

Mastering	Qt	5

Table	of	Contents

Mastering	Qt	5
Credits
About	the	Authors
About	the	Reviewer
www.PacktPub.com

Why	subscribe?
Preface

What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Errata
Piracy
Questions

1.	Get	Your	Qt	Feet	Wet
Creating	a	project
MainWindow	structure
Qt	Designer
Signals	and	slots
Custom	QWidget
Adding	a	task
Using	a	QDialog
Distributing	code	responsibility
Emitting	a	custom	signal	using	lambdas
Simplifying	with	the	auto	type	and	a	range-based	for	loop
Summary

2.	Discovering	QMake	Secrets
Designing	a	cross-platform	project

Adding	the	Windows	implementation
Adding	the	Linux	implementation
Adding	the	Mac	OS	implementation

Transforming	SysInfo	into	a	singleton
Exploring	Qt	Charts
CpuWidget	using	QCharts
Memory	using	Qcharts
The	.pro	file	in	depth

Under	the	hood	of	qmake
Beneath	Q_OBJECT	and	signals/slots
Summary

3.	Dividing	Your	Project	and	Ruling	Your	Code
Designing	a	maintainable	project
Defining	data	classes
Storing	your	data	in	a	database
Protecting	your	code	with	a	smart	pointer
Implementing	the	model
Summary

4.	Conquering	the	Desktop	UI
Creating	a	GUI	linked	to	a	core	shared	library
Listing	your	albums	with	AlbumListWidget
Creating	a	ThumbnailProxyModel
Displaying	the	selected	album	with	AlbumWidget
Enhancing	thumbnails	with	PictureDelegate
Displaying	a	picture	with	PictureWidget
Composing	your	Gallery	app
Summary

5.	Dominating	the	Mobile	UI
Starting	with	Qt	Quick	and	QML
Checking	your	development	environment
Creating	a	Qt	Quick	project
Preparing	your	Qt	Quick	gallery	entry	point
Displaying	albums	with	ListView
Theming	the	application	with	a	QML	singleton
Loading	a	database	on	mobile
Creating	a	new	album	from	a	custom	InputDialog
Loading	images	with	an	ImageProvider
Displaying	thumbnails	in	a	GridView
Swiping	through	full	resolution	pictures
Summary

6.	Even	Qt	Deserves	a	Slice	of	Raspberry	Pi
Discovering	Qt3D
Configuring	Qt	for	your	Raspberry	Pi
Creating	an	entry	point	for	your	Qt3D	code
Setting	up	the	scene
Assembling	your	Qt3D	entities
Preparing	the	board	game
Crafting	entities	from	the	factory
Building	a	snake	engine	in	JavaScript
Varying	the	HUD	with	QML	states

Profiling	your	QML	application
Summary

7.	Third-Party	Libraries	Without	a	Headache
Creating	your	Qt	Designer	plugin
Configuring	the	project	for	Windows
Configuring	the	project	for	Linux
Configuring	the	project	for	Mac
Implementing	your	OpenCV	filters
Designing	the	UI	with	FilterWidget
Exposing	your	plugin	to	Qt	Designer
Using	your	Qt	Designer	plugin
Building	the	image-filter	application
Summary

8.	Animations	-	Its	Alive,	Alive!
Preparing	an	SDK
Creating	your	plugins
Loading	your	plugins	dynamically
Using	the	plugins	inside	the	application
Discovering	the	Animation	Framework
Making	your	thumbnails	jump
Fading	the	picture	in
Flashing	the	thumbnail	in	a	sequence
Summary

9.	Keeping	Your	Sanity	with	Multithreading
Discovering	QThread
Flying	over	Qt	multithreading	technologies
Architecting	the	Mandelbrot	project
Defining	a	Job	class	with	QRunnable
Using	QThreadPool	in	MandelbrotCalculator
Displaying	the	fractal	with	MandelbrotWidget
Summary

10.	Need	IPC?	Get	Your	Minions	to	Work
Architecturing	an	IPC	project
Laying	down	the	foundations	with	an	SDK
Working	with	QDataStream	and	QTcpSocket
Interacting	with	sockets	in	the	worker
Interacting	with	sockets	from	the	application
Building	your	own	QTcpServer
Summary

11.	Having	Fun	with	Serialization
Architecting	the	drum	machine	project
Creating	a	drum	track

Making	your	objects	serializable	with	QVariant
Serializing	objects	in	JSON	format
Serializing	objects	in	XML	format
Serializing	objects	in	binary	format
Playing	low	latency	sounds	with	QSoundEffect
Triggering	a	QButton	with	your	keyboard
Bringing	PlaybackWorker	to	life
Accepting	mouse	drag	and	drop	events
Summary

12.	You	Shall	(Not)	Pass	with	QTest
Discovering	Qt	Test
Executing	your	tests
Writing	factorized	tests	with	datasets
Benchmarking	your	code
Testing	your	GUI
Spying	on	your	application	with	QSignalSpy
Summary

13.	All	Packed	and	Ready	to	Deploy
Packaging	your	application
Packaging	for	Windows
Packaging	for	Linux	with	a	distribution	package
Packaging	for	Linux	with	AppImage
Packaging	for	Mac	OS	X
Packaging	for	Android
Packaging	for	iOS
Summary

14.	Qt	Hat	Tips	and	Tricks
Managing	your	workspace	with	sessions
Searching	with	the	Locator
Increasing	the	compilation	speed
Examining	the	memory	with	Qt	Creator
Generating	random	numbers
Silencing	unused	variable	warnings
Logging	custom	objects	to	QDebug
Improving	log	messages
Saving	your	logs	to	a	file
Generating	a	command-line	interface
Sending	and	receiving	HTTP	data
Summary

Mastering	Qt	5

Mastering	Qt	5
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or
transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its	dealers
and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused	directly	or
indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,
Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	December	2016

Production	reference:	1121216

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	

B3	2PB,	UK.

ISBN	978-1-78646-712-6

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Guillaume	Lazar

Robin	Penea

Copy	Editor

Safis	Editing

Reviewer

Ray	Rischpater

Project	Coordinator

Izzat	Contractor

Commissioning	Editor

Kunal	Parikh

Proofreader

Safis	Editing

Acquisition	Editor

Sonali	Vernekar	

Indexer

Rekha	Nair	

Content	Development	Editor

Rohit	Kumar	Singh

Production	Coordinator

Aparna	Bhagat

Technical	Editor

Vivek	Pala

About	the	Authors
Guillaume	Lazar	is	a	software	engineer	living	near	Paris	in	France.	He	has	worked	for
different	companies,	from	startups	to	multinationals,	for	the	last	7	years.	He	took	the
opportunity	to	observe	and	learn	from	many	team	organizations	and	technologies.

He	eventually	founded	his	own	software	development	company,	NeuronalMotion,	at	the	age
of	27	with	his	friend	Robin	Penea	in	2014.	Information	about	it	and	its	open	source	projects
can	be	found	on	the	comapny's	website,	www.neuronalmotion.com.

NeuronalMotion	represents	to	Guillaume	"a	different	way	of	working."	The	current
hierarchical	organization	that	applies	to	most	companies	seems	obsolete	to	him.	With	his	own
company,	he	wants	to	try	something	different,	where	each	employee	will	be	autonomous.

Although	he	defines	himself	as	a	Qt	framework	lover,	he	likes	to	mix	different	technologies
and	platforms.	He	also	spends	time	on	game	development,	machine	learning,	and	electronics,
because	"things"	become	"alive."

Creating	examples	and	writing	chapters	for	this	book	was	a	serious	challenge	this	year.
Some	sections	were	fundamentally	changed	to	match	Qt	evolution.	I	would	not	have	been
able	to	achieve	this	task	alone.	I	wish	to	thank	Robin	Penea,	my	friend	and	the	coauthor
of	this	book.	He	gave	his	all	to	create	with	me	a	robust	Qt	book	with	modern	C++.	Our
review	team,	Rohit	Kumar	Singh,	Ray	Rischpater,	Quentin	Canu,	Chistophe	Dongieux,	and
Hugo	Loi,	have	done	excellent	work:	they	corrected	us	and	raised	some	important	issues.
I	also	want	to	thank	Packt	for	the	good	follow	up	during	the	writing	process.	Finally,	I
thank	my	family	and,	particularly,	Sophie,	my	girlfriend,	for	her	support.

Robin	Penea	is	a	software	engineer	living	in	France.	He	has	worked	for	several	companies
over	the	last	7	years,	on	many	different	technologies	(ranging	from	server	application
development	to	embedded	programming).

He	founded	NeuronalMotion	with	Guillaume	Lazar	in	2014	to	implement	his	vision	of
entrepreneurship	and	project	development.	He	aims	to	achieve	a	self-organized	company.
More	information	is	available	at	www.neuronalmotion.com.

Besides	developing	with	Qt,	he	likes	to	tinker	with	the	Android	AOSP	framework,	learn	new
programming	language	paradigms,	and	discover	how	to	interweave	technology	and	real	life.

This	book	would	not	have	existed	without	Guillaume	Lazar,	my	friend	and	the	coauthor	of
the	book.	He	was	truly	dedicated	to	designing	and	crafting	the	best	possible	book.	I	wish
to	thank	our	reviewers,	Rohit	Kumar	Singh,	Ray	Rischpater,	Quentin	Canu,	Christophe
Dongieux,	and	Hugo	Loi.	Their	input	was	invaluable	and	definitely	raised	the	quality	of
the	book.	Packt	played	a	sensible	role,	listening	to	our	requests	and	changes,	guiding	us

http://www.neuronalmotion.com/
http://www.neuronalmotion.com/

through	the	writing,	and	monitoring	our	mental	states	during	this	year	with	benevolence.
I	also	wish	to	thank	my	father,	Calin,	for	believing	in	me.	A	last	word	for	Flore,	my
girlfriend,	who	kept	my	motivation	up	and	supported	me.

About	the	Reviewer
Ray	Rischpater	is	a	software	engineer	and	author	with	over	20	years	of	industry	experience
and	sixteen	books	to	his	credit.	Beginning	with	software	development	for	mobile	platforms,
he’s	done	work	in	several	areas,	including	mobile,	web	services,	building	tools	for	mapping
and	geospatial	engineering,	and	applying	machine	learning	to	geospatial	processing
problems.

During	this	time,	he’s	participated	in	the	development	of	Internet	technologies	and	custom
applications	for	Newton,	Magic	Cap,	Palm	OS,	Java	ME,	Qualcomm	BREW,	Apple	iOS,	and
Google	Android,	as	well	as	several	proprietary	platforms.	Over	the	last	six	years,	his	focus
has	shifted	from	mobile	applications	and	services	to	building	tools,	software	processes,	and
machine	learning	models	to	facilitate	mapping	the	real	world.	Presently,	he’s	employed	as	a
software	engineering	manager	at	Uber,	doing	work	on	mapping	and	machine	learning.

When	not	writing	for	or	about	software	development,	he	enjoys	making	music,	hiking,	and
photography	with	his	family	and	friends	in	and	around	the	San	Lorenzo	Valley	in	central
California.	When	he’s	able,	he	also	provides	public	service	through	amateur	radio	as	the
licensed	Amateur	Extra	station	KF6GPE.

He	is	the	author	of	Microsoft	Mapping	with	Carmen	Au,	by	Apress	(published	in	2013)
and	Application	Development	with	Qt	Creator,	Second	Edition,	by	Packt	(published	in	2014).
He	has	written	several	other	books,	including	Beginning	Java	ME	Platform	(Beginning	from
Novice	to	Professional),	by	Apress	(published	in	2008),	Software	Development	for	the
QUALCOMM	BREW	Platform,	by	Apress	(published	in	2003),	Wireless	Web	Development,
First	Edition,	by	Apress	(published	in	2002),	and	Wireless	Web	Development,	Second	Edition,
by	Apress	(published	in	2004).

I’d	like	to	thank	my	wife,	Meg	Given,	for	her	patience	as	I	worked	on	yet	another	book
project.

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub
files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print
book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us
at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a
range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and
eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to	all	Packt
books	and	video	courses,	as	well	as	industry-leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Preface
C++	is	a	powerful	language.	Coupled	with	Qt,	you	have	in	your	hands	a	cross-platform
framework	that	allies	performance	and	ease	of	use.	Qt	is	a	vast	framework	that	provides	tools
in	many	areas	(GUI,	threads,	networking,	and	so	on).	25	years	after	its	inception,	Qt	continues
to	evolve	and	grow	with	each	release.

This	book	aims	to	teach	you	how	to	squeeze	the	best	out	of	Qt	with	the	new	C++14	additions
(lambdas,	smart	pointers,	enum	classes,	and	so	on).	These	two	technologies	together	bring
you	a	safe	and	powerful	development	toolbox.	Throughout	the	book,	we	try	to	emphasize	a
clean	architecture	that	lets	you	create	and	maintain	your	application	in	a	complex
environment.

Each	chapter	is	based	on	an	example	project	that	is	the	basis	of	all	the	discussion.	Here	are
some	tasters	about	what	we	will	see	in	this	book:

Uncover	qmake	secrets
Take	a	deep	dive	in	the	model/view		architecture	and	study	how	you	can	build	a	complex
application	with	this	pattern
Study	QML	and	Qt	Quick	applications	in	mobile
Develop	Qt	3D	components	using	QML	and	JavaScript
Show	how	to	develop	plugins	and	SDKs	using	Qt
Cover	the	multi-threading	technologies	provided	by	Qt
Build	an	IPC	mechanism	using	sockets
Serialize	data	using	XML,	JSON,	and	binary	format

We'll	cover	all	this	and	much,	much	more.

Note	that	you	can	take	a	look	at	Chapter	14,	Qt	Hat	Tips	and	Tricks,	whenever	you	want	if	you
want	to	get	some	development	candies	and	see	some	code	snippets	that	might	make	your
development	more	pleasurable.

And	most	importantly,	have	fun	writing	Qt	applications!

What	this	book	covers
Chapter	1,	Get	Your	Qt	Feet	Wet,	lays	the	fundamentals	of	Qt	and	refreshes	your	memory	with
a	todo	application.	This	chapter	covers	the	Qt	project	structure,	how	to	use	the	designer,	basic
principles	of	the	signals	and	slots	mechanism,	and	introduces	new	features	of	C++14.

Chapter	2,	Discovering	QMake	Secrets,	takes	a	deep	dive	in	the	heart	of	the	Qt	compilation
system:	qmake.	This	chapter	will	help	you	understand	how	it	works,	how	to	use	it,	and	how
you	can	structure	a	Qt	application	with	platform-specific	code	by	designing	a	system
monitoring	application.

Chapter	3,	Dividing	Your	Project	and	Ruling	Your	Code,	analyzes	the	Qt	model/view
architecture	and	how	a	project	can	be	organized	by	developing	a	custom	library	with	the	core
logic	of	the	application.	The	project	example	is	a	persistent	gallery	application.

Chapter	4,	Conquering	the	Desktop	UI,	studies	the	UI	perspective	of	the	model/view
architecture	with	a	Qt	Widget	application	relying	on	the	library	completed	in	the	previous
chapter.

Chapter	5,	Dominating	the	Mobile	UI,	adds	the	missing	part	of	the	gallery	application	with	the
mobile	version	(Android	and	iOS);	the	chapter	covers	it	with	the	use	of	QML,	Qt	Quick
controls,	and	QML	/	C++	interactions.

Chapter	6,	Even	Qt	Deserves	a	Slice	of	Raspberry	Pi,	continues	to	the	road	on	Qt	Quick
application	with	the	Qt	3D	perspective.	This	chapter	covers	how	to	build	a	3D	snake	game
targeted	at	the	Raspberry	Pi.

Chapter	7,	Third-Party	Libraries	Without	a	Headache,	covers	how	a	third-party	library	can	be
integrated	in	a	Qt	project.	OpenCV	will	be	integrated	with	an	image	filter	application	that	also
provides	a	custom	QDesigner	plugin.

Chapter	8,	Animations,	It’s	Alive,	Alive!,	extends	the	image	filter	application	by	adding
animations	and	the	ability	to	distribute	a	custom	SDK	to	let	other	developers	add	their	own
filters.

Chapter	9,	Keeping	Your	Sanity	with	Multithreading,	investigates	the	multithreading	facilities
provided	by	Qt	by	building	a	multithreaded	Mandelbrot	fractal	drawing	application.

Chapter	10,	Need	IPC?	Get	Your	Minions	to	Work,	broadens	the	Mandelbrot	fractal	application
by	moving	the	calculation	to	other	processes	and	managing	the	communication	using	sockets.

Chapter	11,	Having	Fun	with	Serialization,	covers	multiple	serialization	formats	(JSON,
XML,	and	binary)	inside	a	drum	machine	application	in	which	you	can	record	and	load	sound

loops.

Chapter	12,	You	Shall	(Not)	Pass	with	QTest,	adds	tests	to	the	drum	machine	application	and
studies	how	the	Qt	Test	frameworks	can	be	used	to	make	unit	tests,	benchmarking,	and	GUI
events	simulation

Chapter	13,	All	Packed	and	Ready	to	Deploy,	gives	insights	into	how	to	package	an
application	on	all	desktop	OSes	(Windows,	Linux,	and	Mac	OS)	and	mobile	platforms
(Android	and	iOS).

Chapter	14,	Qt	Hat	Tips	and	Tricks,	gathers	some	tips	and	tricks	to	develop	with	Qt	with
pleasure.	It	shows	how	to	manage	sessions	in	Qt	Creator,	useful	Qt	Creator	keyboard
shortcuts,	how	you	can	customize	the	logging,	save	it	to	disk,	and	much	more.

What	you	need	for	this	book
All	the	code	in	this	book	can	be	compiled	and	run	from	Qt	Creator	using	Qt	5.7.	You	can	do	it
from	your	preferred	OS:	Windows,	Linux,	or	Mac	OS.

About	the	mobile-specific	chapters,	either	an	Android	or	an	iOS	device	works,	but	it	is	not
mandatory	(the	simulator/emulator	can	be	enough).

Chapter	6,	Even	Qt	Deserves	a	Slice	of	Raspberry	Pi,	offers	to	build	an	application	running	on
a	Raspberry	Pi.	Although	it	is	more	fun	if	we	can	do	it	with	a	real	Raspberry	Pi,	it	is	not
necessary	to	have	one	to	complete	the	chapter.

Who	this	book	is	for
This	book	will	appeal	to	developers	and	programmers	who	would	like	to	build	GUI-based
application.	You	should	be	fluent	with	C++	and	the	object-oriented	paradigm.	Qt	knowledge	is
recommended,	but	is	not	necessary.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of
information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,
dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	"The	qmake	command	is
executed	with	the	project	.pro	file."

A	block	of	code	is	set	as	follows:

void	MemoryWidget::updateSeries()

{

				double	memoryUsed	=	SysInfo::instance().memoryUsed();

				mSeries->append(mPointPositionX++,	memoryUsed);

				if	(mSeries->count()	>	CHART_X_RANGE_COUNT)	{

								QChart*	chart	=	chartView().chart();

								chart->scroll(chart->plotArea().width()

																						/	CHART_X_RANGE_MAX,	0);

								mSeries->remove(0);

				}

}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant	lines	or
items	are	set	in	bold:

windows	{

				SOURCES	+=	SysInfoWindowsImpl.cpp

				HEADERS	+=	SysInfoWindowsImpl.h

				debug	{

								SOURCES	+=	DebugClass.cpp

								HEADERS	+=	DebugClass.h

				}

}

Any	command-line	input	or	output	is	written	as	follows:

/path/to/qt/installation/5.7/gcc_64/bin/qmake	-makefile	-o	Makefile	

/path/to/sysinfoproject/ch02-sysinfo.pro

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for
example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	"In	Qt	Creator,	when	you	click
on	the	Build	button,	qmake	is	invoked."

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book-
what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles
that	you	will	really	get	the	most	out	of.	To	send	us	general	feedback,	simply	e-
mail	feedback@packtpub.com,	and	mention	the	book's	title	in	the	subject	of	your	message.	If
there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to
get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT 	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the
latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at
https://github.com/PacktPublishing/masteringqt5.	We	also	have	other	code	bundles	from	our
rich	catalog	of	books	and	videos	available	at	https://github.com/PacktPublishing/.	Check	them
out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/masteringqt5
https://github.com/PacktPublishing/

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.
If	you	find	a	mistake	in	one	of	our	books-maybe	a	mistake	in	the	text	or	the	code-we	would	be
grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other	readers	from
frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find	any	errata,
please	report	them	by	visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,
clicking	on	the	Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.	Once
your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be	uploaded	to
our	website	or	added	to	any	list	of	existing	errata	under	the	Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the	search
field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across
any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with	the
location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us
at	questions@packtpub.com,	and	we	will	do	our	best	to	address	the	problem.

Chapter	1.		Get	Your	Qt	Feet	Wet
If	you	know	C++	but	have	never	touched	Qt,	or	if	you	have	made	some	intermediate	Qt
applications,	this	chapter	will	ensure	that	your	Qt	foundations	are	safe	before	studying
advanced	concepts	in	the	following	chapters.

We	will	teach	you	to	create	a	simple	todo	application	using	Qt	Creator.	This	application	will
display	a	list	of	tasks	that	you	can	create/update/delete.	We	will	cover	the	Qt	Creator	and	Qt
Designer	interfaces,	an	introduction	to	the	signal/slot	mechanism,	the	creation	of	a	custom
widget	with	custom	signals/slots,	and	its	integration	into	your	application.

You	will	implement	a	todo	app	using	new	C++14	semantics:	lambdas,	auto	variables,	and	for
loops.	Each	one	of	these	concepts	will	be	explained	in	depth	and	will	be	used	throughout	the
book.

At	the	end	of	this	chapter,	you	will	be	able	to	create	a	desktop	application	with	a	flexible	UI
using	Qt	widgets	and	new	C++	semantics.

In	this	chapter,	we	will	cover	the	following	topics:

Qt	project	basic	structure
Qt	Designer	interface
UI	fundamentals
Signals	and	slots
Custom	QWidget
C++14	lambda,	auto,	for	each

Creating	a	project
The	first	thing	to	do	is	to	start	Qt	Creator.

In	Qt	Creator,	you	can	create	a	new	Qt	project	via	File	|	New	File	or	Project	|	Application
|	Qt	Widgets	Application	|	Choose.

The	wizard	will	then	guide	you	through	four	steps:

1.	 Location:	You	must	choose	a	project	name	and	a	location.
2.	 Kits:	Target	platforms	that	your	project	aims	at	(Desktop,	Android,	and	so	on).
3.	 Details:	Base	class	information	and	name	for	the	generated	class.
4.	 Summary:	Allows	you	to	configure	your	new	project	as	a	subproject	and	automatically

add	it	to	a	version	control	system.

Even	if	all	default	values	can	be	kept,	please	at	least	set	a	useful	project	name	such	as	"todo"
or	"TodoApp."	We	won't	blame	you	if	you	want	to	call	it	"Untitled"	or	"Hello	world."

Once	done,	Qt	Creator	will	generate	several	files	that	you	can	see	in	the	Projects	hierarchy
view:

The	.pro	file	is	Qt's	configuration	project	file.	As	Qt	adds	specific	file	formats	and	C++
keywords,	an	intermediate	build	step	is	performed,	parsing	all	files	to	generate	final	files.
This	process	is	done	by	qmake,	an	executable	from	the	Qt	SDK.	It	will	also	generate	the	final
Makefiles	for	your	project.

A	basic	.pro	file	generally	contains:

Qt	modules	used	(core,	gui,	and	so	on)

Target	name	(todo,	todo.exe,	and	so	on)
Project	template	(app,	lib,	and	so	on)
Sources,	headers,	and	forms

There	are	some	great	features	that	come	with	Qt	and	C++14.	This	book	will	showcase	them	in
all	its	projects.	For	GCC	and	CLANG	compilers,	you	must	add	CONFIG	+=	c++14	to	the	.pro	file
to	enable	C++14	on	a	Qt	project,	as	shown	in	the	following	code:

QT							+=	core	gui	

CONFIG			+=	c++14	

	

greaterThan(QT_MAJOR_VERSION,	4):	QT	+=	widgets	

	

TARGET	=	todo	

TEMPLATE	=	app	

	

SOURCES	+=	main.cpp	\	

											MainWindow.cpp	

	

HEADERS		+=	MainWindow.h	\	

	

FORMS				+=	MainWindow.ui	\	

The	MainWindow.h	and	MainWindow.cpp	files	are	the	headers/sources	for	the	MainWindow
class.	These	files	contain	the	default	GUI	generated	by	the	wizard.

The	MainWindow.ui	file	is	your	UI	design	file	in	XML	format.	It	can	be	edited	more	easily
with	Qt	Designer.	This	tool	is	a	WYSIWYG	(What	You	See	Is	What	You	Get)	editor	that
helps	you	to	add	and	adjust	your	graphical	components	(widgets).

Here	is	the	main.cpp	file,	with	its	well-known	function:

#include	"MainWindow.h"	

#include	<QApplication>	

	

int	main(int	argc,	char	*argv[])	

{	

				QApplication	a(argc,	argv);	

				MainWindow	w;	

				w.show();	

	

				return	a.exec();	

}	

As	usual,	the	main.cpp	file	contains	the	program	entry	point.	It	will,	by	default,	perform	two
actions:

Instantiate	and	show	your	main	window
Instantiate	a	QApplication	and	execute	the	blocking	main	event	loop

This	is	the	bottom-left	toolbar	for	Qt	Creator:

Use	it	to	build	and	start	your	todo	application	in	debug	mode:

1.	 Check	that	the	project	is	in	Debug	build	mode.
2.	 Use	the	hammer	button	to	build	your	project.
3.	 Start	debugging	using	the	green	Play	button	with	a	little	blue	bug.

You	will	discover	a	wonderful	and	beautifully	empty	window.	We	will	rectify	this	after
explaining	how	this	MainWindow	is	constructed:

An	empty	MainWindow	screenshot

Tip

Qt	tip

Press	Ctrl	+	B	(for	Windows/Linux)	or	Command	+	B	(for	Mac)	to	build	your	project
Press	F5	(for	Windows	/	Linux)	or	Command	+R	(for	Mac)	to	run	your	application	in
debug	mode

MainWindow	structure
This	generated	class	is	a	perfect	yet	simple	example	of	Qt	framework	usage;	we	will	dissect	it
together.	As	mentioned	previously,	the	MainWindow.ui	file	describes	your	UI	design
and	MainWindow.h/	MainWindow.cpp	is	the	C++	object	where	you	can	manipulate	the	UI	with
code.

It	is	important	to	take	a	look	at	the	header	file	MainWindow.h.	Our	MainWindow	object	inherits
from	Qt's	QMainWindow	class:

#include	<QMainWindow>	

	

namespace	Ui	{	

class	MainWindow;	

}	

	

class	MainWindow	:	public	QMainWindow	

{	

				Q_OBJECT	

	

public:	

				explicit	MainWindow(QWidget	*parent	=	0);	

				~MainWindow();	

private:	

				Ui::MainWindow	*ui;	

};	

As	our	class	inherits	from	the	QMainWindow	class,	on	top	of	the	header	file,	we	add	the
corresponding	include.	The	second	part	is	the	forward	declaration	of	the	Ui::MainWindow,	as
we	only	declare	a	pointer.

The	Q_OBJECT	can	look	a	little	strange	to	a	non-Qt	developer.	This	macro	allows	the	class	to
define	its	own	signals/slots	and	more	globally	Qt's	meta-object	system.	These	features	will	be
covered	later	in	this	chapter.

This	class	defines	a	public	constructor	and	destructor.	The	latter	is	pretty	common.	But	the
constructor	takes	a	parameter	parent.	This	parameter	is	a	QWidget	pointer	that	is	null	by
default.

A	QWidget	is	a	UI	component.	It	can	be	a	label,	a	textbox,	a	button,	and	so	on.	If	you	define	a
parent-child	relationship	between	your	window,	layout,	and	other	UI	widgets,	memory
management	of	your	application	will	be	easier.	Indeed,	in	this	case,	deleting	the	parent	is
enough	because	its	destructor	will	take	care	of	also	deleting	its	child,	which	in	turn	will	delete
its	children	and	so	on.

Our	MainWindow	class	extends	QMainWindow	from	the	Qt	framework.	We	have	a	ui	member

variable	in	the	private	fields.	The	type	is	a	pointer	of	Ui::MainWindow,	which	is	defined	in
the	ui_MainWindow.h	file	generated	by	Qt.	It's	the	C++	transcription	of	the	UI	design
file	MainWindow.ui.	The	ui	member	variable	will	allow	you	to	interact	with	your	UI
components	(QLabel,	QPushButton,	and	so	on)	from	C++,	as	shown	in	the	following	figure:

Tip

C++	tip

If	your	class	only	uses	pointers	or	references	for	a	class	type,	you	can	avoid	including	the
header	by	using	forward	declaration.	That	will	drastically	reduce	compilation	time.

Now	that	the	header	part	is	done,	we	can	talk	about	the	MainWindow.cpp	source	file.

In	the	following	code	snippet,	the	first	include	is	our	class	header.	The	second	one	is	the
include	required	by	the	generated	class	Ui::MainWindow.	This	include	is	required	as	we	only
use	a	forward	declaration	in	the	header:

#include	"MainWindow.h"	

#include	"ui_MainWindow.h"	

	

MainWindow::MainWindow(QWidget	*parent)	:	

				QMainWindow(parent),	

				ui(new	Ui::MainWindow)	

{	

				ui->setupUi(this);	

In	many	cases,	Qt	generates	a	good	piece	of	code	using	the	initializer	list.	The	parent
argument	is	used	to	call	the	superclass	constructor	QMainWindow.	Our	private	member
variable	ui	is	also	initialized	now.

