Guillaume Lazar, Robin Penea

Viastering

QtS

Master application development by writing succinct,
robust, and reusable code with Qt 5

Ll Packt>

Mastering Qt 5

Table of Contents

Mastering Qt 5
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Why subscribe?
Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback

Customer support
Downloading the example code
Errata
Piracy
Questions
1. Get Your Qt Feet Wet

Creating a project
MainWindow structure

Qt Designer
Signals and slots
Custom QWidget

Adding a task

Using a QDialog

Distributing code responsibility

Emitting a custom signal using lambdas

Simplifying with the auto type and a range-based for loop

Summary
2. Discovering QMake Secrets

Designing a cross-platform project
Adding the Windows implementation

Adding the Linux implementation
Adding the Mac OS implementation
Transforming SysInfo into a singleton

Exploring Qt Charts

CpuWidget using QCharts
Memory using Qcharts
The .pro file in depth

Under the hood of gmake
Beneath Q_OBJECT and signals/slots

Summary
3. Dividing Your Project and Ruling Your Code

Designing a maintainable project
Defining data classes

Storing your data in a database
Protecting your code with a smart pointer

Implementing the model
Summary
4. Conquering the Desktop Ul
Creating a GUI linked to a core shared library

Listing your albums with AlbumListWidget
Creating a ThumbnailProxyModel

Displaying the selected album with AlbumWidget
Enhancing thumbnails with PictureDelegate
Displaying a picture with PictureWidget

Composing your Gallery app

Summary
5. Dominating the Mobile Ul

Starting with Qt Quick and QML

Checking your development environment
Creating a Qt Quick project

Preparing your Qt Quick gallery entry point
Displaying albums with ListView

Theming the application with a QML singleton

Loading a database on mobile

Creating a new album from a custom InputDialog
Loading images with an ImageProvider
Displaying thumbnails in a GridView

Swiping through full resolution pictures

Summary
6. Even Qt Deserves a Slice of Raspberry Pi

Discovering Qt3D
Configuring Qt for your Raspberry Pi
Creating an entry point for your Qt3D code

Setting up the scene
Assembling your Qt3D entities

Preparing the board game

Crafting entities from the factory
Building a snake engine in JavaScript
Varying the HUD with QML states

Profiling your QML application

Summary
7. Third-Party Libraries Without a Headache

Creating your Qt Designer plugin
Configuring the project for Windows
Configuring the project for Linux
Configuring the project for Mac
Implementing your OpenCV filters
Designing the Ul with FilterWidget
Exposing your plugin to Qt Designer
Using yvour Qt Designer plugin
Building the image-filter application
Summary

8. Animations - Its Alive, Alive!
Preparing an SDK
Creating your plugins
Loading your plugins dynamically
Using the plugins inside the application
Discovering the Animation Framework
Making your thumbnails jump
Fading the picture in
Flashing the thumbnail in a sequence

Summary
9. Keeping Your Sanity with Multithreading

Discovering QThread
Flying over Qt multithreading technologies
Architecting the Mandelbrot project

Defining a Job class with QRunnable
Using QThreadPool in MandelbrotCalculator

Displaying the fractal with MandelbrotWidget
Summary

10. Need IPC? Get Your Minions to Work
Architecturing an IPC project
Laying down the foundations with an SDK
Working with QDataStream and QTcpSocket
Interacting with sockets in the worker
Interacting with sockets from the application
Building your own QTcpServer

Summary
11. Having Fun with Serialization

Architecting the drum machine project
Creating a drum track

Making your objects serializable with Q Variant
Serializing objects in JSON format

Serializing objects in XML format
Serializing objects in binary format
Playing low latency sounds with QSoundEffect
Triggering a QButton with your keyboard
Bringing PlaybackWorker to life
Accepting mouse drag and drop events
Summary

12. You Shall (Not) Pass with QTest
Discovering Qt Test

Executing your tests
Writing factorized tests with datasets

Benchmarking your code
Testing your GUI
Spying on your application with QSignalSpy
Summary
13. All Packed and Ready to Deploy
Packaging your application
Packaging for Windows
Packaging for Linux with a distribution package
Packaging for Linux with Applmage
Packaging for Mac OS X
Packaging for Android
Packaging for iOS
Summary
14. Qt Hat Tips and Tricks
Managing your workspace with sessions
Searching with the Locator
Increasing the compilation speed
Examining the memory with Qt Creator
Generating random numbers

Silencing unused variable warnings
Logging custom objects to QDebug

Improving log messages
Saving your logs to a file

Generating a command-line interface
Sending and receiving HTTP data

Summary

Mastering Qt 5

Mastering Qt 5

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals. However,
Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2016
Production reference: 1121216
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78646-712-6

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Copy Editor
Guillaume Lazar

Safis Editing
Robin Penea

Ray Rischpater [zzat Contractor

Commissioning Editor Proofreader

Kunal Parikh Safis Editing
Acquisition Editor Indexer
Sonali Vernekar Rekha Nair

Reviewer “Project Coordinator ‘

Content Development Editor||Production Coordinator

Rohit Kumar Singh Aparna Bhagat

Technical Editor

Vivek Pala

About the Authors

Guillaume Lazar is a software engineer living near Paris in France. He has worked for
different companies, from startups to multinationals, for the last 7 years. He took the
opportunity to observe and learn from many team organizations and technologies.

He eventually founded his own software development company, NeuronalMotion, at the age
of 27 with his friend Robin Penea in 2014. Information about it and its open source projects
can be found on the comapny's website, www.neuronalmotion.com.

NeuronalMotion represents to Guillaume "a different way of working." The current
hierarchical organization that applies to most companies seems obsolete to him. With his own
company, he wants to try something different, where each employee will be autonomous.

Although he defines himself as a Qt framework lover, he likes to mix different technologies
and platforms. He also spends time on game development, machine learning, and electronics,
because "things" become "alive."

Creating examples and writing chapters for this book was a serious challenge this year.
Some sections were fundamentally changed to match Qt evolution. I would not have been
able to achieve this task alone. I wish to thank Robin Penea, my friend and the coauthor
of this book. He gave his all to create with me a robust Qt book with modern C++. Our
review team, Rohit Kumar Singh, Ray Rischpater, Quentin Canu, Chistophe Dongieux, and
Hugo Loi, have done excellent work: they corrected us and raised some important issues.
I also want to thank Packt for the good follow up during the writing process. Finally, 1
thank my family and, particularly, Sophie, my girlfriend, for her support.

Robin Penea is a software engineer living in France. He has worked for several companies
over the last 7 years, on many different technologies (ranging from server application
development to embedded programming).

He founded NeuronalMotion with Guillaume Lazar in 2014 to implement his vision of
entrepreneurship and project development. He aims to achieve a self-organized company.
More information is available at www.neuronalmotion.com.

Besides developing with Qt, he likes to tinker with the Android AOSP framework, learn new
programming language paradigms, and discover how to interweave technology and real life.

This book would not have existed without Guillaume Lazar, my friend and the coauthor of
the book. He was truly dedicated to designing and crafting the best possible book. I wish
to thank our reviewers, Rohit Kumar Singh, Ray Rischpater, Quentin Canu, Christophe
Dongieux, and Hugo Loi. Their input was invaluable and definitely raised the quality of
the book. Packt played a sensible role, listening to our requests and changes, guiding us

http://www.neuronalmotion.com/
http://www.neuronalmotion.com/

through the writing, and monitoring our mental states during this year with benevolence.
I also wish to thank my father, Calin, for believing in me. A last word for Flore, my
girlfriend, who kept my motivation up and supported me.

About the Reviewer

Ray Rischpater is a software engineer and author with over 20 years of industry experience
and sixteen books to his credit. Beginning with software development for mobile platforms,
he’s done work in several areas, including mobile, web services, building tools for mapping
and geospatial engineering, and applying machine learning to geospatial processing
problems.

During this time, he’s participated in the development of Internet technologies and custom
applications for Newton, Magic Cap, Palm OS, Java ME, Qualcomm BREW, Apple iOS, and
Google Android, as well as several proprietary platforms. Over the last six years, his focus
has shifted from mobile applications and services to building tools, software processes, and
machine learning models to facilitate mapping the real world. Presently, he’s employed as a
software engineering manager at Uber, doing work on mapping and machine learning.

When not writing for or about software development, he enjoys making music, hiking, and
photography with his family and friends in and around the San Lorenzo Valley in central
California. When he’s able, he also provides public service through amateur radio as the
licensed Amateur Extra station KF6GPE.

He is the author of Microsoft Mapping with Carmen Au, by Apress (published in 2013)

and Application Development with Qt Creator, Second Edition, by Packt (published in 2014).
He has written several other books, including Beginning Java ME Platform (Beginning from
Novice to Professional), by Apress (published in 2008), Software Development for the
QUALCOMM BREW Platform, by Apress (published in 2003), Wireless Web Development,
First Edition, by Apress (published in 2002), and Wireless Web Development, Second Edition,
by Apress (published in 2004).

I’d like to thank my wife, Meg Given, for her patience as I worked on yet another book
project.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us

at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

A Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Preface

C++ is a powerful language. Coupled with Qt, you have in your hands a cross-platform
framework that allies performance and ease of use. Qt is a vast framework that provides tools
in many areas (GUI, threads, networking, and so on). 25 years after its inception, Qt continues
to evolve and grow with each release.

This book aims to teach you how to squeeze the best out of Qt with the new C++14 additions
(lambdas, smart pointers, enum classes, and so on). These two technologies together bring
you a safe and powerful development toolbox. Throughout the book, we try to emphasize a
clean architecture that lets you create and maintain your application in a complex
environment.

Each chapter is based on an example project that is the basis of all the discussion. Here are
some tasters about what we will see in this book:

e Uncover gmake secrets

e Take a deep dive in the model/view architecture and study how you can build a complex
application with this pattern

e Study QML and Qt Quick applications in mobile

e Develop Qt 3D components using QML and JavaScript

e Show how to develop plugins and SDKs using Qt

e Cover the multi-threading technologies provided by Qt

¢ Build an IPC mechanism using sockets

e Serialize data using XML, JSON, and binary format

We'll cover all this and much, much more.

Note that you can take a look at Chapter 14, Qt Hat Tips and Tricks, whenever you want if you
want to get some development candies and see some code snippets that might make your
development more pleasurable.

And most importantly, have fun writing Qt applications!

What this book covers

Chapter 1, Get Your Qt Feet Wet, lays the fundamentals of Qt and refreshes your memory with
a todo application. This chapter covers the Qt project structure, how to use the designer, basic
principles of the signals and slots mechanism, and introduces new features of C++14.

Chapter 2, Discovering QMake Secrets, takes a deep dive in the heart of the Qt compilation
system: gmake. This chapter will help you understand how it works, how to use it, and how
you can structure a Qt application with platform-specific code by designing a system
monitoring application.

Chapter 3, Dividing Your Project and Ruling Your Code, analyzes the Qt model/view
architecture and how a project can be organized by developing a custom library with the core
logic of the application. The project example is a persistent gallery application.

Chapter 4, Conquering the Desktop UI, studies the Ul perspective of the model/view
architecture with a Qt Widget application relying on the library completed in the previous
chapter.

Chapter 5, Dominating the Mobile Ul, adds the missing part of the gallery application with the
mobile version (Android and iOS); the chapter covers it with the use of QML, Qt Quick
controls, and QML / C++ interactions.

Chapter 6, Even Qt Deserves a Slice of Raspberry Pi, continues to the road on Qt Quick
application with the Qt 3D perspective. This chapter covers how to build a 3D snake game
targeted at the Raspberry Pi.

Chapter 7, Third-Party Libraries Without a Headache, covers how a third-party library can be
integrated in a Qt project. OpenCV will be integrated with an image filter application that also
provides a custom QDesigner plugin.

Chapter 8, Animations, It’s Alive, Alive!, extends the image filter application by adding
animations and the ability to distribute a custom SDK to let other developers add their own
filters.

Chapter 9, Keeping Your Sanity with Multithreading, investigates the multithreading facilities
provided by Qt by building a multithreaded Mandelbrot fractal drawing application.

Chapter 10, Need IPC? Get Your Minions to Work, broadens the Mandelbrot fractal application
by moving the calculation to other processes and managing the communication using sockets.

Chapter 11, Having Fun with Serialization, covers multiple serialization formats (JSON,
XML, and binary) inside a drum machine application in which you can record and load sound

loops.

Chapter 12, You Shall (Not) Pass with QTest, adds tests to the drum machine application and
studies how the Qt Test frameworks can be used to make unit tests, benchmarking, and GUI
events simulation

Chapter 13, All Packed and Ready to Deploy, gives insights into how to package an
application on all desktop OSes (Windows, Linux, and Mac OS) and mobile platforms
(Android and iOS).

Chapter 14, Qt Hat Tips and Tricks, gathers some tips and tricks to develop with Qt with
pleasure. It shows how to manage sessions in Qt Creator, useful Qt Creator keyboard
shortcuts, how you can customize the logging, save it to disk, and much more.

What you need for this book

All the code in this book can be compiled and run from Qt Creator using Qt 5.7. You can do it
from your preferred OS: Windows, Linux, or Mac OS.

About the mobile-specific chapters, either an Android or an iOS device works, but it is not
mandatory (the simulator/emulator can be enough).

Chapter 6, Even Qt Deserves a Slice of Raspberry Pi, offers to build an application running on
a Raspberry Pi. Although it is more fun if we can do it with a real Raspberry Pi, it is not
necessary to have one to complete the chapter.

Who this book is for

This book will appeal to developers and programmers who would like to build GUI-based
application. You should be fluent with C++ and the object-oriented paradigm. Qt knowledge is
recommended, but is not necessary.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "The gmake command is
executed with the project .pro file."

A block of code is set as follows:

void MemoryWidget::updateSeries()

{
double memoryUsed = SysInfo::instance().memoryUsed();
mSeries->append(mPointPositionX++, memoryUsed);
if (mSeries->count() > CHART_X_RANGE_COUNT) {
QChart* chart = chartView().chart();
chart->scroll(chart->plotArea().width()
/ CHART_X_RANGE_MAX, 0);
mSeries->remove(0);
}
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

windows {
SOURCES += SysInfoWindowsImpl.cpp
HEADERS += SysInfowWindowsImpl.h

debug {
SOURCES += DebugClass.cpp
HEADERS += DebugClass.h

}

Any command-line input or output is written as follows:

/path/to/qt/installation/5.7/gcc_64/bin/qmake -makefile -o Makefile
/path/to/sysinfoproject/che2-sysinfo.pro

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In Qt Creator, when you click
on the Build button, gmake is invoked."

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book-
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of. To send us general feedback, simply e-

mail feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

Nouhkwh

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR / 7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/masteringgt5. We also have other code bundles from our
rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them
out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/masteringqt5
https://github.com/PacktPublishing/

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books-maybe a mistake in the text or the code-we would be
grateful if you could report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details of your errata. Once
your errata are verified, your submission will be accepted and the errata will be uploaded to
our website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the search
field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the
location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

Chapter 1. Get Your Qt Feet Wet

If you know C++ but have never touched Qt, or if you have made some intermediate Qt
applications, this chapter will ensure that your Qt foundations are safe before studying
advanced concepts in the following chapters.

We will teach you to create a simple todo application using Qt Creator. This application will
display a list of tasks that you can create/update/delete. We will cover the Qt Creator and Qt
Designer interfaces, an introduction to the signal/slot mechanism, the creation of a custom
widget with custom signals/slots, and its integration into your application.

You will implement a todo app using new C++14 semantics: lambdas, auto variables, and for
loops. Each one of these concepts will be explained in depth and will be used throughout the
book.

At the end of this chapter, you will be able to create a desktop application with a flexible Ul
using Qt widgets and new C++ semantics.

In this chapter, we will cover the following topics:

Qt project basic structure

Qt Designer interface

UI fundamentals

Signals and slots

Custom Qwidget

C++14 lambda, auto, for each

Creating a project
The first thing to do is to start Qt Creator.

In Qt Creator, you can create a new Qt project via File | New File or Project | Application
| Qt Widgets Application | Choose.

The wizard will then guide you through four steps:

1. Location: You must choose a project name and a location.

2. Kits: Target platforms that your project aims at (Desktop, Android, and so on).

3. Details: Base class information and name for the generated class.

4. Summary: Allows you to configure your new project as a subproject and automatically
add it to a version control system.

Even if all default values can be kept, please at least set a useful project name such as "todo"
or "TodoApp." We won't blame you if you want to call it "Untitled" or "Hello world."

Once done, Qt Creator will generate several files that you can see in the Projects hierarchy
view:

Frojects

I todopro

~- P, Headers
F MainWindow.h

~ B Sources

& main.cpp
& Mainwindow.cpp
v [# Forms

& MainWindow.ui

The .pro file is Qt's configuration project file. As Qt adds specific file formats and C++
keywords, an intermediate build step is performed, parsing all files to generate final files.
This process is done by gmake, an executable from the Qt SDK. It will also generate the final
Makefiles for your project.

A basic .pro file generally contains:

e Qt modules used (core, gui, and so on)

e Target name (todo, todo.exe, and so on)
e Project template (app, 1ib, and so on)
e Sources, headers, and forms

There are some great features that come with Qt and C++14. This book will showcase them in
all its projects. For GcCc and CLANG compilers, you must add CONFIG += c++14 to the .pro file
to enable C++14 on a Qt project, as shown in the following code:

QT += core gui
CONFIG += c++14

greaterThan(QT_MAJOR_VERSION, 4): QT += widgets

TARGET = todo
TEMPLATE = app

SOURCES += main.cpp \
MainwWindow.cpp

HEADERS += MainWindow.h \

FORMS += MainWindow.ui \

The Mainwindow.h and Mainwindow.cpp files are the headers/sources for the Mainwindow
class. These files contain the default GUI generated by the wizard.

The Mainwindow.ui file is your Ul design file in XML format. It can be edited more easily
with Qt Designer. This tool is a WYSIWYG (What You See Is What You Get) editor that
helps you to add and adjust your graphical components (widgets).

Here is the main.cpp file, with its well-known function:

#include "MainWindow.h"
#include <QApplication>

int main(int argc, char *argv[])

{
QApplication a(argc, argv);
MainWindow w;
w.show();
return a.exec();
}

As usual, the main.cpp file contains the program entry point. It will, by default, perform two
actions:

¢ Instantiate and show your main window
e Instantiate a QApplication and execute the blocking main event loop

This is the bottom-left toolbar for Qt Creator:

Use it to build and start your todo application in debug mode:

1. Check that the project is in Debug build mode.
2. Use the hammer button to build your project.
3. Start debugging using the green Play button with a little blue bug.

You will discover a wonderful and beautifully empty window. We will rectify this after
explaining how this Mainwindow is constructed:

MainWindow

An empty MainWindow screenshot

Tip

Qt tip

e Press Ctrl + B (for Windows/Linux) or Command + B (for Mac) to build your project
e Press F5 (for Windows / Linux) or Command +R (for Mac) to run your application in
debug mode

MainWindow structure

This generated class is a perfect yet simple example of Qt framework usage; we will dissect it
together. As mentioned previously, the Mainwindow.ui file describes your Ul design

and Mainwindow.h/ MainwWindow.cpp is the C++ object where you can manipulate the UI with
code.

It is important to take a look at the header file Mainwindow.h. Our Mainwindow object inherits
from Qt's QMainwindow class:

#include <QMainWindow>

namespace Ui {
class MainWindow;

}

class MainwWindow : public QMainWindow

{
Q OBJECT

public:
explicit MainWindow(Qwidget *parent = 0);
~MainwWindow();

private:
Ui::MainWindow *ui;

+;

As our class inherits from the QMainwindow class, on top of the header file, we add the
corresponding include. The second part is the forward declaration of the Ui: :Mainwindow, as
we only declare a pointer.

The Q 0BJECT can look a little strange to a non-Qt developer. This macro allows the class to
define its own signals/slots and more globally Qt's meta-object system. These features will be
covered later in this chapter.

This class defines a public constructor and destructor. The latter is pretty common. But the
constructor takes a parameter parent. This parameter is a Qwidget pointer that is null by
default.

A Qwidget is a Ul component. It can be a label, a textbox, a button, and so on. If you define a
parent-child relationship between your window, layout, and other Ul widgets, memory
management of your application will be easier. Indeed, in this case, deleting the parent is
enough because its destructor will take care of also deleting its child, which in turn will delete
its children and so on.

Our Mainwindow class extends QMainwindow from the Qt framework. We have a ui member

variable in the private fields. The type is a pointer of Ui::MainwWindow, which is defined in
the ui_Mainwindow.h file generated by Qt. It's the C++ transcription of the UI design

file Mainwindow.ui. The ui member variable will allow you to interact with your Ul
components (QLabel, QPushButton, and so on) from C++, as shown in the following figure:

QMainWindow

QLabel

MainWindow l»— Ui::MainWindow

QPushButton

Tip
C++ tip

If your class only uses pointers or references for a class type, you can avoid including the
header by using forward declaration. That will drastically reduce compilation time.

Now that the header part is done, we can talk about the Mainwindow.cpp source file.

In the following code snippet, the first include is our class header. The second one is the
include required by the generated class Ui: :Mainwindow. This include is required as we only
use a forward declaration in the header:

#include "MainWindow.h"
#include "ui_MainWindow.h"

MainwWindow: :MainWindow(Qwidget *parent)
QMainWindow(parent),
ui(new Ui::MainWindow)

ui->setupUi(this);

In many cases, Qt generates a good piece of code using the initializer list. The parent
argument is used to call the superclass constructor QMainwindow. Our private member
variable ui is also initialized now.

Now that ui is initialized, we must call the setupui function to initialize all widgets used by
the Mainwindow.ui design file:

As we initialize a pointer in the constructor, it must be cleaned in the destructor:

MainWindow: :~MainWindow ()

{
}

delete ui;

Qt Designer

Qt Designer is a major tool for developing Qt applications. This WYSIWYG editor will help
you easily design your GUL If you switch between Edit mode and Design mode for
the Mainwindow.ui file, you will see the real XML content and the designer:

o, Filter "t 2. " 1] object Class
Welcome | N8 Layouts Type Here - _
4 W nWindow ainWini
Y. MainWind QMainWindow
;Et i “Vertical | Zyout e i e S S S e S e % centralwidget [7] QWidget
[
o JUI] Horizontal Layout il Bl i e R etpaa detil B
.. mainToolBar ToolBar
433 Grid Layout St i et e S S St s e 2
Uuﬂ-‘ statusBar QStatusBar
* EgﬁFormLayout) it S S T R R B O e S S S
Deimiy M Spacers :_::_::_::_::_:1::_::_::_::_:_
L] R Horizortal:Spacer: I O e S S S S
Projects e = O S
e E Vertical Spacer Sl
m:lv.‘,_e 3 B_Utton's ..
P v Item Views (Mdyiel-Based) e
telp List\-fiew & S o MainWindow : QMainWindow
I <2 Tree View e o Sl Selein el sl sl v e Froperty Value
u:l E Table View L u '
< Column View objectName MainWindow
Dieby
k- ~ Item Widgets (Item-Based)
> List Widget Narne Used t Shortcut ch enabled L]
8 Tree widget > geometry [(0, 0), 400 x 3...
- B Table widget 5 > sizePolicy [Freferred, Pre...
(g - Containers » - minimumSize 0x0
- — -« JJAction Editor | Signals & Slots Editor B v

B3| search Resul.. &) Application ... JEN compile out... 5 QML/)S Con... Ji General Mes... |Ji§

The designer displays several parts:

e Form Editor: This is a visual representation of the form (empty for now)

Widget Box: This contains all widgets that can be used with your form

Object Inspector: This displays your form as a hierarchical tree

Property Editor: This enumerates the properties of the selected widget

Action Editor/Signal & Slots Editor: This handles connections between your objects

It's time to embellish this empty window! Let's drag and drop a Label widget from the Display
Widgets section on the form. You can change the name and the text properties from the
properties editor.

As we are making a todo application, we suggest these properties:

® objectName: statusLabel
® text: Status: 0 todo/0 done

This label will later display the count of todo tasks and the count of tasks already done. OK,

save, build, and start your application. You should now see your new label in the window.

You can now add a push button with those properties:

® objectName: addTaskButton
® text: Add task

You should get a result close to this:

]] m | Object Inspector
Type Here Ohject Class
DUy e = MainWindow QMainWindow
e addsk B v B centralWidget [Z] QWidget
.. addTaskButton E Q’FUShBUttGH
e statusLabel % QLabel
Sl le e e s menuBar QMenuBar
e mainToolBar QToolBar
s statusBar QstatusBar
|| L u

Tip

Qt tip

You can edit the text property of a widget directly on your form by double-clicking on it!

Signals and slots

The Qt framework brings a flexible message exchange mechanism through three concepts:
signals, slots, and connections:

e A signal is a message sent by an object
e A slot is a function that will be called when this signal is triggered
e The connect function specifies which signal is linked to which slot

Qt already provides signals and slots for its classes, which you can use in your application.
For example, QPushButton has a signal clicked(), which will be triggered when the user
clicks on the button. The QApplication class has a slot quit() function, which can be called
when you want to terminate your application.

Here is why you will love Qt signals and slots:

e Aslotremains an ordinary function, so you can call it yourself

e Asingle signal can be linked to different slots

e Asingle slot can be called by different linked signals

e A connection can be made between a signal and a slot from different objects, and even
between objects living inside different threads!

Keep in mind that, to be able to connect a signal to a slot, their methods' signatures must
match. The count, order, and type of arguments must be identical. Note that signals and slots
never return values.

This is the syntax of a Qt connection:

connect(sender, &Sender::signalName,
receiver, &Receiver::slotName);

The first test that we can do to use this wonderful mechanism is to connect an existing signal
with an existing slot. We will add this connect call to the Mainwindow constructor:

MainwWindow: :MainWindow(QwWidget *parent)
QMainWindow(parent),
ui(new Ui::MainWindow)

{
ui->setupUi(this);
connect(ui->addTaskButton, &QPushButton::clicked,
QApplication::instance(), &QApplication::quit);

}

Let's analyze how a connection is done:

e sender: This is the object that will send the signal. In our example, it is the QPushButton

named addTaskButton added from the Ul designer.

e &Sender::signalName: This is the pointer to the member signal function. Here, we want
do something when the clicked signal is triggered.

e receiver: This is the object that will receive and handle the signal. In our case, it is
the QApplication object created in main.cpp.

e &Receiver::slotName: This is a pointer to one of the receiver's member slot functions. In
this example, we use the built-in quit() slot from Qapplication, which will exit the
application.

You can now compile and run this short example. You will terminate the application if you
click on the addTaskButton of your Mainwindow.

Tip

Qt tip

You can connect a signal to another signal. The second signal will be emitted when the first
one is triggered.

Now that you know how to connect a signal to an existing slot, let's see how to declare and
implement a custom addTask () slotin our Mainwindow class. This slot will be called when the
user clicks on ui->addTaskButton.

This is the updated Mainwindow.h:

class MainwWindow : public QMainWindow

{
Q OBJECT

public:
explicit MainWindow(Qwidget *parent = 0);
~MainwWindow();

public slots:
void addTask();

private:
Ui::MainWindow *ui;

+;

Qt uses a specific slot keyword to identify slots. Since a slot is a function, you can always
adjust the visibility (public, protected or private) depending on your needs.
Add this slot implementation in the Mainwindow.cpp file:

void MainWindow::addTask()

{

gDebug() << "User clicked on the button!";
}

Qt provides an efficient way of displaying debug information with the QDebug class. An easy
way to obtain a QDebug object is to call the gbebug() function. Then, you can use the stream
operator to send your debug information.

Update the top of the file like this:

#include <QDebug>

MainwWindow: :MainWindow(Qwidget *parent)
QMainWindow(parent),
ui(new Ui::MainWindow)

{
ui->setupUi(this);
connect(ui->addTaskButton, &QPushButton::clicked,
this, &MainWindow::addTask);

}

Since we now use gDebug() in out slot, we must include <QDebug>. The updated connect now
calls our custom slot instead of quitting the application.

Build and run the application. If you click on the button, you will see your debug message
inside the Qt Creator Application Output tab.

Custom QWidget

We now have to create the Task class that will hold our data (task name and completed status).
This class will have its form file separated from Mainwindow. Qt Creator provides an
automatic tool to generate a base class and the associated form.

Click on File | New File or Project | Qt | Qt Designer Form Class. There are several form
templates; you will recognize Main Window, which Qt Creator created for us when we started
the todo app project. Select Widget and name the class Task, then click on Next. Here is a
summary of what Qt Creator will do:

1. Create a Task.h file and a Task.cpp file.
2. Create the associated Task.ui and do the plumbing to connect it to Task.h.
3. Add these three new files to todo.pro so they can be compiled.

Finish and, voilA , the Task class is ready to be filled. We will jump into the Task.ui first.
Start by dragging and dropping a Check Box (put checkbox in the objectName) and a Push
Button (objectName = removeButton):

LT e S S, e e S ey m | Object Inspector

Bl e e s | |Dhjed Class
e e | 7]
P e checkbox @ QCheckBox
PR e removeButton [&] QPushButton
Bl S) Remove B

ok PR L

el TERFMAE G s

RS RRRRE Siiririiiiiiiiiy |

My alignment looks great, let's ship this to the customers!

Unless you have a pixel-perfect eye, your items are not very well aligned. You need to
indicate how your widgets should be laid out and how they should react when the window
geometry changes (for example, when the user resizes the window). For this, Qt has several
default layout classes:

e Vertical Layout: In this layout, widgets are vertically stacked

e Horizontal Layout: In this layout, widgets are horizontally stacked

e Grid Layout: In this layout, widgets are arranged in a grid that can be subdivided into
smaller cells

e Form Layout: In this layout, widgets are arranged like a web form, a label, and an input

Every layout will try to constrain all widgets to occupy equal surfaces. It will either change
the widgets' shape or add extra margins, depending on each widget's constraints. A Check Box
will not be stretched but a Push Button will.

In our Task object, we want this to be horizontally stacked. In the Form Editor tab, right-click
on the window and select Lay out | Lay out Horizontally. Each time you add a new widget in
this layout, it will be arranged horizontally.

Now add a Push Button (objectName = editButton) line just after the checkbox object.

The Form Editor window offers a realistic preview of how your Ul will render. If you stretch
the window now, you can observe how each widget will react to this event. When resizing
horizontally, you can note that the push buttons are stretched. It looks bad. We need something
to "hint" to the layout that these buttons should not be stretched. Enter the Spacer widget. Take
the Horizontal Spacer in the widget box and drop it after the checkbox object:

Mo W Object Inspector

e e e e e e e e Ohbject Class

i i i D e S e e e S =]| B

m [| Buy Milk . F.r.r.r:r.r.r.'r.r.r.r'.r.r.r:r.r.r.'r.r.r.r'.r.r.r:r.r.r.'r.r.r.r'.r.r.r:r.r.r.'r.r.r.r'.r.r.r Edit Remove theckbox B OQCheckBox
i e R e e D editButton &) QFushButton
.. |'|Dr|IDr-|talSpacE|' “ Spacer

A spacer is a special widget that tries to push (horizontally or vertically) adjacent widgets to
force them to take up as little space as possible. The editButton and removeButton objects
now take up only the space of their text and will be pushed to the edge of the window when it
is resized.

You can add sub layouts of any type in a form (vertical, horizontal, grid, form) and create a
complex-looking application with a combination of widgets, spacers, and layouts. These tools
are targeted at designing a good-looking desktop application that can react properly to
different window geometries.

The Designer part is finished, so we can switch to the Task source code. Since we created a Qt
Designer Form class, Task is closely linked to its UL. We will use this as leverage to store our

model in a single place. When we create a Task object, it has to have a name:

#ifndef TASK_H
#define TASK_H

#include <Qwidget>
#include <QString>

namespace Ui {
class Task;

}
class Task : public Qwidget
{
Q_OBJECT
public:
explicit Task(const QString& name, Qwidget *parent = 0);
~Task();
void setName(const QString& name);
QString name() const;
bool isCompleted() const;
private:
Ui::Task *ui;
Iy

#endif // TASK_H

The constructor specifies a name, and as you can see there are no private fields storing any
state of the object. All this will be done in the form part. We also added some getters and
setters that will interact with the form. It is better to have a model completely separated from
the UI, but our example is simple enough to merge them. Moreover, Task implementation
details are hidden from the outside world and can still be refactored later on. Here is the
content of the Task.cpp file:

#include "Task.h"
#include "ui_Task.h"

Task::Task(const QString& name, Qwidget *parent)
Qwidget(parent),
ui(new Ui::Task)

{
ui->setupUi(this);
setName(name) ;

3

Task::~Task()

{

delete ui;

}

void Task::setName(const QString& name)

{

ui->checkbox->setText(name);
}
QString Task::name() const
{

return ui->checkbox->text();
}
bool Task::isCompleted() const
{

return ui->checkbox->isChecked();

}

The implementation is straightforward; we store the information in our ui->checkbox and
the name() and isCompleted() getters take their data from the ui->checkbox.

Adding a task

We will now rearrange the layout of Mainwindow to be able to display our todo tasks. Right
now, there is no widget where we can display our tasks. Open the Mainwindow.ui file and edit
it to get the following result:

S [e e o m | Object Inspector

S“atL:E. :ﬂ:tédo:y’ :D:dq.}r.ﬁe: }v.f.r.r..r.r.r.r..r.r.r.f.r.r..r.r.r.r..r.r.r.f.r.r..r.r.r.r..r.r.r.f.r.r..r.r.r.r..r.r.r.f.r.r..r.r.r.r..r.r.ﬂ: Add task ijf":t Class
............... -~ Main
el e e e = centralWidget | QWidget
::::::::::::::::::::§::::::::::::::::::: ¥ [l toolbarLayout Jll QHBoxLayout
.................... E L addTaskButton :]QF'LISI"IBLITECII'I
::::::::::::::::::::g::::::::::::::::::: statusLabel &y Qlabel
.'ZZZZZZZZZZZZZZZZZZZ?,ZZZZZZZZZZZZZZZZZZZ. = tasksLayout = QVBoxLayout
ZZZZZZZZZZZZZZZZZZZEZZZZZZZZZZZZZZZZZZZ verticalSpacer B Spacer
:::::::::::::::::::i::::::::::::::::::

m = m

If we detail the content, we have:

e Avertical layout for centralwidget containing the toolbarLayout file and
the tasksLayout file.

e A vertical spacer pushing these layouts to the top, forcing them to take up the smallest
possible space.

e We gotrid of menuBar, mainToolBar, and statusBar. Qt Creator created them
automatically, we simply don't need them for our purposes. You can guess their uses
from their names.

Do not forget to rename the Mainwindow title to Todo by selecting the MainWindow in
the Object Inspector window and editing the Qwidget | windowT itle property. Your app
deserves to be named properly.

Tip
Qt Tip

Press Shift + F4 in Designer mode to switch between the form editor and the source.

Now that the Mainwindow Ul is ready to welcome tasks, let's switch to the code part. The
application has to keep track of the new tasks. Add the following in the Mainwindow.h file:

#include <QVector>
#include "Task.h"

class MainwWindow : public QMainWindow

{
// MAINWINDOW_H

public slots:
void addTask();

private:
Ui::MainWindow *ui;
QVector<Task*> mTasks;

+;

The Qvector is the Qt container class providing a dynamic array, which is an equivalent of
the std::vector. As a general rule, STL containers are more customizable but might miss
some features compared to Qt containers. If you use C++11 smart pointers, you should
favor std containers, but we will get into that later.

In the Qt documentation of Qvector, you might stumble upon the following statement: "For
most purposes, QList is the right class to use". There is a debate about this in the Qt
community:

e Do you often need to insert objects larger than a pointer at the beginning or in the middle
of your array? Use a QList class.

e Need contiguous memory allocation? Less CPU and memory overhead? Use a Qvector
class.

The already added slot addTask () will now be called each time we want to add a new Task
object to the mTasks function.

Let's fill our Qvector tasks each time addTaskButton is clicked. First, we connect
the clicked () signal in the Mainwindow.cpp file:

MainWindow: :MainwWindow(Qwidget *parent)
QMainWindow(parent),
ui(new Ui::MainWindow),
mTasks()

ui->setupUi(this);
connect(ui->addTaskButton, &QPushButton::clicked,
this, &MainWindow::addTask);

+;

Tip

C++ tip

As a best practice, try to always initialize member variables in the initializer list and respect
the order of variable declarations. Your code will run faster and you will avoid unnecessary

variable copies. Take a look at the standard C++ documentation at
https://isocpp.org/wiki/fag/ctors#init-lists.

The body of the addTask () function should look like this:

void MainWindow::addTask()

{
gDebug() << "Adding new task";
Task* task = new Task("Untitled task");
mTasks.append(task);
ui->taskslLayout->addwidget(task);

}

We created a new task and added it to our mTask vector. Because Task is a Qwidget, we also
added it directly to the tasksLayout. An important thing to note here is that we never managed
this new task's memory. Where is the delete task instruction? This is a key feature of the Qt
Framework we started to broach earlier in the chapter; the Qobject class parenting
automatically handles object destruction.

In our case, the ui->tasksLayout->addwidget(task) call has an interesting side-effect; the
ownership of the task is transferred to tasksLayout. The Qobject* parent defined in Task
constructor is now tasksLayout, and the Task destructor will be called when tasksLayout
releases its own memory by recursively iterating through its children and calling their
destructor.

This will happen at this precise moment:

MainWindow: :~MainWindow ()

{
}

delete ui;

When Mainwindow is released (remember, it's a stack variable allocated in the main.cpp file),
it will call delete ui, which in turn will bring down the whole Qobject hierarchy. This
feature has interesting consequences. First, if you use the Qobject parenting model in your
application, you will have much less memory to manage. Second, it can collide with some
new C++11 semantics, specifically the smart pointers. We will get into that in later chapters.

https://isocpp.org/wiki/faq/ctors#init-lists

Using a QDialog

We deserve something better than an untitled task. The user needs to define its name when it's
created. The easiest path would be to display a dialog where the user can input the task name.
Fortunately Qt offers us a very configurable dialog that fits perfectly in addTask():

#include <QInputDialog>

void MainWindow::addTask()
{
bool ok;
QString name = QInputDialog::getText(this,
tr("Add task"),
tr("Task name"),
QLineEdit::Normal,
tr("Untitled task"), &ok) ;
if (ok && !'name.isEmpty()) {
gDebug() << "Adding new task";
Task* task = new Task(name);
mTasks.append(task);
ui->tasksLayout->addwidget(task);

}

The QinputDialog::getText function is a static blocking function that displays the dialog.
When the user validates/cancels the dialog, the code continues. If we run the application and
try to add a new task, we'll see this:

N 4 Add task ? v AR

Task name

Untitled task

OK Cancel

The QInputDialog: :getText signature looks like this:

QString QinputDialog::getText(
Qwidget* parent,
const QString& title,
const QString& label,
QLineEdit::EchoMode mode = QLineEdit::Normal,
const QString& text = QString(),
bool* ok = 0, ...)

Let's break it down:

parent: This is the parent widget (Mainwindow) to which the Qinputbialog is attached.
This is another instance of the Qobject class's parenting model.

title: This is the title displayed in the window title. In our example, we use tr("Add
task"), which is how Qt handles i18n in your code. We will see later on how to provide
multiple translations for a given string.

label: This is the label displayed right above the input text field.

mode: This is how the input field is rendered (password mode will hide the text).

ok: This is a pointer to a variable that is set to true if the user presses OK and to false if
the user presses Cancel.

Qstring: The returned QString is what the user has typed.

There are a few more optional parameters we can safely ignore for our example.

Distributing code responsibility

Great, the user can now specify the task name when it's created. What if he makes an error
when typing the name? The next logical step is to rename the task after we created it. We'll
take a slightly different approach. We want our Task to be as autonomous as possible. If we
attach it to another component (rather than Mainwindow), this renaming feature has to keep
working. Thus, this responsibility has to be given to the Task class:

// In Task.h
public slots:
void rename();

// In Task.cpp
#include <QInputDialog>

Task::Task(const QString& name, Qwidget *parent)
Qwidget(parent),
ui(new Ui::Task)

{
ui->setupUi(this);
setName(name);
connect(ui->editButton, &QPushButton::clicked, this, &Task::rename);
}
void Task::rename()
{
bool ok;
QString value = QInputDialog::getText(this, tr("Edit task"),
tr("Task name"),
QLineEdit::Normal,
this->name(), &ok);
if (ok && !value.isEmpty()) {
setName(value);
}
}

We add a public slot rename() to connect it to a signal. The body of rename() reuses what we
had previously covered with QInputbialog. The only difference is the QInputbialog default
value, which is the current task name. When setName(value) is called, the Ul is instantly
refreshed with the new value; there's nothing to synchronize or update, the Qt main loop will
do its job.

The nice thing is that Task: :rename() is completely autonomous. Nothing has been modified
in Mainwindow, so we have effectively zero coupling between our Task and the
parent Qwidget.

Emitting a custom signal using lambdas

The remove task is straightforward to implement, but we'll study some new concepts along
the way. The Task has to notify its owner and parent (Mainwindow) that

the removeTaskButtonQPushButton has been clicked. We'll implement this by defining a
custom signal removed in Task.h files:

class Task : public Qwidget
{

public slots:
void rename();
signals:
void removed(Task* task);

+;

Like we did for the slots, we have to add the Qt keyword signals in our header. Since a signal
is used only to notify another class, the public keyword is not needed (it even raises a
compilation error). A signal is simply a notification sent to the receiver (the

connected slot); it implies that there is no function body for the removed (Task* task)
function. We added the task parameter to allow the receiver to know which task asked to be
removed. The next step is to emit the removed signal upon the removeButton click. This is
done in the Task.cpp file:

Task::Task(const QString& name, Qwidget *parent)
Qwidget(parent),
ui(new Ui::Task)

{
ui->setupUi(this);
connect(ui->removeButton, &QPushButton::clicked, [this] {
emit removed(this);
3);
}

This code excerpt shows a very interesting feature of C++11: lambdas. In our example,
the lambda is the following part:
[this] {

emit removed(this);

1)

What we did here is to connect the clicked signal to an anonymous inline function, a lambda.
Qt allows signal relaying by connecting a signal to another signal if their signatures match.
It's not the case here; the clicked signal has no parameter and the removed signal needs

a Task*. A lambda avoids the declaration of a verbose slot in Task. Qt 5 accepts a lambda

instead of a slot in a connect, and both syntaxes can be used.

Our lambda executes a single line of code: emit removed(this).Emit is a Qt macro that will
immediately trigger the connected slot with what we passed in a parameter. As we said
earlier, removed (Task* this) has no function body, its purpose is to notify the registered slot
of an event.

Lambdas are a great addition to C++. They offer a very practical way of defining short
functions in your code. Technically, a 1ambda is the construction of a closure capable of
capturing variables in its scope. The full syntax goes like this:

[capture-1list] (params) -> ret { body }

Leta€™s study each part of this statement:

e capture-1list: This defines what variables will be visible inside the 1ambda scope.

e params: This is the function parameters type list that can be passed to the 1ambda scope.
There are no parameters in our case, We might have written [this] () { ... 3}, but
C++11 lets us skip the parentheses altogether.

e ret: This is the return type of the lambda function. Just like params, this parameter can be
omitted if the return type is void.

e body: This is obviously your code body where you have access to your capture-1ist,
and params, and which must return a variable with a type ret.

In our example, we captured the this pointer to be able to:

e Have a reference on the removed() function, which is a part of the Task class. If we did
not capture this, the compiler would have shouted error: 'this' was not captured
for this lambda function emit removed(this);.

e Pass this to the removed signal; the caller needs to know which task triggered removed.

The capture-1ist relies on standard C++ semantics: capture variables by copy or by
reference. Let us say that we wanted to print a log of the constructor parameter name and we
capture it by reference in our lambda:

connect(ui->removeButton, &QPushButton::clicked, [this, &name] {
gbebug() << "Trying to remove" << name;
this->emit removed(this);

1)

This code will compile fine. Unfortunately, the runtime will crash with a dazzling
segmentation fault when we try to remove a Task. What happened? As we said, our lambda is
an anonymous function that will be executed when the clicked() signal has been emitted. We
captured the name reference, but this reference may be - and is - invalid once we get out

of Task constructor (more precisely, from the caller scope). The qbebug () function will then

try to display an unreachable code and crash.

You really want to be careful with what you capture and the context in which your lambda will
be executed. In this example, the segmentation fault can be amended by capturing the name by

copy:

connect(ui->removeButton, &QPushButton::clicked, [this, name] {
gbebug() << "Trying to remove" << name;
this->emit removed(this);

3);
Tip
C++ Tip

¢ You can capture by copy or reference all variables that are reachable in the function
where you define your lambda with the syntax [=] and [&].

e The this variable is a special case of the capture list. You cannot capture it by
reference [&this] and the compiler will warn you if you are in this situation: [=, this].
Don't do this. Kittens will die.

Our lambda is passed directly as a parameter to the connect function. In other words,

the lambda is variable. This has many consequences: we can call it, assign it, and return it. To
illustrate a "fully formed" lambda, we can define one that returns a formatted version of the
task name. The sole purpose of this snippet is to investigate the lambda function's machinery.
Don't include the following code in your todo app, your colleagues might call you something
like a "functional zealot™:

connect(ui->removeButton, &QPushButton::clicked, [this, name] {
gbebug() << "Trying to remove" <<
[T (const QString& taskName) -> QString {
return "-------- " + taskName.toUpper();
}(name);
this->emit removed(this);

3);
Here we did a tricky thing. We called qDebug(); inside this call we defined a 1ambda which is
immediately executed. Let's analyze it:

e []: We performed no capture. The 1ambda does not depend on the enclosing function.
e (const Qstring& taskName): When this lambda is called, it will expect a QString to

work on.
e -> Qstring: The returned value of the lambda will be a Qstring.
e return "------- " + taskName.toUpper (): the body of our lambda. We return a

concatenation of a string and the uppercase version of the parameter taskName. As you
can see, string manipulation becomes a lot easier with Qt.
e (name): Here comes the catch. Now that the 1ambda function is defined, we can call it

passing the name parameter. In a single instruction, we define it and call it.
The QDebug () function will simply print the result.

The real benefit of this 1ambda will emerge if we are able to assign it to a variable and call it
multiple times. C++ is statically typed, so we must provide the type of our lambda variable. In
the language specification, a 1lambda type cannot be explicitly defined. We'll see soon how we
can do it with C++11. For now, let's finish our remove feature.

Task now emits the removed () signal. This signal has to be consumed by Mainwindow:

// in MainWindow.h
public slots:
void addTask();
void removeTask(Task* task);

// In MainWindow.cpp
void MainWindow::addTask()

{
if (ok && !'name.isEmpty()) {
gDebug() << "Adding new task";
Task* task = new Task(name);
connect(task, &Task::removed,
this, &MainWindow::removeTask);
}
}
void MainWindow::removeTask(Task* task)
{
mTasks.removeOne(task);
ui->taskslLayout->removewidget(task);
task->setParent(0);
delete task;
}

The Mainwindow: :removeTask () must match the signal signature. The connection is made
when the task is created. The interesting part comes in the implementation of
MainWindow: :removeTask ().

The task is first removed from the mTasks vector. It is then removed from tasksLayout.
Here, tasksLayout releases its ownership of task (that is, tasksLayout ceases to be the task
class's parent).

So far so good. The next two lines are interesting. The ownership transfer does not
completely release the task class ownership. If we commented these lines, here is how
removeTask () will look:

void MainWindow::removeTask(Task* task)

mTasks.removeOne(task);
ui->tasksLayout->removewidget(task);
// task->setParent(0);

// delete task;

}

If you add a log message in Task destructor and execute the program, this log message will be
displayed. Nonetheless, the Qt documentation tells us in Qlayout: : removewidget part: The
ownership of a widget remains the same as when it was added.

Instead, what really happens is that the task class's parent becomes centralwidget,
the tasksLayout class's parent. We want Qt to forget everything about task, that's why we
call task->setParent(0). We can then safely delete it and call it a day.

Simplifying with the auto type and a range-
based for loop

The final step to a complete CRUD of our tasks is to implement the completed task feature.
We'll implement the following:

e Click on the checkbox to mark the task as completed
e Strike the task name
e Update the status label in Mainwindow

The checkbox click handling follows the same pattern as removed:

// In Task.h
signals:

void removed(Task* task);

void statusChanged(Task* task);
private slots:

void checked(bool checked);

// in Task.cpp

Task::Task(const QString& name, Qwidget *parent)
Qwidget(parent),
ui(new Ui::Task)

connect(ui->checkbox, &QCheckBox::toggled,
this, &Task::checked);

void Task::checked(bool checked)

{
QFont font(ui->checkbox->font());
font.setStrikeOut(checked);
ui->checkbox->setFont(font);
emit statusChanged(this);

}

We define a slot checked (bool checked) that will be connected to the checkbox: :toggled
signal. In our slot checked(), we strike out the checkbox text according to the bool checked
value. This is done using the QFont class. We create a copy font from the checkbox->font(),
modify it, and assign it back to ui->checkbox. If the original font was in bold, with a special
size, its appearance would be guaranteed to stay the same.

Tip

Play around with the font object in Qt Designer. Select the checkbox in the Task.ui file and go
to Properties Editor | QWidget | font.

The last instruction notifies Mainwindow that the Task status has changed. The signal name
is statusChanged, rather than checkboxChecked, to hide the implementation details of the task.
Add the following code in the Mainwindow.h file:

// In MainWindow.h
public:
void updateStatus();
public slots:
void addTask();
void removeTask(Task* task);
void taskStatusChanged(Task* task);

// In MainWindow.cpp

MainwWindow: :MainWindow(Qwidget *parent)
QMainWindow(parent),
ui(new Ui::MainWindow),

mTasks()
{
updateStatus();
}
}
void MainWindow::addTask()
{
if (ok && !'name.isEmpty()) {
connect(task, &Task::removed, this,
&MainWindow: :removeTask);
connect(task, &Task::statusChanged, this,
&MainWindow: :taskStatusChanged);
mTasks.append(task);
ui->taskslLayout->addwidget(task);
updateStatus();
}
}
void MainWindow::removeTask(Task* task)
{
delete task;
updateStatus();
}
void MainWindow::taskStatusChanged(Task* /*task*/)
{

updateStatus();
}

void MainWindow::updateStatus()

{
int completedCount = 0;
for(auto t : mTasks) {
if (t->isCompleted()) {
completedCount++;
}
}
int todoCount = mTasks.size() - completedCount;
ui->statusLabel->setText(
QString("Status: %1 todo / %2 completed")
.arg(todoCount)
.arg(completedCount));
}

We defined a slot taskStatusChanged, which is connected when a task is created. The single
instruction of this slot is to call updateStatus(). This function iterates through the tasks and
updates the statusLabel. The updateStatus() function is called upon task creation and
deletion.

In updateStatus(), we meet more new C++11 semantics:

for(auto t : mTasks) {
}

The for keyword lets us loop over a range-based container. Because Qvector is an iterable
container, we can use it here. The range declaration (auto t) is the type and variable name that
will be assigned at each iteration. The range expression (mTasks) is simply the container on
which the process will be done. Qt provides a custom implementation of the for

(namely foreach) loop targeted at prior versions of C++; you don't need it anymore.

The auto keyword is another great new semantic. The compiler deduces the variable type
automatically based on the initializer. It relieves a lot of pain for cryptic iterators such as this:

std::vector::const_iterator iterator = mTasks.toStdVector()
.stdTasks.begin();

// how many neurones did you save?
auto autoIter = stdTasks.begin();

Since C++14, auto can even be used for function return types. It's a fabulous tool, but use it
sparingly. If you put auto, the type should be obvious from the signature name/variable name.

Tip

The auto keyword can be combined with const and references. You can write a for loop like

this: for (const auto & t : mTasks) { ... }.

Remember our half bread 1ambda? With all the covered features, we can write:

auto prettyName = [] (const QString& taskName) -> QString {
return "-------- " + taskName.toUpper();
3
connect(ui->removeButton, &QPushButton::clicked,
[this, name, prettyName] {
gbebug() << "Trying to remove" << prettyName(name);
this->emit removed(this);

1)

Now that's something beautiful. Combining auto with 1ambda makes very readable code and
opens up a world of possibilities.

The last item to study is the QString APIL We used it in updateStatus():

ui->statusLabel->setText(
QString("Status: %1 todo / %2 completed")
.arg(todoCount)
.arg(completedCount));

The people behind Qt put a lot of work into making string manipulation bearable in C++. This
is a perfect example, where we replace the classic C sprintf with a more modern and robust
API. Arguments are position-based only, no need to specify the type (less error-prone), and
the arg(...) function accepts all kinds of types.

Tip
Take some time to skim through the QString documentation at http://doc.qt.io/qt-

5/gstring.html. It shows how much you can do with this class and you'll see yourself using
fewer and fewer examples of std string or even cstring.

http://doc.qt.io/qt-5/qstring.html

Summary

In this chapter, we created a desktop Qt application from scratch. Qt is well known for its
signal/slot mechanism and you must be confident with this paradigm. We also introduced
some important C++14 features that will be used all through this book.

It's now time to discover some gmake secrets and what is really done when you build your Qt
project. In the next chapter, we will also talk about how to create and organize an application
with some platform-dependent code that must run on Windows, Mac OS, and Linux.

Chapter 2. Discovering QMake Secrets

This chapter addresses the issue of creating a cross-platform application that relies on
platform-specific code. We will see the impact of gmake on the compilation of your project.

You will learn how to create a system monitoring application that retrieves the average CPU
load and the memory used from Windows, Linux, and Mac. For this kind of OS dependent
application, architecture is the key to keeping your application reliable and maintainable.

At the end of this chapter, you will be able to create and organize a cross-platform application
that uses platform-specific code and displays Qt Charts widgets. Moreover, gmake will not be
a mystery anymore.

This chapter covers the following topics:

Platform-specific code organization
Design patterns, strategy, and singleton
Abstract class and pure virtual function
Qt Charts

The gmake tool

Designing a cross-platform project

We want to display some visual gauges and chart widgets, so create a new Qt widgets
Application called che2-sysinfo. As already discussed in Chapter 1, Get Your Qt Feet Wet, Qt
Creator will generate some files for us: main.cpp, Mainwindow.h, Mainwindow.cpp,

and Mainwindow.ui.

Before diving into the C++ code, we must think about the software's architecture. This project
will handle multiple desktop platforms. Thanks to the combination of C++ and Qt, most of the
source code will be common to all targets. However, to retrieve both the CPU and memory
usage from the OS (operating system), we will use some platform-specific code.

To successfully achieve this task, we will use two design patterns:

e Strategy pattern: This is an interface that describes functionalities (for example,
retrieve CPU usage), and specific behaviors (retrieve CPU usage on Windows/Mac
OS/Linux) will be performed into subclasses that implement this interface.

¢ Singleton pattern: This pattern guarantees a single instance for a given class. This
instance will be easily accessible with a unique access point.

As you can see in the following diagram, the class SysInfo is our interface with the strategy
pattern, and is also a singleton. The specific behavior from the strategy pattern is performed
in the classes SysinfowindowsImpl, SysInfoMacImpl, and SysInfolLinuxImpl,

subclassing SysInfo:

Singleton Sysinfo

SysinfoWindowsimpl SysinfoMaclimpl SysinfoLinuximpl

The UI part will only know and use the SysInfo class. The platform-specific implementation
class is instantiated by the SysInfo class, and the caller doesn't need to know anything about
the SysInfo child classes. As the SysInfo class is a singleton, access will be easier for all
widgets.

Let's begin by creating the SysInfo class. On Qt Creator, you can create a new C++ class from
the contextual menu, accessible with a right click on the project name in the hierarchy view.
Then click on the Add new option, or from the menu, go to File | New file or project | Files

and classes. Then perform the following steps:

1. Go to C++ Class | Choose.

2. Set the Class name field to SysInfo. As this class does not inherit from another class, we
do not need to use the Base class field.

3. Click on Next, then Finish to generate an empty C++ class.

We will now specify our interface by adding three pure virtual functions:
init(), cpuLoadAverage(), and memoryUsed():

// In SysInfo.h
class SysInfo

{
public:
SysInfo();
virtual ~SysInfo();
virtual void init() = 0;
virtual double cpuLoadAverage() = 0;
virtual double memoryUsed() = 0O;
Iy

// In SysInfo.cpp
#include "SysInfo.h"

SysInfo::SysInfo()

{
}

SysInfo::~SysInfo()
{
¥

Each of these functions has specific roles:

e init(): This function allows the derived class to perform any initialization process
depending on the OS platform

e cpuLoadAverage(): This function calls some OS-specific code to retrieve the average
CPU load and returns it as a percentage value

e memoryUsed(): This function calls some OS-specific code to retrieve the memory used
and returns it as a percentage value

The virtual keyword indicates that the function can be overridden in a derived class. The = 0
syntax means that this function is pure virtual, and must be overridden in any concrete derived
class. Moreover, this makes SysInfo an abstract class that cannot be instantiated.

We also added an empty virtual destructor. This destructor must be virtual to ensure that any
deletion of an instance of a derived class--from a base class pointer--will call the derived

class destructor and not only the base class destructor.

Now that our SysInfo class is an abstract class and ready to be derived, we will describe three
implementations: Windows, Mac OS, and Linux. You can also perform only one

implementation if you would rather not use the other two. We will not make any judgment on
this. The SysInfo class will be transformed into a singleton after adding the implementations.

Adding the Windows implementation

Remember the UML diagram at the beginning of this chapter? The SysInfowindowsImpl class
is one of the classes derived from the SysInfo class. The main purpose of this class is to
encapsulate the Windows-specific code to retrieve CPU and memory usage.

It's time to create the SysInfowindowsImpl class. To do that, you need to perform the
following steps:

1. Right click on the ch62-sysinfo project name in the hierarchy view.
Click on Add New | C++ Class | Choose.

Set the Class name field to SysInfowindowsImpl.

Set the Base class field to <Custom> and write under the SysInfo class.
Click on Next then Finish to generate an empty C++ class.

ok W

These generated files are a good starting point, but we must tune them:

#include "SysInfo.h"

class SysInfowWwindowsImpl : public SysInfo

{
public:
SysInfowWwindowsImpl();
void init() override;
double cpuLoadAverage() override;
double memoryUsed() override;
Iy

The first thing to do is to add the include directive to our parent class, SysInfo. You can now
override virtual functions defined in the base class.

Tip
Qt Tip

Put your cursor on a derived class name (after the keyword class) and press Alt + Enter
(Windows / Linux) or Command + Enter (Mac) to automatically insert virtual functions of the
base class.

The override keyword comes from C++11. It ensures that the function is declared as virtual
in the base class. If the function signature marked as override does not match any parent
class' virtual function, a compile-time error will be displayed.

Retrieving the current memory used on Windows is easy. We will begin with this feature in

the SysInfowindowsImpl.cpp file:

#include "SysInfowWindowsImpl.h"
#include <windows.h>

SysInfowWwindowsImpl::SysInfowWwindowsImpl()
SysInfo(),

{
}
double SysInfowindowsImpl::memoryUsed()
{
MEMORYSTATUSEX memoryStatus;
memoryStatus.dwLength = sizeof (MEMORYSTATUSEX) ;
GlobalMemoryStatuseEx (&memoryStatus);
gqulonglong memoryPhysicalUsed =
memoryStatus.ullTotalPhys - memoryStatus.ullAvailPhys;
return (double)memoryPhysicalUsed /
(double)memoryStatus.ullTotalPhys * 100.0;
}

Don't forget to include the windows.h file so that we can use the Windows API! Actually, this
function retrieves the total and the available physical memory. A simple subtraction gives us
the amount of memory used. As required by the base class SysInfo, this implementation will
return the value as a double type; for example, the value 23.0 for 23% memory used on a
Windows OS.

Retrieving the total memory used is a good start, but we cannot stop now. Our class must also
retrieve the CPU load. The Windows API can be messy sometimes. To make our code more
readable, we will create two private helper functions. Update your SysInfowindowsImpl.h file
to match the following snippet:

#include <QtGlobal>
#include <QVector>

#include "SysInfo.h"
typedef struct _FILETIME FILETIME;

class SysInfowWwindowsImpl : public SysInfo

{
public:
SysInfowWwindowsImpl();
void init() override;
double cpuLoadAverage() override;
double memoryUsed() override;
private:

Qvector<qulonglong> cpuRawData();

gqulonglong convertFileTime(const FILETIME& filetime) const;

private:
QVector<qulonglong> mCpulLoadLastValues;

+;

Let's analyze these changes:

e The cpuRawData() is the function that will perform the Windows API call to retrieve
system timing information and return values in a generic format. We will retrieve and
return three values: the amount of time that the system has spent in idle, in Kernel, and in
User mode.

e The convertFileTime() function is our second helper. It will convert a
Windows FILETIME struct syntax to a qulonglong type. The qulonglong type is a
Qtunsigned long long int. This type is guaranteed by Qt to be 64-bit on all platforms.
You can also use the typedef quint64.

e The mCpuLoadLastValues is a variable that will store system timing (idle, Kernel, and
User) at a given moment.

e Don't forget to include the <QtGlobal> tag to use the qulonglong type, and the <Qvector>
tag to use the Qvector class.

e The syntax typedef struct _FILETIME FILETIME is a kind of forward declaration
for FILENAME syntax. As we only use a reference, we can avoid including
the <windows.h> tag in our file SysInfowindowsImpl.h and keep it in the CPP file.

We can now switch to the file SysInfowindowsImpl.cpp and implement these functions to
finish the CPU load average feature on Windows:

#include "SysInfowWindowsImpl.h"
#include <windows.h>
SysInfowWwindowsImpl::SysInfowWwindowsImpl()

SysInfo(),
mCpulLoadLastValues()

{
}
void SysInfowWindowsImpl::init()
{
mCpuLoadLastValues = cpuRawData();
}

When the init() function is called, we store the return value from the cpurRawData() function
in our class variable mCpuLoadLastVvalues. It will be helpful for the cpuLoadAverage()function
process.

You may be wondering why we do not perform this task in the initialization list of the

constructor. That is because when you call a function from the initialization list, the object is
not yet fully constructed! In some circumstances, it may be unsafe because the function can try
to access a member variable that has not been constructed yet. However, in this che2-sysinfo
project, the cpuRawData function does not use any member variables, so you are safe, if you
really want to do it. Add the cpuRawData() function to the SysInfowindowsImpl.cpp file:

Qvector<qulonglong> SysInfowWwindowsImpl::cpuRawData()

{
FILETIME idleTime;

FILETIME kernelTime;
FILETIME userTime;

GetSystemTimes(&idleTime, &kernelTime, &userTime);
QvVector<qulonglong> rawData;

rawData.append(convertFileTime(idleTime));
rawData.append(convertFileTime(kernelTime));
rawData.append(convertFileTime(userTime));
return rawData;

}

Here we are: the Windows API call to the GetSystemTimes function! This function will give us
the amount of time that the system has spent idle, and in the Kernel and User modes. Before
filling the Qvector class, we convert each value with our helper convertFileTime described in
the following code:

qulonglong SysInfowWwindowsImpl::convertFileTime(const FILETIME& filetime) const
{

ULARGE_INTEGER largeInteger;

largeInteger.LowPart = filetime.dwLowDateTime;

largeInteger . .HighPart = filetime.dwHighDateTime;

return largelInteger.QuadPart;

}

The Windows structure FILEFTIME stores 64-bit information on two 32-bit parts (low and
high). Our function convertFileTime uses the Windows structure ULARGE_INTEGER to
correctly build a 64-bit value in a single part before returning it as a qulonglong type. Last
but not least, the cpuLoadAverage() implementation:

double SysInfowWindowsImpl::cpuLoadAverage()

{
QVector<qulonglong> firstSample = mCpuLoadLastValues;
QvVector<qulonglong> secondSample = cpuRawData();
mCpuLoadLastValues = secondSample;

qulonglong currentIdle = secondSample[0] - firstSample[0];
qulonglong currentKernel = secondSample[1l] - firstSample[1];
qulonglong currentUser = secondSample[2] - firstSample[2];
qulonglong currentSystem = currentKernel + currentUser;

double percent = (currentSystem - currentIdle) * 100.0 /
currentSystem ,
return qBound(0.0, percent, 100.0);

}

There are three important points to note here:

e Keep in mind that a sample is an absolute amount of time, so subtracting two different
samples will give us instantaneous values that can be processed to get the current CPU
load.

e The first sample comes from our member variable mCpuLoadLastVvalues, probed the first
time by the init() function. The second one is retrieved when the cpuLoadAverage()
function is called. After initializing the samples, the mCpuLoadLastvalues variable can
store the new sample that will be used for the next call.

e The percent equation can be a little tricky because the Kernel value retrieved from the
Windows API also contains the idle value.

Tip

If you want to learn more about the Windows API, take a look at the MSDN documentation at
https://msdn.microsoft.com/library.

The final step to finish the Windows implementation is to edit the file che2-sysinfo.pro so
that it resembles the following snippet:

QT += core gui
CONFIG += C++14

greaterThan(QT_MAJOR_VERSION, 4): QT += widgets

TARGET = ch@2-sysinfo
TEMPLATE = app

SOURCES += main.cpp \
MainwWindow.cpp \
SysInfo.cpp

HEADERS += MainWindow.h \
SysInfo.h

windows {
SOURCES += SysInfowWindowsImpl.cpp
HEADERS += SysInfoWindowsImpl.h

}

FORMS += MainWindow.uil

As we did in the cho1-todo project, we also use C++14 with the che2-sysinfo project. The
really new point here is that we removed the files SysInfowindowsImpl.cpp

https://msdn.microsoft.com/library

and SysInfowindowsImpl.h from the common SOURCES and HEADERS variables. Indeed, we
added them into a windows platform scope. When building for other platforms, those files will
not be processed by gqmake. That is why we can safely include a specific header such

as windows.h in the source file SysInfowindowsImpl.cpp without harming the compilation on
other platforms.

Adding the Linux implementation

Let's make the Linux implementation of our che2-sysinfo project. If you have already done
the Windows implementation, it will be a piece of cake! If you have not, you should take a
look at it. Some information and tips will not be repeated in this part, such as how to create
a SysInfo implementation class, keyboard shortcuts, and details about the SysInfo interface.

Create a new C++ class called SsysinfoLinuxImpl that inherits from the SysInfo class, and
insert virtual functions from the base class:

#include "SysInfo.h"

class SysInfoLinuxImpl : public SysInfo

{
public:
SysInfolLinuxImpl();
void init() override;
double cpuLoadAverage() override;
double memoryUsed() override;
Iy

We will start by implementing the memoryUsed () function in the file SysInfoLinuxImpl.cpp:

#include "SysInfoLinuxImpl.h"

#include <sys/types.h>
#include <sys/sysinfo.h>

SysInfolLinuxImpl::SysInfoLinuxImpl()
SysInfo(),
{

}

double SysInfolLinuxImpl::memoryUsed()
{
struct sysinfo memInfo;
sysinfo(&memInfo);

qulonglong totalMemory = memInfo.totalram;
totalMemory += memInfo.totalswap;
totalMemory *= memInfo.mem unit;

gulonglong totalMemoryUsed = memInfo.totalram - memInfo.freeram;
totalMemoryUsed += memInfo.totalswap - memInfo.freeswap;
totalMemoryUsed *= memInfo.mem_unit;

double percent = (double)totalMemoryUsed /
(double)totalMemory * 100.0;
return qBound(0.0, percent, 100.0);

}

This function uses Linux-specific API. After adding the required includes, you can use the
Linux sysinfo() function that returns information on the overall system statistics. With the
total memory and the total memory used, we can easily return the percent value. Note that
swap memory has been taken into account.

The CPU load feature is a little more complex than the memory feature. Indeed, we will
retrieve from Linux the total amount of time the CPU spent performing different kinds of
work. That is not exactly what we want. We must return the instantaneous CPU load. A
common way to get it is to retrieve two sample values in a short period of time and use the
difference to get the instantaneous CPU load:

#include <QtGlobal>
#include <QVector>

#include "SysInfo.h"

class SysInfoLinuxImpl : public SysInfo

{
public:

SysInfolLinuxImpl();

void init() override;

double cpuLoadAverage() override;

double memoryUsed() override;
private:

Qvector<qulonglong> cpuRawData();
private:

QVector<qulonglong> mCpulLoadLastValues;
Iy

In this implementation, we will only add one helper function and one member variable:

e The cpuRawData() is a function that will perform the Linux API call to retrieve system
timing information and return values in a Qvector class of qulonglong type. We retrieve
and return four values containing the time the CPU has spent on the following: normal
processes in User mode, nice processes in User mode, processes in Kernel mode, and

idle.
e The mCpuLoadLastValues is a variable that will store a sample of system timing at a given
moment.

Let's go to the SysInfoLinuxImpl.cpp file to update it:

#include "SysInfoLinuxImpl.h"

#include <sys/types.h>

#include <sys/sysinfo.h>

#include <QFile>

SysInfolLinuxImpl::SysInfoLinuxImpl()

{
}

SysInfo(),
mCpulLoadLastValues()

void SysInfoLinuxImpl::init()

{
}

mCpuLoadLastValues = cpuRawData();

As discussed before, the cpuLoadAverage function will need two samples to be able to
compute an instantaneous CPU load average. Calling the init() function allows us to
set mCpuLoadLastValues for the first time:

QVector<qulonglong> SysInfoLinuxImpl::cpuRawData()

{

}

QFile file("/proc/stat");
file.open(QIODevice::ReadOnly);

QByteArray line = file.readlLine();

file.close();

qulonglong totalUser = @, totalUserNice = 0,
totalSystem = 0, totallIdle = 0;

std::sscanf(line.data(), '"cpu %llu %llu %1llu %llu",
&totalUser, &totalUserNice, &totalSystem,
&totalIdle);

QvVector<qulonglong> rawData;
rawData.append(totalUser);
rawData.append(totalUserNice);
rawData.append(totalSystem);
rawData.append(totalIdle);

return rawData;

To retrieve the CPU raw information on a Linux system, we chose to parse information
available in the /proc/stat file. All we need is available on the first line, so a

single readLine() is enough. Even though Qt provides some useful features, sometimes the C
standard library functions are simpler. This is the case here; we are using std: :sscanf to

extract variables from a string. Now let's look at the cpuLoadAvearge() body:

double SysInfolLinuxImpl::cpuLoadAverage()

{

QVector<qulonglong> firstSample = mCpuLoadLastValues;
QvVector<qulonglong> secondSample = cpuRawData();

mCpuLoadLastValues = secondSample;

double overall = (secondSample[0] - firstSample[0])
+ (secondSample[1] - firstSample[1])
+ (secondSample[2] - firstSample[2]);

double total = overall + (secondSample[3] - firstSample[3]);
double percent = (overall / total) * 100.0;
return qBound(0.0, percent, 100.0);

}

This is where the magic happens. In this last function, we put all the puzzle pieces together.
This function uses two samples of the CPU raw data. The first sample comes from our
member variable mCpuLoadLastValues, set the first time by the init() function. The second
sample is requested by the cpuLoadAverage() function. Then the mCpuLoadLastValues variable
will store the new sample that will be used as the first sample on the next cpuLoadAverage()
function call.

The percent equation should be easy to understand:

e overall is equal to user + nice + kernel
e total is equal to overall + idle

Tip

You can find more information about /proc/stat in the Linux Kernel documentation
at https://www.kernel.org/doc/Documentation/filesystems/proc.txt.

Like the other implementations, the last thing to do is to edit the che2-sysinfo.pro file like
this:

QT += core gui
CONFIG += C++14

greaterThan(QT_MAJOR_VERSION, 4): QT += widgets

TARGET = ch@2-sysinfo
TEMPLATE = app

SOURCES += main.cpp \
MainwWindow.cpp \
SysInfo.cpp \
Cpuwidget.cpp \
Memorywidget.cpp \
SysInfowidget.cpp

HEADERS += MainWindow.h \
SysInfo.h \
Cpuwidget.h \
Memorywidget.h \

https://www.kernel.org/doc/Documentation/filesystems/proc.txt

SysInfowidget.h

windows {
SOURCES += SysInfoWindowsImpl.cpp
HEADERS += SysInfoWindowsImpl.h

¥
linux {
SOURCES += SysInfolLinuxImpl.cpp
HEADERS += SysInfoLinuxImpl.h
¥

FORMS += MainWindow.uil

With this Linux scope condition in the ch®2-sysinfo.pro file, our Linux-specific files will
not be processed by the gmake command on other platforms.

Adding the Mac OS implementation

Let's take a look at the Mac implementation of the SysInfo class. Start by creating a new C++
class named SysInfoMacImpl that inherits from the Sysinfo class. Override SysInfo virtual
functions and you should have a SysInfoMacImpl.h file like this:

#include "SysInfo.h"

#include <QtGlobal>
#include <QVector>

class SysInfoMacImpl : public SysInfo

{
public:
SysInfoMacImpl();
void init() override;
double cpuLoadAverage() override;
double memoryUsed() override;
Iy

The first implementation we will do will be the memoryused () function, in
the SysInfoMacImpl.cpp file:

#include <mach/vm_statistics.h>
#include <mach/mach_types.h>
#include <mach/mach_init.h>
#include <mach/mach_host.h>
#include <mach/vm_map.h>

SysInfoMacImpl::SysInfoMacImpl()
SysInfo()
{

}

double SysInfoMacImpl::memoryUsed()
{
vin_size_t pageSize;
vm_statistics64_data_t vmStats;

mach_port_t machPort = mach_host_self();
mach_msg_type_number_t count = sizeof(vmStats)

/ sizeof(natural_t);
host_page_size(machPort, &pageSize);

host_statistics64(machPort,
HOST_VM_INFO,
(host_info64_t)&vmStats,
&count);

qulonglong freeMemory = (int64_t)vmStats.free_count
* (int64_t)pageSize;

gqulonglong totalMemoryUsed = ((int64_t)vmStats.active_count +
(int64_t)vmStats.inactive_count +
(int64_t)vmStats.wire_count)

* (int64_t)pageSize;

gqulonglong totalMemory = freeMemory + totalMemoryUsed;

double percent = (double)totalMemoryUsed
/ (double)totalMemory * 100.0;
return qBound(0.0, percent, 100.0);

}

We start by including the different headers for the Mac OS kernel. Then we initialize machPort
with the call to the mach_host_self() function. A machPort is a kind of special connection to
the kernel that enables us to request information about the system. We then proceed to prepare
other variables so that we can retrieve virtual memory statistics with host_statistics64().

When the vmStats class is filled with the information needed, we extract the relevant data:
the freeMemory and the totalMemoryUsed.

Note that Mac OS has a peculiar way of managing its memory: it keeps a lot of memory in
cache, ready to be flushed when needed. This implies that our statistics can be misled; we see
the memory as used, whereas it was simply kept "just in case".

The percentage calculation is straightforward; we still return a min/max clamped value to
avoid any crazy values in our future graph.

Next comes the cpuLoadAverage() implementation. The pattern is always the same; take
samples at regular intervals and compute the growth on this interval. Therefore, we have to
store intermediate values to be able to calculate the difference with the next sample:

// In SysInfoMacImpl.h
#include "SysInfo.h"

#include <QtGlobal>
#include <QVector>

private:
QVector<qulonglong> cpuRawData();

private:
QVector<qulonglong> mCpulLoadLastValues;
3

// In SysInfoMacImpl.cpp
void SysInfoMacImpl::init()
{

}

mCpuLoadLastValues = cpuRawData();

QvVector<qulonglong> SysInfoMacImpl::cpuRawData()
{
host_cpu_load_info_data_t cpuIlnfo;
mach_msg_type_number_t cpuCount = HOST_CPU_LOAD_INFO_COUNT;
QVector<qulonglong> rawData;
qulonglong totalUser = 0, totalUserNice = 0, totalSystem = 0,
totalIdle = 0;
host_statistics(mach_host_self (),
HOST_CPU_LOAD_INFO,
(host_info_t)&cpulnfo,
&cpuCount);

for(unsigned int i = 0; i < cpuCount; i++) {

unsigned int maxTicks = CPU_STATE_MAX * 1i;
totalUser += cpulnfo.cpu_ticks[maxTicks + CPU_STATE_USER];
totalUserNice += cpuInfo.cpu_ticks[maxTicks

+ CPU_STATE_SYSTEM];
totalSystem += cpuInfo.cpu_ticks[maxTicks

+ CPU_STATE_NICE];
totalIdle += cpuInfo.cpu_ticks[maxTicks + CPU_STATE_IDLE];

}

rawData.append(totalUser);
rawData.append(totalUserNice);
rawData.append(totalSystem);
rawData.append(totalIdle);
return rawData;

}

As you can see, the pattern used is strictly equivalent to the Linux implementation. You can
even copy-paste the body of the cpuLoadAverage() function from the SysInfoLinuxImpl.cpp
file. They do exactly the same thing.

Now, the implementation is different for the cpuRawData() function. We load cpuInfo
and cpuCount with host_statistics() and then we loop through each CPU to have

the totalUser, totalUserNice, totalSystem, and totalIdle functions filled. Finally, we
append all this data to the rawData object before returning it.

The very last part is to compile the SysInfoMacImpl class only on Mac OS. Modify the .pro
file to have the following body:

linux {
SOURCES += SysInfolLinuxImpl.cpp

HEADERS += SysInfoLinuxImpl.h

¥
macx {
SOURCES += SysInfoMacImpl.cpp
HEADERS += SysInfoMacImpl.h
¥

FORMS += MainWindow.uil

Transforming SysInfo into a singleton

Promises are made to be kept: we will now transform the SysInfo class into a singleton. C++
offers many ways to implement the singleton design pattern. We will explain one of them
here. Open the SysInfo.h file and make the following changes:

class SysInfo

{
public:
static SysInfo& instance();
virtual ~SysInfo();
virtual void init() = 0;
virtual double cpuLoadAverage() = 0;
virtual double memoryUsed() = 0O;
protected:
explicit SysInfo();
private:
SysInfo(const SysInfo& rhs);
SysInfo& operator=(const SysInfo& rhs);
Iy

The singleton must guarantee that there will be only one instance of the class and that this
instance will be easily accessible from a single access point.

So the first thing to do is to change the visibility of the constructor to protected. This way,
only this class and the child classes will be allowed to call the constructor.

Since only one instance of the object must exist, allowing the copy constructor and the
assignment operator is nonsense. One way to solve the problem is to make them private.

Tip
C++ tip

Since C++11, you can define a function as deleted with the syntax void myFunction() =
delete. Any use of a deleted function will display a compile-time error. It's another way to
prevent the use of the copy constructor and the assignment operator with a singleton.

The last change is the "unique access point" with a static function instance that will return a
reference of the Sysinfo class.

It is now time to commit singleton changes to the SysInfo.cpp file:

#include <QtGlobal>

#ifdef Q_OS_WIN

#include "SysInfowWindowsImpl.h"
#elif defined(Q_OS_MAC)

#include "SysInfoMacImpl.h"
#elif defined(Q_OS_LINUX)

#include "SysInfoLinuxImpl.h"
#endif

SysInfo& SysInfo::instance()

{
#ifdef Q_OS_WIN
static SysInfowWindowsImpl singleton;
#elif defined(Q_OS_MAC)
static SysInfoMacImpl singleton;
#elif defined(Q_OS_LINUX)
static SysInfolLinuxImpl singleton;
#endif
return singleton;
¥
SysInfo::SysInfo()
{
¥
SysInfo::~SysInfo()
{
¥

Here you can see another Qt cross-OS trick. Qt provides some macro Q_0S_WIN, Q 0S_LINUX,
or Q_0S_MAC. A Qt OS macro will be defined only on the corresponding OS. By combining
these macros with a conditional preprocessor directive#ifdef, we can always include and
instantiate the correct SysInfo implementation on all OSes.

Declaring the singleton variable as a static variable in the instance() function is a way to
make a singleton in C++. We tend to prefer this version because you do not need to worry
about the singleton memory management. The compiler will handle the instantiation the first
time as well as the destruction. Moreover, since C++11 this method is thread safe.

Exploring Qt Charts

The core part is ready. It's now time to create a Ul for this project, and Qt Charts can help us
with this task. Qt Charts is a module that provides a set of easy-to-use chart components, such
as line chart, area chart, spline chart, pie chart, and so on.

Qt Charts was previously a commercial-only Qt module. Since Qt 5.7, the module is now
included in Qt on GPLv3 license for open source users. If you are stuck on Qt 5.6, you can
build the module by yourself from sources. More information can be found at

https://github.com/qgtproject/gtcharts.

The aim now is to create two Qt widgets, Cpuwidget and MemoryWwidget, to display nice Qt
charts of the CPU and the memory used. These two widgets will share a lot of common tasks,
so we will first create an abstract class, SysInfowidget:

Sysinfowidget

N

CpuWidget MemoryWidget

Then the two actual widgets will inherit from the SysInfowidget class and perform their
specific tasks.

