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PART |

Foundations



CHAPTER 1

Getting Started in
Cryptography and
Cryptanalysis

Knowledge is one of the most important aspects to consider when designing and
implementing complex systems, such as companies, organizations, military operations,
and so on. Information falling into the wrong hands can be a tragedy and can result

in a huge loss of business or disastrous outcomes. To guarantee the security of
communications, cryptography can be used to encode information in such a way that
nobody will be able to decode it without having the legal right. Many ciphers have been
broken when a flaw has been found in their design or enough computing power has
been applied to break an encoded message. Cryptology, as you will see later, consists of
cryptography and cryptanalysis.

With the rapid evolution of electronic communication, the number of issues raised
by information security significantly increases every day. Messages that are shared over
publicly accessible computer networks around the world must be secured and preserved
and must get the proper security mechanisms to protect against abuse. The business
requirement in the field of electronic devices and their communication consists of
having digital signatures that can be recognized by law. Modern cryptography provides
solutions to all these problems.

The idea for this book started from experiences in several directions: (1)
cryptography courses for students (at the graduate and undergraduate levels) in
computer science at the University of Bucharest and Titu Maiorescu University; (2)
industry experience achieved at national and international companies; (3) ethical
hacking best practices; and (4) security audits. The goal of this book is to present
the most advanced cryptography and cryptanalysis techniques together with their

© Marius Iulian Mihailescu and Stefania Loredana Nita 2021
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++20,
https://doi.org/10.1007/978-1-4842-6586-4_1
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implementations using C++20. This book will offer a practical perspective, giving the
readers the necessary tools to design cryptography and cryptanalysis techniques in
terms of practice. Most of the implementations are in C++20 using the latest features
and improvements of the programming language (see Chapter 6). The book is an
advanced and exhaustive work, offering a comprehensive view of the most important
topics in information security, cryptography, and cryptanalysis. The content of the
book can be used in a wide spectrum of areas by many professionals, such as security
experts with their audits, military experts and personnel, ethical hackers, teachers in
academia, researchers, software developers, software engineers when security and
cryptographic solutions must be implemented in a real business software environment,
professors teaching student courses (undergraduate and graduate level, master’s degree,
professional and academic doctoral degree), business analysts, and many more.

Cryptography and Cryptanalysis

It is very important to understand the meanings of the main concepts involved in a
secure communication process and to know their boundaries.

o Cryptology is the science or art of secret writings. The main goal is to
protect and defend the secrecy and confidentiality of the information
with the help of cryptographic algorithms.

o Cryptography is the defensive side of cryptology. The main objective
is to create and design cryptographic systems and their rules.
Cryptography is a special kind of art, the art of protecting information
by transforming it into an unreadable format called ciphertext.

o Cryptanalysis is the offensive side of cryptology. Its main objective
is to study the cryptographic systems to provide the necessary
characteristics to fulfill the function for which they have been
designed. Cryptanalysis can analyze the cryptographic systems of
third parties through cryptograms to break them in order to obtain
useful information for business purposes. Cryptanalysts, code
breakers, and ethical hackers are the people who deal with the field
of cryptanalysis.
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o A cryptographic primitive represents a well-established or low-
level cryptographic algorithm that is used to build cryptographic
protocols. Examples of such routines include hash functions or

encryption functions.

The book provides a deep examination of all three aspects from a practical point
of view with references to the theoretical background by illustrating how a theoretical
algorithm should be analyzed for implementation.

Book Structure

The book is divided into 23 chapters in three parts (see Table 1-1): Part I: Foundations
(Chapters 1-8), Part II: Pro Cryptography (Chapters 9-16), and Part III: Pro Cryptanalysis
(Chapters 17-23). Figure 1-1 shows how to read the book and what chapters depend on
each other.

The Part I: Foundations (Chapters 1-8) covers, from a beginner to advanced
level and from theoretical to practical, the basic concepts of cryptography (Chapter 2).
Chapter 3 covers a collection of key elements regarding complexity theory, probability
theory, information theory, number theory, abstract algebra, and finite fields and how
they can be implemented using C++20, showing their interaction with the cryptography
and cryptanalysis algorithms.

Chapters 4 and Chapter 5 focus on integer arithmetic and floating-point arithmetic
processing. These chapters are vital because other chapters and algorithms depend on
the content of these chapters. Number representations and working with them via the
memory of the computer can be a difficult task.

In Chapter 6, we discuss the newest features and enhancements of C++20. We
give a presentation on how the new features and enhancements play an important
role in developing cryptography and cryptanalysis algorithms and methods. We cover
three-way comparisons, lambdas in unevaluated contexts, string literals, atomic smart
pointers, <version> headers, ranges, coroutines, modules, and more.

Chapter 7 presents the most important guidelines for securing the coding process,
keeping an important balance between security and usability based on the most
expected scenarios based on trusted code. We cover important topics such as securing
state data, security and user input, security-neutral code, and library codes that expose
the protected resources.
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Chapter 8 introduces the cryptography model and services that are used by C++.

We cover important topics like C++ basic implementations, object inheritance, how
cryptography algorithms are implemented, stream design, configuring cryptography
classes, how to choose cryptography algorithms, generating the keys for encryption

and decryption, storing asymmetric keys in a key container, cryptographic signatures,
ensuring data integrity using hash codes and functions, creating and designing
cryptographic schemes, encryption of XML elements with symmetric keys, assuring and
guaranteeing interoperability of the applications between different platforms, such as
Windows, MacOS, UNIX/Linux, and more.

Part II: Pro Cryptography (Chapters 9-16) contains the most important modern
cryptographic primitives. Chapters 9-16 discuss the advanced cryptography topics by
showing implementations and how to approach this kind of advanced topic from a
mathematical background to a real-life environment.

Chapter 9 discusses Cryptography Next Generation (CNG), which is used in the
implementation of the Elliptic Curve Diffie-Hellman (ECDH) algorithm, and how to
realize the necessary cryptographic operations.

Chapter 10 provides an introduction to the Lattice Cryptography Library and how it
works, pointing out the importance of post-quantum cryptography. Implementations of
key exchange protocols proposed by Alkim, Ducas, Poppelmann, and Schwabe [1] are
discussed. We continue our discussion with an instantiation of Chris Peikert’s key exchange
protocol [2]. We point out that the implementation is based on modern techniques for
computing, known as the number theoretic transform (NTT). The implementations apply
errorless fast convolution functions over successions of integer numbers.

Chapter 11 and Chapter 12 present two important cryptographic primitives,
homomorphic and searchable encryption. For searchable encryption (SE), Chapter 11
presents an implementation using C++20 and showing the advantages and disadvantages
by removing the most common patterns from encrypted data. In Chapter 12, we discuss
how to use the SEAL library for fully homomorphic encryption. The implementation is
discussed based on the proposal of Shai Halevi and Victor Shoup in [3].

Chapter 13 covers the issues that are generated during the implementation of (ring)
learning with errors cryptography mechanisms. We give as an example an implementation
of the lattice-based key exchange protocol, a library that is used only for experiments.

Chapter 14 is based on the new concepts behind chaos-based cryptography and how
they can be translated into practice. The chapter generates some new outputs and its
contribution is important for the advancement of cryptography as it is a new topic that

hasn’t received proper attention until now.
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Chapter 15 discusses new methods and their implementations for securing big
data environments, big data analytics, access control methods (key management for
access control), attributed-based access control, secure search, secure data processing,
functional encryption, and multi-party computation.

Chapter 16 points out the security issues raised by applications that run in a cloud
environment and how they can be resolved during the designing and implementation
phase.

In Part III: Pro Cryptanalysis (Chapters 17-23), we deal with advanced cryptanalysis
topics and we show how to pass the barrier between theory and practice, and how to think
of cryptanalysis in terms of practice by eliminating the most vulnerable and critical points
of a system or software application in a network or distributed environment.

Starting with Chapter 17 we provide an introduction to cryptanalysis by presenting
the most important characteristics of cryptanalysis.

Chapter 18 shows the important criteria and standards used in cryptanalysis, how
the tests of cryptographic systems are made, the process of selecting cryptographic
modules, cryptanalysis operations, and classifications of cryptanalysis attacks.

In Chapter 19 and Chapter 20, we show how to implement and design linear and
differential and integral cryptanalysis. We focus on techniques and strategies where the
primary role is to show how to implement scripts for attacking linear and differential
attacks.

Chapter 21 presents the most important attacks and how they can be designed
and implemented using C++20. You study the behavior of software applications when
they are exposed to different attacks and you exploit the source code. We also discuss
software obfuscation and show why this is a critical aspect that needs to be taken into
consideration by the personnel involved in implementing the process of the software.
Also, we show how this analysis can lead to machine learning and artificial intelligence
algorithms that can be used to predict future attacks against software applications that
are running in a distributed or cloud environment.

In Chapter 22, we go through the text characterization methods and
implementations. We discuss chi-squared statistics; identifying unknown ciphers; index
of coincidence; monogram, bigram, and trigram frequency counts; quad ram statistics as
a fitness measure; unicity distance; and word statistics as a fitness measure.

Chapter 23 presents the advantages and disadvantages of implementing the
cryptanalysis methods, why they should have a special place when applications are
developed in distributed environments, and how the data should be protected against
such cryptanalysis methods.
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Table 1-1. Book Structure

Part Chapter # Chapter Title
Part | 1 Getting Started in Cryptography and Cryptanalysis
Foundations (Foundational o Cryptography Fundamentals
Topics) 3 Mathematical Background and Its Applicability
4 Large Integer Arithmetic
5 Floating-Point Arithmetic
6 New Features in C++20
7 Secure Coding Guidelines
8 Cryptography Libraries in G/C++20
Part Il 9 Elliptic-Curve Cryptography
Pro Cryptography 10 Lattice-Based Cryptography
11 Searchable Encryption
12 Homomorphic Encryption
13 Ring Learning with Errors Cryptography
14 Chaos-Based Cryptography
15 Big Data Cryptography
16 Cloud Computing Cryptography
Part llI 17 Getting Started with Cryptanalysis
Pro Cryptanalysis 18 Cryptanalysis Attacks and Techniques
19 Linear and Differential Cryptanalysis
20 Integral Cryptanalysis
21 Brute Force and Buffer Overflow Attacks
22 Text Characterization
23 Implementation and Practical Approach of

Cryptanalysis Methods
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Figure 1-1. A roadmap for readers and professionals

Internet Resources

The Internet offers a significant amount of resources that are very useful regarding the

topics in this book. These resources will help you keep up with progress in the fields:

o Bill's Security Site, https://asecuritysite.com/, contains various

implementations of cryptographic algorithms. The website is

created and updated by Bill Buchanan, a professor at the School of

Computing at Edinburgh Napier University.

e Books by William Stallings [4] such as Cryptography and Network
Security, (http://williamstallings.com/Cryptography/). His
website contains an important set of tools and resources that he
regularly updates, keeping in step with the most important advances

in the field of cryptography.
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e Schneier on Security, www. schneier.com/, contains sections on
books, essays, accurate news, talks, and academic resources.

Forums and Newsgroups

Many USENET (quite deprecated but still very useful) newsgroups are dedicated to the
important aspects of cryptography and network security. The most important are as
follows:

e sci.crypt.research is one of the best groups for information about
research ideas. It is a moderated newsgroup and its main purpose
is to deal with research topics. Most of the topics are related to the
technical aspects of cryptology.

e sci.crypt offers general discussions about cryptology and related
topics.

e sci.crypt.random-numbers offers discussions about random

number generators.
o alt.security offers general discussions on security topics.

o comp.security.misc offers general discussions on computer security
topics.

o comp.security.firewalls offers discussions about firewalls and
other related products.

e comp.security.announce covers CERT news and announcements.

o comp.risks offers discussions about the public risks from computers
and users.

o comp.virus offers moderated discussions about computer viruses.

Also, there are many forums that deal with cryptography topics and news. The most
important are as follows:

o Reddit: Cryptography News and Discussions [5]: The forum group
contains general information and news about different topics related
to cryptography and information security.
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Security forums [6]: They cover vast topics and discussions about
computer security and cryptography.

TechGenix: Security [7]: One of the most updated forums with
news related to cryptography and information security. The group is
maintained by world-leading security professionals.

Wilders Security Forums [8]: The forum contains discussions and
news about the vulnerabilities of software applications due to bad
implementations of cryptographic solutions.

Security Focus [9]: The forum contains a series of discussions about
vulnerabilities raised by the implementations of cryptographic
algorithms.

Security InfoWatch [10]: The discussions are related to data and

information loss.

TechRepublic: Security [11]: The forum contains discussions about
practical aspects and methodologies that can be used when software
applications are designed and implemented.

Information Security Forum [12]: A world-leading forum in the
field of information security and cryptography. The forum contains
conferences plus hands-on and practical tutorials for solving
solutions for security and cryptographic issues.

Standards

Many of the cryptographic techniques and implementations described in this book

follow the below standards. These standards have been developed and designed to

cover the management practices and the entire architecture of security mechanisms,

strategies, and services.

The most important standards covered by this book are as follows:

National Institute of Standards and Technology (NIST): NIST is the
US federal agency that deals with standards, science, and technologies
related to the US government. Excepting the national goal, the NIST
Federal Information Processing Standards (FIPS) and the Special
Publications (SP) have a very important worldwide impact.

11
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o Internet Society: ISOC is one of the most important professional
membership societies, with organizational and individual members
worldwide. The society provides leadership on the issues that
confront the future perspective of the Internet and applications that
are developed using security and cryptographic mechanisms, with
respect for the responsible groups, such as the Internet Engineering
Task Force (IETF) and the Internet Architecture Board (IAB).

¢ ITU-T: The International Telecommunication Union (ITU) is one of the
most powerful organizations within the United Nations system. It works
with governments and the private sector to coordinate and administer
the global telecom networks and services. ITU-T represents one of the
three sectors of ITU. The mission of ITU-T consists of the production
of the standards that cover all fields of telecommunications. The
standards proposed by ITU-T are known as recommendations.

o ISO: The International Organizations for Standardization is a
worldwide federation that contains national standards bodies from
over 140 countries. The ISO is a nongovernmental organization
that promotes the development of standardization and activities
to facilitate the international exchange of services to develop
cooperation with intellectual, scientific, and technological activities.
The results of the ISO are international agreements published as
international standards.

Conclusion

The era in which we are living is one of unimaginable evolution and incredible
technologies that enable the instant flow of information at any time and any place.
The secret consists of the convergence of the computer with networks; this forces the
evolution and development of these incredible technologies from behind.

In this first chapter, we discussed the objectives of the book and its benefits.
We explained the mission of the book, which is to address the practical aspects of
cryptography and information security and its main intention in using the current work.
The systems built upon advanced information technologies have a deep impact on our
lives every day. These technologies are proving to be pervasive and ubiquitous.

12
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The book represents the first practical step of translating the most important

theoretical cryptography algorithms and mechanisms into practice through one of the

most powerful programming languages, C++20.

In this chapter, you learned the following:

The differences between cryptography, cryptanalysis, and cryptology.

The structure of the book in order to help you follow the content
easier. A roadmap was introduced in order to show the dependencies
of each chapter. Each chapter was presented in detail, pointing out
the main objective.

A list of newsgroups, websites, and USENETSs resources was covered
in order provide sources for the latest news about cryptography and
information security.

The most significant standards for cryptography and information
security were presented. You will get used to the workflow of each
standard.
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CHAPTER 2

Cryptography
Fundamentals

Cryptographic history is incredibly long and fascinating. A great and comprehensive
reference is The Code Book: The Secrets Behind Codebreaking [1] published in 2003,
which provides a non-technical history of cryptography. In the book, the story of
cryptography begins around 2000 BC, when the Egyptians used it for the first (known)
time, and ends with our era. It presents the main aspects of cryptography and hiding
information for each period that is covered and describes cryptography’s great
contribution to both World Wars. Often, the art of cryptography is correlated with
diplomacy, the military, and governments because its purpose is to keep safe sensitive
data such as strategies or secrets regarding national security.

A crucial development in modern cryptography is the workpaper New Directions
in Cryptography 2] proposed by Diffie and Hellman in 1976. The paper introduced a
notion that changed how cryptography was seen: public-key cryptography. Another
important contribution in this paper was the innovative way of exchanging keys; the
security of the presented technique was based on the hardness assumption (basically,
through the hardness assumption we refer to a problem that cannot be solved efficiently)
of the discrete logarithm problem. Although the authors did not propose a practical
implementation for their public-key encryption scheme, the idea was presented very
clearly and started to get attention from the international cryptography community.

The first implementation of a public-key encryption scheme was made in 1978 by
Rivest, Shamir, and Adleman, who proposed and implemented their encryption scheme,
known nowadays as RSA [3]. The hardness assumption in RSA is the factoring of large
integers. By looking in parallel at integer factorization for RSA and Shor’s algorithm,
note that Shor’s Algorithm will run in polynomial time for quantum computers. This
represents a significant challenge for any cryptographer who is using the hardness
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assumption for factoring large integers. The increasing applications and interest in the
factoring problem led to new factoring techniques. Important advances in this area
were made in 1980, but none of the proposed techniques brought improvements to the
security of RSA. Another important class of practical public-key encryption schemes
was designed by ElGamal [4] in 1985. It was based on the hardness assumption of the
discrete logarithm problem.

Another crucial contribution to public-key cryptography was the digital signature,
which was adopted by the international standard ISO/IEC 9796 in 1991 [5]. The basis of
the standard is the RSA public-key encryption scheme. A powerful scheme for digital
signatures based on the discrete logarithm hardness assumption is the Digital Signature
Standard, adopted by the United States Government in 1994.

Nowadays, the trends in cryptography include designing and developing new public-
key schemes, adding improvements to the existing cryptographic mechanisms, and
elaborating on security proofs.

The objective of this book is to provide a view of the latest updates of the
principles, techniques, algorithms, and implementations of the most important
aspects of cryptography in practice. We will focus on the practical and applied
aspects of cryptography. You will be warned about difficult subjects and those that
present issues. You will be guided to a proper references where you will find best
practices and solutions. Most of the aspects presented in the book will be followed by
implementations. This objective is to not obscure the real nature of cryptography. The
book offers strong material for both implementers and researchers. The book describes
algorithms and software systems with their interactions.

Information Security and Cryptography

In this book, we refer to the term and concept of information as to quantity. To go
through the introduction to cryptography and to show its applicability in presenting
algorithms and implementation technologies (such as C++), first you need to have a
background in the issues that occur often in information security. When a particular
transaction occurs, all parties involved in that transaction must be sure (or ensured)
that specific objectives related to information security are met. A list of these security
objectives is given in Table 2-1.

To define the issues regarding information security when the information is
sent in a physical format (for example, documents), several protocols and security
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mechanisms have been proposed. The objectives regarding information security may be
accomplished by applying mathematical algorithms or work protocols on information
that needs to be protected and additionally by following specific procedures and laws.
An example of physical document protection is a sealed envelope (the mechanism of
protection) that covers the letter (the information that needs to be protected) delivered
by an authorized mail service (the trusted party). In this example, the protection
mechanism has its limitations, but the technical framework has rigorous rules, through
which any entity that opens the envelope without the right to so may be punished. There
are situations in which the physical paper itself, which contains the information that
needs to be protected, may have special characteristics that certify the originality of the
data/information. For example, to refrain from the forging of bank notes, paper currency

has special ink and matter.

Table 2-1. Security Objectives

Security Objective

Description

Privacy/confidentiality

The information is kept secret against unauthorized entities.

Signature A technique that binds a signature by an entity (for example, a document)

Authorization The action of authorizing an entity to do or to be something, in order to
send the information between the sender and the receiver

Message The process/characteristic through which the origin of the data is

authentication authenticated; another meaning is corroboration of the information source.

Data integrity The information is kept unaltered through techniques that keep away
unauthorized entities or unknown means.

Entity authentication/ The action of validating the identity of an entity, which may be a computer,

identification person, credit card, etc.

Validation The action of making available a (limited) quantity of time for authorization
for using or manipulating the data or resources

Certification The process of confirming the information by a trusted party, or
acknowledgment of information by a trusted certification

Access control The action of restricting access to resources to authorized parties

Timestamping

Metadata that stamps the time of creation or the existence of information

(continued)
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Table 2-1. (continued)

Security Objective Description

Witnessing The action of validating the creation/existence of the information, made by
an entity that is not the creator of the data

Receipt The action of confirming the receiving of the information

Ownership The action of giving to an entity the legal rights to use or transfer a

particular information/resource

Confirmation The action of validating the fact that certain services have been
accomplished

Revocation The action of withdrawing certification or authorization

Non-repudiation The process of restraining the negation of other previous commitments or
actions

Anonymity The action of making anonymous an entity's identity that is involved in a
particular action/process

From a conceptual point of view, how the information is manipulated did not change
overmuch. We are considering here storing, registering, interpreting, and recording
data. However, a manipulation that changed significantly is copying and modifying
the information. An important concept in information security is the signature, which
represents the foundation for more processes, such as non-repudiation, data origin
authentication, identification, and witnessing.

To achieve the security of information in electronic communication, the
requirements introduced by the legal and technical skills should be followed. On the
other hand, it is not guaranteed that the above objectives of protection are fulfilled
accordingly. The technical part of the information security is assured by cryptography.

Cryptography is the field that studies the mathematical techniques and tools
that are connected to information security such as confidentiality, integrity (data),
authentication (entity), and the origin of the authentication. Cryptography not only
provides the security of the information but also a specific set of techniques.
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Cryptography Goals

From the security objectives presented in Table 2-1, the following represent a basis from

which can be derived the others:

Privacy/confidentiality (Definitions 2.5 and 2.8)
Data integrity (Definition 2.9)
Authentication (Definition 2.7)

Non-repudiation (Definition 2.6)

We will explain each of the four objectives in detail:

Confidentiality is a service that is used to protect the content

of the information from unauthorized entities and access. The
confidentiality is assured through different techniques, from the use
of mathematical algorithms to physical protection, which scramble
the data into an incomprehensible form.

Data integrity is a service that prevents unauthorized alteration of
the information. Authorized entities should have the capability to
discover and identify unauthorized manipulation of data.

Authentication is a service that has an important role when data

or application is authenticated. It implies identification. The
authentication process is applied on both extremities that use the
data (for example, the sender and the receiver). The rule is that
each involved party should identify itself in the communication
process. It is very important that both parties that are involved in the
communication process should declare to each other their identity
(the parties could be represented by a person or a system). At the
same time, some characteristics of the data should accompany

the data itself, such as its origin, content, the time of creation/
sending, etc. From this point of view, cryptography branches the
authentication into two categories: authentication of the entity and
authentication of the data origin. The data origin authentication
leads to data integrity.
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Non-repudiation is a service that prevents denials of previous actions
made by an entity. When a conflict occurs because an entity denies
its previous actions, it will be resolved by an existing trusted third
party that will show the actions made over data.

One of the main goals of cryptography is to fulfill the four objectives described above

on both sides, theory and practice.

Cryptographic Primitives

During the book, we will present several fundamental cryptographic tools, called

primitives. Examples of primitives are encryption schemes (Definitions 2.5 and 2.8),

hash functions (Definition 2.9), and schemes for digital signatures (Definition 2.6).

Figure 2-1 shows a schematic description of these primitives and the relation between

them. We will use many of the cryptographic primitives during the book, and we will

provide practical implementations every time we use them. Before using them in real-

life applications, the primitives should be subjected to an evaluation process in order to

check if the below criteria are fulfilled:

20

Level of security: It is slightly difficult to quantify the level of security.
However, it can be quantified as the number of operations made in
order to accomplish the desired objective. The level of security is
usually defined based on the superior bound given by the volume of
work necessary to defeat the objective.

Functionality: To accomplish security objectives, in many situations
the primitives are combined. You need to be sure that they work

properly.

Operation methods: When the primitives are used, they need different
inputs and have different ways of working, resulting in different
characteristics. In these situations, the primitives provide very different
functionality that will depend on the mode of operation.

Performance: This concept is related to the efficiency that a
primitive can achieve in a specific and particular mode of operation.

Ease of implementation: This concept is more a process than a
criterion, and it refers to the primitive be used in practice.
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Figure 2-1. Cryptographic primitives taxonomy

The application and the available resources give importance to each of the above
criteria.

Cryptography may be seen as an art practiced by professionals and specialists who
proposed and developed ad-hoc techniques whose purpose was to fulfill important
information security requirements. In the last few decades, cryptography has suffered
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the transition from art to science and discipline. Nowadays, there are dedicated
conferences and events in many fields of cryptography and information security.
There are also international professional associations, such as the International
Association for Cryptologic Research (IACR), whose aim is to promote the best results
of research in the area.

This book is about cryptography and cryptanalysis, implementing algorithms and
mechanisms using C++ with respect to standards.

Background of Mathematical Functions

This goal of the book IS NOT to be a monograph on abstract mathematics. However,
getting familiar with some of the fundamental mathematical concepts is necessary and
will prove to be very useful in practical implementations. One of the most important
concepts that is fundamental to cryptography is the function in the mathematical sense.
A function is also known in the literature as transformation or mapping.

Functions: One-to-0One, One-Way, Trapdoor One-Way

Let’s consider as a concept a set, which is a distinct set of objects, which are known
as elements of that specific set. The following example represents set A, which has the
elements a, b, ¢, this being denoted as A = {a, b, c}.

Definition 2.1 [18]. Cryptography is defined as the study of the mathematical
techniques that are related to the aspects of the information security such as
confidentiality, integrity (data), authentication (entity), and authentication of the data
origin.

Definition 2.2 [18]. Let’s consider that two sets A and B and rule fare defining a
function. The rule fwill assign to each element in A an element in B. The set A is known
as the domain that characterizes the function and B represents the codomain. If a
represents an element from A, written as a € A, the image of a is represented by the
element in B with the help of rule f; the image b of a is noted by b = f(a). The standard
notation for a function ffrom set A to set B is represented as f: A — B.If b € B, then we
have a preimage of b, which is an element a € A for which fla) = b. The entire set of
elements in B that have at least one preimage is known as the image of f, noted as Im(f).

Example 2.3. ( function) Let’s consider sets A = {a, b, ¢} and B = {1, 2, 3,4}, and the
rule ffrom A to B as being defined as f{a) = 2, f(b) = 4, f(c) = 1. Figure 2-2 shows the
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representation of the two sets A, B and the function f. The preimage of element 2 is a.
The image of fis {1,2,4}.

Example 2.4. ( function) Let’s consider set A={1,2,3, ...... ,10} and consider fto be
the rule that for each a € A, f(a) = r,, where r, represents the remainder when a? is being
divided by 11.

f(1)=17(6)=3

/(2)=37(7)=5

/(3)=97(8)=9

4

S(4)=510)

f(5)=3/(10)=1

function
',
2@ 'Y
B 3@ | @b A
19~ | @
5O

Figure 2-2. Function ffrom a set A formed from three elements to a set B formed
from five elements

The image of fis represented by the set Y={1, 3,4, 5, 9}.
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The scheme represents the main fundamental tool for thinking of a function (you
can find it the literature as the functional diagram) as depicted in Figure 2-2, and each
element from the domain A has precisely one arrow originated from it. For each element
from codomain B we can have any number of arrows as being incident to it (including
also zero lines).

Example 2.5. ( function) Let’s consider the following set defined as A ={1,2,3,...,10°}
and consider the fto be the rule f(a) = r,, where r, represents the remainder in the case
when a?is divided by 10* + 1 for all a € A. In this situation, it is not feasible to write down
fexplicitly as in Example 2.4. This being said, the function is completely defined by the
domain and the mathematical description that characterize the rule f.

One-to-0One Functions

Definition 2.6 [18]. We will consider a function or transformation as 1 — 1 (one-to-one)
if each of the elements that can be found within the codomain B is represented as the
image of at most one element in the domain A.

Definition 2.7 [18]. Let’s consider that a function or transformation is onto if each of
the elements found within the codomain B represents the image of at least one element
that can be found in the domain. At the same time, function f: A — B is known as being
onto if Im(f) = B.

Definition 2.8 [18]. Let’s consider a function f: A — B to be considered 1 — 1 and
Im(f) = B. Then the function fis called bijection.

Conclusion 2.9 [18]. If f: A — Bis considered 1 — 1, then f: A — Im (f) represents the
bijection. In special cases, if f: A — Bisrepresented as 1 — 1, and A and B are represented
as finite sets with the same size, then frepresents a bijection.

Using the scheme and its representation, if fis a bijection, then each element from
B has exactly one line that is incidental with it. The functions in Examples 2.3 and 2.4
do not represent bijections. As you can see in Example 2.3, element 3 doesn’t have the
image of any other element that can be found within the domain. In Example 2.4, each
element from the codomain is identified with two preimages.

Definition 2.10 [18]. If fis a bijection from A to B, then it is a quite simple matter to
define a bijection g from B to A as follows: for each b € B, we define g(b) = a where a € A
and f{a) = b. The function g is obtained from fand it is called inverse function of fand it
denoted as g=f"".
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a
2.\_\\ / ; v. b
1 : __.r.r"
a (,,
4./"".

1@, @ a

B se \/\_ ®c 4

1@~/ \ @4

Figure 2-3. Representation of bijection f and its inverse, g =f~'

Example 2.11. (inverse function) Let’s consider sets A = {a, b, ¢, d, ¢} and

Y=1{1,2,3,4,5}, and consider the rule fwhich is given and represented by the lines from
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Figure 2-3. frepresents a bijection and its inverse g is formed by reversing the sense of
the arrows. The domain of g is represented by B and the codomain is A.

Note that if fis a bijection, f~! is also a bijection. The bijections in cryptography are
tools used for message encryption. The inverse transformations are used for decryption.
The main condition for decryption is for transformations to be bijections.

One-Way Functions

In cryptography there are a certain types of functions that play an important role. Due to
the rigor, a definition for a one-way function is given as follows.

Definition 2.12 [18]. Let’s consider a function ffrom a set A to a set B that is called a
one-way function if fla) proves to be simple and easy to be computed for all a € A but for
“essentially all” elements b € Im (f) it is computationally infeasible to manage to find any
a € Ain such way that f{a) = b.

Note 2.13 [18]. This note represents some additional notes and clarifications of the
terms used in Definition 2.12.

1. For the terms easy and computationally infeasible, a rigorous
definition is necessary but it will distract attention from the
general idea that is being agreed upon. For the goal of this chapter,
the simple and intuitive meaning is sufficient.

2. The words essentially all stand for the idea that there are a couple
of values b € B for which it is easy to find an a € A in such way
that b = fla). As an example, one may compute b = f{a) for a small
number of a values and then for these, the inverse is known by
a table look-up. A different way to describe this property of a
one-way function is as follows: for any random b € Im (f) itis
computationally feasible to have and find any a € A in such way
that fla) = b.

The following examples will show the concept behind a one-way function.

Example 2.14. (one-way function) Consider A ={1,2,3,...,16} and let’s define fla) = r,
for all the elements a € A where r, represents the remainder when 3* will be divided
with 17.

a 1 23 4 5 6 7 8 9 10 11 12 13 14 15 16
fla 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1
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Let’s assume that we have a number situated between 1 and 16. We can see that
is very easy to find the image of it under f. Without having the table in front of you, for
example, for 7 it is hard to find a given that fla) = 7. If the number that you are given is 3,
then is quite easy to see that a = 1 is what you actually need.

Remember that this example is focused on very small numbers. The key thing here is
that the amount of effort to measure f(a) is different than the amount of work in finding
a given fla). Also for large numbers, f{a) can be efficiently computed using the square-
and-multiply algorithm [20], where the process of finding a from f(a) is harder to find.

Example 2.15 [18]. (one-way function) A prime number is defined as a positive
integer. The integer is bigger than 1 and its positive integers divisors are 1 and
itself. Let’s take into consideration primes p = 50633 and g = 58411, compute
n=pq=>50633-58411 = 2957524163, and consider A ={1,2,3,...,n — 1}. We will
define a function fon A by fla) = r, for each a € A, where r, represents the remainder
when x® is divided by 7. For example, let’s consider f{2489991 = 1981394214 since
2489991° = 5881949859 - n + 1981394214. Computing fla) represents a simple thing to be
done, but reversing the procedure is quite difficult.

Trapdoor One-Way Functions

Definitions 2.16 [18]. A trapdoor one-way function is represented as a one-way function
f: A — Bwith an extra property that by having information (also known as trapdoor
information) it will be much more feasible to have an identification for any given

b e Im (f), with an a € A in such way that f{a) = b.

Example 2.15 shows the concept of a trapdoor one-way function. With extra
information about the factors of n = 2957524163 it becomes much easier to invert the
function. The factors of 2957524163 are large enough that it would be difficult to identify
them by hand calculation. We should be able to identify the factors very easily with the
help of a computer program. For example, if we have very big, distinct prime numbers
(each number has about 200 decimal digits) p and g, with the technology of today,
finding p and g from n is very difficult even with the most powerful quantum computers.
This is the well-known factorization problem known as integer factorization problem.

One-way and one-way trapdoor functions form the fundamental basis for public-key
cryptography. These principles are very important, and they will become much clearer later
when you explore the implementation of cryptographic techniques. It is vital and important
to understand these concepts from this section because they are the main methods and the
primary foundation for the cryptography algorithms implemented later in this chapter.
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Permutations

Permutation represents functions that are in cryptographic constructs.

Definition 2.17 [18]. Consider S to be a finite set formed of elements. A permutation
p on Srepresents a bijection as defined in Definition 2.8. The bijection is represented
from Stoitself, p: S — S.

Example 2.18 [18]. This example represents a permutation example. Let’s consider
the following permutation: S = {1, 2, 3,4, 5}. The permutation p : S —» Sis defined as

p(l)=2,p(2)=5,p(3)=4,p(4)=2,p(5)=1

A permutation can be described in different ways. It can be written as above or as an

(1 2 345
P=l3 5 421/

in which the top row in the array is represented by the domain and the bottom row is

array as in

represented by the image under p as mapping.

Since the permutations are bijections, they have inverses. If the permutation is
written as an away (second form), its inverse can be easily found by interchanging the
rows in the array and reordering the elements from the new top row and the bottom row

accordingly. In this case, the inverse of p is defined as follows:
L (1 2 345
p =
5 4 132
Example 2.19 [18]. This example represents a permutation example. Let’s consider
Ato be the set of integers {0, 1,2, ..., p - ¢ — 1} where p and g represent two distinct large
primes. We need to suppose also that neither p — 1 nor g — 1 can be divisible by 3. The
function p(a) = r,, in which r, represents the remainder when a is divided by pqg, can be

demonstrated and shown as being the inverse perumutation. The inverse permutation is

computationally infeasible by the computers of today, unless p and g are known.

Involutions

Involutions are known as functions having their own inverses.
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Definition 2.20 [18]. Let’s consider a finite set S and fdefined as a bijection Sto S,
noted as f: S — S. In this case, the function fwill be noted as an involution if f= f'.
Another way of defining this is f(f(a)) =a foranya € S.

Example 2.21 [18]. This example represents an involution case. Figure 2-4 shows
an example of involution. Note that if j represents the image of i, then i represents the

image of .
1@, Q1
2@+« ' 2 0
S 30 \ @3 g
+@ : @ 4
5@ | QS

Figure 2-4. Representation of an involution with an set S with five elements

Concepts and Basic Terminology

It is very difficult to understand how cryptography was built using hard and abstract

definitions when dealing with the scientific side of the field. In the following sections, we

will list the most important terms and key concepts used in this chapter.

Domains and Codomains Used for Encryption

e A isshown as a finite set known as the alphabet of definition. We
will consider as an example A = {0,1} , which represents the binary
alphabet, an alphabet frequently used as definition.

e M isasetknown as the message space. The message space has the
strings of symbols from an alphabet, .4 . As an example, M may
have binary strings, English text, French text, etc.
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C is the ciphertext space. C has strings of symbols from an alphabet,
A, which is totally different from the alphabet defined for M . An
element from C is called a ciphertext.

Encryption and Decryption Transformations

30

The set K is called key space. The elements of K are called keys.

For each e € I, there is a unique transformation E,, representing a
bijection from M to C (i.e., E,: M — C). E, is called the encryption
function or encryption transformation. If the encryption process is
reversed, then E, should be a bijection, such that each unique plain
message is recovered from one unique ciphertext.

For each d € IC, there is a transformation D, representing
a bijection from C to M (i.e,, D,:C — M ). D,is called a
decryption function or decryption transformation.

The process of encrypting the message m € M or the encryption of m
consists of applying the transformation E, over m.

The process of decrypting the ciphertext c € C or the decryption of ¢
consists of applying the transformation D, over c.

An encryption scheme has two important sets: {E, : e € K}, which
represents the set of the encryption transformations, and { D,:de IC} ,
which represents the set of the decryption transformations. The
relationship between the elements of the two sets is the following:

for each e e K exists a unique key d € K insuch that D, =E."'; in
other words, we have the relationship D,(E,(m)) = m for all me M.
Another term for encryption schemes is cipher.

In the above definition, the encryption key e and the decryption key d
form a pair, usually noted as (e, d). In symmetric encryption schemes,
e and d are the same, while in asymmetric (or public-key) encryption

schemes they are different.
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To construct an encryption scheme, the following components are
needed: the messages (or plain-texts) space M, the cipher-space C,
the keys space K, the set of encryption transformations {Ee le€ IC} )
and the set of decryption transformations {D, :d e K} .

The Participants in the Communication Process

The components involved in the communication process are the following (Figure 2-5):

The entity (party) is that component that works with the information:
sending, receiving, manipulating it. The entities/parties from

Figure 2-5 are Alice, Bob, and Oscar. However, in real applications,
the entities are not necessarily people; they may be authorities or
computers, for example.

The sender is one of the entities of a two-party communication and
it initiates the transmission of the data. The sender from Figure 2-5
is Alice.

The receiver is the other entity of a two-party communication and
it is the intended recipient of the information. The receiver from
Figure 2-5 is Bob.

The communication channel is the component through which the
sender and the receiver communicate.

The adversary is an unauthorized entity in a two-party
communication and it is different from the sender and the receiver.
Its objective is to break the security on the communication channel
in order to access the information. Other terms for the adversary
are': enemy, attacker, opponent, eavesdropper, intruder, and
interloper. It has different types (passive and active) and will behave
differently according to aspects regarding the encryption scheme or
its intentions. Often, the attacker clones and acts like the legitimate
sender or the legitimate receiver.

'Alice and Bob. Available online: https://en.wikipedia.org/wiki/Alice_and_Bob
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Oscar the
Attacker

UNSECURED CHANMNEL

Figure 2-5. Example of two-party communication process applying encryption

Digital Signatures

In this book, another technique that we will work with is the digital signature. Digital
signatures are very important in some processes, like authentication, authorization,
or non-repudiation. The digital signature is used to map an individual’s identity with a
piece of information. When “something” is digitally signed, it means that the message
and the confidential information owned by an individual are converted into a tag called
a signature.

The components of the signing process are

e M isthe set of messages that can be signed.

o S isthe set of signatures. They can have a form of binary strings with

a predefined length.

o &, represents the transformation between M and S, called a
signing transformation, and it is made by entity A. The entity will
keep S, secret and will use it to sign messages from M.

e V,isthe transformation between M xS to the set {true, false}. The
Cartesian product M xS contains the pair of elements (m, s) where
me M and s € S. The transformation V, is public and it is used by
different entities to check if the signatures were created by entity A.
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Signing Process

Entity A, called the signer, creates a signature s € S for a particular message m € M
following these steps:

o Compute s = Sy(m).

e Transmit the pair (m, s) to the desired receiver.

Verification Process

When the receiver entity B wants to check if entity A created the signature s for the
message m, it proceeds as follows:

e Obtain the verification function V, for the entity A.
e Compute u=V,(m,s).

o Ifu=true, then the signature was created by entity 4; if u = false, then
the signature was not created by entity A.

Public-Key Cryptography

Public-key cryptography (PKC) has an important role in C++ when similar algorithms
need to be incorporated. Many significant commercial libraries implement developer-
specific public-key cryptography solutions, such as [21-30].

Next, you will see how the public-key cryptography works. For this, recall that X is
the key space. Let’s consider the set of the encryption transformations as {Ee ‘e€ IC}
and the set of the decryption transformations as {Dd ide IC} . Further, let’s consider
the pair of encryption and decryption transformations as (E,, D), where E, can be
learned by anyone, for every e. From having E,, determining D, must be computationally
unrealizable; in other words, from a random ciphertext ¢ € C it’s impossible to find out
the message m € M, such that E,(m) = c. This property is strong and it means that the
corresponding decryption key d (which must be secret/private) may not be computed/
determined from either given e (which is public).

With the settings from above, take a look at Figure 2-6 and let’s consider the
communication channel between two parties, namely Alice and Bob.
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e Bob chooses a pair of keys, (e, d).

e Bob makes the encryption key e publicly available, such that Alice
can access it over any channel, and keeps secret and in safe the
decryption key d. In the specialty literature, in PKC the encryption
key is called the public key and the decryption key is called the
secret/private key.

e When Alice wants to send a message m € M to Bob, she uses Bob’s
public key e to determine the encryption transformation E,, and
then she applies it over m. Finally, Alice obtains the encryption
c¢=E,(m)eC and sends it to Bob.

e When Bob wants to decrypt the encrypted message ¢ € C received
from Alice, he uses his private key d to determine the transformation
decryption D, and then he applies it over c. Finally, he obtains

m=D,(c)eM.
A Passive
Adversary
] |
1
|
1
h | J
:- UNSECURED CHANNEL II-
1 1
i 1
1
I
1
Y oy e By e e
UNSECURED CHANMNEL

Figure 2-6. The process of encryption using public-key mechanism
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There’s no need to keep the encryption key e secret; it can be made public. Every
individual can then send encrypted messages to Bob, which can be decrypted only by
Bob. Figure 2-7 illustrates the idea, where A;, A,, and A; represents different entities.
Remember if A, destroys the message m, after encrypting it to ¢,, then even A, is in the
position of not being able to recover m, from c;.

Let’s take the following analog example to make it simple. Consider a metal box
with the cover secured by a lock with a particular combination. Bob is the only one who
knows how to open the lock. If the lock stays open and is made accessible to the public
for different purposes, someone can put a message inside and lock the lock.
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Figure 2-7. How public-key encryption is used
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Hash Functions

Hash functions are one of the primary primitives in modern cryptography. Also known
as a one-way hash function, a hash function represents a computationally efficient
function that maps the binary string to binary strings with an arbitrary length with a
fixed length known as hash values.

As an example of implementation of a hash function (SHA-256, see Figure 2-8),
we will examine the following implementation in C++ using C++20 new features (see
Listing 2-1). The implementation is done in accordance with the NIST Standard?.

2NIST Standard for Hash Functions implementations, https://csrc.nist.gov/projects/
hash-functions
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D:\Proiecte\SHA256>g++ -std=c++0x sha256.cpp -o sha256

p:\Proiecte\SHA256>sha256 thequickbrownfoxjumpsoverthelazydog

T

©xoeoeee74
©x00000068
0x00000065
oxeevese7l
6x00000075
0x00000069
oxoeoeoes3
oxeeoevechb
©x00000062
©x00000072
Ox0000006
0xee000077
©xe000006e
©xe000ee66
©x0000006f
©xee0e0078
Oxeeeeeeda
0x00000075
oxeeeeee6d
ox00000070
©x00000073
©x0eeee0e6f
©xeeveeee76
©x00000065
0xe0000072
oxeeeeee74
©x00000068
©x80000065
Oxeeeeeesc
©x00000061
Oxeeeeeo7a
©x00000079
©x00000064
oxeeeeee6t
9xeeeeees7
©x0o0000080

34SBaGa?flelilcheQeGeSG?i193deaﬁ4eaf96cbfe43185398593763385fb15

D:\Proiecte\SHA256>

Figure 2-8. Exemple of SHA-25 execution
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Listing 2-1. Source Code for Implementation of SHA256

#include <iostream> //** standard input/output library

#include <sstream> //** templates and types for interoperation
//** between flow buffers and string objects

#include <bitset> //** storing bits library

#include <vector> //** for representing arrays as containers

#include <iomanip> //** for manipulation of the parameters

#include <cstring> //** for manipulation of the strings

using namespace std; //** for avoiding writing "std::"

//** ASCII string will be converted as a binary representation
vector<unsigned long> binaryConversion(const string);

//** for addings padding's to messages and making sure that they are
//** multiple of 512 bits
vector<unsigned long> addPad0f512Bits(const vector<unsigned long>);

//** We will change the n 8 bit blocks to 32 bits words
vector<unsigned long> resizingTheBlock(vector<unsigned long>);

//** will contain the actual hash value
string computingTheHash(const vector<unsigned long>);

//** variables and constants using during debugging
string displayAsHex(unsigned long);

void outputTheBlockState(vector<unsigned long>);
string displayAsBinary(unsigned long);

const bool displayBlockStateAddOne = 0;

const bool displayDistanceFrom512Bit = 0;

const bool displayResultsOfPadding = false;
const bool displayWorkVariablesForT = 0;

const bool displayTiComputation = false;

const bool displayT2Computation = false;

const bool displayTheHashSegments = false;

const bool displayWt = false;
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//** defined in accordance with the NIST standard

#tdefine ROTRIGHT(word,bits) (((word) >> (bits)) | ((word) << (32-(bits))))
#define SSIGO(x) (ROTRIGHT(x,7) ™ ROTRIGHT(x,18) * ((x) >> 3))

#tdefine SSIG1(x) (ROTRIGHT(x,17) ~ ROTRIGHT(x,19) ~ ((x) >> 10))

#define CH(x,y,z) (((x) & (y)) * (*(x) & (2)))

#define MAJ(x,y,z) (((x) & (y)) ~ ((x) & (2)) " ((y) & (2)))

//** in accordance with the latest updates of the NIST standard
//** we will replace BSIGO with EPO and BSIG1 with EPO in our
//** implementation

#define BSIGO(x) (ROTRIGHT(x,7) ™ ROTRIGHT(x,18) ~ ((x) >> 3))
#define BSIG1(x) (ROTRIGHT(x,17) * ROTRIGHT(x,19) * ((x) >> 10))

#define EPO(x) (ROTRIGHT(x,2) "~ ROTRIGHT(x,13) ~ ROTRIGHT(x,22))
#define EP1(x) (ROTRIGHT(X,6) ~ ROTRIGHT(x,11) ~ ROTRIGHT(x,25))

/7** we will verify if the process of checking (testing) is enabled
//** by the missed arguments in the command line.

//** The steps are as follows:

//** (1) Take the ascii string and convert it in n 8 bit segments by
//** representing the ascii value of each independently character
//** (2) add paddings to the message in order to get a 512 bit long
//** (3) take separately each 8 bit ascii value and convert it to 32
//** bit words and create a combination of them.

//** (4) calculate the hash and get the vallue

//** (5) if we are doing test, take the result and compare it with
//** expected result

int main(int argc, char* argv[])

{

string theMessage = "";
bool testing = 0;

switch (argc) {
case 1:
cout << "There is no input string found. The test will
be run using random first three letters abc.\n";
theMessage = "abc";
testing = true;
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break;

case 2:

if (strlen(argv[1]) > 55)

{
cout << "The string provided is biger than 55
characters length. Enter a shorter string.”

<< " or message!\n";
return O;

theMessage = argv[1];

break;

default:

cout << "There are too many items in the command line.";
exit(-1);

break;

}

//** storing all the blocks

vector<unsigned long> theBlocksArray;

//** convert the message to a vector of strings by hacving it

//** represented it as a 8 bit variable

40

theBlocksArray = binaryConversion(theMessage);

//** add padd to it in order to get a full of 512 bits long
theBlocksArray = addPadOf512Bits(theBlocksArray);

//** create a separate combination of the 8 bit segments into
//** single 32 bits sections
theBlocksArray = resizingTheBlock(theBlocksArray);

//** compute the hash using computingTheHash function
string myHash = computingTheHash(theBlocksArray);



//**
//**

//**
//**
//**
//**
//**
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//** if testing is found on true the software app will execute
a self check by checking if the hash value computed for
"abc" is equal with the expected hash
if (testing) {
const string theCorrectHashForABC =
"ba7816bf8f01cfead14140de5dae2223b00361a3961
77a9cb410ff61f20015ad";
if (theCorrectHashForABC.compare(myHash) != 0) {
cout << "\tThe test didn't occur with success!\n";
return(1); }
else {
cout << "\tTest has been done with success!\n";
return(0); } }

cout << myHash << endl;
return 0; }

the function purpose is to resize the blocks from 64 and 8 bit
to 16 and 32 bit sections. The function as input will take a
vector of individual 8 bit ascii values. As output we will get a
vector with 32 bit words that are found within a combination of
ascii values.

vector<unsigned long> resizingTheBlock(vector<unsigned long>
inputOf8BitAsciiValues)

{

vector<unsigned long>

output0f32BitWordsCombinedAsAsciiValues(16);

//**

//** parse all 64 sections using a 4 step and mergem them
accordingly
for(int i = 0; 1 < 64; i =1+ 4) {
//** create for beginning a big 32 bit section first
bitset<32> temporary32BitSection(0);
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//** create a shifting of the blocks on their assigned
//** positions

temporary32BitSection = (unsigned long)
input0f8BitAsciiValues[i] << 24;
temporary32BitSection |= (unsigned long)
input0f8BitAsciiValues[i + 1] << 16;

temporary32BitSection |= (unsigned long)
input0f8BitAsciivalues[i + 2] << 8;

temporary32BitSection |= (unsigned long)
input0f8BitAsciiValues[i + 3];

//** set the new 32 bit word within the proper output of
//** the array location

output0f32BitWordsCombinedAsAsciiValues[i/4] =

temporary32BitSection.to_ulong(); }

return outputOf32BitWordsCombinedAsAsciiValues; }

//** the function display the contents of all the blocks as binary
//** format. The function is used only for debugging purpose.
void outputTheBlockState(vector<unsigned long>
vectorOfCurrentBlocks) {

cout << "---- The current State of the Block ----\n";

for (int i = 0; i < vectorOfCurrentBlocks.size(); i++) {

cout << "block[" << i << "] binary: " <«

displayAsBinary(vectorOfCurrentBlocks[i])

<« hex y: Ox" <«
displayAsHex(vectorOfCurrentBlocks[i]) << endl; }}

//** the function will display in hex format the content of the
//** blocks.
string displayAsHex(unsigned long input32BitBlock) {

bitset<32> theBitSet(input32BitBlock);

unsigned number = theBitSet.to ulong();

stringstream theStringStream;
theStringStream << std::hex << std::setw(8) <«
std::setfill('0") << number;
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string temporary;
theStringStream >> temporary;

return temporary; }

//** the function will show the content of the blocks in hex. We are
//** using this function in order to avoid changing the stream from
//** hexa to dec and reversed as well.
string displayAsBinary(unsigned long input320rLessBitBlock) {
bitset<8> theBitSet(input320rLessBitBlock);
return theBitSet.to string(); }

//** based on the string, it will take the entire set of the
//** characters and converts them into ascii binary.
vector<unsigned long> binaryConversion(const string
inputOfAnyLength) {
//** the vector used to store all the ascii characters
vector<unsigned long> vectorBlockHoldingAsciiCharacters;

//** take each character and convert the ascii character to
//** the binary representation
for (int i = 0; i < inputOfAnyLength.size(); ++i) {
//** create a temporary variable. Use it to store the 8
//** bit template for ascii value
bitset<8> bitSet0f8Bits(inputOfAnyLength.c str()[i]);

//** the template of 8 bit add it into the block
vectorBlockHoldingAsciiCharacters.
push_back(bitSet0f8Bits.to ulong());}

return vectorBlockHoldingAsciiCharacters; }

//** get the ascii values stored as a vector in binary and add padding to
it in order to obtain a total of 512 bits.
vector<unsigned long> addPadOf512Bits(vector<unsigned long>
vectorBlockHoldingAsciiCharacters) {

//** you can keep the variables names as given in the NIST

//** for our implementation I have used my personal names for
//** variables in order to get a uniqueness of the code
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//** the variable will store the length of the message in bits
int lengthOfMessageInBits = vectorBlockHoldingAsciiCharacters.size() * 8;

int zeroesToAdd = 447 - lengthOfMessageInBits;

//** add another 8 bit block with the first bit being set to 1
if(displayBlockStateAddOne)
outputTheBlockState(vectorBlockHoldingAsciiCharacters);

unsigned long tiBlock = 0x80;
vectorBlockHoldingAsciiCharacters.push back(t1Block);

if(displayBlockStateAddOne)
outputTheBlockState(vectorBlockHoldingAsciiCharacters);
outputTheBlockState(vectorBlockHoldingAsciiCharacters);

//** we have 7 zeroes. We will need to substract 7 from
//** zeroesToAdd

zeroesToAdd = zeroesToAdd - 7;

//** debug mode. Find how much we need to get close to 512 bit
if (displayDistanceFrom512Bit) {
cout << "lengthOfMessageInBits = " <«
lengthOfMessageInBits << endl;
cout << "zeroesToAdd =
Plus 7 so this follows the paper. }

<< zeroesToAdd + 7 << endl; //

//** debug mode
if (displayDistanceFrom512Bit)
cout << "adding " <<

zeroesToAdd / 8 << " empty eight bit blocks!\n";

//** add blocks of 8 bit length that will contains zero's
for(int i = 0; i < zeroesToAdd / 8; i++)
vectorBlockHoldingAsciiCharacters.push _back(0x00000000);

//** we are finding ourself in 488 bits out 512 phase. Next
//** step is adding 1 in the binary representation in order to
//** form of eight bit blocks.
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bitset<64> theBig64BlobBit(lengthOfMessageInBits);
if (displayDistanceFrom512Bit)
cout << "1 in a 64 bit binary blob: \n\t" <«
theBig64BlobBit << endl;

//** divide the 64 bit big into 8 bit segments
string big 64bit string = theBig64BlobBit.to string();

//** take the first block and push it on the 56 position

bitset<8> temp_string holderi(big 64bit string.substr(0,8));

vectorBlockHoldingAsciiCharacters.
push_back(temp_string holderi.to ulong());

//** take the rest of the blocks with 8 bits length and push
for(int i = 8; i < 63; i=1+8) {
bitset<8>
temporaryStringHolder2(big_64bit_string.substr(i,8));

vectorBlockHoldingAsciiCharacters.
push_back(temporaryStringHolder2.to ulong()); }

//** just show in the console everything in order to know what
//** is happening in this freakin code
if (displayResultsOfPadding) {
cout << "Current 512 bit pre-processed hash in binary: \n";
for(int i = 0; i < vectorBlockHoldingAsciiCharacters.size();
i=i+4)
cout << 1 <«
AsciiCharacters[i]) <«
i+l " "
HoldingAsciiCharacters[i+1]) <<
<< 1+ 2 << ": " << displayAsBinary(vectorBlock
HoldingAsciiCharacters[i+2]) << " "
1+ 3< << displayAsBinary(vectorBlock
HoldingAsciiCharacters[i+3]) << endl;

<< displayAsBinary(vectorBlockHolding

<< displayAsBinary(vectorBlock

cout << "Current 512 bit pre-processed hash in hex: \n";
for(int i = 0; i < vectorBlockHoldingAsciiCharacters.size(); i=i+4)
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cout << 1 <«
AsciiCharacters[i]) <«
<< i1+1< "

<< "0x" + displayAsHex(vectorBlock

HoldingAsciiCharacters[i+1]) <<
<< "0x" + displayAsHex(vectorBlock

K 1i+2<
HoldingAsciiCharacters[i+2]) <«
<< 1+ 3<< " " << "ox" + displayAsHex(vectorBlock
HoldingAsciiCharacters[i+3]) << endl; }

return vectorBlockHoldingAsciiCharacters; }

//** the goal of the function is to compute the hash of the message
string computingTheHash(const vector<unsigned long>
blockOf512BitPaddedMessage)

{
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//** the following words are from the NIST standard.

unsigned long constantOf32BitWords[64] = {
0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dbas,0x3956c25b,0x59f111f1,
0x923f82a4,0xab1c5ed5,0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,
0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,0xe49b69c1,0xefbes786,
0x0fc19dc6,0x240calcc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x761988da,
0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,
0x06ca6351,0x14292967,0%x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,
0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,0xa2bfe8a1,0xa81a664b,
0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,
0x5b9cca4df,0x682e6ff3,0x748F82ee,0x78a5636F,0x84c87814,0x8cc70208,
0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 };

//** the initial hash values

unsigned long static InitialHashValueFor32Bit 0 = 0x6a09e667;
unsigned long static InitialHashValueFor32Bit 1 = Oxbb67ae85;
unsigned long static InitialHashValueFor32Bit 2 = Ox3c6ef372;
unsigned long static InitialHashValueFor32Bit 3 = Oxa54ff53a;
unsigned long static InitialHashValueFor32Bit 4 = 0x510e527f;
unsigned long static InitialHashValueFor32Bit 5 = 0x9b05688c;
unsigned long static InitialHashValueFor32Bit 6 = 0x1f83d9ab;
unsigned long static InitialHashValueFor32Bit 7 = Ox5beOcd19;

<< "0x" + displayAsHex(vectorBlockHolding
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unsigned long Word[64];

for(int t = 0; t <= 15; t++) {
Word[t] = blockOf512BitPaddedMessage[t] & OXFFFFFFFF;

if (displayWt)
cout << "Word[" << t << "]: ox" <«
displayAsHex(Word[t]) << endl; }

for(int t = 16; t <= 63; t++) {
Word[t] = SSIG1(Word[t-2]) +
Word[t-7] + SSIGO(Word[t-15]) + Word[t-16];

Word[t] = Word[t] & OXFFFFFFFF;

if (displayWt)
cout << "Word[" << t << "]: " << Word[t]; }

unsigned long temporary 1;

unsigned long temporary 2;

unsigned long a = InitialHashValueFor32Bit 0;
unsigned long b = InitialHashValueFor32Bit 1;
InitialHashValueFor32Bit_2;
InitialHashValueFor32Bit 3;
InitialHashValueFor32Bit 4;
InitialHashValueFor32Bit 5;
InitialHashValueFor32Bit 6;
InitialHashValueFor32Bit 7;

unsigned long c
unsigned long d
unsigned long e

unsigned long f

unsigned long g
unsigned long h

if(displayWorkVariablesForT)
cout << " A B C D "
<< "E F G H T1 T2\n";

for( int t = 0; t < 64; t++) {
//** according to the NIST Standard and Specification,
//** the BSIG1 is incorrect. We will replace it with EP1
temporary 1 = h + EP1(e) + CH(e,f,g) +
constant0f32BitWords[t] + Word[t];
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if ((t == 20) & displayTiComputation){

cout << "h: Ox" << hex << h <«

<< sign:’

<< dec << EP1(e) <<
<< endl;

<< dec << (int)h <«
cout << "EP1(e): 0x" << hex << EP1(e) <«
sign:

dec << h
endl;
dec:
<< (int)EP1(e)

cout << "CH(e,f,g): 0x" << hex << CH(e,f,g) << " dec:"

<< dec << CH(e,f,g) <<

<< (int)CH(e,f,g) << endl;
cout << "constantOf32BitWords[t]:

constantOf32BitWords[t] << " dec:" << dec

<< constantOf32BitWords[t] << "
dec << (int)constantO0f32BitWords[t] << endl;
cout << "Word[t]: Ox" << hex << Word[t]

< dec:" << dec << Word[t] <«
<< (int)Word[t] << endl;

sign:'

<< dec

0x" << hex <<

sign:" <«

cout << "temporary 1 = 0x" << hex << temporary 1

<< dec:

<< dec
<< temporary 1 <<
(int)temporary 1 << endl; }

sign:'

//** according to the NIST Standard and Specification,
//** the BSIGO is incorrect. We will replace it with EPO

temporary 2 = EPO(a) + MAJ(a,b,c);

//** in order to get T2 we will display the variables

//** and operations

if ((t == 20) & displayT2Computation) {

cout << "a: Ox" << hex << a <«

<« sign:’

<« sign:’

dec:
<< dec << (int)a << endl;
cout << "b: 0x" << hex << b <«

<< dec << a

dec:" << dec << b
<« sign:" << dec << (int)b << endl;
cout << "c: 0x" << hex << c <« dec:" << dec << ¢

<< dec << (int)c << endl;

cout << "EP0(a): 0x" << hex << EPo(a) << " dec:"

<< dec << EPo(a) << " sign:’

<< endl;
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cout << "MAJ(a,b,c): 0x" << hex
<< MAJ(a,b,c) << " dec:"
<< dec << MAJ(a,b,c) << "
<< (int)MAJ(a,b,c) << endl;
cout << "temporary 2 = Ox" << hex << temporary 2 <<
sign:" << dec << (int)temporary 2 << endl; }

sign:" << dec

dec:" << dec <«

temporary 2 <<

//** according to the NIST standard

h =g;
g=f;
f=e;

//** Get the guarantee that we are still using 32 bits
e = (d + temporary 1) & OXFFFFFFFF;

d=c;

c =b;

b = a;

//** Get the guarantee that we are still using 32 bits
a = (temporary 1 + temporary 2) & OxFFFFFFFF;

//** display the content of each of the variable from
//** above according to the NIST standard.
if (displayWorkVariablesForT) {

cout << "t= " << t <« ;
cout << displayAsHex (a) << << displayAsHex (b)
" " << displayAsHex

<< << displayAsHex (c) <<
(d) <« " " << displayAsHex (e) << << displayAsHex (f) << " " <«
displayAsHex (g) << " " << displayAsHex (h) << " " << endl; } }

//** display the content of each of the hash segment
if(displayTheHashSegments) {
cout << "InitialHashValueFor32Bit 0 = " << displayAsHex
(InitialHashValueFor32Bit 0) << " + " << displayAsHex (a) << " " <«
displayAsHex (InitialHashValueFor32Bit 0 + a) << endl;
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cout << "InitialHashValueFor32Bit 1 = " << displayAsHex
(InitialHashvalueFor32Bit 1) << " + " <«
displayAsHex (b) << " " << displayAsHex
(InitialHashValueFor32Bit 1 + b) << endl;
cout << "InitialHashValueFor32Bit 2 = " << displayAsHex
(InitialHashValueFor32Bit 2) << " + " <<
displayAsHex (c) << " " << displayAsHex
(InitialHashValueFor32Bit 2 + c) << endl;
cout << "InitialHashValueFor32Bit 3 = " << displayAsHex
(InitialHashValueFor32Bit 3) << " + " <«
displayAsHex (d) << " " << displayAsHex
(InitialHashValueFor32Bit 3 + d) << endl;
cout << "InitialHashValueFor32Bit 4 = " << displayAsHex
(InitialHashValueFor32Bit 4) << " + " <«
displayAsHex (e) << " " << displayAsHex
(InitialHashValueFor32Bit 4 + e) << endl;
cout << "InitialHashValueFor32Bit 5 = " << displayAsHex
(InitialHashValueFor32Bit 5) << " + " <«
displayAsHex (f) << " " << displayAsHex
(InitialHashValueFor32Bit 5 + f) << endl;
cout << "InitialHashValueFor32Bit 6 = " << displayAsHex
(InitialHashValueFor32Bit 6) << " + " <<
displayAsHex (g) << " " << displayAsHex
(InitialHashValueFor32Bit 6 + g) << endl;
cout << "InitialHashValueFor32Bit 7 = " << displayAsHex
(InitialHashValueFor32Bit 7) << " + " << displayAsHex
(h) << " " << displayAsHex (InitialHashValueFor32Bit 7
+ h) << endl;

}

//** for each hash add all the variables in order be sure that
//** we are still on the page with the 32 bit values

InitialHashValueFor32Bit 0 = (InitialHashValueFor32Bit 0 + a)
& OXFFFFFFFF;
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InitialHashValueFor32Bit 1
& OXFFFFFFFF;

InitialHashValueFor32Bit 2
& OXFFFFFFFF;

InitialHashValueFor32Bit 3
& OXFFFFFFFF;
InitialHashValueFor32Bit 4 = (InitialHashValueFor32Bit 4 + e)
& OXFFFFFFFF;

InitialHashValueFor32Bit 5
& OXFFFFFFFF;

InitialHashValueFor32Bit 6
& OXFFFFFFFF;

InitialHashValueFor32Bit 7
& OXFFFFFFFF;

(InitialHashvalueFor32Bit 1 + b)

(InitialHashValueFor32Bit 2 + c)

(InitialHashvalueFor32Bit 3 + d)

(InitialHashValueFor32Bit 5 + f)

(InitialHashvalueFor32Bit 6

+

g)

(InitialHashValueFor32Bit 7 + h)

//** add the hash section in one piece one after the other in
//** order to obtain the 256 bit hash
return displayAsHex(InitialHashValueFor32Bit 0) +
displayAsHex(InitialHashValueFor32Bit 1) + displayAsHex(InitialHashValue
For32Bit 2) + displayAsHex(InitialHashValueFor32Bit 3) + displayAsHex(
InitialHashValueFor32Bit 4) + displayAsHex(InitialHashValueFor32Bit 5) +
displayAsHex(InitialHashValueFor32Bit 6) +
displayAsHex(InitialHashValueFor32Bit 7);

Hash functions are commonly used for digital signatures and in data integrity.
A long message is generally hashed while dealing with digital signatures, and only the
hash value is signed. The group that receives the message then hashes the message
received and checks that the signature received is correct for this hash value. Below you
can see a classification of the keyed cryptographic hash functions (see Table 2-2) and
unkeyed cryptographic hash functions (see Table 2-3). Most of the functions are already
implemented in C++ within the NIST Standard or other trusted resources, such as
CrypTool®.

