independent algorithms. The 

following are the steps:

	 1.	 (KO, Ks, PP) ← KeyGeneration(1λ, P, S). The data owner O runs 

this probabilistic algorithm for which the input values are the 

security parameter λ, a policy P. The output is a tuple composed 

of the owner’s secret key KO, the server key Ks, and the public 

parameters PP.

	 2.	 ID ← BuildIndex(Daug, KO, PP). The data owner O runs this 

probabilistic algorithm for which the input values are the 

description of the data set Daug (namely, the keywords that 

describe each document) and the secret key of the owner (KO), 

and the output is an index structure ID.

	 3.	 KU ← (u, λ(u), KO, PP). The data owner O runs this probabilistic 

algorithm to enroll a new user in the e-learning platform system. 

The input values for the algorithm are the identity of the new user, 

the level of access of the user (user’s role), and the owner’s O key. 

The output is the secret for the new user.

	 4.	 Trapdoor(ω, λ(u)) ← Query(ω, Ku). The data user who has the proper 

clearance λ(u) for generating a search query runs this probabilistic 

algorithm. The input values are the keyword ω ∈ Δ (where Δ is a 

dictionary of keywords) and the user’s secret key. The output is 

the query token (trapdoor value) Trapdoor(ω, λ(u)).

	 5.	 R(ω, λ(u)) ← Searching(Trapdoor(ω, λ(u)), ID, Ks). The server (S) runs 

this probabilistic algorithm that searches the index for the data 

items that contain the query keyword ω. The input values are 
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the search query and the index, and the output is R(ω, λ(u)), which 

includes a set of identifiers of the data items dj ∈Dω, λ(u) that 

contain the query keyword ω such that λ(dj) ≤ λ(u), where λ(ui) 

is the access level of the user that triggered the search query, or a 

failure symbol φ.

	 6.	 (KO) ← RevokeUser(u, KO, PP). The data owner O runs this 

probabilistic algorithm to revoke a specific user from the system. 

The input values are the user’s id, the data owner’s secret keys and 

the server, while the output is new keys for the owner and server.

The searchable encryption scheme designed for this chapter is correct if for 

all k ∈ ℕ, for all KO, KS outputted by KeyGen(1λ, P), for all Daug, for all ID that is 

outputted by BuildIndex(Daug, KO), for all ω ∈ Δ, for all u ∈ U for all Ku outputted by 

AddUser(KO, u, λ(u), PP), Search(ID, Tω, λ(u)) = Dω, λ(u).

Pseudocode 11-1 presents a sketch for the practical implementation of the 

searchable encryption scheme proposed in Figure 11-1. Note that the implementation is 

purely demonstrative as the implementations (frameworks, libraries, etc.) for searchable 

encryption do not exist at this moment.

Pseudocode 11-1. Guidelines for Implementing a Searchable Encryption Scheme

#include <iostream>

#include <fstream>

class KeyGeneration

{

// Step 1

// The data owner runs the algorithm

// from KeyGeneration step (algorithm)

// global variables

public: string securityParameter;

        string ownerID;

        string policyContent;

        string serverIdentity;
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// the function will return the policy,

// as a content or file

public: string GetPolicy(ifstream& policyContent)

{

string content = "";

if (policyContent.is_open())

{

    while (getline (policyContent, line))

    {

      content += line;

    }

    policyContent.close();

  }

  else policyContent = "Cannot read the policy file";

  return policyContent

}

// getting server identity can be tricky and it has

// different meanings, such as the name of computer,

// IP, active directory reference name etc...

// For the current example we will use the hardware ID

public: string GetServerIdentity()

{

string serverIdentity = "";

// here goes the implementation for getting the server identity

// for this method, Windows WMI can be used

// this link provides more details:

// �https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmi-start-

page?redirectedfrom=MSDN

return serverIdentity

}

// class constructor

public: KeyGeneration(){}
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// let's generate the secret key, server key

// and public parameters

// "#" represents the separator

public: string ReturnParameters(KeyGeneration kp)

{

string sbParameters = "";

sbParameters += kp.ownerSecretKey + "#" + kp.serverKey + "#" + 

kp.publicParameters;

return sbParameters;

}

}

class BuildIndex

{

// Step 2

// the algorithm from BuildIndex step (algorithm)

// are runned and invoked by the data owner

// constructor of the class

public: void BuildIndex(){}

// the function centralize the build index parameters

// after their initialization and processing

public: void UseBuildIndexParameters()

{

list<string> descriptionDataSet;

string ownerPrivateKey = "";

string outputIndex = "";

}

//simulation of getting the data set and their

//descriptions

public: list<string> GetDataSet()

{

list<string> ll;
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for(int i = 0; i < dataSet.size(); i++)

{

ll.push_back(description[i]);

}

}

// getting the private of the owner

public: string ownerPrivateKey()

{

string privateKey = "";

// get the private key and work with it arround

return privateKey;

}

// get the index

public: string Index()

{

string index = "";

// implement the query for getting

// or generating the index

return index;

}

}

class AddUser

{

// Step 3

// the algorithm from AddUser step (algorithm)

// are runned and invoked by the data owner

// constructor of the class AddUser

public: AddUser() {}
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// property for getting the identity of the user

// see below the Class Student

public: string IdentityOfTheUser()

{

string identity = "";

// implement the way of getting

// the identity of the user

return identity;

}

// property for getting the owners key

public: string OwnerSecretKey()

{

string secretKey = "";

// implement the way of querying

// for secret key

return secretKey;

}

public: void AssignSecretKeyToUser()

{

AddUser u = new AddUser();

Student stud = new Student(u.OwnerSecretKey);

}

}

class Query

{

// Step 4

// the algorithm from Query step (algorithm)

// are runned and invoked by the user

// constructor of the class Query

public: Query() {}
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// function for getting the keywords

public: string Keyword()

{

string kw = "";

// query for the keywords;

return kw;

}

// function for getting the secret key of the users

public: string UserSecretKey()

{

string secretKey = "";

// implement the way of querying

// for secret key

return secretKey;

}

// the generation of the output as query

// token for the trapdoor

public: string QueryToken()

{

string query_token = "";

// generate and build

// the query token for trapdoor

return query_token

}

}

class Search

{

// Step 5

// the algorithm from Search step (algorithm)

// are runned and invoked by the server
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// the constructor of the Search class

public: Search() {}

public: string SearchQuery()

{

string query = "";

// take the search query

return query;

}

public: string Index()

{

string index = "";

// take the search query

return index;

}

public: string ReturnResult()

{

string result = "";

string setOfIdentifiers = "";

// based on the search query and index,

// get the set identifiers of the data items

setOfIdentifier = "query for identifiers";

// build the result. "#" is the separator for

// illustration purpose only

result = SearchQuery + "#" + Index;

return result;

}

}
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class RevokeUser

{

// Step 6

// the algorithm from Search step (algorithm)

// are runned and invoked by the data owner

// constructor of RevokeUser class

public: RevokeUser(){}

// second constructor of the class

// this can be implemented as a

// solution for revoking a user

public: RevokeUser(string userID, string secretKeyDataOwner, string 

secretKeyServer)

{

// implement the revoking process

// output the new key for data owner

// output the new key for server

}

}

public class Course

{

// the db_panel represents an instance of the

// file which contains classes for each of tables

// from the database

public: Database db_panel;

// Class Courses it is a generated class and assigned

// to the table Courses from the database

public: Courses c;

// student ID

string demoStudentID = “435663”;
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// select the course ID based on the student

public: string GetCourse()

{

// select the courses for a

// specific user (student)

Course c = db_panel.GetCourse(student.Id);

return c;

}

}

class Student

{

public: string secretKey {get; set;}

public: int StudentId {get; set;}

public: string CourseID {get; set;}

public: string StudentName {get; set;}

public: string StudentIdentity {get; set;}

public: string StudentPersonalCode {get; set;}

public: void Student(string secret_key)

{

     secretKey = secret_key;

}

}

string queryKeywod =

    SecureSearch.GetPrefix("123456789");

string resultStudent = SecureSearch.GetStudent.StartsWith(searchPrefix);

�Conclusion
In this chapter, we presented searchable encryption schemes and provided guidelines 

for a possible practical use that supports searchable encryption.
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The potential of searchable encryption, which is a particular case of homomorphic 

encryption, is great in many domains of activity. In this chapter, we outlined the main 

components of searchable encryption schemes. If you’re interested in more theoretical 

aspects for searchable encryption, any of the references provide a deeper view of SE. For 

some recent samples of pseudo-code, consult [11] or [12].
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CHAPTER 12

Homomorphic Encryption
Important types of encryption schemes are those that fall into the homomorphic 

encryption (HE) category, which allows calculations to be computed directly on the 

encrypted data, without needing a preceding decryption operation. The most important 

condition in homomorphic encryption is that the value achieved by decrypting the 

result obtained by applying the calculations over the encrypted data must be the same 

as the value achieved by applying the same calculations on the plain data. With these 

properties, the HE schemes are considered to have great potential because they enable 

third-party entities to apply functions (therefore, to apply algorithms) on the encrypted 

data, but without the need for any access of the plain data. In this way, the data is 

protected and secured while being processed. For a real-life example, suppose you are 

on vacation into a foreign city and you want to search the Internet, using your phone or 

another device, for local attractions such as museums, exhibitions, art galleries, and so 

on. Even this simple search on the Internet may reveal a lot of information about you, 

such as your exact location, your cultural interests, the time of the search query, and so 

on. If the search engine used a homomorphic approach, then nothing would be revealed 

to anyone including the search engine itself, because all of the information and even the 

search query would be encrypted. The results that you receive would be also encrypted, 

therefore only you could decrypt them. Homomorphic encryption has applications 

in many areas, such as finance/business, healthcare, and any domain that works with 

sensitive data. Further, some formal aspects of homomorphic encryption are given.

The function g : A → B is called homomorphic over the operation * if the following 

condition is satisfied:

	 g x g x g x x x x A1 2 1 2 1 2( )* ( ) = *( ) " Î, , 	

Remember that a general encryption system consists of the following algorithms: key 

generation, encryption, and decryption. Besides these three algorithms, the homomorphic 

encryption schemes have an additional algorithm called evaluation, which is usually 

https://doi.org/10.1007/978-1-4842-6586-4_12#DOI
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denoted with Eval, which describes formally the most important rule mentioned above. 

The input and the output of the Eval algorithm are in an encrypted format. In the Eval 

algorithm, the function g is applied over encrypted data c1 and c2, without accessing the 

plain data m1 and m2, and having the following property:

	
Dec key Eval key c c f m mpriv g eval, , , ,1 2 1 2( )( ) = ( ) 	

In homomorphic encryption, only two operations are required to have 

homomorphic properties, namely addition and multiplication. This is due to the fact 

that an arbitrary function can be represented as a circuit using just gates corresponding 

to the addition operation (OR gate) and the multiplication operation (AND gate). The 

idea of homomorphic encryption started in the late 70s, when it was called privacy 

homomorphism [1]. Among the first encryption schemes to have homomorphic 

properties is the Unpadded RSA algorithm [2], in which the operation with 

homomorphic properties is the multiplication:

	 Encyption m Encryption m m m ne e
1 2 1 2( ) ( ) =� mod 	

	 = ( )mm n
e

1 2 mod 	

	 = ( )×Encryption m m1 2 	

In the above computation, m1, m2 are two plain messages and Encryption is the 

encryption function.

The homomorphic encryption schemes can be categorized into three classes, as 

follows:

•	 Partial homomorphic encryption (PHE): The schemes in this 

category support just one operation applied over encrypted data an 

unlimited number of times. Examples of PHE schemes are RSA [2], 

Goldwasser-Micali [3], and El-Gamal [4]. Most of the schemes from 

this category represent a basis for other homomorphic schemes.

•	 Somewhat homomorphic encryption (SWHE): The schemes in this 

category support both operations applied on the encrypted data, but 

for a limited number of times. The encryption scheme from [5] is an 

example of SWHE.
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•	 Fully homomorphic encryption (FHE): The schemes in this 

category support both operations over encrypted data for an 

unlimited number of times. Fully homomorphic encryption is 

considered “cryptography’s holy grail” or “the Swiss Army knife of 

cryptography” [6] due to its capability of enabling any computation 

over the encrypted data by any number of times. In 2009, the first 

FHE scheme [7] was proposed and the mathematical object used 

as the foundation is the ideal lattices. The scheme from [7] is very 

important in cryptography because it opened the way for the FHE 

schemes, and even though it is unpractical in the form in which it 

was proposed due to its complexity and abstraction, it represented a 

basis for subsequent schemes. In addition, in [7] a general framework 

for the FHE schemes was proposed.

�Fully Homomorphic Encryption
In this section, fully homomorphic encryption (FHE) is explained in more detail because 

it represents an important topic of cryptography that can resolve many security concerns 

and issues. A particular model of quantum computation called boson scattering enables 

a quantum homomorphic encryption that provides theoretically limited security. 

By existing, this kind of scheme makes us wonder if quantum methods can generate 

theoretically secure FHE schemes. In [25] the authors prove that quantum techniques do 

not enable efficient theoretically secure FHE that hides completely the plaintext.

As mentioned in the previous section, the first FHE scheme was proposed by Craig 

Gentry in 2009 and the mathematical object that represents the foundation is the ideal 

lattices with the hardness assumption (problems regarding a topic that cannot be solved 

in an efficient time, i.e in polynomial time) called the ideal coset problem. Following 

Gentry’s scheme, there were proposed a large number of FHE schemes based on 

different mathematical techniques. A subsequent work is [8], in which the FHE scheme 

uses integer arithmetic. However, the noise introduced in the schemes from [7] and [8] 

grows quickly, representing a drawback because it has a high effect over the applicability 

and security, thus the homomorphic capabilities are restricted. Due to the noise growth, 

the decryption cannot be made after some point.

In the second generation of the FHE schemes that include works such as [9] and [10], 

the noise is handled more efficiently, which means improved performance and powerful 
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security under various hardness assumptions. The leveled encryption schemes and 

bootstrappable encryption schemes are results of this generation. The first ones evaluate 

the circuits with a given polynomial depth, while the second ones can be modified 

to become FHE schemes. If an encryption scheme has the capability of evaluating 

its decryption circuit and additionally one NAND gate, then it is a bootstrappable 

encryption scheme.

The third generation of FHE schemes is opened by the work of [11], which uses 

a new technique to handle the noise. The schemes of the third generation are less 

performant than those from the second generation, but their hardness assumptions can 

be weaker. The basis for many schemes in this generation is asymmetric multiplication. 

That is, considering two encrypted texts c1, c2, the product c1 ∙ c2 is different from the 

product c2 ∙ c1, although both products encrypt the same product b1 ∙ b2 of the plain texts 

b1 and b2.

FHE can be used in many areas of cryptography, such as

•	 Outsourcing: The private data can be kept safe if it is stored in 

third-party storage or analyzed by third-party entities. A classic 

example for this area is that of a company that stores its data in cloud 

storage. Before uploading the data in the cloud, the owner needs to 

encrypt it. FHE would be useful in such scenarios because the cloud 

provider could analyze the data from the company in an encrypted 

format, without accessing the plain data. Moreover, the result of the 

computations would be sent by the cloud provider in the encrypted 

format to the data owner, where it would be decrypted only by the 

decryption key’s owner.

•	 Private information retrieval (PIR) or private queries: PIR 

and private queries are useful when a database is queried or an 

application uses a search engine. Another scenario is when a client 

wants to send a query to a database server, but the client wants the 

server to learn nothing about its query. The solution is the following: 

the client encrypts the query and sends it to the server and then the 

server applies the encrypted query over encrypted data and responds 

with the encrypted result.
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•	 General computations between two entities (two-party 

computations): Consider two parties A and B. Each of them owns a 

secret input, x, and y, respectively, and a common function F known 

by both. To apply the function F over its private input x, the party A 

computes r = F(x, y). From here, A learns only the value of r and 

learns nothing about y. On the other hand, B learns nothing about 

x or r. This is the same as B computing Fy(x) in the semi-honest 

model, where A encrypts x and sends to B because the semantic 

security assures the fact that B will learn nothing about the plain 

value corresponding to x. In such situations, using FHE would 

simplify things, because A would just apply F as F(x,y), and achieve 

the result in an encrypted format, but it would need and learn 

nothing else because everything is encrypted, including F.

�Practical Example of Using FHE
There are more libraries for C++ that implement fully homomorphic encryption. Some 

well-known libraries for C++ FHE are the following:

•	 HElib [12], developed at IBM, implements the schemes BFV 

(Brakerski/Fan-Vercauteren) [17] and CKKS (Cheon-Kim-Kim-Song) 

[18] and it can be used in Linux and MacOS distributions.

•	 TFHE [13] implements the scheme proposed in [15] and it can 

be used with Linux distributions. In the same paper, the library is 

described.

•	 PALISADE [14] implements the BGV (Brakerski-Gentry-

Vaikuntanathan) [16], BFV [17], CKKS [18], and FHEW schemes 

[19] and a more secure version of the TFHE scheme [13], including 

bootstrapping. It is supported on Linux, Windows, and macOS 

distributions.

•	 SEAL [20]-[23] implements the BFV [17] and CKKS [18] schemes and 

it can be used with .Net or C++. In addition, the SEAL library can be 

used in Windows, Linux, or MacOS environments.
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In this section, we’ll use SEAL library to demonstrate an FHE example. The Seal 

library implements BFV [12] and CKKS [13] encryption schemes.

In [12], the set of the polynomials with a maximum degree n and the coefficients 

computed modulo t is used in the definition of the encryption function. The formal 

representation of this set is Rt = ℤt[x]/(xn + 1). The encrypted text is from the Rq set, where 

the polynomials have coefficients modulo q. The addition and the multiplication are the 

homomorphic operations in this encryption scheme, preserving the ring structure of Rt. 

The value that needs to be encrypted using BFV schemes first needs to be brought to a 

polynomial form accepted by the structure Rt. In [12] the encryption scheme includes 

the following algorithms: SecretKeyGen (the security parameter is used to generate 

the secret key), PublicKeyGen (the secret key is used to generate the public key), 

EvaluationKeyGen (the secret key is used to generate the evaluation key), Encrypt (the 

plain value is encrypted using the public key), Decrypt (the encrypted value is decrypted 

using the secret key), Add (performs the addition between two encrypted values), and 

Multiply (performs the multiplication between two encrypted values). Keep in mind 

that the results of both operations, namely addition and multiplication, have a form that 

is compatible with the structure Rq. For more details and a formal description of this 

encryption scheme, you can consult [12].

While [12] provides a way to apply modular arithmetic over integers, in [13] the 

authors provide ways to apply it over real numbers and complex numbers, too. Anyway, 

in [13] the results are approximate, but the techniques are among the best to sum up real 

numbers in an encrypted format, to apply machine learning algorithms on encrypted 

data, or to compute distanced between encrypted locations.

Before using SEAL library, some preparatory steps are needed, which are described 

below.

First, install a version of Visual Studio 2019. The community version, which is free, 

can be found at https://visualstudio.microsoft.com/vs/community. Make sure that 

the C++ components (under Desktop development with C++) are checked to be installed. 

Then download Git from https://git-scm.com/download/win and install it via the 

installations steps with the default values. After these programs are set, the SEAL library 

can be downloaded from the GitHub repository: https://github.com/microsoft/SEAL 

(at the moment of writing this book, the latest version of SEAL is 3.5.6). After downloading 

the source code, extract the zip file. We left the default name Seal-master and extracted it 

in the path C:\libs. Open the Seal-master folder and then open the SEAL.sln file using 

Visual Studio. The structure of the solution should be as in Figure 12-1.
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The folder used for C++ development is the native folder from the solution. To 

use SEAL library in your own C++ application, you need first to generate the seal.

lib library. To do this, you need to build the SEAL project from Figure 12-1. From the 

Toolbar, pick Release configuration and x64 platform (Figure 12-2(a) and 12-2(b)), then 

right-click the SEAL project and choose Build. The Release configuration is needed 

because things go faster than in the Debug configuration and you actually just need to 

generate the seal.lib, not debug it. Right-click the SEAL project under the native folder 

and choose Build or Rebuild.

Figure 12-1.  The structure of the SEAL.sln solution

Figure 12-2(a).  Choosing the configuration for SEAL building
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If everything works properly, a similar message as in Listing 12-1 should be obtained.

Listing 12-1.  The Result of Building the SEAL Project

...

1>-- Configuring done

1>-- Generating done

1>-- Build files have been written to: C:/libs/SEAL-master/.config/16.0/x64

1>SEAL.vcxproj -> C:\libs\SEAL-master\native\src\..\..\lib\x64\Release\

seal.lib

========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

Checking the path C:\libs\SEAL-master\lib\x64\Release, you should find 

the library seal.lib. Now you are ready to create your own application that uses 

FHE. In Visual Studio, create an empty project of type Console App with C++ called 

SealCPPExample and add under the Source Files folder a cpp file called SealExample.

cpp. Here, add an empty main function, as in Listing 12-2.

Listing 12-2.  The Initial Main Function

int main()

{

    return 0;

}

Further, the application needs to be prepared for using SEAL library as described as 

below. First, right-click the SealCPPExample solution and go to Properties. Here, make 

sure All Configurations and All Platforms are selected (Figure 12-3).

Figure 12-2(b).  Choosing the platform for SEAL building
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Then, under C/C++ ➤ General ➤ Additional Include Directories, add the path where 

sources were generated (in our example, the path is C:\libs\SEAL-master\native\src; 

see Figure 12-4).

Figure 12-3.  Settings for using SEAL library (1)
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Finally, to include seal.lib: under Linker ➤ Additional Library Directories, add the 

path to seal.lib (in our example, the path is C:\libs\SEAL-master\lib\$(Platform)\

$(Configuration); see Figure 12-5(a)). Note that the $(Platform) for our example is x64 

and the $(Configuration) is Release. The final step is to add seal.lib to Linker ➤ Input 

➤ Additional Dependencies (Figure 12-5(b)).

Figure 12-4.  Settings for using SEAL library (2)
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Figure 12-5(a).  Settings for using SEAL library (3)

Figure 12-5(b).  Settings for using SEAL library (4)
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To make sure that SEAL was added properly, just add the line from Listing 12-3 

in the main function and then build the solution. Do not forget to choose the Release 

configuration and x64 platform, and then right-click the solution and choose Build.

Listing 12-3.  Checking If SEAL Has Been Added Properly

EncryptionParameters BFV_parameters (scheme_type::BFV);

If a success message is returned, then you can proceed further; otherwise, if an error 

message similar to 'for_each_n': is not a member of 'std' is returned, then one 

more step is needed: change the C++ Language Standard under C/C++ > Language from 

Default to ISO C++17 Standard (/std:c++17).

Create a function called seal_example_bfv, in which functionalities provided by 

SEAL library for BFV encryption scheme are added. In the first place, the encryption 

parameters should be added: the degree of the polynomials from the ring (n), the 

modulus for the coefficients of the plaintext (t), and the modulus for the coefficients of 

the encrypted text (q). To use the SEAL functionalities, the libraries from Listing 12-4  

should be added. The application is notified that the BFV scheme is used and 

instantiates the parameters using the line of code from Listing 12-5.

Listing 12-4.  The Libraries Included for SEAL

#pragma once

#include "seal/seal.h"

#include <iostream>

#include <algorithm>

#include <chrono>

#include <cstddef>

#include <fstream>

#include <iomanip>

#include <iostream>

#include <limits>

#include <memory>

#include <mutex>

#include <numeric>

#include <random>

#include <sstream>

Chapter 12  Homomorphic Encryption



271

#include <string>

#include <thread>

#include <vector>

using namespace std;

using namespace seal;

Listing 12-5.  Instantiating the BFV Parameters

void seal_example_bfv()

{

    EncryptionParameters BFV_parameters(scheme_type::BFV);}

After instantiating the BFV parameters, they should receive each a value. The 

degree of the polynomial modulus is a power of 2 and represents a degree of a 

cyclotomic polynomial1. The values that are recommended for it are {1024, 2048, 

4096, 8192, 16384, 32768}. With a higher value for the polynomial degree, more 

complex computations on the encrypted data can be made, but the drawback is that 

the performance decreases. A fair value is 4096, allowing for an acceptable number 

of computations with a good performance, therefore this value was chosen for our 

application. The modulus for the coefficients of the plaintext is in general a positive 

integer. The value for this parameter is a power of two in our example. Depending on 

the purpose of the application, the modulus can be a prime number. The modulus for 

the coefficient of the plaintext is used to provide the size in bits for the plain data and 

to establish limits for consumption in the multiplication operation. The last parameter 

is the modulus for the coefficients of the encrypted text, which represents a large integer 

value. The value for this modulus should be represented as the product of prime 

numbers. When a larger value is chosen, more computations over the encrypted data 

can be made. However, there is a relation between the degree of the polynomial modulus 

and the size in bits of the modulus for the coefficients of the encrypted text, therefore a 

4096 value corresponds to the value 109. Comprehensive explanations for the scheme’s 

parameters can be found in [20] and [21].

The other functionality that needs a few words is the noise budget, representing a 

number of bits. On short, the initial noise budget is set depending on the encryption 

parameters and the rate at which the homomorphic operations (addition and 

1�https://en.wikipedia.org/wiki/Cyclotomic_polynomial
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multiplication) consume it. The parameter that has the highest influence in setting the 

noise budget is the coefficient modulus. When a higher value is picked, the budget is 

higher. When the noise budget for an encryption text becomes 0, then the decryption of 

the encrypted text cannot be made anymore, because the noise it contains has a value 

too large.

With these brief descriptions, the parameters can be initialized using the lines of 

code from Listing 12-6, added in the function seal_example_bfv.

Listing 12-6.  Initialization of the BFV Parameters

size_t polynomial_degree = 4096;

BFV_parameters.set_poly_modulus_degree(polynomial_degree);

    �BFV_parameters.set_coeff_modulus(CoeffModulus::BFVDefault(polynomial_ 

degree));

BFV_parameters.set_plain_modulus(1024);

The SEAL context checks the correctness of the parameters:

auto seal_context = SEALContext::Create(BFV_parameters);

Further, the classes for the BFV encryption scheme need to be instantiated, as shown 

in Listing 12-7 (code added in function seal_example_bfv).