Create a new C++ class called sysinfowidget with Qwidget as a base class. Some
enhancements must be processed in the SysInfowidget.h file:
#include <Qwidget>

#include <QTimer>
#include <QtCharts/QChartView>

class SysInfowidget : public Qwidget

{
Q OBJECT
public:
explicit SysInfowidget(Qwidget *parent = 0,
int startDelayMs = 500,
int updateSeriesDelayMs = 500);
protected:

QtCharts::QChartView& chartView();

protected slots:

https://github.com/qtproject/qtcharts

virtual void updateSeries() = 0;

private:
QTimer mRefreshTimer;
QtCharts::QChartView mChartView;

+;

The QCchartView is the generic widget that can display many types of chart. This class will
handle the layout and display the QChartview. A QTimer will call the slot function
updateSeries() regularly. As you can see, this is a pure virtual slot. That is the reason why
the SysInfowidget class is abstract. The slot updateSeries() will be overridden by child
classes to retrieve a system value and define how the chart should be drawn. Note that the
parameters startDelayMs and updateSeriesDelayMs have default values that can be
customized by the caller if required.

We can now proceed to the SysInfowidget.cpp file to correctly prepare this SysInfowidget
class before creating the child widgets:

#include <QvVBoxLayout>
using namespace QtCharts;
SysInfowidget::SysInfowidget(Qwidget *parent,

int startDelayMs,
int updateSeriesDelayMs)

Qwidget(parent),
mChartView(this)

{
mRefreshTimer.setInterval (updateSeriesDelayMs);
connect (&mRefreshTimer, &QTimer::timeout,

this, &SysInfowidget::updateSeries);
QTimer::singleShot(startDelayMs,
[this] { mRefreshTimer.start(); });

mChar tView.setRenderHint(QPainter::Antialiasing);
mChartView.chart()->legend()->setVisible(false);
QvBoxLayout* layout = new QVBoxLayout(this);
layout->addwidget(&mChartView);
setLayout(layout);

}

QChartView& SysInfowidget::chartView()

{
return mChartView;

}

All tasks in the SsysInfowidget constructor are common tasks required by the child
widgets, Cpuwidget, and Memorywidget. The first step is the mRefreshTimer initialization to
define the timer interval and the slot to call whenever a timeout signal is triggered. Then the

static function QTimer: :singleshot() will start the real timer after a delay defined

by startDelayMs. Here again, Qt combined with lambda functions will give us a powerful
code in just a few lines. The next part enables the antialiasing to smooth the chart drawing. We
hide the chart's legend to get a minimalist display. The last part handles the layout to display
the QChartview widget in our SysInfowidget class.

CpuWidget using QCharts

Now that the base class SysInfowidget is ready, let's implement its first child

class: cpuwidget. We will now use the Qt Charts API to display a good-looking widget. The
average CPU load will be displayed in a pie graph with a hole in the center, like a partly eaten
donut where the eaten part is the percentage of the CPU used. The first step is to add a new
C++ class named Cpuwidget and make it inherit SysInfowidget:

#include "SysInfowidget.h"

class Cpuwidget : public SysInfowidget

{
public:

explicit CpuwWidget(Qwidget* parent = 0);
3

In the constructor, the only parameter needed is a QWidget* parent. Since we provided
default values for the startbDelayMs and updateSeriesDelayMs variables in SysInfowidget
class, we get the best possible behavior; there is no need to remember it when

subclassing SysInfowidget, but it is still easy to override it if need be.

The next step is to override the updateSeries() function from the SysInfowidget class and
start using the Qt Charts API:

#include <QtCharts/QpieSeries>
#include "SysInfowidget.h"
class Cpuwidget : public SysInfowidget

{
Q_OBJECT
public:
explicit CpuwWidget(Qwidget* parent = 0);

protected slots:
void updateSeries() override;

private:
QtCharts::QPieSeries* mSeries;

+;

Since we overrode the SysInfowidget::updateSeries() slot, we have to include the Q_0OBJECT
macro to allow cPuwidget to respond to the SysInfowidgetmRefreshTimer::timeout()
signal.

We include QPieSeries from the Qt Charts module so that we can create a
member QPieSeries* named mSeries. The QPieSeries is a subclass of QAbstractSeries,

which is the base class of all Qt Charts series (QLineSeries, QAreaSeries, QPieSeries, and so
on). In Qt Charts, a QAbstractSeries subclass holds the data you want to display and defines
how it should be drawn, but it does not define where the data should be displayed inside your
layout.

We can now proceed to Cpuwidget.cpp to investigate how we can tell Qt where the drawing
takes place:

using namespace QtCharts;

Cpuwidget::Cpuwidget(Qwidget* parent)
SysInfowidget(parent),
mSeries(new QPieSeries(this))

mSeries->setHoleSize(0.35);
mSeries->append("CPU Load", 30.0);
mSeries->append("CPU Free", 70.0);

QChart* chart = chartView().chart();
chart->addSeries(mSeries);
chart->setTitle("CPU average load");

}

All Qt Charts classes are defined in the QtCharts namespace. This is why we start with using
namespace QtCharts.

First, we initialize mSeries in the constructor initializer list. We then proceed to configure it.
We carve the donut with mSeries->setHoleSize(0.35) and we append two data sets

to mSeries: a fake CPU Load and Cpu Free, which are expressed in percentages. The mSeries
function is now ready to be linked to the class managing its drawing: QChar t.

The Qchart class is retrieved from the SysIinfowidget::chartview() function. When

calling chart->addSeries(mSeries), chart takes the ownership of mSeries and will draw it
according to the series type--in our case, a QPieSeries. QChart is nota Qwidget: itis a
subclass of QGraphicswidget. QGraphicswidget can be described as a lighter Qwidget with
some differences (its coordinates and geometry are defined with doubles or floats instead
of integers, a subset of Qwidget attributes are supported: custom drag, drop framework, and
so on). The QGraphicswidget class is designed to be added in a QGraphicsScene class, a high-
performance Qt component used to draw hundreds of items on screen at the same time.

In our SysInfo application, the QChart has to be displayed in a QvBoxLayout in SysInfowidget.
Here, the QChartview class comes in very handy. It lets us add chart in a Qwidget layout.

Up to now, QPieSeries has seemed rather abstract. Let's add it to the Mainwindow file to see
how it looks:

// In MainWindow.h
#include "CpuWidget.h"

private:
Ui::MainWindow *ui;
Cpuwidget mCpuWidget;
}i

// In MainWindow.cpp

MainwWindow: :MainWindow(QwWidget *parent)
QMainWindow(parent),
ui(new Ui::MainWindow),

mCpuwWidget(this)
{
ui->setupUi(this);
SysInfo::instance().init();
ui->centralwWidget->layout()->addwidget(&mCpuwWidget);
}

We simply declare mcpuwidget in the Mainwindow.h file, initialize it, and add it
to Mainwindow->centralwidget->layout. If you now run the application, you should see
something like this:

Syslnfo

CPU average load

Even though it looks cool, this donut is a bit static and does not reflect the CPU usage. Thanks
to the architecture we built with the SysInfo and SysInfowidget classes, the remaining part
will be implemented swiftly.

Switch back to the cpuwidget.cpp file and implement the updateSeries() function with the
following body:

void Cpuwidget::updateSeries()

{
double cpuLoadAverage = SysInfo::instance().cpuLoadAverage();
mSeries->clear();
mSeries->append("Load", cpuLoadAverage);
mSeries->append("Free", 100.0 - cpulLoadAverage);

}

First, we get a reference to our SysInfo singleton. We then retrieve the current average CPU
load in the cpuLoadAverage variable. We have to feed this data to our mSeries. The mSeries
object is a QpieCharts, which implies that we just want a snapshot of the current CPU average
load. Past history is not meaningful with this kind of graph; that's why we clear the mSeries

data with the mSeries->clear () syntax, and append the cpuLoadAverage variable and then the
free part (100.0 - cpuLoadAverage).

The nice thing to note is that, in the Cpuwidget class, we don't have to worry about refreshing.
All the work is done in the Sysinfowidget subclass with all the whistles and bells of

the QTimer class. In a SysInfowidget subclass, we only have to concentrate on the valuable
specific code: what data should be displayed and what kind of graph is used to display it. If
you look at the whole cpuwidget class, it is very short. The next SysInfowidget

subclass, Memorywidget, will also be very concise, as well as quick to implement.

Memory using Qcharts

Our second SysInfowidget is a Memorywidget class. This widget will display a history of the
data so that we can see how the memory consumption evolves over time. To display this data,
we will use a QLineSeries class from the Qt Chart module. Create the Memorywidget class and
follow the same pattern we used for Cpuwidget:

#include <QtCharts/QLineSeries>
#include "SysInfowidget.h"
class Memorywidget : public SysInfowWidget

{
Q_OBJECT
public:
explicit MemoryWidget(Qwidget *parent = 0);

protected slots:
void updateSeries() override;

private:
QtCharts::QLineSeries* mSeries;
gint64 mPointPositionX;

+;

Instead of a being a QPieSeries*, mSeries is a type of QLineSeries* which will be linked to
the chart objectin a very similar fashion to Memorywidget.cpp:

#include "MemoryWidget.h"
#include <QtCharts/QAreaSeries>

using namespace QtCharts;

const int CHART_X_RANGE_COUNT = 50;
const int CHART_X_RANGE_MAX = CHART_X_RANGE_COUNT - 1;

MemorywWidget: :MemorywWidget(Qwidget *parent)
SysInfowidget(parent),
mSeries(new QlineSeries(this)),
mPointPositionX(0)

QAreaSeries* areaSeries = new QAreaSeries(mSeries);

QChart* chart = chartView().chart();
chart->addSeries(areaSeries);
chart->setTitle("Memory used");
chart->createDefaultAxes();
chart->axisX()->setVisible(false);
chart->axisX()->setRange(0, CHART_X_RANGE_MAX);
chart->axisY()->setRange(0, 100);

}

void MemoryWidget::updateSeries()

{
}

The mSeries data is, as usual, initialized in the initializer list. The mPointPositionX is

an unsigned long long (using the Qt notation qint64) variable that will track the last X
position of our data set. This huge value is used to make sure that mPointPositionX never
overflows.

We then use an intermediate areaSeries that takes ownership of mSeries upon its initialization
in QAreaSeries* areaSeries = new QareaSeries(mSeries).areaSeries is then added to

the chart object at chart->addSeries(areaSeries). We do not want to display a single line in
our QChart; instead we want to display an area that represents the used memory percentage.
That is why we use an areaSeries type. Nonetheless, we will still update the mSeries data
when adding new points to the dataset in the updateSeries() function. The areaSeries type
will automatically handle them and deliver them to the chart object.

After chart->addSeries(areaSeries), we configure the chart display:

e The chart->createbefaultAxes() function creates an X and Y axis based on
the areaSeries type. If we used a 3D series, the createbefaultAxes() function would
have added a Z axis.

e Hide the X axis tick values with chart->axisX()->setVisible(false) (intermediate
values displayed at the bottom of the axis). In our Memorywidget class, this information is
not relevant.

e To define the number of points we want to display--the size of the display history--we
call chart->axisX()->setRange(®, CHART_X_RANGE_MAX).Here we use a constant to
make it easier to modify this value afterwards. Seeing the value at the top of the file, we
avoid having to skim through Memorywidget.cpp, searching where this value is used to
update it.

e chart->axisY()->setRange(0, 100) defines the maximum range of the Y axis, which is
a percentage, based on the value returned by the SysInfo::memoryUsed() function.

The chart is now properly configured. We now have to feed it by filling the updateSeries()
body:

void MemorywWidget::updateSeries()
{
double memoryUsed = SysInfo::instance().memoryUsed();
mSeries->append(mPointPositionX++, memoryUsed);
if (mSeries->count() > CHART_X_RANGE_COUNT) {
QChart* chart = chartView().chart();
chart->scroll(chart->plotArea().width()
/ CHART_X_RANGE_MAX, 0);

mSeries->remove(0);
}

We first retrieve the latest memory percentage used and append it to mSeries at the X
coordinate mPointPositionX (we post-increment it for the next updateSeries() call) and Y
coordinate memoryUsed. As we want to keep a history of mSeries, mSeries->clear () is never
called. However, what will happen when we add more than CHART_X_RANGE_COUNT points? The
visible "window" on the chart is static and the points will be added outside. This means that we
will see the memory usage only for the first CHART_X_RANGE_MAX points and then, nothing.

Fortunately, QChart provides a function to scroll inside the view to move the visible window.

We start to handle this case only when the dataset is bigger than the visible window,

meaning if (mSeries->count() > CHART_X_RANGE_COUNT). We then remove the point at the

index 0 with mSeries->remove(0) to ensure that the widget will not store an infinite dataset. A
SysInfo application that monitors the memory usage and has itself a memory leak is a bit sad.

The syntax chart->scroll(chart->plotArea().width() / CHART_X_RANGE_MAX, 0) will
then scroll to the latest point on the X axis and nothing on Y. The chart->scroll(dx, dy)
expects coordinates expressed in our series coordinates. That is the reason why we have to
retrieve the char->plotArea() divided by CHART_X_RANGE_MAX , the X axis unit.

We can now add the Memorywidget class in Mainwindow:

// In MainWindow.h
#include "CpuWidget.h"
#include "MemoryWidget.h"

private:
Ui::MainWindow *ui;
Cpuwidget mCpuwidget;
MemorywWidget mMemoryWidget;
3

// In MainWindow.cpp

MainwWindow: :MainWindow(QwWidget *parent)
QMainWindow(parent),
ui(new Ui::MainWindow),
mCpuwWidget(this),
mMemoryWidget(this)

ui->setupUi(this);

SysInfo::instance().init();
ui->centralwWidget->layout()->addwidget(&mCpuwWidget);
ui->centralwWidget->layout()->addwidget(&mMemorywidget);

Just as we did for cPuwidget, add a new member named mMemorywidget to Mainwindow and
add it to the centralwidget layout with the uiat’centralwidget->layout() -
>addwidget(&mMemorywidget) syntax.

Compile, run the application, and wait a few seconds. You should see something close to this:

Syslnfo

CPU average load Memory used
100.0

75.0

50.0

25.0

0.0

The Memorywidget class works fine, but it looks a bit dull. We can customize it very easily
with Qt. The goal is to have a bold line at the top of the memory area and a nice gradient from
top to bottom. We just have to modify the areaSeries class in the Memorywidget.cpp file:

#include <QtCharts/QAreaSeries>

#include <QLinearGradient>
#include <QPen>

#include "SysInfo.h"
using namespace QtCharts;

const int CHART_X_RANGE_MAX = 50;
const int COLOR_DARK_BLUE = 0x209fdf;

const int COLOR_LIGHT_BLUE = Oxbfdfef;
const int PEN_WIDTH = 3;

MemorywWidget: :MemorywWidget(Qwidget *parent)
SysInfowidget(parent),
mSeries(new QLineSeries(this))

{
QPen pen(COLOR_DARK_BLUE);
pen.setWidth(PEN_WIDTH);
QLinearGradient gradient(QPointF(®, ©), QPointF(0, 1));
gradient.setColorAt(1.0, COLOR_DARK_BLUE);
gradient.setColorAt(0.0, COLOR_LIGHT_BLUE);
gradient.setCoordinateMode(QGradient::0ObjectBoundingMode) ;
QAreaSeries* areaSeries = new QAreaSeries(mSeries);
areaSeries->setPen(pen);
areaSeries->setBrush(gradient);
QChart* chart = chartView().chart();

}

The QPen pen function is a part of the Qpainter APL. It is the foundation on which Qt relies to
do most of the GUI drawing. This includes the whole Qwidget API

(QLabel, QPushButton, QLayout, and so on). For the pen, we just have to specify its color and
width, and then apply it to the areaSeries class with areaSeries->setPen(pen).

The principle is the same for the gradient. We define the starting point (QPointF(@, ©)) and
the final point (QPointF (@, 1)) before specifying the color at each end of the vertical
gradient. The QGradient::0bjectBoundingMode parameter defines how the start/final
coordinates are mapped to the object. With the QAreasSeries class, we want the gradient
coordinates to match the whole QareaSeries class. These coordinates are normalized
coordinates, meaning that 0 is the start and 1 is the end of the shape:

e The [0.0] coordinates will point to the top left corner of the QAreaSeries class
e The [1.0] coordinates will point to the bottom left corner of the QAreaSeries class

A last build and run, and the SysInfo application will look like this:

Syslnfo

CPU average load Memory used
100.0

75.0]

50.0

25.0

0.0

A memory leak or starting a virtual machine is a great way to make your memory go crazy

The SysInfo application is now finished, and we even added some visual polish. You can
explore the QGradient classes and the Qpainter API if you want to further customize the
widget to your taste.

The .pro file in depth

When you click on the Build button, what exactly is Qt Creator doing? How does Qt handle
the compilation of the different platforms with a single .pro file? What does the Q_0BJECT
macro imply exactly? We will dig into each of these questions in the following sections. Our
example case will be the SysInfo application we just completed, and we will study what Qt is
doing under the hood.

We can start this study by digging into the .pro file. It is the main entry point in compiling any
Qt project. Basically, a .pro file is a gqmake project file describing the sources and headers
used by the project. It is a platform-agnostic definition of a Makefile. First, we can cover the
different gmake keywords used in the ch62-sysinfo application:

QT += core gui charts
CONFIG += C++14

greaterThan(QT_MAJOR_VERSION, 4): QT += widgets

TARGET = ch@2-sysinfo
TEMPLATE = app

Each of these functions has specific roles:

e #: This is the prefix needed to comment on a line. Yes, we generated the project on 2016-
03-24-crazy, huh?

e QT: This is a list of the Qt modules used in the project. In the platform-specific Makefile,
each of the values will include the module headers and the corresponding library link.

e CONFIG: This is a list of configuration options for the project. Here, we configure the
support of C++14 in the Makefile.

e TARGET: This is the name of the target output file.

e TEMPLATE: This is the project template used when generating the Makefile.app tells gmake
to generate a Makefile targeted for a binary. If you are building a library, use the 1ib
value.

In the che2-sysinfo application, we started to use platform-specific compilation rules using
the intuitive scope mechanism:
windows {

SOURCES += SysInfoWindowsImpl.cpp
HEADERS += SysInfowWindowsImpl.h

If you had to do this with a Makefile, you would probably lose some hair before doing it
right (being bald is not an excuse). This syntax is simple yet powerful, and is also used for
conditional statements. Let's say you wanted to build some files on debug only. You would
have written the following:

windows {
SOURCES += SysInfoWindowsImpl.cpp
HEADERS += SysInfowWindowsImpl.h

debug {
SOURCES += DebugClass.cpp
HEADERS += DebugClass.h

}

Nesting the debug scope inside windows is the equivalent of if (windows && debug). The
scoping mechanism is even more flexible; you can have the OR Boolean operator condition
with this syntax:

windows|unix {
SOURCES += SysInfoWindowsAndLinux.cpp
¥

You can even have else if/else statements:

windows|unix {

SOURCES += SysInfoWindowsAndLinux.cpp
} else:macx {

SOURCES += SysInfoMacImpl.cpp
} else {

SOURCES += UltimateGenericSources.cpp
}

In this code snippet, we also see the use of the += operator. The gmake tool provides a wide
range of operators to modify the behavior of variables:

e =: This operator sets the variable to the value. The syntax SOURCES =
SysInfowindowsImpl.cpp would have assigned the singleSysInfowindowsImpl.cpp value
to the SOURCES variable.

e +=: This operator adds the value to a list of values. This is what we commonly use
in HEADERS, SOURCES, CONFIG, and so on.

e -=: This operator removes the value from the list. You can, for example, add a DEFINE =
DEBUG_FLAG syntax in the common section and in a platform-specific scope (say a
Windows release) remove it with the DEFINE -= DEBUG_FLAG syntax.

e *=:This operator adds the value to the list only if it is not already present. The DEFINE
*= DEBUG_FLAG syntax adds the DEBUG_FLAG value only once.

e ~=: This operator replaces any values that match a regular expression with the specified
value, DEFINE ~= s/DEBUG_FLAG/debug.

You can also define variables in the .pro file and reuse them in different places. We can
simplify this with the use of the gmake message() function:

COMPILE_MSG = "Compiling on"

windows {
SOURCES += SysInfoWindowsImpl.cpp
HEADERS += SysInfowWindowsImpl.h
message($$COMPILE_MSG windows)

}

linux {
SOURCES += SysInfolLinuxImpl.cpp
HEADERS += SysInfoLinuxImpl.h
message($$COMPILE_MSG linux)

}

macx {
SOURCES += SysInfoMacImpl.cpp
HEADERS += SysInfoMacImpl.h
message($$COMPILE_MSG mac)

}

If you build the project, you will see your platform-specific message each time you build the
project in the General Messages tab (you can access this tab from Window | Output Panes

| General Messages). Here, we defined a COMPILE_MsG variable and referenced it when

calling message($$COMPILE_MSG windows). This offers interesting possibilities when you need
to compile external libraries from your .pro file. You can then aggregate all the sources in a
variable, combine it with the call to a specific compiler, and so on.

Tip
If your scope-specific statement is a single line, you can use the following syntax to describe
it:

windows:message($$COMPILE_MSG windows)

Besides message(), there are a few other helpful functions:

e error(string): This function displays the string and exits the compilation immediately.

e exists(filename): This function tests the existence of the filename. gmake also
provides the ! operator, which means you can write 'exist(myfile) { ... }.

e include(filename): This function includes the content of another .pro file. It gives you
the ability to slice your .pro files into more modular components. This will prove very
useful when you have multiple .pro files for a single big project.

Note

All the built-in functions are described at http://doc.qt.io/qt-5/gmake-test-function-

http://doc.qt.io/qt-5/qmake-test-function-reference.html

reference.html.

Under the hood of gmake

As we said earlier, gmake is the foundation of the Qt framework compilation system. In Qt
Creator, when you click on the Build button, gmake is invoked. Let's study what gmake is
exactly doing by calling it ourselves on the CLI (Command Line Interface).

Create a temporary directory where you will store the generated files. We are working on a
Linux box, but this is transposable on any OS. We chose /tmp/sysinfo. Using the CLI,
navigate to this new directory and execute the following command:

/path/to/qt/installation/5.7/gcc_64/bin/qmake -makefile -o Makefile
/path/to/sysinfoproject/che2-sysinfo.pro

This command will execute gmake in the -makefile mode to generate a Makefile based on
your sysinfo.pro file. If you skim through the Makefile content, you will see many things we
covered earlier in the .pro section. The link to Qt modules, headers of different modules,
inclusion of the headers and sources files of your project, and so on.

Now, let's build this Makefile by simply typing the make command.

This command will generate the binary che2-sysinfo (based on the TARGET value of the .pro
file). If you look at the list of files now present in /tmp/sysinfo:

$1s -1

ch@2-sysinfo
CpuwWidget.o

main.o

MainwWwindow.o
Makefile
MemoryWidget.o
moc_CpuWidget.cpp
moc_CpuWidget.o
moc_MainWindow.cpp
moc_MainWindow.o
moc_MemoryWidget.cpp
moc_MemoryWidget.o
moc_SysInfowidget.cpp
moc_SysInfowidget.o
SysInfoLinuxImpl.o
SysInfo.o
SysInfowidget.o
ui_MainWindow.h

Now this is very interesting, we find all our sources compiled in the usual .o extension
(SysInfo.o, SysInfowidget.o, and so on) but there are also a lot of other files prefixed
with moc_. Here lies another keystone of the Qt framework: the Meta Object Compiler.

Every time you use the signal/slot system, you have to include the macro Q_0BJECT in your
header. Each time you emit a signal or receive one in a slot and you did not write any specific
code to handle it, Qt took care of it. This is done by generating an intermediate
implementation of your class (the moc_*.cpp file) containing everything Qt needs to properly
handle your signals and slots.

A picture is worth a thousand words. Here is the complete compilation pipeline for a standard
gmake project:

moc moc_*.cpp

Syslnfo.h
Syslnfo.cpp

moc_*.0 I
Sysinfo.o

Makefile

iy e

make

gmake

sysinfo

MainWindow.ui II

uic ui_MainWindow.h

The blue boxes refer to commands and the wavy boxes are documents (sources or final
binary). Let's walk through the steps:

1. The gmake command is executed with the project .pro file. It generates a Makefile based
on the project file.

2. The make command is executed, which will call other commands to generate intermediate
files.

3. The uic command stands for User Interface Compiler. It takes all the .ui files (which are
basically an XML description of your interface) and generates the corresponding ui_*.h
header that you include in your own .cpp (in our ch®2-sysinfo project, it is
in Mainwindow.cpp).

4. The moc command takes every class containing the Q_0BJECT macro (paired with the
superclass Qobject) and generates the intermediate moc_* .cpp files, which include
everything needed to make the signal/slot framework work.

5. The g++ command is executed, compiling all your sources' files and intermediate moc

files into .o files before finally linking everything in the binary che2-sysinfo.
Tip

Note that if you add a Q_0BJECT macro after the creation of a class, sometimes the compiler
will complain about your signals and slots. To fix this, simply run the gmake command
from Build | Run gmake. You can now see that this stems from the fact that the Makefile has
to be regenerated to include the generation of the new intermediate moc file.

Generally, source code generation is regarded as bad practice in the developer community. Qt
has been criticized on this topic for a long time. We always fear that the machines does some
kind of voodoo behind our back. Unfortunately, C++ does not offer any practical way of
doing code introspection (namely reflection), and the signal and slots mechanism needs some
kind of metadata about your class to resolve your signals and slots. This could have been
done partly with the C++ template system, but this solution seemed to Qt to be much less
readable, portable, usable, and robust. You also need an excellent compiler support for
templates. This cannot be assumed in the wild world of C++ compilers.

The moc system is now fully mature. There are some very specific edge cases where it could
bring trouble (some have reported problems in very specific situations with Visual Studio),
but even so, we think that the gain of this feature largely outweighs the possibly encountered
issues. The signal/slot system is a marvel to work with, and if you look at the beginnings of
Qt, the system has been present from the very first releases. Adding the functor notation in Qt
5 (which gives a compile time check of the validity of your connect()) combined with
C++11 lambas makes it a real delight.

Beneath Q_OBJECT and signals/slots

The Qt building system should be clearer now. Still, the Q_0BJECT macro and the
signal/slot/emit keywords are still black boxes. Let's dive into Q_0OBJECT.

The truth lies in the source code; Q _0BJECT is defined in the file qobjectdefs.h (in Qt 5.7):

#define Q_OBJECT \
public: \
// skipped details
static const QMetaObject staticMetaObject; \
virtual const QMetaObject *metaObject() const; \
virtual void *qt_metacast(const char *); \
virtual int gt_metacall(QMetaObject::Call, int, void **); \
QT_TR_FUNCTIONS \
private: \
// skipped details
gt_static_metacall(QObject *, QMetaObject::Call, int, void **);

This macro defines some static functions and a static QMetaObject. The body of these static
functions is implemented in the generated moc file. We will not drown you in the gory details
of the QMetaobject class. The role of this class is to store all the metainformation for

the Qobject subclass. It also maintains a correspondence table between the signals and slots of
your class, and to the signals and slots of any connected class. Each signal and each slot is
assigned with a unique index:

e The metaobject() function returns the &staticMetaObject for a normal Qt class and
a dynamicMetaObject when working with QML objects.

e The qt_metacast() function performs a dynamic cast using the name of the class. This
function is required because Qt does not rely on standard C++ RTTI (Runtime Type
Information) to retrieve meta data about an object or a class.

e The qt_metacall()directly calls an internal signal or slot by its index. Because an index
is used rather than a pointer, there is no pointer dereferencing, and the generated switch
case can be heavily optimized by the compiler (the compiler can directly include the jump
instruction to the specific case very early on, avoiding a lot of branch evaluation). Thus,
the execution of the signal/slot mechanism is quite fast.

Qt also adds non-standard C++ keywords to manage the signal/slot mechanism, namely
signals, slots, and emit. Let's see what is behind each one and see how everything fits inside
a connect () function.

The slots and signals keywords are also defined in qobjectdefs.h:

define slots
define signals public

That is right: slots points to nothing and the signals keyword is just a placeholder for

the public keyword. All your signals/slots are just... functions. The signals keyword is
forced to be public to make sure that your signal functions are visible outside of your class
(what is the point of a private signal anyway?). The Qt magic is simply the ability to emit
a signal keyword to any connected slot keyword without knowing the detail of the class
implementing this slot. Everything is done through the QMetaobject class implementation in
the moc file. When a signal keyword is emitted, the function QMetaObject: :activate() is
called with the changed value and the signals index.

The last definition to study is emit:

define emit

So many definitions of nothing, it is almost absurd! The emit keyword is completely useless
from a code perspective; moc plainly ignores it and nothing particular happens with it
afterwards. It is merely a hint for the developer to notice he is working with signal/slots
rather than plain functions.

To trigger a slot, you must connect your signal keyword to it using the Q0bject: :connect()
function. This function creates a new Connection instance that is defined in qobject_p.h:

struct Connection

{
QObject *sender;
QObject *receiver;
union {
StaticMetaCallFunction callFunction;
QtPrivate::QSlotObjectBase *slotObj;
Iy
// The next pointer for the singly-linked ConnectionlList
Connection *nextConnectionlList;
//senders linked list
Connection *next;
Connection **prev;

+;

The Connection instance stores a pointer to the signal emitter class (sender), the slot receiver
class (receiver), and the indexes of the connected signal and slot keywords. When a signal
is emitted, every connected slot must be called. To be able to do this, every Qobject has a
linked list of connection instances for each of its signal, and the same linked list

of connection for each of its slot keywords.

This pair of linked lists allows Qt to properly walk through each dependent slot/signal
couple to trigger the right functions using the indexes. The same reasoning is used to handle
the receiver destruction: Qt walks through the double linked list and removes the object from

where it was connected.

This walk happens in the famous UI thread, where the whole message loop is processed and
every connected signal/slot is triggered according to the possible events (mouse, keyboard,
network, and so on). Because the QThread class inherits the Qobject, any QThread can use the
signal/slot mechanism. Additionally, the signals keyword can be posted to other threads
where they will be processed in the receiving threads' event loop.

Summary

In this chapter, we created a cross-platform SysInfo application. We covered the singleton and
the strategy pattern to have a neat code organization with platform-specific code. You learned
to use the Qt Charts module to display system information in real time. Finally, we took a
deep dive into the gmake command to see how Qt implements the signal/slot mechanism, and
to see what is hidden behind Qt-specific keywords (emit, signals, and slots).

By now, you should have a clear picture of how Qt works and how you can tackle a cross-
platform application. In the next chapter, we will look at how you can split a bigger project in
order to keep your sanity as a maintainer. We will study a fundamental pattern in Qt--the
Model/View--and discover how to use a database with Qt.

Chapter 3. Dividing Your Project and
Ruling Your Code

The last chapter delved into gmake to study what lies beneath the signal/slot system and
covered a reasonable approach to implementing platform-specific code. This chapter wants to
show you how a project can be properly divided to enjoy the maximum leverage from the Qt
framework.

To do this, you will create a gallery application that handles albums and pictures. You will be
able to create, read, update and delete any album and display the pictures in a grid of
thumbnails or in full resolution. Everything will be persisted in a SQL database.

This chapter lays the foundations of the gallery by creating a core library that will be used in
the following two chapters: Chapter 4, Conquering the Desktop Ul, and Chapter 5, Dominating
the Mobile UL.

This chapter covers the following topics:

e Application/library project separation

e Database interaction with Qt

e Smart pointers with C++14

e Model/View architecture in Qt with an implementation of the model

Designing a maintainable project

The first step in designing a maintainable project is to properly split it in clearly defined
modules. A common approach is to separate the engine from the user interface. This
separation forces you to reduce coupling between the different parts of your code and make it
more modular.

This is exactly the approach we will take with the gallery application. The project will be
divided into three sub-projects:

Data classes

Model
GUI QML SQL Storage GUI Widgets
gallery-mobile gallery-core gallery-desktop

The sub-projects are as follows:

e gallery-core: This is a library containing the core of the application logic: the data
classes (or business classes), persistent storage (in SQL), and the model that makes the
storage available to the Ul through a single entry point.

e gallery-desktop: This is a Qt widgets application that will depend on the gallery-core
library to retrieve data and display it to the user. This project will be covered in Chapter
4, Conquering the Desktop UIL.

e gallery-mobile: This is a QML application targeted at mobile platforms (Android and
iOS). It will also rely on gallery-core. This project will be covered in Chapter
5, Dominating the Mobile UI.

As you can see, each layer has a single responsibility. This principle is applied to both the
project structure and the code organization. Throughout these three projects, we will
endeavor to live up to the motto of the chapter: "Divide your project and rule your code".

To separate your Qt project this way, we will create a different kind of project, a Subdirs
project:

1. Click on File | New File or Project.
2. In the Projects types, select Other Project | Subdirs Project | Choose.

3. Name it che3-gallery-core and then click on Choose.
4. Select your latest Qt Desktop Kit, and then click on Next | Finish & Add Subproject.

Here, Qt Creator created the parent project, ch@3-gallery-core, which will host our three
sub-projects (gallery-core, gallery-desktop, and gallery-mobile). The parent project has
neither code nor a compilation unit in itself, it is simply a convenient way to group

multiple .pro projects and express the dependencies between them.

The next step is to create the first subdir project, which Qt Creator proposed immediately
when you clicked on Finish & Add Subproject. We will start with gallery-core:

1. Select Library in the Projects tab.

Select C++ Library.

Choose the Shared Library type, and name it gallery-core, and click on Next.

Select the modules, QtCore, and QtSql, and then click on Next.

Type Album in the Class name field, and click on Next. Qt Creator will generate the

basic skeleton of a library with this class as an example.

6. Check that the project is properly added as a sub-project of ch@3-gallery-core.proand
click on Finish.

A WN

Before delving into gallery-core code, let's study what Qt Creator just made for us. Open the
parent .pro file, che3-gallery-core.pro:

TEMPLATE = subdirs

SUBDIRS += \
gallery-core

Until now, we used the TEMPLATE = app syntax in our .pro files. The subdirs project
template indicates to Qt that it should search for sub-projects to compile. When we added
the gallery-core project to ch@3-gallery-core.pro, Qt Creator added it to the SUBDIRS
variable. As you can see, SUBDIRS is a list, so you can add as many sub-projects as you want.

When compiling che3-gallery-core.pro, Qt will scan each SUBDIRS value to compile them.
We can now switch to gallery-core.pro:

QT += sql
QT -= gui

TARGET = gallery-core
TEMPLATE 1lib

DEFINES += GALLERYCORE_LIBRARY
SOURCES += Album.cpp
HEADERS += Album.h\

gallery-core_global.h

unix {
target.path = /usr/1lib
INSTALLS += target

}

Let's see how this works:

e The QT has appended the sql module and removed the gui module. By default, QtGui is
always included and has to be removed explicitly.

e The TEMPLATE value is different, again. We use 1ib to tell gmake to generate a Makefile
that will output a shared library named gallery-core (as specified by the TARGET
variable).

e The DEFINES += GALLERY_CORE_LIBRARY syntax is a compilation flag that lets the
compiler know when it should import or export library symbols. We will come back
soon to this notion.

e The HEADERS contains our first class Album.h, but also another generated
header: gallery-core_global.h. This file is syntactic sugar provided by Qt to ease the
pain of a cross-platform library.

e Theunix { ... } scope specifies the installation destination of the library. This
platform scope is generated because we created the project on Linux. By default it will
try to install the library in the system library path (/usr/1ib).

Please remove the unix scope altogether, we don't need to make the library available system-
wide.

To have a better understanding of the cross-platform shared object issue, you can open
gallery-core_global.h:

#include <QtCore/qglobal.h>

#if defined(GALLERYCORE_LIBRARY)

define GALLERYCORESHARED_EXPORT Q_DECL_EXPORT
#else

define GALLERYCORESHARED_EXPORT Q _DECL_IMPORT
#endif

We encounter again the GALLERYCORE_LIBRARY defined in gallery-core.pro file. Qt Creator
generated a useful piece of code for us: the cross-platform way to handle symbol visibility in
a shared library.

When your application links to a shared library, symbol functions, variables, or classes must
be marked in a special way to be visible by the application using the shared library. The
default visibility of a symbol depends on the platform. Some platforms will hide symbols by
default, other platforms will make them public. Of course, each platform and compiler has its

own macros to express this public/private notion.

To obviate the whole #ifdef windows #else boilerplate code, Qt provides a Q DECL_EXPORT
(if we are compiling the library) and Q DECL_IMPORT (if we are compiling your application
using the shared library). Thus, throughout the symbols you want to mark as public, you just
have to use the GALLERYCORESHARED_EXPORT macro.

An example is available in the Album.h file:

#ifndef ALBUM_H
#define ALBUM_H

#include "gallery-core_global.h"

class GALLERYCORESHARED_EXPORT Album

{

public:
Album();

Iy

#endif // ALBUM_H

You include the proper gallery-core_global.h file to have access to the macro and you use
it just after the class keyword. It does not pollute your code too much and is still cross-
platform.

Note

Another possibility is to make a Statically Linked Library. This path is interesting if you
want fewer dependencies to handle (a single binary is always easier to deploy). There are
several downsides:

¢ Increased compilation time: each time you modify the library, the application will have
to be recompiled as well.

e Tighter coupling, multiple applications cannot link to your library. Each one of them
must embed it.

Defining data classes

We are building our gallery from the ground up. We will start with the implementation of our
data classes to be able to properly write the database layer. The application aims to organize
pictures into albums. Hence, the two obvious classes are Album and Picture. In our example,
an album simply has a name. A Picture class must belong to an Album class and has a file
path (the path on your filesystem where the original file is located).

The Album class has already been created on project creation. Open the Album.h file and
update it to include the following implementation:

#include <QString>
#include "gallery-core_global.h"

class GALLERYCORESHARED_EXPORT Album

{
public:
explicit Album(const QString& name = "");

int id() const;

void setId(int id);

QString name() const;

void setName(const QString& name);

private:
int mId;
QString mName;

+;

As you can see, the Album class contains only a mId variable (the database ID) and a mName
variable. In a typical OOP (Object Oriented Paradigm) fashion, the Album class would have
had a Qvector<Picture>mPictures field. We did not do it on purpose. By decoupling these
two objects, we will have more flexibility when we want to load an album without pulling the
potential thousands of associated pictures. The other problem in having mPictures in

the Album class is that the developer (you or anybody else) using this code will ask himself:
when is mPictures loaded? Should I do a partial load of the Album and have an

incomplete Album or should I always load Album with every picture in it?

By completely removing the field, the question ceases to exist, and the code is simpler to
grasp. The developer knows intuitively that he will have to explicitly load the pictures if he
want them; otherwise, he can continue with this simple Album class.

The getters and setters are obvious enough; we will let you implement them without showing
them to you. We will only take a look at the Album class' constructor in Album.cpp:

Album: :Album(const QString& name)
mId(-1),
mName (name)

{
}

The mId variable is initialized to -1 to be sure that, by default, an invalid id is used, and
the mName variable is assigned a name value.

We can now proceed to the Picture class. Create a new C++ class named Picture and
open Picture.h to modify it like so:

#include <QUrl1>
#include <QString>

#include "gallery-core_global.h"

class GALLERYCORESHARED_EXPORT Picture

{

public:
Picture(const QString& filePath = "");
Picture(const QUrl& fileUrl);

int id() const;
void setId(int id);

int albumId() const;
void setAlbumId(int albumId);

QUrl fileUrl() const;

void setFileUrl(const QUrl& fileUrl);
private:

int mId;

int mAlbumId;

QUrl mFileUrl;

+;

Do not forget to add the GALLERYCORESHARED_EXPORT macro right before the class keyword
to export the class from the library. As a data structure, Picture has a mId variable, belongs to
a mAlbumId variable, and has a murl value. We use the Qur1 type to make path manipulation
easier to use depending on the platform (desktop or mobile).

Let's take a look at Picture.cpp:

#include "Picture.h"
Picture::Picture(const QString& filePath)

Picture(QUrl::fromLocalFile(filePath))
{

}

Picture::Picture(const QUrl& fileUrl)

mId(-1),
mAlbumId(-1),

mFileUrl(fileUrl)
{
}
QUrl Picture::fileUrl() const
{
return mFileUrl;
}
void Picture::setFileUrl(const QUrlé& fileUrl)
{
mFileUrl = fileUrl;
}

In the first constructor, the static function, QUrl::fromLocalFile, is called to provide a Qurl
object to the other constructor, which takes a QUr1 parameter.

The ability to call other constructors is a nice addition in C++11.

Storing your data in a database

Now that the data classes are ready, we can proceed to implement the database layer. Qt
provides a ready-to-use sql module. Various databases are supported in Qt using SQL
database drivers. In gallery-desktop, we will use the SQLITE3 driver, which is included in
the sq1 module and perfectly fits the use case:

¢ Avery simple database schema: No need for complex queries

e Very few or no concurrent transactions: No need for a complex transaction model

¢ A single-purpose database: No need to spawn a system service, the database is stored in
a single file and does not need to be accessed by multiple applications

The database will be accessed from multiple locations; we need to have a single entry point
for it. Create a new C++ class named DatabaseManager and modify DatabaseManager .h to look
like this:

#include <QString>
class QSglDatabase;
const QString DATABASE_FILENAME = '"gallery.db";

class DatabaseManager

{
public:
static DatabaseManager& instance();
~DatabaseManager () ;
protected:
DatabaseManager (const QString& path = DATABASE_FILENAME);
DatabaseManager& operator=(const DatabaseManager& rhs);
private:
QSqlDatabase* mDatabase;
Iy

The first thing to notice is that we implement the singleton pattern in the DatabaseManager
class, like we did in the Transforming SysInfo in a singleton section from Chapter

2, Discovering QMake Secrets. The DatabaseManager class will open the connection in
the mDatabase field and lend it to other possible classes.

Also, QsqlDatabase is forward-declared and used as a pointer for the mpatabase field. We
could have included the Qsqlbatabase header, but we would have had a non-desired side-
effect: every file, which includes DatabaseManager, must also include QSglDatabase. Thus, if
we ever have some transitive inclusion in our application (which links to the gallery-core
library), the application is forced to enable the sq1 module. As a consequence, the storage

layer leaks through the library. The application should not have any knowledge about the
storage layer implementation. For all the application cares, it could be in SQL, XML, or
anything else; the library is a black box that should honor the contract and persist the data.

Let's switch to DatabaseManager .cpp and open the database connection:

#include "DatabaseManager.h"
#include <QSglDatabase>

DatabaseManager& DatabaseManager ::instance()

{

static DatabaseManager singleton;
return singleton;

}

DatabaseManager : :DatabaseManager (const QString& path)
mDatabase(new QSglDatabase(QSglDatabase::addDatabase("QSQLITE")))

{
mDatabase->setDatabaseName(path);
mDatabase->open();
}
DatabaseManager : :~DatabaseManager ()
{
mDatabase->close();
delete mDatabase;
}

The correct database driver is selected on the mbatabase field initialization with

the QSqlDatabase: :addDatabase("QSQLITE") function call. The following steps are just a
matter of configuring the database name (which is incidentally the file path in SQLITE3) and
opening the connection with the mbatabase->open() function. In the DatabaseManager
destructor, the connection is closed and the mDatabase pointer is properly deleted.

The database link is now opened; all we have to do is to execute our Album and Picture
queries. Implementing the CRUD (Create/Read/Update/Delete) for both our data classes

in DatabaseManager would quickly push DatabaseManager .cpp to be several hundreds of lines
long. Add a few more tables and you can already see what a monster DatabaseManager would
turn into.

For this reason, each of our data classes will have a dedicated database class, responsible for
all the database CRUD operations. We will start with the Album class; create a new C++ class
named AlbumDao (data access object) and update AlbumDao. h:

class QSglDatabase;

class Albumbao

{

public:
AlbumbDao(QSqlDatabase& database);
void init() const;

private:
QSqlDatabase& mDatabase;

+;

The AlbumbDao class's constructor takes a QSqlDatabase& parameter. This parameter is the
database connection that will be used for all the SQL queries done by the Albumbao class.
The init() function aims to create the albums table and should be called when mbatabase is
opened.

Let's see the implementation of AlbumbDao.cpp:

#include <QSglDatabase>
#include <QSglQuery>

#include "DatabaseManager.h"

AlbumDao: :AlbumbDao(QSqlDatabase& database)
mDatabase(database)

{
}

void AlbumDao::init() const

{

if (!mDatabase.tables().contains("albums")) {
QSqlQuery query(mDatabase);
query.exec("CREATE TABLE albums (id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT)");

}
}

As usual, the mDatabase field is initialized with the database parameter. In the init() function,
we can see a real SQL request in action. If the table albums class does not exist, a QSqlQuery
query is created that will use the mbDatabase connection to be executed. If you omit mDatabase,
the query will use a default anonymous connection. The query.exec() function is the simplest
manner of executing a query: you simply pass the QString type of your query and it's done.
Here we create the albums table with the fields matching the data class Album (id and name).

Tip

The QSqlQuery::exec() function returns a bool value that indicates if the request has been
successful. In your production code, always check this value. You can further investigate the
error with QSqlQuery::lastError (). An example is available in the source code of the
chapter in DatabaseManager : :debugQuery ().

The skeleton of AlbumDao class is done. The next step is to link it to the DatabaseManager
class. Update the DatabaseManager class like so:

// In DatabaseManager .h
#include "AlbumbDao.h"

private:
QSqlDatabase* mDatabase;

public:
const AlbumbDao albumDao;

+;

// In DatabaseManager .cpp

DatabaseManager : :DatabaseManager (const QString& path)
mDatabase(new QSglDatabase(QSglDatabase::addDatabase("QSQLITE"))),
albumbDao(*mDatabase)

{
mDatabase->setDatabaseName(path);
mDatabase->open();
albumbDao.init();

}

The albumbao field is declared as a public const AlbumbDao in the DatabaseManager .h file.
This needs some explanation:

e The public visibility is to give access to DatabaseManager clients to the albumDao field.
The API becomes intuitive enough; if you want to make a database operation on
an album, just call DatabaseManager : :instance() .albumbDao.

e The const keyword is to make sure that nobody can modify albumbDao. Because it
is public, we cannot guarantee the safety of the object (anybody could modify the
object). As a side-effect, we force every public function of AlbumDao to be const. This
makes sense; after all, the AlbumDao field could have been a namespace with a bunch of
functions. It is more convenient for it to be a class because we can keep the reference to
the database connection with the mpatabase field.

In the DatabaseManager constructor, the albumbao class is initialized with the mDatabase
dereferenced pointer. The albumbao.init() function is called after the database connection
has opened.

We can now proceed to implement more interesting SQL queries. We can start with the
creation of a new album in the Albumbao class:

// In AlbumDao.h
class QSglDatabase;
class Album;

class Albumbao

{
public:
AlbumbDao(QSqlDatabase& database);
void init() const;
void addAlbum(Album& album) const;
3

// In AlbumDao.cpp
#include <QSglDatabase>

#include <QSglQuery>
#include <Qvariant>

void AlbumbDao::addAlbum(Album& album) const

{
QSqlQuery query(mDatabase);
query.prepare("INSERT INTO albums (name) VALUES (:name)");
query.bindValue(":name", album.name());
query.exec();
album.setId(query.lastInsertId().toInt());
}

The addAlbum() function takes an album parameter to extract its information and execute the
corresponding query. Here, we approach the prepared query notion: the query.prepare()
function takes a query parameter which contains placeholders for parameters provided later.
We will provide the name parameter with the syntax :name. Two syntaxes are supported: Oracle
style with a colon-name (for example, :name) or ODBC style with a question mark (for
example, ?name).

We then bind the bind :name syntax to the value of the album.name() function.
Because QsqlQuery::bind() expects a Qvariant as a parameter value, we have to add
the include directive to this class.

In a nutshell, a Qvariant is a generic data holder that accepts a wide range of primitive types
(char, int, double, and so on) and complex types (QString, QByteArray, QUrl, and so on).

When the query.exec() function is executed, the bound values are properly replaced.
The prepare() statement technique makes the code more robust to SQL injection (injecting a
hidden request would fail) and more readable.

The execution of the query modifies the state of the object query itself. The QSqlQuery query
is not simply a SQL query executor, it also contains the state of the active query. We can

retrieve information about the query with the query.lastInsertId() function, which returns
a Qvariant value containing the ID of the album row we just inserted. This id is given to

the album provided in the addAlbum() parameter. Because we modify album, we cannot mark
the parameter as const. Being strict about the const correctness of your code is a good hint
for a fellow developer, who can deduce that your function might (or not) modify the passed
parameter.

The remaining update and delete operations follow strictly the same pattern used for
addAlbum(). We will just provide the expected function signatures in the next code snippet.
Please refer to the source code of the chapter for the complete implementation. However, we
need to implement the request to retrieve all the albums in the database. This one deserves a
closer look:

// In AlbumDao.h
#include <QVector>

void addAlbum(Album& album) const;

void updateAlbum(const Album& album) const;
void removeAlbum(int id) const;
QVector<Album*> albums() const;

+;

// In AlbumbDao.cpp
QVector<Album*> AlbumbDao::albums() const

{
QSglQuery query("SELECT * FROM albums", mDatabase);

query.exec();

Qvector<Album*> 1list;

while(query.next()) {
Album* album = new Album();
album->setId(query.value("id").toInt());
album->setName(query.value("name").toString());
list.append(album);

}

return list;

}

The albums() function must return a Qvector<Album*> value. If we take a look at the body of
the function, we see yet another property of QSqlQuery. To walk through multiple rows for a
given request, query handles an internal cursor pointing to the current row. We can then
proceed to create a new Album* () function and fill it with the row data with

the query.value() statement, which takes a column name parameter and returns a Qvariant
value that is casted to the proper type. This new album parameter is appended to the 1ist and,
finally, this 1ist is returned to the caller.

The PictureDao class is very similar to the Albumbao class, both in usage and implementation.

The main difference is that a picture has a foreign key to an album. The Picturebao function
must be conditioned by an albumId parameter. The following code snippet shows
the PictureDao header and the init() function:

// In PictureDao.h
#include <QVector>

class QSglDatabase;
class Picture;

class PicturebDao

{

public:
explicit PictureDao(QSqlDatabase& database);
void init() const;

void addPictureInAlbum(int albumId, Picture& picture) const;
void removePicture(int id) const;

void removePicturesForAlbum(int albumId) const;
QVector<Picture*> picturesForAlbum(int albumId) const;

private:
QSqlDatabase& mDatabase;

+;

// In PictureDao.cpp
void PictureDao::init() const

{

if (!mDatabase.tables().contains("pictures")) {
QSqlQuery query(mDatabase);
query.exec(QString("CREATE TABLE pictures")
+ " (id INTEGER PRIMARY KEY AUTOINCREMENT, "
+ "album_id INTEGER, "
+ "url TEXT)");

}

As you can see, multiple functions take an albumId parameter to make the link between the
picture and the owning album parameter. In the init() function, the foreign key is expressed
in the album_id INTEGER syntax. SQLITE3 does not have a proper foreign key type. It is a
very simple database and there is no strict constraint for this type of field; a simple integer is
used.

Finally, the PictureDao function is added in the DatabaseManager class exactly as we did
for albumbao. One could argue that, if there are a lot of Dao classes, adding a const Dao
member in the DatabaseManager class and calling the init() function quickly becomes

cumbersome.

A possible solution could be to make an abstract Dao class, with a pure virtual init()

function. The DatabaseManager class would have a Dao registry, which maps each Dao to

a QString key with a QHash<QString, const Dao> mDaos. The init() function call would
then be called in a for loop and a bao object would be accessed using the Qstring key. This is
outside the scope of this project, but is nevertheless an interesting approach.

Protecting your code with a smart pointer

The code we just described is fully functional, but, it can be strengthened, specifically with the
function, Albumbao: :albums(). In this function, we iterate through the database rows and
create a new Album to fill a list. We can zoom in on this specific code section:

Qvector<Album*> 1list;

while(query.next()) {
Album* album = new Album();
album->setId(query.value("id").toInt());
album->setName(query.value("name").toString());
list.append(album);

}

return list;

Let's say that the name column has been renamed to title. If you forget to

update query.value("name"), you might run into trouble. The Qt framework does not rely on
exceptions, but this cannot be said for every API available in the wild. An exception here
would cause a memory leak: the Album* album function has been allocated on the heap but not
released. To handle this, you would have to surround the risky code with a try catch
statement and deallocate the album parameter if an exception has been thrown. Maybe this
error should bubble up; hence, your trycatch statement is only there to handle the potential
memory leak. Can you picture the spaghetti code weaving in front of you?

The real issue with pointers is the uncertainty of their ownership. Once it has been allocated,
who is the owner of a pointer? Who is responsible for deallocating the object? When you
pass a pointer as a parameter, when does the caller retain the ownership or release it to the
callee?

Since C++11, a major milestone has been reached in memory management: the smart pointer
feature has been stabilized and can greatly improve the safety of your code. The goal is to
explicitly indicate the ownership of a pointer through simple template semantics. There are
three types of smart pointer:

e The unique_ptr pointer indicates that the owner is the only owner of the pointer

e The shared_ptr pointer indicates that the pointer's ownership is shared among several
clients

e The weak_ptr pointer indicates that the pointer does not belong to the client

For now, we will focus on the unique_ptr pointer to understand smart pointer mechanics.

A unique_ptr pointer is simply a variable allocated on the stack that takes the ownership of
the pointer you provide with it. Let's allocate an Album with this semantic:

#include <memory>

void foo()

{
Album* albumPointer = new Album();
std::unique_ptr<Album> album(albumPointer);
album->setName("Unique Album");

¥

The whole smart pointer API is available in the memory header. When we declared album as
a unique_ptr, we did two things:

e We allocated on the stack a unique_ptr<Album>. The unique_ptr pointer relies on
templates to check at compile time the validity of the pointer type.

e We granted the ownership of albumPointer memory to album. From this point on, album
is the owner of the pointer.

This simple line has important ramifications. First and foremost, you do not have to worry
anymore about the pointer life cycle. Because a unique_ptr pointer is allocated on the stack,
it will be destroyed as soon as it goes out of scope. In this example, when we exit foo(), album
will be removed from the stack. The unique_ptr implementation will take care of calling

the Album destructor and deallocating the memory.

Secondly, you explicitly indicate the ownership of your pointer at compile time. Nobody can
deallocate the albumPointer content if they do not voluntarily fiddle with your unique_ptr
pointer. Your fellow developers will also know with a single glance who is the owner of your
pointer.

Note that, even though albumis a type of unique_ptr<Album>, you can still call Album
functions (for example, album->setName()) using the -> operator. This is possible thanks to
the overload of this operator. The usage of the unique_ptr pointer becomes transparent.

Well, this use case is nice, but the purpose of a pointer is to be able to allocate a chunk of
memory and share it. Let's say the foo() function allocates the album unique_ptr pointer and
then transfers the ownership to bar (). This would look like this:

void foo()

{
std::unique_ptr<Album> album(new Album());
bar (std::move(album));
¥
void bar(std::unique_ptr<Album> barAlbum)
{
gbebug() << "Album name" << barAlbum->name();
¥

Here, we introduce the std: :move() function: its goal is to transfer the ownership of
a unique_ptr function. Once bar (std: :move(album)) has been called, album becomes invalid.

You can test it with a simple if statement: if (album) { ... }.

From now on, the bar () function becomes the owner of the pointer (through barAlbum) by
allocating a new unique_ptr on the stack and it will deallocate the pointer on its exit. You do
not have to worry about the cost of a unique_ptr pointer, as these objects are very
lightweight and it is unlikely that they will affect the performance of your application.

Again, the signature of bar () tells the developer that this function expects to take the
ownership of the passed Album. Trying to pass around unique_ptr without the move()
function will lead to a compile error.

Another thing to note is the different meanings of the . (dot) and the -> (arrow) when
working with a unique_ptr pointer:

e The -> operator dereferences to the pointer members and lets your call function on your
real object
e The . operator gives you access to the unique_ptr object functions

The unique_ptr pointer provides various functions. Among the most important are:

e The get() function returns the raw pointer. The album.get() returns an Album* value.

e The release() function releases the ownership of the pointer and returns the raw pointer.
The album.release() function returns an Album* value.

e The reset(pointer p = pointer()) function destroys the currently managed pointer
and takes ownership of the given parameter. An example would be the barAlbum.reset()
function, which destroys the currently owned Album*. With a
parameter, barAlbum.reset(new Album()) also destroys the owned object and takes the
ownership of the provided parameter.

Finally, you can dereference the object with the * operation, meaning *album will return

an Album& value. This dereferencing is convenient, but you will see that the more a smart
pointer is used, the less you will need it. Most of the time, you will replace a raw pointer with
the following syntax:

void bar(std::unique_ptr<Album>& barAlbum);

Because we pass the unique_ptr by reference, bar () does not take ownership of the pointer
and will not try do deallocate it upon its exit. With this, there is no need to use move(album)
in foo(); the bar () function will just do operations on the album parameter but will not take
its ownership.

Now, let's consider shared_ptr. A shared_ptr pointer keeps a reference counter on a pointer.
Each time a shared_ptr pointer references the same object, the counter is incremented; when
this shared_ptr pointer goes out of scope, the counter is decremented. When the counter

reaches zero, the object is deallocated.

Let's rewrite our foo()/bar () example with a shared_ptr pointer:

#include <memory>
void foo()

{
std::shared_ptr<Album> album(new Album()); // ref counter = 1

bar(album); // ref counter = 2
} // ref counter = 0

void bar(std::shared_ptr<Album> barAlbum)

{
gbebug() << "Album name" << barAlbum->name();
} // ref counter = 1

As you can see, the syntax is very similar to the unique_ptr pointer. The reference counter is
incremented each time a new shared_ptr pointer is allocated and points to the same data, and
is decremented on the function exit. You can check the current count by calling

the album.use_count () function.

The last smart pointer we will cover is the weak_ptr pointer. As the name suggests, it does not
take any ownership or increment the reference counter. When a function specifies a weak_ptr,
it indicates to the callers that it is just a client and not an owner of the pointer. If we re
implement bar () with a weak_ptr pointer, we get:

#include <memory>
void foo()

{
std::shared_ptr<Album> album(new Album()); // ref counter = 1

bar (std::weak_ptr<Album>(album)); // ref counter = 1
} // ref counter = 0

void bar(std::weak_ptr<Album> barAlbum)

{
gbebug() << "Album name" << barAlbum->name();
} // ref counter = 1

If the story stopped here, there would not be any interest in using a weak_ptr versus a raw
pointer. The weak_ptr has a major advantage for the dangling pointer issue. If you are
building a cache, you typically do not want to keep strong references to your object. On the
other hand, you want to know if the objects are still valid. By using weak_ptr, you know when
an object has been deallocated. Now, consider the raw pointer approach: your pointer might
be invalid but you do not know the state of the memory.

There is another semantic introduced in C++14 that we have to cover: make_unique. This
keyword aims to replace the new keyword and construct a unique_ptr object in an exception-
safe manner. This is how it is used:

unique_ptr<Album> album = make_unique<Album>();

The make_unique keyword wraps the new keyword to make it exception-safe, specifically in
this situation:

foo(new Album(), new Picture())

This code will be executed in the following order:

1. Allocate and construct the Album function.
2. Allocate and construct the Picture function.
3. Execute the foo() function.

If new Picture() throws an exception, the memory allocated by new Album() will be leaked.
This is fixed by using the make_unique keyword:

foo(make_unique<Album>(), make_unique<Picture>())

The make_unique keyword returns a unique_ptr pointer; the C++ standard committee also
provided an equivalent for shared_ptr in the form of make_shared, which follows the same
principle.

All these new C++ semantics try very hard to getrid of new and delete. Yet, it may be
cumbersome to write all the unique_ptr and make_unique stuff. The auto keyword comes to
the rescue in our album creation:

auto album = make_unique<Album>()

This is a radical departure from the common C++ syntax. The variable type is deduced, there
is no explicit pointer, and the memory is automatically managed. After some time with smart
pointers, you will see fewer and fewer raw pointers in your code (and even fewer delete,
which is such a relief). The remaining raw pointers will simply indicate that a client is using
the pointer but does not own it.

Overall, C++11 and C++14 smart pointers are a real step up in C++ code writing. Before
them, the bigger the code base, the more insecure we felt about memory management. Our
brain is just bad at properly grasping complexity at such a level. Smart pointers simply make
you feel safe about what you write. On the other hand, you retain full control of the memory.
For performance-critical code, you can always handle the memory yourself. For everything
else, smart pointers are an elegant way of explicitly indicating your object's ownership and
freeing your mind.

We are now equipped to rewrite the little insecure snippet in the AlbumDao: :albums()
function. Update Albumbao: :albums() like so:

// In AlbumDao.h
std::unique_ptr<std::vector<std::unique_ptr<Album>>> albums() const;

// In AlbumbDao.cpp
unique_ptr<vector<unique_ptr<Album>>> AlbumDao::albums() const

{
QSglQuery query("SELECT * FROM albums", mDatabase);

query.exec();
unique_ptr<vector<unique_ptr<Album>>> list(new vector<unique_ptr<Album>>

());
while(query.next()) {

unique_ptr<Album> album(new Album());
album->setId(query.value("id").toInt());
album->setName(query.value("name").toString());
list->push_back(move(album));

}

return list;

}

Wow! The signature of the album() function has turned into something very peculiar. Smart
pointers are supposed to make your life easier, right? Let's break it down to understand a
major point of smart pointers with Qt: container behavior.

The initial goal of the rewrite was to secure the creation of album. We want the 1ist to be the
explicit owner of the album. This would have changed our list type (that is albums() return
type) to QVector<unique_ptr<Album>>. However, when the 1ist type is returned, its elements
will be copied (remember, we previously defined the return type to Qvector<Album>). A
natural way out of this would be to return a Qvector<unique_ptr<Album>>* type to retain the
uniqueness of our Album elements.

Behold, here lies a major pain: the Qvector class overloads the copy operator. Hence, when
the 1ist type is returned, the uniqueness of our unique_ptr elements cannot be guaranteed by
the compiler and it will throw a compile error. This is why we have to resort to a vector
object coming from the standard library and write the long

type: unique_ptr<vector<unique_ptr<Album>>>.

Note

Take a look at the official response for support of the unique_ptr pointer in the Qt container.

It is clear beyond any possible doubt: http://lists.gt-project.org/pipermail/interest/2013-
July/007776.html. The short answer is: no, it will never be done. Do not even mention it. Ever.

If we translate this new albums() signature into plain English it will read: the album()
function returns a vector of Album. This vector is the owner of the A1lbum elements it contains
and you will be the owner of the vector.

To finish covering this implementation of albums(), you may notice that we did not use

http://lists.qt-project.org/pipermail/interest/2013-July/007776.html

the auto and make_unique keywords for the 1ist declaration. Our library will be used on a
mobile in Chapter 5, Dominating the Mobile UI, and C++14 is not yet supported on this
platform. Therefore, we have to restrain our code to C++11.

We also encounter the use of the move function in the instruction 1ist-

>push_back (move(album)). Until that line, the album is "owned" by the while scope, the move
gives the ownership to the list. At the last instruction, return list, we should have

written move(1list), but C++11 accepts the direct return and will automatically make

the move() function for us.

What we covered in this section is that the AlbumDao class is completely matched
in PictureDao. Please refer to the source code of the chapter to see the full PictureDao class
implementation.

Implementing the model

The data is ready to be exposed to potential clients (the applications that will display and edit
its content). However, a direct connection between the client and the database will make a very
strong coupling. If we decide to switch to another storage type, the view would have to be
rewritten, partially at least.

This is where the model comes to our rescue. It is an abstract layer that communicates with the
data (our database) and exposes this data to the client in a data-specific, implementation-
agnostic form. This approach is a direct offspring of the MVC (Model View Controller)
concept. Let's recapitulate how MVC works:

e The Model manages the data. It is responsible for requesting for the data and updating it.

e The View displays the data to the user.

e The Controller interacts with both the Model and the View. It is responsible for feeding
the View with the correct data and sending commands to the Model based on the user
interaction received from the View.

This paradigm enables swapping various parts without disturbing the others. Multiple views
can display the same data, the data layer can be changed, and the upper parts will not be aware
of it.

Qt combines the View and the Controller to form the Model/View architecture. The separation
of the storage and the presentation is retained while being simpler to implement than a full
MVC approach. To allow editing and view customization, Qt introduces the concept of
Delegate, which is connected to both the Model and the View:

Data

Model Editing

Rendering DE|EQETE

Rendering

The Qt documentation about Model/View is truly plethoric. It is nevertheless easy to get lost
in the details; it feels sometimes a bit overwhelming. We will try to clear things up by
implementing the AlbumModel class and seeing how it works.

Qt offers various Model sub-classes that all extend from QAbstractItemModel. Before starting
the implementation, we have to carefully choose which base class will be extended. Keep in
mind that our data are variations on lists: we will have a list of albums, and each album will
have a list of pictures. Let's see what Qt offers us:

e QAbstractItemModel: This class is the most abstract, and therefore, the most complex, to
implement. We will have to redefine a lot of functions to properly use it.

e QStringListModel: This class is a model that supplies strings to views. It is too simple.
Our model is more complex (we have custom objects).

® QSglTableModel (or QSqLQueryModel): This class is a very interesting contender. It
automatically handles multiple SQL queries. On the other hand, it works only for very
simple table schemas. In the pictures table, for example, the album_id foreign key
makes it very hard to fit this model. You might save some lines of code, but if feels like
trying to shoehorn a round peg into a square hole.

® QAbstractListModel: This class provides a model that offers one-dimensional lists. This

fits nicely with our requirements, saves a lot of key strokes, and is still flexible enough.

We will go with the QabstractListModel class and create a new C++ class named AlbumModel.
Update the AlbumModel.h file to look like this:

#include <QAbstractListModel>
#include <QHash>
#include <vector>
#include <memory>

#include "gallery-core_global.h"
#include "Album.h"
#include "DatabaseManager.h"

class GALLERYCORESHARED_EXPORT AlbumModel : public QAbstractListModel

{
Q OBJECT

public:

enum Roles {
IdRole = Qt::UserRole + 1,
NameRole,

Iy
AlbumModel (QObject* parent = 0);
QModelIndex addAlbum(const Album& album);

int rowCount(const QModelIndex& parent = QModelIndex()) const override;
Qvariant data(const QModelIndex& index, int role = Qt::DisplayRole) const
override;

bool setData(const QModelIndex& index, const QVariant& value, int role)
override;

bool removeRows(int row, int count, const QModelIndex& parent) override;
QHash<int, QByteArray> roleNames() const override;

private:
bool isIndexValid(const QModelIndex& index) const;

private:
DatabaseManager& mDb;
std::unique_ptr<std::vector<std::unique_ptr<Album>>> mAlbums;

+;

The AlbumModel class extends the QAbstractListModel class and has only two members:

e mDb: This is the link to the database. In the Model/View schema, the model will
communicate with the data layer through mbb.

e mAlbums: This acts as a buffer that will avoid hitting the database too much. The type
should remind you of what we wrote for Albumbao: :albums() with the smart pointers.

The only specific functions the AlbumModel class has are addAlbum() and isIndexValid().
The rest are overrides of QAbstractListModel functions. We will go through each of these
functions to understand how a model works.

First, let's see how the AlbumModel class is constructed in the AlbumModel.cpp file:

AlbumModel: :AlbumModel (QObject* parent)
QAbstractListModel (parent),
mDb (DatabaseManager ::instance()),
mAlbums(mDb.albumDao.albums())

{
}

The mpb file is initialized with the DatabaseManager singleton address, and, after that, we see
the now famous AlbumDao: :albums() in action.

The vector type is returned and initializes mAlbums. This syntax make the ownership transfer
automatic without any need for an explicit call to the std: :move() function. If there are any
stored albums in the database, mAlbums is immediately filled with those.

Each time the model interacts with the view (to notify us about changes or to serve data),
mAlbums will be used. Because it is in memory only, reading will be very fast. Of course, we
have to be careful about maintaining malbum coherently with the database state, but everything
will stay inside the AlbumModel inner mechanics.

As we said earlier, the model aims to be the central point to interact with the data. Each time
the data changes, the model will emit a signal to notify the view; each time the view wants to
display data, it will request the model for it. The AlbumModel class overrides everything
needed for read and write access. The read functions are:

e rowCount(): This function is used to get the list size

e data(): This function is used to get a specific piece of information about the data to
display

e roleNames(): This function is used to indicate to the framework the name for each "role".
We will explain in a few paragraphs what a role is

The editing functions are:

e setData(): This function is used to update data
e removeRows(): This function is used to remove data

We will start with the read part, where the view asks the model for the data.

Because we will display a list of albums, the first thing the view should know is how many
items are available. This is done in the rowCount () function:

int AlbumModel: :rowCount(const QModelIndex& parent) const

{
}

return mAlbums->size();

Being our buffer object, using mAlbums->size() is perfect. There is no need to query the
database, as mAlbums is already filled with all the albums of the database. The rowCount ()
function has an unknown parameter: a const QModelIndex& parent. Here, it is not used, but
we have to explain what lies beneath this type before continuing our journey in

the AlbumModel class.

The QModelIndex class is a central notion of the Model/View framework in Qt. Itis a
lightweight object used to locate data within a model. We use a simple QAbstractListModel
class, but Qt is able to handle three representation types:

List Model Table Model Tree Model
T _ e i
i : Root item i : Root item I : Root item
| [- = | [Feies
row =0 L Er0w=[} row =0
row = 1
row =1 : row =0
row = 2
row = 2 ! =50 row = 1
: : ' row =23 :
. _._:j._._l..{;.__:j._._l..:;. .
= = = =
= [=] = [=] —
5 S S S row =1
s | = = =
]] I]
= . row =2

There is no better explanation than an official Qt diagram

Let's now see the models in detail:

e List Model: In this model, the data is stored in a one-dimensional array (rows)

e Table Model: In this model, the data is stored in a two-dimensional array (rows and
columns)

e Tree Model: In this model, the data is stored in a hierarchical relationship
(parent/children)

To handle all these model types, Qt came up with the QModelIndex class, which is an abstract
way of dealing with them. The QModelIndex class has the functions for each of the use

cases: row(), column(), and parent()/child(). Each instance of a QModelIndex is meant to be
short-lived: the model might be updated and thus the index will become invalid.

The model will produce indexes according to its data type and will provide these indexes to
the view. The view will then use them to query back new data to the model without needing to
know if an index.row() function corresponds to a database row or a vector index.

We can see the index parameter in action with the implementation of data():

Qvariant AlbumModel::data(const QModelIndex& index, int role) const

{
if (!'isIndexValid(index)) {
return QVariant();
}

const Album& album = *mAlbums->at(index.row());

switch (role) {
case Roles::IdRole:
return album.id();

case Roles::NameRole:
case Qt::DisplayRole:
return album.name();

default:
return QVariant();

}

The view will ask for data with two parameters: an index and a role. As we have already
covered the index, we can focus on the role responsibility.

When the data is displayed, it will probably be an aggregation of multiple data. For example,
displaying the picture will consist of a thumbnail and the picture name. Each one of these data
elements needs to be retrieved by the view. The role parameter fills this need, it associates
each data element to a tag for the view to know what category of data is shown.

Qt provides various default roles (DisplayRole, DecorationRole, EditRole, and so on) and
you can define your own if needed. This is what we did in the AlbumModel .h file with the enum
Roles: we added an IdRole and a NameRole.

The body of the data() function is now within our reach! We first test the validity of

the index with a helper function, isIndexvalid(). Take a look at the source code of the
chapter to see what it does in detail. The view asked for data at a specific index: we retrieve
the album row at the given index with *mAlbums->at(index.row()).

This returns a unique_ptr<Album> value at the index.row() index and we dereference it to

have an Album&. The const modifier is interesting here because we are in a read function, and
it makes no sense to modify the album row. The const modifier adds this check at compile
time.

The switch on the role parameter tells us what data category should be returned. The data()
function returns a Qvariant value, which is the Awiss Army Knife of types in Qt. We can
safely return the album.id(), album.name(), or a default Qvariant() if we do not handle the
specified role.

The last read function to cover is roleNames():

QHash<int, QByteArray> AlbumModel::roleNames() const

{
QHash<int, QByteArray> roles;
roles[Roles::IdRole] = "id";
roles[Roles::NameRole] = "name";
return roles;

}

At this level of abstraction, we do not know what type of view will be used to display our data.
If the views are written in QML, they will need some meta-information about the data
structure. The roleNames() function provides this information so the role names can be
accessed via QML. If you are writing for a desktop widget view only, you can safely ignore
this function. The library we are currently building will be used for QML,; this is why we
override this function.

The reading part of the model is now over. The client view has everything it needs to properly
query and display the data. We shall now investigate the editing part of AlbumModel.

We will start with the creation of a new album. The view will build a new Album object and
pass it to Album: :addAlbum() to be properly persisted:

QModelIndex AlbumModel::addAlbum(const Album& album)

{
int rowIndex = rowCount();
beginInsertRows(QModelIndex(), rowIndex, rowIndex);
unique_ptr<Album> newAlbum(new Album(album));
mDb .albumbDao.addAlbum(*newAlbum);
mAlbums->push_back(move(newAlbum));
endInsertRows();
return index(rowIndex, 0);

}

Indexes are a way to navigate within the model data. This first thing we do is to determinate
what will be the index of this new album by getting the mAlbums size with rowCount().

From here, we start to use specific model functions: beginInsertRows()

and endInsertRows(). These functions wrap real data modifications. Their purpose is to
automatically trigger signals for whoever might be interested:

e beginInsertRows(): This function informs that rows are about to change for the given
indexes
e endInsertRows(): This function informs that rows have been changed

The first parameter of the beginInsertRows() function is the parent for this new element.
The root for a model is always an empty QModelIndex () constructor. Because we do not
handle any hierarchical relationship in AlbumModel, it is safe to always add the new element to
the root. The following parameters are the first and last modified indexes. We insert a single
element per call, so we provide rowIndex twice. To illustrate the usage of this signal, a view
might, for example, display a loading message telling the user "Saving 5 new albums".

For endInsertRows(), the interested view might hide the saving message and display "Save
finished".

This may look strange at first, but it enables Qt to handle automatically a lot of signaling for
us and in a generic way. You will see very soon how well this works when designing the UI of
the application in Chapter 4, Conquering the Desktop UL.

The real insertion begins after the beginInsertRows() instruction. We start by creating a copy
of the album row with unique_ptr<Album> newAlbum. This object is then inserted in the
database with mDb .albumDao.addAlbum(*newAlbum). Do not forget that

the AlbumDao: :addAlbum() function also modifies the passed album by setting its mId to the
last SQLITE3-inserted ID.

Finally, newAlbum is added to mAlbums and its ownership is transferred as well
with std::move(). The return gives the index object of this new album, which is simply the
row wrapped in a QModelIndex object.

Let's continue the editing functions with setData():

bool AlbumModel::setData(const QModelIndex& index, const QvVariant& value, int
role)
{

if (!'isIndexValid(index)

|| role != Roles::NameRole) {
return false;

3

Album& album = *mAlbums->at(index.row());

album.setName(value.toString());

mDb .albumDao.updateAlbum(album);

emit dataChanged(index, index);

return true;

This function is called when the view wants to update the data. The signature is very similar to
data(), with the additional parameter value.

The body also follows the same logic. Here, the album row is an Album&, without the const
keyword. The only possible value to edit is the name, which is done on the object and then
persisted to the database.

We have to emit ourselves the dataChanged () signal to notify whoever is interested that a row
changed for the given indexes (the start index and end index). This powerful mechanism
centralizes all the states of the data, enabling possible views (album list and current album
detail for example) to be automatically refreshed.

The return of the function simply indicates if the data update was successful. In a production
application, you should test the database processing success and return the relevant value.

Finally, the last editing function we will cover is removeRows():

bool AlbumModel::removeRows(int row, int count, const QModelIndex& parent)
{
if (row < 0
|| row >= rowCount()
|| count < 0@
|| (row + count) > rowCount()) {
return false;
3
beginRemoveRows(parent, row, row + count - 1);
int countLeft = count;
while (countLeft--) {
const Album& album = *mAlbums->at(row + countLeft);
mDb .albumbDao.removeAlbum(album.id());
3
mAlbums->erase(mAlbums->begin() + row,
mAlbums->begin() + row + count);
endRemoveRows() ;
return true;

}

The function signature should start to look familiar by now. When a view wants to remove
rows, it has to provide the starting row, the number of rows to delete, and the parent of the
rOwW.

After that, just as we did for addAlbum(), we wrap the effective removal with two functions:

e The beginRemoveRows() function, which expects the parent, the starting index, and the
last index

e The endRemoveRows() function, which simply triggers automatic signals in the model
framework

The rest of the function is not very hard to follow. We loop on the rows left to delete and, for
each one, we delete it from the database and remove it from mAlbums. We simply retrieve the
album from our in-memory mAlbums vector and process the real database deletion

with mDb .albumbDao.removeAlbum(album.id()).

The AlbumModel class is now completely covered. You can now create a new C++ class and
name it PictureModel.

We will not cover the PictureModel class in so much detail. The major parts are the same
(you simply swap the data class Album for Picture). There is however one main
difference: PictureModel always handles pictures for a given album. This design choice
illustrates how two models can be linked with only some simple signals.

Here is the updated version of PictureModel.h:

#include <memory>
#include <vector>

#include <QAbstractListModel>

#include "gallery-core_global.h"
#include "Picture.h"

class Album;
class DatabaseManager ;
class AlbumModel;

class GALLERYCORESHARED_EXPORT PictureModel : public QAbstractListModel

{
Q OBJECT
public:

enum PictureRole {
FilePathRole = Qt::UserRole + 1

Iy
PictureModel(const AlbumModel& albumModel, QObject* parent = 0);

QModelIndex addPicture(const Picture& picture);
int rowCount(const QModelIndex& parent = QModelIndex()) const override;
Qvariant data(const QModelIndex& index, int role) const override;

bool removeRows(int row, int count, const QModelIndex& parent) override;

void setAlbumId(int albumId);
void clearAlbum();

public slots:
void deletePicturesForAlbum();

private:

void loadPictures(int albumId);
bool isIndexValid(const QModelIndex& index) const;

private:
DatabaseManager& mDb;
int mAlbumId;
std::unique_ptr<std::vector<std::unique_ptr<Picture>>> mPictures;

+;

The interesting parts are those concerning the album. As you can see, the constructor expects
an AlbumModel. This class also stores the current mAlbumId to be able to request the pictures
for a given album only. Let's see what the constructor really does:

PictureModel::PictureModel(const AlbumModel& albumModel, QObject* parent)
QAbstractListModel (parent),
mDb (DatabaseManager ::instance()),
mAlbumId(-1),
mPictures(new vector<unique_ptr<Picture>>())

connect(&albumModel, &AlbumModel::rowsRemoved,
this, &PictureModel::deletePicturesForAlbum);

}

As you can see, the albumModel class is used only to connect a signal to our

slot deletePicturesForAlbum() which is self-explanatory. This makes sure that the database
is always valid: a picture should be deleted if the owning album is deleted. This will be done
automatically when AlbumModel emits the rowsRemoved signal.

Now, mPictures is not initialized with all the pictures of the database. Because we chose to
restrict PictureModel to work on the pictures for a given album, we do not know at the
construction of PictureModel which album to choose. The loading can only be done when the
album is selected, in setAlbumId():

void PictureModel::setAlbumId(int albumId)

{
beginResetModel();
mAlbumId = albumId;
loadPictures(mAlbumId);
endResetModel();

}

When the album changes, we completely reload PictureModel. The reloading phase is
wrapped with the beginResetModel () and endResetModel () functions. They notify any
attached views that their state should be reset as well. Any previous data (for

example, QModelIndex) reported from the model becomes invalid.

The loadPictures() function is quite straightforward:

void PictureModel::loadPictures(int albumId)

if (albumId <= 0) {
mPictures.reset(new vector<unique_ptr<Picture>>());
return;

}

mPictures = mDb.pictureDao.picturesForAlbum(albumId);

}

By convention, we decided that, if a negative album id is provided, we clear the pictures. To
do it, we reinitialize mPictures with the call mPictures.reset(new
vector<unique_ptr<Picture>>()). This will call the destructor on the owned vector, which
in turn will do the same for the Picture elements. We force mPictures to always have a valid
vector object to avoid any possible null reference (in PictureModel: :rowCount() for
example).

After that, we simply assign the database pictures for the given albumId to mPictures. Because
we work with smart pointers at every level, we do not even see any specific semantics here.
Still, mPicture is a unique_ptr<vector<unique_ptr<Picture>>>. When the = operator is
called, the unique_ptr pointer overloads it and two things happen:

e The ownership of the right-hand side (the pictures retrieved from the database) is
transferred to mPictures
e The old content of mPictures is automatically deleted

It is effectively the same as calling mPictures.reset() and then mPictures =
move(mDb.pictureDao.picturesForAlbum(albumId)). With the = overload, everything is
streamlined and much more pleasant to read.

The PictureModel shows you how flexible the model paradigm can be. You can easily adapt it
to your own use case without making any strong coupling. After all, the albumModel is only
used to connect to a single signal; there are no retained references. The remainder of the class
is available in the source code of the chapter.

Summary

The chapter was a journey to create a well-defined gallery-core library. We studied
advanced techniques with .pro files to split your project into sub-modules, persisted data in a
SQLITE3 database with the help of smart pointers, and finally studied how the Model/View
architecture works in Qt.