Now	that	ui	is	initialized,	we	must	call	the	setupUi	function	to	initialize	all	widgets	used	by
the	MainWindow.ui	design	file:

As	we	initialize	a	pointer	in	the	constructor,	it	must	be	cleaned	in	the	destructor:

MainWindow::~MainWindow()	

{	

				delete	ui;	

}	

Qt	Designer
Qt	Designer	is	a	major	tool	for	developing	Qt	applications.	This	WYSIWYG	editor	will	help
you	easily	design	your	GUI.	If	you	switch	between	Edit	mode	and	Design	mode	for
the	MainWindow.ui	file,	you	will	see	the	real	XML	content	and	the	designer:

The	designer	displays	several	parts:

Form	Editor:	This	is	a	visual	representation	of	the	form	(empty	for	now)
Widget	Box:	This	contains	all	widgets	that	can	be	used	with	your	form
Object	Inspector:	This	displays	your	form	as	a	hierarchical	tree
Property	Editor:	This	enumerates	the	properties	of	the	selected	widget
Action	Editor/Signal	&	Slots	Editor:	This	handles	connections	between	your	objects

It's	time	to	embellish	this	empty	window!	Let's	drag	and	drop	a	Label	widget	from	the	Display
Widgets	section	on	the	form.	You	can	change	the	name	and	the	text	properties	from	the
properties	editor.

As	we	are	making	a	todo	application,	we	suggest	these	properties:

objectName:	statusLabel
text:	Status:	0	todo/0	done

This	label	will	later	display	the	count	of	todo	tasks	and	the	count	of	tasks	already	done.	OK,

save,	build,	and	start	your	application.	You	should	now	see	your	new	label	in	the	window.

You	can	now	add	a	push	button	with	those	properties:

objectName:	addTaskButton
text:	Add	task

You	should	get	a	result	close	to	this:

Tip

Qt	tip

You	can	edit	the	text	property	of	a	widget	directly	on	your	form	by	double-clicking	on	it!

Signals	and	slots
The	Qt	framework	brings	a	flexible	message	exchange	mechanism	through	three	concepts:
signals,	slots,	and	connections:

A	signal	is	a	message	sent	by	an	object
A	slot	is	a	function	that	will	be	called	when	this	signal	is	triggered
The	connect	function	specifies	which	signal	is	linked	to	which	slot

Qt	already	provides	signals	and	slots	for	its	classes,	which	you	can	use	in	your	application.
For	example,	QPushButton	has	a	signal	clicked(),	which	will	be	triggered	when	the	user
clicks	on	the	button.	The	QApplication	class	has	a	slot	quit()	function,	which	can	be	called
when	you	want	to	terminate	your	application.

Here	is	why	you	will	love	Qt	signals	and	slots:

A	slot	remains	an	ordinary	function,	so	you	can	call	it	yourself
A	single	signal	can	be	linked	to	different	slots
A	single	slot	can	be	called	by	different	linked	signals
A	connection	can	be	made	between	a	signal	and	a	slot	from	different	objects,	and	even
between	objects	living	inside	different	threads!

Keep	in	mind	that,	to	be	able	to	connect	a	signal	to	a	slot,	their	methods'	signatures	must
match.	The	count,	order,	and	type	of	arguments	must	be	identical.	Note	that	signals	and	slots
never	return	values.

This	is	the	syntax	of	a	Qt	connection:

connect(sender,	&Sender::signalName,		

				receiver,	&Receiver::slotName);	

The	first	test	that	we	can	do	to	use	this	wonderful	mechanism	is	to	connect	an	existing	signal
with	an	existing	slot.	We	will	add	this	connect	call	to	the	MainWindow	constructor:

MainWindow::MainWindow(QWidget	*parent)	:	

				QMainWindow(parent),	

				ui(new	Ui::MainWindow)	

{	

				ui->setupUi(this);	

				connect(ui->addTaskButton,	&QPushButton::clicked,	

				QApplication::instance(),	&QApplication::quit);	

}	

Let's	analyze	how	a	connection	is	done:

sender:	This	is	the	object	that	will	send	the	signal.	In	our	example,	it	is	the	QPushButton

named	addTaskButton	added	from	the	UI	designer.
&Sender::signalName:	This	is	the	pointer	to	the	member	signal	function.	Here,	we	want
do	something	when	the	clicked	signal	is	triggered.
receiver:	This	is	the	object	that	will	receive	and	handle	the	signal.	In	our	case,	it	is
the	QApplication	object	created	in	main.cpp.
&Receiver::slotName:	This	is	a	pointer	to	one	of	the	receiver's	member	slot	functions.	In
this	example,	we	use	the	built-in	quit()	slot	from	Qapplication,	which	will	exit	the
application.

You	can	now	compile	and	run	this	short	example.	You	will	terminate	the	application	if	you
click	on	the	addTaskButton	of	your	MainWindow.

Tip

Qt	tip

You	can	connect	a	signal	to	another	signal.	The	second	signal	will	be	emitted	when	the	first
one	is	triggered.

Now	that	you	know	how	to	connect	a	signal	to	an	existing	slot,	let's	see	how	to	declare	and
implement	a	custom	addTask()	slot	in	our	MainWindow	class.	This	slot	will	be	called	when	the
user	clicks	on	ui->addTaskButton.

This	is	the	updated	MainWindow.h:

class	MainWindow	:	public	QMainWindow	

{	

				Q_OBJECT	

	

public:	

				explicit	MainWindow(QWidget	*parent	=	0);	

				~MainWindow();	

	

public	slots:	

				void	addTask();	

	

private:	

				Ui::MainWindow	*ui;	

};	

Qt	uses	a	specific	slot	keyword	to	identify	slots.	Since	a	slot	is	a	function,	you	can	always
adjust	the	visibility	(public,	protected	or	private)	depending	on	your	needs.

Add	this	slot	implementation	in	the	MainWindow.cpp	file:

void	MainWindow::addTask()	

{	

				qDebug()	<<	"User	clicked	on	the	button!";	

}	

Qt	provides	an	efficient	way	of	displaying	debug	information	with	the	QDebug	class.	An	easy
way	to	obtain	a	QDebug	object	is	to	call	the	qDebug()	function.	Then,	you	can	use	the	stream
operator	to	send	your	debug	information.

Update	the	top	of	the	file	like	this:

#include	<QDebug>	

	

MainWindow::MainWindow(QWidget	*parent)	:	

				QMainWindow(parent),	

				ui(new	Ui::MainWindow)	

{	

				ui->setupUi(this);	

				connect(ui->addTaskButton,	&QPushButton::clicked,	

				this,	&MainWindow::addTask);	

}	

Since	we	now	use	qDebug()	in	out	slot,	we	must	include	<QDebug>.	The	updated	connect	now
calls	our	custom	slot	instead	of	quitting	the	application.

Build	and	run	the	application.	If	you	click	on	the	button,	you	will	see	your	debug	message
inside	the	Qt	Creator	Application	Output	tab.

Custom	QWidget
We	now	have	to	create	the	Task	class	that	will	hold	our	data	(task	name	and	completed	status).
This	class	will	have	its	form	file	separated	from	MainWindow.	Qt	Creator	provides	an
automatic	tool	to	generate	a	base	class	and	the	associated	form.

Click	on	File	|	New	File	or	Project	|	Qt	|	Qt	Designer	Form	Class.	There	are	several	form
templates;	you	will	recognize	Main	Window,	which	Qt	Creator	created	for	us	when	we	started
the	todo	app	project.	Select	Widget	and	name	the	class	Task,	then	click	on	Next.	Here	is	a
summary	of	what	Qt	Creator	will	do:

1.	 Create	a	Task.h	file	and	a	Task.cpp	file.
2.	 Create	the	associated	Task.ui	and	do	the	plumbing	to	connect	it	to	Task.h.
3.	 Add	these	three	new	files	to	todo.pro	so	they	can	be	compiled.

Finish	and,	voilÃ	,	the	Task	class	is	ready	to	be	filled.	We	will	jump	into	the	Task.ui	first.
Start	by	dragging	and	dropping	a	Check	Box	(put	checkbox	in	the	objectName)	and	a	Push
Button	(objectName	=	removeButton):

My	alignment	looks	great,	let's	ship	this	to	the	customers!

Unless	you	have	a	pixel-perfect	eye,	your	items	are	not	very	well	aligned.	You	need	to
indicate	how	your	widgets	should	be	laid	out	and	how	they	should	react	when	the	window
geometry	changes	(for	example,	when	the	user	resizes	the	window).	For	this,	Qt	has	several
default	layout	classes:

Vertical	Layout:	In	this	layout,	widgets	are	vertically	stacked
Horizontal	Layout:	In	this	layout,	widgets	are	horizontally	stacked
Grid	Layout:	In	this	layout,	widgets	are	arranged	in	a	grid	that	can	be	subdivided	into
smaller	cells
Form	Layout:	In	this	layout,	widgets	are	arranged	like	a	web	form,	a	label,	and	an	input

Every	layout	will	try	to	constrain	all	widgets	to	occupy	equal	surfaces.	It	will	either	change
the	widgets'	shape	or	add	extra	margins,	depending	on	each	widget's	constraints.	A	Check	Box
will	not	be	stretched	but	a	Push	Button	will.

In	our	Task	object,	we	want	this	to	be	horizontally	stacked.	In	the	Form	Editor	tab,	right-click
on	the	window	and	select	Lay	out	|	Lay	out	Horizontally.	Each	time	you	add	a	new	widget	in
this	layout,	it	will	be	arranged	horizontally.

Now	add	a	Push	Button	(objectName	=	editButton)	line	just	after	the	checkbox	object.

The	Form	Editor	window	offers	a	realistic	preview	of	how	your	UI	will	render.	If	you	stretch
the	window	now,	you	can	observe	how	each	widget	will	react	to	this	event.	When	resizing
horizontally,	you	can	note	that	the	push	buttons	are	stretched.	It	looks	bad.	We	need	something
to	"hint"	to	the	layout	that	these	buttons	should	not	be	stretched.	Enter	the	Spacer	widget.	Take
the	Horizontal	Spacer	in	the	widget	box	and	drop	it	after	the	checkbox	object:

A	spacer	is	a	special	widget	that	tries	to	push	(horizontally	or	vertically)	adjacent	widgets	to
force	them	to	take	up	as	little	space	as	possible.	The	editButton	and	removeButton	objects
now	take	up	only	the	space	of	their	text	and	will	be	pushed	to	the	edge	of	the	window	when	it
is	resized.

You	can	add	sub	layouts	of	any	type	in	a	form	(vertical,	horizontal,	grid,	form)	and	create	a
complex-looking	application	with	a	combination	of	widgets,	spacers,	and	layouts.	These	tools
are	targeted	at	designing	a	good-looking	desktop	application	that	can	react	properly	to
different	window	geometries.

The	Designer	part	is	finished,	so	we	can	switch	to	the	Task	source	code.	Since	we	created	a	Qt
Designer	Form	class,	Task	is	closely	linked	to	its	UI.	We	will	use	this	as	leverage	to	store	our

model	in	a	single	place.	When	we	create	a	Task	object,	it	has	to	have	a	name:

#ifndef	TASK_H	

#define	TASK_H	

	

#include	<QWidget>	

#include	<QString>	

	

namespace	Ui	{	

class	Task;	

}	

	

class	Task	:	public	QWidget	

{	

				Q_OBJECT	

	

public:	

				explicit	Task(const	QString&	name,	QWidget	*parent	=	0);	

				~Task();	

	

				void	setName(const	QString&	name);	

				QString	name()	const;	

				bool	isCompleted()	const;	

					

private:	

				Ui::Task	*ui;	

};	

	

#endif	//	TASK_H	

The	constructor	specifies	a	name,	and	as	you	can	see	there	are	no	private	fields	storing	any
state	of	the	object.	All	this	will	be	done	in	the	form	part.	We	also	added	some	getters	and
setters	that	will	interact	with	the	form.	It	is	better	to	have	a	model	completely	separated	from
the	UI,	but	our	example	is	simple	enough	to	merge	them.	Moreover,	Task	implementation
details	are	hidden	from	the	outside	world	and	can	still	be	refactored	later	on.	Here	is	the
content	of	the	Task.cpp	file:

#include	"Task.h"	

#include	"ui_Task.h"	

	

Task::Task(const	QString&	name,	QWidget	*parent)	:	

								QWidget(parent),	

								ui(new	Ui::Task)	

{	

				ui->setupUi(this);	

				setName(name);	

}	

	

Task::~Task()	

{	

				delete	ui;	

}	

	

void	Task::setName(const	QString&	name)	

{	

				ui->checkbox->setText(name);	

}	

	

QString	Task::name()	const	

{	

				return	ui->checkbox->text();	

}	

	

bool	Task::isCompleted()	const	

{	

			return	ui->checkbox->isChecked();	

}	

The	implementation	is	straightforward;	we	store	the	information	in	our	ui->checkbox	and
the	name()	and	isCompleted()	getters	take	their	data	from	the	ui->checkbox.

Adding	a	task
We	will	now	rearrange	the	layout	of	MainWindow	to	be	able	to	display	our	todo	tasks.	Right
now,	there	is	no	widget	where	we	can	display	our	tasks.	Open	the	MainWindow.ui	file	and	edit
it	to	get	the	following	result:

If	we	detail	the	content,	we	have:

A	vertical	layout	for	centralWidget	containing	the	toolbarLayout	file	and
the	tasksLayout	file.
A	vertical	spacer	pushing	these	layouts	to	the	top,	forcing	them	to	take	up	the	smallest
possible	space.
We	got	rid	of	menuBar,	mainToolBar,	and	statusBar.	Qt	Creator	created	them
automatically,	we	simply	don't	need	them	for	our	purposes.	You	can	guess	their	uses
from	their	names.

Do	not	forget	to	rename	the	MainWindow	title	to	Todo	by	selecting	the	MainWindow	in
the	Object	Inspector	window	and	editing	the	Qwidget	|	windowTitle	property.	Your	app
deserves	to	be	named	properly.

Tip

Qt	Tip

Press	Shift	+	F4	in	Designer	mode	to	switch	between	the	form	editor	and	the	source.

Now	that	the	MainWindow	UI	is	ready	to	welcome	tasks,	let's	switch	to	the	code	part.	The
application	has	to	keep	track	of	the	new	tasks.	Add	the	following	in	the	MainWindow.h	file:

#include	<QVector>	

	

#include	"Task.h"	

	

class	MainWindow	:	public	QMainWindow	

{	

				//	MAINWINDOW_H	

	

public	slots:	

				void	addTask();	

	

private:	

				Ui::MainWindow	*ui;	

				QVector<Task*>	mTasks;	

};	

The	QVector	is	the	Qt	container	class	providing	a	dynamic	array,	which	is	an	equivalent	of
the	std::vector.	As	a	general	rule,	STL	containers	are	more	customizable	but	might	miss
some	features	compared	to	Qt	containers.	If	you	use	C++11	smart	pointers,	you	should
favor	std	containers,	but	we	will	get	into	that	later.

In	the	Qt	documentation	of	QVector,	you	might	stumble	upon	the	following	statement:	"For
most	purposes,	QList	is	the	right	class	to	use".	There	is	a	debate	about	this	in	the	Qt
community:

Do	you	often	need	to	insert	objects	larger	than	a	pointer	at	the	beginning	or	in	the	middle
of	your	array?	Use	a	QList	class.
Need	contiguous	memory	allocation?	Less	CPU	and	memory	overhead?	Use	a	QVector
class.

The	already	added	slot	addTask()	will	now	be	called	each	time	we	want	to	add	a	new	Task
object	to	the	mTasks	function.

Let's	fill	our	QVector	tasks	each	time	addTaskButton	is	clicked.	First,	we	connect
the	clicked()	signal	in	the	MainWindow.cpp	file:

MainWindow::MainWindow(QWidget	*parent)	:	

				QMainWindow(parent),	

				ui(new	Ui::MainWindow),	

				mTasks()	

{	

				ui->setupUi(this);	

				connect(ui->addTaskButton,	&QPushButton::clicked,		

				this,	&MainWindow::addTask);	

};	

Tip

C++	tip

As	a	best	practice,	try	to	always	initialize	member	variables	in	the	initializer	list	and	respect
the	order	of	variable	declarations.	Your	code	will	run	faster	and	you	will	avoid	unnecessary
variable	copies.	Take	a	look	at	the	standard	C++	documentation	at
https://isocpp.org/wiki/faq/ctors#init-lists.

The	body	of	the	addTask()	function	should	look	like	this:

void	MainWindow::addTask()	

{	

								qDebug()	<<	"Adding	new	task";	

								Task*	task	=	new	Task("Untitled	task");	

								mTasks.append(task);	

								ui->tasksLayout->addWidget(task);	

}	

We	created	a	new	task	and	added	it	to	our	mTask	vector.	Because	Task	is	a	QWidget,	we	also
added	it	directly	to	the	tasksLayout.	An	important	thing	to	note	here	is	that	we	never	managed
this	new	task's	memory.	Where	is	the	delete	task	instruction?	This	is	a	key	feature	of	the	Qt
Framework	we	started	to	broach	earlier	in	the	chapter;	the	QObject	class	parenting
automatically	handles	object	destruction.

In	our	case,	the	ui->tasksLayout->addWidget(task)	call	has	an	interesting	side-effect;	the
ownership	of	the	task	is	transferred	to	tasksLayout.	The	QObject*	parent	defined	in	Task
constructor	is	now	tasksLayout,	and	the	Task	destructor	will	be	called	when	tasksLayout
releases	its	own	memory	by	recursively	iterating	through	its	children	and	calling	their
destructor.

This	will	happen	at	this	precise	moment:

MainWindow::~MainWindow()	

{	

				delete	ui;	

}	

When	MainWindow	is	released	(remember,	it's	a	stack	variable	allocated	in	the	main.cpp	file),
it	will	call	delete	ui,	which	in	turn	will	bring	down	the	whole	QObject	hierarchy.	This
feature	has	interesting	consequences.	First,	if	you	use	the	QObject	parenting	model	in	your
application,	you	will	have	much	less	memory	to	manage.	Second,	it	can	collide	with	some
new	C++11	semantics,	specifically	the	smart	pointers.	We	will	get	into	that	in	later	chapters.

https://isocpp.org/wiki/faq/ctors#init-lists

Using	a	QDialog
We	deserve	something	better	than	an	untitled	task.	The	user	needs	to	define	its	name	when	it's
created.	The	easiest	path	would	be	to	display	a	dialog	where	the	user	can	input	the	task	name.
Fortunately	Qt	offers	us	a	very	configurable	dialog	that	fits	perfectly	in	addTask():

#include	<QInputDialog>	

...	

void	MainWindow::addTask()	

{	

				bool	ok;	

				QString	name	=	QInputDialog::getText(this,		

								tr("Add	task"),	

								tr("Task	name"),	

								QLineEdit::Normal,	

								tr("Untitled	task"),															&ok);	

				if	(ok	&&	!name.isEmpty())	{	

								qDebug()	<<	"Adding	new	task";	

								Task*	task	=	new	Task(name);	

								mTasks.append(task);	

								ui->tasksLayout->addWidget(task);	

				}	

}	

The	QinputDialog::getText	function	is	a	static	blocking	function	that	displays	the	dialog.
When	the	user	validates/cancels	the	dialog,	the	code	continues.	If	we	run	the	application	and
try	to	add	a	new	task,	we'll	see	this:

The	QInputDialog::getText	signature	looks	like	this:

QString	QinputDialog::getText(

		QWidget*	parent,		

						const	QString&	title,		

						const	QString&	label,		

						QLineEdit::EchoMode	mode	=	QLineEdit::Normal,		

						const	QString&	text	=	QString(),		

						bool*	ok	=	0,	...)

Let's	break	it	down:

parent:	This	is	the	parent	widget	(MainWindow)	to	which	the	QinputDialog	is	attached.
This	is	another	instance	of	the	QObject	class's	parenting	model.
title:	This	is	the	title	displayed	in	the	window	title.	In	our	example,	we	use	tr("Add
task"),	which	is	how	Qt	handles	i18n	in	your	code.	We	will	see	later	on	how	to	provide
multiple	translations	for	a	given	string.
label:	This	is	the	label	displayed	right	above	the	input	text	field.
mode:	This	is	how	the	input	field	is	rendered	(password	mode	will	hide	the	text).
ok:	This	is	a	pointer	to	a	variable	that	is	set	to	true	if	the	user	presses	OK	and	to	false	if
the	user	presses	Cancel.
QString:	The	returned	QString	is	what	the	user	has	typed.

There	are	a	few	more	optional	parameters	we	can	safely	ignore	for	our	example.

Distributing	code	responsibility
Great,	the	user	can	now	specify	the	task	name	when	it's	created.	What	if	he	makes	an	error
when	typing	the	name?	The	next	logical	step	is	to	rename	the	task	after	we	created	it.	We'll
take	a	slightly	different	approach.	We	want	our	Task	to	be	as	autonomous	as	possible.	If	we
attach	it	to	another	component	(rather	than	MainWindow),	this	renaming	feature	has	to	keep
working.	Thus,	this	responsibility	has	to	be	given	to	the	Task	class:

//	In	Task.h	

public	slots:	

				void	rename();	

	

//	In	Task.cpp	

#include	<QInputDialog>	

	

Task::Task(const	QString&	name,	QWidget	*parent)	:	

							QWidget(parent),	

							ui(new	Ui::Task)	

{	

			ui->setupUi(this);	

			setName(name);	

			connect(ui->editButton,	&QPushButton::clicked,	this,	&Task::rename);	

}	

...	

void	Task::rename()	

{	

				bool	ok;	

				QString	value	=	QInputDialog::getText(this,	tr("Edit	task"),	

																																										tr("Task	name"),	

																																										QLineEdit::Normal,	

																																										this->name(),	&ok);	

				if	(ok	&&	!value.isEmpty())	{	

								setName(value);	

				}	

}	

We	add	a	public	slot	rename()	to	connect	it	to	a	signal.	The	body	of	rename()	reuses	what	we
had	previously	covered	with	QInputDialog.	The	only	difference	is	the	QInputDialog	default
value,	which	is	the	current	task	name.	When	setName(value)	is	called,	the	UI	is	instantly
refreshed	with	the	new	value;	there's	nothing	to	synchronize	or	update,	the	Qt	main	loop	will
do	its	job.

The	nice	thing	is	that	Task::rename()	is	completely	autonomous.	Nothing	has	been	modified
in	MainWindow,	so	we	have	effectively	zero	coupling	between	our	Task	and	the
parent	QWidget.

Emitting	a	custom	signal	using	lambdas
The	remove	task	is	straightforward	to	implement,	but	we'll	study	some	new	concepts	along
the	way.	The	Task	has	to	notify	its	owner	and	parent	(MainWindow)	that
the	removeTaskButtonQPushButton	has	been	clicked.	We'll	implement	this	by	defining	a
custom	signal	removed	in	Task.h	files:

class	Task	:	public	QWidget	

{	

				...	

public	slots:	

				void	rename();	

signals:	

				void	removed(Task*	task);	

			...	

};	

Like	we	did	for	the	slots,	we	have	to	add	the	Qt	keyword	signals	in	our	header.	Since	a	signal
is	used	only	to	notify	another	class,	the	public	keyword	is	not	needed	(it	even	raises	a
compilation	error).	A	signal	is	simply	a	notification	sent	to	the	receiver	(the
connected	slot);	it	implies	that	there	is	no	function	body	for	the	removed(Task*	task)
function.	We	added	the	task	parameter	to	allow	the	receiver	to	know	which	task	asked	to	be
removed.	The	next	step	is	to	emit	the	removed	signal	upon	the	removeButton	click.	This	is
done	in	the	Task.cpp	file:

Task::Task(const	QString&	name,	QWidget	*parent)	:	

								QWidget(parent),	

								ui(new	Ui::Task)	

{	

				ui->setupUi(this);	

				...	

				connect(ui->removeButton,	&QPushButton::clicked,	[this]	{	

								emit	removed(this);	

				});	

}	

This	code	excerpt	shows	a	very	interesting	feature	of	C++11:	lambdas.	In	our	example,
the	lambda	is	the	following	part:

[this]	{	

								emit	removed(this);	

				});	

What	we	did	here	is	to	connect	the	clicked	signal	to	an	anonymous	inline	function,	a	lambda.
Qt	allows	signal	relaying	by	connecting	a	signal	to	another	signal	if	their	signatures	match.
It's	not	the	case	here;	the	clicked	signal	has	no	parameter	and	the	removed	signal	needs
a	Task*.	A	lambda	avoids	the	declaration	of	a	verbose	slot	in	Task.	Qt	5	accepts	a	lambda

instead	of	a	slot	in	a	connect,	and	both	syntaxes	can	be	used.

Our	lambda	executes	a	single	line	of	code:	emit	removed(this).	Emit	is	a	Qt	macro	that	will
immediately	trigger	the	connected	slot	with	what	we	passed	in	a	parameter.	As	we	said
earlier,	removed(Task*	this)	has	no	function	body,	its	purpose	is	to	notify	the	registered	slot
of	an	event.

Lambdas	are	a	great	addition	to	C++.	They	offer	a	very	practical	way	of	defining	short
functions	in	your	code.	Technically,	a	lambda	is	the	construction	of	a	closure	capable	of
capturing	variables	in	its	scope.	The	full	syntax	goes	like	this:

[capture-list]	(params)	->	ret	{	body	}

Letâ€™s	study	each	part	of	this	statement:

capture-list:	This	defines	what	variables	will	be	visible	inside	the	lambda	scope.
params:	This	is	the	function	parameters	type	list	that	can	be	passed	to	the	lambda	scope.
There	are	no	parameters	in	our	case,	We	might	have	written	[this]	()	{	...	},	but
C++11	lets	us	skip	the	parentheses	altogether.
ret:	This	is	the	return	type	of	the	lambda	function.	Just	like	params,	this	parameter	can	be
omitted	if	the	return	type	is	void.
body:	This	is	obviously	your	code	body	where	you	have	access	to	your	capture-list,
and	params,	and	which	must	return	a	variable	with	a	type	ret.

In	our	example,	we	captured	the	this	pointer	to	be	able	to:

Have	a	reference	on	the	removed()	function,	which	is	a	part	of	the	Task	class.	If	we	did
not	capture	this,	the	compiler	would	have	shouted	error:	'this'	was	not	captured
for	this	lambda	function	emit	removed(this);.
Pass	this	to	the	removed	signal;	the	caller	needs	to	know	which	task	triggered	removed.

The	capture-list	relies	on	standard	C++	semantics:	capture	variables	by	copy	or	by
reference.	Let	us	say	that	we	wanted	to	print	a	log	of	the	constructor	parameter	name	and	we
capture	it	by	reference	in	our	lambda:

connect(ui->removeButton,	&QPushButton::clicked,	[this,	&name]	{	

								qDebug()	<<	"Trying	to	remove"	<<	name;	

								this->emit	removed(this);	

				});	

This	code	will	compile	fine.	Unfortunately,	the	runtime	will	crash	with	a	dazzling
segmentation	fault	when	we	try	to	remove	a	Task.	What	happened?	As	we	said,	our	lambda	is
an	anonymous	function	that	will	be	executed	when	the	clicked()	signal	has	been	emitted.	We
captured	the	name	reference,	but	this	reference	may	be	-	and	is	-	invalid	once	we	get	out
of	Task	constructor	(more	precisely,	from	the	caller	scope).	The	qDebug()	function	will	then

try	to	display	an	unreachable	code	and	crash.

You	really	want	to	be	careful	with	what	you	capture	and	the	context	in	which	your	lambda	will
be	executed.	In	this	example,	the	segmentation	fault	can	be	amended	by	capturing	the	name	by
copy:

connect(ui->removeButton,	&QPushButton::clicked,	[this,	name]	{	

								qDebug()	<<	"Trying	to	remove"	<<	name;	

								this->emit	removed(this);	

				});	

Tip

C++	Tip

You	can	capture	by	copy	or	reference	all	variables	that	are	reachable	in	the	function
where	you	define	your	lambda	with	the	syntax	[=]	and	[&].
The	this	variable	is	a	special	case	of	the	capture	list.	You	cannot	capture	it	by
reference	[&this]	and	the	compiler	will	warn	you	if	you	are	in	this	situation:	[=,	this].
Don't	do	this.	Kittens	will	die.