3CrypTool, www.cryptool.org/en/
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Table 2-2. Keyed Cryptographic Hash Functions

Name Length of the tag Type References

BLAKE2 Arbitrary Keyed hash function with prefix-MAC  [31][42]

BLAKE3 Arbitrary Keyed hash function with supplied [32]
initializing vector (IV)

HMAC - - [33]

KMAC Arbitrary Based on Keccak [34][35]

MD6 512 bits Merkle tree with NLFSR [37]

PMAC - - [38]

UMAC - - [39]

Table 2-3. Unkeyed Cryptographic Hash Functions

Name Length Type References

BLAKE-256 256 bits HAIFA structure [41] [40]

BLAKE-512 512 bits HAIFA structure [41] [40]

GOST 256 bits Hash [43]

MD2 128 bits Hash

MD4 128 bits Hash [44]

MD5 128 bits Merkle-Damgard construction [36] [45]

MD6 Up to 512 bits Merkle-tree NLFSR [37]

RIPEMD 128 bits Hash [46]

RIPEMD-128 128 bits Hash [46][47][48]

RIPEMD-256 - Hash

RIPEMD-160 160 bits Hash

RIPEMD-320 320 bits Hash

SHA-1 160 bits Merkle-Damgard construction [36] [61]

(continued)
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Name Length Type References
SHA-256 256 bits Merkle-Damgard construction [50][51][54]
SHA-384 384 bits [62][54]
SHA-512 512 bits [63][54]
SHA-224 224 bits Merkle-Damgard construction [55]

SHA-3 (Keccak)  Arbitrary Sponge function [50] [56][57]
Whirlpool 512 bits Hash [58][59][60]

Case Studies
Caesar Cipher Implementation in C++20

In this section, we will show a Caesar cipher implementation in C++20. The aim of this

section is to explain how the above mentioned mathematical foundations can be useful

during the implementation process and the advantages of understanding the basic

mathematical mechanisms behind the algorithms. We will NOT dwell on the algorithm'’s

mathematical history in this book. For any readers who want to go deep into the

mathematical history, references [6-18] are recommended.

The encryption process used by a Caesar cipher can be represented as modular

arithmetic by first transforming the letters into numbers. For this, we will follow alphabet
A={4,...,.Z} =25 insuch way that A= 0, B=1, ..., Z = 25. The encryption of letter x is
done by a shift n and mathematically can be described as

E,(x)=(x+n)mod 26

The decryption is done in a similar way,

D, (x)=(x—n)mod 26

Let’s start the implementation of the algorithm (see Figure 2-9 and Listing 2-2).
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BN Command Prompt P [m]

D:\Proiecte\CaesarCipher>g++ -std=c++8x caesar.cpp -o caesar

D:\Proiecte\CaesarCipher>caesar

Text : THEQUICKBROWNFOXJUMPSOVERTHELAZYDOG
Shift: 4

Cipher: XLIUYMGOFVSARISBNYQTWSZIVXLIPEDCHSK
D:\Proiecte\CaesarCipher>

Figure 2-9. The execution of a Caesar cipher

The application is very simple and easy to interact with it.

Listing 2-2. Source Code for a Caesar Cipher Implementation

#include <iostream>
using namespace std;

// This function receives text and shift and
// returns the encrypted text

string encrypt(string text, int s)

{

string result = "";

// traverse text
for (int i=0;i<text.length();i++)
{
// apply transformation to each character
// Encrypt Uppercase letters
if (isupper(text[i]))
result += char(int(text[i]+s-65)%26 +65);

// Encrypt Lowercase letters
else

result += char(int(text[i]+s-97)%26 +97);
}

// Return the resulting string
return result;
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// Driver program to test the above function
int main()
{
string text="THEQUICKBROWNFOXJUMPSOVERTHELAZYDOG";
int s = 4;
cout << "Text : " << text;
cout << "\nShift: " << s;
cout << "\nCipher: " << encrypt(text, s);

return 0;

Vigenére Cipher Implementation in C++20

The Vigenére cipher (see Figure 2-10 and Listing 2-3) is one of the classic methods

of encrypting alphabetic text using a sequence of different Caesar ciphers based on
keyword keys. You can see it in some of the documentations as a type of polyalphabetic
substitution.

¥ Command Prompt - O X

D:\Proiecte\VigenereCipher>vigenere

Original Message: ThisisanexampleofvigenerecipherforApress
Encrypted Message: TWZWAKWRPZOYTLTFINACIYGFQGIEYIJXKVLRFQWS
Decrypted Message: THISISANEXAMPLEOFVIGENERECIPHERFORAPRESS

D:\Proiecte\VigenereCipher>

Figure 2-10. Vigenére Cipher

A short algebraic description of the cipher is as follows. The numbers are taken as
numbers (A =0, B =1, etc) and an addition operation is performed as modulo 26. The
Vigenére encryption E using K as the key can be written as

C =E,(M,)=(M,+K,)mod 26

and decryption D using the key K as

M, =D, (C,)=(C, - K,)mod 26
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in which M = M,...M,, is the message, C = C,...C, represents the ciphertext, and K = K;...K,,
represents the key obtained by repeating the keyword [r/m] times in which m represents
the keyword length.

Listing 2-3. The Source Code of a Vigenére Cipher

#include <iostream>
#include <string>
using namespace std;
class Vigenere {
public:
//** represents the key
string key;

//** the constructor of the class
//** the chosen key
Vigenere(string chosenKey) {
for (int i = 0; i < chosenKey.size(); ++i) {
if (chosenKey[i] >= 'A" && chosenKey[i] <= 'Z")
this->key += chosenKey[i];
else if (chosenKey[i] >= 'a' 8& chosenKey[i] <= 'z")

this->key += chosenKey[i] + 'A" - 'a’;
}
}
string encrypt(string t)
{

string encryptedOutput;
for (int i =0, j =0; i< t.length(); ++i) {
char ¢ = t[i];
if (c>= "a' 88 c <= "z")
c+="A" - '3a’;
else if (c < 'A" || ¢ > 'Z")
continue;
//** added 'A' to bring it in range
//** of ASCII alphabet [ 65-90 | A-Z ]
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encryptedOutput += (c + key[j] - 2 * "A") % 26 + 'A";
j=(j+ 1) % key.length();
}
return encryptedOutput;
}
string decrypt(string t) {
string decryptedOutput;
for (int i = 0, j = 0; i < t.length(); ++i) {
char c = t[i];
if (c>= 'a' 8 c <= "z")
c+="A" - "a’;
else if (c < 'A" || ¢ > 'Z")
continue;

//** added 'A' to bring it in range of
//** ASCII alphabet [65-90 | A-Z]
decryptedOutput += (c - key[j] + 26) % 26 + 'A’;
j = (3 + 1) % key.length();
}
return decryptedOutput;}};
int main() {
Vigenere myVigenere("APRESS!WELCOME");
string originalMessage
="ThisisanexampleofvigenerecipherforApress";
string enc = myVigenere.encrypt(originalMessage);
string dec = myVigenere.decrypt(enc);
cout << "Original Message: "<<originalMessage<< endl;
cout << "Encrypted Message: " << enc << endl;

cout << "Decrypted Message: " << dec << endl;
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Conclusions

In this chapter, we gave a short introduction to the fundamentals of cryptographic
primitives and mechanism. The chapter covered the following:

o Security and information security objectives

o The importance of the one-to-one, one-way, and trapdoor one-way
functions in designing and implementing cryptographic functions

o Digital signatures and how they work
e Public-key cryptography and how it impacts developing applications
e Hash functions

o Case studies to illustrate the basic notions you need to know before
advancing to high-level cryptographic concepts

The next chapter will go through the basics of probability theory, information theory,
number theory, and finite fields. We will discuss their importance and how they are
related during the implementation already existing in C++ and how they are useful for
you as a developer.
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CHAPTER 3

Mathematical Background
and Its Applicability

This chapter will discuss the importance of the probability theory and its tools for
modern cryptography. We will show how the elements and notions from the probability
theory can be implemented in real-life applications and programs, and we will
explain the most important steps for a professional cryptographer to follow in the
implementation process of cryptographic algorithms.

The application of the probability theory to cryptography represents one of
the challenging sides of cryptography and cryptanalysis. Between 1941 and 1942,
Alan Turing (1912-1954) wrote a paper titled “The Applications of Probability to
Cryptography”! (which was released by the Government Communications Headquarters
(GCHQ) to the National Archives, HW/25/372). This paper describes the application of
the probability theory to code cracking. He started his paper with the Vigenére cipher.
Turing provided proofs for the practical side by introducing and designing a unique
method, the goal of which was to hide the entire complexity of the mathematical
apparatus in cryptography, reducing the process down to a simple exercise using
regular addition and a bit of trial and error. The tools introduced by him in the paper
were logarithms and probability. To fully understand how the tools were applied, it was
necessary to understand how the cipher worked.

The notions introduced in this chapter will help you to understand the basic
mathematics in order to have a full appreciation of the solutions developed later.

“The Applications of Probability to Cryptography,” https://arxiv.org/abs/1505.04714

?Alan Turing Wartime Research Papers Released by GCHQ, https://discovery.
nationalarchives.gov.uk/details/r/C11510465
65
© Marius Iulian Mihailescu and Stefania Loredana Nita 2021
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++20,
https://doi.org/10.1007/978-1-4842-6586-4_3


https://doi.org/10.1007/978-1-4842-6586-4_3#DOI
https://arxiv.org/abs/1505.04714
https://discovery.nationalarchives.gov.uk/details/r/C11510465
https://discovery.nationalarchives.gov.uk/details/r/C11510465

CHAPTER 3  MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

We'll present each mathematical concept via the equations and mathematical
expressions we will use during the implementation of the algorithms, providing examples
of the implementations in C++. The implementations will be presented as case studies,
counted from 1 to 10 (see Figures 3-1 through 3-12 and Listings 3-1 through 3-13).

Preliminaries

In this section, we will present the main concepts, giving the most appropriate
definitions of experiment, probability distribution, event, complementary event, and
mutually exclusiveness. The definitions are given in such way that you will find the
intersection between theory and practice in a very fashionable and easy way to follow.
The concepts described in this chapter will help you get a clear understanding and
overview of the basic notions of what a cryptographic and cryptanalysis mechanism
stands for and how it is projected using probabilities [1].

Definition 2.1 [1]. An experiment can be seen as a procedure that produces one
of a mentioned set of outcomes. Each of the outcomes is individual. The ones that are
possible are called simple events. The whole set formed out of the possible outcomes is
known as a sample space.

In the following sections, we will discuss discrete sample spaces that have limited
possible outcomes. We will write the simple events of a sample space as S labeled as s,,
Soy ever Spe

Definition 2.2 [1]. The probability distribution K over S is defined by a
sequence of numbers, k,, k,, ..., k, > 0, and the sum of those numbers is equal to 1
(ky + ky + ... + k, = 1). The number o; can be interpreted as the probability of g;. This is the
outcome (result) of the processing experiment.

Definition 2.3 [1]. The event E represents a subset of the sample space S. In this
situation, the probability that event E will occur, noted as P(E), is defined as the sum of
the probabilities o, for all the simple events g; which belong to E. If g; € S, P({s}}) is simply
denoted as P(s;).

Definition 2.4 [1]. Let’s consider E as an event. The complementary event is defined
as being the set of simple events that don’t belong to E, noted as E .
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Demonstration 2.1 [1]. If E C S represents an event, the following should be
considered:

— 0<P(E) < 1.Inaddition, P(S) = 1 and P(¢) = 0, where ¢ represents an

empty set.
- P(E)=1-P(E).
E
— Iftheresults in S are just as likely, we can consider P(E)= H .
Definition 2.5 [1]. Consider E, and E, two mutually exclusive events. They are
mutually exclusive if P(E, (] E,) = 0. The showing nature of one or two events will have
the chance to exclude the case that the other has the possibility of taking place.

Definition 2.6 [1]. Take as an example two events, E, and E,.
—  P(E) < P(E,) will be if E, C P(E,).

- P(E,UE,) + P(E,nE,) = P(E,) + P(E,). Accordingly, if E, and E, are
considered mutually exclusive, then the following expression takes
place: P(E, U E,) = P(E,) + P(E,).

Conditional Probability

Definition 2.7 [1]. Let’s consider E, and E, as being two events, with P(E,) > 0.
The conditional probability for E, to give E, is written as P(E,| E,) and it is expressed as

P(E,NE,)

PUEIE)= 0z

P(E,| E,) measures the probability of how event E, will take place, given that E, has
occurred.

Definition 2.8 [1]. Consider E, and E, as two events. Their relationship is one of
independency if P(E1 N E,) = P(E,)P(E,).

Definition 2.9 (Bayes’ Theorem) [1]. Assuming that we have two events, E; and E,,
with P(E,) > 0, then

P(E,)P(E,|E,)

P(E,)

P(E|E,)=
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Random Variables

Let’s take into consideration a sample space S that has the distribution probability of P.
Definition 2.10 [1]. Let X be a random variable. Declare a function that is applied
on S for the set of real numbers. For each event s; € S, X, there will be a real number
assigned X(s,).
Definition 2.11 [1]. Let X be the random variable on S. The mean or expected value
of Xis defined as follows:
E(X)=YX(s,)P(s,).
s5;€8
For the C++ implementation of a mean or expected value, refer to Case Study 3:
Computing the Mean of Probability Distribution.
Demonstration 2.12 [1]. Consider X to be a random variable on S. In this case, we
have the following expression:
E(X)=>xP(X =x).
xeR
Demonstration 2.13 [1]. Let’s consider the following random variables of S: X;,

Xy ..., X;n. The following are real numbers: a,, a,, ..., a,,. Then we have the following
expression to be satisfied:

E(gai)(i] = gaiE(X,.).

Definition 2.14. Let’s consider X as a random variable. The variance of X of means u
is defined by the non-negative number that is expressed by

Var(X)=E((X - )’ ).

For the C++ implementation of the mean or expected value, refer to Case Study 4:
Computing the Variance.

The standard deviation of X is defined by the non-negative square root of Var(X).

For the C++ implementation of the mean or expected value, refer to Case Study 5:
Computing the Standard Deviation.
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Birthday Problem

Definition 2.15 [1]. Consider two positive integers a, b with a > b, where the number

m is defined as follows:
m" = m(m—1)(m=2)...(m-n+1).
Definition 2.15 [1]. Consider two non-negative integers a, b with a > b. The Stirling

number of the second kind, represented and noted as {Z} , is expressed as follows:

s

0
The case of {O} =1 is considered an exception.

Demonstration 2.16 [1]. As an example, let’s consider the classic occupancy
problem by illustrating it with an urn that contains a balls. The balls are numbered (or
labeled) from 1 to m. Let’s image a scenario in which b balls are extracted from the urn
one at a time and replaced in the same time, and with their numbers listed. The chance
(probability) for I different balls to have been drawn is

a

)
E(a,b,l)z{l;}“—h,lslsb.

The birthday problem represents a special case of the occupancy problem.

Demonstration 2.17 [1]. We take into consideration the birthday problem, where we
have an jar with a balls that are numbered from 1 to a. Assume that a specific number of
balls, h, are extracted from the urn one at a time and replaced, with their numbers listed.

Case 2.17.1 [1]. The probability of at least one coincidence, for example a ball that is
drawn at least twice from the urn, is

()
Pz(a,h)zl—Pl(a,h,h)zl—c;—h,lShSm.

Case 2.17.2 [1]. Let’s consider & the number of balls extracted from the jar. If
h= O(\/E ) and a — oo, then the following expression will take place:

P, (a,h) %l—exp[—}l(z—;l)+0(%j) zl—exp(—g}
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The demonstration that we provided explains why the probability distribution
is known as the birthday surprise or birthday paradox. The probability that at least
2 people in a room of 23 people have the same birthday is P,(365,23) ~ 0.507, which
is surprisingly large. The quantity P,(365, k) increases as h increases. As an example,
P,(365, 30) ~ 0.706.

For the C++ implementation of the birthday paradox, refer to Case Study 4: Birthday
Paradox.

Information Theory
Entropy

Let’s denote with X a random variable that takes on a finite set of values x;, x,, ..., x,,, with
the probability P(X = x;) = p;,, where 0 < p; < 1 for each i, 1 < i < n, in which the following
sum expression take place:

n

>p =1

i=1

As well, let’s declare Y and Z random variables, which will take a finite set of values [1].

The entropy of A is defined as a mathematical measure that is characterized as the
amount of information that is provided by observation o.

Definition 2.18 [1]. Let’s denote A as a random variable, so the entropy or
uncertainty of A is defined by the expression

m m 1
)= -Spter, -S| 1|
j=1 =1 P
where, through convention,

pilgp = p; 'lg(ij =0,ifp;=0.
Definition 2.19 [1][5]. Let’s consider A and B, two random variables. The joint
entropy is defined by expression

H(A4B)=>P(A=aB=b)lg(P(A=aB=b)),

a,b
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where a and b go through all of the values within the random variables, A and B.
Definition 2.20 [1]. Let’s consider two random variables A and B, and suppose that
the conditional entropy of A given B = m is expressed as

H(AB=v)==YP(A=mB=v)lg(P(4=m|B=v)),

where m goes through all of the values within the random variable A. In this case, the
conditional entropy of A given B, called also the equivocation of B about 4, is declared as

H(AB)=Y P(B=m)H(AB=m),

where m (which is an index) goes through all of the values of B.

Number Theory
Integers

Starting from the idea that a set of integers {..., —3,-2,-1,0, 1, 2, 3, ...} is represented by
the symbol Z, the following definitions will occur.

Definition 2.21 [1]. Let’s assume that we have two integers, x and y. We will start
from the idea that x divides y if there exists an integer d in such way thaty=x - d. If x is
dividing y, then we can state that x| y.

Definition 2.22 (Division algorithm for integers) [1]. Consider two integers, x and y
with y > 1. An ordinary long division of x by y holds the integers quot (quotient) and rem
(remainder) in such way that

X=qout-y+rem,where 0 <rem<y.

Definition 2.23 [1]. Consider d as integer. Note that the common divisor of x and y
existsifd | xand d | y.

Definition 2.24 [1]. Assume that we have a non-negative integer e. The non-negative
integer e is known as being the greatest common divisor (gcd) of the integers x and y. We
note it as e= ged (x, ), if

a. eisacommon divisor x and y;

b. d|xandd]|y, thend]e.
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Definition 2.25 [1]. Assume a non-negative integer e. The non-negative integer
e is known as being the least common multiple (Icm) of integers x and y. We note it as
e= Ilem (x,y), if

a. x|eandy|e

b. x|dandx|d,thene|d.

Algorithms in Z

Let’s consider two non-negative integers, a and b, with a < n. Note that the number of
bits from the binary representation of n is represented as |lg n| + 1. This value will be
approximated by lgn. The bit operations related to the four basic operations for integers
using the classical algorithms are shown in Table 3-1.

Table 3-1. The Bit Complexity of the Basic Operation in Z

Operation Bit Complexity
Addition a+b O(lga + Igb) = O(lgn)
Subtraction a-b O(lga + Igb) = O(/gn)
Multiplication a- b O((loa)(Igb)) = O((lgn)?)
Division a=q-b+r O((/gq)(lgb)) = O((lgn)?)

Demonstration 2.26 [1]. The integers a and b are positive numbers with a > b, so
gcd(a, b) = ged (b, a mod b).

Algorithm 2.27 [1]. The Euclidean algorithm for computing the gcd for two
integers

INPUT : a and b,two non — negative integers with respect for a>b
OUTPUT :  the gcd
1. While b # 0 then

1.1.Setr < amodb, a<b,b<«r.

2. Return (a).
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The Euclidean algorithm can be extended so that it will not only yield the gcd of two
integers a and b, but also integers x and y, which will satisfy ax + by = d.
Algorithm 2.28 [1]. Pseudocode for extended Euclidean algorithm

INPUT :  x and y,non— negative numbers with the following condition a > b

OUTPUT : h= gcd(x,y) and integers w,z which satisfies xw+ yz=h
1.If y=0,then
h<«x

w1

z<0
return (h,w,z).
2. Declare and initialize w, <~ 1,w, <= 0,z, <~ 0,z, < 1.

3. While y > 0,then

3.1. quotient < X
Y

remainder <— x — quotient'y;
W <= W, — quotient-w,;z <~ z, — quotient'z,
32.x«y
y <« remainder

W, <= W,
W —w
Z, ¢z,

Z, < z.

4.Seth<x,w<w,,z 4z,

return (h,w,z).
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In Case Study 7: (Extended) Euclidean Algorithm, we provide an implementation
using C++ for both types of the algorithm, Euclidean and extended Euclidean algorithm.

The Integer Modulo n

Consider p a positive integer.

Definition 2.30 [1]. Let i and j be two integers. We allege that g is congruent to j

modulo q. The notation used is
i=j(mod q), if g will divide (i — j).

So g is called the modulus of the congruence.

Definition 2.31 [1]. Consider n € Z,. The multiplicative inverse of n modulo g is
represented by an integer x € Z, in such way that n x = 1 (mod q). If there is an n that
exists, then that n is unique, and we state that n is invertible, or a unit. The inverse of n is
noted as n™".

Case Study 8: Computing the Multiplicative Inverse under Modulo m provides a C++
implementation of a multiplicative inverse under modulo g.

Definition 2.32. Chine Remainder Theorem (CRT) [1]. The integers n,, n,, ..., n,
represents a pairwise (occurring in pairs) that is relatively prime. Let’s consider the
following system formed out of simultaneous congruences

j=v (modg,)

j=v, (modg,)

I=v, (modg,)

as a system that has a unique solution modulo g= g, g, g-
Case Study 9: Chinese Remainder Theorem provides a C++ implementation of the
Chinese Remainder Theorem.
Definition 2.33. Gauss’s Algorithm [1]. As you saw in the Chinese Remainder
Theorem, the solution y for concurrent congruences may be calculated as
y= ibh ‘R,"L, mod ¢ , where R;= g/g, and L, = R,' mod g,. The listed operations can be
h=1

done in O((lgg)?) bit operations.
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Algorithms Z,,

Consider a positive integer m. As you have seen, the addition of the elements of Z,,, is
defined as

X+, if x+y<m,

(x+y)m0dm= ] .
X+y—m, if x+y>m

Algorithm 2.34 [1]. Pseudocode for computing the multiplicative inverses in Zm
INPUT : xXez,

OUTPUT: x ' mod m

1. Usethe extended Euclidean algorithm and find the integers w and z such
that xw+ nz = h,where h = gcd(x,n)

2. If h>1,we will have x™" mod q which will not exist.Else,return(w).

Algorithm 2.35 [1]. Repeated square-and-multiply algorithm for exponentiation
inZ,,
INPUT : x €7, ,and integer 0 <t <m whose binary representation is t = th 2/,
j=0

OUTPUT:  x' mod m

1. Sety« 1.Ift=0, then return(y).
2. SetC«x.
3. Ifty=1, thensety « x.
4. Forjfrom1tok, do
4.1 Set C < C* mod m.
4.2 Ift;=1, thensety < C-y mod m.

5. Return(y).
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The Legendre and Jacobi Symbols

In order to check if an integer is a quadratic residue in a specific modulo, the Legendre
symbol is the perfect tool for this purpose.

Definition 2.36 [1]. Consider g an odd prime and x an integer. The Legendre symbol,
noted as [zj is defined as

q

0, if qlx
1, if xeW,.
-1, if xe Wq

Properties 2.37. Properties of the Legendre Symbol [1]. The following properties
will be considered. The following properties are known as the properties of the Legendre
Symbol. For the following properties, consider m to be an odd prime. Let’s declare two
integers x, y € Z. The next properties specific to the Legendre symbol are listed as

m—1 1
1. (ij =y (mod m) In the particular case, [—j =1 and
m m

— m-1 R
[_lj = (_1)7, Since -1 e W, ifm=1(mod4)and -1eW, if

m
m =3 (mod 4).
2
2. (ﬂJ = (ij(lJ Sinceif x€Z_, then [x_] =1.
m m m m
3. Ifx=y(mod m), then (ij = (l]
m m
2 tr) 2y
4, (_J =(-1) s . Since (_j =1 ifm=1or7(mod8), and
m m

(EJ:_l if m=3or5(mod8).
m

5. If mrepresent an odd prime distinct from p, we have

-

The Jacobi symbol represents a generalization of the Legendre Symbol for integers n
that are not odd and are also not necessarily prime.
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Definition 2.38. Jacobi Definition [1]. Let m > 3 represent an odd with a prime
factorization as

— iy h
m=v'vy..v/ .

The Jacobi symbol (ﬁj has the following expression:
m

B2

We need to take into consideration the fact that if 7 is prime, the Jacobi symbol will
be a Legendre symbol.

Properties 2.39. Jacobi Symbol Properties [1]. Consider x > 3 and y > 3 to be odd
integers, and i, j € Z. The Jacobi symbol will have the following properties:

1

¥

1. Ly 0,1,or —1. More than this, (
y

ged(i,y) # 1.

2. y =[LJ(1J.Hence if ieZ, ,then (i):l.
y YI\Y y
s L I (ij
X y )\ x
4. Ifi=j(mody), then (LJZLLJ
y y

(g

j =0 if and only if

-1 (-1 -1 . -1 .
6. | — =(_1) 2 . Hence | — |=1ify=1(mod4),and | — |=—1 if
y Yy Y
y=(3 mod4).
7. [gJ = (_1)yT_1, Hence [zj =1 ify=1or7(mod8), and [EJ =_1
y Y Y

ify=3or5 (mod 8).
X y (xfl)(yfl) X y
8. |[Z|=|Z (_1) 4. Inotherwords, | = |=| < | unless both x
Yy X Yy X
Yy

and y are congruent to 3 modulo 4, in which case g _(_ .
y X
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Algorithm 2.40. Pseudocode of Jacobi Symbol. Pseudocode for Legendre symbol [1]
JACOBI (h.k)

INPUT : Odd integer k >3 and an integer h,0< h<k

OUTPUT : The Jacobi symbol(%)

1. Ifh=0, then return 0.
2. Ifh=1, thenreturnl.
3. Write h=2'h,, where h, is odd.

4. Iftiseven, thensetg < 1.Elsesetg < 1ifk=1or7(mod8),
orsetg— —1ifk=3or5(mod8).

5. Ifk=3(mod4)andh, =3 (mod4), thensetg — —g.
6. Setk, < kmod h,.
7. Ifh, =1, then return(g); else return (g - JACOBI(k,, h,)).

Finite Fields
Basic Notions

Definition 2.41 [1]. Consider F to be a finite field that contains a finite number of
elements. The order of F represents the number of elements in F.
Definition 2.42 [1]. The finite fields are characterized through a special uniqueness.

1. Let’s assume if P represents a finite field, then P will contain #/

elements for a prime h and integer j > 1.

2. For each prime power order #/, we have a unique finite field of
order /. The field is noted as G, or in some other literature

references as GF(W).

Definition 2.43 [1][5]. If G, represents a finite field of order i = @™, a is prime, then
the characteristic of F, is p. More than this, h has a copy of Z, as a subfield. Since F, can
be viewed as an extension field of Z, of degree m.

78



CHAPTER 3  MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

Polynomials and the Euclidean Algorithm

The below two algorithms represent the foundation for understanding how to compute
the ged for two polynomials, g(x) and h(x), both being in Z,[x].
Algorithm 2.43. Euclidean Algorithm for Zp|[x] [1]

INPUT : Two polynomials g(x),h(x) €z, [x]
OUTPUT:  gedof g(x)and h(x)

1. While h(x) # 0, then
set r(x) < g(x) mod h(x), g(x) « h(x), h(x) < r(x).
2. Return g(x).

Algorithm 2.43. Extended Euclidean Algorithm for Zp[x] [1]
INPUT : Two polynomials g(x),h(x) €z, [x]

OUTPUT :  d(x)=ged(g(x),h(x))and polynomials s(x),t(x) e Z,[x], which will
satisfy s (x) g (x)+1(x)h(x)=d(x).
1. Ifh(x) = 0, then set d(x) < g(x), s(x) < 1, (x) < 0
return (d(x), s(x), {(x)).
2. Sets,(x) « 1,5(x) < 0, t,(x) < 0, t,(x) < 1.
3. While h(x) # 0, then
a. g(x) < g(x) div h(x), r(x) < g(x) — h(x)g(x)
b. s(x) < 5(x) — g(x)5:(x), 1(x) < £,(x) — g(x)t:(x)
c. g(x) < h(x), h(x) < r(x)
d. Sy < $i1(x), $1(x) < s(x), (%) < (%), and t,(x) < H(x).
4. Setd(x) < g(x), s(x) < s,(x), {x) < t,(x).

5. Return d(x), s(x), t(x)..
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Case Study 1: Computing the Probability of an Event
Taking Place

BE¥ Command Prompt - O X

D:\Proiecte\Entropy>g++ -std=c++0@x basicprobability.cpp -o basicprobability

D:\Proiecte\Entropy>basicprobability

Probability for the first ball to be blue: 25.0333%
Probability for the second ball to be blue: 24.9893%
Probability for both balls to be blue: 5.8102%

D:\Proiecte\Entropy>

Figure 3-1. Output for computing the probability

Listing 3-1. Source Code

#include <iostream>
#include <vector>
#include <random>
#include <algorithm>

enum ColorTypes {
Blue,
NotBlue } ;

//** create a sequence container
typedef std::vector<ColorTypes> backpack;

backpack initializeBackpack(unsigned blue balls, unsigned
differentBalls)
backpack backpackOfBalls ;

for (unsigned i=0; i<blue balls; ++i)
backpackOfBalls.emplace back(Blue);

for (unsigned i=0; i<differentBalls; ++i)
backpackOfBalls.emplace back(NotBlue);

return backpackOfBalls; }
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void randomize(backpack & backpackOfBalls) {

}

//** Mersenne Twister - pseudo-random generator

//** on 32-bit number using the state size of 19937 bits/

//** std:random_device() will help us to generate a

//** non-deterministic random numbers

static std::mt19937 engine((std::random device()()));
//** we will rearrange the elements in the

//** following range [first, second] as follows fist =

//** backpackOfBalls.begin() and second =

//** backpackOfBalls.end()

//** using "engine" declared above as a uniform random

//** number generator

std: :shuffle(backpack0fBalls.begin(),

backpackOfBalls.end(), engine);

int main()

{

//** constants initializations

const unsigned theTotalOfSamples = 1000000;
const unsigned blue balls = 4;

const unsigned differentBalls = 12;

unsigned theFirstIsBlue = 0;
unsigned bothAreBlue = 0;
unsigned theSecondIsBlue = 0;

auto backpack0fBalls = initializeBackpack(blue balls,
differentBalls) ;

for (unsigned i=0; i<theTotalOfSamples; ++i)

{
randomize(backpackOfBalls);

if (backpack0fBalls[0] == Blue)
++theFirstIsBlue;

if (backpackOfBalls[1] == Blue)
++theSecondIsBlue;
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if (backpackOfBalls[0]==Blue&8&backpackOfBalls[1]==Blue)
++bothAreBlue;

}

float probabilityOfFirstBallToBeBlue =
static_cast<float>(theFirstIsBlue) /
theTotalOfSamples;

float probabilityForBothBallsToBeBlue =
static_cast<float>(bothAreBlue) /
theTotalOfSamples;

float probabilityForSecondBallToBeRed =
static_cast<float>(theSecondIsBlue) /
theTotalOfSamples;

std::cout << "Probability for the first ball to be blue: "
<< probabilityOfFirstBallToBeBlue * 100.0 << "%\n" ;

std::cout<< "Probability for the second ball to be blue: "
<< probabilityForSecondBallToBeRed * 100.0 << "%\n" ;

std::cout << "Probability for both balls to be blue: "
<< probabilityForBothBallsToBeBlue * 100.0 << "%\n" ;

Case Study 2: Computing the Probability
Distribution

BN Command Prompt — O

D:\Proiecte\Entropy>g++ -std=c++0@x prob_dist.cpp -o prob_dist
D:\Proiecte\Entropy>prob_dist

Probability of some ranges

9.58-8.51 ©.0899868

9.60-0.61 ©.8099719

©.45-0.46 ©.809999

D:\Proiecte\Entropy>,

Figure 3-2. Output of the probability distribution
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Listing 3-2. Source Code

//** this will be used for computing the distribution
#include <random>
#include <iostream>

using namespace std;

int main() {
//** declare default_random_engine object
//** we will use it as a random number
//** we will provide a seed for default random_engine
//** if a pseudo random is necessary
default random engine gen;
double x=0.0, y=1.0;

//** initialization of the probability distribution
uniform real distribution<double> dist(x, y);

//** the number of experiments
const int numberOfExperiments = 10000000;

//** the number of ranges
const int numberOfRanges = 100;
int probability[numberOfRanges] = {};
for (int k = 0; k < numberOfExperiments; ++k) {
// using operator() function
// to give random values
double no = dist(gen);
++probability[int(no * numberOfRanges)]; }

cout << "Probability of some ranges" << endl;

//** show the probability distribution of some ranges

//** after 1000 times values are generated

cout << "0.50-0.51"<<" "<«
(float)probability[50]/(float)numberOfExperiments<<endl;

cout << "0.60-0.61"<<" "<«
(float)probability[60]/(float)numberOfExperiments<<endl;
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cout << "0.45-0.46"<<" "<«
(float)probability[45]/(float)numberOfExperiments<<endl;

return O;

Case Study 3: Computing the Mean
of the Probability Distribution

BE¥ Command Prompt -

D:\Proiecte\Entropy>g++ -std=c++@x mean.cpp -o mean

D:\Proiecte\Entropy>mean
the mean distribution (6.€,3.0):
9-1: **

uuuuuuuuuuuu

[

Voo~ bwNne=
1
PWOKNNOWNAWN

D:\Proiecte\Entropy>.

Figure 3-3. Output for the mean of theprobability distribution

Listing 3-3. Source Code

#include <iostream>
#include <string>
#include <random>

int main()

{
//** the constant represents the number of experiments
const int numberOfExperiments=10000;
//** the constant represents the
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//** maximum number of stars to distribute
const int numberOfStarsToDistribute=100;

std: :default_random_engine g;
std::normal_distribution<double> dist(6.0,3.0);

int prob[10]={};

for (int k=0; k<numberOfExperiments; ++k) {
double no = dist(g);
if ((n0>=0.0)8&&(n0<10.0)) ++prob[int(no)];

}

std::cout << "the mean distribution (6.0,3.0):" << std::endl;

for (int 1=0; 1<10; ++1) {
std::cout << 1 << "-" << (1+41) << ": "
std::cout <«
std::string(prob[1]*numberOfStarsToDistribute/
numberOfExperiments,'*') << std::endl;

}

return 0;

}

Case Study 4: Computing the Variance

BE¥ Command Prompt - O X

D:\Proiecte\Entropy>g++ -std=c++0x variance.cpp -0 variance

D:\Proiecte\Entropy>variance
The variance is: 21704

D:\Proiecte\Entropy>

Figure 3-4. Output of the variance
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Listing 3-4. Source Code
#include<iostream>
using namespace std;

//** the below function is used
//** for computing the variance
int computingVariance(int n[], int h) //**a=n, n=h
{

//** will compute the mean

//** average of the elements

int sum = 0;

for (int k = 0; k < h; k++)

sum += n[k];
double theMean = (double)sum /
(double)h;

//** calculate the sum squared
//** differences with the mean
double squared differences = 0;
for (int t=0; t<h; t++)
squared differences += (n[t] - theMean) *
(n[t] - theMean);
return squared differences / h;

}
int main()
{
int arr[] = {600, 470, 170, 430, 300};
int n = sizeof(arr) / sizeof(arr[o0]);
cout << "The variance is: "
<< computingVariance(arr, n) << "\n";
return 0;
}

86



CHAPTER 3  MATHEMATICAL BACKGROUND AND ITS APPLICABILITY

Case Study 5: Computing the Standard Deviation

BN Command Prompt - a X

~

D:\Proiecte\Entropy>g++ -std=c++@x std.cpp -o std

D:\Proiecte\Entropy>std
Add 10 elements: 1

HOO~NonbhwNn

e

The Standard Deviation is = 2.87228
D:\Proiecte\Entropy>,

Figure 3-5. Output of the standard deviation

Listing 3-5. Source Code

#include <iostream>
#include <cmath>

using namespace std;
float computeStandardDeviation(float data[]);

int main()

{
int n;
float elements array[10];
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cout << "Add 10 elements: ";
for(n = 0; n < 10; ++n)
cin >> elements_array[n];

cout << endl << "The Standard Deviation is = " <«
computeStandardDeviation(elements_array)<<endl;

return 0;

}

float computeStandardDeviation(float elements array[])

{

float theSum = 0.0, theMean, theStandardDeviation = 0.0;

int j,k;
for(j = 0; j < 10; ++j)
{
theSum += elements array[j];
}

theMean = theSum/10;

for(k = 0; k < 10; ++k)
theStandardDeviation += pow(elements array[k] -
theMean, 2);

return sqrt(theStandardDeviation / 10);
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Case Study 6: Birthday Paradox

B Select Command Prompt EE < VR )

~
D:\Proiecte\Entropy>g++ -stdec++8x birthday.cpp -o birthday
D:\Proiecte\Entropy>birthday
The probability for 2 people from the same room to share the same birthday is @.8€32
The probability for 3 people from the same room to share the same birthday is e.ee9
The probability for 4 people from the same room to share the same birthday is @.8186
The probability for S people from the same rcom to share the same birthday is  @.825
The probability for 6 people from the same room to share the same birthday is @.8388
The probability for 7 people from the same room to share the same birthday is @.8568
The probability for 8 pecple from the same room to share the same birthday is @.8742
The probability for 9 people from the same room to share the same birthday is  ©.8942
The probability for 18 people from the same room to share the same birthday is @.1166
The probability for 11 people from the same room to share the same birthday is ©.1422
The probability for 12 people from the same room to share the same birthday is ©.1786867
The probability for 13 people from the same room to share the same birthday is @.196867
The probability for 14 people from the same room to share the same birthday is .227467
The probability for 15 people from the same room to share the same birthday is ©.248333
The probability for 16 people from the same room to share the same birthday is @.288933
The probability for 17 people from the same room to share the same birthday is @.317@67
The probability for 18 people from the same room to share the same birthday is @.341
The probability for 19 people from the same room to share the same birthday is @.3818
The probability for 28 people from the same room to share the same birthday is @.4182
The probability for 21 people from the same room to share the same birthday is @.439
The probability for 22 people from the same room to share the same birthday is ©.4726
The probability for 23 people from the same room to share the same birthday is @.583733
The probability for 24 people from the same room to share the same birthday is ©.548533
The probability for 25 people from the same room to share the same birthday is ©.568867
The probability for 26 people from the same room to share the same birthday is @.594533
The probability for 27 people from the same room to share the same birthday is ©.625467
The probability for 28 people from the same room to share the same birthday is @.649467
The probability for 29 people from the same room to share the same birthday is @.6884
The probability for 30 people from the same room to share the same birthday is @.7182
The probability for 31 people from the same room to share the same birthday is @.738133
The probability for 32 people from the same room to share the same birthday is ©.750133
The probability for 33 people from the same room to share the same birthday is @.7726
The probability for 34 people from the same room to share the same birthday is ©.7948
The probability for 35 people from the same room to share the same birthday is @.820133
The probability for 36 people from the same room to share the same birthday is @.829533
The probability for 37 people from the same room to share the same birthday is ©.8468
The probability for 38 people from the same room to share the same birthday is @.868867
The probability for 39 people from the same room to share the same birthday is @.875333
The probability for 4@ people from the same room to share the same birthday is ©.889267
The probability for 41 people from the same room to share the same birthday is ©.9864
The probability for 42 people from the same room to share the same birthday is @.912867
The probability for 43 people from the same room to share the same birthday is @.9222
The probability for 44 people from the same room to share the same birthday is ©.934333
D:\Proiecte\Entropy>,

~

Figure 3-6. Output of the birthday computation

Listing 3-6. Source Code

#include <ctime>
#include <cstdlib>
#include <iostream>

using namespace std;

int main(int argc, const char *argv[])

{

const int processes = 15000;
short int no_of birthdays[365];
int processesWithSuccess;
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bool IsSharedBirthday;

//** we will time(NULL) as seed to be used for the
//** pseudo-random number generator srand()
srand(time(NULL));

for (int no_of people=2;no of people<4s;
++no_of _people)
{
processesWithSuccess = 0;
for (int i = 0; i < processes; ++i)
{
//** all birthdays will be set to 0
for (int j=0;j<365;n0 of birthdays[j++] = 0);
IsSharedBirthday = false;
for (int j = 0; j < no_of people; ++j)
{
//** if our given birthday is shared (this
//** means that is assigned for more than one
//** person) this will be a shared birthday
//** and we will need to stop verifying.
if (++no_of birthdays[rand() % 365] > 1){
IsSharedBirthday = true;
break;

}

if (IsSharedBirthday) ++processesWithSuccess;

}

cout << "The probability for " << no_of_people << "people from the
same room to share the same birthday is \t"<<(float(processesWithSucc
ess)/ float(processes))<<endl;

}

return 0;
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Case Study 7: (Extended) Euclidean Algorithm

E¥ Command Prompt - O X

D:\Proiecte\Entropy>g++ -std=c++0x euclid.cpp -o euclid

D:\Proiecte\Entropy>euclid
Euclid GCD(10, 15) = 5
Euclid GCD(35, 10) = 5
EuclidGCD(31, 2) = 1

D:\Proiecte\Entropy>

Figure 3-7. Output of the Euclidean Algorithm

Listing 3-7. Source Code

//** NOTE: bits/stdc++ does not represent

//** a standard header file of GNU C++ library.
//** If the code will be compiled with other
//** compilers than GCC it will fail
#include<stdio.h>

using namespace std;

//** the function will compute
//** the GCD for two number
int g(int x, int y) {

if (x == 0)
return y;
return g(y % x, x);
}
int main()
{

int x = 10, y = 15;
cout << "Euclid GCD(" << x << ", "
<Ky << ") ="<<glx,y)
<< endl;
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x = 35, y = 10;
cout << "Euclid GCD(" << x << ", "

Ky <<")="<<g(xy)
<< endl;
X =31,y = 2;
cout << " EuclidGCD(" << x << ", "

Ky ") =" cglxy)
<< endl;
return 0;

BE¥ Command Prompt — O

D:\Proiecte\Entropy>g++ -std=c++0x euclide extended.cpp -o euclid extended

D:\Proiecte\Entropy>euclid_extended
GCD(35, 15) = 5

D:\Proiecte\Entropy>

Figure 3-8. Output of the extended Euclidean algorithm

Listing 3-8. Source Code

#include <bits/stdc++.h>
using namespace std;

//** computing extended euclidean algorithm
int g e(int x, int y, int *w, int *z)
{
//** this is the basic or ideal case
if (x == 0)
{
*W = 0;
*z = 1;

return y;
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//** variables for storing the results
//** for the recursive call

int a1, bi1;

int g = g e(y%x, x, 8a1, &b1);

//** with help of the recursive call
//** update a and b with the results

*w = b1l - (y/x) * ai;
*z = a1,
return g;

}

// Driver Code

int main()

{
int a, b, w = 35, y = 15;
int g = g e(w, y, &a, &b);
cout << "g e(" <« w<< ", "y ") =" << g << endl;
return O;

}

Case Study 8: Computing the Multiplicative Inverse
Under Modulo g

BN Command Prompt - O X

~
D:\Proiecte\Entropy>g++ -std=c++8x modulo_multiplicative_inversel.cpp -o modulo_multiplicative_inversel

D:\Proiecte\Entropy>modulo_multiplicative_inversel
4
D:\Proiecte\Entropy> -

W

Figure 3-9. Output of the modular multiplicative inverse (a basic and tricky form
of the implementation)
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Listing 3-9. Code for Computing the Modular Multiplicative Inverse (Tricky
Method)

#include<iostream>
using namespace std;

//** this represents the basic method or tricky method
//** for finding modulo multiplicative inverse of

//** x under modulo m

int modulo inverse(int x, int m)

{
X = X%m;
for (int y=1; y<m; y++)
if ((x*y) % m == 1)
return y;
}
int main()
{
int x = 3, m = 11;
cout << modulo_inverse(x, m);
return O;
}
B8 Command Prompt - o X

~
D:\Proiecte\Entropy>g++ -std=c++8x modulo_multiplicative_inverse2.cpp -o modulo_multiplicative_inverse2

D:\Proiecte\Entropy>modulo_multiplicative_inverse2
The modular multiplicative inverse is 4
D:\Proiecte\Entropy>_

Figure 3-10. Output of the modular multiplicative inverse (when the number is
coprime)

Listing 3-10. Source Code

#include<iostream>
using namespace std;

//** function for computing extended euclidean algorithm
int gcd e(int x, int y, int *w, int *z);
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void modulo inverse(int h, int modulo)

{

}

int 1, j;
int g = gcd e(h, modulo, &i, &j);
if (g !'=1)

cout << "There is no inverse.";
else
{

//** we add the modulo in

//** order to handle negative i

int result = (i%modulo + modulo) % modulo;

cout << "The modular multiplicative inverse is "
result;

//** we will compute the extended euclidean algorithm
int gcd e(int h, int k, int *w, int *z) {

//** the "happy" case

if (h == 0){
*w =0, *z = 1;
return k; }

//** storing results of our recurive invoke
int a1, bi; //** x1=a1, yi=b1l
int g = gcd e(k%h, h, &a1, 8&b1);

//** with recursive invocation results
//** we will update x and y

*w = bl - (k/h) * a1;

*z = al;

return g;
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int main()

{
int x = 3, modulo = 11;
modulo_inverse(x, modulo);
return O;

Case Study 9: Chinese Remainder Theorem

B Command Prompt - a X

D:\Proiecte\Entropy>g++ -std=c++0x crt.cpp -0 crt ~
D:\Proiecte\Entropy>crt

x is 11
D:\Proiecte\Entropy>

Figure 3-11. Ouput for the Chinese Remainder Theorem

Listing 3-11. Source Code
#include<iostream>
using namespace std;

int inverse(int x, int modulo)

{

int modulo0 = modulo, k, quotient;
int a0 = 0, a1 = 1;

if (modulo == 1)
return 0;

//** we will apply extended euclidean algorithm
while (x > 1)

{

quotient = x / modulo;
k = modulo;

//** modulo represents the remainder
//** continue with the process same as
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//** euclid's algorithm
modulo = x%modulo, x=k;

k = ao;
a0 = al - quotient * ao;

al = k;

}

//** make a1 positive
if (a1 < 0)
al += moduloo;

return ai;

lookForMinX(int numbers[], int remainders[], int 1)

//** computing the product for all the numbers
int product = 1;
for (int j = 0; j < 1; j++)

product *= numbers[j];

//*¥* we initialize the result with o
int result = 0;

//** apply the formula mentioned above
for (int j = 0; j < 1; j++)
{

int pp = product / numbers[j];
result += remainders[j] * inverse(pp, numbers[j]) * pp;

}

return result % product;

main(void) {

int numbers[] = {3, 4, 5};

int remainders[] = {2, 3, 1};

int k = sizeof(numbers)/sizeof(numbers[0]);
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cout << "x is
return O;

<< lookForMinX(numbers, remainders, k);

Case Study 10: The Legendre Symbol

B Command Prompt - O X

D:\Proiecte\Entropy>g++ -std=c++14 legendre.cpp -o legendre

D:\Proiecte\Entropy>legendre
Pe(-1) =
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Figure 3-12. Output of the Legendre symbol
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The source code for the implementation of the Legendre symbol is structured in two
files:

o legendre.cpp (see Listing 3-12)
o legendre.h (see Listing 3-13)

To compile the source code, the following command needs to be run:

g++ -std=c++2a legendre.cpp -o legendre

Listing 3-12. Source Code (legendre.cpp)

#include <iostream>
#include "legendre.h"

using namespace std ;
using namespace LegendreStorage::Legendre ;

int main()

{
double p n;

cout.precision(5) ;
for (unsigned int v = 0 ; v <= 5 ; v++)

{
for (double b = -1.0 ; b <=1.0; b =b + 0.1)
{
p_n = Polynom n<double>(v, b) ;
cout << "P" << v << "("<<b<<")="<<pn<<end ;
}
cout << endl ;
}
return O ;
}
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Listing 3-13. Source Code for the Legendre Symbol (legendre.h)

#ifndef _ LEGENDRESYMBOL H
#define _ LEGENDRESYMBOL H

namespace LegendreStorage {
namespace Legendre{
//** when n=0
template <class T> inline auto Polynomo(const T& x){
return static_cast<T>(1);

}

//** when n=1
template <class T> inline auto Polynomi(const T& x){
return x;

}

//** when n=2
template <class T> inline auto Polynom2(const T& x){
return ((static_cast<T>(3)*x*x) -
static_cast<T>(1)) / static_cast<T>(2);

}

//** polynom(x)
template <class T> inline auto Polynom n(unsigned int h,
const T& y)
{
switch(h){
case 0:
return Polynomo<T>(y);

case 1:
return Polynomi<T>(y);

case 2:
return Polynom2<T>(y);

default:
break;}
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auto polynom_1(Polynom2<T>(y));
auto polynom_2(Polynomi<T>(y));
T polynom;

for (auto a=3u; a<=h; ++a){
polynom = ((static cast<T>((2 * a) - 1)) * y *
polynom 1
- (static_cast<T>(a - 1) * polynom 2)) /
static_cast<T>(a);

polynom 2
polynom 1

polynom 1;
polynom; }

return polynom;  }}}
#endif

Conclusion

This chapter discussed the importance of some mathematical tools that are used in
most modern cryptography algorithms. We showed how they can be implemented and
we explained the important steps of the algorithms. We also covered the important
aspects of mathematical foundations, such as the probability theory, information theory,
number theory, and finite fields.

For each mathematical foundation, we presented the necessary equations and
mathematical expressions that are used in the implementation of the algorithms. Each
equation or mathematical expression was demonstrated through a software application
implemented in C++, entitled as a case study. Each case study demonstrated the skills
and knowledge required by you in order to develop secure and reliable code. By reaching
to the end of the chapter, you should now understand of the important notions and
terms, the programming concepts and algorithms used, both theoretical and practical,
and how to move from theory to practice in a very short time.
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CHAPTER 4

Large Integer Arithmetic

This chapter will cover the arithmetic operations and explain how to work with large
integers. Some cryptographic algorithms require big integers that don’t fit within the
normal size of variables, such as int. We will give a quick overview of big integers and
some of the libraries that are used to work with them.

In implementing complex cryptography algorithms, the operations with large
integers can be very difficult to perform. The limitations can be due to hardware
equipment (e.g. processor, RAM memory) or programming languages.

In C/C++, an integer is represented as 32 bits. Out of the 32 bits, only 31 can be used
to represent positive integer arithmetic. In cryptography, we can deal with numbers that
are up to two billion, 2 - 10°.

Some compilers, such as GNU C++ or g++, offer a long long type. This provides the
ability to represent integers around 9 quintillion, 9 - 10'%. For most simple cryptographic
operations, this is good, but some cryptographic algorithms require more digits in
their integer representation. Let’s consider as an example the RSA (Rivest-Shamir-
Adleman) public-key encryption cryptosystem, which requires around 300 digits. If we
are dealing with specific real events and their probabilities, the computation often will
involve numbers that are very large. The output and achieving the main result might be
appropriate for C/C++. Compared with other complex computations, we will have very
large numbers.

As an interesting example, consider the chances of winning the lottery jackpot with
50!

((50-6)16!)

The resulting number is 15.890.700, so the chances for winning are 1/15.890.700. Using the

one ticket. The combinations are of 50 taken 6 at a time, ‘50 choose 6’ is

C/C++ programming language, the number 15.890.700 can be easily represented. However,
this could be tricky and we could easily fall for naiveté during the implementation of 50!
(computed using Calculator from Windows), which is 3.041409320171e+64 or 30,414,093,2
01,713,378,043,612,608,166,064,768,844,377,641,568,960,512,000,000,000,000
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Using C/C++ to represent that number will be almost impossible, even on a 64-bit
platform.

Big Integers

In the following sections, we will examine a couple of algorithms that can be used for
arithmetic operations using big integers. Remember, when working with cryptography
algorithms and security mechanisms, implementation can be very tricky when dealing
with big integers. Below, we will show a step-by-step methodology of how to work with
big numbers.

We will transform a standard integer using different computations in a big integer.
In order to accomplish this, we will write a function named transformIntToBigInt(A,
123). The function goal is to initialize A as A[0]=3, A[1]=2, A[2]=1, and zeroes for the
remaining positions as A[ 3, .. .N-1]. Listing 4-1 shows to accomplish the statement from
above by using a simple implementation in C/C++. The BASE represents the bit sign.

Listing 4-1. Transforming a Standard Integer Using Different Computations in a
Big Integer!

void transformIntToBigInt(int BigNo[], int number)
{

Int k;

int bitSign;

int BASE;

//** start indexing with 0 position
k = 0;

//**% if we still have something left

//** within the number, continue

while (number) {
//** insert the digit that is least significant
//** into BigNo[k] number

'The code is meant to be a sketch of a function that will transform a simple integer to a big
integer. The source code will not compile without a proper adjustment for a real cryptographic
application.
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BigNo[k++] = number % bitSign;

//** we don't need the least significant bit
number /= BASE;

}

//** complete the remain of the array with zeroes
while (k < N)
BigNo[k++] = 0;

The algorithm from Listing 4-1 has O(N) space and time.

LARGE INTEGER ARITHMETIC

Let’s continue our journey by looking at the possibility of adding 1 to a big int. This is

a very useful operation and it is quite frequently used in cryptography. The advantage is

that it is much easier than the full addition. See Listing 4-2.

Listing 4-2. Adding 1 to a big int?

void increment (int BigNo [])

{

Int i;
int N;
int BASE;

//* start indexing with least significant digit

i=0;
while (i < N)
{

//* increment the digit
BigNo[i]++;

//*¥* if it overflows
if (BigNo[i] == BASE)

*The code is meant to be a sketch of a function that will transform a simple integer to a big
integer. The source code will not compile without a proper adjustment for a real cryptographic
application.
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{
//** make it zero and move the index to next
BigNo[i] = 0;
it+;
}
else
//** else, we are done!
break;

The algorithm illustrated in Listing 4-2 takes O(n) for the worst case possible (just
imagine something like 999999999999999999999999....) and Q(1) for the best case. The
best case is when we don’t have any overflow on the least significant digit.

Moving forward, let’s look at a method for adding two big integers. In this case, we
want to add two big integers in two different arrays, BigNo1[0, ..., N-1]
and BigNo2[0,...,N-1]. The output result will be saved in another array,
BigNo3[o0,...,N-1]. The algorithm is quite basic; there is nothing fancy about it.

See Listing 4-3.

Listing 4-3. Addition Algorithm?®

void addition(int BigNoi1[], int BigNo2[], int BigNo3[])
{

Int j, overflowCarry, sum;
int carry, N, BASE;

//** There is no need to carry yet
carry = 0;

//** move from the least to the most significant digit
for (j=0; j<N; j++)

3The code is meant to be a sketch of a function that will transform a simple integer to a big
integer. The source code will not compile without a proper adjustment for a real cryptographic
application.
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//** the digit from j'th position of BigNo3[]

//** represents the sum of j'th digits of

//** BigNo1[] and BigNo2[] plus the overvflow carry
sum = BigNo1[j] + BigNo2[j] + overflowCarry;

//**% if the sum will go out of the base then

//** we will find ourself in an overflow situation
if (sum >= BASE)

{

carry = 1;

//** adjust in such way that
//** the sum will fit within a digit
sum -= BASE;
}
else
//** otherwise no carryOverflow
carry = 0;

//** add the result in the same sum variable
BigNo3[j] = sum;
}

//** if we are getting to the
//** end we can expect an overflow
if (carry)
printf ("There is an overflow in the addition!\n");

Let’s continue with multiplication. We will use a basic method to multiply two large
numbers, X and Y, multiplying each digit of X with each digit of Y, so the output will be a
partial product. The output result will be shifted to the left for every new digit. Function
multiplyingOneDigit will multiply an entire big integer with a single digit. The result
will be placed in a new large integer. Function left_shifting will shift the number to
the left a certain number of spaces. It will be multiplied using b’, where b is base and
i represents the numbers of spaces. Let’s have a quick look at the algorithm, which is
shown in Listing 4-4.
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Listing 4-4. Multiplication*

void multiply (int BigInti[], int BigInt2[], int BigInt3[])

{
int length of integer;
int x, y, P[length of integer];

//** C will store the sum of
//** partial products. It's initially o.
transformIntToBigInt (BigInt3, 0);

//* for each digit in BigInti

for (x=0; x<length of integer; x++)

{
//** multiply BigInt2 by digit [x]
multiplyUsingOneDigit (BigInt2, P, BigInti[x]);

//** left shifting the partial product with i bytes
leftShifting(P, x);

//** add the output result to the current sum
addResult(BigInt3, P, BigInt3);

Moving forward, we will examine a function whose purpose is to multiply by a single
digit. See Listing 4-5.

“The code is meant to be a sketch of a function that will transform a simple integer to a big
integer. The source code will not compile without a proper adjustment for a real cryptographic
application.
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Listing 4-5. Multiplying Using a Single Digit®

void multiplyUsingOneDigit (int BigOnei[], int BigOne2[],
int number) {
int k, carryOverflow;
int N, BASE;

//** there is nothing related to
//** extra overflow to be added at this moment
carryOverflow = 0;

//** for each digit, starting with least significant...

for (k=0; k<N; k++){
//7** multiply the digit by number,
//** putting the result in BigOne2
BigOne2[k] = number * BigOne1[k];

//** adding extra any overflow that is taking
//** place starting with the last digit
BigOne2[k] += carryOverflow;

//** product is too big to fit in a digit
if (BigOne2[k] >= BASE) {
//** handle the overflow
carryOverflow = BigOne2[k] / BASE;
BigOne2[k] %= BASE;
}
else
//** no overflow
carryOverflow = 0;
}
if (carryOverflow)
printf ("During the multiplication
we experienced an overflow!\n");

*The code is meant to be a sketch of a function that will transform a simple integer to a big integer.
The source code will not compile without a proper adjustment for a real cryptographic application.
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We will continue with a functional that will shift to the left a specific number of
spaces, as shown in Listing 4-6.

Listing 4-6. Shifting to the Left a Specific Number of Spaces®

void leftShifting (int BigInti[], int number) {
int i;
//** moving starting from left to right,
//** we will move anything with left n spaces
for (i=N-1; i>= number; i--)
BigInt1[i] = BigInti[i- number];

//** complete the last n digits with zeros
while (i »= 0) BigInti[i--] = 0;

Big Integer Libraries

There are several libraries and frameworks that deal with high numbers. For some,
the development process was suspended, but they are still used in cryptography
applications.

The libraries for working with big integers are as follows:

e Matt McCutchen’ proposed a very easy-to-use C++ library for
calculations on big integers [1]. The code has very good explanations
and it is easy to follow. The results obtained in symmetric and
asymmetric cryptography algorithms were promising. Most of the
results were compared with other tools for reference and checking,
such as CryptTool.?

%The code is meant to be a sketch of a function that will transform a simple integer to a big
integer. The source code will not compile without a proper adjustment for a real cryptographic
application.

“Matt McCutchen'’s web site, https://mattmccutchen.net/

8CrypTool, www.cryptool.org/en/
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o L3HARRIS Geospatial Solutions offers the Big Integer Class [2],
which is another library that is fast on computations.’

e Boost Library' is another strong library used to achieve tasks
based on linear algebra, pseudorandom number generation,
multithreading, image processing, regular expressions, and unit
testing. The library has an impressive set of independent libraries
(around 160) and the documentation is well structured and quite
easy to follow and use [3].

e GMP Library (GNU Multiple Precision Arithmetic Library) is another
free library that can be used for random precision arithmetic.' It
offers support for operations based on signed integers, rational
numbers, and floating point numbers (see Chapter 6 for more
details). The only limitation of the library involves the available
memory. The limits are 2°* — 1 bits on 32-bit systems and 2°” — 1 bits
on 64-bit systems. The main interface is for C/C++, but there is also
support for C#, .NET, and OCaml. (It can easily be ported for Haskell
as well. For more details, take a look at [4], [5], and [11]). Also, there
is important support for Ruby, PHP, Python, R, Perl, and the Wolfram
Language. The main goals and targets of the library are cryptography
software applications, security of the Internet, and algebra systems.

o LibBF Library [8] is used for working with floating point numbers
represented in base 2. The library is based and implemented on the
IEEE 754 standard [7]. The example provided on the library web page,
TinyP], is a very good example to show its power. This library will be
examined further in Chapter 6.

e Bignum C++ Library [9], TTMath, allows both personal and commercial
users to perform arithmetic operations. The types of integers supported
are big unsigned integers, big signed integers, and biplying g floating
point numbers. There is support for mathematical operations, such as
adding, subtracting, dividing, and multiplying. See Listing 4-7.