From now on, a project organization with Qt should hold no terrors for you. The next chapter
will continue right where we stopped: the library is ready, now let's make great QWidgets to
have a stunning gallery application and look at the other side of the model: the View layer.

Chapter 4. Conquering the Desktop Ul

In the previous chapter, we built the brain of our gallery using Qt models. It is now time to
build a desktop application using this engine. This software will use all the features offered by
the gallery-core library, leading to a completely usable gallery on your computer.

The first task will be to link your project-shared library to this new application. Then you will
learn how to create custom widgets, when to use Qt views, and how to synchronize them with
the model.

The following topics will be covered in this chapter:

Linking the application to a project library
Qt model/view

Qtresource file

Promoting custom widgets

Creating a GUI linked to a core shared
library

The gallery-core shared library is now ready. Let's see how to create the desktop GUI
project. We will create a Qt Widgets application sub-project called gallery-desktop. Only the
first steps differ from a classic Qt Widgets application. Right-click on the main project, and
select ch04-gallery-desktop | New subproject | Application | Qt Widgets Application

| Choose.

You will get a nice multi-projects hierarchy like this:

« fi= chO4-gallery-desktop [master]
== ch04-gallery-desktop.pro
b fi7 gallery-core
b [i% gallery-desktop

It is now time to link this gallery-desktop application to the gallery-core. You can edit the
file gallery-desktop.pro yourself or use the Qt Creator wizard like this: right-click on the
project and select gallery-desktop | Add library | Internal library | gallery-core | Next

| Finish. Here is the updated gallery-desktop.pro:

QT += core gui

TARGET = desktop-gallery
TEMPLATE = app

SOURCES += main.cpp\
MainwWindow.cpp

HEADERS += MainWindow.h
FORMS += MainWindow.uil

win32:CONFIG(release, debug|release): LIBS += -L$$OUT_PWD/../gallery-
core/release/ -lgallery-core

else:win32:CONFIG(debug, debug|release): LIBS += -L$30UT_PWD/../gallery-
core/debug/ -lgallery-core

else:unix: LIBS += -L$$0OUT_PWD/../gallery-core/ -1lgallery-core

INCLUDEPATH += $$PWD/../gallery-core
DEPENDPATH += $$PWD/../gallery-core

The LIBS variable specifies the libraries to link in this project. The syntax is very simple: you
can provide library paths with the -L prefix and library names with the -1 prefix.

LIBS += -L<pathTolLibrary> -1<libraryName>

By default, compiling a Qt project on Windows will create a debug and release sub-directory.
That is why a different L1BS edition is created depending on the platform.

Now that the application is linked to the library gallery-core and knows where to find it, we
must indicate where the library header files are located. That is why we must add the gallery-
core source path to INCLUDEPATH and DEPENDPATH.

To complete all those tasks successfully, gmake offers some useful variables:

e $3$0UT_PWD: The absolute path to the output directory
e $$PwWD: The absolute path of the current .pro file

To ensure that gmake will compile the shared library before the desktop application, we must
update the che4-gallery-desktop.pro file according the following snippet:

TEMPLATE = subdirs

SUBDIRS += \
gallery-core \
gallery-desktop

gallery-desktop.depends = gallery-core

The depends attribute explicitly indicates that gallery-core must be built before gallery-
desktop.

Tip

Try to always use the depends attribute instead of relying on CONFIG += ordered, which only
specifies a simple list order. The depends attribute helps gmake process your projects in
parallel, if it can be done.

Instead of rushing into coding blindly, we will take some time to think about the Ul
architecture. We have a lot of features to implement from the gallery-core library. We
should split these features into independent QWidgets. The final application will look like
this:

Create | Holidays ['“Add pictures | [ﬁ Edit | [. Delete |

HElE] T e [«
o IMG_20150906_095025.jpg | -
Mom's birthday |

Our future gallery desktop is here!

The exapanded view of a photo will look like this:

2 Back | IMG_20150906 095025.jpg | * | | I Delete |

Double-click on a thumbnail to display it in full size.

To sum up the main Ul components:

e AlbumListwWidget: This component lists all existing albums
e Albumwidget: This component shows the selected album and its thumbnails
e Picturewidget: This component displays the picture in full size

This is how we will organize it:

MainWindow

GalleryWidget PictureWidget
AlbumListWidget AlbumWidget

Each widget has a defined role and will handle specific features:

Class name Features

MainWindow Handles the switch between the gallery and the current picture

e Displays existing albums
GalleryWidget e Album selection
e Album creation

e Displays existing albums
AlbumListwidget|| < Album selection
Album creation

Displays existing pictures as thumbnail s
Adds pictures in the album

Album rename

Album deletion

Picture selection

Albumwidget

Displays the selected picture
Picturewidget ¢ Picture selection
o Picture deletion

In the core shared library, we used smart pointers with standard containers (vector).

Generally, in GUI projects, we tend to only use Qt containers and their powerful parent-child
ownership system. This approach seems more appropriate to us. That is why we will rely on
Qt containers for the GUI (and won't use smart pointers) in this chapter.

We can now safely begin to create our widgets; all of them are created from Qt Designer
Form Class. If you have a memory lapse, you can check the Custom QWidget section
in Chapter 1, Get Your Qt Feet Wet.

Listing your albums with AlbumListWidget

This widget must offer a way to create a new album and display existing ones. Selecting an
album must also trigger an event that will be used by other widgets to display the proper data.
The AlbumListwWidget component is the simplest widget in this project using the Qt View
mechanism. Take the time to fully understand AlbumListwidget before jumping to the next
widget.

The following screenshot shows the Form Editor view of the file, AlbumListwidget.ui:

e B m |Object Class
e : v = 7
- [@ Create - albumList |l QListview

« [l frame & QFrame
[createplbumButton [QPushButton

The layout is very simple. The components are described as follows:

e The AlbumListwidget component uses a vertical layout to display the Create button
above the list

e The frame component contains an attractive button

e The createAlbumButton component handles album creation

e The albumList component displays the album list

You should have recognized most of the types used here. Let us take the time to talk about the
really new one: QListView. As we already saw in the previous chapter, Qt provides a
Model/View architecture. This system relies on specific interfaces that you must implement to
provide generic data access via your model classes. That is what we did in the

project gallery-core with the AlbumModel and PictureModel classes.

It is now time to deal with the view part. The view is in charge of the presentation of the data.
It will also handle user interactions like selection, drag and drop, or item editing. Fortunately,

to achieve these tasks, the view is helped by other Qt classes such as
QItemSelectionModel, QModelIndex, or QStyledItemDelegate, which we will soon use in this
chapter.

We can now enjoy one of the ready-to-use views offered by Qt:

e QListview: This view displays items from a model as a simple list
e QTableVview: This view displays items from a model as a two-dimensional table
e QTreeView: This view displays items from a hierarchy of lists

Here, the choice is rather obvious because we want to display a list of album names. But in a
more complex situation, a rule of thumb for choosing the proper view is to look for the
model type; here we want to add a view for AlbumModel of type QAbstractListModel so

the QListView class seems correct.

As you can see in the preceding screenshot, the createAlbumButton object has an icon. You
can add one to a QPushButton class by selecting the widget property: icon | Choose resource.
You can now choose a picture from the resource.qgrc file.

A Qt resource file is a collection of files for embedding binary files in your application. You
can store any types of file but we commonly use it to store pictures, sounds, or translation
files. To create a resource file, right-click on the project name and then follow Add New | Qt
| Qt Resource File. Qt Creator will create a default file, resource.qrc, and add this line in
your file gallery-desktop.pro:

RESOURCES += resource.qrc
The resource file can be mainly displayed in two ways: Resource Editor and Plain Text

Editor. You can choose an editor with by right-clicking on the resource file and
selecting Open With.

The Resource Editor is a visual editor that helps you to easily add and remove files in your
resource file, as shown in the following screenshot:

= [esgurce.qrc

icons/album-add.png
I, iconsfalbum-delete.png

+ iconsfalbum-edit.png

= icons/back-to-gallery.png
B icons/phote-add.png

EJ icons/photo-delete.png
¥ icons/photo-next.png

H icons/photo-previous.png

Add - Remove Remaove Missing Files

Properties

Alias:
Prefix: !

Language:

The Plain Text Editor will display this XML-based file resource.qrc like this:

<RCC>
<gresource prefix="/">
<file>icons/album-add.png</file>
<file>icons/album-delete.png</file>
<file>icons/album-edit.png</file>
<file>icons/back-to-gallery.png</file>
<file>icons/photo-add.png</file>
<file>icons/photo-delete.png</file>
<file>icons/photo-next.png</file>
<file>icons/photo-previous.png</file>
</qresource>
</RCC>

At the build time, gmake and rcc (Qt Resource Compiler) embed your resources into the
application binary.
Now that the form part is clear, we can analyze the AlbumListwidget.h file:

#include <Qwidget>
#include <QItemSelectionModel>

namespace Ui {
class AlbumListWidget;

}

class AlbumModel;

class AlbumListWidget : public Qwidget

Q OBJECT

public:
explicit AlbumListWidget(Qwidget *parent = 0);
~AlbumListwidget();

void setModel(AlbumModel* model);
void setSelectionModel(QItemSelectionModel* selectionModel);

private slots:
void createAlbum();

private:
Ui::AlbumListWidget* ui;
AlbumModel* mAlbumModel;
3

The setModel () and setSelectionModel()functions are the most important lines in this
snippet. This widget require two things to work correctly:

e AlbumModel: This is the model class that provides access to data. We already created this
class in the gallery-core project.

e QItemSelectionModel: This is a Qt class that handles the selection in a view. By default,
views use their own selection model. Sharing the same selection model with different
views or widgets will help us to synchronize album selection easily.

This is the main part of AlbumListwidget.cpp:

#include "AlbumListWidget.h"
#include "ui_AlbumListWidget.h"

#include <QInputDialog>
#include "AlbumModel.h"

AlbumListWidget::AlbumListWidget(Qwidget *parent)

Qwidget(parent),
ui(new Ui::AlbumListWidget),
mAlbumModel (nullptr)
{
ui->setupUi(this);
connect(ui->createAlbumButton, &QPushButton::clicked,
this, &AlbumListWidget::createAlbum);
}
AlbumListWidget::~AlbumListWidget()
{

delete ui;

}

void AlbumListWidget::setModel(AlbumModel* model)

{
mAlbumModel = model;

ui->albumList->setModel(mAlbumModel);
}

void AlbumListWidget::setSelectionModel(QItemSelectionModel* selectionModel)
{

}

ui->albumList->setSelectionModel(selectionModel);

The two setters will mainly be used to set the model and the selection model of the albumList.
Our QListView class will then automatically request the model (AlbumModel) to get the row
count and the Qt::DisplayRole (the album's name) for each one of them.

Let's now see the last part of the AlbumListwidget.cpp file that handles the album creation:

void AlbumListWidget::createAlbum()

{
if(!mAlbumModel) {
return;
}
bool ok;
QString albumName = QInputDialog::getText(this,
"Create a new Album",
"Choose an name",
QLineEdit::Normal,
"New album",
&ok);
if (ok && '!albumName.isEmpty()) {
Album album(albumName);
QModelIndex createdIndex = mAlbumModel->addAlbum(album);
ui->albumList->setCurrentIndex(createdIndex);
}
}

We already worked with the QInputbialog class in Chapter 1, Get Your Qt Feet Wet. This time
we are using it to ask the user to enter an album's name. Then we create an Album class with
the requested name. This object is just a "data holder;" addAlbum() will use it to create and
store the real object with a unique ID.

The function addAlbum() returns us the QModelIndex value corresponding to the created
album. From here, we can request the list view to select this new album.

Creating a ThumbnailProxyModel

The future Albumwidget view will display a grid of thumbnails with the pictures attached to
the selected Album. In Chapter 3, Dividing Your Project and Ruling Your Code, we designed
the gallery-core library to be agnostic of how a picture should be displayed: a Picture class
contains only a murl field.

In other words, the generation of the thumbnails has to be done in gallery-desktop rather
than gallery-core. We already have the PictureModel class that is responsible for retrieving
the Picture information, so it would be great to be able to extend its behavior with the
thumbnail data.

This is possible in Qt with the use of the QAbstractProxyModel class and its subclasses. The
goal of this class is to process data from a base QAbstractItemModel (sorting, filtering,
adding data, and so on) and present it to the view by proxying the original model. To take a
database analogy, you can view it as a projection over a table.

The QAbstractProxyModel class has two subclasses:

e The QIdentityProxyModel subclass proxies its source model without any modification
(all the indexes match). This class is suitable if you want to transform the data()
function.

e The QSortFilterProxyModel subclass proxies its source model with the ability to sort
and filter the passing data.

The former, QIdentityProxyModel, fits our requirements. The only thing we need to do is to
extend the data() function with the thumbnail generation content. Create a new class
named ThumbnailProxyModel. Here is the ThumbnailProxyModel.h file:

#include <QIdentityProxyModel>
#include <QHash>
#include <QPixmap>

class PictureModel;

class ThumbnailProxyModel : public QIdentityProxyModel

{

public:
ThumbnailProxyModel(QObject* parent = 0);
Qvariant data(const QModelIndex& index, int role) const override;
void setSourceModel(QAbstractItemModel* sourceModel) override;
PictureModel* pictureModel() const;

private:

void generateThumbnails(const QModelIndex& startIndex, int count);

void reloadThumbnails();

private:
QHash<QString, QPixmap*> mThumbnails;

+;

This class extends QIdentityProxyModel and overrides a couple of functions:

e The data() function to provide the thumbnail data to the client of ThumbnailProxyModel
e The setSourceModel () function to register to signals emitted by sourceModel

The remaining custom functions have the following goals:

e The pictureModel() is a helper function that casts the sourceModel to a PictureModel*

e The generateThumbnails() function takes care of generating the Qpixmap thumbnails for
a given set of pictures

e The reloadThumbnails() is a helper function that clears the stored thumbnails before
calling generateThumbnails()

As you might have guessed, the mThumbnails class stores the Qpixmap* thumbnails using
the filepath for the key.

We now switch to the ThumbnailProxyModel.cpp file and build it from the ground up. Let's
focus on generateThumbnails():

const unsigned int THUMBNAIL_SIZE = 350;

void ThumbnailProxyModel::generateThumbnails(
const QModelIndex& startIndex, int
count)
{
if (!startIndex.isValid()) {
return;
}

const QAbstractItemModel* model = startIndex.model();

int lastIndex = startIndex.row() + count;

for(int row = startIndex.row(); row < lastIndex; row++) {
QString filepath = model->data(model->index(row, 0),

PictureModel::Roles::FilePathRole).toString();
QPixmap pixmap(filepath);
auto thumbnail = new QPixmap (pixmap
.scaled (THUMBNAIL_SIZE, THUMBNAIL_SIZE,
Qt::KeepAspectRatio,
Qt::SmoothTransformation));
mThumbnails.insert(filepath, thumbnail);

This function generates the thumbnails for a given range indicated by the parameters
(startIndex and count). For each picture, we retrieve the filepath from the original model,
using model->data(), and we generate a downsized QPixmap that is inserted in

the mThumbnails QHash. Note that we arbitrarily set the thumbnail size using const
THUMBNAIL_SIZE. The picture is scaled down to this size and respects the aspect ratio of the
original picture.

Each time that an album is loaded, we should clear the content of the mThumbnails class and
load the new pictures. This work is done by the reloadThumbnails() function:

void ThumbnailProxyModel::reloadThumbnails()

{
qDeleteAll(mThumbnails);
mThumbnails.clear();
generateThumbnails(index (0, 0), rowCount());
}

In this function, we simply clear the content of mThumbnails and call
the generateThumbnails() function with parameters indicating that all the thumbnails should
be generated. Let's see when these two functions will be used, in setSourceModel():

void ThumbnailProxyModel: :setSourceModel (QAbstractItemModel* sourceModel)

{
QIdentityProxyModel: :setSourceModel (sourceModel);

if (!sourceModel) {
return;

}

connect(sourceModel, &QAbstractItemModel::modelReset,
[this] {
reloadThumbnails();

1)

connect(sourceModel, &QAbstractItemModel::rowsInserted,
[this] (const QModelIndex& parent, int first, int last) {
generateThumbnails(index(first, ©), last - first + 1);

1)
}

When the setSourceModel () function is called, the ThumbnailProxyModel class is configured
to know which base model should be proxied. In this function, we register lambdas to two
signals emitted by the original model:

e The modelReset signal is triggered when pictures should be loaded for a given album. In
this case, we have to completely reload the thumbnails.

e The rowsInserted signal is triggered each time new pictures are added. At this
point, generateThumbnails should be called to update mThumbnails with these
newcomers.

Finally, we have to cover the data() function:

Qvariant ThumbnailProxyModel::data(const QModelIndex& index, int role) const

{

if (role !'= Qt::DecorationRole) {
return QIdentityProxyModel::data(index, role);
}

QString filepath = sourceModel()->data(index,
PictureModel::Roles::FilePathRole) .toString();
return *mThumbnails[filepath];

}

For any role that is not Qt: :DecorationRole, the parent class data() is called. In our case, this
triggers the data() function from the original model, PictureModel. After that, when data()
must return a thumbnail, the filepath of the picture referenced by the index is retrieved and
used to return the Qpixmap object of mThumbnails. Luckily for us, Qpixmap can be implicitly
cast to Qvariant, so we do not have anything special to do here.

The last function to cover in the ThumbnailProxyModel class is the pictureModel () function:

PictureModel* ThumbnailProxyModel::pictureModel() const

{
}

return static_cast<PictureModel*>(sourceModel());

Classes that will interact with ThumbnailProxyModel will need to call some functions that are
specific to PictureModel to create or delete pictures. This function is a helper to centralize the
cast of the sourceModel to PictureModel*.

As a side note, we could have tried to generate thumbnails on-the-fly to avoid a possible
initial bottleneck during the album loading (and the call to generateThumbnails()).

However, data() is a const function, meaning that it cannot modify the ThumbnailProxyModel
instance. This rules out any way of generating a thumbnail in the data() function and storing
itin mThumbnails.

As you can see, QIdentityProxyModel, and more generally QAbstractProxyModel,

are valuable tools to add behavior to an existing model without breaking it. In our case, this is
enforced by design in so far as the PictureModel class is defined in gallery-core rather

than gallery-desktop. Modifying PictureModel implies modifying gallery-core and
potentially breaking its behavior for other users of the library. This approach lets us keep
things cleanly separated.

Displaying the selected album with
AlbumWidget

This widget will display the data of the selected album from AlbumListwidget. Some buttons
will allow us to interact with this album.

Here is the layout of the Albumwidget.ui file:

T R e m |Object Class
e i e i — a8 - %
o Lurem-ipsum- [EJ Add pictures [Edit || [@ Delete |.|. + [l albuminfoFrame || QFrame
2 O addPicturesButton |=] QPushButton
' : albumName T QLabel
; deleteButton =] QPushButton
: editButton =] QPushButton
; thumbnailListview [oListview
u L
| | i |

The top frame, albumInfoFrame, with a horizontal layout, contains:

e albumName: This object displays the album's name (Lorem ipsum in the designer)
e addPicturesButton: This object allows the user to add pictures selecting files

e editButton: This objectis used to rename the album

e deleteButton: This object is used to delete the album

The bottom element, thumbnaillistView, is a QListView. This list view represents items
from PictureModel. By default, QListView is able to display a picture next to text
requesting Qt::DisplayRole and Qt::DecorationRole from the model.

Take a look at the header Albumwidget.h file:

#include <Qwidget>
#include <QModelIndex>

namespace Ui {
class Albumwidget;

}

class AlbumModel;

class PictureModel;

class QItemSelectionModel;
class ThumbnailProxyModel;

class AlbumwWidget : public Qwidget

{
Q_OBJECT

public:
explicit Albumwidget(Qwidget *parent = 0);
~Albumwidget();

void setAlbumModel (AlbumModel* albumModel);

void setAlbumSelectionModel (QItemSelectionModel* albumSelectionModel);
void setPictureModel(ThumbnailProxyModel* pictureModel);

void setPictureSelectionModel(QItemSelectionModel* selectionModel);

signals:
void pictureActivated(const QModelIndex& index);

private slots:
void deleteAlbum();
void editAlbum();
void addPictures();

private:
void clearUi();
void loadAlbum(const QModelIndex& albumIndex);

private:
Ui::Albumwidget* ui;
AlbumModel* mAlbumModel;
QItemSelectionModel* mAlbumSelectionModel;

ThumbnailProxyModel* mPictureModel;
QItemSelectionModel* mPictureSelectionModel;

+;

As this widget needs to deal with Album and Picture data, this class has AlbumModel

and ThumbnailProxyModel setters. We also want to know and share the model selection with
other widgets and views (that is, AlbumListwWidget). That is why we also have Album

and Picture model selection setters.

The signal pictureActivated() will be triggered when the user double-clicks on a thumbnail.
We will see later how Mainwindow will connect to this signal to display the picture at full size.

The private slots, deleteAlbum(), editAlbum(), and addPictures(), will be called when the
user clicks on one of these buttons.

Finally, the loadAlbum() function will be called to update the UI for a specific album.
The clearui()function will be useful to clear all information displayed by this widget UI.

Take a look at the beginning of the implementation in the Albumwidget.cpp file:

#include "Albumwidget.h"
#include "ui_Albumwidget.h"

#include <QInputDialog>
#include <QFileDialog>

#include "AlbumModel.h"
#include "PictureModel.h"

Albumwidget::AlbumWidget(Qwidget *parent)
Qwidget(parent),
ui(new Ui::Albumwidget),
mAlbumModel (nullptr),
mAlbumSelectionModel (nullptr),
mPictureModel (nullptr),
mPictureSelectionModel (nullptr)

ui->setupUi(this);
clearUi();

ui->thumbnaillistView->setSpacing(5);
ui->thumbnaillListView->setResizeMode(QListView: :Adjust);
ui->thumbnaillistView->setFlow(QListView::LeftToRight);
ui->thumbnaillListView->setWrapping(true);

connect(ui->thumbnaillistView, &QListView::doubleClicked,
this, &AlbumwWidget::pictureActivated);

connect(ui->deleteButton, &QPushButton::clicked,
this, &AlbumwWidget::deleteAlbum);

connect(ui->editButton, &QPushButton::clicked,
this, &AlbumwWidget::editAlbum);

connect(ui->addPicturesButton, &QPushButton::clicked,
this, &AlbumwWidget::addPictures);

}

Albumwidget::~Albumwidget()
{

}

delete ui;

The constructor configures thumbnaillistView, our QListView that will display thumbnails
of the current selected album. We set here various parameters:

e setSpacing(): In this parameter, by default items are glued to each other. You can add

spacing between them.

e setResizeMode(): This parameter dynamically lays out items when the view is resized.
By default, items keep their original placement even if the view is resized.

e setFlow(): This parameter specifies the list direction. Here we want to display items
from left to right. By default, the direction is TopToBottom.

e setWrapping(): This parameter allows an item to wrap when there is not enough space
to display it in the visible area. By default, wrapping is not allowed and scrollbars will be
displayed.

The end of the constructor performs all the signal connections related to the UL The first one
is a good example of signal relaying, explained in Chapter 1, Get Your Qt Feet Wet. We
connect the QListView: :doubleClicked signal to our class

signal, Albumwidget::pictureActivated. Other connections are common; we want to call a
specific slot when the user clicks on a button. As always in the Qt Designer Form Class, the
destructor will delete the member variable ui.

Let's see the AlbumModel setter implementation:

void Albumwidget::setAlbumModel (AlbumModel* albumModel)

{
mAlbumModel = albumModel;
connect(mAlbumModel, &QAbstractItemModel::dataChanged,
[this] (const QModelIndex &topLeft) {
if (topLeft == mAlbumSelectionModel->currentIndex()) {
loadAlbum(topLeft);
}
1)
}
void Albumwidget::setAlbumSelectionModel (QItemSelectionModel*
albumSelectionModel)
{
mAlbumSelectionModel = albumSelectionModel;
connect(mAlbumSelectionModel,
&QItemSelectionModel: :selectionChanged,
[this] (const QItemSelection &selected) {
if (selected.isEmpty()) {
clearUui();
return;
}
loadAlbum(selected.indexes().first());
1)
}

If the selected album's data changed, we need to update the UI with the loadAlbum() function.
A test is performed to ensure that the updated album is the currently selected one. Notice that

the QAbstractItemModel::dataChanged() function has three parameters but the lambda slot
syntax allows us to omit unused parameters.

Our AlbumwWidget component must update its Ul according to the currently selected album. As
we share the same selection model, each time the user selects an album

from AlbumListwidget, the signal QItemSelectionModel: :selectionChanged is triggered. In
this case, we update the Ul by calling the 1oadAlbum() function. As we do not support album
multi-selection, we can restrict the process to the first selected element. If the selection is
empty, we simply clear the UI.

It is now the turn of the PictureModel setter implementation:

void Albumwidget::setPictureModel(PictureModel* pictureModel)
{

mPictureModel = pictureModel;
ui->thumbnaillListView->setModel(mPictureModel);

}

void Albumwidget::setPictureSelectionModel (QItemSelectionModel* selectionModel)

{
}

ui->thumbnaillListView->setSelectionModel(selectionModel);

It is very simple here. We set the model and the selection model of thumbnaillistView,
our QListView that will display the selected album's thumbnails. We also keep the picture
model to manipulate the data later on.

We can now cover the features one by one. Let's start with album deletion:

void Albumwidget::deleteAlbum()
{
if (mAlbumSelectionModel->selectedIndexes().isEmpty()) {
return;
3

int row = mAlbumSelectionModel->currentIndex().row();
mAlbumModel ->removeRow(row);

// Try to select the previous album
QModelIndex previousModelIndex = mAlbumModel->index(row - 1,
0);
if(previousModelIndex.isValid()) {
mAlbumSelectionModel->setCurrentIndex(previousModelIndex,
QItemSelectionModel::SelectCurrent);
return;

}

// Try to select the next album

QModelIndex nextModelIndex = mAlbumModel->index(row, O);

if(nextModelIndex.isvValid()) {
mAlbumSelectionModel->setCurrentIndex(nextModelIndex,

QItemSelectionModel::SelectCurrent);
return;

}

The most important task in the deleteAlbum() function is to retrieve the current row index
from mAlbumSelectionModel. Then, we can request mAlbumModel to delete this row. The rest of
the function will only try to automatically select the previous or the next album. Once again,
as we shared the same selection model, AlbumListwidget will automatically update its album
selection.

The following snippet shows the album rename feature:

void Albumwidget::editAlbum()

{
if (mAlbumSelectionModel->selectedIndexes().isEmpty()) {

return;

}

QModelIndex currentAlbumIndex =
mAlbumSelectionModel ->selectedIndexes().first();

QString oldAlbumName = mAlbumModel->data(currentAlbumIndex,
AlbumModel: :Roles: :NameRole) .toString();

bool ok;

QString newName = QInputDialog::getText(this,
"Album's name",
"Change Album name",
QLineEdit::Normal,
oldAlbumName,
&ok);

if (ok && !newName.isEmpty()) {
mAlbumModel - >setData(currentAlbumIndex,
newName,
AlbumModel: :Roles: :NameRole);

}

Here, again the QInputDialog class will help us to implement a feature. You should be
confident with its behavior now. This function performs three steps:

1. Retrieve the current name from album model.
2. Generate a great input dialog.
3. Request the album model to update the name

As you can see, the generic functions data() and setData() from the models are very
powerful when combined with ItembataRole. As already explained, we do not directly update

our UlI; this will be automatically performed because setbata() emits a
signal, datachanged(), which AlbumwWidget handles.

The last feature allows us to add some new picture files in the current album:

void Albumwidget::addPictures()
{

QStringlList filenames =
QFileDialog::getOpenFileNames(this,
"Add pictures",
QDir::homePath(),
"Picture files (*.jpg *.png)");

if (!filenames.isEmpty()) {
QModelIndex lastModelIndex;
for (auto filename : filenames) {
Picture picture(filename);
lastModelIndex = mPictureModelat’pictureModel() -
>addPicture(picture);

}

ui->thumbnaillListView->setCurrentIndex(lastModelIndex);
}

The QFileDialog class is used here to help the user select several picture files. For each
filename, we create a Picture data holder, like we have already seen in this chapter for album
creation. Then we can request mPictureModel to add this picture in the current album. Note
that, because mPictureModel is a ThumbnailProxyModel class, we have to retrieve the

real PictureModel using the helper function, pictureModel(). As the function addPicture()
returns us the corresponding QModelIndex, we finally select the most recently added picture
in thumbnaillistView.

Let's complete AlbumWidget.cpp:

void Albumwidget::clearUi()

{
ui->albumName->setText("");
ui->deleteButton->setVisible(false);
ui->editButton->setVisible(false);
ui->addPicturesButton->setVisible(false);

}

void Albumwidget::loadAlbum(const QModelIndex& albumIndex)

{

mPictureModel->pictureModel()->setAlbumId(mAlbumModel->data(albumIndex,
AlbumModel: :Roles::IdRole).toInt());

ui->albumName->setText(mAlbumModel ->data(albumIndex,
Qt::DisplayRole) .toString());

ui->deleteButton->setVisible(true);
ui->editButton->setVisible(true);
ui->addPicturesButton->setVisible(true);

}

The clearui()function clears the album's name and hides the buttons, while the 1oadAlbum()
function retrieves the Qt: :DisplayRole (the album's name) and displays the buttons.

Enhancing thumbnails with PictureDelegate

By default, a QListView class will request Qt: :DisplayRole and Qt: :DecorationRole to
display text and a picture for each item. Thus, we already have a visual result, for free, that
looks like this:

[§ Create Holidavs [EJ Add pictures = Edit [@ Delete
y
T ——— - -

IMG_20150906_095025.jpg

However, our Gallery application deserves better thumbnail rendering. Hopefully, we can
easily customize it using the view's delegate concept. A QListView class provides a default
item rendering. We can do our own item rendering by creating a class that

inherits QStyledItemDelegate. The aim is to paint your dream thumbnails with a name banner
like the following screenshot:

B Create olidays |E Add pictures || [Edit || [Delete
Yy

IMG_20150906_095025.jpg

Let's take a look at PictureDelegate.h:

#include <QStyledItemDelegate>

class PictureDelegate : public QStyledItemDelegate

{
Q_OBJECT
public:
PictureDelegate(QObject* parent = 0);
void paint(QPainter* painter, const QStyleOptionViewItem&
option, const QModelIndex& index) const override;
QSize sizeHint(const QStyleOptionViewItem& option,
const QModelIndex& index) const override;
3

That is right, we only have to override two functions. The most important function, paint(),
will allow us to paint the item like we want. The sizeHint () function will be used to specify
the item size.

We can now see the painter work in PictureDelegate.cpp:

#include "PictureDelegate.h"
#include <QPainter>
const unsigned int BANNER_HEIGHT = 20;

const unsigned int BANNER_COLOR = 0x303030;
const unsigned int BANNER_ALPHA = 200;

const unsigned int BANNER_TEXT_COLOR = OXffffff;
const unsigned int HIGHLIGHT_ALPHA = 100;

PictureDelegate::PictureDelegate(QObject* parent)
QStyledItemDelegate(parent)

{
}

void PictureDelegate::paint(QPainter* painter, const QStyleOptionViewItem&
option, const QModelIndex& index) const

{

painter->save();

QPixmap pixmap = index.model()->data(index,
Qt::DecorationRole).value<QPixmap>();
painter->drawPixmap(option.rect.x(), option.rect.y(), pixmap);

QRect bannerRect = QRect(option.rect.x(), option.rect.y(),
pixmap.width(), BANNER_HEIGHT);

QColor bannerColor = QColor (BANNER_COLOR);

bannerColor.setAlpha(BANNER_ALPHA);

painter->fillRect(bannerRect, bannerColor);

QString filename = index.model()->data(index,
Qt::DisplayRole) .toString();

painter->setPen(BANNER_TEXT_COLOR);

painter->drawText(bannerRect, Qt::AlignCenter, filename);

if (option.state.testFlag(QStyle::State_Selected)) {
QColor selectedColor = option.palette.highlight().color();
selectedColor.setAlpha(HIGHLIGHT_ALPHA);
painter->fillRect(option.rect, selectedColor);

}

painter->restore();

}

Each time QListView needs to display an item, this delegate's paint() function will be called.
The paint system can be seen as layers that you paint one on top of each other. The QPainter
class allows us to paint anything we want: circles, pies, rectangles, text, and so on. The item
area can be retrieved with option.rect(). Here are the steps:

1. Itis easy to break the painter state passed in the parameter list, thus we must save the
painter state with painter->save() before doing anything, to be able to restore it when
we have finished our drawing.

2. Retrieve the item thumbnail and draw it with the QPainter::drawPixmap () function.

3. Paint a translucent gray banner on top of the thumbnail with the Qpainter::fillRect()
function.

4. Retrieve the item display name and draw it on the banner using
the QPainter::drawText() function.

5. If the item is selected, we paint a translucent rectangle on the top using the highlight
color from the item.
6. We restore the painter state to its original state.

Tip
If you want to draw a more complex item, check the Qpainter official documentation

at doc.qt.io/qt-5/gpainter.html.

This is the sizeHint() function's implementation:

QSize PictureDelegate::sizeHint(const QStyleOptionViewItem& /*option*/, const
QModelIndex& index) const

{
const QPixmap& pixmap = index.model()->data(index,
Qt::DecorationRole).value<QPixmap>();
return pixmap.size();
}

This one is easier. We want the item's size to be equal to the thumbnail size. As we kept the
aspect ratio of the thumbnail during its creation in Picture::setFilePath (), thumbnails can
have a different width and height. Hence, we basically retrieve the thumbnail and return its
size.

Tip

When you create an item delegate, avoid directly inheriting the QI temDelegate class and
instead inherit QStyledItemDelegate. This last one supports Qt style sheets, allowing you to
easily customize the rendering.

Now that PictureDelegate is ready, we can configure our thumbnaillistView to use it,
updating the Albumwidget.cpp file like this:

Albumwidget::AlbumWidget(Qwidget *parent)
Qwidget(parent),
ui(new Ui::Albumwidget),
mAlbumModel (nullptr),
mAlbumSelectionModel (nullptr),
mPictureModel (nullptr),
mPictureSelectionModel (nullptr)

ui->setupUi(this);
clearUi();

ui->thumbnaillistView->setSpacing(5);
ui->thumbnaillListView->setResizeMode(QListView: :Adjust);
ui->thumbnaillListView->setFlow(QListView::LeftToRight);
ui->thumbnaillListView->setWrapping(true);
ui->thumbnaillListView->setItemDelegate(

http://doc.qt.io/qt-5/qpainter.html

new PictureDelegate(this));
3
Tip
Qt tip

An item delegate can also manage the editing process with the
QStyledItemDelegate: :createEditor () function.

Displaying a picture with PictureWidget

This widget will be called to display a picture at its full size. We also add some buttons to go

to the previous/next picture or delete the current one.

Let's start to analyze the Picturewidget.ui form, here is the design view:

e B R S R, O S m iject

«* (Il frame

backButton
deleteButton
horizontalSpacer

ke 8 2 2 % F 1 % % !
R nameLabel
... nextButtDn
- e s e s previousButton
S pictureLabel
Rk k% % Rk b B ok L ¥ |

Class

= QFrame
=] QPushButton
l=x] QPushButton
Bl Spacer
T Qlabel
=] QPushButton
=] QPushButton
Ty Olabel

Here are the details:

backButton: This object requests to display the gallery
deleteButton: This object removes the picture from the album
nameLabel: This object displays the picture name

nextButton: This object selects the next picture in the album
previousButton: This object selects the previous picture in the album
pictureLabel: This object displays the picture

We can now take a look at the header Picturewidget.h:

#include <Qwidget>
#include <QItemSelection>

namespace Ui {
class PicturewWidget;

}

class PictureModel;
class QItemSelectionModel;
class ThumbnailProxyModel;

class PicturewWidget

{

! public Qwidget
Q _OBJECT
public:

explicit PicturewWidget(Qwidget *parent = 0);
~Picturewidget();

void setModel(ThumbnailProxyModel* model);
void setSelectionModel(QItemSelectionModel* selectionModel);

signals:
void backToGallery();

protected:
void resizeEvent(QResizeEvent* event) override;

private slots:
void deletePicture();
void loadPicture(const QItemSelection& selected);

private:
void updatePicturePixmap();

private:
Ui::Picturewidget* ui;
ThumbnailProxyModel* mModel;
QItemSelectionModel* mSelectionModel;
QPixmap mPixmap;

+;

No surprises here, we have the ThumbnailProxyModel* and QItemSelectionModel* setters in
the Picturewidget class. The signal backToGallery() is triggered when the user clicks on
the backButton object. It will be handled by Mainwindow to display again the gallery. We
override resizeEvent() to ensure that we always use all the visible area to display the picture.
The deletePicture()slot will process the deletion when the user clicks on the corresponding
button. The loadPicture()function will be called to update the UI with the specified picture.
Finally, updatePicturePixmap () is a helper function to display the picture according to the
current widget size.

This widget is really similar to the others. As a result, we will not put the full implementation
code of Picturewidget.cpp here. You can check the full source code example if needed.

Let's see how this widget is able to always display the picture at its full size in
Picturewidget.cpp:

void PictureWidget::resizeEvent(QResizeEvent* event)

{
Qwidget::resizeEvent(event);
updatePicturePixmap();
}
void PictureWidget::updatePicturePixmap()
{

if (mPixmap.isNull()) {
return;
}

ui->pictureLabel->setPixmap(mPixmap.scaled(ui->pictureLabel->size(),

Qt: :KeepAspectRatio));
}

So, every time the widget is resized, we call updatePicturePixmap(). The mPixmap variable is
the full-size picture from PictureModel. This function will scale the picture to

the pictureLabel size, keeping the aspect ratio. You can freely resize the window and enjoy
your picture with the biggest possible size.

Composing your Gallery app

Alright, we completed AlbumListwidget, AlbumWidget, and Picturewidget. If you remember
correctly, AlbumListwidget and AlbumWidget are contained in a widget called Gallerywidget.

Let's take a look at the Gallerywidget.ui file:

W o m |Object Class

-------------------------- =p albumListwidget 7 AlbumListWidget

el e s e % albumwidget [Z] AlbumWwidget

This widget does not contain any standard Qt widgets but only our created widgets. Qt
provides two ways to use your own widgets in the Qt designer:

e Promoting widgets: This is the fastest and easiest way
e Creating widget plugin for Qt designer: This is more powerful but more complex

In this chapter, we will use the first way, which consists of placing a generic Qwidget as a
placeholder and then promoting it to our custom widget class. You can follow these steps to
add the albumListwWidget and the albumwidget objects to the Gallerywidget.ui file from the
Qt designer:

1. Drag and drop a Widget from Containers to your form.

Set the objectName (for example, albumListwidget) from the Property Editor.
Select Promote to... from the widget contextual menu.

Set the promoted class name (for example, AlbumWidget).

Check that header file is correct (for example, AlbumWidget.h).

Click on the Add button and then click on Promote.

ok wN

If you fail your widget promotion, you can always reverse it with Demote to QWidget from
the contextual menu.

There is nothing really exciting in the header and implementation of Gallerywidget. We only
provide setters for the model and model selection of Album and Picture to forward them

to albumListwidget and albumwidget. This class also relays the signal pictureActivated
from albumwidget. Please check the full source code if needed.

This is the final part of this chapter. We will now analyze Mainwindow. Nothing is done
in Mainwindow.ui because everything is handled in the code. This is Mainwindow.h:

#include <QMainWindow>
#include <QStackedwidget>

namespace Ui {
class MainWindow;

}

class GalleryWidget;
class Picturewidget;

class MainwWindow : public QMainWindow

{
Q OBJECT

public:
explicit MainWindow(Qwidget *parent = 0);
~MainwWindow();

public slots:
void displayGallery();
void displayPicture(const QModelIndex& index);

private:
Ui::MainwWindow *ui;
Gallerywidget* mGalleryWidget;
Picturewidget* mPicturewidget;
QStackedwidget* mStackedwidget;

+;

The two slots, displayGallery() and displayPicture(), will be used to switch the display
between the gallery (album list with the album and thumbnail) and the picture (full-size).
The QSstackedwidget class can contain various widgets but display only one at a time.

Let's take a look to the beginning of the constructor in the Mainwindow.cpp file:
ui->setupUi(this);

AlbumModel* albumModel = new AlbumModel(this);
QItemSelectionModel* albumSelectionModel =

new QItemSelectionModel(albumModel, this);
mGallerywWidget->setAlbumModel(albumModel);
mGallerywWidget->setAlbumSelectionModel(albumSelectionModel);

First, we initialize the Ul by calling ui->setupUi(). Then we create AlbumModel and

its QI temSelectionModel. Finally, we call the setters of Gallerywidget that will dispatch them
to the AlbumListwidget and AlbumWidget objects.

Continuing our analysis of this constructor:

PictureModel* pictureModel = new PictureModel(*albumModel, this);
ThumbnailProxyModel* thumbnailModel = new ThumbnailProxyModel(this);
thumbnailModel->setSourceModel (pictureModel);

QItemSelectionModel* pictureSelectionModel =
new QItemSelectionModel(pictureModel, this);

mGallerywWidget->setPictureModel (thumbnailModel);
mGallerywidget->setPictureSelectionModel (pictureSelectionModel);
mPicturewWidget->setModel (thumbnailModel);
mPicturewWidget->setSelectionModel (pictureSelectionModel);

The behavior with Picture is close to the previous one with Album. But we also
share ThumbnailProxyModel, which is initialized from PictureModel, and
its QI temSelectionModel with Picturewidget.

The constructor now performs the signal/slot connections:

connect(mGallerywidget, &GalleryWidget::pictureActivated,
this, &MainWindow::displayPicture);

connect(mPicturewidget, &PicturewWidget::backToGallery,
this, &MainWindow::displayGallery);

Do you remember the pictureActivated() function? This signal is emitted when you double-
click on a thumbnail in albumwidget. We can now connect it to our displayPicture slot,
which will switch the display with the picture at its full size. Do not forget to also connect

the backToGallery signal emitted when the user clicks on the backButton

from Picturewidget. It will switch again to display the gallery.

The last part of the constructor is easy:

mStackedwWidget->addwidget(mGallerywidget);
mStackedwWidget->addwidget(mPicturewidget);
displayGallery();

setCentralwWidget(mStackedwidget);

We add our two widgets, mGallerywidget and mPicturewidget, to the mStackedwidget class.
When the application starts, we want to display the gallery, so we call our own

slot displayGallery(). Finally, we define mStackedwidget as the main window's central
widget.

To finish this chapter, let's see what happens in these two magic slots that allows to switch the
display when the user requests it:

void MainWindow::displayGallery()
{

}

void MainWindow::displayPicture(const QModelIndex& /*index*/)

{
}

mStackedwWidget->setCurrentWidget(mGallerywidget);

mStackedwWidget->setCurrentWidget(mPicturewidget);

That seems ridiculously easy. We just request mStackedwidget to select the corresponding
widget. As Picturewidget shares the same selection model with other views, we can even
ignore the index variable.

Summary

The real separation between data and representation is not always an easy task. Dividing the
core and the GUI in two different projects is a good practice. It will force you to design
separated layers in your application. At first sight, the Qt model/view system can appear
complex. But this chapter taught you how powerful it can be and how easy it is to use. Thanks
to the Qt framework, the persistence of data in a database can be done without headaches.

This chapter built on top of the foundations laid with the gallery-core library. In the next
chapter, we will reuse the same core library and create a mobile UI with Qt Quick in QML.

Chapter 5. Dominating the Mobile Ul

In Chapter 3, Dividing Your Project and Ruling Your Code, we created a strong core library to
handle a picture gallery. We will now use this gallery-core library to create a mobile
application.

We will teach you how to create a Qt Quick project from scratch. You will create custom Qt
Quick views with QML. This chapter will also cover how your QML views can communicate
with the C++ library.

At the end of this chapter, your gallery application will run on your mobile (Android or iOS)
with a dedicated GUI compliant with touch devices. This application will offer the same
features as the desktop application.

This chapter covers the following topics:

Creating a Qt Quick project

QML

Qt Quick controls

Qt for mobile (Android and iOS)
Calling C++ functions from QML

Starting with Qt Quick and QML

Qt Quick is another way of creating applications with Qt. You can use it to create a complete
application in place of Qt Widgets. The Qt Quick module provides transitions, animations,
and visual effects. You can also customize graphical effects with shaders. This module is
especially efficient at making software for devices using touchscreens. Qt Quick uses a
dedicated language: Qt Modeling Language (QML). It is a declarative language; the syntax is
close to the JSON (JavaScript Object Notation) syntax. Furthermore, QML also supports
JavaScript expressions inline or in a separate file.

Let's begin with a simple example of a Qt Quick application using QML. Create a new file
called main.qgml with this code snippet:

import QtQuick 2.5
import QtQuick.window 2.2

Window {
visible: true
width: 640; height: 480

// A nice red rectangle
Rectangle {
width: 200; height: 200
color: "red"

}

Qt 5 provides a nice tool called gmlscene to prototype a QML user interface. You can find the

binary file in your Qt installation folder, for example: Qt/5.7/gcc_64/bin/gmlscene. To load
your main.qgml file, you can run the tool and select the file, or use the CLI with the .gm1 file in
an argument: gmlscene main.qgml. You should see something like this:

gmlscene

To use a Qt Quick module, you need to import it. The syntax is easy:
import <moduleName> <moduleVersion>
In this example we import QtQuick, which is the common module that will provide basic

components (Rectangle, Image, Text) and we also import the QtQuick.window module that
will provide the main window application (Window).

A QML component can have properties. For example, we set the width property of the Wwindow
class to the value 640. Here is the generic syntax:

<0ObjectType> {
<PropertyName>: <PropertyValue>
}

We can now update main.gml file with some new rectangles:

import QtQuick 2.5
import QtQuick.window 2.2

Window {
visible: true
width: 640; height: 480

Rectangle {
width: 200; height: 200
color: "red"

}

Rectangle {
width: 200; height: 200
color: '"green"
X: 100; y: 100

Rectangle {
width: 50; height: 50

color: "blue"
X: 100; y: 100

}

Here is the visual result:

gmlscene

Your QML file describes the Ul as a hierarchy of components. The hierarchy below
the window element is the following:

e Red Rectangle
e Green Rectangle
e Blue Rectangle

Each nested item will always have its x, y coordinates relative to its parent.

To structure your application, you can build reusable QML components. You can easily create
a new component. All QML components must have a single root item. Let's build a new
MyToolbar component by creating a new file called MyToolbar .qgml:

import QtQuick 2.5
import QtQuick 2.5

Rectangle {
color: '"gray"
height: 50

Rectangle {
id: purpleRectangle
width: 50; height: parent.height
color: "purple"
radius: 10

}

Text {
anchors.left: purpleRectangle.right
anchors.right: parent.right
text: "Dominate the Mobile UI"
font.pointSize: 30

}

}

The gray Rectangle element will be our root item used as background. We also created two
items:

e A purple Rectangle element that can be identified with the ID purpleRectangle. The
height of this item will be the height of its parent, that is, the gray Rectangle element.
e A Text item. In this case, we use anchors. It will help us to layout items without using
hardcoded coordinates. The left of the Text item will be aligned with the right
of purpleRectangle, and the right of the Text item will be aligned with the right of the
parent (the gray Rectangle element).

Note

Qt Quick provides a lot of anchors: left, horizontalCenter, right, top, verticalCenter,
and bottom. You can also use convenience anchors such as fill or centerIn. For more

information on anchors, take a look at http://doc.qgt.io/qt-5/gtquick-positioning-anchors.html.
You can use MyToolbar in your window by updating your main.qgml:
Window {

MyToolbar {
width: parent.width
}

}

We set the width to the parent width. Like this, the toolbar fills the window's width. Here is the
result:

gmlscene

Anchors are great to align specific items, but if you want to layout several items in grid, row,
or column fashion, you can use the QtQuick.layouts module. Here is an example of the
updated main.qgml:

http://doc.qt.io/qt-5/qtquick-positioning-anchors.html

import QtQuick 2.5
import QtQuick.window 2.2
import QtQuick.Layouts 1.3

Window {
visible: true
width: 640; height: 480

MyToolbar {
id: myToolbar
width: parent.width
}

RowLayout {
anchors.top: myToolbar.bottom
anchors.left: parent.left
anchors.right: parent.right
anchors.bottom: parent.bottom

Rectangle { width: 200; height: 200; color: "red" }
Rectangle { width: 200; height: 200 color: "green" }
Rectangle { width: 50; height: 50; color: "blue" }

}

You should get something like this:

gmlscene

As you can see, we use a RowLayout element that fits under the myToolbar and to its parent,
a Window element. This item provides a way to dynamically layout items in a row. Qt Quick
also provides other layout items: GridLayout and ColumnLayout.

Your custom component can also expose custom properties that can be modified outside of
the component itself. You can do it by adding the property attribute. Please
update MyToolbar .gml:

import QtQuick 2.5
Rectangle {

property color iconColor: "purple"
property alias title: label.text

color: '"gray"
height: 50

Rectangle {
id: purpleRectangle

width: 50; height: parent.height
color: iconColor

radius: 10

}

Text {
id: label
anchors.left: purpleRectangle.right
anchors.right: parent.right
text: "Dominate the Mobile UI"
font.pointSize: 30

}

}

The iconColor is a really new property that is a fully-fledged variable. We also update
the Rectangle attribute to use this property as color. The title property is only an alias, you
can see it as a pointer to update the label.text property.

From outside you can use these attributes with the same syntax; please update the main.qgml
file with the following snippet:
import QtQuick 2.5

import QtQuick.window 2.2
import QtQuick.Layouts 1.3

Window {
visible: true
width: 640; height: 480
MyToolbar {
id: myToolbar
width: parent.width

title: "Dominate Qt Quick"
iconColor: "yellow"

}

You should get a nice updated toolbar like this one:

qmiscene

We have covered the basics of QML, now we are going to proceed to mobile application
development using QML.

Checking your development environment

To be able to create a Qt application for Android, you must have:

A device with Android v2.3.3 (API 10) or later

Android SDK

Android NDK

JDK

Qt Prebuilt Components for Android x86 (from the Qt Maintenance Tool)

Qt Prebuilt Components for Android ARMv7 (from the Qt Maintenance Tool)

To be able to create a Qt application for iOS, you must have:

A device with iOS 5.0 or later

A Mac desktop computer

Xcode

Qt for iOS (from Qt Maintenance Tool)

When starting, Qt Creator will detect and create Android and iOS Qt kits. You can check your
existing kits from Tools | Options | Build & Run | Kits, as shown in the following
screenshot:

Build & Run
General Kits Ot Versions | Compilers Debuggers CMake

Marme
* Auto-detected

Android Qt 5.6.0 x86

Desktop Qt 5.6.0 é4bit (default)
Manual

Creating a Qt Quick project

This chapter will follow the same project structure we covered in Chapter 4, Conquering the
Desktop UI: a parent project che5-gallery-mobile.pro will host our two
subprojects, gallery-core and the new gallery-mobile.

In Qt creator, you can create a Qt Quick subproject from File | New File or Project
| Application | Qt Quick Controls Application | Choose.

The wizard will allow you to customize your project creation:

e [ocation
o Choose a project name (gallery-mobile) and a location
e Details
o Deselect With ui.qml file
o Deselect Enable native styling
e Kits
o Select your desktop kit
o Select at least one mobile kit
e Summary
o Be sure to add gallery-mobile as a subproject of che5-gallery-mobile.pro

Let's take some time to explain why we created our project with these options.

The first thing to analyze is the application template. By default, Qt Quick only provides basic
QML components (Rectangle, Image, Text, and so on). Advanced components will be handled
by Qt Quick modules. For this project we will use Qt Quick Controls

(Applicationwindow, Button, TextField, and so on). That is why we chose to begin with a Qt
Quick Controls application. Keep in mind that you can always import and use Qt Quick
modules later.

In this chapter, we will not use the Qt Quick Designer. As a consequence, .ui.qml files are not
required. Even if the designer can help a lot, it is good to understand and write QML files
yourself.

The desktop "native styling" is disabled because this project mainly targets mobile platforms.
Moreover, disabling "native styling" avoids heavy dependency on the Qt widgets module.

Finally, we select at least two kits. The first one is our desktop kit. The other kits are the
mobile platforms you target. We usually use the following development workflow:

e Fastiterations on desktop
e Check and fix behavior on mobile emulator/simulator

e Real test on the mobile device

Deployment on a real device is generally longer so you can do most development with the
desktop kit. The mobile kits will allow you to check your application behavior on a real
mobile device or on an emulator (for example with a Qt Android x86 kit).

Let's talk about the files automatically generated by the wizard. Here is the main.cpp file:

#include <QGuiApplication>
#include <QQmlApplicationEngine>

int main(int argc, char *argv[])

{
QGuiApplication app(argc, argv);
QQmlApplicationEngine engine;
engine.load(QUrl(QStringLiteral("qrc:/main.qml")));
return app.exec();

}

We use here QGuiApplication and not QApplication because we do not use Qt widgets in this
project. Then, we create the QML engine and load qrc:/mail.gml. As you may have guessed
(with the grc:/ prefix), this QML file is in a Qt resource file.

You can open the gml.qrc file to find the main.qgml:

import QtQuick 2.5
import QtQuick.Controls 1.4

ApplicationWindow {
visible: true
width: 640
height: 480
title: qsTr("Hello World")

menuBar: MenuBar {

Menu {
title: gsTr("File")
MenuItem {
text: gsTr("&Open")
onTriggered: console.log("Open action triggered");
}
MenuItem {
text: qsTr("Exit")
onTriggered: Qt.quit();
}
}

Label {

text: gsTr("Hello World")
anchors.centerIn: parent

}

The first thing to do is to import types used in the file. Notice the module version at the end of
each import. The QtQuick module will import basic QML elements (Rectangle, Image, and so
on) while the QtQuick.Controls module will import advanced QML elements from

the QtQuick Controls submodule (Applicationwindow, MenuBar, MenuItem, Label, and so on).

Then, we define the root element of type ApplicationWindow. It provides a top-level
application window with the following items: MenuBar, ToolBar and StatusBar. The
properties visible, width, height, and title of Applicationwindow are primitive types. The
syntax is simple and intelligible.

The menuBar property is more complex. This MenuBar property is composed of a Menu file,
itself composed of two MenuItems: Open and Exit. A MenuItem emits a triggered()signal
each time it is activated. In this case, the MenuItem file will log a message on the console. The
exit MenuItem terminates the application.

Finally, a Label displaying "Hello World" is added in the content area of
our Applicationwindow type. Positioning items with anchors is useful. In our case the label is
centered vertically and horizontally in its parent, ApplicationwWindow.

Before going ahead, check that this sample runs correctly on your desktop and on your
mobile.

Preparing your Qt Quick gallery entry
point

First of all, you need to link this project to our gallery-core library. We already covered
how to link an internal library in Chapter 4, Conquering the Desktop Ul. For more details,
refer to it. This is the updated gallery-mobile.pro file:

TEMPLATE = app

QT += gml quick sql svg
CONFIG += c++11

SOURCES += main.cpp
RESOURCES += gallery.qrc

LIBS += -L$$0UT_PWD/../gallery-core/ -lgallery-core
INCLUDEPATH += $$PWD/../gallery-core
DEPENDPATH += $$PWD/../gallery-core

contains(ANDROID_TARGET_ARCH, x86) {
ANDROID_EXTRA_LIBS = \
$$[QT_INSTALL_LIBS]/1ibQt5Sql.so
3

Please notice that we made several changes here:

e We added the sql module to deploy the dependency on your mobile device

e We added the svg module for the button icons

e The gml.qgrc file has been renamed in gallery.qrc

e We linked the gallery-core library

e By default, the sql shared object (1ibQt5Sql.so) will not be deployed on your Android
x86 device. You have to explicitly include it in your .pro file.

You can now use classes from the gallery-core library in our gallery-mobile application.
Let's see how to bind C++ models with QML. This is the updated main.cpp:

#include <QGuiApplication>
#include <QQmlApplicationEngine>
#include <QQmlContext>

#include <QQuickView>

#include "AlbumModel.h"
#include "PictureModel.h"

int main(int argc, char *argv[])

QGuiApplication app(argc, argv);

AlbumModel albumModel;
PictureModel pictureModel(albumModel);

QQmlApplicationEngine engine;

QQmlContext* context = engine.rootContext();
context->setContextProperty("albumModel", &albumModel);
context->setContextProperty("pictureModel", é&pictureModel);

engine.load(QUrl(QStringLiteral("qrc:/gml/main.gqml")));

return app.exec();

}

Our models will be instantiated in C++ and exposed to QML using the root QQmlContext
object. The setContextProperty() function allows us to bind a C++ Qobject to a QML
property. The first argument will be the QML property name. We are only binding a C++
object to a QML property; the context object does not take ownership of this object.

Let's now talk about the mobile application itself. We will define three pages with specific
roles:

® AlbumListPage
o Displays existing albums
o Album creation
o Album selection
e AlbumPage
o Displays existing pictures as thumbnails
Adds pictures in album
o Album rename
Album deletion
o Picture selection
® PicturePage
o Displays selected picture
o Picture selection
o Picture deletion

(¢]

(¢]

To handle the navigation, we will use a Stackview component from Qt Quick Controls. This
QML component implements a stack-based navigation. You can push a page when you want to
display it. When the user requests to go back, you can pop it. Here is the workflow using

a Stackview component for our gallery mobile application. The page with the solid border is
the page currently displayed on screen:

PUSH

L

PicturePage

AlbumPage

F.
L

F.
L

AlbumPage '
L]

v v

- T r

AlbumListPage : AlbumListPage : AlbumListPage
L] []

&

This is the implementation of main.qml:

import QtQuick 2.6
import QtQuick.Controls 2.0

ApplicationWindow {

readonly property alias pageStack: stackView

id: app
visible: true
width: 768

height: 1280

StackView {
id: stackView
anchors.fill: parent
initialItem: AlbumListPage {}

}
onClosing: {
if (Qt.platform.os == "android") {
if (stackView.depth > 1) {
close.accepted = false
stackView.pop()
}
3
}

}

This main file is really simple. The application is constructed around the Stackview
component. We set the id property to allow our StackView to be identified and referred to by
other QML objects. The anchors property will set stackVview to fill its parent,

the Applicationwindow type. Finally, we set the initialItem property to a

page, AlbumListPage that will be implemented soon.

On Android, onClosing will be executed each time the user presses the back button. To mimic
a native Android application, we will first pop the last stacked page before really closing the
application.

At the top of the file, we define a property alias for the stackview. A property aliasisa
simple reference to another existing property. This alias will be useful to access stackview
from other QML components. To prevent a QML component to crush the stackview we are
using the readonly keyword. After initialization, the components can access the property but
not change its value.

Displaying albums with ListView

Let's make our first page for this mobile application! Create a file in gallery.qrc
called AlbumListPage.qgml. Here is the page header implementation:

import QtQuick 2.0
import QtQuick.Layouts 1.3

import QtQuick.Controls 2.0
Page {

header: ToolBar {
Label {
Layout.fillwidth: true
text: "Albums"
font.pointSize: 30

A Page is a container control with a header and footer. In this application, we will only use the
header item. We assign a ToolBar to the header property. The height of this toolbar will be
handled by Qt and will be adjusted depending on the target platform. In this first simple
implementation, we only put a Label displaying the text "Albums".

Add a Listview element to this page after the header initialization:

ListView {
id: albumList
model: albumModel
spacing: 5
anchors.fill: parent

delegate: Rectangle {
width: parent.width
height: 120
color: "#dodid2"

Text {
text: name
font.pointSize: 16
color: "#000000"
anchors.verticalCenter: parent.verticalCenter

}

The Qt Quick ListView is the Qt Widget QListView equivalent. It displays a list of items from

a provided model. We set the model property to value albumModel. This refers to the C++
model from main.cpp file accessible from QML because we used the setContextProperty()
function. In Qt Quick, you must provide a delegate to describe how a row will be displayed. In
this case, a row will only display the album's name with a Text item. Accessing the album's
name in QML is easy because our AlbumModel model exposes its role list to QML. Let's
refresh your memory concerning the overridden roleNames() function of AlbumModel:

QHash<int, QByteArray> AlbumModel::roleNames() const

{
QHash<int, QByteArray> roles;
roles[Roles::IdRole] = "id";
roles[Roles::NameRole] = "name";
return roles;

}

So each time your delegate from Qt Quick uses the name role, it will call the AlbumModel
function data() with the correct role integer and return the correct album name string.

To handle the mouse, click on a row and add a MouseArea element on the delegate:

ListView {
delegate: Rectangle {

MouseArea {
anchors.fill: parent
onClicked: {
albumList.currentIndex = index
pictureModel.setAlbumId(id)
pageStack.push("qrc:/gml/AlbumPage.qml",
{ albumName: name, albumRowIndex: index })

}

The MouseArea is an invisible item that can be used with any visible item to handle mouse
events. This also applies to a simple touch on a phone touch screen. Here we tell
the MouseArea element to take the full area of the parent Rectangle.

In our case, we only perform tasks on the clicked signal. We update the currentIndex of
the Listview with index. This index is a special role containing the index of the item in the
model.

When the user clicks, we will tell pictureModel to load the selected album with
the pictureModel.setAlbumId(id) call. We will see soon how QML can call C++ methods.

Finally, we push AlbumPage on pageStack property. The push() function allows us to set a list

of QML properties using a {key: value, ... } syntax. Each property will be copied into the
pushed item. Here the name and the index will be copied in the albumName and albumRowIndex
properties of AlbumPage. It is a simple yet powerful way to instantiate a QML page with
properties arguments.

From your QML code, you can only call some specific C++ methods:

e Properties (using Q_PROPERTY)
e Public slot
e Function decorated as invokable (using Q_INVOKABLE)

In this case we will decorate PictureModel: :setAlbumId() as Q_INVOKABLE, please update
the PictureModel.h file:

class GALLERYCORESHARED_EXPORT PictureModel : public QAbstractListModel
{

Q_OBJECT
public:
Q_INVOKABLE void setAlbumId(int albumId);

+;

Theming the application with a QML
singleton

Styling and theming a QML application can be done in various ways. In this chapter, we will
declare a QML singleton with the theme data used by custom components. Moreover, we will
also create a custom Page component to handle the toolbar and its default item (back button
and page's title).

Please create a new Style.qml file:

pragma Singleton
import QtQuick 2.0

QtObject {
property color text: "#000000"

property color windowBackground: "#effofi"
property color toolbarBackground: "#effofi"
property color pageBackground: "#fcfcfc"

property color buttonBackground: "#dodid2"

property color itemHighlight: "#3daee9"
}

We declare a Qtobject component that will only contain our theme properties. A QtObject is a
non-visual QML component.

Declaring a singleton type in QML requires two steps. First you need to use the pragma
singleton, it will indicate the use of a single instance of the component. The second step is to
register it. This can be done in C++ or by creating a qmldir file. Let's see the second step.
Create a new plain-text file called qmldir:

singleton Style 1.0 Style.gml

This simple line will declare a QML singleton type named Style with the version 1.0 from
the file named Style.qml.

It is now time to use these theme properties in custom components. Let's see a simple example.
Create a new QML file called ToolBarTheme.qml:

import QtQuick 2.0
import QtQuick.Controls 2.0

import "."

ToolBar {

background: Rectangle {
color: Style.toolbarBackground
3

}

This QML object describes a customized ToolBar. Here, the background element is a
simple Rectangle with our color. We can easily access our singleton Style and its theme
property using Style.toolbarBackground.

Note
QML Singletons require an explicit import to load the gmldir file. The import "."isa

workaround for this Qt bug. For more information, please
check https://bugreports.qt.io/browse/QTBUG-34418.

We will now create a QML file PageTheme.qgml, with the aim of containing all the code related
to the page's toolbar and theme:

import QtQuick 2.0

import QtQuick.Layouts 1.3
import Qt.labs.controls 1.0
import QtQuick.Controls 2.0
import "."

Page {

property alias toolbarButtons: buttonsLoader.sourceComponent
property alias toolbarTitle: titlelLabel.text

header: ToolBarTheme {
RowLayout {
anchors.fill: parent
ToolButton {
background: Image {
source: '"qrc:/res/icons/back.svg"
}
onClicked: {
if (stackView.depth > 1) {
stackView.pop()
}

}

Label {
id: titlelabel
Layout.fillwidth: true
color: Style.text
elide: Text.ElideRight
font.pointSize: 30

https://bugreports.qt.io/browse/QTBUG-34418

}

Loader {
Layout.alignment: Qt.AlignRight
id: buttonsLoader

}

Rectangle {
color: Style.pageBackground
anchors.fill: parent

}

This PageTheme element will customize the page's header. We use our previously
created ToolBarTheme. This toolbar only contains a RowLayout element to display items
horizontally in one row. This layout contains three elements:

e ToolButton: This is the "back" that displays an image from gallery.qrc and pops the
current page if required

e Label: This is the element that displays the page title

e Loader: This is the element that allows a page to dynamically add specific items in this
generic toolbar

The Loader element owns a sourceComponent property. In this application, this property can be
assigned by PageTheme pages to add specific buttons. These buttons will be instantiated at
runtime.

The PageTheme pages also contain a Rectangle element that fits the parent and configures the
page background color using the Style.pageBackground.

Now that our Style.qml and PageTheme.qml files are ready, we can update
the AlbumListPage.qml file to use it:

import QtQuick 2.6
import QtQuick.Controls 2.0
import "."

PageTheme {
toolbarTitle: "Albums"

ListView {
id: albumList
model: albumModel
spacing: 5
anchors.fill: parent

delegate: Rectangle {
width: parent.width
height: 120
color: Style.buttonBackground

Text {
text: name
font.pointSize: 16
color: Style.text
anchors.verticalCenter: parent.verticalCenter

}

Now that AlbumListPage is a PageTheme element, we do not manipulate header directly. We
only need to set the property toolbarTitle to display a nice "Albums" text in the toolbar. We
can also enjoy nice colors using properties from the Style singleton.

By centralizing the theme properties in a single file, you can easily change the look and feel
of your application. The source code of the project also contains a dark theme.

Loading a database on mobile

Before continuing the Ul implementation, we have to take care of the database deployment on
mobile. Spoiler: this will not be fun.

We have to jump back to DatabaseManager .cpp in the gallery-core project:

DatabaseManager& DatabaseManager ::instance()

{
}

DatabaseManager : :DatabaseManager (const QString& path)
mDatabase(new QSglDatabase(QSglDatabase::addDatabase("QSQLITE"))),
albumbao(*mDatabase),
pictureDao(*mDatabase)

return singleton;

mDatabase->setDatabaseName(path);
}

Whereas on Desktop, the SQLite3 database is created at the instruction mDatabase-
>setDatabaseName(), on mobile it does not work at all. This is due to the fact that the
filesystem is very specific on each mobile platform (Android and iOS). An application has
only access to a narrow sandbox where it cannot mess with the rest of the filesystem. All the
files inside the application directory must have specific file permissions. If we let SQLite3
create the database file, it will not have the right permission and the OS will block the
database from opening.

As a consequence, the database will not be properly created and your data cannot be persisted.
When using the native API, this is not a problem since the OS takes care of the proper
configuration of the database. Because we are developing with Qt, we do not have easy access
to this API (except by using JNI or other black magic). A workaround is to embed a "ready-to-
use" database in the application's package and copy it at the right filesystem path with the
correct rights.

This database should contain an empty created database without any content. The database is
available in the source code of the chapter (you can also generate it from the source code of
Chapter 4, Conquering the Desktop UI). You can add it to the gallery.qrc file.

Because our layers are clearly defined, we just have to modify the
DatabaseManager : :instance() implementation to handle this case:

DatabaseManager& DatabaseManager ::instance()

{
#if defined(Q_OS_ANDROID) || defined(Q_0S_IOS)

QFile assetDbFile(":/database/" + DATABASE_FILENAME);
QString destinationDbFile = QStandardPaths::writablelLocation(
QStandardPaths: :AppLocalDatalLocation)
.append("/" + DATABASE_FILENAME);

if (!QFile::exists(destinationDbFile)) {
assetDbFile.copy(destinationDbFile);
Qfile::setPermissions(destinationDbFile,
QFile::WriteOwner | QFile::ReadOwner);

}
}

static DatabaseManager singleton(destinationDbFile);
#else

static DatabaseManager singleton;
#endif

return singleton;
}

We first retrieve the platform-specific path of the application with a nifty Qt class:
QStandardPaths. This class return paths for multiple types

(AppLocalDatalocation, DocumentsLocation, PicturesLocation, and so on). The database
should be stored in the application data directory. If the file does not exist, we copy it from
our assets.

Finally, the permissions of the file are modified to ensure that the OS does not block the
opening of the database (due to permissions not being restrictive enough).

When everything is done, the DatabaseManager singleton is instantiated with the correct
database file path and the constructor can open this database transparently.

Note

In the iOS Simulator, the QStandardPaths: :writableLocation() function will not return the
proper path. Since iOS 8, the simulator's storage path on the host has changed and Qt does not
reflect this. For more information, please check

out https://bugreports.qt.io/browse/QTCREATORBUG-13655.

These workarounds were not trivial. This shows the limitations of a cross-platform
application on mobile. Each platform has its own very specific way of handling the filesystem
and deploying its content. Even if we manage to write platform agnostic code in QML, we still
have to deal with differences between the OSes.

https://bugreports.qt.io/browse/QTCREATORBUG-13655

Creating a new album from a custom
InputDialog

The AlbumListPage needs some data to display. The next step is to be able to add a new album.
To do this, at some point we will have to call an AlbumModel function from QML to add this
new album. Before building the Ul, we have to make a small modification in gallery-core.

The AlbumModel function is already available in QML. However, we cannot directly

call AlbumModel::addAlbum(const Album& album) from the QML code; the QML engine will
not recognize the function and will throw an error TypeError: Property 'addAlbum' of
object AlbumModel(...) is not a function. This can be fixed by simply decorating the desired
function with the Q_INVOKABLE macro (as we did for PictureModel: :setAlbumId()).

Nonetheless, there is another issue here: Album is a C++ class which is not recognized in
QML. If we wanted to have full access to Album in QML, it would involve important
modifications to the class:

e Force Album class to inherit from the Qobject class.

e Add a Q PROPERTY macro to specify which property of the class should be accessible
from QML.

¢ Add multiple constructors (copy constructor, Q0bject* parent, and so on).

e Force AlbumModel::addAlbum() function to take an Album* rather than an Album&. For
complex objects (that is, not primitive types), QML can only handle pointers. This is not
a big problem, but using references instead of pointers tends to make the code safer.

These modifications are perfectly reasonable if the class is heavily manipulated in QML. Our
use case is very limited: we only want to create a new album. Throughout the application, we
will rely on the native Model/View API to display the album data and nothing specific to
Album will be used.

For all these reasons, we will simply add a wrapper function in AlbumModel:

// In AlbumModel.h
QModelIndex addAlbum(const Album& album);
Q_INVOKABLE void addAlbumFromName(const QString& name);

// In AlbumModel.cpp
void AlbumModel::addAlbumFromName(const QString& name)

{
}

addAlbum(Album(name));

The new function addAlbumFromName() just wraps the call to addAlbum() with the desired
album name parameter. It can be called from the QML with the Q_INVOKABLE macro.

We can now switch back to the Ul in the gallery-mobile project. We will add this album
using a QML Dialog. QtQuick provides various default implementations of dialogs:

e ColorDialog: This dialog is used to choose a color

e Dialog: This dialog is uses the generic dialog with standard buttons (equivalent of
a Qbialog)

e FileDialog: This dialog is used to choose a file from the local filesystem

e FontDialog: This dialog is used to choose a font

e MessageDialog: This dialog is used to display a message

You would have expected to see an InputDialog in this list (as we used the QInputDialog
widget in Chapter 4, Conquering the Desktop UI) but Qt Quick does not have it. Create a
new QML File (Qt Quick 2) and name it InputDialog.qgml. The content should look like so:

import QtQuick 2.6

import QtQuick.Layouts 1.3
import Qt.labs.controls 1.0
import QtQuick.Dialogs 1.2
import QtQuick.window 2.2
import "."

Dialog {

property string label: "New item"
property string hint: ""
property alias editText : editTextItem

standardButtons: StandardButton.Ok | StandardButton.Cancel
onVisibleChanged: {

editTextItem.focus = true

editTextItem.selectAll()

}
onButtonClicked: {

Qt.inputMethod.hide();
¥
Rectangle {

implicitwWidth: parent.width
implicitHeight: 100

ColumnLayout {

Text {
id: labelItem
text: label

color: Style.text

TextInput {
id: editTextItem
inputMethodHints: Qt.ImhPreferUppercase
text: hint
color: Style.text

}

In this custom InputDialog, we take the generic Qt Quick Dialog and modify it to contain
our TextInput item referenced by the ID editTextItem. We also added a labelItem just
above editTextItemto describe the expected input. There are several things to note in this
dialog.

First, because we want this dialog to be generic, it has to be configurable. The caller should
be able to provide parameters to display its specific data. This is done with the three
properties at the top of the Dialog element:

e label: This property configures the displayed text in labelItem.

e hint: This property is the default text displayed in editTextItem.

e editText: This property references the "local" editTextItem element. This will let the
caller retrieve the value when the dialog is closed.

We also configure the Dialog element to automatically use the platform buttons to validate or
cancel the dialog with standardButtons: StandardButton.Ok | StandardButton.Cancel
syntax.

Finally, to make the dialog a bit more user-friendly, editTextItem has the focus when

the Dialog element becomes visible and the text is selected. These two steps are done in

the onvisibleChanged() callback function. When the dialog is hidden (that is, Ok or Cancel
has been clicked), we hide the virtual keyboard with Qt.InputMethod.hide().

The Inputbialog is ready to be used! Open AlbumListPage.qml and modify it like so:

PageTheme {

toolbarTitle: "Albums"
toolbarButtons: ToolButton {
background: Image {
source: '"qrc:/res/icons/album-add.svg"
3

onClicked: {
newAlbumDialog.open()
}

}

InputDialog {

id: newAlbumbDialog
title: "New album"
label: "Album name:"
hint: "My Album"

onAccepted: {
albumModel .addAlbumFromName(editText.text)
3

}

We add InputDialog with the ID newAlbumDialog inside PageTheme element. We define all our
custom properties: title, label, and hint. When the user clicks on the Ok button,

the onAccepted() function is called. Here, it is a simple matter of calling the wrapper

function addAlbumFromName() in the AlbumModel element with the entered text.

This Dialog element is not visible by default, we open it by adding a ToolButton in
toolbarButtons. This ToolButton will be added at the far right of the header as we specified
in the PageTheme.qml file. To match mobile standards, we simply use a custom icon inside that

button rather than text.

Here you can see that it is possible to reference images stored in the .qrc file with the
syntax qrc:/res/icons/album-add.svg. We use SVG files to have scalable icons, but you are
free to use your own icons for the gallery-mobile application.

When the user clicks on the ToolButton, the onClicked() function is called, where we
open newAlbumDialog. On our reference device, a Nexus 5X, this is how it looks:

Album name:

OK

When the user clicks on the OK button, the whole Model/View pipeline starts to work. This
new album is persisted, the AlbumModel element emits the correct signals to notify

our ListView, albumList, to refresh itself. We are starting to leverage the power of

our gallery-core, which can be used in a desktop application and a mobile application

without rewriting a significant portion of the engine code.

Loading images with an ImageProvider

It is now time to display the thumbnails for our freshly persisted album. These thumbnails
have to be loaded somehow. Because our application is targeted at mobile devices, we cannot
afford to freeze the Ul thread while loading thumbnails. We would either hog the CPU or be
killed by the OS, neither of which are desirable destinies for gallery-mobile. Qt provides a
very handy class to handle the image loading: QQuickImageProvider.

The QQuickImageProvider class provides an interface to load the QPixmap class in your QML
code in an asynchronous manner. This class automatically spawns threads to load the QPixmap
class and you simply have to implement the function requestPixmap (). There is more to

it, QQuickImageProvider caches by default the requested pixmap to avoid hitting the data
source too much.

Our thumbnails must be loaded from the PictureModel element, which gives access to

the fileuUrl of a given Picture. Our implementation of rQQuickImageProvider will have to
get the QPixmap class for a row index in PicturelModel. Create a new C++ class

named PictureImageProvider, and modify PictureImageProvider .h like this:

#include <QQuickImageProvider>
class PictureModel;

class PictureImageProvider : public QQuickImageProvider

{
public:

PictureImageProvider (PictureModel* pictureModel);

QPixmap requestPixmap(const QString& id, QSize* size,
const QSize& requestedSize) override;

private:
PictureModel* mPictureModel;

+;

A pointer to the PictureModel element has to be provided in the constructor to be able to
retrieve fileUrl. We override requestPixmap (), which takes an id parameter in its
parameters list (the size and requestedSize can be safely ignored for now). This id
parameter will be provided in the QML code when we want to load a picture. For a
given Image in QML, the PictureImageProvider class will be called like so:

Image { source: "image://pictures/" + index }

Let's break it down:

e image: This is the scheme for the URL source of the image. This tells Qt to work with an
image provider to load the image.

e pictures: This is the identifier of the image provider. We will link
the PictureImageProvider class and this identifier at the initialization of QmlEngine
in main.cpp.

e index: This is the ID of the image. Here it is the row index of the picture. This
corresponds to the id parameter in requestPixmap().

We already know that we want to display a picture in two modes: thumbnail and full
resolution. In both cases, a QQuickImageProvider class will be used. These two modes have a
very similar behavior: they will request PictureModel for fileUrl and return the

loaded QPixmap.

There is a pattern here. We can easily encapsulate these two modes in PictureImageProvider.
The only thing we have to know is when the caller wants a thumbnail or a full
resolution Qpixmap. This can be easily done by making the id parameter more explicit.

We are going to implement the requestPixmap () function to be able to be called in two ways:

e images://pictures/<index>/full: Using this syntax to retrieve the full resolution
picture

e images://pictures/<index>/thumbnail: Using this syntax to retrieve the thumbnail
version of the picture

If the index value was 0, these two calls would set the ID to ©/full or 6/thumbnail
in requestPixmap (). Let's see the implementation in PictureImageProvider.cpp:

#include "PictureModel.h"

PictureImageProvider::PictureImageProvider (PictureModel* pictureModel)
QQuickImageProvider (QQuickImageProvider::Pixmap),
mPictureModel (pictureModel)

{
}

QPixmap PictureImageProvider::requestPixmap(const QString& id, QSize* /*size*/,
const QSize& /*requestedSize*/)
{
QStringList query = id.split('/");
if (!mPictureModel || query.size() < 2) {
return QPixmap();
}

int row = query[0].toInt();
QString pictureSize = query[1];

QUrl fileUrl = mPictureModel->data(mPictureModel->index(row, 0),

PictureModel::Roles::UrlRole).toUrl();
return ?? // Patience, the mystery will be soon unraveled
}

We start by calling the QQuickImageProvider constructor with

the QQuickImageProvider::Pixmap parameter to configure QQuickImageProvider to

call requestPixmap(). The QQuickImageProvider constructor supports various image types
(QImage, QPixmap, QSGTexture, QQuickImageResponse) and each one has its

specific requestxxx() function.

In the requestPixmap () function, we start by splitting this ID with the / separator. From here,
we retrieve the row values and the desired pictureSize. The fileurl is loaded by simply
calling the mPictureModel::data() function with the right parameters. We used the exact same
call in Chapter 4, Conquering the Desktop UL.

Great, we know which fileurl should be loaded and what the desired dimension is. However,
we have one last thing to handle. Because we manipulate a row and not a database ID, we will
have the same request URL for two different pictures, which are in different albums.
Remember that PictureModel loads a list of pictures for a given Album.

We should picture (pun intended) the situation. For an album called Holidays, the request URL
will be images://pictures/0/thumbnail to load the first picture. It will be the same URL for
another album Pets, which will load the first picture with images://pictures/0/thumbnail.
As we said earlier, QQuickImageProvider automatically generates a cache which will avoid
subsequent calls to requestPixmap () for the same URL. Thus, we will always serve the same
picture, no matter which album is selected.

This constraint forces us to disable the cache in PictureImageProvider and to roll out our
own cache. This is an interesting thing to do; here is a possible implementation:

// In PictureImageProvider.h
#include <QQuickImageProvider>
#include <QCache>
public:
static const QSize THUMBNAIL_SIZE;

QPixmap requestPixmap(const QString& id, QSize* size, const QSize&
requestedSize) override;

QPixmap* pictureFromCache(const QString& filepath, const QStringé&
pictureSize);

private:
PictureModel* mPictureModel;

QCache<QString, QPixmap> mPicturesCache;

+;

// In PictureImageProvider.cpp

const QString PICTURE_SIZE_FULL = "full";

const QString PICTURE_SIZE_THUMBNAIL = "thumbnail";

const QSize PictureImageProvider::THUMBNAIL_SIZE = QSize(350, 350);

QPixmap PictureImageProvider::requestPixmap(const QString& id, QSize* /*size*/,
const QSize& /*requestedSize*/)

{

return *pictureFromCache(fileUrl.toLocalFile(), pictureSize);

}

QPixmap* PictureImageProvider::pictureFromCache(const QString& filepath, const
QString& pictureSize)

{
QString key = QStringList{ pictureSize, filepath }
.join(ll_ll)’.