Our	lambda	is	passed	directly	as	a	parameter	to	the	connect	function.	In	other	words,
the	lambda	is	variable.	This	has	many	consequences:	we	can	call	it,	assign	it,	and	return	it.	To
illustrate	a	"fully	formed"	lambda,	we	can	define	one	that	returns	a	formatted	version	of	the
task	name.	The	sole	purpose	of	this	snippet	is	to	investigate	the	lambda	function's	machinery.
Don't	include	the	following	code	in	your	todo	app,	your	colleagues	might	call	you	something
like	a	"functional	zealot":

connect(ui->removeButton,	&QPushButton::clicked,	[this,	name]	{	

				qDebug()	<<	"Trying	to	remove"	<<	

								[]	(const	QString&	taskName)	->	QString	{	

												return	"--------	"	+	taskName.toUpper();	

				}(name);	

				this->emit	removed(this);	

});	

Here	we	did	a	tricky	thing.	We	called	qDebug();	inside	this	call	we	defined	a	lambda	which	is
immediately	executed.	Let's	analyze	it:

[]:	We	performed	no	capture.	The	lambda	does	not	depend	on	the	enclosing	function.
(const	Qstring&	taskName):	When	this	lambda	is	called,	it	will	expect	a	QString	to
work	on.
->	QString:	The	returned	value	of	the	lambda	will	be	a	QString.
return	"-------	"	+	taskName.toUpper():	the	body	of	our	lambda.	We	return	a
concatenation	of	a	string	and	the	uppercase	version	of	the	parameter	taskName.	As	you
can	see,	string	manipulation	becomes	a	lot	easier	with	Qt.
(name):	Here	comes	the	catch.	Now	that	the	lambda	function	is	defined,	we	can	call	it

passing	the	name	parameter.	In	a	single	instruction,	we	define	it	and	call	it.
The	QDebug()	function	will	simply	print	the	result.

The	real	benefit	of	this	lambda	will	emerge	if	we	are	able	to	assign	it	to	a	variable	and	call	it
multiple	times.	C++	is	statically	typed,	so	we	must	provide	the	type	of	our	lambda	variable.	In
the	language	specification,	a	lambda	type	cannot	be	explicitly	defined.	We'll	see	soon	how	we
can	do	it	with	C++11.	For	now,	let's	finish	our	remove	feature.

Task	now	emits	the	removed()	signal.	This	signal	has	to	be	consumed	by	MainWindow:

//	in	MainWindow.h	

public	slots:	

				void	addTask();	

				void	removeTask(Task*	task);	

	

//	In	MainWindow.cpp	

void	MainWindow::addTask()	

{	

				...	

				if	(ok	&&	!name.isEmpty())	{	

								qDebug()	<<	"Adding	new	task";	

								Task*	task	=	new	Task(name);	

								connect(task,	&Task::removed,		

							this,	&MainWindow::removeTask);	

				...	

				}	

}	

	

void	MainWindow::removeTask(Task*	task)	

{	

				mTasks.removeOne(task);	

				ui->tasksLayout->removeWidget(task);	

				task->setParent(0);	

				delete	task;	

}	

The	MainWindow::removeTask()	must	match	the	signal	signature.	The	connection	is	made
when	the	task	is	created.	The	interesting	part	comes	in	the	implementation	of	
MainWindow::removeTask().

The	task	is	first	removed	from	the	mTasks	vector.	It	is	then	removed	from	tasksLayout.
Here,	tasksLayout	releases	its	ownership	of	task	(that	is,	tasksLayout	ceases	to	be	the	task
class's	parent).

So	far	so	good.	The	next	two	lines	are	interesting.	The	ownership	transfer	does	not
completely	release	the	task	class	ownership.	If	we	commented	these	lines,	here	is	how
removeTask()	will	look:

void	MainWindow::removeTask(Task*	task)	

{	

				mTasks.removeOne(task);	

				ui->tasksLayout->removeWidget(task);	

				//	task->setParent(0);	

				//	delete	task;	

}	

If	you	add	a	log	message	in	Task	destructor	and	execute	the	program,	this	log	message	will	be
displayed.	Nonetheless,	the	Qt	documentation	tells	us	in	Qlayout::removeWidget	part:	The
ownership	of	a	widget	remains	the	same	as	when	it	was	added.

Instead,	what	really	happens	is	that	the	task	class's	parent	becomes	centralWidget,
the	tasksLayout	class's	parent.	We	want	Qt	to	forget	everything	about	task,	that's	why	we
call	task->setParent(0).	We	can	then	safely	delete	it	and	call	it	a	day.

Simplifying	with	the	auto	type	and	a	range-
based	for	loop
The	final	step	to	a	complete	CRUD	of	our	tasks	is	to	implement	the	completed	task	feature.
We'll	implement	the	following:

Click	on	the	checkbox	to	mark	the	task	as	completed
Strike	the	task	name
Update	the	status	label	in	MainWindow

The	checkbox	click	handling	follows	the	same	pattern	as	removed:

//	In	Task.h	

signals:	

				void	removed(Task*	task);	

				void	statusChanged(Task*	task);	

private	slots:	

				void	checked(bool	checked);	

	

//	in	Task.cpp	

Task::Task(const	QString&	name,	QWidget	*parent)	:	

								QWidget(parent),	

								ui(new	Ui::Task)	

{	

				...	

	

				connect(ui->checkbox,	&QCheckBox::toggled,		

				this,	&Task::checked);	

}	

	

...	

	

void	Task::checked(bool	checked)	

{	

				QFont	font(ui->checkbox->font());	

				font.setStrikeOut(checked);	

				ui->checkbox->setFont(font);	

				emit	statusChanged(this);	

}	

We	define	a	slot	checked(bool	checked)	that	will	be	connected	to	the	checkbox::toggled
signal.	In	our	slot	checked(),	we	strike	out	the	checkbox	text	according	to	the	bool	checked
value.	This	is	done	using	the	QFont	class.	We	create	a	copy	font	from	the	checkbox->font(),
modify	it,	and	assign	it	back	to	ui->checkbox.	If	the	original	font	was	in	bold,	with	a	special
size,	its	appearance	would	be	guaranteed	to	stay	the	same.

Tip

Play	around	with	the	font	object	in	Qt	Designer.	Select	the	checkbox	in	the	Task.ui	file	and	go
to	Properties	Editor	|	QWidget	|	font.

The	last	instruction	notifies	MainWindow	that	the	Task	status	has	changed.	The	signal	name
is	statusChanged,	rather	than	checkboxChecked,	to	hide	the	implementation	details	of	the	task.
Add	the	following	code	in	the	MainWindow.h	file:

//	In	MainWindow.h	

public:	

				void	updateStatus();	

public	slots:	

				void	addTask();	

				void	removeTask(Task*	task);	

				void	taskStatusChanged(Task*	task);	

	

//	In	MainWindow.cpp	

MainWindow::MainWindow(QWidget	*parent)	:	

				QMainWindow(parent),	

				ui(new	Ui::MainWindow),	

				mTasks()	

{	

				...	

				updateStatus();	

				}	

}	

	

void	MainWindow::addTask()	

{	

			...	

			if	(ok	&&	!name.isEmpty())	{	

							...	

							connect(task,	&Task::removed,	this,	

															&MainWindow::removeTask);	

							connect(task,	&Task::statusChanged,	this,	

															&MainWindow::taskStatusChanged);	

							mTasks.append(task);	

							ui->tasksLayout->addWidget(task);	

							updateStatus();	

			}	

}	

	

void	MainWindow::removeTask(Task*	task)	

{	

			...	

			delete	task;	

			updateStatus();	

}	

	

void	MainWindow::taskStatusChanged(Task*	/*task*/)	

{	

				updateStatus();	

}	

	

void	MainWindow::updateStatus()	

{	

				int	completedCount	=	0;	

				for(auto	t	:	mTasks)		{	

								if	(t->isCompleted())	{	

												completedCount++;	

								}	

				}	

				int	todoCount	=	mTasks.size()	-	completedCount;	

	

				ui->statusLabel->setText(

								QString("Status:	%1	todo	/	%2	completed")	

																													.arg(todoCount)	

																													.arg(completedCount));	

}	

We	defined	a	slot	taskStatusChanged,	which	is	connected	when	a	task	is	created.	The	single
instruction	of	this	slot	is	to	call	updateStatus().	This	function	iterates	through	the	tasks	and
updates	the	statusLabel.	The	updateStatus()	function	is	called	upon	task	creation	and
deletion.

In	updateStatus(),	we	meet	more	new	C++11	semantics:

for(auto	t	:	mTasks)		{	

				...		

}	

The	for	keyword	lets	us	loop	over	a	range-based	container.	Because	QVector	is	an	iterable
container,	we	can	use	it	here.	The	range	declaration	(auto	t)	is	the	type	and	variable	name	that
will	be	assigned	at	each	iteration.	The	range	expression	(mTasks)	is	simply	the	container	on
which	the	process	will	be	done.	Qt	provides	a	custom	implementation	of	the	for
(namely	foreach)	loop	targeted	at	prior	versions	of	C++;	you	don't	need	it	anymore.

The	auto	keyword	is	another	great	new	semantic.	The	compiler	deduces	the	variable	type
automatically	based	on	the	initializer.	It	relieves	a	lot	of	pain	for	cryptic	iterators	such	as	this:

std::vector::const_iterator	iterator	=	mTasks.toStdVector()	

																																											.stdTasks.begin();	

	

//	how	many	neurones	did	you	save?	

auto	autoIter	=	stdTasks.begin();	

Since	C++14,	auto	can	even	be	used	for	function	return	types.	It's	a	fabulous	tool,	but	use	it
sparingly.	If	you	put	auto,	the	type	should	be	obvious	from	the	signature	name/variable	name.

Tip

The	auto	keyword	can	be	combined	with	const	and	references.	You	can	write	a	for	loop	like

this:	for	(const	auto	&	t	:	mTasks)	{	...	}.

Remember	our	half	bread	lambda?	With	all	the	covered	features,	we	can	write:

auto	prettyName	=	[]	(const	QString&	taskName)	->	QString	{	

				return	"--------	"	+	taskName.toUpper();	

};	

connect(ui->removeButton,	&QPushButton::clicked,		

				[this,	name,	prettyName]	{	

								qDebug()	<<	"Trying	to	remove"	<<	prettyName(name);	

								this->emit	removed(this);	

});	

Now	that's	something	beautiful.	Combining	auto	with	lambda	makes	very	readable	code	and
opens	up	a	world	of	possibilities.

The	last	item	to	study	is	the	QString	API.	We	used	it	in	updateStatus():

ui->statusLabel->setText(

								QString("Status:	%1	todo	/	%2	completed")	

																													.arg(todoCount)	

																													.arg(completedCount));	

The	people	behind	Qt	put	a	lot	of	work	into	making	string	manipulation	bearable	in	C++.	This
is	a	perfect	example,	where	we	replace	the	classic	C	sprintf	with	a	more	modern	and	robust
API.	Arguments	are	position-based	only,	no	need	to	specify	the	type	(less	error-prone),	and
the	arg(...)	function	accepts	all	kinds	of	types.

Tip

Take	some	time	to	skim	through	the	QString	documentation	at	http://doc.qt.io/qt-
5/qstring.html.	It	shows	how	much	you	can	do	with	this	class	and	you'll	see	yourself	using
fewer	and	fewer	examples	of	std	string	or	even	cstring.

http://doc.qt.io/qt-5/qstring.html

Summary
In	this	chapter,	we	created	a	desktop	Qt	application	from	scratch.	Qt	is	well	known	for	its
signal/slot	mechanism	and	you	must	be	confident	with	this	paradigm.	We	also	introduced
some	important	C++14	features	that	will	be	used	all	through	this	book.

It's	now	time	to	discover	some	qmake	secrets	and	what	is	really	done	when	you	build	your	Qt
project.	In	the	next	chapter,	we	will	also	talk	about	how	to	create	and	organize	an	application
with	some	platform-dependent	code	that	must	run	on	Windows,	Mac	OS,	and	Linux.

Chapter	2.		Discovering	QMake	Secrets
This	chapter	addresses	the	issue	of	creating	a	cross-platform	application	that	relies	on
platform-specific	code.	We	will	see	the	impact	of	qmake	on	the	compilation	of	your	project.

You	will	learn	how	to	create	a	system	monitoring	application	that	retrieves	the	average	CPU
load	and	the	memory	used	from	Windows,	Linux,	and	Mac.	For	this	kind	of	OS	dependent
application,	architecture	is	the	key	to	keeping	your	application	reliable	and	maintainable.

At	the	end	of	this	chapter,	you	will	be	able	to	create	and	organize	a	cross-platform	application
that	uses	platform-specific	code	and	displays	Qt	Charts	widgets.	Moreover,	qmake	will	not	be
a	mystery	anymore.

This	chapter	covers	the	following	topics:

Platform-specific	code	organization
Design	patterns,	strategy,	and	singleton
Abstract	class	and	pure	virtual	function
Qt	Charts
The	qmake	tool

Designing	a	cross-platform	project
We	want	to	display	some	visual	gauges	and	chart	widgets,	so	create	a	new	Qt	widgets
Application	called	ch02-sysinfo.	As	already	discussed	in	Chapter	1,	Get	Your	Qt	Feet	Wet,	Qt
Creator	will	generate	some	files	for	us:	main.cpp,	MainWindow.h,	MainWindow.cpp,
and	MainWindow.ui.

Before	diving	into	the	C++	code,	we	must	think	about	the	software's	architecture.	This	project
will	handle	multiple	desktop	platforms.	Thanks	to	the	combination	of	C++	and	Qt,	most	of	the
source	code	will	be	common	to	all	targets.	However,	to	retrieve	both	the	CPU	and	memory
usage	from	the	OS	(operating	system),	we	will	use	some	platform-specific	code.

To	successfully	achieve	this	task,	we	will	use	two	design	patterns:

Strategy	pattern:	This	is	an	interface	that	describes	functionalities	(for	example,
retrieve	CPU	usage),	and	specific	behaviors	(retrieve	CPU	usage	on	Windows/Mac
OS/Linux)	will	be	performed	into	subclasses	that	implement	this	interface.
Singleton	pattern:	This	pattern	guarantees	a	single	instance	for	a	given	class.	This
instance	will	be	easily	accessible	with	a	unique	access	point.

As	you	can	see	in	the	following	diagram,	the	class	SysInfo	is	our	interface	with	the	strategy
pattern,	and	is	also	a	singleton.	The	specific	behavior	from	the	strategy	pattern	is	performed
in	the	classes	SysInfoWindowsImpl,	SysInfoMacImpl,	and	SysInfoLinuxImpl,
subclassing	SysInfo:

The	UI	part	will	only	know	and	use	the	SysInfo	class.	The	platform-specific	implementation
class	is	instantiated	by	the	SysInfo	class,	and	the	caller	doesn't	need	to	know	anything	about
the	SysInfo	child	classes.	As	the	SysInfo	class	is	a	singleton,	access	will	be	easier	for	all
widgets.

Let's	begin	by	creating	the	SysInfo	class.	On	Qt	Creator,	you	can	create	a	new	C++	class	from
the	contextual	menu,	accessible	with	a	right	click	on	the	project	name	in	the	hierarchy	view.
Then	click	on	the	Add	new	option,	or	from	the	menu,	go	to	File	|	New	file	or	project	|	Files

and	classes.	Then	perform	the	following	steps:

1.	 Go	to	C++	Class	|	Choose.
2.	 Set	the	Class	name	field	to	SysInfo.	As	this	class	does	not	inherit	from	another	class,	we

do	not	need	to	use	the	Base	class	field.
3.	 Click	on	Next,	then	Finish	to	generate	an	empty	C++	class.

We	will	now	specify	our	interface	by	adding	three	pure	virtual	functions:
init(),	cpuLoadAverage(),	and	memoryUsed():

//	In	SysInfo.h	

class	SysInfo	

{	

public:	

				SysInfo();	

				virtual	~SysInfo();	

	

				virtual	void	init()	=	0;	

				virtual	double	cpuLoadAverage()	=	0;	

				virtual	double	memoryUsed()	=	0;	

};	

	

//	In	SysInfo.cpp	

#include	"SysInfo.h"	

	

SysInfo::SysInfo()	

{	

}	

	

SysInfo::~SysInfo()	

{	

}	

Each	of	these	functions	has	specific	roles:

init():	This	function	allows	the	derived	class	to	perform	any	initialization	process
depending	on	the	OS	platform
cpuLoadAverage():	This	function	calls	some	OS-specific	code	to	retrieve	the	average
CPU	load	and	returns	it	as	a	percentage	value
memoryUsed():	This	function	calls	some	OS-specific	code	to	retrieve	the	memory	used
and	returns	it	as	a	percentage	value

The	virtual	keyword	indicates	that	the	function	can	be	overridden	in	a	derived	class.	The	=	0
syntax	means	that	this	function	is	pure	virtual,	and	must	be	overridden	in	any	concrete	derived
class.	Moreover,	this	makes	SysInfo	an	abstract	class	that	cannot	be	instantiated.

We	also	added	an	empty	virtual	destructor.	This	destructor	must	be	virtual	to	ensure	that	any
deletion	of	an	instance	of	a	derived	class--from	a	base	class	pointer--will	call	the	derived

class	destructor	and	not	only	the	base	class	destructor.

Now	that	our	SysInfo	class	is	an	abstract	class	and	ready	to	be	derived,	we	will	describe	three
implementations:	Windows,	Mac	OS,	and	Linux.	You	can	also	perform	only	one
implementation	if	you	would	rather	not	use	the	other	two.	We	will	not	make	any	judgment	on
this.	The	SysInfo	class	will	be	transformed	into	a	singleton	after	adding	the	implementations.

Adding	the	Windows	implementation
Remember	the	UML	diagram	at	the	beginning	of	this	chapter?	The	SysInfoWindowsImpl	class
is	one	of	the	classes	derived	from	the	SysInfo	class.	The	main	purpose	of	this	class	is	to
encapsulate	the	Windows-specific	code	to	retrieve	CPU	and	memory	usage.

It's	time	to	create	the	SysInfoWindowsImpl	class.	To	do	that,	you	need	to	perform	the
following	steps:

1.	 Right	click	on	the	ch02-sysinfo	project	name	in	the	hierarchy	view.
2.	 Click	on	Add	New	|	C++	Class	|	Choose.
3.	 Set	the	Class	name	field	to	SysInfoWindowsImpl.
4.	 Set	the	Base	class	field	to	<Custom>	and	write	under	the	SysInfo	class.
5.	 Click	on	Next	then	Finish	to	generate	an	empty	C++	class.

These	generated	files	are	a	good	starting	point,	but	we	must	tune	them:

#include	"SysInfo.h"	

	

class	SysInfoWindowsImpl	:	public	SysInfo	

{	

public:	

				SysInfoWindowsImpl();	

	

				void	init()	override;	

				double	cpuLoadAverage()	override;	

				double	memoryUsed()	override;	

};	

The	first	thing	to	do	is	to	add	the	include	directive	to	our	parent	class,	SysInfo.	You	can	now
override	virtual	functions	defined	in	the	base	class.

Tip

Qt	Tip

Put	your	cursor	on	a	derived	class	name	(after	the	keyword	class)	and	press	Alt	+	Enter
(Windows	/	Linux)	or	Command	+	Enter	(Mac)	to	automatically	insert	virtual	functions	of	the
base	class.

The	override	keyword	comes	from	C++11.	It	ensures	that	the	function	is	declared	as	virtual
in	the	base	class.	If	the	function	signature	marked	as	override	does	not	match	any	parent
class'	virtual	function,	a	compile-time	error	will	be	displayed.

Retrieving	the	current	memory	used	on	Windows	is	easy.	We	will	begin	with	this	feature	in

the	SysInfoWindowsImpl.cpp	file:

#include	"SysInfoWindowsImpl.h"	

	

#include	<windows.h>	

	

SysInfoWindowsImpl::SysInfoWindowsImpl()	:	

				SysInfo(),	

{	

}	

	

double	SysInfoWindowsImpl::memoryUsed()	

{	

				MEMORYSTATUSEX	memoryStatus;	

				memoryStatus.dwLength	=	sizeof(MEMORYSTATUSEX);	

				GlobalMemoryStatusEx(&memoryStatus);	

				qulonglong	memoryPhysicalUsed	=	

								memoryStatus.ullTotalPhys	-	memoryStatus.ullAvailPhys;	

				return	(double)memoryPhysicalUsed	/	

								(double)memoryStatus.ullTotalPhys	*	100.0;	

}	

Don't	forget	to	include	the	windows.h	file	so	that	we	can	use	the	Windows	API!	Actually,	this
function	retrieves	the	total	and	the	available	physical	memory.	A	simple	subtraction	gives	us
the	amount	of	memory	used.	As	required	by	the	base	class	SysInfo,	this	implementation	will
return	the	value	as	a	double	type;	for	example,	the	value	23.0	for	23%	memory	used	on	a
Windows	OS.

Retrieving	the	total	memory	used	is	a	good	start,	but	we	cannot	stop	now.	Our	class	must	also
retrieve	the	CPU	load.	The	Windows	API	can	be	messy	sometimes.	To	make	our	code	more
readable,	we	will	create	two	private	helper	functions.	Update	your	SysInfoWindowsImpl.h	file
to	match	the	following	snippet:

#include	<QtGlobal>	

#include	<QVector>	

	

#include	"SysInfo.h"	

	

typedef	struct	_FILETIME	FILETIME;	

	

class	SysInfoWindowsImpl	:	public	SysInfo	

{	

public:	

				SysInfoWindowsImpl();	

	

				void	init()	override;	

				double	cpuLoadAverage()	override;	

				double	memoryUsed()	override;	

	

private:	

				QVector<qulonglong>	cpuRawData();	

				qulonglong	convertFileTime(const	FILETIME&	filetime)	const;	

	

private:	

				QVector<qulonglong>	mCpuLoadLastValues;	

};	

Let's	analyze	these	changes:

The	cpuRawData()	is	the	function	that	will	perform	the	Windows	API	call	to	retrieve
system	timing	information	and	return	values	in	a	generic	format.	We	will	retrieve	and
return	three	values:	the	amount	of	time	that	the	system	has	spent	in	idle,	in	Kernel,	and	in
User	mode.
The	convertFileTime()	function	is	our	second	helper.	It	will	convert	a
Windows	FILETIME	struct	syntax	to	a	qulonglong	type.	The	qulonglong	type	is	a
Qt	unsigned	long	long	int.	This	type	is	guaranteed	by	Qt	to	be	64-bit	on	all	platforms.
You	can	also	use	the	typedef	quint64.
The	mCpuLoadLastValues	is	a	variable	that	will	store	system	timing	(idle,	Kernel,	and
User)	at	a	given	moment.
Don't	forget	to	include	the	<QtGlobal>	tag	to	use	the	qulonglong	type,	and	the	<QVector>
tag	to	use	the	QVector	class.
The	syntax	typedef	struct	_FILETIME	FILETIME	is	a	kind	of	forward	declaration
for	FILENAME	syntax.	As	we	only	use	a	reference,	we	can	avoid	including
the	<windows.h>	tag	in	our	file	SysInfoWindowsImpl.h	and	keep	it	in	the	CPP	file.

We	can	now	switch	to	the	file	SysInfoWindowsImpl.cpp	and	implement	these	functions	to
finish	the	CPU	load	average	feature	on	Windows:

#include	"SysInfoWindowsImpl.h"	

	

#include	<windows.h>	

	

SysInfoWindowsImpl::SysInfoWindowsImpl()	:	

				SysInfo(),	

				mCpuLoadLastValues()	

{	

}	

	

void	SysInfoWindowsImpl::init()	

{	

				mCpuLoadLastValues	=	cpuRawData();	

}	

When	the	init()	function	is	called,	we	store	the	return	value	from	the	cpuRawData()	function
in	our	class	variable	mCpuLoadLastValues.	It	will	be	helpful	for	the	cpuLoadAverage()function
process.

You	may	be	wondering	why	we	do	not	perform	this	task	in	the	initialization	list	of	the

constructor.	That	is	because	when	you	call	a	function	from	the	initialization	list,	the	object	is
not	yet	fully	constructed!	In	some	circumstances,	it	may	be	unsafe	because	the	function	can	try
to	access	a	member	variable	that	has	not	been	constructed	yet.	However,	in	this	ch02-sysinfo
project,	the	cpuRawData	function	does	not	use	any	member	variables,	so	you	are	safe,	if	you
really	want	to	do	it.	Add	the	cpuRawData()	function	to	the	SysInfoWindowsImpl.cpp	file:

QVector<qulonglong>	SysInfoWindowsImpl::cpuRawData()	

{	

				FILETIME	idleTime;	

				FILETIME	kernelTime;	

				FILETIME	userTime;	

	

				GetSystemTimes(&idleTime,	&kernelTime,	&userTime);	

	

				QVector<qulonglong>	rawData;	

	

				rawData.append(convertFileTime(idleTime));	

				rawData.append(convertFileTime(kernelTime));	

				rawData.append(convertFileTime(userTime));	

				return	rawData;	

}	

Here	we	are:	the	Windows	API	call	to	the	GetSystemTimes	function!	This	function	will	give	us
the	amount	of	time	that	the	system	has	spent	idle,	and	in	the	Kernel	and	User	modes.	Before
filling	the	QVector	class,	we	convert	each	value	with	our	helper	convertFileTime	described	in
the	following	code:

qulonglong	SysInfoWindowsImpl::convertFileTime(const	FILETIME&	filetime)	const	

{	

				ULARGE_INTEGER	largeInteger;	

				largeInteger.LowPart	=	filetime.dwLowDateTime;	

				largeInteger.HighPart	=	filetime.dwHighDateTime;	

				return	largeInteger.QuadPart;	

}	

The	Windows	structure	FILEFTIME	stores	64-bit	information	on	two	32-bit	parts	(low	and
high).	Our	function	convertFileTime	uses	the	Windows	structure	ULARGE_INTEGER	to
correctly	build	a	64-bit	value	in	a	single	part	before	returning	it	as	a	qulonglong	type.	Last
but	not	least,	the	cpuLoadAverage()	implementation:

double	SysInfoWindowsImpl::cpuLoadAverage()	

{	

				QVector<qulonglong>	firstSample	=	mCpuLoadLastValues;	

				QVector<qulonglong>	secondSample	=	cpuRawData();	

				mCpuLoadLastValues	=	secondSample;	

	

				qulonglong	currentIdle	=	secondSample[0]	-	firstSample[0];	

				qulonglong	currentKernel	=	secondSample[1]	-	firstSample[1];	

				qulonglong	currentUser	=	secondSample[2]	-	firstSample[2];	

				qulonglong	currentSystem	=	currentKernel	+	currentUser;	

	

				double	percent	=	(currentSystem	-	currentIdle)	*	100.0	/	

								currentSystem	;	

				return	qBound(0.0,	percent,	100.0);	

}	

There	are	three	important	points	to	note	here:

Keep	in	mind	that	a	sample	is	an	absolute	amount	of	time,	so	subtracting	two	different
samples	will	give	us	instantaneous	values	that	can	be	processed	to	get	the	current	CPU
load.
The	first	sample	comes	from	our	member	variable	mCpuLoadLastValues,	probed	the	first
time	by	the	init()	function.	The	second	one	is	retrieved	when	the	cpuLoadAverage()
function	is	called.	After	initializing	the	samples,	the	mCpuLoadLastValues	variable	can
store	the	new	sample	that	will	be	used	for	the	next	call.
The	percent	equation	can	be	a	little	tricky	because	the	Kernel	value	retrieved	from	the
Windows	API	also	contains	the	idle	value.

Tip

If	you	want	to	learn	more	about	the	Windows	API,	take	a	look	at	the	MSDN	documentation	at
https://msdn.microsoft.com/library.

The	final	step	to	finish	the	Windows	implementation	is	to	edit	the	file	ch02-sysinfo.pro	so
that	it	resembles	the	following	snippet:

QT							+=	core	gui	

CONFIG			+=	C++14	

	

greaterThan(QT_MAJOR_VERSION,	4):	QT	+=	widgets	

	

TARGET	=	ch02-sysinfo	

TEMPLATE	=	app	

	

SOURCES	+=	main.cpp	\	

				MainWindow.cpp	\	

				SysInfo.cpp	

	

HEADERS	+=	MainWindow.h	\	

				SysInfo.h	

	

windows	{	

				SOURCES	+=	SysInfoWindowsImpl.cpp	

				HEADERS	+=	SysInfoWindowsImpl.h	

}	

	

FORMS				+=	MainWindow.ui	

As	we	did	in	the	ch01-todo	project,	we	also	use	C++14	with	the	ch02-sysinfo	project.	The
really	new	point	here	is	that	we	removed	the	files	SysInfoWindowsImpl.cpp

https://msdn.microsoft.com/library

and	SysInfoWindowsImpl.h	from	the	common	SOURCES	and	HEADERS	variables.	Indeed,	we
added	them	into	a	windows	platform	scope.	When	building	for	other	platforms,	those	files	will
not	be	processed	by	qmake.	That	is	why	we	can	safely	include	a	specific	header	such
as	windows.h	in	the	source	file	SysInfoWindowsImpl.cpp	without	harming	the	compilation	on
other	platforms.

Adding	the	Linux	implementation
Let's	make	the	Linux	implementation	of	our	ch02-sysinfo	project.	If	you	have	already	done
the	Windows	implementation,	it	will	be	a	piece	of	cake!	If	you	have	not,	you	should	take	a
look	at	it.	Some	information	and	tips	will	not	be	repeated	in	this	part,	such	as	how	to	create
a	SysInfo	implementation	class,	keyboard	shortcuts,	and	details	about	the	SysInfo	interface.