SL3HARRIS Geospatial Solutions, www. harrisgeospatial.com
"Boost Library, www.boost.org
""GMP Library, http://gmplib.org
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Listing 4-7. Using ttmath::UInt<>

The current example, which is described as well on [10], it will create an
object characterized by two words each. On a 32-bit platform the maximum
value that can be held is 232+*? — 1. Take note of the fact that the author
shows that variables can be intitialized with string or if we are dealing
with small values is using a standard type such as unsigned int.

#include <ttmath/ttmath.h>
#include <iostream>

int main()
{
ttmath::UInt<2> firstA, secondB, thirdC;
= "8765";
= 3456;
c = a*b;

std::cout << thirdC << std::endl;
<>

Conclusion

The chapter discussed the general representation of big integers and their operations.
We analyzed the most important big integer libraries, highlighting the advantages of the
libraries for you when you are setting up an environment for developing cryptographic
algorithms.
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CHAPTER 5

Floating-Point Arithmetic

As discussed in the previous chapter, working with big integers is an abstract art, and
if the schemes are not implemented properly, the entire cryptographic algorithm or
scheme can lead to a real disaster.

This chapter is dedicated to floating-point arithmetic and its importance for

cryptography.

Why Floating-Point Arithmetic?

Floating-point arithmetic represents a special type of arithmetic which requires caution
due to the representations and methods of implementations. This type of arithmetic
can be observed in chaos-based cryptography or homomorphic encryption, which is
presented later in Chapter 14 and Chapter 12, respectively.

Computations using floating-point numbers can be found within systems that use
small and very large real numbers. The process must be very fast during the computations.

A floating point variable is a special type of variable that is able to hold real numbers,
such as 5420.0, — 4.213,0r 0.045634. The floating part means that the decimal point can
“float”

C++ offers different floating point data types, such as float, double, and long double.
As you know from C++ and integers, the language does not define any size for these
types. With modern architectures, most of the floating point representations are with
respect for the IEEE 754 standard for the binary representation format. According to
this standard, a float type has 4 bytes, a double has 8 bytes, and a long double has 8
bytes (same as the double), and it represents the 80-bit extended precision for the x86
architectures (by padding, we have 12 bytes or 16 bytes).

When you work with floating values, always make sure that you include at least one
decimal. This will help the compiler understand the difference between a floating-point
number and an integer. Actually, this is very important for cryptographers.
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int a{4}; //** 4 is an integer

double b{3.0}; //** 3.0 represents a floating point (with no
//** suffix - double type by default)

float c{6.0f}; //** 6.0 represents a floating point (f is the

//** suffix which means a float type)

Displaying Floating Point Numbers

Let’s consider the example in Listing 5-1.

Listing 5-1. Displaying Common Float Numbers
#include <iostream>
using namespace std;

int main()

{

cout << 5.0 << endl;
cout << 6.7f << endl;
cout << 9876543.21 << endl;

return 0;

The output is shown in Figure 5-1.

B D:\Proiecte\Floating\Debug\Floating.exe — 0O X

5
6.7
9.87654e+006

Terminated with return code ©
Press any key to continue ...

Figure 5-1. The output of common float numbers
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By looking on the output of the program, you can observe that in the first case, the
output is 5 but the source code shows 5.0. This is happening because the fractional part
is equal to 0. In the second case, the number printed is identical to the one from the
source code. In the third case, the number is displayed using scientific notation, which is
an important asset for cryptography algorithms.

The Range of Floating Point Numbers

Let’s have a look at the IEEE 754 representation and consider the following sizes with
their range and precision. See Table 5-1.

Table 5-1. IEEE 754 Standard Representation

Size Range Precision

4 bytes +1.18 x 10-% fo + 3.4 x 10% 6-9 are the most important digits.
Usually around 7 digits.

8 bytes +2.23 x 107%% fo + 1.80 x 1038 15-18 are most important digits.

Usually around 16 digits.

80-bits (usually using +3.36 x 1042 fo + 1.18 x 10*%2  18-21 are most important digits.
12 or 16 bytes)

16 bytes +3.36 x 1072 fo + 1.18 x 10%%2  33-36 are most important digits.

The 80-bit floating point on today’s processors is implemented using 12 or 16 bytes.
The processors can handle this size easily.

Floating Point Precision

Let’s consider the following example represented by the fraction 1 . The decimal
representation is 0.3333333... with an infinity of 3s. 3

Using a computer, a number with an infinite length would require infinite memory
to store it. This limitation of the memory restricts the storage of a floating point number
to a specific number of important digits. A floating point number and its precision
define how many important digits can be represented without any information loss.
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In cryptography, if we are outputting a floating point number, cout has an implicit
precision of 6. In Figure 5-2, you can see how cout in Listing 5-2 truncates the values to
six digits.

Listing 5-2. Representation of Floating Point Precision
#include <iostream>

using namespace std;

int main()

{
cout << 7.56756767f << endl;
cout << 765.657667f << endl;
cout << 345543.564f << endl;
cout << 9976544.43f << endl;
cout << 0.00043534345f << endl;

return 0;

# ' D:\Proiecte\Floating\Debug\Floating.exe - O X

987.654 A
987654

9.87654e+006
9.87654e-005

Terminated with return code @
Press any key to continue ...

Figure 5-2. Output of floating point precision

Remember that each of the cases from above will have only six important digits.

Note the fact that with std: : cout in some of the cases the output will be represented
using scientific notation. According to the compiler used, the exponent will usually be
padded within a minimum number of digits. The number of digits for the exponent
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that are displayed is based on the compiler used. For example, Visual Studio uses three
and other compilers use two (they are implemented according to C99 instructions and
standards).

The number of digits that represents floating point number and its precision are
dependent on both the size and the specific value that is stored. The float values are
represented with 6 and 9 digits as precision, with most values having a minimum of
7 important digits. The double values are represented with 15 and 18 digits as precision.
Long double values are represented with at least a precision of 15 or 33 important digits,
which are dependent on how the bytes are occupied.

The code in Listing 5-3 overrides the default precision that cout or std: : cout
displays by using the setprecision() function. The setprecision() function is defined
within the iomanip header. See Figure 5-3 for the output.

Listing 5-3. Default Precision

#include <iostream>
#include <iomanip>

using namespace std;

int main()

{

std::cout << std::setprecision(16);
std::cout << 3.333333333333333333333333333333333f <<endl;
std::cout << 3.333333333333333333333333333333333 << endl;

return O;

# ' D:\Proiecte\Floating\Debug\Floating.exe = O X

3.333333253860474 ~
3.333333333333333

Terminated with return code @
Press any key to continue ...

Figure 5-3. Overriding the default precision
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In the above example, we set the precision to 16 digits. Each of the numbers is shown
with a precision of 16 digits. The issues raised by the precision will not just impact the
fractional number; they will impact any number that has multiple important digits.

Next Level for Floating-Point Arithmetic

In Chapter 12, we will introduce a complex type of encryption. Homomorphic
encryption is a special type of encryption that is used as a professional technology for
privacy preserving and it outsources storage and computation. This type of encryption
allows data to be encrypted and outsourced to commercial (or public) environments
for processing purposes, all while the data are encrypted. Homomorphic encryption

is derived from ring learning with errors (see Chapter 13) and related to private set
intersection [1].

Moving on to complex cryptosystems, floating-point representation represents the
core of the encryption/decryption mechanisms, finding the proper way to approximate a
real number in such a way as to support a compromise between range and precision.

As mentioned, the “floating” term means that a number’s decimal point can float.
This means that it can be set anywhere related to the important digits of the number.
To be more exactly, when dealing with complex cryptosystems, such as homomorphic
encryption, floating-point number a can be shown as four integers, such as

a=+dn’"’

where n represents the base, frepresents the exponent, j represents the precision, and d
represents the important or significand that must satisfy the following relation:

0o<d<n’ -1

C++ offers floating-point manipulation with the functions fmod, remainder, and
remquo. These functions can be found within the cmath header file. Starting with
C++11, these basic functions are used for handling simple mathematical computations
related to floating point numbers that are necessary for common programming and
for cryptography (low and simple concepts). For advanced cryptography algorithms,
the functions are quite limited and they don’t provide the necessary equipment for a
cryptographer. To achieve complex computations with big real numbers, you can use
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professional libraries such as Boost Multiprecision Library, TTMath, LibBE, GNU Multi-
Precision Library, and more. They will help you achieve complex tasks with complex
cryptosystems.

Conclusions

This chapter discussed the general representations of floating point numbers and how
they are used in complex cryptosystems. We explained the importance of floating-
point arithmetic for complex cryptosystems, such as homomorphic encryption, chaos-
based cryptography, lattice-based cryptography or ring learning with errors. Without

a proper understanding of floating-point arithmetic, advanced cryptosystems cannot
be implemented properly. A wrong implementation can lead to a huge disaster for a
commercial cloud computing or a big data environment.
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CHAPTER 6

New Features in C++20

In C++20, new features have been introduced. These new features will impact how
the code is written by increasing the elegance, reliability, and security metrics.
Cryptographers and information security engineers will find in these features new
challenges and interesting concepts that can be incorporated in the source code of their
implementations. In this chapter, we will cover the most important features and how
they can be used in order to improve code for cryptographic applications.

The new features of C++20 are divided in three categories: language features, library
Jeatures, and headers features. We will examine most of the features from a cryptography
and cryptanalysis point of view and we will present how they can be used in the
implementation of cryptographic algorithms.

Feature Testing

According to the standard proposals, C++20 offers new features for testing by defining
a set of macros specific to the preprocessor that corresponds to the C++ language. In
the following sections, we will discuss two important features that can be used in the
process of cryptographic algorithm implementation. These two features will help you
to take control of the memory and how the cryptographic structures and operations are
represented and designed.

carries_dependency

Although carries_dependency was introduced in C++11, it’'s worth a mention because
itis useful in secure applications. In cryptography, working with memory can be a hard
task in each of the steps of the algorithm. With help of carries dependency we can skip
the limitations and guards for memory [1].
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Starting with C++20, the std: :memory order enumeration class structure is as
follows [1]:

enum class memory order: {

relaxed, consume, acquire, release, acq_rel, seq_cst
};
inline constexpr memory order memory order relaxed =
memory_order::relaxed;
inline constexpr memory order memory order consume =
memory_order::consume;
inline constexpr memory order memory order acquire =
memory order::acquire;
inline constexpr memory order memory order release =
memory_order::release;
inline constexpr memory order memory order acq rel =
memory order::acq rel;
inline constexpr memory order memory order seq cst =
memory order::seq_cst;

std: :memory_order specifies how the memory is accessed, based on the most
known atomic operations.

As an example, let’s consider amemory_order: :relaxed inline instruction and look
at how it can be used. As a warning, you should use it with caution because, according
to the official documentation, “there are no synchronization or ordering constraints
imposed on other reads or writes; only this operation’s atomicity is guaranteed.”* This
is very useful for complex cryptography algorithms and security schemes, such as
searchable encryption, homomorphic encryption, or cryptosystems based on elliptic-
curve mathematics. In [1] there is a set of examples meant to explain how to work with
the memory using memory order. The first parameter of fetch_add represents the type of
value accepted. This is essential if you don’t need any synchronization between reading
or writing operations.

std::atomic<int> counter = {0}
counter.fetch add(1, std::memory order relaxed)

'https://en.cppreference.com/w/cpp/atomic/memory order
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The constants memory order relaxed, memory order consume, and memory order
release are the ones most often used for the memory workload done by cryptographic
implementations. It is very important to understand their meaning and how to work with
them.

o memory order relaxed: It means that there is no synchronization for
reading or writing operations.

o memory order consume: Cryptographic operations that use this
constant are making a consume operation for the referred memory
location.

o memory order release: Noreading or writing within the current
thread are not allowed for reordering.

In the next example, you can see how std: :memory order release is used when
you want to make a release on the memory for a variable. Note that in the example the
cryptoKey variable represent a general case of storing a cryptographic key (public or
private key). In this case, at any point of algorithm the key can be changed once it is
released.

std::string* cryptoKey = new std::string("passkey");
ptr.store(p, std::memory order release)

no_unique_address

The data member that is preceded by no_unique_address does not need to have an
address that is different from all other data members of its class [2].

In the following example, you can see that there is an empty class, CryptographyOps.
Following this class are two more classes, Encryption and Decryption. In the
Encryption class, you can see Empty CryptographyOps, which means that the size must
be atleast 1 even if the type is an empty class, such as in this case. This is necessary in
order to guarantee that the distinct objects and their addresses with the same type are
always different. In the second class, Decryption, youadd [[no_unique address]]in
front of the CryptographyOps class, which will make sure that a distinct address will not
be provided.
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struct CryptographyOps {}; // empty class

struct Encryption {

int i;

CryptographyOps CryptoOps;
}s

struct Decryption {

int i;

[[no_unique address]] CryptographyOps CryptoOps;
}s

New Headers in C++20

In this section, we will cover the most important headers in C++20. They are meant to
help to improve the development process in the field of cryptography.

<concepts> Header

This new C++20 concept is a part of the concepts library. The concepts library contains
fundamental concepts that can be used with the goal of performing compile-time
validation. The validation is done with respect for the arguments of the templates and
classes. As a second purpose, they realize the dispatching process on the properties of
the types.

The header is structured in different concept categories, such as concepts related to
the language core, concepts for comparisons, concepts related to the objects and how
they are structured, and callable concepts.

Core Language Concepts

Most of the concepts related to the core language are related to the objects and types. In
cryptography, these are concepts such as std: : floating point, std::destructible,
std::integral, std::signed integral, and std::unsigned_integral. In the following
sections, we'll examine some examples to show how to work with these concepts in
cryptography. Most of these concepts can be used in a cryptography implementation

to check types and to make sure that you are on the same page with the types of classes,
objects, structures, variables etc.
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std::floating_point
Let’s consider the following class declaration:

//** the class is a general class for working with cryptographic
//** operations related to floating numbers.
class FloatingClassExample {};

If we invoke
std::cout << std::floating point<FloatingClassExample>::value;
the output will be false. But if we have
std::cout << std::floating point<float>::value;

the output will be true.

std::destructible

In cryptography, once we reach the end of an operation (e.g. encryption or decryption) it
is recommended that all functions, structures, classes, objects, and types be destroyed.

To achieve the destruction process using std: :destructible, we just need to pass
the type to destructible<> as follows:

class AESClass {};
std::cout << std::destructible<AESClass>::value;

The output of this will be true.

std::integral, std::signed_integral, std::unsigned_integral

The concepts are used in the same way as the examples listed above. Let’s consider the
following type tests:

std::cout << integral<AESClass>::value;
std::cout << integral<int>::value;
std::cout << integral<float>::value;

The output will be false, true, and false. For signed integral and unsigned_
integral, it’s the same.
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Comparison Concepts

In C++20, there are four comparison concepts, equality comparable, equality
comparable with, totally ordered, and totally ordered with [4]. They work with
comparison operators such as ==, =, <, >, <=, >=over the specified type. There is a
slight difference between the comparison concepts, despite the fact that both work with
the mentioned operators. The concept totally ordered is focused on the fact that the
results of the concepts are yielded with a strict total order on the type [3] and totally
ordered with<operand1, operand2> is focused on mixed operands, which yield the
results with a strict total order.

Object Concepts

The object concepts refer to the main operations with objects, such as moving,
swapping, and copying. There are four object concepts that work with operations on
objects: movable, copyable, semiregular, and regular. These concepts are quite useful in
cryptography, especially when dealing with complex cryptographic objects that must
be moved, copied, or swapped during their execution of interchange process between
different software infrastructures, operating systems, and software applications. In this
way, we can increase the security of the interoperability of the applications.

As an example, let’s have a quick look over the following:

template <class AESCrypto>

concept_movable =
std::is_object v<AESCrypto> &&
std: :move_constructible<AESCrypto> &&
std::assignable from<AESCrypto&, AESCrypto> &&
std: :swappable<AESCrypto>;

Callable Concepts

Firstly, let’s clear the fog around the callable term and define the callable concept as
being “something” that can be called, such as a function. Usually, it's object() or
object(arguments). What makes an object callable is the overload of the operator ()
function.

130



CHAPTER 6  NEW FEATURES IN C++20

With C++20, the following concepts are covered: invocable/regular_invocable,
predicate, relation, equivalence relation, and strict weak order.In
cryptography, we deal more with predicate and relation. Once these two concepts are
fully understood, the rest of the concepts are easy.

With the predicate concept, the arguments provided will produce a Boolean result.
Compared to the relation concept, we have the following example:

template<class AESCrypto, class Encryption, class Decryption>
concept relation=
std: :predicate<AESCrypto, Encryption, Decryption> &&
std::predicate<AESCrypto, Decryption, Decryption> &&
std: :predicate<AESCrypto, Encryption, Decryption> &&
std: :predicate<AESCrypto, Decryption, Encryption>;

As you can observe, according to relation<AESCrypto, Encryption, Decryption>
we have the fact the AESCrypto will define a binary relation in accordance with the set
of expressions characterized by the type and value that are encoded by Encryption or
Decryption.

<compare> Header

The <compare> header [5] deals with comparing operators, and it is a component of the
general utility library.

Starting with C++20, we have access through this header to powerful concepts
(three_way comparable and three way comparable with), to classes (partial
ordering, weak_ordering, and strong_ordering), and to customized point objects
(strong_order,weak_order, and partial order).

As you saw in the “Comparison Concepts” section, the mechanisms are the same. If
you are working with complex applications that are using threads and the data used and
transferred on those threads are sensitive, the sender and receiver could verify through
comparison functions and concepts if the integrity of the data was sent and received
properly. These functions extend the power of cryptography algorithms and give you a
free hand to create complex mechanisms for comparing and working with sensitive data
at both ends.

131



CHAPTER6  NEW FEATURES IN C++20

<format> Header

In cryptography, we deal with rules. We have rules for numbers representation, rules for
strings, rules for characters, mathematical rules on expressions, and so on.

The <format> header extends its capabilities in C++20 by bringing new insights
regarding how the formatting rules are defined and implemented. Although at the
moment of writing this book, the format header is not yet included in the C++ standard
library, it worth keeping it in mind for cryptography applications. Updates for the C++
libraries and features can be found at [6]

As an example, consider the program in Listing 6-1.

Listing 6-1. The <format> Header

#include <format>
#include <iostream>

//** let's define a wrapper for class AESCryptography
template<class AESCryptography>
struct Encryption {

AESCryptography value;

};
template<class AESCryptography, class CharAESCryptography>
struct
std: :formatter<Encryption<AESCryptography>,
CharAESCryptography>:
std: :formatter<AESCryptography, CharAESCryptography>
{
template<class FormatContext>
auto format(Encryption<AESCryptography>
encAESCrypto, FormatContextd theFormatContext)
{
return std::formatter<AESCryptography,
CharAESCryptography>::format
(encAESCrypto.value, theFormatContext);
}
};
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int main()
{
Encryption<int> encrypted = { 32 };
std::cout << std::format("{:#x}", encrypted);

Conclusion

In this chapter, we discussed the most important features in C++20 and how they can
help professionals in the field of applied cryptography. We focused on the vital points
of the implementation processes of a cryptographic algorithm. The features included in
this chapter were designed to cover the main cryptographic operations with respect to
memory and type comparisons:

o Features for testing the preprocessors for the C++20 language

e Memory insights and how you can manipulate them more
professionally and elegantly

o Thecarries_dependency and no_unique_address concepts, which
are very useful for working with memory

o The <concepts>, <compare>, and <format> headers and their
strongest classes and functions, which can be used for dealing
with cryptographic mechanisms such as key generation operations,
encryption and decryption functions, and testing and validating

types
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CHAPTER 7

Secure Coding Guidelines

Vulnerabilities in software applications often result in high costs. Some organizations
pay more than $500,000 per security incident. To eliminate vulnerabilities from software
applications, developers should focus on secure coding and thus avoid deploying any
vulnerabilities in the production phase.

Writing secure source code is a difficult task. It is very important to understand the
implications of the code that is being written and to have a checklist with the “things”
that need to be checked. The checklist will help the developers pursue a fast verification
of their code for well-known security problems. Usually, the verification is done by a
security team and not by the software developers or engineers. A software developer
cannot be objective with their own code.

The idea of a checklist should start from the following concept: verify the source
code that will process data outside of its domain and take into consideration user input,
the network communication, the process of the binary files, receiving output from
database management systems or servers, etc.

When you work with a software application (desktop, web, or mobile), the idea that
the application is secure because it was developed by a well-known company is just a
myth. Don’t just trust and go on this path because most companies will end up spending
a huge amount of the budget on security incidents, maintenance, consultancy, and audit
sessions.

There are two environments in which a software application works and its behavior
is different in each environment. The software application that is under analysis and
the development process within the company represents its circle of trust (at least
most companies think in this way, and they enjoy considering their infrastructure very
resistant to security attacks). The behavior of the software application in that circle of
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trust represents the most critical environment in which an application can be developed
and tested. No developer, IT security officer, or software analyst should hack their own
code. This environment is the comfort zone. Once the application leaves that comfort
zone and enters the real environment, issues will start to take place. The trust boundary
is hard and easy at the same time to be drawn. To create a line between the comfort
zone and the real zone is not an easy task, especially if the application is running in a
virtualized infrastructure, the cloud, or a big data environment.

In the comfort zone, a security threat is represented by the malicious end user. The
malicious end user will aim to compromise the confidentiality and/or the integrity of the
software application. One of the interesting concepts proposed is software obfuscation.

Secure Coding Checklist

In this section, we will discuss and propose a secure coding checklist (it can be seen
as a procedure as well). Table 7-1 shows an example of such a checklist and it can be
developed as much as you want. The checklist contains minimal examples of items that
can be checked when code is written in C++, no matter which operating system the code
runs on. A frequent practice among developers is to suppress warnings, which is not
beneficial.

In the “CERT Coding Standards and Rules” section, we will discuss the most
important rules and list them in order so you can apply them to your process of
developing cryptographic algorithms. Each rule is well explained within the guide.
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Table 7-1. Example of a Secure Coding Checklist

No.# Item to be checked Description Yes/No Notes

1 Compiler warnings

Make sure that the compiler will output and a flag will be raised for receiving
notifications of the potential errors listed for the following items:

v Wall

v Wmissing-declarations
v Wmissing-prototypes
v Wredundant-decls

v Wshadow

v Wstrict-prototypes

v Wformat=2

For more flags with their definitions and actions, refer to the “GCC Options
to Request or Suppress Warnings” section [1]. It is very useful if complex
cryptographic algorithms and security schemes are being implemented.

2 Allocate enough memory for buffer memory when working with
strings.

Check the following functions if there is an upper limit for the destination buffer
when a copy process is done until *\o\" (NULL) is met. In order to avoid
this situation, the recommendation is to allocate enough memory space for the
destination buffer before the data is copied there.

v strcpy()
v strcat()
v sprint()
v scanf()
v gets()

(continued)
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Table 7-1. (continued)

No.# Item to be checked Description

Yes/No Notes

3 Check for direct breaks of system security.

Checking for untrusted input will lead to a direct breach of the application security.

With this step, you protect the application against malicious users and attackers
exploiting your program using metachars.

v system()

v popen()

v fork(2)

v exec(2)

v s_popen()

v HXproc_* [2]

4 Check for the wrong size of parameters and getting unexpected
results.

When complex programs are written, such as the implementation of SHA-256
from Chapter 2, Listing 2-1, assigning a wrong size to one of the parameters or
doing a wrong arithmetic operation can cause a serious pitfall and a fix should
immediately be provided. Make sure that the size allocated for the parameters

is the same size on the destination side. As a best practice, especially in
implementing cryptography algorithms, it is better to work with size t type. Be
type-safe and don’t create overflows.

v strncpy()
v strncat()
v snprintf()
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Table 7-1. (continued)

No.# Item to be checked Description Yes/No Notes

5 Check if too much memory is allocated.

Allocating too much memory and external parameters represents a certain part
of the size. If so, you are dealing with a wrong memory allocation and you will
experience a denial-of-service. To avoid this from happening, it is better to follow
the below criteria:

v malloc(), calloc(), alloca()

v/ No integer overflows

v/ Avoid arithmetical issues

v  Verification for any possible operation with untrusted integer that could
lead for an integer overlow.

6 Avoid wrong casts.

Avoid coding like below. The compiler will think that malloc will return an int,
which is totally incorrect. It will create a bug that can easily be exploited by
hackers.

char *a = malloc(10) - bad cast
class BaseClass {};
class DerivedClass: public BaseClass {};

BaseClass b; BaseClass* pb;
DerivedClass d; DerivedClass* pd;

//good cast
pb = dynamic_cast<BaseClass*>(8d);

//bad cast
pd = dynamic_cast<DerivedClass*>(8&b);

(continued)
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Table 7-1. (continued)

No.# Item to be checked Description Yes/No Notes

7 Avoid variable parameter lists.

When you are implementing security schemes based on strings, you may
experience a new type of problem, which security analysts or ethical hackers
enjoy playing with when performing tests. A simple test that is commonly used by
ethical hackers to check untrusted data is to check if a function allows a variable
as a list of parameters or arguments, such as printf(). The untrusted data
(created by an ethical hacker) is directly used as a string format and not as an
argument. Follow the below logic for any similar situations:

v Wrong way: snprintf(buffer, sizeof(buffer), the input_
of the user)
v/ Right way: snprintf(buffer, sizeof(buffer), "%s", the_
input_of the user)
8 Operations with files

When handling files during cryptographic operations, try to use mkstemp().

9 File permissions

Not everyone should have the ability to read or write from or to a file. In order to
create files with the correct permissions, make a habit of using unmask ().

v At the beginning of the file use unmask(077).

CERT Coding Standards

The CERT C++ Coding Standard was developed only for versions of the C++
programming language defined by the ISO/IEC 14882-2014 standard.

The coding standard is very well organized and it follows a certain structure:
identifiers, noncompliant code examples and compliant solutions, exceptions, risk
assessment, automated detection, related vulnerabilities, and related guidelines [7].

We will examine each item of the structure and we will explain the main objective
and purpose.
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Identifiers

Each identifier has three parts:

e A three-letter mnemonic that represents the section within the
standard

e A numeric value of two digits in the range of 00 to 99
o Thelanguage that is associated with it, which is represented as a
suffix (-CPP, -C, -J, -PL)
e -CPP: SEI CERT C++ Coding Standard [7]
e -C:SEI CERT C Coding Standard [8]
e -J: SEI CERT Oracle Coding Standard for Java [9]
e -PL: SEI CERT Perl Coding Standard [10]

The three-letter mnemonic is used to group related coding practices and to point out
which category a related coding belongs to.

Noncompliant Code Examples and Compliant Solutions

The examples of noncompliant code show the code that violates the guideline. It is very
important to keep in mind that they are only examples. The removing process of all
appearances of the example does not mean that the code we are analyzing is compliant
with the SEI CERT standard.

Exceptions

Exceptions are of an informative character and are not required to be followed. Any of
the rules can have a set of exceptions which provide details about the circumstances in
which the guideline is not necessary to be followed for ensuring the safety, security, or
reliability of the software.

As for any type of exception, it doesn’t matter the programming language: the
principle is the same. It’s necessary to pay extra attention to the exceptions and to catch
any possible exception and to learn from it. Don’t ignore them, and don’t think that a
programming language is perfect and doesn’t have any bugs or certain doors that can be
exploited.
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Risk Assessment

Each guideline from the CERT C++ Coding Standard has a risk assessment section.

The purpose of the risk assessment section is to provide software developers

with the potential consequences of not following or addressing a specific rule or
recommendation. The risk assessment looks like a metric and its main purpose is to help
the remediation process of the software applications and complex projects.

Each rule and recommendation has a priority. In order to assign a priority, it is
recommended to understand IEC 60812 [11]. The priority is evaluated and assigned
using a metric that is characterized by three types of analysis: failure mode, effects, and
criticality. Each rule also has a value that is assigned on a scale between 1 and 3, such as
severity, likelihood, and remediation cost (see Table 7-2).

Table 7-2. Assigning Values for Each Rule [7]

Severity: What are the consequences if the rule is ignored?

Value Meaning Examples of different vulnerabilities

1 Low Denial-of-service attack, unexpected termination

2 Medium Information disclosure without any intention will lead to the violation of the
data integrity.

3 High Running code randomly

Likelihood: Statistically speaking, what is the probability of a flaw being introduced in the code by
avoiding and ignoring the rule specifications and leading to a vulnerability that could be exploited by
a malicious user?

Value Definition

1 Unlikely
2 Probable
3 Likely

Remediation cost: What are the costs to follow and comply with the rule?

Value Definition  Detection Correction
1 High Manual Manual

2 Medium Automatic Manual

3 Low Automatic Automatic
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For each of the rules the values are multiplied together. The metric in Table 7-3
gives you a measure that can be useful for prioritizing the rules within the application.
The values are from 1 to 27. From all 27 values, only 10 different values occur and are
available in most of the cases: 1, 2, 3, 4, 6, 8, 9, 12, 18, and 27. Table 7-3 lists the possible
interpretations and meanings of the priorities and levels.

Table 7-3. Levels and Priorities [7]

Level Priorities Possible Interpretation

L1 12,18, 27 High severity, likely, inexpensive to fix

L2 6,8,9 Medium severity, portable, medium cost to fix
L3 1,2,3,4 Low severity, unlikely, expensive to repair

Automated Detection

The rules and recommendations have sections that describe the automated detection
process. The mentioned sections have a set of tools which can be used as analyzers to
help automatically diagnose any violations. The Secure Coding Validation Suite [12] can
be used to perform tests on the ability of analyzers to provide a diagnosis on a violation
of the rules specified with ISO/IEC TS 17961:2013 [14], which is related to the rules of the
SEI CERT C Coding Standard [13].

Related Guidelines

This section has a special slot when software applications are developed. According to
the standard, the “Related Guidelines” section contains links, technical specifications,
and guideline collections such as Information Technology - Programming Languages,
Their Environments and System Software Interfaces - C Secure Coding Rules

[14]; Information Technology - Programming Languages - Guidance to Avoiding
Vulnerabilities in Programming Languages through Language Selection and Use [15];
MISRA C++ 2008: Guidelines for the Use of the C++ Language in Critical Systems [16]; and
CWE IDs in MITRE’s Common Weakness Enumeration (CWE) [17]. [18]
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Rules

In the following sections, we will give a short overview of the main rules that strongly
apply to the implementation of cryptographic algorithms and security schemes using
C++20. It is best to follow these rules. Note that we will examine only six out the 10 rules.
All the explanations and examples are provided within the guide [19].

For some rules, there are also rules from the C programming language that apply
to C++. The following rules can be used within the procedure explained in the Secure
Coding Guidelines in Table 7-1.

The duty of any information security officer, security analyst, or ethical hacker is to
improve the code by following such a checklist. Further, the checklist also can be used
by developers as a guide when they are developing critical cryptographic algorithms.

It is recommended to do a code review on the sections of the algorithm that are quite
vulnerable and to make sure that the rules (Rules 1 through 7) are followed as much as
possible (see Tables 7-4 through 7-9).

Following these rules will give you as a security analyst or ethical hacker a certain
level of trust that the security mechanisms (cryptographic algorithms, security protocols,
security schemes, and other cryptographic primitives) have been implemented properly
and common vulnerabilities have been eliminated.

Rule 1 - Declarations and Initializations (DCL)

Table 7-4. Rule 1 - Declarations and Initializations [19]

Rule Title

DCL50-CPP Do not define a C-style variadic function.

DCL51-CPP Do not declare or define a reserved identifier.

DCL52-CPP Never qualify a reference type with const or volatile.

DCL53-CPP Do not write syntactically ambiguous declarations.

DCL54-CPP Overload allocation and deallocation functions as a pair in the same scope.
DCL55-CPP Avoid information leakage when passing a class object across a trust boundary.
DCL56-CPP Avoid cycles during initialization of static objects.

DCL57-CPP Do not let exceptions escape from destructors or deallocation functions.

(continued)
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Table 7-4. (continued)

Rule Title

DCL58-CPP Do not modify the standard namespaces.

DCL59-CPP Do not define an unnamed namespace in a header file.

DCL60-CPP Obey the one-definition rule.

DCL30-C Declare objects with appropriate storage durations.

DCL39-C Avoid information leakage when passing a structure across a trust boundary.

DCL40-C Do not create incompatible declarations of the same function or object.

Rule 2 - Expressions (EXP)

Table 7-5. Rule 2 - Expressions [19]

Rule Title

EXP50-CPP Do not depend on the order of evaluation for side effects.

EXP51-CPP Do not delete an array through a pointer of the incorrect type.

EXP52-CPP Do not rely on side effects in unevaluated operands.

EXP53-CPP Do not read uninitialized memory.

EXP54-CPP Do not access an object outside of its lifetime.

EXP55-CPP Do not access a cv-qualified object through a cv-unqualified type.

EXP56-CPP Do not call a function with a mismatched language linkage.

EXP57-CPP Do not cast or delete pointers to incomplete classes.

EXP58-CPP  Pass an object of the correct type to va_start.

EXP59-CPP  Use offsetof() on valid types and members.

EXP60-CPP Do not pass a nonstandard-layout type object across execution boundaries.

EXP61-CPP A lambda object must not outlive any of its reference captured objects.

EXP62-CPP Do not access the bits of an object representation that are not part of the object's
value representation.

EXP63-CPP Do not rely on the value of a moved-from object.
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Rule 3 - Integers (INT)

Table 7-6. Rule 3 - Integers [19]

Rule

Title

INT50-CPP Do not cast to an out-of-range enumeration value.

INT30-C
INT31-C
INT32-C
INT33-C
INT34-C

INT35-C
INT36-C

Ensure that unsigned integer operations do not wrap.

Ensure that integer conversions do not result in lost or misinterpreted data.

Ensure that operations on signed integers do not result in overflow.

Ensure that division and remainder operations do not result in divide-by-zero errors.

Do not shift an expression by a negative number of bits or by greater than or equal to
the number of bits that exist in the operand.

Do not call a function with a mismatched language linkage.

Converting a pointer to integer or integer to pointer

Rule 5 - Characters and Strings (STR)

Table 7-7. Rule 5 - Characters and Strings [19]

Title

STR50-CPP Guarantee that storage for strings has sufficient space for character data and the null

terminator.

STR51-CPP Do not attempt to create a std: :string from a null pointer.

STR52-CPP  Use valid references, pointers, and iterators to reference elements of a basic_string.

STR53-CPP Range check element access.

STR30-C
STR31-C

Do not attempt to modify string literals.

Guarantee that storage for strings has sufficient space for character data and the null
terminator.
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Table 7-7. (continued)
Rule Title
STR32-C Do not pass a non-null-terminated character sequence to a library function that

expects a string.

STR34-C  Cast characters to unsigned char before converting to larger integer sizes.

STR37-C  Arguments to character-handling functions must be representable as an unsigned char.
STR38-C Do not confuse narrow and wide character strings and functions.

Rule 6 - Memory Management (MEM)

Table 7-8. Rule 6 - Memory Management [19]

Rule Title

MEM50-CPP Do not access freed memory.

MEM51-CPP Properly deallocate dynamically allocated resources.

MEM52-CPP Detect and handle memory allocation errors.

MEM53-CPP Explicitly construct and destruct objects when manually managing object lifetime.
MEM54-CPP Provide placement new with properly aligned pointers to sufficient storage capacity.
MEM55-CPP Honor replacement dynamic storage management requirements.

MEM56-CPP Do not store an already-owned pointer value in an unrelated smart pointer.
MEM57-CPP  Avoid using default operator new for over-aligned types.

MEM30-C Do not access freed memory.

MEM31-C Free dynamically allocated memory when no longer needed.

MEM34-C Only free memory allocated dynamically.

MEM35-C Allocate sufficient memory for an object.

MEM36-C Do not modify the alignment of objects by calling realloc().
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Rule 7 - Input/Qutput (FI0)

Table 7-9. Rule 7 - Input/Output [19]

Rule Title

FIO50-CPP Do not alternately input and output from a file stream without an intervening
positioning call.

FIO51-CPP  Close files when they are no longer needed.

FIO30-C Exclude user input from format strings.

FI032-C Do not perform operations on devices that are only appropriate for files.
FI034-C Distinguish between characters read from a file and EOF or WEOF.

FI037-C Do not assume that fgets() or fgetws() returns a nonempty string when
successful.

FIO38-C Do not copy a FILE object.

FI039-C Do not alternately input and output from a stream without an intervening flush or
positioning call.

FI040-C Reset strings on fgets() or fgetws () failure.

Fl041-C Do not call getc(), putc(), getwc(), or putwc() with a stream argument that
has side effects.

FI042-C Close files when they are no longer needed.

FI044-C Only use values for fsetpos () that are returned from fgetpos ().
FI045-C Avoid TOCTOU race conditions while accessing files.

FlI046-C Do not access a closed file.

FlO47-C Use valid format strings.

Conclusion

In this chapter, you learned about rules and recommendations. You pursued a journey
through the most important security aspects that need to be taken into consideration in
the process of developing cryptographic algorithms and security schemes.
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Itis very important to understand the difference between a rule and a

recommendation. The general idea is that a rule has to follow a specific amount of

criteria compared to a recommendation, which is a suggestion for improving code

quality.

You now have enough knowledge to perform a security analysis of the source

code, create a secure coding checklist, filter those aspects that are vital for your

application, and instruct the developers on how to proceed when they are implementing

cryptographic algorithms and written related source code.
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CHAPTER 8

Cryptography Libraries
in C/C++20

The objective of this chapter is to provide a comprehensive list of C++ libraries that can
be used with success with the new features of C++20. This chapter is very useful when
you need to access a specific implementation of a particular functionality. You don’t
need to search different online resources and you have access to source code that you
can use and improve upon.

Overview of Cryptography Libraries

Table 8-1 lists the most important cryptography libraries. The selection was based on two
metrics: time execution and flexibility, and access to the source code based on open source
licenses. Having access to source code is very useful because you can compare your work
and algorithms to other algorithms and implementations and thereby improve your work.

Table 8-1. Main C/C++ Libraries

Library Title Developer/Industry Programming Language Open Source References
OpenSSL OpenSSL Project C X [1112][3]
Crypto++ Crypto C++ Project C++ X [71[8]
Botan Jack Lloyd C++ X [5]
Libcrypt GnuPC Commmunity C X [9][10]
GnuTLS Simon Josefsson C X [11][12]
Nikos Mavrogiannopoulos

Cryptlib Peter Gutmann C X [13]
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CHAPTER 8 CRYPTOGRAPHY LIBRARIES IN C/C++20

For each of the libraries we will introduce the best implementations of the
cryptographic primitives (such as key generation and exchange, elliptic-curve
cryptography, public key cryptography, hash functions, MAC algorithms, block
ciphers, etc.).

Hash Functions

Table 8-2 shows the cryptography libraries and their features within different hash
functions. In Chapter 2, we provided a simple and basic implementation of a SHA-256
hash function and you learned how to make an implementation of a hash function from
scratch.

Table 8-2. Existance of Hash Functions Within Cryptography Libraries

Library Title MD5 SHA-1 SHA-2 SHA-3 Whirlpool GOST BLAKE2

OpenSSL X X X X X X X
Crypto++ X X X X X X X
Botan X X X X X X X
Liberypt X X X X X X X
GnuTLS The library represents the implementation of TLS, SSL, and DTLS protocols.
Cryptlib X X X X X - -

In this section, we will randomly pick a hash function from a library (e.g. a
MD5 implementation from OpenSSL) and we will provide some comments on the
implementation. It is very important to mention that the implementation provided for
the MD5 hash function is already implemented in OpenSSL and this will be done with
respect for the original implementation from [4]. The first thing to do is download the
file openssl-1.1.1g.tar.gz and extract the content in order to have access to the source
code. Once it is extracted, navigate to the crypto folder following the path openssl-
1.1.1g\crypto. In this way, you will have access to the source code files of all the
cryptographic algorithms implemented within the library. See Figure 8-1.
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The OpenSSL FIPS Object Module 2.0 (FOM) is also available for download. It is no longer
receiving updates. It must be used in conjunction with a FIPS capable version of OpenSSL (1.0.2
series). A new FIPS module is currently in development.

KBytes Date

9306 __2020-Apr-23 13:53:10 0.
9571 2020-Apr-21 13:01:56 openssl-1.1.1g.tar.gz (SHA256) (PGP sign) (SHA1)

1457 2U1/-May-24 18:01:U1 openssl-hps-2Z.0.16.tar.gz (SHAZ56) (PGP sign) (SHA1)
1437 2017-May-24 18:01:01 openssl-fips-ecp-2.0.16.tar.gz (SHA256) (PGP sign) (SHA1)

Figure 8-1. Downloading the openssl-1.1.1g.tar.gz file with source code

MD5 Hash Function Overview

We picked this example because it is a simple algorithm so it’s easy to follow and to
understand. The implementation of MD5 contains three files (two C/C++ files and one
header file) and an ASM folder with three files written in the PERL language. The PERL
files are optimizations for four platforms, 586, x86, x64 and sparc. See Figure 8-2.

BE¥ Command Prompt - O X

~
C:\Users\Dapyx\Desktop>openssl md5 MD5FileToHash.txt
MD5(MDSFileToHash.txt)= d41d8cd98feeb204e9800998ecf8427e

C:\Users\Dapyx\Desktop>

Figure 8-2. Example of a MD5 hash in action for a file

Public Key Cryptography

Most of the libraries include implementations of different standards of PKCS (Public Key
Cryptography Standards) and they are well tested (see Table 8-3).
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Table 8-3. Existance of Public Key Cryptography Protocols Within Cryptography
Libraries

Library Title PKCS#1 PKCS#5 PKCS#8 PKCS#12 IEEE P1363  ASN.1

OpenSSL X X X X - X
Crypto++ X X X - X X
Botan X X X - X X
Libcrypt X X X X X X
Cryptlib X X X X - -

In order to use public key cryptography using OpenSSL, follow the below example
to see the workflow. Assume that there are two users, Alice and Bob, who communicate
with each other. The communication workflow is as follows.

Step 1. Alice generates a private key, alicePrivKey.pem with 2048 bits. See Figure 8-3.

openssl genrsa -out alicePrivKey.pem 2048

&Y Command Prompt o ] *

C:\Users\Dapyx\Desktop>openssl genrsa -out alicePrivKey.pem 248
Generating RSA private key, 2048 bit long modulus

s
e is 65537 (@x10001)

C:\Users\Dapyx\Desktop>_,

Figure 8-3. Generating a private key

Step 2. Alice extracts the public key alicePublicKey.pem and sends it to Bob. See
Figure 8-4.

openssl rsa -pubout -in alicePrivKey.pem -out alicePublicKey.pem
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Bl Command Prompt - O X

C:\Users\Dapyx\Desktop>openssl rsa -pubout -in alicePrivKey.pem -out alicePublicKey.pem
writing RSA key

C:\Users\Dapyx\Desktop>_

Figure 8-4. Extracting the public key

Step 3. Bob encrypts the message and sends BobMessageToAllice. txt to Alice.

openssl rsautl -encrypt -in cleartext -out encryptedWithAlicePubKey -inkey
alicePublicKey.pem -pubin

Step 4: Alice decrypts the message from Bob.

openssl rsautl -decrypt -in encryptedWithAlicePubKey -inkey alicePrivKey.pem

Elliptic-Curve Cryptography (ECC)

One of the most utilized key exchange protocols based on elliptic curves is ECDH
(Elliptic Curve Diffie-Hellman); see Table 8-4. The purpose of this protocol is to set a
shared secret key used in the encryption process without needing to send it directly to
each of the partners within the communication process.

Table 8-4. Existance of Elliptic-Curve Cryptography Within Cryptography
Libraries

Library Title NIST SECG ECDSA ECDH GOST R 34.10
OpenSSL X X X X X
Crypto++ X X X X -
Botan X X X X X
Libcrypt X X X X X
Cryptlib X X X X -

In order to avoid the mathematic apparatus behind the protocol, we will summarize
the workflow of the protocol as follows so that you have a clear overview of the domain
parameters that are exchanged between the communication partners (Alice and Bob):

155



CHAPTER 8  CRYPTOGRAPHY LIBRARIES IN C/C++20
o Alice generates a private key and a public key with the parameters of
the domain.

e Bob generates a private key and a public key with the domain
parameters set above.

o Both users exchange their public keys.

o Alice computes using the public key of Bob and the shared function is
characterized by a shared secret, known as the derived key of B.

e Bob does the same thing with the public key of Alice. The shared
function is characterized by a shared secret, known as the derived
key of A.

o Alice now uses the derived key of Bob to encrypt the message.
e Bob uses the derived key of Alice to encrypt the message.

e Both users can decrypt the message using their own private key.

Creating ECDH Keys

First, it is quite important to check what OpenSSL support you have on your machine related
to ECDH keys. To achieve these primary tasks, run the command openssl ecparam -list
curves (see Figure 8-5). The command will provide a full list of curves that you can use. Most
of them are implemented properly with respect for their standards. Their implementation in
OpenSSL and the recent updates using C++20’s new features make them easy to follow.

Bl Command Prompt - O X

C:\Users\Dapyx\Desktop>openssl ecparam -list_curves A
secpli2rl : SECG/WTLS curve over a 112 bit prime field
secpll2r2 : SECG curve over a 112 bit prime field
secpl28rl : SECG curve over a 128 bit prime field
secpl28r2 : SECG curve over a 128 bit prime field
secpl6okl : SECG curve over a 160 bit prime field
secpléerl : SECG curve over a 160 bit prime field
secpl6@r2 : SECG/WTLS curve over a 160 bit prime field
secpl92kl : SECG curve over a 192 bit prime field
secp224kl : SECG curve over a 224 bit prime field
secp224rl : NIST/SECG curve over a 224 bit prime field
secp256kl : SECG curve over a 256 bit prime field
secp384rl : NIST/SECG curve over a 384 bit prime field
secp521rl : NIST/SECG curve over a 521 bit prime field
prime192v1: NIST/X9.62/SECG curve over a 192 bit prime field
prime192v2: X9.62 curve over a 192 bit prime field
prime192v3: X9.62 curve over a 192 bit prime field
prime239vl: X9.62 curve over a 239 bit prime field
prime239v2: X9.62 curve over a 239 bit prime field
prime239v3: X9.62 curve over a 239 bit prime field
prime256v1l: X9.62/SECG curve over a 256 bit prime field

Figure 8-5. Getting a list of curves
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There is a faster way to create the keypair by using the following command (see
Figure 8-6): openssl ecparam -name prime256vl -genkey -noout -out key.pem.

B Command Prompt - O X

C:\Users\Dapyx\Desktop>openssl ecparam -name prime256v1l -genkey -noout -out key.pem

C:\Users\Dapyx\Desktop>_

Figure 8-6. Generating a keypair

This will output something like

MHcCAQEEIKPvG4c8qipI+aZmV3SVnYCZ/QxVFsbI1CFk4H1uHhFIoAoGCCqGSM49
AwEHoUQDQgAE jOZtqoqt7r8aBkdxVvXx0JC4BdvoPIVBHLsIfw7+GIWmOAINZFg5
THbZQF60hNdWguS14/Mug24NvGG4PapIhg==

If you want to see the details of the EC parameter, run the following command:
openssl ec -in key.pem -text -noout.The command will output something like
Figure 8-7.

B¥ Command Prompt - [m] X

C:\Users\Dapyx\Desktop>openssl ec -in key.pem -text -noout

read EC key

Private-Key: (256 bit)

priv:
©0:33:ef:1b:87:3c:aa:2a:48:9:a6:66:57:74:95:
9d:80:99:fd:0c:55:7e:c6:c9:d4:21:64:e0:7d:6e:
le:11:49

pub:
©4:8d:06:6d:ab:4a:ad:ee:bf:1a:06:47:71:56:5:
f1:a0:90:b8:05:db:e8:3c:85:41:1e:5b:08:7f:0e:
fe:18:85:36:d0:02:4d:¢cc:58:39:20:76:d9:40:5e:
8e:84:d7:56:82:e4:a35:e3:f3:2e:83:6e:0d:bc:61:
b8:3d:aa:48:86

ASN1 OID: prime256vl

NIST CURVE: P-256

C:\Users\Dapyx\Desktop>

Figure 8-7. Showing the details of the EC parameter
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OpenSSL
Configuration and Installing OpenSSL

In order to configure and properly install OpenSSL, depending on the OS platform that is
used, refer to the sections below and follow the steps accordingly.

Installing OpenSSL on Windows 32/64

Step 1: Download the binaries for OpenSSL [3]. Download the latest version of OpenSSL
Windows Installer by going to https://slproweb.com/products/Win320penSSL.html.
Scroll down until you reach the Download Win32/Win64 OpenSSL option (see Figure 8-8).

Doweload WinJ2Winé4 OpenS5L today using the briks below!

Deseription

Install the mast commonly ued essencals of Winkd Openiil v1.1LIg (Recommendes for users by the cresiors of Cpeniiy). Cnky inssals on #4-br versions of Windows. Nate that this 5 3 defaut buéd of Openiid. and =
1 ard suate ws. i cas be found i the legs 1 of the installation

7
Wind2 OpenSSL vl Lig
XK | bl

Winkd OperSSl vl Db Lt | 5

(W17 Opentl v 07 Ligas | 1H8

W2 Opentil v 102 J0MB bcitaber [ latalls Winid2 OpenSSL vl 0.2s (NOT rexommended for soe. Oaly satal

3 v & soltware developer nesding 12-bit Opentl for Windows. Mote that this s a deluult buld of OpenSSL andis sabject 10 kocal and
statc lams. More informaton €an be fowsd  the bopal agrecmest of the

Figure 8-8. Download section of OpenSLL

Step 2: Double click and run Win640penSSL-1_1_1g.exe (see Figure 8-9).

Figure 8-9. Setup of OpenSSL

Step 3: Accept the license agreement and click Next. See Figure 8-10.
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5/ Setup - OpenSSL 1.1.1g (64-bit)

License Agreement
Please read the following important information before continuing.

Please read the following License Agreement. You must accept the terms of this
agreement before continuing with the installation.

DONATIONS NEEDED! If you are a business you should be contributing regular A
donations. If you are a generous individual, consider regular donations. Most
people simply take and run - leaving me to foot the bill. That's not nice. Some
businesses even drop their customers onto me to provide direct support to the
customer (ahem, PayPal). That's just evil. Even if you can't afford a small, one

time donation of §10, at least drop a line saying how much you apprediate the

effort put into this project (and, optionally, what you use OpenSSL for). Lots of
complaints and few compliments is discouraging.

LEGAL NOTICE: This product indudes software developed by the OpenSSsL v
@1 accept the agreement!
(D1 do not accept the agreement
Next> | | Cancel

Figure 8-10. OpenSSL license agreement

Step 4: Specify the path where it should be installed and click Next. See Figure 8-11.
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§5 Setup - OpenSSL 1.1.1g (64-bit) -

Select Destination Location
Where should OpenSSL (64-bit) be installed?

Setup will install OpenSSL (64-bit) into the following folder.

To continue, dick Next. If you would like to select a different folder, dick Browse.

At least 273.5 MB of free disk space is required.
e [

Figure 8-11. Setting up the path where OpenSSL will be installed

Step 5: Leave the screen as is and click Next. See Figure 8-12.

§5) Setup - OpenSSL 1.1.1g (64-bit) -

Select Start Menu Folder
Where should Setup place the program'’s shortcuts?

[«

i’_—l Setup will create the program’s shortcuts in the following Start Menu folder,
——

To continue, dick Next. If you would like to select a different folder, dick Browse.

Dpensst | [ ocomse...

<gack Cance
Figure 8-12. The location of the program shortcuts
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Step 6. Leave everything as is and click Next. See Figure 8-13.

§5) Setup - OpenSSL 1.1.1g (64-bit)

Select Additional Tasks
Which additional tasks should be performed?

Select the additional tasks you would like Setup to perform while installing OpenSSL
(64-bit), then dick Next.

Copy OpenSSL DLLs to:

(O The OpensSL binaries (Jbin) directory

<Back Cancel
Figure 8-13. Additional tasks to perform
Step 7: You're ready for installation so click Install. See Figure 8-14.
§5) Setup - OpenSSL 1.1.1g (64-bit)

Ready to Install
Setup is now ready to begin installing OpenSSL (64-bit) on your computer,

Click Install to continue with the installation, or dick Back if you want to review or
change any settings.

Destination location:

C:'\Program Files\OpenSSL-Wing4
Start Menu folder:

OpenSSL

Copy OpenSSL DLLs to:
The Windows system directory

N e

Figure 8-14. Acknowledgment of the installation process and settings
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Step 8: Installation progress. Remember that if you haven’t installed Microsoft Visual
C++ Redistributable (x64) it will ask you to install it. See Figure 8-15.

§5 Setup - OpenSSL 1.1.1g (64-bit) - X
Installing ‘
Please wait while Setup installs OpenSSL (64-bit) on your computer, @ -
Extracting files...
C:¥Program Files\OpenSSL-Win64Vib\ibcrypto_static.ib

Figure 8-15. OpenSSL installation progress

Step 9: Finishing the process of installation. Leave everything as is and click Finish.
See Figure 8-16.

§5 Setup - OpenSSL 1.1.1g (64-bit) -

Completing the OpenSSL (64-bit)
Setup Wizard

Setup has finished installing OpenSSL (64-bit) on your
computer. The applcation may be launched by selecting the
installed shortcuts.

Click Finish to exit Setup.

D Larger one-time donation to Windows OpenSSL
[J Recurring 45 donation to Windows OpenSSL
[] Recurring §10 donation to Windows OpenSSL
[] Recurring $25 donation to Windows OpenSSL

Figure 8-16. Completing the process of installation
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Step 10: Configure and set up the environment variables for OpenSSL.
Step 11: Run the environment variables. Go to System Properties and click
Environment Variables. See Figure 8-17.

System Properties X

Computer Name Hardware Advanced System Protection Remote

You must be logged on as an Administrator to make most of these changes.
Performance
Visual effects, processor scheduling, memory usage, and vitual memory

User Profiles
Desktop settings related to your signn

Startup and Recovery
System startup, system failure, and debugging information
' Environment Variables...
oK Cancel | | Aooly

Figure 8-17. System properties

Step 11: The environment variable for OpenSSL will be added in System Variables.
Click the New button shown in Figure 8-18.
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Environment Variables X
User variables for Dapyx
Variable Value A
JAVA_HOME C:\Program Files\Java\jdk1.8.0_191
OneDrive E\OneDrive\OneDrive
OneDriveConsumer E\OneDrive\OneDrive
PATH C:\Program Files (x86)\Cracklock\Bin;C:\Python37-32\Scripts\;C:\P...
STACK_ROOT Chsr
TEMP %USERPROFILE%\AppData\Local\ Temp
TMP HUSERPROFILE®:\AocData'\Local Teme it
Mew.. || Edit. || Delete
System variables
| Variable Value
asllog Destinaticn=file
ComSpec CAWindows\system32\cmd.exe
GTK_BASEPATH C:\Program Files (x86)\GtkSharp\2.12%
JAVA_HOME C:\Program Files\Java\jdk1.8.0_191
MSMPI_BIN C:\Program Files\Microsoft MPI\Bin,
NUMEBER_OF_PROCESSORS 4

CAOCamli6dhome'\Dao

ariants.4.07.1+ minawbdc...

Figure 8-18. Environment variables

Step 12: Configure the OPENSSL_CONF variable. See Figure 8-19.

New System Variable

Variable name: l OPENSSL_CONF

Variable value: [ C:\Program Files\OpenSSL-Win64\bin\openssl.cfg

Browse Directory... 1 Browse File... I " Cancel

Figure 8-19. A new system variable

Step 13: Configure and modify the path variable accordingly. Select from System
Variables the Path variable and click Edit. See Figure 8-20.
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Environment Vaniables x
User variables for Dapyx
Variable Value {ad
Java_HOME C:\Program Files\Java'jdk1.8.0_191
OneDrive E\OneDrive\OneDrive
OneDriveConsumer E\OneDrive\OneDrive
PATH C:\Program Files (x86)\Cracklock\Bin;C:\Python37-32\Scripts\;C:\P...
STACK_ROOT Ci\sr
TEMP %USERPROFILE%\AppData\Local\Temp
T™P %USERPROFILE%\AooDatalLocal Temo it
New.. || Edt. || Delete
System variables
Variable Value 2
OCAMLLIE CAOCami6\ home\Dapyx\.cpam\ocami-variants 4.07.1+ mingwdc...
OPENSSL_CONF C:\Program Files\OpenSSL-Win&4\bin\openssl.cfg

PROCESSOR_ARCHITECTURE AMDE&4
|_ PROCESSOR IDENTIFIER

Figure 8-20. Environment variables » Path variable

Step 14: In the Edit environment variable section, click New and Browse. See
Figure 8-21.
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Edit environment variable X
C:\Program Files\PuTTY\ A New
C:\Program Files\MiKTeX 2.9\miktex\bin\x64\

C:\Program Files\Haskell Platform\8.4.3\mingw\bin Edit
C\OCaml6d\bin

C:\Program Files\IDM Computer Solutions\UltraCompare Browse...
C:\Program Files (x86)\Microsoft SQL Server\140\Tools\Binn\

C:\Program Files\Microsoft SQL Server\140\Tools\Binn\ Delete

C:\Program Files (x86)\Microsoft SQL Server\140\DTS\Binn\,
C\Program Files\Microsoft SQL Server\1400\DT5\Binn\,

C:\Program Files\Microsoft SQL Server\Client SDK\ODBC\130\Tool... Move Up
C:\Program Files (x26)\Microsoft SQL Server\Client SDIK\NODBC\130...
C:\Program Files (x86)\Microsoft SQL Server\140\Tools\Binn\Mana... Move Dgwn

C:\Program Files (x86)\GtkSharp\2.12\bin
C\Program Files\Java\jdk1.8.0_191\bin
C:\PostgreSQL\pg11\bin Edit tet...
C:\PostgreSQL\pg10\bin

C:\Program Files\dotnet\

C:\Program Files\Microsoft SQL Server\130\Tools\Binn\
C:\Program Files\Git\cmd

|C:\Program Files (x26)\Gpgdwin\..\GnuPG\bin

o

Figure 8-21. Editing the environment variable

Step 15: Select the path to the OpenSSL bin folder and click Ok. The new path has
been added with success. Close everything. If you have the Command window open,
close it and reopen it again for the update to be done accordingly. Otherwise, it will not
work. See Figure 8-22.
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Edit environment variable X
C:\Program Files\PuTTY\ ~ New
C\Program Files\MiKTeX 2.9\miktex\bin\x64\

C:\Program Files\Haskell Platform\8.4.3\mingw\bin Edit
CAOCamlb4\bin

C:\Program Files\IDM Computer Solutions\UltraCompare
C:\Program Files (x86)\Microsoft SOL Server\140\Tools\Binn\

C:\Program Files\Microsoft SQL Server\140\Tools\Binn\ Delete

C:\Program Files (xB6)\Microsoft SQL Server\140\DTS\Binn\
C:\Program Files\Microsoft SQOL Server\ 140\DTS\Binn\,

C:\Program Files\Microsoft SQL Server\Client SDK\ODBC\130\Teol... Move Up
C:\Program Files (x86)\Microsoft SOL Server\Client SDIVODBC130...
C:\Program Files (x86)\Microsoft SQL Server\140\Tools\Binn\Mana... Move Down

C:A\Program Files (xB6)\GtkSharp\2.12\bin
C:\Program Files\Java\jdk1.8.0_191\bin -
C:\PostgreSQL\pg11\bin _ Edit text...
C:\PostgreSQL\pg10\bin
C:\Program Files\dotnet\
C:\Program Files\Microsoft SQL Server\130\Tools\Binn\

"C:\Program Files\OpenSSL-Win64\bin"

oK Cancel

Figure 8-22. Verifying that the path for OpenSSL has been added

Step 16: Open Command (cmd. exe). Run the openssl command. If the OpenSSL »
prompter appears in the window, it means that you have the first sign of success. See
Figure 8-23.

B Command Prompt - openss! - [m] b 4

Microsoft Windows [Version 10.0.10586] A
(c) 20816 Microsoft Corporation. All rights reserved.

C:\Users\Dapyx>openssl
OpenSSL>

Figure 8-23. Checking OpenSSL, first step

Step 17: Run the second command, version. Make sure that everything is set
properly. If the version and date are returned as shown in Figure 8-24, you can declare
yourself successful.
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Command Prompt - openssl - a

Microsoft Windows [Version 10.0.10586]
(c¢) 2016 Microsoft Corporation. All rights reserved.

C:\Users\Dapyx>openssl
OpenSSL> version

OpenSSL 1.8.2p 14 Aug 2018
OpenSSL>

Figure 8-24. Checking OpenSSL, second step

Installing OpenSSL on Linux — Ubuntu Flavor

Usually, OpenSSL comes already installed on Linux - Ubuntu. For this step-by-step

guide we used Ubuntu 18.04.3 LTS version (codename: bionic).

Before proceeding with the installation, check the version of OpenSSL already

installed by running openssl version -ain the terminal. See Figure 8-25.

dapyx@dapyx-desktop: ~
File Edit view Search Terminal Help
dapyx@dapyx-de op:~S openssl version -a
OpenSSL 1.1.1 11 Sep 2018
i : Tue Nov 12 16:58:35 2019 UTC
: debian-amd64
bn(64,64) rc4(16x,int) des(int) blowfish(ptr)

: gcc -fPIC -pthread -m64 -Wa,--noexecstack -Wall -Wa,--noexecstack -
02 -fdebug-prefix-map=/build/openssl-kxN 24/openssl-1.1.1=. -fstack-protector-st
rong -Wformat -Werror=format-security -DOPENSSL_USE_NODELETE -DL_ENDIAN -DOPENSS

L_PIC -DOPENSSL_CPUID_OBJ -DOPENSSL_IA32 SSE2 -DOPENSSL_BN_ASM_MONT -DOPENSSL_BN
_ASM_MONT5 -DOPENSSL_BN_ASM_GF2m -DSHA1_ASM -DSHA256_ASM -DSHAS512_ASM -DKECCAK16
©00_ASM -DRC4_ASM -DMD5_ASM -DAES_ASM -DVPAES_ASM -DBSAES_ASM -DGHASH_ASM -DECP_N
ISTZ256_ASM -DX25519_ASM -DPADLOCK_ASM -DPOLY1305_ASM -DNDEBUG -Wdate-time -D_FO
RTIFY_SOURCE=2

OPENSSLDIR: "/fusr/lib/ssl”

ENGINESDIR: "/fusr/lib/x86_64-1inux-gnu/engines-1.1"

seeding source: os-specific

dapyx@dapyx-desktop:~$

Figure 8-25. Checking the OpenSSL version

If you don'’t see it, it means that the OpenSSL was not installed or configured

properly. Proceed as follows to install and configure OpenSSL.
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Step 1: Update the Ubuntu system to the latest packages by running the following
command in the terminal: sudo apt-get update && sudo apt-get upgrade. You will
be asked to answer with Y or N in order to continue. Choose Y (Yes). See Figure 8-26.

dapyx@dapyx-desktop: ~
File Edit View Search Terminal Help

Processing triggers for systemd (237-3ubuntul®.39)

Setting up update-manager (1:18.04.11.12) ...