QPixmap* cachePicture = nullptr;

if (!mPicturesCache.contains(pictureSize)) {
QPixmap originalPicture(filepath);
if (pictureSize == PICTURE_SIZE_THUMBNAIL) {

cachePicture = new QPixmap(originalPicture
.scaled (THUMBNAIL_SIZE,
Qt::KeepAspectRatio,
Qt::SmoothTransformation));
} else if (pictureSize == PICTURE_SIZE_FULL) {
cachePicture = new QPixmap(originalPicture);

}
mPicturesCache.insert(key, cachePicture);

} else {
cachePicture = mPicturesCache[pictureSize];

}

return cachePicture;

}

This new pictureFromCache() function aims to store the generated QPixmap

in mPicturesCache and return the proper QPixmap. The mPicturesCache class relies on

a QCache; this class lets us store data in a key/value fashion with the possibility to assign a cost
for each entry. This cost should roughly map the memory cost of the object (by default, cost
= 1). When QCache is instantiated, it is initialized with a maxCost value (by default 100). When
the cost of the sum of all objects' exceeds the maxCost, QCache starts deleting objects to make
room for the new objects, starting with the less recently accessed objects.

In the pictureFromCache() function, we first generate a key composed of the fileurl and
the pictureSize before trying to retrieve the QPixmap from the cache. If it is not present, the

proper QPixmap (scaled to THUMBNAIL_SIZE macro if needed) will be generated and stored
inside the cache. The mPicturescCache class becomes the owner of this QPixmap.

The last step to complete the PictureImageProvider class is to make it available in the QML
context. This is done in main.cpp:

#include "AlbumModel.h"
#include "PictureModel.h"
#include "PictureImageProvider.h"

int main(int argc, char *argv[])

{
QGuiApplication app(argc, argv);

QQmlContext* context = engine.rootContext();
context->setContextProperty("thumbnailSize",
PictureImageProvider ::THUMBNAIL_SIZE.width());
context->setContextProperty("albumModel", &albumModel);
context->setContextProperty("pictureModel", é&pictureModel);

engine.addImageProvider ("pictures", new
PictureImageProvider (&pictureModel));

}

The PictureImageProvider class is added to the QML engine

with engine.addImageProvider (). The first argument will be the provider identifier in QML.
Note that the engine takes ownership of the passed PictureImageProvider. One last thing,

the thumbnailSize parameter is also passed to engine, it will constrain the thumbnails to be
displayed with the specified size in the QML code.

Displaying thumbnails in a GridView

The next step is to display these thumbnails. Create a new QML file named AlbumPage.qml:

import QtQuick 2.6

import QtQuick.Layouts 1.3
import QtQuick.Controls 2.0
import "."

PageTheme {

property string albumName
property int albumRowIndex

toolbarTitle: albumName

GridvView {
id: thumbnaillist
model: pictureModel
anchors.fill: parent
anchors.leftMargin: 10
anchors.rightMargin: 10
cellwidth : thumbnailSize
cellHeight: thumbnailSize

delegate: Rectangle {
width: thumbnaillist.cellwidth - 10
height: thumbnaillist.cellHeight - 10
color: "transparent"

Image {
id: thumbnail
anchors.fill: parent
fillMode: Image.PreserveAspectFit
cache: false
source: "image://pictures/" + index + "/thumbnail"

}

This new PageTheme element defines two properties: albumName and albumRowIndex.
The albumName property is used to update the title in toolbarTitle; albumRowIndex will be
used to interact with AlbumModel in order to rename or delete the album from the current

page.

To display thumbnails, we rely on a Gridview element which will layout the thumbnails in a
grid of cells. This thumbnaillList item uses the pictureModel to request its data. The delegate
is simply a Rectangle element with a single Image inside. This Rectangle element is slightly

smaller than the thumbnaillist.cellwidth or thumbnaillist.cellHeight. The Gridview
element does not provide a spacing property (like Listview) for some room between each
item. Thus, we simulate it by using a smaller area to display the content.

The Image item will try to take all the available space with anchors.fill: parent but will still
keep the aspect ratio of the provided picture with fillMode: Image.PreserveAspectFit. You
recognize the source attribute where the current delegate index is provided to retrieve the
thumbnail. Finally, the cache: false attribute ensures that the PictureImageProvider class
will not try to use the native cache.

To display AlbumPage.qgml, we have to update the stackview (located in main.qgml). Remember
that stackVview has been declared as a property (pageStack), it is thus accessible from any
QML file.

The AlbumPage element will be displayed when the user clicks on the MouseArea element for a
given Album value in AlbumListPage.qml.

We will now give the ability to the user to add a new picture. To do this, we will rely on a
QtQuick Dialog: FileDialog. Here is the updated version of AlbumPage.qml:

import QtQuick 2.6

import QtQuick.Layouts 1.3

import QtQuick.Controls 2.0
import QtQuick.Dialogs 1.2

import "."

PageTheme {

property string albumName
property int albumRowIndex

toolbarTitle: albumName
toolbarButtons: RowLayout {
ToolButton {
background: Image {
source: '"qrc:/res/icons/photo-add.svg"
}

onClicked: {
dialog.open()

}
3
3
FileDialog {
id: dialog

title: "Open file"
folder: shortcuts.pictures
onAccepted: {

var pictureUrl = dialog.fileUrl

pictureModel.addPictureFromUrl(pictureuUrl)
dialog.close()

}

GridvView {
¥

The FileDialog element is straightforward to implement. By using the folder:
shortcuts.pictures property, QtQuick will automatically position the FileDialog element in
the platform-specific pictures directory. Even better, on iOS it will open the native photo
application where you can pick your own picture.

When the user validates his picture choice, the path is available in the onAccepted()function
with the dialog.fileuUrl field, which we stored in the pictureurl variable. This pictureurl
variable is then passed to a new wrapper function of PictureModel: addPictureFromurl().
The pattern used is exactly the same as we did for AlbumModel : :addAlbumFromName():

a Q_INVOKABLE wrapper function around PictureModel::addPicture().

The only missing parts of AlbumPage are the delete album and rename album features. They
follow patterns we already covered. The deletion will be done using a wrapper function

in AlbumModel, and the rename reuses the InputDialog we created for AlbumListPage.qml.
Please refer to the source code of the chapter to see the implementation for these features.
This is how the thumbnails will look on an Android device:

) Holidays

Swiping through full resolution pictures

The last page we have to implement in gallery-mobile is the full resolution picture page.

In Chapter 4, Conquering the Desktop UI, we navigated through the pictures using
previous/next buttons. In this chapter, we target the mobile platform. Therefore, the navigation
should be done using a touch-based gesture: a fling.

Here is the implementation of this new PicturePage.qml file:

import QtQuick 2.0

import QtQuick.Layouts 1.3
import QtQuick.Controls 2.0
import "."

PageTheme {

property string pictureName
property int pictureIndex

toolbarTitle: pictureName

ListView {
id: pictureListView
model: pictureModel
anchors.fill: parent
spacing: 5
orientation: Qt.Horizontal
snapMode: ListView.SnapOneItem
currentIndex: pictureIndex

Component.onCompleted: {
positionViewAtIndex(currentIndex,
ListView.SnapPosition)

}

delegate: Rectangle {
property int itemIndex: index
property string itemName: name

width: ListView.view.width == 0 ?
parent.width : ListView.view.width

height: pictureListView.height

color: "transparent"

Image {
fillMode: Image.PreserveAspectFit
cache: false
width: parent.width
height: parent.height
source: "image://pictures/" + index + "/full"

}

We first define two properties, pictureName and pictureIndex. The current pictureName
property is displayed in the toolbarTitle and pictureIndex is used to initialize the
correct currentIndex in ListView, currentIndex: pictureIndex.

To be able to swipe through the pictures, we again use a ListView. Here, each item (a

simple Image element) will take the full size of its parent. When the component is loaded, even
if currentIndex is correctly set, the view has to be updated to be positioned at the correct
index. This is what we do in pictureListView with this:

Component.onCompleted: {
positionViewAtIndex(currentIndex, ListView.SnapPosition)
¥

This will update the position of the current visible item to currentIndex. So far so good.
Nonetheless, when a ListView is created, the first thing it does is to initialize its delegate.

A Listview has a view property, which is filled with the delegate content. That implies that
the ListView.view (yes, it hurts) does not have any width in Component.onCompleted(). As a
consequence, the positionviewAtIndex () function does... absolutely nothing. To prevent this
behavior, we have to provide a default initial width to the delegate with the ternary
expression ListView.view.width == @ ? parent.width : ListView.view.width. The view
will then have a default width on the first load and the positionviewAtIndex () function can
happily move until Listview.view is properly loaded.

To swipe through each picture, we set the snapMode value of the ListView
to ListView.SnaponeItem. Each fling will snap to the next or previous picture without
continuing the motion.

The Image item of the delegate looks very much like the thumbnail version. The sole
difference is the source property, where we request PictureImageProvider class with
the full resolution.

When PicturePage opens, the correct pictureName property is displayed in the header.
However, when the user flings to another picture, the name is not updated. To handle this, we
have to detect the motion state. Add the following callbacks in pictureListView:

onMovementEnded: {
currentIndex = itemAt(contentX, contentY).itemIndex
¥

onCurrentItemChanged: {
toolbarTitlelLabel.text = currentItem.itemName
}

The onMovementEnded () class is triggered when the motion started by the swipe has ended. In
this function, we update the ListviewcurrentIndex with the itemIndex of the visible item at
the contentX and contentY coordinates.

The second function, onCurrentItemChanged(), is called upon the currentIndex update. It
will simply update the toolbarTitleLabel.text with the picture name of the current item.

To display PicturePage.qgml, the same MouseArea pattern is used in the thumbnaillist
delegate of AlbumPage.qml:

MouseArea {
anchors.fill: parent
onClicked: {
thumbnaillist.currentIndex = index
pageStack.push("qrc:/gml/PicturePage.qml",
{ pictureName: name, pictureIndex: index })
}
}

Again, the PicturepPage.qml file is pushed on the pageStack and the needed parameters
(pictureName and pictureIndex) are provided in the same manner.

Summary

This chapter brings closure to the development of the gallery application. We built a strong
foundation with gallery-core, created a widget Ul with gallery-desktop, and finally crafted
a QML UI with gallery-mobile.

QML enables a very fast approach to UI development. Unfortunately, the technology is still
young and rapidly changing. The integration with mobile OSes (Android, iOS) is under heavy
development and we hope that it will lead to great mobile applications with Qt. For now, the
inherent limits of a mobile cross-platform toolkit are still hard to overcome.

The next chapter will take QML technology to new shores: the development of a snake game
running on a Raspberry Pi.

Chapter 6. Even Qt Deserves a Slice of
Raspberry Pi

In the previous chapter, we created a QML Ul targeted at Android and iOS. We will continue
our journey in the embedded world by discovering how we can deploy a Qt application on a
Raspberry Pi. The example project to illustrate this topic will be a snake game using the Qt3D
modules. The player will control a snake trying to eat apples to get as big as possible.

In this chapter, you will learn:

The architecture of the Qt3D modules

The basic principles of cross-compilation

How to build your own Qt Creator kit to compile and deploy your game on a Raspberry
Pi

How to handle the differences and limitations of various platforms (desktop, Raspberry
Pi)

The Factory design pattern

How to write a complete game engine using JavaScript and QML

The usage of the QML Profiler

Discovering Qt3D

The example project of this chapter will rely on 3D rendering. For this, we will use Qt3D.
This part of the framework is divided into various Qt modules that enable the application to
have a near-real time simulation of a 3D environment. Built on OpenGL, Qt3D offers a high-
level API to describe complex scenes without having to resort to writing low-level OpenGL
instructions. Qt3D supports the following basic features:

2D and 3D rendering for C++ and Qt Quick
Meshes

Materials

GLSL shaders

Shadow mapping

Deferred rendering

Instance rendering

Uniform Buffer Object

All these features are implemented in the ECS (entity component system) architecture. Each
mesh, material, or shader that you define is a component. The aggregation of these
components makes an entity. If you wanted to draw a 3D red apple, you would need the
following components:

¢ A mesh component, holding the vertices of your apple
¢ A material component, applying a texture on the mesh or coloring it

These two components will then be regrouped to define the entity Apple. You see here the two
parts of the ECS: entities and components. The overall architecture looks like this:

: C d of
QEntity Smperec?)[QComponent Mesh

QComponent Material Renderer Aspect

QComponent Transform

QComponent Audio Audio Aspect

w

» QComponent Logic Logic Aspect

Each of these components can be regrouped in aspects. An aspect is a "slice" of multiple
components working on the same part (rendering, audio, logic, and physics). When the graph
of all your entities is processed by the Qt3D engine, each layer of aspects is processed
sequentially.

The underlying approach is to favor composition over inheritance. In a game, an entity (an
apple, a player, an enemy) can have various states during its life cycle: spawning, animating
for a given state, dying animation, and so on. Using inheritance to describe these states will
lead to a nerve-wracking tree: AppleSpawn, AppleAnimationShiny, AppleDeath, and so on. It
would become quickly unmaintainable. Any modification to a class could have huge impact
on many other classes and the number of possible combinations of states would get out of
hand. Saying that a state is simply a component for a given entity, gives the flexibility to easily
swap components and still keep the entity abstraction; an apple Entity element is still an
apple, even though it is using the AnimationShinyComponent instead of

the AnimationSpawnComponent.

Let's see how to define a basic Entity element in QML. Imagine that this is the apple we have
been talking about. The Apple.qml file would look like this:

import Qt3D.Core 2.0
import Qt3D.Render 2.0
import Qt3D.Extras 2.0

Entity {

}

property alias position: transform.translation
PhongMaterial {

id: material

diffuse: "red"

}

SphereMesh {
id: mesh

}

Transform {
id: transform
}

components: [material, mesh, transform]

In a very few lines, you describe every aspect of the Entity element:

Entity: This is the root object of the file; it follows the same QML pattern we studied

in Chapter 5, Dominating the Mobile UI.

PhongMaterial: This defines how the surface will be rendered. Here, it uses the Phong
shading technique to achieve smooth surfaces. It inherits QMaterial, which is the base
class for all the material classes.

CuboidMesh: This defines what type of mesh will be used. It inherits QGeometryRenderer,
which also gives the ability to load custom models (exported from 3D modeling
software).

Transform: This defines the transformation matrix of the component. It can customize the
translation, scale, and position of the Entity element.

Position: This is a property to expose transform.translation for a given caller/parent.
This might quickly become handy if we want to move the apple around.

components: This is the array containing all the IDs of all the components for the Entity
element.

If we want to make this Apple a child of another Entity, it is simply a matter of defining the
Apple inside this new Entity element. Let's call it world.qml:

import Qt3D.Core 2.0
import Qt3D.Render 2.0
import Qt3D.Extras 2.0

Entity {

id: sceneRoot
RenderSettings {
id: frameFraph
activeFrameGraph: ForwardRenderer {
clearColor: Qt.rgba(o, 0, 0, 1)
3

}

Apple {

id: apple

position: Qt.vector3d(3.0, 0.0, 2.0)
}

components: [frameGraph]

}

Here, the world Entity has no visual representation; we want it to be the root of our 3D
scene. It only contains the Apple we defined earlier. The X, y, z coordinates of the apple are
relative to the parent. When the parent makes a translation, the same translation will be applied
to the apple.

This is how the hierarchy of entities/components is defined. If you write your Qt3D code in
C++, the same logic applies to the equivalent C++ classes (QEntity, QComponent, and so on).

Because we decided to use the world.qml file as the root of our scene, it has to define how the
scene will be rendered. The Qt3D rendering algorithm is data-driven. In other words, there is
a clear separation between what should be rendered (the tree of entities and components)

and how it should be rendered.

The how relies on a similar tree structure using framegraph. In Qt Quick, a single method of
rendering is used and it covers the 2D drawing. On the other hand, in 3D, the need for flexible
rendering makes it necessary to decouple the rendering techniques.

Consider this example: you play a game where you control your avatar and you encounter a
mirror. The same 3D scene must be rendered from multiple viewports. If the rendering
technique is fixed, this poses multiple problems: which viewport should be drawn first? Is it
possible to parallelize the rendering of the viewports in the GPU? What if we need to make
multiple passes for the rendering?

In this code snippet, we use the traditional OpenGL rendering technique with the
ForwardRenderer tree, where each object is rendered directly on the back buffer, one at a
time. Qt3D offers the possibility to choose the renderer

(ForwardRenderer, DeferredRenderer, and so on) and configure how the scene should be
rendered.

OpenGL typically uses the double-buffering technique to render its content. The front-buffer
is what is displayed on the screen and the back-buffer is where the scene is being rendered.
When the back-buffer is ready, the two buffers are swapped.

One last thing to notice at the top of each Entity element is that we specified the following:

import Qt3D.Core 2.0

import Qt3D.Render 2.0
import Qt3D.Extras 2.0

There are only Qt3D modules in the import section. Qt3D classes do not inherit Item so
cannot be directly mixed with QML components. This inheritance tree of the basic Qt3D
building blocks is:

QObject

h

QNode

QEntity QComponent

The QNode class is the base class of all Qt3D node classes. It relies on the Qobject class to
define the parenting relationship. Each QNode class instance also adds a unique id variable,
which allows it to be recognized from other instances.

Even though QNode cannot be mixed with Qt Quick types, they can be added to a Q3DScene
element (or Scene3D in QML), which serves as the canvas for Qt3D content and can be added
to a Qt Quick 1tem. Adding world.qgml to a scene is as simple as this:

Rectangle {
Scene3D {
id: scene

anchors.fill: parent
focus: true

wWorld { }

}

The Scene3D element includes a Wor1d instance and defines common Qt Quick properties
(anchors, focus).

Configuring Qt for your Raspberry Pi

This project targets a new embedded platform: the Raspberry Pi. Qt officially supports the
Raspberry Pi 2, but we got the project running without any trouble on a Raspberry Pi 3. If you
do not have one of these devices, it might be nonetheless interesting to read this section to
know how the cross-compilation works and how to configure your own kit in Qt Creator. The
rest of the chapter will work on a Desktop platform anyway.

Before diving into the Raspberry Pi configuration, let's take a step back to understand our
aim. Your computer is probably running on an x86 CPU architecture. This means that every
program you run will be executed with the x86 instructions set of your CPU. In Qt Creator,
this translates to your available kits. A kit must match your target platform. On startup, Qt
Creator searches for available kits in your computer and loads them for you.

In Chapter 5, Dominating the Mobile UI, we targeted different platforms: Android and iOS.
These platforms are running on a different CPU instruction set: ARM. Luckily, the people
behind Qt automatically configured for us the necessary nuts and bolts to make it work.

The Raspberry Pi also runs on ARM but it is not ready for Qt by default. We have to prepare it
before playing with it in Qt Creator. Note that the following commands are run from a Linux
box, but you should be able to run them from Mac or Windows with Cygwin.

Note
Please follow the complete guide to prepare your Raspberry Pi for Qt at

https://wiki.gt.io/RaspberryPi2EGLFES, or simply download a precompiled bundle
from http://www.qtrpi.com.

The complete Raspberry Pi installation guide is outside the scope of the book. It is interesting
nonetheless to sum up the main steps:

1. Add development packages to the Raspberry Pi.

2. Retrieve the complete toolchain, including the cross-compiler that will be executed from
your machine.

3. Create a sysroot folder on your machine that will mirror the necessary directories from
the Raspberry Pi.

4. Compile Qt with the cross-compiler in the sysroot folder.

5. Synchronize this sysroot with the Raspberry Pi.

A sysroot is simply a directory containing a minimal filesystem for a given platform. It
typically contains the /usr/1ib and /usr/include directories. Having this directory on your
machine enables the cross-compiler to properly compile and link the output binary without
being executed from the Raspberry Pi.

https://wiki.qt.io/RaspberryPi2EGLFS
http://www.qtrpi.com

All these steps are done to avoid compiling anything directly on the Raspberry Pi. Being a
low-powered device, the execution of any compilation would take a very, very long time.
Compiling Qt on a Raspberry Pi would easily take more than 40 hours. Knowing this, the time
spent on configuring the cross-compiler seems much easier to bear.

The qopenglwidget example mentioned in the wiki should be properly running before
proceeding. Once this has been done, we have to cross-compile a few more Qt modules to
have our project running:

e Qtdeclarative: This model is used to access Qt Quick

qt3d: This model is used to construct a 3D world

gqtquickcontrols: This model is used to include interesting controls (Label)
gqtquickcontrols2: This model is used to make some new layouts available

For each of these modules, execute the following commands (from your ~/raspi directory):

git clone git://code.qt.io/qt/<modulename>.git -b 5.7
cd <modulename>

~/raspi/qt5/bin/qmake -r

make

make install

Tip

You can speed up the compilation by adding the parameter -j (or - -jobs) to make. The make
command will try to parallelize the compilations jobs over your CPU cores, if you have four
cores, use make -j 4, eight cores, make -j 8, and so on.

When everything has been compiled, synchronize your sysroot directory again with:

rsync -avz qt5pi pi@IP:/usr/local
In the previous command, you must replace the 1P with the real Raspberry Pi address.

The Raspberry Pi is ready to execute our Qt code. However, we have to create our own kit in
Qt Creator to be able to compile and deploy our program on it. A kit is composed of the
following parts:

e A compiler that will compile your code using the CPU instruction set of the target
platform

e A debugger that will know the instruction set of the target platform to properly break
and read the memory content

e A Qt version compiled for the targeted platform to compile and link your binary to the
target platform's shared objects

e A device to which Qt Creator can connect to deploy and execute your program

We will start with the compiler. In Qt Creator:

1. Go to Tools | Options | Build & Run | Compilers.

2. Click on Add |GCC.

3. Browse to ~/raspi/tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-
raspbian/bin/arm-linux-gnueabihf-g++.

4. Rename the compiler to Rpi GCC.

This strange binary name makes it easier for Qt to parse the ABI (application binary
interface) to find out the platform architecture, file format, and so on. It should look like this:

General Kits Qt Versions Compilers Debuggers CMake
Name Type

b Auto-detected

* Manual

Rpi GCC GCC

MName: Rpi GCC

Compiler path: 08/gcc-linaro-arm-linux-gnueabihf-raspbian/binfarm-linux-gnueabihf-g++ | | Browse...
Platform codegen flags:

Platform linker flags:

ABI: arm-linux = || arm - linux -| generic - elf -| 32bit

Now for the debugger. As we said earlier, we are building this project from a Linux box
(Ubuntu). Cross-compilation and embedded development tend to be easier on Linux but you
should be able to do the same on a Windows or Mac with a few additional steps.

On Ubuntu Linux, just install a multi-architecture gdb with the command sudo apt-get
install gdb-multiarch.In Qt Creator, add this new debugger in the Debuggers tab:

General Kits Ot Versions Compilers Debuggers CMake

Name Location Type
Auto-detected
System GDB at fusr/bin/gdb fusr{bin/gdb GDE

Android Debugger for Andreid GCC (arm-4.2) /home/robinfandroid-ndk/prebuilt/linux-x86_64/bin/gdb GDE
Android Debugger for Android GCC (i686-4.9) /home/robin/android-ndk/prebuilt/linux-x86_64/bin/gdb GDB
Manual

GDB multiarch db-multiarch

Mame: |GDB multiarch

Path: fusr/bin/gdb-multiarch Browse...
Type: GDB
ABls: [xBB-linux-generic-elf-64bit

Version: [7.11.0

Next, add the cross-compiled Qt explained on the wiki page in the Qt Versions tab. Click
on Add and browse to ~/raspi/qt5/bin/qgmake. This is the resulting Qt Version:

Version name: |Qt %{Qt:Version} (qt5) for Rpi

gmake location: /heme/robin/raspi/qts/bin/gmake Browse...

Qt version 5.6.2 for Embedded Linux Details v

We are almost there! Before building the kit, we simply have to configure Raspberry Pi
device access. In Options | Devices, follow this procedure:

1. Click on Add.. | Generic Linux Device | Start Wizard.

2. The name will be Rpi 2 (or 3 if you have one).

3. Enter the IP address of your device (indeed, you have to be connected to your local
network!).

4. The default username is pi.

5. The default password is "raspberry".
6. Click on Next to test the connection to the device.

If everything went well, this is your new device:

Devices
Device: | Rpi 2 (default for Generic Linux) -
General
Name: Rpi 2
Type: Generic Linux

Auto-detected: No

Current state: Unknown

Type Specific

Machine type: Physical Device

Authentication type: e Password Key

Host name: 192.168.0.27 SSH port: |22 = Check host key
Free ports: 10000-10100 Timeout: | 10s -

Username: pi

Password: LT T T YT Show password

Private key file: Browse... | |Create New...

GDB server executable:

Finally, the kit will compose all these parts into a valid Qt Creator platform. Go back to Build
& Run | Kits. From here you simply have to point to each of the parts we built previously.
Here is the resulting kit:

. General Kits | Ot Versions | Compilers ' Debuggers | CMake

ihlame
| ¥ Auto-detected
| = Manual

_ Raspberry Pl 2

Mame: |REISpr'rT"_-,|" Pl 2

File system name: |

Device type: |Gener1'c Linux Device -
Device: | Rpi 2 (default for Generic Linux) -
Sysroot: I,.fhnme,fmbin,.fras.piff.ySruct

Compiler: |Rpi GCC -
Environment: Mo changes to apply.

Debugger: |GDB multiarch -
Qt version: | Qt 5.6.2 {gt5) for Rpi -
Ot mkspec: |

CMake Tool: | System CMake at fusr/bin/cmake -
CMake Generator: | CodeBlocks - Unix Makefiles -

CMake Configuration CMAKE CXX COMPILER:STRING=%{Compiler:Executable}; QT QMAKE EXECUTABLE...

Note that the Sysroot filed should point to the sysroot folder we previously created
at ~/raspi/sysroot.

Tip

If you click on the button to the right of Name, you can choose a custom picture for a kit, such
as the Raspberry Pi logo.

Everything is now ready to make an awesome snake game.

Creating an entry point for your Qt3D code

For those who did not play the snake game in their youth, here is a quick reminder of the
gameplay:

e You control a snake moving in an empty area

e This area is surrounded by walls

e An apple spawns randomly in the game area

¢ If the snake eats the apple, it grows and you gain a point. Right after, another apple
spawns in the game area

e If the snake touches a wall or a part of its own body, you lose

The goal is to eat as many apples as possible to have the highest score. The longer the snake,
the harder it will become to avoid the wall and its own tail. Oh, and the snake goes faster and
faster each time it eats an apple. The architecture of the game will be the following:

e All the game items will be defined using Qt3D in QML
e All the game logic will be done in JavaScript, which will communicate with the QML
elements

We will keep the 2D feel of the original snake game by placing the camera above the game
area but we will spice things up with 3D models and some shaders.

Alright, we spent an awful lot of pages preparing for this moment. It is now time to begin the
snake project. Create a new Qt Quick Controls Application named cho6 - snake. In the project
details:

1. Select Qt 5.6 for the minimal required Qt version field.
2. Uncheck With ui.qml file.
3. Uncheck Enable native styling.
4. Click on Next and select the following kits:
o RaspberryPi 2
o Desktop
5. Click on Next | Finish.

We have to add the Qt3D modules. Modify che6-snake.pro like this:

TEMPLATE = app

QT += gml quick 3dcore 3drender 3dquick 3dinput 3dextras
CONFIG += c++11

SOURCES += main.cpp

RESOURCES += \

snake.qrc
HEADERS +=

target.files = ch06-snake
target.path = /home/pi
INSTALLS += target

We have to prepare the entry point of the application to have a proper OpenGL context with
which Qt3D can work. Open and update main.cpp like so:

#include <QGuiApplication>
#include <QtGui/QOpenGLContext>
#include <QtQuick/QQuickView>
#include <QtQml/QQmlEngine>

int main(int argc, char *argv[])

{
QGuiApplication app(argc, argv);

gqputenv ("QT3D_GLSL100_WORKAROUND", "");

QSurfaceFormat format;

if (QOpenGLContext::openGLModuleType() ==
QOpenGLContext::LibGL) {
format.setVersion(3, 2);
format.setProfile(QSurfaceFormat::CoreProfile);

¥
format.setDepthBufferSize(24);

format.setStencilBufferSize(8);

QQuickView view;

view.setFormat(format);

view.setResizeMode(QQuickView: :SizeRootObjectToView);

QObject::connect(view.engine(), &QQmlEngine::quit,
&app, &QGuiApplication::quit);

view.setSource(QUrl("grc:/main.qml"));

view.show();

return app.exec();

}

The idea is to configure a QSurfaceFormat to properly handle OpenGL and to give itto a
custom QQuickView view. This view will use this format to paint itself.

The gputenv ("QT3D_GLSL100_WORKAROUND", "") instruction is a workaround related to Qt3D
shaders on some embedded Linux devices, such as the Raspberry Pi. It will enable a separate
GLSL 1.00 snippet for the lights required by some embedded devices. If you do not use this
workaround, you will get a black screen and will not be able to properly run the project on
Raspberry Pi.

Tip

The details of the Qt3d lights workaround are here:https://codereview.qt-
projectorg/#/c/143136/.

We chose to handle the view using Qt Quick. Another approach would be to create a C++ class
that inherits QMainwindow and make it the parent of the QML content. This approach can be
found in many Qt3D example projects. Both are valid and work. You tend to write more code
with the QMainwindow approach, but it allows you to create 3D scenes with C++ only.

Note that view from the main.cpp file tries to load a main.qgml file. You can see it coming;
here is the main.qml:

import QtQuick 2.6
import QtQuick.Controls 1.4

Item {
id: mainView

property int score: 0
readonly property alias window: mainView

width: 1280; height: 768
visible: true

Keys.onEscapePressed: {
Qt.quit()
}

Rectangle {
id: hud

color: "#31363b"
anchors.left: parent.left
anchors.right: parent.right
anchors.top : parent.top
height: 60

Label {
id: snakeSizeText
anchors.centerIn: parent
font.pointSize: 25
color: "white"
text: "Score: " + score

}

Here we define the HUD (heads up display) at the top of the screen, where the score (the
number of apples eaten) will be displayed. Note that we bound the Escape key to

https://codereview.qt-project.org/#/c/143136/

the Qt.quit() signal. This signal is connected in main.cpp to the QGuiApplication::quit()
signal to quit the application.

The QML context is now ready to welcome Qt3D content. Modify main.qgml like so:

import QtQuick 2.6
import QtQuick.Controls 1.4
import QtQuick.Scene3D 2.0

Item {

Rectangle {
id: hud

}

Scene3D {
id: scene
anchors.top: hud.bottom
anchors.bottom: parent.bottom
anchors.left: parent.left
anchors.right: parent.right
focus: true
aspects: "input"

}

The Scene3D element takes all the available space below the hud object. It takes the focus of
the window to be able to intercept keyboard events. It also enables the input aspect to let the
Qt3D engine process keyboard events in its graph traversal.

Setting up the scene

We can now start writing Qt3D code. The first step is to define the root of the scene. Create a
new file named GameArea.qml:

import Qt3D.Core 2.0
import Qt3D.Render 2.0
import Qt3D.Extras 2.0

Entity {
id: root

property alias gameRoot: root

Camera {
id: camera
property real x: 24.5
property real y: 14.0

projectionType: CameralLens.PerspectiveProjection
fieldOfView: 45

aspectRatio: 16/9

nearPlane : 0.1

farPlane : 1000.0

position: Qt.vector3d(x, y, 33.0)

upVector: Qt.vector3d(0.0, 1.0, 0.0)
viewCenter: Qt.vector3d(x, y, 0.0)

RenderSettings {
id: frameFraph
activeFrameGraph: ForwardRenderer {
clearColor: Qt.rgba(o, 0, 0, 1)
camera: camera

}

components: [frameFraph]

}

The first thing we do is create a camera and position it. Remember that, in OpenGL, the
coordinates follow the thumb on your right hand points left!:

By placing the camera at Qt.vector3d(x, y, 33), we make it come "out of the screen" to be
able to express our yet-to-be-created entitiy's coordinates with the simple x, y axis. The
upVector: Qt.vector3d(0.0, 1.0, 0.0) specifies the up vector of the camera, in our case it
is the Y axis. Finally, we point at Qt.vector (x, y, 0), meaning the center of the screen.

The overall goal is to simplify coordinate expression. By positioning the camera this way,
placing an object at the coordinate 0, 0 will put it in the bottom-left part of the window,
whereas the coordinates 50, 28 mean the top-right part of the window.

We also configure RenderSettings with a ForwardRendered that defines two properties:

e clearcColor: This property Qt.rgba(®, 0, 0, 1) means that the background will be
pitch-black
e camera: This property is used to determine the viewport to be rendered

The scene is ready to be rendered, but we need to handle user input, namely the keyboard. To
capture keyboard events, modify GameArea.qml to look like this:

import Qt3D.Core 2.0
import Qt3D.Render 2.0
import Qt3D.Input 2.0
Entity {
RenderSettings {
}

KeyboardDevice {
id: keyboardController
3

InputSettings { id: inputSettings }

KeyboardHandler {
id: input
sourceDevice: keyboardController
focus: true
onPressed: { }

}

components: [frameFraph, input]

}

The KeyboardDevice element is in charge of dispatching key events to the

active KeyboardHandler, namely input. The KeyboardHandler component is attached to the
controller and the onPressed() function will be called each time a key is pressed.

The KeyboardHandler is a component; therefore it needs to be added to the list of components
for GameArea.

The last missing part of GameArea is preapring the engine execution (initialization and update):

import Qt3D.Core 2.0
import Qt3D.Render 2.0
import Qt3D.Input 2.0
import QtQuick 2.6 as QQ2

Entity {
id: root

property alias gameRoot: root

property alias timerInterval: timer.interval
property int initialTimeInterval: 80
property int initialSnakeSize: 5

property string state: ""

KeyboardDevice {
id: keyboardController

3

QQ2.Component.onCompleted: {
console.log("Start game...");
timer.start()

3

QQ2.Timer {
id: timer
interval: initialTimeInterval
repeat: true
onTriggered: {}

3

components: [frameFraph, input]

Here we mix Qt Quick elements with Qt3D. Due to possible name collisions, we have to
import the module using the alias QQ2. We already met Component.onCompleted in Chapter
5, Dominating the Mobile ULI. Its job will be to start the game engine and start the timer
defined right after.

This timer variable will repeat every 80 milliseconds (as defined in the initialTimeInterval
property) and call the engine's update() function. This function will be covered when we
build the engine code, later in this chapter. The goal is to emulate the original snake game as
closely as possible. The whole game logic will be updated at this interval and not at the
normal frame refresh interval. After each call to update(), the snake will advance. As a result,
the snake's movement will not be smooth but rather jerky. This is clearly a design choice we
made to have a retro-gaming feeling.

Each time the snake eats an apple, two things happen:

e The interval of the timer will be reduced by the engine (accessed by the timerInterval

property).
e The snake will grow. Its initial size is defined in the intialSnakeSize property.

Reducing the timer interval will make the snake advance faster until it becomes very hard to
manage its direction.

Assembling your Qt3D entities

We will now proceed to create the building blocks of the game, each in the form of an Entity
element:

wall: This represents the limit of where the snake cannot go

SnakePart: This represents a part of the snake's body

Apple: This represents the apple (no way!) spawned at a random location

Background: This represents a good-looking background behind the snake and the apple

Each entity will be placed on a grid handled by the engine and will have a type identifier to
make it easier to find. To factorize these properties, let's create a parent QML file named
GameEntity.qml:

import Qt3D.Core 2.0

Entity {

property int type: 0

property vector2d gridPosition: Qt.vector2d(0, 0)
}

This Entity element only defines a type property and a gridPosition property , which will
be used by the engine to lay out the content on the grid.

The first item we will build is the wall.qgml file:

import Qt3D.Core 2.0

GameEntity {
id: root

property alias position: transform.translation

Transform {
id: transform
}

components: [transform]

}

As you can see, the wall type does not have any visual representation. Because we target a
Raspberry Pi device, we have to be very careful with the CPU/GPU consumption. The game
area will be a grid where each cell contains an instance of one of our entities. The snake will
be surrounded by wall instances. The Raspberry Pi is much slower than your average
computer, to the extent that the game would become unbearably slow if we displayed all the
walls.

To address this issue, the walls are invisible. They will be placed outside the visible viewport
and the borders of the window will act as the visual limit of the snake. Of course, if you do
not target the Raspberry Pi, but rather your computer, it is fine to display the walls and make
them look fancier than just nothing.

The next Entity element we will implement is SnakePart.qml:

import Qt3D.Core 2.0
import Qt3D.Render 2.0
import Qt3D.Extras 2.0

GameEntity {
id: root

property alias position: transform.translation
PhongMaterial {

id: material
diffuse: "green"

}

CuboidMesh {
id: mesh

}

Transform {
id: transform
}

components: [material, mesh, transform]

}

If added to the GameArea scene, the SnakePart block will display a single green cube.

The snakePart block is not the complete snake, rather a part of its body. Remember that the
snake grows each time it eats an apple. Growing means adding a new instance of SnakePart to
a list of SnakePart.

Let's proceed with the Apple.qgml:

import Qt3D.Core 2.0
import Qt3D.Render 2.0
import Qt3D.Extras 2.0

GameEntity {
id: root

property alias position: transform.translation
property alias color: material.diffuse

Transform {
id: transform

scale: 0.5

}
Mesh {

id: mesh

source: '"models/apple.obj"
}

DiffuseMapMaterial {

id: material

diffuse: "qrc:/models/apple-texture.png"
}

components: [material, mesh, transform]

}

This snippet starts with introducing more complex yet easy-to-use features of Qt3D, namely a
custom mesh and a texture applied to it. Qt3D supports the Wavefront obj format to load
custom meshes. Here we added a home-cooked apple to the .qrc file of the application and we
just have to provide the path to this resource to load it.

The same principle is applied for the DiffuseMapMaterial element. We added a custom
texture and added it as a source of the component.

As you can see, the Entity definition and its components look very much the same. Yet we
effortlessly traded a Qt3D CuboidMesh with a custom model.

We will push things even further with Background.qgml:

import Qt3D.Core 2.0
import Qt3D.Render 2.0
import Qt3D.Extras 2.0

Entity {
id: root

property alias position: transform.translation
property alias scale3D: transform.scale3D

MaterialBackground {
id: material

}

CuboidMesh {
id: mesh

}

Transform {
id: transform
}

components: [material, mesh, transform]

}

The Background block will be displayed behind the snake and the apple. At first sight, this
entity looks very much like SnakePart. However, Material is not a Qt3D class. It is a custom
defined Material that relies on shaders. Let's see MaterialBackground.qml:

import Qt3D.Core 2.0
import Qt3D.Render 2.0

Material {
id: material

effect: Effect {
techniques: [
Technique {
graphicsApiFilter {
api: GraphicsApiFilter .OpenGL
majorVersion: 3
minorVersion: 2

}

renderPasses: RenderPass {
shaderProgram: ShaderProgram {
vertexShaderCode:
loadSource('"qrc:/shaders/gl3/grass.vert")
fragmentShadercCode:
loadSource("qrc:/shaders/gl3/grass.frag")

}

If you are not familiar with shaders, we can summarize them in the following statement:
shaders are computer programs written in a C-style syntax that are executed by the GPU. Data
from your logic will be fed by the CPU and made available to the GPU memory where your
shaders will run. Here we manipulate two types of shader:

¢ Vertex shader, which is executed on each vertex of the source of your mesh
¢ Fragment, which is executed on each pixel to produce the final rendering

By being executed on the GPU, these shaders utilize the huge parallelization power of the
GPU (which is orders-of-magnitude higher than your CPU). It enables modern games to have
such stunning visual rendering. Covering shaders and the OpenGL pipeline is beyond the
scope of this book (you can fill several bookshelves on this subject alone). We will limit
ourselves to showing you how you can use shaders in Qt3D.

Note

If you want to delve into OpenGL or sharpen your skills with shaders, we recommend the
OpenGL SuperBible, by Graham Sellers, Richard S Wright Jr., and Nicholas Haemel.

Qt3D supports shaders in a very convenient way. Simply add your shader file to the .qrc
resource file and load it in the effect property of a given Material.

In this snippet, we specify that this shader Technique should be run only on OpenGL 3.2. This
is indicated in the graphicsApiFilter block. This version of OpenGL targets your desktop
machine. Because the performance gap between your desktop and your Raspberry Pi is very
marked, we have the ability to execute different shaders depending on the platform.

Thus, here is the Raspberry Pi-compatible technique:

Technique {
graphicsApiFilter {
api: GraphicsApiFilter .OpenGLES
majorVersion: 2
minorVersion: 0

}

renderPasses: RenderPass {
shaderProgram: ShaderProgram {
vertexShaderCode:
loadSource('"qrc:/shaders/es2/grass.vert'")
fragmentShaderCode:
loadSource("qrc:/shaders/es2/grass.frag")

}

You just have to add it to the techniques property of the Material. Note that the targeted
OpenGL version is OpenGLES 2.0, which will run fine on your Raspberry Pi and even your
iOS/Android phone.

A last thing to cover is how parameters can be passed to shaders. Here is an example:

Material {
id: material

parameters: [

Parameter {
name: '"score'"; value: score
}

}

The score variable will be accessible in the shader with this simple section. Please take a look
at the source code for the chapter to see the complete content of this Material element. We had

the fun of writing a shader displaying a moving and glowing wave over a grass texture.
The only fixed element of the game is the background. We can directly add it to GameArea.qml:

Entity {
id: root

Background {
position: Qt.vector3d(camera.x, camera.y, 0)

scale3D: Qt.vector3d(camera.x * 2, camera.y * 2, 0)

}

components: [frameFraph, input]

}

The Background element is positioned to cover the whole visible area behind the snake and
the apple. Being defined inside GameArea, it will be automatically added to the
entity/component tree and will be drawn right away.

Preparing the board game

Even if our game has a 3D representation, we will implement 2D gameplay like the original
snake game. Our game items are born, will live, and die in a 2D area. Like chess, this board
will be composed of rows and columns. But in our snake game, each square can be:

e An apple

e A snake

e Awall

e Empty
Here is an example of a board representation from the point of view of the engine:
wWiw | w|lwlw|w|wlw)@w|w
W W
W . W
W w
w = B W
W 5 W
W W
wWiw| w|wlw|w|wlw)@w|w

This is a small 10x8 board; even if the size does not matter, you will be able to define a
bigger one. Your game, your rules! We have walls (W) surrounding the game area. An apple
(A) is spawned at 7x2. Finally, we have a snake (S) beginning at 3x4 and ending at 5x5.

It is time to create our board class. Please create a JS file called board.js:

function Board(columnCount, rowCount, blockSize) {
this.columnCount = columnCount;
this.rowCount = rowCount;
this.blockSize = blockSize;
this.maxIndex = columnCount * rowCount;
this.data = new Array(this.maxIndex);

}

This object constructor function required three parameters. The columnCount and rowCount
parameters will help you to choose the board dimension. The last parameter, blockSize, is the
size of a board square in the OpenGL world. For example, we can set blockSize to 10. In this
case, the apple in 7x2 on the board we be displayed with x = 70 andy = 20 in the OpenGL
world. In this chapter, we will use a blockSize of 1, so the board coordinates match OpenGL

coordinates.

Let's add some utility functions to board. js:

Board.prototype.init = function() {
for (var i = 0; i < this.data.length; i++) {
this.data[i] = null;
}

}

Board.prototype.index = function(column, row) {
return column + (row * this.columnCount);
¥

Board.prototype.setData = function(data, column, row) {
this.data[this.index(column, row)] = data;
}

Board.prototype.at = function(column, row) {
return this.data[this.index(column, row)];
¥

Defining a class in JavaScript can be disturbing for a C++ developer. Every JavaScript object
has a prototype object to which you can add functions. We are using it to add class methods to
Board.

Here is a summary of the purpose of each function of the Board class:

e init(): This function initializes all array values to the null value

e index(): This function returns the array index from column/row coordinates

e setData(): This function assigns the data value on the board from column/row
coordinates

e at(): This function retrieves the data value in an array from column/row coordinates

Please note that, in our case, a null square means an empty square.

Crafting entities from the factory

Now that we have a board to receive items, we will create the game items factory. The factory
is a design pattern that allows us to create an object without exposing the creation logic to the
caller. This factory can be seen as a helper class that will handle all the dirty tasks required
when you want to create a new game item from JavaScript. Do you remember
GameEntity.qml? It is the parent class of Apple.gml, Snake.qml, and Wall.qml. The factory
will be able to create a specific entity for a given a type and coordinates. We will use the
property type to identify an entity kind. Here is the factory pattern schema used in our snake
game:

Uses

Engine

Interface prnes GameEntity

requests

instantiates

Factory

We can now create the factory.js file, which begins like this:

var SNAKE_TYPE = 1,
var WALL_TYPE = 2;
var APPLE_TYPE = 3,

var snakeComponent = Qt.createComponent('"Snake.gml");
var wallComponent = Qt.createComponent("wWall.qml");
var appleComponent = Qt.createComponent("Apple.gml");

First of all, we define all the game entity types. In our case we have apple, snake, and wall
types. Then, we create game item components from QML files. These components will be use
by the factory to dynamically create new game entities.

We can now add the constructor and a removeAllEntities() utility function to remove all
instantiated entities:

function GameFactory() {

this.board = null;

this.parentEntity = null;
this.entities = [];

}

GameFactory.prototype.removeAllEntities = function() {
for(var 1 = 0; 1 < this.entities.length; i++) {
this.entities[i].setParent(null);

}

This factory has three member variables:

e Areference to the game board described in the previous section
e Areference to the parentEntity variable, that is, the game area
e Anentities array that keeps a reference to created items

The removeAllEntities() function will remove the items from their parent (that is, the game
area) and create a new empty entities array. This ensures that old entities are deleted by the
garbage collector.

Let's add the core function createGameEnity () in the factory:

GameFactory.prototype.createGameEntity = function(type, column, row) {
var component;
switch(type) {
case SNAKE_TYPE:
component = snakeComponent;
break;

case WALL_TYPE:
component = wallComponent;
break;

case APPLE_TYPE:
component = appleComponent;
break;

}

var gameEntity = component.createObject(this.parentEntity);
gameEntity.setParent(this.parentEntity);

this.board.setData(gameEntity, column, row);
gameEntity.gridPosition = Qt.vector2d(column, row);
gameEntity.position.x = column * this.board.blockSize;
gameEntity.position.y = row * this.board.blockSize;

this.entities.push(gameEntity);
return gamekEntity;

As you can see, the caller provides an entity type and board coordinates (column and row).
The first part is a switch to select the correct QML component. Once we have the component,
we can call component.createObject() to create an instance of this component. The parent of

this new component will be this.parentEntity, in our case, GameArea. Then, we can update
the board, update the entity position, and add this new entity in the entities array.

The last thing to do is to update our QML game entities with the proper factory type. Please
open Apple.qgml and update the file like this:

import "factory.js" as Factory
GameEntity {

id: root
type: Factory.APPLE_TYPE

}

You can now update Snake.qml with the Factory.SNAKE_TYPE type and Wall.qgml with
the Factory .WALL_TYPE type.

Building a snake engine in JavaScript

It is time to get your hands dirty. Let's see how to create an engine in JavaScript to manage a
snake game using our board, our factory, and the power of QML.

Please create a new engine. js file with the following snippet:

.import "factory.js" as Factory
.import "board.js" as Board

var COLUMN_COUNT = 50,
var ROW_COUNT = 29,
var BLOCK_SIZE = 1,

var factory = new Factory.GameFactory();
var board = new Board.Board(COLUMN_COUNT, ROW_COUNT, BLOCK_SIZE);

var snake = [];
var direction;

The first lines are the Qt way to import a JavaScript file from another JavaScript file. Then,
we can easily instantiate a factory variable and a 50x29 board variable. The snake array
contains all the snake game items instantiated. This array will be useful to move our snake.
Finally, the direction variable is a 2d vector handling the current snake direction.

This is the first function of our engine:

function start() {
initEngine();

createSnake();
createWalls();

spawnApple();
gameRoot.state = "PLAY";

}

This gives you a summary of what is done when we start the engine:

1. Initialize the engine.

Create the initial snake.

Create walls surrounding the game area.
Spawn the first apple.

Switch the GameArea state to PLAY.

A

Let's begin with the initEngine() function:

function initEngine() {

timer.interval = initialTimeInterval;
score = 0;

factory.board = board;
factory.parentEntity = gameRoot;
factory.removeAllEntities();

board.init();
direction = Qt.vector2d(-1, 0);

}

This function initializes and resets all the variables. The first task is to set the GameArea timer
interval to its initial value. Each time the snake eats an apple, this interval is reduced,
increasing the game speed and thus the snake's movement speed. Logically, we reset the score
of the player to 0. Then we initialize the factory, giving the board and gameRoot references.
The gameRoot refers to the GameArea; this entity will be the parent of all items instantiated by
the factory. Then, we remove all the existing entities from the factory and call the

board's init() function to clear the board. Finally, we set a default direction for the snake.
The vector -1, @ means that the snake will begin moving to the left. If you want the snake to
start moving up, you can set the vector to 0, 1.

The next function is creating the snake:

function createSnake() {
snake = [];
var initialPosition = Qt.vector2d(25, 12);
for (var i = 0; i < initialSnakeSize; i++) {
snake.push(factory.createGameEntity (Factory.SNAKE_TYPE,
initialPosition.x + i,
initialPosition.y));

}

No big deal here, we reset and initialize the snake array. The first snake item will be created at
25x12. We then proceed to create as many snake items as we need to spawn a snake with the
correct initial size. Please note that other snake items will be created to the right of the first
item (26x12, 27x12, and so on). You can see how easy it is to call our factory and request a
new snake item instance.

Let's add the createwalls() function to engine.js:

function createwWalls() {

for (var x = 0; x < board.columnCount; x++) {
factory.createGameEntity (Factory.WALL TYPE, x, 0);
factory.createGameEntity(Factory.WALL TYPE, x, board.rowCount - 1);

}

for (var y = 1; y < board.rowCount - 1; y++) {
factory.createGameEntity (Factory.WALL_TYPE, 0, Vy);
factory.createGameEntity (Factory.WALL_TYPE, board.columnCount - 1, y);

}

The first loop creates the top and bottom walls. The second loop creates the left and right
walls. The indexes of the second loop are different from the first one to avoid creating the
corners twice.

Let's see now how to implement the spawnApple() function in engine.js:

function spawnApple() {
var isFound = false;
var position;
while (!'isFound) {
position = Qt.vector2d(Math.floor (Math.random()
* board.columnCount),
Math.floor (Math.random()
* board.rowCount));
if (board.at(position.x, position.y) == null) {
isFound = true;
3
¥
factory.createGameEntity(Factory.APPLE_TYPE, position.x, position.y);

if (timerInterval > 10) {
timerInterval -= 2;

}
}

The first step is to find an empty square. The while loop will generate a random board
position and check whether a square is empty. As soon as an empty square is found, we
request the factory to create an apple entity at this position. Finally, we reduce the
timerInverval value of GameArea to speed up the game.

We will now add some utility functions related to the snake position in engine. js:

function setPosition(item, column, row) {
board.setData(item, column, row);
item.gridPosition = Qt.vector2d(column, row);
item.position.x = column * board.blockSize;
item.position.y row * board.blockSize;

}

function moveSnake(column, row) {
var last = snake.pop();
board.setData(null, last.gridPosition.x, last.gridPosition.y);
setPosition(last, column, row);
snake.unshift(last);

}

The setPosition() function handles all the necessary tasks when we want to move a game

item. We first assign the game item to the correct board square, then we update
the gridPosition property (from GameEntity) but also the OpenGL position.x
and position.y.

The second function, moveSnake(), moves the snake to an adjacent square. Let's dissect all the
steps performed by this function:

1. The snake is our global array containing all the snake items. The pop () method removes
and returns the last element that we store in the last variable.

2. The last variable contains the snake's tail's grid position. We set this board square
to null; that means an empty square for us.

3. The last variable is now put on the adjacent square requested by the caller.

4. The last variable is finally inserted at the beginning of the snake array.

The next schema illustrates the movesnake() process when a snake is moving on the left. We
also name snake items with a letter to visualize how the tail becomes the head, simulating a
moving snake:

A|B|C

D

l moveSnake()

DA |B|C

l movesnake()

C|D|A|B

Now that we can move our snake, we must handle key events to move the snake in the correct
direction. Please add this new function to engine.js:

function handleKeyEvent(event) {
switch(event.key) {
// restart game
case Qt.Key_R:
start();
break;

// direction UP
case Qt.Key_TI:
if (direction != Qt.vector2d(0, -1)) {

direction = Qt.vector2d(0, 1);
}

break;

// direction RIGHT
case Qt.Key_L:
if (direction != Qt.vector2d(-1, 0)) {
direction = Qt.vector2d(1, 0);

}

break;

// direction DOWN
case Qt.Key_K:
if (direction != Qt.vector2d(0, 1)) {
direction = Qt.vector2d(0, -1);

}

break;

// direction LEFT
case Qt.Key_J:
if (direction != Qt.vector2d(1, 0)) {
direction = Qt.vector2d(-1, 0);

}

break;

}

In this game, we use the I-J-K-L keys to update the snake direction vector. Like the original
snake game, you can't reverse your direction. A check is performed to avoid this behavior.
Please notice that pressing the R key will call start() and so restart the game. We will see
soon how to bind this function with the QML keyboard controller.

Here we are, the last (but not least) function, the update() function of engine. js:

function update() {
if (gameRoot.state == "GAMEOVER") {
return;

}

var headPosition = snake[0].gridPosition;
var newPosition = Qt.vector2d(headPosition.x + direction.x,
headPosition.y + direction.y);
var itemOnNewPosition = board.at(newPosition.x,
newPosition.y);

}

This function will be called at regular intervals by QML. As you can see, if the gameRoot (that
is GameArea) state variable equals GAMEOVER, this function does nothing and returns
immediately. Then, three important steps are performed:

1. Retrieve the grid position of the snake's head in headPosition.
2. Process where the snake goes using the direction vector in newPosition.
3. Put the item where the snake is going in itemOnNewPosition.

The second part of the update() function is the following snippet:

function update() {

if(itemOnNewPosition == null) {
moveSnake(newPosition.x, newPosition.y);
return;

}

switch(itemOnNewPosition.type) {
case Factory.SNAKE_TYPE:
gameRoot.state = "GAMEOVER";
break;

case Factory.WALL_TYPE:
gameRoot.state = "GAMEOVER";
break;

case Factory.APPLE_TYPE:
itemOnNewPosition.setParent(null);
board.setData(null, newPosition.x, newPosition.y);
snhake.unshift(factory.createGameEntity(
Factory.SNAKE_TYPE,
newPosition.x,
newPosition.y));
spawnApple();
scoret++;
break;

If the snake is going to an empty square (itemOnNewPosition is null), itis alright and we

only move the snake to newPosition.

If the square is not empty, we must apply the correct rule depending on the item type. If the
next square is a snake part or a wall, we update the state to GAMEOVER. On the other hand, if the

next square is an apple, several steps are performed:

1. Detach the apple item from GameArea, setting its parent to null.

Remove the apple from the board, setting the board square to null.
Grow the snake, creating a snake part at the beginning of the snake array.
Spawn a new apple in a random empty square.

Increment the score.

TR WS

Our snake engine is now complete. The last step is to call some engine functions from QML.
Please update GameArea.qml:

import "engine.js" as Engine
Entity {

QQ2.Component.onCompleted: {
console.log("Start game...");
Engine.start();
timer.start()

}
QQ2.Timer {
id: timer
interval: initialTimeInterval
repeat: true
onTriggered: Engine.update()
}
KeyboardInput {
id: input
controller: keyboardController
focus: true
onPressed: Engine.handleKeyEvent(event)

}

You can already play the game. If you eat an apple, the snake grows and you get one point.
When you hit yourself or a wall, the game state switches to GAMEOVER and the game stops.
Finally, if you press the R key, the game restarts. The game looks like the next screenshot on
to null Raspberry Pi:

Score: 12

Varying the HUD with QML states

We will now create a "Game Over" HUD, displayed when you lose the game. Create a new file
GameOverItem.qgml:

Item {
id: root
anchors.fill: parent

onVisibleChanged: {
scorelLabel.text = "Your score: " + score
}

Rectangle {
anchors.fill: parent
color: "black"
opacity: 0.75

}

Label {
id: gameOverlLabel
anchors.centerIn: parent
color: "white"
font.pointSize: 50
text: "Game Over"

}

Label {
id: scorelLabel
width: parent.width
anchors.top: gameOverLabel.bottom
horizontalAlignment: "AlignHCenter"
color: "white"
font.pointSize: 20

}

Label {
width: parent.width
anchors.bottom: parent.bottom
anchors.bottomMargin: 50
horizontalAlignment: "AlignHCenter"
color: "white"
font.pointSize: 30
text:"Press R to restart the game"

}

Let's examine the items of this Game Over screen:

e Ablack rectangle filling the entire screen with an opacity value of 75%. As a
consequence, the game area will still be visible at 25% behind the game over screen.

e A gameOverLabel label displaying the text "Game Over". This is a traditional video game
message but you can edit this label with text such as "Loser!" or "Too bad!".

e A dynamic scoreLabel label that will display the final score.

e A label explaining to the player how he can restart the game.

Please notice that, when the visibility of the root item changes, the scoreLabel text is updated
with the current score variable from main.qgml.

Qt Quick provides an interesting feature related to Ul states. You can define several states for
an item and describe the behaviors for each state. We will now use this feature and our
GameOverItemin a new file called overlayItem.qml:

Item {
id: root
states: [
State {
name: "PLAY"
PropertyChanges { target: root; visible: false }
Iy
State {
name: "GAMEOVER"
PropertyChanges { target: root; visible: true }
PropertyChanges { target: gameOver; visible: true }
}
]

GameOverItem {
id: gameOver
}

}

You can see that the states element is an Item property. By default, the states element
contains an empty string state. Here we are defining two State items named PLAY

and GAMEOVER. We are using the same naming convention as in engine.js. Afterwards we can
bind property values to a state. In our case, when the state is GAMEOVER, we set the visibility

to true for this OverlayItem and its GameOverItem. Otherwise, for the state PLAY, we hide it.

The overlay HUD and its "Game Over" screen are ready to be used. Please update your
mail.qgml with the following snippet:

Item {
id: mainView
property int score: 0
readonly property alias window: mainView

OverlayItem {
id: overlayItem
anchors.fill: mainView

visible: false

Connections {
target: gameArea
onStateChanged: {
overlayItem.state = gameArea.state;
}

}

Our overlayItemelement fits the screen and is not visible by default. Like a C++ Qt Widgets
signal/slot connection, you can perform a QML connection. The target property contains the
item that will send the signal. Then you can use the QML slot syntax:

on<PropertyName>Changed
In our case, the target is gameArea. This item contains the state variable, so we can be notified
when the state variable is updated using onStateChanged. Then, we switch the state

of overlayItem. This assignation will trigger all ProperycChanged defined in OverlayItem
element and display or hide our GameOverItem.

You can now lose the game and enjoy your Game Over overlay:

Game Over

Your score; 10

Press R to restart the game

Profiling your QML application

Qt Creator provides a QML profiler to collect useful data on your application during the
runtime. You can use it on a desktop and also on a remote target such as our Raspberry Pi.
Let's check that your debug build configuration allows QML debugging and profiling. Click
on Projects | Rpi 2 | Build. Then you can click on Details of gmake from Build Steps. You
should also check it for your desktop kit:

Build Steps
gmake: gmake ch06-snake.pro -r -spec devices/linux-rasp-pi2-g++ CONFIG+=debug COMNFIG+=gml_d Details «
gmake build configuration: Debug -

Additional arguments:

Generate separate debug info:

Enable QML debugging and profiling: v Might make your application vulnerable. Only use in a safe environment.

By default, data is only sent from target to host when you stop profiling. You can flush data
periodically: Tools | Options | Analyser | QML Profiler.

Keep in mind that flushing data while profiling frees memory on the target device but takes
time. Thus, it can affect your profiling result and analysis.

While we are using Qt Creator kits, we can start the QML profiler in the same way for
desktops or remote devices. Switch to a kit and click on Analyze | QML Profiler to start the
QML profiling. If you are profiling an application running on your desktop, Qt Creator starts
your software with an argument such as this:

-gqmljsdebugger=file:/tmp/QtCreator .0U7985

If you're profiling an application on a remote device (such as a Raspberry Pi), Qt Creator
uses a TCP socket to retrieve data, adding an argument such as this:
-gqmljsdebugger=port:10000

For both targets, the QML profiler will afterwards try to connect to your application. Another

way to start the QML profiler on a remote device is to start the application yourself with the -
gmljsdebugger argument, for example:

./ch06-snake -gmljsdebugger=port:3768

Then, you can click on Analyze | QML Profiler (External). Select your remote kit (such as

Rpi 2), set the port to 3768, and click on OK.

Great, the QML profiler is started, a new toolbar appears. You can play the game for a few
seconds and click on the Stop button from the QML Profiler toolbar. Then the QML profiler

processes data and displays something like this:

QML Profiler Sl O 83 ° T. Elapsed: 1065 Views

L L 1.07s 2145 1225 4205 5,36
Scene Graph » 3
Memory Usage »
Input Events »
Animations 4
» L |]

2088435 EED (43 .5 =6

ﬂﬁ Lo reeer et II:II IIIlm:m'“.‘af-‘iij:aia.i:‘iyl.“ | T reeer reeeer e

Timeline | Statistics | Flamegraph

Let's begin analyzing the top buttons from left to right:

1. Start QML profiler.

Stop the application and the QML profiler.

Enable/disable profiling. You can also select an event to capture.
Discard data to clean your profiling session.

Search timeline event notes.

Hide or show event categories.

Elapsed indicates the session duration.

Views hides or shows the Timeline, Statistics, and Flamegraph tabs.

PN RhWDN

To learn to use the QML profiler, we will take a real case. Restarting the game is a little slow
on the Raspberry Pi. Let's find with the QML profiler what requires several seconds to restart

the game!

Please follow this operational mode to gather data from the QML profiler:

1. Select the Raspberry Pi kit.

Start the QML profiler.

Wait for the snake to hit a wall.

Press the R key to restart the game.

Wait for the game to restart and the snake to move again.
Stop the QML profiler.

Uk W

Let's begin our investigation using the timeline tab. This view displays a chronological view
of events, grouped by event type. The JavaScript row dissects your code and displays useful
information. You can click on an item to get some details. Identify in the timeline when you
restart the game. The JavaScript row can be read as a call stack, from top to bottom:

QML Profiler
« B ® 5 iy

332 4205 5.36s 6.4ds 135ls 4

Details: createWalls
Duration: 4.025s
JavaScript » Location: engine.js:48

-2088435ux 2.2 4.3u X113

G BENINTROTRG

Timeline | Statistics | Flamegraph

In our case, we restarted the game around 3.5 seconds after the application started. Here is the
stack with durations provided by the QML profiler. Here is the stack with durations provided
by the QML profiler. Let's track all functions called when we restart the game pressing the R

key:

e The onPressed() function from GameArea.qgml
The handleKetEvent() function from engine.js
The start() function from engine.js at 4.2 seconds
o initEngine() at 80 ms
o createSnake() at 120 ms
o createwalls() at4.025 seconds!

Here we are, createwalls() takes ~4 seconds on the Raspberry Pi when we restart the game.

Let's switch to the Statistics view:

QML Profiler

Q& P T

Elapsed: 10.6s

Views

Location Type Calls Time in Percent « Total Time Self Time in Percent Self Time =
<program: 1 100.00 % 4%12s 0.00 % 0.001 us
engine.js: 14 Javascript 2 70.61 % 44515 0.01 % 315.937 us
factory.js:16 JavaScript 3

GameArea.gml62 Signal 1 86.91 % 42695 0.01 % 325676 us
GameArea.qml:62 Javascript 1 86.90 % 4.2685 0.00 % 35573 us
engine.js:125 Javascript 1 86.90 % 4.268s 0.00 5% 109.8%25 us
engine.js:48 Javascript 2 84.61 % 41565 0.22 % 10.581 ms
main.gml:5 Create 2 677 % 332523 ms 0.01% 54%.685 us
main.gml:37 Create 2 &6.06 % 297.657 ms 4.77 % 234112 ms
GameArea.gml:45 Signal 1 3.73% 183.407 ms 0.00 % 23489 us
GameArea.qml:45 Javascript 1 3.73% 183.384 ms 0.02 % 235.235 us
engine js:38 Javascript 2 327 % 160.579 ms 0.02 % 779110 us

o e i Saiaty i B ey e A R, S
Caller Caller Description Total Time « Calls Callee Callee Description [Total Time & Calls (=

angine.js:48 oaeateVWalls 4.1455

Wall.gml:4

GameEntity.gml 128238 ms

engine.js:38 createSnake 152.800 ms 10 factory.js:1 Soentry 86.241 ms 320

engine.js:59 spawnApple 51.750 ms 2 SnakePart.gml:5 GameEntity.gml 36.024 ms 10
Wall.gml:15 components: [transf... 22936 ms 308
FhongMaterial.gmb57 fragmentShaderCo.. 19.038 ms 10
GameEntity.gml:5 property vector2d g.. 17.322 ms 320
Wall.gml:7 type: Factory. WALL... 10.123 ms 308
FhongMaterial.gml:51 fragmentShaderCo.. 8.922 ms 10
Apple.gml:5 GameEntity.gmil &6.159 ms 2
board.js:1% Source code not ava... 5981 ms 320 |3

1 k|4 k

Timeline ! Statistics | Flamegraph

The Statistics view displays numbers concerning the call count of an event. An event can be a
QML binding, creation, signal triggered, or a JavaScript function. The bottom part shows
QML callers and callees.

A caller is the source of a change in a binding. For example, the JS function createwalls() is
a caller.

A callee is the affected item that a binding triggers. For example, the QML item wall.qgml is a
callee.

Once again, createwalls() requesting many factory item creation seems responsible for the
slow restart of the game on Raspberry Pi.

Take a look at the last view of the QML profiler, the Flamegraph:

QML Profiler - @ &1 P T. Elapsed: 1065

JavaScript

Details: createWwalls
Type: JavaScript
Calls: 1

Total Time: 4.025377 s
Mean Time: 4.025377 s
In Percent: 77%
Location: engine.js:48

Timeline Statistics

Flamegraph

The Flamegraph view is a compact summary of your QML and JavaScript code while
running the game. You can see the call count and the amount of time relative to the total
duration. Like the Timeline view, you can see the call stack but from bottom to top!

Again, the profiler indicates createwalls() is a heavy function. On a profiling session of 10
seconds with one game restart, 77% of the time is spent in engine.createwalls().

You will now be able to profile a QML application. You can try to edit the code to speed up the
restart. Here are some hints:

e Create the walls only once at application startup; do not delete and recreate them on each

restart.
e Implement a common design pattern in video games: an object pool of preloaded items.
Request a wall when needed, and return the wall to the pool when you do not use it.

Summary

In this chapter, we discovered how to use the Qt3D module. You also learned how to
configure Qt Creator to create a new kit for an embedded Linux device. Your Raspberry Pi
can now run your Qt applications. We created a snake game using QML views and an engine
in JavaScript. We also covered the Factory design pattern to easily create new game items
from the engine. Finally, you are now able to investigate the bad behavior of QML software
using the powerful QML profiler.

Even if Qtis a powerful framework, sometimes you need to use a third-party library. In the
next chapter, we will see how to integrate the OpenCV library into your Qt application.

Chapter 7. Third-Party Libraries Without
a Headache

In previous chapters, we have used our own libraries or the ones provided by Qt. In this
chapter, we will learn how to integrate the third-party library OpenCV with a Qt project. This
library will give you an impressive image processing toolbox. For each platform, you will
learn to use a different specific compiler link configuration.

Qt Designer is a powerful WYSIWYG editor. This is why this chapter will also teach you to
build a Qt Designer plugin that can be dragged and dropped from the Widget Box to
the Form Editor, and then configured directly from Qt Creator.

In the example project, the user can load a picture, select a filter from thumbnail previews,
and save the result. This application will rely on OpenCV functions for image processing.

This chapter will cover the following topics:

Prepare a cross-platform project to host a third-party library
Link with a third party library

Build a custom Qwidget class using Qt Designer plugins
How the OpenCV API can work with Qt

Create a Qt application that relies on a custom Qwidget class

Creating your Qt Designer plugin

In Chapter 4, Conquering the Desktop UI, we created a custom Qt widget in Qt Designer using
the promoting technique. It is now time to learn how to create a custom Qt widget by building
a plugin for Qt Designer. Your widget will be available from the Design mode in the Widget
Box alongside other regular Qt widgets. For this project example, we will create

a Filterwidget class that processes an input image to apply a filter. The widget will also
display the filter name and a dynamic thumbnail of the filtered picture.

This project is composed of two sub-projects:

e filter-plugin-designer: This is a Qt Designer plugin containing Filterwidget class
and the image processing code. This plugin is a dynamic library that will be used by the
Qt Creator to offer our new Filterwidget in the Form Editor.

e image-filter: This is a Qt Widget application using multiple Filterwidget. The user
can open an image from their hard disk, select a filter (grayscale, blur, and so on), and
save the filtered image.

Our filter-plugin-designer will use the third-party library OpenCV (Open Source
Computer Vision). It is a powerful, cross-platform open source library to manipulate images.
Here is an overview schema:

Ct Designer image-filter

filter-plugin-designer

CpenCV

You can see a plugin as a kind of module, which can be easily added to an existing software. A
plugin must respect a specific interface to be automatically called by the application. In our
case, the Qt Designer is the application that loads Qt plugins. So creating a plugin allows us to

enhance the application without the need to modify the Qt Designer source code and
recompile it. A plugin is a generally dynamic library (.d11/.so), so it will be loaded at
runtime by the application.

Now that you have a clear mind about the Qt Designer plugins, let's build one! First, create a
Subdirs project called che7-image-filter. Then, you can add a subproject, filter-plugin-
designer. You can use the Empty qmake Project template because we start this project from
scratch. Here is the filter-plugin-designer.pro file:

QT += widgets uiplugin

CONFIG += plugin

CONFIG += c++14

TEMPLATE = 1ib
DEFINES += FILTERPLUGINDESIGNER_LIBRARY

TARGET = $$qtLibraryTarget($$TARGET)
INSTALLS += target

Please note the uiplugin and plugin keywords for QT and CONFIG. They are required to
create a Qt Designer plugin. We set the TEMPLATE keyword to 1ib because we are creating a
dynamic library. The define, FILTERPLUGINDESIGNER_LIBRARY, will be used by the
import/export mechanism of the library. We already covered this topic in Chapter 3, Dividing
Your Project and Ruling Your Code. By default, our TARGET is filter-plugin-designer;

the $$qtLibraryTarget() function will update it according to your platform. For example, the
suffix "d" (standing for debug) will be appended on Windows. Finally, we append target

to INSTALLS. Right now, this line does nothing, but we will describe a destination path for each
platform soon; this way, executing the make install command will copy our target library
file (.d11/.so) into the correct folder. To automatically perform this task on each
compilation, you can add a new build step.

The deploy path is configured, but it will not be done automatically. Open the Projects tab
and do the following:

1. Open the Build Settings | Build Steps.
2. Click on Add Build Step | Make.
3. In the Make arguments field, type install.

You should get something like this:

Build Steps

qmake: gmake ch07 -image-filter.pro -r -spec linux-g++ CONFIG+=debug CONFIG+=gml_debug Details *

Make: make -j 10 in /home/guillaume/projects/qgtbook/build-ch07 -image-filter-Desktop_Qt_5_7_0_G Details =

Make: make install in /home/qguillaume/projects/qtbook/build-ch07 -image-filter-Desktop_Qt_5_7_0_t Details =
Cwerride Jusr/bin/make: Browse...
Make arguments: install

Add Build Step -

Each time you build the project, the make install command will be called and it will deploy
the library in Qt Creator.

Configuring the project for Windows

Before preparing this project on Windows, let's talk about the available choices when you
develop a Qt application on a Windows host. The official Qt website provides multiple binary
packages. We are mainly interested in the following:

e Qt for Windows 32-bit (MinGW)
e Qt for Windows 32-bit (VS 2013)

You may already be using one of these versions. The first one comes with a MinGW GCC
compiler and the Qt framework. The second only provides the Qt framework and relies on
the Microsoft Visual C++ compiler that will be installed with Visual Studio.

Both versions are fine when you want to create a common Qt application for Windows.
However, for this chapter, we want to link our filter-plugin-designer project with
OpenCV libraries. Qt Designer must also be able to dynamically load filter-plugin-
designer, so we must use a consistent compiler version at all stages.

Please note that Qt Creator on Windows is always based on MSVC, even in the MinGW binary
package! So if you create a Qt Designer plugin using a MinGW compiler, your Qt Creator
will not be able to load it. OpenCV for Windows provides only MSVC libraries, compile for
MSVC11 (which is VS 2012), and MSVC12 (VS 2013).

Here is a summary of the different solutions for building our project example in Windows:

MinGW GCC MSVC
Binary not provided Binary for msvcll and
R Recompilation required msvcl2 provided
. Binary not provided Based on msvcl2
Qiesyng Recompilation required 32-hit

Keep in mind that for open-source software such as Qt Creator and OpenCV you can always
try to compile them from a source with a different compiler. So, if you absolutely want to use
a MinGW compiler, you must recompile OpenCV and Qt Creator from sources. Otherwise,
we suggest that you use Qt for Windows 32-bit (VS 2013) as explained shortly. Here are the
steps to prepare your development environment:

1. Download and install Visual Studio Community Edition.
2. Download and install Qt for Windows 32-bit (VS 2013).

3. Download and extract OpenCV for Windows (for example: C:\1ib\opencv).

4. Create a new OPENCV_HOME: C:\1lib\opencv\build\x86\vc12 environment variable.

5. Append to your system Path: C:\1ib\opencv\build\x86\vc12\bin environment
variable.

The oPENCV_HOME directory will be used in our .pro file. We also add an OpenCV libraries
folder to the Path directory to easily resolve the dependencies at runtime.

You can now add the following snippet to the filter-plugin-designer.pro file:

windows {
target.path = $$(QTDIR)/../../Tools/QtCreator/bin/plugins/designer

debug:target_lib.files = $$0UT_PWD/debug/$${TARGET}.1lib

release:target_lib.files = $$O0UT_PWD/release/$${TARGET}.1lib

target_lib.path = $$(QTDIR)/../../Tools/QtCreator/bin/plugins/designer
INSTALLS += target_lib

INCLUDEPATH += $$(OPENCV_HOME)/../../include
LIBS += -L$$(OPENCV_HOME)/1ib
-lopencv_core2413
-lopencv_imgproc2413

}

The target path is set to the Qt Creator plugin folder. We also create a target_1lib library to
copy the .1ib file generated by MSVC when we make a dynamic library (.d11). We add the
OpenCV headers folder to the INCLUDEPATH to easily include them in our code. Finally, we
update LIBS variable to link our plugin with the OpenCV modules (core and imgproc) from
the OpenCV 1ib folder.

Please note that the standalone Qt Designer application and the Qt Creator are different
software. Both programs use a different plugin path. In our case, we only used the form editor
from the Qt Creator, so we are targeting the Qt Creator plugin path.

Just as we appended target and target_1lib to INSTALLS, both .d11 and .1ib files will be
copied in the Qt Creator plugin path on a make install command. Qt Creator only requires
the .d11 file to load the plugin at runtime. The .1ib file is only used to resolve the links
with filter-plugin-designer when building our image-filter application. For simplicity,
we are using the same directory.

Configuring the project for Linux

OpenCV binaries are certainly available in official software repositories. Depending on your
distribution and your package manager, you can install it with commands such as the
following:

apt-get install libopencv
yum install opencv

When OpenCV is installed on your Linux, you can add this snippet to the filter-plugin-
designer.pro file:

linux {
target.path = $$(QTDIR)/../../Tools/QtCreator/1lib/Qt/plugins/designer/

CONFIG += link_pkgconfig
PKGCONFIG += opencv
¥

This time we do not use the LIBS variable but PKGCONFIG, which relies on pkg-config.Itis a
helper tool that will insert the correct options into the compile command line. In our case, we
will request pkg-config to link our project with OpenCV.

Note

You can list all the libs managed by pkg-config with the pkg-config --list-all command.

Configuring the project for Mac

The first step in making the project work on Mac OS is to install OpenCV. Fortunately, this is
very easy using the brew command. If you develop on Mac OS and do not use it already, you
should download it right now. In a nutshell, brew is an alternate package manager that gives
you access to many packages (for developers and non-developers) that are not available on
the Mac App Store.

Note

You can download and install brew from http://brew.sh/.

In a terminal, simply type the following command:

brew install opencv

This will download, compile, and install OpenCV on your machine. At the time of writing, the
latest OpenCV version available on brew was version 2.4.13. Once this is done, open filter -
plugin-designer.pro and add the following block:

macx {

target.path = "$$(QTDIR)/../../QtCreator .app/Contents/PlugIns/designer/"

target_lib.files = $$0UT_PWD/1ib$${TARGET}.dylib

target_lib.path = "$$(QTDIR)/../../QtCreator .app/Contents/PlugIns/designer/"
INSTALLS += target_lib

INCLUDEPATH += /usr/local/Cellar/opencv/2.4.13/include/

LIBS += -L/usr/local/lib \
-lopencv_core \
-lopencv_imgproc

}

We add OpenCV headers and link the path with INCLUDEPATH and LIBS variables. The target
definition and INSTALLS are used to automatically deploy the output shared object to the Qt
Creator application plugins directory.

The last thing we have to do is to add an environment variable to let the Qt Creator know
where it will find the library that will link it to the final application. In the Projects tab, go
through the following steps:

1. Open the Details window in Build Environment.

2. Click on the Add Button.

3. Type DYLD_LIBRARY_PATH in the <VARIABLE> field.

4. Type the path of the build directory in <VALUE> (you can copy and paste it from the
section General | Build directory).

http://brew.sh/

Implementing your OpenCYV filters

Now that your development environment is ready, we can begin the fun part! We will
implement three filters using OpenCV:

e FilteroOriginal: This filter does nothing and returns the same picture (lazy!)
e FilterGrayscale: This filter converts a picture from color to grayscale
e FilterBlur: This filter smoothes the picture

The parent class of all these filters is Filter. Here is this abstract class:

//Filter.h
class Filter

{

public:

Filter();

virtual ~Filter();

virtualQImage process(constQImage& image) = 0O;

+;

//Filter.cpp
Filter::Filter () {}
Filter::~Filter() {3}

As you can see, process() is a pure abstract method. All filters will implement a specific
behavior with this function. Let's begin with the simple Filteroriginal class. Here
is FilterOriginal.h:

class FilterOriginal : public Filter

{

public:

FilterOriginal();
~FilterOriginal();

QImageprocess(constQImage& image) override;

+;

This class inherits Filter and we override the process() function. The implementation is
also really simple. Fill Filteroriginal.cpp with the following:

FilterOriginal::FilterOriginal()
Filter()

{

}

FilterOriginal::~FilterOriginal()

{
}

QImageFilterOriginal::process(constQImage& image)

{

return image;

}

No modification is performed; we return the same picture. Now that the filter structure is
clear, we can create FilterGrayscale. The .h/.cpp files are close to FilterOriginalFilter,
so let's jump to the process() function of FilterGrayscale.cpp:

QImageFilterGrayscale: :process(constQImage& image)

{

// QImage => cv::mat
cv::Mattmp(image.height(),
image.width(),

Cv_8uc4,
(uchar*)image.bits(),
image.bytesPerLine());

cv::MatresultMat;
cv::cvtColor(tmp, resultMat, CV_BGR2GRAY);

// cv::mat =>QImage
QImageresultImage((constuchar *) resultMat.data,
resultMat.cols,
resultMat.rows,
resultMat.step,
QImage: :Format_Grayscale8);
returnresultImage.copy();

}

In the Qt framework, we use the QImage class to manipulate pictures. In the OpenCV world, we
use the Mat class, so the first step is to create a correct Mat object from the QImage source.
OpenCV and Qt both handle many image formats. An image format describes the data bytes
organization with information such as the following:

e Channel count: A grayscale picture only needs one channel (white intensity), while a
color picture requires three channels (red, green, and blue). You will even need four
channels to handle the opacity (alpha) pixel information.

e Bit depth: The number of bits used to store a pixel color.

e channel order: The most common orders are RGB and BGR. Alpha can be placed
before or after the color information.