Create	a	new	C++	class	called	SysInfoLinuxImpl	that	inherits	from	the	SysInfo	class,	and
insert	virtual	functions	from	the	base	class:

#include	"SysInfo.h"	

	

class	SysInfoLinuxImpl	:	public	SysInfo	

{	

public:	

				SysInfoLinuxImpl();	

	

				void	init()	override;	

				double	cpuLoadAverage()	override;	

				double	memoryUsed()	override;	

};	

We	will	start	by	implementing	the	memoryUsed()	function	in	the	file	SysInfoLinuxImpl.cpp:

#include	"SysInfoLinuxImpl.h"	

	

#include	<sys/types.h>	

#include	<sys/sysinfo.h>	

	

SysInfoLinuxImpl::SysInfoLinuxImpl()	:	

				SysInfo(),	

{	

}	

	

double	SysInfoLinuxImpl::memoryUsed()	

{	

				struct	sysinfo	memInfo;	

				sysinfo(&memInfo);	

	

				qulonglong	totalMemory	=	memInfo.totalram;	

				totalMemory	+=	memInfo.totalswap;	

				totalMemory	*=	memInfo.mem_unit;	

	

				qulonglong	totalMemoryUsed	=	memInfo.totalram	-	memInfo.freeram;	

				totalMemoryUsed	+=	memInfo.totalswap	-	memInfo.freeswap;	

				totalMemoryUsed	*=	memInfo.mem_unit;	

	

				double	percent	=	(double)totalMemoryUsed	/	

								(double)totalMemory	*	100.0;	

				return	qBound(0.0,	percent,	100.0);	

}	

This	function	uses	Linux-specific	API.	After	adding	the	required	includes,	you	can	use	the
Linux	sysinfo()	function	that	returns	information	on	the	overall	system	statistics.	With	the
total	memory	and	the	total	memory	used,	we	can	easily	return	the	percent	value.	Note	that
swap	memory	has	been	taken	into	account.

The	CPU	load	feature	is	a	little	more	complex	than	the	memory	feature.	Indeed,	we	will
retrieve	from	Linux	the	total	amount	of	time	the	CPU	spent	performing	different	kinds	of
work.	That	is	not	exactly	what	we	want.	We	must	return	the	instantaneous	CPU	load.	A
common	way	to	get	it	is	to	retrieve	two	sample	values	in	a	short	period	of	time	and	use	the
difference	to	get	the	instantaneous	CPU	load:

#include	<QtGlobal>	

#include	<QVector>	

	

#include	"SysInfo.h"	

	

class	SysInfoLinuxImpl	:	public	SysInfo	

{	

public:	

				SysInfoLinuxImpl();	

	

				void	init()	override;	

				double	cpuLoadAverage()	override;	

				double	memoryUsed()	override;	

	

private:	

				QVector<qulonglong>	cpuRawData();	

	

private:	

				QVector<qulonglong>	mCpuLoadLastValues;	

};	

In	this	implementation,	we	will	only	add	one	helper	function	and	one	member	variable:

The	cpuRawData()	is	a	function	that	will	perform	the	Linux	API	call	to	retrieve	system
timing	information	and	return	values	in	a	QVector	class	of	qulonglong	type.	We	retrieve
and	return	four	values	containing	the	time	the	CPU	has	spent	on	the	following:	normal
processes	in	User	mode,	nice	processes	in	User	mode,	processes	in	Kernel	mode,	and
idle.
The	mCpuLoadLastValues	is	a	variable	that	will	store	a	sample	of	system	timing	at	a	given
moment.

Let's	go	to	the	SysInfoLinuxImpl.cpp	file	to	update	it:

#include	"SysInfoLinuxImpl.h"	

	

#include	<sys/types.h>	

#include	<sys/sysinfo.h>	

	

#include	<QFile>	

	

SysInfoLinuxImpl::SysInfoLinuxImpl()	:	

				SysInfo(),	

				mCpuLoadLastValues()	

{	

}	

	

void	SysInfoLinuxImpl::init()	

{	

				mCpuLoadLastValues	=	cpuRawData();	

}	

As	discussed	before,	the	cpuLoadAverage	function	will	need	two	samples	to	be	able	to
compute	an	instantaneous	CPU	load	average.	Calling	the	init()	function	allows	us	to
set	mCpuLoadLastValues	for	the	first	time:

QVector<qulonglong>	SysInfoLinuxImpl::cpuRawData()	

{	

				QFile	file("/proc/stat");	

				file.open(QIODevice::ReadOnly);	

	

				QByteArray	line	=	file.readLine();	

				file.close();	

				qulonglong	totalUser	=	0,	totalUserNice	=	0,	

								totalSystem	=	0,	totalIdle	=	0;	

				std::sscanf(line.data(),	"cpu	%llu	%llu	%llu	%llu",	

								&totalUser,	&totalUserNice,	&totalSystem,	

								&totalIdle);	

	

				QVector<qulonglong>	rawData;	

				rawData.append(totalUser);	

				rawData.append(totalUserNice);	

				rawData.append(totalSystem);	

				rawData.append(totalIdle);	

	

				return	rawData;	

}	

To	retrieve	the	CPU	raw	information	on	a	Linux	system,	we	chose	to	parse	information
available	in	the	/proc/stat	file.	All	we	need	is	available	on	the	first	line,	so	a
single	readLine()	is	enough.	Even	though	Qt	provides	some	useful	features,	sometimes	the	C
standard	library	functions	are	simpler.	This	is	the	case	here;	we	are	using	std::sscanf	to
extract	variables	from	a	string.	Now	let's	look	at	the	cpuLoadAvearge()	body:

double	SysInfoLinuxImpl::cpuLoadAverage()	

{	

				QVector<qulonglong>	firstSample	=	mCpuLoadLastValues;	

				QVector<qulonglong>	secondSample	=	cpuRawData();	

				mCpuLoadLastValues	=	secondSample;	

	

				double	overall	=	(secondSample[0]	-	firstSample[0])	

								+	(secondSample[1]	-	firstSample[1])	

								+	(secondSample[2]	-	firstSample[2]);	

	

				double	total	=	overall	+	(secondSample[3]	-	firstSample[3]);	

				double	percent	=	(overall	/	total)	*	100.0;	

				return	qBound(0.0,	percent,	100.0);	

}	

This	is	where	the	magic	happens.	In	this	last	function,	we	put	all	the	puzzle	pieces	together.
This	function	uses	two	samples	of	the	CPU	raw	data.	The	first	sample	comes	from	our
member	variable	mCpuLoadLastValues,	set	the	first	time	by	the	init()	function.	The	second
sample	is	requested	by	the	cpuLoadAverage()	function.	Then	the	mCpuLoadLastValues	variable
will	store	the	new	sample	that	will	be	used	as	the	first	sample	on	the	next	cpuLoadAverage()
function	call.

The	percent	equation	should	be	easy	to	understand:

overall	is	equal	to	user	+	nice	+	kernel
total	is	equal	to	overall	+	idle

Tip

You	can	find	more	information	about	/proc/stat	in	the	Linux	Kernel	documentation
at	https://www.kernel.org/doc/Documentation/filesystems/proc.txt.

Like	the	other	implementations,	the	last	thing	to	do	is	to	edit	the	ch02-sysinfo.pro	file	like
this:

QT							+=	core	gui	

CONFIG			+=	C++14	

	

greaterThan(QT_MAJOR_VERSION,	4):	QT	+=	widgets	

	

TARGET	=	ch02-sysinfo	

TEMPLATE	=	app	

	

SOURCES	+=	main.cpp	\	

				MainWindow.cpp	\	

				SysInfo.cpp	\	

				CpuWidget.cpp	\	

				MemoryWidget.cpp	\	

				SysInfoWidget.cpp	

	

HEADERS	+=	MainWindow.h	\	

				SysInfo.h	\	

				CpuWidget.h	\	

				MemoryWidget.h	\	

https://www.kernel.org/doc/Documentation/filesystems/proc.txt

				SysInfoWidget.h	

	

windows	{	

				SOURCES	+=	SysInfoWindowsImpl.cpp	

				HEADERS	+=	SysInfoWindowsImpl.h	

}	

	

linux	{	

				SOURCES	+=	SysInfoLinuxImpl.cpp	

				HEADERS	+=	SysInfoLinuxImpl.h	

}	

	

FORMS				+=	MainWindow.ui	

With	this	Linux	scope	condition	in	the	ch02-sysinfo.pro	file,	our	Linux-specific	files	will
not	be	processed	by	the	qmake	command	on	other	platforms.

Adding	the	Mac	OS	implementation
Let's	take	a	look	at	the	Mac	implementation	of	the	SysInfo	class.	Start	by	creating	a	new	C++
class	named	SysInfoMacImpl	that	inherits	from	the	SysInfo	class.	Override	SysInfo	virtual
functions	and	you	should	have	a	SysInfoMacImpl.h	file	like	this:

#include	"SysInfo.h"	

	

#include	<QtGlobal>	

#include	<QVector>	

	

class	SysInfoMacImpl	:	public	SysInfo	

{	

public:	

				SysInfoMacImpl();	

	

				void	init()	override;	

				double	cpuLoadAverage()	override;	

				double	memoryUsed()	override;	

};	

The	first	implementation	we	will	do	will	be	the	memoryUsed()	function,	in
the	SysInfoMacImpl.cpp	file:

#include	<mach/vm_statistics.h>	

#include	<mach/mach_types.h>	

#include	<mach/mach_init.h>	

#include	<mach/mach_host.h>	

#include	<mach/vm_map.h>	

	

SysInfoMacImpl::SysInfoMacImpl()	:	

				SysInfo()	

{	

	

}	

	

double	SysInfoMacImpl::memoryUsed()	

{	

				vm_size_t	pageSize;	

				vm_statistics64_data_t	vmStats;	

	

				mach_port_t	machPort	=	mach_host_self();	

				mach_msg_type_number_t	count	=	sizeof(vmStats)		

																																		/	sizeof(natural_t);	

				host_page_size(machPort,	&pageSize);	

	

				host_statistics64(machPort,	

																						HOST_VM_INFO,	

																						(host_info64_t)&vmStats,	

																						&count);	

	

				qulonglong	freeMemory	=	(int64_t)vmStats.free_count		

																												*	(int64_t)pageSize;	

	

				qulonglong	totalMemoryUsed	=	((int64_t)vmStats.active_count	+	

																													(int64_t)vmStats.inactive_count	+	

																													(int64_t)vmStats.wire_count)		

																													*	(int64_t)pageSize;	

	

				qulonglong	totalMemory	=	freeMemory	+	totalMemoryUsed;	

	

				double	percent	=	(double)totalMemoryUsed		

																					/	(double)totalMemory	*	100.0;	

				return	qBound(0.0,	percent,	100.0);	

}	

We	start	by	including	the	different	headers	for	the	Mac	OS	kernel.	Then	we	initialize	machPort
with	the	call	to	the	mach_host_self()	function.	A	machPort	is	a	kind	of	special	connection	to
the	kernel	that	enables	us	to	request	information	about	the	system.	We	then	proceed	to	prepare
other	variables	so	that	we	can	retrieve	virtual	memory	statistics	with	host_statistics64().

When	the	vmStats	class	is	filled	with	the	information	needed,	we	extract	the	relevant	data:
the	freeMemory	and	the	totalMemoryUsed.

Note	that	Mac	OS	has	a	peculiar	way	of	managing	its	memory:	it	keeps	a	lot	of	memory	in
cache,	ready	to	be	flushed	when	needed.	This	implies	that	our	statistics	can	be	misled;	we	see
the	memory	as	used,	whereas	it	was	simply	kept	"just	in	case".

The	percentage	calculation	is	straightforward;	we	still	return	a	min/max	clamped	value	to
avoid	any	crazy	values	in	our	future	graph.

Next	comes	the	cpuLoadAverage()	implementation.	The	pattern	is	always	the	same;	take
samples	at	regular	intervals	and	compute	the	growth	on	this	interval.	Therefore,	we	have	to
store	intermediate	values	to	be	able	to	calculate	the	difference	with	the	next	sample:

//	In	SysInfoMacImpl.h	

#include	"SysInfo.h"	

	

#include	<QtGlobal>	

#include	<QVector>	

	

...	

	

private:	

				QVector<qulonglong>	cpuRawData();	

	

private:	

				QVector<qulonglong>	mCpuLoadLastValues;	

};	

	

//	In	SysInfoMacImpl.cpp	

void	SysInfoMacImpl::init()	

{	

				mCpuLoadLastValues	=		cpuRawData();	

}	

	

QVector<qulonglong>	SysInfoMacImpl::cpuRawData()	

{	

				host_cpu_load_info_data_t	cpuInfo;	

				mach_msg_type_number_t	cpuCount	=	HOST_CPU_LOAD_INFO_COUNT;	

				QVector<qulonglong>	rawData;	

				qulonglong	totalUser	=	0,	totalUserNice	=	0,	totalSystem	=	0,											

totalIdle	=	0;	

				host_statistics(mach_host_self(),	

																				HOST_CPU_LOAD_INFO,	

																				(host_info_t)&cpuInfo,	

																				&cpuCount);	

	

				for(unsigned	int	i	=	0;	i	<	cpuCount;	i++)	{	

								unsigned	int	maxTicks	=	CPU_STATE_MAX	*	i;	

								totalUser	+=	cpuInfo.cpu_ticks[maxTicks	+	CPU_STATE_USER];	

								totalUserNice	+=	cpuInfo.cpu_ticks[maxTicks		

																																											+	CPU_STATE_SYSTEM];	

								totalSystem	+=	cpuInfo.cpu_ticks[maxTicks		

																																											+	CPU_STATE_NICE];	

								totalIdle	+=	cpuInfo.cpu_ticks[maxTicks	+	CPU_STATE_IDLE];	

				}	

	

				rawData.append(totalUser);	

				rawData.append(totalUserNice);	

				rawData.append(totalSystem);	

				rawData.append(totalIdle);	

				return	rawData;	

}	

As	you	can	see,	the	pattern	used	is	strictly	equivalent	to	the	Linux	implementation.	You	can
even	copy-paste	the	body	of	the	cpuLoadAverage()	function	from	the	SysInfoLinuxImpl.cpp
file.	They	do	exactly	the	same	thing.

Now,	the	implementation	is	different	for	the	cpuRawData()	function.	We	load	cpuInfo
and	cpuCount	with	host_statistics()	and	then	we	loop	through	each	CPU	to	have
the	totalUser,	totalUserNice,	totalSystem,	and	totalIdle	functions	filled.	Finally,	we
append	all	this	data	to	the	rawData	object	before	returning	it.

The	very	last	part	is	to	compile	the	SysInfoMacImpl	class	only	on	Mac	OS.	Modify	the	.pro
file	to	have	the	following	body:

...	

	

linux	{	

				SOURCES	+=	SysInfoLinuxImpl.cpp	

				HEADERS	+=	SysInfoLinuxImpl.h	

}	

	

macx	{	

				SOURCES	+=	SysInfoMacImpl.cpp	

				HEADERS	+=	SysInfoMacImpl.h	

}	

	

FORMS				+=	MainWindow.ui	

Transforming	SysInfo	into	a	singleton
Promises	are	made	to	be	kept:	we	will	now	transform	the	SysInfo	class	into	a	singleton.	C++
offers	many	ways	to	implement	the	singleton	design	pattern.	We	will	explain	one	of	them
here.	Open	the	SysInfo.h	file	and	make	the	following	changes:

class	SysInfo	

{	

public:	

				static	SysInfo&	instance();	

				virtual	~SysInfo();	

	

				virtual	void	init()	=	0;	

				virtual	double	cpuLoadAverage()	=	0;	

				virtual	double	memoryUsed()	=	0;	

	

protected:	

				explicit	SysInfo();	

	

private:	

				SysInfo(const	SysInfo&	rhs);	

				SysInfo&	operator=(const	SysInfo&	rhs);	

};	

The	singleton	must	guarantee	that	there	will	be	only	one	instance	of	the	class	and	that	this
instance	will	be	easily	accessible	from	a	single	access	point.

So	the	first	thing	to	do	is	to	change	the	visibility	of	the	constructor	to	protected.	This	way,
only	this	class	and	the	child	classes	will	be	allowed	to	call	the	constructor.

Since	only	one	instance	of	the	object	must	exist,	allowing	the	copy	constructor	and	the
assignment	operator	is	nonsense.	One	way	to	solve	the	problem	is	to	make	them	private.

Tip

C++	tip

Since	C++11,	you	can	define	a	function	as	deleted	with	the	syntax	void	myFunction()	=
delete.	Any	use	of	a	deleted	function	will	display	a	compile-time	error.	It's	another	way	to
prevent	the	use	of	the	copy	constructor	and	the	assignment	operator	with	a	singleton.

The	last	change	is	the	"unique	access	point"	with	a	static	function	instance	that	will	return	a
reference	of	the	SysInfo	class.

It	is	now	time	to	commit	singleton	changes	to	the	SysInfo.cpp	file:

#include	<QtGlobal>	

	

#ifdef	Q_OS_WIN	

				#include	"SysInfoWindowsImpl.h"	

#elif	defined(Q_OS_MAC)	

				#include	"SysInfoMacImpl.h"	

#elif	defined(Q_OS_LINUX)	

				#include	"SysInfoLinuxImpl.h"	

#endif	

	

SysInfo&	SysInfo::instance()	

{	

				#ifdef	Q_OS_WIN	

								static	SysInfoWindowsImpl	singleton;	

				#elif	defined(Q_OS_MAC)	

								static	SysInfoMacImpl	singleton;	

				#elif	defined(Q_OS_LINUX)	

								static	SysInfoLinuxImpl	singleton;	

				#endif	

	

				return	singleton;	

}	

	

SysInfo::SysInfo()	

{	

}	

	

SysInfo::~SysInfo()	

{	

}	

Here	you	can	see	another	Qt	cross-OS	trick.	Qt	provides	some	macro	Q_OS_WIN,	Q_OS_LINUX,
or	Q_OS_MAC.	A	Qt	OS	macro	will	be	defined	only	on	the	corresponding	OS.	By	combining
these	macros	with	a	conditional	preprocessor	directive#ifdef,	we	can	always	include	and
instantiate	the	correct	SysInfo	implementation	on	all	OSes.

Declaring	the	singleton	variable	as	a	static	variable	in	the	instance()	function	is	a	way	to
make	a	singleton	in	C++.	We	tend	to	prefer	this	version	because	you	do	not	need	to	worry
about	the	singleton	memory	management.	The	compiler	will	handle	the	instantiation	the	first
time	as	well	as	the	destruction.	Moreover,	since	C++11	this	method	is	thread	safe.

Exploring	Qt	Charts
The	core	part	is	ready.	It's	now	time	to	create	a	UI	for	this	project,	and	Qt	Charts	can	help	us
with	this	task.	Qt	Charts	is	a	module	that	provides	a	set	of	easy-to-use	chart	components,	such
as	line	chart,	area	chart,	spline	chart,	pie	chart,	and	so	on.

Qt	Charts	was	previously	a	commercial-only	Qt	module.	Since	Qt	5.7,	the	module	is	now
included	in	Qt	on	GPLv3	license	for	open	source	users.	If	you	are	stuck	on	Qt	5.6,	you	can
build	the	module	by	yourself	from	sources.	More	information	can	be	found	at
https://github.com/qtproject/qtcharts.

The	aim	now	is	to	create	two	Qt	widgets,	CpuWidget	and	MemoryWidget,	to	display	nice	Qt
charts	of	the	CPU	and	the	memory	used.	These	two	widgets	will	share	a	lot	of	common	tasks,
so	we	will	first	create	an	abstract	class,	SysInfoWidget:

Then	the	two	actual	widgets	will	inherit	from	the	SysInfoWidget	class	and	perform	their
specific	tasks.

Create	a	new	C++	class	called	SysInfoWidget	with	QWidget	as	a	base	class.	Some
enhancements	must	be	processed	in	the	SysInfoWidget.h	file:

#include	<QWidget>	

#include	<QTimer>	

#include	<QtCharts/QChartView>	

	

class	SysInfoWidget	:	public	QWidget	

{	

				Q_OBJECT	

public:	

				explicit	SysInfoWidget(QWidget	*parent	=	0,	

																											int	startDelayMs	=	500,	

																											int	updateSeriesDelayMs	=	500);	

	

protected:	

				QtCharts::QChartView&	chartView();	

	

protected	slots:	

https://github.com/qtproject/qtcharts

				virtual	void	updateSeries()	=	0;	

	

private:	

				QTimer	mRefreshTimer;	

				QtCharts::QChartView	mChartView;	

};	

The	QChartView	is	the	generic	widget	that	can	display	many	types	of	chart.	This	class	will
handle	the	layout	and	display	the	QChartView.	A	QTimer	will	call	the	slot	function
updateSeries()	regularly.	As	you	can	see,	this	is	a	pure	virtual	slot.	That	is	the	reason	why
the	SysInfoWidget	class	is	abstract.	The	slot	updateSeries()	will	be	overridden	by	child
classes	to	retrieve	a	system	value	and	define	how	the	chart	should	be	drawn.	Note	that	the
parameters	startDelayMs	and	updateSeriesDelayMs	have	default	values	that	can	be
customized	by	the	caller	if	required.

We	can	now	proceed	to	the	SysInfoWidget.cpp	file	to	correctly	prepare	this	SysInfoWidget
class	before	creating	the	child	widgets:

#include	<QVBoxLayout>	

	

using	namespace	QtCharts;	

	

SysInfoWidget::SysInfoWidget(QWidget	*parent,	

																													int	startDelayMs,	

																													int	updateSeriesDelayMs)	:	

				QWidget(parent),	

				mChartView(this)	

{	

				mRefreshTimer.setInterval(updateSeriesDelayMs);	

				connect(&mRefreshTimer,	&QTimer::timeout,	

												this,	&SysInfoWidget::updateSeries);	

				QTimer::singleShot(startDelayMs,		

								[this]	{	mRefreshTimer.start();	});	

	

				mChartView.setRenderHint(QPainter::Antialiasing);	

				mChartView.chart()->legend()->setVisible(false);	

	

				QVBoxLayout*	layout	=	new	QVBoxLayout(this);	

				layout->addWidget(&mChartView);	

				setLayout(layout);	

}	

	

QChartView&	SysInfoWidget::chartView()	

{	

				return	mChartView;	

}	

All	tasks	in	the	SysInfoWidget	constructor	are	common	tasks	required	by	the	child
widgets,	CpuWidget,	and	MemoryWidget.	The	first	step	is	the	mRefreshTimer	initialization	to
define	the	timer	interval	and	the	slot	to	call	whenever	a	timeout	signal	is	triggered.	Then	the

static	function	QTimer::singleShot()	will	start	the	real	timer	after	a	delay	defined
by	startDelayMs.	Here	again,	Qt	combined	with	lambda	functions	will	give	us	a	powerful
code	in	just	a	few	lines.	The	next	part	enables	the	antialiasing	to	smooth	the	chart	drawing.	We
hide	the	chart's	legend	to	get	a	minimalist	display.	The	last	part	handles	the	layout	to	display
the	QChartView	widget	in	our	SysInfoWidget	class.

CpuWidget	using	QCharts
Now	that	the	base	class	SysInfoWidget	is	ready,	let's	implement	its	first	child
class:	CpuWidget.	We	will	now	use	the	Qt	Charts	API	to	display	a	good-looking	widget.	The
average	CPU	load	will	be	displayed	in	a	pie	graph	with	a	hole	in	the	center,	like	a	partly	eaten
donut	where	the	eaten	part	is	the	percentage	of	the	CPU	used.	The	first	step	is	to	add	a	new
C++	class	named	CpuWidget	and	make	it	inherit	SysInfoWidget:

#include	"SysInfoWidget.h"	

	

class	CpuWidget	:	public	SysInfoWidget	

{	

public:	

				explicit	CpuWidget(QWidget*	parent	=	0);	

};	

In	the	constructor,	the	only	parameter	needed	is	a	QWidget*	parent.	Since	we	provided
default	values	for	the	startDelayMs	and	updateSeriesDelayMs	variables	in	SysInfoWidget
class,	we	get	the	best	possible	behavior;	there	is	no	need	to	remember	it	when
subclassing	SysInfoWidget,	but	it	is	still	easy	to	override	it	if	need	be.

The	next	step	is	to	override	the	updateSeries()	function	from	the	SysInfoWidget	class	and
start	using	the	Qt	Charts	API:

#include	<QtCharts/QpieSeries>	

	

#include	"SysInfoWidget.h"	

	

class	CpuWidget	:	public	SysInfoWidget	

{	

				Q_OBJECT	

public:	

				explicit	CpuWidget(QWidget*	parent	=	0);	

	

protected	slots:	

				void	updateSeries()	override;	

	

private:	

				QtCharts::QPieSeries*	mSeries;	

};	

Since	we	overrode	the	SysInfoWidget::updateSeries()	slot,	we	have	to	include	the	Q_OBJECT
macro	to	allow	CPUWidget	to	respond	to	the	SysInfoWidgetmRefreshTimer::timeout()
signal.

We	include	QPieSeries	from	the	Qt	Charts	module	so	that	we	can	create	a
member	QPieSeries*	named	mSeries.	The	QPieSeries	is	a	subclass	of	QAbstractSeries,

which	is	the	base	class	of	all	Qt	Charts	series	(QLineSeries,	QAreaSeries,	QPieSeries,	and	so
on).	In	Qt	Charts,	a	QAbstractSeries	subclass	holds	the	data	you	want	to	display	and	defines
how	it	should	be	drawn,	but	it	does	not	define	where	the	data	should	be	displayed	inside	your
layout.

We	can	now	proceed	to	CpuWidget.cpp	to	investigate	how	we	can	tell	Qt	where	the	drawing
takes	place:

using	namespace	QtCharts;	

	

CpuWidget::CpuWidget(QWidget*	parent)	:	

				SysInfoWidget(parent),	

				mSeries(new	QPieSeries(this))	

{	

				mSeries->setHoleSize(0.35);	

				mSeries->append("CPU	Load",	30.0);	

				mSeries->append("CPU	Free",	70.0);	

	

				QChart*	chart	=	chartView().chart();	

				chart->addSeries(mSeries);	

				chart->setTitle("CPU	average	load");	

}	

All	Qt	Charts	classes	are	defined	in	the	QtCharts	namespace.	This	is	why	we	start	with	using
namespace	QtCharts.

First,	we	initialize	mSeries	in	the	constructor	initializer	list.	We	then	proceed	to	configure	it.
We	carve	the	donut	with	mSeries->setHoleSize(0.35)	and	we	append	two	data	sets
to	mSeries:	a	fake	CPU	Load	and	Cpu	Free,	which	are	expressed	in	percentages.	The	mSeries
function	is	now	ready	to	be	linked	to	the	class	managing	its	drawing:	QChart.

The	QChart	class	is	retrieved	from	the	SysInfoWidget::chartView()	function.	When
calling	chart->addSeries(mSeries),	chart	takes	the	ownership	of	mSeries	and	will	draw	it
according	to	the	series	type--in	our	case,	a	QPieSeries.	QChart	is	not	a	QWidget:	it	is	a
subclass	of	QGraphicsWidget.	QGraphicsWidget	can	be	described	as	a	lighter	QWidget	with
some	differences	(its	coordinates	and	geometry	are	defined	with	doubles	or	floats	instead
of	integers,	a	subset	of	QWidget	attributes	are	supported:	custom	drag,	drop	framework,	and
so	on).	The	QGraphicsWidget	class	is	designed	to	be	added	in	a	QGraphicsScene	class,	a	high-
performance	Qt	component	used	to	draw	hundreds	of	items	on	screen	at	the	same	time.

In	our	SysInfo	application,	the	QChart	has	to	be	displayed	in	a	QVBoxLayout	in	SysInfoWidget.
Here,	the	QChartView	class	comes	in	very	handy.	It	lets	us	add	chart	in	a	QWidget	layout.

Up	to	now,	QPieSeries	has	seemed	rather	abstract.	Let's	add	it	to	the	MainWindow	file	to	see
how	it	looks:

//	In	MainWindow.h	

#include	"CpuWidget.h"	

	

...	

	

private:	

				Ui::MainWindow	*ui;	

				CpuWidget	mCpuWidget;	

};	

	

//	In	MainWindow.cpp	

MainWindow::MainWindow(QWidget	*parent)	:	

				QMainWindow(parent),	

				ui(new	Ui::MainWindow),	

				mCpuWidget(this)	

{	

				ui->setupUi(this);	

				SysInfo::instance().init();	

				ui->centralWidget->layout()->addWidget(&mCpuWidget);	

}	

We	simply	declare	mCpuWidget	in	the	MainWindow.h	file,	initialize	it,	and	add	it
to	MainWindow->centralWidget->layout.	If	you	now	run	the	application,	you	should	see
something	like	this:

Even	though	it	looks	cool,	this	donut	is	a	bit	static	and	does	not	reflect	the	CPU	usage.	Thanks
to	the	architecture	we	built	with	the	SysInfo	and	SysInfoWidget	classes,	the	remaining	part
will	be	implemented	swiftly.

Switch	back	to	the	CpuWidget.cpp	file	and	implement	the	updateSeries()	function	with	the
following	body:

void	CpuWidget::updateSeries()	

{	

				double	cpuLoadAverage	=	SysInfo::instance().cpuLoadAverage();	

				mSeries->clear();	

				mSeries->append("Load",	cpuLoadAverage);	

				mSeries->append("Free",	100.0	-	cpuLoadAverage);	

}	

First,	we	get	a	reference	to	our	SysInfo	singleton.	We	then	retrieve	the	current	average	CPU
load	in	the	cpuLoadAverage	variable.	We	have	to	feed	this	data	to	our	mSeries.	The	mSeries
object	is	a	QPieCharts,	which	implies	that	we	just	want	a	snapshot	of	the	current	CPU	average
load.	Past	history	is	not	meaningful	with	this	kind	of	graph;	that's	why	we	clear	the	mSeries

data	with	the	mSeries->clear()	syntax,	and	append	the	cpuLoadAverage	variable	and	then	the
free	part	(100.0	-	cpuLoadAverage).