Processing triggers for man-db (2.8.3-2ubuntu@.1)

Processing triggers for shared-mime-info (1.9-2)

Processing triggers for gnome-menus (3.13.3-11ubuntul.1) ...
Processing triggers for dbus (1.12.2-1ubuntul.1)

Processing triggers for hicolor-icon-theme (0.17-2) ...

Setting up nautilus (1:3.26.4-0~ubuntul8.04.5)

Setting up ubuntu-software (3.28.1-8ubuntu4.18.04.15) ...

Setting up ubuntu-settings (18.04.7) ...

Setting gnome-software-plugin-snap (3.28.1-0ubuntu4.18.04.15)

Setting ubuntu-desktop (1.417.4) ...

Processing triggers for initramfs-tools (©.130ubuntu3.9) ...

update-initramfs: Generating /boot/initrd.img-4.15.8-99-generic

Processing triggers for shim-signed (1.37~18.04.3+15+1533136590.3beb971-0ubuntul
)i

dapyx@dapyx-desktop:~$ |

Figure 8-26. Updating the Ubuntu system with the latest packages

Step 3: Install the packages required for compiling. This is a very vital step. Proceed
with caution. The command is sudo apt install build-essential checkinstall
zlibig-dev -y. See Figure 8-27.

dapyx@dapyx-desktop: ~
File Edit View Search Terminal Help
update-alternatives g fusr/bin/fakeroot-sysv to provide fusr/bin/fakeroot (fakeroot) in auto
mode
Setting up libgc -de md64 (7.5.0-3ubuntul-~18.04) .
up 1i c++-7-dev:amd64 (7.5.0-3ubuntul~18.04) ...
up libalgorithm-merge-perl ( )
up libalgorithm-diff-x
up 7 .5.08-3ubuntul
ing up g
up g
up - :
update-alternat 51 fusr/binfg++ to provide fusr/binfc++ (c++) in auto mode
Setting up buil 2
Proc i rs for man-db (2.8.3-2ubuntu®.1) ...
for_libc-bin 3ubuntul) ...
op:~5

Figure 8-27. Installing the packages required for compilation

169



CHAPTER 8  CRYPTOGRAPHY LIBRARIES IN C/C++20

Step 4: Download OpenSSL. At the moment of writing this chapter, the version was
1.1.1g. For this, follow the commands shown below and in Figure 8-28 and Figure 8-29.

cd /usr/local/sxc/
and

sudo wget https://www.openssl.org/source/openssl-1.1.1q.tar.gz

dapyx@dapyx-desktop: fusrflocal src

Figure 8-28. Location of OpenSSL installation

dapyx@dapyx-desktop: fusrflocal/src

; Search Terminal Help
$ cd fu
S sudo wget https://www.op . 5 cefopenssl-1.1.1g.tar.gz
ww.openssl.org/sourc - . 4
. 2.18.203. :H a3::cle, 2a02:2670:9ce
rg)|2.18.203.75|:443... connected.
oK
M) [applicationfx-gzip]
1.1.1g.tar.gz’

100%[===========================: 9,35M 2,25MB/s in 4,7s

- ‘openssl-1.1.1g.tar.gz’ saved [9801502/9801562]

rcS D

Figure 8-29. Getting the right package for installation

Step 5: Extract the downloaded file. To achieve this, use the following command
(shown in Figure 8-30):

sudo tar -xf openssl-1.1.1g.tar.gz.
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dapyx@dapyx-desktop: fusrflocal/src

File Edit View Search Term

sudo tar -xf openssl-1.1.1g.tar.gz

0

Figure 8-30. Extracting the downloaded file

Step 6: Navigate to the directory where the file has been extracted. See Figure 8-31.

dapyx@dapyx-desktop: fusrflocal/srcfopenssl-1.1.1g

Figure 8-31. Location of the extracted file

Step 7: Install OpenSSL using the following commands (shown in Figures 8-32
through 8-35):

sudo ./config -prefix =/usr/local/ssl -openssldir=/usr/local/ssl shared zlib
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dapyx@dapyx-desktop: jusrflocalfsrefopenssl-1.1.19

onfig -

for linux-xB6_64

onfigured

Figure 8-32. OpenSSL installation

sudo make

dapyx@dapyx-desktop: fusrflocalfsrcfopenssi-1.1.1g
File Edit Wvie h Terminal Help
5{LDCMD: -gc -pthread -m64 -Wa,--n tack -Wall -03 -L.
- 09_time_test test time_test.o \
ibtestutil.a -lerypto -1z -1dl -pthread
-pthread -mé -- cstack -Wall -03 - -DNDEBUG -MMD -MF tes 89aux.d.tmp - test/x589aux.0 -C

tack -Wall -03 -

J -1z -1dl -pthread
Jusr/binfperl "-I." - i ] Jdofile.pl”™ \

akefile” apps/CA.pl. ‘apps/CA.pl"
.pl

-Mconfigdata "util/dofile.pl” \
- tools/c_rehash.in > "tools/c_rehash"
chmed a+x tool rehash
Jusr/bin/perl -Mconfigdata "util/dofile.pl” \
util/shlib_wrap.sh.in > "util/shlib_wrap.
a+x util/shli
Leaving di ' fusrflocal/src/openssl-1.1.19"

Figure 8-33. Running sudo make

sudo make test
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dapyx@dapyx-desktop: fusrflocalfsrcfopenssi-1.1.1g

File i / h Terminal Help
em. t

- ftest/recip
. ftest/recipes/f96-

.ftest/recipes/
. ftest/freci

configurati

p xternal_pyca. F ; : No extern s in this configuration
. ftest/recip - tre
.[testfrecipesf99-test_fuzz.t

test uccessful.
., Tests=1 . wallclock
Result: PASS
ake[1]: Leaving direc
apyx-desktop:

Figure 8-34. Running sudo make test

sudo make install

dapyx@dapyx-desktop: fusrflocalfsrcfopenssi-1.1.1g
File Edit v
Jusr/ al/ 3 0 1/html/man5/config.html
al/ssl/share/doc/openssl/fhtml/man5/x509v3_config.html
J/sharejdoc/op s1/html/man7/bio.html
sl/html/man7fcrypto.html
{doc fopenss1/html/man7/ct.html
_modes . html
n7/Ed2551 ml
sl/html/man7/Ed448.html -> fusr/local/ssl/shar sl/html/man7/Ed25519.html
sL/html/man7fevp.html
openssl/html/man7fossl_store-file.html
1/html/man7fossl_store.html
1/html/man?/p
sl/html/man7 /prox
penssl/html/man7 /RAND.html
Jopenssl/html/man7 /RAND_DRBG.html
1/html/man7 fRSA-PS5.html
1/html/man?/scrypt.html
.html
sLl/html/man sl.html
fhtml/man7/ 19.html
.html Jusr/local/ssl/share
509.html

Figure 8-35. Running sudo make install

Step 8: Configure the OpenSSL shared libraries. First, you need to navigate to the
/etc/1ld.so.conf.d directory and create the configuration file openssl-1.1.1g.conf
manually. The commands are as follows (shown in Figures 8-36 through 8-39):

cd /etc/1ld/so/conf.d/

173



CHAPTER 8  CRYPTOGRAPHY LIBRARIES IN C/C++20

dapyx@dapyx-desktop: fetc/ld.so.conf.d

g% cd fetc/l o.conf.d/f

Figure 8-36. OpenSSL shared libraries configuration

sudo nano openssl-1.1.1g.conf

dapyx@dapyx-desktop: fetc/ld.so.conf.d
File Edit Wvie Searc erminal Help
GNU nano 2. openssl-1.1.1g.conf

New File
¥ Get Help Write Out & Where Is gl Cut Text Jus v ¥ Cur Pos
Wil Read File Wl Replace Wl Uncut Text = Go To Line

Figure 8-37. Editing the configuration file
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dapyx@dapyx-desktop: fetc/ld.so.conf.d
File Edit View h Terminal Help
GNU nano 2.9 openssl-1.1.1g.conf

ﬂusr;‘ local/ssl/1ib

Read 1 line
Wf Cet Help B Write out il Where Is C J if W8 Cur Pos Y Mark Text
Wil Read File Wl Replace cut < Go To Line \

Figure 8-38. Editing the configuration file

sudo ldconfig -v

dapyx@dapyx-desktop: fetc/ld.so.conf.d
File Edit

libglapi
libwinpr
libhogweed gw
liblz4 -> liblz4.s0.1

FARLE
fusrflib:
.1 -> libnatpmp.so.1
0 -> libgj
.18

Figure 8-39. Verifying the configuration file

Step 9: Configure the OpenSSL binary. This step is very sensitive. You add the binary
or the new version of OpenSSL installed (which is located at /usr/local/ss1/bin/
openssl) over the default OpenSSL binary.

First, you create a backup of the binary files by running the following command:

sudo mv /usr/bin/c_rehash /usr/bin/c_rehash.backup

Second, you edit the /etc/environment file using vim. See Figure 8-40.
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dapyx@dapyx-desktop: fetc/ld.so.conf.d
File Edit Wvie Searn erminal Help
GNU nano 2.9.3 etc/environment Modified

PATH=" fusrflocal/sbin: fusr/localfbin: fusr/sbin: jusr/bin:/sbin: /bin: fusrfgames: fusr/loc al,.'qare:-l

Read 1 line
W Where Is B Cut Text Jus Y s Cur Pos B Mark Text
Wl Replace W Uncut Text = Go To Line \

Figure 8-40. Editing the environment path

Ensure that you have save the file before you exit.
Third, reload the OpenSSL environment and verify the PATH bin directory using the
following commands (shown in Figure 8-41):

source /etc/environment
echo $PATH

dapyx@dapyx-desktop: fetc/ld.so.conf.d

source fetc/environment
echo SPATH
n:fusr/bin:/sbin: /bin: fusr/games: fusr/local/games: fusr/local/ssl/bin

s

Figure 8-41. Reloading the environment path

For the final step, verify the installation of the last stable version of OpenSSL by using
the commands from below and shown in Figure 8-42:

which openssl
openssl version -a
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dapyx@dapyx-desktop: fetc/ld.so.conf.d

S which openssl

i$ openssl version -a

) blowfish(ptr)
Wall -0 33 4
_MONT -DOPENSSL_BN _MO -DOPENSSL_BN_ASM
ASM -DAESNI_ASM -D\ -DGHASH_ASM -DECP_M

Figure 8-42. Verifying the installation

Botan

Botan [5] represents another powerful library that can be used in the command line
as OpenSSL. The algorithms are quite vast and contain very powerful and modern
implementations (including C++20 features). The feature of Botan that differentiates it
from the rest of the libraries is the modules that are implemented for the Transport Layer
Security (TLS) protocol. The features that are implemented with Botan made it a real
candidate for inspiration and guidance among professionals. The documentation is easy
to follow.

The commands and instruction are the same as the ones from OpenSSL with minor
differences related to public key algorithms.

CrypTool

A great software product for cryptography developed using C++ is CrypTool (CT) [6],
version 1. The latest stable release for version CT1 is 1.4.41 and it can be downloaded
from CrypTool'’s official website'. After downloading, launch the executable and follow
the instruction to install it. When CT1 is opened, the main window looks like Figure 8-43.

'www.cryptool.org/en/ct1-downloads
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(&Y CrypTocl 1.4.41 - startingexample-en.tet
File Edit View Engrypt/Decrypt Digital Signatures/PKl  Indiv. Procedures Analysis Options Window Help

n|.s|mlgigl i@ £ 2w

CrypTool 1(CT1)is a pret and free
about cryptography and cwﬁmﬂyﬂs
offering extensive online help and many visualizations.

is text file was created in order to help you to make your first steps with CT1.

1) The starting page of the online help offers the best oversight of CT1's capacity. From the starting page you can reach all
il functions via links.

IThe starting page of the online help can be accessed via the menu "Help -> Starting Page” at the top right of the main window or
by using the search keyword “Starting page” within the index of the online help.
Press F1 to start the online help everywhere in CT1.

2) A possible next step would be to encrypt a file with the Caesar algorithm. This can be done via the menu "Crypt/Decrypt ->
JSummat,

nie [rlaseirt”

L1 e N I 1

Figure 8-43. Main window in CrypTool 1

The first example that we will look at is the classical cipher, Caesar. It can be selected
from Encrypt/Decrypt » Symmetric (classic) » Caesar/Rot - 13... Before selecting
the Caesar cipher, first close the startingexample-en.txt window and open a new
clean window from File » New. In the opened window, type the sentence This is an
example of Caesar cipher using CrypTool 1. See Figure 8-44.
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[ crypTeol 1.4.41 - Unnamedi
Eile Edit View Engrypt/Decrypt Digital Sig

Indiv. Proced

Analysis  Options  Window  Help

D|(ef WS &|%(@ &7 1|£||

[ This is an example of Caesar cipher using CrypTool 1 [

Press F1 to obtain help.

L1 G54 P:5a T

Figure 8-44. The text in a new CT1 window

Open the Settings window for the Caesar cipher, as described above. It should look

like Figure 8-45a.

Key Entry: Caesar / ROT-13

mwmmnmmmmw
Caosar is 0 h of the cleatext
alphabet are mapped to the ciphertest siphabet by shifting. This shifting value is the key.
‘Y'ou can enter the key a5 & number o a3 8 single characler of the siphabet.

Fiot-13 iz a special variant, where the key has the fed value of half the length

of the cleartest aiphabet. This vasiant is only selectable i the length of the aiphabet

memmhhwluhmm
Caesmina hase the ck
aslphabet are mapped to the ciphertext alphabet by shifting. This shifting vakue is the key.
‘You can enter the key a3 a rumber of as a single character of the alphabel.
Rot13 s a special variant, wheie the key has the fved value of hal the length

of the cleartent aiphabet. This variant is only selectable f the length of the siphabet

of tha cdaartad

fiom: | ABCDEFGHIJKLMNOFQRSTUVWXYZ

|mm1amumuwxm

(o= ]

Decypt | ruwim-l

o _|

i an even rumber. is &N even ramber,
~ Select vanant ——— .-l"" I’ [l Nm h ~ Select variant n4: o o " _l_l. 3ot b
&~ Cassa 5 WVahao of the first alphabet character = 0 fe.g. "A"0) & Cassar % Viahs of the first siphasbet character = 0 fe.g. "A"'s0)
 Rot13 " Walue of the frst slphabet character = 1(e.g. "A"=1) © Rot13 " Wake of the fust aiphabet character = 1 fe.g. "A"=1)
- Key ety as - Ky eniry az
& Aphabet charscler | B % Alphabet characher | .
" Number value I 1  Number vaue
hes of the chosen ~ P of the chy
Shift of 1 Shift of 12
Mapging of the aliphabet (26 characters) Mapping of the slphabet (26 characters)

from: |mm:mmmz

o TUVWXYZABCDEFGHIJKL

[1aioRa
geem | [[Totopion |

won | el

Key Entry: Caesar / ROT-13 x

Figure 8-45. (a) The default settings for the Caesar cipher. (b) The chosen settings

for the Caesar cipher
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The window contains a short description of the cipher. Note that Rot-13 is
a particular case of the Caesar cipher that shifts a particular letter 13 positions
(considering that the number of the letters in the English alphabet is 26, then its half is
13, hence the name of Rot-13). Use the default variant, Caesar. On the right side, you
can choose the index for the first letter of the alphabet, A; it can be either 0 or 1. Further,
you should choose the key, which represents the number of positions a particular letter
is shifted to the right in the alphabet. The key can be an alphabet letter or a number.
Chose the character option and let’s say the key is M. Figure 8-45b shows the changes in
the Properties of the chosen encryption section. Observe that A is mapped to M (0 is
the position of A, which is shifted 12 positions, i.e. 0+12=12; the 12th letter of the English
alphabet is M) and so on. Now press the Encrypt button. You should obtain the result
shown in Figure 8-46.

CrypTool 1.4.41 - Caesar encryption of <Unnamed1>, key <M, KEY OFFSET: 0> = o x
Ede  Edit  Niew P vpt  Digital Sag /BKI  Indie. P d Analysis  Options  Window Help

D||e|d& ¥®W0 £ 2

e ———

<4 Unnamed! [=])[®@]=
This is an example of Caesar cipher using CrypTool 1.

|Ftue ue mz gmybxg ar Omgemd oullqd geuzs OdkbFaax 1.

Press F1 to obtain heip. e ciea

Figure 8-46. Encryption using the Caesar cipher

Note that the cipher is not case sensitive. Such additional settings can be accessed
by pressing Text Option from the Key Entry: Caesar/ROT-13 window and can be seen in
the left-hand window in Figure 8-47. In this window, you keep unchanged the characters
that are not in the alphabet. Note that the characters 1 and . and even the spaces were
not encrypted. Further, you can choose uppercase sensitivity, you can extend the
alphabet, and you can set a reference for statistical use (see the right-hand window in
Figure 8-47).
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Text Options X Text Options X
Formatting options for cleartext and ciph F g ophions for cleartext and ciphertext
¥ Keep characters not present in the alphabet unchanged I Keep chatacters not present in the alphabet unchanged
Uppes/lower case in cleartext and ciphertext Uppet/lower case in cleartext and ciphertest
I 1f possible, retain case information for encryplion/deciyp I 1f possible, retain case information for
P Daingith . Ty ¥ Distinguith t - and)
Define the alphabet used in text ciphers Define the siphabet used in text ciphers
W Uppercaseletters |~ Lowercase letters ¥ Uppercase letters
[T Space ™ Special chacacters W Space
™ Mumerals I !:l_n'-l_sl_ls ¥ Mumesrsls ™ Umists
Alphabet to use [26 chatacters) Alphabet to use (66 chatacters)
I&mgmuuunuomagm [ABCDE FGHUKLMNOPQRS TUVWAYZ 0123456783 17+ [@_» clt™=*
Reference file for statistical appbcations Flet i for
C:\Program Files (5CiypT oclveferencelenglsh bt frd. | C\Program Fies 6ASNCiT ol\iefesencel\enghsh b End. |
[Enghsh reference fie =] | Engish refecence fle =

Figure 8-47. Text options

Now let’s return to the example. Close the Unnamed-1 window (or make sure that
the emphasized window is Caesar encryption of <Unnamed1>, key <M, KEY OFFSET:
0> and let’s decrypt the result of the Caesar encryption obtained in Figure 8-47. For
this, choose the Caesar cipher from the menu, and pick the same settings as in the
encryption. Note that Caesar is a symmetric cipher, which means that the same key is
used for both encryption and decryption, therefore you set the key entry as an alphabet
character and choose M and press the Decrypt button. The result is shown in Figure 8-48.
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€ CrypTeol 1.4.41 - Caesar decryption of <Caesar encryption of <Unnamed1>, key <M, KEY OFFSET: 0> >, key <M, KEY OFFSET: 0> - a X
Eile Edit View Engrypt/Decrypt Digital Sig /PKI  Indiv. Proced: Analysis Options Windew Help

D|=e|E|&| 4|2 |2 23

! Q-Cawmwpﬁmd <Unnamed1>, key <M, KEY OFFSET: 0>
El.ue ue mz gmybxq ar Omgemd oubtqd geuzs OdkbFaax 1.

is an example of Caesar cipher using CrypTool 1.

| EER=T

Press F1 to obtain help.

Figure 8-48. The decryption using a Caesar cipher

The next encryption system we will look at is RSA. Choose Encrypt/Decrypt »
Asymmetric » RSA Demonstrator. The RSA Demonstrator window should look like
Figure 8-49.

RSA Demonstration x R34 Demonstration x
| & Choos . A e R e | & th PR Bes N = pis the public RSA modubut, and phi] =
fo1ia 1 th iers. The pubic ke 0 s ey chosen bul must be copeire 1o th The peivale 011011 the Eudes Iotieni. The Dublic key @ s ieels choven but must be caceime 1o the totient. The crivale.
ke s th dsted such thet d = ") T mﬁammmﬁ‘}l]&m - v
o s ¥ publc ASA ahnN CF : R e N
andthe publc hey ¢. | an the publc key &
Prime rumber = Prirse rescber g [t
FRSA modubus N [ees foubic) RSA modus N [ fpubic)
p= el @7 frocret ) N T (socaet)
Public key o [Z18a1 Putlic key e |2 181
Prvate key d g I Prvate key d [aess st |
- RS enciypiion using # / dscryption using d [sphabet sz 256 - RS encryption using & / decryplion using d [alhabet size: 29|
e e R Aphabe ard rurbes syte gotions. | A, (R0 F A Alphabat and rurnbes ystomgstiors |
Irgast of th v . inbase 10} gt of 12) 10
I I
I I
I I
I I
N | g | * | [ owm o= ]

Figure 8-49. RSA demonstration
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Keep the default option of computing both the public key and the private key.
Choose the parameters for the scheme. You can provide two prime numbers yourself,
or you can generate two prime numbers using the generator. Click the Generate prime
numbers button. The window should look like the left-hand window in Figure 8-50.

|

Prime Number Generation X Prime Number Generation X
Prime rumbers play an important role in modem cryptography. Here pou can generste prmes Prorne ruambers phay an important role in modemn cryptography. Here you can generate pames
within & green value range [lower mit, upper lmit] within & green vakue 1ange [lovees int, uppes enit]

Amount of prime rumbers to be generated | Amount of prime rumbers to be genersted
% Generate two prmes randomiy from within the value rangs(s) % Generate wo primes randormly from within the value range(s)
CG e se . [ ) [ t
Separator fot the dsplay of the primes [ Separstor for the display of the primes: [
Algarithms for prime number peneration Walue range of the prime numbers p and q Algorithms foe peime number generation Value 1ange of the pire numbers p and g
& Miber-Rabin Tast * Jobe entered ndependently of  Mier-Rabin Test % Tobe entered ndependently of
each other each other
" Solovay-Strazsen Test  Solovay-Stisssen Test
" Both se squal fjust enter one) | " Both are equal [just enter one)
" Fenmat Test & Eemat Test
Prime rurnbes p Prime number q Priene number q
Lowerimat  [2°7 Lowes b |27 Lowst bt |2712
Upperimt  |278 Upper mit IZ"G Uppes it |2"'|5
Result o Resit Iﬂ Resut |2?§T
Generate peime numbers I | Cancel | Apply primes | Cancel |

Figure 8-50. The prime number generator for RSA

Here, you can choose between three prime generators. Choose Fermat Test, set
the lower limit to 2'* and the upper limit to 2'° for both p and q and opt for independent
primes, and then press the Generate prime numbers button (right-hand window
in Figure 8-50). To use these prime numbers, press the Apply primes button. After
generating the prime number, note that the public and secret values were computed
(left-hand window in Figure 8-50). Keep the default public key as 26 + 1, check the text
option for the Input field, and type this: This text is encrypted using RSA. Press the
Encrypt button. The result should look like Figure 8-51.
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~ RSA using the private and public key -- or using only the public key -

' Choose two prime numbers p and q. The composite number N = pq is the public RSA modulus, and phi(N) =
[p-1la-11is the Euler totient. The public key e is freely chosen but must be coprime to the totient. The private
key d is then calculated such that d = &"(-1) (mod phi(N)).

" For data encryption or certificate verification, you will only need the public RSA parameters: the modulus N

and the public key e.
Prime number entry
Prime number p |16223 Generate prime numbers...
Prime number q [27997
- RSA parameters
RS4 modulus N 454195331 (public}
phi(N) = (p-1)(a-1) [454151112 (secret)
Public key e [2*16+1
Private key d [71308513 Update parameters

RSA encryption using & / deciyption using d [alphabet size: 256]

Inputas @ test  numbers Alphabet and number system options...

Input text
IThis text is encrypted using RSA.

The Input text will be separated into segments of Size 3 [the symbol "' is used as separator).
|Thiﬂsltlentﬂ isHenffayfipefdultsnfgR # 5S4

Numbers input in base 10 format.
|1155317538 07544948 # 06649972 # 02124147 # 02123118 # 06517363 # 07369829 # 06561309 # 075636

Encryption into ciphertext c[i] = m{i]"e (mod N)
|212331689 # 120812360 # 045225910 # 168182322 # 103916866 # 349246149 # 027823531 # 310207436

Encrypt Decrypt Close

Figure 8-51. Encrypted text using RSA

Now, to decrypt, you should not close the window and you need to be a little careful.
For decryption, copy the text resulted in the field: Encryption into ciphertext c[i]=m[i] e
(mod N). Your encrypted text should look as follows (and shown in the left-hand window
of Figure 8-52):

212901699 # 120812360 # 045225910 # 168182322 # 103916866 # 349246149 #
027823531 # 310207436 # 009232756 # 131763739 # 089946941
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Further, check numbers for the Input and paste it. Then press the Decrypt button.

The decryption is shown in the right-hand window of Figure 8-52. You should obtain the

same plain text that you encrypted previously.

RSA Demonstration

[RSA usng the peivate and public key - o1 uirg only the public key
% Chooue two peme rumbers p and g The composte rumber N = pg i the publc RSA modulus, and phil] =
Ter 1010 in B E ke botienit The publc kew @ i el chocen but must be copeme o the hobert. The orivats
ey d i Hhen caiculaled such that d = 11 jmod phiN ]l

" For data encryplion o cenficate vesfication, you wall cnly need the public FISA parameters: the modulus N

and the puble key &
Primes rumbeet eriy
Preme rearbes p (3 Gensrste prine rmbers. |
Prime rusber =
FSA parsemtar:
Rk mockias N fsamam kel
shiN) = 1a 1) sz o
Public key ¢ [z
Piraahag s Usdweosswe |
iS4 erceyphon usng e / decayption g d [abhabet sce: 29
ke € el © Alphabet and rumbes system gotions. |

Ingut of the mesa08 in the following fomat: rumberd 1) 8 number(2) 8 8 rumbedn] (numbsr in base 10)

163182322 B 103516865 B 349045143 B 02723531 B 10207436 B 00SC32756 8 131763733 8 08IME341

(R84 Demonstration x

RS gy e pevviste ned pubs hey — o wirsg only the pubbe key

% Chocae beo prme rumbers p and g The composte rumber N = pg is the puble FISA moduus, and phil] = !
o101 s thee Euder hoberit. The publ: kew & is lesly chosen bul muil be copsime 1 the lobenl. The prvate
Koty d &2 then caiculated such that d = o 71-1] fmad chiN]|

" For dala encryphion cx cestcate veshcation, you wil erly need the publc ASA parsmeters: the modubus N

and the publc key &
Freve rasrses ariry
Prime rumbes p [z Gomiate prie rusnbees
Primes rmbes g (F
FiSa parameters
RSA modubs N [Ewsm ok
i) = i 1) [Bsz jseow
Publc key o |2 160
|| ig T |
RSA srciyplion using & / dectyplion using d [aiphabet size: 256]
| Alphabet snd e syiten gt |

Irpdas e & rumben
Cpherted coded n rumbers of bate 10
[1maz:oz| TOIFEEEE B 345046149 8 (07823531 8 302004 B 00SZI0TSE B 131 763739 B 0EFSIEs)
Decryption ko plantest mfi] = i "d [mod N]

005531753 ® 007544340 8 O0GE43372 8 002124147 & 002123118 & 00517369 8 (07369629 = 006561 %09

Dutgui test hom the decryphon [nto segments of sre 3. the symbol T ued a3 separator]

[ThEstEetE is® enBoyBpeRduBonBgh B5A

Figure 8-52. Decryption using RSA

Fuarted
| [Thes hext is encrypted usng RSA
Eowt | peert | [ Ereont [ | Cose

These are just two simple examples of how to use CrypTool 1. It provides many more

encryption schemes and examples, and it can be used for attack simulations or to collect

different statistical information.

Conclusion

In this chapter, we provide a brief list of C++ libraries and we showed how to install them

on the Windows operating system or on Ubuntu. The most useful libraries developed in

C++ are OpenSSL, Botan, and CrypTool.

By the end of this chapter, you learned the following:

o How to access the most important open source cryptography

libraries and frameworks

e How the main cryptographic operations work and how you can

interact with those libraries and frameworks
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o Howyou can access their source code with the goal of comparing the
implementations of the algorithms

e Howto learn from other professional developers (e.g. OpenSSL,
Botan, etc.) the best practices for developing cryptographic
algorithms
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CHAPTER 9

Elliptic-Curve
Cryptography

Elliptic-curve cryptography (ECC) represents a public-key cryptography approach. It is
based on the algebraic structure of elliptic curves over finite fields. ECC can be used in
cryptography applications and primitives, such as key agreement, digital signature, and
pseudo-random generators. It can also be used for operations such as encryption through
a combination between key agreements with a symmetric encryption scheme. Some other
interesting usages can be seen in several types of integer factorization algorithms that are
based on elliptic curves (EC), with applications in cryptography, such as Lenstra Elliptic-
Curve Factorization (L-ECC) [1]. Elliptic curves appeared for the first time in Diophantus’
works [3], and it is a subject that has remained close to Diophantine geometry [2].

The starting point of elliptic-curve cryptography starts in public key cryptography
(PKC). Using PKC in ECC, we have a dedicated, special case of manipulating the points
of the elliptic curve and how they are generated. The manipulation consists of two cases,
multiplication and addition.

The main advantage of ECC is that we can obtain a certain level of security based
on using shorter keys, comparing with most other cryptographic algorithms that would
require more resources for the same level of security.

The second advantage is that in some cases, elliptic-curve cryptography is quite
resistant against certain attacks. These attacks are designed and developed with respect
to integer factorization and discrete logarithms, and have proved to be unsuccessful.

Before proceeding further with a practical implementation, some basic theoretical
notions will be presented in order to get you familiarized with elliptic-curve
cryptography notions and how they work. The following section describes the required
notions that will be found as well in the implementation section, where you'll find
Listing 9-1 and Listing 9-2.

189

© Marius Iulian Mihailescu and Stefania Loredana Nita 2021
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++20,
https://doi.org/10.1007/978-1-4842-6586-4_9


https://doi.org/10.1007/978-1-4842-6586-4_9#DOI

CHAPTER9  ELLIPTIC-CURVE CRYPTOGRAPHY

Theoretical Fundamentals

In this section, we will describe the main foundation that must be understood before
proceeding further with the practical implementation. The graphical content and the
representations of some of the equations are taken and cited from [4].

Let’s start with the following example, in which we assume that we have a collection
of balls and we arrange them to look like a regular pyramid, in such way that on the top
level we have only one ball, on the next level we have four balls, on the next level nine
balls, and so on (see Figure 9-1).

Figure 9-1. Pyramid of balls [4]

One logical question you might ask is, if the pyramid collapses, is there a way of
rearranging the balls into a squared matrix? If the pyramid has only three levels, the
rearranging process cannot be done because there are 1 + 4 + 9 = 19 balls, which is not a
perfect square. If we have a single ball, the pyramid will be organized with one level and
a squared matrix with one line and one column.

If the pyramid has the x height, then we will have

x(x+1)(2x+1)

1+2*4+3*+..x*= balls.
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The intention is that the number is a perfect square number. To do this, we will need
to resolve the following equation:

)= x(x+1zs(2x+1) .

Such an equation represents the elliptic curve equation. See Figure 9-2.

Figure 9-2. Graphic for :—x(x+1)(2x+1) [4]
6

x(x+1)(2x+1)

6
Diophantus method, using points we know to find other points. Using (0,0) and (1, 1)

points, we can obtain the following straight equation: y = x. When we intersect the
obtained curve with the equation of the line, we get the following relation:

The y* = equation shown in Figure 9-2 can be solved using the

2:x(erl)(2x+1):l , 1., 1

X X' +=x"+—=x
6 3 3 6

which is equivalent to
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We know already two roots of this equation, x = 0 and x = 1, which are the
coordinates on the Ox axis of the intersection points between the equation of the line
and the curve. For three real numbers, a, b, ¢, we know

(x—a)(x—b)(x—c)=x"+(a+b+c)x*+(ab+ac+bc)x—abc.

In our situation, for roots 0, 1, x we will obtain 0+1+x= 5 , finding the coordinate

11
point (E’E) Because of the symmetry of the curve, we have also the coordinate point

62
2" 2)
Continuing with the technique illustrated above for points (%, —%j and (1,1), we

will obtain the equation of the line y = 3x — 2, which will intersect the given curve, getting
the following:
+1)(2x+1
(3x_2)2:x(x )( X )

equivalent to

1
We already know the roots > and 1, so we will obtain
1 51
—+1l+x=—,
2 2
from which we have x = 24 and y = 70, which means
12 +2% +3% +...+24* =70

If there are 4900 balls, they can be arranged as a pyramid with a height of 24 and they
can be arranged in a squared pyramid with 24 lines and 24 columns.

Weierstrass Equation

In the next section, the practical solution will be provided using the Weierstrass equation.
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Definition 9-1. Let’s consider elliptic curve E as being the following set:
{(x, »)|¥*=x*+ Ax + B}, in which the elements A, B, x, y are elements from the field K,
defined as K e {Q R,C ,ZP,ZQ}, where p represents a prime number, g = p*, k> 1, and A,
B are constants.

Definition 9-2. An equation that is defined according to Definition 9-1 is called a
Weierstrasss equation.

Definition 9-3. If Kis a field and A, B € K, we will say that E is defined over the field K.
For the points that have their coordinates in L C K, we will write E(L). By definition, to this
set we will add a point that doesn’t belong to the affine plane, a point that is noted with co:

E(L)={}U{(x,y)eLxLy’ =x"+ Ax + B

Intuitively, it is useful to think of the graph of the elliptic curve over the field of real
numbers. This has two basic forms, as shown in Figure 9-3. The equation y* = x* — x has
three real roots, and the equation )? = x* + x has one single real root. It is not allowed to
have multiple roots so we need to mention the following condition: 4A° + 27B2 # 0.

[
N

(@) y*=2

Figure 9-3. The basic two forms of the elliptic curve over a real numbers field [4]

S (b) y¥*=23+2
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If the roots are ry, 1, 15, then
(5 =1)(r=5)(r-1)) =—(44° +27B%).

Definition 9-4. The general form of an elliptic equation over a K field is called the
Weierstrass generalized equation and it has the form

Y +axy+a,y=x’+a,x*+a,x+a,

where a,...a; are constants from K. This form is very useful, especially when we proceed
later with the implementation.

The generalized Weierstrass equation is useful for fields with two or three
characteristics. For fields with a different characteristic, we will obtain

2 2 2

a a,a a
y+_a1x+_3 =x*+ a2+—a1 x4 a,+—=2 |x+| 2 +a, |,

2 2 4 2 4

which is equivalent to

2 .3 r2 ' '
Y, =X +a,x” +a,x+ag,

. a a Co ' . -
with y, =y + ?lx + ?3 and a,,a,,a, being constants. For fields with characteristic

different than three, we have

We will obtain

where A and B are constants.

Group Law

When it comes to a practical implementation, group law is very important for working
with operations between points. There is a theorem that needs to be followed in order to
have a proper implementation. Theorem 9-1 describes the properties of an elliptic curve.
The properties have been implemented in Listing 9-2.

194



CHAPTER9  ELLIPTIC-CURVE CRYPTOGRAPHY

Theorem 9-1. Adding points on elliptic curve E has the following properties:

].. (COmmutatiVity)Pl+P2:P2+P1,VP1,P2€E;

2. (Neutral element) P+ co =P,VP€EE;

3. (Inverse existence) VP € E, 3 P € Ein such way that P + P' = .

The P point is noted usually with —P.

4. (ASSOCiatiVity) (Pl+P2)+P3:P1+(P2+P3),VP1,P2,P3€E.

Practical Implementation

This section discuss the practical implementation of ECC using C++20 and provides a

basic implementation of ECC step by step.

The example (see Figure 9-4, Listing 9-1, and Listing 9-2) that we have provided

represents the implementation of an elliptic curve over a finite field with order P. The

following elliptic curve equation will be used for our implementation:

y* mod P=x’+ax +b mod P.

The implementation is structured in two parts:

o Implementation of the Field Finite Element Engine (FFE_Engine.

hpp) - Listing 9-1: The file contains the signatures for the following

operations and functions:

int ExtendedGreatestCommongDivisor(): The function
computes the extended greater common divisor.

int InverseModular(): The function’s purpose is to solve the
linear congruence equation x x z = =1 (mod n);.

FFE operator-() const: The operator represents the negation
operation.

FFE& operator=(int i): The operator deals with the assignation
with an integer.

FFE<P>& operator=(const FFE<P>& rhs): The operator for
assignation from the field element
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FFE<P>& operator*=(const FFE<P>& rhs): Implementation for
the *= operator for assignation from the field element

friend bool operator==(const FFE<P>& lhs, const FFE<P>&
rhs): Implementation of the == operator for assignation from the
field element

friend FFE<P> operator/(const FFE<P>& lhs, const
FFE<P>& rhs): Implementation for the / operator for assignation
from the field element as form (x,y).

friend FFE<P> operator+(const FFE<P>& lhs, const
FFE<P>& rhs): Implementation for the + operator for assignation
from the field element as form (x,y).

friend FFE<P> operator-(const FFE<P>& lhs, const
FFE<P>& rhs): Implementation for the - operator for assignation
from the field element as form (x,y).

friend FFE<P> operator+(const FFE<P>& lhs, int i):
Implementation for the a + int operator for assignation from the
field element as form (x,y).

friend FFE<P> operator+(int i, const FFE<P>& rhs):
Implementation for the int + a operator for assignation from the
field element as form (x,y).

friend FFE<P> operator*(int n, const FFE<P>& rhs):
Implementation for the int = a operator for assignation from the
field element as form (x,y).

friend FFE<P> operator*(const FFE<P>& lhs, const
FFE<P>& rhs): Implementation for the a * b operator for
assignation from the field element as form (x,y).

template<int T>

friend ostream& operator<<(ostreamd os, const
FFE<T>& g): The operator ostream is used for showing and
displaying in readable format.
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o The main program, listed in Listing 9-2: The file contains the
main implementation for elliptic-curve cryptography. In the
main program, a special focus is on the implementation of
the operators listed above. Another important aspect for this
implementation is that at the beginning of the program you
can observe that the curve is defined over a finite field (a Galois
field) and that any point within the elliptic curve is formed from
two elements that are within the Galois fields. These points are
created once there is a declaration instance of the elliptic curve
itself. To perform the elliptic curve implementation, we need the
following two declarations: typedef EllipticCurve<OrderFFE_
EC> this_t and typedef class EllipticCurve<OrderFFE_
EC>::EllipticCurvePoint point t. Once we have these
declarations, we can proceed further with the representation of
the Weierstrass equation as y* = x* + ax + b, as represented below
through the constructor of the E11ipticCurve class:

//** the Weierstrass equation as y"2 = x"3 + ax + b
EllipticCurve(int CoefA, int CoefB)

: ECParameterA(CoefA),

ECParameterB(CoefB),

tableOfPoints(),

tableFilledComputated(false)

{}

The next step is to compute the points and to set true for the
tableFilledComputated Boolean variable, used to indicate if the table with points
has been filled or not for further computation. The rest of the functions are pretty
straightforward and represent basic cryptographic operations between Alice and Bob,
and also Oscar (the malicious third party who will try to decrypt the message).
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e ’ - . .

Figure 9-4. The output of the example

Listing 9-1. Implementation of the Field Finite Element Engine (FFE_Engine)

namespace EllipticCurveCryptography
{

//** basic functions for
//** Finite Field Elements (FFE)
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namespace HelperFunctionFFE

{

//** Computing Extended GCD gives g = a*u + b*v
int ExtendedGreatestCommongDivisor(int a, int b,

int& u, int &v)

u=1;
v = 0;
int g = a;
int w1

)

int v1
int g1 5
while (g1 != 0)
{

]
S - O
« e o

//** division using integers
int q = g/g1;

int t1 = u - q*u1;

int t2 = v - g*v1;

int t3 = g - q*g1;

u=ul; v=vl; g-=gi;

ul = t1; v1 = t2; g1 = t3;

}

return g;

//** providing solution and solving
//** the linear congruence equation
//*¥* x ¥ z == 1 (mod n) for z
int InvMod(int x, int n)
{
//** "%" represents the remainder
//** function, 0 <= x % n < |n]
X =X % n;
int u,v,g,z;

g = ExtendedGreatestCommongDivisor(x, n,u,v);
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if (g !'= 1)
{
//** x and n has to be primes
//** in order to exist an x"-1 mod n

z = 0;
else
Z=U2%n;
return z;

//** represents the element from a Galois field
//** we will use a specific behaviour for the
//** modular function in which (-n) mod m will
//** return a negative number.

//** The implementation is done in such way that
//** it will offer a support for the basic

//** arithmetic operations, such as:

//** + (addition), - (subtraction), / (division)
//** and scalar multiplication.

//** The P served as an argument represents the
//** order for the field.

template<int P>

class FFE
{
int i ;

void assign(int i)

{
i =1,
if ( i<0 )
{

//** The correction behaviour
//** is important.
//** Using (-i) mod p we will make sure
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//** that the behaviour is the proper one.
i = (i%P) + 2*P;

}
i %= P;
}
public:
//*¥* the constructor
FFE()
: 1 (0)
{}

//** another constructor
explicit FFE(int i)
{

assign(i);

}

//** copying the constructor
FFE(const FFE<P>& rhs)
: 1 (rhs.i)
{
}

//** providing access to
//** the raw integer
int i() const { return i ; }

//** implementation for negation operator
FFE operator-() const

{
return FFE(-i );
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//** assignation assign from integer
FFE& operator=(int i)
{

assign(i);

return *this;

}

//** assignation from from field element
FFE<P>& operator=(const FFE<P>& rhs)
{

i =r1hs.i;

return *this;

}

//** implementation of "*=" operator
FFE<P>& operator*=(const FFE<P>& rhs)
{

i = (i *rhs.i ) % P;

return *this;

}

//** implementation of "==

operator
friend bool operator==(const FFE<P>& lhs,
const FFE<P>& rhs)

return (lhs.i == rhs.i );

}

//** implementation of "==" operator
friend bool operator==(const FFE<P>& lhs,
int rhs)

return (lhs.i_ == rhs);
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//** implementation of "!=" operator
friend bool operator!=(const FFE<P>& lhs, int rhs)

{

return (lhs.i_ != rhs);

}

// implementation of "a/b" operator
friend FFE<P> operator/(const FFE<P>& lhs,
const FFE<P>& rhs)

return FFE<P>( lhs.i_ *
HelperFunctionFFE: :InvMod(rhs.i ,P));

//** implementation of "a+b" operator
friend FFE<P> operator+(const FFE<P>& lhs,
const FFE<P>& rhs)

return FFE<P>( lhs.i + rhs.i );

}

//** implementation of "a-b" operator
friend FFE<P> operator-(const FFE<P>& lhs,
const FFE<P>& rhs)

return FFE<P>(lhs.i_ - rhs.i );

}

// implementation of "a + int" operator
friend FFE<P> operator+(const FFE<P>& lhs, int i)

{
return FFE<P>( lhs.i +i);
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//** implementation of "int + a" operator
friend FFE<P> operator+(int i, const FFE<P>& rhs)

{

return FFE<P>( rhs.i +i);

}

//** implementation of "int * a" operator
friend FFE<P> operator*(int n, const FFE<P>& rhs)

{

return FFE<P>( n*rhs.i );

}

//** implementation of "a * b"
friend FFE<P> operator*(const FFE<P>& lhs,
const FFE<P>& rhs)

return FFE<P>( lhs.i_* rhs.i );

}

//** the operator ostream for

//** showing and displaying in

//** readable format

template<int T>

friend ostreamd operator<<(ostreamd os,
const FFE<T>& g)

return os << g.i_;

};
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Listing 9-2. Implementation of the Main Program

//** Leave everything as it is.
//** Don't change the order of the inputs or namespaces.

#include <cstdlib>
#include <iostream>
#include <vector>

using namespace std;

#include <math.h>
#include "FFE_Engine.hpp"

namespace EllipticCurveCryptography
{
//** Elliptic Curve over a finite field of order P:
//** y*2 mod P = x"3 + ax + b mod P
template<int OrderFFE EC> class EllipticCurve
{
public:
//** this curve is defined over the finite
//** field (Galois field) Fp, this is the
//** typedef of elements in it
typedef FFE<OrderFFE_EC> ffe element;

//** any point on elliptic curve is formed
//** from two elements that are within Fp
//**field (Galois Field). The points are
//** created once we declare an instance of
//** Elliptic Curve itself.
class EllipticCurvePoint
{
friend class EllipticCurve<OrderFFE_EC>;
typedef FFE<OrderFFE_EC> ffe_element;
ffe_element xCoordValue ;
ffe_element yCoordValue ;
EllipticCurve *ellipticCurve ;
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//** core of the doubling multiplier

//** algorithm (see below)

//** multiplies acc by m as a series of

//** "2*accumulatorContainer's"

void DoublingMultiplierAlgorithm(int
multiplier, EllipticCurvePoint&

accumulatorContainer)

if (multiplier > 0)
{
EllipticCurvePoint doublingValue =
accumulatorContainer;
for (int counter=0; counter <
multiplier; ++counter)
{
//** doubling step
doublingValue += doublingValue;
}
accumulatorContainer =
doublingValue;

//** Implementation of doubling

//** multiplier algorithm.

//** The process stands on multiplying
//** intermediateResultAccumulator for
//** storing the intermediate

//** results with inputScalar.

//** This is done through

//** expansion in multipliple

//** by 2 between the first of the

//** binary represtantion of inputScalar.
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EllipticCurvePoint MultiplyUsingScalar(int
inputScalar, const EllipticCurvePoint&
intermediateResultAccumulator)

EllipticCurvePoint
accumulatorContainer =
intermediateResultAccumulator;

EllipticCurvePoint outputResult =

EllipticCurvePoint(0,0,
*ellipticCurve_ );
inti=0, j=0;

int iS = inputScalar;

while(iS)

{
if (is&1)
{

//** Setting up the bit.

//** The computation is done by following the formula:

//** accumulatorContainer = 2~(i-j)*accumulatorContainer
DoublingMultiplierAlgorithm(i-j,accumulatorContainer);

outputResult += accumulatorContainer;

//** last setting for the bit
j=1
}
iS >>= 1;
++1;
}

return outputResult;

}

//** the function deals with
//** adding two points on the curve
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//** xCoord1, yCoordi, xCoord2=x2,

//** yCoord2=y2

void ECTwoPointsAddition(ffe element
xCoord1, ffe element yCoordi,
ffe_element xCoord2, ffe element
yCoord2, ffe element & xCoordR,
ffe_element & yCoordR) const

//** dealing with sensitives cases
//** for implying addition identity
if (xCoord1==0 && yCoordi==0)

{
xCoordR = xCoord2;
yCoordR = yCoord2;
return;

}

if (xCoord2==0 && yCoord2==0)

{
xCoordR = xCoordi;
yCoordR = yCoordi;
return;

}

if (yCoordi==-yCoord2)

{
xCoordR = yCoordR = 0;
return;

}

//** deal with the additions
ffe_element s;

208



CHAPTER9  ELLIPTIC-CURVE CRYPTOGRAPHY

if (xCoord1l == xCoord2 && yCoordl == yCoord2)
{
//** computing 2*P
s = (3*(xCoord1.i()*xCoord1.i()) +
ellipticCurve ->a()) /
(2*yCoord1);
xCoordR = ((s*s) - 2*xCoordi);

}
else
{
//** computing P+Q
s = (yCoord1l - yCoord2) / (xCoordi
- xCoord2);
xCoordR = ((s*s) - xCoordl -
xCoord2);
}
if (s1=0)
{
yCoordR = (-yCoordl + s*(xCoordl -
xCoordR));
}
else
{
xCoordR = yCoordR = 0;
}

}

EllipticCurvePoint(int xPoint, int yPoint)
: xCoordValue (xPoint),

yCoordValue (yPoint),

ellipticCurve (0)

{}
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EllipticCurvePoint(int xPoint, int yPoint,
EllipticCurve<OrderFFE_EC> &
EllipticCurve)

: xCoordValue_ (xPoint),
yCoordValue (yPoint),
ellipticCurve (&EllipticCurve)

{}

EllipticCurvePoint(const ffe_element&
xPoint, const ffe element& yPoint,
EllipticCurve<OrderFFE_EC> &
EllipticCurve)
: xCoordValue (xPoint),
yCoordValue (yPoint),
ellipticCurve (&E1llipticCurve)

{}

public:
static EllipticCurvePoint ONE;

//** constructor
EllipticCurvePoint(const
EllipticCurvePoint& rhsPoint)

{
xCoordValue = rhsPoint.xCoordValue_;
yCoordValue = rhsPoint.yCoordValue_;
ellipticCurve =
rhsPoint.ellipticCurve_;
}

//** the assignment process
EllipticCurvePoint& operator=(const
EllipticCurvePoint& rhsPoint)

xCoordValue = rhsPoint.xCoordValue_;

yCoordValue = rhsPoint.yCoordValue_;

ellipticCurve_ =
rhsPoint.ellipticCurve_;
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return *this;

}

//** access x component as element of Fp
ffe_element GetX() const { return
xCoordValue ; }

//** access y component as element of Fp
ffe_element GetY() const { return
yCoordValue ; }

//** calculate the order of this point by

//** brute-force additions

unsigned int
ComputingOrderBruteForceAddition
(unsigned int maximum period = ~0) const

EllipticCurvePoint ecPoint = *this;

unsigned int order = 0;

while(ecPoint.xCoordValue != 0 &&
ecPoint.yCoordValue != 0)

++order;
ecPoint += *this;
if (order > maximum_period) break;

}

return order;

}

//** negation operator (-) that
//** gives the inverse of a point
EllipticCurvePoint operator-()
{
return
EllipticCurvePoint(xCoordvalue ,
-yCoordValue );
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//** equal (==) operator

friend bool operator==(const
EllipticCurvePoint& lhsPoint,
const EllipticCurvePoint& rhsPoint)

{
return (lhsPoint.ec_ == rhsPoint.ec )
8& (lhsPoint.x_ == rhsPoint.x_) &&
(lhsPoint.y == rhsPoint.y );
}

//** different (!=) operator

friend bool operator!=(const
EllipticCurvePoint& lhsPoint, const
EllipticCurvePoint& rhsPoint)

{
return (lhsPoint.ec_ != rhsPoint.ec )
|| (lhsPoint.x_!= rhsPoint.x ) ||
(1hsPoint.y != rhsPoint.y );
}

//** Implementation of a + b operator

friend EllipticCurvePoint operator+(const
EllipticCurvePoint& lhsPoint,
const EllipticCurvePoint& rhsPoint)

ffe_element xResult, yResult;
lhsPoint.ECTwoPointsAddition(
lhsPoint.xCoordValue ,
lhsPoint.yCoordValue ,
rhsPoint.xCoordValue_,
rhsPoint.yCoordValue_,
xResult,yResult);
return
EllipticCurvePoint(xResult,
yResult,
*1hsPoint.ellipticCurve );
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//** multiplying with scalar * int
friend EllipticCurvePoint operator*(int
scalar, const
EllipticCurvePoint& rhsPoint)

return
EllipticCurvePoint(rhsPoint).
operator*=(scalar);

}

//** Implementation of += operator
EllipticCurvePoint8 operator+=(const
EllipticCurvePoint& rhsPoint)

{
ECTwoPointsAddition(xCoordValue ,
yCoordValue ,rhsPoint.xCoordValue ,
rhsPoint.yCoordValue ,xCoordValue ,
yCoordValue );
return *this;
}

//** Implementation of *= int operator
EllipticCurvePoint& operator*=(int scalar)
{
return (*this =
MultiplyUsingScalar(scalar,*this));
}

//** display and print the point

//** using ostream

friend ostream& operator <<(ostreamd os,
const EllipticCurvePoint& p)

return (os << "(" << p.xCoordValue <<

, " << p.yCoordValue << ")");
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//** performing the elliptic
//** curve implementation
typedef EllipticCurve<OrderFFE_EC> this_t;
typedef class
EllipticCurve<OrderFFE_EC>::
EllipticCurvePoint point t;

//** the Weierstrass equation

//** as y"2 = x"3 + ax + b

EllipticCurve(int CoefA, int CoefB)

: ECParameterA(CoefA),
ECParameterB(CoefB),
tableOfPoints(),
tableFilledComputated(false)

{
}

//** compute all the points

//** (from the group of elements) for
//** Weierstrass equation. Note the
//** fact that if we are

//** having a high order for the curve,
//** the computation process

//** will take some time

void CalculatePoints()

int x_val[OrderFFE EC];

int y val[OrderFFE EC];

for (int counter = 0; counter <
OrderFFE_EC; ++counter)

{
int nsq = counter*counter;
x_val[counter] = ((counter*nsq) +
ECParameterA.i() * counter +
ECParameterB.i()) % OrderFFE EC;
y _val[counter] = nsq % OrderFFE_EC;
}
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for (int counteri = 0; counteri <
OrderFFE_EC; ++counterl)

{
for (int counter2 = 0; counter2 <
OrderFFE_EC; ++counter2)
{
if (x_val[counteri] ==
y _val[counter2])
{
tableOfPoints.push _back(Ellip
ticCurvePoint(counteri,
counter2,*this));
}
}
}

tableFilledComputated = true;
}

//** obtain the point (from the group of
//** elements) for the curve
EllipticCurvePoint operator[](int n)

{
if ( 'tableFilledComputated )
{
CalculatePoints();
}
return tableOfPoints[n];
}

//** the number og the elements

//** in the group

size t Size() const { return
tableOfPoints.size(); }
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//** the degree of the point for
//** the elliptic curve
int Degree() const { return OrderFFE EC; }

//** the "a" parameter, as an element of Fp
FFE<OrderFFE_EC> a() const { return
ECParameterA; }

//** the "b" paramter, as an element of Fp
FFE<OrderFFE_EC> b() const { return
ECParameterB; }

//** print and show the elliptic curve in a

//** readable format using ostream human

//** readable form

template<int ECT>

friend ostreamd operator <<(ostreamd os, const
EllipticCurve<ECT>& EllipticCurve);

//** print and display all the elements
//** of the elliptic curve group
ostreamd PrintTable(ostream 8os,

int columns=4);

private:
typedef std::vector<EllipticCurvePoint>
TableWithPoints;

//** table with the points
TableWithPoints tableOfPoints;

//** first parameter of the
//** elliptic curve equation
FFE<OrderFFE_EC> ECParameterA;

//** second parameter of the
//** elliptic curve equation
FFE<OrderFFE_EC> ECParameterB;

216



CHAPTER9  ELLIPTIC-CURVE CRYPTOGRAPHY

//** boolean value to show if the
//** table has been computed
bool tableFilledComputated;

};

template<int ECT>
typename EllipticCurve<ECT>::EllipticCurvePoint
EllipticCurve<ECT>::EllipticCurvePoint::
ONE(0,0);

template<int ECT>
ostreamd operator <<(ostream& os, const
EllipticCurve<ECT>& EllipticCurve)

{
0s << "y"2 mod " << ECT << " = (x"3" << showpos;
if ( EllipticCurve.ECParameterA != 0 )
{
os << EllipticCurve.ECParameterA << "x";
}
if ( EllipticCurve.ECParameterB.i() != 0 )
{
os << EllipticCurve.ECParameterB;
}
0s << noshowpos << ") mod " << ECT;
return os;
}

template<int P>
ostreamd EllipticCurve<P>::PrintTable(ostream &os,
int columns)

if (tableFilledComputated)
{

int col = 0;
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typename
EllipticCurve<P>::TableWithPoints::
iterator iter = tableOfPoints.begin();
for ( ; iter!=tableOfPoints.end(); ++iter )

{
0s << "(" << (*iter).xCoordValue .i() <«
", " << (*iter).yCoordValue .i() << ") ";
if ( ++col > columns )
{
0s << "\n";
col = 0;
}
}
}
else
{
os << "EllipticCurve, F_" << P;
}
return os;
}
}
namespace utils
{
float  frand()
{
static float norm = 1.0f / (float)RAND MAX;
return (float)rand()*norm;
}
int irand(int min, int max)
{
return min+(int)(frand()*(float)(max-min));
}
}
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using namespace EllipticCurveCryptography;
using namespace utils;

int main(int argc, char *argv([])

{
typedef EllipticCurve<163> elliptic_curve;
elliptic_curve myEllipticCurve(1,1);

cout << "Basic Example of using Elliptic Curve
Cryptography using C++20. Apress, 2020\n\n";

//** display some informations about the
//** elliptic curve and display some of the properties

cout << "Equation of the elliptic curve: " ««
myEllipticCurve << "\n";

//** compute the points for the elliptic
//** curve for equation from the above
myEllipticCurve.CalculatePoints();

cout << "\nList of the points (x,Y) for the curve (i.e.

the group elements):\n";
myEllipticCurve.PrintTable(cout,5);
cout << "\n\n";

elliptic_curve::EllipticCurvePoint P = myEllipticCurve[2];
cout << "Randomly - Point P =" << P << ", 2P = " «

(P+P) << "\n";

elliptic_curve::EllipticCurvePoint Q =
myEllipticCurve[3];

cout << "Randomly - Point Q = " << Q << ", P+Q = " <«
(P+Q) << "\n";

elliptic_curve::EllipticCurvePoint R = P;
R +=0Q;
cout << "P +=Q = " << R << "\n";
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R = P;
R += R;
cout << "P += P = 2P = " << R << "\n";

cout << "\nEncryption of the message using
elliptic curve principles\n\n";

//** as an example we will use Menes-Vanstone

//** scheme that is based on elliptic

//** curve for message encryption

elliptic_curve::EllipticCurvePoint G = myEllipticCurve[0];

while((G.GetY() == 0 || G.GetX() == 0) ||
(G.ComputingOrderBruteForceAddition()<2))

{
int n = (int)(frand()*myEllipticCurve.Size());
G = myEllipticCurve[n];

}

cout << "G = " << G << ", order(G) is " <«

G.ComputingOrderBruteForceAddition() << "\n";

//** Suppose that Alice wish to communicate with Bob
//** Alice and its public key
int a = irand(1,myEllipticCurve.Degree()-1);

//** generating the public key
elliptic_curve::EllipticCurvePoint Pa = a*G;
cout << "Alice - Public key (Pa) = " << a << "*" << G «

= " << Pa << endl;

//** Bob and is public key
int b = irand(1,myEllipticCurve.Degree()-1);

//** the public key

elliptic_curve::EllipticCurvePoint Pb = b*G;

cout << "Bob - Public key (Pb) = " << b << "*" << G <« " =
" << Pb << endl;
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//** Oscar - the eavesdropper and attacker

int o = irand(1,myEllipticCurve.Degree()-1);;
elliptic_curve::EllipticCurvePoint Po = 0*G;

cout << "Oscar - Public key (Po) = " << 0 << "*" << G <«

= " << Po << endl;

cout << "\n\n";

//** Alice proceed with the encryption
//** for her message and send it to Bob.
//** To achieve this, the first step is
//** to split the message into multiple
//** parts which are encoded using Galois
//** field (Fp), which is also the domain
//** elliptic curve.

int m1 = 19;

int m2 = 72;

cout << "The clear text message send by Alice to Bob: ("

<««m << ", " e m2 << ")\n";

//** proceed with encryption using the key of Bob
elliptic_curve::EllipticCurvePoint Pk = a*Pb;
elliptic curve::ffe element c1(m1i*Pk.GetX());
elliptic_curve::ffe element c2(m2*Pk.GetY());

//** the message that is encrypted is composed from:

//** Pa - Alice public key

//** c1,c2

cout << "The message encrypted from Alice for Bob is
represented as {Pa,c1,c2} and its content is =

{" <««Pa<<", "<l <«", "<
n }\n\nll;

//** Bob compute the decryption for the message
//** received from Alice, using her public key
//** and the session value (integer b)

Pk = b*Pa;
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elliptic _curve::ffe element mid = c1/Pk.GetX();
elliptic_curve::ffe element m2d = c2/Pk.GetY();

cout << "\tThe message decrypted by Bob from Alice is = ("

<« mid << ", " << m2d << ")" << endl;

//** Oscar will intercept the message and
//** and he/she will try to decrypt it
//** using his/her key

Pk = o*Pa;

mid = c1/Pk.GetX();

m2d = c2/Pk.GetY();

cout << "\nOscar decrypt the message from Alice = (" <<

mid << ", " << m2d << ")" << endl;

cout << endl;

Conclusion

In this chapter, we discussed elliptic-curve cryptography and how it can be implemented
in practice.
Since you've reached the end of this chapter, you can now

e Understand the theoretical fundamentals for implementing elliptic-
curve cryptography.

e Apply theoretical mechanisms and theorems for operations with
group law in practice.

o Implement the basic operations and transpose them into practical
elliptic-curve cryptography.
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CHAPTER 10

Lattice-Based
Cryptography

In this chapter, you will get an overview of lattice-based cryptography. You will learn
why lattices are important in the cryptography field and the challenges in using them.
Further, you will explore a practical implementation that uses lattices, namely the GGH
(Goldreich-Goldwasser-Halevi) encryption scheme [1].

Lattices are important in cryptography because the hardness assumption based
on them is considered to be quantum resistant. In the last few years, the number of
primitives in quantum cryptography has increased. While the traditional encryption
systems, such as RSA, Diffie-Hellman, and elliptic-curve encryption systems, can be
easily broken using quantum computers, encryption systems that use lattices are one of
the few candidates that can resist in post-quantum cryptography.

However, using lattices in cryptography is not an easy task regarding the applicability
and the practical implementations, because they are complex mathematical
constructions that require a quite solid background of algebra and an understanding of
abstract concepts.

Mathematical Background

This section provides a short overview of the main elements and techniques that are
required as minimum theoretical information about lattices and the mathematical
background that a professional should know.

Take into consideration the space R” and a base in R” of the form b = (b, ..., b,), with
by, ..., b, € R. A lattice has the following form:

L(b)={Xab,|a, eZ}
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In the above construction, g; is an integer number and b; is the ith element of the
basis b. Moreover, it can be observed that £ is the set of all linear combinations that
have integer coefficients. An immediate example of a lattice is Z", generated by the
standard basis in R”. Figure 10-1 shows a lattice in a Euclidean plane.