For example, the OpenCV image format, cv_8uc4, means four channels of unsigned 8-bit,
which is the perfect fit for an alpha color picture. In our case, we are using a compatible Qt
and OpenCV image format to convert our QImage in Mat. Here is a little summary:

ot OpenCV

Order Qlmage Order cv Mat

BGRX Format RGE32
BGRA | Format ARGE32 | BEGRA CW_BUCH
RGBA | Format RGEABSES
RGE Format RGES8E8 BGR CW _BUC3
Gray | Format Grayscaleg | Gray v BUCL

Please note that some QImage class formats also depend on your platform endianness. The
preceding table is for a little endian system. For OpenCV, the order is always the same: BGRA.
It is not required in our project example, but you can swap blue and red channels as follows:

// with OpencCV
cv::cvtColor(mat, mat, CV_BGR2RGB);

// with Qt
QImage swapped = image.rgbSwapped();

OpenCV Mat and Qt QImage classes perform shallow construction/copy by default. This means
that only metadata is really copied; the pixel data is shared. To create a deep copy of a picture,
you must call the copy () function:

// with OpencCV
mat.clone();

// with Qt
image.copy();

We created a Mat class called tmp from the QImage class. Note that tmp is not a deep copy

of image; they share the same data pointer. Then, we can call the OpenCV function to convert
the picture from color to grayscale using cv::cvtColor (). Finally, we create a QImage class
from the grayscale resultMat element. In that case too, resultMat and resultImage share the
same data pointer. Once we're done, we return a deep copy of resultImage.

It is now time to implement the last filter. Here is the process() function of FilterBlur.cpp:

QImageFilterBlur::process(constQImage& image)

{

// QImage => cv::mat
cv::Mattmp(image.height(),
image.width(),

Cv_8uc4,
(uchar*)image.bits(),
image.bytesPerLine());

int blur = 17;

cv::MatresultMat;
cv::GaussianBlur (tmp,
resultMat,
cv::Size(blur, blur),
0.0,
0.0);

// cv::mat =>QImage
QImageresultImage((constuchar *) resultMat.data,
resultMat.cols,
resultMat.rows,
resultMat.step,
QImage::Format_RGB32);
returnresultImage.copy();

}

The conversion from QImage to Mat is the same. The processing differs because we use

the cv::GaussianBlur () OpenCV function to smooth the picture. The blur is the kernel size
used by the Gaussian blur. You can increase this value to get a softer picture, but only use an
odd and positive number. Finally, we convert the Mat to QImage and return a deep copy to the
caller.

Designing the UI with FilterWidget

Fine. Our filter classes are implemented, and we can now create our custom widget. This
widget will take in input, a source, and a thumbnail picture. Then the thumbnail is immediately
processed to display a preview of the filter. If the user clicks on the widget, it will process the
source picture and trigger a signal with the filtered picture. Keep in mind that this widget will
later be dragged and dropped in the Form Editor of Qt Creator. That's why we will provide
properties with getters and setters to select a filter from Qt Creator. Please create a new

widget called Filterwidget using the Qt Designer Form Class template.

The Filterwidget.ui is really simple:

Ohject Inspector
Ohbject
=

* = frame

thumbnailLabel & QLabel

titleLabel

Class

=1 QFrame

> Qlabel

The titleLabel is a QLabel on top of the Qwidget. Below, thumbnailLabel will display the
filtered picture thumbnail. Let's switch to Filterwidget.h:

class FILTERPLUGINDESIGNERSHARED_EXPORT FilterWidget

: public Qwidget

Q_PROPERTY(QString title READ title WRITE setTitle)

Q PROPERTY(FilterTypefilterType READ filterType WRITE setFilterType)

{
Q_OBJECT
Q_ENUMS(FilterType)
public:

enumFilterType { Original, Blur,

Grayscale };

explicitFilterwWidget(Qwidget *parent = 0);

~Filterwidget();

void process();
voidsetSourcePicture(constQImage&sourcePicture);
voidupdateThumbnail (constQImage&sourceThumbnail);

QStringtitle() const;
FilterTypefilterType() const;

public slots:
voidsetTitle(constQString& tile);
voidsetFilterType(FilterTypefilterType);

signals:
voidpictureProcessed(constQImage& picture);

protected:
voidmousePressEvent(QMouseEvent*) override;

private:

Ui::FilterwWidget *ui;
std::unique_ptr<Filter>mFilter;
FilterTypemFilterType;

QImagembDefaultSourcePicture;
QImagemSourcePicture;
QImagemSourceThumbnail;

QImagemFilteredPicture;
QImagemFilteredThumbnail;

+;

The top part defines all the available filter types with the enumFilterType. We also use the
Qtproperty system to expose the widget title and the current filter type to the Property Editor
of Qt Creator. The syntax is like this:

Q_PROPERTY(<type><name> READ <getter> WRITE <setter>)

Please note that exposing an enumeration requires it to be registered using the Q_ENUM()
macro, so the Property Editor will display a combo box that allows you to choose the filter
type from Qt Creator.

The middle part lists all functions, slots, and signals. The most notable is the process()
function that will use the current filter to modify the source picture. The pictureProcessed ()
signal will notify the application with the filtered picture.

The bottom part lists the picture and thumbnail QImage variables used in this class. In both
cases, we handle both source and filtered pictures. The default source picture is an embedded
picture in the plugin. This allows you to display a default preview when no thumbnail has
been provided. The mFilter variable is a smart pointer to the current Filter class.

Let's switch to the implementation with Filterwidget.cpp:

FilterwWidget::FilterwWidget(Qwidget *parent)
Qwidget(parent),

ui(new Ui::FilterWidget),
mFilterType(Original),
mDefaultSourcePicture(":/1lenna.jpg"),
mSourcePicture(),

mSourceThumbnail (mDefaultSourcePicture.scaled(QSize(256, 256),
Qt::KeepAspectRatio,
Qt::SmoothTransformation)),
mFilteredPicture(),

mFilteredThumbnail ()

{

ui->setupUi(this);
setFilterType(Original);
3

FilterwWidget::~Filterwidget()
{

deleteui;

}

Here are the constructor and the destructor. Please note that the default source picture loads an
embedded picture of the gorgeous Lenna often used in image processing literature. The
picture is in the resource file, filter-plugin-designer.qrc. The mSourceThumbnail function
is initialized with a scaled picture of Lenna. The constructor calls

the setFilterType()function to initialize an original filter by default. Here is the

core process() function:

voidFilterwidget: :process()

{

mFilteredPicture = mFilter->process(mSourcePicture);
emitpictureProcessed(mFilteredPicture);

}

The process() function is powerful, but really simple. We call process() of the current filter
to update our filtered picture from the current source picture. Then we trigger
the pictureProcessed () signal with the filtered picture. We can now add our QImage setters:

voidFilterwidget::setSourcePicture(constQImage&sourcePicture)

{

mSourcePicture = sourcePicture;

}

voidFilterwWidget: :updateThumbnail (constQImage&sourceThumbnail)
{

mSourceThumbnail = sourceThumbnail;

mFilteredThumbnail = mFilter->process(mSourceThumbnail);
QPixmappixmap = QPixmap::fromImage(mFilteredThumbnail);
ui->thumbnaillLabel->setPixmap(pixmap);

}

The setSourcePicture() function is a simple setter called by the application with a new
source picture. The updateThumbnail() method will filter the new source thumbnail and
display it. Let's add the setters used by Q_PROPERTY:

voidFilterwWidget::setTitle(constQString& tile)

{
ui->titlelLabel->setText(tile);

}

voidFilterwWidget::setFilterType(FilterwWidget::FilterTypefilterType)

{
if (filterType == mFilterType&&mFilter) {

return;

}
mFilterType = filterType;

switch (filterType) {

case Original:

mFilter = make_unique<FilterOriginal>();
break;

case Blur:
mFilter = make_unique<FilterBlur>();
break;

case Grayscale:
mFilter = make_unique<FilterGrayscale>();
break;

default:
break;

}

updateThumbnail (mSourceThumbnail);

}

The setTitle()function is a simple setter used to customize the widget title. Let's talk about
the setFilterType() function. As you can see, this function does not just update the current
filter type, mFilterType. Depending on the type, the corresponding filter will be created. Do
you remember the smart pointer from Chapter 3, Dividing Your Project and Ruling Your
Code? Here we are using a unique_ptr pointer for the mFilter variable, so we can

use make_unique instead of a new raw. The Filterwidget class takes the ownership of

the Filter class, and we do not need to worry about the memory management. Upon

the make_unique instruction, the old owned pointer (if there is any) will be automatically
deleted.

Finally, we call the updateThumbnail() function to display a filtered thumbnail

corresponding to the selected filter type. Here are the getters and the mouse event handler:

QStringFilterwidget::title() const
{

returnui->titlelLabel->text();

}

FilterwWidget::FilterTypeFilterwWidget::filterType() const
{

returnmrFilterType;

}

voidFilterwWidget: :mousePressEvent(QMouseEvent*)

{

process();

}

The title() and filterType() functions are getters used by the Qt Property System. We
override the mousePressevent() function to call our process() function each time the user
clicks on the widget.

Exposing your plugin to Qt Designer

The Filterwidget class is completed and ready to be used. We now have to
register Filterwidget with the Qt Designer plugin system. This glue code is made using a
child class of QDesignerCustomwidgetInterface.

Create a new C++ class named FilterPluginDesigner and update FilterPluginDesigner.h
like so:

#include <QtUiPlugin/QDesignerCustomwWidgetInterface>

class FilterPluginDesigner : public QObject, public
QDesignerCustomwidgetInterface

{
Q_OBJECT

Q_PLUGIN_METADATA(IID
"org.masteringqt.imagefilter.FilterwWidgetPluginInterface")
Q_INTERFACES(QDesignerCustomwidgetInterface)
public:
FilterPluginDesigner (QObject* parent = 0);
3

The FilterPlugin class inherits from two classes:

e The Qobject class, to rely on the Qt parenting system
e The QDesignerCustomwidgetInterface class to properly expose the Filterwidget
information to the plugin system

The QDesignercCustomWidgetInterface class brings two new macros:

e The Q PLUGIN_METADATA() macro annotates the class to indicate a unique name for our
filter to the meta-object system

e The Q_INTERFACES() macro tells the meta-object system which interface the current class
has implemented

Qt Designer is now able to detect our plugin. We now have to provide information about the
plugin itself. Update FilterPluginDesigner .h:

class FilterPluginDesigner : public QObject, public
QDesignerCustomwidgetInterface

{
FilterPluginDesigner (QObject* parent = 0Q);

QStringname() const override;
QStringgroup() const override;
QStringtoolTip() const override;
QStringwhatsThis() const override;

QStringincludeFile() const override;

QIconicon() const override;

boolisContainer () const override;

Qwidget* createwWidget(Qwidget* parent) override;
boolisInitialized() const override;

void initialize(QDesignerFormeEditorInterface* core) override;

private:
boolmInitialized;

+;

This is much less overwhelming than it looks. The body of each one of these functions
usually takes a single line. Here is the implementation of the most straightforward functions:

QStringFilterPluginDesigner::name() const

{

return "Filterwidget";

}

QStringFilterPluginDesigner::group() const

{

return "Mastering Qt5";

}

QStringFilterPluginDesigner::toolTip() const
{

return "A filtered picture";

}

QStringFilterPluginDesigner::whatsThis() const
{

return "The filter widget applies an image effect";
}

QIconFilterPluginDesigner::icon() const

{

returnQIcon(":/icon.jpg");

}

boolFilterPluginDesigner::isContainer () const
{

return false;

}

As you can see, there isn't much to say about these functions. Most of them will simply return
a QString value that will be displayed on the appropriate spot in the Qt Designer UL We will
focus only on the most interesting ones. Let's start with includeFile():

QStringFilterPluginDesigner::includeFile() const

{
return "Filterwidget.h";

}

This function will be called by uic (User Interface Compiler) to generate the header
corresponding to a .ui file. Continuing with createwidget():

Qwidget* FilterPluginDesigner::createWidget(Qwidget* parent)
{

return new FilterwWidget(parent);

}

This function makes the bridge between Qt Designer and Filterwidget. When you add

the Filterwidget class in a .ui file, Qt Designer will call the createwidget() function to
have an instance of the Filterwidget class and display its content. It also provides the parent
element to which Filterwidget will be attached.

Let's finish with initialize():

voidFilterPluginDesigner::initialize(QDesignerFormeditorInterface*)

{
if (mInitialized)
return;

mInitialized = true;

}

Nothing much is done in this function. However, the QDesignerFormEditorInterface*
parameter is worth some explanation. This pointer, provided by Qt Designer, gives access to a
few of Qt Designer's components via functions:

e actionEditor (): This function is the action editor (bottom panel of the designer)

e formwindowManager (): This function is the interface that enables you to create a new
form window

e objectInspector (): This function is the hierarchical representation of your layout (top
right panel of the designer)

e propertyEditor(): This function is the list of all the editable properties of the currently
selected widget (bottom right panel of the designer)

e topLevel(): This function is the top-level widget of the designer

We covered each of these panels in Chapter 1, Get Your Qt Feet Wet. If your widget plugin
needs to intervene in any of these areas, this function is the entry point to customize the
behavior of Qt Designer.

Using your Qt Designer plugin

Our custom plugin is now finished. Because we added a custom Build command to
automatically deploy the filter-widget library, it should be visible in Qt Designer. The deploy
path we specified is inside the Qt Creator directory. Qt Creator integrates Qt Designer via a
plugin that displays the Ul inside Qt Creator.

When Qt Creator starts, it will try to load every library available in its specific paths. This
means that you have to restart Qt Creator each time you modify the plugin (if you want to see
the result of your modifications in the designer).

To see the plugin in action, we now have to create the application project of the chapter.
Create a Qt Widgets Application sub-project in the che7-image-filter project
named image-filter. In the wizard, let it generate the form, Mainwindow.ui.

To properly use the plugin, just link the filter-plugin-designer library in image-
filter.pro like so:

QT += core gui
greaterThan(QT_MAJOR_VERSION, 4): QT += widgets

TARGET = image-filter
TEMPLATE = app

INCLUDEPATH += ../filter-plugin-designer

win32 {
LIBS += -L$$(QTDIR)/../../Tools/QtCreator/bin/plugins/designer -1filter-
plugin-designer

}

macx {

LIBS += -L$$(QTDIR)/../../"QtCreator.app"/Contents/PlugIns/designer/ -
1filter-plugin-designer
}

linux {
LIBS += -L$$(QTDIR)/../../Tools/QtCreator/1ib/Qt/plugins/designer/ -1filter-
plugin-designer

}

SOURCES += main.cpp\
MainwWindow.cpp

HEADERS += MainWindow.h

FORMS += MainWindow.uil

To have access to the headers of filter-plugin-designer, we simply add it to

the INCLUDEPATH directory. Finally, the linker is instructed to link to the library we deployed
in Qt Creator. This ensures that the same library is used by Qt Designer and by our
application.

Open the Mainwindow.ui file and scroll to the bottom of the Widget box. Lo and behold, you
should see this:

- Display Widgets
{b Label

AT Text Browser

ﬁ- Graphics View

12| Calendar Widget
SYSIE [42) LD Number

|:_| R] Progress Bar
= Horizontal Line

Il vertical Line
} |:| OpenGL Widget
<] QQuickwidget

- Mastering Qt5
FilterWidget

The Filterwidget plugin appears under the Mastering Qt5 section. It even displays the
famous Lenna as a preview icon. If you do not see the Filterwidget plugin, then restart Qt
Creator and make sure that the plugin is properly loaded. To check this (in the Design tab), go
to Tools | Form Editor | About Qt Designer Plugins. This is what it should display:

Plugin Information

Qt Designer found the following plugins

- Loaded Plugins
b libfilter-plugin-designer.so
FilterWidget
libgquickwidget.so
QQuickWidget

If the Filterwidget plugin does not appear in this list, you should check the Qt Creator
plugin directory content (the path is stated in image-filter.pro).

Building the image-filter application

We can proceed to build the UI of the application. The idea is to open a picture from the
filesystem and apply to it the various filters we developed in the filter-designer-plugin
project. If you want to keep the result, you can save the resulting image.

We will start by designing the UL Modify Mainwindow.ui to look like this:

| | ., [] u
File Type Here

Name - |Used Text _|Shortcut _|Checkable |ToolTip
actionOpenPicture v Open Picture... Open Picture
actionExit v Exit i Exit
actionSavels v Save as... [Save as

Action Editor Signals & Slots Editor

Here is the Object Inspector content to help you build this layout:

Object Class
¥ = centralWidget [] Qwidget
~ [} filtersLayout I}l QHBoxLayout
filterwidgetBlur [Filterwidget
filterwidgetGrayscale [gf Filterwidget
filterwidgetOriginal |igf Filterwidget
¥ = pictureFrame =] gFrame
pictureLabel © QLabel
* menuBar OMenuBar
* menuFile QMenu
actionOpenPicture Qaction
actionSavehs Qaction
actionExit Qaction

There are three elements of this UI:

e The menuFile element, which contains three possible
actions: actionOpenPicture, actionExit, and actionSaveAs. You can see the details of
these actions in the Action Editor window.

e The pictureLabel element, which will display the loaded picture in the empty top part.

e The filtersLayout element, which contains the three instances of our Filterwidget
class in the bottom part.

As you add a Filterwidget class in filtersLayout, you can see that you can customize
the title and the filterType in the Property Editor window. The preview will be
automatically updated with the selected filter applied to our default picture. A dynamic
preview like this is simply awesome, and you can foresee that your custom Qt Designer
widgets can become quite powerful.

Let's implement the logic of our application. Update Mainwindow.h like so:

#include <QMainWindow>
#include <QImage>
#include <QVector>

namespaceUi {
classMainWindow;

}

classFilterwidget;
classMainWindow : public QMainWindow
{

Q_OBJECT

public:

explicitMainWindow(Qwidget *parent = 0);

~MainwWindow();

voidloadPicture();

private slots:
voiddisplayPicture(constQImage& picture);

private:
voidinitFilters();
voidupdatePicturePixmap();

private:

Ui::MainwWindow *ui;
QImagemSourcePicture;
QImagemSourceThumbnail;
QPixmapmCurrentPixmap;
Filterwidget* mCurrentFilter;
QVector<FilterWidget*>mFilters;

+;

Here are some elements that we have to explain:

mSourcePicture: This element is the loaded picture.

mSourceThumbnail: This element is the generated thumbnail from mSourcePicture. To
avoid wasting CPU cycles, msourcePicture will be resized only once, and each of

the Filterwidget instances will process this thumbnail rather than the full-resolution
picture.

mCurrentPixmap: This element is the currently displayed QPixmap in the pictureLabel
widget.

mCurrentFilter: This element is the currently applied filter. Each time the user clicks on
a different Filterwidget, this pointer will be updated.

mFilters: This element is a Qvector of the Filterwidget class that we added

to Mainwindow.ui. It is only a helper, introduced to easily apply the same instructions to
each Filterwidget class.

Now for the functions, we will limit ourselves to a broad overview. The details will be
covered when we look at the implementation of each function:

loadPicture(): This function triggers the whole pipeline. It will be called when the user
clicks on actionOpenPicture.

initFilters(): This function is in charge of initializing mFilters.

displayPicture(): This function is the slot called

by mCurrentwidget::pictureProcessed() to display the filtered picture.
updatePicturePixmap(): This function handles the display of mCurrentPixmap

inside pictureLabel.

Let's look at the Mainwindow class's constructor implementation in Mainwindow.cpp:

#include <QFileDialog>
#include <QPixmap>
#include <QDir>

#include "FilterWidget.h"

MainwWindow: :MainWindow(Qwidget *parent)
QMainWindow(parent),

ui(new Ui::MainWindow),
mSourcePicture(),

mSourceThumbnail(),

mCurrentPixmap(),

mCurrentFilter (nullptr),

mFilters()

{

ui->setupUi(this);
ui->pictureLabel->setMinimumSize(1, 1);

connect(ui->actionOpenPicture, &QAction::triggered,
this, &MainWindow::loadPicture);
connect(ui->actionExit, &QAction::triggered,
this, &QMainWindow::close);
initFilters();

}

We connect the actionOpenPicture::triggered() signal to our yet-to-be-

implemented loadPicture() function. The actionExit is straightforward; it is simply
connected to the QMainwindow: :close() slot. Finally, initFilter () is called. Let's see its
body:

voidMainWindow: :initFilters()

{
mFilters.push_back(ui->filterwWidgetOriginal);

mFilters.push_back(ui->filterwWidgetBlur);
mFilters.push_back(ui->filterWidgetGrayscale);

for (inti = 0; i<mFilters.size(); ++1) {
connect(mFilters[i], &FilterWidget::pictureProcessed,
this, &MainWindow::displayPicture);

}

mCurrentFilter = mFilters[O];

}

Each Filterwidget instance is added to mFilters. We then proceed to connect
the pictureProcessed() signal to the Mainwindow: :displayPicture instruction
and mCurrentFilter is initialized to the original filter.

The class is now ready to load some pictures! This is the implementation of loadPicture():

voidMainWindow: :loadPicture()
{
QString filename = QFileDialog::getOpenFileName(this,
"Open Picture",
QDir::homePath(),
tr("Images (*.png *.jpg)"));
if (filename.isEmpty()) {
return;
}
mSourcePicture = QImage(filename);
mSourceThumbnail = mSourcePicture.scaled(QSize(256, 256),
Qt::KeepAspectRatio,
Qt::SmoothTransformation);
for (inti = 0; i<mFilters.size(); ++1) {
mFilters[i]->setSourcePicture(mSourcePicture);
mFilters[i]->updateThumbnail (mSourceThumbnail);

}

mCurrentFilter->process();

}

The mSourcePicture method is loaded using a QFileDialog, and mSourceThumbnail is
generated from this input. Every Filterwidget class is updated with this new data and
the mCurrentFilter element is triggered by calling its process() function.

When FilterWidget::process() is finished, it emits the pictureProcessed() signal, which is
connected to our displayPicture() slot. Let's switch to this function:

voidMainWindow: :displayPicture(constQImage& picture)

{

mCurrentPixmap = QPixmap::fromImage(picture);
updatePicturePixmap();

}

Nothing very fancy here: mCurrentPixmap is updated from the given picture and
the updatePicturePixmap() function is in charge of updating the pictureLabel element. Here
is the implementation of updatePicturePixmap():

voidMainWindow: :updatePicturePixmap ()
{
if (mCurrentPixmap.isNull()) {
return;
}
ui->picturelLabel->setPixmap (
mCurrentPixmap.scaled(ui->pictureLabel->size(),
Qt::KeepAspectRatio,
Qt::SmoothTransformation));

}

This function simply creates a scaled version of mCurrentPixmap that fits

inside pictureLabel.

The whole picture loading/filter processing is completed. If you run the application you
should be able to load and modify your pictures. However, if you resize the window, you will
see that the pictureLabel element does not scale very well.

To address this issue, we have to regenerate the scaled version of mCurrentPixmap each time
the window is resized. Update Mainwindow like so:

// In MainWindow.h
classMainWindow : public QMainWindow

{
voidloadPicture();

protected:
voidresizeEvent(QResizeEvent* event) override;

+;

// In MainWindow.cpp
voidMainWindow: :resizeEvent(QResizeEvent* /*event*/)

{

updatePicturePixmap();

}

Here, the separation of mCurrentPixmap and the pictureLabel element's pixmap makes sense.
Because we always generate the scaled version from the full-resolution mCurrentPixmap, we
are sure that the resulting pixmap will look good.

The image-filter application would not be complete without the ability to save your filtered
picture. This will not take much effort. Here is the updated version of Mainwindow.h:

classMainWindow : public QMainWindow

{

private slots:
voiddisplayPicture(constQImage& picture);
voidsaveAsPicture();

private:

Ui::MainwWindow *ui;
QImagemSourcePicture;
QImagemSourceThumbnail;
QImage&mFilteredPicture;

+;

Here, we simply added a saveAsPicture() function that will take the mFilteredPicture
element and save it to a file. The implementation in Mainwindow.cpp should not blow your
mind:

// In MainWindow.cpp

MainwWindow: :MainWindow(Qwidget *parent)
QMainWindow(parent),

ui(new Ui::MainWindow),
mSourcePicture(),

mSourceThumbnail(),
mFilteredPicture(mSourcePicture),

{

ui->setupUi(this);
ui->actionSaveAs->setEnabled(false);
ui->picturelLabel->setMinimumSize(1, 1);

connect(ui->actionOpenPicture, &QAction::triggered,
this, &MainWindow::loadPicture);
connect(ui->actionSaveAs, &QAction::triggered,
this, &MainWindow::saveAsPicture);

}

voidMainWindow: :loadPicture()

{

if (filename.isEmpty()) {
return;

}

ui->actionSaveAs->setEnabled(true);

}

voidMainWindow: :displayPicture(constQImage& picture)
{

mFilteredPicture = picture;

mCurrentPixmap = QPixmap::fromImage(picture);
updatePicturePixmap();

}

voidMainWindow: :saveAsPicture()

{

QString filename = QFileDialog::getSaveFileName(this,
"Save Picture",

QDir::homePath(),

tr("Images (*.png *.jpg)"));

if (filename.isEmpty()) {

return;

}

mFilteredPicture.save(filename);

}

The code snippet is long, but not very complex. The actionSaveAs function is enabled only
when a picture is loaded. When the picture has been processed, mFilteredPicture is updated
with the given picture. Because it is a reference, it costs absolutely nothing to store this
filtered picture.

Finally, the saveAsPicture() function asks the user for a path and saves it using the QImage
API, which tries to deduce the picture type based on the file extension.

Summary

In this chapter, you learned how to integrate a third-party library with each desktop OS
(Windows, Linux, and Mac). We chose the OpenCV library, which has been included in a
custom Qt Designer plugin, and which can display a live preview of your image processing
result in Qt Designer. We created an image filtering application that can open pictures, apply
filters to them, and save the result on your machine.

We had a good look at how you can integrate third-party libraries and how to make a Qt
Designer plugin. In the next chapter, we will push things forward by making the image-filter
application ready to load filter plugins that could be implemented by third-party developers.
To make things even cooler, we will cover the Qt animation framework to make the image-
filter more spectacular.

Chapter 8. Animations - Its Alive, Alive!

In the previous chapter, you learned how to create a custom Qt Designer plugin. This chapter
will push things further and teach you how to create a distributable Software Development Kit
(SDK) to third-party developers, how the plugin system works with Qt, and how to make your
application more attractive using fancy animations.

The example project will be a reimplementation of the project from Chapter 7, Third-Party
Libraries Without a Headache. You will build the same image processing application, but with
the ability to import the filters from plugins.

This chapter will teach you how to do the following:

Create an SDK using the Qt Plugin system

Implement custom plugins using the SDK

Factorize build tasks using .pri

Dynamically load plugins in your final application

Understand the Qt Animation framework

Use simple, sequential, and parallel animations

Apply custom effects using QPropertyAnimation and QGraphics effects

Preparing an SDK

Before diving into the code, we have to take a moment to reflect on how we are going to
structure it. This chapter has two goals:

e Cover the Qt Plugin system in more depth
e Study and integrate the Qt Animation Framework

The first part of the chapter will focus on the plugin system. What we aim to do is provide a
way to build plugins that can be integrated in our application to third-party developers. These
plugins should be dynamically loaded. The application will be a direct offspring of the
example project from Chapter 7, Third-Party Libraries Without a Headache. The features will
be exactly the same, except it will be using this new plugin system and will have fancy
animations.

The structure of the project will be as follows:

ch08-image-animation

filter-plugin-original

filter-plugin-grayscale Use Filter SDK

filter-plugin-blur

image-animation

The parent project is ch@8-image-animation, which is composed of the following:

e filter-plugin-original: A library project, which is the implementation of the original
filter

e filter-plugin-grayscale: A library project, which is the implementation of the
grayscale filter

e filter-plugin-blur: Alibrary project, which is the implementation of the blur filter

e image-animation: A Qt Widgets application, which will load the plugins needed to
display them and make it possible to apply each one to a loaded picture

We will develop each one of these plugins, but keep in mind that they might have been created
by a third-party developer. To achieve this openness, an SDK will be available for each
plugin. This SDK relies on the Qt Plugin system.

It is crucial to think about what should be handled by the plugin. Our application is an image
processing piece of software. We chose to limit the responsibility of the plugin to the picture
processing part, but this is definitely a design choice.

Another approach could have been to let the plugin developer provide its own Ul to configure
the plugin (for example, to vary the intensity of the blur). In this chapter, we have kept it
simple by focusing only on the plugin development itself. It is really up to you and how you
want to design your application. By opening up the range of what the plugin can do, you also
increase the burden for the plugin developer. There is always a trade-off; giving more choice
tends to increase the complexity. It is a well-known fact that we developers are a bunch of lazy
people. At least, we want to be lazy while the computer is working for us.

We will start by building the SDK that will be deployed in each plugin. Execute the following
steps:

1. Create a Subdirs project named ch08-image-animation (do not add a sub-project at the
end of the wizard).

2. In your filesystem explorer, open the ch@8-image-animation directory and create an sdk
directory.

3. Inside sdk, create an empty Filter .h file.

Our SDK will consist of a single file, Filter.h, the interface (or header) that should be
implemented with each plugin. Each plugin is responsible for returning the modified picture
according to its desired features. Because this SDK is not linked to any particular project, we
will simply display it in Qt Creator under the special folder Other files. To do so,

update ch@8-image-animation.pro:

TEMPLATE = subdirs
CONFIG += c++14

OTHER_FILES += \

sdk/Filter.h

After ches-image-animation.pro has been parsed by Qt Creator, you should see the
following in the Projects tab:

Projects

¥ m ch08-image-animation
5= ch0B-image-animation.pro
* i Other files
> sdk
e

The Filter.h file is available at the parent project level. As a result, it will be easier to
factorize the SDK plumbing code between our various plugins. Let's implement Filter .h:

#include <QImage>

class Filter

{
public:

virtual ~Filter() {}

virtual QString name() const = 0;

virtual QImage process(const QImage& image) = 0O;
Iy

#define Filter_iid "org.masteringqt.imageanimation.filters.Filter"
Q_DECLARE_INTERFACE(Filter, Filter_iid)

Let's break down this interface: a Filter subclass must provide a name by

implementing name() and returning a processed image when implementing process(). As
you can see, Filter.h is indeed very close to the version seen in Chapter 7, Third-Party
Libraries Without a Headache.

However, the really new stuff comes right after the class definition:

#define Filter_iid "org.masteringqt.imageanimation.filters.Filter"
Q_DECLARE_INTERFACE(Filter, Filter_iid)

The Filter_iid is a unique identifier to let Qt know the interface name. This will be enforced
on the implementer side, which will also have to state this identifier.

Tip

For a real-world use case, you should add a version number to this unique identifier. This will
let you properly handle the versioning of your SDK and the attached plugins.

The Q DECLARE_INTERFACE macro associates the class to the given identifier. It will give Qt

the ability to check that the loaded plugin can be safely casted to the Filter type.
Tip

In production code, it is safer to declare your interfaces inside a namespace. You never know
the code environment in which your SDK will be deployed. This, way, you avoid potential
name collision. If you do declare in a namespace, make sure that the Q_ DECLARE_INTERFACE
macro is outside the namespace scope.

Creating your plugins

The SDK was painless to create. We can now proceed to create our first plugin. We already
know that all our plugins will include the SDK we just completed. Fortunately, this can be
easily factorized in a .pri file (PRoject Include). A .pri file behaves exactly like a .pro file;
the only difference is that it is intended to be included inside .pro files.

In the che8-image-animation directory, create a file named plugins-common.pri that contains
the following code:

INCLUDEPATH += $$PWD/sdk
DEPENDPATH += $$PWD/sdk

This file will be included in each .pro plugin. It aims to tell the compiler where it can find the
headers of the SDK and where to look to resolve dependencies between headers and sources.
This will enhance the modification detection and properly compile the sources when needed.

To see this file in the project, we have to add it to the OTHER_FILES macro in ch@8-image-
animation.pro:

OTHER_FILES += \
sdk/Filter.h \
plugins-common.pri

The most straightforward plugin to build is filter-plugin-original as it does not perform
any specific processing on the image. Let's create this plugin with the following steps:

1. Create a new Subproject in che8-image-animation.

Select Library | C++ Library | Choose....

Choose a Shared Library, name it filter-plugin-original, and then click on Next.
Select QtCore and go to QtWidgets | Next.

Name the created class Filteroriginal and click on Next.

Add it as a subproject to ch68-image-animation then click on Finish.

Sk wh

Qt Creator creates a lot of boilerplate code for us, but in this case, we do not need it. Update
filter-plugin-original.pro like so:

QT += core widgets

TARGET = $$qtLibraryTarget(filter-plugin-original)

TEMPLATE = 1lib

CONFIG += plugin

SOURCES += \
FilterOriginal.cpp

HEADERS += \
FilterOriginal.h

include(../plugins-common.pri)
We start by specifying that the TARGET should be properly named according to the OS
convention with $$qtLibraryTarget(). The CONFIG property adds the plugin directive, which

tells the generated Makefile to include the necessary instructions to compile a dll/so/dylib
(pick your OS).

We removed the unnecessary DEFINES and FilterOriginal global.h. Nothing specific to the
plugin should be exposed to the caller, and therefore, there is no need to handle the symbol
export.

We can now proceed to FilterOriginal.h:
#include <QObject>
#include <Filter.h>

class FilterOriginal : public QObject, Filter

{
Q_OBJECT
Q _PLUGIN_METADATA(IID "org.masteringqt.imageanimation.filters.Filter")
Q_INTERFACES(Filter)
public:
FilterOriginal(QObject* parent = 0);
~FilterOriginal();
QString name() const override;
QImage process(const QImage& image) override;
Iy

The Filteroriginal class must first inherit Qobject; when the plugin will be loaded, it will
first be a Qobject class before being casted to the real type, Filter.

The Q PLUGIN_METADATA macro is stated to export the proper implemented interface identifier
to Qt. It annotates the class to let the Qt metasystem know about it. We meet the unique
identifier we defined in Filter.h again.

The Q _INTERFACES macro tells the Qt metaobject system which interface the class implements.

Finally, the Filteroriginal.cpp barely deserves to be printed:

FilterOriginal::FilterOriginal(QObject* parent)
QObject(parent)

{

}

FilterOriginal::~FilterOriginal()

{
}
QString FilteroOriginal::name() const
{
return "Original";
}
QImage FilterOriginal::process(const QImage& image)
{
return image;
}

As you can see, its implementation is a no-op. The only thing we added to the version from
Chapter 7, Third-Party Libraries Without a Headache, is the name() function, which
returns Ooriginal.

We will now implement the grayscale filter. As we did in Chapter 7, Third-Party Libraries
Without a Headache, we will rely on the OpenCV library to process the picture. The same can
be said for the following plugin, the blur.

Since these two projects have their own .pro file, you can already foresee that the OpenCV
linking will be the same. This is a perfect use-case for a .pri file.

Inside the che8-image-animation directory, create a new file called plugins-common-
opencv.pri. Do not forget to add it to OTHER_FILES in ch@8-image-animation.pro:

OTHER_FILES += \
sdk/Filter.h \
plugins-common.pri \
plugins-common-opencv.pri

Here is the content of plugins-common-opencv.pri:

windows {
INCLUDEPATH += $$(OPENCV_HOME)/../../include
LIBS += -L$$(OPENCV_HOME)/1ib \
-lopencv_core2413 \
-lopencv_imgproc2413

¥

linux {
CONFIG += link_pkgconfig
PKGCONFIG += opencv

¥

macx {

INCLUDEPATH += /usr/local/Cellar/opencv/2.4.13/include/

LIBS += -L/usr/local/lib \
-lopencv_core \
-lopencv_imgproc

}

The content of plugins-common-opencv.pri is a direct copy of what we made in Chapter
7, Third-Party Libraries Without a Headache.

All the plumbing is now ready; we can now go ahead with the filter-plugin-grayscale
project. As with filter-plugin-original, we will build it the following way:

1. Create a C++ Library Subproject of ch68-image-animation with the Shared Library
type.

2. Create a class named FilterGrayscale.
3. In the Required Modules, select QtCore and QWidgets.

Here is the updated version of filter-plugin-grayscale.pro:
QT += core widgets

TARGET = $$qtLibraryTarget(filter-plugin-grayscale)
TEMPLATE = 1ib

CONFIG += plugin

SOURCES += \
FilterGrayscale.cpp

HEADERS += \
FilterGrayscale.h

include(../plugins-common.pri)
include(../plugins-common-opencv.pri)

The content is very much like filter-plugin-original.pro. We only added plugins-
common -opencv.pri to let our plugin link with OpenCV.

As for FilterGrayscale, the header is exactly like Filteroriginal.h. Here are the relevant
pieces on FilterGrayscale.cpp:

#include <opencv/cv.h>

// Constructor & Destructor here

QString FilterOriginal::name() const

{
}

return "Grayscale";

QImage FilterOriginal::process(const QImage& image)

{
// QImage => cv::mat
cv::Mat tmp(image.height(),
image.width(),
Ccv_8uc4,
(uchar*)image.bits(),
image.bytesPerLine());
cv::Mat resultMat;
cv::cvtColor(tmp, resultMat, CV_BGR2GRAY);
// cv::mat => QImage
QImage resultImage((const uchar *) resultMat.data,
resultMat.cols,
resultMat.rows,
resultMat.step,
QImage: :Format_Grayscale8);
return resultImage.copy();
}

The inclusion of plugins-common-opencv.pri lets us properly include the cv.h header.

The last plugin we will implement is the blur plugin. Once again, create a C++ Library
Subproject and create the FilterBlur class. The project structure and the content of the .pro
file are the same. Here is FilterBlur .cpp:

QString FilterOriginal::name() const

{
}

return "Blur";

QImage FilterOriginal::process(const QImage& image)
{
// QImage => cv::mat
cv::Mat tmp(image.height(),
image.width(),
Ccv_8uc4,
(uchar*)image.bits(),
image.bytesPerLine());

int blur = 17;

cv::Mat resultMat;

cv::GaussianBlur (tmp,
resultMat,
cv::Size(blur, blur),
0.0,
0.0);

// cv::mat => QImage
QImage resultImage((const uchar *) resultMat.data,

resultMat.cols,

resultMat.rows,

resultMat.step,

QImage: :Format_RGB32);
return resultImage.copy();

}

The amount of blur is hard-coded at 17. In a production application, it could have been
compelling to make this amount variable from the application.

Tip

If you want to push the project further, try to include a layout in the SDK that contains a way to
configure the plugin properties.

Loading your plugins dynamically

We will now deal with the application loading these plugins:

1. Create a new Subproject inside ch08-image-animation.
2. Select the type Qt Widgets Application.
3. Name it image-animation and accept the default Class Information settings.

We have a few last things to do in the .pro files. First, image-animation will try to load the
plugins from somewhere in its output directory. Because each filter plugin project is
independent, its output directory is separated from image-animation. Thus, each time you
modify a plugin, you will have to copy yourself the compiled shared library inside the proper
image-animation directory. This works to make it available to the image-animation
application, but we are lazy developers, right?

We can automate this by updating plugins-common-pri like so:

INCLUDEPATH += $$PWD/sdk
DEPENDPATH += $$PWD/sdk

windows {
CONFIG(debug, debug|release) {
target_install_path = $$0OUT_PWD/../image-animation/debug/plugins/
} else {
target_install_path = $$0OUT_PWD/../image-animation/release/plugins/
}

} else {
target_install path = $$OUT_PWD/../image-animation/plugins/
}

Check Qt file 'spec_post.prf' for more information about '$$QMAKE_MKDIR_CMD'
createPluginsDir.path = $$target_install path

createPluginsDir.commands = $$QMAKE_MKDIR_CMD $$createPluginsDir.path
INSTALLS += createPluginsDir

target.path = $$target_install path
INSTALLS += target

In a nutshell, the output library is deployed in the output image-animation/plugins directory.
Windows has a different output project structure; that is why we have to have a platform-
specific section.

Even better, the plugins directory is automatically created with the
instruction createPluginsDir .commands = $$QMAKE_MKDIR_CMD $$createPluginsDir.path.
Instead of using a system command (mkdir), we have to use the special $$QMAKE_MKDIR_CMD

command. Qt will then replace it with the correct shell command (depending on your OS) to
create the directory only if it does not already exist. Do not forget to add the make install
build step to execute this task!

The last thing to do in the .pro files concerns image-animation. The application will
manipulate Filter instances. As a consequence, it needs to access the SDK. Add the following
to image-animation.pro:

INCLUDEPATH += 3PWD/../sdk
DEPENDPATH += $$PWD/../sdk

Fasten your seatbelt. We will now load our freshly baked plugins. In image-animation, create
a new class named FilterLoader. Here is the FilterLoader .h content:

#include <memory>
#include <vector>

#include <Filter.h>

class FilterLoader

{
public:
FilterLoader();
void loadFilters();
const std::vector<std::unique_ptr<Filter>>& filters() const;
private:
std::vector<std::unique_ptr<Filter>> mFilters;
3

This class is responsible for loading the plugins. Once again, we rely on C++11 smart
pointers with unique_ptr to explicate the ownership of the Filter instances.

The FilterLoader class will be the owner with mFilters and provides a getter to the vector
with filters().

Note that filter () returns a consté& to the vector. This semantic brings two benefits:

e The reference makes sure that the vector is not copied. Without it, the compiler would
have barked something like "FilterLoader is not the owner anymore of mFilters
content!" at us. Of course, because it deals with C++ templates, the compiler error would
have looked rather like an astounding insult to the English language.

e The const keyword makes sure that the vector type cannot be modified by callers.

Now we can create the FilterLoader .cpp: file:

#include "FilterLoader.h"

#include <QApplication>
#include <QDir>
#include <QPluginlLoader>

FilterLoader::FilterLoader ()
mFilters()

{

}

void FilterlLoader::loadFilters()

{

QDir pluginsDir(QApplication::applicationDirPath());
#ifdef Q_OS_MAC

pluginsDir.cdUp();

pluginsDir.cdUp();

pluginsDir.cdUp();
#endif

pluginsDir.cd("plugins");

for(QString fileName: pluginsDir.entryList(QDir::Files)) {
QPluginLoader pluginLoader (
pluginsDir.absoluteFilePath(fileName));
QObject* plugin = pluginLoader.instance();
if (plugin) {
mFilters.push_back(std::unique_ptr<Filter>(
gobject_cast<Filter*>(plugin)
));

}

const std::vector<std::unique_ptr<Filter>>& FilterLoader::filters() const

{
}

return mFilters;

The meat of the class lies in loadFilter (). We start by moving in the plugins directory
with pluginsDir, located in the output directory of image-animation. A special case is
handled for the Mac platform: QApplication::applicationDirPath() returns a path inside
the bundle of the generated application. The only way to get out is to climb our way up three
times with the cdup () instruction.

For each fileName in this directory, we try to load a QpPluginLoader loader. A QPluginLoader
provides access to a Qt plugin. It is the cross-platform way to load a shared library.
Moreover, the QpluginLoader loader has the following benefits:

e It checks that the plugin is linked with the same version of Qt as the host application
e It simplifies the loading of the plugin by providing direct access to the plugin
via instance() rather than relying on C functions

We then proceed to try to load the plugin using pluginLoader.instance(). This will try to
load the root component of the plugin. In our case, the root component is

either FilerOriginal, FilterGrayscale, or FilterBlur. This function always returns

a Qobject*; if the plugin could not be loaded, it returns 0. This is the reason why we inherited
the Qobject class in our custom plugins.

The call to instance() implicitly tries to load the plugin. Once this has been done,
the QpluginLoader does not handle the memory of the plugin. From here, we cast the plugin
to Filter* using qobject_cast().

The qobject_cast() function behaves similarly to the standard C++ dynamic_cast(); the
difference is that it does not require RT TI (runtime type information).

Last but not least, the Filter* casted plugin is wrapped inside a unique_ptr and added
to mFilters vector.

Using the plugins inside the application

Now that the plugins are properly loaded, they have to be reachable from the UI of the
application. To do so, we are going to take some inspiration (shameless stealing) from the
Filterwidget class of Chapter 7, Third-Party Libraries Without a Headache.

Create a new Qt Designer Form Class using the Widget template named Filterwidget.
The Filterwidget.ui file is exactly the same as the one completed in Chapter 7, Third-Party
Libraries Without a Headache.

Create the Filterwidget.h file like this:

#include <Qwidget>
#include <QImage>

namespace Ui {
class FilterWidget;

}

class Filter;

class FilterwWidget : public Qwidget

{
Q_OBJECT

public:
explicit FilterwWidget(Filter& filter, Qwidget *parent = 0);
~Filterwidget();

void process();

void setSourcePicture(const QImage& sourcePicture);
void setSourceThumbnail(const QImage& sourceThumbnail);
void updateThumbnail();

QString title() const;

signals:
void pictureProcessed(const QImage& picture);

protected:
void mousePressEvent(QMouseEvent*) override;

private:
Ui::Filterwidget *ui;
Filter& mFilter;

QImage mDefaultSourcePicture;
QImage mSourcePicture;
QImage mSourceThumbnail;

QImage mFilteredPicture;
QImage mFilteredThumbnail;

+;

Overall, we trimmed everything concerning the Qt Designer plugin and simply passed the
mFilter value by reference to the constructor. The Filterwidget class is not the owner of
the Filter anymore; it is rather the client that calls it. Remember that the owner of Filter
(aka the plugin) is FilterLoader.

The other modification is the new setThumbnail() function. It should be called in place of the
old updateThumbnail(). The new updateThumbnail () now only performs the thumbnail
processing and does not touch the source thumbnail. This division is done to prepare the work
for the coming animation section. The thumbnail update will be done only once the animation
has been finished.

Note
Please refer to the source code of the chapter to see Filterwidget.cpp.

All the low layers have been completed. The next step is to fill Mainwindow. Once again, it
follows the same pattern we covered in Chapter 7, Third-Party Libraries Without a Headache.
The sole difference with Mainwindow.ui is that filtersLayout is empty. Obviously, the plugin
is loaded dynamically, so we have nothing to put inside it at compile time.

Let's cover Mainwindow.h:

#include <QMainWindow>
#include <QImage>
#include <QVector>

#include "FilterLoader.h"

namespace Ui {
class MainWindow;

}

class FilterWidget;

class MainWindow : public QMainWindow

{
Q OBJECT

public:
explicit MainWindow(Qwidget *parent = 0);
~MainwWindow();

void loadPicture();

protected:
void resizeEvent(QResizeEvent* event) override;

private slots:
void displayPicture(const QImage& picture);
void saveAsPicture();

private:
void initFilters();
void updatePicturePixmap();

private:
Ui::MainwWindow *ui;
QImage mSourcePicture;
QImage mSourceThumbnail;
QImage& mFilteredPicture;
QPixmap mCurrentPixmap;

FilterLoader mFilterlLoader;
Filterwidget* mCurrentFilter;
QVector<FilterwWidget*> mFilters;

+;

The only notable thing is the addition of mFilterLoader as a member variable.
In Mainwindow.cpp, we will focus on the changes only:

void MainWindow::initFilters()

{
mFilterLoader.loadFilters();
auto& filters = mFilterLoader.filters();
for(auto& filter : filters) {
Filterwidget* filterwWidget = new FilterWidget(*filter);
ui->filtersLayout->addwidget(filterwidget);
connect(filterwidget, &FilterWidget::pictureProcessed,
this, &MainWindow::displayPicture);
mFilters.append(filterwWidget);
}
if (mFilters.length() > 0) {
mCurrentFilter = mFilters[O];
}
}

The initFilters() function does not load the filters from the ui content. Rather, it starts by
calling the mFilterLoader.loadFilters() function to dynamically load the plugins from
the plugins directory.

After that, an autog& filter is assigned with mFilterLoader.filters(). Note thatitis much
more readable to use auto keyword. The real type
is std::vector<std::unique_ptr<Filter>>&, which looks more like a cryptic incantation

than a simple object type.

For each of these filters, we create a Filterwidget* and pass it the reference of the filter.
Here, filter is effectively a unique_ptr. The people behind C++11 wisely modified the
dereferencing operator, making it transparent to the new Filterwidget(*filter). The
combination of the auto keyword and the overload of the -> operator, or the dereference
operator, makes the use of new C++ features much more enjoyable.

Look at the for loop. For each filter we do the following tasks:

1. Create a Filterwidget template.

2. Addthe Filterwidget template to the filtersLayout children.

3. Connect the Filterwidget::pictureProcessed signal to the
Mainwindow: :displayPicture slot.

4. Add the new Filterwidget template to the QvectormFilters.

In the end, the first Filterwidget is selected.

The only other modification to Mainwindow.cpp is the implementation of loadPicture():

void MainWindow::loadPicture()

{
for (int i = 0; i <mFilters.size(); ++i) {
mFilters[i]->setSourcePicture(mSourcePicture);
mFilters[i]->setSourceThumbnail (mSourceThumbnail);
mFilters[i]->updateThumbnail();
}
mCurrentFilter->process();
}

The updateThumbnail () function has been split into two functions, and here is where it is
used.

The application can now be tested. You should be able to execute it and see the dynamic
plugins loaded and displaying the processed default Lenna picture.

Discovering the Animation Framework

Your application works like a charm. It is now time to look at how we can make it jump and
move, or, in a word, live. The Qt Animation Framework can be used to create and start
animations of Qt properties. The property value will be smoothly interpolated by an internal
global timer handle by Qt. You can animate anything as long as it is a Qt property. You can
even create a property for your own object using Q_PROPERTY. If you forgot

about Q_PROPERTY, please refer to Chapter 7, Third-Party Libraries Without a Headache.

Three main classes are provided to build animations:

e QPropertyAnimation: This class animates one Qt property animation

e QParallelAnimationGroup: This class animates multiple animations in parallel (all the
animations start together)

e QSequentialAnimationGroup: This class animates multiple animations in sequence (the
animations run one by one in a defined order)

All those classes inherit QAbstractAnimation. Here is a diagram from the official Qt
documentation:

[ﬂ.ﬂbst ractAnimation |

A
[o |

. QVariantAnimation | QAnimationGroup
A A

{

| o ropertyAnimation J

[ﬂParaU_ elAnimationGroup] [ﬂSequential AnimationGroup
4 L

Please notice that QAbstractAnimation, QvariantAnimation, and QAnimationGroup are
abstract classes. Here is a simple example of a Qt animation:

QLabel label;
QPropertyAnimation animation;

animation.setTargetObject(&label);
animation.setPropertyName("geometry");
animation.setDuration(4000);
animation.setStartValue(QRect(©, 0, 150, 50));
animation.setEndValue(QRect (300, 200, 150, 50));
animation.start();

The preceding snippet moves a QLabel label from the 0 x 0 position to 300 x 200 in four

seconds. The first thing to do is to define the target object and its property. In our case, the
target object is label and we want to animate the property called geometry. Then, we set the
animation duration in milliseconds: 4000 milliseconds for four seconds. Finally, we can
decide the start and end values of the geometry property, which is a QrRect, defined like this:

QRect(x, y, width, height)

The label object starts with the 0 x 0 position and ends with 300 x 200. In this example, the
size is fixed (150 x 50), but you can also animate the width and the height if you want.

Finally, we call the start() function to begin the animation. In four seconds, the animation
smoothly moves the label from the 0 x 0 position to 300 x 200. By default, the animation uses
a linear interpolation to provide intermediate values, so, after two seconds, the 1abel will be
at the 150 x 100 position. The linear interpolation of the value looks like the following
schema:

Value

Time

In our case, the 1abel object will move with a constant speed from the start to the end
position. An easing function is a mathematical function that describes the evolution of a value
over time. The easing curve is the visual representation of the mathematical function. The
default linear interpolation is a good start, but Qt provides plenty of easing curves to control
the speed behavior of your animation. Here is the updated example:

QLabel label;

QPropertyAnimation animation(&label, '"geometry");
animation.setDuration(4000);
animation.setStartValue(QRect(0, 0, 150, 50));
animation.setEndValue(QRect (300, 200, 150, 50));
animation.setEasingCurve(QEasingCurve::InCirc);
animation.start();

You can set the target object and the property name directly using the QPropertyAnimation
constructor. As a result, we removed the setTargetObject() and setPropertyName()
functions. After that, we use setEasingCurve() to specify a curve for this animation.

The Incirc looks like the following:

Value

Time

With this easing curve, the label starts to move really slowly but accelerates progressively
during the animation.

Another way is to define the intermediate key steps yourself, using the setkeyvalueAt()
function. Let's update our example:

QLabel label;

QPropertyAnimation animation(&label, '"geometry");
animation.setDuration(4000);

animation.setKeyValueAt(O, QRect(O0, 0, 150, 50));
animation.setKeyValueAt(0.25, QRect(225, 112.5, 150, 50));
animation.setKeyValueAt(1, QRect(300, 200, 150, 50));
animation.start();

We are now setting key frames using setKeyvalueAt (). The first argument is the time step in
the range 0 to 1. In our case, step 1 means four seconds. The key frames at step 0 and step 1
provide the same positions as the start/end positions of the first example. As you can see, we
also add a key frame at step 0.25 (that's one second for us) with the position 225 x 112.5. The
next schema illustrates this:

Value

Time

You can clearly distinguish the three key frames created with setkeyvalueAt(). In our
example, our label will quickly reach the 225 x 112.5 position in one second. Then the label

will slowly move to the 300 x 200 position during the remaining three seconds.

If you have more than one QPropertyAnimation object, you can use groups to create more
complex sequences. Let's see an example:

QPropertyAnimation animationl(&labell, "geometry");
QPropertyAnimation animation2(&label2, "geometry");

QSequentialAnimationGroup animationGroup;
animationGroup.addAnimation(&animl);
animationGroup.addAnimation(&anim2);
animationGroup.start();

In this example, we are using a QSequentialAnimationGroup to run animations one by one.
The first thing to do is to add animations to animationGroup. Then, when we call start() on
our animation group, animationi is launched. When animation1 is finished, animationGroup
runs animation2. A QSequentialAnimationGroup is finished when the last animation of the list
ends. The next schema depicts this behavior:

QSequentialAnimationGroup

| Animation 1 i Animation 2 |
|

The second animation group, QParallelAnimationGroup, is initialized and started in the same
way as QSequentialAnimationGroup. But the behavior is different: it starts all the animations
in parallel, waiting for the longest animation to end. Here is an illustration of this:

QParallelAnimationGroup

i Animation 1

Time

Keep in mind that an animation group is itself an animation (it inherits QAbstractAnimation).
As a consequence, you can add animation groups to other animation groups to create a very
complex animation sequence!

Making your thumbnails jump

Let's apply what we learned about the Qt Animation Framework to our project. Each time the
user clicks on a filter thumbnail, we want to poke it. All modifications will be done on the
Filterwidget class. Let's start with Filterwidget.h:

#include <QPropertyAnimation>

class FilterwWidget : public Qwidget

{
Q_OBJECT
public:
explicit FilterwWidget(Filter& filter, Qwidget *parent = 0);
~Filterwidget();
private:
void initAnimations();
void startSelectionAnimation();
private:
QPropertyAnimation mSelectionAnimation;
3

The first function, initAnimations(), initializes the animations used by Filterwidget. The
second function, startSelectionAnimation (), performs tasks required to start this animation
correctly. As you can see, we are also declaring a QPropertyAnimation class, as covered in
the previous section.

We can now update Filterwidget.cpp. Let's update the constructor:

FilterwWidget::FilterWidget(Filter& filter, Qwidget *parent)

Qwidget(parent),
mSelectionAnimation()
{
initAnimations();
updateThumbnail();
¥

We initialize our QPropertyAnimation called mSelectionAnimation. The constructor also
calls initAnimations(). Here is its implementation:

void Filterwidget::initAnimations()

{

mSelectionAnimation.setTargetObject(ui->thumbnaillabel);

mSelectionAnimation.setPropertyName('"geometry");
mSelectionAnimation.setDuration(200);

}

You should be familiar with these animation initialization steps now. The target object is the
thumbnailLabel displaying the filter plugin preview. The property name to animate

is geometry, because we want to update the position of this QLabel. Finally, we set the
animation duration to 200 ms. Like jokes, keep it short and sweet.

Update the existing mouse event handler like this:

void Filterwidget::mousePressEvent(QMouseEvent™)

{

process();
startSelectionAnimation();

}

Each time the user clicks on the thumbnail, the selection animation moving the thumbnail will
be called. We can now add this most important function like this:

void FilterwWidget::startSelectionAnimation()

{
if (mSelectionAnimation.state() ==
QAbstractAnimation: :Stopped) {
QRect currentGeometry = ui->thumbnaillabel->geometry();
QRect targetGeometry = ui->thumbnaillabel->geometry();
targetGeometry.setY(targetGeometry.y() - 50.0);
mSelectionAnimation.setKeyValueAt(0, currentGeometry);
mSelectionAnimation.setKeyValueAt(0.3, targetGeometry);
mSelectionAnimation.setKeyValueAt(1, currentGeometry);
mSelectionAnimation.start();
}
¥

The first thing to do is to retrieve the current geometry of thumbnaillabel

called currentGeometry. Then, we create a targetGeometry object with the same x, width,

and height values. We only reduce the y position by 50, so the target position is always above
the current position.

After that, we define our key frames:

e At step 0, the value is the current position.

e At step 0.3 (60 ms, because the total duration is 200 ms), the value is the target position.

o At step 1 (the end of the animation), we bring it to back the original position. The
thumbnail will quickly reach the target position, then slowly fall down to its original
position.

These key frames must be initialized before each animation starts. Because the layout is
dynamic, the position (and so the geometry) could have been updated when the user resizes
the main window.

Please note that we are preventing the animation from starting again if the current state is not
stopped. Without this precaution, the thumbnail could move to the top again and again if the
user clicks like a mad man on the widget.

You can now test your application and click on a filter effect. The filter thumbnail will jump
to respond to your click!

Fading the picture in

When the user opens a picture, we want to fade in the image by playing with its opacity. The
classes QLabel or Qwidget do not provide an opacity property. However, we can add a visual
effect to any Qwidget using a QGraphicsgffect. For this animation, we will

use QGraphicsOpacityEffect to provide an opacity property.

Here is a schema to describe the role of each one:

Affects Animates
QGraphicsEffect QProperty Animation

QWidget

[

In our case, the Qwidget class is our QLabel and the QGraphicseffect class is
QGraphicsopacityEffect. Qt provides the Graphics Effect system to alter the rendering of

a Qwidget class. The abstract class QGraphicsEffect has a pure virtual method draw() that is
implemented by each graphics effect.

We can now update the Mainwindow.h according to the next snippet:

#include <QPropertyAnimation>
#include <QGraphicsOpacityEffect>

class MainwWindow : public QMainWindow

{
private:

void initAnimations();
private:

QPropertyAnimation mLoadPictureAnimation;
QGraphicsOpacityEffect mPictureOpacityEffect;

+;

The initAnimations() private function is in charge of all the animation initializations. The
mLoadPictureAnimation member variable performs the fade-in animation on the loaded
picture. Finally, we declare mPictureOpacityEffect, the mandatory QGraphicsOpacityEffect.

Let's switch to the implementation part with the Mainwindow.cpp constructor:

MainWindow: :MainWindow(Qwidget *parent)
QMainWindow(parent),

mLoadPictureAnimation(),
mPictureOpacityEffect()

initFilters();
initAnimations();

No surprises here. We use the initializer list to construct our two new member variables. The
Mainwindow constructor also calls initAnimations().

Let's look at how this animation is initialized:

void MainWindow::initAnimations()

{
ui->picturelLabel->setGraphicseffect(&mPictureOpacityEffect);
mLoadPictureAnimation.setTargetObject(&mPictureOpacityEffect);
mLoadPictureAnimation.setPropertyName("opacity");
mLoadPictureAnimation.setDuration(500);
mLoadPictureAnimation.setStartValue(0);
mLoadPictureAnimation.setEndValue(1);
mLoadPictureAnimation.setEasingCurve(QEasingCurve::InCubic);

}

The first thing to do is to link our QGraphicsOpacityEffect with our QLabel. This can be
easily done by calling the setGraphicsEffect() function on picturelLabel.

Now we can set our animation up. In this case, mLoadPictureAnimation

targets mPictureopacityEffect and will affect its property named opacity. The animation
duration is 500 milliseconds. Next, we set the opacity value when the animation starts and
ends:

o At the beginning, the picture is completely transparent (opacity value is 0)
e At the end, the picture is fully visible (opacity value is 1)

For this animation, we use the easing curve InCubic. This curve looks like this:

Value

Time

Feel free to try other curves to find the one that looks the best for you.

Note

You can get the list of all easing curves with a visual preview here:http://doc.gt.io/qt-
5/geasingcurve.html

The last step is to start the animation at the right place:

void MainWindow::loadPicture()

{

mCurrentFilter->process();
mLoadPictureAnimation.start();

}

You can now start your application and load a picture. You should see your picture fade in
over 500 milliseconds!

http://doc.qt.io/qt-5/qeasingcurve.html

Flashing the thumbnail in a sequence

For this last animation, we want to display a blue flash on each filter preview when the
thumbnail is updated. We do not want to flash all previews at the same time, but in a sequence,
one by one. This feature will be achieved in two parts:

e Create a color animation in Filterwidget to display a blue flash
e Build a sequential animation group in Mainwindow containing all Filterwidget color
animations

Let's start to add the color animation. Update Filterwidget.h as shown in the following
snippet:

#include <QGraphicsColorizeEffect>

class FilterwWidget : public Qwidget

{
Q_OBJECT
public:
explicit FilterwWidget(Filter& filter, Qwidget *parent = 0);
~Filterwidget();
QPropertyAnimation* colorAnimation();
private:
QPropertyAnimation mSelectionAnimation;
QPropertyAnimation* mColorAnimation;
QGraphicsColorizeEffect mColorEffect;
Iy

This time we do not want to affect the opacity, but rather colorize the thumbnail in blue. Thus,
we use another Qt standard effect: QGraphicsColorizeEffect. We also declare a

new QPropertyAnimation named mColorAnimation and its corresponding

getter, colorAnimation (). We declare mColorAnimation as a pointer because the ownership
will be taken by the animation group of Mainwindow. This topic will be covered soon.

Let's update the constructor in Filterwidget.cpp:

FilterwWidget::FilterWidget(Filter& filter, Qwidget *parent)
Qwidget(parent),

mColorAnimation(new QPropertyAnimation()),
mColorEffect()

We just have to construct our two new member variables, mColorAnimation and mColorEffect.
Let's look at the amazing complexity of the getter:

QPropertyAnimation* FilterWidget::colorAnimation()

{
}

return mColorAnimation;

It was a lie: we always try to write comprehensive code!

Now that the preliminaries are done, we can initialize the color animation by updating the
initAnimations() function like this:

void FilterwWidget::initAnimations()

{
mColorEffect.setColor(QColor (0, 150, 150));
mColorEffect.setStrength(0.0);
ui->thumbnaillLabel->setGraphicseffect(&mColorEffect);
mColorAnimation->setTargetObject(&mColorEffect);
mColorAnimation->setPropertyName('"strength");
mColorAnimation->setDuration(200);
mColorAnimation->setStartvValue(1.0);
mColorAnimation->setEndvValue(0.0);

}

The first part sets the color filter up. Here, we chose a kind of turquoise color for the flash
effect. The colorize effect is handled by its strength property. By default, the value is 1.0, so,
we set itto 0.0 to keep it from affecting our default thumbnail of Lenna. Finally, we link

the thumbnaillLabel with this mColorEffect calling setGraphicseffect().

The second part is the color animation preparation. This animation targets the color effect
and its property, named strength. This is a short flash; 200 milliseconds is enough:

e We want to start with a full strength effect, so we put the start value at 1.0

e During the animation, the colorize effect will decrease until it reaches 0.0
The default linear interpolation is fine here, so we do not use any easing curve.
Here we are. The color effect/animation is initialized and we provided a colorAnimation ()
getter. We can now begin the second part of this feature, Updating Mainwindow.h:

#include <QSequentialAnimationGroup>

class MainwWindow : public QMainWindow

{
Q OBJECT

private:

QSequentialAnimationGroup mFiltersGroupAnimation;

+;

We declare a QSequentialAnimationGroup class to trigger, one by one, all Filterwidget
color animations displaying the blue flash. Let's update the constructor in Mainwindow.cpp:

MainwWindow: :MainWindow(QwWidget *parent)
QMainWindow(parent),

mFiltersGroupAnimation()

{
}

A new member variable means a new construction in the initializer list; that is the rule!

We can now update initAnimations() to prepare our animation group:

void MainWindow::initAnimations()

{
for (FilterwWidget* filterwidget : mFilters) {
mFiltersGroupAnimation.addAnimation (
filterwidget->colorAnimation());
}
}

Do you remember that an animation group is only an animation container? As a consequence,
we iterate on every FilterWidget to get its color animation and fill

our mFiltersGroupAnimation calling addAnimation (). Thanks to C++11's range-based for
loop, itis really readable. Keep in mind that when you add an animation to an animation
group, the group takes ownership of this animation.

Our animation group is ready. We can now start it:

void MainWindow::loadPicture()

{
mCurrentFilter->process();
mLoadPictureAnimation.start();
mFiltersGroupAnimation.start();
¥

Start your application and open a picture. You can see that all filter thumbnails will flash one
by one from left to right. This is what we intended, but it's still not perfect because all the
thumbnails are already updated before the flashes. We have this behavior because

the loadPicture() function actually sets and updates all thumbnails, and then finally starts the

sequential animation group. Here is a schema illustrating the current behavior:

set update set update flash flash
thumbnail | thumbnail | thumbnail | thumbnail | thumbnail | thumbnail
1 1 2 2 1 2
Time

The schema only describes the behavior for two thumbnails, but the principle is the same with
three thumbnails. Here is the targeted behavior:

set set flash Update flash update
thumbnail | thumbnail | thumbnail | thumbnail | thumbnail | thumbnail
1 2 1 1 2 2
Time

We must only update the thumbnail when the flash animation is over. Fortunately,
QPropertyAnimation emits the finished signal when the animation is over, so we only have
to make a few changes. Update loadPicture() function from Mainwindow.cpp:

void MainWindow::loadPicture()

{
for (int i = 0; i <mFilters.size(); ++i) {
mFilters[i]->setSourcePicture(mSourcePicture);
mFilters[i]->setSourceThumbnail (mSourceThumbnail);
//mFilters[i]->updateThumbnail();
}
}

As you can see, we kept the set and only removed the update thumbnail when a new picture is
opened by the user. At this stage, all Filterwidget instances have the correct thumbnail, but
they don't display it. Let's fix this by updating Filterwidget.cpp:

void FilterwWidget::initAnimations()

{

mColorAnimation->setTargetObject(&mColorEffect);
mColorAnimation->setPropertyName("strength");

mColorAnimation->setDuration(200);
mColorAnimation->setStartvValue(1.0);
mColorAnimation->setEndvValue(0.0);

connect(mColorAnimation, &QPropertyAnimation::finished, [this]

{
1)

updateThumbnail();
}

We connect a lambda function to the finished signal of the color animation. This lambda
simply updates the thumbnail. You can now start your application again and load a picture.
You should see that we not only animate the sequential blue flash, but also the thumbnail
update.

Summary

In this chapter, you defined a Filter interface in your own SDK. Your filters are now plugins.
You know how to create and load a new plugin, so your application is now modular and can
be easily extended. We have also enhanced the application with the Qt Animation Framework.
You know how to animate the position, the color, and the opacity of any Qwidget,

using QGraphicsEffect if necessary. We created a sequential animation that starts three
animations one by one with QSequentialAnimationGroup.

In the next chapter, we will talk about a big subject: threading. The Qt framework can help you
build a robust and reliable multithreading application. To illustrate the chapter, we will create
a Mandelbrot fractal generator using threadpools.

Chapter 9. Keeping Your Sanity with
Multithreading

In previous chapters, we managed to always write code without ever relying on threads. It is
time to face the beast and truly understand how threading works in Qt. In this chapter, you will
develop a multithreaded application that displays a Mandelbrot fractal. It is a heavy
computational process that will bring tears to your CPU cores.

In the example project, the user can see the Mandelbrot fractal, zoom in the picture, and pan
around to discover the magic of fractals.

The chapter covers the following topics:

e Deep understanding of the QThread framework

Overview of all the available threading technologies in Qt

Using a QThreadPool class to dispatch jobs and aggregate the results
How to synchronize threads and minimize sharing states

Low-level drawing to optimize the performances

Common threading pitfalls and challenges

Discovering QThread

Qt provides a sophisticated threading system. We assume you already know threading basics
and the associated issues (deadlocks, threads synchronization, resource sharing, and so on)
and we will focus on how Qt implements it.

The QThread is the central class of the Qt threading system. A QThread instance manages one
thread of execution within the program.

You can subclass QThread to override the run() function, which will be executed in
the QThread framework. Here is how you can create and start a QThread:

QThread thread;
thread.start();

The start() function calling will automatically call the run() function of the thread and emit
the started() signal. Only at this point will the new thread of execution be created.
When run() is completed, the thread object will emit the finished() signal.

This brings us to a fundamental aspect of QThread: it works seamlessly with the signal/slot
mechanism. Qt is an event-driven framework, where a main event loop (or the GUI loop)
processes events (user input, graphical, and so on) to refresh the UI.

Each QThread comes with its own event loop that can process events outside the main loop. If
not overridden, run() calls the QThread: :exec() function, which starts the thread object's
event loop. You can also override QThread and call yourself exec(), like so:

class Thread : public QThread

{
Q_OBJECT

protected:
void run()
{
Object* myObject = new Object();
connect(myObject, &Object::started,
this, &Thread::doWork);
exec();

}

private slots:
void dowork();

+;

The started()signal will be processed by the Thread event loop only upon the exec() call. It
will block and wait until QThread::exit() is called.

A crucial thing to note is that a thread event loop delivers events for all Qobjects that are
living in that thread. This includes all objects created in that thread or moved to that thread.
This is referred to as the thread affinity of an object. Let's see an example:

class Thread : public QThread

{

Thread()

mObject(new QObject())
{
o}

private :

QObject* myObject;
3

// Somewhere in MainWindow
Thread thread;
thread.start();

In this snippet, myobject is constructed in Thread class's constructor, which is created in turn
in Mainwindow. At this point, thread is living in the GUI thread. Hence, myoObject is also living
in the GUI thread.

Note

An object created before a QCoreApplication object has no thread affinity. As a consequence,
no event will be dispatched to it.

It is great to be able to handle signals and slots in our own QThread, but how can we control
signals across multiple threads? A classic example is a long-running process that is executed
in a separate thread that has to notify the Ul to update some state:

class Thread : public QThread

{
Q_OBJECT
void run() {
// long running operation
emit result("I <3 threads");
}
signals:
void result(QString data);
3

// Somewhere in MainWindow

Thread* thread = new Thread(this);

connect(thread, &Thread::result, this, &MainWindow::handleResult);
connect(thread, &Thread::finished, thread, &QObject::deletelLater);
thread->start();

Intuitively, we assume that the first connect sends the signal across multiple threads (to have
results available in Mainwindow: :handleResult), whereas the second connect should work on

thread's event loop only.

Fortunately, this is the case due to a default argument in the connect () function signature: the
connection type. Let's see the complete signature:

QObject: :connect(
const QObject *sender, const char *signal,
const QObject *receiver, const char *method,
Qt::ConnectionType type = Qt::AutoConnection)

The type keyword takes Qt: :AutoConnection as a default value. Let's review the possible
values of the Qt::ConectionType enum as the official Qt documentation states:

e Qt::AutoConnection: If the receiver lives in the thread that emits the
signal, Qt: :DirectConnection is used. Otherwise, Qt: :QueuedConnection is used. The
connection type is determined when the signal is emitted.

e Qt::DirectConnection: This slotis invoked immediately when the signal is emitted. The
slot is executed in the signaling thread.

e Qt::QueuedConnection: This slotis invoked when control returns to the event loop of the
receiver's thread. The slot is executed in the receiver's thread.

e Qt::BlockingQueuedConnection: This is the same as Qt::QueuedConnection, except that
the signaling thread blocks until the slot returns. This connection must not be used if the
receiver lives in the signaling thread, or else the application will deadlock.

e Qt::UniqueConnection: This is a flag that can be combined with any one of the previous
connection types, using a bitwise OR. When Qt: :UniqueConnection is
set, QObject: :connect () will fail if the connection already exists (that is, if the same
signal is already connected to the same slot for the same pair of objects).

When using Qt: :AutoConnection, the final ConnectionType is resolved only when the signal
is effectively emitted. If you look again at our example, at the first connect():

connect(thread, &Thread::result,
this, &MainWindow::handleResult);

When result() is emitted, Qt will look at the handleResult() thread affinity, which is
different from the thread affinity of the result() signal. The thread object is living

in Mainwindow (remember that it has been created in Mainwindow), but the result() signal has
been emitted in the run() function, which is running in a different thread of execution. As a
result, a Qt: :QueuedConnection slot will be used.

We can now take a look at the second connect():

connect(thread, &Thread::finished, thread, &QObject::deletelLater);

Here, deleteLater () and finished() live in the same thread; therefore,

a Qt::DirectConnection slot will be used.

It is crucial that you understand that Qt does not care about the emitting object thread affinity,
it looks only at the signal "context of execution".

Loaded with this knowledge, we can take another look at our first QThread class example to
have a full understanding of this system:

class Thread : public QThread

{
Q_OBJECT

protected:
void run()

{
Object* myObject = new Object();
connect(myObject, &Object::started,
this, &Thread::doWork);
exec();

}

private slots:
void dowork();

+;

When the Object: :started() function is emitted, a Qt: :QueuedConnection slot will be used.
This is where your brain freezes. The Thread: :dowork () function lives in another thread
than Object: :started(), which has been created in run(). If Thread has been instantiated in
the UI thread, this is where dowork () would have belonged.

This system is powerful, but complex. To make things simpler, Qt favors the worker model. It
splits the threading plumbing from the real processing. Here is an example:

class Worker : public QObject

{
Q _OBJECT
public slots:
void doWork()

{
}

signals:
void result(QString data);

emit result("workers are the best");

+;

// Somewhere in MainWindow

QThread* thread = new Thread(this);
Worker* worker = new Worker();
worker ->moveToThread(thread);

connect(thread, &QThread::finished,
worker, &QObject::deletelLater);

connect(this, &MainWindow::startWork,
worker, &Worker::dowork);

connect(worker, &Worker::resultReady,
this, handleResult);

thread->start();
// later on, to stop the thread

thread->quit();
thread->wait();

We start by creating a worker class that has:

o A dowork() slot that will have the content of our old QThread: :run()
e A result() signal that will emit the resulting data

Next in the Mainwindow class, we create a simple thread object and an instance of Worker.
The worker ->moveToThread(thread) is where the magic happens. It changes the affinity of
the worker object. The worker now lives in the thread object.

You can only push an object from your current thread to another thread. Conversely, you
cannot pull an object that lives in another thread. You cannot change the thread affinity of an
object if the object does not live in your thread. Once thread->start() is executed, we cannot
call worker ->moveToThread(this) unless we are doing it from this new thread.

After that, we do three connect():

1. We handle the worker life cycle by reaping it when the thread is finished. This signal will

use a Qt::DirectConnection.

2. We start the worker : :dowWork () upon a possible Ul event. This signal will use

a Qt::QueuedConnection.

3. We process the resulting data in the Ul thread with handleResult(). This signal will use

a Qt::QueuedConnection.

To sum up, QThread can be either subclassed or used in conjunction with a worker class.
Generally, the worker approach is favored because it separates more cleanly the threading
affinity plumbing from the actual operation you want to execute in parallel.

Flying over Qt multithreading technologies

Built upon QThread, several threading technologies are available in Qt. First, to synchronize
threads, the usual approach is to use a mutual exclusion (mutex) to have a mutual exclusion
for a given resource. Qt provides it by means of the QMutex class. Its usage is straightforward:

QMutex mutex;
int number = 1;

mutex.lock();
number *= 2;
mutex.unlock();

From the mutex.lock () instruction, any other thread trying to lock the mutex will wait
until mutex.unlock() has been called.

The locking/unlocking mechanism is error-prone in complex code. You can easily forget to
unlock a mutex in a specific exit condition, causing a deadlock. To simplify this situation, Qt
provides a QMutexLocker that should be used where the QMutex needs to be locked:

QMutex mutex;
QMutexLocker locker (&mutex);

int number = 1;

number *= 2;

if (overlyComplicatedCondition) {
return;

} else if (notSoSimple) {
return;

}

The mutex is locked when the locker object is created and will be unlocked when the 1ocker
object is destroyed; for example, when it goes out of scope. This is the case for every
condition we stated where the return statement appears. It makes the code simpler and more
readable.

You may need to create and destroy threads frequently, as managing QThread instances by
hand can become cumbersome. For this, you can use the QThreadPool class, which manages a
pool of reusable QThreads.

To execute code within threads managed by a QThreadPool class, you will use a pattern very
close to the worker we covered earlier. The main difference is that the processing class has to
extend the QRunnable class. Here is how it looks:

class Job : public QRunnable
{

void run()

// long running operation

}

Job* job = new Job();
QThreadPool::globalInstance()->start(job);

Just override the run() function and ask QThreadPool to execute your job in a separate thread.
The QThreadPool::globalInstance() is a static helper function that gives you access to an
application global instance. You can create your own QThreadPool if you need to have finer
control over the QThreadPool life cycle.

Note that the QThreadPool: :start() function takes the ownership of job and will
automatically delete it when run() finishes. Watch out, this does not change the thread affinity
like QObject: :moveToThread() does with workers! A QRunnable class cannot be reused, it has
to be a freshly baked instance.

If you fire up several jobs, QThreadPool automatically allocates the ideal number of threads
based on the core count of your CPU. The maximum number of threads that the QThreadPool
class can start can be retrieved with QThreadPool : :maxThreadCount ().

Tip
If you need to manage threads by hand, but you want to base it on the number of cores of your

CPU, you can use the handy static function, QThreadPool::idealThreadCount().

Another approach to multi-threaded development is available with the Qt Concurrent
framework. It is a higher-level API that avoids the use of mutexes/lock/wait conditions and
promotes the distribution of the processing among CPU cores.

Qt Concurrent relies on the QFuture class to execute a function and expects a result later on:

void longRunningFunction();
QFuture<void> future = QtConcurrent::run(longRunningFunction);

The longRunningFunction() function will be executed in a separated thread obtained from
the default QThreadPool class.

To pass parameters to a QFuture class and retrieve the result of the operation, use the
following code:

QImage processGrayscale(QImage& image);
QImage lenna;

QFuture<QImage> future = QtConcurrent::run(processGrayscale,
lenna);

QImage grayscalelLenna = future.result();

Here we pass lenna as a parameter to the processGrayscale() function. Because we want

a QImage as a result, we declare the QFuture class with the template type, QImage. After

that, future.result() blocks the current thread and waits for the operation to be completed to
return the final QImage.

To avoid blocking, QFuturewatcher comes to the rescue:

QFuturewWatcher<QImage> watcher;
connect(&watcher, &QFuturewWatcher::finished,
this, &QObject::handleGrayscale);

QImage processGrayscale(QImage& image);

QImage lenna;

QFuture<QImage> future = QtConcurrent::run(processImage, lenna);
watcher .setFuture(future);

We start by declaring a QFuturewatcher class with the template argument matching the one
used for QFuture. Then simply connect the QFuturewatcher : :finished signal to the slot you
want to be called when the operation has been completed.

The last step is to tell the watcher object to watch the future object
with watcher.setFuture(future). This statement looks almost like it comes from a science-
fiction movie.

Qt Concurrent also provides a MapReduce and FilterReduce implementation. The MapReduce
is a programming model that basically does two things:
e Maps or distributes the processing of the dataset among multiple cores of the CPU

e Reduces or aggregates the results to provide it to the caller

This technique was first promoted by Google to be able to process huge datasets within a
cluster of CPUs.

Here is an example of a simple map operation:
QList images = ...;

QImage processGrayscale(QImage& image);
QFuture<void> future = QtConcurrent::mapped(
images, processGrayscale);

Instead of QtConcurrent::run(), we use the mapped function that takes a list and the function
to apply to each element in a different thread each time. The images list is modified in place,
so there is no need to declare QFuture with a template type.

The operation can be made to block by using QtConcurrent::blockingMapped() instead
of QtConcurrent: :mapped().

Finally, a MapReduce operation looks like this:
QList images = ...;

QImage processGrayscale(QImage& image);
void combineImage(QImage& finalImage, const QImage& inputImage);

QFuture<void> future = QtConcurrent::mappedReduced(
images,
processGrayscale,
combineImage);

Here we added a combineImage() function that will be called for each result returned by the
map function, processGrayscale(). It will merge the intermediate data, inputImage, into
the finalImage. This function is called only once at a time per thread, so there is no need to
use a mutex to lock the result variable.

The FilterReduce follows exactly the same pattern; the filter function simply allows you to
filter the input list instead of transforming it.

Architecting the Mandelbrot project

The example project of this chapter is the multi-threaded calculation of a Mandelbrot fractal.
The user will see the fractal and will be able to pan and zoom in that window.

Before diving into the code, we have to have a broad understanding of a fractal and how we
are going to achieve its calculation.

The Mandelbrot fractal is a numerical set that works with complex numbers (a + bi). Each
pixel is associated with a value calculated through iterations. If this iterated value diverges
towards infinity then the pixel is out of the Mandelbrot set. If not, then the pixel is inside the
Mandelbrot set. A visual representation of the Mandelbrot fractal looks like this:

Every black pixel in this image tends to diverge to an infinite value, whereas white pixels are
bounded to a finite value. The white pixels belong to the Mandelbrot set.