Listing 12-7.  Instantiating the Classes for the BFV Encryption Scheme

KeyGenerator keygen(seal_context);

PublicKey encryption_key = keygen.public_key();

SecretKey decryption_key = keygen.secret_key();

Encryptor bfv_encrypt(seal_context, encryption_key);

Evaluator bfv_evaluate(seal_context);

Decryptor bfv_decrypt(seal_context, decryption_key);

In the following, for this example, the polynomial p(x) = 3x4 + 6x3 + 9x2 + 12x + 6 will 

be evaluated for x = 3. For a quick check, you can use the value x = 3 to encrypt and then 

decrypt it. Listing 12-8 shows this process and shows some metrics (code added in seal_

example_bfv function).
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Listing 12-8.  Encrypting and Decrypting x=3

int value_x = 3;

Plaintext x_plaintext(to_string(value_x));

cout << "The value x = " + to_string(value_x)

     + " is expressed as a plaintext polynomial 0x"

     + x_plaintext.to_string() + "." << endl;

Ciphertext x_ciphertext;

cout << "Encrypting x_plaintext to x_ciphertext..." << endl;

bfv_encrypt.encrypt(x_plaintext, x_ciphertext);

cout << "    - the size of the x_ciphertext (freshly

        encrypted) is : "

     << x_ciphertext.size() << endl;

cout << "    - the noise budget for x_ciphertext is : "

     << bfv_decrypt.invariant_noise_budget(x_ciphertext)

     << " bits" << endl;

Plaintext value_x_decrypted;

cout << "    - decryption of x_encrypted: ";

bfv_decrypt.decrypt(x_ciphertext, value_x_decrypted);

cout << "0x" << value_x_decrypted.to_string() << endl;

Next, call seal_example_bfv in the main function as follows:

int main()

{

    seal_example_bfv();

    return 0;

}

To run the application, do not forget to choose Release configuration and x64 platform, 

and then press CTRL+F5. The result should be similar to Listing 12-9 and Figure 12-6.
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Listing 12-9.  The Output for the Encryption, Decryption and Metrics

The value x = 3 is expressed as a plaintext polynomial 0x3.

Encrypting x_plaintext to x_ciphertext...

    - the size of the x_ciphertext (freshly encrypted) is : 2

    - the noise budget for x_ciphertext is : 55 bits

    - decryption of x_encrypted: 0x3

The Plaintext constructor converts the plain values to polynomials that have a 

degree lower than the modulus polynomial, for which the coefficients are represented 

as hexadecimal values. In SEAL, the encrypted text is represented as two or more 

polynomials with coefficients in the form of inter values modulo, the result of the 

multiplication of the prime numbers from CoeffModulus representation. The object 

x_ciphertext instantiates the class Ciphertext and receives the value of the encryption 

of x_plaintext through calling the encrypt method of the object bfv_encrypt. 

This method takes two parameters, namely the object that needs to be encrypted 

(x_plaintext) and the object in which the encryption of the first parameter should be 

put (x_ciphertext). The number of the polynomials gives the size of the encrypted 

text; a fresh encrypted text has the size 2, which is returned by the size() method of the 

object x_ciphertext. The noise budget is computed by the invariant_noise_budget() 

method of the bfv_encrypt object, which takes as a parameter the object x_ciphertext. 

The invariant_noise_budget() is implemented into the Decryptor class because it 

shows if the decryption will work at some point in the computations. To decrypt the 

encrypted value obtained, use the decrypt method, called by the bfv_decrypt object. 

The decryption works because the value 0x3 in hexadecimal representation means 3.

For optimizations, the recommendation is that the polynomials be brought to a 

form that includes as few possible multiplication operations, because they are costly 

operations that will decrease the noise budget fast. Therefore, p(x) may be factorized as 

Figure 12-6.  The output for the encryption, decryption and metrics
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p(x) = 3(x2 + 2)(x + 1)2, which means you will evaluate first (x2 + 2), then (x + 1)2 and then 

you will multiply the result between them and with 3. To compute (x2 + 2), proceed as 

presented in Listing 12-10 (code added in seal_example_bfv function).

Listing 12-10.  Computing (x2 + 2)

cout << "Computing (x^2+2)..." << endl;

Ciphertext square_x_plus_two;

bfv_evaluate.square(x_ciphertext, square_x_plus_two);

Plaintext plain_value_two("2");

bfv_evaluate.add_plain_inplace(square_x_plus_two,

             plain_value_two);

cout << "    - the size of the square_x_plus_two is: "

     << square_x_plus_two.size() << endl;

cout << "    - the noise budget for square_x_plus_two is: "

     << bfv_decrypt.invariant_noise_budget(square_x_plus_two)

     << " bits" << endl;

Plaintext decrypted_result;

cout << "    - decryption of square_x_plus_two: ";

bfv_decrypt.decrypt(square_x_plus_two, decrypted_result);

cout << "0x" << decrypted_result.to_string() << endl;

After running the application, you obtain the result from Listing 12-11 and Figure 12-7.

Listing 12-11.  The Result of Computing (x2 + 2)

The value x = 3 is expressed as a plaintext polynomial 0x3.

Encrypting x_plaintext to x_ciphertext...

    - the size of the x_ciphertext (freshly encrypted) is : 2

    - the noise budget for x_ciphertext is : 55 bits

    - decryption of x_encrypted: 0x3

Computing (x^2+2)...

    - the size of the square_x_plus_two is: 3

    - the noise budget for square_x_plus_two is: 33 bits

    - decryption of square_x_plus_two: 0xB
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For checking, if you calculate 32 + 2 you obtain 11, whose hexadecimal representation 

is 0xB; the noise budget is greater than 0, which means the decryption can be made. 

Observe that the bfv_evaluate object allows applying operations directly over the 

encrypted data. The collector variable for this example is square_x_plus_two. First, this 

variable keeps the encrypted value raised at power 2, i.e. x2, using the method square(). 

Further, you add plain value 2, through the method add_plain_inplace(), which gives 

x2 + 1. Remember that in this example x = 3. The methods square() and add_plain_

inplace() methods have two parameters, namely a source and a destination.

Similarly, you compute (x + 1)2 using as a collector variable x_plus_one_square (see 

Listing 12-12).

Listing 12-12.  Computing (x + 1)2

cout << "Computing (x+1)^2..." << endl;

Ciphertext x_plus_one_square;

Plaintext plain_value_one("1");

bfv_evaluate.add_plain(x_ciphertext, plain_value_one,

             x_plus_one_square);

bfv_evaluate.square_inplace(x_plus_one_square);

cout << "    - the size of x_plus_one_square is: "

     << x_plus_one_square.size() << endl;

cout << "    - the noise budget in x_plus_one_square is: "

     << bfv_decrypt.invariant_noise_budget(x_plus_one_square)

     << " bits" << endl;

Figure 12-7.  The result of computing (x2 + 2)
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cout << "    - decryption of x_plus_one_square: ";

bfv_decrypt.decrypt(x_plus_one_square, decrypted_result);

cout << "0x" << decrypted_result.to_string() << endl;

And you obtain after running the application the results shown in Listing 12-13 and 

Figure 12-8.

Listing 12-13.  The Result of Computing (x + 1)2

The value x = 3 is expressed as a plaintext polynomial 0x3.

Encrypting x_plaintext to x_ciphertext...

    - the size of the x_ciphertext (freshly encrypted) is : 2

    - the noise budget for x_ciphertext is : 55 bits

    - decryption of x_encrypted: 0x3

Computing (x^2+2)...

    - the size of the square_x_plus_two is: 3

    - the noise budget for square_x_plus_two is: 33 bits

    - decryption of square_x_plus_two: 0xB

Computing (x+1)^2...

    - the size of x_plus_one_square is: 3

    - the noise budget in x_plus_one_square is: 33 bits

    - decryption of x_plus_one_square: 0x10

Figure 12-8.  The result of computing (x + 1)2
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Indeed, if you compute (3 + 1)2 you get 10, whose hexadecimal representation is 

0x10; the noise budget is greater than 0, so the decryption still works.

The final result of 3(x2 + 2)(x + 1)2 is collected into encryptedOutcome variable (see 

Listing 12-14).

Listing 12-14.  Computing 3(x2 + 2)(x + 1)2

cout << "Compute [3(x^2+2)(x+1)^2]." << endl;

Ciphertext enc_result;

Plaintext plain_value_three("3");

    bfv_evaluate.multiply_plain_inplace(square_x_plus_two,

       plain_value_three);

bfv_evaluate.multiply(square_x_plus_two, x_plus_one_square,

            enc_result);

cout << "    - the size of encrypted_result: "

     << enc_result.size() << endl;

cout << "    - the noise budget for encrypted_result: "

     << bfv_decrypt.invariant_noise_budget(enc_result)

     << " bits" << endl;

cout << "NOTE: If the noise budget is zero, the decryption can be 

incorrect." << endl;

cout << "    - decryption of enc_result: ";

bfv_decrypt.decrypt(enc_result, decrypted_result);

    cout << "0x" << decrypted_result.to_string() << endl;

And you obtain after running the application the results shown in Listing 12-15 and 

Figure 12-9.

Listing 12-15.  The Output of Computing 3(x2 + 2)(x + 1)2

The value x = 3 is expressed as a plaintext polynomial 0x3.

Encrypting x_plaintext to x_ciphertext...

    - the size of the x_ciphertext (freshly encrypted) is : 2

    - the noise budget for x_ciphertext is : 55 bits

    - decryption of x_encrypted: 0x3

Computing (x^2+2)...

    - the size of the square_x_plus_two is: 3
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    - the noise budget for square_x_plus_two is: 33 bits

    - decryption of square_x_plus_two: 0xB

Computing (x+1)^2...

    - the size of x_plus_one_square is: 3

    - the noise budget in x_plus_one_square is: 33 bits

    - decryption of x_plus_one_square: 0x10

Compute [3(x^2+2)(x+1)^2].

    - the size of encrypted_result: 5

    - the noise budget for encrypted_result: 4 bits

NOTE: If the noise budget is zero, the decryption can be incorrect.

    - decryption of enc_result: 0x210

Indeed, if you compute 3(32 + 2)(3 + 1)2 you get 528. Do not forget that the 

plaintext modulus is 1024, so 528 mod 1024 = 528, which has the 0x210 hexadecimal 

representation. The noise budget is greater than 0, which allowed you to decrypt the 

final encrypted result.

Putting all together, see the code in the SealExample.cpp file (Listing 12-16).

Figure 12-9.  The output of computing 3(x2 + 2)(x + 1)2
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Listing 12-16.  The Entire Code

#pragma once

#include "seal/seal.h"

#include <iostream>

#include <algorithm>

#include <chrono>

#include <cstddef>

#include <fstream>

#include <iomanip>

#include <iostream>

#include <limits>

#include <memory>

#include <mutex>

#include <numeric>

#include <random>

#include <sstream>

#include <string>

#include <thread>

#include <vector>

using namespace std;

using namespace seal;

void seal_example_bfv()

{

    EncryptionParameters BFV_parameters(scheme_type::BFV);

    size_t polynomial_degree = 4096;

    BFV_parameters.set_poly_modulus_degree(polynomial_degree);

    �BFV_parameters.set_coeff_modulus(CoeffModulus::BFVDefault(polynomial_ 

degree));

    BFV_parameters.set_plain_modulus(1024);

    auto seal_context = SEALContext::Create(BFV_parameters);
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    KeyGenerator keygen(seal_context);

    PublicKey encryption_key = keygen.public_key();

    SecretKey decryption_key = keygen.secret_key();

    Encryptor bfv_encrypt(seal_context, encryption_key);

    Evaluator bfv_evaluate(seal_context);

    Decryptor bfv_decrypt(seal_context, decryption_key);

    int value_x = 3;

    Plaintext x_plaintext(to_string(value_x));

    �cout << "The value x = " + to_string(value_x) + " is expressed as a 

plaintext polynomial 0x" + x_plaintext.to_string() + "." << endl;

    Ciphertext x_ciphertext;

    cout << "Encrypting x_plaintext to x_ciphertext..." << endl;

    bfv_encrypt.encrypt(x_plaintext, x_ciphertext);

    �cout << "    - the size of the x_ciphertext (freshly encrypted) is : " 

<< x_ciphertext.size() << endl;

    �cout << "    - the noise budget for x_ciphertext is : " << bfv_decrypt.

invariant_noise_budget(x_ciphertext) << " bits"

        << endl;

    Plaintext value_x_decrypted;

    cout << "    - decryption of x_encrypted: ";

    bfv_decrypt.decrypt(x_ciphertext, value_x_decrypted);

    cout << "0x" << value_x_decrypted.to_string() << endl;

    cout << "Computing (x^2+2)..." << endl;

    Ciphertext square_x_plus_two;

    bfv_evaluate.square(x_ciphertext, square_x_plus_two);

    Plaintext plain_value_two("2");

    bfv_evaluate.add_plain_inplace(square_x_plus_two, plain_value_two);

    �cout << "    - the size of the square_x_plus_two is: " << square_x_

plus_two.size() << endl;

    �cout << "    - the noise budget for square_x_plus_two is: " << bfv_

decrypt.invariant_noise_budget(square_x_plus_two) << " bits"

        << endl;
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    Plaintext decrypted_result;

    cout << "    - decryption of square_x_plus_two: ";

    bfv_decrypt.decrypt(square_x_plus_two, decrypted_result);

    cout << "0x" << decrypted_result.to_string() << endl;

    cout << "Computing (x+1)^2..." << endl;

    Ciphertext x_plus_one_square;

    Plaintext plain_value_one("1");

    bfv_evaluate.add_plain(x_ciphertext, plain_value_one, x_plus_one_square);

    bfv_evaluate.square_inplace(x_plus_one_square);

    �cout << "    - the size of x_plus_one_square is: " << x_plus_one_

square.size() << endl;

    �cout << "    - the noise budget in x_plus_one_square is: " << bfv_

decrypt.invariant_noise_budget(x_plus_one_square) << " bits"

        << endl;

    cout << "    - decryption of x_plus_one_square: ";

    bfv_decrypt.decrypt(x_plus_one_square, decrypted_result);

    cout << "0x" << decrypted_result.to_string() << endl;

    cout << "Compute [3(x^2+2)(x+1)^2]." << endl;

    Ciphertext enc_result;

    Plaintext plain_value_three("3");

    �bfv_evaluate.multiply_plain_inplace(square_x_plus_two, plain_value_

three);

    �bfv_evaluate.multiply(square_x_plus_two, x_plus_one_square, enc_result);

    �cout << "    - the size of encrypted_result: " << enc_result.size() << 

endl;

    �cout << "    - the noise budget for encrypted_result: " << bfv_decrypt.

invariant_noise_budget(enc_result) << " bits"

        << endl;

    �cout << "NOTE: If the noise budget is zero, the decryption can be 

incorrect." << endl;

    cout << "    - decryption of enc_result: ";

    bfv_decrypt.decrypt(enc_result, decrypted_result);

    cout << "0x" << decrypted_result.to_string() << endl;

}
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int main()

{

    seal_example_bfv();

    return 0;

}

In this section, we provided an easy example of how the SEAL library can be used 

with C++ on a Windows distribution. However, real-life applications are much more 

complex, which raises the need to handle more complex functions and algorithms.

The SEAL library can be very useful, and its big advantage is that it does not depend 

on other external libraries. When the applications work with the exact values of integers, 

the BFV encryption scheme implemented in the SEAL library is great. If the application 

needs to work with real or complex numbers, the CKKS encryption scheme is the better 

choice, which is also implemented in the SEAL library.

�Conclusion
In this chapter,

•	 You learned what homomorphic encryption is and the types of 

homomorphic encryption.

•	 You got a deeper view of a fully homomorphic encryption and you 

saw why it is so important.

•	 You used Microsoft’s SEAL library, which implements the BFV 

encryption scheme, on a simple example with a polynomial 

evaluation.
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CHAPTER 13

Ring Learning with Errors 
Cryptography
The topic of this chapter is Ring Learning with Errors cryptography (RLWE). It’s one of 

the most important and challenging techniques to use to develop secure and complex 

applications and systems.

The Learning with Errors (LWE) problem was introduced in 2005 through the 

work [4] by Oded Regev. Since then, it has proved its potential to be a basis for the 

future of cryptography and its capability to generate complex cryptographic structures. 

LWE and related topics are widely used in lattice-based cryptography. You can find 

comprehensive studies and surveys and deep formal aspects in the works [5, 6, 7, 8].

LWE is a difficult computation problem (therefore, a hardness assumption 

in cryptography) that is the formal foundation for cryptographic algorithms and 

constructions. One such cryptographic construction is NewHope [9], which is an 

encapsulation method for post-quantum keys. The purpose of NewHope is to protect 

against cryptanalysis attacks launched on quantum computers. Another application 

of LWE is in homomorphic encryption, serving as a hardness assumption for many 

important (fully) homomorphic encryption schemes (see Chapter 12).

RLWE is the LWE problem applied in rings of polynomials defined over finite fields. 

The RLWE problem represents a basis for future cryptography because it is resistant to 

known quantum algorithms such as Shor’s algorithm, therefore it will remain a hardness 

assumption in the quantum ecosystem.

An advantage of the RLWE technique over LWE is the size of the keys. The size of 

the LWE keys is approximately the square of the size of the RLWE for the same number 

of bits of security. For example, for 128 bits of security, the keys of a LWE cryptosystem 

require 49,000,000 bits, while the keys of a RLWE cryptosystem require 7,000 bits.
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The RLWE cryptographic algorithms can be divided into three categories, as follows:

•	 RLWE Key Exchange (RLWE-KE): In 2011, Jintai Ding, at the 

University of Cincinnati, used the associativity of the matrix 

multiplication to propose a preliminary scheme for key exchange 

based on LWE and RLWE [10]. The study was published in 2012, 

after the idea was patented. Based on this work, in 2014 Chris Peikert 

proposed a key transport scheme [11].

•	 RLWE Signature (RLWE-S): The identification protocol proposed by 

Feige, Fiat, and Shamir in [12] was the basis for the digital signature 

proposed in 2011 by Lyubashevsky. A further improvement of the 

digital signature [13] was proposed by GLP (Gunesyu, Lyubashevsky, 

and Popplemann) in [14].

•	 RLWE Homomorphic Encryption (RLWE-HE): In Chapter 12, 

you saw that homomorphic encryption enables computations 

to be applied directly over encrypted data. Among the first fully 

homomorphic encryption schemes that use RLWE is [15] and it was 

proposed in 2011 by Brakersky and Vaikuntanathan.

In the next section, we provide a minimum mathematical background for LWE and 

RLWE.

�Mathematical Background
�Learning with Errors
In the quantum computers era (where we are currently, although it is an early stage), a 

large number of the current encryption systems with public keys will be easily broken, 

which leads to the natural necessity of creating cryptosystems based on hardness 

assumptions that are quantum-resistant. LWE has this capability. Basically, the difficulty 

of the LWE problem consists in computing the values that solve this equation:

	 b as e= + 	

In an equation of this form, a and b can form the public key, s can be the secret key, 

and e can be an error value (or noise).
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In cryptography, the LWE problem can be used in different topics. For example, 

based on LWE, public-key encryption schemes can be constructed that are secure 

against chosen plaintext or chosen ciphertext attacks. Also, LWE can be a basis for 

oblivious transfer, fully homomorphic encryption, or identity-based encryption.

The above equality becomes b = A × s + e in the work [1] because it is applied on 

linear equations. Here, A becomes a matrix with two dimensions and, if s is a matrix with 

one dimension, then b, e are matrices with one dimension. Another possibility is that A 

and b are matrices with one dimension and s is a scalar value.

Below, a simple encryption scheme based on LWE is presented [4]. Note that in the 

example, p ∈ ℤ represents a prime number.

•	 Key generation: The following elements are chosen randomly: the 

vector s p
nÎ , the matrix A with m rows which are m independent 

vectors of a uniform distribution, and the vector e = (e1, …, em) of an 

error distribution defined over ℤ. Then, the value b is computed 

b = As + e. The secret key is the value s and the public key is the pair 

(A, b).

•	 Encryption: Given the message m ∈ {0, 1} that will be encrypted, 

choose randomly samples from A and b, achieving vA =  ∑ ai and 

v b
p
mb j= å -

2
. The values ai and bi represents the samples from  

A and b, respectively. The encryption of m is the pair (u, v).

•	 Decryption: Compute val = vb − svA (mod p). If val
p

£
2

, then the 

message is m = 0; otherwise, the message is m = 1.

In the above example, you can see how LWE works. Examples of public key 

encryption schemes based on the LWE problem are [2] and the Lindner-Peikert 

encryption schemes.

LWE problems are divided into two categories: LWE search and LWE decision. Next, 

we present these two variants.

Definition (LWE Search): Let m, n, p ∈ ℤ be integer values and let χs and χe be two 

distributions defined over the integer numbers set ℤ. Select the values s es
n

i e¬ ¬c c,  

and ai p
n¬ ( )   and compute the value of bi ≔ 〈ai, s〉 + ei mod p, where i = 1, …, m. 

Given the tuple (n, m, p, χs, χe), the learning with errors search variant problem consists of 

determining s knowing a bi i i

m
,( ) =1

.
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In this definition, s represents a column-vector with n values, ai represents a row-

vector with n values from ℤp, and b represents a column-vector with m elements from ℤp. 

The representation x ← S shows that x is a random variable selected from the finite set S.

Definition (LWE Decision): Let n, p ∈ ℤ be integer values and let χs and χe be two 

distributions defined over the integer numbers set ℤ. Select the value s s
n¬c  and pick 

two oracles as below:

•	 O U: ,a ep
n

e¬ ( ) ¬ c ; output (a, 〈a, s〉 + e mod p)

•	 U a up
n

p: ,¬ ( ) ¬ ( )   ; output (a, u)

Given the tuple (n, p, χs, χe), the learning with errors decision variant means to 

differentiate between   and U.

�Ring Learning With Errors
The LWE problem applied in rings of polynomials with coefficients in a finite field is 

called the Ring Learning with Errors problem. RLWE is used in different domains of 

cryptography, for example, in key exchange, homomorphic encryption and signatures. 

The functionalities of RLWE are similar to the functionalities of simple LWE. For RLWE, 

the variables a, b, s, e from the first equality are polynomials. Further, we show how the 

two definitions for LWE variants are adapted for RLWE.

Definition (RLWE Search): Let n, p ∈ ℤ be integer values, with n = 2k, let R be 

R
X

X n
=

[ ]
+


1

 and R
R

pRp = , and let χs and χe be two distributions defined over the ring Rp.  

Select s ← χs, e ⟵ χe and a Rp¬ ( )  and compute the value of b ≔ as + e. Given 

the tuple (n, p, χs, χe), the ring learning with errors search variant problem consists in 

determining s knowing (a, b).

In this definition, Rp is actually R
X

Xp
p

n
=

[ ]
+


1

.

Definition (RLWE Decision): Let n, p ∈ ℤ+ be integer values and let χs and χe be two 

distributions defined over the ring Rp. Select the value s ← χs and pick two oracles as 

below:

•	 O U: ,a R ep e¬ ( ) ¬ c ; output (a, as + e)

•	 U a R u Rp p: ,¬ ( ) ¬ ( )  ; output (a, u)
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Given the tuple (n, p, χs, χe), the ring-learning with errors decision variant means to 

differentiate between   and U.

An encryption scheme based on the hardness assumption of RLWE is secure if the 

advantage of any algorithm   (called the attacker) with polynomial time in solving the 

RLWE problem is a negligible function.

�Practical Implementation
LWE is quantum-resistant technique in cryptography. On the practical side of LWE, to 

implement a simple LWE example, we first need to generate a secret value and a random 

value. Further, the implementation is intuitive, as we need to compute a value of the 

form p[]=t[]×sk + e.

In Listing 13-1, we provide an implementation for a simple example of encryption 

system based on the work of Oded Regev from [4]. The result of running the program is 

provided in Figure 13-1.

Figure 13-1.  The result of running the program with a simple example of LWE 
encryption

Chapter 13  Ring Learning with Errors Cryptography



292

Listing 13-1.  Implementation of a Simple LWE Example Based on the Work [4]

#include <iostream>

#include <math.h>

#include <ctime>

using namespace std;

int main()

{

    srand(time(0));

    int no_of_values = 10;

    int public_key [no_of_values];

    int values [no_of_values];

    int secret_key = 5;

    int error_value = 12;

    int message = 1;

    int value = 0;

    for (int i = 0; i < no_of_values; i++)

    {

        //** generate random values between 0 and 23

        values[i] = rand() % (23 + 1 - 0) + 0;

        //** compute the public key

        public_key[i] = values[i] * secret_key + error_value;

    }

    cout<<"--Message: "<< message<<"--";

    cout<<endl<<"--Random values--"<<endl;

    for(int i = 0; i < no_of_values; i++)

    {

        cout<<values[i]<<" ";

    }

    cout<<endl<<"--Public Key--"<<endl;

    for(int i = 0; i < no_of_values; i++)

    {

        cout<<public_key[i]<<" ";

    }
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    //** get half random samples from the public_key

    int noOfSamples = floor(no_of_values / 2);

    int samples [noOfSamples];

    for(int i=0; i < noOfSamples; i++)

    {

        //** generate a number of 5 random indices between 0 and 10

        samples[i] = rand() % ((no_of_values-1) + 1 - 0) + 0;

    }

    cout<<endl<<"--Sample indices--";

    cout<<endl<<"samples = [ ";

    for (int i=0; i < noOfSamples; i++)

    {

        cout << samples[i] << " ";

    }

    cout<<" ]" << endl;

    int sum = 0;

    for (int i = 0; i < noOfSamples; i++)

    {

        sum += public_key[samples[i]];

    }

    cout<<endl<<"--The sum: " << sum << "--";

    if (message == 1)

        sum+=1;

    cout<<endl<<"--The encryption of the message is:" << sum <<" --";

    int decryption = sum % secret_key;

    if (decryption % 2 == 0)

        cout<<endl<<"--The decryption is: 0--";

    else

        cout<<endl<<"--The decryption is: 1--";

    return 0;

}
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Further, we provide in Listing 13-2 a more complex example of public-key encryption 

that uses LWE, based on the work [5]. The result of running the program is shown in 

Figure 13-2.