$ &+ * = »
$ &+ * = =»
* &+ = = =
$ = = = =
® * = = =

Figure 10-1. A lattice in a Euclidean plane’

Examples of lattice problems are: shortest vector problem (SVP), closest vector
problem (CVP), shortest independent vector problem (SIVP), GapSVP, GapCVP,
bounded distance decoding, covering radius problem, and shortest basis problem. In
cryptography, SVP and CVP are mainly used as hardness assumptions in cryptosystems.

For SVP, the following elements are given: a vector space V, a basis b in the vector
space, and a norm N. Knowing the lattice £(b), it is required to compute the shortest
vector v € Vsuch that v’s norm in Vrepresents the minimum distance defined in £.In
other words, the vector v € Vshould be found such that

ol =2(£(2)

In the above relation, ||. || represents the norm in V, E(b) is the lattice defined over
the basis b, and 1 is the minimum distance defined in E(b) . The relation gives the
search variant of the SVP. The other two variants are

o Calculation: Find the minimum distance in lattice A(ﬁ(b)) when
given the basis b and lattice A(L£(b)).

« Decision: Decide whether 2(£(b))<d or 2(£(b))>d when given
the basis b, lattice A(ﬁ(b)) ,and a real value d > 0.

Source: https://en.wikipedia.org/wiki/Lattice (group
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A generalization of SVP is CVP, where, informally speaking, given a vector v € V, it is

required to find the vector uin £(b) which is nearest to v. Note that v is not necessarily

in E(b) . In some cases, there is an additional condition: the distance between v and u

should not exceed a given value.

For more information about the lattices used in cryptography, you can consult [2], [3].

Example

In this section, we present a GGH encryption scheme [1] that uses lattices. GGH is an

asymmetric encryption scheme, namely it uses the public key for encryption and the

private key for decryption. The algorithms of the cryptosystem are the well-known

key generation, encryption and decryption. In the following, we present them as

proposed in [1]:

Key generation: Given a security parameter, generate a basis b in
the lattice £ defined over an n-dimensional space that has good
properties (such as containing nearly orthogonal vectors) and a
unimodular matrix A. The basis and the matrix compose the private
key. The public key is computed as B=A - b.

Encryption: Given the message m = (m,, ..., m,) and the error
e=(ey...,e,), the encryptionisc=m- B +e.

Decryption: Given the encryption ¢ = (c, ..., ¢,), the message is
computed in two steps:

1. Compute ¢- b". This yields
c-b'=(m-B+e)b'=m-A-b-b'+e-b'=m-A+e-b7\.

2. Remove e- b™! using a technique such as Babai rounding and
computem=m-A-A.

Further, we provide the implementation of the encryption and decryption for GGH

(Listing 10-1), using as keys the following values:

17 0 2 3
(0 19] [3 5)

The result is shown in Figure 10-2.
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Bl Administrator: Command Prompt

C:\>g++ GGH_encryption.cpp
C:\>a

***message***
2 -5

***encrypted message***
-186 -362

***recovered message***
2 -5

C:\>

Figure 10-2. The result of Listing 10-1

Listing 10-1. Encryption and Decryption Algorithm of the GGH Cryptosystem

#include <iostream>
#include "math.h"

using namespace std;

void encrypt(double message[100], double public B[100][100], double error
vals[100], int dimension, double output encrypted text[100]);

void decrypt(int dimension, double encrypted message[100], double private
basis[100][100], double unimodular matrix[100][100], double output
message[100]);

double matrix determinant(double square matrix[100][100], int dimension);
void matrix_inverse(double matrix[100][100], int dimension, double output_
inverse[100][100]);

void matrix multiplication(double matrix1[100][100], double matrix2[100]
[100], double output[100][100], int dimension) ;

void matrix addition(double matrixi[100][100], double matrix2[100][100],
double output sum[100][100], int dimension);

void get cofactor(double matrix[100][100], double aux[100][100], int p,
int q, int n);

void adjoint matrix(double matrix[100][100], double adjoint[100][100],

int dimension);

bool inverse matrix(double matrix[100][100], double inv matrix[100][100],
int dimension);
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void vector to matrix(double v[100], int dimension, double output
matrix[100][100]);

void matrix to vector(double matrix[100][100], double output v[100], int
dimension);

void print matrix(double matrix[100][100], int n, string message);

void print vector(double vect[100], int n, string message);

void print message(string message);

int main()

{

int message length = 2;

double b[100][100]
basis -> b
double b_inverse[100][100];

{{17.0, 0.0}, {0.0, 19.0}}; // the private

inverse matrix(b, b_inverse, message length);

double A[100][100] = {{2.0, 3.0}, {3.0, 5.0}}; // the private
unimodular matrix -> A

double A inverse[100][100];

inverse matrix(A, A inverse, message length);

double B[100][100]; // the public key -> B
matrix_multiplication(A, b, B, message length);

// Encryption

double enc_message[100]; // stores the encryption of the message -> c
double message[100] = {2, -5}; // the message -> m

double error vals[100] = {1, -1}; // the error values -> e

print_vector(message, message length, "message");
encrypt(message, B, error_vals, message length, enc_message);
print_vector(enc_message, message length, "encrypted message");

// Decryption

double recovered message[100];

decrypt(message length, enc_message, b, A, recovered message);

print vector(recovered message, message length, "recovered message");
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// Auxiliary function that prints a matrix on the console
void print matrix(double matrix[100][100], int n, string message)

{

cout<<endl<<"*¥*¥*"<<message<<"***"<<endl;

for(int i = 0; i < n; i++)

{
for(int j = 0; j < n; j+ )
cout<<matrix[i][j]<<" "
cout<<endl;
}
cout<<endl;

}

// Auxiliary function that prints a vector on the console
void print vector(double vect[100], int n, string message)

{

cout<<endl<<"***" " <<message<<"***"<<endl;

for(int i = 0; i < n; i++)

{

cout<<vect[i]<<" "
}
cout<<endl;

}

// Auxiliary function that prints a string message on the console
void print message(string message)

{

cout<<endl<<"*** <<message<<"***"<<endl;

}

void encrypt(double message[100], double public B[100][100], double error
vals[100], int dimension, double output encrypted text[100])

{

// c=meB+e
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double aux_message[100][100], aux_enc_message[100][100], aux_error
vals[100][100];
vector to matrix(message, dimension, aux_message);

// Compute meB -> aux_enc_message
matrix multiplication(aux_message, public B, aux enc_message, dimension);
vector to matrix(error vals, dimension, aux error vals);

// Compute meB+e -> output_encrypted text
matrix_addition(aux_enc_message, aux_error vals, aux_enc_message,
dimension);

matrix_to vector(aux_enc_message, output_encrypted text, dimension);

void decrypt(int dimension, double encrypted message[100], double private
basis[100][100], double unimodular matrix[100][100], double output
message[100])

{

// (1) Compute c * (b"(-1))

// (2) Remove e * (b"(-1))

// (3) Compute m * A * (A*(-1))

double aux_enc_message[100][100], aux_message[100][100];
double recovered message[100][100];

// Compute the inverse of the basis -> b_inverse
double b _inverse[100][100];
inverse matrix(private basis, b_inverse, dimension);

// Compute the inverse of the unimodular matrix -> A_inverse
double A inverse[100][100];
inverse matrix(unimodular matrix, A inverse, dimension);

// (1) Compute c * (b*(-1)) -> aux_enc_message

vector_to matrix(encrypted message, dimension, aux_enc_message);
matrix _multiplication(aux_enc_message, b_inverse, aux_message,
dimension);
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// (2) Remove e * (b"(-1)) from aux_enc_message
// Basically, the value aux _message[i][]j] is rounded to the neareast

integer
for (int i=0; i<2; i++)
{
for (int j=0; j<2; j++)
aux_message[i][j] = round(aux_message[i][j]);
}

// (3) Compute m * A * (Ar(-1))

matrix multiplication(aux _message, A inverse, recovered message,
dimension);

matrix_to vector(recovered message, output message, dimension);

}

// Computes the matrix multiplication between two matrices
void matrix multiplication(double matrix1[100][100], double matrix2[100]
[100], double output[100][100], int dimension)

{
for (int i = 0; i < dimension; i++)
{
for (int j = 0; j < dimension; j++)
{
output[i][j] = 0;
for (int k = 0; k < dimension; k++)
output[i][j] += matrix1[i][k] * matrix2[k][]];
}
}
}

// Computes the matrix sum between two matrices
void matrix addition(double matrix1[100][100], double matrix2[100][100],
double output sum[100][100], int dimension)
{
for(int i = 0; i < dimension; ++i)
for(int j = 0; j < dimension; ++j)
output_sum[i][j] = matrix1[i][]j] + matrix2[i][]];
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}

// Computes the cofactor of the element matrix[p][q]

void get cofactor(double matrix[100][100], double aux[100][100], int p, int
g, int n)

{

inti=0, j=0;

for (int row = 0; row < n; Trow++)

{
for (int col = 0; col < n; col++)
{
if (row != p && col != q)
{
aux[i][j++] = matrix[row][col];
if (3 ==n - 1)
{
J=0;
i++;
}
}
}
}

}

// computes the determinant of a square matrix
double matrix_determinant(double square matrix[100][100], int dimension)
{

double matrix det = 0.0;

double aux_matrix[100][100];

if (dimension == 1)
return square matrix[o][0];

if (dimension == 2)
return ((square matrix[0][0] * square matrix[1][1]) - (square_
matrix[1][0] * square matrix[o0][1]));
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else
{
for (int k = 0; k < dimension; k++) {
int aux_i = 0;
for (int i = 1; i < dimension; i++) {
int aux_j = 0;
for (int j = 0; j < dimension; j++) {
if (j == k)
continue;
aux_matrix[aux_i][aux_j] = square matrix[i][j];
aux_j++;
}
aux_i++;
}
matrix det = matrix det + (pow(-1.0, k) * square matrix[0][k] *
matrix_determinant( aux_matrix, dimension - 1 ));

}

return matrix_det;

}

// Computes the adjoint of a matrix
void adjoint _matrix(double matrix[100][100], double adjoint[100][100],
int dimension)

{

if (dimension == 1)

{
adjoint[o0][0] = 1;
return;

}

int sign = 1;
double aux[100][100];
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for (int i=0; i<dimension; i++)

{
for (int j=0; j<dimension; j++)
{
get _cofactor(matrix, aux, i, j, dimension);
sign = ((i + j) #2==0) 21 : -1;
adjoint[j][i] = (sign)*(matrix_determinant(aux, dimension - 1));
}
}

}

// Computes the inverse of a matrix
bool inverse matrix(double matrix[100][100], double inv_matrix[100][100],
int dimension)

{

double det = matrix determinant(matrix, dimension);
if (det == 0)
{

return false;

}

double adj[100][100];
adjoint matrix(matrix, adj, dimension);

for (int i=0; i<dimension; i++)
for (int j=0; j<dimension; j++)
{
if(adj[i][j] / det == -0)

adj[i][j] = 0.0;

inv_matrix[i][j] = adj[i][j] / det;
}

return true;
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// This function "converts" a vector (seen as a matrix with 1 line and
*dimension* columns) into a matrix

// The obtained matrix has on the first line the elements of the vector

// The remaning lines (*dimension* - 1) contanis 0

// This "conversion" is useful in the operations with matrices (addition,
multiplication)

void vector to matrix(double v[100], int dimension, double output

matrix[100][100])

{
for(int i = 0; i < dimension; i++)
{
output_matrix[o][i] = v[i];
}
for(int i = 1; i < dimension; i++)
for (int j = 0; j < dimension; j++)
{
output_matrix[i][j] = o;
}
}

// This function "converts" a matrix into a vector

// All lines of the matrix has values of 0, except for the first line

// The first line of the matrix becomes the vector

void matrix to vector(double matrix[100][100], double output v[100], int
dimension)

{
for(int i = 0; i < dimension; i++)
{
output v[i] = matrix[o][i];
}
}
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Conclusion

In this chapter, we discussed lattice-based cryptography and its importance. At the end

of this chapter, you now know the following:

The importance of lattice-based cryptography and its impact on the
future of cryptography

How to encrypt and decrypt using GGH cryptosystem

How to implement practical functions and methods related to lattices
and matrices
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CHAPTER 11

Searchable Encryption

Searchable encryption (SE) is an encryption technique that allows outsourcing the
encrypted data to possible untrustworthy third-party service providers, while at the
same time allowing the users to apply searching operations directly over the encrypted
data safely and securely. Searchable encryption can be considered a type of fully
homomorphic encryption, which will be discussed in Chapter 12.

To understand the searchable encryption technique, consider the following scenario.
There is a set of documents owned by data owner A, which is stored on a server, but these
documents are allowed to be accessed (in a specific way that will be detailed immediately)
by data user B. To keep them secure, A encrypts the documents using B’s public key and
then stores them on the server. In this scenario, B has permission only to search in the
documents (note that the documents are in an encrypted format) or to read them (note
that B can read a document only after it is retrieved from the server and decrypted). Let’s
say B wants to retrieve from the server any documents that contain a specific keyword, for
example, “programming.” To do this, B constructs a value called a trapdoor based on the
query word “programming” and the secret key that B owns and then submits the trapdoor
value to the server. The server will perform the search algorithm given by the searchable
encryption scheme and will send the result (in encrypted format) to B.

Another more practical example is the following: a software solution that needs at
some point the social security numbers (SSNs) of their customers is developed by an
entity. The rules and good practices suggest that the SSNs be encrypted when working
with them. This can be challenging because the employees will work with the SSNs, such
as when they need to search for a user account. A solution is that the employees search
for a particular SSN through the encrypted SSNs (without decrypting them in any way).
A searchable encryption scheme would make this possible.

Now that you have a view of searchable encryption, it is worth saying that it has great
potential, letting the data user search for specific content over encrypted data. An immediate
application of searchable encryption is in the healthcare domain, where patients’

239

© Marius Iulian Mihailescu and Stefania Loredana Nita 2021
M. I. Mihailescu and S. L. Nita, Pro Cryptography and Cryptanalysis with C++20,
https://doi.org/10.1007/978-1-4842-6586-4_11


https://doi.org/10.1007/978-1-4842-6586-4_11#DOI

CHAPTER 11 SEARCHABLE ENCRYPTION

medical files can be searched in an encrypted form. Other applications are in education,
business, and basically in any domain that requires search processes through data.

Components

The components of a searchable encryption scheme are as follows: the entities and the
algorithms. In this section, we present these components in a detailed view.

Entities

When a software solution is implemented, more aspects should be clarified before
the implementation itself: the clients who will use the application, the entity that will
maintain it, the type of data, the roles supported by the application, and so on.

In a system that uses a searchable encryption scheme, the following entities are
involved in the whole process:

o Data owner: The data owner, who is assumed to be a trusted party,
has a number of n documents ={D,, ..., D,}, which are characterized
by keywords (note that these keywords are not metadata). Both
the documents and the keywords will be outsourced. Prior to
outsourcing the documents (and the keywords, which are often
organized into a structure called index structure) on the server, they
are encrypted by the data owner using an encryption algorithm of a
searchable encryption scheme.

o Data user: The data user, who is an authorized user of the data, may
trigger the search process. Using the query keyword for which the
search will be made, the data user generates a trapdoor value that will
be used when searching over the encrypted data. Also, the data user
may decrypt the documents from the search process if the data user
possesses the private key. Note that the data owner can be a data user.

e Server: The server, which is considered semi-trusted or honest-but-
curious, stores the encrypted data and performs the search algorithms
based on the trapdoor value that it receives from the data user.
Semi-trusted or honest-but-curious means that it performs the search
algorithms as instructed but can analyze the data that was given to it.
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From the cryptographic point of view, searchable encryption schemes can be categorized

as follows: symmetric searchable encryption (SSE) schemes and public encryption with

keywords search (PEKS) schemes. Symmetric searchable encryption schemes use just a key

for the encryption or decryption of the content and additionally in other specific algorithms,

as you will see below. Public encryption schemes with keyword search use two keys, namely

a public key to encrypt content and a private (or secret) key to decrypt the encrypted content.

The SSE schemes contain the following algorithms [1]:

KeyGeneration: The data owner runs this algorithm. The inputis a
security parameter 4, and the output is the secret key SK.

BuildIndex: The data owner runs this algorithm. Its purpose is to
generate a structure of indices that will contain the keywords that
describe the documents. The input is the secret key SK and the set
of documents D that will be stored on the server, while the output

is an index structure I. Specifically, this algorithm begins with an
empty index structure and for every document of the set, it appends
to the index structure some keywords that describe the current
document. Note that the keywords are encrypted using the secret
key SKin a specific way that can be different from the encryption of
the documents before being added to the index structure. The index
structure can be a tree, a hash table, a list, etc.

Trapdoor: The data user runs this algorithm. The input for the
trapdoor algorithm is the desired query keyword kw, for which the
search process is triggered, and the secret key SK, while the output is
avalue Ty, called trapdoor. Note that the trapdoor algorithm does not
just encrypt the query keyword kw. Instead, it adds a noise value or
works with something of control.

Search: The server runs the search algorithm. The input for the
search algorithm is the trapdoor value T}, obtained from the previous
algorithm and the index structure I obtained from the BuildIndex
algorithm. Note that the search algorithm does not just try to match
the trapdoor T}, in I. The search algorithm should specify how the
trapdoor value T}, is searched in the index structure (remember that

T, is not a simple encryption of a plain keyword).
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If the search algorithm returns one or more documents that contain the query
keyword, the documents are sent to the data user, or else the server sends a proper
message. Note that the encryption and decryption algorithms are not listed above. That
is because two different encryption schemes can be chosen by the data owner, namely
one to encrypt the documents and one for the searchable encryption scheme. This
situation is possible because the searchable encryption scheme does not directly involve
the documents. All algorithms of an SSE scheme work only with the keywords and/or the
index structure of encrypted keywords.

Alittle different from the SSE version, the algorithms of a PEKS scheme are as follows [2]:

o KeyGeneration: This algorithm is similar to the KeyGeneration from
SSE, and the data owner runs this algorithm, too. The input is also a
security parameter 4, while this time the output of the key generation
is a pair of keys, namely the public and the private keys, (PK, SK).

o Encryption: The data owner runs this algorithm, for which the public
key PK and a keyword KW are the input values, while the output is
the encrypted value SW of K.

o Trapdoor: Similar to the trapdoor algorithm from SSE, the data user
runs this algorithm to generate the trapdoor value. The input is the
secret key SK and the query keyword KW for which the search is
made, while the output is the trapdoor value T, corresponding to
the keyword KW.

o Test: The server runs the test algorithm, for which the input is the
public key PK, an encrypted value C (representing the encryption of
a keyword KW), and the trapdoor value Ty. The output of the test
algorithm is 1 if KW = KW, and 0 otherwise.

The same remarks apply for the trapdoor and the test algorithm; the algorithms do
not just offer encryption or simple matches, respectively. Still, the above algorithms for
the SSE schemes and PEKS schemes are presented according to their introductions in
this field in early works [1] and [2]. Since then, the algorithms were adapted alongside the
options that the search process supported. Namely, multiple keywords search is allowed
in some works, others enable fuzzy search (which allows small typos or inconsistencies
of the format) based on keywords [3, 4], and yet others enable a semantic search
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(the search process returns documents that contain keywords from the semantic field

of the query keyword) [5], etc. Other works focus on the documents (specifically, the
documents can be updated directly on the server, without it being necessary to retrieve
them from the server, decrypt, update, encrypt, and store them again on the server);
other works focus on the index structure that can be updated directly on the server [6].
However, the algorithms that are contained by any searchable encryption scheme are the
trapdoor and the search/test algorithm, and, of course, the encryption and decryption.

Security Characteristics

There are some things that need to be protected in a searchable encryption such as

the search pattern and the access pattern. The search pattern is the information that
can be discovered from the fact that two different search results belong to the same
query keywords. The access pattern is the set of documents resulting from a trapdoor
corresponding to a given keyword KW. Besides, searchable encryption schemes should
meet security requirements related to search queries, too. According to [7], SE schemes
should have the following characteristics: controlled searching (search queries may be
submitted only by authorized users), encrypted queries (the query search itself should
be encrypted before being submitted to the server), and query isolation (the server
learns nothing from the queries that it receives).

The SSE schemes should be IND1-CKA and/or IND2-CKA (chosen keyword attack
for indexes) resistant, which means that the index structure cannot be compromised.

In IND1-CKA, the same number of keywords is chosen for all documents used in the
build index structure, while in IND2-CKA the documents can be described by a different
number of keywords. On the other hand, the PEKS scheme should be resistant to the
chosen keyword attack (which is a challenge between an attacker and the structure that
manages the PEKS scheme).

Recently introduced security requirements are forward and backward privacy for the
dynamic SE schemes, which allow inserting, updating, or deleting to be applied over the
set of documents or the keywords directly on the server, without the need of decrypting
them. Backward and forward privacies refer to the information that can be discovered in
the process of inserting/deleting/updating. Backward privacy refers to the information
that is discovered when the search is made for a keyword for which documents have
been deleted before the current search, while forward privacy means that the current
update operation is not related to previous operations.
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An Example

The following example [18] shows that searchable encryption (SE) is a very powerful
encryption technique. The advantage is that the user may search for keywords within
encrypted documents. Recall that the participants to the system are the data user, who
owns a set of documents S = {D,, ..., D,}, prepares the system by generating the keys,
encrypts the documents and the keywords, and stores them on a cloud server; the data
owner, who is allowed to submit search queries on the cloud server; and the cloud server,
which stores the documents in an encrypted format and runs the search algorithm.

The work [18] uses elliptic curves (see Chapter 9) in the searchable encryption
scheme. Nowadays, elliptic curves are used in important areas such as blockchains ([14],
[15]) or the Internet of Things ([16], [17]).

Figure 11-1 [18] shows an example of a searchable encryption scheme that uses
elliptic-curve cryptography and is designed for a big data environment (see Chapter 15).
In the work [18], the Elliptic Curve Digital Signature Algorithm (ECDSA) is used to secure
the content of courses available for students on an e-learning platform. The security
parameter (1) for the key generation algorithm of the searchable encryption scheme is
the private key from the ECDSA algorithm.

At this moment, there is no practical implementation of a searchable encryption
scheme that can be used in a real environment, due to the technique’s complexity,
although there are attempts. After an in-depth study of the current research, we could
not find at this moment a practical implementation in the form of a library, module, or
framework. For implementing a searchable encryption scheme, several basic guidelines
should be taken into consideration before beginning the implementation:

e The architecture of the software application (server, database,

services, etc.)

e The hardware components and the way they are managed for the
current applications, which include security and cryptographic
techniques

o The architecture should be designed such that processes within the
searchable encryption are represented as independent algorithms
such that their deployment is made correctly between the end users
and the existing network infrastructure.
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e-Learning Framework based on
Elliptic Curve Cryptography and Searchable Encryption

Elliptic Curve Cryptography Searchable Encryption for a Big Data
ECDSA (Elliptic Curve Digital Signature Algorithm) Environment
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Figure 11-1. [18]. An example of practical searchable encryption scheme
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Note that the searchable encryption scheme presented in Figure 11-1 is partitioned
in more steps. Every step is an algorithm that can be considered a separate instance
from the searchable encryption scheme. Further, the instances can be implemented as
software modules or services or IoT devices (for example, devices like Intel NUC PC or
a Raspberry PI). The distribution and deployment of the software modules or services
among the users can be realized through a distributed network, for example, on a cloud
computing network or a regular network for small and medium business architectures.

The algorithms below [18] show the steps from Figure 11-1, which present a
searchable encryption for a big data environment. Before implementing the steps, it is
necessary to understand how the steps are organized as independent algorithms. The
following are the steps:

1. (Ko, K, PP) < KeyGeneration(1%, P,S). The data owner O runs
this probabilistic algorithm for which the input values are the
security parameter 4, a policy P. The output is a tuple composed
of the owner’s secret key K, the server key K, and the public
parameters PP.

2. I, < BuildIndex(D™s, K,, PP). The data owner O runs this
probabilistic algorithm for which the input values are the
description of the data set D“*¢ (namely, the keywords that
describe each document) and the secret key of the owner (Kj),
and the output is an index structure Ip,.

3. Ky < (u,A(u), Koy, PP). The data owner O runs this probabilistic
algorithm to enroll a new user in the e-learning platform system.
The input values for the algorithm are the identity of the new user,
the level of access of the user (user’s role), and the owner’s O key.
The output is the secret for the new user.

4. Trapdoor, ;) < Query(w, K,). The data user who has the proper
clearance A(u) for generating a search query runs this probabilistic
algorithm. The input values are the keyword @ € A (where A is a
dictionary of keywords) and the user’s secret key. The output is
the query token (trapdoor value) Trapdoor,, .-

5. Ry, iw) < Searching(Trapdoor , ., In, K;). The server (S) runs
this probabilistic algorithm that searches the index for the data
items that contain the query keyword w. The input values are

246



CHAPTER 11 SEARCHABLE ENCRYPTION

the search query and the index, and the output is R, ;) which
includes a set of identifiers of the data items d; €D, ;) that
contain the query keyword w such that A(d;) < A(u), where A(u;)
is the access level of the user that triggered the search query, or a
failure symbol ¢.

6. (Kp) < RevokeUser(u, K, PP). The data owner O runs this
probabilistic algorithm to revoke a specific user from the system.
The input values are the user’s id, the data owner’s secret keys and
the server, while the output is new keys for the owner and server.

The searchable encryption scheme designed for this chapter is correct if for
all k € N, for all Ky, K outputted by KeyGen(1%, P), for all D“, for all I, that is
outputted by BuildIndex(D*$, K,), for all € A, for all u € U for all K, outputted by
AddUser(Ko, u, A(u), PP), Search(Ip, T, i) = Da, iu)-

Pseudocode 11-1 presents a sketch for the practical implementation of the
searchable encryption scheme proposed in Figure 11-1. Note that the implementation is
purely demonstrative as the implementations (frameworks, libraries, etc.) for searchable
encryption do not exist at this moment.

Pseudocode 11-1. Guidelines for Implementing a Searchable Encryption Scheme

#include <iostream>
#include <fstream>

class KeyGeneration

{

// Step 1

// The data owner runs the algorithm
// from KeyGeneration step (algorithm)

// global variables

public: string securityParameter;
string ownerID;
string policyContent;
string serverIdentity;
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// the function will return the policy,
// as a content or file
public: string GetPolicy(ifstream& policyContent)

{
string content = "";
if (policyContent.is open())
{
while (getline (policyContent, line))
{
content += line;
}
policyContent.close();
}

else policyContent = "Cannot read the policy file";
return policyContent
}
// getting server identity can be tricky and it has
// different meanings, such as the name of computer,
// 1P, active directory reference name etc...
// For the current example we will use the hardware ID
public: string GetServerIdentity()
{

string serverIdentity = "";

// here goes the implementation for getting the server identity

// for this method, Windows WMI can be used

// this link provides more details:

// https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmi-start-
page?redirectedfrom=MSDN

return serverIdentity

}

// class constructor
public: KeyGeneration(){}
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// let's generate the secret key, server key

// and public parameters

// "#" represents the separator

public: string ReturnParameters(KeyGeneration kp)

{

string sbParameters = "";

sbParameters += kp.ownerSecretKey + "#" + kp.serverKey + "#" +
kp.publicParameters;

return sbParameters;

}
}

class BuildIndex

{

// Step 2

// the algorithm from BuildIndex step (algorithm)
// are runned and invoked by the data owner

// constructor of the class
public: void BuildIndex(){}

// the function centralize the build index parameters
// after their initialization and processing
public: void UseBuildIndexParameters()

{

list<string> descriptionDataSet;

string ownerPrivateKey = "";

string outputIndex = "";

}

//simulation of getting the data set and their
//descriptions
public: list<string> GetDataSet()

{
list<string> 11;
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for(int i = 0; i < dataSet.size(); i++)
{

11.push_back(description[i]);

}

}

// getting the private of the owner
public: string ownerPrivateKey()

{

string privateKey = "";
// get the private key and work with it arround

return privateKey;

}

// get the index
public: string Index()
{

string index = "";

// implement the query for getting
// or generating the index

return index;

}
}

class AddUser

{

// Step 3

// the algorithm from AddUser step (algorithm)
// are runned and invoked by the data owner

// constructor of the class AddUser

public: Adduser() {}
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// property for getting the identity of the user
// see below the Class Student
public: string IdentityOfTheUser()

{
string identity = "";

// implement the way of getting
// the identity of the user

return identity;

}

// property for getting the owners key
public: string OwnerSecretKey()

{

string secretKey = "";

// implement the way of querying
// for secret key

return secretKey;

}

public: void AssignSecretKeyToUser()

{
AddUser u = new AddUser();

Student stud = new Student(u.OwnerSecretKey);
}
}

class Query

{
// Step 4

// the algorithm from Query step (algorithm)
// are runned and invoked by the user

// constructor of the class Query
public: Query() {}

SEARCHABLE ENCRYPTION
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// function for getting the keywords
public: string Keyword()
{

string kw = "";
// query for the keywords;

return kw;

}

// function for getting the secret key of the users
public: string UserSecretKey()

{

string secretKey = "";

// implement the way of querying
// for secret key

return secretKey;

}

// the generation of the output as query
// token for the trapdoor

public: string QueryToken()

{

string query token = "";

// generate and build
// the query token for trapdoor

return query token

}
}

class Searxch

{
// Step 5

// the algorithm from Search step (algorithm)
// are runned and invoked by the server
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// the constructor of the Search class
public: Search() {}

public: string SearchQuery()
{

string query = "";
// take the search query

return query;

}

public: string Index()
{

string index = "";

// take the search query

return index;

}

public: string ReturnResult()
{

string result = "";

string setOfIdentifiers = "";

// based on the search query and index,
// get the set identifiers of the data items
setOfIdentifier = "query for identifiers";

// build the result. "#" is the separator for
// illustration purpose only
result = SearchQuery + "#" + Index;

return result;

}
}

SEARCHABLE ENCRYPTION
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class RevokeUser

{

// Step 6

// the algorithm from Search step (algorithm)
// are runned and invoked by the data owner

// constructor of RevokeUser class
public: RevokeUser(){}

// second constructor of the class

// this can be implemented as a

// solution for revoking a user

public: RevokeUser(string userID, string secretKeyDataOwner, string
secretKeyServer)

{

// implement the revoking process
// output the new key for data owner

// output the new key for server

}
}

public class Couxse

{

// the db_panel represents an instance of the

// file which contains classes for each of tables
// from the database

public: Database db_panel;

// Class Courses it is a generated class and assigned
// to the table Courses from the database
public: Courses c;

// student ID
string demoStudentID = “435663”;
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// select the course ID based on the student
public: string GetCourse()

{

// select the courses for a

// specific user (student)

Course c¢ = db_panel.GetCourse(student.Id);

return c;

}

}

class Student
{

public: string secretKey {get; set;}

public: int StudentId {get; set;}

public: string CourseID {get; set;}

public: string StudentName {get; set;}

public: string StudentIdentity {get; set;}
public: string StudentPersonalCode {get; set;}

public: void Student(string secret key)
{

secretKey = secret key;

}
}

string queryKeywod =
SecureSearch.GetPrefix("123456789");

SEARCHABLE ENCRYPTION

string resultStudent = SecureSearch.GetStudent.StartsWith(searchPrefix);

Conclusion

In this chapter, we presented searchable encryption schemes and provided guidelines

for a possible practical use that supports searchable encryption.
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The potential of searchable encryption, which is a particular case of homomorphic
encryption, is great in many domains of activity. In this chapter, we outlined the main
components of searchable encryption schemes. If you're interested in more theoretical
aspects for searchable encryption, any of the references provide a deeper view of SE. For
some recent samples of pseudo-code, consult [11] or [12].
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CHAPTER 12

Homomorphic Encryption

Important types of encryption schemes are those that fall into the homomorphic
encryption (HE) category, which allows calculations to be computed directly on the
encrypted data, without needing a preceding decryption operation. The most important
condition in homomorphic encryption is that the value achieved by decrypting the
result obtained by applying the calculations over the encrypted data must be the same
as the value achieved by applying the same calculations on the plain data. With these
properties, the HE schemes are considered to have great potential because they enable
third-party entities to apply functions (therefore, to apply algorithms) on the encrypted
data, but without the need for any access of the plain data. In this way, the data is
protected and secured while being processed. For a real-life example, suppose you are
on vacation into a foreign city and you want to search the Internet, using your phone or
another device, for local attractions such as museums, exhibitions, art galleries, and so
on. Even this simple search on the Internet may reveal a lot of information about you,
such as your exact location, your cultural interests, the time of the search query, and so
on. If the search engine used a homomorphic approach, then nothing would be revealed
to anyone including the search engine itself, because all of the information and even the
search query would be encrypted. The results that you receive would be also encrypted,
therefore only you could decrypt them. Homomorphic encryption has applications
in many areas, such as finance/business, healthcare, and any domain that works with
sensitive data. Further, some formal aspects of homomorphic encryption are given.

The function g: A — Bis called homomorphic over the operation *if the following
condition is satisfied:

g(x)*g(x,)=g(x, *x,),vx,x, €A

Remember that a general encryption system consists of the following algorithms: key
generation, encryption, and decryption. Besides these three algorithms, the homomorphic
encryption schemes have an additional algorithm called evaluation, which is usually
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denoted with Eval, which describes formally the most important rule mentioned above.
The input and the output of the Eval algorithm are in an encrypted format. In the Eval
algorithm, the function g is applied over encrypted data c, and c,, without accessing the
plain data m, and m,, and having the following property:

Dec(keypriv,Evalg (k€Y gy 1€, €, )) = f(m,,m,)

In homomorphic encryption, only two operations are required to have
homomorphic properties, namely addition and multiplication. This is due to the fact
that an arbitrary function can be represented as a circuit using just gates corresponding
to the addition operation (OR gate) and the multiplication operation (AND gate). The
idea of homomorphic encryption started in the late 70s, when it was called privacy
homomorphism [1]. Among the first encryption schemes to have homomorphic
properties is the Unpadded RSA algorithm [2], in which the operation with
homomorphic properties is the multiplication:

Encyption(m,) Encryption(m,)=m;m, modn
=(m,m,)" modn
= Encryption(m, -m,)

In the above computation, m,, m, are two plain messages and Encryption is the
encryption function.

The homomorphic encryption schemes can be categorized into three classes, as
follows:

e Partial homomorphic encryption (PHE): The schemes in this
category support just one operation applied over encrypted data an
unlimited number of times. Examples of PHE schemes are RSA [2],
Goldwasser-Micali [3], and El-Gamal [4]. Most of the schemes from
this category represent a basis for other homomorphic schemes.

e Somewhat homomorphic encryption (SWHE): The schemes in this
category support both operations applied on the encrypted data, but
for a limited number of times. The encryption scheme from [5] is an
example of SWHE.
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o Fully homomorphic encryption (FHE): The schemes in this
category support both operations over encrypted data for an
unlimited number of times. Fully homomorphic encryption is
considered “cryptography’s holy grail” or “the Swiss Army knife of
cryptography” [6] due to its capability of enabling any computation
over the encrypted data by any number of times. In 2009, the first
FHE scheme [7] was proposed and the mathematical object used
as the foundation is the ideal lattices. The scheme from [7] is very
important in cryptography because it opened the way for the FHE
schemes, and even though it is unpractical in the form in which it
was proposed due to its complexity and abstraction, it represented a
basis for subsequent schemes. In addition, in [7] a general framework
for the FHE schemes was proposed.

Fully Homomorphic Encryption

In this section, fully homomorphic encryption (FHE) is explained in more detail because
it represents an important topic of cryptography that can resolve many security concerns
and issues. A particular model of quantum computation called boson scattering enables
a quantum homomorphic encryption that provides theoretically limited security.

By existing, this kind of scheme makes us wonder if quantum methods can generate
theoretically secure FHE schemes. In [25] the authors prove that quantum techniques do
not enable efficient theoretically secure FHE that hides completely the plaintext.

As mentioned in the previous section, the first FHE scheme was proposed by Craig
Gentry in 2009 and the mathematical object that represents the foundation is the ideal
lattices with the hardness assumption (problems regarding a topic that cannot be solved
in an efficient time, i.e in polynomial time) called the ideal coset problem. Following
Gentry’s scheme, there were proposed a large number of FHE schemes based on
different mathematical techniques. A subsequent work is [8], in which the FHE scheme
uses integer arithmetic. However, the noise introduced in the schemes from [7] and [8]
grows quickly, representing a drawback because it has a high effect over the applicability
and security, thus the homomorphic capabilities are restricted. Due to the noise growth,
the decryption cannot be made after some point.

In the second generation of the FHE schemes that include works such as [9] and [10],
the noise is handled more efficiently, which means improved performance and powerful
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security under various hardness assumptions. The leveled encryption schemes and
bootstrappable encryption schemes are results of this generation. The first ones evaluate
the circuits with a given polynomial depth, while the second ones can be modified
to become FHE schemes. If an encryption scheme has the capability of evaluating
its decryption circuit and additionally one NAND gate, then it is a bootstrappable
encryption scheme.

The third generation of FHE schemes is opened by the work of [11], which uses
a new technique to handle the noise. The schemes of the third generation are less
performant than those from the second generation, but their hardness assumptions can
be weaker. The basis for many schemes in this generation is asymmetric multiplication.
That is, considering two encrypted texts c,, ¢,, the product ¢, ¢, is different from the
product ¢,  ¢;, although both products encrypt the same product b, « b, of the plain texts
b, and b,.

FHE can be used in many areas of cryptography, such as

o Outsourcing: The private data can be kept safe if it is stored in
third-party storage or analyzed by third-party entities. A classic
example for this area is that of a company that stores its data in cloud
storage. Before uploading the data in the cloud, the owner needs to
encrypt it. FHE would be useful in such scenarios because the cloud
provider could analyze the data from the company in an encrypted
format, without accessing the plain data. Moreover, the result of the
computations would be sent by the cloud provider in the encrypted
format to the data owner, where it would be decrypted only by the
decryption key’s owner.

e Private information retrieval (PIR) or private queries: PIR
and private queries are useful when a database is queried or an
application uses a search engine. Another scenario is when a client
wants to send a query to a database server, but the client wants the
server to learn nothing about its query. The solution is the following:
the client encrypts the query and sends it to the server and then the
server applies the encrypted query over encrypted data and responds
with the encrypted result.
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o General computations between two entities (two-party
computations): Consider two parties A and B. Each of them owns a
secret input, X, and y, respectively, and a common function F known
by both. To apply the function F over its private input X, the party A
computesr = F(x, y).From here, Alearns only the value of r and
learns nothing about y. On the other hand, B learns nothing about
x or 1. This is the same as B computing Fy(x) in the semi-honest
model, where A encrypts x and sends to B because the semantic
security assures the fact that B will learn nothing about the plain
value corresponding to x. In such situations, using FHE would
simplify things, because A would just apply F as F(x,y), and achieve
the result in an encrypted format, but it would need and learn
nothing else because everything is encrypted, including F.

Practical Example of Using FHE

There are more libraries for C++ that implement fully homomorphic encryption. Some
well-known libraries for C++ FHE are the following:

o HEIib [12], developed at IBM, implements the schemes BFV
(Brakerski/Fan-Vercauteren) [17] and CKKS (Cheon-Kim-Kim-Song)
[18] and it can be used in Linux and MacOS distributions.

o TFHE [13] implements the scheme proposed in [15] and it can
be used with Linux distributions. In the same paper, the library is
described.

e PALISADE [14] implements the BGV (Brakerski-Gentry-
Vaikuntanathan) [16], BFV [17], CKKS [18], and FHEW schemes
[19] and a more secure version of the TFHE scheme [13], including
bootstrapping. It is supported on Linux, Windows, and macOS
distributions.

o SEAL [20]-[23] implements the BFV [17] and CKKS [18] schemes and
it can be used with .Net or C++. In addition, the SEAL library can be
used in Windows, Linux, or MacOS environments.
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In this section, we’ll use SEAL library to demonstrate an FHE example. The Seal
library implements BFV [12] and CKKS [13] encryption schemes.

In [12], the set of the polynomials with a maximum degree n and the coefficients
computed modulo ¢ is used in the definition of the encryption function. The formal
representation of this set is R, = Z,[x]/(x" + 1). The encrypted text is from the R, set, where
the polynomials have coefficients modulo g. The addition and the multiplication are the
homomorphic operations in this encryption scheme, preserving the ring structure of R,.
The value that needs to be encrypted using BFV schemes first needs to be brought to a
polynomial form accepted by the structure R.. In [12] the encryption scheme includes
the following algorithms: SecretKeyGen (the security parameter is used to generate
the secret key), PublicKeyGen (the secret key is used to generate the public key),
EvaluationKeyGen (the secret key is used to generate the evaluation key), Encrypt (the
plain value is encrypted using the public key), Decrypt (the encrypted value is decrypted
using the secret key), Add (performs the addition between two encrypted values), and
Multiply (performs the multiplication between two encrypted values). Keep in mind
that the results of both operations, namely addition and multiplication, have a form that
is compatible with the structure R,. For more details and a formal description of this
encryption scheme, you can consult [12].

While [12] provides a way to apply modular arithmetic over integers, in [13] the
authors provide ways to apply it over real numbers and complex numbers, too. Anyway,
in [13] the results are approximate, but the techniques are among the best to sum up real
numbers in an encrypted format, to apply machine learning algorithms on encrypted
data, or to compute distanced between encrypted locations.

Before using SEAL library, some preparatory steps are needed, which are described
below.

First, install a version of Visual Studio 2019. The community version, which is free,
can be found at https://visualstudio.microsoft.com/vs/community. Make sure that
the C++ components (under Desktop development with C++) are checked to be installed.
Then download Git from https://git-scm.com/download/win and install it via the
installations steps with the default values. After these programs are set, the SEAL library
can be downloaded from the GitHub repository: https://github.com/microsoft/SEAL
(at the moment of writing this book, the latest version of SEAL is 3.5.6). After downloading
the source code, extract the zip file. We left the default name Seal-master and extracted it
in the path C:\1ibs. Open the Seal-master folder and then open the SEAL. s1n file using
Visual Studio. The structure of the solution should be as in Figure 12-1.
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Solution Explorer

R~ o- = E)

™ Solution 'SEAL' (7 of 7 projects)
P Wl dotnet
4 @l native
b % SEAL
b [% SEALC
P %] SEALExamples
P % SEALTest
P WM Solution Items

Figure 12-1. The structure of the SEAL.sln solution

The folder used for C++ development is the native folder from the solution. To
use SEAL library in your own C++ application, you need first to generate the seal.
1ib library. To do this, you need to build the SEAL project from Figure 12-1. From the
Toolbar, pick Release configuration and x64 platform (Figure 12-2(a) and 12-2(b)), then
right-click the SEAL project and choose Build. The Release configuration is needed
because things go faster than in the Debug configuration and you actually just need to
generate the seal.lib, not debug it. Right-click the SEAL project under the native folder
and choose Build or Rebuild.

Sehution Bxplores

Figure 12-2(a). Choosing the configuration for SEAL building
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Figure 12-2(b). Choosing the platform for SEAL building

If everything works properly, a similar message as in Listing 12-1 should be obtained.

Listing 12-1. The Result of Building the SEAL Project

1>-- Configuring done

1>-- Generating done

1>-- Build files have been written to: C:/libs/SEAL-master/.config/16.0/x64
1>SEAL.vcxproj -> C:\1libs\SEAL-master\native\src\..\..\lib\x64\Release\
seal.lib

========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

Checking the path C:\1ibs\SEAL-master\1ib\x64\Release, you should find
the library seal.lib. Now you are ready to create your own application that uses
FHE. In Visual Studio, create an empty project of type Console App with C++ called
SealCPPExample and add under the Source Files folder a cpp file called SealExample.
cpp. Here, add an empty main function, as in Listing 12-2.

Listing 12-2. The Initial Main Function

int main()
{

return O;
}

Further, the application needs to be prepared for using SEAL library as described as
below. First, right-click the SealCPPExample solution and go to Properties. Here, make
sure All Configurations and All Platforms are selected (Figure 12-3).
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SealCPPExample Property Pages ? b8
Configurati All Configurati ~ | Platform: | All Platforms ~ | | Configuration Manager...
[ Configuration Properties v General Properties
General Output Directory <different options>
Advanced Intermediate Directory <different options>
Debugging Target Name $(Projecthlame)
VC++ Directories Configuration Type Application (.exe)
b CCas Windows SDK Version 10.0 (latest installed version)
plinker Platform Toolset Visual Studio 2019 (v142)
b Maniest Tool C++ Language Standard Default
b XML Document Generator
P Browse Information
b Build Events
I Custorn Build Step
b Code Analysis
Output Directory
Path to where the compiled program will be placed. Can include environment variables.
< >

Cancel Apply
Figure 12-3. Settings for using SEAL library (1)

Then, under C/C++ » General » Additional Include Directories, add the path where
sources were generated (in our example, the path is C:\1ibs\SEAL-master\native\src;
see Figure 12-4).
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SealCPPExample Property Pages T X
Configuration: | All Configurati ~  Platform: | All Platforms ~ Configuration Manager...
4 Configuration Properties | Clibs\SEAL-master\native\src ~|
General Additional #using Directories
Advanced Debug Information Format <different options>
Debugging Support Just My Code Debugging <different options>
VC++ Directories Common Language RunTime Support
4G Ce Consume Windows Runtime Extensicn
Gu_eu_l . Suppress Startup Banner Yes (/nolego)
(Sl C L Warmning Level Level3 (YW3)
A : Treat Wamings As Errors No (/WX-)
Code Generation 5 :
Language V\fa ming .\l'emon ) .
Precompiled Heade Diagnostics Format Column Info (/diagnostics:celumn)
Output Files SDL checks Yes (/sdl)
Browse Information Multi-processer Compilation
Advanced Enable Address Sanitizer (Experimental) No
All Options
Command Line
b Linker
b Manifest Tool
b XML Document Genera
b Browse Information " Additional Include Directories
b Build Events v | | Specifies one or more directories to add to the include path; separate with semi-colons if more than cne.
< > (/N[path])

Cancel Apply
Figure 12-4. Settings for using SEAL library (2)

Finally, to include seal.lib: under Linker » Additional Library Directories, add the
path to seal.lib (in our example, the path is C:\1ibs\SEAL-master\1ib\$(Platform)\
$(Configuration); see Figure 12-5(a)). Note that the $(Platform) for our example is x64
and the $(Configuration) is Release. The final step is to add seal.lib to Linker » Input
» Additional Dependencies (Figure 12-5(b)).
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SealCPPExample Property Pages ? X
Configurati All Configurati ~ | Platform: | All Platforms v Configuration Manager...
4 Configuration Properties Output File $(OutDin)§(TargetName)S(TargetExt)
General Show Progress Not Set
Advanced Version
Debugging Enable Incremental Linking <different options>
VC++ Directories Suppress Startup Banner Yes (/NOLOGO)
b C/Cex Ignore Import Library No
Register Output No
Per-user Redirection No
b X Docimnent Genesstur Additional Library Directories C:\libs\SEAL-master\lib\$ (Platform)\S$(Configuration)
b Browse Information 5 ;
b Build Events Link Library Dependencies Yes
b Custorn Build Step Use Library Dependency Inputs No
b Code Analysis Link Status
Prevent DIl Binding
Treat Linker Warning As Errors
Force File Qutput
Create Hot Patchable Image
Specify Section Attributes
OQutput File
[ The /OUT option overrides the default name and location of the program that the linker creates.
< >

o | [

Figure 12-5(a). Settings for using SEAL library (3)

SealCPPExample Property Pages ? x
Configurati All Configurati +  Platform: | All Platforms w Configuration Manager...
Optimization Al seallibkernel32.libuser32.libgdi32.libwinspooLlibcom - |
Preprocessor Ignore All Default Libraries
Code Generation Ignore Specific Default Libraries
Language Module Definition File
Stecomplied Hende Add Module to Assembly
OutputFiles: © Embed Managed Resource File
Browse Information Force Symbol References
il‘:"g::;: : Delay Loaded Diis
Command Line Assembly Link Resource
4 Linker
General
Input
Manifest File
Debugging
System
Optimization
Embedded IDL
Windows Metadata
Advanced L
All Options | Additional Dependencies
CommandLine | | Specifies additional items to add to the link command line. [i.e. kernel32.lib]
< »

s | [ oy

Figure 12-5(b). Settings for using SEAL library (4)
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To make sure that SEAL was added properly, just add the line from Listing 12-3
in the main function and then build the solution. Do not forget to choose the Release
configuration and x64 platform, and then right-click the solution and choose Build.

Listing 12-3. Checking If SEAL Has Been Added Properly
EncryptionParameters BFV_parameters (scheme type::BFV);

If a success message is returned, then you can proceed further; otherwise, if an error
message similar to 'for_each n': is not a member of 'std'isreturned, then one
more step is needed: change the C++ Language Standard under C/C++ > Language from
Default to ISO C++17 Standard (/std:c++17).

Create a function called seal_example_bfv, in which functionalities provided by
SEAL library for BFV encryption scheme are added. In the first place, the encryption
parameters should be added: the degree of the polynomials from the ring (n), the
modulus for the coefficients of the plaintext (t), and the modulus for the coefficients of
the encrypted text (q). To use the SEAL functionalities, the libraries from Listing 12-4
should be added. The application is notified that the BFV scheme is used and
instantiates the parameters using the line of code from Listing 12-5.

Listing 12-4. The Libraries Included for SEAL
#pragma once

#include "seal/seal.h"
#include <iostream>
#include <algorithm>
#include <chrono>
#include <cstddef>
#include <fstream»
#include <iomanip>
#include <iostream>
#include <limits>
#include <memory>
#include <mutex>
#include <numeric>
#include <random>
#include <sstream>
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#include <string>
#include <thread>
#include <vector>

using namespace std;
using namespace seal;

Listing 12-5. Instantiating the BFV Parameters

void seal example bfv()

{

EncryptionParameters BFV_parameters(scheme type::BFV);}

After instantiating the BFV parameters, they should receive each a value. The
degree of the polynomial modulus is a power of 2 and represents a degree of a
cyclotomic polynomial'. The values that are recommended for it are {1024, 2048,
4096, 8192, 16384, 32768}. With a higher value for the polynomial degree, more
complex computations on the encrypted data can be made, but the drawback is that
the performance decreases. A fair value is 4096, allowing for an acceptable number
of computations with a good performance, therefore this value was chosen for our
application. The modulus for the coefficients of the plaintext is in general a positive
integer. The value for this parameter is a power of two in our example. Depending on
the purpose of the application, the modulus can be a prime number. The modulus for
the coefficient of the plaintext is used to provide the size in bits for the plain data and
to establish limits for consumption in the multiplication operation. The last parameter
is the modulus for the coefficients of the encrypted text, which represents a large integer
value. The value for this modulus should be represented as the product of prime
numbers. When a larger value is chosen, more computations over the encrypted data
can be made. However, there is a relation between the degree of the polynomial modulus
and the size in bits of the modulus for the coefficients of the encrypted text, therefore a
4096 value corresponds to the value 109. Comprehensive explanations for the scheme’s
parameters can be found in [20] and [21].

The other functionality that needs a few words is the noise budget, representing a
number of bits. On short, the initial noise budget is set depending on the encryption
parameters and the rate at which the homomorphic operations (addition and

'https://en.wikipedia.org/wiki/Cyclotomic_polynomial
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multiplication) consume it. The parameter that has the highest influence in setting the
noise budget is the coefficient modulus. When a higher value is picked, the budget is
higher. When the noise budget for an encryption text becomes 0, then the decryption of
the encrypted text cannot be made anymore, because the noise it contains has a value
too large.

With these brief descriptions, the parameters can be initialized using the lines of
code from Listing 12-6, added in the function seal example bfv.

Listing 12-6. Initialization of the BFV Parameters

size t polynomial degree = 4096;

BFV_parameters.set poly modulus degree(polynomial degree);
BFV_parameters.set coeff modulus(CoeffModulus::BFVDefault(polynomial
degree));

BFV_parameters.set plain modulus(1024);

The SEAL context checks the correctness of the parameters:
auto seal context = SEALContext::Create(BFV parameters);

Further, the classes for the BFV encryption scheme need to be instantiated, as shown
in Listing 12-7 (code added in function seal _example bfv).

Listing 12-7. Instantiating the Classes for the BFV Encryption Scheme

KeyGenerator keygen(seal context);

PublicKey encryption _key = keygen.public key();
SecretKey decryption key = keygen.secret key();
Encryptor bfv_encrypt(seal context, encryption key);
Evaluator bfv_evaluate(seal context);

Decryptor bfv_decrypt(seal context, decryption key);

In the following, for this example, the polynomial p(x) = 3x* + 6x° + 9x* + 12x + 6 will
be evaluated for x = 3. For a quick check, you can use the value x = 3 to encrypt and then
decrypt it. Listing 12-8 shows this process and shows some metrics (code added in seal
example bfv function).

272



CHAPTER 12 HOMOMORPHIC ENCRYPTION
Listing 12-8. Encrypting and Decrypting x=3

int value_x = 3;
Plaintext x_plaintext(to_string(value x));

cout << "The value x = " + to_string(value x)
+ " is expressed as a plaintext polynomial 0x"

+ x_plaintext.to string() + "." << endl;

Ciphertext x_ciphertext;

cout << "Encrypting x_plaintext to x_ciphertext..." << endl;

bfv_encrypt.encrypt(x_plaintext, x ciphertext);

cout << - the size of the x_ciphertext (freshly
encrypted) is : "

<< x_ciphertext.size() << endl;

cout << " - the noise budget for x ciphertext is :
<< bfv_decrypt.invariant noise budget(x_ciphertext)
<< " bits" << endl;

Plaintext value x decrypted;

cout << " - decryption of x_encrypted: ";

bfv_decrypt.decrypt(x_ciphertext, value x decrypted);

cout << "0x" << value x_decrypted.to_string() << endl;

Next, call seal _example bfv in the main function as follows:

int main()

{

seal example bfv();
return O;

To run the application, do not forget to choose Release configuration and x64 platform,
and then press CTRL+F5. The result should be similar to Listing 12-9 and Figure 12-6.
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Listing 12-9. The Output for the Encryption, Decryption and Metrics

The value x = 3 is expressed as a plaintext polynomial 0x3.
Encrypting x_plaintext to x_ciphertext...
- the size of the x_ciphertext (freshly encrypted) is : 2
- the noise budget for x ciphertext is : 55 bits
- decryption of x_encrypted: 0x3

The value x 3 is expressed as a plaintext polynomial 0x3.
Encrypting x plaintext to x_ciphertext...
the size of the x_ciphertext (freshly encrypted) is : 2
the noise budget for x_ciphertext is : 55 bits

decryption of x encrypted: Ox3

Figure 12-6. The output for the encryption, decryption and metrics

The Plaintext constructor converts the plain values to polynomials that have a
degree lower than the modulus polynomial, for which the coefficients are represented
as hexadecimal values. In SEAL, the encrypted text is represented as two or more
polynomials with coefficients in the form of inter values modulo, the result of the
multiplication of the prime numbers from CoeffModulus representation. The object
x_ciphertext instantiates the class Ciphertext and receives the value of the encryption
of x_plaintext through calling the encrypt method of the object bfv_encrypt.

This method takes two parameters, namely the object that needs to be encrypted
(x_plaintext) and the object in which the encryption of the first parameter should be
put (x_ciphertext). The number of the polynomials gives the size of the encrypted

text; a fresh encrypted text has the size 2, which is returned by the size() method of the
object x_ciphertext. The noise budget is computed by the invariant _noise budget()
method of the bfv_encrypt object, which takes as a parameter the object x_ciphertext.
The invariant_noise_budget() is implemented into the Decryptor class because it
shows if the decryption will work at some point in the computations. To decrypt the
encrypted value obtained, use the decrypt method, called by the bfv_decrypt object.
The decryption works because the value 0x3 in hexadecimal representation means 3.

For optimizations, the recommendation is that the polynomials be brought to a
form that includes as few possible multiplication operations, because they are costly
operations that will decrease the noise budget fast. Therefore, p(x) may be factorized as
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p(x) = 3(x* + 2)(x + 1)%, which means you will evaluate first (x* + 2), then (x + 1)? and then
you will multiply the result between them and with 3. To compute (x* + 2), proceed as
presented in Listing 12-10 (code added in seal example bfv function).

Listing 12-10. Computing (x* + 2)

cout << "Computing (x"2+2)..." << endl;

Ciphertext square_x_plus_two;
bfv_evaluate.square(x_ciphertext, square x plus two);
Plaintext plain value two("2");
bfv_evaluate.add plain _inplace(square x plus two,

plain value two);

cout << - the size of the square_x_plus two is:
<< square_x_plus_two.size() << endl;

cout << " - the noise budget for square_x_plus_two is:
<< bfv_decrypt.invariant noise budget(square x plus_two)

<< " bits" << endl;

Plaintext decrypted result;
cout << "

- decryption of square x_plus_two: ";
bfv_decrypt.decrypt(square x plus two, decrypted result);
cout << "0x" << decrypted result.to_string() << endl;

After running the application, you obtain the result from Listing 12-11 and Figure 12-7.

Listing 12-11. The Result of Computing (x> + 2)

The value x = 3 is expressed as a plaintext polynomial 0x3.
Encrypting x_plaintext to x_ciphertext...
- the size of the x_ciphertext (freshly encrypted) is : 2
- the noise budget for x_ciphertext is : 55 bits
- decryption of x_encrypted: 0x3
Computing (x"2+2)...
- the size of the square x plus two is: 3
- the noise budget for square x_plus two is: 33 bits
- decryption of square x plus two: OxB
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The value x 3 is expressed as a plaintext polynomial @x3.

Encrypting x plaintext to x ciphertext...
the size of the x ciphertext (freshly encrypted) is : 2
the noise budget for x ciphertext is : 55 bits

decryption of x encrypted: Ox3

Computing (x"2+2)...
the size of the square x plus two is: 3
the noise budget for square x plus two 1s: 33 bits

decryption of square x plus two: OxB

Figure 12-7. The result of computing (x* + 2)

For checking, if you calculate 3* + 2 you obtain 11, whose hexadecimal representation
is OxB; the noise budget is greater than 0, which means the decryption can be made.
Observe that the bfv_evaluate object allows applying operations directly over the
encrypted data. The collector variable for this example is square_x_plus_two. First, this
variable keeps the encrypted value raised at power 2, i.e. x?, using the method square().
Further, you add plain value 2, through the method add_plain_inplace(), which gives
x* + 1. Remember that in this example x = 3. The methods square() and add_plain_
inplace() methods have two parameters, namely a source and a destination.

Similarly, you compute (x + 1)*> using as a collector variable x_plus_one_square (see
Listing 12-12).

Listing 12-12. Computing (x + 1)?

cout << "Computing (x+1)"2..." << endl;

Ciphertext x_plus_one square;

Plaintext plain_value one("1");

bfv_evaluate.add plain(x_ciphertext, plain value one,
x_plus_one_square);

bfv_evaluate.square inplace(x _plus one square);

cout << "

- the size of x_plus one square is:
<< x_plus_one_square.size() << endl;
cout << "

- the noise budget in x_plus one_square is:
<< bfv_decrypt.invariant noise budget(x_plus one_square)
<< " bits" << endl;
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cout << - decryption of x_plus one_square: "“;
bfv_decrypt.decrypt(x_plus one square, decrypted result);

cout << "0x" << decrypted result.to_string() << endl;

And you obtain after running the application the results shown in Listing 12-13 and
Figure 12-8.

Listing 12-13. The Result of Computing (x + 1)?

The value x = 3 is expressed as a plaintext polynomial 0x3.
Encrypting x_plaintext to x_ciphertext...
- the size of the x_ciphertext (freshly encrypted) is : 2
- the noise budget for x_ciphertext is : 55 bits
- decryption of x_encrypted: 0x3
Computing (x"2+2)...
- the size of the square x plus two is: 3
- the noise budget for square x plus two is: 33 bits
- decryption of square x plus two: OxB
Computing (x+1)"2...
- the size of x_plus one square is: 3
- the noise budget in x_plus one square is: 33 bits
- decryption of x_plus one square: 0x10

The value x 3 is expressed as a plaintext polynomial 0x3.
Encrypting x_plaintext to x_ciphertext...
the size of the x_ciphertext (freshly encrypted) is : 2
- the noise budget for x ciphertext 1s : 55 bits
decryption of x_encrypted: 0x3
Computing (x*2+42)...
the size of the square x plus two is: 3
the noise budget for square_x_plus_two is: 33 bits
decryption of square x plus two: OxB
Computing (x+1)*2...
the size of x plus one square is: 3
- the noise budget in x_plus_one_square is: 33 bits
decryption of x plus one square: ©x10

Figure 12-8. The result of computing (x + 1)?
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Indeed, if you compute (3 + 1)?> you get 10, whose hexadecimal representation is
0x10; the noise budget is greater than 0, so the decryption still works.

The final result of 3(x* + 2)(x + 1)?is collected into encryptedOutcome variable (see
Listing 12-14).

Listing 12-14. Computing 3(x* + 2)(x + 1)?

cout << "Compute [3(x"2+2)(x+1)"2]." << endl;
Ciphertext enc_result;
Plaintext plain value three("3");
bfv_evaluate.multiply plain_inplace(square x_plus_two,
plain value three);
bfv_evaluate.multiply(square x plus two, x plus one square,
enc_result);

cout << - the size of encrypted result:
<< enc_result.size() << endl;

cout << " - the noise budget for encrypted result: "
<< bfv_decrypt.invariant noise budget(enc_result)
<< " bits" << endl;

cout << "NOTE: If the noise budget is zero, the decryption can be

incorrect." << endl;

cout << - decryption of enc_result: ";
bfv_decrypt.decrypt(enc_result, decrypted result);
cout << "0x" << decrypted result.to string() << endl;

And you obtain after running the application the results shown in Listing 12-15 and
Figure 12-9.

Listing 12-15. The Output of Computing 3(x* + 2)(x + 1)?