What makes it interesting from a multi-threaded perspective, is that to determine if the pixel
belongs or not to the Mandelbrot set, we have to iterate on a formula to be able to hypothesize
its divergence or not. The more iterations we perform, the safer we are in claiming "yes, this
pixel is in the Mandelbrot set, it is a white pixel".

Even more fun, we can take any value in the graphical plot and always apply the Mandelbrot
formula to deduce if the pixel should be black or white. As a consequence, you can zoom
endlessly inside the graphics of your fractal. There are only two main limitations:

e The power of your CPU hinders the picture generation speed.

e The floating number precision of your CPU architecture limits the zoom. If you keep
zooming, you will get visual artifacts because the scale factor can only handle 15 to 17
significant digits.

The architecture of the application has to be carefully designed. Because we are working with
threads, it is very easy to cause deadlock, starve threads, or even worse, freeze the UL.

We really want to maximize the use of the CPU. To do so, we will execute as many threads as
possible on each core. Each thread will be responsible for calculating a part of the
Mandelbrot set before giving back its result.

The architecture of the application is as follows:

Job 1 Thread

Start Job line 1

/

@ UI Thread R / Calculator Thread \ Post JobResult

Request picture

,/’/_—_ Sia Job 2 Thread
MandelbrotWidget MandelbrotCalculator — | Yob e 2
Post JobResult
‘h__\-‘_‘_____-___ £
Post picture lines \
Start
Job N Thread B

Post JobResult Job line N

The application is divided into three parts:

e Mandelbrotwidget: This requests a picture to display. It handles the drawing and the user
interaction. This object lives in the UI thread.

e MandelbrotCalculator: This handles the picture requests and aggregates the
resulting JobResults before sending it back to Mandelbrotwidget. This object lives in its
own thread.

e Job: This calculates a part of the final picture before transmitting the result back
to MandelbrotCalculator. Each job lives in its own thread.

The MandelbrotCalculator thread will use a QThreadPool class to dispatch jobs in their own
thread. This will scale perfectly according to your CPU cores. Each job will calculate a single
line of the final picture before sending it back to MandelbrotCalculator through a JobResult
object.

The MandelbrotCalculator thread is really the orchestrator of the calculation. Consider a
user that zooms in the picture before the calculation is complete; Mandelbrotwidget will
request a new picture to MandelbrotCalculator, which in turn has to cancel all the current
jobs before dispatching new jobs.

We will add a last constraint to this project: it has to be mutex free. Mutexes are very
convenient tools, but they force threads to wait for each other and are error-prone. To do this,
we will rely on multiple concepts and technologies provided by Qt: multi-threaded
signal/slots, implicit sharing, and so on.

By minimizing the sharing state between our threads, we will be able to let them execute as
fast as they possibly can. That is why we are here, to burn some CPU cores, right?

Now that the broad picture is clearer, we can start the implementation. Create a new Qt
Widget Application project named ch@9-mandelbrot-threadpool. Remember to add
the CONFIG += c++14 to the .pro file.

Defining a Job class with QRunnable

Let's dive into the project's core. To speed up the Mandelbrot picture generation, we will split
the whole computation into multiple jobs. A Job is a request of a task. Depending on your
CPU architecture, several jobs will be executed simultaneously. A Job class produces

a JobResult function containing result values. In our project, a Job class generates values for
one line of the complete picture. For example, an image resolution of 800 x 600 requires 600
jobs, each one generating 800 values.

Please create a C++ header file called JobResult.h:

#include <QSize>
#include <QVector>
#include <QPointF>

struct JobResult

{
JobResult(int valueCount = 1)

areaSize(0, 0),
pixelPositionY(0),
moveOffset(0, 0),
scaleFactor(0.0),
values(valueCount)

{
}

QSize areaSize;

int pixelPositionY;
QPointF moveOffset;
double scaleFactor;

Qvector<int> values;
s
This structure contains two parts:
e Input data (areaSize, pixelPositiony, ...)
e Result values generated by a Job class
We can now create the Job class itself. Create a C++ class Job using the next snippet of Job.h
for the content:

#include <QObject>
#include <QRunnable>

#include "JobResult.h"

class Job : public QObject, public QRunnable
{

Q OBJECT
public:

Job(QObject *parent = 0);

void run() override;

+;

This Job class is a QRunnable, so we can override run() to implement the Mandelbrot picture
algorithm. As you can see, Job also inherits from Qobject, allowing us to use the signal/slot
feature of Qt. The algorithm requires some input data. Update your Job.h like this:

#include <QObject>
#include <QRunnable>
#include <QPointF>
#include <QSize>
#include <QAtomicInteger>

class Job : public QObject, public QRunnable

{
Q OBJECT

public:
Job(QObject *parent = 0);
void run() override;

void setPixelPositionY(int value);

void setMoveOffset(const QPointF& value);
void setScaleFactor (double value);

void setAreaSize(const QSize& value);
void setIterationMax(int value);

private:
int mPixelPositionY;
QPointF mMoveOffset;
double mScaleFactor;
QSize mAreaSize;
int mIterationMax;

+;

Let's talk about these variables:

e The mPixelPositionY variable is the picture height index. Because each Job generates
data only for one picture line, we need this information.

e The mMoveOffset variable is the Mandelbrot origin offset. The user can pan the picture,
so the origin will not always be (0, 0).

e The mScaleFactor variable is the Mandelbrot scale value. The user can also zoom into
the picture.

e The mAreasize variable is the final picture size in a pixel.

e The mIterationMax variable is the count of iterations allowed to determine the
Mandelbrot result for one pixel.

We can now add a signal, jobCompleted(), and the abort feature to Job.h:

#include <QObject>
#include <QRunnable>
#include <QPointF>
#include <QSize>
#include <QAtomicInteger>

#include "JobResult.h"
class Job : public QObject, public QRunnable

{
Q OBJECT
public:

signals:
void jobCompleted(JobResult jobResult);

public slots:
void abort();

private:
QAtomicInteger<bool> mAbort;

+;

The jobCompleted() signal will be emitted when the algorithm is over. The jobResult
parameter contains result values. The abort() slot will allow us to stop the job updating

the mIsAbort flag value. Notice that mAbort is not a classic bool, but a QAtomicInteger<bool>.
This Qt cross-platform type allows us to perform atomic operations without interruption. You
could use a mutex or another synchronization mechanism to do the job, but using an atomic
variable is a fast way to safely update and access a variable from different threads.

It is time to switch to the implementation part with Job.cpp. Here is the Job class's
constructor:

#include "Job.h"

Job::Job(Q0bject* parent)
QObject(parent),
mAbort(false),
mPixelPositionY(0),
mMoveOffset(0.0, 0.0),
mScaleFactor (0.0),
mAreaSize(0, 0),
mIterationMax (1)

{
}
This is a classic initialization; do not forget to call the Qobject constructor.

We can now implement the run() function:

void Job::run()

{
JobResult jobResult(mAreaSize.width());
jobResult.areaSize = mAreaSize;
jobResult.pixelPositionY = mPixelPositionY;
jobResult.moveOffset = mMoveOffset;
jobResult.scaleFactor = mScaleFactor;

}

In this first part, we initialize a JobResult variable. The width of the area size is used to
construct JobResult::values as a QVector with the correct initial size. Other input data is
copied from Job to JobResult to let the receiver of JobResult get the result with the context

input data.

Then we can update the run() function with the Mandelbrot algorithm:

void Job::run()

{

double imageHalfWidth = mAreaSize.width() / 2.0;
double imageHalfHeight = mAreaSize.height() / 2.0;
for (int imageX = 0; imageX < mAreaSize.width(); ++imageX) {
int iteration = 0;
double x0 = (imageX - imageHalfwidth)
* mScaleFactor + mMoveOffset.x();
(mPixelPositionY - imageHalfHeight)
* mScaleFactor - mMoveOffset.y();
0.0,
0.0,

double yoO

double x
double y
do {
if (mAbort.load()) {
return;

}

double nextX = (x * x) - (y * y) + x0;
y = 2.0 * x *y+ yo0;

X = nextX;

iteration++;

} while(iteration < mIterationMax
&& (x * x) + (y *y) < 4.0);

jobResult.values[imageX] = iteration;

}

emit jobCompleted(jobResult);
}

The Mandelbrot algorithm itself is beyond the scope of this book. But you have to understand
the main purpose of this run() function. Let's break it down:

e The for loop iterates over all x positions of pixels over one line

¢ The pixel position is converted into complex plane coordinates

o If the trial count exceeds the maximum authorized iteration, the algorithm ends
with iteration to the mIterationMax value

¢ If the Mandelbrot check condition is true, the algorithm ends with iteration <
mIterationMax

¢ In any case, for each pixel, the iteration count is stored in values of JobResult

e Finally, the jobCompleted() signal is emitted with result values of this algorithm

e We perform an atomic read with mAbort.load(); notice that if the return value is true,
the algorithm is aborted and nothing is emitted

The last function is the abort() slot:

void Job::abort()
{

}

mAbort.store(true);

This method performs an atomic write of the value, true. The atomic mechanism ensures that
we can call abort() from multiple threads without disrupting the mAbort read in the run()
function.

In our case, run() lives in the thread affected by the QThreadPool (we will cover it soon),
while the abort() slot will be called in the MandelbrotCalculator thread context.

You might want to secure the operations on mAbort with a QMutex. However, keep in mind that
locking and unlocking a mutex can become a costly operation if you do it often. Using

a QAtomicInteger class here presents only the advantages: the access to mAbort is thread-safe
and we avoid an expensive lock.

The end of the Job implementation only contains setter functions. Please refer to the complete
source code if you have any doubt.

Using QThreadPool in
MandelbrotCalculator

Now that our Job class is ready to be used, we need to create a class to manage the jobs.
Please create a new class, MandelbrotCalculator. Let's see what we need in the
file, MandelbrotCalculator .h:

#include <QObject>
#include <QSize>
#include <QPointF>
#include <QElapsedTimer>
#include <QList>

#include "JobResult.h"
class Job;
class MandelbrotCalculator : public QObject

{
Q_OBJECT

public:
explicit MandelbrotCalculator(QObject *parent = 0);
void init(QSize imageSize);

private:
QPointF mMoveOffset;
double mScaleFactor;
QSize mAreaSize;
int mIterationMax;
int mReceivedJobResults;
QList<JobResult> mJobResults;
QElapsedTimer mTimer;

+;

We have already discussed mMoveOf fset, mScaleFactor, mAreaSize, and mIterationMax in the
previous section. We also have some new variables:

e The mReceivedJobResults variable is the count of the JobResult received, which was
sent by the jobs

e The mJobResults variable is a list that contains received JobResult

e The mTimer variable calculates the elapsed time to run all jobs for a requested picture

Now that you get a better picture of all member variables, we can add the signals, slots, and
private methods. Update your MandelbrotCalculator .h file:

class MandelbrotCalculator : public QObject
{

Q OBJECT

public:
explicit MandelbrotCalculator(QObject *parent = 0);
void init(QSize imageSize);

signals:
void pictureLinesGenerated(QList<JobResult> jobResults);
void abortAllJobs();

public slots:
void generatePicture(QSize areaSize, QPointF moveOffset,
double scaleFactor, int iterationMax);
void process(JobResult jobResult);

private:
Job* createJob(int pixelPositionY);
void clearJobs();

private:
3

Here are the roles of these:

e generatePicture(): This slotis used by the caller to request a new Mandelbrot picture.
This function prepares and starts jobs.

e process(): This slot handles results generated by the jobs.

e pictureLinesGenerated(): This signal is regularly triggered to dispatch results.

e abortAllJobs(): This signal is used to abort all active jobs.

e createJob(): This is a helper function to create and configure a new job.

e clearJobs(): This slot removes queued jobs and aborts active jobs.

The header file is completed and we can now perform the implementation. Here is the
beginning of the MandelbrotCalculator.cpp implementation:

#include <QDebug>
#include <QThreadPool>

#include "Job.h"
const int JOB_RESULT_THRESHOLD = 10,

MandelbrotCalculator::MandelbrotCalculator (QObject *parent)
: QObject(parent),
mMoveOffset(0.0, 0.0),
mScaleFactor (0.005),
mAreaSize(0, 0),
mIterationMax(10),
mReceivedJobResults(0),
mJobResults(),
mTimer ()

{
}

As always, we are using the initializer list with default values for our member variables. The
role of JOB_RESULT_THRESHOLD will be covered soon. Here is the generatePicture() slot:

void MandelbrotCalculator::generatePicture(QSize areaSize, QPointF moveOffset,
double scaleFactor, int iterationMax)

{
if (areaSize.isEmpty()) {

return;
}

mTimer.start();
clearJobs();

mAreaSize = areaSize;
mMoveOffset = moveOffset;
mScaleFactor = scaleFactor;
mIterationMax = iterationMax;

for(int pixelPositionY = 0;
pixelPositionY < mAreaSize.height(); pixelPositionY++) {
QThreadPool::globalInstance()->
start(createdob(pixelPositionY));

}

If the areasSize dimension is 0x0, we have nothing to do. If the request is valid, we can

start mTimer to track the whole generation duration. Each new picture generation will first
cancel existing jobs by calling clearJobs(). Then we set our member variables with the ones
provided. Finally, we create a new Job class for each vertical picture line. The createJdob ()
function that returns a Job* value will be covered soon.

The QThreadPool::globalInstance() is a static function that gives us the optimal global
thread pool depending on the core count of our CPU. Even if we call start() for all the Job
classes, only the firsts starts immediately. Others are added to the pool queue waiting for an
available thread.

Let's see now how a Job class is created with the createJob () function:

Job* MandelbrotCalculator::createJob(int pixelPositionY)

{
Job* job = new Job();

job->setPixelPositionY(pixelPositionY);
job->setMoveOf fset(mMoveOffset);
job->setScaleFactor (mScaleFactor);
job->setAreaSize(mAreaSize);
job->setIterationMax(mIterationMax);

connect(this, &MandelbrotCalculator::abortAllJobs,
job, &Job::abort);

connect(job, &Job::jobCompleted,
this, &MandelbrotCalculator::process);

return job;

}

As you can see, the jobs are allocated on the heap. This operation takes some time in the

MandelbrotCalculator thread. But the results are worth it; the overhead is being compensated

by the multi-threading system. Notice that when we call QThreadPool::start(), the thread
pool takes ownership of the job. As a consequence, it will be deleted by the thread pool
when Job: :run() ends. We set the input data of the Job class required by the Mandelbrot
algorithm.
Then two connections are performed:

e Emitting our abortAllJobs() signal will call the abort() slot of all jobs

e Our process() slotis executed each time a Job completes its task

Finally, the Job pointer is returned to the caller, in our case, the generatePicture() slot.

The last helper function is clearJobs(). Add it to your MandelbrotCalculator .cpp:

void MandelbrotCalculator::clearJobs()

{
mReceivedJobResults = 0;
emit abortAllJobs();
QThreadPool::globalInstance()->clear();
}

The counter of received job results is reset. We emit our signal to abort all active jobs.
Finally, we remove queued jobs waiting for an available thread in the thread pool.

The last function of this class is process(), and is maybe the most important function. Update

your code with the following snippet:

void MandelbrotCalculator::process(JobResult jobResult)

{
if (jobResult.areaSize != mAreaSize ||
jobResult.moveOffset != mMoveOffset ||
jobResult.scaleFactor != mScaleFactor) {
return;
}

mReceivedJobResults++;
mJobResults.append(jobResult);

if (mJobResults.size() >= JOB_RESULT_THRESHOLD ||
mReceivedJobResults == mAreaSize.height()) {
emit pictureLinesGenerated(mJobResults);
mJobResults.clear();

}

if (mReceivedJobResults == mAreaSize.height()) {
gbebug() << "Generated in " << mTimer.elapsed() << " ms";
}

}

This slot will be called each time a job completes its task. The first thing to check is that the
current JobResult is still valid with the current input data. When a new picture is requested,
we clear the jobs queue and abort the active jobs. However, if an old JobResult is still sent to
this process() slot, we must ignore it.

After that, we can increment the mReceivedJobResults counter and append this JobResult to
our member queue, mJobResults. The calculator waits to get JOB_RESULT_THRESHOLD (that is,
10) results before dispatching them by emitting the pictureLinesGenerated() signal. You can
try to tweak this value with caution:

e A lower value, for example 1, will dispatch each line of data to the widget as soon as the
calculator gets it. But the widget will be slower than the calculator to handle each line.
Moreover, you will flood the widget event loop.

e A higher value relieves the widget event loop. But the user will wait longer before seeing
something happening. A continuous partial frame update gives a better user experience.

Also notice that when the event is dispatched, the QList class with the job result is sent by
copy. But Qt performs implicit sharing with QList, so we only send a shallow copy not a
costly deep copy. Then we clear the current QList of the calculator.

Finally, if the processed JobResult is the last one in the area, we display a debug message
with the elapsed time since the user call, generatePicture().

Tip
Qt tip

You can set the thread count used by the QThreadPool class with setMaxThreadCount (x)
where x is the thread count.

Displaying the fractal with
MandelbrotWidget

Here we are, the Mandelbrot algorithm is done and the multi-threading system is ready to
compute complex fractals over all your CPU cores. We can now create the widget that will
convert all JobResult to display a pretty picture. Create a new C++ class

called Mandelbrotwidget. For this widget, we will handle the painting ourselves. Thus, we do
not need any .uiQt Designer Form file. Let's begin with the Mandelbrotwidget.h file:

#include <memory>

#include <Qwidget>
#include <QPoint>
#include <QThread>
#include <QList>

#include "MandelbrotCalculator.h"
class QResizeEvent;

class MandelbrotWidget : public Qwidget

{
Q_OBJECT

public:
explicit MandelbrotWidget(Qwidget *parent = 0);
~Mandelbrotwidget();

private:
MandelbrotCalculator mMandelbrotCalculator;
QThread mThreadCalculator;
double mScaleFactor;
QPoint mLastMouseMovePosition;
QPointF mMoveOffset;
QSize mAreaSize;
int mIterationMax;
std::unique_ptr<QImage> mImage;

+;

You should recognize some known variable names such as
mScaleFactor, mMoveOf fset, mAreaSize, or mIterationMax. We have already covered them in
the JobResult and Job implementation. Here are the real new ones:

e The mMandelbrotCalculator variable is our multi-threaded Job manager. The widget
will do requests to it and wait for results.

e The mThreadCalculator variable allows the Mandelbrot calculator to run in its own
thread.

e The mLastMouseMovePosition variable is used by the widget to handle user events for the
pan feature.

e The mImage variable is the current picture displayed by the widget. It is a unique_ptr
pointer, so Mandelbrotwidget is the owner of mImage.

We can now add the functions. Update your code like this:

class MandelbrotWidget : public Qwidget
{

public slots:
void processJobResults(QList<JobResult> jobResults);

signals:
void requestPicture(QSize areaSize, QPointF moveOffset, double scaleFactor,
int iterationMax);

protected:
void paintEvent(QPaintEvent*) override;
void resizeEvent(QResizeEvent* event) override;
void wheelEvent(QwheelEvent* event) override;
void mousePressEvent(QMouseEvent* event) override;
void mouseMoveEvent(QMouseEvent* event) override;

private:
QRgb generateColorFromIteration(int iteration);

private:
3

Before we dive into the implementation, let's talk about these functions:

e The processJobResults() function will handle the JobResult list dispatched
by MandelbrotCalculator.

e The requestPicture() signal is emitted each time the user changes the input data (offset,
scale, or area size).

e The paintEvent() function draws the widget with the current mImage.

e The resizeEvent() function resizes the Mandelbrot area size when the user resizes the
window.

e The wheelEvent() function handles the user mouse wheel event to apply a scale factor.

e The mousePressevent () function and mouseMoveEvent () retrieve user mouse events to
move the Mandelbrot picture.

e The generateColorFromIteration() is a helper function to colorize the Mandelbrot
picture. The iteration value by pixel is converted into a color value.

We can now implement the Mandelbrotwidget class. Here is the beginning of
the Mandelbrotwidget.cpp file:

#include "MandelbrotWidget.h"

#include <QResizeEvent>
#include <QImage>
#include <QPainter>
#include <QtMath>

const int ITERATION_MAX = 4000;
const double DEFAULT_SCALE = 0.005;

const double DEFAULT_OFFSET_X
const double DEFAULT_OFFSET_Y

-0.74364390249094747,
0.13182589977450967,

MandelbrotwWidget: :MandelbrotWidget(Qwidget *parent)

}

At the top of the snippet, we set some constant default values. Feel free to tweak these values if
you want a different view when you start the application. The first thing the constructor does
is to change the thread affinity of the mMandelbrotcalculator class. In this way, processing
performed by the calculator (creating and starting jobs, aggregating job results, and clearing
jobs) does not disturb the Ul thread. Then we perform connections with the signal and slot

of MandelbrotCalculator. Because the widget and the calculator have a different thread
affinity, the connection will be automatically a Qt: :QueuedConnection slot. Finally, we can

Qwidget(parent),

mMandelbrotCalculator(),

mThreadCalculator (this),

mScaleFactor (DEFAULT_SCALE),
mLastMouseMovePosition(),

mMoveOf fset (DEFAULT_OFFSET_X, DEFAULT_OFFSET_Y),
mAreaSize(),

mIterationMax (ITERATION_MAX)

mMandelbrotCalculator.moveToThread(&mThreadCalculator);

connect(this, &MandelbrotWidget::requestPicture,
&mMandelbrotCalculator,
&MandelbrotCalculator::generatePicture);

connect (&mMandelbrotCalculator,
&MandelbrotCalculator::pictureLinesGenerated,
this, &MandelbrotWidget::processJobResults);

mThreadCalculator.start();

start the thread of mThreadCalculator. We can now add the destructor:

MandelbrotwWidget::~MandelbrotWidget()

{

mThreadCalculator.quit();

mThreadCalculator . .wait(1000);

if (!mThreadCalculator.isFinished()) {
mThreadCalculator.terminate();

}

We need to request the calculator thread to quit. When the calculator thread event loop handles
our request, the thread will return a code 0. We wait 1,000 ms for the thread to end. We can
continue this implementation with all the cases that request a new picture. Here is the
resizekvent() slot:

void MandelbrotwWidget::resizeEvent(QResizeEvent* event)

{

mAreaSize = event->size();

mImage = std::make_unique<QImage>(mAreaSize,
QImage::Format_RGB32);
mImage->fill(Qt::black);

emit requestPicture(mAreaSize, mMoveOffset, mScaleFactor,
mIterationMax);

We update mAreaSize with the new widget size. Then, a new black QImage is created with the
correct dimensions. Finally, we request a picture computation to MandelbrotCalculator. Let's
see how the mouse wheel is handled:

void Mandelbrotwidget::wheelEvent(QwWheelEvent* event)

{
int delta = event->delta();
mScaleFactor *= qPow(0.75, delta / 120.0);
emit requestPicture(mAreaSize, mMoveOffset, mScaleFactor,
mIterationMax);
}

The mouse wheel value can be retrieved from QwheelEvent::delta(). We use a power
function to apply a coherent value on mScaleFactor and we request an updated picture. We can
now implement the pan feature:

void MandelbrotwWidget::mousePressEvent(QMouseEvent* event)

{
if (event->buttons() & Qt::LeftButton) {

mLastMouseMovePosition = event->pos();

}

The first function stores the mouse position where the user begins the move gesture. Then the
next function will use mLastMouseMovePosition to create an offset:

void MandelbrotwWidget::mouseMoveEvent(QMouseEvent* event)
{
if (event->buttons() & Qt::LeftButton) {
QPointF offset = event->pos() - mLastMouseMovePosition;
mLastMouseMovePosition = event->pos();

of fset.setY(-offset.y());

mMoveOffset += offset * mScaleFactor;

emit requestPicture(mAreaSize, mMoveOffset, mScaleFactor,
mIterationMax);

}

The difference between the new and the old mouse position gives us the pan offset. Notice that
we invert a y-axis value because the mouse event is in a top-left referential, whereas the
Mandelbrot algorithm relies on a bottom-left referential. Finally, we request a picture with
updated input values. We covered all the user events that emit a requestPicture() signal. Let's
see now how we handle JobResult dispatched by MandelbrotCalculator:

void MandelbrotwWidget::processJobResults(QList<JobResult> jobResults)

{
int yMin = height();
int yMax = 0;

for(JobResult& jobResult : jobResults) {

if (mImage->size() != jobResult.areaSize) {
continue;

}

int y = jobResult.pixelPositionY;
QRgb* scanLine =
reinterpret_cast<QRgb*>(mImage->scanLine(y));

for (int x = 0; X < mAreaSize.width(); ++x) {
scanLine[x] =
generateColorFromIteration(jobResult.values[x]);

}

if (y < yMin) {
yMin = vy;
}

if (y > yMax) {
yMax = vy;
}

}

repaint(0, yMin,
width(), yMax);
¥

The calculator sends us a QList of JobResult. For each one, we need to check if the
concerned area size is still valid. We directly update the pixel colors of mImage.

The scanLine() function returns a pointer on the pixel data. It is a fast way to update a QImage
pixel color. The JobResult function contains the iteration count, and our helper

function, generateColorFromIteration(), returns a RGB value depending on the iteration
value. A complete repaint of the widget is not necessary, because we only update several lines
of the QImage. Thus, we repaint only the updated region.

Here is how we convert an iteration value in an RGB value:

QRgb Mandelbrotwidget::generateColorFromIteration(int iteration)

{

if (iteration == mIterationMax) {
return qRgb(50, 50, 255);
}

return qRgb(0, 0, (255.0 * iteration / mIterationMax));
}

Colorizing a Mandelbrot is an art on its own. We implement here a simple linear interpolation
on the blue channel. A nice Mandelbrot picture depends on the maximum iteration per pixel
and its color technique. Feel free to enhance it like you want!

Here we are, the last but not least function, paintEvent():

void Mandelbrotwidget::paintEvent(QPaintEvent* event)

{
QPainter painter(this);
painter.save();

QRect imageRect = event->region().boundingRect();
painter.drawImage(imageRect, *mImage, imageRect);

painter.setPen(Qt::white);

painter.drawText(10, 20, QString("Size: %1 x %2")
.arg(mImage->width())
.arg(mImage->height()));

painter.drawText(10, 35, QString("Offset: %1 x %2")
.arg(mMoveOffset.x())
.arg(mMoveOffset.y()));

painter.drawText(10, 50, QString("Scale: %1")
.arg(mScaleFactor));

painter.drawText(10, 65, QString("Max iteration: %1")
.arg(ITERATION_MAX));

painter.restore();

}

We must override this function because we handle the widget drawing by ourselves. The first
thing to do is to draw the updated region of the image. The QpaintEvent object contains the

region that needs to be updated. The QPainter class makes the drawing easy. Finally, we draw
some information texts of the current input data in white. You now have a complete overview
of the progressive picture display line by line. Let's sum up the workflow of this feature:

1. Each Job::run() generates a JobResult object.

2. The MandelbrotCalculator::process() signal aggregates the JobResult object and
dispatches them by groups (by default, 10).

3. The Mandelbrotwidget::processJobResults() signal updates only concerned lines of
the picture and requests a partial repaint of the widget.

4. The MandelbrotwWidget::paintEvent() signal only redraws the picture with the new
values.

This feature causes a little overhead, but the user experience is smoother. Indeed, the
application reacts quickly to the user events: the first lines are updated almost immediately.
The user does not have to wait for the full picture generation to see something happening.

The widget is ready; do not forget to add it to Mainwindow. Promoting a custom widget should
be an easy task for you now. If you have any doubt, check Chapter 4, Conquering the Desktop
UI, or the complete source code of this chapter. You should now be able to display and
navigate into your multi-threaded Mandelbrot set!

If you start the application, you should see something like this:

ch03-mandelbrot-threadpool

Try to zoom now and pan into the Mandelbrot set. You should find some funny places like this
one:

ch038-mandelbrot-threadpool

Summary

You discovered how a QThread class works and learned how to efficiently use tools provided
by Qt to create a powerful multi-threaded application. Your Mandelbrot application is able to
use all cores of your CPU to compute a picture quickly.

Creating a multi-threaded application presents a lot of pitfalls (deadlock, event loop flood,
orphan threads, overhead, and so on). The application architecture is important. If you are
able to isolate the heavy code that you want to parallelize, everything should go well.
Nevertheless, the user experience is of primary importance; you will sometimes have to
accept a little overhead if your application gives the user a smoother feeling.

In the next chapter, we will see several ways to implement an IPC (Inter-Process
Communication) between applications. The project example will enhance your current
Mandelbrot application with a TCP/IP socket system. So the Mandelbrot generator will
compute pictures over several CPU cores from multiple computers!

Chapter 10. Need IPC? Get Your Minions
to Work

In the previous chapter, you learned how to send information across threads of the same
process. In this chapter, you will discover how to share data between threads of different
processes. We will even share information between applications running on different physical
computers. We will enhance the Mandelbrot generator application from Chapter 9, Keeping
Your Sanity with Multithreading. The Mandelbrot application will now only display results
processed by the worker programs. These minions have only one mission: compute the tasks
as fast as possible and return a result to your main application.

Here are the topics covered in this chapter:

¢ How two applications can communicate together

Creating a multithreaded TCP server

Reading and writing on a TCP socket

Other IPC techniques like QsharedMemory, QProcess, and Qt D-Bus
Network serialization using QDataStream

Computer clustering

Inter-process communication techniques

An IPC (inter-process communication) is a communication between two or more processes.
They can be instances of the same or a different application. The Qt framework provides
multiple modules to help you implement a communication between your applications. Most of
these modules are cross-platform. Let's talk about the IPC tools provided by Qt.

The first tools are the TCP/IP sockets. They provide a bidirectional data exchange over a
network. Therefore, you can use them to talk with processes on different computers.
Moreover, the loopback interface allows you to communicate with processes running on the
same computer. All the required classes are inside the QtNetwork module. This technique
relies on a client-server architecture. Here is an example of the server part:

QTcpServer* tcpServer = new QTcpServer(this);
tcpServer->listen(QHostAddress::Any, 5000);

connect(tcpServer, &QTcpServer::newConnection, [tcpServer] {
QTcpSocket *tcpSocket = tcpServer->nextPendingConnection();
QByteArray response = QString("Hello").toLatinl();
tcpSocket->write(response);
tcpSocket->disconnectFromHost();
gDebug() << "Send response and close the socket";

1)

The first step is to instantiate a QTcpServer class. It deals with the new incoming TCP

connections. Then, we call the 1isten() function. You can provide a network interface and
specify the port on which the server must listen for incoming connections. In this example, we
listen on all network addresses (for example, 127.0.0.1,192.168.1.4, and so on) on the
port 5000. When a client establishes a connection with this server,

the QTcpServer: :newConnection() signal is triggered. Let's break together this lambda slot:

1. We retrieve the QTcpSocket class related to this new connection with a client.

2. A QByteArray response is prepared with the ASCII message "Hello". Forget the lack of
originality.

3. The message is sent to the client through the socket.

4. Finally, we close the socket. So the client, on this side, will be disconnected.

Tip

You can test a QTcpServer class with a telnet tool like Putty on Windows or the telnet
command on Linux and Mac OS.

The following snippet is the client part:

QTcpSocket *tcpSocket = new QTcpSocket(this);
tcpSocket->connectToHost("127.0.0.1", 5000);

connect(tcpSocket, &QTcpSocket::connected, [tcpSocket] {
gDebug() << "connected";

3);
connect (tcpSocket, &QTcpSocket::readyRead, [tcpSocket] {

gbebug() << QString::fromLatinl(tcpSocket->readAll());

3);
connect(tcpSocket, &QTcpSocket::disconnected, [tcpSocket] {

gDebug() << "disconnected";

1)

The client also uses a QTcpSocket class to communicate. It turns out that the connection is
initiated by the client, therefore we need to call the connectToHost () function with the server
address and port. This class provides a lot of useful signals such as connected()

and disconnected() that indicate the connection status. The readyRead () signal is emitted
when new data is available for reading. The readAll()function returns QByteArray with all
the available data. In our case, we know that the server sends an ASCII message to its client.
Thus, we can convert this byte array in a QString and display it.

For this example, the server writes in the TCP socket and the client reads in it. But this
communication is bidirectional, so the client can also write data and the server can read it. Try
to send data from the client and display it in the server. Notice that you need to keep the
communication alive by removing the disconnectFromHost() call in the server part.

The Qt framework provides a helper class, QDataStream, to easily send a complex object and

handle the package fragmentation. This notion will be covered later with the project example
of this chapter.

Let's talk about the second IPC technique: shared memory. By default, different processes do
not use the same memory space. The QSharedMemory class provides a cross-platform method
to create and use a shared memory across multiple processes. Nevertheless, the processes
must run on the same computer. A shared memory is identified by a key. All the processes
must use the same key to share the same shared memory segment. The first process will
create the shared memory segment and put data in it:

QString sharedMessage('"Hello");
QByteArray sharedData = sharedMessage.toLatini();

QSharedMemory* sharedMemory = new QSharedMemory (
"sharedMemoryKey", this);
sharedMemory->create(sharedMessage.size());

sharedMemory->1ock();

memcpy (sharedMemory->data(),
sharedData.data(),
sharedData.size());

sharedMemory->unlock();

Let's analyze all the steps together:

1. Once again, we want to share the QString "Hello" converted in a QByteArray class.

2. A QsharedMemory class is initialized with the key, sharedMemoryKey. This same key
should be used by the second process.

3. The first process creates the shared memory segment with a specific size in bytes. The
creation also attaches the process to the shared memory segment.

4. You should now be confident with the lock/unlock system. The QSharedMemory class uses
semaphore to protect the shared access. You must lock it before manipulating the shared
memory.

5. A classical memcpy () function is used to copy data from the QByteArray class to
the QsharedMemory class.

6. Finally, we can unlock the shared memory.

Destroying a QShareMemory class will call the detach () function that detaches the process
from the shared memory segment. If this process was the last one attached, detach () also
destroys the shared memory segment. While an attached QshareMemory is alive, the shared
memory segment is available for other processes. The next snippet describes how a second
segment can access the shared memory:

QSharedMemory* sharedMemory = new QSharedMemory (

"sharedMemoryKey", this);
sharedMemory->attach();

sharedMemory->1ock();
QByteArray sharedData(sharedMemory->size(), '\0');

memcpy (sharedData.data(),
sharedMemory->data(),
sharedMemory->size());

sharedMemory->unlock();

QString sharedMessage = QString::fromLatinl(sharedData);
gbebug() << sharedMessage;

sharedMemory->detach();

Here are the key steps:

1. As with the first process, this second process initializes a QShareMemory class with the
key, sharedMemoryKey.

2. Then we attach the process to the shared memory segment with the attach() function.

We must lock the QshareMemory class before accessing it.

4. We initialize a QByteArray with the null character, \o, with the size of the shared
memory.

5. The memcpy () function copies the data from the QShareMemory to the QByteArray.

We can convert the QByteArray in a QString and display our message.

7. The last step is to call the detach ()function to detach the process from the shared
memory segment.

w

o

Please notice that create() and attach() functions specify by default
a QShareMemory : :ReadWrite access. You can also use the QShareMemory : :ReadOnly access.

Tip
You can use the classes, Quffer and QDataStream to serialize a complex object in or from a

bytes array.

Another IPC way is to use the QProcess class. The main process starts an external application
as a child process. The communication is done using the standard input and output devices.
Let's create a hello console application relying on the standard input and output channels:

QTextStream out(stdout);
QTextStream in(stdin);

out << QString("Please enter your name:\n");
out.flush();

QString name = in.readlLine();

out << "Hello " << name << "\n";
return 0,

We use the QTextStream class to easily work with the standards streams, stdout and stdin.
The application prints the message Please enter your name:. Then we wait while the user
types his name by calling the readLine() function. Finally, the program displays the
message Hello and the user name. If you start yourself this console application, you must type
your name on the keyboard to see the final hello message with your name.

The following snippet runs and communicates with the hello application. Furthermore, we
can programmatically control the child hello application:

QProcess* childProcess = new QProcess(this);

connect(childProcess,
&QProcess: :readyReadStandardOutput, [childProcess] {
gDebug() .noquote() << "[*]" << childProcess->readAll();

1)

connect(childProcess, &QProcess::started, [childProcess] {
childProcess->write("Sophie\n");

1)

childProcess->start("/path/to/hello");

Here are all the steps performed by this main application:

1. We initialize a QProcess object that can start an external application.

2. The child process displays messages on the console and so writes in the standard output.
Then, the readyReadStandardoutput() signal is sent. In this case, we print the message
as debug text with the prefix [*] to identify that it comes from the child process.

3. As soon as the child process is started, the started() signal is sent. In our case, we write
in the child standard input the name Sophie (Lenna will be jealous!).

4. All is ready, we can start the QProcess class with the path to the hello console
application.

If you start the main application you should get this result in its console:

[*] Please enter your name:
[*] Hello Sophie

Mission completed! The main application is a wrapper for the hello application. We receive
all messages from the child process and we can send it some information like a specific name.

Tip

The QProcess: :start() function also accepts a second variable: the command line arguments
for the child process.

The last IPC mechanism that we will cover together is the D-Bus protocol. Currently, the Qt
D-Bus module is officially supported only on Linux. If you need to use it on Windows, you
will have to compile it from Qt sources. It can be seen as a unified protocol for IPC and RPC
(remote procedure calling). Many forms of communication are possible, such as:

¢ One-to-one
¢ One-to-many
e Many-to-many

The best thing about Qt D-Bus is that you can even use the signal/slot mechanism across the
bus. A signal emitted from one application can be connected to a slot from another
application. Linux desktop environments like KDE and GNOME use the D-Bus. That implies
that you can (also) control your desktop with D-Bus.

Here are the main concepts of D-Bus:

e Bus: This is used in many-to-many communication. D-Bus defines two buses: the system
bus and the session bus.

e Service name: This is the identifier of a service on a bus.

e Message: This is a message sent by one application. If a bus is used, the message contains
the destination.

A Qt D-Bus Viewer tool can be found in your Qt installation folder (for example,
/Qt/5.7/gcc_64/bin/qdbusviewer). All objects and messages from all services of the system
and the session bus are displayed. Try to invoke exposed methods and retrieve a result.

Now that you have messed about with your Linux D-Bus services, it is time to create your
own! At first, we will create a simple HelloService object:

//HelloService.h
class HelloService : public QObject

{
Q OBJECT

public slots:
QString sayHello(const QString &name);

+;

//HelloService.cpp
QString HelloService::sayHello(const QString& name)
{
gDebug() .noquote() << name << " is here!";
return QString("Hello %1!").arg(name);;

No big deal here, the only function is a public slot that requires a name, displays who is here,
and returns a hello message. In the following snippet, the main application registers a new D-
Bus service and the HelloService object:

HelloService helloService;
QString serviceName("org.masteringqt.QtDBus.HelloService");

QDBusConnection::sessionBus().registerService(serviceName);
QDBusConnection::sessionBus().registerObject("/",
&helloService, QDBusConnection::ExportAllSlots);

The main application initializes an HelloService object. Then, we register a new service
named org.masteringqt.QtDBus.HelloService on the session bus. Finally, we register

the HelloService object, exposing all its slots. Notice the simple object path / used for this
example. The service application part is finished. Here is the client application calling

the HelloService object:

QString serviceName("org.masteringqt.QtDBus.HelloService");

QDBusInterface servicelInterface(serviceName, "/");

QDBusReply<QString> response = servicelnterface.call(
"sayHello", "Lenna");

gbebug() .noquote() << response;

Let's analyze the client part step by step:

1. We initialize a QDBusInterface object with the same service name and path as the service
application.

2. We call the remote method, sayHello() on HelloService, with the parameter Lenna
(Wait, where is Sophie!?).

3. The response is stored in a QDBusReply object. In our case, type QString.

4. Finally, we display the message generated by the HelloService object.

If you start the service application and then the client application, you should get this console
output:

//service application output
Lenna is here!

//client application output
Hello Lenna!

Use the QDBusViewer tool to find your D-Bus service. Select the Session Bus tab. Choose your
service in the list. Then you can select the method sayHello. A right-click on it allows you to
call the method. An input popup will ask you to fill the method parameter that is a name in our

example. The following screenshot shows you what it looks like (it seems that Sophie is
here):

Please enter parameters for the method "sayHello”

Mame Value

ﬂ name (Q5tring)

oK I | Cancel

Architecturing an IPC project

The Mandelbrot picture generator from Chapter 9, Keeping Your Sanity with Multithreading,
uses all cores of your computer to speed up the computing. This time, we want to use all the
cores of all your computers! The first thing to do is to choose an appropriated IPC technique.
For this project example, we want to establish communication between several clients acting
as workers to a server running the main application. The TCP/IP sockets allows a one-to-
many communication. Moreover, this IPC method is not bounded to a single computer and
can operate through a network on multiple computers. This project example uses sockets by
implementing a multi-threaded TCP server.

The next diagram describes the architecture:

mandelbrot-app SDK

mandelbrot-worker mandelbrot-worker mandelbrot-worker

Let's talk about the global role of each actor:

e mandelbrot-app: This is the main application displaying the Mandelbrot picture and
handling user mouse events. However, in this chapter, the application does not compute
the algorithm itself but rather generates requests to connected workers. Then, it
aggregates results provided by workers.

e mandelbrot-worker: Here is our minion! A worker is a standalone program. It is
connecting to the mandelbrot-app through a TCP socket. A worker receives a request,
computes a job, and sends back a result.

e sDK: This regroups common stuff used by both applications. If the SDK changes, all the
dependent applications must be updated.

As you can see, this architecture fits well with the one-to-many communication required by
this project. The mandelbrot-app application can use one or many workers to generate the
same Mandelbrot picture.

Now that you get the big picture, let's look in detail at each module. You can see all of the
classes in the SDK in the following diagram:

SDK
JobRequest Message
MessageUtils
JobResult < QByteArray)

An SDK is essential when you have several modules (applications, libraries, and so on) that
communicate together or need to perform the same actions. You can give the SDK to a third-
party developer without compromising your main source code. In our project, mandelbrot-
app and mandelbrot-worker communicate together by exchanging Message. The message
structure must be known by both entities. A Message class contains a type and a raw data of
the type, QByteArray. Depending on the message type, the raw data can be empty or can
contain an object. In this project, a message data can be a JobRequest or a JobResult.

The mandelbrot-app sends a JobRequest to mandelbrot-worker. Then, the worker

returns JobResult to the main application. Finally, Messageutils contains functions used by
the main application and the workers to send and retrieve a Message.

We can now talk about the mandelbrot-worker in more detail. The next diagram describes it:

mandelbrot-worker

WorkerWidget

Job Worker

(QRunnable) (QTcpSocket)

The mandelbrot-worker program is able to use all the CPU cores of a machine. The socket
mechanism allows us to run it on multiple physical machines at the same time.

The workerwidget class displays the status of the worker object. The Worker object handles
the communication with mandelbrot-app using a QTcpSocket. A Job is a QRunnable class that
computes a task. Here is the workflow of this software:

1. Send a register Message to mandelbrot-app application.

2. Receive some JobRequest from mandelbrot-app and create several Job instances to
complete all tasks.

3. Each Job is running in a dedicated thread and will generate a JobResult.

Send JobResult to mandelbrot-app.

5. On exit, send an unregister Message to mandelbrot-app.

&

It is now time to talk about the mandelbrot-app architecture. Look at the next diagram:

mandelbrot-app

MainWindow

MandelbrotWidget

WorkerClient MandelbrotCalculator

< QTcpSocket) < QTcpServer >

This is the main application. You can launch it on a computer with a weak CPU and the real
heavy work is done by workers running the mandelbrot-worker software. The

GUI Mainwindow and Mandelbrotwidget objects are the same as those in Chapter 9, Keeping
Your Sanity with Multithreading. The MandelbrotCalculator class is a little different in this
project, because it does not run any QrRunnable itself. It is a TCP server that handles all
registered workers and dispatches tasks to those tasks. Each mandelbrot-worker is managed
by a workerclient object instance with a dedicated QTcpSocket. Here is the workflow

for mandelbrot-app:

1. Run a TCP server on a specific port.

2. Receive a register Message and create a WorkercClient object for each registered worker.
When Mandelbrotwidget requests a picture generation, MandelbrotCalculator creates
the JobRequest object required to compute the full Mandelbrot picture.

The JobRequest objects are sent to the workers.

Receive and aggregate JobResult from the mandelbrot-worker.

Transmit JobResult to the Mandelbrotwidget object that displays the picture.

If an unregister Message is received from a worker, the Workerclient object is released
and this worker will not be used for picture generation anymore.

w

Nk

You should now get a complete overview of this project architecture. We can begin the
implementation of this project. Create a Subdirs project called ch16-mandelbrot-ipc. As you
might guess, we now create two sub-projects: mandelbrot-app and mandelbrot-worker.

The implementation in the subsequent sections follows the architecture presentation order:

1. SDK.
2. mandelbrot-worker.
3. mandelbrot-app.

The implementation is a step up in complexity. Do not hesitate to take a break and come back
to this section to keep the overall architecture clear.

Laying down the foundations with an SDK

The first step is to implement the classes that will be shared between our application and the
workers. To do so, we are going to rely on a custom SDK. If you need to refresh your
memory about this technique, take a look at Chapter 8, Animations-- It's Alive, Alive!.

As a reminder, here is the diagram describing the SDK:

SDK
JobRequest Message
MessageUtils
JobResult < QByteArray >

Let's describe the job of each of these components:

e The Message component encapsulates a piece of information that is exchanged between
the application and the worker

e The JobRequest component contains the necessary information to dispatch a proper job
to a worker

e The JobResult component contains the result of the Mandelbrot set calculation for a
given line

e The MessageUtils component contains helper functions to serialize/deserialize data
across the TCP socket

All these files have to be accessible from each side of our IPC mechanism (application and
worker). Note that the SDK will contain only header files. We did it on purpose to simplify the
SDK usage.

Let's start with Message implementation in the sdk directory. Create a Message.h file with the
following content:

#include <QByteArray>
struct Message {
enum class Type {

WORKER_REGISTER,
WORKER_UNREGISTER,

+;

ALL_JOBS_ABORT,
JOB_REQUEST,
JOB_RESULT,

+;

Message(const Type type = Type::WORKER_REGISTER,
const QByteArray& data = QByteArray())

type(type),
data(data)

{
}
~Message() {}

Type type;
QByteArray data;

The first thing to note is the enum class Type which details all the possible message types:

WORKER_REGISTER: This is the message sent by the worker when it first connects to the
application. The content of the message is only the number of cores of the worker's CPU.
We will see soon why this is useful.

WORKER_UNREGISTER: This is the message sent by the worker when it is disconnected. This
lets the application know that it should remove this worker from its list and stop sending
any messages to it.

ALL_JOBS_ABORT: This is the message sent by the application each time a picture
generation is canceled. The worker is then responsible for canceling all its current local
threads.

JOB_REQUEST: This is the message sent by the application to calculate a specific line of the
desired picture.

JOB_RESULT: This is the message sent by the worker with the calculated result from

the JOB_REQUEST inputs.

A quick word about the enum class type, which is a C++11 addition. It is a safer version of
enum (some might say that it is enum as it should have been from the beginning):

The scope of the values is local. In this example, you can only reference an enum value
with the syntax Message: : Type: :WORKER_REGISTER; N0 more Message: :WORKER_REGISTER
shortcuts. The good thing about this restriction is that you do not need to prefix enum
values with a MESSAGE_TYPE_ to be sure that the name does not conflict with anything else.
There is no implicit conversion to int. The enum class acts like a real type, to cast

an enum class to int, you have to write static_cast<int>(

Message: :Type: :WORKER_REGISTER).

There is no forward declaration. You can specify that an enum class is a char type (with
the syntax enum class Test : char { ... }), butthe compiler will not be able to

deduce the enum class size with a forward declaration. Therefore, it has been simply
forbidden.

We tend to use the enum class whenever possible, meaning when it does not clash with Qt enum
usage.

As you can see, a message has only two members:

e type: This is the message type we just described
e data: This is an opaque type that contains the piece of information to be transmitted

We chose to make data very generic to place the responsibility of serializing/deserializing on
the Message callers. Based on the message type, they should know how to read or write the
message content.

By using this approach, we avoid a tangled class hierarchy with

MessageRegister, MessageUnregister, and so on. Adding a new Message type is simply
adding a value in the Type enum class and doing the proper serialization/deserialization
in data (which you have to do anyway).

To see the file in Qt Creator, do not forget to add the Message.h in ch10-mandelbrot-ipc.pro
file:

OTHER_FILES += \
sdk/Message.h

The next header we will look at is JobRequest.h:

#include <QSize>
#include <QPointF>

struct JobRequest

{
int pixelPositionY;
QPointF moveOffset;
double scaleFactor;
QSize areaSize;
int iterationMax;
Iy

Q_DECLARE_METATYPE (JobRequest)

// In chl0-mandelbrot-ipc

OTHER_FILES += \
sdk/Message.h \
sdk/JobRequest.h

This struct element contains all the necessary data for the worker to calculate a line of the

target Mandelbrot picture. Because the application and the worker(s) will live in different
memory spaces (or even different physical machines), the parameters to calculate the
Mandelbrot set have to be transmitted somehow. This is the purpose of JobRequest. The
meaning of each field is the same as JobResult from Chapter 9, Keeping Your Sanity with
Multithreading.

Note the presence of the Q_ DECLARE_METATYPE (JobRequest) macro. This macro is used to let
the Qt meta-object system know about JobRequest. This is needed to be able to use the class in
conjunction with Qvariant. We will not use Qvariant directly, but rather through the use

of QpataStream which relies on Qvariant.

Speaking of JobResult, here is the new JobResult.h:

#include <QSize>
#include <QVector>
#include <QPointF>

struct JobResult
{

JobResult(int valueCount = 1)
areaSize(0, 0),
pixelPositionY(0),
moveOffset(0, 0),
scaleFactor(0.0),
values(valueCount)

{
}

QSize areaSize;

int pixelPositionY;
QPointF moveOffset;
double scaleFactor;

QvVector<int> values;

};
Q_DECLARE_METATYPE (JobResult)

// In chl@-mandelbrot-ipc

OTHER_FILES += \
sdk/Message.h \
sdk/JobRequest.h \
sdk/JobResult.h

The new version is a shameless copy-paste (with the small Q_DECLARE_METATYPE addition) of
the project example of Chapter 9, Keeping Your Sanity with Multithreading.

Working with QDataStream and
QTcpSocket

The missing piece of the SDK is MesssageUtils. It deserves a dedicated section because it
covers two major topics: serialization and QDataStream transactions.

We will start with the serialization. We already know that Message stores only an
opaque QByteArray data member. As a consequence, the desired data has to be serialized as
a QByteArray before being passed to Message.

If we take the example of a JobRequest object, it is not directly sent. We first putin in a
generic Message object with the appropriate Message type. The following diagram summarizes
the sequence of actions to be done:

JobRequeSt Serialized to {QByte Array> Stored in Message Serialized to <QByte Arrag

The JobRequest object is first serialized to a QByteArray class; it is then passed to a Message
instance which is in turn serialized to a final QByteArray. The deserialization process is the
exact mirror of this sequence (from right to left).

Serializing data brings a lot of questions. How can we do it in a generic fashion? How do we
handle the possible endianness of the CPU architecture? How do we specify the length of the
data to be able to deserialize it properly?

Once again, the Qt folks did a great job and provided us a great tool to deal with these issues:
QDataStream.

The QpataStream class enables you to serialize binary data to any QI0ODevice
(QAbstractSocket, QProcess, QFileDevice, QSerialPort, and so on). The great advantage
of QpataStreanm is that it encodes the information in a platform-agnostic format. You do not
have to worry about the byte order, the operating system, or the CPU.

The Qpatastream class implements the serialization of C++ primitive types and several Qt type
(QBrush, QColor, QString, and so on). Here is an example of a basic write:

QFile file("myfile");

file.open(QIODevice: :WriteOnly);
QDataStream out(&file);

out << QString("QDataStream saved my day");

out << (gint32)42;

As you can see, QDataStream relies on the overload of the << operator to write data. To read
information, open the file with the correct mode and read with the >> operator.

Back to our case; we want to serialize custom classes, like JobRequest. To do so, we have to
overload the << operator for JobRequest. The signature of the function will be like so:

QDataStream& operator<<(QDataStream& out,
const JobRequest& jobRequest)

What we write have here is that we want to overload the out << jobRequest operator call
with our custom version. By doing so, we intend to fill the out object with the content

of jobRequest. Because QDataStream already supports the serialization of primitive types, all
we have to do is serialize them.

Here is the updated version of JobRequest.h:

#include <QSize>
#include <QPointF>
#include <QDataStream>

struct JobRequest

{
+;

inline QDataStream& operator<<(QDataStream& out,
const JobRequest& jobRequest)
{

out << jobRequest.pixelPositionY
<< jobRequest.moveOffset
<< jobRequest.scaleFactor
<< jobRequest.areaSize
<< jobRequest.iterationMax;
return out;

}

inline QDataStream& operator>>(QDataStream& in,
JobRequest& jobRequest)
{

in >> jobRequest.pixelPositionY;
in >> jobRequest.moveOffset;

in >> jobRequest.scaleFactor;

in >> jobRequest.areaSize;

in >> jobRequest.iterationMax;
return in;

We include Qpatastream and overload the << very easily. The returned out will be updated

with the platform-agnostic content of the passed jobRequest. The >> operator overload
follows the same pattern: we fill the jobRequest parameter with the content of the in variable.
Behind the scenes, QDataStream stores the variable size in the serialized data to be able to read
it afterwards.

Be careful to serialize and deserialize the members in the same order. If you do not pay
attention to this, you might encounter very peculiar values in JobRequest.

The JobResult operators overload follows the same pattern, and it does not deserve to be
included in the chapter. Look at the source code of the project if you have any doubt about its
implementation.

On the other hand, Message operator overload needs to be covered:

#include <QByteArray>
#include <QDataStream>

#include <QByteArray>
#include <QDataStream>

struct Message {
Iy

inline QDataStream &operator<<(QDataStream &out, const Message &message)

{

out << static_cast<qint8>(message.type)
<< message.data;
return out;

}

inline QDataStream &operator>>(QDataStream &in, Message &message)

{
gint8 type;
in >> type;
in >> message.data;

message.type = static_cast<Message::Type>(type);
return in;

}

Because the Message: :Type enum class signal does not have an implicit conversion to int,
we need to explicitly convert it to be able to serialize it. We know that there will not be more
than 255 message types, therefore we can safely castitto a qint8 type.

The same story applies to the reading part. We start by declaring a qint8 type variable that
will be filled with in >> type, and then, the type variable is casted to a Message: :Type
in message.

Our SDK classes are ready to be serialized and deserialized. Let's see it in action in
MessageUtils with the serialization of a message and its writing to a QTcpSocket class.

Always in the sdk directory, create a MessageUtils.h header with the following content:

#include <QByteArray>
#include <QTcpSocket>
#include <QDataStream>

#include "Message.h"
namespace MessageUtils {

inline void sendMessage(QTcpSocket& socket,
Message::Type messageType,
QByteArray& data,
bool forceFlush = false)

Message message(messageType, data);

QByteArray byteArray;
QDataStream stream(&byteArray, QIODevice::WriteOnly);
stream << message;
socket.write(byteArray);
if (forceFlush) {
socket.flush();

}
}

There is no need to instantiate a MessageUtils class, as it does not hold any state. Here we
used a MessageUtils namespace to simply protect our function against any name collision.

The meat of the snippet lies in sendMessage(). Let's look at the parameters:

e socket: This is the QTcpSocket class in which the message will be sent. It is the
responsibility of the caller to ensure that it is properly opened.

e messageType: This is the type of the message to be sent.

e data: This is the serialized data to be included in the message. It is a QByteArray class,
meaning that the caller already serialized its custom class or data.

e forceFlush: This is a flag to force the socket to flush upon the message shipment. The
OS keeps socket buffers that wait to be filled before being sent across the wire. Some
messages need to be delivered immediately, like an abort all jobs message.

In the function itself, we start by creating a message with the passed parameters. Then, a
QByteArray class is created. This byteArray will be the receptacle of the serialized data.

As a matter of fact, byteArray is passed in the constructor of the Qpatastream stream, which is
opened in the QIODevice: :Writeonly mode. It means that the stream will output its data to

the byteArray.

After that, the message is elegantly serialized to stream with stream << message and the
modified byteArray is written to the socket with socket.write(byteArray).

Finally, if the forceFlush flag is set to true, the socket is flushed with socket.flush().

Some messages will not have any payload associated. For this reason, we add a small helper
function for this purpose:

inline void sendMessage(QTcpSocket& socket,
Message::Type messageType,
bool forceFlush = false) {
QByteArray data;
sendMessage(socket, messageType, data, forceFlush);

}

Now that the sendMessage() is done, let's turn to the readMessages(). Because we are working
in IPC and more specifically with sockets, interesting issues arise when we want to read and
parse messages.

When something is ready to be read in the socket, a signal will notify us. But how do we know
how much to read? In the case of a WORKER_DISCONNECT message, there is no payload. On the
other hand, a JOB_RESULT message can be very heavy. Even worse, several JOB_RESULT
messages can line up in the socket, waiting to be read.

To make things more difficult, we have to acknowledge the fact that we are working with the
network. Packets can be lost, retransmitted, incomplete or whatever. Sure, TCP ensures that we
eventually get all of the information, but it can be delayed.

If we had to do it ourselves, it would have implied a custom message header, with a payload
size and a footer for each message.

A feature introduced in Qt 5.7 comes to the rescue: QpataStream transaction. The idea is the
following: when you start reading on a QIoDevice class, you already know how much you
have to read (based on the size of the object you want to fill). However, you might not get all
the data in a single read.

If the read is not complete, QDataStream stores what was already read in a temporary buffer
and restores it upon the next read. The next read will contain what was already loaded plus the
content of the new read. You can see it as a checkpoint in the read stream that can be loaded
later.

This process can be repeated until data is read. The official documentation provides a simple
enough example:

in.startTransaction();

gint8 messageType;

QByteArray messageData,

in >> messageType >> messageData;

if (!in.commitTransaction())
return;

In the QpataStream class in which we want to read, in.startTransaction() marks the
checkpoint in the stream. It will then try to read messageType and messageData atomically. If it
cannot do it, in.commitTransaction() returns false and the read data is copied in an internal
buffer.

Upon the next call to this code (more data to read), in.startTransaction() will restore the
preceding buffer and try to finish the atomic read.

In our readMessages() situation, we can receive several messages at once. This is why the
code is a bit more complex. Here is the updated version of MessageUtils:

#include <memory>
#include <vector>
#include <QByteArray>
#include <QTcpSocket>
#include <QDataStream>

#include "Message.h"

inline std::unique_ptr<std::vector<std::unique_ptr<Message>>>
readMessages(QDataStream& stream)

{
auto messages = std::make_unique<std::vector<std::unique_ptr<Message>>>();
bool commitTransaction = true;
while (commitTransaction
&& stream.device()->bytesAvailable() > 0) {
stream.startTransaction();
auto message = std::make_unique<Message>();
stream >> *message;
commitTransaction = stream.commitTransaction();
if (commitTransaction) {
messages->push_back(std: :move(message));
}
}
return messages;
}
}

In the function, the parameter is only a QDataStream. We assume that the caller linked the

stream with the socket with stream.setDevice(socket).

Because we do not know the length of the content to be read, we prepare ourselves to read
several messages. To explicitly indicate ownership and avoid any memory leaks, we return a
vector<unique_ptr<Message>>. This vector has to be a unique_ptr pointer to be able to
allocate it on the heap and avoid any copy during the return of the function.

In the function itself, we start by declaring the vector. After that, a while loop is executed.
The two conditions to stay in the loop are:

e commitTransaction == true: This an atomic read in the stream that has been performed;
a complete message has been read

e stream.device().bytesAvailable() > 0: This states that there is still data to read in the
stream

In the while loop, we start by marking the stream with stream.startTransaction(). After
that, we try to perform an atomic read of a *message signal and see the result

with stream.commitTransaction (). If it succeeded, the new message is added to the messages
vector. This is repeated until we read all the content of the stream with the bytesAvailable()
> 0 test.

Let's study a use case to understand what will happen. Consider that we receive multiple
messages in readMessages():

e The stream object will try to read it into message.

e The comnmitTransaction variable will be set to true and the first message will be added
{0 messages.

o If there are still bytes to read in the stream, repeat from step one. Otherwise, exit the
loop.

To sum up, working with sockets raises its own set of questions. On one hand, it is a very
powerful IPC mechanism with a lot of flexibility. On the other hand, it brings a lot of
complexity due the nature of the network itself. Luckily, Qt (and moreover Qt 5.7) brings
great classes to help us.

Keep in mind that we tolerate the QDatastream serialization and transactions overhead because
it fits well to our need. If you are working on a constrained embedded platform, you might
not have so much liberty about serializing overhead and buffer copies. However, you will still
have to rebuild messages by hand for incoming bytes.

Interacting with sockets in the worker

Now that the SDK is completed, we can turn to the worker. The project is complex enough; we
can refresh our memory with the mandelbrot-worker architecture:

mandelbrot-worker

WorkerWidget

Job Worker

(QRunnable) (QTcpSocket)

We will start by implementing the Job class. Inside the mandelbrot-worker project, create a
new C++ class named Job. Here is the Job.h content:

#include <QObject>
#include <QRunnable>
#include <QAtomicInteger>

#include "JobRequest.h"
#include "JobResult.h"

class Job : public QObject, public QRunnable

{
Q OBJECT
public:
explicit Job(const JobRequest& jobRequest,
QObject *parent = 0);
void run() override;
signals:

void jobCompleted(JobResult jobResult);

public slots:
void abort();

private:
QAtomicInteger<bool> mAbort;
JobRequest mJobRequest;

+;

If you remember the Job class from Chapter 9, Keeping Your Sanity with Multithreading, this
header should ring a bell. The only difference is that the parameters of the job (area size,
scale factor, and so on) are extracted from the JobRequest object rather than stored directly as
member variables.

As you can see, the JobRequest object is provided in the constructor of Job. We will not
cover Job.cpp, as it is very much like the version of it in Chapter 9, Keeping Your Sanity with
Multithreading.

We now proceed to the worker class. This class has the following roles:

e It interacts with the mandelbrot-app using a QTcpSocket class
e [t dispatches JobRequests to a QThreadPool class, aggregates the results, and sends them
back to mandelbrot-app application through the QTcpSocket class

We will start by studying the interaction with the QTcpSocket class. Create a new class
named Worker with the following header:

#include <QObject>
#include <QTcpSocket>
#include <QDataStream>

#include "Message.h"
#include "JobResult.h"

class Worker : public QObject

{
Q_OBJECT
public:
wWorker (QObject* parent = 0);
~Worker();
private:
void sendRegister();
private:
QTcpSocket mSocket;
Iy

The worker class is the owner of mSocket. The first thing we will implement is the connection
with mandelbrot-app. Here is the constructor of worker in Worker .cpp:

#include "Worker.h"

#include <QThread>
#include <QDebug>
#include <QHostAddress>

#include "JobRequest.h"
#include "MessageUtils.h"

Worker ::Worker (QObject* parent)

QObject(parent),
mSocket(this)
{
connect (&mSocket, &QTcpSocket::connected, [this] {
gDebug() << "Connected";
sendRegister();
3);
connect (&mSocket, &QTcpSocket::disconnected, [] {
gDebug() << "Disconnected";
3);
mSocket.connectToHost (QHostAddress: :LocalHost, 5000);
}

The constructor initializes mSocket with this as the parent and it then proceeds to connecting
the relevant mSocket signals to lambdas:

e QTcpSocket::connected: When the socket is connected, it will send its register message.
We will soon cover this function

e QTcpSocket::disconnected: When the socket is disconnected, it simply prints a message
in the console

Finally, mSocket tries to connect on the localhost on the port 5000. In the code example, we
assume that you execute the worker and the application on the same machine. Feel free to
change this value if you run the worker and the application on different machines.

The body of sendRegister () function looks like this:

void Worker::sendRegister ()

{
QByteArray data;
QDataStream out(&data, QIODevice::WriteOnly);
out << QThread::idealThreadCount();
MessageUtils: :sendMessage(mSocket,
Message::Type: :WORKER_REGISTER,
data);
}

A QByteArray class is filled with the idealThreadCount function of the worker's machine.
After that, we call MessageUtils::sendMessage to serialize the message and send it through
our mSocket.

Once the worker is registered, it will start to receive job requests, process them, and send job
results back. Here is the updated Worker .h:

class Worker : public QObject

{

signals:

void abortAllJobs();

private slots:

void readMessages();

private:

void handleJobRequest(Message& message);

void handleAllJobsAbort(Message& message);
void sendRegister();

void sendJobResult(JobResult jobResult);
void sendUnregister();

Job* createJob(const JobRequest& jobRequest);

private:

+;

QTcpSocket mSocket;
QDataStream mSocketReader ;
int mReceivedJobsCounter;
int mSentJobsCounter;

Let's review the role of each one of these new members:

mSocketReader: This is the QDataStream class through which we will read mSocket
content. It will be passed as a parameter to our MessageUtils: :readMessages() function.
mReceivedJobsCounter: This is incremented each time a new JobRequest is received
from mandelbrot-app.

mSentJobsCounter: This is incremented each time a new JobResult is sent

to mandelbrot-app.

Now for the new functions:

abortAllJobs(): This is a signal emitted when the Worker class receives the appropriate
message.

readMessages(): This is the slot called each time there is something to read

in mTcpSocket. It parses the messages and, for each message type, it will call the
corresponding function.

handleJobRequest(): This function creates and dispatches a Job class according to
the JobRequest object contained in the message parameter.

handleAllJobsAbort(): This function cancels all the current jobs and clear the thread
queue.

sendJobResult(): This function sends the JobResult object to mandelbrot-app.
sendUnregister (): This function sends the unregister message to mandelbrot-app.
createJob(): This is a helper function to create and properly connect the signals of a
new Job.

The header is now complete. We can proceed to the updated constructor in Worker .cpp:

Worker ::Worker (QObject* parent)
QObject(parent),
mSocket(this),
mSocketReader (&mSocket),
mReceivedJobsCounter(0),

mSentJobsCounter (0)
{
connect (&mSocket, &QTcpSocket::readyRead,
this, &Worker::readMessages);
mSocket.connectToHost (QHostAddress: :LocalHost, 5000);
}

The QDataStream mSocketReader variable is initialized with the address of mSocket. This
means that it will read its content from the QIoDevice class. After that, we add the new connect
to the QTcpSocket signal, readyRead (). Each time that data is available to read on the socket,
our slot, readMessages(), will be called.

Here is the implementation of readMessages():

void Worker::readMessages()

{
auto messages = MessageUtils::readMessages(mSocketReader);
for(auto& message : *messages) {
switch (message->type) {
case Message::Type::JOB_REQUEST:
handleJobRequest(*message) ;
break;
case Message::Type::ALL_JOBS_ABORT:
handleAllJobsAbort(*message);
break;
default:
break;
}
}
}

The messages are parsed with the MessageUtils::readMessages() function. Note the use of
C++11 semantics with auto, which elegantly hides the smart pointers syntax and still handles
the memory for us.

For each parsed message, it is handled in the switch case. Let's review handleJobRequest():

void Worker::handleJobRequest(Message& message)

{
QDataStream in(&message.data, QIODevice::ReadOnly);
QList<JobRequest> requests;
in >> requests;

mReceivedJobsCounter += requests.size();
for(const JobRequest& jobRequest : requests) {
QThreadPool::globalInstance()
->start(createJob(jobRequest));

}

In this function, the message object is already deserialized. However, message.data still needs
to be deserialized. To achieve this, we create a QDataStreamin a variable that will read
from message.data.

From here, we parse the requests QList. Because QList already overrides the >> operator, it
works in cascade and calls our JobRequest >> operator overload. Deserializing data has
never been so easy!

After that, we increment mReceivedJobsCounter and start processing these JobRequests. For
each one, we create a Job class and dispatch it to the global QThreadPool class. If you have a
doubt about QThreadPool, get back to Chapter 9, Keeping Your Sanity with Multithreading.

The createJdob () function is straightforward to implement:

Job* Worker::createJob(const JobRequest& jobRequest)

{
Job* job = new Job(jobRequest);
connect(this, &Worker::abortAllJobs,
job, &Job::abort);
connect(job, &Job::jobCompleted,
this, &Worker::sendJobResult);
return job;
}

A new Job class is created and its signals are properly connected.
When Worker : :abortAllJobs is emitted, every running Job should be canceled with
the Job: :abort slot.

The second signal, Job::jobCompleted is emitted when the Job class has finished calculating
its values. Let's see the connected slot, sendJobResult():

void Worker::sendJobResult(JobResult jobResult)
{
mSentJobsCounter++;
QByteArray data;
QDataStream out(&data, QIODevice::WriteOnly);
out << jobResult;
MessageUtils::sendMessage(mSocket,
Message::Type: :JOB_RESULT,
data);

We first increment the mSentJobsCounter and then serialize the JobResult to a QByteArray
data which is passed to MessageUtils::sendMessage().

We completed the tour of the JobRequest handling and the following JobResult shipment. We
still have to cover handleAllJobsAbort(), which is called from readMessages():

void Worker::handleAllJobsAbort(Message& /*message*/)

{
emit abortAllJobs();
QThreadPool::globalInstance()->clear();
mReceivedJobsCounter = 0;
mSentJobsCounter = 0;

}

The abortAllJobs() signal is emitted first to tell all the running jobs to cancel their process.
After that, the QThreadPool class is cleared and the counters are reset.

The last piece of worker is the sendunregister (), which is called in the worker destructor:

Worker::~Worker ()

{
sendUnregister();
}
void Worker::sendUnregister ()
{
MessageUtils: :sendMessage(mSocket,
Message: :Type: :WORKER_UNREGISTER,
true);
}

The sendunregister () function just calls sendMessage without any data to serialize. Note that
it passes the forceFlush flag to true to make sure that the socket is flushed and
that mandelbrot-app application will receive the message as fast as possible.

The worker instance will be managed by a widget which will display the progress of the
current calculation. Create a new class named WorkerwWidget and update Workerwidget.h, like
So:

#include <Qwidget>

#include <QThread>

#include <QProgressBar>
#include <QTimer>

#include "Worker.h"
class WorkerwWidget : public Qwidget

{
Q OBJECT
public:

explicit WorkerwWidget(Qwidget *parent = 0);
~Workerwidget();

private:
QProgressBar mStatus;
wWorker mworker;
QThread mwWorkerThread;
QTimer mRefreshTimer;

+;

The members of Workerwidget are:

e mStatus: The QProgressBar that will display the percentage of processed JobRequests

e mwWorker: The Worker instance owned and started by workerwidget

e mwWorkerThread: The QThread class in which mworker will be executed

e mRefreshTimer: The QTimer class that will periodically poll mworker to know the process
advancement

We can proceed to WorkerWidget.cpp:

#include "Workerwidget.h"
#include <QvVBoxLayout>

Workerwidget::Workerwidget(Qwidget *parent)
Qwidget(parent),
mStatus(this),
mworker (),
mwWorkerThread(this),
mRefreshTimer ()

QvBoxLayout* layout = new QVBoxLayout(this);
layout->addwidget(&mStatus);

mwWor ker .moveToThread (&mWorkerThread) ;

connect(&mRefreshTimer, &QTimer::timeout, [this] {
mStatus.setMaximum(mworker .receivedJobsCounter());
mStatus.setValue(mwWorker .sentJobCounter());

1)

mwWorkerThread.start();
mRefreshTimer.start(100);

}

Workerwidget: :~Workerwidget()

{
mworkerThread.quit();

mworkerThread.wait(1000);

First, the mStatus variable is added to the workerwidget layout. Then the mworker thread
affinity is moved to mworkerThread and mRefreshTimer is configured to poll mworker and
update mStatus data.

Finally, mWorkerThread is started, triggering the mworker process. The mRefreshTimer object
is also started with an interval of 100 milliseconds between each timeout.

The last thing to cover in mandelbrot-worker is the main.cpp:

#include <QApplication>
#include "JobResult.h"
#include "Workerwidget.h"

int main(int argc, char *argv[])

{
gRegisterMetaType<JobResult>();
QApplication a(argc, argv);
Workerwidget workerwWidget;
workerwidget.show();
return a.exec();

}

We start by registering JobResult with qRegisterMetaType because it is used in the signal/slot
mechanism. After that, we instantiate a Workerwidget layout and display it.

Interacting with sockets from the
application

The next project to complete is mandelbrot-app. It will contain the QTcpServer that will
interact with the workers and the picture drawing of the Mandelbrot set. As a reminder, the
diagram of the mandelbrot-app architecture is shown here:

mandelbrot-app

MainWindow

MandelbrotWidget

WorkerClient MandelbrotCalculator

< QTcpSocket) < QTcpServer >

We will build this application from the ground up. Let's start with the class responsible for
maintaining the connection with a specific Worker: Workerclient. This class will live in its
specific QThread and will interact with a Worker class using the same QTcpSocket/QDataStream
mechanism we covered in the last section.

In mandelbrot-app, create a new C++ class named wWorkerclient and update wWorkercClient.h
like so:

#include <QTcpSocket>
#include <QList>
#include <QDataStream>

#include "JobRequest.h"
#include "JobResult.h"
#include "Message.h"

class WorkerClient : public QObject

{
Q_OBJECT

public:
WorkerClient(int socketDescriptor);

private:
int mSocketDescriptor;
int mCpuCoreCount;
QTcpSocket mSocket;
QDataStream mSocketReader ;

+;

Q DECLARE_METATYPE (WorkerClient™)

It looks very similar to Worker. Yet it may behave differently from a life cycle point of view.
Each time a new Worker connects to our QTcpServer, a new WorkerClient will be spawned
with an associated QThread. The Workerclient object will take the responsibility of
interacting with the worker class through the msocket.

If the worker disconnects, the workerclient object will be deleted and removed from
the QTcpServer class.

Let's review the content of this header, starting with the members:

e mSocketDescriptor: This is the unique integer assigned by the system to interact with the
socket. stdin, stdout, and stderr are also descriptors that point to specific streams in
your application. For a given socket, the value will be retrieved in QTcpServer. More on
this later on.

e mCpuCoreCount: This is the CPU core count for the connected Worker. This field will be
initialized when the wWorker sends the WORKER_REGISTER message.

e mSocket: This is the QTcpSocket used to interact with the worker class.

e mSocketReader: This has the same role it had in Worker - it reads mSocket content.

Now we can add the functions to WorkerClient.h:

class WorkerClient : public QObject

{
Q_OBJECT

public:
WorkerClient(int socketDescriptor);
int cpuCoreCount() const;

signals:
void unregistered(WorkerClient* workerClient);
void jobCompleted(WorkerClient* workerClient,
JobResult jobResult);
void sendJobRequests(QList<JobRequest> requests);

public slots:
void start();
void abortJob();

private slots:
void readMessages();
void doSendJobRequests(QList<JobRequest> requests);

private:
void handleWorkerRegistered(Message& message);
void handleWorkerUnregistered(Message& message);
void handleJobResult(Message& message);

+;

Let's see what each function does:

e Workerclient(): This function expects a socketDescriptor as a parameter. As a
consequence, a WorkerClient function cannot be initialized without a valid socket.

e cpuCoreCount(): This function is a simple getter to let the owner of workerclient know
how many cores the worker has.

The class has three signals:

e unregister(): This is the signal sent by WorkerClient when it has received
the WORKER_UNREGISTER message.
e jobCompleted(): This is the signal sent by Wworkerclient when it has received
the JOB_RESULT message. It will pass by copying the deserialized JobResult.
e sendJobRequests(): This is emitted from the owner of WorkerClient to
pass JobRequests in a queued connection to the proper slot: doSendJobRequests().

Here are the details of the slots:

e start(): This slotis called when workercClient can start its process. Typically, it will be
connected to the start signal of the QThread associated with the WorkercClient.

e abortJob(): This slot triggers the shipment of the ALL_JOBS_ABORT message to
the worker.

e readMessages(): This slot is called each time there is something to read in the socket.

e doSendJobRequests(): This slot is the real slot that triggers the shipment of
the JobRequests to the worker.

And finally, here are the details of the private functions:

e handleWorkerRegistered(): This function processes the WoORKER_REGISTER message and
initializes mCpuCoreCount

e handleWorkerUnregistered(): This function processes the WORKER_UNREGISTER message
and emits the unregistered() signal

e handleJobResult(): This function processes the J0B_RESULT message and dispatches the
content through the jobCompleted() signal

The implementation in WorkercClient.cpp should be quite familiar. Here is the constructor:

#include "MessageUtils.h"

wWorkerClient::WorkerClient(int socketDescriptor)
QObject(),
mSocketDescriptor (socketDescriptor),
mSocket(this),
mSocketReader (&mSocket)

connect(this, &WorkerClient::sendJobRequests,
this, &WorkerClient::doSendJobRequests);

}

The fields are initialized in the initialization list and the sendJobRequests signal is connected
to the private slot, dosendJobRequests. This trick is used to still have a queued connection
across threads while avoiding multiple functions declarations.

We will proceed with the start() function:

void WorkerClient::start()

{
connect (&mSocket, &QTcpSocket::readyRead,
this, &WorkerClient::readMessages);
mSocket.setSocketDescriptor (mSocketDescriptor);
}

This is very short indeed. It first connects the readyRead() signal from the socket to
our readMessages() slot. After that, mSocket is properly configured with mSocketDescriptor.

The connect has to be done in start() because it should be executed in the QThread class
associated with our Workerclient. By doing so, we know that the connect will be a direct
connection and that mSocket will not have to queue signals to interact with WorkercClient.

Note that at the end of the function, the associated QThread is not terminated. On the contrary,
itis executing its event loop with QThread: :exec(). The QThread class will continue to run its
event loop until someone calls QThread: :exit().

The only purpose of the start() function is to do the mSocket connect work in the right thread
affinity. After that, we rely solely on the Qt signal/slot mechanism to process data. There is no
need for a busy while loop.

The readMessages() class is waiting for us; let's see it:

void WorkerClient::readMessages()

{

auto messages = MessageUtils::readMessages(mSocketReader);
for(auto& message : *messages) {

switch (message->type) {

case Message::Type::WORKER_REGISTER:
handlewWorkerRegistered(*message);
break;

case Message::Type::WORKER_UNREGISTER:
handleWorkerUnregistered(*message);
break;

case Message::Type::JOB_RESULT:
handleJobResult(*message);
break;

default:
break;

}

No surprises here. It's exactly like we did for worker. The Messages are deserialized
using MessageUtils::readMessages() and, for each message type, the appropriate function is
called.

Here is the content of each of these functions, starting with handleworkerRegistered():

void WorkerClient::handleWorkerRegistered(Message& message)

{
QDataStream in(&message.data, QIODevice::ReadOnly);

in >> mCpuCoreCount;

}

For the WORKER_REGISTER message, Worker only serialized an int in message.data, so we can
initialize mCpuCoreCount on the spot with in >> mCpuCoreCount.

Now the body of handlewWorkerUnregistered():

void WorkerClient::handleWorkerUnregistered(Message& /*message*/)

{
}

emit unregistered(this);

Itis a relay to send the unregistered() signal, which will be picked up by the owner
of WworkercClient.

The last "read" function is handleJobResult():

void WorkerClient::handleJobResult(Message& message)
{
QDataStream in(&message.data, QIODevice::ReadOnly);
JobResult jobResult;
in >> jobResult;
emit jobCompleted(this, jobResult);

This is deceptively short. It only deserializes the jobResult component from message.data
and emits the jobCompleted() signal.

The "write-to-socket" functions are abortJob() and doSendJobRequest():

void WorkerClient::abortJob()

{
MessageUtils::sendMessage(mSocket,
Message: :Type::ALL_JOBS_ABORT,
true);
}

void WorkerClient::doSendJobRequests(QList<JobRequest> requests)

{
QByteArray data;

QDataStream stream(&data, QIODevice::WriteOnly);
stream << requests;

MessageUtils: :sendMessage(mSocket,
Message: :Type::JOB_REQUEST,
data);
}

The abortJob() function sends the ALL_JOBS_ABORT message with the forceFlush flag set
to true and doSendJobRequests() serializes the requests to stream before sending them
using MessageUtils: :sendMessage().

Building your own QTcpServer

Everything is ready to read and write in our sockets. We still need a server to orchestrate all
these instances. To do so, we will develop a modified version of the MandelbrotCalculator
class, which was covered in Chapter 9, Keeping Your Sanity with Multithreading.

The idea is to respect the same interface, in order to have Mandelbrotwidget oblivious to the
fact that the Mandelbrot picture generation is deported on different processes/machines.

The main difference between the old MandelbrotCalculator and the new one is that we
replaced the QThreadPool class by a QTcpServer. The MandelbrotCalculator class now only
has the responsibility to dispatch JobRequests to Workers and aggregate the result, but it
never interacts anymore with a QThreadPool class.