The	nice	thing	to	note	is	that,	in	the	CpuWidget	class,	we	don't	have	to	worry	about	refreshing.
All	the	work	is	done	in	the	SysInfoWidget	subclass	with	all	the	whistles	and	bells	of
the	QTimer	class.	In	a	SysInfoWidget	subclass,	we	only	have	to	concentrate	on	the	valuable
specific	code:	what	data	should	be	displayed	and	what	kind	of	graph	is	used	to	display	it.	If
you	look	at	the	whole	CpuWidget	class,	it	is	very	short.	The	next	SysInfoWidget
subclass,	MemoryWidget,	will	also	be	very	concise,	as	well	as	quick	to	implement.

Memory	using	Qcharts
Our	second	SysInfoWidget	is	a	MemoryWidget	class.	This	widget	will	display	a	history	of	the
data	so	that	we	can	see	how	the	memory	consumption	evolves	over	time.	To	display	this	data,
we	will	use	a	QLineSeries	class	from	the	Qt	Chart	module.	Create	the	MemoryWidget	class	and
follow	the	same	pattern	we	used	for	CpuWidget:

#include	<QtCharts/QLineSeries>	

	

#include	"SysInfoWidget.h"	

	

class	MemoryWidget	:	public	SysInfoWidget	

{	

				Q_OBJECT	

public:	

				explicit	MemoryWidget(QWidget	*parent	=	0);	

	

protected	slots:	

				void	updateSeries()	override;	

	

private:	

				QtCharts::QLineSeries*	mSeries;	

				qint64	mPointPositionX;	

};	

Instead	of	a	being	a	QPieSeries*,	mSeries	is	a	type	of	QLineSeries*	which	will	be	linked	to
the	chart	object	in	a	very	similar	fashion	to	MemoryWidget.cpp:

#include	"MemoryWidget.h"	

#include	<QtCharts/QAreaSeries>	

	

using	namespace	QtCharts;	

	

const	int	CHART_X_RANGE_COUNT	=	50;	

const	int	CHART_X_RANGE_MAX	=	CHART_X_RANGE_COUNT	-	1;	

	

MemoryWidget::MemoryWidget(QWidget	*parent)	:	

				SysInfoWidget(parent),	

				mSeries(new	QlineSeries(this)),	

				mPointPositionX(0)	

{	

				QAreaSeries*	areaSeries	=	new	QAreaSeries(mSeries);	

	

				QChart*	chart	=	chartView().chart();	

				chart->addSeries(areaSeries);	

				chart->setTitle("Memory	used");	

				chart->createDefaultAxes();	

				chart->axisX()->setVisible(false);	

				chart->axisX()->setRange(0,	CHART_X_RANGE_MAX);	

				chart->axisY()->setRange(0,	100);	

}	

	

void	MemoryWidget::updateSeries()	

{	

}	

The	mSeries	data	is,	as	usual,	initialized	in	the	initializer	list.	The	mPointPositionX	is
an	unsigned	long	long	(using	the	Qt	notation	qint64)	variable	that	will	track	the	last	X
position	of	our	data	set.	This	huge	value	is	used	to	make	sure	that	mPointPositionX	never
overflows.

We	then	use	an	intermediate	areaSeries	that	takes	ownership	of	mSeries	upon	its	initialization
in	QAreaSeries*	areaSeries	=	new	QareaSeries(mSeries).	areaSeries	is	then	added	to
the	chart	object	at	chart->addSeries(areaSeries).	We	do	not	want	to	display	a	single	line	in
our	QChart;	instead	we	want	to	display	an	area	that	represents	the	used	memory	percentage.
That	is	why	we	use	an	areaSeries	type.	Nonetheless,	we	will	still	update	the	mSeries	data
when	adding	new	points	to	the	dataset	in	the	updateSeries()	function.	The	areaSeries	type
will	automatically	handle	them	and	deliver	them	to	the	chart	object.

After	chart->addSeries(areaSeries),	we	configure	the	chart	display:

The	chart->createDefaultAxes()	function	creates	an	X	and	Y	axis	based	on
the	areaSeries	type.	If	we	used	a	3D	series,	the	createDefaultAxes()	function	would
have	added	a	Z	axis.
Hide	the	X	axis	tick	values	with	chart->axisX()->setVisible(false)	(intermediate
values	displayed	at	the	bottom	of	the	axis).	In	our	MemoryWidget	class,	this	information	is
not	relevant.
To	define	the	number	of	points	we	want	to	display--the	size	of	the	display	history--we
call	chart->axisX()->setRange(0,	CHART_X_RANGE_MAX).	Here	we	use	a	constant	to
make	it	easier	to	modify	this	value	afterwards.	Seeing	the	value	at	the	top	of	the	file,	we
avoid	having	to	skim	through	MemoryWidget.cpp,	searching	where	this	value	is	used	to
update	it.
chart->axisY()->setRange(0,	100)	defines	the	maximum	range	of	the	Y	axis,	which	is
a	percentage,	based	on	the	value	returned	by	the	SysInfo::memoryUsed()	function.

The	chart	is	now	properly	configured.	We	now	have	to	feed	it	by	filling	the	updateSeries()
body:

void	MemoryWidget::updateSeries()	

{	

				double	memoryUsed	=	SysInfo::instance().memoryUsed();	

				mSeries->append(mPointPositionX++,	memoryUsed);	

				if	(mSeries->count()	>	CHART_X_RANGE_COUNT)	{	

								QChart*	chart	=	chartView().chart();	

								chart->scroll(chart->plotArea().width()		

																						/	CHART_X_RANGE_MAX,	0);	

								mSeries->remove(0);	

				}	

}	

We	first	retrieve	the	latest	memory	percentage	used	and	append	it	to	mSeries	at	the	X
coordinate	mPointPositionX	(we	post-increment	it	for	the	next	updateSeries()	call)	and	Y
coordinate	memoryUsed.	As	we	want	to	keep	a	history	of	mSeries,	mSeries->clear()	is	never
called.	However,	what	will	happen	when	we	add	more	than	CHART_X_RANGE_COUNT	points?	The
visible	"window"	on	the	chart	is	static	and	the	points	will	be	added	outside.	This	means	that	we
will	see	the	memory	usage	only	for	the	first	CHART_X_RANGE_MAX	points	and	then,	nothing.

Fortunately,	QChart	provides	a	function	to	scroll	inside	the	view	to	move	the	visible	window.
We	start	to	handle	this	case	only	when	the	dataset	is	bigger	than	the	visible	window,
meaning	if	(mSeries->count()	>	CHART_X_RANGE_COUNT).	We	then	remove	the	point	at	the
index	0	with	mSeries->remove(0)	to	ensure	that	the	widget	will	not	store	an	infinite	dataset.	A
SysInfo	application	that	monitors	the	memory	usage	and	has	itself	a	memory	leak	is	a	bit	sad.

The	syntax	chart->scroll(chart->plotArea().width()	/	CHART_X_RANGE_MAX,	0)	will
then	scroll	to	the	latest	point	on	the	X	axis	and	nothing	on	Y.	The	chart->scroll(dx,	dy)
expects	coordinates	expressed	in	our	series	coordinates.	That	is	the	reason	why	we	have	to
retrieve	the	char->plotArea()	divided	by	CHART_X_RANGE_MAX	,	the	X	axis	unit.

We	can	now	add	the	MemoryWidget	class	in	MainWindow:

//	In	MainWindow.h	

#include	"CpuWidget.h"	

#include	"MemoryWidget.h"	

	

...	

	

private:	

				Ui::MainWindow	*ui;	

				CpuWidget	mCpuWidget;	

				MemoryWidget	mMemoryWidget;	

};	

	

//	In	MainWindow.cpp	

MainWindow::MainWindow(QWidget	*parent)	:	

				QMainWindow(parent),	

				ui(new	Ui::MainWindow),	

				mCpuWidget(this),	

				mMemoryWidget(this)	

{	

				ui->setupUi(this);	

				SysInfo::instance().init();	

				ui->centralWidget->layout()->addWidget(&mCpuWidget);	

				ui->centralWidget->layout()->addWidget(&mMemoryWidget);	

}	

Just	as	we	did	for	CPUWidget,	add	a	new	member	named	mMemoryWidget	to	MainWindow	and
add	it	to	the	centralWidget	layout	with	the	uiâ†’centralWidget->layout()-
>addWidget(&mMemoryWidget)	syntax.

Compile,	run	the	application,	and	wait	a	few	seconds.	You	should	see	something	close	to	this:

The	MemoryWidget	class	works	fine,	but	it	looks	a	bit	dull.	We	can	customize	it	very	easily
with	Qt.	The	goal	is	to	have	a	bold	line	at	the	top	of	the	memory	area	and	a	nice	gradient	from
top	to	bottom.	We	just	have	to	modify	the	areaSeries	class	in	the	MemoryWidget.cpp	file:

#include	<QtCharts/QAreaSeries>	

#include	<QLinearGradient>	

#include	<QPen>	

	

#include	"SysInfo.h"	

	

using	namespace	QtCharts;	

	

const	int	CHART_X_RANGE_MAX	=	50;	

const	int	COLOR_DARK_BLUE	=	0x209fdf;	

const	int	COLOR_LIGHT_BLUE	=	0xbfdfef;	

const	int	PEN_WIDTH	=	3;	

	

MemoryWidget::MemoryWidget(QWidget	*parent)	:	

				SysInfoWidget(parent),	

				mSeries(new	QLineSeries(this))	

{	

				QPen	pen(COLOR_DARK_BLUE);	

				pen.setWidth(PEN_WIDTH);	

	

				QLinearGradient	gradient(QPointF(0,	0),	QPointF(0,	1));	

				gradient.setColorAt(1.0,	COLOR_DARK_BLUE);	

				gradient.setColorAt(0.0,	COLOR_LIGHT_BLUE);	

				gradient.setCoordinateMode(QGradient::ObjectBoundingMode);	

	

				QAreaSeries*	areaSeries	=	new	QAreaSeries(mSeries);	

				areaSeries->setPen(pen);	

				areaSeries->setBrush(gradient);	

	

				QChart*	chart	=	chartView().chart();	

				...	

}	

The	QPen	pen	function	is	a	part	of	the	QPainter	API.	It	is	the	foundation	on	which	Qt	relies	to
do	most	of	the	GUI	drawing.	This	includes	the	whole	QWidget	API
(QLabel,	QPushButton,	QLayout,	and	so	on).	For	the	pen,	we	just	have	to	specify	its	color	and
width,	and	then	apply	it	to	the	areaSeries	class	with	areaSeries->setPen(pen).

The	principle	is	the	same	for	the	gradient.	We	define	the	starting	point	(QPointF(0,	0))	and
the	final	point	(QPointF(0,	1))	before	specifying	the	color	at	each	end	of	the	vertical
gradient.	The	QGradient::ObjectBoundingMode	parameter	defines	how	the	start/final
coordinates	are	mapped	to	the	object.	With	the	QAreaSeries	class,	we	want	the	gradient
coordinates	to	match	the	whole	QareaSeries	class.	These	coordinates	are	normalized
coordinates,	meaning	that	0	is	the	start	and	1	is	the	end	of	the	shape:

The	[0.0]	coordinates	will	point	to	the	top	left	corner	of	the	QAreaSeries	class
The	[1.0]	coordinates	will	point	to	the	bottom	left	corner	of	the	QAreaSeries	class

A	last	build	and	run,	and	the	SysInfo	application	will	look	like	this:

A	memory	leak	or	starting	a	virtual	machine	is	a	great	way	to	make	your	memory	go	crazy

The	SysInfo	application	is	now	finished,	and	we	even	added	some	visual	polish.	You	can
explore	the	QGradient	classes	and	the	QPainter	API	if	you	want	to	further	customize	the
widget	to	your	taste.

The	.pro	file	in	depth
When	you	click	on	the	Build	button,	what	exactly	is	Qt	Creator	doing?	How	does	Qt	handle
the	compilation	of	the	different	platforms	with	a	single	.pro	file?	What	does	the	Q_OBJECT
macro	imply	exactly?	We	will	dig	into	each	of	these	questions	in	the	following	sections.	Our
example	case	will	be	the	SysInfo	application	we	just	completed,	and	we	will	study	what	Qt	is
doing	under	the	hood.

We	can	start	this	study	by	digging	into	the	.pro	file.	It	is	the	main	entry	point	in	compiling	any
Qt	project.	Basically,	a	.pro	file	is	a	qmake	project	file	describing	the	sources	and	headers
used	by	the	project.	It	is	a	platform-agnostic	definition	of	a	Makefile.	First,	we	can	cover	the
different	qmake	keywords	used	in	the	ch02-sysinfo	application:

#---	

#	

#	Project	created	by	QtCreator	2016-03-24T16:25:01	

#	

#---	

QT	+=	core	gui	charts	

CONFIG	+=	C++14	

	

greaterThan(QT_MAJOR_VERSION,	4):	QT	+=	widgets	

	

TARGET	=	ch02-sysinfo	

TEMPLATE	=	app	

Each	of	these	functions	has	specific	roles:

#:	This	is	the	prefix	needed	to	comment	on	a	line.	Yes,	we	generated	the	project	on	2016-
03-24-crazy,	huh?
QT:	This	is	a	list	of	the	Qt	modules	used	in	the	project.	In	the	platform-specific	Makefile,
each	of	the	values	will	include	the	module	headers	and	the	corresponding	library	link.
CONFIG:	This	is	a	list	of	configuration	options	for	the	project.	Here,	we	configure	the
support	of	C++14	in	the	Makefile.
TARGET:	This	is	the	name	of	the	target	output	file.
TEMPLATE:	This	is	the	project	template	used	when	generating	the	Makefile.app	tells	qmake
to	generate	a	Makefile	targeted	for	a	binary.	If	you	are	building	a	library,	use	the	lib
value.

In	the	ch02-sysinfo	application,	we	started	to	use	platform-specific	compilation	rules	using
the	intuitive	scope	mechanism:

windows	{	

				SOURCES	+=	SysInfoWindowsImpl.cpp	

				HEADERS	+=	SysInfoWindowsImpl.h	

}	

If	you	had	to	do	this	with	a	Makefile,	you	would	probably	lose	some	hair	before	doing	it
right	(being	bald	is	not	an	excuse).	This	syntax	is	simple	yet	powerful,	and	is	also	used	for
conditional	statements.	Let's	say	you	wanted	to	build	some	files	on	debug	only.	You	would
have	written	the	following:

windows	{	

				SOURCES	+=	SysInfoWindowsImpl.cpp	

				HEADERS	+=	SysInfoWindowsImpl.h	

					

				debug	{	

								SOURCES	+=	DebugClass.cpp	

								HEADERS	+=	DebugClass.h	

				}	

}	

Nesting	the	debug	scope	inside	windows	is	the	equivalent	of	if	(windows	&&	debug).	The
scoping	mechanism	is	even	more	flexible;	you	can	have	the	OR	Boolean	operator	condition
with	this	syntax:

windows|unix	{	

		SOURCES	+=	SysInfoWindowsAndLinux.cpp	

}	

You	can	even	have	else	if/else	statements:

windows|unix	{	

		SOURCES	+=	SysInfoWindowsAndLinux.cpp	

}	else:macx	{	

		SOURCES	+=	SysInfoMacImpl.cpp	

}	else	{	

		SOURCES	+=	UltimateGenericSources.cpp	

}	

In	this	code	snippet,	we	also	see	the	use	of	the	+=	operator.	The	qmake	tool	provides	a	wide
range	of	operators	to	modify	the	behavior	of	variables:

=:	This	operator	sets	the	variable	to	the	value.	The	syntax	SOURCES	=
SysInfoWindowsImpl.cpp	would	have	assigned	the	singleSysInfoWindowsImpl.cpp	value
to	the	SOURCES	variable.
+=:	This	operator	adds	the	value	to	a	list	of	values.	This	is	what	we	commonly	use
in	HEADERS,	SOURCES,	CONFIG,	and	so	on.
-=:	This	operator	removes	the	value	from	the	list.	You	can,	for	example,	add	a	DEFINE	=
DEBUG_FLAG	syntax	in	the	common	section	and	in	a	platform-specific	scope	(say	a
Windows	release)	remove	it	with	the	DEFINE	-=	DEBUG_FLAG	syntax.
*=:	This	operator	adds	the	value	to	the	list	only	if	it	is	not	already	present.	The	DEFINE
*=	DEBUG_FLAG	syntax	adds	the	DEBUG_FLAG	value	only	once.
~=:	This	operator	replaces	any	values	that	match	a	regular	expression	with	the	specified
value,	DEFINE	~=	s/DEBUG_FLAG/debug.

You	can	also	define	variables	in	the	.pro	file	and	reuse	them	in	different	places.	We	can
simplify	this	with	the	use	of	the	qmake	message()	function:

COMPILE_MSG	=	"Compiling	on"	

	

windows	{	

				SOURCES	+=	SysInfoWindowsImpl.cpp	

				HEADERS	+=	SysInfoWindowsImpl.h	

				message($$COMPILE_MSG	windows)	

}	

	

linux	{	

				SOURCES	+=	SysInfoLinuxImpl.cpp	

				HEADERS	+=	SysInfoLinuxImpl.h	

				message($$COMPILE_MSG	linux)	

}	

	

macx	{	

				SOURCES	+=	SysInfoMacImpl.cpp	

				HEADERS	+=	SysInfoMacImpl.h	

				message($$COMPILE_MSG	mac)	

}	

If	you	build	the	project,	you	will	see	your	platform-specific	message	each	time	you	build	the
project	in	the	General	Messages	tab	(you	can	access	this	tab	from	Window	|	Output	Panes
|	General	Messages).	Here,	we	defined	a	COMPILE_MSG	variable	and	referenced	it	when
calling	message($$COMPILE_MSG	windows).	This	offers	interesting	possibilities	when	you	need
to	compile	external	libraries	from	your	.pro	file.	You	can	then	aggregate	all	the	sources	in	a
variable,	combine	it	with	the	call	to	a	specific	compiler,	and	so	on.

Tip

If	your	scope-specific	statement	is	a	single	line,	you	can	use	the	following	syntax	to	describe
it:

windows:message($$COMPILE_MSG	windows)	

Besides	message(),	there	are	a	few	other	helpful	functions:

error(string):	This	function	displays	the	string	and	exits	the	compilation	immediately.
exists(filename):	This	function	tests	the	existence	of	the	filename.	qmake	also
provides	the	!	operator,	which	means	you	can	write	!exist(myfile)	{	...	}.
include(filename):	This	function	includes	the	content	of	another	.pro	file.	It	gives	you
the	ability	to	slice	your	.pro	files	into	more	modular	components.	This	will	prove	very
useful	when	you	have	multiple	.pro	files	for	a	single	big	project.

Note

All	the	built-in	functions	are	described	at	http://doc.qt.io/qt-5/qmake-test-function-

http://doc.qt.io/qt-5/qmake-test-function-reference.html

reference.html.

Under	the	hood	of	qmake
As	we	said	earlier,	qmake	is	the	foundation	of	the	Qt	framework	compilation	system.	In	Qt
Creator,	when	you	click	on	the	Build	button,	qmake	is	invoked.	Let's	study	what	qmake	is
exactly	doing	by	calling	it	ourselves	on	the	CLI	(Command	Line	Interface).

Create	a	temporary	directory	where	you	will	store	the	generated	files.	We	are	working	on	a
Linux	box,	but	this	is	transposable	on	any	OS.	We	chose	/tmp/sysinfo.	Using	the	CLI,
navigate	to	this	new	directory	and	execute	the	following	command:

/path/to/qt/installation/5.7/gcc_64/bin/qmake	-makefile	-o	Makefile	

/path/to/sysinfoproject/ch02-sysinfo.pro

This	command	will	execute	qmake	in	the	-makefile	mode	to	generate	a	Makefile	based	on
your	sysinfo.pro	file.	If	you	skim	through	the	Makefile	content,	you	will	see	many	things	we
covered	earlier	in	the	.pro	section.	The	link	to	Qt	modules,	headers	of	different	modules,
inclusion	of	the	headers	and	sources	files	of	your	project,	and	so	on.

Now,	let's	build	this	Makefile	by	simply	typing	the	make	command.

This	command	will	generate	the	binary	ch02-sysinfo	(based	on	the	TARGET	value	of	the	.pro
file).	If	you	look	at	the	list	of	files	now	present	in	/tmp/sysinfo:

$	ls	-1

ch02-sysinfo

CpuWidget.o

main.o

MainWindow.o

Makefile

MemoryWidget.o

moc_CpuWidget.cpp

moc_CpuWidget.o

moc_MainWindow.cpp

moc_MainWindow.o

moc_MemoryWidget.cpp

moc_MemoryWidget.o

moc_SysInfoWidget.cpp

moc_SysInfoWidget.o

SysInfoLinuxImpl.o

SysInfo.o

SysInfoWidget.o

ui_MainWindow.h

Now	this	is	very	interesting,	we	find	all	our	sources	compiled	in	the	usual	.o	extension
(SysInfo.o,	SysInfoWidget.o,	and	so	on)	but	there	are	also	a	lot	of	other	files	prefixed
with	moc_.	Here	lies	another	keystone	of	the	Qt	framework:	the	Meta	Object	Compiler.

Every	time	you	use	the	signal/slot	system,	you	have	to	include	the	macro	Q_OBJECT	in	your
header.	Each	time	you	emit	a	signal	or	receive	one	in	a	slot	and	you	did	not	write	any	specific
code	to	handle	it,	Qt	took	care	of	it.	This	is	done	by	generating	an	intermediate
implementation	of	your	class	(the	moc_*.cpp	file)	containing	everything	Qt	needs	to	properly
handle	your	signals	and	slots.

A	picture	is	worth	a	thousand	words.	Here	is	the	complete	compilation	pipeline	for	a	standard
qmake	project:

The	blue	boxes	refer	to	commands	and	the	wavy	boxes	are	documents	(sources	or	final
binary).	Let's	walk	through	the	steps:

1.	 The	qmake	command	is	executed	with	the	project	.pro	file.	It	generates	a	Makefile	based
on	the	project	file.

2.	 The	make	command	is	executed,	which	will	call	other	commands	to	generate	intermediate
files.

3.	 The	uic	command	stands	for	User	Interface	Compiler.	It	takes	all	the	.ui	files	(which	are
basically	an	XML	description	of	your	interface)	and	generates	the	corresponding	ui_*.h
header	that	you	include	in	your	own	.cpp	(in	our	ch02-sysinfo	project,	it	is
in	MainWindow.cpp).

4.	 The	moc	command	takes	every	class	containing	the	Q_OBJECT	macro	(paired	with	the
superclass	QObject)	and	generates	the	intermediate	moc_*.cpp	files,	which	include
everything	needed	to	make	the	signal/slot	framework	work.

5.	 The	g++	command	is	executed,	compiling	all	your	sources'	files	and	intermediate	moc

files	into	.o	files	before	finally	linking	everything	in	the	binary	ch02-sysinfo.

Tip

Note	that	if	you	add	a	Q_OBJECT	macro	after	the	creation	of	a	class,	sometimes	the	compiler
will	complain	about	your	signals	and	slots.	To	fix	this,	simply	run	the	qmake	command
from	Build	|	Run	qmake.	You	can	now	see	that	this	stems	from	the	fact	that	the	Makefile	has
to	be	regenerated	to	include	the	generation	of	the	new	intermediate	moc	file.

Generally,	source	code	generation	is	regarded	as	bad	practice	in	the	developer	community.	Qt
has	been	criticized	on	this	topic	for	a	long	time.	We	always	fear	that	the	machines	does	some
kind	of	voodoo	behind	our	back.	Unfortunately,	C++	does	not	offer	any	practical	way	of
doing	code	introspection	(namely	reflection),	and	the	signal	and	slots	mechanism	needs	some
kind	of	metadata	about	your	class	to	resolve	your	signals	and	slots.	This	could	have	been
done	partly	with	the	C++	template	system,	but	this	solution	seemed	to	Qt	to	be	much	less
readable,	portable,	usable,	and	robust.	You	also	need	an	excellent	compiler	support	for
templates.	This	cannot	be	assumed	in	the	wild	world	of	C++	compilers.

The	moc	system	is	now	fully	mature.	There	are	some	very	specific	edge	cases	where	it	could
bring	trouble	(some	have	reported	problems	in	very	specific	situations	with	Visual	Studio),
but	even	so,	we	think	that	the	gain	of	this	feature	largely	outweighs	the	possibly	encountered
issues.	The	signal/slot	system	is	a	marvel	to	work	with,	and	if	you	look	at	the	beginnings	of
Qt,	the	system	has	been	present	from	the	very	first	releases.	Adding	the	functor	notation	in	Qt
5	(which	gives	a	compile	time	check	of	the	validity	of	your	connect())	combined	with
C++11	lambas	makes	it	a	real	delight.

Beneath	Q_OBJECT	and	signals/slots
The	Qt	building	system	should	be	clearer	now.	Still,	the	Q_OBJECT	macro	and	the
signal/slot/emit	keywords	are	still	black	boxes.	Let's	dive	into	Q_OBJECT.

The	truth	lies	in	the	source	code;	Q_OBJECT	is	defined	in	the	file	qobjectdefs.h	(in	Qt	5.7):

#define	Q_OBJECT	\	

public:	\	

				//	skipped	details	

				static	const	QMetaObject	staticMetaObject;	\	

				virtual	const	QMetaObject	*metaObject()	const;	\	

				virtual	void	*qt_metacast(const	char	*);	\	

				virtual	int	qt_metacall(QMetaObject::Call,	int,	void	**);	\	

				QT_TR_FUNCTIONS	\	

private:	\	

				//	skipped	details		

qt_static_metacall(QObject	*,	QMetaObject::Call,	int,	void	**);	

This	macro	defines	some	static	functions	and	a	static	QMetaObject.	The	body	of	these	static
functions	is	implemented	in	the	generated	moc	file.	We	will	not	drown	you	in	the	gory	details
of	the	QMetaObject	class.	The	role	of	this	class	is	to	store	all	the	metainformation	for
the	QObject	subclass.	It	also	maintains	a	correspondence	table	between	the	signals	and	slots	of
your	class,	and	to	the	signals	and	slots	of	any	connected	class.	Each	signal	and	each	slot	is
assigned	with	a	unique	index:

The	metaObject()	function	returns	the	&staticMetaObject	for	a	normal	Qt	class	and
a	dynamicMetaObject	when	working	with	QML	objects.
The	qt_metacast()	function	performs	a	dynamic	cast	using	the	name	of	the	class.	This
function	is	required	because	Qt	does	not	rely	on	standard	C++	RTTI	(Runtime	Type
Information)	to	retrieve	meta	data	about	an	object	or	a	class.
The	qt_metacall()directly	calls	an	internal	signal	or	slot	by	its	index.	Because	an	index
is	used	rather	than	a	pointer,	there	is	no	pointer	dereferencing,	and	the	generated	switch
case	can	be	heavily	optimized	by	the	compiler	(the	compiler	can	directly	include	the	jump
instruction	to	the	specific	case	very	early	on,	avoiding	a	lot	of	branch	evaluation).	Thus,
the	execution	of	the	signal/slot	mechanism	is	quite	fast.

Qt	also	adds	non-standard	C++	keywords	to	manage	the	signal/slot	mechanism,	namely	
signals,	slots,	and	emit.	Let's	see	what	is	behind	each	one	and	see	how	everything	fits	inside
a	connect()	function.

The	slots	and	signals	keywords	are	also	defined	in	qobjectdefs.h:

#					define	slots	

#					define	signals	public	

That	is	right:	slots	points	to	nothing	and	the	signals	keyword	is	just	a	placeholder	for
the	public	keyword.	All	your	signals/slots	are	just...	functions.	The	signals	keyword	is
forced	to	be	public	to	make	sure	that	your	signal	functions	are	visible	outside	of	your	class
(what	is	the	point	of	a	private	signal	anyway?).	The	Qt	magic	is	simply	the	ability	to	emit
a	signal	keyword	to	any	connected	slot	keyword	without	knowing	the	detail	of	the	class
implementing	this	slot.	Everything	is	done	through	the	QMetaObject	class	implementation	in
the	moc	file.	When	a	signal	keyword	is	emitted,	the	function	QMetaObject::activate()	is
called	with	the	changed	value	and	the	signals	index.

The	last	definition	to	study	is	emit:

#	define	emit	

So	many	definitions	of	nothing,	it	is	almost	absurd!	The	emit	keyword	is	completely	useless
from	a	code	perspective;	moc	plainly	ignores	it	and	nothing	particular	happens	with	it
afterwards.	It	is	merely	a	hint	for	the	developer	to	notice	he	is	working	with	signal/slots
rather	than	plain	functions.

To	trigger	a	slot,	you	must	connect	your	signal	keyword	to	it	using	the	QObject::connect()
function.	This	function	creates	a	new	Connection	instance	that	is	defined	in	qobject_p.h:

struct	Connection	

				{	

								QObject	*sender;	

								QObject	*receiver;	

								union	{	

												StaticMetaCallFunction	callFunction;	

												QtPrivate::QSlotObjectBase	*slotObj;	

								};	

								//	The	next	pointer	for	the	singly-linked	ConnectionList	

								Connection	*nextConnectionList;	

								//senders	linked	list	

								Connection	*next;	

								Connection	**prev;	

								...	