Listing 13-2.  Implementation of the LWE Encryption Method Proposed by Oded 

Regev in [5]

#include <iostream>

#include <math.h>

#include <ctime>

using namespace std;

int main()

{

    srand(time(0));

    int numberOfRandVals = 20;

    �int values_A [20]; //** values_A is a set of random numbers; represents 

the public key

    int secretValue = 5; //** represents the secret key

    int values_error [numberOfRandVals]; //** represents the error values

    �int values_B [numberOfRandVals]; //** values_B is computed based on 

values_A, secretValue, values_error; represents the public key

    int q = 97; //** q is a prime number

    //** generate random values

    //** the number of random values is numberOfRandVals = 20

    //** the range is 0 - q=97

    for(int i=0; i < numberOfRandVals; i++)

    {

        //** to generate a random value in a range MIN - MAX,

        //** we proceed as folloes: val = rand() % (MAX + 1 - MIN) + MIN;

        //** generate random values between 0 - 97

        values_A[i] = rand() % (q + 1 - 0) + 0;

        //** generate small error values, between 1 - 4

        values_error[i] = rand() % (4 + 1 - 1) + 1;
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        //** compute values_B using the formula B_i = A_i*s + e_i

        values_B[i] = values_A[i]*secretValue + values_error[i];

    }

    cout<<"--------- The parameters and the keys ---------" << endl;

    cout<<"--Prime number (q)--" << endl;

    cout<<"q = " << q << endl;

    cout<<"--Public key (A, B)--" << endl;

    cout<<"A = [ ";

    for (int i=0; i < numberOfRandVals; i++)

    {

        cout << values_A[i] << " ";

    }

    cout<<"]" << endl;

    cout<<"B = [ ";

    for (int i=0; i < numberOfRandVals; i++)

    {

        cout << values_B[i] << " ";

    }

    cout<<"]" << endl;

    cout<<"--Secret key (s)--" << endl;

    cout<<"s = " << secretValue << endl;

    cout<<"--Random error (e)--" << endl;

    cout<<"e = [ ";

    for (int i=0; i < numberOfRandVals; i++)

    {

        cout << values_error[i] << " ";

    }

    cout<<"]" << endl;

    �cout<< endl << endl << "--------- Getting samples from the public 

key... ---------";

    �int noOfSamples = floor(numberOfRandVals / 4); //** represents the 

number of samples from the public key

    int samples [noOfSamples];
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    for(int i=0; i < noOfSamples; i++)

    {

        //** generate a number of 5 random indices between 0 and 19

        samples[i] = rand() % ((numberOfRandVals-1) + 1 - 0) + 0;

    }

    cout<<endl<<"--Sample indices--";

    cout<<endl<<"samples = [ ";

    for (int i=0; i < noOfSamples; i++)

    {

        cout << samples[i] << " ";

    }

    cout<<" ]" << endl;

    cout<<"--Sample pairs--";

    for (int i=0; i < noOfSamples; i++)

    {

        cout << endl <<"Sample " << i << ": ["

        << values_A[samples[i]] << " " << values_B[samples[i]] << "]";

    }

    cout<< endl << endl << "--------- Computing u and v... ---------";

    �int message = 0; //** the message to be encrypted can be a value from 

{0, 1}

    int u = 0, v = 0;

    //** u = (sum (samples from values_A)) mod q

    //** v = (sum (samples from values_B) + [q/2] * message) mod q

    for (int i=0; i < noOfSamples; i++)

    {

        u = u + values_A[samples[i]];

        v = v + values_B[samples[i]];

    }

    v = v + floor(q/2) * message;

    u = u % q;

    v = v % q;

    cout<<endl<<"u = "<<u;

    cout<<endl<<"v = "<<v;
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    cout<< endl << endl << "--------- Encrypting... ---------";

    cout<<endl<<"--Message--";

    cout<<endl<<"m = "<<message;

    cout<<endl<<"--Encryption f the message--";

    cout<<endl<<"Enc(m) = (" << u << ", " << v <<")";

    cout<< endl << endl << "--------- Decrypting... ---------";

    int result = (v - secretValue * u) % q;

    int decryption;

    if (result > q/2)

        decryption = 1;

    else

        decryption  = 0;

    cout<<endl<<"The message is: " << decryption;

    return 0;

}

Figure 13-2.  The result of running the program of the public-key LWE example
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Listing 13-2 provides the example of public key encryption based on LWE, which was 

proposed in the work [5]. We first create a secret value secretValue which represents 

the private key. In the next step, we create the public key. The public key is formed by 

the values from a set of random numbers values_A and a set of values values_B, which 

are computed based on values_A, secretValue, and random errors values_error. This 

example is implemented for a single bit.

A simple workflow for this example is

•	 Between 0 and q (in the example, q=97), we select a random set of 

20 values values_A that represent one of the components of the 

public key.

•	 Further, we define the set values_B where every element is computed 

as values_B[i]=values_A[i] x secretValue+values_error[i] 

mod q, where secretValue is the secret key, and where values_error 

represents a list of small random values called the errors values.

•	 The sets values_A, values_B form the public key and secretValue 

represents the secret key. At this point, we can share values_A and 

values_B with anyone who wants to proceed with an encryption of 

a message (with the condition to keep secretValue secret). In the 

encryption process, we use samples from values_A and values_B. 

Moving forward, based on those sample we take a bit message and 

compute the following two values:

•	 u =  ∑ (values _ Asamples)(mod q)

•	 v values B
q

message qsamples= å( )+ ´ ( )_ mod
2

•	 At this point, we can say that the encrypted message is (u, v). To 

proceed with the decryption, we need to compute

•	 decryption = v − s × u (mod q)

•	 If decryption
q

<
2

, the message is equal with 0; otherwise 1.

The procedure described above is summarized from Oded Regev’s paper [5] in order 

to make it easy to follow and to give you a clear understanding of how you can transpose 

the complexity of LWE in reality.
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�Conclusion
In this chapter, we discussed Ring Learning with Errors cryptography and we 

implemented two examples of encryption schemes using the C++ programming 

language as proposed in the works [4] and [5]. RLWE can be a space for many challenges 

for professionals and a starting point for significant contributions to this cryptographic 

primitive.

Through the chapter, you experienced an interesting journey with LWE from which 

you gained the following:

•	 A solid but short mathematical background of the main concepts and 

definitions on which RLWE is based and without which a practical 

implementation will have many gaps to fill

•	 Experience experimenting with the challenges brought by RLWE’s 

mathematical concepts and their transposition in practice

•	 The ability to implement simple examples of public-key encryption 

schemes based on LWE
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CHAPTER 14

Chaos-Based 
Cryptography
In chaos-based cryptography, the chaos theory and its mathematical background are 

applied for creating novel and unique cryptographic algorithms. The first attempt 

of using the chaos theory in cryptography was initiated by Robert Matthews in 1989 

through the work [1], which attracted much interest.

In contrast to the regular cryptographic primitives used daily, the chaos theory 

and its system are used in an efficient way by implementing the chaotic maps towards 

confusion and diffusion. Through this chapter, the cryptographic algorithm is referred to 

as the chaotic system.

To understand the similarities and differences between chaotic systems and 

cryptographic algorithms, we present a set of correspondences in Table 14-1 introduced 

by L. Kocarev in [2].

Table 14-1.  Similarities and Differences Between Chaotic Systems and 

Cryptographic Algorithms

Chaotic System Cryptographic Algorithm

Phase space: (sub) set of real numbers Phase space: finite set of integers

Iterations Rounds

Parameters Key

Sensitivity to a change in initial conditions and parameters Diffusion

? Security and Performance
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Further, we demonstrate the similarities and the differences from Table 14-1 using an 

example of a chaotic system, the shift map:

	 x t ax t+( ) = ( ) ( )1 1mod 	

where the phase space x=[0,1] is the unit interval and a>1 is an integer value.

From the chaos theory perspective, cryptography can use different functions and 

discrete-time systems. By analyzing them, the phase space will become a finite set of 

integers and the parameters will be inter values. The version of the shift map that uses 

the discrete phase-space is one of the common examples:

	 p t ap t N+( ) = ( ) ( )1 mod 	

where a > 1, N and p are integer values, with the restrictions p ∈ [0, 1, …, N − 1], and 

N is coprime to a. This representation of the shift map is invertible, which means that 

all trajectories placed within a dynamical system with a finite phase space are called 

periodical. This fact introduces a new concept, namely the period function PN that 

describes the least period of the map F, denoted F PN  as its identity, and PN is minimal as 

it is a function within a system of size N.

Another very important metric used in the practical chaotic systems is the Lyapunov 

exponent (LE), whose trivial value is 0. The reason for it is the case in which the orbit is 

periodic and it will reiterate itself.

With this information, below are presented two concepts of block diagrams (for text 

encryption and image encryption) that demonstrate an encryption scheme based on 

the chaos theory. Figures 14-1 and 14-2 show the encryption process and the decryption 

process, respectively, based on the logistic map. Figure 14-3 shows an example of image 

encryption and decryption.

Following the examples of the block diagrams, we can examine the former papers 

and the other papers listed in this chapter’s references to observe that the encryption 

models and the way in which they are built are different according to the chaotic map 

used. Before designing new cryptographic approaches and mechanisms based on the 

chaos theory, it is very important to comprehend the way in which different chaotic 

maps work.

A good starting point is to use the following block diagrams as a guide from theory 

to practice, because the models are created according to the similarities and differences 

from Table 14-1.
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Figure 14-1.  Block diagram for text encryption using logistic map [14]

Figure 14-2.  Block diagram for text decryption using logistic map [14]
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�Security Analysis
In this section, we present a security analysis in the form of techniques for finding the 

weakness or security breaches in the cryptosystem and then we get a piece or the whole 

encrypted image or plaintext or find the key without knowing the algorithm or the 

decryption key.

Examples of attacks over encrypted images are presented in [3] and [4]. The 

following methods, techniques, and analysis should be considered in designing a chaotic 

system or in conducting a cryptanalytic attack:

•	 Key space analysis: This is the number of trials for finding the 

decryption key, and it is made by trying all possible keys from 

the keyspace of the encryption system. An important remark is 

that the keyspace grows exponentially at the same time with the 

incrementation of the key’s size.

•	 Key sensitivity analysis: For a good encryption system for images, 

an important thing that should be considered is the sensitivity of 

the secret key. If just a single bit is modified in the secret key, then 

the output image should be a completely different image (regarding 

encryption or decryption).

Figure 14-3.  Block diagram for an image encryption cryptosystem [15]
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•	 Statistical analysis: The purpose of this analysis is to prove the 

relationship between the original image and the encrypted one.

•	 Correlation coefficient analysis: An important graphical tool that 

needs to be studied is the histogram, namely the distribution of the 

values generated by a trajectory of a dynamic system. Among the 

histogram analysis, the correlation between the pixels of a plain 

image and the encrypted image is another important technique, as it 

is made between two pixels distributed vertically, horizontally, and 

diagonally.

•	 Information entropy analysis: The analysis based on the entropy 

tests the robustness of the encryption algorithm. The comparison 

between the entropy of the plain image and the encrypted image 

is very important, which shows that the entropy of the encrypted 

images is about an 8-bit depth. This is useful in proving the 

encryption technique against the entropy attack.

•	 Differential analysis: The differential analysis determines the 

sensitivity of the cryptosystem regarding any slight change in the 

algorithm. The sensitivity can be computed based on two criteria: 

NPCR (number of pixels change rate) and UACI (unified average 

changing intensity). When these two test are made, the high values 

show the small changes that occurred in the plain image, which 

produced significant modifications in the encrypted image.

�Chaotic Maps for Plaintexts and Images Encryption
This section presents chaotic maps with respect to their encryption target (text 

encryption or image encryption).

Many encryption algorithms for images from the below list (Table 14-2) have 

been analyzed and tested by the authors who proposed them by using the techniques 

described above. It is useful to have validation of the performance and to have an 

evaluation of the robustness of the encryption scheme. All the references were analyzed 

and chosen as good references based on their analysis and tests.
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�Rössler Attractor
The Rössler attractor is a system that is formed from three non-linear ordinary 

differential equations. The equations define a continuous-time dynamical system 

that exposes chaotic dynamics, which are associated with the fractal properties of the 

attractor.

The equations of the Rössler system are as follows:
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When Rössler is applied in real life, computing the fixed points is one of the first 

challenges. To compute the fixed points, it is sufficient that the equations are set to 

Table 14-2.  Chaotic Map (Systems) for Image Encryption

Chaotic Map (System) Metrics 
Entropy

NPCR UACI Key 
Space

Sensitivity References

Lorenz

Baker

7.9973 - - 2128 High [5]

Lorenz - - - Large Medium [6]

Henon Map 7.9904 0.0015% 0.0005% 2128 High [7]

Logistic Map 7.9996 99.6231% 33.4070% 1045 High [8]

Trigonometry Maps - 0.25% 0.19% 2302 - [9]

Arnold Cat Map 7.9981 99.62% 33.19% 2148 High [10]

Chebyshev Map 7.9902 99.609% 33.464% 2167 High [11]

Circle Map 7.9902 99.63% 33% 2256 High [12]

Arnold Map - 0.0015% 0.004% - - [13]
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zero and the (x, y, z) coordinates of each of the fixed points are computed by solving the 

resulting equations. We have the following general equations of each of the fixed point 

coordinates:

	

x
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These equations are turned in such way that will show the current fixed points that 

are given for a set of values associated with the parameters.
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The above equations are used in our example from Listing X, where we implement a 

solution for generating secure random numbers using the chaos perspective of a Rössler 

attractor.

�Complex Numbers – Short Overview
Complex numbers represent an extension of real numbers. The motivation behind 

complex numbers is in the desire to provide a way of solving algebraic equations that 

normally (using traditional real numbers) have no solution. As an example, x2 + 1 = 0 has 

no real solution. For this situation, a symbolic solution has been created and it is known 

as the imaginary unit i, which has the following property:

	 i2 1= - 	
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A complex number is represented with two components, which are known as the real 

part and the imaginary part. We have the following:

	 z x yi= + 	

where real(z) = x denotes the real part, imag(z) = y the imaginary part, and i represents 

the imaginary unit.

The arithmetic behind the complex numbers is quite straightforward and it is an 

extension of the arithmetic of real numbers. To understand the previous statement, we 

define two numbers z and w as follows:

	 z w x yi u vi x u y v i+ = +( )+ +( ) = +( )+ +( ) . 	

We add the real and imaginary components separately. The next step is to multiply 

the numbers as follows:

	 z w x yi u vi xu xvi yui yvi xu yv xv yu i· .= +( ) +( ) = + + + = -( )+ +( )2 	

Observe that yvi2 represents the real part of the product becoming –yv, due the 

property defined above, namely i2 =  − 1.

In the example presented in Listing X we use complex numbers with chaos and 

fractals properties to provide encryption and decryption operations.

�Practical Implementation
The applications and programs that use chaotic systems have applicability for plaintext 

encryption and image encryption. If we look at other areas of cryptography (such as 

the ones discussed in this book), the research community has a significant amount of 

theoretical contributions. The lack of practical implementations and directions has 

raised multiple difficulties and challenges for researchers and professionals.

If we look at the practicality of chaos cryptography, there are not many practical 

implementations. Below we will list some of the practical approaches (and here we are 

referring to pseudocode algorithms) that can be found within [16]. The work from [16] 

provides a very in-depth structure and very good ideas and approaches on how different 

cryptosystems based on chaos theory can be implemented. The ideas are provided as 

pseudocode. The work covers the following cryptosystem types:
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•	 Chaos-based public-key cryptography

•	 Pseudo-random number generation in cryptography

•	 Formation of high-dimensional chaotic maps and their uses in 

cryptography

•	 Chaos-based hash functions

•	 Chaos-based video encryption algorithms

•	 Cryptanalysis of chaotic ciphers

•	 Hardware implementation of chaos-based ciphers

•	 Hardware implementation of chaos-secured optical communication 

systems

In [16], starting with Chapter 2, the authors propose an interesting public-key 

cryptosystem that uses the chaos approach and consists of three steps: a key generation 

algorithm (see Pseudocode 14-1), an encryption algorithm (see Pseudocode 14-2), and 

a decryption algorithm (see Pseudocode 14-3). The scenario is a typical communication 

between two user entities, Alice and Bob. Below we will provide the structure of each 

algorithm and at the end we will provide implementations for demonstrating the 

applicability.

Pseudocode 14-1.  Key Generation Algorithm [16]

Start. Alice needs to generate the keys before the communication. For this 

she will accomplish the following:

•	 A large integer a has to be generated.

•	 Calculate Ga(p) based on a random number selected as p ∈ [−1, 1].

•	 Alice will set her public key as (p, G(p)) and her private key to a.

Pseudocode 14-2.  Encryption Algorithm [16]

Start. Bob wants to encrypt a messsage. To achieve this, the following must 

be done:

•	 Get Alice’s authentic public key (p, Ga(p)).

•	 Calculate and represents the message as a number M ∈ [−1, 1].

Chapter 14  Chaos-Based Cryptography



312

•	 Generate a large integer r.

•	 Calculate Gr(p), Gr · a(x) = Gr(Ga(p)) and X = M · Gr · s(p).

•	 Take the ciphertext and send it as C = (Gr(p), X) to Alice.

Pseudocode 14-3.  Decryption Algorithm [16]

Start. Alice wants to read the text and to do this she will have to recover 

M from the ciphertext C. To achieve this, the following steps are done:

•	 Alice has to use her private key a and to calculate Ga · t = Ga(Gr(p)).

•	 The message M will be obtained by calculating M
X

G pa r

=
( )·

.

�Secure Random Number Generator Using a Chaos Rössler 
Attractor
In this section, we will present the implementation of a secure random number 

generator using a chaos Rössler attractor. The application has five files (encryption.h, 

generation.h, encryption.c, generation.c, and chaos_random.cpp). To compile and 

run the application, we need to run the following command in the terminal:

g++ -o test.exe chaos_random.cpp generation.c generation.h encryption.c 

encryption.h

Below we will examine each of the files and we will discuss the most important lines 

of code.

Figure 14-4 shows the execution of the program and the numbers generated for each 

of the keys. As you saw in the Rössler attractor section, there are three fixed points that 

need to be computed in order to solve the equations. Each fixed point is represented by a 

cryptographic key (e.g. key 1, key 2, key 3).

Figure 14-4.  Secure random number generator
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Listing 14-1 contains the header file (encryption.h) for defining the signature 

function for encryption process, encryption. The function has three input values:

•	 struct generation *g: A struct object used to generate the mantisa, 

exponent, and sign for obtaining the normalization form of a real 

number. The definition of the struct can be found within the file 

generation.h (see Listing 16-2).

•	 uint8_t *buffer: The buffer with the data used for encryption

•	 size_t length: The length of the buffer

Listing 14-1.  Header File encryption.h

#ifndef ENCRYPTION_H

#define ENCRYPTION_H

#include "generation.h"

#include <stddef.h>

void encryption(struct generation *g, uint8_t *buffer, size_t length);

#endif

Listing 14-2 contains the implementation of the generation.h header file, which 

contains definitions for the Rössler attractor (see ROSSLER(x,n)), the coordinates (A, B, 

and C), integral approximation (APPROXIMATION constant), removing noise constant 

(REMOVE_NOISE), two functions for generating the initialization on 16 and 32 bits 

(generation_initialization and generation 32), describing the normalization of real 

numbers as a union and struct types, containing for the double numbers the mantisa, 

exponent, and sign (realbits union), and a struct (generation struct) for the generation 

process that contains three variables which represent the fixed points (e.g. x, y, and z).

Listing 14-2.  Header File generation.h

#ifndef GENERATION_H

#define GENERATION_H

#include <inttypes.h>

#include <math.h>
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// the Rossler (ROL) attractor definition for plane (x,n)

#define ROSSLER(x,n) ((x = ((x << n) | (x >> (32 - n)))))

// the attractor variables (coordinates) - for this example Rossler is chosen

#define A_Coordinate 0.5273

#define B_Coordinate 3

#define C_Coordinate 6

// constant for integral approximation as a step size

#define APPROXIMATION 0.01

// constant used for removing the initial noise

#define REMOVE_NOISE 64

void generation_initialization(struct generation *g, uint64_t k[3]);

uint32_t generation32(struct generation *g);

// the normalization form of a real number

union realbits

{

      double d;

      struct

      {

                  uint64_t mantisa: 52;

                  uint64_t exponent: 11;

                  uint64_t sign: 1;

      } rb;

};

struct generation

{

      union realbits x, y, z;

};

#endif

Listing 14-3 contains the implementation function for the encryption process. Note 

the fact that the encryption.c source file includes both header files from Listing 14-1 

and Listing 14-2. As mentioned, the encryption is done using a generation struct that 

contains three fixed points, a buffer used to hold the content being encrypted, and its 
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length. The function is quite self-explanatory and the main idea behind it is based on the 

position within the data stream, and the number of calls plays an important role as it is 

using the length of the buffer and shifting to the right 2 bits.

Listing 14-3.  File encryption.c

#include "encryption.h"

#include "generation.h"

#include <iostream>

using namespace std;

// performing the encryption operation

void encryption(struct generation *g, uint8_t *buffer, size_t length)

{

        uint32_t position_in_stream;

        size_t number_of_calls = length >> 2;

        size_t l_neighbour = length & 3;

        uint8_t *temporary = (uint8_t *)&position_in_stream;

        for(size_t index = 0; index < number_of_calls; ++index)

           {

                 position_in_stream = generation32(g);

                 buffer[(index<<2)] ^= temporary[0];

                 buffer[(index<<2)+1] ^= temporary[1];

                 buffer[(index<<2)+2] ^= temporary[2];

                 buffer[(index<<2)+3] ^= temporary[3];

        }

        if(l_neighbour != 0)

      {

                  position_in_stream = generation32(g);

                  for(size_t index = 0; index < l_neighbour; ++index)

                     �buffer[(number_of_calls<<2)+index] ^= temporary[index];

        }

         �std::cout<<"The position with the stream is -> "<<position_in_

stream<<endl;

}
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Listing 14-4 contains the implementation for the different operations necessary for 

generating the fixed points and performing the initialization process. Here we also use 

the ROSSLER function defined in Listing 14-2.

Listing 14-4.  File generation.c

#include "generation.h"

static void initialization(struct generation *gen, double initValueX, 

double initValueY, double initValueZ)

{

      gen->x.d = initValueX;

      gen->y.d = initValueY;

      gen->z.d = initValueZ;

}

static void perform_iteration(struct generation *gen)

{

      gen->x.d = gen->x.d + APPROXIMATION * (-gen->y.d - gen->z.d);

      �gen->y.d = gen->y.d + APPROXIMATION * (gen->x.d + A_Coordinate *  

gen->y.d);

      �gen->z.d = gen->z.d + APPROXIMATION * (B_Coordinate + gen->z.d * 

(gen->x.d - C_Coordinate));

}

void generation_initialization(struct generation *gen, uint64_t keyValue[3])

{

      initialization(gen,

               (double)keyValue[0] / 9007199254740992,

               (double)keyValue[1] / 8674747684896687,

               (double)keyValue[2] / 6758675765879568);

     for(uint8_t index = 0; index < REMOVE_NOISE - 1; ++index)

            perform_iteration(gen);

}

Chapter 14  Chaos-Based Cryptography



317

uint32_t generation32(struct generation *gen)

{

      uint32_t message[6];

      message[0] = (uint32_t)(gen->x.rb.mantisa >> 32);

      message[1] = (uint32_t)(gen->x.rb.mantisa);

      message[2] = (uint32_t)(gen->y.rb.mantisa >> 32);

      message[3] = (uint32_t)(gen->y.rb.mantisa);

      message[4] = (uint32_t)(gen->z.rb.mantisa >> 32);

      message[5] = (uint32_t)(gen->z.rb.mantisa);

      perform_iteration(gen);

      message[0] += message[1];

      message[2] += message[3];

      message[4] += message[5];

      for(uint8_t index = 0; index < 4; ++index)

      {

                  ROSSLER(message[0],7); ROSSLER(message[3],13);

                  message[5] ^= (message[4] + message[3]);

                  message[1] ^= (message[2] + message[0]);

                  message[2] = message[2] ^ message[0] ^ message[5];

                  message[4] = message[4] ^ message[3] ^ message[1];

      }

      message[2] += message[4];

      return message[2];

}

Listing 14-5 contains the implementation of the main program. Note that the path to 

the file which contains random numbers (similar to urandom from the UNIX OS) has to 

be adjusted accordingly to reader comfort. The line where the path must be modified is 

shown with bold as follows:

if((folder = open("D:/Apps C++/Chapter 14 - Chaos-based Cryptography/

ChaosSecureRandomNumberGenerator/dev/urandom", O_RDONLY)) == -1)
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Listing 14-5.  Main Program

#include "encryption.h"

#include "generation.h"

#include <fcntl.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <windows.h>

#include <time.h>

#include <inttypes.h>

#include <iostream>

using namespace std;

const size_t MESSAGE_LENGTH = 2000000000;

uint64_t generateStringOfBytes()

{

        int folder = 0;

        ssize_t resourceFile = 0;

        uint64_t buffer = 0;

        �if((folder = open("D:/Apps C++/Chapter 14 - Chaos-based 

Cryptography/ChaosSecureRandomNumberGenerator/dev/urandom",  

O_RDONLY)) == -1)

         exit(-1);

         if((resourceFile = read(folder, &buffer, sizeof buffer)) < 0)

            exit(-1);

        buffer &= ((1ULL << 53) - 1);

        close(folder);

        return buffer;

}
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int main(void)

{

        struct generation gen;

        �uint64_t key[3] = {generateStringOfBytes()+rand()%3000, generate 

StringOfBytes()+rand()%5000, generateStringOfBytes()+rand()%8000};

            cout<<"Key 1 -> "<<key[0]<<endl;

            cout<<"Key 2 -> "<<key[1]<<endl;

            cout<<"Key 3 -> "<<key[2]<<endl;

        // generate 1GiB of 1s

        uint8_t *message = (uint8_t*)malloc(MESSAGE_LENGTH);

        memset(message, 1, MESSAGE_LENGTH);

        // perform encryption

        generation_initialization(&gen, key);

        clock_t s = clock();

        encryption(&gen, message, MESSAGE_LENGTH);

        clock_t e = clock();

        double spent = (double)(e - s) / CLOCKS_PER_SEC;

        printf("1GiB in %lfs\n", spent);

        free(message);

}

�Cipher Using Chaos and Fractals
In this section, we will discuss and implement a solution for the encryption/decryption 

operation using chaos and fractals notions.