The value x = 3 is expressed as a plaintext polynomial 0x3.
Encrypting x_plaintext to x_ciphertext...
- the size of the x_ciphertext (freshly encrypted) is : 2
- the noise budget for x_ciphertext is : 55 bits
- decryption of x_encrypted: 0x3
Computing (x"2+2)...
- the size of the square x plus two is: 3
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- the noise budget for square x_plus two is: 33 bits
- decryption of square x plus two: OxB
Computing (x+1)"2...
- the size of x_plus_one_square is: 3
- the noise budget in x_plus_one_square is: 33 bits
- decryption of x_plus one square: 0x10
Compute [3(x"2+2)(x+1)"2].
- the size of encrypted result: 5
- the noise budget for encrypted result: 4 bits
NOTE: If the noise budget is zero, the decryption can be incorrect.
- decryption of enc_result: 0x210

The value x 3 is expressed as a plaintext polynomial ©x3.
Encrypting x_plaintext to x_ciphertext...
the size of the x_ciphertext (freshly encrypted) is : 2
- the noise budget for x_ciphertext is : 55 bits
- decryption of x_encrypted: ©x3
Computing (x"2+2)...
- the size of the square x plus two is: 3
the noise budget for square_x_plus_two is: 33 bits
decryption of square_x plus_two: OxB
Computing (x+1)"2...
the size of x_plus_one_square is: 3
- the noise budget in x_plus_one_square is: 33 bits
- decryption of x_plus_one_square: 0x10
(o«putv [3(x*2+2)(x+1)"2].
the size of encrypted_result: S
the noise budget for encrypted_result: 4 bits
NOTE: If the noise budget is zero, the decryption can be incorrect.
- decryption of enc_result: 9x210

Figure 12-9. The output of computing 3(x* + 2)(x + 1)

Indeed, if you compute 3(3% + 2)(3 + 1)?> you get 528. Do not forget that the
plaintext modulus is 1024, so 528 mod 1024 = 528, which has the 0x210 hexadecimal
representation. The noise budget is greater than 0, which allowed you to decrypt the
final encrypted result.

Putting all together, see the code in the SealExample.cpp file (Listing 12-16).
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Listing 12-16. The Entire Code
#pragma once

#include "seal/seal.h"
#include <iostream>
#include <algorithm>
#include <chrono>
#include <cstddef>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <limits>
#include <memory>
#include <mutex>
#include <numeric>
#include <random>
#include <sstream>
#include <string>
#include <thread>
#include <vector>

using namespace std;
using namespace seal;

void seal example bfv()

{

EncryptionParameters BFV_parameters(scheme type::BFV);

size t polynomial degree = 4096;
BFV_parameters.set poly modulus degree(polynomial degree);
BFV_parameters.set coeff modulus(CoeffModulus::BFVDefault(polynomial
degree));

BFV_parameters.set plain modulus(1024);

auto seal context = SEALContext::Create(BFV_parameters);
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KeyGenerator keygen(seal context);

PublicKey encryption key = keygen.public_key();
SecretKey decryption key = keygen.secret key();
Encryptor bfv_encrypt(seal context, encryption key);
Evaluator bfv_evaluate(seal context);

Decryptor bfv_decrypt(seal context, decryption key);

int value x = 3;
Plaintext x_plaintext(to_string(value x));

cout << "The value x = " + to_string(value x) + " is expressed as a
plaintext polynomial ox" + x_plaintext.to string() + "." << endl;

Ciphertext x_ciphertext;
cout << "Encrypting x plaintext to x_ciphertext...

<< endl;
bfv_encrypt.encrypt(x_plaintext, x_ciphertext);

cout <« - the size of the x_ciphertext (freshly encrypted) is :
<< x_ciphertext.size() << endl;
cout << " - the noise budget for x_ciphertext is :

<< bfv_decrypt.
invariant noise budget(x_ciphertext) << " bits"
<< endl;

Plaintext value x decrypted;
cout << "
bfv_decrypt.decrypt(x_ciphertext, value x decrypted);

- decryption of x_encrypted: ";

cout << "0x" << value x_decrypted.to string() << endl;

cout << "Computing (x"2+2)...
Ciphertext square x_plus_two;
bfv_evaluate.square(x_ciphertext, square x plus two);

<< endl;

Plaintext plain value two("2");
bfv_evaluate.add plain inplace(square x plus two, plain value two);

cout << " - the size of the square_x plus two is: " << square x_
plus_two.size() << endl;
cout << " - the noise budget for square x plus two is: " << bfv_
decrypt.invariant_noise budget(square_x_plus two) << " bits"

<< endl;
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Plaintext decrypted result;

cout << " - decryption of square_x_plus two: ";
bfv_decrypt.decrypt(square x plus two, decrypted result);
cout << "0x" << decrypted result.to string() << endl;

cout << "Computing (x+1)"2..." << endl;

Ciphertext x_plus one_square;

Plaintext plain value one("1");

bfv_evaluate.add plain(x_ciphertext, plain value one, x plus one square);
bfv_evaluate.square_inplace(x_plus one square);
cout << " - the size of x_plus one square is:

square.size() << endl;

<< x_plus_one_

cout << " - the noise budget in x_plus one_square is: " << bfv_
decrypt.invariant _noise budget(x _plus one square) << " bits"

<< endl;
cout << " - decryption of x_plus one square: ";

bfv_decrypt.decrypt(x_plus one square, decrypted result);
cout << "0x" << decrypted result.to string() << endl;

cout << "Compute [3(x"2+2)(x+1)"2]." << endl;

Ciphertext enc_result;

Plaintext plain value three("3");
bfv_evaluate.multiply plain inplace(square x plus two, plain value_
three);

bfv_evaluate.multiply(square x _plus two, x_plus one square, enc_result);

cout << " - the size of encrypted result: " << enc_result.size() <<
endl;
cout << " - the noise budget for encrypted result: " << bfv_decrypt.

invariant_noise budget(enc_result) << " bits"
<< endl;
cout << "NOTE: If the noise budget is zero, the decryption can be
incorrect." << endl;
cout << "

- decryption of enc_result: ";
bfv_decrypt.decrypt(enc_result, decrypted result);
cout << "0x" << decrypted result.to string() << endl;
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int main()

{
seal example bfv();
return 0;

In this section, we provided an easy example of how the SEAL library can be used
with C++ on a Windows distribution. However, real-life applications are much more
complex, which raises the need to handle more complex functions and algorithms.

The SEAL library can be very useful, and its big advantage is that it does not depend
on other external libraries. When the applications work with the exact values of integers,
the BFV encryption scheme implemented in the SEAL library is great. If the application
needs to work with real or complex numbers, the CKKS encryption scheme is the better
choice, which is also implemented in the SEAL library.

Conclusion

In this chapter,

e Youlearned what homomorphic encryption is and the types of
homomorphic encryption.

e You got a deeper view of a fully homomorphic encryption and you
saw why it is so important.

e You used Microsoft’s SEAL library, which implements the BFV
encryption scheme, on a simple example with a polynomial
evaluation.
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CHAPTER 13

Ring Learning with Errors
Cryptography

The topic of this chapter is Ring Learning with Errors cryptography (RLWE). It's one of
the most important and challenging techniques to use to develop secure and complex
applications and systems.

The Learning with Errors (LWE) problem was introduced in 2005 through the
work [4] by Oded Regev. Since then, it has proved its potential to be a basis for the
future of cryptography and its capability to generate complex cryptographic structures.
LWE and related topics are widely used in lattice-based cryptography. You can find
comprehensive studies and surveys and deep formal aspects in the works [5, 6, 7, 8].

LWE is a difficult computation problem (therefore, a hardness assumption
in cryptography) that is the formal foundation for cryptographic algorithms and
constructions. One such cryptographic construction is NewHope [9], which is an
encapsulation method for post-quantum keys. The purpose of NewHope is to protect
against cryptanalysis attacks launched on quantum computers. Another application
of LWE is in homomorphic encryption, serving as a hardness assumption for many
important (fully) homomorphic encryption schemes (see Chapter 12).

RLWE is the LWE problem applied in rings of polynomials defined over finite fields.
The RLWE problem represents a basis for future cryptography because it is resistant to
known quantum algorithms such as Shor’s algorithm, therefore it will remain a hardness
assumption in the quantum ecosystem.

An advantage of the RLWE technique over LWE is the size of the keys. The size of
the LWE keys is approximately the square of the size of the RLWE for the same number
of bits of security. For example, for 128 bits of security, the keys of a LWE cryptosystem
require 49,000,000 bits, while the keys of a RLWE cryptosystem require 7,000 bits.
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The RLWE cryptographic algorithms can be divided into three categories, as follows:

o RLWE Key Exchange (RLWE-KE): In 2011, Jintai Ding, at the
University of Cincinnati, used the associativity of the matrix
multiplication to propose a preliminary scheme for key exchange
based on LWE and RLWE [10]. The study was published in 2012,
after the idea was patented. Based on this work, in 2014 Chris Peikert
proposed a key transport scheme [11].

e RLWE Signature (RLWE-S): The identification protocol proposed by
Feige, Fiat, and Shamir in [12] was the basis for the digital signature
proposed in 2011 by Lyubashevsky. A further improvement of the
digital signature [13] was proposed by GLP (Gunesyu, Lyubashevsky,
and Popplemann) in [14].

e RLWE Homomorphic Encryption (RLWE-HE): In Chapter 12,
you saw that homomorphic encryption enables computations
to be applied directly over encrypted data. Among the first fully
homomorphic encryption schemes that use RLWE is [15] and it was
proposed in 2011 by Brakersky and Vaikuntanathan.

In the next section, we provide a minimum mathematical background for LWE and
RLWE.

Mathematical Background
Learning with Errors

In the quantum computers era (where we are currently, although it is an early stage), a
large number of the current encryption systems with public keys will be easily broken,
which leads to the natural necessity of creating cryptosystems based on hardness
assumptions that are quantum-resistant. LWE has this capability. Basically, the difficulty
of the LWE problem consists in computing the values that solve this equation:

b=as+e

In an equation of this form, a and b can form the public key, s can be the secret key,
and e can be an error value (or noise).
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In cryptography, the LWE problem can be used in different topics. For example,
based on LWE, public-key encryption schemes can be constructed that are secure
against chosen plaintext or chosen ciphertext attacks. Also, LWE can be a basis for
oblivious transfer, fully homomorphic encryption, or identity-based encryption.

The above equality becomes b = A x s + e in the work [1] because it is applied on
linear equations. Here, A becomes a matrix with two dimensions and, if s is a matrix with
one dimension, then b, e are matrices with one dimension. Another possibility is that A
and b are matrices with one dimension and s is a scalar value.

Below, a simple encryption scheme based on LWE is presented [4]. Note that in the
example, p € Zrepresents a prime number.

o Key generation: The following elements are chosen randomly: the
vector se Z; , the matrix A with m rows which are m independent
vectors of a uniform distribution, and the vector e = (e, ..., e,,) of an
error distribution defined over Z. Then, the value b is computed
b = As + e. The secret key is the value s and the public key is the pair
(A, b).

o Encryption: Given the message m € {0, 1} that will be encrypted,
choose randomly samples from A and b, achieving v, = )’ a;and

v, = ij —gm . The values a; and b, represents the samples from
A and b, respectively. The encryption of m is the pair (u, v).

e Decryption: Compute val = v, — sv, (mod p). If val < g, then the

message is m = 0; otherwise, the message is m = 1.

In the above example, you can see how LWE works. Examples of public key
encryption schemes based on the LWE problem are [2] and the Lindner-Peikert
encryption schemes.

LWE problems are divided into two categories: LWE search and LWE decision. Next,
we present these two variants.

Definition (LWE Search): Let m, n, p € Z be integer values and let y, and y, be two
distributions defined over the integer numbers set Z. Select the values s <y, e, <y,
and a, < U(Z;) and compute the value of b, := (a; s) + e; mod p, where i=1, ..., m.
Given the tuple (n, m, p, y, x.), the learning with errors search variant problem consists of
determining s knowing (a,,b,)", .
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In this definition, s represents a column-vector with n values, a, represents a row-
vector with n values from Z,, and b represents a column-vector with m elements from Z,.
The representation x < S shows that x is a random variable selected from the finite set S.

Definition (LWE Decision): Let n, p € Z be integer values and let y, and y, be two
distributions defined over the integer numbers set Z. Select the value s < y' and pick
two oracles as below:

. O:a(—M(ZZ),e(—xe;output(a,(a,s)+em0dp)
. U:a<—Z/{(ZZ),u<—L{(Zp);output(a, u)

Given the tuple (n, p, v, x.), the learning with errors decision variant means to
differentiate between O and U.

Ring Learning With Errors

The LWE problem applied in rings of polynomials with coefficients in a finite field is
called the Ring Learning with Errors problem. RLWE is used in different domains of
cryptography, for example, in key exchange, homomorphic encryption and signatures.
The functionalities of RLWE are similar to the functionalities of simple LWE. For RLWE,
the variables a, b, s, e from the first equality are polynomials. Further, we show how the
two definitions for LWE variants are adapted for RLWE.
Definition (RLWE Search): Let n, p € Z be integer values, with n = 2X, let R be
7| X R
R= 'E—]l and R, = ey and let y, and y, be two distributions defined over the ring R,.
+ p.
Selects <« y, e «<— y.and a <« U (Rp ) and compute the value of b := as + e. Given

the tuple (n, p, ¥, x.), the ring learning with errors search variant problem consists in
determining s knowing (a, b).

In this definition, R, is actually R, =

Definition (RLWE Decision): Let i, p € Z, be integer values and let y, and y, be two
distributions defined over the ring R,. Select the value s < y, and pick two oracles as
below:

o O:an(Rp),eexe;0utput(a,as+e)

. U:a(—Z/{(Rp),u<—L{(Rp);output (a,u)
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Given the tuple (7, p, v, x.), the ring-learning with errors decision variant means to
differentiate between O and U.

An encryption scheme based on the hardness assumption of RLWE is secure if the
advantage of any algorithm A (called the attacker) with polynomial time in solving the
RLWE problem is a negligible function.

Practical Implementation

LWE is quantum-resistant technique in cryptography. On the practical side of LWE, to
implement a simple LWE example, we first need to generate a secret value and a random
value. Further, the implementation is intuitive, as we need to compute a value of the
form p[]=t[]xsk + e.

In Listing 13-1, we provide an implementation for a simple example of encryption
system based on the work of Oded Regev from [4]. The result of running the program is
provided in Figure 13-1.

C:\Users>g++ LWE_Simple.cpp

C:\Users>a

--Message: 1--

--Random values--

313 22 18 21 23 12 21 20 15
-=-Public Key--

27 77 122 102 117 127 72 117 112 87
--Sample indices--

samples = [ 89141 ]

--The sum: 470--
--The encryption of the message is:471 --
--The decryption is: 1--

Figure 13-1. The result of running the program with a simple example of LWE
encryption
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Listing 13-1. Implementation of a Simple LWE Example Based on the Work [4]

#include <iostream>
#include <math.h>
#include <ctime>
using namespace std;

int main()

{

srand(time(0));

int no_of values = 10;

int public_key [no of values];
int values [no_of values];

int secret key = 5;

int error value = 12;

int message = 1;

int value = 0;

for (int i = 0; i < no_of values; i++)

{
//** generate random values between 0 and 23
values[i] = rand() % (23 + 1 - 0) + O;
//** compute the public key
public_key[i] = values[i] * secret key + error value;
}
cout<<"--Message: "<< message<<"--";

cout<<endl<<"--Random values--"<<endl;
for(int i = 0; i < no_of values; i++)

{

cout<<values[i]<<" ";

}

cout<<endl<<"--Public Key--"<<endl;
for(int i = 0; i < no_of values; i++)

{

cout<<public_key[i]<<" ";
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//** get half random samples from the public_key

int noOfSamples = floor(no_of values / 2);

int samples [noOfSamples];

for(int i=0; i < noOfSamples; i++)

{
//** generate a number of 5 random indices between 0 and 10
samples[i] = rand() % ((no_of values-1) + 1 - 0) + O;

}

cout<<endl<<"--Sample indices--";

cout<<endl<<"samples = [ ";

for (int i=0; i < noOfSamples; i++)

{

cout << samples[i] << " ";
}
cout<<" 1" << endl;

int sum = 0;
for (int i = 0; i < noOfSamples; i++)

{
sum += public_key[samples[i]];
}
cout<<endl<<"--The sum: " << sum << "--";

if (message == 1)
sum+=1;

cout<<endl<<"--The encryption of the message is:" << sum <<" --";
int decryption = sum % secret key;

if (decryption % 2 == 0)

cout<<endl<<"--The decryption is: 0--";
else

cout<<endl<<"--The decryption is: 1--";

return 0;
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Further, we provide in Listing 13-2 a more complex example of public-key encryption
that uses LWE, based on the work [5]. The result of running the program is shown in
Figure 13-2.

Listing 13-2. Implementation of the LWE Encryption Method Proposed by Oded
Regev in [5]

#include <iostream>
#include <math.h>
#include <ctime>
using namespace std;

int main()

{

srand(time(0));

int numberOfRandVals = 20;

int values A [20]; //** values A is a set of random numbers; represents
the public key

int secretValue = 5; //** represents the secret key

int values_error [numberOfRandVals]; //** represents the error values
int values B [numberOfRandVals]; //** values B is computed based on
values A, secretValue, values error; represents the public key

int q = 97; //** q is a prime number

//** generate random values
//** the number of random values is numberOfRandVals = 20
//** the range is 0 - =97
for(int i=0; i < numberOfRandVals; i++)
{
//** to generate a random value in a range MIN - MAX,
//** we proceed as folloes: val = rand() % (MAX + 1 - MIN) + MIN;

//** generate random values between 0 - 97
values A[i] = rand() % (q + 1 - 0) + O;

//** generate small error values, between 1 - 4
values error[i] = rand() % (4 + 1 - 1) + 1;
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//** compute values B using the formula B i = A i*s + e i
values B[i] = values A[i]*secretValue + values error[i];

}

cout<<"--------- The parameters and the keys --------- << endl;
cout<<"--Prime number (q)--" << endl;

coutc<q = " << q << endl;

cout<<"--Public key (A, B)--" << endl;

cout<<"A = [ ";
for (int i=0; i < numberOfRandVals; i++)

{

cout << values A[i] <« ;

}

cout<<"]" << endl;

cout<<"B = [ ";
for (int i=0; i < numberOfRandVals; i++)

{

cout << values B[i] <« R
}
cout<<"]" << endl;
cout<<"--Secret key (s)--" << endl;
cout<<"s = " << secretValue << endl;

cout<<"--Random error (e)--" << endl;

cout<<"e = [ ";
for (int i=0; i < numberOfRandVals; i++)

{
cout << values error[i] << " ";
}
cout<<"]" << endl;
cout<< endl << endl << "--------- Getting samples from the public
key... --------- "3

int noOfSamples = floor(numberOfRandVals / 4); //** represents the
number of samples from the public key
int samples [noOfSamples];
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for(int i=0; i < noOfSamples; i++)

{
//** generate a number of 5 random indices between 0 and 19
samples[i] = rand() % ((numberOfRandVals-1) + 1 - 0) + 0;

}

cout<<endl<<"--Sample indices--";

cout<<endl<<"samples = [ ";

for (int i=0; i < noOfSamples; i++)

{

cout << samples[i] << " ";
}
cout<<" 1" << endl;

cout<<"--Sample pairs--";
for (int i=0; i < noOfSamples; i++)

{

cout << endl <<"Sample " << i << ": ["

<< values A[samples[i]] << " " << values B[samples[i]] << "]";
}
cout<< endl << endl << "--------- Computing u and v... --------- 5

int message = 0; //** the message to be encrypted can be a value from
{0, 1}

intu=0, v=0;

//** u = (sum (samples from values A)) mod q

//** v = (sum (samples from values B) + [q/2] * message) mod q

for (int i=0; i < noOfSamples; i++)

{
= U + values A[samples[i]];

v = v + values B[samples[i]];
}
v = v + floor(q/2) * message;
u=ud%aq;
v=vVv5%aq;
cout<cendl<<"u = "<<u;
coutccendl<<"v = "<«v;
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cout<< endl << endl << "--------- Encrypting... --------- 5

cout<<endl<<"--Message--";
cout<<endl<<"m = "<<message;
cout<<endl<<"--Encryption f the message--";

Cout<<end1<<"Enc(m) = (" << U << s <V <<n u;

cout<< endl << endl << "--------- Decrypting... --------- 5
int result = (v - secretValue * u) % q;

int decryption;
if (result > q/2)
decryption = 1;
else
decryption = 0;
cout<<endl<<"The message is:

<< decryption;

return 0;

a) = (18, 2

Figure 13-2. The result of running the program of the public-key LWE example
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Listing 13-2 provides the example of public key encryption based on LWE, which was
proposed in the work [5]. We first create a secret value secretValue which represents
the private key. In the next step, we create the public key. The public key is formed by
the values from a set of random numbers values_A and a set of values values_B, which
are computed based on values A, secretValue, and random errors values error. This
example is implemented for a single bit.

A simple workflow for this example is

e Between 0 and q (in the example, q=97), we select a random set of
20 values values_A that represent one of the components of the
public key.

o Further, we define the set values_B where every element is computed
asvalues B[i]=values A[i] x secretValuet+values error[i]
mod g, where secretValue is the secret key, and where values_error
represents a list of small random values called the errors values.

o Thesetsvalues A, values B form the public key and secretValue
represents the secret key. At this point, we can share values A and
values_B with anyone who wants to proceed with an encryption of
a message (with the condition to keep secretValue secret). In the
encryption process, we use samples from values A and values B.
Moving forward, based on those sample we take a bit message and
compute the following two values:

e U= Z (values _Asamples)(mOd q)

. v=2(values B )+gxmessage(mod q)

— " samples

o At this point, we can say that the encrypted message is (1, v). To
proceed with the decryption, we need to compute

e decryption=v—sxu(mod q)
o If decryption < g , the message is equal with 0; otherwise 1.

The procedure described above is summarized from Oded Regev’s paper [5] in order
to make it easy to follow and to give you a clear understanding of how you can transpose
the complexity of LWE in reality.
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Conclusion

In this chapter, we discussed Ring Learning with Errors cryptography and we

implemented two examples of encryption schemes using the C++ programming

language as proposed in the works [4] and [5]. RLWE can be a space for many challenges

for professionals and a starting point for significant contributions to this cryptographic

primitive.

Through the chapter, you experienced an interesting journey with LWE from which

you gained the following:

A solid but short mathematical background of the main concepts and
definitions on which RLWE is based and without which a practical
implementation will have many gaps to fill

Experience experimenting with the challenges brought by RLWE'’s
mathematical concepts and their transposition in practice

The ability to implement simple examples of public-key encryption
schemes based on LWE
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CHAPTER 14

Chaos-Based
Cryptography

In chaos-based cryptography, the chaos theory and its mathematical background are
applied for creating novel and unique cryptographic algorithms. The first attempt
of using the chaos theory in cryptography was initiated by Robert Matthews in 1989
through the work [1], which attracted much interest.

In contrast to the regular cryptographic primitives used daily, the chaos theory
and its system are used in an efficient way by implementing the chaotic maps towards
confusion and diffusion. Through this chapter, the cryptographic algorithm is referred to
as the chaotic system.

To understand the similarities and differences between chaotic systems and
cryptographic algorithms, we present a set of correspondences in Table 14-1 introduced
by L. Kocarev in [2].

Table 14-1. Similarities and Differences Between Chaotic Systems and
Cryptographic Algorithms

Chaotic System Cryptographic Algorithm

Phase space: (sub) set of real numbers Phase space: finite set of integers
Ilterations Rounds

Parameters Key

Sensitivity to a change in initial conditions and parameters Diffusion

? Security and Performance
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Further, we demonstrate the similarities and the differences from Table 14-1 using an
example of a chaotic system, the shift map:

x(t+1)=ax(t)(mod1)

where the phase space x=[0,1] is the unit interval and a>1 is an integer value.

From the chaos theory perspective, cryptography can use different functions and
discrete-time systems. By analyzing them, the phase space will become a finite set of
integers and the parameters will be inter values. The version of the shift map that uses
the discrete phase-space is one of the common examples:

p(t+1)=ap(t)(mod N)

where a > 1, N and p are integer values, with the restrictions p € [0, 1,..., N — 1], and

Nis coprime to a. This representation of the shift map is invertible, which means that

all trajectories placed within a dynamical system with a finite phase space are called
periodical. This fact introduces a new concept, namely the period function Py that
describes the least period of the map F, denoted F"™ as its identity, and Py is minimal as
itis a function within a system of size N.

Another very important metric used in the practical chaotic systems is the Lyapunov
exponent (LE), whose trivial value is 0. The reason for it is the case in which the orbit is
periodic and it will reiterate itself.

With this information, below are presented two concepts of block diagrams (for text
encryption and image encryption) that demonstrate an encryption scheme based on
the chaos theory. Figures 14-1 and 14-2 show the encryption process and the decryption
process, respectively, based on the logistic map. Figure 14-3 shows an example of image
encryption and decryption.

Following the examples of the block diagrams, we can examine the former papers
and the other papers listed in this chapter’s references to observe that the encryption
models and the way in which they are built are different according to the chaotic map
used. Before designing new cryptographic approaches and mechanisms based on the
chaos theory, it is very important to comprehend the way in which different chaotic
maps work.

A good starting point is to use the following block diagrams as a guide from theory
to practice, because the models are created according to the similarities and differences
from Table 14-1.
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Cipher text E

Chaotic encryption schemes
are believed to provide
greater level of security

FH80b=Z\P.wUOSe&YV=F9;C, |8/Y5eG:.8
23]L1fi~"xA:7gd aZA*3]8_LWNu"mxEx+
Bg{}EHo-t5Nby\Y@:1#_? 'mQg{;uAmciZ

El'.'{’!"\:pﬂ-ﬂﬂ' ‘{N’O{'ﬂSS

v

Permutation and diffusion
&
Save Z in position € + 1

*

| =z

Optimized pscudorandom sequence |

A

t

5.000 iterations from logistic map 1 |

[

t

I 1,000 iterations from logistic map 2 I

[
I 32 hexadecimal digits as secret key I;

Figure 14-1. Block diagram for text encryption using logistic map [14]

Cipher text E

Decrpted text D

FH80b=Z\P.wUOSe&YV=F9;C, |8/Y5eG:.8
23]L1fi~*xA:7gd aZA3]8 _LWNu*mxEx+
Bg{}EHo-tSNby\Y@:1#_? 'mQg{;uAmciZ

Chaotic encryption schemes
are believed to provide
greater level of security

Decryption process

-——-—h{ Permutation and diffusion

*

v

A

I—b] Optimized pseudorandom sequence |

*

—oi 5.000 iterations on logistic map 1

| 32 hexadecimal digits as secret key |

Figure 14-2. Block diagram for text decryption using logistic map [14]

305



CHAPTER 14  CHAOS-BASED CRYPTOGRAPHY

m rounds
n rounds
Diffusion
. (Sequential pixel
R Confusion = e}

Plain image

image
—_— Key generator
Secret key

Figure 14-3. Block diagram for an image encryption cryptosystem [15]

Security Analysis

In this section, we present a security analysis in the form of techniques for finding the
weakness or security breaches in the cryptosystem and then we get a piece or the whole
encrypted image or plaintext or find the key without knowing the algorithm or the
decryption key.

Examples of attacks over encrypted images are presented in [3] and [4]. The
following methods, techniques, and analysis should be considered in designing a chaotic
system or in conducting a cryptanalytic attack:

o Key space analysis: This is the number of trials for finding the
decryption key, and it is made by trying all possible keys from
the keyspace of the encryption system. An important remark is
that the keyspace grows exponentially at the same time with the
incrementation of the key’s size.

o Key sensitivity analysis: For a good encryption system for images,
an important thing that should be considered is the sensitivity of
the secret key. If just a single bit is modified in the secret key, then
the output image should be a completely different image (regarding
encryption or decryption).
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Statistical analysis: The purpose of this analysis is to prove the
relationship between the original image and the encrypted one.

Correlation coefficient analysis: An important graphical tool that
needs to be studied is the histogram, namely the distribution of the
values generated by a trajectory of a dynamic system. Among the
histogram analysis, the correlation between the pixels of a plain
image and the encrypted image is another important technique, as it
is made between two pixels distributed vertically, horizontally, and
diagonally.

Information entropy analysis: The analysis based on the entropy
tests the robustness of the encryption algorithm. The comparison
between the entropy of the plain image and the encrypted image
is very important, which shows that the entropy of the encrypted
images is about an 8-bit depth. This is useful in proving the
encryption technique against the entropy attack.

Differential analysis: The differential analysis determines the
sensitivity of the cryptosystem regarding any slight change in the
algorithm. The sensitivity can be computed based on two criteria:
NPCR (number of pixels change rate) and UACI (unified average
changing intensity). When these two test are made, the high values
show the small changes that occurred in the plain image, which
produced significant modifications in the encrypted image.

Chaotic Maps for Plaintexts and Images Encryption

This section presents chaotic maps with respect to their encryption target (text

encryption or image encryption).

Many encryption algorithms for images from the below list (Table 14-2) have

been analyzed and tested by the authors who proposed them by using the techniques

described above. It is useful to have validation of the performance and to have an

evaluation of the robustness of the encryption scheme. All the references were analyzed

and chosen as good references based on their analysis and tests.
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Table 14-2. Chaotic Map (Systems) for Image Encryption

Chaotic Map (System) Metrics NPCR UACI Key Sensitivity References
Entropy Space
Lorenz 79973 - - 2128 High [5]
Baker
Lorenz - - - Large  Medium [6]
Henon Map 7.9904 0.0015%  0.0005% 2% High [7]
Logistic Map 7.9996  99.6231% 33.4070% 10% High [8]
Trigonometry Maps - 0.25% 0.19% 2302 - [9]
Arnold Cat Map 7.9981  99.62% 33.19% 2148 High [10]
Chebyshev Map 7.9902 99.609%  33.464% 2'  High [11]
Circle Map 79902 99.63%  33% 2256 High [12]
Arnold Map - 0.0015%  0.004% - - [13]
Rossler Attractor

The Rossler attractor is a system that is formed from three non-linear ordinary
differential equations. The equations define a continuous-time dynamical system
that exposes chaotic dynamics, which are associated with the fractal properties of the
attractor.

The equations of the Rossler system are as follows:

:—y—Z

dx
dt

dy
—=Xx+a
dt ¥
dz

dt

=b+z(x—c)

When Réssler is applied in real life, computing the fixed points is one of the first
challenges. To compute the fixed points, it is sufficient that the equations are set to
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zero and the (x, y, z) coordinates of each of the fixed points are computed by solving the
resulting equations. We have the following general equations of each of the fixed point
coordinates:

c++c*—4ab

X=—r——"—

2

y:_(ci\/cz—%lb]

2a

c++c*—4ab

z=r—

2a

These equations are turned in such way that will show the current fixed points that

are given for a set of values associated with the parameters.

c+c? —dab —c—~c* —aab c+~c:—4ab

? ’

2 2a 2a

c—~c2—4ab —c+~c:—4ab c—c?—4ab

’

2 2a 2a

The above equations are used in our example from Listing X, where we implement a
solution for generating secure random numbers using the chaos perspective of a Rossler

attractor.

Complex Numbers - Short Overview

Complex numbers represent an extension of real numbers. The motivation behind
complex numbers is in the desire to provide a way of solving algebraic equations that
normally (using traditional real numbers) have no solution. As an example, x> + 1 = 0 has
no real solution. For this situation, a symbolic solution has been created and it is known

as the imaginary unit i, which has the following property:

i’=-1
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A complex number is represented with two components, which are known as the real
part and the imaginary part. We have the following:

z=x+Yyi

where real(z) = x denotes the real part, imag(z) = y the imaginary part, and i represents
the imaginary unit.

The arithmetic behind the complex numbers is quite straightforward and it is an
extension of the arithmetic of real numbers. To understand the previous statement, we
define two numbers z and w as follows:

z+w=(x+yi)+(u+vi)=(x+u)+(y+v)i.

We add the real and imaginary components separately. The next step is to multiply
the numbers as follows:

zw =(x+yi)(u+vi)=xu+xvi+ yui+yvi’ =(xu—yv)+(xv+yu)i.

Observe that yvi* represents the real part of the product becoming -yv, due the
property defined above, namely ##= — 1.

In the example presented in Listing X we use complex numbers with chaos and
fractals properties to provide encryption and decryption operations.

Practical Implementation

The applications and programs that use chaotic systems have applicability for plaintext
encryption and image encryption. If we look at other areas of cryptography (such as

the ones discussed in this book), the research community has a significant amount of
theoretical contributions. The lack of practical implementations and directions has
raised multiple difficulties and challenges for researchers and professionals.

If we look at the practicality of chaos cryptography, there are not many practical
implementations. Below we will list some of the practical approaches (and here we are
referring to pseudocode algorithms) that can be found within [16]. The work from [16]
provides a very in-depth structure and very good ideas and approaches on how different
cryptosystems based on chaos theory can be implemented. The ideas are provided as
pseudocode. The work covers the following cryptosystem types:
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e Chaos-based public-key cryptography
e Pseudo-random number generation in cryptography
o Formation of high-dimensional chaotic maps and their uses in

cryptography
o Chaos-based hash functions
e Chaos-based video encryption algorithms
o Cryptanalysis of chaotic ciphers
e Hardware implementation of chaos-based ciphers

e Hardware implementation of chaos-secured optical communication
systems

In [16], starting with Chapter 2, the authors propose an interesting public-key
cryptosystem that uses the chaos approach and consists of three steps: a key generation
algorithm (see Pseudocode 14-1), an encryption algorithm (see Pseudocode 14-2), and
a decryption algorithm (see Pseudocode 14-3). The scenario is a typical communication
between two user entities, Alice and Bob. Below we will provide the structure of each
algorithm and at the end we will provide implementations for demonstrating the
applicability.

Pseudocode 14-1. Key Generation Algorithm [16]

Start. Alice needs to generate the keys before the communication. For this
she will accomplish the following:

o Alarge integer a has to be generated.
e Calculate G,(p) based on a random number selected as p € [-1, 1].

e Alice will set her public key as (p, G(p)) and her private key to a.

Pseudocode 14-2. Encryption Algorithm [16]

Start. Bob wants to encrypt a messsage. To achieve this, the following must
be done:

e Get Alice’s authentic public key (p, G.(p)).

e Calculate and represents the message as a number M € [—1, 1].
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e Generate alarge integer r.
o Calculate G/(p), G,. .9 = G(G.(p)) and X=M - G, (p).

o Take the ciphertext and send it as C = (G,(p), X) to Alice.

Pseudocode 14-3. Decryption Algorithm [16]

Start. Alice wants to read the text and to do this she will have to recover
M from the ciphertext C. To achieve this, the following steps are done:

o Alice has to use her private key a and to calculate G, ., = G,(G.(p)).
X

G,.(p)

Secure Random Number Generator Using a Chaos Rossler
Attractor

e The message M will be obtained by calculating M =

In this section, we will present the implementation of a secure random number
generator using a chaos Rossler attractor. The application has five files (encryption.h,
generation.h, encryption.c, generation.c, and chaos_random.cpp). To compile and
run the application, we need to run the following command in the terminal:

g++ -0 test.exe chaos _random.cpp generation.c generation.h encryption.c
encryption.h

Below we will examine each of the files and we will discuss the most important lines
of code.

Figure 14-4 shows the execution of the program and the numbers generated for each
of the keys. As you saw in the Rossler attractor section, there are three fixed points that
need to be computed in order to solve the equations. Each fixed point is represented by a
cryptographic key (e.g. key 1, key 2, key 3).

B O\ Windows\SystemIZ\cmd. e - D x

D:\Apps C++\Chapter 14 - Chaos-based Cryptography\ChaosSecureRandombiumberGenerator>g+s -0 test.exe chaos_random.cpp generation.c generation.h encryption.c encryption.h

D:\Apps Ce+\Chapter 14 - Chaos-based Cryptography\Chac

eam is -» 2006421447

1618 in @.0802088s

D:\Apps C++\Chapter 14 - Chaos-based Cryptography\ChacsSecureRandomtlumberGenerators

Figure 14-4. Secure random number generator

312



CHAPTER 14  CHAOS-BASED CRYPTOGRAPHY

Listing 14-1 contains the header file (encryption.h) for defining the signature
function for encryption process, encryption. The function has three input values:

o struct generation *g: A struct object used to generate the mantisa,
exponent, and sign for obtaining the normalization form of a real
number. The definition of the struct can be found within the file
generation.h (see Listing 16-2).

o uint8 t *buffer: The buffer with the data used for encryption

o size t length: The length of the buffer

Listing 14-1. Header File encryption.h

#ifndef ENCRYPTION H
#define ENCRYPTION_H

#include "generation.h"
#include <stddef.h>

void encryption(struct generation *g, uint8 t *buffer, size t length);
#endif

Listing 14-2 contains the implementation of the generation.h header file, which
contains definitions for the Rossler attractor (see ROSSLER(x,n)), the coordinates (A, B,
and (), integral approximation (APPROXIMATION constant), removing noise constant
(REMOVE_NOISE), two functions for generating the initialization on 16 and 32 bits
(generation initialization and generation 32), describing the normalization of real
numbers as a union and struct types, containing for the double numbers the mantisa,
exponent, and sign (realbits union), and a struct (generation struct) for the generation
process that contains three variables which represent the fixed points (e.g. x, y, and z).

Listing 14-2. Header File generation.h

#ifndef GENERATION_H
#define GENERATION H

#include <inttypes.h>
#include <math.h>

313



CHAPTER 14  CHAOS-BASED CRYPTOGRAPHY

// the Rossler (ROL) attractor definition for plane (x,n)
#tdefine ROSSLER(x,n) ((x = ((x << n) | (x >> (32 - n)))))

// the attractor variables (coordinates) - for this example Rossler is chosen
#define A Coordinate 0.5273

#define B _Coordinate 3

#define C Coordinate 6

// constant for integral approximation as a step size
#define APPROXIMATION 0.01

// constant used for removing the initial noise
#define REMOVE NOISE 64

void generation initialization(struct generation *g, uinté64 t k[3]);
uint32_t generation32(struct generation *g);

// the normalization form of a real number
union realbits

{
double d;
struct
{
uint64_t mantisa: 52;
uint64_t exponent: 11;
uint64_t sign: 1;
} 1b;
};
struct generation
{
union realbits x, vy, z;
15
#endif

Listing 14-3 contains the implementation function for the encryption process. Note
the fact that the encryption.c source file includes both header files from Listing 14-1
and Listing 14-2. As mentioned, the encryption is done using a generation struct that
contains three fixed points, a buffer used to hold the content being encrypted, and its
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length. The function is quite self-explanatory and the main idea behind it is based on the
position within the data stream, and the number of calls plays an important role as it is
using the length of the buffer and shifting to the right 2 bits.

Listing 14-3. File encryption.c

#include "encryption.h"
#include "generation.h"

#include <iostream>
using namespace std;

// performing the encryption operation
void encryption(struct generation *g, uint8 t *buffer, size t length)
{

uint32_t position_in stream;

size t number of calls = length >> 2;

size t 1 neighbour = length & 3;

uint8 t *temporary = (uint8 t *)&position in stream;

for(size t index = 0; index < number of calls; ++index)
{
position in stream = generation32(g);
buffer[ (index<<2)] "= temporary[0];
buffer[ (index<<2)+1] "= temporary[1];
buffer[(index<<2)+2] "= temporary[2];
buffer[ (index<<2)+3] "= temporary[3];

}
if(1_neighbour != 0)

position_in stream = generation32(g);
for(size_t index = 0; index < 1 _neighbour; ++index)
buffer[ (number of calls<<2)+index] ~= temporary[index];

}

std::cout<<"The position with the stream is -> "<<position_in_
stream<<endl;
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Listing 14-4 contains the implementation for the different operations necessary for
generating the fixed points and performing the initialization process. Here we also use
the ROSSLER function defined in Listing 14-2.

Listing 14-4. File generation.c
#include "generation.h"

static void initialization(struct generation *gen, double initValueX,
double initValueY, double initValueZ)

{
gen->x.d = initValueX;
gen->y.d = initValueY;
gen->z.d = initValueZ;

}

static void perform iteration(struct generation *gen)

{
gen->x.d = gen->x.d + APPROXIMATION * (-gen->y.d - gen->z.d);
gen->y.d = gen->y.d + APPROXIMATION * (gen->x.d + A Coordinate *
gen->y.d);
gen->z.d = gen->z.d + APPROXIMATION * (B_Coordinate + gen->z.d *
(gen->x.d - C_Coordinate));

}

void generation initialization(struct generation *gen, uint64 t keyValue[3])

{
initialization(gen,
(double)keyValue[0] / 9007199254740992,
(double)keyValue[1] / 8674747684896687,
(double)keyValue[2] / 6758675765879568);

for(uint8 t index = 0; index < REMOVE_NOISE - 1; ++index)
perform_iteration(gen);
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uint32_t generation32(struct generation *gen)

{

uint32_t message[6];

message[0] = (uint32_t)(gen->x.rb.mantisa >> 32);

message[1] = (uint32_t)(gen->x.rb.mantisa);

message[2] = (uint32_t)(gen->y.rb.mantisa >> 32);

message[3] = (uint32_t)(gen->y.rb.mantisa);

message[4] = (uint32_t)(gen->z.rb.mantisa >> 32);

message[5] = (uint32_t)(gen->z.rb.mantisa);

perform iteration(gen);

message[0] += message[1];

message[2] += message[3];

message[4] += message[5];

for(uint8 t index = 0; index < 4; ++index)

{
ROSSLER(message[0],7); ROSSLER(message[3],13);
message[5] ~= (message[4] + message[3]);
message[1] ~= (message[2] + message[0]);
message[2] = message[2] * message[0] " message[5];
message[4] = message[4] "~ message[3] " message[1];

}

message[2] += message[4];

return message[2];

}

Listing 14-5 contains the implementation of the main program. Note that the path to
the file which contains random numbers (similar to urandom from the UNIX OS) has to
be adjusted accordingly to reader comfort. The line where the path must be modified is
shown with bold as follows:

if((folder = open("D:/Apps C++/Chapter 14 - Chaos-based Cryptography/
ChaosSecureRandomNumberGenerator/dev/urandom”, O RDONLY)) == -1)
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Listing 14-5. Main Program

#include "encryption.h”
#include "generation.h"

#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <windows.h>
#include <time.h>
#include <inttypes.h>
#include <iostream>

using namespace std;
const size t MESSAGE LENGTH = 2000000000;

uint64_t generateStringOfBytes()
{

int folder = 0;
ssize t resourcefFile = 0;
uint64_t buffer = 0;

if((folder = open("D:/Apps C++/Chapter 14 - Chaos-based
Cryptography/ChaosSecureRandomNumberGenerator/dev/urandom”,
0_RDONLY)) == -1)

exit(-1);

if((resourceFile = read(folder, &buffer, sizeof buffer)) < 0)
exit(-1);

buffer &= ((1ULL << 53) - 1);
close(folder);
return buffer;
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int main(void)

{

struct generation gen;

uint64 t key[3] = {generateStringOfBytes()+rand()%3000, generate

StringOfBytes()+rand()%5000, generateStringOfBytes()+rand()%8000};
cout<<"Key 1 -> "<<key[0]<<endl;

> "<<key[1]<<endl;

> "<<key[2]<<endl;

cout<<"Key 2

cout<<"Key 3

// generate 1GiB of 1s
uint8 t *message = (uint8 t*)malloc(MESSAGE LENGTH);
memset(message, 1, MESSAGE_LENGTH);

// perform encryption
generation_initialization(&gen, key);

clock t s = clock();

encryption(8gen, message, MESSAGE_LENGTH);
clock t e = clock();

double spent = (double)(e - s) / CLOCKS PER SEC;
printf("1GiB in %1fs\n", spent);

free(message);

Cipher Using Chaos and Fractals

In this section, we will discuss and implement a solution for the encryption/decryption

operation using chaos and fractals notions.

Listing 14-6 contains the declaration of the main functions that deal with processing

the representation of the starting points and performing the projections for both axes,

x and y. It is necessary to mention that one of the most challenging operations and
tasks when using fractals and chaotic systems is to identify the path and to identify the
main root (see function identifyFirstRoot()). The code in Listings 14-6 and 14-7 is
quite self-explanatory and contains the necessary notes to be fully understandable. See

Figure 14-5 for the execution of the application.
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(Decryption -» A with B - 995)  (Decryption -> B with A - 99%)
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(Decryption -3 & with B = 153)
(Decryption -» A with B = 293)
(Decryption -» A with 8 - 3%2)
(Decryprion -» A with § = 411)
(Decryption -» A with B = 7186)
(Decryption -> A with 8 = 718}
(Decryption -» & with B = B9%)
(Decryption -3 & with B = 847)
{Decryption -> & with 8 - 726)
(Decryption -3 A with B = 771)
(Decryption -» & with § = 538)
(Decryption -» A with B = 885)

(Decryption -> B with A = 827}
(Decryption -» B with & = 406}
(Decryption > B with A = 391)
{Decryption -> B with & = &84}
(Decryption -> B with & = 602)
{Decryption -> B with & = 151)
{Decryption -> B with A = 292)
(Decryption -> B with A = 382)
{Decryption -> 8 with & - 421)
{Decryption -> B with A = 716)
{Decryption -3 B with & = 718)
{Decryption - B with & = B9S)
{Decryption -> B with & = 447)
(Decryption -> B with A& = 726)
(Decryption -» B with A

(Decryption -3 A with § = 912)  (Dwcryption -> § with A = 912)

(Decryption -> & with B - 667)  (Decryption -> B With A - 667)

(Decryption > & with 8 = 269) (Decryption -> B with A = 299)
(Decryption -> A with 8 = 38)  (Decryption -> B with A = 38)

{Decryption -3 & with 8
(Decryption -3 A with B « 703)
(Decryption -> & with 8 = B11)
(Decryption -» A with B = 322)
(Decryption - A with B - 333)
(Decryption -> A with § = 871)
(Decryprion -» A with § = 664)
{Decryption -» & with § = 141)
(Decryption -> & with & = 711}
{Decrypticn -> & with § = 253)
(Decryption -» A with B - Bag)

= 894)  (Decryption -» B with 4 = 894)
(Decryption -» 8 with A = 783)
(Decryption -> th A - B11)
{Decryption -» B h & = 322)
(Decryption -» B with A - 333}
{Decryption -> B with & = 671}
{Decryption -3 § with A = 664}
(Decryption -> B with A = 181)
(Decryption -> 8 with & = 711)
(Decryption -> B with & = 251)
{Decryption -» B with A = Bed)

Figure 14-5. Execution of the encryption/decryption process

To run the program, the following command must be entered in the terminal:

g++ -0 test.exe FractalCipherCrypto.cpp FractalCipherCrypto.h

Listing 14-6. Header File FractalCipherCrypto.h

#ifndef CRYPTOCIPHERFRACTALS H_
#define CRYPTOCIPHERFRACTALS H_

#include <climits>
#include <assert.h>
#include <math.h>

class CryptoFractalCipher

{
// point C

(x5 y)

the representation in the xOy system of point C

double c_xCoordinatePoint, c_yCoordinatePoint;

// point Z
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// get the sign of a double number
inline double getSign(double number)
{
// in case that d is less than 0, return -1.0, making the number
negative
// contrary make the number positive
if (number<o0)
return(-1.0);
else
return(1.0);

};

// Value 'yValue' will be projected over an integer matrix or grid.

// We have choose this for achieving the scaling goal and performing
tests.

// The projection process is a matter of personal choice, any other
idea or

// solution can be implemented by reader.

inline unsigned int PerformProjectionFor_Y(double yValue)

{

unsigned long q;
const double scale=(32768.0/2.0);
const double offset=(32768.0);

// do the projection as a positive integerproject to positive
integer
q=(yValue*scale)+offset;

//getting the LSB (least significant bit)
q8=1;
return q;

}

// Value 'xValue' will be projected over an integer matrix or grid.
// We have choose this for achieving the scaling goal and performing
tests.
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// The projection process is a matter of personal choice, any other
idea or
// solution can be implemented by reader.
inline unsigned int PerformProjectionFor X(double xValue)
{
// used for storing the decomposition value
double decompositionValue;

// power value (exponent)
int n;

// with frexp() we will decompose the double point (xValue) as
// argument into a normalized fraction and an integral power
decompositionValue = frexp (xValue , &n);

// with ldexp() we will return the result of multiplying
"decompositionValue'
// (the significand) with 2 and raised to the power '51'
(exponent)
decompositionValue = ldexp(decompositionValue,51);

// Test if the difference between 'decompositionValue' and
// floor(decompositionValue) is less than 0.5
// if yes return '1', otherwise '0'.
// With floor() we round 'decompositionValue', returning the
largest
// integral value that is not greater than 'decompositionValue'
return (((decompositionValue-floor(decompositionValue))<0.5)?1:0);

}

inline void identifyFirstRoot()

{
/* In*Zn=Z(n+1)-c */
z_xCoordinatePoint=z_xCoordinatePoint-c_xCoordinatePoint;
z_yCoordinatePoint=z_yCoordinatePoint-c_yCoordinatePoint;
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// 1 represents the length of the vector from the origin to the
point

/1 1 = |z| = sqrt(x*x+y*y)

double r;

// the new point z = (x,y)

double z_xNewPointValue, z_yNewPointValue; //NewZx, NewZy
r=sqrt(z_xCoordinatePoint*z_xCoordinatePoint+z_
yCoordinatePoint*z_yCoordinatePoint);

// the below code sequence represents the implementation of the
algorithm presented in [17], from page 361 to 362.
// case 1: z>0
if (z_xCoordinatePoint>0)
{
z_xNewPointValue=sqrt(0.5%(z_xCoordinatePoint+r));
z_yNewPointValue=z_yCoordinatePoint/(2*z_xNewPointValue);

}

// for cases when z<0 and z=0
else
{

// case 2: z<0

if (z_xCoordinatePoint<0)

{
z_yNewPointValue=getSign(z_yCoordinatePoint)*sqrt(0.5%(
-z_xCoordinatePoint+r));
z_xNewPointValue=z_yCoordinatePoint/(2*z_yNewPointValue);
}
//case 3: z=0
else
{
z_xNewPointValue=sqrt(0.5*fabs(z_yCoordinatePoint));
if (z_xNewPointValue>0) z_yNewPointValue=z_
yCoordinatePoint/(2*z_xNewPointValue);
else z_yNewPointValue=0;
}
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};

// end of the implementation

// the values for x and y coordinates
z_xCoordinatePoint=z_xNewPointValue;
z_yCoordinatePoint=z_yNewPointValue;

};

public:
// gets the encrypted value
unsigned int getEncryptedMessageA(unsigned int plainValue);
unsigned int getDecryptedMessageB(unsigned int encryptedValue);
unsigned int getEncryptedMessageC(unsigned int stream);
unsigned int getDecryptedMessageD(unsigned int stream);

// gets the single bit

unsigned int bitCodeEncryptedMessageA(unsigned int plainValue);
unsigned int bitCodeDecryptedMessageB(unsigned int encryptedValue);
unsigned int bitCodeEncryptedMessageC(unsigned int stream);
unsigned int bitCodeDecryptedMessageD(unsigned int stream);

// constructor
CryptoFractalCipher(double cx,double cy);

// destructor

virtual ~CryptoFractalCipher();
};
#endif

Listing 14-7. Main Program

#include "FractalCipherCrypto.h"
#include <climits>

#include <assert.h>

#include <math.h>

#include <iostream>

using namespace std;

324



CHAPTER 14  CHAOS-BASED CRYPTOGRAPHY

// implementing bitCodeEncryptedMessageA from FractalCipherCrypto.h file
unsigned int CryptoFractalCipher::bitCodeEncryptedMessageA(unsigned int
bit from plaintext)
{

// below we will create a cryptographic strem from the clear stream

int crypto_bit=0;

{

identifyFirstRoot();

// quadratic value
unsigned long quadraticValue = PerformProjectionFor X(
z_yCoordinatePoint);

// Do the encoding process and provide the
// cryptographic stream from the clear stream
// Variables used:

// - iV: the input value

// - oV: the output value

// - rV: the route value in the expansion of the fractal
unsigned int iV, oV, rV;

{

unsigned int resulti, result2, result3;
iV=(bit from plaintext) & 1;

// obtained from the iteration of the quadratic value
resulti=quadraticValue;

// input value
result2=iV;

// we will copy the bits if it is set in one operand but not
both
result3=resulti*result2;

// the final output value
oV=result3;

// the route value that need to be followed within the
expansion of the fractal
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rV=result2;

}

crypto bit=(oV);
if ((zv) != 0)

{

// use the route on the second root point
z_xCoordinatePoint=-z_xCoordinatePoint;
z_yCoordinatePoint=-z_yCoordinatePoint;

}

return crypto bit;

}s

unsigned int CryptoFractalCipher::bitCodeDecryptedMessageB(unsigned int
bit from encoding)
{
// decode the clear value from the cryptographic stream
int bit_from_plaintext=0;
{
identifyFirstRoot();

// computing the quadratic value
unsigned long quadraticValue = PerformProjectionFor X(z_
yCoordinatePoint);

// decoding process for obtaining the clearstream from the
cryptographic stream
// Variables used:

// - iV: the input value

// - oV: the output value

// - 1V: the route value in the expansion of the fractal
unsigned int iV, oV, rV;

{

unsigned int resulti,result2,results;

iv=(bit_from encoding) & 1;
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// obtained from the iteration of the quadratic value
resulti=quadraticValue & 1;

// input value
result3=iV;

// we will copy the bits if it is set in one operand but not
both
result2=resulti*result3;

// the output value
oV=result2;

// the route value that need to be followed within the
expansion of the fractal
rV=result2;

}

bit from plaintext=(oV);
if ((xv) !'= 0)

{

// use the route on the second root point
z_xCoordinatePoint=-z_xCoordinatePoint;
z_yCoordinatePoint=-z_yCoordinatePoint;

}

return bit from_plaintext;

unsigned int CryptoFractalCipher::bitCodeEncryptedMessageC(unsigned int

bit from stream)

{

// generate the cryptographic stream from the clear stream
int bit from _coding=0;

{
identifyFirstRoot();
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unsigned long quadraticValueForY = PerformProjectionFor X(
z_yCoordinatePoint);
unsigned long quadraticValueForX

z_xCoordinatePoint);

PerformProjectionFor X(

// encoding process
unsigned int iV, oV, rV;

{ unsigned int resulti, result2, result3, result4;
iV=(bit_from stream);

// from the iteration of the 'y' quadratic
resulti=quadraticValueForY;

// from the iteration of the 'x' quadratic
result2=quadraticValueForX;

// we will copy the bits if it is set in one operand but not
both
result3=iV resulti;
result4=iV result2;

// the output value
oV=result3;
rV=result4; // branch in path to follow through IIM

}

bit from coding=(oV);
if ((zv) != 0)

{

// use the route on the second root point
z_xCoordinatePoint=-z_xCoordinatePoint;
z_yCoordinatePoint=-z_yCoordinatePoint;

}

return bit from coding;

}s
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unsigned int CryptoFractalCipher::bitCodeDecryptedMessageD(unsigned int
bit from stream)
{
// generate the cryptographic stream from the clear stream
int bit_from_coding = 0;
{
identifyFirstRoot();

unsigned long quadraticValueForY = PerformProjectionFor X(

z_yCoordinatePoint);
unsigned long quadraticValueForX
z_xCoordinatePoint);

PerformProjectionFor X(

// encoding process
unsigned int iV, oV, rV;
{
unsigned int result1i, result2, result3, results4;
iv=(bit_from stream) & 1;

// from iterated quadratic y and x
resulti=quadraticValueForY;
result2=quadraticValueForX;

// we will copy the bits if it is set in one operand but not
both
result3=iV resulti;
result4=result3*result2;

// output value
oV=result3;

// the route value
rV=results;

}
bit_from_coding=(oV);
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if ((xv) !'=0)

{ //take branch to second root
z_xCoordinatePoint=-z_xCoordinatePoint;
z_yCoordinatePoint=-z_yCoordinatePoint;

}
}
return bit from coding;
};
unsigned int CryptoFractalCipher::getEncryptedMessageA(unsigned int
clearstream)
{
// for creating the cryptographic stream from the clear stream
int cryptographic_stream=0;
for (int iterationIndex=0; iterationIndex<32; (iterationIndex++))
{
// encoding process for obtaining cryptographic stream from clear
stream
unsigned int iV,oV;
iV=(clearstream>>iterationIndex) & 1;
oV=bitCodeEncryptedMessageA(iV);
cryptographic_stream+=((oV)<<iterationIndex);
}
return cryptographic_stream;
};
unsigned int CryptoFractalCipher::getDecryptedMessageB(unsigned int
cryptstream)
{

// for creating the clear stream from the cryptographic stream
int clearstream=0;

for (int iterationIndex=0; iterationIndex<32; (iterationIndex++))

{
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// decoding process for obtaining the clear stream from the
cryptographic stream
unsigned int iV, oV;

iV=(cryptstream>>iterationIndex) & 1;
oV=bitCodeDecryptedMessageB(iV);
clearstream+=((oV)<<iterationIndex);

}

return clearstream;

};

unsigned int CryptoFractalCipher::getEncryptedMessageC(unsigned int stream)
{
// construct the cryptographic stream from clear stream
// cv - the code value
int cV=0;

for (int iterationIndex=0; iterationIndex<32; (iterationIndex++))
{
// encoding process for generating the cryptographic stream from
clear stream
unsigned int iV,oV;
iV=(streamy>>iterationIndex) & 1;
oV=bitCodeEncryptedMessageC(iV);
cV+=((oV)<<iterationIndex);

}

return cV;

s

unsigned int CryptoFractalCipher::getDecryptedMessageD(unsigned int stream)
{

// construct the cryptographic stream from clear stream
// cv - the code value
int cV=0;

for (int iterationIndex=0; iterationIndex<32; (iterationIndex++))

{
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// encoding process for generating the cryptographic stream from
clear stream

unsigned int iV, oV;

iV=(streamy>>iterationIndex) & 1;

oV=bitCodeDecryptedMessageD(iV);

cV+=((oV)<<iterationIndex);

}

return cV;
}s

CryptoFractalCipher::CryptoFractalCipher(double cPoint xValue,double
cPoint_yValue)
{
c_xCoordinatePoint=cPoint_xValue;
c_yCoordinatePoint=cPoint_yValue;

z_xCoordinatePoint=z_yCoordinatePoint=0;

// use repeating digits as for encoding process using PI value with
the goal to find a fixed point
for(int index=0; index<32; index++)
getEncryptedMessageA(3141592653);
}

// destructor implementation - only if it is necessary
CryptoFractalCipher: :~CryptoFractalCipher()

{
}

int main(void)
{
// CryptoKey rValue and CryptoKey iValue are represented as
// a point that is situated near the boundary of the Mandelbrot set
// the real value of a complex number (cryptographic key)
double CryptoKey rValue=-0.687;

// the imaginary unit
double CryptoKey iValue=-0.312;
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unsigned int Plaintext[50];

unsigned int EncryptionA[50];
unsigned int EncryptionB[50];
unsigned int DecryptionOfAwWithB[50];
unsigned int DecryptionOfBWithA[50];

// generate randomly message
for (int i=0;i<50;i++)
Plaintext[i]=rand()%1000;

// perform message encoding using getEncryptedMessageA for A
{
CryptoFractalCipher CFC(CryptoKey rValue, CryptoKey iValue);
for (int i=0;i<50;i++)
EncryptionA[i]=CFC.getEncryptedMessageA(Plaintext[i]);
}

// perform message encoding using getDecryptedMessageB for B
{
CryptoFractalCipher CFC(CryptoKey rValue, CryptoKey iValue);
for (int i=0;i<50;i++)
EncryptionB[i]=CFC.getDecryptedMessageB(Plaintext[i]);
}

// perform message decoding A with B using getDecryptedMessageB for B
{
CryptoFractalCipher CFC(CryptoKey rValue, CryptoKey iValue);
for (int i=0;i<50;i++)
DecryptionOfAWithB[i]=CFC.getDecryptedMessageB(EncryptionA[i]);

}
// perform message decoding B with A using getDecryptedMessageB for A

{
CryptoFractalCipher CFC(CryptoKey rValue, CryptoKey iValue);

for (int i=0;i<50;i++)
DecryptionOfBWithA[i]=CFC.getEncryptedMessageA(EncryptionB[i]);
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// display the output value and the results
for (int i=0;i<50;i++)

{
cout
<<i
<<")  (Plaintext Value="<<Plaintext[i]
<<")  (Encryption -> First Method (A) = "<<EncryptionA[i]
<" (Encryption -> Second Method (B) = "<<EncryptionB[i]
<" (Decryption -> A with B = "<<DecryptionOfAWithB[i]
<" (Decryption -> B with A = "<<DecryptionOfBWithA[i]
<<")"<<endl;
};
}
Conclusion

In this chapter, we discussed a different approach in cryptography, which is chaos-based
cryptography. The new cryptographic algorithms use the chaos function to generate new
cryptographic primitives in a different way from the ones we know so well.

At the end of this chapter, you will know the following:

o How chaos-based cryptography primitives are built and what makes
them different from the normal cryptographic primitives

e How the chaos system is designed for text encryption and image
encryption

e How to implement a cryptographic system based on number
generators using the chaos approach and how to perform encryption
and decryption operations with the chaos system and fractals
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CHAPTER 15

Big Data Cryptography

Big data can be seen as the processes through which data sets of a big size (in a range
from a few terabytes to many zettabytes) are extracted, manipulated, and analyzed.
These techniques differ from traditional techniques because big data contains different
types of data, structured or unstructured (video or audio files, images, texts, etc.).

Big data cryptography is related to data’s confidentiality, integrity, and authenticity,
representing an important topic that needs to be treated with attention because each
business has its computational model and software and hardware architecture. The
cryptographic methods related to big data differ from the traditional ones because
encryption systems and their related concepts are defined differently regarding the
policies for access control, cloud infrastructure, and storage management and techniques.

This chapter starts by describing a general computational model applicable in a
cloud environment that enables and eases the implementation of applications that
involve big data analytics. In the following, we present a classification of the nodes from
the cloud architecture and their purpose in the big data analytics process. The types of
nodes are based on the classification from [1] - [3] and the notations are extended a little
to define the following types of nodes:

o Iyrepresents an input node that handles the raw data used in the
application. These types of nodes collect the data from the front-end
users or the data that is read or captured from different sensors (such as
fingerprint readers, holographic signatures, temperature sensors, etc.).

o Cyrepresents the computational node, which has a significant role in
the computational processes from the application. The basis of these
nodes is the ingestion nodes, which are included in a computational
node. In this classification, the ingestion nodes are called consuming
nodes and their purpose is to scan and refine the input data, meaning
data preparation for the analysis process and its passing to the
enrichment nodes, where the data is actually processed.
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o Syrepresents the storage node, which has a significant role in
applying the cryptographic techniques over the data. Its purpose is
to store the data involved in the computational processes that are
applied between different types of end users and third parties. The
input data and the output data for data analysis are stored by these
nodes.

e Ryrepresents the result node, which receives the output of some
processes that are being executed. It can make automatic decisions
based on the output of the analysis process or it can send the output
to a specific client.