				};	

The	Connection	instance	stores	a	pointer	to	the	signal	emitter	class	(sender),	the	slot	receiver
class	(receiver),	and	the	indexes	of	the	connected	signal	and	slot	keywords.	When	a	signal
is	emitted,	every	connected	slot	must	be	called.	To	be	able	to	do	this,	every	QObject	has	a
linked	list	of	Connection	instances	for	each	of	its	signal,	and	the	same	linked	list
of	Connection	for	each	of	its	slot	keywords.

This	pair	of	linked	lists	allows	Qt	to	properly	walk	through	each	dependent	slot/signal
couple	to	trigger	the	right	functions	using	the	indexes.	The	same	reasoning	is	used	to	handle
the	receiver	destruction:	Qt	walks	through	the	double	linked	list	and	removes	the	object	from

where	it	was	connected.

This	walk	happens	in	the	famous	UI	thread,	where	the	whole	message	loop	is	processed	and
every	connected	signal/slot	is	triggered	according	to	the	possible	events	(mouse,	keyboard,
network,	and	so	on).	Because	the	QThread	class	inherits	the	QObject,	any	QThread	can	use	the
signal/slot	mechanism.	Additionally,	the	signals	keyword	can	be	posted	to	other	threads
where	they	will	be	processed	in	the	receiving	threads'	event	loop.

Summary
In	this	chapter,	we	created	a	cross-platform	SysInfo	application.	We	covered	the	singleton	and
the	strategy	pattern	to	have	a	neat	code	organization	with	platform-specific	code.	You	learned
to	use	the	Qt	Charts	module	to	display	system	information	in	real	time.	Finally,	we	took	a
deep	dive	into	the	qmake	command	to	see	how	Qt	implements	the	signal/slot	mechanism,	and
to	see	what	is	hidden	behind	Qt-specific	keywords	(emit,	signals,	and	slots).

By	now,	you	should	have	a	clear	picture	of	how	Qt	works	and	how	you	can	tackle	a	cross-
platform	application.	In	the	next	chapter,	we	will	look	at	how	you	can	split	a	bigger	project	in
order	to	keep	your	sanity	as	a	maintainer.	We	will	study	a	fundamental	pattern	in	Qt--the
Model/View--and	discover	how	to	use	a	database	with	Qt.

Chapter	3.		Dividing	Your	Project	and
Ruling	Your	Code
The	last	chapter	delved	into	qmake	to	study	what	lies	beneath	the	signal/slot	system	and
covered	a	reasonable	approach	to	implementing	platform-specific	code.	This	chapter	wants	to
show	you	how	a	project	can	be	properly	divided	to	enjoy	the	maximum	leverage	from	the	Qt
framework.

To	do	this,	you	will	create	a	gallery	application	that	handles	albums	and	pictures.	You	will	be
able	to	create,	read,	update	and	delete	any	album	and	display	the	pictures	in	a	grid	of
thumbnails	or	in	full	resolution.	Everything	will	be	persisted	in	a	SQL	database.

This	chapter	lays	the	foundations	of	the	gallery	by	creating	a	core	library	that	will	be	used	in
the	following	two	chapters:	Chapter	4,	Conquering	the	Desktop	UI,	and	Chapter	5,	Dominating
the	Mobile	UI.

This	chapter	covers	the	following	topics:

Application/library	project	separation
Database	interaction	with	Qt
Smart	pointers	with	C++14
Model/View	architecture	in	Qt	with	an	implementation	of	the	model

Designing	a	maintainable	project
The	first	step	in	designing	a	maintainable	project	is	to	properly	split	it	in	clearly	defined
modules.	A	common	approach	is	to	separate	the	engine	from	the	user	interface.	This
separation	forces	you	to	reduce	coupling	between	the	different	parts	of	your	code	and	make	it
more	modular.

This	is	exactly	the	approach	we	will	take	with	the	gallery	application.	The	project	will	be
divided	into	three	sub-projects:

The	sub-projects	are	as	follows:

gallery-core:	This	is	a	library	containing	the	core	of	the	application	logic:	the	data
classes	(or	business	classes),	persistent	storage	(in	SQL),	and	the	model	that	makes	the
storage	available	to	the	UI	through	a	single	entry	point.
gallery-desktop:	This	is	a	Qt	widgets	application	that	will	depend	on	the	gallery-core
library	to	retrieve	data	and	display	it	to	the	user.	This	project	will	be	covered	in	Chapter
4,	Conquering	the	Desktop	UI.
gallery-mobile:	This	is	a	QML	application	targeted	at	mobile	platforms	(Android	and
iOS).	It	will	also	rely	on	gallery-core.	This	project	will	be	covered	in	Chapter
5,	Dominating	the	Mobile	UI.

As	you	can	see,	each	layer	has	a	single	responsibility.	This	principle	is	applied	to	both	the
project	structure	and	the	code	organization.	Throughout	these	three	projects,	we	will
endeavor	to	live	up	to	the	motto	of	the	chapter:	"Divide	your	project	and	rule	your	code".

To	separate	your	Qt	project	this	way,	we	will	create	a	different	kind	of	project,	a	Subdirs
project:

1.	 Click	on	File	|	New	File	or	Project.
2.	 In	the	Projects	types,	select	Other	Project	|	Subdirs	Project	|	Choose.

3.	 Name	it	ch03-gallery-core	and	then	click	on	Choose.
4.	 Select	your	latest	Qt	Desktop	Kit,	and	then	click	on	Next	|	Finish	&	Add	Subproject.

Here,	Qt	Creator	created	the	parent	project,	ch03-gallery-core,	which	will	host	our	three
sub-projects	(gallery-core,	gallery-desktop,	and	gallery-mobile).	The	parent	project	has
neither	code	nor	a	compilation	unit	in	itself,	it	is	simply	a	convenient	way	to	group
multiple	.pro	projects	and	express	the	dependencies	between	them.

The	next	step	is	to	create	the	first	subdir	project,	which	Qt	Creator	proposed	immediately
when	you	clicked	on	Finish	&	Add	Subproject.	We	will	start	with	gallery-core:

1.	 Select	Library	in	the	Projects	tab.
2.	 Select	C++	Library.
3.	 Choose	the	Shared	Library	type,	and	name	it	gallery-core,	and	click	on	Next.
4.	 Select	the	modules,	QtCore,	and	QtSql,	and	then	click	on	Next.
5.	 Type	Album	in	the	Class	name	field,	and	click	on	Next.	Qt	Creator	will	generate	the

basic	skeleton	of	a	library	with	this	class	as	an	example.
6.	 Check	that	the	project	is	properly	added	as	a	sub-project	of	ch03-gallery-core.pro	and

click	on	Finish.

Before	delving	into	gallery-core	code,	let's	study	what	Qt	Creator	just	made	for	us.	Open	the
parent	.pro	file,	ch03-gallery-core.pro:

TEMPLATE	=	subdirs	

	

SUBDIRS	+=	\	

				gallery-core	

Until	now,	we	used	the	TEMPLATE	=	app	syntax	in	our	.pro	files.	The	subdirs	project
template	indicates	to	Qt	that	it	should	search	for	sub-projects	to	compile.	When	we	added
the	gallery-core	project	to	ch03-gallery-core.pro,	Qt	Creator	added	it	to	the	SUBDIRS
variable.	As	you	can	see,	SUBDIRS	is	a	list,	so	you	can	add	as	many	sub-projects	as	you	want.

When	compiling	ch03-gallery-core.pro,	Qt	will	scan	each	SUBDIRS	value	to	compile	them.
We	can	now	switch	to	gallery-core.pro:

QT							+=	sql	

QT							-=	gui	

	

TARGET	=	gallery-core	

TEMPLATE	=	lib	

	

DEFINES	+=	GALLERYCORE_LIBRARY	

SOURCES	+=	Album.cpp	

HEADERS	+=	Album.h\	

								gallery-core_global.h	

	

unix	{	

				target.path	=	/usr/lib	

				INSTALLS	+=	target	

}	

Let's	see	how	this	works:

The	QT	has	appended	the	sql	module	and	removed	the	gui	module.	By	default,	QtGui	is
always	included	and	has	to	be	removed	explicitly.
The	TEMPLATE	value	is	different,	again.	We	use	lib	to	tell	qmake	to	generate	a	Makefile
that	will	output	a	shared	library	named	gallery-core	(as	specified	by	the	TARGET
variable).
The	DEFINES	+=	GALLERY_CORE_LIBRARY	syntax	is	a	compilation	flag	that	lets	the
compiler	know	when	it	should	import	or	export	library	symbols.	We	will	come	back
soon	to	this	notion.
The	HEADERS	contains	our	first	class	Album.h,	but	also	another	generated
header:	gallery-core_global.h.	This	file	is	syntactic	sugar	provided	by	Qt	to	ease	the
pain	of	a	cross-platform	library.
The	unix	{	...	}	scope	specifies	the	installation	destination	of	the	library.	This
platform	scope	is	generated	because	we	created	the	project	on	Linux.	By	default	it	will
try	to	install	the	library	in	the	system	library	path	(/usr/lib).

Please	remove	the	unix	scope	altogether,	we	don't	need	to	make	the	library	available	system-
wide.

To	have	a	better	understanding	of	the	cross-platform	shared	object	issue,	you	can	open
gallery-core_global.h:

#include	<QtCore/qglobal.h>	

	

#if	defined(GALLERYCORE_LIBRARY)	

#		define	GALLERYCORESHARED_EXPORT	Q_DECL_EXPORT	

#else	

#		define	GALLERYCORESHARED_EXPORT	Q_DECL_IMPORT	

#endif	

We	encounter	again	the	GALLERYCORE_LIBRARY	defined	in	gallery-core.pro	file.	Qt	Creator
generated	a	useful	piece	of	code	for	us:	the	cross-platform	way	to	handle	symbol	visibility	in
a	shared	library.

When	your	application	links	to	a	shared	library,	symbol	functions,	variables,	or	classes	must
be	marked	in	a	special	way	to	be	visible	by	the	application	using	the	shared	library.	The
default	visibility	of	a	symbol	depends	on	the	platform.	Some	platforms	will	hide	symbols	by
default,	other	platforms	will	make	them	public.	Of	course,	each	platform	and	compiler	has	its

own	macros	to	express	this	public/private	notion.

To	obviate	the	whole	#ifdef	windows	#else	boilerplate	code,	Qt	provides	a	Q_DECL_EXPORT
(if	we	are	compiling	the	library)	and	Q_DECL_IMPORT	(if	we	are	compiling	your	application
using	the	shared	library).	Thus,	throughout	the	symbols	you	want	to	mark	as	public,	you	just
have	to	use	the	GALLERYCORESHARED_EXPORT	macro.

An	example	is	available	in	the	Album.h	file:

#ifndef	ALBUM_H	

#define	ALBUM_H	

	

#include	"gallery-core_global.h"	

	

class	GALLERYCORESHARED_EXPORT	Album	

{	

	

public:	

				Album();	

};	

	

#endif	//	ALBUM_H	

You	include	the	proper	gallery-core_global.h	file	to	have	access	to	the	macro	and	you	use
it	just	after	the	class	keyword.	It	does	not	pollute	your	code	too	much	and	is	still	cross-
platform.

Note

Another	possibility	is	to	make	a	Statically	Linked	Library.	This	path	is	interesting	if	you
want	fewer	dependencies	to	handle	(a	single	binary	is	always	easier	to	deploy).	There	are
several	downsides:

Increased	compilation	time:	each	time	you	modify	the	library,	the	application	will	have
to	be	recompiled	as	well.
Tighter	coupling,	multiple	applications	cannot	link	to	your	library.	Each	one	of	them
must	embed	it.

Defining	data	classes
We	are	building	our	gallery	from	the	ground	up.	We	will	start	with	the	implementation	of	our
data	classes	to	be	able	to	properly	write	the	database	layer.	The	application	aims	to	organize
pictures	into	albums.	Hence,	the	two	obvious	classes	are	Album	and	Picture.	In	our	example,
an	album	simply	has	a	name.	A	Picture	class	must	belong	to	an	Album	class	and	has	a	file
path	(the	path	on	your	filesystem	where	the	original	file	is	located).

The	Album	class	has	already	been	created	on	project	creation.	Open	the	Album.h	file	and
update	it	to	include	the	following	implementation:

#include	<QString>	

	

#include	"gallery-core_global.h"	

	

class	GALLERYCORESHARED_EXPORT	Album	

{	

public:	

				explicit	Album(const	QString&	name	=	"");	

	

				int	id()	const;	

				void	setId(int	id);	

				QString	name()	const;	

				void	setName(const	QString&	name);	

	

private:	

				int	mId;	

				QString	mName;	

};	

As	you	can	see,	the	Album	class	contains	only	a	mId	variable	(the	database	ID)	and	a	mName
variable.	In	a	typical	OOP	(Object	Oriented	Paradigm)	fashion,	the	Album	class	would	have
had	a	QVector<Picture>mPictures	field.	We	did	not	do	it	on	purpose.	By	decoupling	these
two	objects,	we	will	have	more	flexibility	when	we	want	to	load	an	album	without	pulling	the
potential	thousands	of	associated	pictures.	The	other	problem	in	having	mPictures	in
the	Album	class	is	that	the	developer	(you	or	anybody	else)	using	this	code	will	ask	himself:
when	is	mPictures	loaded?	Should	I	do	a	partial	load	of	the	Album	and	have	an
incomplete	Album	or	should	I	always	load	Album	with	every	picture	in	it?

By	completely	removing	the	field,	the	question	ceases	to	exist,	and	the	code	is	simpler	to
grasp.	The	developer	knows	intuitively	that	he	will	have	to	explicitly	load	the	pictures	if	he
want	them;	otherwise,	he	can	continue	with	this	simple	Album	class.

The	getters	and	setters	are	obvious	enough;	we	will	let	you	implement	them	without	showing
them	to	you.	We	will	only	take	a	look	at	the	Album	class'	constructor	in	Album.cpp:

Album::Album(const	QString&	name)	:	

				mId(-1),	

				mName(name)	

{	

}	

The	mId	variable	is	initialized	to	-1	to	be	sure	that,	by	default,	an	invalid	id	is	used,	and
the	mName	variable	is	assigned	a	name	value.

We	can	now	proceed	to	the	Picture	class.	Create	a	new	C++	class	named	Picture	and
open	Picture.h	to	modify	it	like	so:

#include	<QUrl>	

#include	<QString>	

	

#include	"gallery-core_global.h"	

	

class	GALLERYCORESHARED_EXPORT	Picture	

{	

public:	

				Picture(const	QString&	filePath	=	"");	

				Picture(const	QUrl&	fileUrl);	

	

				int	id()	const;	

				void	setId(int	id);	

	

				int	albumId()	const;	

				void	setAlbumId(int	albumId);	

	

				QUrl	fileUrl()	const;	

				void	setFileUrl(const	QUrl&	fileUrl);	

private:	

				int	mId;	

				int	mAlbumId;	

				QUrl	mFileUrl;	

};	

Do	not	forget	to	add	the	GALLERYCORESHARED_EXPORT	macro	right	before	the	class	keyword
to	export	the	class	from	the	library.	As	a	data	structure,	Picture	has	a	mId	variable,	belongs	to
a	mAlbumId	variable,	and	has	a	mUrl	value.	We	use	the	QUrl	type	to	make	path	manipulation
easier	to	use	depending	on	the	platform	(desktop	or	mobile).

Let's	take	a	look	at	Picture.cpp:

#include	"Picture.h"	

Picture::Picture(const	QString&	filePath)	:	

				Picture(QUrl::fromLocalFile(filePath))	

{	

}	

	

Picture::Picture(const	QUrl&	fileUrl)	:	

				mId(-1),	

				mAlbumId(-1),	

				mFileUrl(fileUrl)	

{	

}	

	

QUrl	Picture::fileUrl()	const	

{	

				return	mFileUrl;	

}	

	

void	Picture::setFileUrl(const	QUrl&	fileUrl)	

{	

				mFileUrl	=	fileUrl;	

}	

In	the	first	constructor,	the	static	function,	QUrl::fromLocalFile,	is	called	to	provide	a	QUrl
object	to	the	other	constructor,	which	takes	a	QUrl	parameter.

The	ability	to	call	other	constructors	is	a	nice	addition	in	C++11.

Storing	your	data	in	a	database
Now	that	the	data	classes	are	ready,	we	can	proceed	to	implement	the	database	layer.	Qt
provides	a	ready-to-use	sql	module.	Various	databases	are	supported	in	Qt	using	SQL
database	drivers.	In	gallery-desktop,	we	will	use	the	SQLITE3	driver,	which	is	included	in
the	sql	module	and	perfectly	fits	the	use	case:

A	very	simple	database	schema:	No	need	for	complex	queries
Very	few	or	no	concurrent	transactions:	No	need	for	a	complex	transaction	model
A	single-purpose	database:	No	need	to	spawn	a	system	service,	the	database	is	stored	in
a	single	file	and	does	not	need	to	be	accessed	by	multiple	applications

The	database	will	be	accessed	from	multiple	locations;	we	need	to	have	a	single	entry	point
for	it.	Create	a	new	C++	class	named	DatabaseManager	and	modify	DatabaseManager.h	to	look
like	this:

#include	<QString>	

	

class	QSqlDatabase;	

	

const	QString	DATABASE_FILENAME	=	"gallery.db";	

	

class	DatabaseManager	

{	

public:	

				static	DatabaseManager&	instance();	

				~DatabaseManager();	

	

protected:	

				DatabaseManager(const	QString&	path	=	DATABASE_FILENAME);	

				DatabaseManager&	operator=(const	DatabaseManager&	rhs);	

	

private:	

				QSqlDatabase*	mDatabase;	

};	

The	first	thing	to	notice	is	that	we	implement	the	singleton	pattern	in	the	DatabaseManager
class,	like	we	did	in	the	Transforming	SysInfo	in	a	singleton	section	from	Chapter
2,	Discovering	QMake	Secrets.	The	DatabaseManager	class	will	open	the	connection	in
the	mDatabase	field	and	lend	it	to	other	possible	classes.

Also,	QSqlDatabase	is	forward-declared	and	used	as	a	pointer	for	the	mDatabase	field.	We
could	have	included	the	QSqlDatabase	header,	but	we	would	have	had	a	non-desired	side-
effect:	every	file,	which	includes	DatabaseManager,	must	also	include	QSqlDatabase.	Thus,	if
we	ever	have	some	transitive	inclusion	in	our	application	(which	links	to	the	gallery-core
library),	the	application	is	forced	to	enable	the	sql	module.	As	a	consequence,	the	storage

layer	leaks	through	the	library.	The	application	should	not	have	any	knowledge	about	the
storage	layer	implementation.	For	all	the	application	cares,	it	could	be	in	SQL,	XML,	or
anything	else;	the	library	is	a	black	box	that	should	honor	the	contract	and	persist	the	data.

Let's	switch	to	DatabaseManager.cpp	and	open	the	database	connection:

#include	"DatabaseManager.h"	

	

#include	<QSqlDatabase>	

	

DatabaseManager&	DatabaseManager::instance()	

{	

				static	DatabaseManager	singleton;	

				return	singleton;	

}	

	

DatabaseManager::DatabaseManager(const	QString&	path)	:	

				mDatabase(new	QSqlDatabase(QSqlDatabase::addDatabase("QSQLITE")))	

{	

				mDatabase->setDatabaseName(path);	

				mDatabase->open();	

}	

	

DatabaseManager::~DatabaseManager()	

{	

				mDatabase->close();	

				delete	mDatabase;	

}	

The	correct	database	driver	is	selected	on	the	mDatabase	field	initialization	with
the	QSqlDatabase::addDatabase("QSQLITE")	function	call.	The	following	steps	are	just	a
matter	of	configuring	the	database	name	(which	is	incidentally	the	file	path	in	SQLITE3)	and
opening	the	connection	with	the	mDatabase->open()	function.	In	the	DatabaseManager
destructor,	the	connection	is	closed	and	the	mDatabase	pointer	is	properly	deleted.

The	database	link	is	now	opened;	all	we	have	to	do	is	to	execute	our	Album	and	Picture
queries.	Implementing	the	CRUD	(Create/Read/Update/Delete)	for	both	our	data	classes
in	DatabaseManager	would	quickly	push	DatabaseManager.cpp	to	be	several	hundreds	of	lines
long.	Add	a	few	more	tables	and	you	can	already	see	what	a	monster	DatabaseManager	would
turn	into.

For	this	reason,	each	of	our	data	classes	will	have	a	dedicated	database	class,	responsible	for
all	the	database	CRUD	operations.	We	will	start	with	the	Album	class;	create	a	new	C++	class
named	AlbumDao	(data	access	object)	and	update	AlbumDao.h:

class	QSqlDatabase;	

	

class	AlbumDao	

{	

public:	

				AlbumDao(QSqlDatabase&	database);	

				void	init()	const;	

	

private:	

				QSqlDatabase&	mDatabase;	

};	

The	AlbumDao	class's	constructor	takes	a	QSqlDatabase&	parameter.	This	parameter	is	the
database	connection	that	will	be	used	for	all	the	SQL	queries	done	by	the	AlbumDao	class.
The	init()	function	aims	to	create	the	albums	table	and	should	be	called	when	mDatabase	is
opened.

Let's	see	the	implementation	of	AlbumDao.cpp:

#include	<QSqlDatabase>	

#include	<QSqlQuery>	

	

#include	"DatabaseManager.h"	

	

AlbumDao::AlbumDao(QSqlDatabase&	database)	:	

				mDatabase(database)	

{	

}	

	

void	AlbumDao::init()	const	

{	

				if	(!mDatabase.tables().contains("albums"))	{	

								QSqlQuery	query(mDatabase);	

								query.exec("CREATE	TABLE	albums	(id	INTEGER	PRIMARY	KEY	AUTOINCREMENT,	

name	TEXT)");	

				}	

}	

As	usual,	the	mDatabase	field	is	initialized	with	the	database	parameter.	In	the	init()	function,
we	can	see	a	real	SQL	request	in	action.	If	the	table	albums	class	does	not	exist,	a	QSqlQuery
query	is	created	that	will	use	the	mDatabase	connection	to	be	executed.	If	you	omit	mDatabase,
the	query	will	use	a	default	anonymous	connection.	The	query.exec()	function	is	the	simplest
manner	of	executing	a	query:	you	simply	pass	the	QString	type	of	your	query	and	it's	done.
Here	we	create	the	albums	table	with	the	fields	matching	the	data	class	Album	(id	and	name).

Tip

The	QSqlQuery::exec()	function	returns	a	bool	value	that	indicates	if	the	request	has	been
successful.	In	your	production	code,	always	check	this	value.	You	can	further	investigate	the
error	with	QSqlQuery::lastError().	An	example	is	available	in	the	source	code	of	the
chapter	in	DatabaseManager::debugQuery().

The	skeleton	of	AlbumDao	class	is	done.	The	next	step	is	to	link	it	to	the	DatabaseManager
class.	Update	the	DatabaseManager	class	like	so:

//	In	DatabaseManager.h	

#include	"AlbumDao.h"	

	

...	

	

private:	

				QSqlDatabase*	mDatabase;	

	

public:	

				const	AlbumDao	albumDao;	

};	

	

//	In	DatabaseManager.cpp	

DatabaseManager::DatabaseManager(const	QString&	path)	:	

				mDatabase(new	QSqlDatabase(QSqlDatabase::addDatabase("QSQLITE"))),	

				albumDao(*mDatabase)	

{	

				mDatabase->setDatabaseName(path);	

				mDatabase->open();	

	

				albumDao.init();	

}	

The	albumDao	field	is	declared	as	a	public	const	AlbumDao	in	the	DatabaseManager.h	file.
This	needs	some	explanation:

The	public	visibility	is	to	give	access	to	DatabaseManager	clients	to	the	albumDao	field.
The	API	becomes	intuitive	enough;	if	you	want	to	make	a	database	operation	on
an	album,	just	call	DatabaseManager::instance().albumDao.
The	const	keyword	is	to	make	sure	that	nobody	can	modify	albumDao.	Because	it
is	public,	we	cannot	guarantee	the	safety	of	the	object	(anybody	could	modify	the
object).	As	a	side-effect,	we	force	every	public	function	of	AlbumDao	to	be	const.	This
makes	sense;	after	all,	the	AlbumDao	field	could	have	been	a	namespace	with	a	bunch	of
functions.	It	is	more	convenient	for	it	to	be	a	class	because	we	can	keep	the	reference	to
the	database	connection	with	the	mDatabase	field.

In	the	DatabaseManager	constructor,	the	albumDao	class	is	initialized	with	the	mDatabase
dereferenced	pointer.	The	albumDao.init()	function	is	called	after	the	database	connection
has	opened.

We	can	now	proceed	to	implement	more	interesting	SQL	queries.	We	can	start	with	the
creation	of	a	new	album	in	the	AlbumDao	class:

//	In	AlbumDao.h	

class	QSqlDatabase;	

class	Album;	

	

class	AlbumDao	

{	

public:	

				AlbumDao(QSqlDatabase&	database);	

				void	init()	const;	

					

				void	addAlbum(Album&	album)	const;	

				...	

};	

	

//	In	AlbumDao.cpp	

	

#include	<QSqlDatabase>	

#include	<QSqlQuery>	

#include	<QVariant>	

	

...	

	

void	AlbumDao::addAlbum(Album&	album)	const	

{	

				QSqlQuery	query(mDatabase);	

				query.prepare("INSERT	INTO	albums	(name)	VALUES	(:name)");	

				query.bindValue(":name",	album.name());	

				query.exec();	

				album.setId(query.lastInsertId().toInt());	

}	

The	addAlbum()	function	takes	an	album	parameter	to	extract	its	information	and	execute	the
corresponding	query.	Here,	we	approach	the	prepared	query	notion:	the	query.prepare()
function	takes	a	query	parameter	which	contains	placeholders	for	parameters	provided	later.
We	will	provide	the	name	parameter	with	the	syntax	:name.	Two	syntaxes	are	supported:	Oracle
style	with	a	colon-name	(for	example,	:name)	or	ODBC	style	with	a	question	mark	(for
example,	?name).

We	then	bind	the	bind	:name	syntax	to	the	value	of	the	album.name()	function.
Because	QSqlQuery::bind()	expects	a	QVariant	as	a	parameter	value,	we	have	to	add
the	include	directive	to	this	class.

In	a	nutshell,	a	QVariant	is	a	generic	data	holder	that	accepts	a	wide	range	of	primitive	types
(char,	int,	double,	and	so	on)	and	complex	types	(QString,	QByteArray,	QUrl,	and	so	on).

When	the	query.exec()	function	is	executed,	the	bound	values	are	properly	replaced.
The	prepare()	statement	technique	makes	the	code	more	robust	to	SQL	injection	(injecting	a
hidden	request	would	fail)	and	more	readable.

The	execution	of	the	query	modifies	the	state	of	the	object	query	itself.	The	QSqlQuery	query
is	not	simply	a	SQL	query	executor,	it	also	contains	the	state	of	the	active	query.	We	can

retrieve	information	about	the	query	with	the	query.lastInsertId()	function,	which	returns
a	QVariant	value	containing	the	ID	of	the	album	row	we	just	inserted.	This	id	is	given	to
the	album	provided	in	the	addAlbum()	parameter.	Because	we	modify	album,	we	cannot	mark
the	parameter	as	const.	Being	strict	about	the	const	correctness	of	your	code	is	a	good	hint
for	a	fellow	developer,	who	can	deduce	that	your	function	might	(or	not)	modify	the	passed
parameter.

The	remaining	update	and	delete	operations	follow	strictly	the	same	pattern	used	for
addAlbum().	We	will	just	provide	the	expected	function	signatures	in	the	next	code	snippet.
Please	refer	to	the	source	code	of	the	chapter	for	the	complete	implementation.	However,	we
need	to	implement	the	request	to	retrieve	all	the	albums	in	the	database.	This	one	deserves	a
closer	look:

//	In	AlbumDao.h	

#include	<QVector>	

	

				...	

				void	addAlbum(Album&	album)	const;	

				void	updateAlbum(const	Album&	album)	const;	

				void	removeAlbum(int	id)	const;	

				QVector<Album*>	albums()	const;	

				...	

};	

	

//	In	AlbumDao.cpp	

QVector<Album*>	AlbumDao::albums()	const	

{	

				QSqlQuery	query("SELECT	*	FROM	albums",	mDatabase);	

				query.exec();	

				QVector<Album*>	list;	

				while(query.next())	{	

								Album*	album	=	new	Album();	

								album->setId(query.value("id").toInt());	

								album->setName(query.value("name").toString());	

								list.append(album);	

				}	

				return	list;	

}	

The	albums()	function	must	return	a	QVector<Album*>	value.	If	we	take	a	look	at	the	body	of
the	function,	we	see	yet	another	property	of	QSqlQuery.	To	walk	through	multiple	rows	for	a
given	request,	query	handles	an	internal	cursor	pointing	to	the	current	row.	We	can	then
proceed	to	create	a	new	Album*()	function	and	fill	it	with	the	row	data	with
the	query.value()	statement,	which	takes	a	column	name	parameter	and	returns	a	QVariant
value	that	is	casted	to	the	proper	type.	This	new	album	parameter	is	appended	to	the	list	and,
finally,	this	list	is	returned	to	the	caller.