Listing 14-6 contains the declaration of the main functions that deal with processing 

the representation of the starting points and performing the projections for both axes, 

x and y. It is necessary to mention that one of the most challenging operations and 

tasks when using fractals and chaotic systems is to identify the path and to identify the 

main root (see function identifyFirstRoot()). The code in Listings 14-6 and 14-7 is 

quite self-explanatory and contains the necessary notes to be fully understandable. See 

Figure 14-5 for the execution of the application.
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To run the program, the following command must be entered in the terminal:

g++ -o test.exe FractalCipherCrypto.cpp FractalCipherCrypto.h

Listing 14-6.  Header File FractalCipherCrypto.h

#ifndef CRYPTOCIPHERFRACTALS_H_

#define CRYPTOCIPHERFRACTALS_H_

#include <climits>

#include <assert.h>

#include <math.h>

class CryptoFractalCipher

{

      // point C = (x, y) - the representation in the xOy system of point C

      double c_xCoordinatePoint, c_yCoordinatePoint;

      // point Z = (x,y) - the representation in the xOy system of point Z

      double z_xCoordinatePoint, z_yCoordinatePoint; //Zx,Zy;

Figure 14-5.  Execution of the encryption/decryption process
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      // get the sign of a double number

      inline double getSign(double number)

      {

          // �in case that d is less than 0, return -1.0, making the number 

negative

          // contrary make the number positive

         if (number<0)

            return(-1.0);

         else

            return(1.0);

     };

     // Value 'yValue' will be projected over an integer matrix or grid.

     // �We have choose this for achieving the scaling goal and performing 

tests.

     // �The projection process is a matter of personal choice, any other 

idea or

     // solution can be implemented by reader.

     inline unsigned int PerformProjectionFor_Y(double yValue)

    {

        unsigned long q;

        const double scale=(32768.0/2.0);

        const double offset=(32768.0);

        // �do the projection as a positive integerproject to positive 

integer

      q=(yValue*scale)+offset;

       //getting the LSB (least significant bit)

      q&=1;

      return q;

    }

      // Value 'xValue' will be projected over an integer matrix or grid.

      // �We have choose this for achieving the scaling goal and performing 

tests.
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      // �The projection process is a matter of personal choice, any other 

idea or

      // solution can be implemented by reader.

      inline unsigned int PerformProjectionFor_X(double xValue)

    {

           // used for storing the decomposition value

           double decompositionValue;

           // power value (exponent)

        int n;

           // with frexp() we will decompose the double point (xValue) as

          // argument into a normalized fraction and an integral power

        decompositionValue = frexp (xValue , &n);

          // �with ldexp() we will return the result of multiplying 

'decompositionValue'

          // �(the significand) with 2 and raised to the power '51' 

(exponent)

        decompositionValue = ldexp(decompositionValue,51);

          // Test if the difference between 'decompositionValue' and

          // floor(decompositionValue) is less than 0.5

          // if yes return '1', otherwise '0'.

          // �With floor() we round 'decompositionValue', returning the 

largest

          // integral value that is not greater than 'decompositionValue'

        return (((decompositionValue-floor(decompositionValue))<0.5)?1:0);

    }

     inline void identifyFirstRoot()

     {

         /* Zn*Zn=Z(n+1)-c */

          z_xCoordinatePoint=z_xCoordinatePoint-c_xCoordinatePoint;

          z_yCoordinatePoint=z_yCoordinatePoint-c_yCoordinatePoint;
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          // �r represents the length of the vector from the origin to the 

point

          // r = |z| = sqrt(x*x+y*y)

          double r;

          // the new point z = (x,y)

          double z_xNewPointValue, z_yNewPointValue;          //NewZx, NewZy

          �r=sqrt(z_xCoordinatePoint*z_xCoordinatePoint+z_

yCoordinatePoint*z_yCoordinatePoint);

          // �the below code sequence represents the implementation of the 

algorithm presented in [17], from page 361 to 362.

          // case 1: z>0

          if (z_xCoordinatePoint>0)

          {

               z_xNewPointValue=sqrt(0.5*(z_xCoordinatePoint+r));

               z_yNewPointValue=z_yCoordinatePoint/(2*z_xNewPointValue);

          }

          // for cases when z<0 and z=0

          else

          {

               // case 2: z<0

               if (z_xCoordinatePoint<0)

               {

                    �z_yNewPointValue=getSign(z_yCoordinatePoint)*sqrt(0.5*( 

-z_xCoordinatePoint+r));

                    �z_xNewPointValue=z_yCoordinatePoint/(2*z_yNewPointValue);

               }

               //case 3: z=0

               else

               {

                    z_xNewPointValue=sqrt(0.5*fabs(z_yCoordinatePoint));

                    �if (z_xNewPointValue>0) z_yNewPointValue=z_

yCoordinatePoint/(2*z_xNewPointValue);

                    else z_yNewPointValue=0;

               }
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          };

          // end of the implementation

          // the values for x and y coordinates

          z_xCoordinatePoint=z_xNewPointValue;

          z_yCoordinatePoint=z_yNewPointValue;

     };

public:

     // gets the encrypted value

     unsigned int getEncryptedMessageA(unsigned int plainValue);

     unsigned int getDecryptedMessageB(unsigned int encryptedValue);

     unsigned int getEncryptedMessageC(unsigned int stream);

     unsigned int getDecryptedMessageD(unsigned int stream);

     // gets the single bit

     unsigned int bitCodeEncryptedMessageA(unsigned int plainValue);

     unsigned int bitCodeDecryptedMessageB(unsigned int encryptedValue);

     unsigned int bitCodeEncryptedMessageC(unsigned int stream);

    unsigned int bitCodeDecryptedMessageD(unsigned int stream);

     // constructor

     CryptoFractalCipher(double cx,double cy);

     // destructor

     virtual ~CryptoFractalCipher();

};

#endif

Listing 14-7.  Main Program

#include "FractalCipherCrypto.h"

#include <climits>

#include <assert.h>

#include <math.h>

#include <iostream>

using namespace std;
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// implementing bitCodeEncryptedMessageA from FractalCipherCrypto.h file

unsigned int CryptoFractalCipher::bitCodeEncryptedMessageA(unsigned int 

bit_from_plaintext)

{

     // below we will create a cryptographic strem from the clear stream

    int crypto_bit=0;

    {

        identifyFirstRoot();

          // quadratic value

        �unsigned long quadraticValue = PerformProjectionFor_X( 

z_yCoordinatePoint);

          // Do the encoding process and provide the

          // cryptographic stream from the clear stream

          // Variables used:

          //          - iV: the input value

          //          - oV: the output value

          //          - rV: the route value in the expansion of the fractal

        unsigned int iV, oV, rV;

        {

               unsigned int result1, result2, result3;

            iV=(bit_from_plaintext) & 1;

               // obtained from the iteration of the quadratic value

            result1=quadraticValue;

               // input value

            result2=iV;

               // �we will copy the bits if it is set in one operand but not 

both

            result3=result1^result2;

               // the final output value

            oV=result3;

               // �the route value that need to be followed within the 

expansion of the fractal

Chapter 14  Chaos-Based Cryptography



326

               rV=result2;

        }

        crypto_bit=(oV);

        if ((rV) != 0)

        {

            // use the route on the second root point

            z_xCoordinatePoint=-z_xCoordinatePoint;

            z_yCoordinatePoint=-z_yCoordinatePoint;

        }

    }

    return crypto_bit;

};

unsigned int CryptoFractalCipher::bitCodeDecryptedMessageB(unsigned int 

bit_from_encoding)

{

     // decode the clear value from the cryptographic stream

    int bit_from_plaintext=0;

    {

        identifyFirstRoot();

          // computing the quadratic value

        �unsigned long quadraticValue = PerformProjectionFor_X(z_

yCoordinatePoint);

          // �decoding process for obtaining the clearstream from the 

cryptographic stream

          // Variables used:

          //          - iV: the input value

          //          - oV: the output value

          //          - rV: the route value in the expansion of the fractal

        unsigned int iV, oV, rV;

        {

               unsigned int result1,result2,result3;

            iV=(bit_from_encoding) & 1;
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               // obtained from the iteration of the quadratic value

            result1=quadraticValue & 1;

               // input value

            result3=iV;

               // �we will copy the bits if it is set in one operand but not 

both

            result2=result1^result3;

               // the output value

            oV=result2;

               // �the route value that need to be followed within the 

expansion of the fractal

            rV=result2;

        }

        bit_from_plaintext=(oV);

        if ((rV) != 0)

        {

               // use the route on the second root point

            z_xCoordinatePoint=-z_xCoordinatePoint;

            z_yCoordinatePoint=-z_yCoordinatePoint;

        }

    }

    return bit_from_plaintext;

};

unsigned int CryptoFractalCipher::bitCodeEncryptedMessageC(unsigned int 

bit_from_stream)

{

     // generate the cryptographic stream from the clear stream

    int bit_from_coding=0;

    {

        identifyFirstRoot();
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        �unsigned long quadraticValueForY = PerformProjectionFor_X( 

z_yCoordinatePoint);

        �unsigned long quadraticValueForX = PerformProjectionFor_X( 

z_xCoordinatePoint);

        // encoding process

        unsigned int iV, oV, rV;

        {   unsigned int result1, result2, result3, result4;

            iV=(bit_from_stream);

               // from the iteration of the 'y' quadratic

            result1=quadraticValueForY;

               // from the iteration of the 'x' quadratic

            result2=quadraticValueForX;

               // �we will copy the bits if it is set in one operand but not 

both

            result3=iV^result1;

            result4=iV^result2;

               // the output value

            oV=result3;

            rV=result4; // branch in path to follow through IIM

        }

        bit_from_coding=(oV);

        if ((rV) != 0)

        {

               // use the route on the second root point

            z_xCoordinatePoint=-z_xCoordinatePoint;

            z_yCoordinatePoint=-z_yCoordinatePoint;

        }

    }

    return bit_from_coding;

};
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unsigned int CryptoFractalCipher::bitCodeDecryptedMessageD(unsigned int 

bit_from_stream)

{

     // generate the cryptographic stream from the clear stream

    int bit_from_coding = 0;

    {

        identifyFirstRoot();

        �unsigned long quadraticValueForY = PerformProjectionFor_X( 

z_yCoordinatePoint);

        �unsigned long quadraticValueForX = PerformProjectionFor_X( 

z_xCoordinatePoint);

        // encoding process

        unsigned int iV, oV, rV;

        {

               unsigned int result1, result2, result3, result4;

            iV=(bit_from_stream) & 1;

               // from iterated quadratic y and x

            result1=quadraticValueForY;

            result2=quadraticValueForX;

               // �we will copy the bits if it is set in one operand but not 

both

            result3=iV^result1;

            result4=result3^result2;

               // output value

            oV=result3;

               // the route value

            rV=result4;

        }

        bit_from_coding=(oV);
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        if ((rV) != 0)

        {   //take branch to second root

            z_xCoordinatePoint=-z_xCoordinatePoint;

            z_yCoordinatePoint=-z_yCoordinatePoint;

        }

    }

    return bit_from_coding;

};

unsigned int CryptoFractalCipher::getEncryptedMessageA(unsigned int 

clearstream)

{

     // for creating the cryptographic stream from the clear stream

    int cryptographic_stream=0;

    for (int iterationIndex=0; iterationIndex<32; (iterationIndex++))

    {

        // �encoding process for obtaining cryptographic stream from clear 

stream

        unsigned int iV,oV;

        iV=(clearstream>>iterationIndex) & 1;

        oV=bitCodeEncryptedMessageA(iV);

        cryptographic_stream+=((oV)<<iterationIndex);

    }

    return cryptographic_stream;

};

unsigned int CryptoFractalCipher::getDecryptedMessageB(unsigned int 

cryptstream)

{

     // for creating the clear stream from the cryptographic stream

    int clearstream=0;

    for (int iterationIndex=0; iterationIndex<32; (iterationIndex++))

    {
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          // �decoding process for obtaining the clear stream from the 

cryptographic stream

        unsigned int iV, oV;

        iV=(cryptstream>>iterationIndex) & 1;

        oV=bitCodeDecryptedMessageB(iV);

        clearstream+=((oV)<<iterationIndex);

    }

    return clearstream;

};

unsigned int CryptoFractalCipher::getEncryptedMessageC(unsigned int stream)

{

     // construct the cryptographic stream from clear stream

     // cv - the code value

    int cV=0;

    for (int iterationIndex=0; iterationIndex<32; (iterationIndex++))

    {

          // �encoding process for generating the cryptographic stream from 

clear stream

        unsigned int iV,oV;

        iV=(stream>>iterationIndex) & 1;

        oV=bitCodeEncryptedMessageC(iV);

        cV+=((oV)<<iterationIndex);

    }

    return cV;

};

unsigned int CryptoFractalCipher::getDecryptedMessageD(unsigned int stream)

{

     // construct the cryptographic stream from clear stream

     // cv - the code value

    int cV=0;

    for (int iterationIndex=0; iterationIndex<32; (iterationIndex++))

    {
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        // �encoding process for generating the cryptographic stream from 

clear stream

        unsigned int iV, oV;

        iV=(stream>>iterationIndex) & 1;

        oV=bitCodeDecryptedMessageD(iV);

        cV+=((oV)<<iterationIndex);

    }

    return cV;

};

CryptoFractalCipher::CryptoFractalCipher(double cPoint_xValue,double 

cPoint_yValue)

{

    c_xCoordinatePoint=cPoint_xValue;

    c_yCoordinatePoint=cPoint_yValue;

    z_xCoordinatePoint=z_yCoordinatePoint=0;

     // �use repeating digits as for encoding process using PI value with 

the goal to find a fixed point

    for(int index=0; index<32; index++)

          getEncryptedMessageA(3141592653);

}

// destructor implementation - only if it is necessary

CryptoFractalCipher::~CryptoFractalCipher()

{

}

int main(void)

{

     // CryptoKey_rValue and CryptoKey_iValue are represented as

     // a point that is situated near the boundary of the Mandelbrot set

     // the real value of a complex number (cryptographic key)

     double CryptoKey_rValue=-0.687;

     // the imaginary unit

     double CryptoKey_iValue=-0.312;
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     unsigned int Plaintext[50];

     unsigned int EncryptionA[50];

     unsigned int EncryptionB[50];

     unsigned int DecryptionOfAWithB[50];

     unsigned int DecryptionOfBWithA[50];

     // generate randomly message

     for (int i=0;i<50;i++)

          Plaintext[i]=rand()%1000;

     // perform message encoding using getEncryptedMessageA for A

     {

          CryptoFractalCipher CFC(CryptoKey_rValue, CryptoKey_iValue);

          for (int i=0;i<50;i++)

             EncryptionA[i]=CFC.getEncryptedMessageA(Plaintext[i]);

     }

     // perform message encoding using getDecryptedMessageB for B

     {

          CryptoFractalCipher CFC(CryptoKey_rValue, CryptoKey_iValue);

          for (int i=0;i<50;i++)

             EncryptionB[i]=CFC.getDecryptedMessageB(Plaintext[i]);

     }

     // perform message decoding A with B using getDecryptedMessageB for B

     {

          CryptoFractalCipher CFC(CryptoKey_rValue, CryptoKey_iValue);

          for (int i=0;i<50;i++)

             �DecryptionOfAWithB[i]=CFC.getDecryptedMessageB(EncryptionA[i]);

     }

     // perform message decoding B with A using getDecryptedMessageB for A

     {

          CryptoFractalCipher CFC(CryptoKey_rValue, CryptoKey_iValue);

          for (int i=0;i<50;i++)

             DecryptionOfBWithA[i]=CFC.getEncryptedMessageA(EncryptionB[i]);

     }
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     // display the output value and the results

     for (int i=0;i<50;i++)

     {

           cout

           <<i

           <<")   (Plaintext Value="<<Plaintext[i]

           <<")   (Encryption -> First Method (A) = "<<EncryptionA[i]

           <<")   (Encryption -> Second Method (B) = "<<EncryptionB[i]

           <<")   (Decryption -> A with B = "<<DecryptionOfAWithB[i]

           <<")   (Decryption -> B with A = "<<DecryptionOfBWithA[i]

           <<")"<<endl;

     };

}

�Conclusion
In this chapter, we discussed a different approach in cryptography, which is chaos-based 

cryptography. The new cryptographic algorithms use the chaos function to generate new 

cryptographic primitives in a different way from the ones we know so well.

At the end of this chapter, you will know the following:

•	 How chaos-based cryptography primitives are built and what makes 

them different from the normal cryptographic primitives

•	 How the chaos system is designed for text encryption and image 

encryption

•	 How to implement a cryptographic system based on number 

generators using the chaos approach and how to perform encryption 

and decryption operations with the chaos system and fractals
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CHAPTER 15

Big Data Cryptography
Big data can be seen as the processes through which data sets of a big size (in a range 

from a few terabytes to many zettabytes) are extracted, manipulated, and analyzed. 

These techniques differ from traditional techniques because big data contains different 

types of data, structured or unstructured (video or audio files, images, texts, etc.).

Big data cryptography is related to data’s confidentiality, integrity, and authenticity, 

representing an important topic that needs to be treated with attention because each 

business has its computational model and software and hardware architecture. The 

cryptographic methods related to big data differ from the traditional ones because 

encryption systems and their related concepts are defined differently regarding the 

policies for access control, cloud infrastructure, and storage management and techniques.

This chapter starts by describing a general computational model applicable in a 

cloud environment that enables and eases the implementation of applications that 

involve big data analytics. In the following, we present a classification of the nodes from 

the cloud architecture and their purpose in the big data analytics process. The types of 

nodes are based on the classification from [1] - [3] and the notations are extended a little 

to define the following types of nodes:

•	 IN represents an input node that handles the raw data used in the 

application. These types of nodes collect the data from the front-end 

users or the data that is read or captured from different sensors (such as 

fingerprint readers, holographic signatures, temperature sensors, etc.).

•	 CN represents the computational node, which has a significant role in 

the computational processes from the application. The basis of these 

nodes is the ingestion nodes, which are included in a computational 

node. In this classification, the ingestion nodes are called consuming 

nodes and their purpose is to scan and refine the input data, meaning 

data preparation for the analysis process and its passing to the 

enrichment nodes, where the data is actually processed.
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•	 SN represents the storage node, which has a significant role in 

applying the cryptographic techniques over the data. Its purpose is 

to store the data involved in the computational processes that are 

applied between different types of end users and third parties. The 

input data and the output data for data analysis are stored by these 

nodes.

•	 RN represents the result node, which receives the output of some 

processes that are being executed. It can make automatic decisions 

based on the output of the analysis process or it can send the output 

to a specific client.

Figure 15-1 shows an example of cloud architecture for big data analytics that 

includes the elements described above. The model can represent a pattern that 

describes a wide range of big data applications. This being said, we will note the 

following set of one or more nodes of type H, as follows H+,  where H ∈ {IN, CN, SN, RN}.

Figure 15-1 shows a general cloud model that can be applied to an application 

that requires data sets. In the example, the node IN initiates the process of collecting 

reference datasets. The input nodes send sequences of data to the CN(Ingestion) node. 

In the ingestion node, the sequences of data are used by the computation process 

Figure 15-1.  Example of cloud architecture with big data analytical applications

Chapter 15  Big Data Cryptography



339

for which they are parsed. When the computational process ends, the output data is 

organized in files or databases. In the next step, the files and databases are sent to the 

storage nodes SN (Storage). From time to time, the enrichment nodes CN(Enrichment) 

perform computation over the data from the storage nodes. Mostly, these processes are 

made offline and update the associated metadata according to the user’s needs. In our 

example, the RN (Data Receiver) represents a user who will correlate the data set with the 

reference one.

Cloud computing presents many security challenges for the data that moves through 

and between its components. To follow the path of protection techniques from the cloud 

cryptography, we need to take into consideration three main security goals, known as 

the CIA triad:

•	 Confidentiality: The data refers strictly to the input and output of 

the computations and needs to be kept secret and protected against 

untrusted parties, malicious parties, or other potential adversaries.

•	 Integrity: Any changes that are not authorized over the data must 

be immediately detected. Note that integrity issues are not always 

caused by nefarious actors; they can also be caused by bugs in 

software or issues in data transfers. Regardless, the integrity of the 

data must be enforced.

•	 Availability: The data owners and the authorized data users have 

access to the data and computational resources.

Let’s focus on availability because it is one of the most important characteristics 

for the cloud, but it does not include any cryptographic means. For this reason, 

confidentiality and integrity need to be involved as much as possible in the cloud and 

big data architecture. The way in which data is stored is relevant, too, for security and 

cryptographic purposes. The way in which confidentiality and integrity are achieved is 

dictated by the way in which the cloud is deployed. When developing an application, it is 

important to establish from the beginning which participant controls which component 

of the cloud and the degree of trust awarded to each component and participant. Based 

on this, we will consider the following types of clouds:

•	 Trusted cloud: It is deployed by government organizations or 

institutions, and it is isolated completely from anything from outside 

(networks or adversaries). Public cloud vendors such as Microsoft 

have regions for US government users. The Microsoft Jedi contract 
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with the DOD covers such use as well as Azure cloud resources 

authorized for secret and top secret use. The files of the users or 

clients are stored safely, without any worry of corruption or theft. 

However, there are situations in which some of the nodes are exposed 

because they may communicate with external networks. Therefore, in 

these situations, malware or insiders can affect these types of nodes.

•	 Semi-trusted cloud: In this type of cloud, it is not mentioned 

specifically if the cloud can be trusted entirely or cannot be trusted 

at all. However, a good practice is to mention the components that 

are under control and to provide solutions to monitor the adversarial 

activities at a given time.

•	 Untrusted cloud: The nodes within the cloud or the cloud itself 

are not trusted at all by the data users. This scenario means that no 

security guarantees are given, including a level of confidentiality or 

integrity of the data or computations. In such situations, the cloud 

user should have its own solutions and protection mechanisms to 

ensure (a level of) confidentiality and integrity. Mainly, the untrusted 

cloud is associated with the public cloud model.

With a short description of the cloud and big data elements, we can go further to 

discuss the cryptographic techniques that can be applied in these environments. To 

ensure the security of big data and cloud computing, cryptographic techniques are very 

complex and it is difficult to apply them in real-life scenarios without dedicated third-

party software libraries or experienced professionals.

This chapter focuses on three cryptographic techniques that can be used particularly 

for achieving security of big data applications deployed in the cloud environment, such as

•	 Homomorphic encryption (HE): See Chapter 12

•	 Verifiable computation (VC): Represents the first objective of this 

chapter

•	 Secure multi-party computation (MPC)

Other cryptographic techniques that can be applied successfully to achieve security 

in cloud computing and big data are

•	 Functional encryption (FE)
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•	 Identity-based encryption (IE)

•	 Attribute-based encryption (AE)

In the next section, we present a technique that is promising and can be applied 

in real environments. Many of the encryption schemes that fall in the FE, IE, or AE 

types are very difficult to use in practice because many works are based on theoretical 

assumptions and most of them don’t take into consideration the requirements and 

demands of business or industry applications. Between theory and practice, it is a long 

path that theoreticians and practitioners need to walk together. They need to collaborate 

closely in order to find solutions for the security concerns in real environments and to 

solve the problems and gaps that exist.

�Verifiable Computation
Verifiable computation or verifiable computing refers to the machines’ capability of 

unloading the computation quantity of some function(s) to others, for example, clients 

with untrusted status, while the results are verified continuously. See Figure 15-2.

Figure 15-2.  Verifiable computation example. The nodes of the cloud don’t have 
any trustiness level for integrity protection
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An important application of verifiable computation for real environments are 

Merkle trees, whose purpose is to check the integrity of the data. In big data, the Merkle 

tree represents a data structure that is used for validation of the integrity of different 

properties for items, data, rows, sets of data, and so on. A very useful characteristic of 

a Merkle tree is that it can be used on large amounts of data (therefore, in the context 

of big data) and in this direction many improvements have been made by combining 

algorithms of verifiable computation with Merkle trees.

In Listing 15-1 through Listing 15-6, we present a scenario in which a Merkle tree 

is self-balancing. The example is just a simulation (see Listing 15-1, Listing 15-6, and 

Figure 15-3). Deploying the application in a real big data environment will require 

proper adjustments.

The code is organized in the following files:

•	 tree_node.cpp contains the implementation of the methods used 

with a tree node.

•	 tree_node.h contains the definitions of a tree node.

•	 tree.cpp contains the implementations of the methods used with 

a tree.

•	 tree.h contains the definitions of a tree.

•	 tree_handling.h contains the function of printing and computing 

the sha256 value of the information within a node.

•	 picosha2.h is downloaded as is from the source [4] and represents 

a header file for computing the sha256 hash value of an input. Its 

content can be found in the source [4] or in this chapter’s code folder 

on the GitHub repository for the book.

•	 main.cpp is the main file of the project.