Create a new C++ class named MandelbrotCalculator.cpp and update
MandelbrotCalculator .h to match this:

#include <memory>
#include <vector>

#include <QTcpServer>
#include <QList>
#include <QThread>
#include <QMap>
#include <QElapsedTimer>

#include "WorkerClient.h"
#include "JobResult.h"
#include "JobRequest.h"

class MandelbrotCalculator : public QTcpServer

{
Q_OBJECT

public:
MandelbrotCalculator (QObject* parent = 0);
~MandelbrotCalculator();

signals:
void pictureLinesGenerated(QList<JobResult> jobResults);
void abortAllJobs();

public slots:
void generatePicture(QSize areaSize, QPointF moveOffset,
double scaleFactor, int iterationMax);

private slots:
void process(WorkerClient* workerClient, JobResult jobResult);
void removeWorkerClient(WorkerClient* workerClient);

protected:

void incomingConnection(qintptr socketDescriptor) override;

private:

std::unique_ptr<JobRequest> createJobRequest(
int pixelPositionY);
void sendJobRequests(WorkerClient& client,
int jobRequestCount = 1);
void clearJobs();

private:

+;

QPointF mMoveOffset;

double mScaleFactor;

QSize mAreaSize;

int mIterationMax;

int mReceivedJobResults;

QList<JobResult> mJobResults;

QMap<WorkerClient*, QThread*> mWorkerClients;
std::vector<std::unique_ptr<JobRequest>> mJobRequests;
QElapsedTimer mTimer;

The modified (or new) data is highlighted. First, note that the class now inherits from
QTcpServer rather than Qobject. The MandelbrotCalculator class is now a QTcpServer and is
able to accept and manage connections. Before digging into this topic, we can review the new
members:

mworkercClients: This is a QMap that stores the pair Workerclient and QThread. Each time
a WorkercClient is created, an associated QThread is also spawned and both of them are
stored in mwWorkercClients.

mJobRequests: This is the list of JobRequests for the current picture. Each time a picture
generation is requested, the full list of JobRequest is generated, ready to be dispatched
to WorkercClients (that is, to the worker on the other side of the socket).

And the functions are:

process(): This function is a slightly modified version of the one seen in Chapter

9, Keeping Your Sanity with Multithreading. It not only aggregates JobResults before
sending them with the pictureLinesGenerated() signal, but also dispatches JobRequest
to the passed WorkercClient to keep them busy.

removeworkerclient(): This function removes and deletes the given WworkercClient
from mworkercClients.

incomingConnection(): This function is an overloaded function from QTcpServer. It is
called each time a new client tries to connect to MandelbrotCalculator.
createJobRequest(): This is a helper function that creates a JobRequest that is added

to mJobRequests.

sendJobRequests(): This function is responsible for sending a list of JobRequests to the

specified WorkercClient.

Let's turn to MandelbrotCalculator .cpp with the constructor:

#include <QDebug>
#include <QThread>

using namespace std;
const int JOB_RESULT_THRESHOLD = 10;

MandelbrotCalculator::MandelbrotCalculator (QObject* parent)
QTcpServer (parent),
mMoveOffset(),
mScaleFactor (),
mAreaSize(),
mIterationMax(),
mReceivedJobResults(0),
mwWorkerClients(),
mJobRequests(),
mTimer ()

listen(QHostAddress::Any, 5000);

This is the common initialization list with the 1isten() instruction in the body. Because we
are subclassing QTcpServer, we can call listen on ourselves. Note that QHostAddress: :Any
works either for IPv4 and IPv6.

Let's see the overloaded function, incomingConnection():

void MandelbrotCalculator::incomingConnection(
gintptr socketDescriptor)

{

gDebug() << "Connected workerClient";

QThread* thread = new QThread(this);

WorkerClient* client = new WorkerClient(socketDescriptor);

int workerClientsCount = mwWorkerClients.keys().size();

mwWorkerClients.insert(client, thread);

client->moveToThread(thread);

connect(this, &MandelbrotCalculator::abortAllJobs,
client, &WorkerClient::abortJob);

connect(client, &WorkerClient::unregistered,

this, &MandelbrotCalculator::removeWorkerClient);
connect(client, &WorkerClient::jobCompleted,

this, &MandelbrotCalculator::process);

connect(thread, &QThread::started,
client, &WorkerClient::start);
thread->start();

if(workerClientsCount == 0 &&
mwWorkerClients.size() == 1) {
generatePicture(mAreaSize, mMoveOffset,
mScaleFactor, mIterationMax);

}

Once listen() has been called, each time someone connects to our ip/port
pair, incomingConnection() will be triggered with socketDescriptor passed as a parameter.

Tip

You can test this on your machine connection with a simple telnet 127.0.0.1 5000
command. You should see the Connected workercClient log in mandelbrot-app.

We start by creating a QThread class and a WorkercClient. This pair is immediately inserted in
the mworkercClients map and client thread affinity is changed to thread.

After that, we do all the connects to manage the client (abortJob, unregister,
and jobCompleted). We continue with the QThread: :started() signal, which is connected to
the WorkercClient::start() slot and finally, thread is started.

The last part of the function is used to trigger a picture generation upon the first client
connection. If we did not do this, the screen would have remained black until we panned or
zoomed.

We have covered the WorkercClient creation; let's finish its life cycle with its destruction
with removeworkerClient():

void MandelbrotCalculator::removeWorkerClient(WorkerClient* workerClient)

{

gDebug() << "Removing workerClient";

QThread* thread = mwWorkerClients.take(workerClient);
thread->quit();

thread->wait(1000);

delete thread;

delete workerClient;

}

The workerclient/thread pair is removed from mworkerClients and cleanly deleted. Note
that this function can be called from the WorkercClient::unregistered signal or in
the MandelbrotCalculator destructor:

MandelbrotCalculator::~MandelbrotCalculator ()

{
while (!mWorkerClients.empty()) {

removewWorkerClient(mwWorkerClients.firstKey());

}

When MandelbrotCalculator is deleted, mworkercClients has to be properly emptied. The
iterator style while loop does a good job of calling removeworkerclient().

In this new version of MandelbrotCalculator, generatePicture() does not have exactly the
same behavior:
void MandelbrotCalculator::generatePicture(

QSize areaSize, QPointF moveOffset,
double scaleFactor, int iterationMax)

{
// sanity check & members initization
for(int pixelPositionY = mAreaSize.height() - 1;
pixelPositionY >= 0; pixelPositionY--) {
mJobRequests.push_back (move(
createJobRequest(pixelPositionY)));
}
for(WorkerClient* client : mWorkerClients.keys()) {
sendJobRequests(*client, client->cpuCoreCount() * 2);
}
}

The beginning is the same. However, the end is quite different. Rather than creating Jobs and
giving them to a QThreadPool, MandelbrotCalculator now:

e Creates JobRequests to generate the whole picture. Note that they are created in reverse
order. We will soon see why.
¢ Dispatches a number of JobRequests to each WorkerClient it owns.

The second point deserves a strong emphasis. If we want to maximize the speed of our
system, we have to use multiple workers, each one having multiple cores to process multiple
jobs at the same time.

Even though a Worker class can process multiple jobs at the same time, it can only send
us JobResults one by one (through workercClient::jobCompleted). Each time we process
a JobResult object from a workerclient, we will dispatch a single JobRequest to it.

Assume that the worker class has eight cores. If we send JobRequests one by one, the Worker
will always have seven cores idle. We are here to heat up your CPUs, not to let them drink
mojitos on the beach!

To mitigate this, the first batch of JobResults we send to a worker has to be higher than
its coreCount(). By doing so, we ensure that is always has a queue of JobRequests to process

until we generate the whole picture. This is why we send client->cpuCoreCount() * two
initial JobRequests. If you play with this value, you will see that:

e If jobCount < cpuCoreCount(), some cores of your Worker will be idle and you will not
leverage the full power of its CPU

e If jobCount > cpuCoreCount() by too much, you might overload the queue of one
your Workers

Remember that this system is flexible enough to have multiple workers. If you have a
RaspberryPI and an x86 with 16 cores, the RaspberryPI will lag behind the x86 CPU. By
giving too much initial JobRequests, the RaspberryPI will hinder the whole picture
generation while the x86 CPU has already finished all its jobs.

Let's cover the remaining functions of MandelbrotCalculator, starting with
createJobRequest():

std::unique_ptr<JobRequest> MandelbrotCalculator::createJobRequest(int
pixelPositionY)
{
auto jobRequest = make_unique<JobRequest>();
jobRequest->pixelPositionY = pixelPositionY;
jobRequest->moveOffset = mMoveOffset;
jobRequest->scaleFactor = mScaleFactor;
jobRequest->areaSize = mAreaSize;
jobRequest->iterationMax = mIterationMax;
return jobRequest;

}

This is a simple creation of a jobRequest with the member fields of MandelbrotCalculator.
Again, we use unique_ptr to explicitly indicate the ownership of jobRequest and avoid any
memory leaks.

Next, with sendJobRequests():

void MandelbrotCalculator::sendJobRequests(WorkerClient& client, int
jobRequestCount)
{
QList<JobRequest> listJobRequest;
for (int i = 0; i < jobRequestCount; ++i) {
if (mJobRequests.empty()) {
break;
}

auto jobRequest = move(mJobRequests.back());
mJobRequests.pop_back();
listJobRequest.append(*jobRequest);

}

if (!'listJobRequest.empty()) {

emit client.sendJobRequests(listJobRequest);
}

Because we can send multiple JobRequests at the same time, we loop on jobRequestCount by
taking the last jobRequest of mJobRequests and adding it to 1istJobRequest. This is the
reason for which we had to fill mJobRequests in the reverse order.

Finally, the client.sendJobRequests() signal is emitted, which in turns triggers
the WworkerClient: :doSendJobRequests() slot.
We are now going to see the modified version of process():

void MandelbrotCalculator::process(WorkerClient* workerClient,
JobResult jobResult)

{
// Sanity check and JobResult aggregation
if (mReceivedJobResults < mAreaSize.height()) {
sendJobRequests(*workerClient);
} else {
gbebug() << "Generated in" << mTimer.elapsed() << "ms";
}
}

In this version, we pass workerClient as a parameter. This is used at the end of the function,
to be able to dispatch a new JobRequest to the given workerClient.

Finally, the updated version of abortAllJobs():

void MandelbrotCalculator::clearJobs()

{
mReceivedJobResults = 0;
mJobRequests.clear();
emit abortAllJobs();

}

This simply cleared mJobRequests instead of emptying QThreadPool.

The MandelbrotCalculator class is completed! You can copy and paste MandelBrotWidget
and Mainwindow (.ui file included) from Chapter 9, Keeping Your Sanity with Multithreading.
We designed it to be plug and play, without knowing who generates the picture: a

local QThreadPool with QRunnable or minions through an IPC mechanism.

There is only a tiny difference in main.cpp:

#include <QApplication>
#include <QList>

#include "JobRequest.h"
#include "JobResult.h"
#include "WorkerClient.h"

int main(int argc, char *argv[])

{
gRegisterMetaType<QList<JobRequest>>();

gRegisterMetaType<QList<JobResult>>();
gRegisterMetaType<WorkerClient*>();

QApplication a(argc, argv);
MainWindow w;
w.show();

return a.exec();

}

You can now launch mandelbrot-app and after that, the one or many mandelbrot-

worker programs that will connect to the application. It should automatically trigger a picture
generation. The Mandelbrot picture generation is now working across multiple processes!
Because we chose to use sockets, you can start the application and the workers on different
physical machines.

Tip

Using IPv6, you may very easily test the app/worker connection in different locations. If you
do not have a high-speed Internet connection, you will see how the network hinders the
picture generation.

You may want to take some time to deploy the application on multiple machines and see how
this cluster works together. During our tests, we ramped up our cluster up to 18 cores with
very heterogeneous machines (PC, laptop, Macbook, and so on).

Summary

IPC is a fundamental mechanism in computer science. In this chapter, you learned the various
techniques offered by Qt to do IPC and how to create an application that uses sockets to
interact, send, and receive commands. You took the original mandelbrot-threadpool
application to the next level by enabling it to generate pictures on a cluster of machines.

Adding IPC on top of a multi-threaded application brings some issues. You have many more
possible bottlenecks, chances of leaking memory, and have an inefficient calculation. Qt
provides multiple mechanisms to do IPC. In Qt 5.7, the addition of transactions makes the
serialization/deserialization part much easier.

In the next chapter, you will discover the Qt Multimedia framework and how to save and load
an C++ object from a file. The project example will be a virtual drum machine. You will be
able to save and load your tracks.

Chapter 11. Having Fun with Serialization

The previous chapter was a firework of threads, sockets, and workers. We hope that your
minions have been working hard. In this chapter, we will turn our attention to the serialization
with Qt. You will learn how to serialize data in multiple formats with a flexible system. The
example project will be a virtual drum machine, in which you can compose you own drum
beat, record it, play it, save it, and load it back. Your drum beat will be probably so awesome
that you will want to share it: you will now be able to do it in various formats.

This chapter will cover the following topics:

How to architecture an application that plays and records sounds
The Qvariant class and its inner mechanics

A flexible serialization system

JSON serialization

XML serialization

Binary serialization

The Qt Multimedia framework

Drag and drop handling with Qt

Triggering a button from your keyboard

Architecting the drum machine project

As usual, before diving into the code, let's study the structure of the project. The aim of the
project is to be able to:

e Play and record a sound track from a drum machine
e Save this track to a file and load it to play it back

To play a sound, we will lay out four big buttons that will play a specific drum sound upon
click (or a keyboard event): a kick, a snare, a hi-hat, and a cymbal crash. These sounds will be
.wav files loaded by the application. The user will be able to record his sequence of sounds
and replay it.

For the serialization part, we do not only want to save the track to a single file format, we
would rather do three:

e JSON (JavaScript Object Notation)
e XML (eXtensible Markup Language)
e Binary

Not only is it more fun to cover three formats, but it also gives us the opportunity to
understand the advantages and limitations of each one, and how it fits within the Qt
framework. The architecture we are going to implement will try to be flexible to handle
future evolutions. You never know how a project can evolve!

The classes' organization looks like this:

/ Serintzation \

< <Serializable> > < <Serializer> >

7 7
N ks

SoundEvent —’{ Track JsonSerializer XmlSerializer BinarySerializer

\ 4

Playback Thread

PlaybackWorker —— MainWindow

SoundEffectWidget

Let's review the role of these classes:

e The soundEvent class is the basic building block of a track. It is a simple class
containing timestamp (when the sound has been played) and soundId variables (what
sound has been played).

e The Track class contains a list of SoundEvents, a duration and a state (playing,
recording, stopped). Each time the user plays a sound, a SoundEvent class is created and
added to the Track class.

e The Playbackworker class is a worker class that runs in a different thread. It is
responsible of looping through the Track class's soundEvents and triggering the proper
sound when its timestamp has been reached.

e The serializable class is an interface that must be implemented by each class that wants
to be serialized (in our case: SoundEvent and Track).

e The serializer class is an interface that must be implemented by each format-specific
implementation class.

e The JsonSerializer, XmlSerializer, and BinarySerializer are the sub-classes
of Serializer class that do the format-specific job to serialize/deserialize
a Serializable instance.

e The SsoundEffectwidget class is the widget that holds the information to play a single
sound. It displays the button for one of our four sounds. It also owns a QSoundEffect
class that sends the sound to the audio card.

e The Mainwindow class holds everything together. It owns the Track class, spawns
the PlaybackWorker thread, and triggers the serialization/deserialization.

The output format should be easily swapped. To achieve this, we will rely on a modified
version of the bridge design pattern that will allow Serializable and Serializer classes to
evolve independently.

The whole project revolves around this notion of independence between modules. It goes to
the extent that a sound can be replaced on the spot during a playback. Let's say that you listen
to your incredible beat, and you want to try another snare sound. You will be able to replace it
with a simple drag and drop of a .wav file on the SoundEffectwidget class holding the snare
sound.

Creating a drum track

Let's buckle up and do this project! Create a new Qt Widgets Application project
named ch11-drum-machine. As usual, add the CONFIG += c++14 in chi1l-drum-machine.pro.

Now create a new C++ class named SoundEvent. Here is SoundEvent.h stripped from its
functions:

#include <QtGlobal>

class SoundEvent

{
public:
SoundEvent(qint64 timestamp = 0, int soundId = 0);
~SoundEvent();
gint64 timestamp;
int soundId;
3

This class contains only two public members:

e timestamp: A gint64 (long long type) that contains the current time of the SoundEvent in
milliseconds since the beginning of the track
e soundId: The ID of the sound that has been played

In recording mode, each time the user plays a sound, a SoundEvent is created with the
appropriate data. The SoundEvent.cpp file is so boring that we will not inflict it on you.

The next class to build is Track. Again, create the new C++ class. Let's review Track.h with its
members only:

#include <QObject>
#include <QVector>
#include <QElapsedTimer>
#include "SoundEvent.h"

class Track : public QObject

{
Q_OBJECT
public:
enum class State {
STOPPED,
PLAYING,
RECORDING,

+;

explicit Track(QObject *parent = 0);
~Track();

private:
gint64 mDuration;
std::vector<std::unique_ptr<SoundEvent>> mSoundEvents;
QElapsedTimer mTimer;
State mState;
State mPreviousState;

+;

We can now go into detail about them:

e mDuration: This variable holds the duration of the Track class. This member is reset to 0
when a recording is started and updated when the recording is stopped.

e mSoundEvents: This variable is the list of SoundEvents for the given Track. As
the unique_ptr semantic states it, Track is the owner of the sound events.

e mTimer: This variable is started each time Track is played or recorded.

e mState: This variable is the current State of Track class, which can have three possible
values: STOPPED, PLAYING, RECORDING.

e mPreviousState: This variable is the previous State of Track. This is useful when you
want to know which action to do on a new STOPPEDState. We will have to stop the
playback if mPreviousState is in the PLAYING state.

The Track class is the pivot of the business logic of the project. It holds mState, which is the
state of the whole application. Its content will be read during a playback of your awesome
musical performance and also be serialized to a file.

Let's enrich Track.h with functions:

class Track : public QObject

{

Q_OBJECT
public:

gint64 duration() const;

State state() const;

State previousState() const;

quint64 elapsedTime() const;

const std::vector<std::unique_ptr<SoundEvent>>& soundEvents() const;
signals:

void stateChanged(State state);

public slots:
void play();
void record();
void stop();
void addSoundEvent(int soundEventId);

private:

void clear();
void setState(State state);

private:

+;

We will skip the simple getters and concentrate on the important functions:

elapsedTime(): This function returns the value of the mTimer .elapsed().
soundEvents(): This function is a little more complicated getter. The Track class is the
owner of mSoundEvents content and we really want to enforce it. For this, the getter
returns a const & to mSoundEvents.

stateChanged(): This function is emitted when the mState value is updated. The

new State is passed as a parameter.

play(): This function is a slot that starts to play the Track. This play is purely logical, the
real playback will be triggered by Playbackworker.

record(): This function is a slot that starts the recording state of Track.

stop(): This function is a slot that stops the current start or record state.
addSoundEvent (): This function creates a new SoundEvent with the given soundId and
adds it to mSoundEvents.

clear (): This function resets the content of Track: it clears mSoundEvents and

sets mDuration to 0.

setState(): This function is a private helper function that

updates mState, mPreviousState and emits the stateChanged () signal.

Now that the header has been covered, we can study the interesting parts of Track.cpp:

void Track::play()

{

}

setState(State: :PLAYING);
mTimer.start();

Calling Track.play() simply updates the state to PLAYING and starts mTimer. The Track class
does not hold anything related to the Qt Multimedia API; it is limited to an evolved data
holder (as it also manages a state).

Now for record(), which brings a lot of surprises:

void Track::record()

{

clearSoundEvents();
setState(State: :RECORDING);
mTimer.start();

}

It starts by clearing the data, sets the state to RECORDING, and also starts mTimer. Now
consider stop(), which is a slight variation:

void Track::stop()

{
if (mState == State::RECORDING) {
mDuration = mTimer .elapsed();
}
setState(State: :STOPPED) ;
}

If we are stopping in the RECORDING state, mDuration is updated. Nothing very fancy here. We
saw three times the setState() call without seeing its body:

void Track::setState(Track::State state)

{
mPreviousState = mState;
mState = state,
emit stateChanged(mState);
}

The current value of mState is stored in mPreviousState before being updated.
Finally, stateChanged () is emitted with the new value.

The state system of Track is completely covered. The last missing part is the SoundEvents
interactions. We can start with the addSoundEvent () snippet:

void Track::addSoundEvent(int soundEventId)

{
if (mState != State::RECORDING) {
return;
}
mSoundEvents.push_back(make_unique<SoundEvent>(
mTimer .elapsed(),
soundEventId));
}

A soundEvent is created only if we are in the RECORDING state. After that, a SoundEvent is
added to mSoundEvents with the current elapsed time of mTimer and the passed soundEventId.

Now for the clear () function:

void Track::clear ()

{

mSoundEvents.clear();
mDuration = 0;

Because we use unique_ptr<SoundEvent> in mSoundEvents, the mSoundEvents.clear ()
function is enough to empty the vector and also delete each SoundEvent. This is one less thing
you have to worry with smart pointers.

The SoundEvent and Track are the base classes that hold the information about your future
beat. We are going to see the class responsible for reading this data to play
it: Playbackworker.

Create a new C++ class and update PlaybackWorker .h like so:

#include <QObject>
#include <QAtomicInteger>

class Track;
class PlaybackWorker : public QObject

{
Q_OBJECT
public:
explicit PlaybackWorker (const Track& track, QObject *parent = 0);

signals:
void playSound(int soundId);
void trackFinished();

public slots:
void play();
void stop();

private:
const Track& mTrack;
QAtomicInteger<bool> mIsPlaying;

+;

The Playbackworker class will be running in a different thread. If your memory needs to be
refreshed, go back to Chapter 9, Keeping Your Sanity with Multithreading. Its role is to iterate
through the Track class's content to trigger the sounds. Let's break down this header:

e mTrack: This function is the reference to the Track class on which pPlaybackworker is
working. It is passed in the constructor as a const reference. With this information, you
already know that PlaybackWorker cannot modify mTrack in any way.

e mIsPlaying: This function is a flag used to be able to stop the worker from another
thread. It is a QAtomicInteger to guarantee an atomic access to the variable.

e playSound(): This function is emitted by Playbackworker each time a sound needs to be
played.

e trackFinished(): This function is emitted when the playback has been played until the
end. If it has been stopped along the way, this signal will not be emitted.

e play(): This function is the main function of Playbackworker. In it, mTrack content will

be queried to trigger sounds.
e stop(): This function is the function that updates the mIsPlaying flag and causes play()

to exit its loop.

The meat of the class lies in the play() function:

void PlaybackWorker::play()

{
mIsPlaying.store(true);
QElapsedTimer timer;
size_t soundEventIndex = 0;
const auto& soundEvents = mTrack.soundEvents();
timer.start();
while(timer.elapsed() <= mTrack.duration()
&& mIsPlaying.load()) {
if (soundEventIndex < soundEvents.size()) {
const auto& soundEvent =
soundEvents.at(soundEventIndex);
if (timer.elapsed() >= soundEvent->timestamp) {
emit playSound(soundEvent->soundId);
soundEventIndex++;
}
}
QThread::msleep(1);
}
if (soundEventIndex >= soundEvents.size()) {
emit trackFinished();
}
}

The first thing that play () function does is to prepare its reading: mIsPlaying is setto true,
a QElapsedTimer class is declared, and a soundEventIndex is initialized. Each
time timer .elapsed() is called, we will know if a sound should be played.

To know which sound should be played, soundeventIndex will be used to know where we are
in the soundEvents vector.

Right after that, the timer object is started and we enter in the while loop. This while loop has
two conditions to continue:

e timer.elapsed() <= mTrack.duration(): This condition states that we did not finish
playing the track
e mIsPlaying.load(): This condition returns true: nobody asked PlaybackWorker to stop

Intuitively, you might have added the soundEventIndex < soundEvents.size() condition in
the while condition. By doing so, you would have exited P1laybackworker as soon as the last

sound has been played. Technically, it works, but that would not have respected what the user
recorded.

Consider a user that created a complex beat (do not underestimate what you can do with four
sounds!) and decided on a long pause of 5 seconds at the end of the song. When he clicks on
the stop button, the time display indicates 00:55 (for 55 seconds). However, when he plays
back his performance, the last sound finishes at 00:50. The playback stops at 00:50 and the
program does not respect what he recorded.

For this reason, the soundEventIndex < size() testis moved inside the while loop and is
used only as a fuse for the soundEvents read through.

Inside this condition, we retrieve the reference to the current soundevent. We then compare
the elapsed time against the timestamp of the soundEvent. If timer.elapsed() is greater or
equal to soundEvent->timestamp, the signal playSound() is emitted with the soundId.

This is only a request to play a sound. The PlaybackWorker class limits itself to read
through soundEvents and trigger a playSound() at the proper moment. The real sound will be
handled later on, with the Soundeffectwidget class.

At each iteration in the while loop, a QThread: :msleep(1) is done to avoid a busy loop. We
minimize the sleep because we want the playback to be as faithful as possible to the original
score. The longer the sleep, the more discrepancy we may encounter in the playback timing.

Finally, if the whole soundEvents has been processed, the trackFinished signal is emitted.

Making your objects serializable with
QVariant

Now that we implemented the logic in our business classes, we have to think about what we
are going to serialize and how we are going to do it. The user interacts with a Track class that
contains all the data to be recorded and played back.

Starting from here, we can assume that the object to be serialized is Track, which in turn
should somehow bring along its mSoundEvents containing a list of SoundEvent instances. To
achieve this, we will rely heavily on the Qvariant class.

You might have worked with Qvariant before. It is a generic placeholder for any primitive
type (char, int, double, and so on) but also complex types (QString, QDate, QPoint, and many
more).

Note

The complete list of QVariant supported types is available at http://doc.gt.io/qt-
5/gmetatype.html#Type-enum.

A simple example of Qvariant is:

Qvariant variant(21);
int answer = variant.toInt() * 2;

gbebug() << "what is the meaning of the universe,
life and everything?"
<< answer;

We store 21 in variant. From here, we can ask for variant to have a copy of the value casted
to our desired type. Here we want an int value, so we call variant.toInt(). There are a lot
of conversions already available with the variant.toX() syntax.

We can take a very quick peek at what happens behind the curtain in Qvariant. How does it
store all we feed it? The answer lies in the C++ type union. The Qvariant class is a kind of
super union.

A union is a special class type that can hold only one of its non-static data members at a time.
A short snippet should illustrate this:

union Sound

{

int duration;

http://doc.qt.io/qt-5/qmetatype.html#Type-enum

char code;

+;

Sound s = 10;
gDebug() << "Sound duration:" << s.duration;
// output= Sound duration: 10

s.code = 'K';
gbebug() << "Sound code:" << s.code;
// output= Sound code: K

First, a union class is declared like a struct. By default, all the members are public. The
specificity of the union is that it takes only the largest member size in memory. Here, Sound
will take only as much as the int duration space in memory.

Because union takes only this specific space, every member variable shares the same memory
space. Therefore, only one member is available at a time, unless you want to have undefined
behaviors.

When using the Sound snippet, we start by initializing with the value 10 (by default the first
member is initialized). From here, s.duration is accessible but s.code is considered
undefined.

Once we assign a value to s.code, s.duration becomes undefined and s.code is now
accessible.

The union class makes the memory usage very efficient. In Qvariant, when you store a value,
itis stored in a private union:

union Data
{
char c;
uchar uc;
short s;
signed char sc;
ushort us;

qulonglong ull;

QObject *o;

void *ptr;

PrivateShared *shared;
} data;

Note the list of primitive types and at the end the complex types, Q0bject* and void*.

Besides Data, a QMetaType object is initialized to know the type of the stored object. The
combination of union and QMetaType lets Qvariant know which bata member it should use to
cast the value and give it back to the caller.

Now that you know what a union is and how Qvariant uses it, you might ask: why make
a Qvariant class at all? A simple union would not have been enough?

The answer is no. It is not enough because a union class cannot have members that do not
have a default constructor. It drastically reduces the number of classes you can put in a union.
Qt folks wanted to include many classes that did not have a default constructor in union. To
mitigate this, Qvariant was born.

What makes Qvariant very interesting is that it is possible to store custom types. If we wanted
to convert SoundEvent class to a Qvariant class, we would have added the following
in SoundEvent.h:

class SoundEvent

{

};
Q_DECLARE_METATYPE (SoundEvent);

We already used Q DECLARE_METATYPE macro in Chapter 10, Need IPC? Get Your Minions to
Work. This macro effectively registers SoundEvent to the QMetaType register, making it
available for Qvariant. Because QDataStreamrelies on Qvariant, we had to use this macro in
the last chapter.

Now to convert back and forth with a Qvariant:

SoundEvent soundEvent(4365, 0);
Qvariant stored;
stored.setValue(soundEvent);

SoundEvent newEvent = stored.value<SoundEvent>();
gbebug() << newEvent.timestamp;

As you can guess, the output of this snippet is 4365, the original timestamp stored
in soundEvent.

This approach would have been perfect if we wanted to do only binary serialization. Data can
be easily written and read from. However, we want to output our Track and SoundEvents to
standard formats: JSON and XML.

There is a major issue with the Q_DECLARE_METATYPE/Qvariant combo: it does not store any
key for the fields of the serialized class. We can already foresee that the JSON object of
a SoundEvent class will look like this:

{
"timestamp": 4365,

"soundId": @

There is no way the Qvariant class could know that we want a timestamp key. It will only
store the raw binary data. The same principle applies for the XML counterpart.

For this reason, we are going to use a variation of a Qvariant with a QvariantMap.

The QvariantMap class is only a typedef on QMap<QString, Qvariant>.This map will be
used to store the key names of the fields and the value in the Qvariant class. In turn, these keys
will be used by the JSON and XML serialization system to output a pretty file.

Because we aim to have a flexible serialization system, we have to be able to serialize and
deserialize this QvariantMap in multiple formats. To achieve this, we will define an interface
that gives the ability for a class to serialize/deserialize its content in a QvariantMap.

This QvariantMap will be used as an intermediate format, agnostic of the final JSON, XML, or
binary.

Create a C++ header named Serializer.h. Here is the content:

#include <Qvariant>

class Serializable {
public:
virtual ~Serializable() {}
virtual Qvariant toVariant() const = 0;
virtual void fromvariant(const Qvariant& variant) = 0;

+;

By implementing this abstract base class, a class will be Serializable. There are only two
virtual pure functions:

e The tovariant() function, in which the class must return a Qvariant (or, more precisely
a QvariantMap, which can be casted to a Qvariant thanks to the QMetaType system)

e The fromvariant() function, in which the class must initialize its members from the
variant passed as a parameter

By doing so, we give the responsibility to the final class to load and save its content. After all,
who knows better SoundEvent than SoundEvent itself?

Let's see Serializable in action with SoundEvent. Update SoundEvent.h like this:

#include "Serializable.h"

class SoundEvent : public Serializable

{
SoundEvent(qint64 timestamp = 0, int soundId = 0);

~SoundEvent();

Qvariant toVariant() const override;
void fromvariant(const QVariant& variant) override;

I¥
The SoundEvent class is now Serializable. Let's do the real work in SoundEvent.cpp:

Qvariant SoundEvent::tovVariant() const

{
QvariantMap map;
map.insert("timestamp", timestamp);
map.insert("soundId", soundId);
return map;
}
void SoundEvent::fromvariant(const QVariant& variant)
{
QvariantMap map = variant.toMap();
timestamp = map.value("timestamp").toLongLong();
soundId = map.value("soundId").toInt();
}

In tovariant(), we simply declare a QvariantMap that gets filled with timestamp and soundId.

On the other side, in fromvariant(), we convert variant to a QvariantMap and retrieve its
content with the same keys we used in tovariant().Itis as simple as that!

The next class that have to be Serializable is Track. After making Track inherit
from Serializable, update Track.cpp:

Qvariant Track::toVariant() const

{
QvariantMap map;
map.insert("duration", mDuration);
QvariantList list;
for (const auto& soundEvent : mSoundEvents) {
list.append(soundEvent->tovariant());
}
map.insert("soundEvents", 1list);
return map;
}

The principle is the same, although a bit more complex. The mburation variable is stored
in map object as we have seen for SoundEvent. For mSoundEvents, we have to generate a list
of Qvariant (a QvariantList) where each item is the converted Qvariant version of

a soundEvent key.

To do so, we simply loop over mSoundEvents and fill 1ist with the soundEvent-
>tovariant() result we covered a few paragraphs before.

Now for fromvariant():

void Track::fromvariant(const QVariant& variant)
{
QvariantMap map = variant.toMap();
mDuration = map.value("duration").toLongLong();

QvariantList 1list = map.value('"soundEvents").toList();
for(const Qvariant& data : list) {
auto soundEvent = make_unique<SoundEvent>();
soundEvent->fromvVariant(data);
mSoundEvents.push_back(move(soundEvent));

Here, for each element of the key soundEvents, we create a new SoundEvent, load it with the
content of data, and finally add it to the vector mSoundEvents.

Serializing objects in JSON format

The Track and SoundEvent classes can now be converted to a common Qt format Qvariant.
We now need to write a Track (and its SoundEvent objects) class in a file with a text or a
binary format. This example project allows you to handle all the formats. It will allow you to
switch the saved file format in one line. So where to put the specific format code? That is the
million dollar question! Here is a primary approach:

Serializable

Track SoundEvent

rd
fy

\
Y
B

JsonTrack XmlTrack BinaryTrack JsonSoundEvent || XmlSoundEvent | | BinarySoundEvent

In this proposition, the specific file format serialization code is inside a dedicated child class.
Well, it works but what would the hierarchy look like if we add two new file formats?
Moreover, each time we add a new object to serialize, we have to create all these children
classes to handle the different serialization file formats. This massive inheritance tree can
quickly become a sticky mess. The code will be unmaintainable. You do not want to do that.
So, here is where the bridge pattern can be a good solution:

File format independent components File format implementations
< <Serializable> > < <Serializer> >
A T

SoundEvent Track JsonSerializer XmlSerializer BinarySerializer

In a bridge pattern, we decouple the classes in two inheritance hierarchies:

e The components independent from the file format. The SoundEvent and Track objects do
not care about JSON, XML, or a binary format.

e The file format implementations. The JsonSerializer, XmlSerializer
and BinarySerializer handle a generic format, Serializable, not a specific component
such as SoundEvent or Track.

Notice that in a classic bridge pattern, an abstraction (Serializable) should contains an
implementor (Serializer) variable. The caller only deals with the abstraction. However in
this project example, Mainwindow has the ownership of Serializable and also of Serializer.
This is a personal choice to use the power of design pattern while keeping uncoupled
functional classes.

The architecture of Serializable and Serializer is clear. The Serializable class is already
implemented so you can now create a new C++ header file called serializer .h:

#include <QString>
#include "Serializable.h"

class Serializer

{
public:
virtual ~Serializer() {}
virtual void save(const Serializable& serializable,
const QString& filepath,
const QString& rootName = "") = 0;
virtual void load(Serializable& serializable,
const QString& filepath) = 0;
3

The serializer class is an interface, an abstract class with only pure virtual functions and no
data. Let's talk about the save() function:

e This function saves Serializable to a file on the hard disk drive.

e The serializable class is const and cannot be modified by this function.

e The filepath function indicates the destination file to create.

e Some Serializer implementations can use the rootName variable. For example, if we
request to save a Track object, the rootName variable could be the string track. This is the
label used to write the root element. The XML implementation requires this information.

The load() function is also easy to understand:

e This function loads data from a file to fill a Serializable class

e The serializable class will be updated by this function
e The filepath function indicates which file to read

The interface Serializer is ready and waits for some implementations! Let's start with JSON.
Create a C++ class, JsonSerializer. Here is the header for JsonSerializer.h:

#include "Serializer.h"

class JsonSerializer : public Serializer

{
public:
JsonSerializer();
void save(const Serializable& serializable,
const QString& filepath,
const QString& rootName) override;
void load(Serializable& serializable,
const QString& filepath) override;
Iy

No difficulties here; we have to provide an implementation of save() and load(). Here is
the save() implementation:

void JsonSerializer::save(const Serializable& serializable,
const QString& filepath, const QString& /*rootName*/)
{

QJsonDocument doc =
QJsonDocument::fromVariant(serializable.tovariant());

QFile file(filepath);

file.open(QFile::WriteOnly);

file.write(doc.toJdson());

file.close();

}

The Qt framework provides a nice way to read and write a JSON file with the QIsonDocument
class. We can create a QJsonDocument class from a Qvariant class. Notice that the Qvariant
accepted by QisonDocument must be a QvariantMap, QvariantList, or QStringList. No
worries, the tovariant() function of Track class and SoundEvent generates a QvariantMap.
Then, we can create a QFile file with the destination filepath. The QJsonDocument::toJson()
function converts it to a UTF-8 encoded text representation. We write this result to the QFile
file and close the file.

Tip

The QJsonDocument: :toJson () function can produce an Indented or a Compact JSON format.
By default, the format is QIsonDocument: : Indented.

The load() implementation is also short:

void JsonSerializer::load(Serializable& serializable,
const QString& filepath)

{
QFile file(filepath);
file.open(QFile::ReadOnly);
QJsonDocument doc = QJsonDocument::fromJson(file.readAll());
file.close();
serializable.fromvariant(doc.tovariant());
¥

We open a QFile with the source filepath. We read all the data with QFile::readAl11(). Then
we can create a QJsonDocument class with the QIsonDocument: : fromJson () function. Finally,
we can fill our destination Serializable with the QIsonDocument converted to a Qvariant
class. Notice that the QisonDocument: :tovariant() function can return QvariantList or

a QvariantMap depending the nature of the JSON document.

Here is an example of a Track class saved with this JsonSerializer:

{
"duration": 6205,
"soundEvents": [
{
"soundId": O,
"timestamp": 2689
Iy
{
"soundId": 2,
"timestamp": 2690
Iy
{
"soundId": 2,
"timestamp": 3067
}
]
}

The root element is a JSON object, represented by a map with two keys:

Duration: This is a simple integer value

soundEvents: This is an array of objects. Each object is a map with the following keys:
soundId: This is an integer

timestamp: This is also an integer

Serializing objects in XML format

The JSON serialization was a direct representation of the C++ objects and Qt already
provides all we need. However, the serialization of a C++ object can be done with various
representations in an XML format. So we have to write the XML af” Qvariant conversion
ourselves. We have decided to use the following XML representation:

<[name]> type="[type]">[data]</[name]>

For example, the soundId type gives this XML representation:

<soundId type="int">2</soundId>

Create a C++ class XxmlSerializer that also inherits from Serializer. Let's begin with
the save() function, here is XmlSerializer .h:

#include <QXmlStreamwWriter>
#include <QXmlStreamReader>

#include "Serializer.h"

class XmlSerializer : public Serializer

{
public:
XmlSerializer();
void save(const Serializable& serializable,
const QString& filepath,
const QString& rootName) override;
Iy

Now we can see the save() implementation in XmlSerializer .cpp:

void XmlSerializer::save(const Serializable& serializable, const QStringé&
filepath, const QString& rootName)
{
QFile file(filepath);
file.open(QFile::WriteOnly);
QXmlStreamwWriter stream(&file);
stream.setAutoFormatting(true);
stream.writeStartDocument();
writeVariantToStream(rootName, serializable.toVariant(),
stream);
stream.writeEndDocument();
file.close();

}

We create a QFile file with the filepath destination. We construct a QxmlStreamwWriter object
that writes in the QFile. By default, the writer will produce a compact XML; you can generate

a pretty XML with the QXxmlStreamwriter::setAutoFormatting() function.

The QXmlStreamwriter::writeStartDocument() function writes the XML version and the
encoding. We write our Qvariant in the XML stream with our writevariantToStream()
function. Finally, we end the document and close the QFile. As already explained, writing

a Qvariant to an XML stream depends on how you want to represent the data. So we have to
write the conversion function. Please update your class with writevariantToStream() like
this:

//XmlSerializer.h

private:

void writevariantToStream(const QString& nodeName,
const Qvariant& variant, QXmlStreamWriter& stream);

//XmlSerializer.cpp
void XmlSerializer::writeVariantToStream(const QString& nodeName,
const Qvariant& variant, QXmlStreamWriter& stream)

{

stream.writeStartElement(nodeName);
stream.writeAttribute("type", variant.typeName());

switch (variant.type()) {

case QMetaType::QVariantlList:
writeVariantListToStream(variant, stream);
break;

case QMetaType::QVariantMap:
writeVariantMapToStream(variant, stream);
break;

default:
writeVariantValueToStream(variant, stream);
break;

}

stream.writeEndElement();

This writevariantToStream() function is a generic entry point. It will be called each time we
want to put a Qvariant in the XML stream. The Qvariant class could be a list, a map, or data.
So we apply a specific treatment if the Qvariant is a container (QvariantList

or QvariantMap). All the other cases are considered to be a data value. Here are the steps of
this function:

1. Start a new XML element with the writeStartElement() function. The nodeName will be
used to create the XML tag. For example, <soundId.

2. Write an XML attribute called type in the current element. We use the name of the type
stored in the Qvariant. For example, <soundId type="int".

3. Depending on the Qvariant data type, we call one of our XML serialization functions.
For example, <soundId type="int">2.

4. Finally, we end the current XML element with writeEndElement():

o The final result is: <soundId type="int">2</soundId>
o In this function, we call three helper functions that we will create now. The easiest

one is writevariantvalueToStream(). Please update your XmlSerializer class
with:

//XmlSerializer.h
void writevariantValueToStream(const QVariant& variant,
QXmlStreamwWriter& stream);

//XmlSerializer.cpp

void XmlSerializer::writeVariantValueToStream(
const Qvariant& variant, QXmlStreamWriter& stream)
{

}

stream.writeCharacters(variant.toString());

If the Qvariant is a simple type, we retrieve its QString representation. Then we
use QXxmlStreamwWriter::writeCharacters() to write this QString in the XML stream.

The second helper function is writevariantListToStream(). Here is its implementation:

//XmlSerializer.h
private:
void writevariantListToStream(const Qvariant& variant,
QXmlStreamwWriter& stream);

//XmlSerializer.cpp
void XmlSerializer::writeVariantListToStream(
const Qvariant& variant, QXmlStreamWriter& stream)

{
QvariantList 1list = variant.toList();
for(const Qvariant& element : list) {
writevVariantToStream("item", element, stream);
}
}

At this step, we already know that the Qvariant is a QvariantList. We

call Qvariant::toList() to retrieve the list. Then we iterate over all elements of the list and
call our generic entry point, writevVariantToStream(). Notice that we retrieve the elements
from a list so we do not have an element name. But the tag name does not matter for a list item
serialization, so insert the arbitrary label item.

The last write helper function is writevariantMapToStream():

//XmlSerializer.h
private:
void writevariantMapToStream(const QvVariant& variant,
QXmlStreamwWriter& stream);

//XmlSerializer.cpp
void XmlSerializer::writeVariantMapToStream(
const Qvariant& variant, QXmlStreamWriter& stream)

{
QvariantMap map = variant.toMap();
QMapIterator<QString, Qvariant> i(map);
while (i.hasNext()) {
i.next();
writevVariantToStream(i.key(), i.value(), stream);
}
}

The Qvariant is a container but a QvariantMap this time. We call writevariantToStream() for
each element found. The tag name is important because this is a map. We use the map key
from QMapIterator::key() as the node name.

The saving part is over. We can now implement the loading part. Its architecture follows the
same spirit as the saving functions. Let's begin with the 1oad () function:

//XmlSerializer.h
public:
void load(Serializable& serializable,
const QString& filepath) override;

//XmlSerializer.cpp
void XmlSerializer::load(Serializable& serializable,
const QString& filepath)

{
QFile file(filepath);
file.open(QFile::ReadOnly);
QXmlStreamReader stream(&file);
stream.readNextStartElement();
serializable.fromvariant(readVariantFromStream(stream));
}

The first thing to do is to create a QFile with the source filepath. We construct

a QXmlStreamReader with the QFile. The QXmlStreamReader ::readNextStartElement()
function reads until the next start element in the XML stream. Then we can use our read helper
function, readvariantFromStream(), to create a Qvariant class from an XML stream. Finally,
we can use our Serializable::fromvariant() to fill the destination serializable. Let's
implement the helper function, readvariantFromStream():

//XmlSerializer.h
private:
Qvariant readVariantFromStream(QXmlStreamReader& stream);

//XmlSerializer.cpp
Qvariant XmlSerializer::readVariantFromStream(QXmlStreamReader& stream)

QXmlStreamAttributes attributes = stream.attributes();
QString typeString = attributes.value("type").toString();

Qvariant variant;
switch (Qvariant::nameToType(
typeString.toStdString().c_str())) {
case QMetaType::QVariantlList:
variant = readVariantListFromStream(stream);
break;
case QMetaType::QVariantMap:
variant = readVariantMapFromStream(stream);
break;
default:
variant = readVariantValueFromStream(stream);
break;

}

return variant;

The role of this function is to create a Qvariant. Firstly, we retrieve the "type" from the XML
attributes. In our case, we have only one attribute to handle. Then, depending on the type, we
will call one of our three read helper functions. Let's implement

the readvariantvalueFromStream() function:

//XmlSerializer.h
private:
Qvariant readVariantValueFromStream(QXmlStreamReader& stream);

//XmlSerializer.cpp
Qvariant XmlSerializer::readVariantValueFromStream(
QXmlStreamReaderé& stream)

{

QXmlStreamAttributes attributes = stream.attributes();
QString typeString = attributes.value("type").toString();
QString dataString = stream.readElementText();

Qvariant variant(dataString);
variant.convert(QVariant::nameToType(

typeString.toStdString().c_str()));
return variant;

This function create a Qvariant with its data depending on the type. Like the previous
function, we retrieve the type from the XML attribute. We also read the data as a text with
the QxmlStreamReader : :readElementText() function. A Qvariant class is created with

this QString data. At this step, the Qvariant type is a QString. So we use

the Qvariant::convert() function to convert the Qvariant to the real type (int, glonglong,
and so on).

The second read helper function is readvariantListFromStream():

//XmlSerializer.h
private:
Qvariant readVariantListFromStream(QXmlStreamReader& stream);

//XmlSerializer.cpp
Qvariant XmlSerializer::readVariantListFromStream(QXmlStreamReader& stream)

{

QvariantList list;
while(stream.readNextStartElement()) {

list.append(readvariantFromStream(stream));
}

return list;

We know that the stream element contains an array. So, this function creates and returns a
QvariantList. The QXmlStreamReader ::readNextStartElement() function reads until the next
start element and returns true if a start element is found within the current element. We call
the entry-point function, readvariantFromStream(), for each element. Finally, we return

the QvariantList.

The last helper function to cover is readvariantMapFromStream(). Update your file with the
following snippet:

//XmlSerializer.h
private:
Qvariant readVariantMapFromStream(QXmlStreamReader& stream);

//XmlSerializer.cpp
Qvariant XmlSerializer::readVariantMapFromStream(
QXmlStreamReaderé& stream)

{
QvariantMap map;
while(stream.readNextStartElement()) {

map.insert(stream.name().toString(),
readVariantFromStream(stream));

}
return map;

¥

This function sounds like the readvariantListFromStream(). This time we have to create
a QvariantMap. The key used for inserting a new item is the element name. We retrieve the
name with the QxmlStreamReader : :name() function.

A Track class serialized with the xmlSerializer looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<track type="QVariantMap">
<duration type='"glonglong'">6205</duration>

<soundEvents type="QVariantList'">
<item type="QvVariantMap'>
<soundId type="int">0</soundId>
<timestamp type="qlonglong">2689</timestamp>
</item>
<item type="QvVariantMap'>
<soundId type="int">2</soundId>
<timestamp type='"qlonglong">2690</timestamp>
</item>
<item type="QvVariantMap'>
<soundId type="int">2</soundId>
<timestamp type="qlonglong">3067</timestamp>
</item>
</soundEvents>
</track>

Serializing objects in binary format

The XML serialization is fully functional! We can now switch to the last type of serialization
covered in this chapter.

The binary serialization is easier because Qt provides a direct way to do it. Please create a
BinarySerializer class that inherits from Serializer. The header is common, we have only
the override functions, save() and load(). Here is the implementation of the save() function:

void BinarySerializer::save(const Serializable& serializable,
const QString& filepath, const QString& /*rootName*/)

{
QFile file(filepath);
file.open(QFile::WriteOnly);
QDataStream dataStream(&file);
dataStream << serializable.toVariant();
file.close();

}

We hope you recognized the QpataStream class used in Chapter 10, Need IPC? Get Your
Minions to Work. This time we use this class to serialize binary data in a destination QFile.
A QDataStream class accepts a Qvariant class with the << operator. Notice that the rootName
variable is not used in the binary serializer.

Here is the load () function:

void BinarySerializer::load(Serializable& serializable, const QString& filepath)

{
QFile file(filepath);
file.open(QFile::ReadOnly);
QDataStream dataStream(&file);
Qvariant variant;
dataStream >> variant;
serializable.fromvariant(variant);
file.close();

}

Thanks to the Qvariant and the QDataStream mechanism, the task is easy. We open the QFile
with the source filepath. We construct a QDatastream class with this QFile. Then, we use
the >> operator to read the root Qvariant. Finally, we fill the source Serializable with

our Serializable::fromvariant() function.

Do not worry, we will not include an example of a Track class serialized with
the BinarySerializer class.

The serialization part is completed. The GUI part of this example project has been covered

many times during the previous chapters of this book. The following sections will only cover
specific features used in our Mainwindow and SoundEffectwWidget classes. Check the source
code if you need the complete C++ classes.

Playing low latency sounds with
QSoundEffect

The project application ch11-drum-machine displays four Soundeffectwidget
widgets: kickwidget, snarewidget, hihatWidget, and crashwidget.

Each soundEffectwidget widget displays a QLabel and a QPushButton. The label displays the
sound name. If the button is clicked, a sound is played.

The Qt Multimedia module provides two main ways to play an audio file:

e QMediaPlayer: This file can play songs, movies, and Internet radio with various input
formats
e QsoundEffect: This file can play low-latency .wav files

This project example is a virtual drum machine, so we are using a QSoundeffect object. The
first step to use a QSoundEffect is to update your .pro file like this:

QT += core gui multimedia

Then you can initialize the sound. Here is an example:

QUrl urlKick("grc:/sounds/kick.wav");
QUrl urlBetterKick = QUrl::fromLocalFile("/home/better-kick.wav");

QSoundEffect soundEffect;
QSoundEffect.setSource(urlBetterKick);

The first step is to create a valid Qurl for your sound file. The urlKick is initialized from

a .qrcresources file path, while ur1BetterKick is created from a local file path. Then we can
create QSoundEffect and set the URL sound to play with the QSoundEffect: :setSource()
function.

Now that we have a QSoundEffect object initialized, we can play the sound with the following
code snippet:

soundEffect.setVolume(1.0f);
soundEffect.play();

Triggering a QButton with your keyboard

Let's explore the public slot, triggerPlayButton(), in the SoundEffectwWidget class:

//SoundEffectwWidget.h
class SoundEffectWidget : public Qwidget

{
public slots:
void triggerPlayButton();

private:
QPushButton* mPlayButton;

+;

//SoundEffectwWidget.cpp
void SoundEffectWidget::triggerPlayButton()

{
}

mPlayButton->animateClick();

This widget has a QpushButton called mPlayButton. The triggerPlayButton() slot calls
the QPushButton: :animateClick () function, which simulates a click on the button over 100
ms by default. All signals will be sent as a real click does. The button really appears to be
down. If you do not want the animation you can call QPushButton::click().

Let's see now how to trigger this slot with a key. Each SoundEffectwidget has a Qt:Key:

//SoundEffectwWidget.h
class SoundEffectWidget : public Qwidget

{
public:

Qt::Key triggerKey() const;

void setTriggerKey(const Qt::Key& triggerKey);
3

//SoundEffectwWidget.cpp
Qt::Key SoundEffectWidget::triggerKey() const

{
}

return mTriggerKey;

void SoundEffectWidget::setTriggerKey(const Qt::Key& triggerKey)
{

}

mTriggerKey = triggerKey;

The SoundEffectwidget class provides a getter and a setter to get and set the member
variable, mTriggerkKey.

The Mainwindow class initializes the keys of its four Soundeffectwidget like this:

ui->kickwWidget->setTriggerKey(Qt::Key_H);

ui->snarewWidget->setTriggerKey(Qt::Key_J);
ui->hihatWidget->setTriggerKey(Qt::Key_K);
ui->crashwWidget->setTriggerKey(Qt::Key_L);

By default, the Qobject::eventFilter () function is not called. To enable it and intercept these
events, we need to install an event filter on the Mainwindow:

installEventFilter(this);

So each time the Mainwindow receives an event, the Mainwindow: :eventFilter () function is
called.

Here is the Mainwindow.h header:

class MainwWindow : public QMainWindow

{
Q OBJECT
public:

bool eventFilter (QObject* watched, QEvent* event) override;

private:
QVector<SoundEffectWidget*> mSoundEffectWidgets;

+;

The Mainwindow class has a Qvector with the four SoundEffectwidgets
(kickwidget, snarewidget, hihatwidget, and crashwidget). Let's see the implementation
in MainWindow.cpp:

bool MainWindow::eventFilter (QObject* watched, QEvent* event)
{
if (event->type() == QEvent::KeyPress) {
QKeyEvent* keyEvent = static_cast<QKeyEvent*>(event);
for (SoundeEffectwWwidget* widget : mSoundEffectwWidgets) {
if (keyEvent->key() == widget->triggerKey()) {
widget->triggerPlayButton();
return true;

}
}

return QObject::eventFilter (watched, event);

The first thing to do is to check that the QEvent class is a KeyPress type. We do not care about
other event types. If the event type is correct, we proceed to the following steps:

1.
2.
3.

Cast the QEvent class to QKeyEvent.

Then we search if the pressed key belongs to the SoundEffectwidget class.

If a SoundEffectwidget class corresponds to the key, we call

our SoundEffectwWidget::triggerPlayButton() function and we return true to indicate
that we consumed the event and it must not be propagated to others classes.

Otherwise, we call the Qobject class implementation of eventFilter ().

Bringing PlaybackWorker to life

The user can play a sound live with a mouse click or a keyboard key. But when he records an
awesome beat, the application must be able to play it again with the Playbackworker class.
Let's see how Mainwindow uses this worker. Here is the Mainwindow.h related to

the Playbackworker class:

class MainWindow : public QMainWindow

{

private slots:
void playSoundEffect(int soundId);
void clearPlayback();
void stopPlayback();

private:
void startPlayback();

private:
PlaybackWorker* mPlaybackWorker;
QThread* mPlaybackThread;

s

As you can see, Mainwindow has PlaybackWorker and a QThread member variables. Let's see
the implementation of startPlayback():

void MainWindow::startPlayback()

{
clearPlayback();

mPlaybackThread

new QThread();

mPlaybackWorker new PlaybackWorker (mTrack);
mPlaybackWorker ->moveToThread (mPlaybackThread);

connect(mPlaybackThread, &QThread::started,
mPlaybackWorker, &PlaybackWorker::play);

connect(mPlaybackThread, &QThread::finished,
mPlaybackWorker, &QObject::deletelLater);

connect(mPlaybackWorker, &PlaybackWorker::playSound,
this, &MainWindow::playSoundEffect);

connect(mPlaybackWorker, &PlaybackWorker::trackFinished,
&mTrack, &Track::stop);

mPlaybackThread->start(QThread::HighPriority);

}

Let's analyze all the steps:

1. We clear the current playback with the clearPlayback () function, which will be covered
soon.

2. The new QThread and PlaybackWorker are constructed. The current track is given to the
worker at this moment. As usual, the worker is then moved to its dedicated thread.

3. We want to play the track as soon as possible. So, when the QThread emits the started()
signal, the PlaybackWorker::play() slotis called.

4. We do not want to worry about the PlaybackWorker memory. So when the QThread is
over and it has sent the finished() signal, we call the Qobject: :deletelLater () slot,
which schedules the worker for deletion.

5. When the PlaybackWorker class needs to play a sound, the playSound() signal is emitted
and our Mainwindow:playSoundEffect() slotis called.

6. The last connect covers when the Playbackworker class finishes playing the whole track.
A trackFinished() signal is emitted and we call the Track::Stop() slot.

7. Finally, the thread is started with a high priority. Notice that some operating systems (for
example, Linux) do not support thread priorities.

We can now see the stopPlayback() body:

void MainWindow::stopPlayback()

{
mPlaybackWorker->stop();

clearPlayback();
}

We call the stop() function of the PlaybackWorker from our thread. Because we use

a QAtomicInteger in stop(), the function is thread-safe and can be directly called. Finally, we
call our helper function, clearPlayback (). This is the second time that we

use clearPlayback(), so let's implement it:

void MainWindow::clearPlayback()

{
if (mPlaybackThread) {
mPlaybackThread->quit();
mPlaybackThread->wait(1000);
mPlaybackThread = nullptr;
mPlaybackWorker = nullptr;
}
}

No surprises here. If the thread is valid, we ask the thread to exit and wait 1 second. Then, we
set the thread and the worker to nullptr.

The Playbackworker : :PlaySound signal is connected to Mainwindow: :playSoundEffect().
Here is the implementation:

void MainWindow::playSoundEffect(int soundId)
{

}

mSoundEffectwWidgets[soundId]->triggerPlayButton();

This slot retrieves the SoundEffectwidget class corresponding to the soundId. Then, we call
the triggerPlayButton(), the same method that is called when you press the trigger key on
your keyboard.

So, when you click on the button, press a key, or when the P1aybackWorker class requests to
play a sound, the QPushButton of SoundEffectwidget emits the signal, clicked(). This signal
is connected to our SoundEffectwidget::play() slot. The next snippet describes this slot:

void SoundEffectWidget::play()

{
mSoundEffect.play();

emit soundPlayed(mId);
}

Nothing fancy here. We call the play () function on the QSoundEffect already covered.
Finally, we emit the soundPlayed() signal that is used by Track to add a new SoundEvent if
we are in the RECORDING state.

Accepting mouse drag and drop events

In this project example, if you drag and drop a .wav file on a SoundEffectwidget, you can
change the sound played. The constructor of Soundeffectwidget performs a specific task to
allow drag and drop:

setAcceptDrops(true);
We can now override the drag and drop callbacks. Let's start with the dragEnterEvent()
function:

//SoundEffectwWidget.h
class SoundEffectWidget : public Qwidget

{
protected:

void dragEnterEvent(QDragEnterEvent* event) override;
3

//SoundEffectwWidget.cpp
void SoundEffectWidget::dragEnterEvent(QDragEnterEvent* event)

{

if (event->mimeData()->hasFormat("text/uri-1list")) {
event->acceptProposedAction();
}

}

The dragEnterEvent() function is called each time the user drags an object on the widget. In
our case, we only want to allow drag and drop on files that are of the MIME type: "text/uri-
1list" (a list of URIs, which can be file://, http://, and so on). In this case, though we can
call the QDragEnterEvent::acceptProposedAction() function to notify that we accept this
object for a drag and drop.

We can now add a second function, dropEvent():

//SoundEffectwWidget.h
class SoundEffectWidget : public Qwidget

{
protected:

void dropEvent(QDropEvent* event) override;
3

//SoundEffectwWidget.cpp
void SoundEffectWidget::dropEvent(QDropEvent* event)

{

const QMimeData* mimeData = event->mimeData();

if (!mimeData->hasurlS()) {
return;
}

const QUrl url = mimeData->urls().first();
QMimeType mime = QMimeDatabase().mimeTypeForUrl(url);
if (mime.inherits("audio/wav")) {

loadSound(url);

}
3

The first step is a sanity check. If the event does not have a URL, we do nothing. The
QMimeData: :hasUrls() function returns true only with the MIME type: "text/uri-text".
Notice that a user can drag and drop multiple files at once. In our case, we only handle the
first URL. You can check that the file is a .wav file with its MIME type. If the MIME type
is "audio/wav", we call the loadSound () function, which updates the sound assigned to
this SoundEffectwidget.

The following screenshot show the complete application for ch11-drum-machine:

Drum Machine

Kick Snare
kick.wav snare.wav
Hihat Crash
hihat.wav crash.wav
v Play @ Record Stop
00:00 / 00:03

Summary

Serialization is a good way to make your data persistent when you close your application. In
this chapter, you learned to make your C++ objects serializable with Qvariant. You created a
flexible serialization structure with the Bridge pattern. You saved an object in a different text
format such as JSON or XML and also in a binary format.

You also learned to use the Qt Multimedia module to play some sound effects. These sounds
can be triggered by a mouse click or by a keyboard key. You implemented a friendly user
interaction, allowing you to load a new sound with a file drag and drop.

In the next chapter, we will discover the QTest framework and how you can organize your
project so it has a clean application/test separation.

Chapter 12. You Shall (Not) Pass with QTest

In the previous chapter, we created a drum machine software with some serialization feature.
In this chapter, we will write the unit tests for this application. To achieve this goal, we will
use Qt Test, a dedicated test module for Qt applications.

The example project is a test application using CLI commands to execute and generate a test
report. We will cover different types of tests including datasets, GUI, signals, and
benchmarking.

This chapter will cover the following topics:

Qt Test framework

Project layout for unit tests

Personalize your test execution

Write tests with datasets

Benchmark your code

Simulating GUI events

Perform signal introspection with the QSignalSpy class

Discovering Qt Test

The Qt framework provides Qt Test, a complete API to create your unit tests in C++. A test
executes the code of your application and performs verification on it. Usually, a test compares
a variable with an expected value. If the variable does not match the specific value, the test
fails. If you wish to go further, you can benchmark your code and get the time/CPU
tick/events required by your code. Clicking over and over on a GUI to test it can quickly
become boring. Qt Test offers you the possibility to simulate keyboard entries and mouse
events on your widgets to completely check your software.

In our case, we want to create a unit test program named drum-machine- test. This console
application will check the code of our famous drum machine from the previous chapter.
Create a subdirs project called ch12-drum-machine- test with the following topology:

® drum-machine:

o drum-machine.pro
® drum-machine-test:

o drum-machine-test.pro
® chl12-drum-machine-test.pro
® drum-machine-src.pri

The drum-machine and drum-machine-test projects share the same source code. So all
common files are put in a project include file: drum-machine-src.pri. Here is the
updated drum-machine.pro:

QT += core guli multimedia widgets
CONFIG += c++14

TARGET = drum-machine
TEMPLATE = app

include(../drum-machine-src.pri)

SOURCES += main.cpp

As you can see, we only perform a refactoring task; the project drum-machine is not affected
by the drum-machine-test application. You can now create the drum-machine-test.pro file
like this:

QT += core gui multimedia widgets testlib
CONFIG += c++14 console

TARGET = drum-machine-test
TEMPLATE = app

include(../drum-machine-src.pri)

DRUM_MACHINE_PATH = ../drum-machine
INCLUDEPATH += $$DRUM_MACHINE_PATH
DEPENDPATH += $$DRUM_MACHINE_PATH

SOURCES += main.cpp

The first thing to notice is that we need to enable the test1ib module. Then even if we are
creating a console application, we want to perform a test on the GUI so the modules

(gui, multimedia, and widgets) used by the primary application are also required here.
Finally, we include the project include file with all application files (sources, headers, forms,
and resources). The drum-machine-test application will also contain new source files, so we
must correctly set the INCLUDEPATH and DEPENDPATH variables to the source files folder.

Qt Test is easy to use and relies on some simple assumptions:

e A test case is a QObject class
e A private slot is a test function
e A test case can contain several test functions

Notice that the private slots with the following names are not test functions, but special
functions automatically called to initialize and clean up your test:

e initTestCase(): This function is called before the first test function
e init(): This function is called before each test function

e cleanup(): This function is called after each test function

e cleanupTestCase(): This function is called after the last test function

Alright, we are ready to write our first test case in the drum-machine- test application. The
serialization of the drum-machine object is an important part. A bad modification on the save
feature can easily break the load feature. It can produce no errors at compile time, but it can
lead to an unusable application. That is why tests are important. The first thing is to validate
the serialization/deserialization process. Create a new C++ class, DummySerializable. Here is
the header file:

#include "Serializable.h"

class DummySerializable : public Serializable
{
public:

DummySerializable();

Qvariant toVariant() const override;
void fromvariant(const QVariant& variant) override;

int myInt = 0;
double myDouble = 0.0;
QString myString = "";

bool myBool = false;
3

It is a simple class implementing our Serializable interface created in Chapter 11, Having
Fun with Serialization. This class will be helpful to validate the lower layer in our
serialization process. As you can see, the class contains some variables with various types to
ensure a complete functioning serialization. Let's see the file, bummySerializable.cpp:

#include "DummySerializable.h"

DummySerializable::DummySerializable()
Serializable()

{

}

Qvariant DummySerializable::tovariant() const

{
QvariantMap map;
map.insert("myInt", myInt);
map.insert("myDouble", myDouble);
map.insert("myString", myString);
map.insert("myBool", myBool);
return map;

}

void DummySerializable::fromvariant(const QVariant& variant)

{
QvariantMap map = variant.toMap();
myInt = map.value("myInt").toInt();
myDouble = map.value("myDouble").toDouble();
myString = map.value('"myString").toString();
myBool = map.value('"myBool").toBool();

}

No surprise here; we perform our operation with a QvariantMap, as already performed in the
previous chapter. Our dummy class is ready; create a new C++ class, TestJsonSerializer,
with the following header:

#include <QtTest/QTest>
#include "JsonSerializer.h"

class TestJsonSerializer : public QObject

{
Q OBJECT

public:
TestJsonSerializer (QObject* parent = nullptr);

private slots:
void cleanup();
void saveDummy();

void loadDummy();

private:
QString loadFileContent();

private:
JsonSerializer mSerializer;

+;

Here we are, our first test case! This test case performs verifications on our class,
JsonSerializer. You can see two test functions, saveDummy () and loadDummy ().

The cleanup() slotis the special Qt Test slot that we covered earlier, which is executed after
each test function. We can now write the implementation in TestJsonSerializer.cpp:

#include "DummySerializable.h"

const QString FILENAME = "test.json";
const QString DUMMY_FILE_CONTENT = "{\n "myBool": true,\n "myDouble":
5.2,\n "myInt": 1,\n "myString": "hello"\n}\n";

TestJsonSerializer::TestJsonSerializer (QObject* parent)
QObject(parent),
mSerializer ()

{
}

Two constants are created here:

e FILENAME: This is the filename used to test the save and load the data
e DUMMY_FILE_CONTENT: This is the referential file content used by the test
functions, saveDummy () and loadDummy ()

Let's implement the test function, saveDummy ():

void TestJsonSerializer::saveDummy ()
{
DummySerializable dummy;
dummy.myInt = 1;
dummy .myDouble 5.2;
dummy .myString "hello",;
dummy .myBool = true;

mSerializer .save(dummy, FILENAME);

QString data = loadFileContent();
QVERIFY(data == DUMMY_FILE_CONTENT);

}

The first step is to instantiate a DummySerializable class with some fixed values. So, we call
the function to test, JsonSerializer::save(), that will serialize our dummy object in

the test.json file. Then, we call a helper function, loadFileContent(), to get the text
contained in the test.json file. Finally, we use a Qt Test macro, QVERIFY(), to perform the
verification that the text saved by the JSON serializer is the same as the expected value

in DUMMY_FILE_CONTENT. If data equals the correct value, the test function succeeds. Here is the
log output:

PASS : TestJsonSerializer::saveDummy ()
If the data is different than the expected value, the test fails and an error is displayed in the
console log:

FAIL! : TestJsonSerializer::saveDummy()
'data == DUMMY_FILE_CONTENT' returned FALSE. ()
Loc: [../../ch12-drum-machine-test/drum-machine-test/TestJsonSerializer.cpp(31)]

Let's briefly see the helper function, loadFileContent():

QString TestJsonSerializer::loadFileContent()

{
QFile file(FILENAME);
file.open(QFile::ReadOnly);
QString content = file.readAll();
file.close();
return content;

}

No big deal here. We open the file, test.json, read all the text content, and return the
corresponding QString.

The macro, QVERIFY(), is great to check a Boolean value, but Qt Test provides a better macro
when you want to compare data to an expected value. Let's discover QCOMPARE () with the test
function, loadDummy ():

void TestJsonSerializer::loadDummy ()

{
QFile file(FILENAME);
file.open(QFile::WriteOnly | QIODevice::Text);
QTextStream out(&file);
out << DUMMY_FILE_CONTENT,
file.close();

DummySerializable dummy;
mSerializer.load(dummy, FILENAME);

QCOMPARE (dummy .myInt, 1);
QCOMPARE (dummy .myDouble, 5.2);
QCOMPARE (dummy .myString, QString("hello"));
QCOMPARE (dummy .myBool, true);

The first part creates a test.json file, with a referential content. Then we create an
empty DymmySerializable and call the function to test Serializable::1load(). Finally, we use
the Qt Test macro, QCOMPARE (). The syntax is simple:

QCOMPARE (actual_value, expected_value);
We can now test each field of the dummy loaded from JSON. The test function, 1oadDummmy (),

will only succeed if all QCOMPARE () calls succeed. An error with a QCOMPARE () is much more
detailed:

FAIL! : TestJsonSerializer::loadDummy() Compared values are not the same
Actual (dummy.myInt): O
Expected (1) 1

Loc: [../../chl12-drum-machine-test/drum-machine-test/TestJsonSerializer.cpp(45)]

Each time a test function is executed, the special cleanup() slotis called. Let's update your
file, TestdsonSerializable.cpp, like this:

void TestJsonSerializer::cleanup()

{
}

QFile(FILENAME) .remove();

This is a simple security that will remove the test.json file after each test function and
prevent the save and load tests from colliding.

Executing your tests

We wrote a test case, TestJsonSerializer, with some test functions. We need a main ()
function in our drum-machine-test application. We will explore three possibilities:

e The QTEST_MAIN() function
e Write our own simple main() function
e Write our own enhanced main () supporting multiple test classes

The QTest module provides an interesting macro, QTEST_MAIN(). This macro generates a
complete main () function for your application. This generated method runs all the test
functions of your test case. To use it, add the following snippet at the end of

the TestJsonSerializer.cpp file:

QTEST_MAIN(TestJsonSerializer)

Moreover, if you declare and implement your test class only in the .cpp file (without a header
file), you need to include the generated moc file after the QTEST_MAIN macro:

QTEST_MAIN(TestJsonSerializer)
#include "testjsonserializer"

If you use the QTEST_MAIN() macro, do not forget to remove the existing main.cpp.
Otherwise, you will have two main () functions and a compilation error will happen.

You can now try to run your drum-machine-test application and look at the application output.
You should see something similar to this:

$./drum-machine- test

kkkkkkk%t* Start testing of TestJsonSerializer ********x*

Config: Using QtTest library 5.7.0, Qt 5.7.0 (x86_64-little_endian-1p64
shared (dynamic) release build; by GCC 4.9.1 20140922 (Red Hat 4.9.1-10))

PASS : TestJsonSerializer::initTestCase()
PASS : TestJsonSerializer::saveDummy ()

PASS : TestJsonSerializer::loadDummy()

PASS : TestJsonSerializer::cleanupTestCase()

Totals: 4 passed, 0 failed, 0 skipped, 0 blacklisted, 1ms
kkkkkkx%* Finished testing of TestJsonSerializer ********x*

Our test functions, savebDummy () and loadDummy (), are executed in the declaration order. Both
succeed with the PASS status. The generated test application handles some options. Commonly,
you can display the help menu executing this command:

$./drum-machine-test -help

Let's see some cool features. We can execute only one function with the name. The following
command only executes the saveDummy test function:

$./drum-machine-test saveDummy
You can also execute several test functions separating their names with a space.

The QTest application provides log detail options:

e -silent for silent. Only displays fatal errors and summary messages.

e -v1 for verbose. Shows the test function entered information.

e -v2 for extended verbose. Shows each QCOMPARE () and QVERIFY().

e -vs for verbose signal. Shows the emitted signal and the connected slot.

For example, we can display details of the execution of 1oadbDummy with the following
command:

$./drum-machine-test -v2 loadDummy

kkxkxkkk* Start testing of TestJIsonSerializer ********x*

Config: Using QtTest library 5.7.0, Qt 5.7.0 (x86_64-1little_endian-1p64
shared (dynamic) release build; by GCC 4.9.1 20140922 (Red Hat 4.9.1-10))

INFO : TestJsonSerializer::initTestCase() entering

PASS : TestJsonSerializer::initTestCase()

INFO : TestJsonSerializer::loadDummy() entering

INFO : TestJsonSerializer::loadDummy() QCOMPARE(dummy.myInt, 1)

Loc: [../../chl2-drum-machine-test/drum-machine-
test/TestJsonSerializer.cpp(45)]
INFO : TestJsonSerializer::loadDummy() QCOMPARE(dummy.myDouble, 5.2)
Loc: [../../chl2-drum-machine-test/drum-machine-
test/TestJsonSerializer.cpp(46)]
INFO : TestJsonSerializer::loadDummy() QCOMPARE(dummy.myString,
QString("hello"))
Loc: [../../chl2-drum-machine-test/drum-machine-
test/TestJsonSerializer.cpp(47)]
INFO : TestJsonSerializer::loadDummy() QCOMPARE(dummy.myBool, true)
Loc: [../../chl2-drum-machine-test/drum-machine-
test/TestJsonSerializer.cpp(48)]

PASS : TestJsonSerializer::loadDummy()
INFO : TestJsonSerializer::cleanupTestCase() entering
PASS : TestJsonSerializer::cleanupTestCase()

Totals: 3 passed, 0 failed, 0 skipped, 0 blacklisted, 1ms
¥kkkkkx%* Finished testing of TestJsonSerializer ********x*

Another great feature is the logging output format. You can create a test report file with
various formats (.txt, .xml, .csv, and so on). The syntax requires a filename and a file
format separated by a comma:

$./drum-machine-test -o <filename>,<format>

In the following example, we create an XML report named test-report.xml:

$./drum-machine-test -o test-report.xml, xml

Notice that some log level affects only the plain text output. Moreover, the CSV format can be
used only with the test macro QBENCHMARK, which is covered later in this chapter.

If you want to customize the generated test application, you can write the main () function.
Remove the QTEST_MAIN macro in TestJsonSerializer.cpp. Then create a main.cpp like this:

#include "TestJsonSerializer.h"

int main(int argc, char *argv[])

{
TestJsonSerializer test;
QStringList arguments = QCoreApplication::arguments();
return QTest::gExec(&test, arguments);

}

In this case, we are using the static function, QTest: :qExec(), to starta TestJsonSerializer
test. Do not forget to provide the command-line arguments to enjoy the QTest CLI options.

If you wrote your test functions in different test classes, you would have created one
application by a test class. If you keep one test class by test application you can even use the
QTEST_MAIN macro to generate the main functions.

Sometimes you want to create only one test application to handle all your test classes. In this
case, you have multiple test classes in the same application, so you cannot use the QTEST_MAIN
macro because you do not want to generate several main functions for each test class.

Let's see a simple way to call all your test classes in a unique application:

int main(int argc, char *argv[])

{
int status = 0;
TestFoo testFoo;
TestBar testBar;
status |= QTest::gExec(&testFoo);
status |= QTest::gExec(&testBar);
return status;

}

In this simple custom main() function, we are executing the TestFoo and TestBar tests. But we
are losing the CLI options. Indeed, executing the QTest: :qExec() function with command-line
arguments more than once will lead to errors and bad behaviors. For example, if you want to
execute only one specific test function from TestBar. The execution of TestFoo will not find
the test function, display an error message, and stop the application.

Here is a workaround to handle several test classes in a unique application. We will create a
new CLI option, -select, to our test application. This option allows you to select a specific
test class to execute. Here is a syntax example:

$./drum-machine-test -select foo fooTestFunction

The -select option, if used, must be at the beginning of the command followed by the test
class name (foo in this example). Then, we can optionally add Qt Test options. To achieve this
goal, we will create an enhanced main() function that parses the new select option and
execute the corresponding test class.

We will create our enhanced main () function together:

QApplication app(argc, argv);
QStringList arguments = QCoreApplication::arguments();

map<QString, unique_ptr<QObject>> tests;
tests.emplace("jsonserializer",
make_unique<TestJsonSerializer>());
tests.emplace("foo", make_unique<TestFoo>(
tests.emplace("bar", make_unique<TestBar>(

)7

)7

The QApplication will be required later by our other GUI test cases. We retrieve the
command line arguments for later use. The std: :map template named tests contains the smart
pointers of the test classes and a Qstring label is used as a key. Notice that we are using

the map : :emplace() function that does not copy the source to the map, but creates it in place.
Using the map::insert() function leads to an error due to the illegal copy of a smart pointer.
Another syntax that could be used with a std: :map template and a make_unique is:

tests["bar"] = make_unique<TestBar>();

We can now parse the command line arguments:

if (arguments.size() >= 3 && arguments[1l] == "-select") {
QString testName = arguments[2];
auto iter = tests.begin();
while(iter != tests.end()) {

if (iter->first != testName) {
iter = tests.erase(iter);
} else {
++iter;
}

}

arguments.removeOne("-select");
arguments.removeOne(testName);

}

If the -select option is used, this snippet performs two important tasks:

e Removes from the map tests, the test classes that do not match the test name
e Removes the arguments from the -select option and the testName variable to provide
cleaned arguments to the QTest: :qExec() function

We can now add the final step to execute the test classes:

int status = 0;
for(auto& test : tests) {
status |= QTest::gExec(test.second.get(), arguments);

}

return status,;

Without the -select option, all the test classes will be performed. If we use the -select option
with a test class name, only this one will be executed.

Writing factorized tests with datasets

We will now turn our attention to testing the Track class. We will focus specifically on the
different states a Track class can have: STOPPED, PLAYING, and RECORDING. For each one of
these states, we want to make sure that adding SoundEvents works only if we are in the proper
state (RECORDING).

To do so, we could write the following test functions:

e testAddSoundEvent(): This function puts the Track in the STOPPED state,
calls track.addSoundEvent(0), and checks track.soundEvents().size ==

e testAddSoundEvent(): This function puts the Track in the PLAYING state,
calls track.addSoundEvent(0), and checks track.soundEvents().size ==

e testAddSoundEvent(): This function puts the Track in the RECORDING state,
calls track.addSoundEvent(0), and checks track.soundEvents().size ==

As you can see, the logic is the same, we simply change the inputs and the desired outputs. To
factorize this, Qt Test provides another module: datasets.

A dataset can be seen as a two-dimensional table where each row is a test, and the columns are
the inputs and expected outputs. For our Track state test, it would look like this:

index name input (Track::State) | result (soundEvents count)
0 STOPPED State::STOPPED 0
1 PLAYING State::PLAYING 0
2 RECORDING State::RECORDING 1

With this approach, you write a single addSoundEvent () test function and Qt Test takes care
of iterating over this table and comparing the result. Right now, it seems like magic. Let's
implement it!

Create a new C++ class named TestTrack, following the same pattern used for
the TestJsonSerializer class (inherits QObject, includes QTest). Update TestTrack.h like so:

class TestTrack : public QObject

{
Q_OBJECT

public:
explicit TestTrack(QObject *parent = 0);

private slots:
void addSoundEvent_data();
void addSoundEvent();

I¥

Here we added two functions:
e addSoundEvent_data(): This is the function that fills the dataset for the real test
e addSoundEvent(): This is the function that executes the test

As you can see, the function that fills the dataset for a given xxx () function must be

named xxx_data(). Let's see the implementation of addSoundEvent_data():

void TestTrack::addSoundEvent_data()

{
QTest::addColumn<int>("trackState");
QTest::addColumn<int>("soundEventCount");
QTest::newRow("STOPPED")
<< static_cast<int>(Track::State::STOPPED)
<< 0,
QTest::newRow("PLAYING")
<< static_cast<int>(Track::State::PLAYING)
<< 0,
QTest::newRow("RECORDING")
<< static_cast<int>(Track::State: :RECORDING)
<< 1;
¥

As you can see, a dataset is constructed like a table. We start by defining the structure of the
table with the trackState and soundEventCount columns. Note that QTest: :addColumn relies
on templating to know the type of the variable (int in both cases).

After that, a row is appended to the table with the QTest: :newRow() function, with the name of
the test passed as a parameter. The QTest: :newRow syntax supports the << operator, making it
very easy to pack all the data for a given row.

Note that each row added to the dataset corresponds to an execution of the addSoundEvent()
function in which the data of the row will be available.