The	PictureDao	class	is	very	similar	to	the	AlbumDao	class,	both	in	usage	and	implementation.

The	main	difference	is	that	a	picture	has	a	foreign	key	to	an	album.	The	PictureDao	function
must	be	conditioned	by	an	albumId	parameter.	The	following	code	snippet	shows
the	PictureDao	header	and	the	init()	function:

//	In	PictureDao.h	

#include	<QVector>	

	

class	QSqlDatabase;	

class	Picture;	

	

class	PictureDao	

{	

public:	

				explicit	PictureDao(QSqlDatabase&	database);	

				void	init()	const;	

	

				void	addPictureInAlbum(int	albumId,	Picture&	picture)	const;	

				void	removePicture(int	id)	const;	

				void	removePicturesForAlbum(int	albumId)	const;	

				QVector<Picture*>	picturesForAlbum(int	albumId)	const;	

	

private:	

				QSqlDatabase&	mDatabase;	

};	

	

//	In	PictureDao.cpp	

void	PictureDao::init()	const	

{	

				if	(!mDatabase.tables().contains("pictures"))	{	

								QSqlQuery	query(mDatabase);	

								query.exec(QString("CREATE	TABLE	pictures")	

								+	"	(id	INTEGER	PRIMARY	KEY	AUTOINCREMENT,	"	

								+	"album_id	INTEGER,	"	

								+	"url	TEXT)");	

				}	

}	

As	you	can	see,	multiple	functions	take	an	albumId	parameter	to	make	the	link	between	the
picture	and	the	owning	album	parameter.	In	the	init()	function,	the	foreign	key	is	expressed
in	the	album_id	INTEGER	syntax.	SQLITE3	does	not	have	a	proper	foreign	key	type.	It	is	a
very	simple	database	and	there	is	no	strict	constraint	for	this	type	of	field;	a	simple	integer	is
used.

Finally,	the	PictureDao	function	is	added	in	the	DatabaseManager	class	exactly	as	we	did
for	albumDao.	One	could	argue	that,	if	there	are	a	lot	of	Dao	classes,	adding	a	const	Dao
member	in	the	DatabaseManager	class	and	calling	the	init()	function	quickly	becomes
cumbersome.

A	possible	solution	could	be	to	make	an	abstract	Dao	class,	with	a	pure	virtual	init()

function.	The	DatabaseManager	class	would	have	a	Dao	registry,	which	maps	each	Dao	to
a	QString	key	with	a	QHash<QString,	const	Dao>	mDaos.	The	init()	function	call	would
then	be	called	in	a	for	loop	and	a	Dao	object	would	be	accessed	using	the	QString	key.	This	is
outside	the	scope	of	this	project,	but	is	nevertheless	an	interesting	approach.

Protecting	your	code	with	a	smart	pointer
The	code	we	just	described	is	fully	functional,	but,	it	can	be	strengthened,	specifically	with	the
function,	AlbumDao::albums().	In	this	function,	we	iterate	through	the	database	rows	and
create	a	new	Album	to	fill	a	list.	We	can	zoom	in	on	this	specific	code	section:

QVector<Album*>	list;	

while(query.next())	{	

				Album*	album	=	new	Album();	

				album->setId(query.value("id").toInt());	

				album->setName(query.value("name").toString());	

				list.append(album);	

}	

return	list;	

Let's	say	that	the	name	column	has	been	renamed	to	title.	If	you	forget	to
update	query.value("name"),	you	might	run	into	trouble.	The	Qt	framework	does	not	rely	on
exceptions,	but	this	cannot	be	said	for	every	API	available	in	the	wild.	An	exception	here
would	cause	a	memory	leak:	the	Album*	album	function	has	been	allocated	on	the	heap	but	not
released.	To	handle	this,	you	would	have	to	surround	the	risky	code	with	a	try	catch
statement	and	deallocate	the	album	parameter	if	an	exception	has	been	thrown.	Maybe	this
error	should	bubble	up;	hence,	your	trycatch	statement	is	only	there	to	handle	the	potential
memory	leak.	Can	you	picture	the	spaghetti	code	weaving	in	front	of	you?

The	real	issue	with	pointers	is	the	uncertainty	of	their	ownership.	Once	it	has	been	allocated,
who	is	the	owner	of	a	pointer?	Who	is	responsible	for	deallocating	the	object?	When	you
pass	a	pointer	as	a	parameter,	when	does	the	caller	retain	the	ownership	or	release	it	to	the
callee?

Since	C++11,	a	major	milestone	has	been	reached	in	memory	management:	the	smart	pointer
feature	has	been	stabilized	and	can	greatly	improve	the	safety	of	your	code.	The	goal	is	to
explicitly	indicate	the	ownership	of	a	pointer	through	simple	template	semantics.	There	are
three	types	of	smart	pointer:

The	unique_ptr	pointer	indicates	that	the	owner	is	the	only	owner	of	the	pointer
The	shared_ptr	pointer	indicates	that	the	pointer's	ownership	is	shared	among	several
clients
The	weak_ptr	pointer	indicates	that	the	pointer	does	not	belong	to	the	client

For	now,	we	will	focus	on	the		unique_ptr	pointer	to	understand	smart	pointer	mechanics.

A	unique_ptr	pointer	is	simply	a	variable	allocated	on	the	stack	that	takes	the	ownership	of
the	pointer	you	provide	with	it.	Let's	allocate	an	Album	with	this	semantic:

#include	<memory>	

void	foo()	

{	

				Album*	albumPointer	=	new	Album();	

				std::unique_ptr<Album>	album(albumPointer);	

				album->setName("Unique	Album");	

}	

The	whole	smart	pointer	API	is	available	in	the	memory	header.	When	we	declared	album	as
a	unique_ptr,	we	did	two	things:

We	allocated	on	the	stack	a	unique_ptr<Album>.	The	unique_ptr	pointer	relies	on
templates	to	check	at	compile	time	the	validity	of	the	pointer	type.
We	granted	the	ownership	of	albumPointer	memory	to	album.	From	this	point	on,	album
is	the	owner	of	the	pointer.

This	simple	line	has	important	ramifications.	First	and	foremost,	you	do	not	have	to	worry
anymore	about	the	pointer	life	cycle.	Because	a	unique_ptr	pointer	is	allocated	on	the	stack,
it	will	be	destroyed	as	soon	as	it	goes	out	of	scope.	In	this	example,	when	we	exit	foo(),	album
will	be	removed	from	the	stack.	The	unique_ptr	implementation	will	take	care	of	calling
the	Album	destructor	and	deallocating	the	memory.

Secondly,	you	explicitly	indicate	the	ownership	of	your	pointer	at	compile	time.	Nobody	can
deallocate	the	albumPointer	content	if	they	do	not	voluntarily	fiddle	with	your	unique_ptr
pointer.	Your	fellow	developers	will	also	know	with	a	single	glance	who	is	the	owner	of	your
pointer.

Note	that,	even	though	album	is	a	type	of	unique_ptr<Album>,	you	can	still	call	Album
functions	(for	example,	album->setName())	using	the	->	operator.	This	is	possible	thanks	to
the	overload	of	this	operator.	The	usage	of	the	unique_ptr	pointer	becomes	transparent.

Well,	this	use	case	is	nice,	but	the	purpose	of	a	pointer	is	to	be	able	to	allocate	a	chunk	of
memory	and	share	it.	Let's	say	the	foo()	function	allocates	the	album	unique_ptr	pointer	and
then	transfers	the	ownership	to	bar().	This	would	look	like	this:

void	foo()	

{	

				std::unique_ptr<Album>	album(new	Album());	

				bar(std::move(album));	

}	

	

void	bar(std::unique_ptr<Album>	barAlbum)	

{	

			qDebug()	<<	"Album	name"	<<	barAlbum->name();	

}	

Here,	we	introduce	the	std::move()	function:	its	goal	is	to	transfer	the	ownership	of
a	unique_ptr	function.	Once	bar(std::move(album))	has	been	called,	album	becomes	invalid.

You	can	test	it	with	a	simple	if	statement:	if	(album)	{	...	}.

From	now	on,	the	bar()	function	becomes	the	owner	of	the	pointer	(through	barAlbum)	by
allocating	a	new	unique_ptr	on	the	stack	and	it	will	deallocate	the	pointer	on	its	exit.	You	do
not	have	to	worry	about	the	cost	of	a	unique_ptr	pointer,	as	these	objects	are	very
lightweight	and	it	is	unlikely	that	they	will	affect	the	performance	of	your	application.

Again,	the	signature	of	bar()	tells	the	developer	that	this	function	expects	to	take	the
ownership	of	the	passed	Album.	Trying	to	pass	around	unique_ptr	without	the	move()
function	will	lead	to	a	compile	error.

Another	thing	to	note	is	the	different	meanings	of	the	.	(dot)	and	the	->	(arrow)	when
working	with	a	unique_ptr	pointer:

The	->	operator	dereferences	to	the	pointer	members	and	lets	your	call	function	on	your
real	object
The	.	operator	gives	you	access	to	the	unique_ptr	object	functions

The	unique_ptr	pointer	provides	various	functions.	Among	the	most	important	are:

The	get()	function	returns	the	raw	pointer.	The	album.get()	returns	an	Album*	value.
The	release()	function	releases	the	ownership	of	the	pointer	and	returns	the	raw	pointer.
The	album.release()	function	returns	an	Album*	value.
The	reset(pointer	p	=	pointer())	function	destroys	the	currently	managed	pointer
and	takes	ownership	of	the	given	parameter.	An	example	would	be	the	barAlbum.reset()
function,	which	destroys	the	currently	owned	Album*.	With	a
parameter,	barAlbum.reset(new	Album())	also	destroys	the	owned	object	and	takes	the
ownership	of	the	provided	parameter.

Finally,	you	can	dereference	the	object	with	the	*	operation,	meaning	*album	will	return
an	Album&	value.	This	dereferencing	is	convenient,	but	you	will	see	that	the	more	a	smart
pointer	is	used,	the	less	you	will	need	it.	Most	of	the	time,	you	will	replace	a	raw	pointer	with
the	following	syntax:

void	bar(std::unique_ptr<Album>&	barAlbum);	

Because	we	pass	the	unique_ptr	by	reference,	bar()	does	not	take	ownership	of	the	pointer
and	will	not	try	do	deallocate	it	upon	its	exit.	With	this,	there	is	no	need	to	use	move(album)
in	foo();	the	bar()	function	will	just	do	operations	on	the	album	parameter	but	will	not	take
its	ownership.

Now,	let's	consider	shared_ptr.	A	shared_ptr	pointer	keeps	a	reference	counter	on	a	pointer.
Each	time	a	shared_ptr	pointer	references	the	same	object,	the	counter	is	incremented;	when
this	shared_ptr	pointer	goes	out	of	scope,	the	counter	is	decremented.	When	the	counter

reaches	zero,	the	object	is	deallocated.

Let's	rewrite	our	foo()/bar()	example	with	a	shared_ptr	pointer:

#include	<memory>	

void	foo()	

{	

				std::shared_ptr<Album>	album(new	Album());	//	ref	counter	=	1	

				bar(album);	//	ref	counter	=	2	

}	//	ref	counter	=	0	

	

void	bar(std::shared_ptr<Album>	barAlbum)	

{	

			qDebug()	<<	"Album	name"	<<	barAlbum->name();	

}	//	ref	counter	=	1	

As	you	can	see,	the	syntax	is	very	similar	to	the	unique_ptr	pointer.	The	reference	counter	is
incremented	each	time	a	new	shared_ptr	pointer	is	allocated	and	points	to	the	same	data,	and
is	decremented	on	the	function	exit.	You	can	check	the	current	count	by	calling
the	album.use_count()	function.

The	last	smart	pointer	we	will	cover	is	the	weak_ptr	pointer.	As	the	name	suggests,	it	does	not
take	any	ownership	or	increment	the	reference	counter.	When	a	function	specifies	a	weak_ptr,
it	indicates	to	the	callers	that	it	is	just	a	client	and	not	an	owner	of	the	pointer.	If	we	re
implement	bar()	with	a	weak_ptr	pointer,	we	get:

#include	<memory>	

void	foo()	

{	

				std::shared_ptr<Album>	album(new	Album());	//	ref	counter	=	1	

				bar(std::weak_ptr<Album>(album));	//	ref	counter	=	1	

}	//	ref	counter	=	0	

	

void	bar(std::weak_ptr<Album>	barAlbum)	

{	

			qDebug()	<<	"Album	name"	<<	barAlbum->name();	

}	//	ref	counter	=	1	

If	the	story	stopped	here,	there	would	not	be	any	interest	in	using	a	weak_ptr	versus	a	raw
pointer.	The	weak_ptr	has	a	major	advantage	for	the	dangling	pointer	issue.	If	you	are
building	a	cache,	you	typically	do	not	want	to	keep	strong	references	to	your	object.	On	the
other	hand,	you	want	to	know	if	the	objects	are	still	valid.	By	using	weak_ptr,	you	know	when
an	object	has	been	deallocated.	Now,	consider	the	raw	pointer	approach:	your	pointer	might
be	invalid	but	you	do	not	know	the	state	of	the	memory.

There	is	another	semantic	introduced	in	C++14	that	we	have	to	cover:	make_unique.	This
keyword	aims	to	replace	the	new	keyword	and	construct	a	unique_ptr	object	in	an	exception-
safe	manner.	This	is	how	it	is	used:

unique_ptr<Album>	album	=	make_unique<Album>();	

The	make_unique	keyword	wraps	the	new	keyword	to	make	it	exception-safe,	specifically	in
this	situation:

foo(new	Album(),	new	Picture())	

This	code	will	be	executed	in	the	following	order:

1.	 Allocate	and	construct	the	Album	function.
2.	 Allocate	and	construct	the	Picture	function.
3.	 Execute	the	foo()	function.

If	new	Picture()	throws	an	exception,	the	memory	allocated	by	new	Album()	will	be	leaked.
This	is	fixed	by	using	the	make_unique	keyword:

foo(make_unique<Album>(),	make_unique<Picture>())	

The	make_unique	keyword	returns	a	unique_ptr	pointer;	the	C++	standard	committee	also
provided	an	equivalent	for	shared_ptr	in	the	form	of	make_shared,	which	follows	the	same
principle.

All	these	new	C++	semantics	try	very	hard	to	get	rid	of	new	and	delete.	Yet,	it	may	be
cumbersome	to	write	all	the	unique_ptr	and	make_unique	stuff.	The	auto	keyword	comes	to
the	rescue	in	our	album	creation:

auto	album	=	make_unique<Album>()	

This	is	a	radical	departure	from	the	common	C++	syntax.	The	variable	type	is	deduced,	there
is	no	explicit	pointer,	and	the	memory	is	automatically	managed.	After	some	time	with	smart
pointers,	you	will	see	fewer	and	fewer	raw	pointers	in	your	code	(and	even	fewer	delete,
which	is	such	a	relief).	The	remaining	raw	pointers	will	simply	indicate	that	a	client	is	using
the	pointer	but	does	not	own	it.

Overall,	C++11	and	C++14	smart	pointers	are	a	real	step	up	in	C++	code	writing.	Before
them,	the	bigger	the	code	base,	the	more	insecure	we	felt	about	memory	management.	Our
brain	is	just	bad	at	properly	grasping	complexity	at	such	a	level.	Smart	pointers	simply	make
you	feel	safe	about	what	you	write.	On	the	other	hand,	you	retain	full	control	of	the	memory.
For	performance-critical	code,	you	can	always	handle	the	memory	yourself.	For	everything
else,	smart	pointers	are	an	elegant	way	of	explicitly	indicating	your	object's	ownership	and
freeing	your	mind.

We	are	now	equipped	to	rewrite	the	little	insecure	snippet	in	the	AlbumDao::albums()
function.	Update	AlbumDao::albums()	like	so:

//	In	AlbumDao.h	

std::unique_ptr<std::vector<std::unique_ptr<Album>>>	albums()	const;	

	

//	In	AlbumDao.cpp	

unique_ptr<vector<unique_ptr<Album>>>	AlbumDao::albums()	const	

{	

				QSqlQuery	query("SELECT	*	FROM	albums",	mDatabase);	

				query.exec();	

				unique_ptr<vector<unique_ptr<Album>>>	list(new	vector<unique_ptr<Album>>

());	

				while(query.next())	{	

								unique_ptr<Album>	album(new	Album());	

								album->setId(query.value("id").toInt());	

								album->setName(query.value("name").toString());	

								list->push_back(move(album));	

				}	

				return	list;	

}	

Wow!	The	signature	of	the	album()	function	has	turned	into	something	very	peculiar.	Smart
pointers	are	supposed	to	make	your	life	easier,	right?	Let's	break	it	down	to	understand	a
major	point	of	smart	pointers	with	Qt:	container	behavior.

The	initial	goal	of	the	rewrite	was	to	secure	the	creation	of	album.	We	want	the	list	to	be	the
explicit	owner	of	the	album.	This	would	have	changed	our	list	type	(that	is	albums()	return
type)	to	QVector<unique_ptr<Album>>.	However,	when	the	list	type	is	returned,	its	elements
will	be	copied	(remember,	we	previously	defined	the	return	type	to	QVector<Album>).	A
natural	way	out	of	this	would	be	to	return	a	QVector<unique_ptr<Album>>*	type	to	retain	the
uniqueness	of	our	Album	elements.

Behold,	here	lies	a	major	pain:	the	QVector	class	overloads	the	copy	operator.	Hence,	when
the	list	type	is	returned,	the	uniqueness	of	our	unique_ptr	elements	cannot	be	guaranteed	by
the	compiler	and	it	will	throw	a	compile	error.	This	is	why	we	have	to	resort	to	a	vector
object	coming	from	the	standard	library	and	write	the	long
type:	unique_ptr<vector<unique_ptr<Album>>>.

Note

Take	a	look	at	the	official	response	for	support	of	the	unique_ptr	pointer	in	the	Qt	container.
It	is	clear	beyond	any	possible	doubt:	http://lists.qt-project.org/pipermail/interest/2013-
July/007776.html.	The	short	answer	is:	no,	it	will	never	be	done.	Do	not	even	mention	it.	Ever.

If	we	translate	this	new	albums()	signature	into	plain	English	it	will	read:	the	album()
function	returns	a	vector	of	Album.	This	vector	is	the	owner	of	the	Album	elements	it	contains
and	you	will	be	the	owner	of	the	vector.

To	finish	covering	this	implementation	of	albums(),	you	may	notice	that	we	did	not	use

http://lists.qt-project.org/pipermail/interest/2013-July/007776.html

the	auto	and	make_unique	keywords	for	the	list	declaration.	Our	library	will	be	used	on	a
mobile	in	Chapter	5,	Dominating	the	Mobile	UI,	and	C++14	is	not	yet	supported	on	this
platform.	Therefore,	we	have	to	restrain	our	code	to	C++11.

We	also	encounter	the	use	of	the	move	function	in	the	instruction	list-
>push_back(move(album)).	Until	that	line,	the	album	is	"owned"	by	the	while	scope,	the	move
gives	the	ownership	to	the	list.	At	the	last	instruction,	return	list,	we	should	have
written	move(list),	but	C++11	accepts	the	direct	return	and	will	automatically	make
the	move()	function	for	us.

What	we	covered	in	this	section	is	that	the	AlbumDao	class	is	completely	matched
in	PictureDao.	Please	refer	to	the	source	code	of	the	chapter	to	see	the	full	PictureDao	class
implementation.

Implementing	the	model
The	data	is	ready	to	be	exposed	to	potential	clients	(the	applications	that	will	display	and	edit
its	content).	However,	a	direct	connection	between	the	client	and	the	database	will	make	a	very
strong	coupling.	If	we	decide	to	switch	to	another	storage	type,	the	view	would	have	to	be
rewritten,	partially	at	least.

This	is	where	the	model	comes	to	our	rescue.	It	is	an	abstract	layer	that	communicates	with	the
data	(our	database)	and	exposes	this	data	to	the	client	in	a	data-specific,	implementation-
agnostic	form.	This	approach	is	a	direct	offspring	of	the	MVC	(Model	View	Controller)
concept.	Let's	recapitulate	how	MVC	works:

The	Model	manages	the	data.	It	is	responsible	for	requesting	for	the	data	and	updating	it.
The	View	displays	the	data	to	the	user.
The	Controller	interacts	with	both	the	Model	and	the	View.	It	is	responsible	for	feeding
the	View	with	the	correct	data	and	sending	commands	to	the	Model	based	on	the	user
interaction	received	from	the	View.

This	paradigm	enables	swapping	various	parts	without	disturbing	the	others.	Multiple	views
can	display	the	same	data,	the	data	layer	can	be	changed,	and	the	upper	parts	will	not	be	aware
of	it.

Qt	combines	the	View	and	the	Controller	to	form	the	Model/View	architecture.	The	separation
of	the	storage	and	the	presentation	is	retained	while	being	simpler	to	implement	than	a	full
MVC	approach.	To	allow	editing	and	view	customization,	Qt	introduces	the	concept	of
Delegate,	which	is	connected	to	both	the	Model	and	the	View:

The	Qt	documentation	about	Model/View	is	truly	plethoric.	It	is	nevertheless	easy	to	get	lost
in	the	details;	it	feels	sometimes	a	bit	overwhelming.	We	will	try	to	clear	things	up	by
implementing	the	AlbumModel	class	and	seeing	how	it	works.

Qt	offers	various	Model	sub-classes	that	all	extend	from	QAbstractItemModel.	Before	starting
the	implementation,	we	have	to	carefully	choose	which	base	class	will	be	extended.	Keep	in
mind	that	our	data	are	variations	on	lists:	we	will	have	a	list	of	albums,	and	each	album	will
have	a	list	of	pictures.	Let's	see	what	Qt	offers	us:

QAbstractItemModel:	This	class	is	the	most	abstract,	and	therefore,	the	most	complex,	to
implement.	We	will	have	to	redefine	a	lot	of	functions	to	properly	use	it.
QStringListModel:	This	class	is	a	model	that	supplies	strings	to	views.	It	is	too	simple.
Our	model	is	more	complex	(we	have	custom	objects).
QSqlTableModel	(or	QSqLQueryModel):	This	class	is	a	very	interesting	contender.	It
automatically	handles	multiple	SQL	queries.	On	the	other	hand,	it	works	only	for	very
simple	table	schemas.	In	the	pictures	table,	for	example,	the	album_id	foreign	key
makes	it	very	hard	to	fit	this	model.	You	might	save	some	lines	of	code,	but	if	feels	like
trying	to	shoehorn	a	round	peg	into	a	square	hole.
QAbstractListModel:	This	class	provides	a	model	that	offers	one-dimensional	lists.	This

fits	nicely	with	our	requirements,	saves	a	lot	of	key	strokes,	and	is	still	flexible	enough.

We	will	go	with	the	QabstractListModel	class	and	create	a	new	C++	class	named	AlbumModel.
Update	the	AlbumModel.h	file	to	look	like	this:

#include	<QAbstractListModel>	

#include	<QHash>	

#include	<vector>	

#include	<memory>	

	

#include	"gallery-core_global.h"	

#include	"Album.h"	

#include	"DatabaseManager.h"	

	

class	GALLERYCORESHARED_EXPORT	AlbumModel	:	public	QAbstractListModel	

{	

				Q_OBJECT	

public:	

	

				enum	Roles	{	

								IdRole	=	Qt::UserRole	+	1,	

								NameRole,	

				};	

	

				AlbumModel(QObject*	parent	=	0);	

	

				QModelIndex	addAlbum(const	Album&	album);	

	

				int	rowCount(const	QModelIndex&	parent	=	QModelIndex())	const	override;	

				QVariant	data(const	QModelIndex&	index,	int	role	=	Qt::DisplayRole)	const	

override;	

				bool	setData(const	QModelIndex&	index,	const	QVariant&	value,	int	role)	

override;	

				bool	removeRows(int	row,	int	count,	const	QModelIndex&	parent)	override;	

				QHash<int,	QByteArray>	roleNames()	const	override;	

	

private:	

				bool	isIndexValid(const	QModelIndex&	index)	const;	

	

private:	

				DatabaseManager&	mDb;	

				std::unique_ptr<std::vector<std::unique_ptr<Album>>>	mAlbums;	

};	

The	AlbumModel	class	extends	the	QAbstractListModel	class	and	has	only	two	members:

mDb:	This	is	the	link	to	the	database.	In	the	Model/View	schema,	the	model	will
communicate	with	the	data	layer	through	mDb.
mAlbums:	This	acts	as	a	buffer	that	will	avoid	hitting	the	database	too	much.	The	type
should	remind	you	of	what	we	wrote	for	AlbumDao::albums()	with	the	smart	pointers.

The	only	specific	functions	the	AlbumModel	class	has	are	addAlbum()	and	isIndexValid().
The	rest	are	overrides	of	QAbstractListModel	functions.	We	will	go	through	each	of	these
functions	to	understand	how	a	model	works.

First,	let's	see	how	the	AlbumModel	class	is	constructed	in	the	AlbumModel.cpp	file:

AlbumModel::AlbumModel(QObject*	parent)	:	

				QAbstractListModel(parent),	

				mDb(DatabaseManager::instance()),	

				mAlbums(mDb.albumDao.albums())	

{	

}	

The	mDb	file	is	initialized	with	the	DatabaseManager	singleton	address,	and,	after	that,	we	see
the	now	famous	AlbumDao::albums()	in	action.

The	vector	type	is	returned	and	initializes	mAlbums.	This	syntax	make	the	ownership	transfer
automatic	without	any	need	for	an	explicit	call	to	the	std::move()	function.	If	there	are	any
stored	albums	in	the	database,	mAlbums	is	immediately	filled	with	those.

Each	time	the	model	interacts	with	the	view	(to	notify	us	about	changes	or	to	serve	data),
mAlbums	will	be	used.	Because	it	is	in	memory	only,	reading	will	be	very	fast.	Of	course,	we
have	to	be	careful	about	maintaining	mAlbum	coherently	with	the	database	state,	but	everything
will	stay	inside	the	AlbumModel	inner	mechanics.

As	we	said	earlier,	the	model	aims	to	be	the	central	point	to	interact	with	the	data.	Each	time
the	data	changes,	the	model	will	emit	a	signal	to	notify	the	view;	each	time	the	view	wants	to
display	data,	it	will	request	the	model	for	it.	The	AlbumModel	class	overrides	everything
needed	for	read	and	write	access.	The	read	functions	are:

rowCount():	This	function	is	used	to	get	the	list	size
data():	This	function	is	used	to	get	a	specific	piece	of	information	about	the	data	to
display
roleNames():	This	function	is	used	to	indicate	to	the	framework	the	name	for	each	"role".
We	will	explain	in	a	few	paragraphs	what	a	role	is

The	editing	functions	are:

setData():	This	function	is	used	to	update	data
removeRows():	This	function	is	used	to	remove	data

We	will	start	with	the	read	part,	where	the	view	asks	the	model	for	the	data.

Because	we	will	display	a	list	of	albums,	the	first	thing	the	view	should	know	is	how	many
items	are	available.	This	is	done	in	the	rowCount()	function:

int	AlbumModel::rowCount(const	QModelIndex&	parent)	const	

{	

				return	mAlbums->size();	

}	

Being	our	buffer	object,	using	mAlbums->size()	is	perfect.	There	is	no	need	to	query	the
database,	as	mAlbums	is	already	filled	with	all	the	albums	of	the	database.	The	rowCount()
function	has	an	unknown	parameter:	a	const	QModelIndex&	parent.	Here,	it	is	not	used,	but
we	have	to	explain	what	lies	beneath	this	type	before	continuing	our	journey	in
the	AlbumModel	class.

The	QModelIndex	class	is	a	central	notion	of	the	Model/View	framework	in	Qt.	It	is	a
lightweight	object	used	to	locate	data	within	a	model.	We	use	a	simple	QAbstractListModel
class,	but	Qt	is	able	to	handle	three	representation	types:

There	is	no	better	explanation	than	an	official	Qt	diagram

Let's	now	see	the	models	in	detail:

List	Model:	In	this	model,	the	data	is	stored	in	a	one-dimensional	array	(rows)
Table	Model:	In	this	model,	the	data	is	stored	in	a	two-dimensional	array	(rows	and
columns)
Tree	Model:	In	this	model,	the	data	is	stored	in	a	hierarchical	relationship
(parent/children)

To	handle	all	these	model	types,	Qt	came	up	with	the	QModelIndex	class,	which	is	an	abstract
way	of	dealing	with	them.	The	QModelIndex	class	has	the	functions	for	each	of	the	use

cases:	row(),	column(),	and	parent()/child().	Each	instance	of	a	QModelIndex	is	meant	to	be
short-lived:	the	model	might	be	updated	and	thus	the	index	will	become	invalid.

The	model	will	produce	indexes	according	to	its	data	type	and	will	provide	these	indexes	to
the	view.	The	view	will	then	use	them	to	query	back	new	data	to	the	model	without	needing	to
know	if	an	index.row()	function	corresponds	to	a	database	row	or	a	vector	index.