Listing 15-1.  The Content of the tree_node.h File

#ifndef TREE_NODE

#define TREE_NODE

#include <string>

using namespace std;
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// define the node of the merkle tree

struct tree_node

{

    string hash_value; // the hash value

    tree_node *l_neighbour; // the left neighbour

    tree_node *r_neighbour; // the right neighbour

// instantiates the hash value within the node

// see the corresponding .cpp file

    tree_node(string value);

};

#endif

Listing 15-2.  The Content of the tree_node.cpp File

#include "tree_node.h"

using namespace std;

// assigns the input hash value to the hash_value attribute of the tree node

tree_node::tree_node(string value)

{

    this->hash_value = value;

}

Listing 15-3.  The Content of the tree.h File

#ifndef MERKLE_TREE

#define MERKLE_TREE

#include "tree_node.h"

#include "picosha2.h"

#include "tree_handling.h"

#include <vector>

#include <string>

using namespace std;
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struct merkle_tree {

    tree_node* tree_root;

    merkle_tree(vector<tree_node*> vector_nodes);

    ~merkle_tree();

    void print_merkle_tree(tree_node *node, int index);

    void delete_merkle_tree(tree_node *node);

};

#endif

Listing 15-4.  The Content of the tree.cpp File

#include <iostream>

#include <iomanip>

#include "tree.h"

using namespace std;

merkle_tree::merkle_tree(vector<tree_node*> vector_nodes)

{

    vector<tree_node*> aux_nodes;

    while (vector_nodes.size() != 1)

    {

        print_hash_values(vector_nodes);

        for (int i = 0, n = 0; i < vector_nodes.size(); i = i + 2, n++) {

            �if (i != vector_nodes.size() - 1) // check if there is a 

neighbour block

            {

                // �merges the neighbour nodes and computes the hash value 

of the new node

                �aux_nodes.push_back(new tree_node(compute_sha256(vector_

nodes[i]->hash_value + vector_nodes[i + 1]->hash_value)));

                // �link the new node with the left neighbour and the right 

neighbour

                aux_nodes[n]->l_neighbour = vector_nodes[i];

                aux_nodes[n]->r_neighbour = vector_nodes[i + 1];

            } else
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            {

                aux_nodes.push_back(vector_nodes[i]);

            }

        }

        cout << "\n";

        vector_nodes = aux_nodes;

        aux_nodes.clear();

    }

    // picks the first node as the root of the tree

    this->tree_root = vector_nodes[0];

}

merkle_tree::~merkle_tree()

{

    delete_merkle_tree(tree_root);

    cout << "The tree was deleted." << endl;

}

void merkle_tree::print_merkle_tree(tree_node *node, int index)

{

    if (node) {

        if (node->l_neighbour) {

            print_merkle_tree(node->l_neighbour, index + 4);

        }

        if (node->r_neighbour) {

             print_merkle_tree(node->r_neighbour, index + 4);

        }

        if (index) {

            cout << setw(index) << ' ';

        }

        cout << node->hash_value[0] << "\n ";

    }

}
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void merkle_tree::delete_merkle_tree(tree_node *node)

{

    if (node) {

        delete_merkle_tree(node->l_neighbour);

        delete_merkle_tree(node->r_neighbour);

        node = NULL;

        delete node;

    }

}

Listing 15-5.  The Content of the tree_handling.h File

#ifndef TREE_MISC

#define TREE_MISC

#include <iostream>

#include <string>

#include "tree.h"

#include "picosha2.h"

using namespace std;

// computes the hash value of the input using SHA256

inline string compute_sha256(string input_string)

{

    string hash_string = picosha2::hash256_hex_string(input_string);

    return hash_string;

}

// display the hash values from a vector of tree nodes

inline void print_hash_values(vector<tree_node*> vector_nodes)

{

    for (int i = 0; i < vector_nodes.size(); i++)

    {

        cout << vector_nodes[i]->hash_value << endl;

    }

}

#endif
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Listing 15-6.  The Content of the main.cpp File

#include <iostream>

#include "tree.h"

using namespace std;

int main() {

    vector<tree_node*> nodes_set;

    //create sample data

    nodes_set.push_back(new tree_node(compute_sha256("Merkle ")));

    nodes_set.push_back(new tree_node(compute_sha256("tree ")));

    nodes_set.push_back(new tree_node(compute_sha256("node ")));

    nodes_set.push_back(new tree_node(compute_sha256("example.")));

    �nodes_set.push_back(new tree_node(compute_sha256("This is an example of 

merkle tree.")));

    // initialize leaves

    for (unsigned int i = 0; i < nodes_set.size(); i++) {

        nodes_set[i]->l_neighbour = NULL;

        nodes_set[i]->r_neighbour = NULL;

    }

    merkle_tree *hash_tree = new merkle_tree(nodes_set);

    std::cout << hash_tree->tree_root->hash_value << std::endl;

    hash_tree->print_merkle_tree(hash_tree->tree_root, 0);

    for (int k = 0; k < nodes_set.size(); k++) {

        delete nodes_set[k];

    }

    delete hash_tree;

    return 0;

}

To compile the code, the following command is used in the terminal:

g++ -o result.exe main.cpp tree_node.cpp tree_node.h tree.cpp tree.h
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To run the code, type in the terminal:

result

The result can be seen in Figure 15-3.

�Conclusion
In this chapter, we discussed the importance of an application deployed in the big 

data environment and the way in which security can be achieved through different 

cryptographic mechanisms, such as verifiable computation. For more about cloud 

computing, big data, and security, you may consult any of the works from this chapter’s 

references.

Figure 15-3.  The result of the implementation of a self-balancing Merkle tree
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At the end of this chapter, you will have the following knowledge:

•	 Understanding the main concepts of security in a cloud and big data 

environment

•	 How to put into practice complex cryptographic primitives and 

protocols, such as verifiable computation
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CHAPTER 16

Cloud Computing 
Cryptography
Cryptography in cloud computing has gained a lot of attention in the few past years. 

Nowadays it’s one of the most important topics in cryptography and cybersecurity. It 

represents a key point in the design and implementation of a secure cloud application. 

Cryptography for cloud computing involves complex encryption methods and 

techniques for securing data that is stored and used in the cloud environment.

There are three main types of cloud technologies that organizations have adopted 

rapidly: IaaS (Infrastructure-as-a-Service), PaaS (Platform-as-a-Service), and SaaS 

(Software-as-a-Service). The cloud offers many benefits for its users, such as efficiency, 

flexibility, and scalability, which lead to reducing the overall cost for the clients. Due to 

its complexity and types (public, private, or hybrid cloud), cloud computing inherits the 

security concerns of its components. Source [1] provides a great categorization of cloud 

computing security issues. The security concerns may occur on the following levels: the 

communication level (which deals with the shared infrastructures, virtual networks, 

and their configurations), the architectural level (which deals with virtualization, data 

storage, applications and APIs, and access control) and even the contractual and legal 

level (which deals, for example, with service level agreements).

To secure the cloud, the following cryptographic techniques and mechanisms are 

receiving important attention from research communities and industries:

•	 Searchable encryption (see Chapter 11)

•	 Homomorphic encryption (see Chapter 12)

•	 Structured encryption (STE), which is used to encrypt the data 

structures. An STE scheme uses a token to query the data structure. 

A special example of STE is searchable encryption (SE). Recall that 
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searchable encryption allows for searching for a keyword through 

data in an encrypted format. Another example of STE is using graph 

structures to encrypt databases. It is a good example in the cloud 

context, where applications deal with large databases for analytics 

and statistics.

•	 Functional encryption (FE) can be considered a generalization 

of the public-key encryption, where the owner of the private key 

allows an authorized user to learn a function of what ciphertext is 

being encrypted. There are more types of functional encryption: 

predicate encryption (PE), identity-based encryption (IBE), 

attribute-based encryption (ABE), hidden vector encryption 

(HVE), and inner product predicate.

•	 Private information retrieval (PIR) is actually a protocol used by a 

client to retrieve an element within a database without letting the rest 

of the database users know what element the client retrieved.

�A Practical Example
For this example, let’s imagine the following cloud scenario: an organization manages 

its administrative relationship with its clients using a cloud messaging platform. For 

example, the organization sends notifications to their clients about their products or 

available updates, and the clients can send messages to the organization through the 

platform. Therefore, the cloud platform is included in the category Software-as-a-Service. 

To ensure that the messages are read by the authorized receiver, the messages should be 

encrypted from both sides, the organization and the clients, and both of them should use 

trusted parties for the key generation that will be used in the encryption and decryption.

To simulate this example, we will use as a trusted party OpenSSL [1], which will 

generate the public and the private keys for the RSA algorithm, keys that will be used in 

our encryption technique. Source [1] provides documentation for different distributions, 

links to source code from a GitHub repository, examples, and much more. Note that we 

created this example on a Windows platform. You will not download the source code 

to compile it yourself and then use it. Instead, you will download directly the compiled 

version of the OpenSSL library that can be found at source [3] (or it can be downloaded 

from the GitHub repository of this book). Once the archive is downloaded, you extract 
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it to the OpenSSL folder on the C:\ partition. Further, you open a terminal and change 

the current directory to the bin folder from the OpenSSL parent folder and then type 

openssl and press Enter (Figure 16-1).

The message warning shows because we used the OpenSSL package and it is not 

compiled on the computer. For the purpose of this section, you do not need to compile 

and install OpenSSL yourself, but the complete guide for installing it can be found in the 

source [2]

The next step is to generate the private key for the RSA algorithm. To do this, type the 

following command in the terminal and check Figure 16-2:

C:\openssl-1.0.2d-fips-2.0.10\bin>openssl genrsa -out privateKey.pem 2048

The above command says that the openssl library is used to generate the RSA 

private key (genrsa) in the output file privateKey.pem, having a length of 2048 bits.

Then, to generate the public key type, the following command in the terminal and 

check Figure 16-2:

C:\openssl-1.0.2d-fips-2.0.10\bin>openssl rsa -in privateKey.pem -pubout > 

publicKey.pem

The above command says that the openssl library is used to compute the public 

key of the cryptosystem saved in the output file publicKey.pem, based on the input file 

(private key) privateKey.pem.

Figure 16-1.  Checking the openssl command
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The files publicKey.pem and privateKey.pem are generated in the same folder as 

the openssl library is, namely the bin folder. If you check the contents of these files, they 

should look like Figure 16-3a and 16-3b.

Figure 16-2.  Generating the private key and the public key for the RSA 
cryptosystem

Figure 16-3a.  The private key
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In the two figures, note the difference between the length of the keys. Further, to use 

them in a C++ program, you will read them from the .pem files. First, you need to remove 

the extra messages from the files that are not part of the keys, namely the first line and 

the last line of the files. Make sure that there are no additional space characters left at the 

end of the keys, to not alter them.

Continuing the simulation for the cloud platform messaging, the encryption and 

the decryption are shown in Listing 16-1 and the output is given in Figure 16-4. Here, for 

demonstration purposes, we use a simple XOR-ing algorithm for both encryption and 

decryption. Make sure that publicKey.pem and privateKey.pem are in the same folder 

as the .cpp file containing the code from below.

Listing 16-1.  Encryption and Decryption of the Messages

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

// the encryption scheme is a simple XOR-ing process

// XOR-ing is used for both encryption and decryption

// parameter "message" can be the plain message or the encrypted message, 

according to user's needs

string xor_string(string message, string key)

{

    string out_message(message);

    unsigned int key_len(key.length()), message_len(message.length()), pos(0);

Figure 16-3b.  The public key
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    for(unsigned int index = 0; index < message_len; index++)

    {

        out_message[index] = message[index] ^ key[pos];

        if(++pos == key_len){ pos = 0; }

    }

    return out_message;

}

int main()

{

    // read the message to be encrypted from the console

    string plain_text;

    cout<<"Enter the message: ";

    getline (cin, plain_text);

    // the public key is read from the .pem corresponding file

    string row1;

    string public_key = "";

    ifstream public_key_file ("publicKey.pem");

    if (public_key_file.is_open())

    {

        while (getline (public_key_file, row1) )

        {

            public_key += row1;

        }

        public_key_file.close();

    }

    // �to check that the public key is read correctly, it is dispalyed on 

the console

    cout<<"Public key:"<<endl<<public_key<<endl<<endl;

    // the private key is read from the .pem corresponding file

    string row2;

    string private_key = "";

    ifstream private_key_file ("privateKey.pem");
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    if (private_key_file.is_open())

    {

        while (getline (private_key_file, row2) )

        {

            private_key += row2;

        }

        private_key_file.close();

    }

    // �to check that the public key is read correctly, it is dispalyed on 

the console

    cout<<"Private key:"<<endl<<private_key<<endl<<endl;

    // the encryption of the plain message is stored into encrypted_message

    string encrypted_text = xor_string(plain_text, public_key);

    �cout << endl << "The encryption of the message is: " << endl << 

encrypted_text << endl;

    // to decrypt the message, the receiver should proceed with some steps

    // �1. the receiver should xor his/her private key with his/her public key

    string xor_keys = xor_string(public_key, private_key);

    // �2. the receiver should xor the encrypted text with the result from 

the step 1

    string xor_result = xor_string(encrypted_text, xor_keys);

    // �3. the decryption is made by xor-ing the result from previous step 

with the private key

    string decrypted_message = xor_string(xor_result, private_key);

    �cout << endl << "The decryption of the message is:  " << endl << 

decrypted_message << endl;

    return 0;

}

Chapter 16  Cloud Computing Cryptography



360

In Figure 16-4, note that the private and public keys don’t contain the extra messages 

that were initially included in the .pem files.

�Conclusion
This chapter covered the most important cryptographic primitives in cloud 

environments. At the end of this chapter, you should understand the cloud computing 

security issues and the advanced concepts and cryptographic primitives that can be 

applied to prevent these issues.

Cloud computing cryptography represents strong challenges and the huge amount 

of literature offers multiple theoretical frameworks that do not have real practical 

directions. This gives professionals and researchers strong research directions to develop 

new ideas for improving security in a cloud environment, excepting the standard 

security policies that are made available by the cloud solution providers.

Figure 16-4.  The output of Listing 16-1
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CHAPTER 17

Getting Started 
with Cryptanalysis
The third part of this book deals with cryptanalysis and its methods. As we mentioned in 

the beginning of the this book, cryptanalysis is the discipline that study the methods and 

ways of finding breaches within cryptographic algorithms and security systems. The final 

goal is to gain access to the real nature of the encrypted messages or cryptographic keys.

Cryptanalysis is a process that should be conducted by authorized persons, such 

as professionals (ethical hackers, information security officers, etc.). Any cryptanalysis 

activity outside of the legal framework is known as hacking, which covers personal and 

non-personal interests.

In this part, we will cover the most important methods and techniques for 

conducting cryptanalysis in general and in-depth. We will discuss the necessary 

knowledge and tools, such as software tools, methods, cryptanalysis types and 

algorithms, and penetration-testing platforms.

Conducting cryptanalysis can be a tricky and difficult task and many aspects must 

be taken into consideration before doing it. If you conduct the cryptanalysis as a legal 

entity, things become much easier. If the cryptanalysis is conducted by a non-legal entity, 

then you are dealing with a more complex process and hacking methods are involved, 

methods that will be covered later in our discussion. This being said, in both ways you 

need to get your hands dirty. The process of cryptanalysis is time-consuming and many 

obstacles and obstructions could occur for many reasons, such as system complexity, 

high size of the cryptographic key, hardware platform, access permissions, and so on.

Cryptanalysis is more exciting and challenging compared to cryptography. The 

knowledge that a cryptanalyst needs to have is very wide and complex. It covers several 
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complex fields that can be divided into three main categories: informatics (computer 

science), computer engineering, and mathematics. Let’s specify the important disciplines 

for each of the categories as follows:

•	 Informatics (computer science)

•	 Computer networks

•	 Programming languages

•	 Databases

•	 Operating systems

•	 Computer engineering and hardware

•	 FPGA (Field Programmable Gateway Array)

•	 Programming languages (e.g. VHDL)

•	 Development platforms (Xilinx, etc.)

•	 Mathematics

•	 Number theory

•	 Algebra

•	 Combinatorics

•	 Information theory

•	 Probability theory

•	 Statistical analysis

•	 Elliptic curve mathematics

•	 Discrete mathematics

•	 Calculus

•	 Lattices

•	 Real analysis

•	 Complex analysis

•	 Fourier analysis
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�Third Part Structure
The purpose of the third part of this book is to provide the tools for implementing and 

providing the methods, algorithms, implementations of attacks, and designing and 

implementing a cryptanalysis strategy.

The third part structure is as follows:

•	 Chapter 18: The chapter will introduce a classification of 

cryptanalysis and techniques used in association with field 

of cryptanalysis. We will go through the theory of algorithm 

complexity, statistical-informational analysis, encoding in absence of 

perturbation, cryptanalysis of classic ciphers, cryptanalysis of block 

ciphers, and more.

•	 Chapter 19: The chapter will discuss linear and differential 

cryptanalysis. Their importance is quite crucial when cryptanalysis is 

performed.

•	 Chapter 20: The chapter will cover the integral cryptanalytic attack, 

which can be applied only for block ciphers that are based over 

substitution-permutation networks.

•	 Chapter 21: The chapter will study the behavior of software 

applications when they are exposed to different attacks and the 

source code is exploited.

•	 Chapter 22: This chapter will cover the most important techniques 

that can be used on text characterization. We will cover the  

chi-squared statistic; monogram, bigram, and trigram frequency 

counts; quadgram statistics as a fitness measure, and more.

•	 Chapter 23: We will cover in this chapter some case studies for 

implementing cryptanalysis methods.

�Cryptanalysis Terms
In this section, we will introduce a list of cryptanalysis keywords and terms that are 

frequently used in the field. It is very important to get used to the terms before proceeding. 

This will help you have a clear image on the process and who interacts with what.
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Table 17-1.  Cryptanalysis Terms

Keyword/Term Definition

Black hat hacker A black hat hacker is a person who has a bad intention and breaks a computer 

system or network. His intention is to exploit any security vulnerability for 

financial gain; steal and destroy confidential and private data; shut down systems 

and websites; corrupt network communication, and so on.

Gray hat hacker A gray hat hacker is a person, known as cracker, who exploits the security weak 

points of a computer system or software product with the goal of bringing those 

weaknesses to the owner’s attention. Compared to a black hat hacker, a gray hat 

hacker will take action without any malicious intention. The general goal of a gray 

hat is to provide solutions and to improve the computer systems and security of 

the network.

White hat 

hacker/ethical 

hacker

A white hat hacker is an authorized person or certified hacker who is working 

for or employed by a government or organization with the goal of performing 

penetration tests and identifying loopholes within their systems.

Green hat 

hacker

A green hat hacker is an amateur person, but different from a script kiddie. Their 

purpose is to become a full-blown hacker.

Script kiddies Script kiddies are the most dangerous hackers. A script kiddie is a person without 

many skills who uses scripts or downloads provided by other hackers. Their goal 

is to attack networks infrastructures and computer systems. They are looking to 

impress their community or friends.

Blue hat hacker A blue hat hacker is similar to a script kiddie. They are beginners in the field of 

hacking. If someone dares to mock a script kiddie, then a blue hat hacker will get 

revenge. Blue hat hackers will get revenge on anyone who challenges them.

Red hat hacker Known also as an eagle-eye hacker, their goal is to stop black hat hackers. The 

operation mode is different. They are ruthless when dealing with malware actions 

that come from black hat hackers. The attacks performed by red hat hackers are 

very aggressive.

Hacktivist They are known as online activists. A hacktivist is a hacker who is part of a group 

of anonymous hackers who have the ability to gain unauthorized access to files 

stored within government computers and networks that serve social or political 

parties and groups.

(continued)
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�A Little Bit of Cryptanalysis History
A comprehensive history of cryptanalysis is very challenging so in this section we will 

cover some aspects and moments in time that influenced cryptanalysis as a separate 

field and how it evolved through different periods of history.

The history of cryptanalysis starts with Al-Kindi (801-873), the father of Arab philosophy. 

He discovered and developed a method based on the variations of the occurrence frequency 

of letters, a method that helped him analyze and exploit different ways of breaking ciphers 

(e.g. frequency analysis). The work of Al-Kindi was influenced by Al-Khalil’s (717-786) work. 

Al-Khalil wrote the Book of Cryptographic Messages, which contained permutations and 

combinations for all possible Arabic words (both types of words, with and without vowels).

One of the best ways to learn the history of cryptanalysis and cryptography is to 

divide the subject into periods of time. It is very important to examine cryptanalysis 

history with respect for cryptography. Below, we provide a short classification of 

cryptanalysis history and focus on the most important achievements of each period.

•	 600 B.C.: The Spartans invent the scytale with the goal of sending 

secret messages during their fights. The device is composed of a leather 

strap and a piece of wooden stem. In order to decrypt the message, 

the wooden stem needs to be a specific size, the size used when the 

message was encrypted. If the receiver or malicious person doesn’t 

have the same size wooden stem, the message can’t be decrypted.

Keyword/Term Definition

Malicious 

insider/

whistleblower

Such persons can be an employee of a company or government institution who is 

aware of illegal actions that take place within the institution. This could lead to a 

personal gain by blackmailing the institution.

State- or nation-

sponsored 

hackers

This type of hacker is a person who is scheduled and assigned by a government 

with the goal of providing information security services and gaining access 

to confidential information from different countries. As an example, consider 

the malicious computer worm Stuxnet from 2010, which was designed and 

engineered to bring down the Iranian nuclear program. Another example is the 

United States 8th Air Force, which in 2009 became the US Cyber Command.

Table 17-1.  (continued)
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•	 60 B.F.: Julius Caesar sets the basis for the first substitution cipher, 

which encodes the message using shifting techniques for the 

characters using three spots: A will be D, B will be E, and so on. An 

implementation of this cipher can be seen in XXX.

•	 1474: Cicco Simonetta writes a manual for deciphering encryptions 

for Latin and Italian text.

•	 1523: Blaise de Vigenère introduces his encryption cipher, known as 

the Vigènere cipher.

•	 1553: Giovan Battista Bellaso creates the basis for the first cipher 

using an encryption key. The encryption key is characterized as a 

word that is agreed upon by the sender and the receiver.

•	 1854: Charles Wheatstone creates the Playfair Cipher. The cipher 

encrypts a specific set of letters instead of encrypting letter by letter. 

This raises the complexity of the cipher and in conclusion it becomes 

harder to crack.

•	 1917: Edward Hebern creates the first electro-mechanical machine in 

which the rotor from the machine is used for encryption operation. 

The encryption key is stored within a rotating disc. It has a table used 

for substitution, which is modified with every character that is typed.

•	 1918: Arthur Scherbius creates the Enigma machine. The first 

prototype is for commercial purposes. Compared to Edward Hebern’s 

machine in which one rotor is used, the Enigma machine uses 

several rotors. The German Military Intelligence immediately adopts 

his invention for encoding their transmissions.

•	 1932: Marian Rejewski studies the Enigma machine and finds out 

how it operates. Starting in 1939, French and British Intelligence 

Services use the information provided by Poland, giving 

cryptographers such as Alan Turing the ability to crack the key, which 

changes on a daily basis. This is vital for the victory of Allies in World 

War II.
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•	 1945: Claude E. Shannon publishes his work entitled A Mathematical 

Theory of Cryptography. This is the point when the classic 

cryptography period ends and modern cryptography begins.

•	 End of 1970: IBM creates a block cipher with the goal of protecting 

the data of the customers.

•	 1973: The United States adopts the block cipher and sets it as a 

national standard, called the DES (Data Encryption Standard).

•	 1975: Public key cryptography is introduced.

•	 1976: The Diffie-Hellamn key exchange is invented.

•	 1982: Richard Feynman introduces a theoretical model of a quantum 

computer.

•	 1997: The DES is cracked.

•	 1994: Peter Shor introduces an algorithm for quantum computers 

dedicated to integer factorization.

•	 1998: Quantum computing is introduced.

•	 2000: DES is officially replaced with the AES (Advanced Encryption 

Standard). AES won through an open competition.

•	 2016: IBM launches the IBM Q Experience with a five qubit quantum 

processor.

•	 2017: The appearance of Q# (Q Sharp) from Microsoft, a domain-

specific programming language used for the implementation of 

quantum algorithms and cryptography applications.

This list can continue and be improved. We included the main events that 

contributed to the appearance of cryptanalysis as a concept, model, and framework.

�Penetration Tools and Frameworks
In this section, we will cover several penetration tools and frameworks that can be used 

with success in the process of penetration testing, a process that is conducted by a 

certified professional.

Chapter 17  Getting Started with Cryptanalysis



372

We divided the tools into two categories: Linux hacking distributions and penetration 

tools/frameworks:

•	 Linux hacking distributions

•	 Kali Linux: The most advanced platform for penetration testing. 

It has support for different devices and hardware platforms.

•	 BackBox: A Linux distribution for penetration testing. It also 

includes security assessment.

•	 Parrot Security OS: This distribution is quite new in this sphere. 

Its purpose and target is the cloud environment. It provides 

online anonymity and a strong encryption system.

•	 BlackArch: A penetration testing platform and security research. 

It is built on top of Arch Linux.

•	 Bugtraq: An impressive platform with forensic and penetration 

tools.

•	 DEFT Linux: Digital Evidence & Forensics Toolkit (DEFT) is 

a very important distribution for computer forensics with the 

possibility of running as a live system.

•	 Samurai Web Testing Framework: The framework and distro is 

a very powerful collection of tools that can be used in penetration 

testing on the Web. It’s worth mentioning is that it comes as a 

virtual machine file, supported by VirtualBox and VMWare.

•	 Pentoo Linux: Based on Gentoo, the distribution’s intent is 

security and penetration testing. Available as live.

•	 CAINE: Computer Aided Investigative Environment, it is a 

powerful distribution that offers a serious set of system forensics 

modules and analysis.

•	 Network Security Toolkit: One of the favourite tools and 

distributions is Network Security Toolkit, a live ISO build on 

Fedora. It contains a very important set of open source network 

security tools. It provides a professional web user interface for 

network and system administration, network monitoring tools, 

and analysis.
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•	 Fedora Security Spin: A professional distro for security audit 

and tests. It can be used by various types of professionals, from 

industry to academia.

•	 ArchStrike: Also known as ArchAssault, it is a distro built on Arch 

Linux for professionals in the field of security and penetration 

testers.

•	 Cyborg Hawk: Contains more than 750 tools for security 

professional and performing penetration tests.

•	 Matriux: The distribution is quite promising and it can be used 

for penetration tests, ethical hacking, forensic investigations, 

vulnerability analysis, and much more.

•	 Weakerth4n: Not well-known in the field of hacking or 

cryptanalaysis, Weakerth4n offfers an interesting approach to 

penetration tests and it is built using Debian (Squeeze).

•	 Penetration tools/frameworks (Windows and Linux platforms)

•	 Wireshark: A very well-known packet sniffer. Provides a powerful 

set of tools for network packages and protocol analysis.

•	 Metasploit: One of the most important frameworks for 

pentesting, the framework will develop and execute 

vulnerabilities exploitation.

•	 Nmap: Network Mapper is a very powerful network discovery 

and security auditing tool for security professionals. Its goal is to 

exploit their targets. For each port you are scanning, you can see 

what OS is installed, what services are running, what firewall is 

installed and used, etc.

�Conclusion
In this section, we discussed cryptanalysis in general and we covered the basic 

foundation of cryptanalysis, its tools, and working methods. At the end of this chapter, 

you should be able to
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•	 Understand the mission and goal of cryptanalysis

•	 Understand the main events during the course of history and how 

the appearance of difference ciphers and algorithms influenced the 

cryptanalysis discipline

•	 Define common terms and the differences between different types of 

hackers

•	 Understand the hacking and penetration platform distributions

•	 Understand the most important frameworks and penetration tools 

that can be used independently, according to the OS platform
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CHAPTER 18

Cryptanalysis Attacks 
and Techniques
In this chapter, we will cover the most important and useful cryptanalytic and 

cryptanalysis standards, validation methods, classifications, and cryptanalysis attacks.

The cryptanalysis discipline is very wide and writing about it could take up 

thousands of pages. In the following sections, we will go through all the necessary 

elements that are necessary for developers to use in their daily activities.

�Standards
It is very important to understand the importance of standards when you are conducting 

cryptanalysis attacks for business purposes only, with the goal of testing the security 

within an organization.

The main institutes and organizations that provide high standards for cryptography 

and cryptanalysis methods, frameworks, and algorithms are

•	 IEFT Public-Key Infrastructure (X.509): The organization deals 

with the standardization of protocols used on the Internet that are 

based on public key systems.

•	 National Institute of Standards and Technologies (NIST): The 

institute deals with the elaboration of FIPS standards for the US 

government.

•	 American National Standards Institute (ANSI): Its purpose is to 

administer the standards from the private sector.

https://doi.org/10.1007/978-1-4842-6586-4_18#DOI
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•	 Internet Engineering Task Force (IEFT): An international 

community of networks, operators, traders of services, and 

researchers who deal with the evolution of the Internet architecture.