Figure 15-1 shows an example of cloud architecture for big data analytics that
includes the elements described above. The model can represent a pattern that
describes a wide range of big data applications. This being said, we will note the
following set of one or more nodes of type H, as follows H*, where H € {Iy, Cy, Sy, Ry}.
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m s & 22

R [—] > -
= , Result Node

Cy (Ingestion) Sy(Storage) Cy(Consumer) (Ry)

Data Receiver

ovedd

by
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Cy(Enrichment)

Cloud architecture example for big data opplications using analytics
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Figure 15-1. Example of cloud architecture with big data analytical applications

Figure 15-1 shows a general cloud model that can be applied to an application
that requires data sets. In the example, the node Iy initiates the process of collecting
reference datasets. The input nodes send sequences of data to the Cy(Ingestion) node.
In the ingestion node, the sequences of data are used by the computation process
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for which they are parsed. When the computational process ends, the output data is
organized in files or databases. In the next step, the files and databases are sent to the
storage nodes Sy (Storage). From time to time, the enrichment nodes Cy(Enrichment)
perform computation over the data from the storage nodes. Mostly, these processes are
made offline and update the associated metadata according to the user’s needs. In our
example, the Ry (Data Receiver) represents a user who will correlate the data set with the
reference one.

Cloud computing presents many security challenges for the data that moves through
and between its components. To follow the path of protection techniques from the cloud
cryptography, we need to take into consideration three main security goals, known as
the CIA triad:

o Confidentiality: The data refers strictly to the input and output of
the computations and needs to be kept secret and protected against
untrusted parties, malicious parties, or other potential adversaries.

o Integrity: Any changes that are not authorized over the data must
be immediately detected. Note that integrity issues are not always
caused by nefarious actors; they can also be caused by bugs in
software or issues in data transfers. Regardless, the integrity of the
data must be enforced.

e Availability: The data owners and the authorized data users have
access to the data and computational resources.

Let’s focus on availability because it is one of the most important characteristics
for the cloud, but it does not include any cryptographic means. For this reason,
confidentiality and integrity need to be involved as much as possible in the cloud and
big data architecture. The way in which data is stored is relevant, too, for security and
cryptographic purposes. The way in which confidentiality and integrity are achieved is
dictated by the way in which the cloud is deployed. When developing an application, it is
important to establish from the beginning which participant controls which component
of the cloud and the degree of trust awarded to each component and participant. Based
on this, we will consider the following types of clouds:

o Trusted cloud: It is deployed by government organizations or
institutions, and it is isolated completely from anything from outside
(networks or adversaries). Public cloud vendors such as Microsoft
have regions for US government users. The Microsoft Jedi contract
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with the DOD covers such use as well as Azure cloud resources
authorized for secret and top secret use. The files of the users or
clients are stored safely, without any worry of corruption or theft.
However, there are situations in which some of the nodes are exposed
because they may communicate with external networks. Therefore, in
these situations, malware or insiders can affect these types of nodes.

e Semi-trusted cloud: In this type of cloud, it is not mentioned
specifically if the cloud can be trusted entirely or cannot be trusted
at all. However, a good practice is to mention the components that
are under control and to provide solutions to monitor the adversarial
activities at a given time.

o Untrusted cloud: The nodes within the cloud or the cloud itself
are not trusted at all by the data users. This scenario means that no
security guarantees are given, including a level of confidentiality or
integrity of the data or computations. In such situations, the cloud
user should have its own solutions and protection mechanisms to
ensure (a level of) confidentiality and integrity. Mainly, the untrusted
cloud is associated with the public cloud model.

With a short description of the cloud and big data elements, we can go further to
discuss the cryptographic techniques that can be applied in these environments. To
ensure the security of big data and cloud computing, cryptographic techniques are very
complex and it is difficult to apply them in real-life scenarios without dedicated third-
party software libraries or experienced professionals.

This chapter focuses on three cryptographic techniques that can be used particularly
for achieving security of big data applications deployed in the cloud environment, such as

e Homomorphic encryption (HE): See Chapter 12

e Verifiable computation (VC): Represents the first objective of this
chapter

e Secure multi-party computation (MPC)

Other cryptographic techniques that can be applied successfully to achieve security
in cloud computing and big data are

e Functional encryption (FE)
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o Identity-based encryption (IE)
e Attribute-based encryption (AE)

In the next section, we present a technique that is promising and can be applied
in real environments. Many of the encryption schemes that fall in the FE, IE, or AE
types are very difficult to use in practice because many works are based on theoretical
assumptions and most of them don’t take into consideration the requirements and
demands of business or industry applications. Between theory and practice, it is a long
path that theoreticians and practitioners need to walk together. They need to collaborate
closely in order to find solutions for the security concerns in real environments and to
solve the problems and gaps that exist.

Verifiable Computation

Verifiable computation or verifiable computing refers to the machines’ capability of
unloading the computation quantity of some function(s) to others, for example, clients
with untrusted status, while the results are verified continuously. See Figure 15-2.
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Figure 15-2. Verifiable computation example. The nodes of the cloud don’t have
any trustiness level for integrity protection
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An important application of verifiable computation for real environments are
Merkle trees, whose purpose is to check the integrity of the data. In big data, the Merkle
tree represents a data structure that is used for validation of the integrity of different
properties for items, data, rows, sets of data, and so on. A very useful characteristic of
a Merkle tree is that it can be used on large amounts of data (therefore, in the context
of big data) and in this direction many improvements have been made by combining
algorithms of verifiable computation with Merkle trees.

In Listing 15-1 through Listing 15-6, we present a scenario in which a Merkle tree
is self-balancing. The example is just a simulation (see Listing 15-1, Listing 15-6, and
Figure 15-3). Deploying the application in a real big data environment will require
proper adjustments.

The code is organized in the following files:

o tree node.cpp contains the implementation of the methods used
with a tree node.

o tree_node.h contains the definitions of a tree node.

o tree.cpp contains the implementations of the methods used with

atree.
e tree.h contains the definitions of a tree.

o tree_handling.h contains the function of printing and computing
the sha256 value of the information within a node.

e picosha2.his downloaded as is from the source [4] and represents
a header file for computing the sha256 hash value of an input. Its
content can be found in the source [4] or in this chapter’s code folder
on the GitHub repository for the book.

e main.cpp is the main file of the project.

Listing 15-1. The Content of the tree_node.h File

#ifndef TREE_NODE
#define TREE_NODE

#include <string>
using namespace std;
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// define the node of the merkle tree
struct tree node

{

string hash_value; // the hash value
tree node *1 neighbour; // the left neighbour
tree_node *r_neighbour; // the right neighbour

// instantiates the hash value within the node
// see the corresponding .cpp file
tree_node(string value);

};
#endif

Listing 15-2. The Content of the tree_node.cpp File

#include "tree node.h"
using namespace std;

// assigns the input hash value to the hash value attribute of the tree node
tree node::tree node(string value)

{

this->hash_value = value;

}

Listing 15-3. The Content of the tree.h File

#ifndef MERKLE_TREE
#define MERKLE TREE

#include "tree node.h"
#include "picosha2.h"
#include "tree handling.h"
#include <vector>

#include <string>

using namespace std;
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struct merkle tree {
tree node* tree root;
merkle tree(vector<tree node*> vector nodes);
~merkle tree();
void print merkle tree(tree node *node, int index);
void delete merkle tree(tree node *node);

};
#endif

Listing 15-4. The Content of the tree.cpp File

#include <iostream>
#include <iomanip>
#include "tree.h"

using namespace std;

merkle tree::merkle tree(vector<tree node*> vector nodes)
{
vector<tree node*> aux_nodes;
while (vector nodes.size() != 1)
{
print_hash values(vector nodes);
for (int i = 0, n = 0; i < vector nodes.size(); i =1 + 2, n++) {
if (i != vector nodes.size() - 1) // check if there is a
neighbour block

{
// merges the neighbour nodes and computes the hash value
of the new node
aux_nodes.push_back(new tree node(compute sha256(vector
nodes[i]->hash value + vector nodes[i + 1]->hash value)));
// link the new node with the left neighbour and the right
neighbour
aux_nodes[n]->1 neighbour = vector nodes[i];
aux_nodes[n]->r _neighbour = vector nodes[i + 1];
} else
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aux_nodes.push_back(vector nodes[i]);

}

cout << "\n";
vector nodes = aux_nodes;
aux_nodes.clear();

}

// picks the first node as the root of the tree
this->tree root = vector nodes[0];

}
merkle tree::~merkle tree()
{
delete merkle tree(tree root);
cout << "The tree was deleted." << endl;
}

void merkle tree::print merkle tree(tree node *node, int index)
{
if (node) {
if (node->1 neighbour) {
print_merkle tree(node->1 neighbour, index + 4);
}
if (node->r neighbour) {
print_merkle tree(node->r neighbour, index + 4);

}
if (index) {

cout << setw(index) << ' ';
}

cout << node->hash value[0] << "\n ";
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void merkle tree::delete merkle tree(tree node *node)
{
if (node) {
delete_merkle_tree(node->1 neighbour);
delete merkle tree(node->r neighbour);
node = NULL;
delete node;

}

Listing 15-5. The Content of the tree_handling.h File

#ifndef TREE_MISC
#define TREE_MISC

#include <iostream>
#include <string>
#include "tree.h"
#include "picosha2.h"

using namespace std;

// computes the hash value of the input using SHA256

inline string compute sha256(string input string)

{
string hash_string = picosha2::hash256 hex string(input_string);
return hash_string;

}

// display the hash values from a vector of tree nodes
inline void print hash values(vector<tree node*> vector nodes)

{

for (int i = 0; i < vector nodes.size(); i++)

{
cout << vector nodes[i]->hash value << endl;
}
}
#endif
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Listing 15-6. The Content of the main.cpp File

#include <iostream>
#include "tree.h"

using namespace std;

int main() {
vector<tree node*> nodes_set;

//create sample data

nodes set.push _back(new tree node(compute sha256("Merkle ")));
nodes_set.push back(new tree node(compute sha256("tree ")));
nodes_set.push back(new tree node(compute sha256("node ")));

nodes set.push back(new tree node(compute sha256("example.")));
nodes_set.push back(new tree node(compute sha256("This is an example of
merkle tree.")));

// initialize leaves

for (unsigned int i = 0; i < nodes_set.size(); i++) {
nodes set[i]->1 neighbour = NULL;
nodes set[i]->r neighbour = NULL;

}

merkle tree *hash_tree = new merkle tree(nodes set);
std::cout << hash_tree->tree root->hash value << std::endl;
hash_tree->print merkle tree(hash tree->tree root, 0);

for (int k = 0; k < nodes_set.size(); k++) {
delete nodes set[k];

}

delete hash_tree;

return 0;

To compile the code, the following command is used in the terminal:

g++ -0 result.exe main.cpp tree node.cpp tree node.h tree.cpp tree.h
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To run the code, type in the terminal:
result

The result can be seen in Figure 15-3.

C:\merkle_tree>g++ -0 result.exe main.cpp tree_node.cpp tree_node.h tree.cpp tree.h

C:\merkle_tree>result

6ed%e9ffffb279fa75dbb781a7714229¢90945af1ac259437§904028219787761
8c5ae0d502b823¢31aafe262¢83545¢74204c3f17¢473d26234544F17¢6892¢6
02fed3c720e393307b47a5e8edb7e218134d20Ff7726feadd902ce547312a2d8
9¢c9bedf2307920dc9c2b54375ecc19402222¢b%a191e 748823007 380ab0de77
fbef18ba64f58f85fc023107432206¢96871192¢1d71¢b2b1925585¢601cc8be

86594769441b720defdd822e2784e5468820a61¢56a25b7380560fbobOabca’3
€22d2b6856c963d9ba56697¢3e042b07ca7eb4c3b53fdc5d1556870c479611ea
fbef18b464F58F85fc023107432206¢96a71192e1d71cb2b1925585c601cc8be

491b35881de38c74c090fe361682a000ed9f1bc20adblc2c¢9530061ad93f6ef0
fbef18bA64F58F85Fc023107432206¢96a71192e1d71cb2b1925585¢601ccBbe

fadd1dbl7bef2d5dca94677ef074fa087d06b%e 3432402207 febd52e301bd9b1

6
8

The tree was deleted.

C:\merkle_tree>
Figure 15-3. The result of the implementation of a self-balancing Merkle tree

Conclusion

In this chapter, we discussed the importance of an application deployed in the big

data environment and the way in which security can be achieved through different
cryptographic mechanisms, such as verifiable computation. For more about cloud
computing, big data, and security, you may consult any of the works from this chapter’s
references.

348



CHAPTER 15  BIG DATA CRYPTOGRAPHY

At the end of this chapter, you will have the following knowledge:

Understanding the main concepts of security in a cloud and big data
environment

How to put into practice complex cryptographic primitives and
protocols, such as verifiable computation
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CHAPTER 16

Cloud Computing
Cryptography

Cryptography in cloud computing has gained a lot of attention in the few past years.
Nowadays it’s one of the most important topics in cryptography and cybersecurity. It
represents a key point in the design and implementation of a secure cloud application.
Cryptography for cloud computing involves complex encryption methods and
techniques for securing data that is stored and used in the cloud environment.

There are three main types of cloud technologies that organizations have adopted
rapidly: IaaS (Infrastructure-as-a-Service), PaaS (Platform-as-a-Service), and Saa$S
(Software-as-a-Service). The cloud offers many benefits for its users, such as efficiency,
flexibility, and scalability, which lead to reducing the overall cost for the clients. Due to
its complexity and types (public, private, or hybrid cloud), cloud computing inherits the
security concerns of its components. Source [1] provides a great categorization of cloud
computing security issues. The security concerns may occur on the following levels: the
communication level (which deals with the shared infrastructures, virtual networks,
and their configurations), the architectural level (which deals with virtualization, data
storage, applications and APIs, and access control) and even the contractual and legal
level (which deals, for example, with service level agreements).

To secure the cloud, the following cryptographic techniques and mechanisms are
receiving important attention from research communities and industries:

e Searchable encryption (see Chapter 11)
e Homomorphic encryption (see Chapter 12)

e Structured encryption (STE), which is used to encrypt the data
structures. An STE scheme uses a token to query the data structure.
A special example of STE is searchable encryption (SE). Recall that
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searchable encryption allows for searching for a keyword through
data in an encrypted format. Another example of STE is using graph
structures to encrypt databases. It is a good example in the cloud
context, where applications deal with large databases for analytics
and statistics.

e Functional encryption (FE) can be considered a generalization
of the public-key encryption, where the owner of the private key
allows an authorized user to learn a function of what ciphertext is
being encrypted. There are more types of functional encryption:
predicate encryption (PE), identity-based encryption (IBE),
attribute-based encryption (ABE), hidden vector encryption
(HVE), and inner product predicate.

e Private information retrieval (PIR) is actually a protocol used by a
client to retrieve an element within a database without letting the rest
of the database users know what element the client retrieved.

A Practical Example

For this example, let’s imagine the following cloud scenario: an organization manages
its administrative relationship with its clients using a cloud messaging platform. For
example, the organization sends notifications to their clients about their products or
available updates, and the clients can send messages to the organization through the
platform. Therefore, the cloud platform is included in the category Software-as-a-Service.
To ensure that the messages are read by the authorized receiver, the messages should be
encrypted from both sides, the organization and the clients, and both of them should use
trusted parties for the key generation that will be used in the encryption and decryption.
To simulate this example, we will use as a trusted party OpenSSL [1], which will
generate the public and the private keys for the RSA algorithm, keys that will be used in
our encryption technique. Source [1] provides documentation for different distributions,
links to source code from a GitHub repository, examples, and much more. Note that we
created this example on a Windows platform. You will not download the source code
to compile it yourself and then use it. Instead, you will download directly the compiled
version of the OpenSSL library that can be found at source [3] (or it can be downloaded
from the GitHub repository of this book). Once the archive is downloaded, you extract
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it to the OpenSSL folder on the C:\ partition. Further, you open a terminal and change
the current directory to the bin folder from the OpenSSL parent folder and then type
openssl and press Enter (Figure 16-1).

Microsoft Windows [Version 10.9.17763.1282]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\WINDOWS\system32>cd C:\openssl-1.0.2d-fips-2.0.10\bin

C:\openssl-1.0.2d-fips-2.0.18\bin>openssl
WARNING: can't open config file: C:/OpenSSL/openssl.cnf
OpenSSL> exit

C:\openssl-1.0.2d-fips-2.0.10\bin>

Figure 16-1. Checking the openssl command

The message warning shows because we used the OpenSSL package and it is not
compiled on the computer. For the purpose of this section, you do not need to compile
and install OpenSSL yourself, but the complete guide for installing it can be found in the
source [2]

The next step is to generate the private key for the RSA algorithm. To do this, type the
following command in the terminal and check Figure 16-2:

C:\openssl-1.0.2d-fips-2.0.10\bin>openssl genrsa -out privateKey.pem 2048

The above command says that the openss1 library is used to generate the RSA
private key (genrsa) in the output file privateKey.pem, having a length of 2048 bits.

Then, to generate the public key type, the following command in the terminal and
check Figure 16-2:

C:\openssl-1.0.2d-fips-2.0.10\bin>openssl rsa -in privateKey.pem -pubout >
publicKey.pem

The above command says that the openss1 library is used to compute the public
key of the cryptosystem saved in the output file publicKey.pem, based on the input file
(private key) privateKey.pem.
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C:\openssl-1.0.2d-fips-2.0.10\bin>openssl genrsa -out privateKey.pem 2048
WARNING: can’'t open config file: C:/OpenSSL/openssl.cnf

Loading 'screen’ into random state - done

Generating RSA private key, 2048 bit long modulus

e is 65537 (@x10001)
C:\openssl-1.0.2d-fips-2.0.10\bin>openssl rsa -in privateKey.pem -pubout > publicKey.pem
WARNING: can’'t open config file: C:/OpenSSL/openssl.cnf

wreiting RSA key

C:\openssl-1.0.2d-fips-2.0.10\bin>

Figure 16-2. Generating the private key and the public key for the RSA
cryptosystem

The files publicKey.pem and privateKey.pem are generated in the same folder as
the openssl library is, namely the bin folder. If you check the contents of these files, they
should look like Figure 16-3a and 16-3b.

MIIEowIBAAKCAQEA4QYm+aUBDY2hZ8RLLAmvCtgeGiGhgOAS+9nITcAIFEWQOELT
OA8iO0+k8EOC+ATIWMNS+/2x3j10ZgvVpVx83MO103XopBWYZvCljftWaBsCX97NIT71
tadjNnO5KnIboSV/YgMIBRZVCOFMtF756K1WcBMj Opb/M5IcmcfIWHZAt 71NYueP
tLDuVrWc/M3YALJycsSaicFH3ecp95P7bhg3VgMOueGllc3KFggfyZitDE6TIJAYXG
Fx4C5/IjCo+/40djNeGXL47KIDOGM3X7XnMHtu86IgWLIMOmM7xsmRRSFT/gBAjJCE
2/BrElofJPff2YkeZbFASBtpjUWVrsK4vZKrzwIDAQABAOIBAGKhxberIZkFOXg4
TBOelODV9evZUUgsgL3pgaiazUV3cKAAIoDx8T19¢c/ygXgY¥zjrBa70dj2yyIPivE
aMEi74RWdGWwnBBXopjArd3fPnOtSe3iAIiPLaCtXMhRuy7mIrBtaBovnIWGtGsl4d
10 y+W1Q9QAL7WAxf+ezbaCJhsiSh+84MSgyProkKAxMMOFttlpJd/JSSLAUpXpNNDRL
11 +mXMbR2P5Jf3pGWPATY/psRw2PcX1PTQkQEXEU775+fv4hKle4b000+bdV4C55GF
12 1Gp9QXbIbPEf1RNIX7GpggZnxrAk/T0oUtDtp8RgézcgbumVESW1I+DIEE1Q1%et
13 q7TGpgECgYEA9CzazwndquBaJRItvILn/PCi/Wtk5VVeEZc6UgDtYDmylyoGp8nL
14 xUC4gPS569MP15QaQQajBO0HBhNGcc4WweiTYyWO/teNHMBOEPYyK3xK4g/QIEb2ul
5 bé6Reg4ersq/oVvUésMbbpzny2NUQgtKnc2gARIE9Zmtj£Za3ZA0JEfcCgYEAG+VE
16 QKICHSOkoCxxkRTPWIDSHAymch7afa4AWCBOBA/PnniX5VgyEUa6RJIS9hJuoOxPv
17 kONsKT+avrxL8TVNOFhELYu3KRSrvBQ1l15fh33j3inRN1t9dQrLo/ZXoudwvDiMqg7
12  b+rltcySDW/LE7fnu90+jBXpP5q8GhFUQLBkTOkCgYBuSALpmXT+JLxRpBUMWB+6
19 nE40AZzzaPs52xIxCSKkWxOABSTJEbV6iJJOZuadWncYvwbGDz0izi4ddcll0X+A
20 g2QVbdDm2cS5viiSV40snWoZlz3nxrNdojSVkp+f0PSCoT1HrHwgiwdrQNg7FB4Yeid
21  VGDrfSc9ZwbghpYGE6GRcuQKBgHRvQHLGHgzZpmHFSHA/FzoQumHTQhYGDWsB21TLp
22 VrfleeazqS5JEkglWx+27HOIIdSO0gBLjAgqCOw+uQfz90MgNKpkNdnov9AgqdG+R3gom
3  pZJdDJdsnxXdl7BhUJdoupZgDSMhMnCE8P101FBSpuSLw4WK2XMpETOgPOs1+jo/XT7E
4  D+ypAoGBAIfZ8zC7UD1fr/xidF+GUJlYoMabnhlbJfpnJ2A+oW/rBQgaCFHEIAS2
DuOb2AVJIZLACMGYaEZ /h+ZmKAJrJ7ptCE7Pi6oNm/wruDvuNOkCr3xYY2BhQdiMN
26 ubrCPqQFykGH36E6rcYsLEd/SesjShtvHHgty/jGb/YvztgEBvB+P

(%]

1 O 0 Wb W

WO

Figure 16-3a. The private key
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MIIBIjANBgkghkiGSwOBAQEFAACCAQSAMIIBCGKCAQEA4QYm+aUBDY2hZE8RLLAmMY
CtgeGiGhgOAS+9nITcA)FENQYELTOAS10+k8EO+ATIWMNS+/2x]j10ZgvVpVx83M0O
103XopBWYZvClj£ftWaBsCX97NI71tadjNnOSKnIboSV/YgMIBRZVCOFMtF756K1W
cBMjOpb/MSIcmcfIWHZAT71NYuePtLDuVrWe/M3YALJycsSaicFH3ecp95P7bhg3
VgMOueGllc3KFgqgfyZitD6TJAYxGFx4CS/IjCo+/40djNeGXL47KIDOGM3X7XnMH
tu86IgWLIMOm7xsmRRSFT/gBAJCE2/BrE1ofJPL££2YkeZbFASBLPpIUNVLsK4vZKL
zwIDAQAB

] o N s W O

Figure 16-3b. The public key

In the two figures, note the difference between the length of the keys. Further, to use
them in a C++ program, you will read them from the . pem files. First, you need to remove
the extra messages from the files that are not part of the keys, namely the first line and
the last line of the files. Make sure that there are no additional space characters left at the
end of the keys, to not alter them.

Continuing the simulation for the cloud platform messaging, the encryption and
the decryption are shown in Listing 16-1 and the output is given in Figure 16-4. Here, for
demonstration purposes, we use a simple XOR-ing algorithm for both encryption and
decryption. Make sure that publicKey.pemand privateKey.pem are in the same folder
as the . cpp file containing the code from below.

Listing 16-1. Encryption and Decryption of the Messages

#include <iostream>
#include <fstream>
#include <string>
using namespace std;
// the encryption scheme is a simple XOR-ing process
// XOR-ing is used for both encryption and decryption
// parameter "message" can be the plain message or the encrypted message,
according to user's needs
string xor string(string message, string key)
{
string out_message(message);
unsigned int key len(key.length()), message len(message.length()), pos(0);
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for(unsigned int index = 0; index < message len; index++)

{
out_message[index] = message[index] " key[pos];
if(++pos == key_len){ pos = 0; }

}

return out_message;
}
int main()
{

// read the message to be encrypted from the console
string plain_text;

cout<<"Enter the message: ";
getline (cin, plain_text);

// the public key is read from the .pem corresponding file
string rowi;

string public_key = "";

ifstream public_key file ("publicKey.pem");

if (public_key file.is open())

{
while (getline (public key file, rowl) )
{
public_key += rowi;
}
public_key file.close();
}

// to check that the public key is read correctly, it is dispalyed on
the console
cout<<"Public key:"<<endl<<public_key<<endl<<endl;

// the private key is read from the .pem corresponding file
string row2;

string private key = "";
ifstream private key file ("privateKey.pem");
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if (private_key file.is open())

{
while (getline (private key file, row2) )
{
private key += row2;
}
private key file.close();
}

// to check that the public key is read correctly, it is dispalyed on
the console
cout<<"Private key:"<<endl<<private key<<endl<<endl;

// the encryption of the plain message is stored into encrypted message
string encrypted text = xor string(plain text, public_key);
<< endl <<

cout << endl << "The encryption of the message is:
encrypted text << endl;

// to decrypt the message, the receiver should proceed with some steps
// 1. the receiver should xor his/her private key with his/her public key
string xor_keys = xor_string(public_key, private key);

// 2. the receiver should xor the encrypted text with the result from
the step 1
string xor result = xor string(encrypted text, xor keys);

// 3. the decryption is made by xor-ing the result from previous step
with the private key
string decrypted message = xor string(xor result, private key);

cout << endl << "The decryption of the message is: << endl <<
decrypted message << endl;

return 0;
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RIVEMOUeG]
ASBLpIUWVrsKdv]

Figure 16-4. The output of Listing 16-1

In Figure 16-4, note that the private and public keys don’t contain the extra messages
that were initially included in the . pemfiles.

Conclusion

This chapter covered the most important cryptographic primitives in cloud
environments. At the end of this chapter, you should understand the cloud computing
security issues and the advanced concepts and cryptographic primitives that can be
applied to prevent these issues.

Cloud computing cryptography represents strong challenges and the huge amount
of literature offers multiple theoretical frameworks that do not have real practical
directions. This gives professionals and researchers strong research directions to develop
new ideas for improving security in a cloud environment, excepting the standard
security policies that are made available by the cloud solution providers.
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CHAPTER 17

Getting Started
with Cryptanalysis

The third part of this book deals with cryptanalysis and its methods. As we mentioned in
the beginning of the this book, cryptanalysis is the discipline that study the methods and
ways of finding breaches within cryptographic algorithms and security systems. The final
goal is to gain access to the real nature of the encrypted messages or cryptographic keys.

Cryptanalysis is a process that should be conducted by authorized persons, such
as professionals (ethical hackers, information security officers, etc.). Any cryptanalysis
activity outside of the legal framework is known as hacking which covers personal and
non-personal interests.

In this part, we will cover the most important methods and techniques for
conducting cryptanalysis in general and in-depth. We will discuss the necessary
knowledge and tools, such as software tools, methods, cryptanalysis types and
algorithms, and penetration-testing platforms.

Conducting cryptanalysis can be a tricky and difficult task and many aspects must
be taken into consideration before doing it. If you conduct the cryptanalysis as a legal
entity, things become much easier. If the cryptanalysis is conducted by a non-legal entity,
then you are dealing with a more complex process and hacking methods are involved,
methods that will be covered later in our discussion. This being said, in both ways you
need to get your hands dirty. The process of cryptanalysis is time-consuming and many
obstacles and obstructions could occur for many reasons, such as system complexity,
high size of the cryptographic key, hardware platform, access permissions, and so on.

Cryptanalysis is more exciting and challenging compared to cryptography. The
knowledge that a cryptanalyst needs to have is very wide and complex. It covers several
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complex fields that can be divided into three main categories: informatics (computer
science), computer engineering, and mathematics. Let’s specify the important disciplines
for each of the categories as follows:

e Informatics (computer science)
¢ Computer networks
e Programming languages
o Databases
e Operating systems
o Computer engineering and hardware
o FPGA (Field Programmable Gateway Array)
e Programming languages (e.g. VHDL)
¢ Development platforms (Xilinx, etc.)
e Mathematics

e Number theory

Algebra

e Combinatorics

e Information theory

e Probability theory

o Statistical analysis

o Elliptic curve mathematics
o Discrete mathematics
e Calculus

o Lattices

¢ Real analysis

o Complex analysis

o Fourier analysis
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Third Part Structure

The purpose of the third part of this book is to provide the tools for implementing and

providing the methods, algorithms, implementations of attacks, and designing and

implementing a cryptanalysis strategy.

The third part structure is as follows:

Chapter 18: The chapter will introduce a classification of
cryptanalysis and techniques used in association with field

of cryptanalysis. We will go through the theory of algorithm
complexity, statistical-informational analysis, encoding in absence of
perturbation, cryptanalysis of classic ciphers, cryptanalysis of block
ciphers, and more.

Chapter 19: The chapter will discuss linear and differential
cryptanalysis. Their importance is quite crucial when cryptanalysis is
performed.

Chapter 20: The chapter will cover the integral cryptanalytic attack,
which can be applied only for block ciphers that are based over
substitution-permutation networks.

Chapter 21: The chapter will study the behavior of software
applications when they are exposed to different attacks and the
source code is exploited.

Chapter 22: This chapter will cover the most important techniques
that can be used on text characterization. We will cover the
chi-squared statistic; monogram, bigram, and trigram frequency
counts; quadgram statistics as a fitness measure, and more.

Chapter 23: We will cover in this chapter some case studies for
implementing cryptanalysis methods.

Cryptanalysis Terms

In this section, we will introduce a list of cryptanalysis keywords and terms that are

frequently used in the field. It is very important to get used to the terms before proceeding.

This will help you have a clear image on the process and who interacts with what.
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Table 17-1. Cryptanalysis Terms

Keyword/Term Definition

Black hat hacker A black hat hackeris a person who has a bad intention and breaks a computer
system or network. His intention is to exploit any security vulnerability for
financial gain; steal and destroy confidential and private data; shut down systems
and websites; corrupt network communication, and so on.

Gray hat hacker A gray hat hacker is a person, known as cracker, who exploits the security weak
points of a computer system or software product with the goal of bringing those
weaknesses to the owner’s attention. Compared to a black hat hacker, a gray hat
hacker will take action without any malicious intention. The general goal of a gray
hat is to provide solutions and to improve the computer systems and security of
the network.

White hat A white hat hacker is an authorized person or certified hacker who is working
hacker/ethical ~ for or employed by a government or organization with the goal of performing
hacker penetration tests and identifying loopholes within their systems.

Green hat A green hat hacker is an amateur person, but different from a script kiddie. Their
hacker purpose is to become a full-blown hacker.

Script kiddies Script kiddies are the most dangerous hackers. A script kiddie is a person without
many skills who uses scripts or downloads provided by other hackers. Their goal
is to attack networks infrastructures and computer systems. They are looking to
impress their community or friends.

Blue hat hacker A blue hat hackeris similar to a script kiddie. They are beginners in the field of
hacking. If someone dares to mock a script kiddie, then a blue hat hacker will get
revenge. Blue hat hackers will get revenge on anyone who challenges them.

Red hat hacker ~ Known also as an eagle-eye hacker, their goal is to stop black hat hackers. The
operation mode is different. They are ruthless when dealing with malware actions
that come from black hat hackers. The attacks performed by red hat hackers are
very aggressive.

Hacktivist They are known as online activists. A hacktivist is a hacker who is part of a group
of anonymous hackers who have the ability to gain unauthorized access to files
stored within government computers and networks that serve social or political
parties and groups.

(continued)
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Table 17-1. (continued)

Keyword/Term Definition

Malicious Such persons can be an employee of a company or government institution who is
insider/ aware of illegal actions that take place within the institution. This could lead to a
whistleblower  personal gain by blackmailing the institution.

State- or nation- This type of hacker is a person who is scheduled and assigned by a government
sponsored with the goal of providing information security services and gaining access
hackers to confidential information from different countries. As an example, consider
the malicious computer worm Stuxnet from 2010, which was designed and
engineered to bring down the Iranian nuclear program. Another example is the
United States 8" Air Force, which in 2009 became the US Cyber Command.

A Little Bit of Cryptanalysis History

A comprehensive history of cryptanalysis is very challenging so in this section we will
cover some aspects and moments in time that influenced cryptanalysis as a separate
field and how it evolved through different periods of history.

The history of cryptanalysis starts with Al-Kindi (801-873), the father of Arab philosophy.
He discovered and developed a method based on the variations of the occurrence frequency
of letters, a method that helped him analyze and exploit different ways of breaking ciphers
(e.g. frequency analysis). The work of Al-Kindi was influenced by Al-Khalil’s (717-786) work.
Al-Khalil wrote the Book of Cryptographic Messages, which contained permutations and
combinations for all possible Arabic words (both types of words, with and without vowels).

One of the best ways to learn the history of cryptanalysis and cryptography is to
divide the subject into periods of time. It is very important to examine cryptanalysis
history with respect for cryptography. Below, we provide a short classification of
cryptanalysis history and focus on the most important achievements of each period.

e 600 B.C.: The Spartans invent the scytale with the goal of sending
secret messages during their fights. The device is composed of a leather
strap and a piece of wooden stem. In order to decrypt the message,
the wooden stem needs to be a specific size, the size used when the
message was encrypted. If the receiver or malicious person doesn’t
have the same size wooden stem, the message can’t be decrypted.
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60 B.F.: Julius Caesar sets the basis for the first substitution cipher,
which encodes the message using shifting techniques for the
characters using three spots: A will be D, B will be E, and so on. An
implementation of this cipher can be seen in XXX.

1474: Cicco Simonetta writes a manual for deciphering encryptions
for Latin and Italian text.

1523: Blaise de Vigenére introduces his encryption cipher, known as
the Vigenere cipher.

1553: Giovan Battista Bellaso creates the basis for the first cipher
using an encryption key. The encryption key is characterized as a
word that is agreed upon by the sender and the receiver.

1854: Charles Wheatstone creates the Playfair Cipher. The cipher
encrypts a specific set of letters instead of encrypting letter by letter.
This raises the complexity of the cipher and in conclusion it becomes
harder to crack.

1917: Edward Hebern creates the first electro-mechanical machine in
which the rotor from the machine is used for encryption operation.
The encryption key is stored within a rotating disc. It has a table used
for substitution, which is modified with every character that is typed.

1918: Arthur Scherbius creates the Enigma machine. The first
prototype is for commercial purposes. Compared to Edward Hebern’s
machine in which one rotor is used, the Enigma machine uses
several rotors. The German Military Intelligence immediately adopts
his invention for encoding their transmissions.

1932: Marian Rejewski studies the Enigma machine and finds out
how it operates. Starting in 1939, French and British Intelligence
Services use the information provided by Poland, giving
cryptographers such as Alan Turing the ability to crack the key, which
changes on a daily basis. This is vital for the victory of Allies in World
War II.
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1945: Claude E. Shannon publishes his work entitled A Mathematical
Theory of Cryptography. This is the point when the classic
cryptography period ends and modern cryptography begins.

End of 1970: IBM creates a block cipher with the goal of protecting
the data of the customers.

1973: The United States adopts the block cipher and sets it as a
national standard, called the DES (Data Encryption Standard).

1975: Public key cryptography is introduced.
1976: The Diffie-Hellamn key exchange is invented.

1982: Richard Feynman introduces a theoretical model of a quantum
computer.

1997: The DES is cracked.

1994: Peter Shor introduces an algorithm for quantum computers
dedicated to integer factorization.

1998: Quantum computing is introduced.

2000: DES is officially replaced with the AES (Advanced Encryption
Standard). AES won through an open competition.

2016: IBM launches the IBM Q Experience with a five qubit quantum
processor.

2017: The appearance of Q# (Q Sharp) from Microsoft, a domain-
specific programming language used for the implementation of
quantum algorithms and cryptography applications.

This list can continue and be improved. We included the main events that

contributed to the appearance of cryptanalysis as a concept, model, and framework.

Penetration Tools and Frameworks

In this section, we will cover several penetration tools and frameworks that can be used

with success in the process of penetration testing, a process that is conducted by a

certified professional.
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We divided the tools into two categories: Linux hacking distributions and penetration

tools/frameworks:

372

¢ Linux hacking distributions

Kali Linux: The most advanced platform for penetration testing.
It has support for different devices and hardware platforms.

BackBox: A Linux distribution for penetration testing. It also
includes security assessment.

Parrot Security OS: This distribution is quite new in this sphere.
Its purpose and target is the cloud environment. It provides
online anonymity and a strong encryption system.

BlackArch: A penetration testing platform and security research.
It is built on top of Arch Linux.

Bugtraq: An impressive platform with forensic and penetration
tools.

DEFT Linux: Digital Evidence & Forensics Toolkit (DEFT) is
a very important distribution for computer forensics with the
possibility of running as a live system.

Samurai Web Testing Framework: The framework and distro is
a very powerful collection of tools that can be used in penetration
testing on the Web. It's worth mentioning is that it comes as a
virtual machine file, supported by VirtualBox and VMWare.

Pentoo Linux: Based on Gentoo, the distribution’s intent is
security and penetration testing. Available as live.

CAINE: Computer Aided Investigative Environment, it is a
powerful distribution that offers a serious set of system forensics
modules and analysis.

Network Security Toolkit: One of the favourite tools and
distributions is Network Security Toolkit, a live ISO build on
Fedora. It contains a very important set of open source network
security tools. It provides a professional web user interface for
network and system administration, network monitoring tools,
and analysis.
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Fedora Security Spin: A professional distro for security audit
and tests. It can be used by various types of professionals, from
industry to academia.

ArchStrike: Also known as ArchAssault, it is a distro built on Arch
Linux for professionals in the field of security and penetration
testers.

Cyborg Hawk: Contains more than 750 tools for security
professional and performing penetration tests.

Matriux: The distribution is quite promising and it can be used
for penetration tests, ethical hacking, forensic investigations,
vulnerability analysis, and much more.

Weakerth4n: Not well-known in the field of hacking or
cryptanalaysis, Weakerth4n offfers an interesting approach to
penetration tests and it is built using Debian (Squeeze).

Penetration tools/frameworks (Windows and Linux platforms)

Wireshark: A very well-known packet sniffer. Provides a powerful
set of tools for network packages and protocol analysis.

Metasploit: One of the most important frameworks for
pentesting, the framework will develop and execute
vulnerabilities exploitation.

Nmap: Network Mapper is a very powerful network discovery
and security auditing tool for security professionals. Its goal is to
exploit their targets. For each port you are scanning, you can see
what OS is installed, what services are running, what firewall is
installed and used, etc.

Conclusion

In this section, we discussed cryptanalysis in general and we covered the basic
foundation of cryptanalysis, its tools, and working methods. At the end of this chapter,
you should be able to
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Understand the mission and goal of cryptanalysis

Understand the main events during the course of history and how
the appearance of difference ciphers and algorithms influenced the
cryptanalysis discipline

Define common terms and the differences between different types of
hackers

Understand the hacking and penetration platform distributions

Understand the most important frameworks and penetration tools
that can be used independently, according to the OS platform
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CHAPTER 18

Cryptanalysis Attacks
and Techniques

In this chapter, we will cover the most important and useful cryptanalytic and
cryptanalysis standards, validation methods, classifications, and cryptanalysis attacks.

The cryptanalysis discipline is very wide and writing about it could take up
thousands of pages. In the following sections, we will go through all the necessary
elements that are necessary for developers to use in their daily activities.

Standards

It is very important to understand the importance of standards when you are conducting
cryptanalysis attacks for business purposes only, with the goal of testing the security
within an organization.

The main institutes and organizations that provide high standards for cryptography
and cryptanalysis methods, frameworks, and algorithms are

e IEFT Public-Key Infrastructure (X.509): The organization deals
with the standardization of protocols used on the Internet that are
based on public key systems.

o National Institute of Standards and Technologies (NIST): The
institute deals with the elaboration of FIPS standards for the US

government.

e American National Standards Institute (ANSI): Its purpose is to
administer the standards from the private sector.
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o Internet Engineering Task Force (IEFT): An international
community of networks, operators, traders of services, and
researchers who deal with the evolution of the Internet architecture.

o Institute of Electrical and Electronical Engineering (IEEE): Its
objective is to elaborate on theories and advanced techniques
from different fields, such as electronics, computer sciences, and
informatics.

o International Organization for Standardization (ISO): It represents
a non-governmental organism of more than 100 countries. Its main
purpose is to promote the developing of standardization in order to
facilitate the international exchange of services.

FIPS 140-2, FIPS 140-3, and 1SO 15408

ISO 15408 is the evaluation of IT security and it is used in the international community
as a reference system. The standard defines a set of rules and requirements from the IT
field with the goal of validating the security of the product and cryptographic systems.

FIPS 140-2/140-3 is a set of guidelines that need to be followed in order to fulfill a
specific set of technical requirements that are exposed on four levels.

When you develop a specification or criteria for a certain application or
cryptographic module, you must take into consideration FIPS 140-2/FIPS 140-3 and ISO
15408. Products that are developed with respect for the mentioned standards need to
be tested in order to get a validation and to confirm that the criteria was followed and
respected properly.

Validation of Cryptographic Systems

If the business requires cryptanalysis and cryptography operations to be implemented
within the software and communication systems, then cryptographic and cryptanalysis
services are required. These services are authorized by certification organizations and
include functionalities such as digital signature generation and verification, encryption
and decryption, key generation, key distribution, key exchange, etc.

Figure 18-1 depicts a general model for testing security based on cryptographic and
cryptanalysis modules.
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Software Product

Figure 18-1. Verification and testing framework

For a proper testing and verification process, it is necessary and to have two
minimum steps, a cryptographic/cryptanalysis algorithm and a cryptographic module.
For example, if you are developing a cryptographic product or a desktop or web software
application, it is necessary for the company/institute/developer to perform the tests and
to send them to CMVP! (Cryptographic Module Validation Programme) in order to be
tested with respect for FIPS 140-22 and FIPS 140-33.

A cryptographic module represents a specialized combination of software and
hardware processes. The main advantages of using validated cryptographic and
cryptanalysis modules are the following:

o Making sure the modules have satisfied the necessary requirements

e Making sure that the authorized and technical personnel is informed
and instructed within a standard that is commonly agreed upon and
was tested.

'CMVP, https://csrc.nist.gov/projects/cryptographic-module-validation-program
2FIPS 140-2, https://csrc.nist.gov/publications/detail/fips/140/2/final
FIPS 140-3, https://csrc.nist.gov/publications/detail/fips/140/3/final
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Making sure that the final user (end user) is aware of the fact that the
cryptographic module was verified and tested in accordance with
some well-defined security requirements

A high level of reliability for security, which need to be fulfilled with
the goal of developing similar and specific applications

The security requirements of FIPS 140-2 contain 11 metrics for designing and

implementing the cryptographic module. For each cryptographic module validated, the

following requirements need to be fulfilled. During the validation process, the cryptographic

modules receive a mark from 1 to 4, which is proportional to the security level guaranteed.

The cryptographic modules, once validated, contain information such as the name

of the manufacturer, address, name of the module, version of the module, type of module

(software or hardware), validation date, validation level, and module description.

Cryptanalysis Operations

Designing a cryptographic system has to be done following these simple principles:

The opponent should not be underestimated.

The security of a cryptographic system can be evaluated by a
cryptanalyst.

Before the evaluation of the cryptographic system is performed,
knowledge about the adversaries is taken into consideration for the
evaluated cryptosystem.

The secret of the cryptographic system has to rely on the key.

The process of the cryptographic system evaluation has to take
into consideration all the elements within the system, such as key
distribution, cryptographic content, etc.

According to the father of information theory, Claude Elwood Shannon*, the following

must be taken into consideration when the evaluation of the cryptosystem is performed:

One of the winnings of the cryptanalyst is gained once the message is
decrypted with success

*Claude Elwood Shannon, www.itsoc.org/about/shannon
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o The keylength and complexity

e The level of complexity of performing a encryption-decryption
process

o Thesize of the encrypted text in accordance with the text size
e The way of error propagation
The basic operations for having a solution for each cryptogram are as follows:
e Finding and determining the language used
e Determining the cryptographic system

e Reconstructing a specific key for a cryptographic system or a partial
or complete reconstructing for a stream cryptographic system

e Reconstruction of such system or establishing the complete plaintext

Classification of Cryptanalytics Attacks

This section covers the types of attacks on cipher algorithms, cryptographic keys, and
authentication protocols on the protocols, systems, and hardware attacks.

Attacks on Cipher Algorithms

Table 18-1. Attacks on Ciphering Algorithms

Types of Attacks on Ciphering Algorithms

Attack Title Attack Description
Known plaintext The cryptanalyst has an encrypted text and his correspondent has the
attack plaintext. The goal of this attack is for the cryptanalyst to separate the

encryption key from the information.

Chosen text attack  The cryptanalyst has the possibility to indicate the plaintext that will be
encrypted. The cryptanalyst will try to separate the information of the text
from the encryption key, having the possibility to obtain through specific
methods the encryption algorithm or the key.

(continued)
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Table 18-1. (continued)

Types of Attacks on Ciphering Algorithms

Attack Title Attack Description
Cipher-cipher text The cryptanalyst holds a plaintext and his correspondent the same text,
attack which is encrypted with two or more different keys.

Divide-et-imperia
attack

Linear syndrome
attack

Consistency linear
attack

Stochastic attack

Informational linear

attack

Virus attack

The cryptanalyst has the chance to realize a series of correlations between
different inputs and outputs of the algorithm with the goal of separating
different inputs in the algorithm, which makes them break the problem into
two or more problems that are easy to solve.

The cryptanalysis method consists of designing and creating a linear
equation system specific to the pseudorandom generator and verifying the
equation system with the encrypted text, obtaining in this way the plaintext
with a high probability.

The cryptanalytic method consists of the elaboration of a linear equation
system specific to the pseudorandom generator starting from an equivalent
cryptographic key and verifying the system by the pseudorandom generator
with the probability, which goes to 1, obtaining in this way the plaintext with a
high probability.

Known also as a forecasting attack, the attack is possible if the output of the
generator is autocorrelated, the cryptanalyst managing to obtain as input
data the output of the pseudorandom generator and the encrypted text. In
this way the clear text is obtained.

Known also as a linear complexity attack, the attack is possible if there is any
chance to equalize the generator with a Fibonacci algorithm and additionally
if the linear complexity of the generator is low. With this type of attack, it is
possible to build a similar algorithm and a similar cryptographic key.

This attack is possible if the encryption algorithm is implemented and is run
on a PC that is vulnerable and unprotected.

382



CHAPTER 18  CRYPTANALYSIS ATTACKS AND TECHNIQUES

Attacks on Cryptographic Keys

The most frequent attacks that occur on cryptographic keys are listed in Table 18-2.

Table 18-2. Attacks on Cryptographic Keys

Types of Attacks on the Keys

Attack Title

Attack Description

Brute force attack

Intelligent brute
force attack

Backtracking
attack

Greedy attack

Dictionary attack

Hybrid dictionary
attack

Viruses attack

Password
hash attack/
cryptographic key

Substitution
attack

Storing
encryption key

Storing of old
encryption keys

The attack consists in the exhaustive verification of keys and passwords, and it is
possible if the encryption key size is small and the encryption key space is small.

The level of key randomness of the encryption key is small (the entropy is small)
and allows finding the password, which is similar to words from the utilized
language.

The attack is based on the implementation of the method of a backtracking type,
which consists of the existence of conditions for continuing the search in the
desired direction.

The attack provides the optimal local key, which cannot be the same as the
optimal global key.

The attack consists of searching for passwords or keys and is done using a
dictionary.

This attack is done by modifying words from the dictionary, initializing the brute
force attack with the help of the words from the dictionary.

This attack is possible if the keys are stored on an unprotected PC.

This attack takes place if the hash of the password is short or wrongly elaborated.

The original key is substituted by a third party and replaced in the entire network.
This can be done with the help of viruses.

If this is done in a wrong way (together with the encryption data) in plaintext
without any physical protection measures or cryptographic software or hardware,
it can lead to an attack on the encrypted message.

This attack will compromise old documents that are encrypted.

(continued)
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Table 18-2. (continued)

Types of Attacks on the Keys
Attack Title Attack Description

Key compromise  If the symmetric key is compromised, only the documents that are assigned with
that key will be compromised. If the public key is compromised, which can be
found stored on different servers, the attacker can be substituted with the legal
owner of the data, resulting in a negative impact within the network.

Master keys Represents different phases in the cryptographic system.
Key lifetime It is an essential component that excludes the possibility of a successful attack
that was undetected.

Attacks on Authentication Protocols

The authentication protocols are exposed to different types of attacks. Table 18-3 lists the

most important ones, which are frequently used. Note that the authentication protocol of
a system is very important and vital. Once corrupted, vital information could be exposed

and attackers could gain a lot of benefits: personal, financial, and so on.

Table 18-3. Attacks on Authentication Protocols

Types of Attacks on Authentication Protocols
Attack Title Attack Description

Attack on the public key  The attack takes place for the signature within the protocol. This is
available only for systems with public keys.

Attack on the symmetric  The attack takes place on the signature within the authentication

algorithm protocol. This is available only if a symmetric key is used.

Passive attack The attacker intercepts and monitors the communication on the channel
without making any kind of intervention.

Attack using a third The communication of the two partners within a communication

person channel is intercepted actively by a third party.

The fail-stop signature A cryptographic protocol in which the sender can bring evidence if his
signature was forged or not.
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Conclusion

The chapter covered the most important and useful cryptanalytic and cryptanalysis

guidelines and methods. You can now manage the standards with the goal of testing and

verifying the implementation of the cryptographic and cryptanalytic algorithms and

methods. As a summary, you learned about

Cryptanalysis attack classification
Cryptanalysis operations

Standards FIPS 140-2 and FIPS 140-3
Standard 15408

Validation of cryptographic systems
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CHAPTER 19

Linear and Differential
Cryptanalysis

In this chapter, we will discuss two important types of cryptanalysis: linear and
differential cryptanalysis. To explain how to merge theoretical concepts with the
practical, in the beginning we will go through a set of basic concepts and advanced
techniques on how these two types of cryptanalysis can be implemented by
professionals.

Despite the fact that some of the differential and linear mechanisms are outdated,
there is plenty of room to find new challenges that can be exploited in order to obtain
new results. The research literature about linear and differential cryptanalysis provides
a significant amount of theoretical approaches and mechanisms, but only few of the
theories could be applied in practice to develop professional solutions for differential
and linear cryptanalysis attacks.

The difference between theoretical and applied cryptanalysis is significantly huge.
The results that were published over the last 12 years, such as algorithms, methods,
game theory aspects, and so on led researchers and professionals on different paths.
Most of them were whimsical chimeras (complex mathematical systems without real
applicability) and fancy algorithms; others were applicable with success in practice.

Conducting research in cryptanalysis and increasing its potential value for
being applied in practice and for different scenarios requires time, experience, and
a continuous cross-collaboration between theoreticians and practitioners, without
existing an isolation between these two types of categories. Their importance is crucial
in the field of cryptanalysis, providing the necessary tools and mechanisms to construct
cryptanalysis attack schemes for block and stream ciphers.
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CHAPTER 19  LINEAR AND DIFFERENTIAL CRYPTANALYSIS

Differential Cryptanalysis

Differential cryptanalysis was implemented by E. Biham and A. Shamir in the early
90s. The objective of differential cryptanalysis is to check whether the cryptogram
traces some locations from the key with a probability greater than others. The checking
process can be carried out with any order with grade 1. Actually, the test represents a
complicated approximation of order 2 of a test cycle.

With differential cryptanalysis we will expose the weak points of the cryptography
algorithm. The following example of differential cryptanalysis is illustrated for stream
cryptography algorithms. In the following pseudocode, we will illustrate the algorithm as
follows:

INPUT: The key is chosen as K = (ky, ..., kn) with ki € {0, 1}

OUTPUT:  The weak points of the cryptography
algorithm together with the resistance decision for
differential cryptanalysis

1. a<rejection rate value

2. Choose n sets of keys with perturbation property set, starting from
the key K.

fori=1tondo K" = (5, ®k,,...,5, ®k,):

5 = Lif j#i,
Yo, if =i
for i,j=1,...,n. In the form from above the i* key is obtained from the base key by
changing the bit from i position.

3. Constructing the cryptograms: The first step is to build n + 1
cryptograms using the basic key, perturbed keys, and a clear text
M. We denote the obtained cryptograms as C?,i=1, ..., n+1.
As plaintext M we can choose for text 0 - everywhere.

4. Constructing the correlation matrix: Here we build the matrix
(n+1) x (n+1) for the corellation values C:

c; = corellation(cryptogram i,cryptogram j).
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Correlation c; denotes the value of the statistical test applied to the sequence
(cryptogram i & cryptogram j). The matrix C is represented as a symmetrical matrix
having 1 on the main diagonal.

5. The computational process for the significant value: It counts
the values of significant correlation that are situated above the
main diagonal. A value is called significant if

2 2

Consider T the number of significant values that represent the number of rejects of the
correlation test.

6. Decision and result interpretation: If

T-a.M
2

\/a(l—a).”(”;l) E[uz;ul'g}

once computed, we can decide the non-resistance to differential cryptanalysis (#, and
2

. e o o .
u ) represents the quantiles of the normal distribution of order By and 1 5 and fixes
1-=
2
the (7,) elements with n > i > j > 1, for which c; is significant. These elements represent

weak points for the algorithms. Otherwise we would not be able to mention anything
about the resistance to this type of attack.

Listing 19-1 shows the implementation in C++ of the above pseudocode and the
output shown in Figure 19-1 is self-explanatory and quite intuitive. The source code is
divided into seven steps:

o Generating a differential structure as a matrix
o Computing the differences

o Computing the intermediate values that are generated using the
differentials

e Generating the known key pairs

e Computing and looking for a good pair of keys

389



CHAPTER 19  LINEAR AND DIFFERENTIAL CRYPTANALYSIS

e Using brute force to reduce the space of the keys

o Computing and displaying the key(s) pair(s)

Figure 19-1. Differential cyptanalysis example

Listing 19-1. Implementation of the Differential Cryptanalysis Example

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

//** variables

int theSBox[16] = {3, 14, 1, 10, 4, 9, 5, 6, 8, 11, 15, 2, 13, 12, 0, 7};
int characters[16][16];

int known plaintext 0[10000];

int known plaintext 1[10000];

int known ciphertext 0[10000];
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int known ciphertext 1[10000];

int good plaintext 0, good plaintext 1, good ciphertext 0, good ciphertext 1;
int pairs_of numbers;

int characters dataSet 0[16];

int characters data max = 0;

int round function(int integer input, int cryptoKey)

{
return theSBox[cryptoKey " integer input];

}

int encryption(int integer input, int key 0, int key 1)

{
int x _value 0 = round function(integer input, key 0);
return x_value 0 " key 1;

}

void find differences()

{

printf("\nXOR Differential Structure:\n");
int a, b, c, f; //c, d, e, f

for(a = 0; a < 16; a++)

{
for(b = 0; b < 16; b++)
{
characters[a » b][theSBox[a] ~ theSBox[b]]++;
}
}
for(a = 0; a < 16; a++)
{
for(b = 0; b < 16; b++)
printf(" %x ", characters[a][b]);
printf("\n");
}

391



CHAPTER 19  LINEAR AND DIFFERENTIAL CRYPTANALYSIS
printf("\nShowing the most important differences:\n");

for(a = 0; a < 16; a++)

{
for(b = 0; b < 16; b++)
{
if (characters[a][b] == 6)
{
printf(" 6/16: %i {--} %i\n", a, b);
}
}
}

}

void generate characters data(int input_differences,
int output_differences)

printf("\nIntermediate values generated using the
differentials(%i --> %i):\n", input differences,
output_differences);

characters data max = 0;
int f;

for(f = 0; f < 16; f++)
{

int computations = f " input_differences;

if ((theSBox[f] * theSBox[computations]) ==
output_differences)

{
printf(" The possibility: %i + %i {--}
%i + %i\n", f, computations,
theSBox[f], theSBox[computations]);
characters dataSet O[characters data max] = f;
characters data max++;
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void generate pairs(int input_differences)
{
printf("\nKnown pairs %i generated. The pairs are based on
the differentials served as input of %i.\n",
pairs of numbers, input differences);

//** generate substitution keys
int real key 0 = rand() % 16;
int real key 1 = rand() % 16;

printf(" Real Key 0
printf(" Real Key 1

%i\n", real key 0);
%i\n", real key 1);

int c;

//** using XOR, pairs for plaintexts and
//** ciphertexts are generated
for(c = 0; ¢ < pairs_of numbers; c++)

{

rand() % 16;

known_plaintext o[c] *

input_differences;

known_ciphertext 0[c] = encryption(known plaintext o[c], real key O,
real key 1);

known_ciphertext 1[c] = encryption(known plaintext 1[c], real key O,
real key 1);

known plaintext 0[c]

known_plaintext 1[c]

}

void identifying good pair(int output_differences)

{
printf("\nLooking for good pair:\n");
int c;

//** test if the pair of ciphertexts meet
//** the characteristics
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for(c = 0; ¢ < pairs_of numbers; c++)

{
if ((known_ciphertext o[c] " known ciphertext 1[c]) == output_
differences)
{
good ciphertext 0 = known_ciphertext o[c];
good_ciphertext 1 = known_ciphertext 1[c];
good plaintext 0 = known_plaintext 0[c];
good plaintext 1 = known plaintext 1[c];
printf(" A good pair has been found: (PO =
%i, P1 = %i) {--} (Co = %i, C1 = %i)\n",
good plaintext 0, good plaintext 1,
good ciphertext 0, good ciphertext 1);
return;
}
}
printf("There was no good pair found!\n");
}
int key testing(int key test 0, int key test 1)
{

int c;
int crap = 0;
for(c = 0; ¢ < pairs_of numbers; c++)

{
if ((encryption(known plaintext 0[c], key test o,
key test 1) != known ciphertext o[c]) ||
(encryption(known plaintext 1[c], key test o,
key test 1) != known ciphertext 1[c]))
{
crap = 1;
break;
}
}
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if (crap == 0)
return 1;
else
return 0;
}
void brute cracking()
{
printf("\nReducing the space of the key using brute force:\n");
int f;
//** based on the characteristics, we will
//** test each of the possible value
for(f = 0; f < characters data_max; f++)
{
int key test 0 = characters dataSet o[f] *
good plaintext 0;
int key test 1 = theSBox[characters dataSet o[f]] *
good ciphertext 0 ;
if (key testing(key test 0, key test 1) == 1)
printf("\n\nThe Key! (%i, %i), ", key test o,
key test 1);
else
printf(" (%i, %i), ", key test 0, key test 1);
}
}
int main()
{

//** generate random value once the program is run
srand(time(NULL));

//** look in the s-boxes for good differences
find_differences();
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//** define number of known pairs
pairs of numbers = 8;

//** look for inputs that meet specific characteristics
generate characters data(4, 7);

//** let's generate pairs of chosen-plaintext
generate pairs(4);

//** pick a pair which meet the characteristic
identifying good pair(7);

//** find the key
brute cracking();

Linear Cryptanalysis

Linear cryptanalysis was developed as a theoretical framework for the DES (data encryption

system) and was implemented in 1993. Linear cryptanalysis is commonly used inside block

ciphers and is a very good starting point for designing and executing complex attacks.
Linear cryptanalysis is defined as a linear relationship that is set between the

key, the plaintext structure, and the ciphertext structure. The plaintext is structured

and represented as characters or bits. It is required to have a structure of a chain of

operations characterized by exclusive-or, as we describe here,

A @A ..OA OB, ©®B, ©...©B;, =Key, ©Key, ©...Key, ,

where @ represents the XOR operation as a binary operation, A, represents the bit from
i" position of input the structure A = [A,, A,, ...], B;represents the bit from j” position of the
output structure B = [B,, B,, ...}, and Key; represents the k" bit of the key Key = [Key,, Key, ...].

Performing Linear Cryptanalysis

Usually, in the most important cases, performing a linear cryptanalysis starts from the
idea that we are aware and we acknowledge the encryption algorithm except the private
key. Executing a linear cryptanalysis against a block cipher is represented as a framework
described here:
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o The first step is based on identifying the linear approximation for
non-linear components. The goal is to characterize the encryption
algorithm (as an example, S-Boxes).

o The next step is to compute a combination between linear
approximations of substitution boxes that also includes the
operations that are executed against the encryption algorithm.
Professionals should focus on the linear approximation due to the
fact that it represents a special function which contains and deals
with the clear text and cipher text bits together with the ones from the
private key.

o Computing and designing the linear approximation should be
done as a guideline with respect for the cryptographic keys that are
used for the first time. The guideline proves its power and will help
professionals save important computational resources for all the
possible values of the cryptographic keys. Based on using multiple
linear approximations, we will have a very powerful process of
computation with the goal of eliminating the key numbers which are
necessary for trying.

The next sections provide extra details of the components that are taken into
consideration when conducting a linear cryptanalysis attack. Without having a clear
image of the theory mechanisms, the practical concepts, and how to put them into
practice, it will be a very difficult task to launch a real attack.

S-Boxes

Using S-Boxes the non-linearity is introduced together with its operations, exclusive-or
and bit-shift, which are found within the linear representation as well.

The scope of an S-Box is to design and create a map between the incoming binary
sequences with a specific and requested output. In the end, we will have the non-
linearity provided that will build and render the affine approximation that was computed
with the help of the linear cryptanalysis applied. Table 19-1 shows an example of an
S-Box and how the mapping works. The S-Box uses the 1 and 4" bit to find the column
and the middle bits, 3™ and 4. Using this approach, the row is determined in such way
that input 1110 will be 0101.
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Table 19-1. S-Box Example

11 10 01 00
00 0000 0001 0010 0011
01 1000 1001 1111 1011
10 1100 1101 1110 1010
11 0100 0101 0010 0111

In Table 19-2, the mapping operation is demonstrated between examples of bits as
input and bits as output.

Table 19-2. The Mapping Between
Input and Output

The input (J) The output (Q)

0000 0011
0001 0010
0010 1011
0011 1111
0100 1010
0101 1110
0110 0111
0111 0010
1000 0001
1001 0000
1010 1001
1011 1000
1100 1101
1101 1100
1110 0101
1111 0100
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Linear Approximation of S-Box

We start from the idea that we want to approximate the structure of the substitution box
presented above. Based on that information, we have the precision, which is quite high,
of the various linear approximations. We include 256 such linear approximations having

the following form:
d1]1 (-BdZIZ ®d3]3 @a4I4 = ngl (-B g2Q2 @gBQS ®g4Q4

where J; and Q, represent the i” bit characterized to input (J) and ouput (Q) with respect
for d; and g;, which are 0 or 1. As an example, let’s use the following linear approximation
J.=Q, @ Q, and being given by d = 0100, and g = 1001,.

Concatenation of Linear Approximations

It's time to form, design, and project the linear approximation for the whole system. To
achieve this, we need two things:

o First, we need to have computed already the linear approximation for
each component that forms the system.

e Second, to do the combination. For this, we simply sum by using
exclusive-or the entire set of equations in different combinations. In
this way we get a single equation, which eliminates the intermediate
variables.