We can now turn our attention to addSoundEvent():

void TestTrack::addSoundEvent()

{
QFETCH(int, trackState);

QFETCH(int, soundEventCount);

Track track;
switch (static_cast<Track::State>(trackState)) {
case Track::State::STOPPED:
track.stop();
break;
case Track::State::PLAYING:
track.play();
break;
case Track::State::RECORDING:
track.record();
break;
default:
break;

}

track.addSoundEvent(0);
track.stop();

QCOMPARE (track.soundEvents().size(),
static_cast<size_t>(soundEventCount));

}

Because addSoundEvent() is executed by QTest and is fed with the dataset data, we can safely
access the current row of the dataset like we would do with a cursor on a database.
The QFETCH(int, trackState) is a helpful macro that does two things:

e Declares an int variable named trackState
e Fetches the current column index data of the dataset and stores its content in trackState

The same principle is applied to soundEventCount. Now that we have our desired track state
and the expected sound events count, we can proceed to the real test:

1. Put the track in the proper state according to trackState. Remember that
the Track: :setState() function is private, because the Track keyword handles
the trackState variable alone, based on the caller instruction
(stop(), play(), record()).
2. Try to add a SoundEvent to track.
Stop the track.
4. Compare the number of SoundEvents in track to what is expected in soundEventCount.

w

Do not forget to add the TestTrack class in main.cpp:

#include "TestJsonSerializer.h"
#include "TestTrack.h"

int main(int argc, char *argv[])

{

map<QString, unique_ptr<QObject>> tests;
tests.emplace("jsonserializer",
make_unique<TestJsonSerializer>());
tests.emplace("track",
make_unique<TestTrack>());

}

You can now run the tests and see the three tests of addSoundEvent() output their result in the
console:

PASS : TestTrack: :addSoundEvent (STOPPED)
PASS : TestTrack: :addSoundEvent (PLAYING)
PASS : TestTrack: :addSoundEvent (RECORDING)

Datasets make the writing of tests less dull, by factorizing variations of data for a single test.

You can also run a single test for a specific entry of a dataset using the command line:

$./drum-machine-test <testfunction>:<dataset entry>

Let's say we want to execute the test function addSoundEvent () from TestTrack with only
the RECORDING state. Here is the command line to run:

$./drum-machine-test -select track addSoundEvent :RECORDING

Benchmarking your code

Qt Test also provides a very easy to use semantic to benchmark the execution speed of your
code. To see it in action, we will benchmark the time it takes to save a Track in the JSON
format. Depending on the track length (the number of SoundEvents), the serialization should
take more or less time.

Of course, it is more interesting to benchmark this feature with different track lengths and see
if the time saving is linear. Datasets come to the rescue! It is not only useful to run the same
function with expected inputs and outputs, but also to run the same function with different
parameters.

We will start by creating the dataset function in TestJsonSerializer:

class TestJsonSerializer : public QObject

{

private slots:
void cleanup();
void saveDummy();
void loadDummy();

void saveTrack_data();

3

void TestJsonSerializer::saveTrack_data()

{
QTest::addColumn<int>("soundEventCount");
QTest::newRow("1") << 1;
QTest::newRow("100") << 100;
QTest::newRow("1000") << 1000;

}

The saveTrack_data() function simply stores the number of SoundEvent to be added to

a Track class before it is saved. The "1", "100", and "1000" strings are here to have a clear
label in the test execution output. These strings will be displayed in each execution

of saveTrack(). Feel free to tweak these numbers!

Now for the real test with the benchmark call:

class TestJsonSerializer : public QObject

{

void saveTrack_data();
void saveTrack();

+;

void TestJsonSerializer::saveTrack()

{
QFETCH(int, soundEventCount);
Track track;
track.record();
for (int i = 0; i < soundEventCount; ++i) {
track.addSoundEvent(i % 4);
}
track.stop();
QBENCHMARK {
mSerializer.save(track, FILENAME);
}
}

The saveTrack() function starts by fetching the soundEventCount column from its dataset.
After that, it adds the correct number of soundEvent (with the proper record() state!) and
finally benchmarks the serialization in the JSON format.

You can see that the benchmark itself is simply a macro that looks like this:

QBENCHMARK {
// instructions to benchmark
}

The instructions enclosed in the QBENCHMARK macro will be measured automatically. If you
execute the test with the updated TestJsonSerializer class, you should see an output similar
to this:

PASS : TestJsonSerializer::saveTrack(1)
RESULT : TestJsonSerializer::saveTrack():"1":

0.041 msecs per iteration (total: 84, iterations: 2048)
PASS : TestJsonSerializer::saveTrack(100)
RESULT : TestJsonSerializer::saveTrack():"100":

0.23 msecs per iteration (total: 59, iterations: 256)
PASS : TestJsonSerializer::saveTrack(1000)
RESULT : TestJsonSerializer::saveTrack():"1000":

2.0 msecs per iteration (total: 66, iterations: 32)

As you can see, the QBENCHMARK macro makes Qt Test output very interesting data. To save
a Track class with a single SsoundEvent, it took 0.041 milliseconds. Qt Test repeated this test
2048 times and it took a total of 84 milliseconds.

The power of the QBENCHMARK macro starts to be visible in the following test. Here,
the saveTrack() function tried to save a Track class with 100 SoundEvents. It took 0.23
milliseconds to do it and it repeated the instruction 256 times. This shows you that the Qt Test

benchmark automatically adjusts the number of iterations based on the average time a single
iteration takes.

The QBENCHMARK macro has this behavior because a metric tends to be more accurate if it is
repeated multiple times (to avoid possible external noise).

Tip
If you want your test to be benchmarked without multiple iterations, use QBENCHMARK_ONCE.

If you execute the test using the command line, you can provide additional metrics to
QBENCHMARK. Here is the table recapitulating the available options:

Name Command-line argument]|Availability ‘
Walltime (default) All platforms ‘
CPU tick counter ||-tickcounter 'Windows, OS X, Linux, many UNIX-like systems.
Event Counter -eventcounter All platforms ‘
Valgrind Callgrind||-callgrind Linux (if installed) ‘
Linux Perf -perf Linux ‘

Each one of these options will replace the selected backend used to measure the execution
time of the benchmarked code. For example, if you run drum-machine- test with the -
tickcounter argument:

$./drum-machine-test -tickcounter

RESULT : TestJsonSerializer::saveTrack():"1":
88,062 CPU cycles per iteration (total: 88,062, iterations: 1)
PASS : TestJsonSerializer::saveTrack(100)
RESULT : TestJsonSerializer::saveTrack():"100":
868,706 CPU cycles per iteration (total: 868,706, iterations: 1)
PASS : TestJsonSerializer::saveTrack(1000)
RESULT : TestJsonSerializer::saveTrack():"1000":
7,839,871 CPU cycles per iteration (total: 7,839,871, iterations: 1)

You can see that the wall time, measured in milliseconds, has been replaced by the number of
CPU cycles completed for each iteration.

Another interesting option is -eventcounter, which measures the numbers that were received

by the event loop before they are sent to their corresponding target. This could be an
interesting way of checking that your code emits the proper number of signals.

Testing your GUI

It is now time to see how you can test your GUI using the Qt Test API. The QTest class offers
several functions to simulate keys and mouse events.

To demonstrate it, we will stay with the notion of testing a Track state, but on an upper level.
Rather than testing the Track state itself, we will check that the UI state of the drum-machine
application is properly updated when the Track state is changed. Namely, the control buttons
(play, stop, record) should be in a specific state when a recording is started.

Start by creating a TestGui class in the drum-machine- test project. Do not forget to add
the TestGui class in the tests map of main.cpp. As usual, make it inherit Qobject and
update TestGui.h like so:

#include <QTest>
#include "MainWindow.h"
class TestGui : public QObject

{
Q_OBJECT
public:
TestGui(QObject* parent = 0Q);

private:
MainWindow mMainWindow;

+;

In this header, we have a member, mMainwindow, which is an instance of the Mainwindow
keyword from the drum-machine project. Throughout the tests of TestGui, a
single Mainwindow will be used, in which we will inject events and check how it reacts.

Let's switch to the TestGui constructor:

#include <QtTest/QtTest>

TestGui::TestGui(QObject* parent)
QObject(parent),
mMainwWindow ()

{
}

QTestEventLoop::instance().enterLoop(1);

The constructor initializes the mMainwindow variable. Notice that mMainwindow is never shown
(using mMainwindow.show()). We do not need to display it, we solely want to test its states.

Here, we use a rather obscure function call (QTestEventLoop is not documented at all) to force

the event loop to be started after 1 second.

The reason why we have to do this lies in the QSoundEffect class. The QSoundEffect class is
initialized when the QSoundEffect::setSource() function is called (in Mainwindow, this is
done at the initialization of the SoundEffectwidgets). If we omit the explicit enterLoop() call,
the drum-machine- test execution will crash with a segmentation fault.

It seems that the event loop has to be explicitly entered to let the QSoundEffect class properly
complete its initialization. We found this undocumented workaround by studying the Qt unit
tests of the QSoundEffect class.

Now for the real GUI test! To test the control buttons, update TestGui:

// In TestGui.h
class TestGui : public QObject

{

private slots:
void controlButtonState();

+;

// In TestGui.cpp
#include <QtTest/QtTest>
#include <QPushButton>

void TestGui::controlButtonState()

{
QPushButton* stopButton =

mMainwWindow.findChild<QPushButton*>("stopButton");
QPushButton* playButton =

mMainWindow.findChild<QPushButton*>("playButton");
QPushButton* recordButton =

mMainwWindow.findChild<QPushButton*>("recordButton");

QTest::mouseClick(recordButton, Qt::LeftButton);

QCOMPARE (stopButton->isEnabled(), true);
QCOMPARE (playButton->iskEnabled(), false);
QCOMPARE (recordButton->isEnabled(), false);

}

In the controlButtonState() function, we start by retrieving our buttons by using the
handy mMainwindow.findChild() function. This function is available in Qobject, and the
passed name corresponds to the objectName variable we used for each button in Qt Designer
when we created Mainwindow.ui.

Once we retrieve all the buttons, we inject a mouse click event using the QTest: :mouseClick()
function. It takes a Qwidget* parameter as a target and the button that should be clicked. You

can even pass keyboard modifiers (control, shift, and so on) and a possible click delay in
milliseconds.

Once the recordButton has been clicked, we test the states of all the control buttons to make
sure that they are in the desired enabled state.

Note

This function can be easily extended to test all the states (PLAYING, STOPPED, RECORDING) with a
dataset where the input is the desired state and the outputs are the expected buttons states.

The QTest class offers many useful functions to inject events, including:

e keyEvent(): This function is used to simulate a key event

e keyPress(): This function is used to simulate a key press event

e keyRelease(): This function is used to simulate a key release event

e mouseClick(): This function is used to simulate a key click event

e mouseDClick(): This function is used to simulate a mouse double click event
e mouseMove(): This function is used to simulate a mouse move event

Spying on your application with
QSignalSpy

The last part we will cover in the Qt Test framework is the ability to spy on signals with
QSignalspy. This class allows you to do introspection of the emitted signal of any Qobject.

Let's see it in action with SoundeEffectwidget. We will test that when
the SoundEffectwidget: :play() function is called, the soundPlayed signal is emitted with the
correct soundId parameter.

Here is the playSound() function of TestGui:

#include <QTest>
#include "MainWindow.h"

// In TestGui.h
class TestGui : public QObject

{

void controlButtonState();
void playSound();

+;

// In TestGui.cpp

#include <QPushButton>
#include <QtTest/QtTest>
#include "SoundEffectwWidget.h"

void TestGui::playSound()

{
SoundEffectwWidget widget;

QSignalSpy spy(&widget, &SoundEffectWidget::soundPlayed);
widget.setId(2);
widget.play();

QCOMPARE (spy.count(), 1);
QList<QVariant> arguments = spy.takeFirst();
QCOMPARE (arguments.at(0).toInt(), 2);

}

We start by initializing a SoundEffectwWidget widget and a QSignalSpy class. The spy class's
constructor takes the pointer to the object to spy and the pointer to the member function of the
signal to be watched. Here, we want to check the Soundeffectwidget::soundPlayed() signal.

Right after, widget is configured with an arbitrary soundId (2) and widget.play() is called.

This is where it gets interesting:spy stores the signal's emitted parameters in a QvariantList.
Each time soundPlayed() is emitted, a new QvariantList is created in spy, which contains the
emitted parameters.

The first step is to check that the signal is emitted only once, by comparing spy.count() to 1.
Just after that, we store the parameters of this signal in arguments and check that it has the
value 2, the initial soundId that widget was configured with.

As you can see, QSignalSpy is simple to use; you can create as many as you need for each
signal you want to spy on.

Summary

The Qt Test module gracefully helps us to easily create a test application. You learned to
organize your project with a standalone test application. You are able to compare and verify a
specific value in your simple tests. For your complex tests, you could use the datasets. You
implemented a simple benchmark, recording the time or the CPU ticks required to execute a
function. You have simulated GUI events and spy Qt signals to ensure that your application
works well.

Your application is created and your unit tests indicates a PASS status. In the next chapter, we
will learn how to deploy your application.

Chapter 13. All Packed and Ready to
Deploy

In the previous chapter, you learned to create a robust application with unit tests. The final step
for an application is packaging. The Qt framework enables you to develop cross-platform
applications but packaging is really a platform-specific task. Moreover, when your
application is ready to be shipped, you need a one-step procedure to generate and pack your
application.

In this chapter, we will reuse the gallery application (both on desktop and mobile platforms)
to learn the steps required to package a Qt application. There are many ways to prepare the
packaging of an application. In this chapter, we want to package the gallery application, from
Chapters 4, Conquering the Desktop Ul, and Chapter 5, Dominating the Mobile UI, on the
supported platforms (Windows, Linux, Mac, Android, and iOS).

Here are the topics covered in this chapter:

Packaging a Qt application on Windows
Packaging a Qt application on Linux
Packaging a Qt application on Mac
Packaging a Qt application on Android
Packaging a Qt application on iOS

Packaging your application

You will create, for each platform, a dedicated script to perform all the tasks required to build
a standalone application. Depending on the OS type, the packaged application will be
gallery-desktop or gallery-mobile. Because the whole gallery project has to be compiled,
it also has to include gallery-core. Therefore, we will create a parent project with gallery-
core, gallery-desktop, and gallery-mobile.

For each platform, we will prepare the project to be packaged and create a specific script. All
the scripts follow the same workflow:

1. Set the input and output directories.

Create Makefiles with gmake.

Build the project.

Regroup only the necessary files in the output directory.
Package the application with platform-specific tasks.
Store the packed application in the output directory.

Uk W

These scripts could run on a developer computer or on a continuous integration server
running software such as Jenkins as long as the packaging computer OS matches the script
target OS (except for the mobile platforms). In other words, you need to run the Windows
script on a computer that runs Windows to be able to package a Qt application for Windows.

Technically, you can perform cross-compilation (given the appropriate toolchain and
libraries), but this is beyond the scope of this book. It is easy to cross-compile for a
RaspberryPI when you are on Linux, but the same cannot be said when you want to compile
for MacOS and you are on Windows.

Note

From Linux, you can cross-compile Qt for Windows with tools such as MXE at http://mxe.cc/.

Create a new subdir project named ch13-gallery-packaging with the following hierarchy:

e chl3-gallery-packaging:
o gallery-core
0 gallery-desktop
© gallery-mobile

Even if you are now an expert on Qt subdirs projects, here is the ch13-gallery-
packaging.pro file:

TEMPLATE = subdirs

http://mxe.cc/

SUBDIRS += \
gallery-core \
gallery-desktop \
gallery-mobile

gallery-desktop.depends = gallery-core
gallery-mobile.depends = gallery-core

You are now ready to work through any of the following sections, depending on the platform
you are targeting.

Packaging for Windows

To package a standalone application on Windows, you need to provide all the dependencies of
your executable. The gallery-core.d1l file, the Qt libraries (for example, Qt5Core.d11), and
compiler-specific libraries (for example, 1ibstdc++-6.d11) are some examples of
dependencies required by our executable. If you forget to provide a library, an error will be
displayed when you run the gallery-desktop.exe program.

Note
On Windows, you can use the utility Dependency Walker (depends). It will give you a list of

all libraries required by your application. You can download it
here: www.dependencywalker.com.

For this section, we will create a script to build the project via the command line interface.
Then we will use the Qt tool windeployqt to gather all dependencies required by our
application. This example is for a MinGW compiler but you can easily adapt it for a MSVC
compiler.

Here is a list of required files and folders gathered by winqtdeploy, to properly run gallery-
desktop on Windows:

® jconengines:
o gsvgicon.dll
® imageformats:
© qjpeg.dll
o qwbmp.dll
o
e Platforms:
0 qwindows.dll
® translations:
o gqt_en.gm
o gt_fr.gm
o
® D3Dcompiler_47.d11l
e gallery-core.dll
® gallery-desktop.exe
e 1ibEGL.d11l
e libgcc s dw2-1.d11
e 1ibGLESV2.d1ll
e libstdc++-6.d11
e libwinpthread-1.d1l1

http://www.dependencywalker.com

opengl32sw.dll
Qt5Core.d1l
Qt5Gui.dll
Qt5Svg.dll
Qt5widgets.dll

Check that your environment variables are correctly set:

Name Example
QTDIR CAQBSE. Tvmingw49_32
MINGWROOT CAQUTools\mingwd 92 32

Create a file, package-windows.bat, in the scripts directory:

@ECHO off

set DIST_DIR=dist\desktop-windows
set BUILD_DIR=build
set OUT_DIR=gallery

mkdir %DIST_DIR% && pushd %DIST_DIR%
mkdir %BUILD_DIR% %OUT_DIR%

pushd %BUILD_DIR%
%QTDIR%\bin\gmake.exe A
-spec win32-g++ A
"CONFIG += release" A
..\..\..\ch13-gallery-packaging.pro

¥MINGWROOT%\bin\mingw32-make.exe gmake_all

pushd gallery-core
¥MINGWROOT%\bin\mingw32-make.exe && popd

pushd gallery-desktop
¥MINGWROOT%\bin\mingw32-make.exe && popd

popd

copy %BUILD_DIR%\gallery-core\release\gallery-core.dll %0UT_DIR%

copy %BUILD_DIR%\gallery-desktop\release\gallery-desktop.exe %0UT_DIR%
%QTDIR%\bin\windeployqt %0UT_DIR%\gallery-desktop.exe %0UT_DIR%\gallery-core.dll

popd

Let's talk about the steps performed:

1. Set the main path variables. The output directory is DIST_DIR. All files are generated in
the dist/desktop-windows/build directory.

. Create all directories and launch dist/desktop-windows/build.

. Execute gmake in release mode for the Win32 platform to generate the parent

project Makefile. The spec win32-g++ is for the MinGW compiler. You should use the
spec win32-msvc if you want to use the MSVC compiler.

. Run the mingw32-make gmake_all command to generate the sub-project Makefiles. With
an MSVC compiler you must replace mingw32-make with nmake or jom.

. Perform the mingw32-make commands to build each required sub-project.

. Copy the generated files, gallery-desktop.exe and gallery-core.dll, into the gallery
directory.

. Call the Qt tool, windeployqt, on both files and copy all required dependencies (for
example, Qt5Core.d1l1, Qt5Sql.d1ll, libstdc++-6.d11, gwindows.d1l, and so on).

Packaging for Linux with a distribution
package

Packaging an application for a Linux distribution is a bumpy road. Because each distribution
can have its own packaging format (.deb, .rpm, and so on), the first question to answer is:
which distribution do you wish to target? Covering every major packaging format would take
several chapters. Even detailing a single distribution could be unfair (you wanted to package
for RHEL? Too bad, we only covered Arch Linux!). After all, from a Qt application
developer perspective, what you want is to ship your product to your users, you do not (yet)
aim to become an official Debian repository maintainer.

Having all this in mind, we decided to focus on a tool that packages the application for you
for each distribution. That is right, you do not need to learn the internals of Debian or Red
Hat! We will still explain the common principles in the packaging systems without excessive
detail.

For our purpose, we will demonstrate how a packaging can be done using the .deb format on
an Ubuntu machine, but as you will see it can be easily updated to generate a .rpm.
The tool we are going to use is named fpm (eFfing Package Management).

Note

The fpmtool is available at https://github.com/jordansissel/fpm.

The fpmtool is a Ruby application that aims to do exactly what we need: take care of the
distribution-specific details and generate the final package. First, take the time to install fpm
on your machine and make sure that it is working.

In a nutshell, a Linux package is a file format that contains all the files you want to deploy
with a lot of metadata. It can contain description of the content, a changelog, a license file, the
list of dependencies, checksums, pre- and post-installation triggers, and much, much more.

Note

If you want to learn how to package a Debian binary by hand, go to
http://tldp.org/HOWTO/html_single/Debian-Binary-Package-Building-HOWTO/.

In our case, we still have to do some project preparation to let fpm do its job. The files we
want to deploy have to match the target filesystem. Here is how the deployment should look:

e gallery-desktop: This binary should be deployed in /usr/bin
e libgallery-core.so: This should be deployed in /usr/1ib

https://github.com/jordansissel/fpm
http://tldp.org/HOWTO/html_single/Debian-Binary-Package-Building-HOWTO/

To achieve this, we are going to organize our outputs in dist/desktop-1linux like so:

e The build directory will contain the compiled project (it is our release shadow build)
e The root directory will contain the to-be-packaged files, meaning the binary and library
files in the proper hierarchy (usr/bin and usr/1ib)

To generate the root directories, we will rely on Qt and the power of the .pro files. When
compiling a Qt project, the target files are already tracked. All we have to do is to add an
additional install target for gallery-core and gallery-desktop.

Add the following scope in gallery-core/gallery-core.pro:

linux {
target.path = $$_PRO_FILE_PWD_/../dist/desktop-linux/root/usr/1ib/
INSTALLS += target

}

Here we define a new target.path that is going to deploy the DISTFILES (the .so files) to our
desired root tree. Note the use of $$ PRO_FILE PWD_, which points to the directory where the
current .pro file is stored.

Almost the same procedure is carried out in gallery-desktop/gallery-desktop.pro:

linux {
target.path = $$_PRO_FILE_PWD_/../dist/desktop-linux/root/usr/bin/
INSTALLS += target

}

With these lines, when we call make install, the files are going to be deployed in
dist/desktop-linux/root/....

Now that the project configuration is completed, we can switch to the packaging script. We
will cover the script in two parts:

e Project compilation and root preparation

e The .deb package generation with fpm

First, check that your environment variables are correctly set:

Name Example
QTDIR $HOME/qU/S . 7/gcc_64

Create scripts/package-linux-deb.sh with the following content:

#1/bin/bash

DIST_DIR=dist/desktop-linux
BUILD_DIR=build
ROOT_DIR=root

BIN_DIR=$ROOT_DIR/usr/bin
LIB_DIR=$ROOT_DIR/usr/1lib

mkdir -p $DIST_DIR && cd $DIST_DIR
mkdir -p $BIN_DIR $LIB_DIR $BUILD_DIR

pushd $BUILD_DIR
$QTDIR/bin/qgmake \

-spec linux-g++ \
"CONFIG += release" \
../../../chl13-gallery-packaging.pro

make gmake_all
pushd gallery-core && make && make install ; popd
pushd gallery-desktop && make && make install ; popd

popd

Let's break this down:

1.

Set the main path variables. The output directory is DIST_DIR. All files are generated in
the dist/desktop-1linux/build folder.

Create all the directories and launch dist/desktop-1linux/build.

Execute gmake in release mode for the Linux platform to generate the parent

project Makefile.

Run the make gmake_all command to generate the sub-projects Makefiles.

Perform the make commands to build each required sub-project.

Use the make install command to deploy the binary and the libraries to

the dist/desktop-1linux/root directory.

If you execute scripts/package-linux-deb.sh, the final file tree in dist/desktop-1linux
looks like this:

® build/

o gallery-core/*.o
o gallery-desktop/*.p
o Makefile

® root/

o usr/bin/gallery-desktop
0 usr/lib/libgallery-core.so

Everything is now ready for fpmto work. The final part of scripts/package-1linux-deb.sh

contains this:

fpm --input-type dir \
--output-type deb \
--force \
--name gallery-desktop \
--version 1.0.0 \
--vendor "Mastering Qt 5" \

--description "A Qt gallery application to organize and manage your pictures

in albums" \
--depends qt5-default \
--depends libsqlite3-dev \
--chdir $ROOT_DIR \
--package gallery-desktop_VERSION_ARCH.deb

Most of the arguments are explicit enough. We will focus on the most important ones:

e --input-type: This argument refers to what fpm will work with. It can

take deb, rpm, gem, dir and so on and repackage it to another format. Here we use the dir

option to tell fpmto use a directory tree as the input source.

e --output-type: This argument refers to the desired output type. Take a look at the
official documentation to see how many platforms are supported.

e --name: This is the name given to the package (if you want to uninstall it, you write apt-
get remove gallery-desktop).

e --depends: This argument refers to a library package dependency of the project. You can

add as many dependencies as you want. In our case, we only depend on qt5 -default
and sqlite3-dev. This option is very important so be sure that the application will be

able to run on the target platform. You can specify the version of the dependency with - -

depends library >= 1.2.3.
e --chdir: This argument refers to the base directory from which fpm will run. We set it
to dist/desktop-1linux/root, where our file tree is ready to be loaded!
e --package: This argument is the name of the final package. The VERSION and ARCH are
placeholders that are automatically filled based on your system.

The rest of the options are purely informative; you can specify a changelog, a license file,
and much more. Just by changing the - -output-typedeb to rpm, the package format is
properly updated. The fpmtool also provides specific package format options, letting you
have fine control over what is generated.

If you now execute scripts/package-linux-deb.sh, you should get a new dist/desktop-
linux/gallery-desktop_1.0.0_amd64.deb file. Try to install it with the commands:

sudo dpkg -i dist/desktop-linux/gallery-desktop_1.0.0_amd64.deb
sudo apt-get install -f

The first command deploys the package in your system. You should now have the files

/usr/bin/gallery-desktop and /usr/lib/libgallery-core.so.

However, because we installed the package using the dpkg command, the dependencies are not
automatically installed. This would be done if the package was provided by a Debian
repository (thus, installing the package with apt-get install gallery-desktop). The
missing dependencies are still "marked" and apt-get install -f does their installation.

You can now start gallery-desktop from anywhere in your system with the
command, gallery-desktop. When we wrote this chapter in 2016, if you execute it on a
"fresh" Ubuntu, you might run into the following issue:

$ gallery-desktop

gallery-desktop: /usr/1ib/x86_64-1inux-gnu/libQt5Core.so.5: version Qt _5.7'
not found (required by gallery-desktop)

gallery-desktop: /usr/1ib/x86_64-1linux-gnu/libQt5Core.so.5: version "Qt_5'
not found (required by gallery-desktop)

gallery-desktop: /usr/1ib/x86_64-1linux-gnu/libQt5Core.so.5: version "Qt_5'
not found (required by /usr/lib/libgallery-core.so.1)

What happened? We installed the dependencies with apt-get install -f! We encounter here
a major pain point in Linux package management. The dependencies we specify in our .deb
could refer to a specific version of Qt, but the reality is that we depend on the package version
maintained by the upstream. In other words, each time a new version of Qt is released, the
distribution maintainers (Ubuntu, Fedora, and so on) have to repackage it to make it available
in the official repository. This can be a long process and the maintainers have a huge number
of packages to port!

To be confident about what we are stating, let's view the library dependencies of gallery-
desktop with an 1dd command:

$ 1ldd /usr/bin/gallery-desktop

libgallery-core.so.1 => /usr/lib/libgallery-core.so.1
(0x00007f8110775000)

libQt5Widgets.so0.5 => /usr/1ib/x86_64-1inux-gnu/libQt5wWidgets.so0.5
(0x00007f81100e8000)

1ibQt5Gui.so.5 => /usr/1ib/x86_64-1linux-gnu/1ibQt56Gui.so0.5
(6x00007f810Ffh9f000)

libQt5Core.so.5 => /usr/1ib/x86_64-1inux-gnu/l1ibQt5Core.so.5
(0x00007f810f6c9000)

libXext.so0.6 => /usr/1ib/x86_64-1inux-gnu/libXext.so0.6
(0x00007f810966€000)

As you can see, 1ibgallery-core.so is correctly resolved in /usr/1ib and the Qt
dependencies too in /usr/1ib/x86_64-1inux-gnu. But what version of Qtis used? The
answer lies in the details of the libraries:

$ 11 /usr/1lib/x86_64-1linux-gnu/libQt5Core.*

-rw-r--r-- 1 root root 1014 may 2 15:37 1libQt5Core.prl
lrwxrwxrwx 1 root root 19 may 2 15:39 libQt5Core.so ->
libQt5Core.so0.5.5.1

lrwxrwxrwx 1 root root 19 may 2 15:39 1libQt5Core.so.5 ->
libQt5Core.so0.5.5.1

lrwxrwxrwx 1 root root 19 may 2 15:39 libQt5Core.so0.5.5 ->

libQt5Core.so0.5.5.1
-rw-r--r-- 1 root root 5052920 may 2 15:41 1ibQt5Core.so0.5.5.1

The 1ibQt5Core.so file is a soft link to 1ibQt5Core.so0.5.5.1, meaning that the system
version of Qtis 5.5.1, whereas gallery-desktop relies on Qt 5.7. You can configure your
system to have the system Qt pointing to your Qt installation (done with the Qt installer).
However, it is highly improbable that your customer will install Qt by hand just to

have gallery-desktop running.

Even worse, for an older version of your distribution, the packages are usually not updated at
all after some time. Just try to install a Qt 5.7 Debian package on Ubuntu 14.04 to understand
how complicated things become. We did not even mention incompatible dependencies. If we
rely on a specific version of 1ibsqlite3-dev and another application needs another one,
things will get ugly, and only one can survive.

A Linux package has many advantages if you want it to be available on an official repository
or if you have specific needs. Using official repositories is a common way of installing an
application on Linux and your users will not be disoriented. If you can restrict your Qt
version to the one deployed on the Linux distribution that may be a fine solution.

Unfortunately, it also brings major headaches: you need to support multiple distributions,
handle the dependencies without breaking the system, and make sure that your application has
old enough dependencies, and so on.

Do not worry, everything is not lost; smart people are already resolving this issue on Linux
with self-contained packages. As a matter of fact, we are going to cover a self-contained
package.

Packaging for Linux with AppImage

On Windows or Mac, an application is self-sufficient: it contains all the dependencies it needs
to be executed. On the one hand, this creates more file duplication, and on the other hand it
simplifies packaging for the developer.

Based on this premise, efforts have been made to have the same pattern on Linux (as opposed
to a repository/distribution-specific package). Today, several solutions offer a self-contained
package on Linux. We suggest you study one of these solutions: AppImage. This particular
tool is gaining traction in the Linux community. There is a growing number of developers
relying on AppImage to package and deploy their application.

Applmage is a file format that contains an application with all its libraries included. You
download a single AppImage file, execute it, and you are done: the application is running.
Behind the scenes, an Applmage is an ISO file on steroids, mounted on-the-fly when you
execute it. The AppImage file itself is read-only and can also run in a sandbox such as Firejail
(a SUID sandbox program that reduces the risk of security breaches by restricting the running
environment of applications).

Note
More information on AppImage is available at http://appimage.org/.

To package gallery-desktop into an Applmage, there are two major steps:

1. Gather all the dependencies of gallery-desktop.
2. Package gallery-desktop and its dependencies in the AppIlmage format.

Fortunately, this whole process can be done by using a nifty tool: 1inuxdeployqt. It started as
a hobby project and became the official way to package a Qt application in the AppImage
documentation.

Note

Get linuxdeployqt from https://github.com/probonopd/linuxdeployqt/.

The script we are going to write now assumes that the binary 1inuxdeployqt is available in
your $PATH variable. Check that your environment variables are correctly set:

Name Example
QTDIR $HOME/qU/S . 7/gcc_64

http://appimage.org/
https://github.com/probonopd/linuxdeployqt/

Create scripts/package-linux-appimage.sh and update it like so:

#1/bin/bash

DIST_DIR=dist/desktop-linux
BUILD_DIR=build

mkdir -p $DIST_DIR && cd $DIST_DIR
mkdir -p $BUILD_DIR

pushd $BUILD_DIR
$QTDIR/bin/qgmake \
-spec linux-g++ \
"CONFIG += release" \
../../../ch1l3-gallery-packaging.pro
make gmake_all
pushd gallery-core && make ; popd
pushd gallery-desktop && make ; popd

popd

export QT_PLUGIN_PATH=$QTDIR/plugins/
export LD_LIBRARY_PATH=$QTDIR/1lib:$(pwd)/build/gallery-core

linuxdeployqt \
build/gallery-desktop/gallery-desktop \
-appimage

mv build/gallery-desktop.AppImage .

The first part is the compilation of the project:

1. Set the main path variables. The output directory is DIST_DIR. All files are generated in
the dist/desktop-1linux/build folder.

2. Create all the directories and go in dist/desktop-linux/build.

3. Execute gmake in release mode for the Linux platform to generate the parent
project Makefile.

4. Run the make gmake_all command to generate the sub-project Makefiles.

5. Perform the make commands to build each required sub-project.

The second part of the script concerns linuxdeployqt. We first have to export some paths to
let 1inuxdeployqt properly find all the dependencies of gallery-desktop (Qt libraries and
the gallery-core library).

After that, we execute 1inuxdeployqt by specifying the source binary to work with and the
target file type (AppImage). The resulting file is a single gallery-desktop.AppImage ready to
be launched on the user's computer without any Qt package installed!

Packaging for Mac OS X

On OS X, applications are built and run from a bundle: a single directory that contains the
application binary and all its dependencies. In the Finder, these bundles are viewed as .app
special directories.

When running gallery-desktop from Qt Creator, the application is already bundled in a .app
file. Because we are using a custom library, gallery-core, this gallery-desktop.app does
not contain all the dependencies and Qt Creator handles it for us.

What we aim to create is a script that completely packages gallery-desktop (gallery-core
included) in a .dmg file, a Mac OS X disk image file that is mounted upon execution and lets
the user install the application with ease.

To achieve this, Qt provides the macdeployqt tool, which gathers the dependencies and creates
the .dmg file.

First, check that your environment variables are correctly set:

Name Example
QTDIR $HOME/QUS .7/clang_64

Create the scripts/package-macosx.sh file with the following content:

#1/bin/bash

DIST_DIR=dist/desktop-macosx
BUILD_DIR=build

mkdir -p $DIST_DIR && cd $DIST_DIR
mkdir -p $BUILD_DIR

pushd $BUILD_DIR
$QTDIR/bin/qgmake \
-spec macx-clang \
"CONFIG += release x86_64" \
../../../ch13-gallery-packaging.pro
make gmake_all
pushd gallery-core && make ; popd
pushd gallery-desktop && make ; popd

cp gallery-core/*.dylib \
gallery-desktop/gallery-desktop.app/Contents/Frameworks/

install_name_tool -change \
libgallery-core.1.dylib \
@rpath/libgallery-core.1.dylib \
gallery-desktop/gallery-desktop.app/Contents/Mac0S/gallery-desktop

popd

$QTDIR/bin/macdeployqt \
build/gallery-desktop/gallery-desktop.app \
-dmg

mv build/gallery-desktop/gallery-desktop.dmg

We can split the script in two. The first part prepares the application for macdeployqt:

1. Set the main path variables. The output directory is DIST_DIR. All files are generated in
the dist/desktop-macosx/build folder.

2. Create all the directories and go in dist/desktop-macosx/build.

3. Execute gmake in release mode for the Mac OS X platform to generate the parent
project Makefile.

4. Run the make gmake_all command to generate the sub-projects Makefiles.

5. Perform the make commands to build each required sub-project.

The following part includes the gallery-core library in the generated gallery-desktop.app.
If we do not execute the cp command stated in the script and everything that comes after it, we
might be quite surprised by the gallery-desktop binary content. Let's take a look at it by
executing the following command:

$ otool -L dist/desktop-macosx/build/gallery-desktop/gallery-
desktop.app/Contents/Mac0S/gallery-desktop
dist/desktop-macosx/build/gallery-desktop/gallery-
desktop.app/Contents/Mac0S/gallery-desktop:

libgallery-core.1.dylib (compatibility version 1.0.0, current version
1.0.0)

@rpath/Qtwidgets. framework/Versions/5/QtWidgets (compatibility version
5.7.0, current version 5.7.0)

/usr/1lib/1libSystem.B.dylib (compatibility version 1.0.0, current version
1226.10.1)

As you can see, 1ibgallery-core.1.dylib is resolved in the local path but not in the special
dependencies path as is done for Qtwidget with @rpath (namely Contents/Frameworks/). To
mitigate this, package-macosx.sh copies the .dylib file in gallery-
desktop.app/Contents/Frameworks/ and regenerates the dependencies index of the binary
with install_name_tool.

Finally, in package-macosx.sh, macdeployqt is called with the updated gallery-deskop.app
and the target dmg format. The resulting gallery-desktop.dmg can be deployed on your user

computer.

Packaging for Android

The aim of this section is to generate a standalone APK file for the gallery-mobile
application. Packaging and deploying an application for Android require multiple steps:

1. Configure the Android build details.
2. Generate a keystore and a certificate.

3. Customize the Android manifest from a template.
4. Create a script to automate the packaging.

You can do most of the tasks directly from Qt Creator. Under the hood, the Qt tool,
androiddeployqt, is called to generate the APK file. Go to Projects | Android for armeabi-
v7a | Build Steps. You should see a special build step: Build Android APK. The details look

like the following screenshot:

Build Android APK

Application
Android build SDK:
Sign package

Keystore:

Sign package

Ot Deployment

Use Ministro service to install Qt

+ Bundle Qt libraries in APK

Android
Create Templates

Deploy local Gt libraries to temporary directory

android-23

Browse...

Certificate alias:

Advanced Actions

Use Gradle
Open package location after build

Verbose output

Details

Create...

The first thing to do is to select which Android API level you want to use to generate the
Application. In our case, we selected android-23 for the Android API Level 23. Try to always
build your application with the latest SDK version available.

To publish your application on the Play Store, you must sign the package. To be able to
update an application, the signature of the current version and the new version must be the
same. This procedure is a protection to make sure that any future versions of the application
were really created by you. The first time you should create a keystore, the next time you can
reuse it with the Browse... button. For now, click on the Create... button on the Sign package
|Keystore line. You will get the following popup:

Create a keystore and a certificate

Keystore Certificate
Alias name: | MyAndroidikey
Keysize: | 2048 2
Validity (days): | 10000 ™
Fassword: @999 9000000 89 Password:
Retype password: | 9999990000009 Retype password:
Show password V| Use Keystore password Show password
Certificate Distinguished Names
First and Last name: Lenna
Organizational unit (e.g. Necessitas): |Devel
Organization (e.g. KDE): |MasteringQt
City or locality: |Paris
State or province:
Two-letter country code for this unit (e.g. RO): |FR
Save Close

Follow these steps to generate a new keystore:

1. The keystore must be protected by a password. Do not forget it or you will not be able to
use this keystore for a future release.

2. Specify an Alias name for the certificate. The default values for Keysize
and Validity(days) are fine. You can specify a different password for the certificate or
use the keystore one.

3. In the Certificate Distinguished Names group, enter information about you and your

company.
4. Save the keystore file in a safe place.
5. Enter the keystore password to validate its selection for the deployment.

The next part concerns Qt deployment. Indeed, your application needs some Qt libraries. Qt
supports three kinds of deployment:

e Create a minimal APK relying on Ministro for the Qt dependencies. Ministro is an
Android application that can be downloaded from the Play Store. It acts as a Qt shared
libraries installer/provider for all Qt applications on Android.

e Create a standalone bundle APK that embeds Qt libraries.

e Create an APK that relies on the fact that the Qt libraries are in a specific directory. The
libraries are copied into a temporary directory during the first deployment.

During the developing and debugging phase, you should select the temporary directory way
to reduce the packaging time. For a deployment, you can use the Ministro or the bundle
option. In our case, we chose the standalone bundle to generate a complete APK.

The Advanced actions pane offers three options:

e Use Gradle: This option generates Gradle wrappers and a script, useful if you plan to
customize the Java part in an IDE such as Android Studio

e Open package location after build: This option opens the directory with the packages
generated by androiddeployqt

e Verbose Output: This option displays additional information about
the androiddeployqt processing

The Android build details and signing options are finished. We can now customize the
Android manifest. Click on Create Templates, select the gallery-mobile.pro file, and click
on Finish. The wizard creates for you an android sub-directory with several files; for
example, AndroidManifest.xml. The gallery-mobile.pro file has to be updated
automatically with these files. However, do not forget to add the android scope like the
following snippet:

TEMPLATE = app
android {
contains(ANDROID_TARGET_ARCH, x86) {

ANDROID_EXTRA_LIBS = \
$S[QT_INSTALL_LIBS]/1ibQt5Sqgl.so

}

DISTFILES += \
android/AndroidManifest.xml \
android/gradle/wrapper/gradle-wrapper.jar \
android/gradlew \

android/res/values/libs.xml \

android/build.gradle \
android/gradle/wrapper/gradle-wrapper.properties \
android/gradlew.bat

ANDROID_PACKAGE_SOURCE_DIR = $$PWD/android
}

You can now edit the AndroidManifest.xml file. Qt Creator provides a dedicated editor. You
can also edit it with a plain text editor with caution. You can open it from the hierarchical
project view: gallery-mobile | Other files | android.

Here is our Android manifest in Qt Creator:

AndroidManifest xmil * | General XML Source

Fackage
Package name: org.masteringgt.gallery
Version code: 1 2
Version name: 1.0
Minimum required SDK: | AFI 16: Android 4.1, 4.1.1 -
Target SDK: APL 16: Android 4.1, 4.1.1 b
Application

Application name: |Cute Gallery

Activity name: Cute Gallery

Run: -- %%INSERT_AFP_LIB_MNAMER:%: -- -

Application icon: o - -
3 E3 E3

Fermissions

V| Include default permissions for Ot modules.

| Include default features for Qt modules.

android. permission. ACCESS_CHECKIMN_PROPERTIES - Add

Here are the most important steps:

1. Replace the default Package name with yours.

The Version code is an integer that must be increased for each official release.

The Version name is the displayed version for users.

Select the Minimum required SDK. Users with an older version will not be able to install
your application.

5. Select the SDK that will be used to compile your application with the Target SDK.

N

6. Change the application and activity name.

7. Select an Application icon depending on the screen DPI (Dots per Inch). From left to
right: the low, medium, and high DPI icon.

8. Finally, if required by your application, you can add some Android permissions.

You can already build and deploy your signed application from Qt Creator. You should see
the new application name and icon on your Android phone or emulator. However, we will
now create a script to easily generate and package the signed APK from the command line.

Several environment variables are required by the Android and Qt tools but also for the script
itself. Here is a summary with an example:

Name Example
QTROOCT FHOME/qU/s .7
QTDIR_ANDROID $QTROOT/android_army 7
JASA HOME Ausr/lib/jymijava-8-openjdk-amd G4
ANT_ROOT foptiapache-ant
ANDROID_SDK._ROOT $HOME/android-sdk
ANDROID _MNDK_ROOT $HO MEfandroid- ndk

This example is a bash script but feel free to adapt it to a .bat file if you are on Windows.
Create a package-android.sh file in the scripts directory:

#1/bin/bash

DIST_DIR=dist/mobile-android

BUILD_DIR=build

APK_DIR=apk

KEYSTORE_PATH="$(pwd)/scripts/android-data"
ANDROID_BUILD_PATH="$(pwd)/$DIST_DIR/$BUILD_DIR/android-build"

mkdir -p $DIST_DIR && cd $DIST_DIR
mkdir -p $APK_DIR $BUILD_DIR

pushd $BUILD_DIR
$QTDIR_ANDROID/bin/gmake \
-spec android-g++ \
"CONFIG += release" \
../../../ch13-gallery-packaging.pro
make gmake_all
pushd gallery-core && make ; popd
pushd gallery-mobile && make ; popd
pushd gallery-mobile && make INSTALL_ROOT=$ANDROID_BUILD_PATH install ; popd

$QTDIR_ANDROID/bin/androiddeployqt
--input ./gallery-mobile/android-libgallery-mobile.so-deployment-
settings.json \

--output $ANDROID_BUILD_PATH \

--deployment bundled \

--android-platform android-23 \

--jdk $JAVA_HOME \

--ant $ANT_ROOT/ant \

--sign $KEYSTORE_PATH/android.keystore myandroidkey \
--storepass 'masteringqt'

cp $ANDROID_BUILD_PATH/bin/QtApp-release-signed.apk ../apk/cute-gallery.apk
popd

Let's analyze this script together:

1. Set the main path variables. The output directory is DIST_DIR. All files are generated in
the dist/mobile-android/build directory. The final signed APK is copied in
the dist/mobile-android/apk directory.

2. Create all the directories and go in dist/mobile-android/build.

3. Execute gmake in release mode for the Android platform to generate the parent project
Makefile.

4. Run the make gmake_all command to generate the sub-project Makefiles.

5. Perform the make commands to build each required sub-project.

6. Run the make install command on the gallery-mobile directory specifying
the INSTALL_ROOT to copy all binaries and files required by the APK generation.

The final part of the script calls the androiddeployqt binary, a Qt tool to generate the APK.
Take a look at the following options:

e The --deployment option used here is bundled like the mode we used in Qt Creator.

e The --sign option requires two parameters: the URL to the keystore file and the alias to
the key for the certificate.

e The - -storepass option is used to specify the keystore password. In our case the
password is "masteringqt".

Finally, the generated signed APK is copied to the dist/mobile-android/apk directory with
the name cute-gallery.apk.

Packaging for iOS

Packaging a Qt application for iOS relies on XCode. When you build and run gallery-mobile
from Qt Creator, XCode will be called under the hood. In the end, an .xcodeproj file is
generated and passed to XCode.

Knowing this, the packaging part will be fairly limited: the only thing than can be automated
is the generation of the .xcodeproj.

First, check that your environment variables are correctly set:

Name Example
QTDIR_I10S $HOME/Qt/5.7/ios

Create scripts/package-ios.sh and add this snippet to it:

#1/bin/bash

DIST DIR=dist/mobile-ios
BUILD DIR=build

mkdir -p $DIST_DIR && cd $DIST_DIR
mkdir -p $BIN_DIR $LIB_DIR $BUILD_DIR

pushd $BUILD_DIR
$QTDIR_IOS/bin/gmake \
-spec macx-ios-clang \
"CONFIG += release iphoneos device" \
../../../ch13-gallery-packaging.pro
make gmake_all
pushd gallery-core && make ; popd
pushd gallery-mobile && make ; popd

popd

The script performs the following steps:

1. Set the main path variables. The output directory is DIST_DIR. All files are generated in
the dist/mobile-ios/build folder.

2. Create all the directories and go in dist/mobile-ios/build.

3. Execute gmake in release mode for the iPhone device (as opposed to the iPhone
simulator) platform to generate the parent project Makefile.

4. Run the make gmake_all command to generate the sub-project Makefiles.

5. Perform the make command to build each required sub-projects.

Once this script has been executed, dist/mobile-ios/build/gallery-mobile/gallery-
mobile.xcodeproj is ready to be opened in XCode. The remaining steps are entirely done in
XCode:

1. Open gallery-mobile.xcodeproj in XCode.

2. Compile the application for an iOS device.

3. Follow the Apple procedure to distribute your application (through the App Store or as a
standalone file).

After that, gallery-mobile will be ready for your users!

Summary

Even if your application runs well on your computer, your development environment can
affect this behavior. Its packaging must be correct to run your application on the user's
hardware. You learned the steps required to package an application before deploying it. Some
platforms required specific tasks that must be followed carefully. You can now bake a
standalone package if your application is running a unique script.

The next chapter describes some tricks that can be useful for developing applications with Qt.
You will learn some tips concerning Qt Creator.

Chapter 14. Qt Hat Tips and Tricks

The previous chapter taught you how to package a Qt application on all the major desktop and
mobile platforms. This was the final step before shipping your application to your users. This
chapter gathers some tips and tricks that will help you to develop your Qt applications with
more ease.

This chapter covers the following topics:

Qt Creator tips - Useful keyboard shortcuts, session management, and more
Examining the memory with Qt Creator

Generating random numbers

Silencing unused variables and compiler warnings

How to easily log an object's content to QDebug

Customizing QDebug formatting

Saving logs to a file

e Creating a friendly command-line interface

e Sending HTTPGET and POST requests

Managing your workspace with sessions

It is common for a commercial product to be composed of several Qt projects. We regularly
encountered this practice in this book-for example, an application composed of a core project
and a GUI project. The Qt subdirs project is a nice way of handling inter-dependent projects
within the same application.

However, when your product grows up, you'll want to open some unrelated projects in Qt
Creator. In this case, you should use a session. A session is a complete snapshot of your
workspace in Qt Creator. You can easily create a new session from File | Session Manager
| New. Do not forget to switch to the new session. For example, you can create a session
"Mastering Qt5" and load all project examples in a common workspace.

The sessions are useful when you need to quickly switch between two different workspaces.
The following items in Qt Creator will be automatically saved in the session:

Opened projects of the hierarchical view
Editor's windows (including the splits)
Debug breakpoints and expressions views
Bookmarks

You can change to a different session with File | Session Manager or by using the Welcome
tab. A session can be destroyed without any impact on your projects.

Searching with the Locator

Another way to improve your productivity with Qt Creator is to use keyboard shortcuts. Qt
Creator provides a lot of great keyboard shortcuts. Here is our selection:

Action Shortcut
Comment/ uncomment ctrl + /
Butocomplete Ctrl + Space
Wiew help of symbol under cursar F1
Follow symbaol under cursor F2
Switch between header / source file F4
Switch between function declaration and definition Shift+ F2
Switch between form / source file Shift + F4
Fename symbol under cursor Ctrl+ Shift+ R
Find usages of symbol under cursor Ctrl+ Shift+ U
Select the kit Ernle
Build current project ctrl+B
Start/ continue debugging F5
Dehugging : step over F10
Dehugging @ stepinto F11
Dehugging @ step out Shift+ F11
Fun ctrl+ R
Open next file from Open Documents Ctrl + Tah
Open previous file from Qpen Documents Ctrl + Shift + Tah
Toggle the left sidebar Atl+ 0
Toggle Issues pane Alt+1
Activate Locator ctrl + K
Auto indent the selection ctrl + |
50 to the line Cirl+ L
Toggle fullscreen Ctrl + Shift + F11
Femaov e current split editor Ctrl+ E, 0
Split editor horizontally Cirl+ E. 2
Split editor v ertically Ctri+ E, 3

One of our favorites is the Locator. Press Ctrl + K to activate it. Then you can enjoy several
features:

e Enter a filename (you can even use a partial entry) and press Enter to open this file. If the
Locator suggests multiple files, you can use the arrows up and down to navigate.

e Prefix your search by . (a dot followed by a space) to search C++ symbols in the
current document. For example, on the Task.cpp file of the first chapter, try to use the
Locator with . set and press Enter to go to the Task::setName() function.

e Enter 1 (L followed by a space) to go to a specific line. For example, "l 37" will bring
us to line 37 of the current file

The Locator provides plenty of features; take a look when you press Ctrl + K the next time!

Increasing the compilation speed

You can speed up the compilation on a multicore computer. By default, when you build your
project with Qt Creator, you only use one job (and, therefore, one core). But make supports the
compilation with multiple jobs. You can use the make -j N option to allow N jobs at once. Do
not forget to update your packaging scripts!

If you build your project from Qt Creator, you can set this option from Projects | Build Steps
| Make. Click on Details, then, in the Make arguments field, put the value -j 8 to allow eight
jobs during the compilation, as shown in the following screenshot:

Build Steps
gmake: gmake chll-drum-machine.pro -r -spec linux-g++ CONFIG+=debug CONFIG+=gml_debug Details =
Make: make -] 8 in /home/guillaume/ projects/qtbook/build-ch11-drum-machine -Desktop_GQt_5_7_0_ Details =
Owerride fusr/bin/make: Browse...
Make arguments: -18
Add Build Step -

Examining the memory with Qt Creator

For this section, we will use the following code snippet:

bool boolean = true;

int integer = 5;

char character = 'A';

int* integerPointer = &integer;

gbebug() << "boolean 1is:" << boolean;

gbebug() << "integer is:" << integer;

gbebug() << "character 1is:" << character;

gbebug() << "integerPointer is:" << integerPointer;
gbebug() << "*integerPointer 1is:" << *integerPointer;
gbebug() << "done!";

We declared three primitive types: boolean, integer, and character. We also added a
integerPointer pointer that refers to the integer variable. Put a breakpoint at the last line
and start the debugging. On the Debug pane, you should have the Locals and Expressions

view. You can easily add/remove it from Window | Views | Locals and Expressions. Here is a
screenshot of it:

Locals and Expressions

Mame Value Type
boolean true bool
character A 65 Ox41 char
integer 5 int
integerPointer 5 int

You can see that all our local variables are displayed with their values. The character line
even displays three formats (ASCII, integer, and hexadecimal) of the letter 'A'. You may also
notice that the integerPointer line displays the automatically dereferenced value, not the
pointer address. You can disable it with a right-click on the background of the Locals and
Expressions window and then select Dereference Pointers automatically. You can see the
pointer address and the dereferenced value appearing as shown in the following screenshot:

Locals and Expressions
Mame Value Type
boolean true bool
character A &5 Ox41 char
integer o int
¥ integerPointer Ox7ffe601153ac int *
*integerFointer 5 int

The console output displays the following information:

boolean is: true

integer is: 5

character is: A

integerPointer 1is: Ox7ffe601153ac
*integerPointer is: 5

You can see that we retrieve the same information in the console output. The Locals and
Expressions view helps you to save time. You can display a lot of information without
logging it with a gbebug() function.

Qt Creator provides a useful memory editor. You can open it with a right-click on a variable
name in the Locals and Expressions window, and then select Open Memory Editor | Open
Memory Editor at Object's Address.

Within the memory editor, look at the value of the boolean variable:

PO00:7ffe:6011:5390 (30 55 11 60 fe 7f 60 60 58 4d 40 00 00 60 00 GO |OU- ----XM@-----
PEEO:7ffe:6011:53a0(20 54 11 60 fe 7f 00 00 20 54 [EH 41 05 00 00 @O | T-"---- i
pe00:7ffe:6011:53b6|36 3a 18 B2 66 66 GO GO ac 53 11 60 fe 7f OO 0O |B:------- S.’

A hexadecimal editor appears with three parts (from the left to the right):

e The memory address of the data
e The hexadecimal representation of the data
e The ASClII representation of the data

The selection in the hexadecimal representation corresponds to the variable. We can confirm
that the boolean variable is represented in memory by 1 byte. Because the value is true, the
memory representation is 0x01.

Let's examine the character memory with the Memory Editor tool:

POO0:7ffe:6011:5390(30 55 11 60 fe 7f 00 00 58 4d 40 00 00 G0 60 60 (OU- ----XM@:-----
POEO:7ffe:6011:53a0|20 54 11 60 fe 7f 00 00 20 54 01 [ERYO5 €0 00 00 | T-"«--- T-[----
6060:7ffe:6011:53b0 |36 3a 18 B2 06 BG 66 B8 ac 53 11 6O fe 7T OO0 0O |@:------- el

The character is also stored in memory with 1 byte. The hexadecimal representation is 0x41.
The character is encoded with the well-known ASCII format. Note that, on the right-hand side,
the ASCII representation displays the 'A’.

Here is the Memory Editor location of the integer variable:

PO00:7ffe:6011:5390|30 55 11 60 fe 7f OO 0O 58 4d 40 00 00 GO 60 60 |QU-"----XM@-:---
PEEO:7ffe:6011:53a0(20 54 11 60 fe 7f 00 00 20 54 01 41 |[EENOO €0 00 | T- ---- T-Af--"
60 :7ffe:6011:53b6 |30 3a 18 B2 0O 66 00 08 ac 53 11 60 fe 7Ff OO OGO |@:------- Seleeen

There are two interesting facts to note. The integer is stored on 4 bytes. The value 05 is stored
in hexadecimal as 05 00 00 00. The byte order depends on the endianness of your processor.
We are using an Intel CPU that is Little-Endian. Another CPU architecture with a Big-Endian
memory storage will display the variable as 00 00 00 05.

Before we continue to dive into the memory of our application, look at the last three
screenshots closely. You might notice that, in this case, the three variables are contiguous in
the stack memory. This behavior is not guaranteed depending on the implementation of your
OS.

Try to open the memory editor on the integerPointer variable. The context menu offers you
two different ways:

e The Open Memory Editor at Object's Address option dereferences the pointer and
brings you directly to the pointed value. You get the same result as the integer memory
view.

e The Open Memory Editor at Pointer's Address option displays the raw pointer data,
which is a memory address to where it is pointing.

Here is the Memory Editor tool showing the pointer's address of integerPointer:

POO0:7ffe:6011:53a0|20 54 11 60 fe 7f 00 B0 20 54 01 41 05 00 00 @O | T- «--- T-A----
PO :7ffe:6011:53b0|30 3a 18 02 00 00 00 00 |EIE]] b= []
POOD:7ffe:6011:53cO (02 GO OO OO 66 GO 0O 0O 10 9e 40 0O OO OO OO OO |----F----- i

We are on a 64-bit OS, so our pointer is stored on 8 bytes. The data of this pointer is the
hexadecimal value ac 53 11 60 fe 7f 00 00.This is the Little-Endian representation of the
memory address 0x7ffe601153ac displayed by the Locals and Expressions and by our
console output.

We display the memory, but we can also change it. Follow these steps:

1. Remove the current breakpoint and add a new one on the first gbebug() line.

2. Restart the debugging and look at the Locals and Expressions. If you double-click a
variable's value, you can edit it. Note that the Memory Editor window immediately
updates its representation.

3. In our case, we set boolean value to false, character to 68 (that is 'D') and integer to 9.

When you are confident with your changes, continue the debugging.

Here is the final console output reflecting our modifications:

boolean is: false

integer is: 9

character is: D

integerPointer 1is: Ox7fff849203dc
*integerPointer 1is: 9

done!

The Memory Editor is a powerful tool: You can display and change your variable's value, at
runtime, without changing your source code and recompiling your application.

Generating random numbers

Generating real random numbers is quite a difficult task for a computer. Commonly, we are
using only a pseudo-random number generation (PRNG). The Qt framework provides the
function qrand(), a thread-safe version of std::rand(). This function returns an integer
between 0 and RAND_MAX (defined in std1lib.h). The following code shows two pseudo-
random numbers:

gbebug() << "first number is" << qrand() % 10;
gbebug() << "second number is" << qrand() % 10;

We are using a modulo operator to get a value between 0 and 9. Try to run your application
several times. The numbers are always the same, in our case, 3 then 7. That is because each
time we call qrand(), we retrieve the next number of the pseudo-random sequence, but the
sequence is always the same! Fortunately, we can use gsrand() to initialize the PRNG with a
seed. A seed is an unsigned integer that is used to generate a sequence. Try the next snippet:

gsrand(3);
gbebug() << "first number is" << qrand() % 10;
gbebug() << "second number is" << qrand() % 10;

In this example, we are using the seed 3, and we get a different value from grand()--on our
computer it is 5 and 4. Great, but if you run this application several times, you will always
have this sequence. One way of generating a different sequence each time you run your
application is to use a different seed on each run. Run the following code snippet:

gsrand(QDateTime::currentDateTime().toTime_t());
gbebug() << "first number is" << qrand() % 10;
gbebug() << "second number is" << qrand() % 10;

As you can see, we are now initializing the PRNG with the epoch time from QDateTime. You

can try to run your application multiple times to see that we get different numbers each time!
However, this solution is not recommended for cryptography. In this case, you should use a

stronger random number engine.

Silencing unused variable warnings

If your compiler is configured to output its warnings, you will probably sometimes see this
kind of log:

warning: unused parameter 'myVariable' [-Wunused-parameter]

This is a safety warning to tell the developer to keep their code clean and avoid dead
variables. It is a good practice to try to minimize this kind of warning. However, sometimes
you have no choice: You override an existing function and you do not use all the parameters.
You now face a conundrum: On the one hand you can silence the warning for your whole
application, and on the other hand, you can let these safety warnings pile up in your compile
output. There must be a better option.

Indeed, you can silence the warning for your function only. There are two ways of doing this:
e Using the C/C++ syntax
e Using a Qt macro
Let's say you override myFunction(QString name, QString myVariable) and you do not
use myVariable. Using the C/C++ syntax, you just have to implement myFunction () like so:
void myFunction(QString name, QString /*myVariable*/)
By commenting the variable's name, myvariable, in the function signature, you ensure that

you will not (that is, cannot) use the variable in the function body. The compiler will also
interpret it like this and will not output any warning.

Qt also provides a way of marking unused variables with the Q_UNUSED macro. Let's see it in
action:

void myFunction(QString name, QString myVariable)

{
Q_UNUSED(myVariable)

}

Simply pass myvariable to Q UNUSED and it will remove the warning from the compiler
output. Behind the curtain, Q_UNUSED does not do anything magical with the variable:

#define Q_UNUSED(x) (void)x;

It is a simple trick to fool the compiler; it sees myvariable "used", but nothing is done with it.

Logging custom objects to QDebug

When you are debugging complex objects, it is nice to output their current members' value to
gDebug (). In other languages (such as Java), you may have encountered the toString()
method or equivalent, which is very convenient.

Sure, you could add a function void toString() to each object you want to log in order to
write code with the following syntax:

gbebug() << "Object content:" << myObject.toString()

There must be a more natural way of doing this in C++. Moreover, Qt already provides this
kind of feature:

QDate today = QDate::currentDate();
gbebug() << today;
// Output: QDate("2016-10-03")

To achieve this, we will rely on a C++ operator overload. This will look very similar to what
we did with QDatastream operators in Chapter 10, Need IPC? Get Your Minions to Work.
Consider a struct Person:
struct Person {

QString name;

int age;

+;

To add the ability to properly output to QDebug, you just have to override the << operator
between QDebug and Person like so:

#include <QDebug>

struct Person {

I¥
QDebug operator<<(QDebug debug, const Person& person)
{
QDebugStateSaver saver (debug);
debug.nospace() << "("
<< "name: " << person.name << ", "
<< "age: " << person.age
<< II)II;
return debug;
}

The QDebugStateSaver is a convenience class to save the settings of QDebug and restore them

automatically upon destruction. It is good practice to always use it to be sure that you do not
break QDebug in an << operator overload.

The rest of the function is the usual way of using QDebug and finally returning the
modified debug variable. You can now use Person like this:

Person person = { "Lenna", 64 };
gDebug() << "Person info" << person;

No need for a tostring() function; simply use the person object. For those of you who
wondered, yes, Lenna is really 64 at the time of wrting (2016).

Improving log messages

Qt offers multiple ways of doing this. A good compromise between the result and its
complexity is to combine the Qt log type with a custom message pattern.

Qt defines five log types, from the least to the most critical level:

gbebug(): This is used to write custom debug messages

gqInfo(): This is used to write informational messages

gwarning(): This is used to write warnings and recoverable errors in your applications
gqCrtitical(): This is used to write critical error messages and report system errors
gFatal(): This is used to write a last message before automatically existing

Try to always use the most appropriate one!

By default, the message pattern is configured to only display your message without any extra
data, but you can customize the pattern to display more information. This pattern can be
changed at runtime by setting the QT_MESSAGE_PATTERN environment variable. You can also
call the gSetMessagePattern function from your software to change the pattern. The pattern is
just a string with some placeholders.

These are the most common placeholders you can use:

e %{appname}: This is your application name

e %{file}: This is the path to the source file

e %{function}: This is the function name

e %{line}: This is a line in the source file

e %{message}: This is an original message

e %{type}: This is the Qt log type ("debug", "info", "warning", "critical" or "fatal")
e %{time [format]}: This is the system time when the message occurred

An easy way to use it is to edit your main.cpp file like this:

#include <QApplication>
#include <QDebug>

int main(int argc, char *argv[])

{
gSetMessagePattern("[%{time yyyy-MM-dd hh:mm:ss}] [%{type}]

%{function} %{message}");
gInfo() << "Application starting...";
QApplication a(argc, argv);

return a.exec();

You should get something like this in your application output:

[2016-10-03 10:22:40] [info] gMain Application starting...

Try to play around with the Qt log types and the custom message pattern until you find a
useful pattern for you.

Tip

For more complex applications, you can use the QLoggingCategory class to define categories
of logging. Visit http://doc.qgt.io/qt-5/gloggingcategory.html for more information on this.

http://doc.qt.io/qt-5/qloggingcategory.html

Saving your logs to a file

A common need for a developer is to have logs. In some situations, you cannot have access to
the console output, or you have to study the application state afterwards. In both cases, the log
has to be outputted to a file.

Qt provides a practical way of redirecting your logs (qbebug, qInfo, gwarning, and so on) to
any device that is convenient for you: QtMessageHandler. To use it, you have to register a
function that will save the logs to the desired output.

For example, in your main.cpp, add the following function:

#include <QFile>
#include <QTextStream>

void messageHander (QtMsgType type,
const QMessagelLogContext& context,
const QString& message) {
QString levelText;
switch (type) {
case QtDebugMsg:
levelText = "Debug";
break;
case QtInfoMsg:
levelText = "Info";
break;
case QtwWarningMsg:
levelText = "Warning";
break;
case QtCriticalMsg:
levelText = "Critical";
break;
case QtFatalMsg:
levelText = "Fatal";
break;
}
QString text = QString("[%1] %2")
.arg(levelText)
.arg(message) ;
QFile file("app.log");
file.open(QIODevice::WriteOnly | QIODevice::Append);
QTextStream textStream(&file);
textStream << text << endl;

}

The signature of the function must be respected to be properly called by Qt. Let's review the
parameters:

e QtMsgType type: This is an enum that describes the function that generated the message

(gDebug(), qInfo(), gwarning(), and so on)

e QMessagelLogContext& context: This contains additional information about the log
message (source file where the log was produced, name of the function, line number, and
SO on)

e const QString& message: This is the actual message that was logged

The body of the function formats the log message before appending it to a file named
app.log. You can easily add features in this function by adding a rotating log file, sending the
logs through the network, or anything else.

The last missing part is the registration of messageHandler (), which is done in the main()
function:

int main(int argc, char *argv[])

{
QCoreApplication a(argc, argv);
gInstallMessageHandler (messageHander);

}

The call to the gInstallMessageHander () function is enough to reroute all the log messages
to app.log. Once this is done, the logs will no longer be displayed in the console output and
will be appended to app.log only.

Tip

If you need to unregister your custom message handler function, call
gInstallMessageHandler (0).

Generating a command-line interface

The command-line interface can be a wonderful way to start your application with some
specific options. The Qt framework provides an easy way to define your options with the
QCommandLineParser class. You can provide a short (for example, -t) or a long (for
example, - -test) option name. The application version and help menu is automatically
generated. You can easily retrieve in your code if an option is set or not. An option can take a
value and you can define a default value.

For example, we can create a CLI to configure the log files. We want to define three options:

e The -debug command, if set, enables the log file writing
e The -f or --file command to define where to write the logs
e The -1 or --level <level>command to specify the minimum log level

Look at the following snippet:
QCoreApplication app(argc, argv);

QCoreApplication::setApplicationName("ch14-hat-tips");
QCoreApplication::setApplicationVersion("1.0.0");

QCommandLineParser parser;
parser.setApplicationDescription("CLI helper");
parser.addHelpOption();
parser.addVersionOption();

parser .addOptions({
{Ildebugll’
"Enable the debug mode."},

{{Ilfll’ Ilfilell},
"Write the logs into <file>.",
"logfile"},

{{Illll’ Illevelll}’
"Restrict the logs to level <level>. Default is 'fatal'.",
"level",
"fatal"},

1)

parser .process(app);
gDebug() << "debug mode:" << parser.isSet("debug");

gbebug() << "file:" << parser.value("file");
gbebug() << "level:" << parser.value('"level");

Let's talk about each step:

1. The first part uses the functions from QCoreApplication to set the application name and
version. This information will be used by the - -version option.

2. Instantiate a QCommandLineParser class. Then we instruct it to automatically add the help
(-h or --help) and version (-v or --version) options.

3. Add our options with the QCommandLineParser::addOptions() function.

Request the QCommandLineParser class to process the command-line arguments.

5. Retrieve and use the options.

&

Here are the parameters to create an option:

e optionName: By using this parameter, you can use a single or multiple names

e description: In this parameter, the description of the option is displayed in the help
menu

e valueName (Optional): This shows the value name if your option expects one

e defaultvalue (Optional): This shows the default value of the option

You can retrieve and use the option using QCommandLineParser: :isSet(), which returns true
if the option was set by the user. If your option requires a value, you can retrieve it
with QCommandLineParser ::value().

Here is the display of the generated help menu:
$./chl4-hat-tips --help

Usage: ./chl4-hat-tips [options]
Helper of the command-line interface

Options:
-h, --help Displays this help.
-V, --version Displays version information.
- -debug Enable the debug mode.

-f, --file <logfile> Write the logs into <file>.
-1, --level <level> Restrict the logs to level <level>. Default is 'fatal'.

Finally, the following snippet displays the CLI in use:

$./chl4-hat-tips --debug -f log.txt --level info
debug mode: true

file: "log.txt"

level: "info"

Sending and receiving HI'TP data

Requesting information to an HTTP server is a common task. Here again, the Qt folks
prepared some useful classes to make it easy. To achieve this, we will rely on three classes:

e QNetworkAccessManager: This class allows your application to send requests and receive
replies

e QNetworkRequest: This class holds the request to be sent with all the information
(headers, URL, data, and so on)

e QNetworkReply: This class contains the result of a QNetwor kRequest class with the
headers and the data

The QNetworkAccessManager class is the pivot point of the whole Qt HTTP APL. It is built
around a single QNetworkAccessManager object that holds the configuration of the client,
proxy settings, cache information, and much more. This class is designed to be asynchronous,
so you do not need to worry about blocking your current thread.

Let's see itin action in a custom HttpRequest class. First, the header:

#include <QObject>
#include <QNetworkAccessManager>
#include <QNetworkReply>

class HttpRequest : public QObject

{
Q_OBJECT
public:
HttpRequest(QObject* parent = 0);

void executeGet();

private slots:
void replyFinished(QNetworkReply* reply);

private:
QNetworkAccessManager mAccessManager ;

+;

The QNetwor kAccessManager class works with the signal/slot mechanism, so HttpRequest
inherits from Qobject and uses the Q_0BJECT macro. We declare the following functions and
member:

e executeGet(): This is used to trigger an HTTP GET request
e replyFinished(): This is the slot called when the GET request has completed
e mAccessManager: This is the object that will be used for all our asynchronous requests

Let's turn our attention to the constructor of the HttpRequest class in the HttpRequest.cpp:

HttpRequest: :HttpRequest(QObject* parent)
QObject(parent),
mAccessManager ()

connect (&mAccessManager, &QNetworkAccessManager::finished,
this, &HttpRequest::replyFinished);
}

In the body of the constructor, we connect the finished() signal from mAccessManager to
our replyFinished() slot. This implies that every request sent through mAccessManager will
trigger this slot.

Enough with the preparation; let's see the request and reply in action:

// Request
void HttpRequest::executeGet()

{
QNetworkRequest request(QUrl("http://httpbin.org/ip"));

mAccessManager .get(QNetworkRequest(request));

}

// Response
void HttpRequest::replyFinished(QNetworkReply* reply)

{
int statusCode = reply-

>attribute(QNetworkRequest: :HttpStatusCodeAttribute).toInt();
gDebug() << "Reponse network error" << reply->error();
gDebug() << "Reponse HTTP status code" << statusCode;
gbebug() << "Reply content:" << reply->readAll();
reply->deleteLater();

}

The HTTP GET request is processed using mAccessManager .get(). The QNetworkAccessManager
class provides the function for other HTTP verbs (head(), post(), put(), delete(), and so
on. It expects a QNetworkRequest access, which takes a URL in its constructor. This is the
simplest form of an HTTP request.

Note that we did our request using the URL http://httpbin.org/ip, which will respond to the
emitter's IP address in the JSON format:

{
}

"origin": "1.2.3.4"

This website is a practical developer resource, where you can send your test requests and have
useful information sent back to you. It avoids having to launch a custom web server to only
test a few requests. This website is an open-source project freely hosted by Runscope. Of
course, you can replace the request URL with anything you wish.

Note

http://httpbin.org/ip

Take a look at http://httpbin.org/ to see all the supported request types.

After the executeGet () function is completed, the mAccessManager object executes the request
in a separate thread and calls our slot, replyFinished (), with the resulting QNetworkReply*
object. In this code snippet, you can see how to retrieve the HTTP status code and check if any
network error happened, as well as how to get the body of the response with reply-
>readAll().

The QNetworkReply class inherits from QIoDevice, and therefore, you can read it all at once
with readAl1(), or by chunks with a loop on read (). This lets you adapt the reading to your
needs using a familiar QIoDevice APL

Note that you are the owner of the QNetworkReply* object. You should not delete it by hand
(your application might crash if you do so); instead, it's better to use the reply-
>deletelater () function, which will let the Qt event loop pick the appropriate moment to
delete this object.

Now let's see a more complex example of QNetworkReply with an HTTP POST method. There
are times where you will need to keep track of the QNetworkReply class and have a more fine-
grained control over its life cycle.

Here is the implementation of an HTTP POST method that also relies
on HttpRequest: :mAccessManager:

void HttpRequest::executePost()
{
QNetworkRequest request(QUrl("http://httpbin.org/post"));
request.setHeader (QNetwor kRequest: :ContentTypeHeader,
"application/x-www-form-urlencoded");
QUrlQuery urlQuery;
urlQuery.addQueryItem("book", "Mastering Qt 5");

QUrl params;
params.setQuery(urlQuery);

QNetworkReply* reply = mAccessManager .post(
request, params.toEncoded());
connect(reply, &QNetworkReply::readyRead,

[reply] () {
gDebug() << "Ready to read from reply";

3);
connect(reply, &QNetworkReply::sslErrors,
[this] (QList<QSslError> errors) {
gwarning() << "SSL errors" << errors;

1)

http://httpbin.org/

We start by creating a QNetworkRequest class with a custom header: Content-Type is

now application/x-www-form-urlencoded to respect the HTTP RFC. After that, a URL form
is built, ready to be sent with the request. You can add as many items as you wish to

the urlQuery object.

The next part gets interesting. When executing mAccessManager .post () with the request and
the URL encoded form, the QNetworkReply* object is immediately returned to us. From here,
we use some lambdas slots connected directly to reply rather than using mAccessManage slots.
This lets you have precise control over what happens for each reply.

Note that the QNetworkReploy::readyRead signal comes from the QIoDevice API and that it
does not pass the QNetworkReply* object in the parameter. It is your job to store the reply in a
member field somewhere or retrieve the emitter of the signal.

Finally, this code snippet does not undo our preceding slot, replyFinished (), which is
connected to mAccessManager. If you execute this code, you will have the following output
sequence:

Ready to read from reply
Reponse network error QNetworkReply::NetworkError (NoOError)
Reponse HTTP status code 200

The lambda connected to the QNetworkReply: :readyRead signal is first called, and after that,
the HttpRequest: :replyFinished signal is called.

The last feature we will cover on the Qt HTTP stack is synchronous requests. If you happen to
need to manage the request threading yourself, the default asynchronous work mode of
QNetwor kAccessManager can get in your way. To circumvent this, you can use a

custom QEventLoop:

void HttpRequest::executeBlockingGet()
{
QNetwor kAccessManager localManager;
QEventLoop eventLoop;
QObject: :connect(
&localManager, &QNetworkAccessManager::finished,
&eventLoop, &QEventLoop::quit);

QNetworkRequest request(
QUrl("http://httpbin.org/user-agent"));
request.setHeader (QNetwor kRequest: :UserAgentHeader,
"MasteringQt5Browser 1.0");

QNetworkReply* reply = localManager.get(request);
eventLoop.exec();

gbebug() << "Blocking GET result:" << reply->readAll();

reply->deletelLater();
}

In this function, we declare another QNetwor kAccessManager that will not interfere with the one
declared in HttpRequest. Right after, a QEventLoop object is declared and connected

to localManager. When QNetwor kAccessManager emits the finished() signal, eventLoop will
quit and the calling function will resume.

The request is built as usual, the reply object is retrieved, and the function becomes blocked
with the call to eventLoop.exec(). The function is blocked until 1ocalManager has emitted its
finished signal. In other words, the request is still done asynchronously; the sole difference is
that the function is blocked until the request is completed.

Finally, the reply object can be safely read and deleted at the end of the function.
This QEventLoop trick can be used any time a synchronous wait for a Qt signal is needed; use
it wisely to avoid blocking the UI thread!

Summary

In this chapter, you learned some tips that complete your Qt knowledge. You should now have
the ability to use Qt Creator with ease and efficiency. The QDebug format should not hold any

secrets now, and you can now save your logs to a file without even blinking. You can create a
good-looking CLI interface, debug the memory of any program without shaking, and execute
an HTTP request with confidence.

We sincerely hope that you had as much fun reading this book as we did writing it. In our
opinion, Qt is a great framework, and it covers many areas that deserve to be deepened with a
book (or several books!). We hope you keep coding C++ Qt code with fun and pleasure by
building efficient and beautifully crafted applications.

	Mastering Qt 5
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Get Your Qt Feet Wet
	Creating a project
	MainWindow structure
	Qt Designer
	Signals and slots
	Custom QWidget
	Adding a task
	Using a QDialog
	Distributing code responsibility
	Emitting a custom signal using lambdas
	Simplifying with the auto type and a range-based for loop
	Summary
	2. Discovering QMake Secrets
	Designing a cross-platform project
	Adding the Windows implementation
	Adding the Linux implementation
	Adding the Mac OS implementation
	Transforming SysInfo into a singleton
	Exploring Qt Charts
	CpuWidget using QCharts
	Memory using Qcharts
	The .pro file in depth
	Under the hood of qmake
	Beneath Q_OBJECT and signals/slots
	Summary
	3. Dividing Your Project and Ruling Your Code
	Designing a maintainable project
	Defining data classes
	Storing your data in a database
	Protecting your code with a smart pointer
	Implementing the model
	Summary
	4. Conquering the Desktop UI
	Creating a GUI linked to a core shared library
	Listing your albums with AlbumListWidget
	Creating a ThumbnailProxyModel
	Displaying the selected album with AlbumWidget
	Enhancing thumbnails with PictureDelegate
	Displaying a picture with PictureWidget
	Composing your Gallery app
	Summary
	5. Dominating the Mobile UI
	Starting with Qt Quick and QML
	Checking your development environment
	Creating a Qt Quick project
	Preparing your Qt Quick gallery entry point
	Displaying albums with ListView
	Theming the application with a QML singleton
	Loading a database on mobile
	Creating a new album from a custom InputDialog
	Loading images with an ImageProvider
	Displaying thumbnails in a GridView
	Swiping through full resolution pictures
	Summary
	6. Even Qt Deserves a Slice of Raspberry Pi
	Discovering Qt3D
	Configuring Qt for your Raspberry Pi
	Creating an entry point for your Qt3D code
	Setting up the scene
	Assembling your Qt3D entities
	Preparing the board game
	Crafting entities from the factory
	Building a snake engine in JavaScript
	Varying the HUD with QML states
	Profiling your QML application
	Summary
	7. Third-Party Libraries Without a Headache
	Creating your Qt Designer plugin
	Configuring the project for Windows
	Configuring the project for Linux
	Configuring the project for Mac
	Implementing your OpenCV filters
	Designing the UI with FilterWidget
	Exposing your plugin to Qt Designer
	Using your Qt Designer plugin
	Building the image-filter application
	Summary
	8. Animations - Its Alive, Alive!
	Preparing an SDK
	Creating your plugins
	Loading your plugins dynamically
	Using the plugins inside the application
	Discovering the Animation Framework
	Making your thumbnails jump
	Fading the picture in
	Flashing the thumbnail in a sequence
	Summary
	9. Keeping Your Sanity with Multithreading
	Discovering QThread
	Flying over Qt multithreading technologies
	Architecting the Mandelbrot project
	Defining a Job class with QRunnable
	Using QThreadPool in MandelbrotCalculator
	Displaying the fractal with MandelbrotWidget
	Summary
	10. Need IPC? Get Your Minions to Work
	Architecturing an IPC project
	Laying down the foundations with an SDK
	Working with QDataStream and QTcpSocket
	Interacting with sockets in the worker
	Interacting with sockets from the application
	Building your own QTcpServer
	Summary
	11. Having Fun with Serialization
	Architecting the drum machine project
	Creating a drum track
	Making your objects serializable with QVariant
	Serializing objects in JSON format
	Serializing objects in XML format
	Serializing objects in binary format
	Playing low latency sounds with QSoundEffect
	Triggering a QButton with your keyboard
	Bringing PlaybackWorker to life
	Accepting mouse drag and drop events
	Summary
	12. You Shall (Not) Pass with QTest
	Discovering Qt Test
	Executing your tests
	Writing factorized tests with datasets
	Benchmarking your code
	Testing your GUI
	Spying on your application with QSignalSpy
	Summary
	13. All Packed and Ready to Deploy
	Packaging your application
	Packaging for Windows
	Packaging for Linux with a distribution package
	Packaging for Linux with AppImage
	Packaging for Mac OS X
	Packaging for Android
	Packaging for iOS
	Summary
	14. Qt Hat Tips and Tricks
	Managing your workspace with sessions
	Searching with the Locator
	Increasing the compilation speed
	Examining the memory with Qt Creator
	Generating random numbers
	Silencing unused variable warnings
	Logging custom objects to QDebug
	Improving log messages
	Saving your logs to a file
	Generating a command-line interface
	Sending and receiving HTTP data
	Summary