•	 Institute of Electrical and Electronical Engineering (IEEE): Its 

objective is to elaborate on theories and advanced techniques 

from different fields, such as electronics, computer sciences, and 

informatics.

•	 International Organization for Standardization (ISO): It represents 

a non-governmental organism of more than 100 countries. Its main 

purpose is to promote the developing of standardization in order to 

facilitate the international exchange of services.

�FIPS 140-2, FIPS 140-3, and ISO 15408
ISO 15408 is the evaluation of IT security and it is used in the international community 

as a reference system. The standard defines a set of rules and requirements from the IT 

field with the goal of validating the security of the product and cryptographic systems.

FIPS 140-2/140-3 is a set of guidelines that need to be followed in order to fulfill a 

specific set of technical requirements that are exposed on four levels.

When you develop a specification or criteria for a certain application or 

cryptographic module, you must take into consideration FIPS 140-2/FIPS 140-3 and ISO 

15408. Products that are developed with respect for the mentioned standards need to 

be tested in order to get a validation and to confirm that the criteria was followed and 

respected properly.

�Validation of Cryptographic Systems
If the business requires cryptanalysis and cryptography operations to be implemented 

within the software and communication systems, then cryptographic and cryptanalysis 

services are required. These services are authorized by certification organizations and 

include functionalities such as digital signature generation and verification, encryption 

and decryption, key generation, key distribution, key exchange, etc.

Figure 18-1 depicts a general model for testing security based on cryptographic and 

cryptanalysis modules.
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For a proper testing and verification process, it is necessary and to have two 

minimum steps, a cryptographic/cryptanalysis algorithm and a cryptographic module. 

For example, if you are developing a cryptographic product or a desktop or web software 

application, it is necessary for the company/institute/developer to perform the tests and 

to send them to CMVP1 (Cryptographic Module Validation Programme) in order to be 

tested with respect for FIPS 140-22 and FIPS 140-33.

A cryptographic module represents a specialized combination of software and 

hardware processes. The main advantages of using validated cryptographic and 

cryptanalysis modules are the following:

•	 Making sure the modules have satisfied the necessary requirements

•	 Making sure that the authorized and technical personnel is informed 

and instructed within a standard that is commonly agreed upon and 

was tested.

1�CMVP, https://csrc.nist.gov/projects/cryptographic-module-validation-program
2�FIPS 140-2, https://csrc.nist.gov/publications/detail/fips/140/2/final
3�FIPS 140-3, https://csrc.nist.gov/publications/detail/fips/140/3/final

Application or System

So�ware Product

Cryptographic Module

Cryptographic/Cryptanalysis 
Algorithm

Figure 18-1.  Verification and testing framework
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•	 Making sure that the final user (end user) is aware of the fact that the 

cryptographic module was verified and tested in accordance with 

some well-defined security requirements

•	 A high level of reliability for security, which need to be fulfilled with 

the goal of developing similar and specific applications

The security requirements of FIPS 140-2 contain 11 metrics for designing and 

implementing the cryptographic module. For each cryptographic module validated, the 

following requirements need to be fulfilled. During the validation process, the cryptographic 

modules receive a mark from 1 to 4, which is proportional to the security level guaranteed.

The cryptographic modules, once validated, contain information such as the name 

of the manufacturer, address, name of the module, version of the module, type of module 

(software or hardware), validation date, validation level, and module description.

�Cryptanalysis Operations
Designing a cryptographic system has to be done following these simple principles:

•	 The opponent should not be underestimated.

•	 The security of a cryptographic system can be evaluated by a 

cryptanalyst.

•	 Before the evaluation of the cryptographic system is performed, 

knowledge about the adversaries is taken into consideration for the 

evaluated cryptosystem.

•	 The secret of the cryptographic system has to rely on the key.

•	 The process of the cryptographic system evaluation has to take 

into consideration all the elements within the system, such as key 

distribution, cryptographic content, etc.

According to the father of information theory, Claude Elwood Shannon4, the following 

must be taken into consideration when the evaluation of the cryptosystem is performed:

•	 One of the winnings of the cryptanalyst is gained once the message is 

decrypted with success

4�Claude Elwood Shannon, www.itsoc.org/about/shannon
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•	 The key length and complexity

•	 The level of complexity of performing a encryption-decryption 

process

•	 The size of the encrypted text in accordance with the text size

•	 The way of error propagation

The basic operations for having a solution for each cryptogram are as follows:

•	 Finding and determining the language used

•	 Determining the cryptographic system

•	 Reconstructing a specific key for a cryptographic system or a partial 

or complete reconstructing for a stream cryptographic system

•	 Reconstruction of such system or establishing the complete plaintext

�Classification of Cryptanalytics Attacks
This section covers the types of attacks on cipher algorithms, cryptographic keys, and 

authentication protocols on the protocols, systems, and hardware attacks.

�Attacks on Cipher Algorithms

Table 18-1.  Attacks on Ciphering Algorithms

Types of Attacks on Ciphering Algorithms

Attack Title Attack Description

Known plaintext 

attack

The cryptanalyst has an encrypted text and his correspondent has the 

plaintext. The goal of this attack is for the cryptanalyst to separate the 

encryption key from the information.

Chosen text attack The cryptanalyst has the possibility to indicate the plaintext that will be 

encrypted. The cryptanalyst will try to separate the information of the text 

from the encryption key, having the possibility to obtain through specific 

methods the encryption algorithm or the key.

(continued)
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Types of Attacks on Ciphering Algorithms

Attack Title Attack Description

Cipher-cipher text 

attack

The cryptanalyst holds a plaintext and his correspondent the same text, 

which is encrypted with two or more different keys.

Divide-et-imperia 

attack

The cryptanalyst has the chance to realize a series of correlations between 

different inputs and outputs of the algorithm with the goal of separating 

different inputs in the algorithm, which makes them break the problem into 

two or more problems that are easy to solve.

Linear syndrome 

attack

The cryptanalysis method consists of designing and creating a linear 

equation system specific to the pseudorandom generator and verifying the 

equation system with the encrypted text, obtaining in this way the plaintext 

with a high probability.

Consistency linear 

attack

The cryptanalytic method consists of the elaboration of a linear equation 

system specific to the pseudorandom generator starting from an equivalent 

cryptographic key and verifying the system by the pseudorandom generator 

with the probability, which goes to 1, obtaining in this way the plaintext with a 

high probability.

Stochastic attack Known also as a forecasting attack, the attack is possible if the output of the 

generator is autocorrelated, the cryptanalyst managing to obtain as input 

data the output of the pseudorandom generator and the encrypted text. In 

this way the clear text is obtained.

Informational linear 

attack

Known also as a linear complexity attack, the attack is possible if there is any 

chance to equalize the generator with a Fibonacci algorithm and additionally 

if the linear complexity of the generator is low.  With this type of attack, it is 

possible to build a similar algorithm and a similar cryptographic key.

Virus attack This attack is possible if the encryption algorithm is implemented and is run 

on a PC that is vulnerable and unprotected.

Table 18-1.  (continued)
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�Attacks on Cryptographic Keys
The most frequent attacks that occur on cryptographic keys are listed in Table 18-2.

Table 18-2.  Attacks on Cryptographic Keys

Types of Attacks on the Keys

Attack Title Attack Description

Brute force attack The attack consists in the exhaustive verification of keys and passwords, and it is 
possible if the encryption key size is small and the encryption key space is small.

Intelligent brute 
force attack

The level of key randomness of the encryption key is small (the entropy is small) 
and allows finding the password, which is similar to words from the utilized 
language.

Backtracking 
attack

The attack is based on the implementation of the method of a backtracking type, 
which consists of the existence of conditions for continuing the search in the 
desired direction.

Greedy attack The attack provides the optimal local key, which cannot be the same as the 
optimal global key.

Dictionary attack The attack consists of searching for passwords or keys and is done using a 
dictionary.

Hybrid dictionary 
attack

This attack is done by modifying words from the dictionary, initializing the brute 
force attack with the help of the words from the dictionary.

Viruses attack This attack is possible if the keys are stored on an unprotected PC.

Password 
hash attack/
cryptographic key

This attack takes place if the hash of the password is short or wrongly elaborated.

Substitution 
attack

The original key is substituted by a third party and replaced in the entire network. 
This can be done with the help of viruses.

Storing  
encryption key

If this is done in a wrong way (together with the encryption data) in plaintext 
without any physical protection measures or cryptographic software or hardware, 
it can lead to an attack on the encrypted message.

Storing of old 
encryption keys

This attack will compromise old documents that are encrypted.

(continued)
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�Attacks on Authentication Protocols
The authentication protocols are exposed to different types of attacks. Table 18-3 lists the 

most important ones, which are frequently used. Note that the authentication protocol of 

a system is very important and vital. Once corrupted, vital information could be exposed 

and attackers could gain a lot of benefits: personal, financial, and so on.

Table 18-2.  (continued)

Types of Attacks on the Keys

Attack Title Attack Description

Key compromise If the symmetric key is compromised, only the documents that are assigned with 

that key will be compromised. If the public key is compromised, which can be 

found stored on different servers, the attacker can be substituted with the legal 

owner of the data, resulting in a negative impact within the network.

Master keys Represents different phases in the cryptographic system.

Key lifetime It is an essential component that excludes the possibility of a successful attack 

that was undetected.

Table 18-3.  Attacks on Authentication Protocols

Types of Attacks on Authentication Protocols

Attack Title Attack Description

Attack on the public key The attack takes place for the signature within the protocol. This is 

available only for systems with public keys.

Attack on the symmetric 

algorithm

The attack takes place on the signature within the authentication 

protocol. This is available only if a symmetric key is used.

Passive attack The attacker intercepts and monitors the communication on the channel 

without making any kind of intervention.

Attack using a third 

person

The communication of the two partners within a communication 

channel is intercepted actively by a third party.

The fail-stop signature A cryptographic protocol in which the sender can bring evidence if his 

signature was forged or not.
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�Conclusion
The chapter covered the most important and useful cryptanalytic and cryptanalysis 

guidelines and methods. You can now manage the standards with the goal of testing and 

verifying the implementation of the cryptographic and cryptanalytic algorithms and 

methods. As a summary, you learned about

•	 Cryptanalysis attack classification

•	 Cryptanalysis operations

•	 Standards FIPS 140-2 and FIPS 140-3

•	 Standard 15408

•	 Validation of cryptographic systems
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CHAPTER 19

Linear and Differential 
Cryptanalysis
In this chapter, we will discuss two important types of cryptanalysis: linear and 

differential cryptanalysis. To explain how to merge theoretical concepts with the 

practical, in the beginning we will go through a set of basic concepts and advanced 

techniques on how these two types of cryptanalysis can be implemented by 

professionals.

Despite the fact that some of the differential and linear mechanisms are outdated, 

there is plenty of room to find new challenges that can be exploited in order to obtain 

new results. The research literature about linear and differential cryptanalysis provides 

a significant amount of theoretical approaches and mechanisms, but only few of the 

theories could be applied in practice to develop professional solutions for differential 

and linear cryptanalysis attacks.

The difference between theoretical and applied cryptanalysis is significantly huge. 

The results that were published over the last 12 years, such as algorithms, methods, 

game theory aspects, and so on led researchers and professionals on different paths. 

Most of them were whimsical chimeras (complex mathematical systems without real 

applicability) and fancy algorithms; others were applicable with success in practice.

Conducting research in cryptanalysis and increasing its potential value for 

being applied in practice and for different scenarios requires time, experience, and 

a continuous cross-collaboration between theoreticians and practitioners, without 

existing an isolation between these two types of categories. Their importance is crucial 

in the field of cryptanalysis, providing the necessary tools and mechanisms to construct 

cryptanalysis attack schemes for block and stream ciphers.

https://doi.org/10.1007/978-1-4842-6586-4_19#DOI


388

�Differential Cryptanalysis
Differential cryptanalysis was implemented by E. Biham and A. Shamir in the early 

90s. The objective of differential cryptanalysis is to check whether the cryptogram 

traces some locations from the key with a probability greater than others. The checking 

process can be carried out with any order with grade 1. Actually, the test represents a 

complicated approximation of order 2 of a test cycle.

With differential cryptanalysis we will expose the weak points of the cryptography 

algorithm. The following example of differential cryptanalysis is illustrated for stream 

cryptography algorithms. In the following pseudocode, we will illustrate the algorithm as 

follows:

INPUT:    The key is chosen as K = (k1, ..., kn) with ki ∈ {0, 1}

OUTPUT:   The weak points of the cryptography

          algorithm together with the resistance decision for

          differential cryptanalysis

	 1.	 α←rejection rate value

	 2.	 Choose n sets of keys with perturbation property set, starting from 

the key K.

	 for i to n do K k ki
i ni n= = Å ¼ Å( )( )1 1 1d d, , : 	

	
d1

1

0i

if j i

if j i
=

¹
=

ì
í
î

, ,

, .
,
	

for i,j=1,…,n. In the form from above the ith key is obtained from the base key by 

changing the bit from ith position.

	 3.	 Constructing the cryptograms: The first step is to build n + 1 

cryptograms using the basic key, perturbed keys, and a clear text 

M. We denote the obtained cryptograms as C(i), i = 1, …, n + 1.  

As plaintext M we can choose for text 0 – everywhere.

	 4.	 Constructing the correlation matrix: Here we build the matrix 

(n + 1) × (n + 1) for the corellation values C:

	
c corellation cryptogram i cryptogram jij = ( ), . 	
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Correlation cij denotes the value of the statistical test applied to the sequence 

(cryptogram i ⊕ cryptogram j). The matrix C is represented as a symmetrical matrix 

having 1 on the main diagonal.

	 5.	 The computational process for the significant value: It counts 

the values of significant correlation that are situated above the 

main diagonal. A value is called significant if

	
c u ui j, .Ï

é

ë
ê

ù

û
ú

-
a a
2

1
2

;
	

Consider T the number of significant values that represent the number of rejects of the 

correlation test.

	 6.	 Decision and result interpretation: If
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once computed, we can decide the non-resistance to differential cryptanalysis ( ua
2

 and 

u
1

2
-
a ) represents the quantiles of the normal distribution of order 

a
2

 and 1
2

-
a

 and fixes 

the (i, j) elements with n ≥ i > j ≥ 1, for which cij is significant. These elements represent 

weak points for the algorithms. Otherwise we would not be able to mention anything 

about the resistance to this type of attack.

Listing 19-1 shows the implementation in C++ of the above pseudocode and the 

output shown in Figure 19-1 is self-explanatory and quite intuitive. The source code is 

divided into seven steps:

•	 Generating a differential structure as a matrix

•	 Computing the differences

•	 Computing the intermediate values that are generated using the 

differentials

•	 Generating the known key pairs

•	 Computing and looking for a good pair of keys
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•	 Using brute force to reduce the space of the keys

•	 Computing and displaying the key(s) pair(s)

Listing 19-1.  Implementation of the Differential Cryptanalysis Example

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

//** variables

int theSBox[16] = {3, 14, 1, 10, 4, 9, 5, 6, 8, 11, 15, 2, 13, 12, 0, 7};

int characters[16][16];

int known_plaintext_0[10000];

int known_plaintext_1[10000];

int known_ciphertext_0[10000];

Figure 19-1.  Differential cyptanalysis example
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int known_ciphertext_1[10000];

int good_plaintext_0, good_plaintext_1, good_ciphertext_0, good_ciphertext_1;

int pairs_of_numbers;

int characters_dataSet_0[16];

int characters_data_max = 0;

int round_function(int integer_input, int cryptoKey)

{

    return theSBox[cryptoKey ^ integer_input];

}

int encryption(int integer_input, int key_0, int key_1)

{

    int x_value_0 = round_function(integer_input, key_0);

    return x_value_0 ^ key_1;

}

void find_differences()

{

    printf("\nXOR Differential Structure:\n");

    int a, b, c, f;    //c, d, e, f

    for(a = 0; a < 16; a++)

    {

        for(b = 0; b < 16; b++)

        {

            characters[a ^ b][theSBox[a] ^ theSBox[b]]++;

        }

    }

    for(a = 0; a < 16; a++)

    {

        for(b = 0; b < 16; b++)

            printf("  %x ", characters[a][b]);

        printf("\n");

    }
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    printf("\nShowing the most important differences:\n");

    for(a = 0; a < 16; a++)

     {

        for(b = 0; b < 16; b++)

         {

            if (characters[a][b] == 6)

              {

                  printf("  6/16:   %i {--} %i\n", a, b);

               }

         }

    }

}

void generate_characters_data(int input_differences,

                              int output_differences)

{

    printf("\nIntermediate values generated using the

           differentials(%i --> %i):\n", input_differences,

           output_differences);

            characters_data_max = 0;

            int f;

            for(f = 0; f < 16; f++)

            {

                int computations = f ^ input_differences;

                if ((theSBox[f] ^ theSBox[computations]) ==

                     output_differences)

                {

                 printf("  The possibility:   %i + %i {--}

                              %i + %i\n", f, computations,

                              theSBox[f], theSBox[computations]);

                characters_dataSet_0[characters_data_max] = f;

                    characters_data_max++;

                }

            }

}
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void generate_pairs(int input_differences)

{

    printf("\nKnown pairs %i generated. The pairs are based on

           the differentials served as input of %i.\n",

           pairs_of_numbers, input_differences);

     //** generate substitution keys

    int real_key_0 = rand() % 16;

    int real_key_1 = rand() % 16;

    printf("  Real Key 0 = %i\n", real_key_0);

    printf("  Real Key 1 = %i\n", real_key_1);

    int c;

    //** using XOR, pairs for plaintexts and

    //** ciphertexts are generated

    for(c = 0; c < pairs_of_numbers; c++)

    {

        known_plaintext_0[c] = rand() % 16;

        known_plaintext_1[c] = known_plaintext_0[c] ^

                               input_differences;

        known_ciphertext_0[c] = encryption(known_plaintext_0[c], real_key_0,

                   real_key_1);

        known_ciphertext_1[c] = encryption(known_plaintext_1[c], real_key_0,

                   real_key_1);

    }

}

void identifying_good_pair(int output_differences)

{

    printf("\nLooking for good pair:\n");

    int c;

     //** test if the pair of ciphertexts meet

    //** the characteristics

Chapter 19  Linear and Differential Cryptanalysis



394

    for(c = 0; c < pairs_of_numbers; c++)

     {

        �if ((known_ciphertext_0[c] ^ known_ciphertext_1[c]) == output_

differences)

        {

            good_ciphertext_0 = known_ciphertext_0[c];

            good_ciphertext_1 = known_ciphertext_1[c];

            good_plaintext_0 = known_plaintext_0[c];

            good_plaintext_1 = known_plaintext_1[c];

               printf("  A good pair has been found: (P0 =

                        %i, P1 = %i) {--} (C0 = %i, C1 = %i)\n",

                        good_plaintext_0, good_plaintext_1,

                        good_ciphertext_0, good_ciphertext_1);

            return;

        }

     }

     printf("There was no good pair found!\n");

}

int key_testing(int key_test_0, int key_test_1)

{

    int c;

    int crap = 0;

    for(c = 0; c < pairs_of_numbers; c++)

    {

        if ((encryption(known_plaintext_0[c], key_test_0,

                  key_test_1) != known_ciphertext_0[c]) ||

                  (encryption(known_plaintext_1[c], key_test_0,

                  key_test_1) != known_ciphertext_1[c]))

        {

            crap = 1;

            break;

        }

    }
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    if (crap == 0)

        return 1;

    else

        return 0;

}

void brute_cracking()

{

    printf("\nReducing the space of the key using brute force:\n");

    int f;

    //** based on the characteristics, we will

    //** test each of the possible value

    for(f = 0; f < characters_data_max; f++)

    {

        int key_test_0 = characters_dataSet_0[f] ^

                                   good_plaintext_0;

        int key_test_1 = theSBox[characters_dataSet_0[f]] ^

                                   good_ciphertext_0 ;

        if (key_testing(key_test_0, key_test_1) == 1)

            printf("\n\nThe Key! (%i, %i), ", key_test_0,

                                              key_test_1);

        else

            printf(" (%i, %i), ", key_test_0, key_test_1);

    }

}

int main()

{

     //** generate random value once the program is run

    srand(time(NULL));

     //** look in the s-boxes for good differences

    find_differences();
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    //** define number of known pairs

     pairs_of_numbers = 8;

    //** look for inputs that meet specific characteristics

     generate_characters_data(4, 7);

     //** let's generate pairs of chosen-plaintext

     generate_pairs(4);

     //** pick a pair which meet the characteristic

     identifying_good_pair(7);

     //** find the key

    brute_cracking();

}

�Linear Cryptanalysis
Linear cryptanalysis was developed as a theoretical framework for the DES (data encryption 

system) and was implemented in 1993. Linear cryptanalysis is commonly used inside block 

ciphers and is a very good starting point for designing and executing complex attacks.

Linear cryptanalysis is defined as a linear relationship that is set between the 

key, the plaintext structure, and the ciphertext structure. The plaintext is structured 

and represented as characters or bits. It is required to have a structure of a chain of 

operations characterized by exclusive-or, as we describe here,

	
A A A B B B Key Key Keyi i i j j j k k ku v w1 2 1 2 1 2

Å ¼Å Å Å Å¼Å = Å Å¼ , 	

where ⨁ represents the XOR operation as a binary operation, Ai represents the bit from 

ith position of input the structure A = [A1, A2, …], Bj represents the bit from jth position of the 

output structure B = [B1, B2, …], and Keyk represents the kth bit of the key Key = [Key1, Key2, …].

�Performing Linear Cryptanalysis
Usually, in the most important cases, performing a linear cryptanalysis starts from the 

idea that we are aware and we acknowledge the encryption algorithm except the private 

key. Executing a linear cryptanalysis against a block cipher is represented as a framework 

described here:
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•	 The first step is based on identifying the linear approximation for 

non-linear components. The goal is to characterize the encryption 

algorithm (as an example, S-Boxes).

•	 The next step is to compute a combination between linear 

approximations of substitution boxes that also includes the 

operations that are executed against the encryption algorithm. 

Professionals should focus on the linear approximation due to the 

fact that it represents a special function which contains and deals 

with the clear text and cipher text bits together with the ones from the 

private key.

•	 Computing and designing the linear approximation should be 

done as a guideline with respect for the cryptographic keys that are 

used for the first time. The guideline proves its power and will help 

professionals save important computational resources for all the 

possible values of the cryptographic keys. Based on using multiple 

linear approximations, we will have a very powerful process of 

computation with the goal of eliminating the key numbers which are 

necessary for trying.

The next sections provide extra details of the components that are taken into 

consideration when conducting a linear cryptanalysis attack. Without having a clear 

image of the theory mechanisms, the practical concepts, and how to put them into 

practice, it will be a very difficult task to launch a real attack.

�S-Boxes
Using S-Boxes the non-linearity is introduced together with its operations, exclusive-or 

and bit-shift, which are found within the linear representation as well.

The scope of an S-Box is to design and create a map between the incoming binary 

sequences with a specific and requested output. In the end, we will have the non-

linearity provided that will build and render the affine approximation that was computed 

with the help of the linear cryptanalysis applied. Table 19-1 shows an example of an 

S-Box and how the mapping works. The S-Box uses the 1st and 4th bit to find the column 

and the middle bits, 3rd and 4th. Using this approach, the row is determined in such way 

that input 1110 will be 0101.
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In Table 19-2, the mapping operation is demonstrated between examples of bits as 

input and bits as output.

Table 19-2.  The Mapping Between 

Input and Output

The input (J) The output (Q)

0000 0011

0001 0010

0010 1011

0011 1111

0100 1010

0101 1110

0110 0111

0111 0010

1000 0001

1001 0000

1010 1001

1011 1000

1100 1101

1101 1100

1110 0101

1111 0100

Table 19-1.  S-Box Example

11 10 01 00

00 0000 0001 0010 0011

01 1000 1001 1111 1011

10 1100 1101 1110 1010

11 0100 0101 0010 0111
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�Linear Approximation of S-Box
We start from the idea that we want to approximate the structure of the substitution box 

presented above. Based on that information, we have the precision, which is quite high, 

of the various linear approximations. We include 256 such linear approximations having 

the following form:

	 d J d I d J a I g Q g Q g Q g Q1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4Å Å Å = Å Å Å 	

where J1 and Qi represent the ith bit characterized to input (J) and ouput (Q) with respect 

for di and g1, which are 0 or 1. As an example, let’s use the following linear approximation 

J2 = Q1 ⨁ Q4 and being given by d = 01002 and g = 10012.

�Concatenation of Linear Approximations
It’s time to form, design, and project the linear approximation for the whole system. To 

achieve this, we need two things:

•	 First, we need to have computed already the linear approximation for 

each component that forms the system.

•	 Second, to do the combination. For this, we simply sum by using 

exclusive-or the entire set of equations in different combinations. In 

this way we get a single equation, which eliminates the intermediate 

variables.

�Assembling Two Variables
Let’s consider B1 and B2, two random binary variables. The linear relationship between 

them is B1 ⨁ B2 = 0. Next, we denote the probability B1 = 0 by being noted with l and 

the probability B2 = 0 by being noted with m. Based on the two random independent 

variables, we have
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Moving forward, we can show the following:

	 P B B1 2 0Å =( ) = 	

	 = =( )P B B1 2 	

	 = = =( )+ = =( )P B B P B B1 2 1 20 0 1 1, , 	

	 = + -( ) -( )l m l m· 1 1 	

The next step is represented by computing the bias for B1 ⨁ B2 = 0; it will be given  

by ζ1 · ζ2.

This being said, it is time to do the implementation in C++ (see Listing 19-2) for the 

linear cryptanalysis (see Figure 19-2) and to show how the above concepts can be used 

in practice.