Assembling Two Variables

Let’s consider B, and B,, two random binary variables. The linear relationship between
them is B, @ B, = 0. Next, we denote the probability B, = 0 by being noted with / and
the probability B, = 0 by being noted with m. Based on the two random independent
variables, we have

I'm fora=0,b=0
I-(1-m) fora=0,b=1

P(B, =a,B,=b)=
(Bi=a,B,=b) 1-Dgq fora=1,b=0

1-0)-Q-m) fora=1,b=1
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Moving forward, we can show the following:
P(B,®B,=0)=
=P(B,=B,)
=P(B,=0,B,=0)+P(B,=1,B,=1)
=l-m+(1-1)(1-m)

The next step is represented by computing the bias for B, € B, = 0; it will be given

by &, - &.
This being said, it is time to do the implementation in C++ (see Listing 19-2) for the
linear cryptanalysis (see Figure 19-2) and to show how the above concepts can be used

in practice.

Figure 19-2. Linear cryptanalysis output simulation program
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Listing 19-2. Linear Cryptanalysis Simulation

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int sBox_content[16] = {9, 11, 12, 4, 10, 1, 2, 6, 13, 7, 3,
8, 15, 14, 0, 5};

int sBox_content revision[16] = {14, 5, 6, 10, 3, 15, 7, 9,
11, o, 4, 1, 2, 8, 13, 12};

int approximation array[16][16];
int known plaintext[500];

int known ciphertext[500];

int numbers known = 0;

int using mask(int inputValue, int mask_value)

{
int value = inputValue & mask value;
int total = 0;
while(value > 0)
{
int temporary = value % 2;
value /= 2;
if (temporary == 1)
{
total = total * 1;
}
}
return total;
}
void looking for approximation()
{

int a, b, c;
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//** the output of mask value
for(a = 1; a < 16; a++)

{
//** the input of mask value
for(b = 1; b < 16; b++)
{
//** input
for(c = 0; ¢ < 16; c++)
{
if (using mask(c, b) ==
using mask(sBox_content[c], a))
{
approximation array[b][a]++;
}
}
}
}
}
void display approximation()
{
printf("Linear Approximations Values: \n");
int a, b, c;
for(a = 1; a < 16; a++)
for(b = 1; b < 16; b++)
if (approximation array[a][b] == 14)
printf(" %i : %i {--} %i\n",
approximation array[a][b], a, b);
printf("\n");
}

int round function(int inputValue, int substitution key)

{

return sBox_content[inputValue * substitution_key];
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void filling known numbers()

{
int substitution key 1 = rand() % 16;
int substitution key 2 = rand() % 16;

printf("Generating data: Key 1 = %i, Key 2 = %i\n",
substitution key 1, substitution key 2);

int total = o;

int c;
for(c = 0; ¢ < numbers _known; c++)
{
known plaintext[c] = rand() % 16;
known_ciphertext[c] =
round_function(round function(known plaintext[c],
substitution key 1), substitution key 2);

}

printf("Generating Data: We have %i known pairs
generated\n\n", numbers known);

}

void keys testing(int key 1, int key 2) //testKeys
{
int c;
for(c = 0; ¢ < numbers_known; c++)
{
if (round function(round function(known plaintext[c],
key 1), key 2) != known ciphertext[c])
{
break;
}

}
printf("# ");
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int main()

{
printf("Linear Cryptanalysis\n\n");

srand(time(NULL));

looking for approximation();
display approximation();

int input_approximation = 11;
int output_approximation = 11;
//** how many numbers we known

numbers known = 16;
filling_known_numbers();

int cryptographic_key score[16];
int reaching_threshold = 0;

printf("Proceeding with Linear Attack");
printf("\tLinear Approximation = %i -> %i\n",
input_approximation, output_approximation);

printf("\n\n");

int b, h;
for(b = 0; b < 16; b++)
{

cryptographic_key score[b] = 0;
for(h = 0; h < numbers known; h++)
{
reaching threshold++;
int middle _round = round_ function(known_plaintext[h], b);

if ((using_mask(middle round, input_approximation)
== using_mask(known_ciphertext[h],
output_approximation)))
cryptographic_key score[b]++;

404



CHAPTER 19  LINEAR AND DIFFERENTIAL CRYPTANALYSIS

else
cryptographic_key score[b]--;

}

int maximum_score value = 0;

for(b = 0; b < 16; b++)

{
int score value = cryptographic_key score[b] *
cryptographic_key score[b];
if (score value > maximum score value)
maximum score value = score value;
}

int good cryptographic_keys[16];

for(h = 0; h < 16; h++)
good_cryptographic_keys[h] = -1;

h = 0;
printf("Linear Attack:\n");
for(b = 0; b < 16; b++)
{
if ((cryptographic_key score[b] *
cryptographic_key score[b]) == maximum_score value)

{
good_cryptographic_keys[h] = b;
printf("\tPotential Value Candidate for
Cryptography Key 1 = %i\n",
good cryptographic keys[h]);
h++;
}

}

int guessing cryptographic_key 1;
int guessing cryptographic_key 2;
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for(h = 0; h < 16; h++)
{
if (good cryptographic_keys[h] != -1)
{
int cryptography key test 1 =
round_function(known plaintext[o0],
good cryptographic keys[h]) *
sBox_content_revision[
known_ciphertext[0]];

int tested = 0;

int e;

int bad = 0;

for(e = 0;e < numbers_known; e++)
{

reaching_threshold += 2;

int testOut = round function(round function
(known_plaintext[e],
good cryptographic keys[h]),
cryptography key test 1);

if (testOut != known ciphertext[e])

bad = 1;
}
if (bad == 0)
{

printf("\tFound Keys! K1 = %i, K2 =
%i\n", good cryptographic_keys[h],
cryptography key test 1);

guessing_cryptographic_key 1 =
good_cryptographic_keys[h];

guessing cryptographic_key 2 =
cryptography key test 1;

printf("\tComputations Until Key Found =
%i\n", reaching threshold);
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}

printf("\tThe total value of computations = %i\n\n",
reaching_threshold);
reaching_threshold = 0;

printf("Brute Force Attack\n");
for(h = 0; h < 16; h++)

{
for(b = 0; b < 16; b++)
{
int e;
int bad = 0;
for(e = 0;e < numbers known; e++)
{
reaching_threshold += 2;
int testOut = round function(round function(
known plaintext[e], h), b);
if (testOut != known ciphertext[e])
bad = 1;
}
if (bad == 0)
{
printf("\tCryptographic Keys Found with
Success! K1 = %i, K2 = %i\n", h, b);
printf("\tThe number of computations
computed until the cryptography
key(s) were found = %i\n",
reaching threshold);
}
}
}

printf("\tComputations Total = %i\n", reaching threshold);
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Conclusion

The chapter discussed differential and linear cryptanalysis attacks and how these

kinds of attacks can be designed and implemented in real practice. We introduced the

theoretical background elements and main foundations, which must be understood

before you design such cryptanalysis attacks.

At the end of this chapter, you can now

Identify theoretically the main components on which a cryptanalyst
should focus

Understand how vulnerable those components are and how they can
be exploited

Implement linear and differential cryptanalysis attacks
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CHAPTER 20

Integral Cryptanalysis

Integral cryptanalysis is a cryptanalytic technique that is designed for block ciphers
constructed on networks of substitution-permutation. Since the integral cryptanalysis
attack can be launched against the Square block cipher [1], it is also known as the Square
attack. It was designed by Lars Knudsen.

An exposed point of the block cipher is the network of substitution-permutation.
When the networks can be discovered (intuitively), then the exploitation of
vulnerabilities of the block cipher has a high negative impact over the entire
cryptosystem. Other exposed points of the block ciphers are the key itself and the table
involved in the permutation of the key. When a false key is similar (or identical) to the
correct one, then the system can be broken.

In the next section, we present the formal basis regarding block ciphers, which can
be used in an implementation. Further, we present the elements required to initiate an
integral cryptanalysis attack, for example, building Feistel networks and generating a
permutation table for a cryptographic key. Once you have a clear understanding of these
two phases, it becomes clear how integral cryptanalysis must be conducted.

Basic Notions

To implement and design an integral cryptanalytic attack, is very important to have the
formal elements before starting to implement the attack. Moving further, let’s take a look
at the following concepts as the main starting point. They are used for designing and
implementing such an attack for educational purposes only.

Take into consideration (G, +) as a a finite abelian group with the order k. The
product group G" = G x ... x G is a group of elements with the structure v = (v,, ..., v,),
where v; € G. The addition within G” is defined as component-wise, therefore, we have
u + v =w holds for u, v, w € G* when u; + v; = w; for all i.
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Let’s denote B as the set with multiple vectors. We define the integral over B. This
integral represents the sum of all vectors S. The integral is defined as [S = ZUEBU ,and
the addition operation is defined in terms of the group operation for G".

When the integral cryptanalytic is designed, it’s important to know the number of
words in the plain text and in the encrypted text. In the example from this chapter, this
number is denoted with n. Another important number to know is the number of clear
texts and the encrypted texts, denoted with m. In general, m = k (i.e. k =|G]), the vectors
v € B denotes the plain text and the encrypted text, and G = GF(28) or G = Z/kZ.

Going further into the attack, it is based on the fact that one of the involved entities
will make a prediction for the values placed in the integrals after a particular number of
rounds of encryption. Keeping this in mind, three cases can be distinguished: (1) when
the words have the same length (e.g. i), (2) when the words have different lengths, and
(3) the sum of a particular value that is predicted in advance.

Further, consider B C G" as described above and a fixed index i. The following three
cases can be distinguished:

(1) v,=c forallveB

2) {vi:veBl=G

(3) Zvl. =c’

veB

where ¢, ¢’ € G are some values known and fixed in advance.

The example that we present further is a common situation in which m = k, the
number of vectors from B is the same as the number of elements in the considered
group. From Lagrange’s theorem, it results that if all words, a general word placed on the
i"" position, have the same length, then it is intuitive that the i word from the integral
will have the value of the neutral element from G.

The following two theorems are necessary and they represent a must for any
practical developer who wants to translate into practice an integral cryptanalysis.

Theorem 20-1 [1, Theorem 1, p. 114]. Let’s consider (G, +) a finite abelian additive
group. The subgroup of elements of order 1 or 2 is denoted as L={g € G: g+ g=0}. We

will consider writing s(G) as being the sum Zg of all the elements found within G. Next,
geG

we will consider s(G) = ), < zH. More, it is very important to understand the following
analogy: s(G) € H, i.e. s(G) + s(G) = 0.
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According to Theorem 20-1, for G = GF(2?) there is the value s(G) = 0 and for Z/mZ there
is the value s(Z/mZ) = m/2 in the situation where m is an even value or it is 0. The following
theorem represents the multiplicative case for written groups (see Theorem 20-2).

Theorem 20-2 [1, Theorem 2, p. 114]. Let’s consider (G, ) a finite abelian
multiplicative group. The subgroup of elements of order 1 or 2 is denoted as
H={ge G:gx*g=1}. We consider writing p(G) as being the product [1,_; g ofall the
elements of G. Next, we consider p(G) = HM h . More, it is very important to understand
the following analogy: p(G) € H, i.e. p(G) = p(G) = 1.

As an example, if we have G = (Z/pZ)* where p is prime, p(G) will be -1, p(G) = — 1.
This is proved using Wilson’s theorem.

Practical Approach

In this section, we will implement an integral cryptanalysis attack that can be applied in
practice using the C++ programming language.

The following approach presents a basic implementation of an integral cryptanalysis
in C++, giving the chance to override the size of the current block (sboxValue with
revision_sbox value). In the provided implementation, we use repeating sequences.
The goal of the repeating sequences is to create a weakness to show how it can be
exploited and launch the attack.

In the source code from Listing 20-1, we demonstrate the integral cryptanalytic
attack, providing necessary comments on building and designing principles. In
Listing 20-1, you can see how the integral cryptanalysis attack is implemented. As soon
as you have the main kernel of the program, to proceed further with the success of the
attack, it is vital to “figure out” how the attack is designed and afterwards to create a copy
of it or something that is similar to the original one.

To use the following example, you must run from the command prompt the
following command (see Figure 20-1):

g++ -std=c++2a integral.cpp -o integral
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Listing 20-1. The Main Program

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

//** VARIABLES

//** the sBox structure

int sboxvalue[16] = {9, 11, 12, 4, 10, 1, 2, 6, 13, 7, 3, 8, 15, 14, 0, 5};
//** the revision sBox value structure

int revision sbox value[16] = {14, 5, 6, 10, 3, 15, 7, 9, 11, O, 4, 1, 2,
8, 13, 12};

//** an approximation array

int approximation array structure[16][16];

//** the maximum score which will need to be compared with the "score"
variable

int maximum_score = 0;

//** the total value

int total value = 0;

//** control counters, 1 and 2

int counteri;

int counter2;

//** generating known plaintext

int known plaintext[500];

//** generating known ciphertext

int known ciphertext[500];

//** number of generated known pairs

int known_numbers = 0;

//** approximation values, for input and output

int approximation for input = 11;

int approximation_for_ output = 11;

//** score value for the cryptography key

int cryptographyKey score value[16];

//** the threshold level. used for identitying the step until we reached
for finding the cryptography keys

int threshold level = 0;
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//** good reliable cryptography key

int reliable crypto keys[16];

//** the values for the guessed cryptography key
int guessing crypto_key1, guessing crypto key2;
//** testing control variable for cryptography key
int cryptoKey1 testing;

//** apply the mask
int applying the mask(int theValue, int mask_value)

{

int internal value = theValue & mask value;
int total value = 0;

while(internal value > 0)

{
int temporary = internal value % 2;
internal value /= 2;
if (temporary == 1)
total value = total value " 1;
}

return total value;

}

//** detecting the approximation
void detect the approximation()

{

int a, b, c;

//** parsing for the output mask. 16 represents
//** the size of the s-Box
for(a = 1; a < 16; a++)

{

//** parsing for the input mask

for(b = 1; b < 16; b++)

{

//** parsing the input

INTEGRAL CRYPTANALYSIS

415



CHAPTER 20  INTEGRAL CRYPTANALYSIS

for(c = 0; € < 16; c++)

{
if (applying the mask(c, b) ==
applying the mask(sboxValue[c], a))
approximation array structure[b][a]++;
}

}

//** show and display the approximation
void display the approximation()
{

printf("Integral Values Approximations: \n");

int a, b, c;

for(a = 1; a < 16; a++)

{
for(b = 1; b < 16; b++)
{
if (approximation array structure[a][b] == 14)
printf(" %i : %i {<-->} %i\n",
approximation array structure[a][b], a, b);

}

printf("\n");
}

//** round function for s
int rounding procedure(int dataInput, int substitution_key)

{

return sboxValue[dataInput " substitution_key];
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//** £illing the knowings possible key values
void filling up the_knowings()

{
int substitution key 1 = rand() % 16;
int substitution key 2 = rand() % 16;
printf("Generating Data: Key 1 = %i, Key 2 = %i\n",
substitution key 1, substitution key 2);
//** parse each known value and for each known plaintext
//** and ciphertext compute the proper values
for(counterl = 0; counterl < known numbers; counteri++)
{
known plaintext[counteri] = rand() % 16;
known_ciphertext[counter1] =
rounding procedure(rounding procedure(
known plaintext[counter1], substitution key 1),
substitution key 2);
}
printf("Generating Data: We have generated %i known
pairs\n\n", known_numbers);
}

//** verify and test the cryptography keys
void testing the keys(int key 1, int key 2)

{
for(counter2 = 0; counter2 < known numbers; counter2++)
if
(rounding procedure(rounding procedure(
known plaintext[counter2], key 1), key 2) !=
known_ciphertext[counter2])
break;
printf("* ");
}
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int main()

{
printf("Testing Program for Integral Cryptanalysis\n\n");

srand(time(NULL));

detect the approximation();
display the approximation();

known_numbers = 16;
filling up_the knowings();

printf("Integral Cryptanalysis Attack --> Based on Linear
Approximation = %i {<-->} %i\n", approximation for input,
approximation for output);

int ¢, d;
for(c = 0; ¢ < 16; c++)
{

cryptographyKey score value[c] = 0;
for(d = 0; d < known_numbers; d++)

{
threshold_level++;
int midRound =
rounding procedure(known plaintext[d], c);
if ((applying_the mask(midRound,
approximation for input) ==
applying_the mask(known_ciphertext[d],
approximation for output)))
cryptographyKey score value[c]++;
else
cryptographyKey score value[c]--;
}
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for(c = 0; ¢ < 16; c++)

{
int score = cryptographyKey score value[c] *
cryptographyKey score value[c];
if (score > maximum_score) maximum_score = score;
}
for(d = 0; d < 16; d++)
{
reliable crypto keys[d] = -1;
}
d = 0;

for(c = 0; ¢ < 16; c++)
{
if ((cryptographyKey score value[c] *
cryptographyKey score value[c]) == maximum score)

{
reliable crypto keys[d] = c;
printf("Integral Cryptanalysis Attack -->
Candidate for K1 = %i\n",
reliable crypto keys[d]);
d++;
}
}
for(d = 0; d < 16; d++)
{

if (reliable_crypto keys[d] != -1)
{
cryptoKeyl testing =
rounding_procedure(known plaintext[0],
reliable crypto keys[d]) *

revision sbox value[known ciphertext[0]];
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int tested = 0;

int e;

int bad = 0;

for(e = 0;e < known_numbers; e++)
{

threshold level += 2;
int testOut =
rounding procedure(rounding procedure(
known_plaintext[e],
reliable crypto keys[d]),
cryptoKeyl testing);
if (testOut != known_ciphertext[e])
bad = 1;
}
if (bad == 0)
{
printf("Integral Cryptanalysis Attack -->
We have found the cryptography keys! Crypto Key
1 = %i, Crypto Key 2 = %i\n", reliable crypto_
keys[d], cryptoKeyl testing);
guessing crypto keyl =
reliable crypto keys[d];
guessing crypto key2 = cryptoKeyl testing;
printf("Integral Cryptanalysis Attack -->
Number of computations for reaching the
cryptography key = %i\n", threshold level);

}
printf("Integral Cryptanalysis Attack --> Computations

Total = %i\n\n", threshold level);

threshold level = 0;
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for(d = 0; d < 16; d++)

{
for(c = 0; ¢ < 16; c++)
{
int e;
int bad = 0;
for(e = 0;e < known_numbers; e++)
{
threshold level += 2;
int testOut =
rounding_procedure(rounding procedure(
known plaintext[e], d), c);
if (testOut != known ciphertext[e])
bad = 1;
}
if (bad == 0)
{
printf("Brute Force --> We have found the
cryptography keys! Crypto Key 1 = %i,
Crypto Key 2 = %i\n", d, c);
printf("Brute Force --> Number of
computations for reaching the
cryptography key = %i\n",
threshold level);
}
}
}

printf("Brute Force --> Total computations number =
%i\n", threshold level);
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P:\Apps Ces\Chapter 20 - Integral Cryptanalysis>ge+ -stdece+sla integral.cpp -0 integral

P:\Apps Ce+\Chapter 20 - Integral Cryptanalysis>integral
Testing Program for Integral Cryptanalysis
Integral Values Approximations:

14 : 10 {<-->} 4

14 : 11 {<-->} 11

14 : 13 {<-->} &

Generating Data: Key 1 =6, Key 2 = 2

Generating Data: We have generated 16 known pairs

Integral Cryptanalysis Attack --> Based on Linear Approximation = 11 {<-->} 11

Integral Cryptanalysis Attack --> Candidate for K1 = 6

Integral Cryptanalysis Attack --> Candidate for K1 = 9

Integral Cryptanalysis Attack --> We have found the cryptography keys! Crypto Key 1 = 6, Crypto Key 2 = 2
Integral Cryptanalysis Attack --> Number of computations for reaching the cryptography key = 288
Integral Cryptanalysis Attack --> Computations Total = 320

Brute Force =--> We have found the cryptography keys! Crypto Key 1 = 6, Crypto Key 2 = 2

Brute Force =-> Number of computations for reaching the cryptography key = 3168

Brute Force --> Total computations number = 8192

D:\Apps Ces\Chapter 20 - Integral Cryptanalysis>_

Figure 20-1. Integral cryptanalysis attack

Conclusion

The chapter covered integral cryptanalysis and how such an attack can be designed
and implemented. The chapter covered a way of building a block cipher cryptosystem
together with the vulnerable points with the goal of illustrating how to use an integral
cryptanalysis attack in practice.

Now that you've reached the end of the chapter, you can

e Design and implement a simple integral cryptanalysis attack.

e Understand the vulnerable points of this kind of attack and generate
the permutation tables with the goal of permutating the key.

e Use permutation tables and work with them over the keys.

Reference

[1] Joan Daemen, Lars Knudsen, and Vincent Rijmen, “The Block
Cipher Square,” Fast Software Encryption (FSE) 1997, Volume
1267 of Lecture Notes in Computer Science. Haifa, Israel; Springer-
Verlag. pp. 149-165. CiteSeerX 10.1.1.55.6109. 1997.
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Brute Force and Buffer
Overflow Attacks

This chapter covers two important attacks, the buffer overflow attack and the brute force
attack, which are frequently employed against C++ applications and programs.

A special category of attackers will use applications/programs or devices to launch
brute force or buffer overflow attacks. Their methods evaluate different combinations
of words for confirmation forms. In some cases, the attackers attempt to corrupt web
applications through a scanning process for sessions IDs, for example. The attacker’s
goals include stealing data, corrupting destination machines with malware, and asking
for a specific amount of money. Some of the attackers perform brute force attacks
physically as a personal choice. Today, most brute force and buffer overflow attacks are
performed by bots.

In order to protect organizations and businesses from these kinds of attacks, take
into consideration the following recommendations:

e Don’tuse data or information that could be found online.

o Use as many characters as possible.

o Use combinations of letters, numbers, and special characters (e.g.
symbols).

e Don’t use common patterns (e.g. qwerty).

o Use different passwords for each user account.

e Change the password at frequent intervals (e.g. every two months).

e Use and generate long and strong passwords. If you don’t have an
idea for one, use a password generator (e.g. key generation from
KeyPass).
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CHAPTER 21 BRUTE FORCE AND BUFFER OVERFLOW ATTACKS

e Implement multifactor authentication [1].

e Use biometrics if possible [2].

Brute Force Attack

A brute-force attack represents a complex attack in which the attacker will submit many
passwords or passphrases with the goal of guessing the correct one. Each password or
passphrase is checked one-by-one by the attacker until the correct one is found. Also,
the attacker may guess the key. The key is generally created from the password by using a
function for key derivation. This process is known as an exhaustive key search.

There are many types of brute-force attacks:

o Attacks based on rainbow tables: A rainbow table is a predefined
and precomputed table. The goal is to reverse the process of the
cryptographic hash capacities.

o Attacks based on reversing brute-force attacks: The attack is based
on using a general password or a specific set of passwords against
multiple usernames.

o Credential attacks: The attack uses sets of passwords-usernames
against a variety of websites.

o Hybrid brute-force attacks: The attack is used to figure out what
password variety is used to succeed. After, it proceeds with a general
process for dealing with checking different varieties.

We will illustrate this type of attack with the following examples to show how the
attack can be used and deployed in real-life situations (algorithms). The examples
provided are

e Brute-force attack on a Caesar cipher: The example (see Figure 21-1
and Listing 21-1) is based on a Caesar cipher. The example is chosen as
the first case of showing a brute-force attack due to its simplicity.

o String generation for a brute-force attack: The example (see
Figure 21-2 and Listing 21-2) shows how basic string generation can
be done with the goal of creating complex lists and dictionaries that
can be used during brute-force attacks.
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B C:\Windows\System32\cmd.exe

CHAPTER 21

BRUTE FORCE AND BUFFER OVERFLOW ATTACKS

D:\Apps C++\Chapter 21 - Attacks>g++ -std=c++2a caesar_brute_force.cpp -o caesar_brute_force

D:\Apps C++\Chapter 21 - Attacks>caesar_brute_force

ENCRYPTION -

Enter the text for encryption -> Welcome to Apress

Enter the key for encryption the text -> 4
message is -> Aipgsqi xs Etviww

ENCRYPTED MESSAGE -

BRUTE-FORCE
BRUTE-FORCE
BRUTE - FORCE
BRUTE-FORCE
BRUTE-FORCE
BRUTE-FORCE
BRUTE - FORCE
BRUTE-FORCE
BRUTE - FORCE
BRUTE - FORCE
BRUTE - FORCE
BRUTE-FORCE
BRUTE - FORCE
BRUTE-FORCE
BRUTE-FORCE
BRUTE-FORCE
BRUTE - FORCE
BRUTE-FORCE
BRUTE-FORCE
BRUTE-FORCE
BRUTE-FORCE
BRUTE-FORCE
BRUTE-FORCE
BRUTE-FORCE
BRUTE - FORCE
BRUTE-FORCE

D:\Apps C++\Chapter 21 - Attacks>
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ATTACK
ATTACK
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- The
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- The
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Figure 21-1. Running the brute-force attack
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Aipgsqgi
Zhofrph
Ygneqog
Xfmdpnf
Welcome
Vvdkbnld
Ucjamkc
Tbizljb

- Sahykia

Rzgxjhz
Qyfwigy
Pxevhfx
Owdugew
Nvctfdv
Mubsecu
Ltardbt
Kszqcas
Jrypbzr
Iqxoayq
Hpwnzxp
Govmywo
Fnulxvn
Emtkwum
Dlsjvtl
Ckriusk

Listing 21-1. Brute Force Attack on a Caesar Cipher

#include<iostream>
using namespace std;

// the function will be used to encrypt the plaintext
// string msg - the message
// int keytValue - the key
string encrypt(string msg,int keyValue)

{

// variable used to hold the cipher value of the plaintext

string cipher="";

XS
Wr
vq
up
to
sn
rm
ql
pk
oj

Etviww
Dsuhvv
Crtguu
Bgsftt
Apress
Zogdrr
Ynpcqq
Xmobpp
Wlnaoo
Vkmznn

ni Ujlymm

mh

Tikx1l

lg Shjwkk
kf Rgivij

je
id
hc

Qfhuii
Pegthh
Odfsgg

gb Ncerff

fa
ez
dy

Mbdgee
Lacpdd
Kzbocc

cx Jyanbb
bw Ixzmaa

av
Zu
Bjghtrj yt

Hwylzz
Gvxkyy
Fuwjxx
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// parse the string
for(int i=0;i<msg.length();i++)

{
// verify if the character is upper case
if(isupper(msg[i]))
// add to the cipher the character plus the key and subtract
ASCII 65 value ('A").
// the value obtained do modulo 26 (english alphabet letters)
and add ASCII value 65 back.
cipher += (msg[i] + keyValue - 65)%26 + 65;
// verify if the character is lower case
else if(islower(msg[i]))
//** the same as above. ASCII value 97 ('a")
cipher += (msg[i] + keyValue - 97)%26 + 97;
else
cipher += msg[i];
}

return cipher;

}

// The decryption will be done using the brute force attack by
// checking all possible keys

// string encMessage - the encrypted message

void decrypt(string encMessage)

{
// the variable for storing the plaintext

string plaintext;

// we will try for each key and we will do the decryption
for(int keyTry=0;keyTry<26;keyTry++)
{

plaintext = "";
// parse accordingly based on the message length
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for(int i=0;i<encMessage.length();i++)

{
// check if the character is upper case
if(isupper(encMessage[i]))
{
if((encMessage[i] - keyTry - 65)<0)
plaintext += 91 + (encMessage[i] - keyTry - 65);
else
plaintext += (encMessage[i] - keyTry - 65)%26 + 65;
}
// check if the character is lower case
else if(islower(encMessage[i]))
{
if((encMessage[i] - keyTry - 97) < 0)
plaintext += 123 + (encMessage[i] - keyTry - 97);
else
plaintext += (encMessage[i] - keyTry - 97)%26 + 97;
}
else
plaintext += encMessage[i];
}
cout << "BRUTE-FORCE ATTACK (DECRYPTION) - The clear text for key
-> " << keyTry << " - " << plaintext << endl;
}
}
int main()
{

int encKey;

string cleartext;

cout << "ENCRYPTION - Enter the text for encryption -> ";
getline(cin,cleartext);

cout << "Enter the key for encryption the text -> ";
cin >> encKey;
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string encryptedMessage = encrypt(cleartext,encKey);
cout << "ENCRYPTED MESSAGE - The encrypted message is -> "
<< encryptedMessage << endl << endl;

//** brute force attack
decrypt(encryptedMessage);

BE C\Windows\System32\emd.exe - o X

D:\Apps C++\Chapter 21 - Attacks\BasicStringGenerationBFAttack>g++ -std=c++2a strings_brute_force.cpp -o strings_brute_force

D:
1
2
3
4
=1
6
7
8

B C\Windows\System32\emd.exe - strings_brute_force - [m] x

\Apps C++\Chapter 21 - Attacks\BasicStringGenerationBFAttack>strings_brute_force

188
189
118
111
112
113
114
115
116
117
118
119
128
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
1

53
53
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53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53

Figure 21-2. Basic string generation for a brute-force attack (different states of
generating strings)
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Listing 21-2. Basic String Generation Source Code

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

// We are using a linked list data structure.
// The reasong is to avoid some of the restrictions

// based on the generation of the string length.

// Our list has to be converted to string in

// such way that it can be used. The current conversion

// might be a little slower comparing with other methods

// due to the fact that the conversion is happening with

// each cycle.

// Another solution consists in implementing a solution based

// on the generation of the allocation for the string with
// a fixed size equal with 20 characters (which is more than
// enough.

// the structure definition for holding the characters (strings)
typedef struct charactersList charlist t;
struct characterslList

{
// the character
unsigned char character;
// the next character
charlist t* nextCharacter;
};

// The method will return a new initialized charlist t element.
// The element returned is charlist t
charlist t* new characterlList element()

{

charlist t* elementFromThelist;
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if ((elementFromThelList = (charlist t*) malloc(sizeof(charlist t))) != 0)
{
elementFromThelist->character = 0;
elementFromThelist->nextCharacter = NULL;

}

else

{

perror("The allocation using malloc() has failed.");

}

return elementFromThelist;

}

// allocation free memory by the characters list
// listOfCharacters - represents a pointer for the first element within
the list
void freeAllocation CharactersList(charlist t* listOfCharacters)
{
charlist t* currentCharacter = listOfCharacters;
charlist t* nextCharacter;

while (currentCharacter != NULL)

{
nextCharacter = currentCharacter->nextCharacter;
free(currentCharacter);
currentCharacter = nextCharacter;

}

}

// the function display the current list of characters

// the function will iterate through the whole list and it will print all
the characters

void showCharactersList(charlist t* list)

{

charlist t* nextCharacter = list;
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while (nextCharacter != NULL)

{
printf("%d ", nextCharacter->character);
nextCharacter = nextCharacter->nextCharacter;

}
printf("\n");

// the function will return the next sequence of characters.
// the characters are treated as numbers 0-255
// the function proceeds by incrementation of the character from the first

position
void nextCharactersSequence(charlist t* listOfCharacters)
{
listOfCharacters->character++;
if (listOfCharacters->character == 0)
{
if (listOfCharacters->nextCharacter == NULL)
{
listOfCharacters->nextCharacter = new_characterList element();
}
else
{
nextCharactersSequence(1listOfCharacters->nextCharacter);
}
}
}
int main()
{

charlist t* sequenceOfCharacters;
sequenceOfCharacters = new _characterList element();

// this while will work for all possibles combinations
// this has to be stopped manually
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while (1)

{
nextCharactersSequence(sequenceOfCharacters);
showCharactersList(sequenceOfCharacters);

}

freeAllocation CharactersList(sequenceOfCharacters);

Buffer Overflow Attack

A buffer represents a temporary area that is used for storing data. At the moment when
more data is placed by the programs or system processes, an extra data overflow will
occur.

In a buffer-overflow attack, the extra data being stored can store specific instructions
to take actions designed by hackers or malicious users. As an example, the data could
trigger an event (function or process) to destroy files or reveal private data about users.

The attacker uses a buffer overflow to get an advantage from a program that is being
executed and is waiting for user interaction. There are two types of buffer overflows:
stack-based and heap-based. In a heap-based overflow, it is very difficult to launch and
execute attacks based on flooding the memory space reserved for the program and its
execution. In a stack-based overflow, the exploitation of the applications and programs is
done on the memory stack, which is the memory space used to store the input data from
the user.

The following example (see Figure 21-3 and Listing 21-3) shows the danger of
such situations for C++ applications. In the example provided, we won’t do any
implementation for malicious code injection. We show the main process for buffer
overflow. As a comparison between modern compilers vs. old compilers, modern
compilers provide options for overflow checking during the compile or linking process
but at the running time it is quite difficult to check the situation without having a
protection mechanism such as the handling process of the exceptions.
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B C:\Windows!\System32\cmd.exe - ]
¥

*

D:\Apps C++\Chapter 21 - Attacks\BufferOverflowAttack>gs+ -std=c++2a buffer_overflow_attack.cpp -o buffer_overflow_attack

D:\Apps C++\Chapter 21 - Attacks\BufferOverflowAttack>buffer_overflow_attack WelcomeToApress
The content of thebuffer -> WelcomeToApress
The function strcpy() is being executed...

D:\Apps C++\Chapter 21 - Attacks\BufferOverflowAttack>,

Figure 21-3. Buffer overflow execution

Listing 21-3. Implementation of the Buffer Overflow Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(int argc, char *argv([])
{
// We allocate a buffer of 5 bytes which includes also the
termination, NULL.
// The allocation should be done as 8 bytes which is two double
words.
// For overflowing process we will need more than 8 bytes.

// if the user provides more than 8 characters for the input,
// an access violation and fault segmentation

char buffer test example[5];

// execution of the program

if (argc < 2)

{
printf("Function strcpy() will not be executed...\n");
printf("The syntax: %s <characters>\n", argv[0]);
exit(0);

}

// Take the input from the user and copy it to the buffer.

// The process is done without verifying the bound
strcpy(buffer test example, argv[1]);
printf("The content of thebuffer -> %s\n", buffer test example);

-~
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printf("The function strcpy() is being executed...\n");

return 0;

Conclusion

The current chapter covered two important attacks, brute-force attacks and buffer
overflow attacks. You are now capable of

e Understanding the brute-force and buffer overflow attacks

o Understanding the main concepts that form the basics of designing
such attacks

e Understanding the limitations between stack-based and heap-based
buffer overflows
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CHAPTER 22

Text Characterization

In this chapter, we will analyze two important metrics for cipher and plaintext analysis:
the chi-squared statistic and searching for patterns (monograms, bigrams, and trigrams).
When working with classic and modern cryptography, text characterization as technique
is a very important part of the cryptanalysis backpack.

The Chi-Squared Statistic

The chi-squared statistic is an important metric that computes the similarity percent
between two probability distributions. There are two situations when the result of the
chi-squared statistic is equal to 0; it means that the two distributions are similar. If the
distributions are very different, a higher number will be outputted.

The chi-squared statistic is defined by the following formula:

< (Ci _Ei )2

i=A i

x°(C,E)=

In the following example (see Listing 22-1), we will compute an example of a
chi-squared distribution.

Listing 22-1. Chi-Squared Distribution Source Code

#include <iostream>
#include <random>

int main()
{
const int number of experiments=10000;
const int number of stars distribution=100; // maximum number of stars
to distribute
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std::default_random_engine theGenerator;
std::chi_squared distribution<double> theDistribution(6.0);

int p[10]={};

for (int i=0; i<number of experiments; ++i)

{

double no = theDistribution(theGenerator);
if ((n0>=0.0)8&&(n0<10.0)) ++p[int(no)];
}

std::cout << "chi _squared distribution (6.0):" << std::endl;

for (int i=0; i<10; ++i) {
std::cout << 1 << "-" << (i+1) << " "
std::cout << std::string(p[i]*number of stars distribution/number of
experiments,'*") << std::endl;

}

return 0;

The output is shown in Figure 22-1.

B8 Command Prompt - [m] x

D:\My Documents\Apress\Pro Cryptography and Cryptanalalysis using C++2@\Chapters\Chapter 22 Source Code»g++ -Std=c++8x 22-1.cpp -0 22-1

D:\My Documents\Apress\Pro Cryptography and Cryptanalalysis using C++28\Chapters\Chapter 22 Source Code»>22-1
chi_squared_distribution (6.8):

]
1-2; werese

VRS T S )
000 O B

D:\My Documents\Apress\Pro Cryptography and Cryptanalalysis using C++28\Chapters\Chapter 22 Source Code>_

Figure 22-1. Output of the chi-squared distribution example

How does the chi-squared distribution example help in cryptanalysis and
cryptography?

The first step that must be made is to compute the frequency of the characters
within the ciphertext. The second step is to compare the frequency distribution of
the assumed language that is used for encryption (e.g. English) with shifting the two
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frequency distributions related to one another. In this way we have the chance to find
the shift that was used during the encryption process. This procedure is a standard and
simple procedure that can be used on ciphers, such as the Caesar cipher. This take place
when the frequency of English characters is lined up with the frequency of a ciphertext.
Figure 22-2 shows the frequencies of the occurrences for English characters.

As an example, let’s consider the following example encrypted with a Caesar cipher,
which has 46 characters:

ZHOFRPHWRDSUHVVWKLVLVHOFUBSWHGZ LWKFDHVDUF LSKHU

It is very important to understand that the chi-squared statistic is based on counts and
not on probabilities. For example, if we have the letter E, with its occurrence probability of
0.127, the expectation is that the occurance will be 12.7 times within 100 characters.

N-Gram List of Caesar encryption of <startingexample-en.txt>, key <D, KEY OFFSET: 0> X
- Selection No. I Character seq... ] Frequency in % I Frequency l

& Hi 1 H 15.2174 7
> Hastogram (16) 2 v 10,869 .
" Digram (42) 3 F 8.6957 4
: 4 L 8.6957 4
€ Tiigram (44) 5 U 8 6957 4
7 D 6.5217 3
! 8 K £.5217 3
Display of the 16 3 S 6.5217 3
most common N-grams }? ; :gg g
(allowed values: 1-5000) 12 v 21739 ]
13 G 21733 1
5 14 0 21733 1
Jeskoptans 15 P 21733 1
16 Q 21738 1

Compute list

Save list
Close

Figure 22-2. Letter frequency for encrypted text

To compute the count expected, the length of the ciphertext must be multiplied with
the probability. The cipher from above has a total of 46 characters. Following the statistic
with E from above, the expectation is that the E letter occurs 46 - 0.127 = 5.842 times.
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In order to solve the Caesar cipher, we need to use each of the possible 25 possible
keys, using the letter or the position of the letter within the alphabet. For this, it’s very
important how the count starts: from 0 or from 1. the chi-squared must be computed for
each of the keys. The process consists of comparing the count number of the letter with
what we can expect the counts to be if the text is in English.

To compute the chi-squared statistic for our ciphertext, we will count each letter. We
find that the letter H occurs seven times. If the language used is English, it should appear
46 - 0.082 = 3.772 times. Based on the output, we can compute the following:

(7-3.772)°  3.228° 10.420

= = =2.762
3.772 3.772  3.772

This procedure is done for the rest of letters and making addition between all the
probabilities (see Figure 22-3).
Once the ciphertext is decrypted, the plaintext should be

WELCOMETOAPRESSTHISISENCRYPTEDWITHCAESARCIPHER

¥ ASCI Histogram of g xt> (46 cf ) =8 on |
ASCII Histogram of <startingexample-en.txt> (46 ch
Frequency (%)
14 J
12+ R
0+ R
8 + 4
6 - 4
4 + 4
l ‘ ‘ q
° | [ | | [
A C E G 1 K M 0 Q s ] w Y
Value

Figure 22-3. Encryption letter frequency (%)’

'The letter encryption frequency is generated using CrypTool, www.cryptool.org/en/
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Cryptanalysis Using Monogram, Bigram,
and Trigram Frequency Counts

Frequency analysis is one of the best practices for finding the occurrence of characters in
a ciphertext, with the goal of breaking the cipher. The analysis, based on pattern analysis,
can be used to measure and count the characters as bigrams (or digraphs), a method
for measuring pairs of characters that occur within the text. Trigram frequency analysis
measures the occurrence of combinations formed out of three letters.

In this section, we will focus on text characterization with bigrams and trigrams that
can be used for resolving ciphers, such as Playfair.

Counting Monograms

Counting monograms is one of the most effective methods used in substitution ciphers,
such as Caesar ciphers, Polybius squares, and so on. The method works very well
because the English language has a specific frequency distribution. This also means that
is not hidden by substitution ciphers. The distribution is shown in Figure 22-4.

0.14 4
0.12 4

0.1 4

=
=1
=]

Relative frequency
P4
(=1
I
|

0.04 4

0.02 4 _w—— —}__
0 +—+ t ——

abcdefghijkKlImnopaqrst¢tuvwzxyz
Letter

||||||

Figure 22-4. Letter frequency for the English language
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Counting Bigrams

Bigrams counting is based on the same idea as counting monograms. Instead of counting the
occurrence of single characters, you count the occurrence frequency for pairs of characters.

Figure 22-5 lists some of the common bigrams experienced during the cryptanalysis
process. In Listing 22-2, we implemented a solution that counts the occurrences of
bigrams. Figure 22-6 shows the output of this example of counting the bigrams. The
source code from Listing 22-2 uses a file called bigram.txt which contains a sample text
to illustrate the process of counting the bigrams.

TH 11698784
HE 10068926
IN 87674002
ER 77134382
AN ©9775179
RE ©0923600
ES 57070453
ON 56915252
ST 54018399
NT 50701084
EN 48981276
AT 48274564
ED 46647960
ND 46195430¢
TO 46115188
OR 457251¢%1
EA 43329810
TI 42888666
AR 42353262
TE 42295813
NG 38567365
AL 38211584
IT 37938534
AS 37773878
IS 37349981
HA 35971841
ET 32872552
SE 31532272
OU 31112284
OF 30540504

Figure 22-5. Bigrams
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B C\Windows\System32\cmd.exe = [m] 'Y

D:\Apps C++\Chapter 22 - Text Characterization>g++ -std=c++2a 22-2.cpp -0 22-2

3

R T W W

D:\Apps C++\Chapter 22 - Text Characterization>22-2
ab:
ad:
ae:
ag:
al:
am:
an:
ar:
at:
au:
bo:
ca:
cCe
ce:

Figure 22-6. Counting bigrams

Listing 22-2. Counting Bigrams

#include <stdio.h>

int main(void)

{

int alphabet counting['z' - 'a' + 1]['z" - 'a' + 1] = {{ 0 }};
int character0 = EOF, characteri;
FILE *fileBigramSampleText = fopen("bigram.txt", "r");

if (fileBigramSampleText != NULL)

{

while ((character1l = getc(fileBigramSampleText)) != EOF)

{

}

z' && charactero »>= 'a

if (character1l »>= 'a' 8&& characteri <=
&& charactero <= 'z")

{

alphabet counting[charactero - 'a'][characterl - 'a']++;

}

character0 = characteri;

fclose(fileBigramSampleText);
for (character0 = 'a'; charactero <= 'z'; charactero++)

{

for (characteri =

{

a'; characterl <= 'z'; characteri++)
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int number = alphabet counting[charactero - 'a']
[characterl - 'a'];
if (number)

{

printf("%c%c: %d\n", charactero, characteri, number);

}

return 0;

Listing 22-3 and Figure 22-7 show a more general version that is designed to handle
8-bit character pairs.

B C\Windows\System32\cmd.exe = [m] 'Y

D:\Apps C++\Chapter 22 - Text Characterization>g++ -std=c++2a 22-3.cpp -0 22-3

D:\Apps C++\Chapter 22 - Text Characterization>22-3
ab: 3

ad:
ae:
ag:
al:
am:
an:
ar:
at:
au:
bo:
ca:
cCe
ce:

TR R L 00 R R L R R

Figure 22-7. Output for 8-bit character pairs

Listing 22-3. General Version for Working with 8-bit Character Pairs

#include <stdio.h>
#include <string.h>

int main(void)
{
// the last five bytes corresponds to ISO/IEC 8859-9
const char alphabet[] = "abcdefghijklmnopgrstuvwxyz\xFD\xFXE7\xF6\xFC";
const int length of alphabet = (sizeof(alphabet) - 1);
int count[length of alphabet][length of alphabet];
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char *position0 = NULL;
int characteri;
FILE *fileTextForCountingBigrams = fopen("bigram.txt", "r");

memset(count, 0, sizeof(count));

if (fileTextForCountingBigrams != NULL)

{
while ((character1 = getc(fileTextForCountingBigrams)) != EOF)
{
char *p1 = (char*)memchr(alphabet, characteri, length of alphabet);
if (p1 !'= NULL 8& position0 != NULL)
{
count[position0 - alphabet][p1 - alphabet]++;
}
position0 = p1;
}

fclose(fileTextForCountingBigrams);
for (size t i = 0; i < length of alphabet; i++)

{
for (size t j = 0; j < length of alphabet; j++)
{
int n = count[i][j];
if (n > 0)
{
printf("%c%c: %d\n", alphabet[i], alphabet[j], n);
}
}
}
}
return 0;

Counting Trigrams

Trigrams counting operates on the same principle as bigram counting; the difference
consists in counting three characters.
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Figure 22-8 lists some of the common trigrams experienced during the cryptanalysis
process. In Listing 22-4, we implement a solution for finding and counting the
occurrences of trigrams within a text (see Figure 22-9). The solution is different from the
ones in Listing 22-2 and Listing 22-3.

THE 77534223
AND 30997177
ING 30679488
ENT 17502107
ION 17769261
HER 15277018
FOR 14686159
THA 14222073
NTH 14115952
INT 13656197
ERE 13287155
TIO 13285065
TER 12769843
EST 11956466
ERS 11823017
ATI 11227573
HAT 10900482
ATE 10712298
ALL 10501105
ETH 10304110
HES 10189449
VER 10156140
HIS 10051039
OFT 9434246
ITH 9142241
FTH 9036651
STH 9024058
OTH 8869058
RES 8835871
ONT 8757161
DTH 8745845
ARE 8741156
REA 8700830
EAR 8697937
WAS 8640940

Figure 22-8. Trigrams
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B C:\Windows\System32\cmd.exe - O x

D:\Apps C++\Chapter 22 - Text Characterization>g++ -std=c++2a 22-4.cpp -0 22-4

D:\Apps C++\Chapter 22 - Text Characterization>22-4
Pattern found at index 11

D:\Apps C++\Chapter 22 - Text Characterization>_

Figure 22-9. Displaying a trigram
Listing 22-4. Counting Trigrams

#include <iostream>
using namespace std;

void printTrigramOccurance(string fullText, string trigramPattern)

{

int occurance = fullText.find(trigramPattern);
while (occurance!= string::npos)

{
cout << "Pattern found at index " << occurance << endl;
occurance = fullText.find(trigramPattern, occurance + 1);
}
}
int main()
{
string fullText = "Welcome to Apress.”;
string trigramPattern = "Apr";
printTrigramOccurance(fullText, trigramPattern);
}

445



CHAPTER 22  TEXT CHARACTERIZATION

Conclusion

The chapter covered the concept of text characterization and showed its importance in
the cryptanalysis process. You can now deal with the chi-squared statistic, and you can
work with monograms, bigrams, and trigrams to decrypt substitution ciphertexts. As a
summary, you learned about

e The concept of text characterization
o Working with monograms, bigrams, and trigrams
o Implementing the chi-squared statistic

e Monogram, bigram, and trigram implementations
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CHAPTER 23

Implementation and
Practical Approach of
Cryptanalysis Methods

The current chapter is a general discussion of the methodologies of cryptanalysis
methods and how those methods can be applied in a quick and efficient way. The
proposed methodologies are classic and actual (modern) cryptography/cryptanalysis
algorithms and methods. Quantum cryptography is not included at this moment.

The methodology proposed (see Figure 23-1) is designed with the goal of helping you,
the cryptanalyst, to know where you are situated during the cryptanalysis process. You can
use the map presented in Figure 23-1 to choose the proper tool or method for your work.

Proceeding with the implementation of the cryptanalysis methods can be a very
laborious task if you don’t have the proper information about the cryptographic
method. The following will present a short process for identifying the necessary
elements for conducting the cryptanalysis process. The cryptanalysis process consists
of two general steps:

e Step 1is based on identifying what type of cryptanalysis should be
conducted.

e Step 2 consists of gathering everything that you know about
cryptography algorithms. After these two steps have been performed
properly and with maximum seriousness, you can move forward with
the extra steps.

e Step 3is when you build a proper attack model.

e Step 4is when you choose the proper tools.
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Step 1. This step deals with what kind of cryptanalysis should be performed. Within
this step the cryptanalysis will decide within the business environment what role they
will play: legal and authorized cryptanalyst, ethical hacker, or malicious cracker. As soon
as you decide your role, you can move to Step 2.

Step 2. If the cryptanalyst is legitimate, they must be aware of two things before
getting started: the cryptography algorithm and the cryptographic key. Based on the
experience of some of cryptanalysts, this is not a necessary requirement but in some
cases it will be very useful to know. As soon as you are aware of the cryptography
algorithm and cryptographic key, you can easily start the cryptanalysis process by
applying the proper methods and testing the security of the business applications.

Step 3. This step is based on setting up the attack model or attack type. Attack
models and attack types will point out a quantitative variable used to indicate how much
information a cryptanalyst will have access to when they perform the cracking methods
on the encrypted message. The most important attacks are

o Ciphertext-only attack
¢ Known-plaintext attack
o Chosen-plaintext attack
e Chosen-ciphertext attack
o Adaptive chosen-ciphertext attack
o Indifferent chosen-ciphertext attack

Step 4. After the attack model has been picked or another model has been created
and adapted properly with the case and requirements, you move to the next step,
which is to pick the software tools. Choosing software tools from ones that already
exist or creating your own tools can be time consuming but in practice will have
massive contributions. Summarizing this, here are some tools that can be used in the
cryptanalysis process, depending on what you're trying to test.

o Penetration tools: Kali Linux, Parrot Security, BackBox
o Forensics: DEFT, CAINE, BlackArch, Matriux

o Databases: sqlmap (standalone version), Metasploit framework
(standalone version), VulDB
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e Web and network: Wireshark, Nmap, Nessus, Burp Suite, Nikto, and
OpenVas

e Other tools: CrypTool (very useful and amazing tool)

The tools mentioned above represent a selection that are very used in practice and
can produce desired results.

Symmetric Encryption (Classic)
+Known plaintext
*Single column transposition
#Hill
sCiphertext only

*Vigenere, Caesar, ADFGVYX,
Substitution, Solitaire, Byte
Addition

_ *Manual analysis
" *substitution, Playfair, Solitaire

Tools

Analyze Randomness
* Entropy, Floating sFrequency Test

Frequency #Poker Test, Runs Test
* Histogram, N-Gram ' \ *Serial Test
* Autocorellation / . | *FIPS PUB-140-1 Test Battery
Periodici ’ / Cryptanalysis sVitany, 3D Visualization
eriodicity Methodology
Asymmetric Encryption Symmetric Encryption
sFactorization of a number / (Modern)
eLattice-based attacks on RSA «IDEA
*Factory with a hint *RC2, RC4
sAttack on stereotyped «DES (ECB), DES (CBC)
message «Triple DES (CBC), Triple DES (ECB)
eAttack on small secret keys _ \ «AES (CBC)
#Side-channel attack on RSA \ «Other algorithms

textbook / *MARS, Serpent, RC6, TWOFISH

Figure 23-1. The cryptanalysis methodology
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Ciphertext-Only Attack

A ciphertext-only attack (COA) represents the weakest attack because it can easily be
used by the cryptanalyst due to the fact that they just encoded the message.

The attacker-cryptanalyst has access to a set of ciphertexts. The attack is fully
successful if the corresponding plaintexts are deduced together with the key.

In this type of attack (see Figure 23-2), the attacker/cryptanalyst will be able to
observe the ciphertext. Everything that the cryptanalyst will see is represented by a set
of scrambled and nonsense characters that create the output based on the encryption

process.
Cryptanalyst
Plaintext
* Analyze *
Alice B Bob
l Ciphertext 4
A
Ciphertext Ciphertext

All rights reserved by Marius lulian MIHAILESCU and Stefania Loredana NITA

Figure 23-2. COA representation

Known-Plaintext Attack

The known-plaintext attack (KPA) helps the cryptanalyst to generate the ciphertext
based on the fact that he is aware of the ciphertext.

The cryptanalyst follows a simple procedure by selecting the plaintext, but they will
observe the pair that is compounded from the plaintext and ciphertext. The chance of
success is better compared to COA. Simple ciphers are quite vulnerable to this attack.
See Figure 23-3.
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Cryptanalyst Previous Pair
B«—B
Plaintext —
Analyze 4 °

=5)e

!

Ciphertext
A

=
=
o

[ R
[l

Ciphertext Ciphertext

All rights reserved by Marius lulian MIHAILESCU and Stefania Loredana NITA

Figure 23-3. KPA representation

Chosen-Plaintext Attack

In a chosen-plaintext attack (CPA), the cryptanalyst has the ability to select the plaintext
that has been sent encrypted using an encryption algorithm and they can observe

how the ciphertext is generated. This can be observed as an active model where the
cryptanalyst has the chance to select the plaintext and to realize the encryption.

Based on the ability to select and pick any plaintext, the cryptanalyst has the chance
to observe vital details about the ciphertext, which gives them a strong advantage in
understanding how the algorithm works inside and the chance to get the secret key.

A professional cryptanalyst will have a strong database that contains known
plaintexts, ciphertexts, and possible keys. In Listing 23-1 and Figure 23-5, we have
provided an example of generating possible keys automatically. It is a very simple
example for illustrating how possible keys can be generated. They can be used with the
pairs to determine the cipher text input (see Figure 23-4).
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Pair that is created from
chosen plaintext EELERE
@B
Plaintext

\ X e,
‘o | & Analyze Py
Alice @ Bob

cipllfrten 4

PR
[l

Ciphertext Ciphertext

All rights reserved by Marius lulian MIHAILESCU and Stefania Loredana NITA

Figure 23-4. CPA representation

Listing 23-1. Automatic Generation of Random Keys

#include <stdio.h>
#include <time.h>

#include <iostream>

using namespace std;

//** generate an integer that is situated between 1 to 4

int
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generateInteger() {
//** pseudo-random generator (srand).
//** time(NULL) represents the seed
srand(time(NULL));

//** generate a random value and store
//** the remainder of rand() to 5

int randomvValue = rand() % 5;

//** if the value is equal with 0, move to the
//** next value of i and return that value
if (randomValue == 0)

randomValue++;




}
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return randomValue;

//** the function will generate randomly
//** an integer situated between 0 and 25
int generateRandomlyInteger(){

}

//** pseudo-random generator (srand).
//** time(NULL) represents the seed
srand(time(NULL));

//** generate a random value and store
//** the remainder of rand() with 26
int random key = rand() % 26;
return random_key;

//** based on the length provided, the function
//** will generate a cryptographic key
void generate crypto key(int length){

//** create a string variable for cryptography

//** key and initialize it with NULL

string crypto key = "";

//** variable used for cryptography key generation

string alphabet lower case = "abcdefghijklmnopqrstuvwxyz";
string alphabet_upper case = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
string special symbols = "!@#$%&";

string digits and numbers = "0123456789";

//** local variables and their initializations
int key seed;

int lowerCase Alphabet Count = 0;

int upperCase_Alphabet Count = 0;

int digits_And_numbers count = 0;
int special symbols count = 0;

//** the variable count will save the length
//** of the cryptography key.
//**% initially we will set it to zero
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int countinglengthCryptoKey = 0;

while (countinglengthCryptoKey < length) {

//**
//**
//**
//**
//**
//**
//**
//**
//**
//**
//**

generateInteger() function will return a number that
is situated between 1 and 4.

The number that is generated will be used in
assignation with one of the strings that has been
defined above (for example: alphabet lower case,
alphabet upper case, special symbols, and
digits and numbers).

This being said, the following correspondence will
be applied: (1) for alphabet lower case, (2) for
alphabet upper case, (3) for special symbols, and
(4) digits_and numbers

int string type = generatelnteger();

//**
//**
//**
//**
//**
//**
//**

For the first character of the cryptography key we
will put a rule in such way that it should be a
letter, in such way that the string that will be
selected will be an lower case alphabet or an upper
case alphabet. The IF condition is quite vital as
the switch is based on it and the value that

string type variable will have.

if (countinglLengthCryptoKey == 0) {

switch

string type = string type % 3;
if (string type == 0)

string type++; }

(string type) {

case 1:
//** based on the IF condition, it is
//** necessary to check the minimum
//** requirements of the lower case alphabet
//** characters if they have been accomplished
//**% and fulfilled. If we are dealing with the
//** situation in which the requirement has
//** not been achieved we will situate ourself
//** in the break phase.
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if ((lowerCase Alphabet Count == 2)

88 (digits_And_numbers count == 0
|| upperCase Alphabet Count 0
|| upperCase Alphabet Count 1
=0

N~— 1

)

|| special symbols coun
break;

key seed = generateRandomlyInteger();
crypto key = crypto_key +

alphabet lower case[key seed];

lowerCase Alphabet Count++;

countinglengthCryptoKey++;

break;

2:

//¥*
//**
//¥*
] /%%
//**
//¥*
//¥*
/ /%%

based on the IF condition, it is
necessary to check the minimum
requirements of the upper case alphabet
characters if they have been accomplished
and fulfilled. If we are dealing with the
situation in which the requirement has
not been achieved we will situate ourself
in the break phase.

if ((upperCase Alphabet Count == 2)

88 (digits_And_numbers count == 0

|| lowerCase Alphabet Count 0

|| lowerCase Alphabet Count 1

|| special symbols count == 0
break;

N~— 1

)

key seed = generateRandomlyInteger();
crypto_key = crypto_key +

alphabet upper case[key seed];

upperCase_Alphabet Count++;

countinglengthCryptoKey++;
break;
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case 3:
//** based on the IF condition, it is
//** necessary to check the minimum
//** requirements of the numbers if they have
//** been accomplished and fulfilled. If we
//** are dealing with the situation in which
//** the requirement has not been achieved we
//** will situate ourself in the break phase.
if ((digits_And numbers count == 1)
88 (lowerCase Alphabet Count ==
|| lowerCase Alphabet Count
|| upperCase Alphabet Count
|| upperCase Alphabet Count
|| special symbols count ==
break;
key seed = generateRandomlyInteger();
key seed = key seed % 10;
crypto key = crypto_key +
digits and numbers[key seed];
digits And_numbers count++;

o
~— I
~

I
il
o r K

countinglengthCryptoKey++;
break;

case 4:
//** based on the IF condition, it is
//** necessary to check the minimum
//** requirements of the special characters if
//** they have been accomplished and
//**% fulfilled. If we are dealing with the
//** situation in which the requirement has
//** not been achieved we will situate ourself
//** in the break phase.

456



CHAPTER 23  IMPLEMENTATION AND PRACTICAL APPROACH OF CRYPTANALYSIS METHODS

if ((special symbols count == 1)
88 (lowerCase Alphabet Count ==
|| lowerCase Alphabet Count == 1
|| upperCase Alphabet Count ==
|| upperCase Alphabet Count ==
|| digits And _numbers count == 0))
break;

key seed = generateRandomlyInteger();
key seed = key seed % 6;
crypto key = crypto_key +

special symbols[key seed];

special symbols count++;
countinglengthCryptoKey++;

break;
}
}
cout << "\P--mmmm e \n";
cout << " Cryptography Key \n";
COUt << Memmm \n\n";
cout << " " << crypto_key;

cout << "\n\nPress any key to continue... \n";
getchar();

int main() {
int option;
int desired length;

//** designing the menu

do {
CoUt << "\M-mmm o \n";
cout << " Random Cryptography Key Generator \n";
COUt << Mmmm \n\n";
cout << " 1 --> Generate a Cryptography Key"

<< "\n";
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cout <« 2 --> Quit the program"
<< "\n\n";
cout << "Enter 1 for Generating Cryptograpy Key or 2

to quit the program : “;
cin >> option;

switch (option) {
case 1:
cout << "Set the length to : ";
cin >> desired length;
//** if the length entered is less than 7, an
//** error will be shown
if (desired length < 7) {
cout << "\nError Mode : The Cryptography Key
Length hould be at least 7\n";
cout << "Press a key and try again \n";
getchar(); 1}
//** The desired length should bot be bigger than
//** 100, otherwise an error will be shown
else if (desired length > 100) {
cout << "\nError Mode : The maximum length of
the cryptography key should be 100\n";
cout << "Press a key and try again \n";
getchar(); }
//** in ohter cases, call generate crypto key()
//** function to generate a cryptography key
else
generate crypto key(desired length);
break;
default:
//** in case if an invalid option is entered, show
//** to the user an error message
if (option != 2) {
printf("\nOups! You have entered a choice that
doesn't exist\n");
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printf("Enter ( 1 ) to generate cryptography
key and ( 2 ) to quit the program.\n");
cout << "Enter a key and try again \n";

getchar();}
break; }
} while (option != 2);
return 0;
}
B C:\Windows\System32\cmd.exe o ] X

D:\Apps C++\Chapter 23 - Implementation of Cryptanalysis Methods»g++ -std=c++2a random_keys.cpp -o random_keys
D:\Apps C++\Chapter 23 - Implementation of Cryptanalysis Methods>random_keys

1 --> Generate a Cryptography Key
2 --» Quit the program

Enter 1 for Generating Cryptograpy Key or 2 to quit the program : 1
Set the length to : 4@

*x&AADB6666666666666666666666666666666666

Press any key to continue...

1 --» Generate a Cryptography Key
2 --> Quit the program

Enter 1 for Generating Cryptograpy Key or 2 to quit the program : 2

D:\Apps C++\Chapter 23 - Implementation of Cryptanalysis Methods>, -

Figure 23-5. The keys and possible passwords generated. We choose three
characters to keep the processing time short

Chosen-Ciphertext Attack

In a chosen-ciphertext attack (CCA), the cryptanalyst can perform encryption and
decryption on the information. Within this attack (see Figure 23-6) the cryptanalyst can
pick the plaintext, encrypt it, observe how the ciphertext is generated, and reverse the

whole process.
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In this attack, the cryptanalyst’s mission is to find the plaintext and also to identify
the algorithm and the secret key that was used for the encryption process.

Pair that is created from
Cryptanalyst chosen plaintext
' .
«—> )
Plaintext -
et A o
@ Analyze 4 o’
Alice @ Bob
apr»Tenm 4

Ciphertext Ciphertext

All rights reserved by Marius lulian MIHAILESCU and Stefania Loredana NITA

Figure 23-6. CCA representation

Conclusion

In this chapter, we discussed how to implement cryptanalysis methods and what defines
this process for a cryptanalyst. At the end of this chapter, you now have

e A good understanding of the attack models

o The ability to follow a simple and straightforward methodology to
find out where you are situated within the cryptanalysis process

o The ability to simulate and generate a database with keys and
possible passwords
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