Figure 19-2.  Linear cryptanalysis output simulation program
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Listing 19-2.  Linear Cryptanalysis Simulation

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int sBox_content[16] = {9, 11, 12, 4, 10, 1, 2, 6, 13, 7, 3,

                        8, 15, 14, 0, 5};

int sBox_content_revision[16] = {14, 5, 6, 10, 3, 15, 7, 9,

                                 11, 0, 4, 1, 2, 8, 13, 12};

int approximation_array[16][16];

int known_plaintext[500];

int known_ciphertext[500];

int numbers_known = 0;

int using_mask(int inputValue, int mask_value)

{

    int value = inputValue & mask_value;

    int total = 0;

    while(value > 0)

    {

        int temporary = value % 2;

        value /= 2;

        if (temporary == 1)

          {

            total = total ^ 1;

          }

    }

    return total;

}

void looking_for_approximation()

{

    int a, b, c;
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    //** the output of mask value

    for(a = 1; a < 16; a++)

    {

          //** the input of mask value

          for(b = 1; b < 16; b++)

          {

            //** input

            for(c = 0; c < 16; c++)

               {

                if (using_mask(c, b) ==

                     using_mask(sBox_content[c], a))

                    {

                    approximation_array[b][a]++;

                    }

               }

          }

     }

}

void display_approximation()

{

    printf("Linear Approximations Values: \n");

    int a, b, c;

    for(a = 1; a < 16; a++)

        for(b = 1; b < 16; b++)

            if (approximation_array[a][b] == 14)

                printf("  %i : %i {--} %i\n",

                      approximation_array[a][b], a, b);

    printf("\n");

}

int round_function(int inputValue, int substitution_key)

{

    return sBox_content[inputValue ^ substitution_key];

}
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void filling_known_numbers()

{

    int substitution_key_1 = rand() % 16;

    int substitution_key_2 = rand() % 16;

    printf("Generating data:  Key_1 = %i, Key_2 = %i\n",

                        substitution_key_1, substitution_key_2);

    int total = 0;

    int c;

    for(c = 0; c < numbers_known; c++)

    {

        known_plaintext[c] = rand() % 16;

        known_ciphertext[c] =

                  round_function(round_function(known_plaintext[c], 

                  substitution_key_1), substitution_key_2);

    }

    printf("Generating Data:  We have %i known pairs

                   generated\n\n", numbers_known);

}

void keys_testing(int key_1, int key_2)          //testKeys

{

    int c;

    for(c = 0; c < numbers_known; c++)

     {

        if (round_function(round_function(known_plaintext[c],

                    key_1), key_2) != known_ciphertext[c])

          {

            break;

          }

     }

    printf("# ");

}
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int main()

{

    printf("Linear Cryptanalysis\n\n");

    srand(time(NULL));

    looking_for_approximation();

    display_approximation();

    int input_approximation = 11;

    int output_approximation = 11;

     //** how many numbers we known

    numbers_known = 16;

    filling_known_numbers();

    int cryptographic_key_score[16];

    int reaching_threshold = 0;

    printf("Proceeding with Linear Attack");

    printf("\tLinear Approximation = %i -> %i\n",

              input_approximation, output_approximation);

    printf("\n\n");

    int b, h;

    for(b = 0; b < 16; b++)

    {

        cryptographic_key_score[b] = 0;

        for(h = 0; h < numbers_known; h++)

        {

            reaching_threshold++;

            int middle_round = round_function(known_plaintext[h], b);

            if ((using_mask(middle_round, input_approximation)

                        == using_mask(known_ciphertext[h],

                        output_approximation)))

                cryptographic_key_score[b]++;
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            else

                cryptographic_key_score[b]--;

        }

    }

    int maximum_score_value = 0;

    for(b = 0; b < 16; b++)

    {

        int score_value = cryptographic_key_score[b] *

                          cryptographic_key_score[b];

        if (score_value > maximum_score_value)

                   maximum_score_value = score_value;

    }

    int good_cryptographic_keys[16];

    for(h = 0; h < 16; h++)

        good_cryptographic_keys[h] = -1;

      h = 0;

      printf("Linear Attack:\n");

      for(b = 0; b < 16; b++)

     {

        if ((cryptographic_key_score[b] *

             cryptographic_key_score[b]) == maximum_score_value)

        {

            good_cryptographic_keys[h] = b;

               printf("\tPotential Value Candidate for

                      Cryptography Key 1 = %i\n",

                      good_cryptographic_keys[h]);

            h++;

        }

     }

      int guessing_cryptographic_key_1;

      int guessing_cryptographic_key_2;
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    for(h = 0; h < 16; h++)

    {

        if (good_cryptographic_keys[h] != -1)

        {

               int cryptography_key_test_1 =

                       round_function(known_plaintext[0],

                       good_cryptographic_keys[h]) ^

                       sBox_content_revision[

                               known_ciphertext[0]];

               int tested = 0;

               int e;

               int bad = 0;

               for(e = 0;e < numbers_known; e++)

               {

                    reaching_threshold += 2;

                    int testOut = round_function(round_function

                                  (known_plaintext[e],

                                  good_cryptographic_keys[h]),

                                  cryptography_key_test_1);

                    if (testOut != known_ciphertext[e])

                         bad = 1;

               }

               if (bad == 0) 

               {

                    printf("\tFound Keys! K1 = %i, K2 =

                           %i\n", good_cryptographic_keys[h],

                                cryptography_key_test_1);

                    guessing_cryptographic_key_1 =

                                    good_cryptographic_keys[h];

                    guessing_cryptographic_key_2 =

                                    cryptography_key_test_1;

                    printf("\tComputations Until Key Found =

                                    %i\n", reaching_threshold);
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               }

        }

    }

    printf("\tThe total value of computations = %i\n\n",

                                         reaching_threshold);

    reaching_threshold = 0;

     printf("Brute Force Attack\n");

    for(h = 0; h < 16; h++)

    {

          for(b = 0; b < 16; b++)

          {

               int e;

               int bad = 0;

               for(e = 0;e < numbers_known; e++)

               {

                    reaching_threshold += 2;

                    int testOut = round_function(round_function(

                                  known_plaintext[e], h), b);

                    if (testOut != known_ciphertext[e])

                         bad = 1;

               }

               if (bad == 0)

               {

                    printf("\tCryptographic Keys Found with

                           Success! K1 = %i, K2 = %i\n", h, b);

                    printf("\tThe number of computations

                              computed until the cryptography

                              key(s) were found = %i\n",

                              reaching_threshold);

               }

          }

    }

    printf("\tComputations Total = %i\n", reaching_threshold);

}
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�Conclusion
The chapter discussed differential and linear cryptanalysis attacks and how these 

kinds of attacks can be designed and implemented in real practice. We introduced the 

theoretical background elements and main foundations, which must be understood 

before you design such cryptanalysis attacks.

At the end of this chapter, you can now

•	 Identify theoretically the main components on which a cryptanalyst 

should focus

•	 Understand how vulnerable those components are and how they can 

be exploited

•	 Implement linear and differential cryptanalysis attacks
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CHAPTER 20

Integral Cryptanalysis
Integral cryptanalysis is a cryptanalytic technique that is designed for block ciphers 

constructed on networks of substitution-permutation. Since the integral cryptanalysis 

attack can be launched against the Square block cipher [1], it is also known as the Square 

attack. It was designed by Lars Knudsen.

An exposed point of the block cipher is the network of substitution-permutation. 

When the networks can be discovered (intuitively), then the exploitation of 

vulnerabilities of the block cipher has a high negative impact over the entire 

cryptosystem. Other exposed points of the block ciphers are the key itself and the table 

involved in the permutation of the key. When a false key is similar (or identical) to the 

correct one, then the system can be broken.

In the next section, we present the formal basis regarding block ciphers, which can 

be used in an implementation. Further, we present the elements required to initiate an 

integral cryptanalysis attack, for example, building Feistel networks and generating a 

permutation table for a cryptographic key. Once you have a clear understanding of these 

two phases, it becomes clear how integral cryptanalysis must be conducted.

�Basic Notions
To implement and design an integral cryptanalytic attack, is very important to have the 

formal elements before starting to implement the attack. Moving further, let’s take a look 

at the following concepts as the main starting point. They are used for designing and 

implementing such an attack for educational purposes only.

Take into consideration (G, +) as a a finite abelian group with the order k. The 

product group Gn = G × … × G is a group of elements with the structure v = (v1, …, vn), 

where vi ∈ G. The addition within Gn is defined as component-wise, therefore, we have 

u + v = w holds for u, v, w ∈ Gn when ui + vi = wi for all i.
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Let’s denote B as the set with multiple vectors. We define the integral over B. This 

integral represents the sum of all vectors S. The integral is defined as ò =
ÎåS v
v B

, and 

the addition operation is defined in terms of the group operation for Gn.

When the integral cryptanalytic is designed, it’s important to know the number of 

words in the plain text and in the encrypted text. In the example from this chapter, this 

number is denoted with n. Another important number to know is the number of clear 

texts and the encrypted texts, denoted with m. In general, m = k (i.e. k = |G|), the vectors 

v ∈ B denotes the plain text and the encrypted text, and G = GF(2B) or G = Z/kZ.

Going further into the attack, it is based on the fact that one of the involved entities 

will make a prediction for the values placed in the integrals after a particular number of 

rounds of encryption. Keeping this in mind, three cases can be distinguished: (1) when 

the words have the same length (e.g. i), (2) when the words have different lengths, and 

(3) the sum of a particular value that is predicted in advance.

Further, consider B ⊆ Gn as described above and a fixed index i. The following three 

cases can be distinguished:

	 (1)	 vi = c, for all v ∈ B

	 (2)	 {vi : v ∈ B} = G

	 (3)	
v B

iv c
Î
å = ¢

where c, c′ ∈ G are some values known and fixed in advance.

The example that we present further is a common situation in which m = k, the 

number of vectors from B is the same as the number of elements in the considered 

group. From Lagrange’s theorem, it results that if all words, a general word placed on the 

ith position, have the same length, then it is intuitive that the ith word from the integral 

will have the value of the neutral element from G.

The following two theorems are necessary and they represent a must for any 

practical developer who wants to translate into practice an integral cryptanalysis.

Theorem 20-1 [1, Theorem 1, p. 114]. Let’s consider (G, +) a finite abelian additive 

group. The subgroup of elements of order 1 or 2 is denoted as L = {g ∈ G : g + g = 0}. We 

will consider writing s(G) as being the sum 
g G

g
Î
å  of all the elements found within G. Next, 

we will consider s(G) = ∑h ∈ HH. More, it is very important to understand the following 

analogy: s(G) ∈ H, i.e. s(G) + s(G) = 0.
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According to Theorem 20-1, for G = GF(2B) there is the value s(G) = 0 and for Z/mZ there 

is the value s(Z/mZ) = m/2 in the situation where m is an even value or it is 0. The following 

theorem represents the multiplicative case for written groups (see Theorem 20-2).

Theorem 20-2 [1, Theorem 2, p. 114]. Let’s consider (G, ∗) a finite abelian 

multiplicative group. The subgroup of elements of order 1 or 2 is denoted as 

H = {g ∈ G : g ∗ g = 1}. We consider writing p(G) as being the product Õ Îg G g  of all the 

elements of G. Next, we consider p G h
h H

( ) =Õ
Î

. More, it is very important to understand 
the following analogy: p(G) ∈ H, i.e. p(G) ∗ p(G) = 1.

As an example, if we have G = (Z/pZ)∗ where p is prime, p(G) will be −1, p(G) =  − 1. 

This is proved using Wilson’s theorem.

�Practical Approach
In this section, we will implement an integral cryptanalysis attack that can be applied in 

practice using the C++ programming language.

The following approach presents a basic implementation of an integral cryptanalysis 

in C++, giving the chance to override the size of the current block (sboxValue with 

revision_sbox_value). In the provided implementation, we use repeating sequences. 

The goal of the repeating sequences is to create a weakness to show how it can be 

exploited and launch the attack.

In the source code from Listing 20-1, we demonstrate the integral cryptanalytic 

attack, providing necessary comments on building and designing principles. In 

Listing 20-1, you can see how the integral cryptanalysis attack is implemented. As soon 

as you have the main kernel of the program, to proceed further with the success of the 

attack, it is vital to “figure out” how the attack is designed and afterwards to create a copy 

of it or something that is similar to the original one.

To use the following example, you must run from the command prompt the 

following command (see Figure 20-1):

g++ -std=c++2a integral.cpp -o integral
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Listing 20-1.  The Main Program

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

//** VARIABLES

//** the sBox structure

int sboxValue[16] = {9, 11, 12, 4, 10, 1, 2, 6, 13, 7, 3, 8, 15, 14, 0, 5};

//** the revision sBox value structure

int revision_sbox_value[16] = {14, 5, 6, 10, 3, 15, 7, 9, 11, 0, 4, 1, 2, 

8, 13, 12};

//** an approximation array

int approximation_array_structure[16][16];

//** the maximum score which will need to be compared with the "score" 

variable

int maximum_score = 0;

//** the total value

int total_value = 0;

//** control counters, 1 and 2

int counter1;

int counter2;

//** generating known plaintext

int known_plaintext[500];

//** generating known ciphertext

int known_ciphertext[500];

//** number of generated known pairs

int known_numbers = 0;

//** approximation values, for input and output

int approximation_for_input = 11;

int approximation_for_output = 11;

//** score value for the cryptography key

int cryptographyKey_score_value[16];

//** the threshold level. used for identitying the step until we reached 

for finding the cryptography keys

int threshold_level = 0;
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//** good reliable cryptography key

int reliable_crypto_keys[16];

//** the values for the guessed cryptography key

int guessing_crypto_key1, guessing_crypto_key2;

//** testing control variable for cryptography key

int cryptoKey1_testing;

//** apply the mask

int applying_the_mask(int theValue, int mask_value)

{

    int internal_value = theValue & mask_value;

    int total_value = 0;

    while(internal_value > 0)

    {

        int temporary = internal_value % 2;

        internal_value /= 2;

        if (temporary == 1)

            total_value = total_value ^ 1;

    }

    return total_value;   

}

//** detecting the approximation

void detect_the_approximation()

{

     int a, b, c;

     //** parsing for the output mask. 16 represents

     //** the size of the s-Box

    for(a = 1; a < 16; a++)

     {

        //** parsing for the input mask

        for(b = 1; b < 16; b++)

        {

            //** parsing the input
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            for(c = 0; c < 16; c++)

            {

                if (applying_the_mask(c, b) ==

                    applying_the_mask(sboxValue[c], a))

                    approximation_array_structure[b][a]++;

            }

        }

     }

}

//** show and display the approximation

void display_the_approximation()

{

    printf("Integral Values Approximations: \n");

    int a, b, c;

    for(a = 1; a < 16; a++)

     {

        for(b = 1; b < 16; b++)

          {

            if (approximation_array_structure[a][b] == 14)

                printf("  %i : %i {<-->} %i\n",

                   approximation_array_structure[a][b], a, b);

          }

     }

    printf("\n");

}

//** round function for s

int rounding_procedure(int dataInput, int substitution_key)

{

    return sboxValue[dataInput ^ substitution_key];

}
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//** filling the knowings possible key values

void filling_up_the_knowings()

{

    int substitution_key_1 = rand() % 16;

    int substitution_key_2 = rand() % 16;

    printf("Generating Data:  Key 1 = %i, Key 2 = %i\n",

                substitution_key_1, substitution_key_2);

    //** parse each known value and for each known plaintext

    //** and ciphertext compute the proper values

    for(counter1 = 0; counter1 < known_numbers; counter1++)

    {

        known_plaintext[counter1] = rand() % 16;

        known_ciphertext[counter1] =

            rounding_procedure(rounding_procedure(

            known_plaintext[counter1], substitution_key_1),

            substitution_key_2);

    }

    printf("Generating Data:  We have generated %i known

                      pairs\n\n", known_numbers);

}

//** verify and test the cryptography keys

void testing_the_keys(int key_1, int key_2)

{

    for(counter2 = 0; counter2 < known_numbers; counter2++)

        if

                  (rounding_procedure(rounding_procedure(

                   known_plaintext[counter2], key_1), key_2) !=

                   known_ciphertext[counter2])

            break;

    printf("* ");

}
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int main()

{

    printf("Testing Program for Integral Cryptanalysis\n\n");

    srand(time(NULL));

    detect_the_approximation();

    display_the_approximation();

    known_numbers = 16;

    filling_up_the_knowings();

    �printf("Integral Cryptanalysis Attack -->  Based on Linear 

Approximation = %i {<-->} %i\n", approximation_for_input, 

approximation_for_output);

    int c, d;

    for(c = 0; c < 16; c++)

    {

        cryptographyKey_score_value[c] = 0;

        for(d = 0; d < known_numbers; d++)

        {

            threshold_level++;

            int midRound =

                 rounding_procedure(known_plaintext[d], c);

            if ((applying_the_mask(midRound,

                                   approximation_for_input) ==

                        applying_the_mask(known_ciphertext[d],

                        approximation_for_output)))

                cryptographyKey_score_value[c]++;

            else

                cryptographyKey_score_value[c]--;

        }

    }
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    for(c = 0; c < 16; c++)

    {

        int score = cryptographyKey_score_value[c] *

                    cryptographyKey_score_value[c];

        if (score > maximum_score) maximum_score = score;

    }

    for(d = 0; d < 16; d++)

     {

        reliable_crypto_keys[d] = -1;

     }

    d = 0;

    for(c = 0; c < 16; c++)

     {

        if ((cryptographyKey_score_value[c] *

             cryptographyKey_score_value[c]) == maximum_score)

        {

            reliable_crypto_keys[d] = c;

            printf("Integral Cryptanalysis Attack -->

                  Candidate for K1 = %i\n",

                  reliable_crypto_keys[d]);

            d++;

        }

     }

    for(d = 0; d < 16; d++)

    {

        if (reliable_crypto_keys[d] != -1)

        {

                cryptoKey1_testing =

                        rounding_procedure(known_plaintext[0],

                        reliable_crypto_keys[d]) ^

                        revision_sbox_value[known_ciphertext[0]];
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                int tested = 0;

                int e;

                int bad = 0;

                for(e = 0;e < known_numbers; e++)

                {

                    threshold_level += 2;

                    int testOut =

                        rounding_procedure(rounding_procedure(

                        known_plaintext[e],

                        reliable_crypto_keys[d]),

                        cryptoKey1_testing);

                    if (testOut != known_ciphertext[e])

                        bad = 1;

                }

                if (bad == 0)

                {

                    printf("Integral Cryptanalysis Attack -->

                           �We have found the cryptography keys! Crypto Key 

1 = %i, Crypto Key 2 = %i\n", reliable_crypto_

keys[d], cryptoKey1_testing);

                    guessing_crypto_key1 =

                                      reliable_crypto_keys[d];

                    guessing_crypto_key2 = cryptoKey1_testing;

                    printf("Integral Cryptanalysis Attack -->

                          �Number of computations for reaching the 

cryptography key = %i\n", threshold_level);

                }

        }

    }

    printf("Integral Cryptanalysis Attack --> Computations

                          Total = %i\n\n", threshold_level);

    threshold_level = 0;
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    for(d = 0; d < 16; d++)

    {

            for(c = 0; c < 16; c++)

            {

                int e;

                int bad = 0;

                for(e = 0;e < known_numbers; e++)

                {

                    threshold_level += 2;

                    int testOut =

                        rounding_procedure(rounding_procedure(

                        known_plaintext[e], d), c);

                    if (testOut != known_ciphertext[e])

                        bad = 1;

                }

                if (bad == 0)

                {

                    printf("Brute Force -->  We have found the

                        cryptography keys! Crypto Key 1 = %i,

                        Crypto Key 2 = %i\n", d, c);

                    printf("Brute Force -->  Number of

                        computations for reaching the

                        cryptography key = %i\n",

                        threshold_level);

                }

            }

    }

    printf("Brute Force -->  Total computations number =

                                 %i\n", threshold_level);

}
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�Conclusion
The chapter covered integral cryptanalysis and how such an attack can be designed 

and implemented. The chapter covered a way of building a block cipher cryptosystem 

together with the vulnerable points with the goal of illustrating how to use an integral 

cryptanalysis attack in practice.

Now that you’ve reached the end of the chapter, you can

•	 Design and implement a simple integral cryptanalysis attack.

•	 Understand the vulnerable points of this kind of attack and generate 

the permutation tables with the goal of permutating the key.

•	 Use permutation tables and work with them over the keys.
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Figure 20-1.  Integral cryptanalysis attack
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CHAPTER 21

Brute Force and Buffer 
Overflow Attacks
This chapter covers two important attacks, the buffer overflow attack and the brute force 

attack, which are frequently employed against C++ applications and programs.

A special category of attackers will use applications/programs or devices to launch 

brute force or buffer overflow attacks. Their methods evaluate different combinations 

of words for confirmation forms. In some cases, the attackers attempt to corrupt web 

applications through a scanning process for sessions IDs, for example. The attacker’s 

goals include stealing data, corrupting destination machines with malware, and asking 

for a specific amount of money. Some of the attackers perform brute force attacks 

physically as a personal choice. Today, most brute force and buffer overflow attacks are 

performed by bots.

In order to protect organizations and businesses from these kinds of attacks, take 

into consideration the following recommendations:

•	 Don’t use data or information that could be found online.

•	 Use as many characters as possible.

•	 Use combinations of letters, numbers, and special characters (e.g. 

symbols).

•	 Don’t use common patterns (e.g. qwerty).

•	 Use different passwords for each user account.

•	 Change the password at frequent intervals (e.g. every two months).

•	 Use and generate long and strong passwords. If you don’t have an 

idea for one, use a password generator (e.g. key generation from 

KeyPass).
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•	 Implement multifactor authentication [1].

•	 Use biometrics if possible [2].

�Brute Force Attack
A brute-force attack represents a complex attack in which the attacker will submit many 

passwords or passphrases with the goal of guessing the correct one. Each password or 

passphrase is checked one-by-one by the attacker until the correct one is found. Also, 

the attacker may guess the key. The key is generally created from the password by using a 

function for key derivation. This process is known as an exhaustive key search.

There are many types of brute-force attacks:

•	 Attacks based on rainbow tables: A rainbow table is a predefined 

and precomputed table. The goal is to reverse the process of the 

cryptographic hash capacities.

•	 Attacks based on reversing brute-force attacks: The attack is based 

on using a general password or a specific set of passwords against 

multiple usernames.

•	 Credential attacks: The attack uses sets of passwords-usernames 

against a variety of websites.

•	 Hybrid brute-force attacks: The attack is used to figure out what 

password variety is used to succeed. After, it proceeds with a general 

process for dealing with checking different varieties.

We will illustrate this type of attack with the following examples to show how the 

attack can be used and deployed in real-life situations (algorithms). The examples 

provided are

•	 Brute-force attack on a Caesar cipher: The example (see Figure 21-1 

and Listing 21-1) is based on a Caesar cipher. The example is chosen as 

the first case of showing a brute-force attack due to its simplicity.

•	 String generation for a brute-force attack: The example (see 

Figure 21-2 and Listing 21-2) shows how basic string generation can 

be done with the goal of creating complex lists and dictionaries that 

can be used during brute-force attacks.
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Listing 21-1.  Brute Force Attack on a Caesar Cipher

#include<iostream>

using namespace std;

// the function will be used to encrypt the plaintext

// string msg - the message

// int keytValue - the key

string encrypt(string msg,int keyValue)

{

     // variable used to hold the cipher value of the plaintext

    string cipher="";

Figure 21-1.  Running the brute-force attack
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     // parse the string

    for(int i=0;i<msg.length();i++)

    {

        // verify if the character is upper case

        if(isupper(msg[i]))

           // �add to the cipher the character plus the key and subtract 

ASCII 65 value ('A').

           // �the value obtained do modulo 26 (english alphabet letters) 

and add ASCII value 65 back.

           cipher += (msg[i] + keyValue - 65)%26 + 65;

          // verify if the character is lower case

          else if(islower(msg[i]))

               //** the same as above. ASCII value 97 ('a')

               cipher += (msg[i] + keyValue - 97)%26 + 97;

          else

               cipher += msg[i];

    }

    return cipher;

}

// The decryption will be done using the brute force attack by

// checking all possible keys

// string encMessage - the encrypted message

void decrypt(string encMessage)

{

     // the variable for storing the plaintext

    string plaintext;

     // we will try for each key and we will do the decryption

    for(int keyTry=0;keyTry<26;keyTry++)

    {

        plaintext = "";

          // parse accordingly based on the message length
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        for(int i=0;i<encMessage.length();i++)

        {

               // check if the character is upper case

            if(isupper(encMessage[i]))

            {

                if((encMessage[i] - keyTry - 65)<0)

                    plaintext += 91 + (encMessage[i] - keyTry - 65);

                else

                    plaintext += (encMessage[i] - keyTry - 65)%26 + 65;

            }

               // check if the character is lower case

            else if(islower(encMessage[i]))

            {

                if((encMessage[i] - keyTry - 97) < 0)

                    plaintext += 123 + (encMessage[i] - keyTry - 97);

                else

                    plaintext += (encMessage[i] - keyTry - 97)%26 + 97;

            }

            else

                plaintext += encMessage[i];

        }

        �cout << "BRUTE-FORCE ATTACK (DECRYPTION) - The clear text for key  

 -> " << keyTry << " :- " << plaintext << endl;

    }

}

int main()

{

     int encKey;

     string cleartext;

     cout << "ENCRYPTION - Enter the text for encryption -> ";

     getline(cin,cleartext);

     cout << "Enter the key for encryption the text -> ";

     cin >> encKey;
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     string encryptedMessage = encrypt(cleartext,encKey);

     �cout << "ENCRYPTED MESSAGE - The encrypted message is -> "  

<< encryptedMessage << endl << endl;

     //** brute force attack

     decrypt(encryptedMessage);

}

Figure 21-2.  Basic string generation for a brute-force attack (different states of 
generating strings)
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Listing 21-2.  Basic String Generation Source Code

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

// We are using a linked list data structure.

// The reasong is to avoid some of the restrictions

//      based on the generation of the string length.

// Our list has to be converted to string in

//      such way that it can be used. The current conversion

//      might be a little slower comparing with other methods

//      due to the fact that the conversion is happening with

//      each cycle.

// Another solution consists in implementing a solution based

//      on the generation of the allocation for the string with

//      a fixed size equal with 20 characters (which is more than

//      enough.

// the structure definition for holding the characters (strings)

typedef struct charactersList charlist_t;

struct charactersList

{

     // the character

    unsigned char character;

     // the next character

    charlist_t* nextCharacter;

};

// The method will return a new initialized charlist_t element.

// The element returned is charlist_t

charlist_t* new_characterList_element()

{

    charlist_t* elementFromTheList;
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     �if ((elementFromTheList = (charlist_t*) malloc(sizeof(charlist_t))) != 0)

    {

        elementFromTheList->character = 0;

        elementFromTheList->nextCharacter = NULL;

    }

    else

    {

        perror("The allocation using malloc() has failed.");

    }

    return elementFromTheList;

}

 // allocation free memory by the characters list

 // listOfCharacters - represents a pointer for the first element within 

the list

void freeAllocation_CharactersList(charlist_t* listOfCharacters)

{

    charlist_t* currentCharacter = listOfCharacters;

    charlist_t* nextCharacter;

    while (currentCharacter != NULL)

    {

        nextCharacter = currentCharacter->nextCharacter;

        free(currentCharacter);

        currentCharacter = nextCharacter;

    }

}

// the function display the current list of characters

// the function will iterate through the whole list and it will print all 

the characters

void showCharactersList(charlist_t* list)

{

    charlist_t* nextCharacter = list;
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    while (nextCharacter != NULL)

    {

        printf("%d ", nextCharacter->character);

        nextCharacter = nextCharacter->nextCharacter;

    }

    printf("\n");

}

// the function will return the next sequence of characters.

// the characters are treated as numbers 0-255

// �the function proceeds by incrementation of the character from the first 

position

void nextCharactersSequence(charlist_t* listOfCharacters)

{

    listOfCharacters->character++;

    if (listOfCharacters->character == 0)

    {

        if (listOfCharacters->nextCharacter == NULL)

        {

            listOfCharacters->nextCharacter = new_characterList_element();

        }

        else

        {

            nextCharactersSequence(listOfCharacters->nextCharacter);

        }

    }

}

int main()

{

    charlist_t* sequenceOfCharacters;

    sequenceOfCharacters = new_characterList_element();

    // this while will work for all possibles combinations

    // this has to be stopped manually
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    while (1)

    {

        nextCharactersSequence(sequenceOfCharacters);

        showCharactersList(sequenceOfCharacters);

    }

    freeAllocation_CharactersList(sequenceOfCharacters);

}

�Buffer Overflow Attack
A buffer represents a temporary area that is used for storing data. At the moment when 

more data is placed by the programs or system processes, an extra data overflow will 

occur.

In a buffer-overflow attack, the extra data being stored can store specific instructions 

to take actions designed by hackers or malicious users. As an example, the data could 

trigger an event (function or process) to destroy files or reveal private data about users.

The attacker uses a buffer overflow to get an advantage from a program that is being 

executed and is waiting for user interaction. There are two types of buffer overflows: 

stack-based and heap-based. In a heap-based overflow, it is very difficult to launch and 

execute attacks based on flooding the memory space reserved for the program and its 

execution. In a stack-based overflow, the exploitation of the applications and programs is 

done on the memory stack, which is the memory space used to store the input data from 

the user.

The following example (see Figure 21-3 and Listing 21-3) shows the danger of 

such situations for C++ applications. In the example provided, we won’t do any 

implementation for malicious code injection. We show the main process for buffer 

overflow. As a comparison between modern compilers vs. old compilers, modern 

compilers provide options for overflow checking during the compile or linking process 

but at the running time it is quite difficult to check the situation without having a 

protection mechanism such as the handling process of the exceptions.
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Listing 21-3.  Implementation of the Buffer Overflow Example

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

        // �We allocate a buffer of 5 bytes which includes also the 

termination, NULL.

        // �The allocation should be done as 8 bytes which is two double 

words.

        // For overflowing process we will need more than 8 bytes.

        // if the user provides more than 8 characters for the input,

        // an access violation and fault segmentation

       char buffer_test_example[5];

        // execution of the program

       if (argc < 2)

       {

              printf("Function strcpy() will not be executed...\n");

              printf("The syntax: %s <characters>\n", argv[0]);

              exit(0);

       }

        // Take the input from the user and copy it to the buffer.

        // The process is done without verifying the bound

       strcpy(buffer_test_example, argv[1]);

       printf("The content of thebuffer -> %s\n", buffer_test_example);

Figure 21-3.  Buffer overflow execution
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       printf("The function strcpy() is being executed...\n");

       return 0;

}

�Conclusion
The current chapter covered two important attacks, brute-force attacks and buffer 

overflow attacks. You are now capable of

•	 Understanding the brute-force and buffer overflow attacks

•	 Understanding the main concepts that form the basics of designing 

such attacks

•	 Understanding the limitations between stack-based and heap-based 

buffer overflows
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CHAPTER 22

Text Characterization
In this chapter, we will analyze two important metrics for cipher and plaintext analysis: 

the chi-squared statistic and searching for patterns (monograms, bigrams, and trigrams). 

When working with classic and modern cryptography, text characterization as technique 

is a very important part of the cryptanalysis backpack.

�The Chi-Squared Statistic
The chi-squared statistic is an important metric that computes the similarity percent 

between two probability distributions. There are two situations when the result of the 

chi-squared statistic is equal to 0; it means that the two distributions are similar. If the 

distributions are very different, a higher number will be outputted.

The chi-squared statistic is defined by the following formula:
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In the following example (see Listing 22-1), we will compute an example of a  

chi-squared distribution.

Listing 22-1.  Chi-Squared Distribution Source Code

#include <iostream>

#include <random>

int main()

{

  const int number_of_experiments=10000;

  const int number_of_stars_distribution=100;    �// maximum number of stars 

to distribute
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  std::default_random_engine theGenerator;

  std::chi_squared_distribution<double> theDistribution(6.0);

  int p[10]={};

  for (int i=0; i<number_of_experiments; ++i)

  {

    double no = theDistribution(theGenerator);

    if ((no>=0.0)&&(no<10.0)) ++p[int(no)];

  }

  std::cout << "chi_squared_distribution (6.0):" << std::endl;

  for (int i=0; i<10; ++i) {

    std::cout << i << "-" << (i+1) << ": ";

    �std::cout << std::string(p[i]*number_of_stars_distribution/number_of_

experiments,'*') << std::endl;

  }

  return 0;

}

The output is shown in Figure 22-1.

How does the chi-squared distribution example help in cryptanalysis and 

cryptography?

The first step that must be made is to compute the frequency of the characters 

within the ciphertext. The second step is to compare the frequency distribution of 

the assumed language that is used for encryption (e.g. English) with shifting the two 

Figure 22-1.  Output of the chi-squared distribution example
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frequency distributions related to one another. In this way we have the chance to find 

the shift that was used during the encryption process. This procedure is a standard and 

simple procedure that can be used on ciphers, such as the Caesar cipher. This take place 

when the frequency of English characters is lined up with the frequency of a ciphertext. 

Figure 22-2 shows the frequencies of the occurrences for English characters.

As an example, let’s consider the following example encrypted with a Caesar cipher, 

which has 46 characters:

ZHOFRPHWRDSUHVVWKLVLVHQFUBSWHGZLWKFDHVDUFLSKHU

It is very important to understand that the chi-squared statistic is based on counts and 

not on probabilities. For example, if we have the letter E, with its occurrence probability of 

0.127, the expectation is that the occurance will be 12.7 times within 100 characters.

To compute the count expected, the length of the ciphertext must be multiplied with 

the probability. The cipher from above has a total of 46 characters. Following the statistic 

with E from above, the expectation is that the E letter occurs 46 · 0.127 = 5.842 times.

Figure 22-2.  Letter frequency for encrypted text
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In order to solve the Caesar cipher, we need to use each of the possible 25 possible 

keys, using the letter or the position of the letter within the alphabet. For this, it’s very 

important how the count starts: from 0 or from 1. the chi-squared must be computed for 

each of the keys. The process consists of comparing the count number of the letter with 

what we can expect the counts to be if the text is in English.

To compute the chi-squared statistic for our ciphertext, we will count each letter. We 

find that the letter H occurs seven times. If the language used is English, it should appear 

46 · 0.082 = 3.772 times. Based on the output, we can compute the following:
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This procedure is done for the rest of letters and making addition between all the 

probabilities (see Figure 22-3).

Once the ciphertext is decrypted, the plaintext should be

WELCOMETOAPRESSTHISISENCRYPTEDWITHCAESARCIPHER

Figure 22-3.  Encryption letter frequency (%)1

1�The letter encryption frequency is generated using CrypTool, www.cryptool.org/en/
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�Cryptanalysis Using Monogram, Bigram, 
and Trigram Frequency Counts
Frequency analysis is one of the best practices for finding the occurrence of characters in 

a ciphertext, with the goal of breaking the cipher. The analysis, based on pattern analysis, 

can be used to measure and count the characters as bigrams (or digraphs), a method 

for measuring pairs of characters that occur within the text. Trigram frequency analysis 

measures the occurrence of combinations formed out of three letters.

In this section, we will focus on text characterization with bigrams and trigrams that 

can be used for resolving ciphers, such as Playfair.

�Counting Monograms
Counting monograms is one of the most effective methods used in substitution ciphers, 

such as Caesar ciphers, Polybius squares, and so on. The method works very well 

because the English language has a specific frequency distribution. This also means that 

is not hidden by substitution ciphers. The distribution is shown in Figure 22-4.

Figure 22-4.  Letter frequency for the English language
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�Counting Bigrams
Bigrams counting is based on the same idea as counting monograms. Instead of counting the 

occurrence of single characters, you count the occurrence frequency for pairs of characters.

Figure 22-5 lists some of the common bigrams experienced during the cryptanalysis 

process. In Listing 22-2, we implemented a solution that counts the occurrences of 

bigrams. Figure 22-6 shows the output of this example of counting the bigrams. The 

source code from Listing 22-2 uses a file called bigram.txt which contains a sample text 

to illustrate the process of counting the bigrams.

Figure 22-5.  Bigrams
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Listing 22-2.  Counting Bigrams

#include <stdio.h>

int main(void)

{

    int alphabet_counting['z' - 'a' + 1]['z' - 'a' + 1] = {{ 0 }};

    int character0 = EOF, character1;

    FILE *fileBigramSampleText = fopen("bigram.txt", "r");

    if (fileBigramSampleText != NULL)

      {

        while ((character1 = getc(fileBigramSampleText)) != EOF)

          {

            �if (character1 >= 'a' && character1 <= 'z' && character0 >= 'a' 

&& character0 <= 'z')

             {

                alphabet_counting[character0 - 'a'][character1 - 'a']++;

            }

            character0 = character1;

        }

        fclose(fileBigramSampleText);

        for (character0 = 'a'; character0 <= 'z'; character0++)

            {

            for (character1 = 'a'; character1 <= 'z'; character1++)

                {

Figure 22-6.  Counting bigrams
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                �int number = alphabet_counting[character0 - 'a']

[character1 - 'a'];

                if (number)

                    {

                    printf("%c%c: %d\n", character0, character1, number);

                }

            }

        }

    }

    return 0;

}

Listing 22-3 and Figure 22-7 show a more general version that is designed to handle 

8-bit character pairs.

Listing 22-3.  General Version for Working with 8-bit Character Pairs

#include <stdio.h>

#include <string.h>

int main(void)

{

    // the last five bytes corresponds to ISO/IEC 8859-9

    const char alphabet[] = "abcdefghijklmnopqrstuvwxyz\xFD\xFxE7\xF6\xFC";

    const int length_of_alphabet = (sizeof(alphabet) - 1);

    int count[length_of_alphabet][length_of_alphabet];

Figure 22-7.  Output for 8-bit character pairs
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    char *position0 = NULL;

    int character1;

    FILE *fileTextForCountingBigrams = fopen("bigram.txt", "r");

    memset(count, 0, sizeof(count));

    if (fileTextForCountingBigrams != NULL)

       {

        while ((character1 = getc(fileTextForCountingBigrams)) != EOF)

           {

            �char *p1 = (char*)memchr(alphabet, character1, length_of_alphabet);

            if (p1 != NULL && position0 != NULL)

               {

                count[position0 - alphabet][p1 - alphabet]++;

            }

            position0 = p1;

        }

        fclose(fileTextForCountingBigrams);

        for (size_t i = 0; i < length_of_alphabet; i++)

            {

            for (size_t j = 0; j < length_of_alphabet; j++)

                {

                int n = count[i][j];

                if (n > 0)

                   {

                    printf("%c%c: %d\n", alphabet[i], alphabet[j], n);

                }

            }

        }

    }

    return 0;

}

�Counting Trigrams
Trigrams counting operates on the same principle as bigram counting; the difference 

consists in counting three characters.
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Figure 22-8 lists some of the common trigrams experienced during the cryptanalysis 

process. In Listing 22-4, we implement a solution for finding and counting the 

occurrences of trigrams within a text (see Figure 22-9). The solution is different from the 

ones in Listing 22-2 and Listing 22-3.

Figure 22-8.  Trigrams
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Listing 22-4.  Counting Trigrams

#include <iostream>

using namespace std;

void printTrigramOccurance(string fullText, string trigramPattern)

{

    int occurance = fullText.find(trigramPattern);

    while (occurance!= string::npos)

    {

        cout << "Pattern found at index " << occurance << endl;

        occurance = fullText.find(trigramPattern, occurance + 1);

    }

}

int main()

{

    string fullText = "Welcome to Apress.";

    string trigramPattern = "Apr";

    printTrigramOccurance(fullText, trigramPattern);

}

Figure 22-9.  Displaying a trigram
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�Conclusion
The chapter covered the concept of text characterization and showed its importance in 

the cryptanalysis process. You can now deal with the chi-squared statistic, and you can 

work with monograms, bigrams, and trigrams to decrypt substitution ciphertexts. As a 

summary, you learned about

•	 The concept of text characterization

•	 Working with monograms, bigrams, and trigrams

•	 Implementing the chi-squared statistic

•	 Monogram, bigram, and trigram implementations
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CHAPTER 23

Implementation and 
Practical Approach of 
Cryptanalysis Methods
The current chapter is a general discussion of the methodologies of cryptanalysis 

methods and how those methods can be applied in a quick and efficient way. The 

proposed methodologies are classic and actual (modern) cryptography/cryptanalysis 

algorithms and methods. Quantum cryptography is not included at this moment.

The methodology proposed (see Figure 23-1) is designed with the goal of helping you, 

the cryptanalyst, to know where you are situated during the cryptanalysis process. You can 

use the map presented in Figure 23-1 to choose the proper tool or method for your work.

Proceeding with the implementation of the cryptanalysis methods can be a very 

laborious task if you don’t have the proper information about the cryptographic 

method. The following will present a short process for identifying the necessary 

elements for conducting the cryptanalysis process. The cryptanalysis process consists 

of two general steps:

•	 Step 1 is based on identifying what type of cryptanalysis should be 

conducted.

•	 Step 2 consists of gathering everything that you know about 

cryptography algorithms. After these two steps have been performed 

properly and with maximum seriousness, you can move forward with 

the extra steps.

•	 Step 3 is when you build a proper attack model.

•	 Step 4 is when you choose the proper tools.
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Step 1. This step deals with what kind of cryptanalysis should be performed. Within 

this step the cryptanalysis will decide within the business environment what role they 

will play: legal and authorized cryptanalyst, ethical hacker, or malicious cracker. As soon 

as you decide your role, you can move to Step 2.

Step 2. If the cryptanalyst is legitimate, they must be aware of two things before 

getting started: the cryptography algorithm and the cryptographic key. Based on the 

experience of some of cryptanalysts, this is not a necessary requirement but in some 

cases it will be very useful to know. As soon as you are aware of the cryptography 

algorithm and cryptographic key, you can easily start the cryptanalysis process by 

applying the proper methods and testing the security of the business applications.

Step 3. This step is based on setting up the attack model or attack type. Attack 

models and attack types will point out a quantitative variable used to indicate how much 

information a cryptanalyst will have access to when they perform the cracking methods 

on the encrypted message. The most important attacks are

•	 Ciphertext-only attack

•	 Known-plaintext attack

•	 Chosen-plaintext attack

•	 Chosen-ciphertext attack

•	 Adaptive chosen-ciphertext attack

•	 Indifferent chosen-ciphertext attack

Step 4. After the attack model has been picked or another model has been created 

and adapted properly with the case and requirements, you move to the next step, 

which is to pick the software tools. Choosing software tools from ones that already 

exist or creating your own tools can be time consuming but in practice will have 

massive contributions. Summarizing this, here are some tools that can be used in the 

cryptanalysis process, depending on what you’re trying to test.

•	 Penetration tools: Kali Linux, Parrot Security, BackBox

•	 Forensics: DEFT, CAINE, BlackArch, Matriux

•	 Databases: sqlmap (standalone version), Metasploit framework 

(standalone version), VulDB
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•	 Web and network: Wireshark, Nmap, Nessus, Burp Suite, Nikto, and 

OpenVas

•	 Other tools: CrypTool (very useful and amazing tool)

The tools mentioned above represent a selection that are very used in practice and 

can produce desired results.

Figure 23-1.  The cryptanalysis methodology
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�Ciphertext-Only Attack
A ciphertext-only attack (COA) represents the weakest attack because it can easily be 

used by the cryptanalyst due to the fact that they just encoded the message.

The attacker–cryptanalyst has access to a set of ciphertexts. The attack is fully 

successful if the corresponding plaintexts are deduced together with the key.

In this type of attack (see Figure 23-2), the attacker/cryptanalyst will be able to 

observe the ciphertext. Everything that the cryptanalyst will see is represented by a set 

of scrambled and nonsense characters that create the output based on the encryption 

process.

�Known-Plaintext Attack
The known-plaintext attack (KPA) helps the cryptanalyst to generate the ciphertext 

based on the fact that he is aware of the ciphertext.

The cryptanalyst follows a simple procedure by selecting the plaintext, but they will 

observe the pair that is compounded from the plaintext and ciphertext. The chance of 

success is better compared to COA. Simple ciphers are quite vulnerable to this attack. 

See Figure 23-3.

Figure 23-2.  COA representation
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�Chosen-Plaintext Attack
In a chosen-plaintext attack (CPA), the cryptanalyst has the ability to select the plaintext 

that has been sent encrypted using an encryption algorithm and they can observe 

how the ciphertext is generated. This can be observed as an active model where the 

cryptanalyst has the chance to select the plaintext and to realize the encryption.

Based on the ability to select and pick any plaintext, the cryptanalyst has the chance 

to observe vital details about the ciphertext, which gives them a strong advantage in 

understanding how the algorithm works inside and the chance to get the secret key.

A professional cryptanalyst will have a strong database that contains known 

plaintexts, ciphertexts, and possible keys. In Listing 23-1 and Figure 23-5, we have 

provided an example of generating possible keys automatically. It is a very simple 

example for illustrating how possible keys can be generated. They can be used with the 

pairs to determine the cipher text input (see Figure 23-4).

Figure 23-3.  KPA representation
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Listing 23-1.  Automatic Generation of Random Keys

#include <stdio.h>

#include <time.h>

#include <iostream>

using namespace std;

//** generate an integer that is situated between 1 to 4

int generateInteger()     {

     //** pseudo-random generator (srand).

     //** time(NULL) represents the seed

    srand(time(NULL));

     //** generate a random value and store

     //** the remainder of rand() to 5

    int randomValue = rand() % 5;

     //** if the value is equal with 0, move to the

    //** next value of i and return that value

    if (randomValue == 0)

        randomValue++;

Figure 23-4.  CPA representation
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    return randomValue;

}

//** the function will generate randomly

//** an integer situated between 0 and 25

int generateRandomlyInteger(){

     //** pseudo-random generator (srand).

    //** time(NULL) represents the seed

    srand(time(NULL));

     //** generate a random value and store

    //** the remainder of rand() with 26

    int random_key = rand() % 26;

    return random_key;

}

//** based on the length provided, the function

//** will generate a cryptographic key

void generate_crypto_key(int length){

     //** create a string variable for cryptography

     //** key and initialize it with NULL

    string crypto_key = "";

     //** variable used for cryptography key generation

    string alphabet_lower_case = "abcdefghijklmnopqrstuvwxyz";

    string alphabet_upper_case = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

    string special_symbols = "!@#$%&";

    string digits_and_numbers = "0123456789";

    //** local variables and their initializations

    int key_seed;

     int lowerCase_Alphabet_Count = 0;

     int upperCase_Alphabet_Count = 0;

     int digits_And_numbers_count = 0;

     int special_symbols_count = 0;

    //** the variable count will save the length

    //** of the cryptography key.

    //** initially we will set it to zero
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    int countingLengthCryptoKey = 0;

    while (countingLengthCryptoKey < length) {

          //** generateInteger() function will return a number that

          //** is situated between 1 and 4.

          //** The number that is generated will be used in

          //** assignation with one of the strings that has been

          //** defined above (for example: alphabet_lower_case,

          //** alphabet_upper_case, special_symbols, and

          //** digits_and_numbers).

          //** This being said, the following correspondence will

          //** be applied: (1) for alphabet_lower_case, (2) for

          //** alphabet_upper_case, (3) for special_symbols, and

          //** (4) digits_and_numbers

          int string_type = generateInteger();

          //** For the first character of the cryptography key we

          //** will put a rule in such way that it should be a

          //** letter, in such way that the string that will be

          //** selected will be an lower case alphabet or an upper

          //** case alphabet. The IF condition is quite vital as

          //** the switch is based on it and the value that

          //** string_type variable will have.

          if (countingLengthCryptoKey == 0) {

              string_type = string_type % 3;

              if (string_type == 0)

                 string_type++; }

        switch (string_type) {

               case 1:

                    //** based on the IF condition, it is

                    //** necessary to check the minimum

                    //** requirements of the lower case alphabet

                    //** characters if they have been accomplished

                    //** and fulfilled. If we are dealing with the

                    //** situation in which the requirement has

                    //** not been achieved we will situate ourself

                    //** in the break phase.
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                    if ((lowerCase_Alphabet_Count == 2)

                              && (digits_And_numbers_count == 0

                              || upperCase_Alphabet_Count == 0

                              || upperCase_Alphabet_Count == 1

                              || special_symbols_count == 0))

                         break;

                    key_seed = generateRandomlyInteger();

                    crypto_key = crypto_key +

                              alphabet_lower_case[key_seed];

                    lowerCase_Alphabet_Count++;

                    countingLengthCryptoKey++;

                    break;

               case 2:

                    //** based on the IF condition, it is

                    //** necessary to check the minimum

                    //** requirements of the upper case alphabet

                    //** characters if they have been accomplished

                    //** and fulfilled. If we are dealing with the

                    //** situation in which the requirement has

                    //** not been achieved we will situate ourself

                    //** in the break phase.

                    if ((upperCase_Alphabet_Count == 2)

                              && (digits_And_numbers_count == 0

                              || lowerCase_Alphabet_Count == 0

                              || lowerCase_Alphabet_Count == 1

                              || special_symbols_count == 0))

                         break;

                    key_seed = generateRandomlyInteger();

                    crypto_key = crypto_key +

                              alphabet_upper_case[key_seed];

                    upperCase_Alphabet_Count++;

                    countingLengthCryptoKey++;

                    break;
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               case 3:

                    //** based on the IF condition, it is

                    //** necessary to check the minimum

                    //** requirements of the numbers if they have

                    //** been accomplished and fulfilled. If we

                    //** are dealing with the situation in which

                    //** the requirement has not been achieved we

                    //** will situate ourself in the break phase.

                    if ((digits_And_numbers_count == 1)

                              && (lowerCase_Alphabet_Count == 0

                              || lowerCase_Alphabet_Count == 1

                              || upperCase_Alphabet_Count == 1

                              || upperCase_Alphabet_Count == 0

                              || special_symbols_count == 0))

                         break;

                    key_seed = generateRandomlyInteger();

                    key_seed = key_seed % 10;

                    crypto_key = crypto_key +

                              digits_and_numbers[key_seed];

                    digits_And_numbers_count++;

                    countingLengthCryptoKey++;

                    break;

               case 4:

                    //** based on the IF condition, it is

                    //** necessary to check the minimum

                    //** requirements of the special characters if

                    //** they have been accomplished and

                    //** fulfilled. If we are dealing with the

                    //** situation in which the requirement has

                    //** not been achieved we will situate ourself

                    //** in the break phase.
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                    if ((special_symbols_count == 1)

                              && (lowerCase_Alphabet_Count == 0

                              || lowerCase_Alphabet_Count == 1

                              || upperCase_Alphabet_Count == 0

                              || upperCase_Alphabet_Count == 1

                              || digits_And_numbers_count == 0))

                         break;

                    key_seed = generateRandomlyInteger();

                    key_seed = key_seed % 6;

                    crypto_key = crypto_key +

                                   special_symbols[key_seed];

                    special_symbols_count++;

                    countingLengthCryptoKey++;

                    break;

        }

    }

    cout << "\n-----------------------------\n";

    cout << "      Cryptography Key         \n";

    cout << "------------------------------\n\n";

    cout << " " << crypto_key;

    cout << "\n\nPress any key to continue... \n";

    getchar();

}

int main() {

    int option;

     int desired_length;

     //** designing the menu

    do {

        cout << "\n-------------------------------------\n";

        cout << "  Random Cryptography Key Generator    \n";

        cout << "-------------------------------------\n\n";

        cout << "    1 --> Generate a Cryptography Key"

             << "\n";
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        cout << "    2 --> Quit the program"

             << "\n\n";

        cout << "Enter 1 for Generating Cryptograpy Key or 2

                                   to quit the program  : ";

        cin >> option;

        switch (option) {

        case 1:

            cout << "Set the length to :  ";

            cin >> desired_length;

            //** if the length entered is less than 7, an

            //** error will be shown

            if (desired_length < 7) {

                cout << "\nError Mode : The Cryptography Key

                              Length hould be at least 7\n";

                cout << "Press a key and try again \n";

                getchar();  }

            //** The desired length should bot be bigger than

            //** 100, otherwise an error will be shown

            else if (desired_length > 100)      {

                cout << "\nError Mode : The maximum length of

                         the cryptography key should be 100\n";

                cout << "Press a key and try again \n";

                getchar(); }

            //** in ohter cases, call generate_crypto_key()

            //** function to generate a cryptography key

            else

                generate_crypto_key(desired_length);

            break;

        default:

            //** in case if an invalid option is entered, show

            //** to the user an error message

            if (option != 2) {

                printf("\nOups! You have entered a choice that

                                             doesn't exist\n");
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                printf("Enter ( 1 ) to generate cryptography

                         key and ( 2 ) to quit the program.\n");

                cout << "Enter a key and try again \n";

                getchar();}

            break; }

    } while (option != 2);

    return 0;

}

�Chosen-Ciphertext Attack
In a chosen-ciphertext attack (CCA), the cryptanalyst can perform encryption and 

decryption on the information. Within this attack (see Figure 23-6) the cryptanalyst can 

pick the plaintext, encrypt it, observe how the ciphertext is generated, and reverse the 

whole process.

Figure 23-5.  The keys and possible passwords generated. We choose three 
characters to keep the processing time short
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In this attack, the cryptanalyst’s mission is to find the plaintext and also to identify 

the algorithm and the secret key that was used for the encryption process.

�Conclusion
In this chapter, we discussed how to implement cryptanalysis methods and what defines 

this process for a cryptanalyst. At the end of this chapter, you now have

•	 A good understanding of the attack models

•	 The ability to follow a simple and straightforward methodology to 

find out where you are situated within the cryptanalysis process

•	 The ability to simulate and generate a database with keys and 

possible passwords

Figure 23-6.  CCA representation
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