We	can	see	the	index	parameter	in	action	with	the	implementation	of	data():

QVariant	AlbumModel::data(const	QModelIndex&	index,	int	role)	const	

{	

				if	(!isIndexValid(index))	{	

								return	QVariant();	

				}	

				const	Album&	album	=	*mAlbums->at(index.row());	

	

				switch	(role)	{	

								case	Roles::IdRole:	

												return	album.id();	

	

								case	Roles::NameRole:	

								case	Qt::DisplayRole:	

												return	album.name();	

	

								default:	

												return	QVariant();	

				}	

}	

The	view	will	ask	for	data	with	two	parameters:	an	index	and	a	role.	As	we	have	already
covered	the	index,	we	can	focus	on	the	role	responsibility.

When	the	data	is	displayed,	it	will	probably	be	an	aggregation	of	multiple	data.	For	example,
displaying	the	picture	will	consist	of	a	thumbnail	and	the	picture	name.	Each	one	of	these	data
elements	needs	to	be	retrieved	by	the	view.	The	role	parameter	fills	this	need,	it	associates
each	data	element	to	a	tag	for	the	view	to	know	what	category	of	data	is	shown.

Qt	provides	various	default	roles	(DisplayRole,	DecorationRole,	EditRole,	and	so	on)	and
you	can	define	your	own	if	needed.	This	is	what	we	did	in	the	AlbumModel.h	file	with	the	enum
Roles:	we	added	an	IdRole	and	a	NameRole.

The	body	of	the	data()	function	is	now	within	our	reach!	We	first	test	the	validity	of
the	index	with	a	helper	function,	isIndexValid().	Take	a	look	at	the	source	code	of	the
chapter	to	see	what	it	does	in	detail.	The	view	asked	for	data	at	a	specific	index:	we	retrieve
the	album	row	at	the	given	index	with	*mAlbums->at(index.row()).

This	returns	a	unique_ptr<Album>	value	at	the	index.row()	index	and	we	dereference	it	to

have	an	Album&.	The	const	modifier	is	interesting	here	because	we	are	in	a	read	function,	and
it	makes	no	sense	to	modify	the	album	row.	The	const	modifier	adds	this	check	at	compile
time.

The	switch	on	the	role	parameter	tells	us	what	data	category	should	be	returned.	The	data()
function	returns	a	QVariant	value,	which	is	the	Awiss	Army	Knife	of	types	in	Qt.	We	can
safely	return	the	album.id(),	album.name(),	or	a	default	QVariant()	if	we	do	not	handle	the
specified	role.

The	last	read	function	to	cover	is	roleNames():

QHash<int,	QByteArray>	AlbumModel::roleNames()	const	

{	

				QHash<int,	QByteArray>	roles;	

				roles[Roles::IdRole]	=	"id";	

				roles[Roles::NameRole]	=	"name";	

				return	roles;	

}	

At	this	level	of	abstraction,	we	do	not	know	what	type	of	view	will	be	used	to	display	our	data.
If	the	views	are	written	in	QML,	they	will	need	some	meta-information	about	the	data
structure.	The	roleNames()	function	provides	this	information	so	the	role	names	can	be
accessed	via	QML.	If	you	are	writing	for	a	desktop	widget	view	only,	you	can	safely	ignore
this	function.	The	library	we	are	currently	building	will	be	used	for	QML;	this	is	why	we
override	this	function.

The	reading	part	of	the	model	is	now	over.	The	client	view	has	everything	it	needs	to	properly
query	and	display	the	data.	We	shall	now	investigate	the	editing	part	of	AlbumModel.

We	will	start	with	the	creation	of	a	new	album.	The	view	will	build	a	new	Album	object	and
pass	it	to	Album::addAlbum()	to	be	properly	persisted:

QModelIndex	AlbumModel::addAlbum(const	Album&	album)	

{	

				int	rowIndex	=	rowCount();	

				beginInsertRows(QModelIndex(),	rowIndex,	rowIndex);	

				unique_ptr<Album>	newAlbum(new	Album(album));	

				mDb.albumDao.addAlbum(*newAlbum);	

				mAlbums->push_back(move(newAlbum));	

				endInsertRows();	

				return	index(rowIndex,	0);	

}	

Indexes	are	a	way	to	navigate	within	the	model	data.	This	first	thing	we	do	is	to	determinate
what	will	be	the	index	of	this	new	album	by	getting	the	mAlbums	size	with	rowCount().

From	here,	we	start	to	use	specific	model	functions:	beginInsertRows()

and	endInsertRows().	These	functions	wrap	real	data	modifications.	Their	purpose	is	to
automatically	trigger	signals	for	whoever	might	be	interested:

beginInsertRows():	This	function	informs	that	rows	are	about	to	change	for	the	given
indexes
endInsertRows():	This	function	informs	that	rows	have	been	changed

The	first	parameter	of	the	beginInsertRows()	function	is	the	parent	for	this	new	element.
The	root	for	a	model	is	always	an	empty	QModelIndex()	constructor.	Because	we	do	not
handle	any	hierarchical	relationship	in	AlbumModel,	it	is	safe	to	always	add	the	new	element	to
the	root.	The	following	parameters	are	the	first	and	last	modified	indexes.	We	insert	a	single
element	per	call,	so	we	provide	rowIndex	twice.	To	illustrate	the	usage	of	this	signal,	a	view
might,	for	example,	display	a	loading	message	telling	the	user	"Saving	5	new	albums".

For	endInsertRows(),	the	interested	view	might	hide	the	saving	message	and	display	"Save
finished".

This	may	look	strange	at	first,	but	it	enables	Qt	to	handle	automatically	a	lot	of	signaling	for
us	and	in	a	generic	way.	You	will	see	very	soon	how	well	this	works	when	designing	the	UI	of
the	application	in	Chapter	4,	Conquering	the	Desktop	UI.

The	real	insertion	begins	after	the	beginInsertRows()	instruction.	We	start	by	creating	a	copy
of	the	album	row	with	unique_ptr<Album>	newAlbum.	This	object	is	then	inserted	in	the
database	with	mDb.albumDao.addAlbum(*newAlbum).	Do	not	forget	that
the	AlbumDao::addAlbum()	function	also	modifies	the	passed	album	by	setting	its	mId	to	the
last	SQLITE3-inserted	ID.

Finally,	newAlbum	is	added	to	mAlbums	and	its	ownership	is	transferred	as	well
with	std::move().	The	return	gives	the	index	object	of	this	new	album,	which	is	simply	the
row	wrapped	in	a	QModelIndex	object.

Let's	continue	the	editing	functions	with	setData():

bool	AlbumModel::setData(const	QModelIndex&	index,	const	QVariant&	value,	int	

role)	

{	

				if	(!isIndexValid(index)	

												||	role	!=	Roles::NameRole)	{	

								return	false;	

				}	

				Album&	album	=	*mAlbums->at(index.row());	

				album.setName(value.toString());	

				mDb.albumDao.updateAlbum(album);	

				emit	dataChanged(index,	index);	

				return	true;	

}	

This	function	is	called	when	the	view	wants	to	update	the	data.	The	signature	is	very	similar	to
data(),	with	the	additional	parameter	value.

The	body	also	follows	the	same	logic.	Here,	the	album	row	is	an	Album&,	without	the	const
keyword.	The	only	possible	value	to	edit	is	the	name,	which	is	done	on	the	object	and	then
persisted	to	the	database.

We	have	to	emit	ourselves	the	dataChanged()	signal	to	notify	whoever	is	interested	that	a	row
changed	for	the	given	indexes	(the	start	index	and	end	index).	This	powerful	mechanism
centralizes	all	the	states	of	the	data,	enabling	possible	views	(album	list	and	current	album
detail	for	example)	to	be	automatically	refreshed.

The	return	of	the	function	simply	indicates	if	the	data	update	was	successful.	In	a	production
application,	you	should	test	the	database	processing	success	and	return	the	relevant	value.

Finally,	the	last	editing	function	we	will	cover	is	removeRows():

bool	AlbumModel::removeRows(int	row,	int	count,	const	QModelIndex&	parent)	

{	

				if	(row	<	0	

												||	row	>=	rowCount()	

												||	count	<	0	

												||	(row	+	count)	>	rowCount())	{	

								return	false;	

				}	

				beginRemoveRows(parent,	row,	row	+	count	-	1);	

				int	countLeft	=	count;	

				while	(countLeft--)	{	

								const	Album&	album	=	*mAlbums->at(row	+	countLeft);	

								mDb.albumDao.removeAlbum(album.id());	

				}	

				mAlbums->erase(mAlbums->begin()	+	row,	

																		mAlbums->begin()	+	row	+	count);	

				endRemoveRows();	

				return	true;	

}	

The	function	signature	should	start	to	look	familiar	by	now.	When	a	view	wants	to	remove
rows,	it	has	to	provide	the	starting	row,	the	number	of	rows	to	delete,	and	the	parent	of	the
row.

After	that,	just	as	we	did	for	addAlbum(),	we	wrap	the	effective	removal	with	two	functions:

The	beginRemoveRows()	function,	which	expects	the	parent,	the	starting	index,	and	the
last	index
The	endRemoveRows()	function,	which	simply	triggers	automatic	signals	in	the	model
framework

The	rest	of	the	function	is	not	very	hard	to	follow.	We	loop	on	the	rows	left	to	delete	and,	for
each	one,	we	delete	it	from	the	database	and	remove	it	from	mAlbums.	We	simply	retrieve	the
album	from	our	in-memory	mAlbums	vector	and	process	the	real	database	deletion
with	mDb.albumDao.removeAlbum(album.id()).

The	AlbumModel	class	is	now	completely	covered.	You	can	now	create	a	new	C++	class	and
name	it	PictureModel.

We	will	not	cover	the	PictureModel	class	in	so	much	detail.	The	major	parts	are	the	same
(you	simply	swap	the	data	class	Album	for	Picture).	There	is	however	one	main
difference:	PictureModel	always	handles	pictures	for	a	given	album.	This	design	choice
illustrates	how	two	models	can	be	linked	with	only	some	simple	signals.

Here	is	the	updated	version	of	PictureModel.h:

#include	<memory>	

#include	<vector>	

	

#include	<QAbstractListModel>	

	

#include	"gallery-core_global.h"	

#include	"Picture.h"	

	

class	Album;	

class	DatabaseManager;	

class	AlbumModel;	

	

class	GALLERYCORESHARED_EXPORT	PictureModel	:	public	QAbstractListModel	

{	

				Q_OBJECT	

public:	

	

				enum	PictureRole	{	

								FilePathRole	=	Qt::UserRole	+	1	

				};	

				PictureModel(const	AlbumModel&	albumModel,	QObject*	parent	=	0);	

	

				QModelIndex	addPicture(const	Picture&	picture);	

	

				int	rowCount(const	QModelIndex&	parent	=	QModelIndex())	const	override;	

				QVariant	data(const	QModelIndex&	index,	int	role)	const	override;	

				bool	removeRows(int	row,	int	count,	const	QModelIndex&	parent)	override;	

	

				void	setAlbumId(int	albumId);	

				void	clearAlbum();	

	

public	slots:	

				void	deletePicturesForAlbum();	

	

private:	

				void	loadPictures(int	albumId);	

				bool	isIndexValid(const	QModelIndex&	index)	const;	

	

private:	

				DatabaseManager&	mDb;	

				int	mAlbumId;	

				std::unique_ptr<std::vector<std::unique_ptr<Picture>>>	mPictures;	

};	

The	interesting	parts	are	those	concerning	the	album.	As	you	can	see,	the	constructor	expects
an	AlbumModel.	This	class	also	stores	the	current	mAlbumId	to	be	able	to	request	the	pictures
for	a	given	album	only.	Let's	see	what	the	constructor	really	does:

PictureModel::PictureModel(const	AlbumModel&	albumModel,	QObject*	parent)	:	

				QAbstractListModel(parent),	

				mDb(DatabaseManager::instance()),	

				mAlbumId(-1),	

				mPictures(new	vector<unique_ptr<Picture>>())	

{	

				connect(&albumModel,	&AlbumModel::rowsRemoved,	

												this,	&PictureModel::deletePicturesForAlbum);	

}	

As	you	can	see,	the	albumModel	class	is	used	only	to	connect	a	signal	to	our
slot	deletePicturesForAlbum()	which	is	self-explanatory.	This	makes	sure	that	the	database
is	always	valid:	a	picture	should	be	deleted	if	the	owning	album	is	deleted.	This	will	be	done
automatically	when	AlbumModel	emits	the	rowsRemoved	signal.

Now,	mPictures	is	not	initialized	with	all	the	pictures	of	the	database.	Because	we	chose	to
restrict	PictureModel	to	work	on	the	pictures	for	a	given	album,	we	do	not	know	at	the
construction	of	PictureModel	which	album	to	choose.	The	loading	can	only	be	done	when	the
album	is	selected,	in	setAlbumId():

void	PictureModel::setAlbumId(int	albumId)	

{	

				beginResetModel();	

				mAlbumId	=	albumId;	

				loadPictures(mAlbumId);	

				endResetModel();	

}	

When	the	album	changes,	we	completely	reload	PictureModel.	The	reloading	phase	is
wrapped	with	the	beginResetModel()	and	endResetModel()	functions.	They	notify	any
attached	views	that	their	state	should	be	reset	as	well.	Any	previous	data	(for
example,	QModelIndex)	reported	from	the	model	becomes	invalid.

The	loadPictures()	function	is	quite	straightforward:

void	PictureModel::loadPictures(int	albumId)	

{	

				if	(albumId	<=	0)	{	

									mPictures.reset(new	vector<unique_ptr<Picture>>());	

								return;	

				}	

				mPictures	=	mDb.pictureDao.picturesForAlbum(albumId);	

}	

By	convention,	we	decided	that,	if	a	negative	album	id	is	provided,	we	clear	the	pictures.	To
do	it,	we	reinitialize	mPictures	with	the	call	mPictures.reset(new
vector<unique_ptr<Picture>>()).	This	will	call	the	destructor	on	the	owned	vector,	which
in	turn	will	do	the	same	for	the	Picture	elements.	We	force	mPictures	to	always	have	a	valid
vector	object	to	avoid	any	possible	null	reference	(in	PictureModel::rowCount()	for
example).

After	that,	we	simply	assign	the	database	pictures	for	the	given	albumId	to	mPictures.	Because
we	work	with	smart	pointers	at	every	level,	we	do	not	even	see	any	specific	semantics	here.
Still,	mPicture	is	a	unique_ptr<vector<unique_ptr<Picture>>>.	When	the	=	operator	is
called,	the	unique_ptr	pointer	overloads	it	and	two	things	happen:

The	ownership	of	the	right-hand	side	(the	pictures	retrieved	from	the	database)	is
transferred	to	mPictures
The	old	content	of	mPictures	is	automatically	deleted

It	is	effectively	the	same	as	calling	mPictures.reset()	and	then	mPictures	=
move(mDb.pictureDao.picturesForAlbum(albumId)).	With	the	=	overload,	everything	is
streamlined	and	much	more	pleasant	to	read.

The	PictureModel	shows	you	how	flexible	the	model	paradigm	can	be.	You	can	easily	adapt	it
to	your	own	use	case	without	making	any	strong	coupling.	After	all,	the	albumModel	is	only
used	to	connect	to	a	single	signal;	there	are	no	retained	references.	The	remainder	of	the	class
is	available	in	the	source	code	of	the	chapter.

Summary
The	chapter	was	a	journey	to	create	a	well-defined	gallery-core	library.	We	studied
advanced	techniques	with	.pro	files	to	split	your	project	into	sub-modules,	persisted	data	in	a
SQLITE3	database	with	the	help	of	smart	pointers,	and	finally	studied	how	the	Model/View
architecture	works	in	Qt.

From	now	on,	a	project	organization	with	Qt	should	hold	no	terrors	for	you.	The	next	chapter
will	continue	right	where	we	stopped:	the	library	is	ready,	now	let's	make	great	QWidgets	to
have	a	stunning	gallery	application	and	look	at	the	other	side	of	the	model:	the	View	layer.

Chapter	4.		Conquering	the	Desktop	UI
In	the	previous	chapter,	we	built	the	brain	of	our	gallery	using	Qt	models.	It	is	now	time	to
build	a	desktop	application	using	this	engine.	This	software	will	use	all	the	features	offered	by
the	gallery-core	library,	leading	to	a	completely	usable	gallery	on	your	computer.

The	first	task	will	be	to	link	your	project-shared	library	to	this	new	application.	Then	you	will
learn	how	to	create	custom	widgets,	when	to	use	Qt	views,	and	how	to	synchronize	them	with
the	model.

The	following	topics	will	be	covered	in	this	chapter:

Linking	the	application	to	a	project	library
Qt	model/view
Qt	resource	file
Promoting	custom	widgets

Creating	a	GUI	linked	to	a	core	shared
library
The	gallery-core	shared	library	is	now	ready.	Let's	see	how	to	create	the	desktop	GUI
project.	We	will	create	a	Qt	Widgets	application	sub-project	called	gallery-desktop.	Only	the
first	steps	differ	from	a	classic	Qt	Widgets	application.	Right-click	on	the	main	project,	and
select	ch04-gallery-desktop	|	New	subproject	|	Application	|	Qt	Widgets	Application
|	Choose.

You	will	get	a	nice	multi-projects	hierarchy	like	this:

It	is	now	time	to	link	this	gallery-desktop	application	to	the	gallery-core.	You	can	edit	the
file	gallery-desktop.pro	yourself	or	use	the	Qt	Creator	wizard	like	this:	right-click	on	the
project	and	select	gallery-desktop	|	Add	library	|	Internal	library	|	gallery-core	|	Next
|	Finish.	Here	is	the	updated	gallery-desktop.pro:

QT							+=	core	gui	

	

TARGET	=	desktop-gallery	

TEMPLATE	=	app	

	

SOURCES	+=	main.cpp\	

								MainWindow.cpp	

	

HEADERS		+=	MainWindow.h	

	

FORMS				+=	MainWindow.ui	

	

win32:CONFIG(release,	debug|release):	LIBS	+=	-L$$OUT_PWD/../gallery-

core/release/	-lgallery-core	

else:win32:CONFIG(debug,	debug|release):	LIBS	+=	-L$$OUT_PWD/../gallery-

core/debug/	-lgallery-core	

else:unix:	LIBS	+=	-L$$OUT_PWD/../gallery-core/	-lgallery-core	

	

INCLUDEPATH	+=	$$PWD/../gallery-core	

DEPENDPATH	+=	$$PWD/../gallery-core	

The	LIBS	variable	specifies	the	libraries	to	link	in	this	project.	The	syntax	is	very	simple:	you
can	provide	library	paths	with	the	-L	prefix	and	library	names	with	the	-l	prefix.

LIBS	+=	-L<pathToLibrary>	-l<libraryName>	

By	default,	compiling	a	Qt	project	on	Windows	will	create	a	debug	and	release	sub-directory.
That	is	why	a	different	LIBS	edition	is	created	depending	on	the	platform.

Now	that	the	application	is	linked	to	the	library	gallery-core	and	knows	where	to	find	it,	we
must	indicate	where	the	library	header	files	are	located.	That	is	why	we	must	add	the	gallery-
core	source	path	to	INCLUDEPATH	and	DEPENDPATH.

To	complete	all	those	tasks	successfully,	qmake	offers	some	useful	variables:

$$OUT_PWD:	The	absolute	path	to	the	output	directory
$$PWD:	The	absolute	path	of	the	current	.pro	file

To	ensure	that	qmake	will	compile	the	shared	library	before	the	desktop	application,	we	must
update	the	ch04-gallery-desktop.pro	file	according	the	following	snippet:

TEMPLATE	=	subdirs	

	

SUBDIRS	+=	\	

				gallery-core	\	

				gallery-desktop	

	

gallery-desktop.depends	=	gallery-core	

The	depends	attribute	explicitly	indicates	that	gallery-core	must	be	built	before	gallery-
desktop.

Tip

Try	to	always	use	the	depends	attribute	instead	of	relying	on	CONFIG	+=	ordered,	which	only
specifies	a	simple	list	order.	The	depends	attribute	helps	qmake	process	your	projects	in
parallel,	if	it	can	be	done.

Instead	of	rushing	into	coding	blindly,	we	will	take	some	time	to	think	about	the	UI
architecture.	We	have	a	lot	of	features	to	implement	from	the	gallery-core	library.	We
should	split	these	features	into	independent	QWidgets.	The	final	application	will	look	like
this:

Our	future	gallery	desktop	is	here!

The	exapanded	view	of	a	photo	will	look	like	this:

Double-click	on	a	thumbnail	to	display	it	in	full	size.

To	sum	up	the	main	UI	components:

AlbumListWidget:	This	component	lists	all	existing	albums
AlbumWidget:	This	component	shows	the	selected	album	and	its	thumbnails
PictureWidget:	This	component	displays	the	picture	in	full	size

This	is	how	we	will	organize	it:

Each	widget	has	a	defined	role	and	will	handle	specific	features:

Class	name Features

MainWindow Handles	the	switch	between	the	gallery	and	the	current	picture

GalleryWidget

Displays	existing	albums
Album	selection
Album	creation

AlbumListWidget

Displays	existing	albums
Album	selection
Album	creation

AlbumWidget

Displays	existing	pictures	as	thumbnails
Adds	pictures	in	the	album
Album	rename
Album	deletion
Picture	selection

PictureWidget

Displays	the	selected	picture
Picture	selection
Picture	deletion

In	the	core	shared	library,	we	used	smart	pointers	with	standard	containers	(vector).

Generally,	in	GUI	projects,	we	tend	to	only	use	Qt	containers	and	their	powerful	parent-child
ownership	system.	This	approach	seems	more	appropriate	to	us.	That	is	why	we	will	rely	on
Qt	containers	for	the	GUI	(and	won't	use	smart	pointers)	in	this	chapter.

We	can	now	safely	begin	to	create	our	widgets;	all	of	them	are	created	from	Qt	Designer
Form	Class.	If	you	have	a	memory	lapse,	you	can	check	the	Custom	QWidget	section
in	Chapter	1,	Get	Your	Qt	Feet	Wet.

Listing	your	albums	with	AlbumListWidget
This	widget	must	offer	a	way	to	create	a	new	album	and	display	existing	ones.	Selecting	an
album	must	also	trigger	an	event	that	will	be	used	by	other	widgets	to	display	the	proper	data.
The	AlbumListWidget	component	is	the	simplest	widget	in	this	project	using	the	Qt	View
mechanism.	Take	the	time	to	fully	understand	AlbumListWidget	before	jumping	to	the	next
widget.

The	following	screenshot	shows	the	Form	Editor	view	of	the	file,	AlbumListWidget.ui:

The	layout	is	very	simple.	The	components	are	described	as	follows:

The	AlbumListWidget	component	uses	a	vertical	layout	to	display	the	Create	button
above	the	list
The	frame	component	contains	an	attractive	button
The	createAlbumButton	component	handles	album	creation
The	albumList	component	displays	the	album	list

You	should	have	recognized	most	of	the	types	used	here.	Let	us	take	the	time	to	talk	about	the
really	new	one:	QListView.	As	we	already	saw	in	the	previous	chapter,	Qt	provides	a
Model/View	architecture.	This	system	relies	on	specific	interfaces	that	you	must	implement	to
provide	generic	data	access	via	your	model	classes.	That	is	what	we	did	in	the
project	gallery-core	with	the	AlbumModel	and	PictureModel	classes.

It	is	now	time	to	deal	with	the	view	part.	The	view	is	in	charge	of	the	presentation	of	the	data.
It	will	also	handle	user	interactions	like	selection,	drag	and	drop,	or	item	editing.	Fortunately,

to	achieve	these	tasks,	the	view	is	helped	by	other	Qt	classes	such	as
QItemSelectionModel,	QModelIndex,	or	QStyledItemDelegate,	which	we	will	soon	use	in	this
chapter.

We	can	now	enjoy	one	of	the	ready-to-use	views	offered	by	Qt:

QListView:	This	view	displays	items	from	a	model	as	a	simple	list
QTableView:	This	view	displays	items	from	a	model	as	a	two-dimensional	table
QTreeView:	This	view	displays	items	from	a	hierarchy	of	lists

Here,	the	choice	is	rather	obvious	because	we	want	to	display	a	list	of	album	names.	But	in	a
more	complex	situation,	a	rule	of	thumb	for	choosing	the	proper	view	is	to	look	for	the
model	type;	here	we	want	to	add	a	view	for	AlbumModel	of	type	QAbstractListModel	so
the	QListView	class	seems	correct.

As	you	can	see	in	the	preceding	screenshot,	the		createAlbumButton	object	has	an	icon.	You
can	add	one	to	a	QPushButton	class	by	selecting	the	widget	property:	icon	|	Choose	resource.
You	can	now	choose	a	picture	from	the	resource.qrc	file.

A	Qt	resource	file	is	a	collection	of	files	for	embedding	binary	files	in	your	application.	You
can	store	any	types	of	file	but	we	commonly	use	it	to	store	pictures,	sounds,	or	translation
files.	To	create	a	resource	file,	right-click	on	the	project	name	and	then	follow	Add	New	|	Qt
|	Qt	Resource	File.	Qt	Creator	will	create	a	default	file,	resource.qrc,	and	add	this	line	in
your	file	gallery-desktop.pro:

RESOURCES	+=	resource.qrc	

The	resource	file	can	be	mainly	displayed	in	two	ways:	Resource	Editor	and	Plain	Text
Editor.	You	can	choose	an	editor	with	by	right-clicking	on	the	resource	file	and
selecting	Open	With.

The	Resource	Editor	is	a	visual	editor	that	helps	you	to	easily	add	and	remove	files	in	your
resource	file,	as	shown	in	the	following	screenshot:

The	Plain	Text	Editor	will	display	this	XML-based	file	resource.qrc	like	this:

<RCC>	

				<qresource	prefix="/">	

								<file>icons/album-add.png</file>	

								<file>icons/album-delete.png</file>	

								<file>icons/album-edit.png</file>	

								<file>icons/back-to-gallery.png</file>	

								<file>icons/photo-add.png</file>	

								<file>icons/photo-delete.png</file>	

								<file>icons/photo-next.png</file>	

								<file>icons/photo-previous.png</file>	

				</qresource>	

</RCC>	

At	the	build	time,	qmake	and	rcc	(Qt	Resource	Compiler)	embed	your	resources	into	the
application	binary.

Now	that	the	form	part	is	clear,	we	can	analyze	the	AlbumListWidget.h	file:

#include	<QWidget>	

#include	<QItemSelectionModel>	

	

namespace	Ui	{	

class	AlbumListWidget;	

}	

	

class	AlbumModel;	

	

class	AlbumListWidget	:	public	QWidget	

{	

				Q_OBJECT	

	

public:	

				explicit	AlbumListWidget(QWidget	*parent	=	0);	

				~AlbumListWidget();	

	

				void	setModel(AlbumModel*	model);	

				void	setSelectionModel(QItemSelectionModel*	selectionModel);	

	

private	slots:	

				void	createAlbum();	

	

private:	

				Ui::AlbumListWidget*	ui;	

				AlbumModel*	mAlbumModel;	

};	

The	setModel()	and	setSelectionModel()functions	are	the	most	important	lines	in	this
snippet.	This	widget	require	two	things	to	work	correctly:

AlbumModel:	This	is	the	model	class	that	provides	access	to	data.	We	already	created	this
class	in	the	gallery-core	project.
QItemSelectionModel:	This	is	a	Qt	class	that	handles	the	selection	in	a	view.	By	default,
views	use	their	own	selection	model.	Sharing	the	same	selection	model	with	different
views	or	widgets	will	help	us	to	synchronize	album	selection	easily.

This	is	the	main	part	of	AlbumListWidget.cpp:

#include	"AlbumListWidget.h"	

#include	"ui_AlbumListWidget.h"	

	

#include	<QInputDialog>	

	

#include	"AlbumModel.h"	

	

AlbumListWidget::AlbumListWidget(QWidget	*parent)	:	

				QWidget(parent),	

				ui(new	Ui::AlbumListWidget),	

				mAlbumModel(nullptr)	

{	

				ui->setupUi(this);	

	

				connect(ui->createAlbumButton,	&QPushButton::clicked,	

												this,	&AlbumListWidget::createAlbum);	

}	

	

AlbumListWidget::~AlbumListWidget()	

{	

				delete	ui;	

}	

	

void	AlbumListWidget::setModel(AlbumModel*	model)	

{	

				mAlbumModel	=	model;	

				ui->albumList->setModel(mAlbumModel);	

}	

	

void	AlbumListWidget::setSelectionModel(QItemSelectionModel*	selectionModel)	

{	

				ui->albumList->setSelectionModel(selectionModel);	

}	

The	two	setters	will	mainly	be	used	to	set	the	model	and	the	selection	model	of	the	albumList.
Our	QListView	class	will	then	automatically	request	the	model	(AlbumModel)	to	get	the	row
count	and	the	Qt::DisplayRole	(the	album's	name)	for	each	one	of	them.

Let's	now	see	the	last	part	of	the	AlbumListWidget.cpp	file	that	handles	the	album	creation:

void	AlbumListWidget::createAlbum()	

{	

				if(!mAlbumModel)	{	

								return;	

				}	

	

				bool	ok;	

				QString	albumName	=	QInputDialog::getText(this,	

																												"Create	a	new	Album",	

																												"Choose	an	name",	

																												QLineEdit::Normal,	

																												"New	album",	

																												&ok);	

	

				if	(ok	&&	!albumName.isEmpty())	{	

								Album	album(albumName);	

								QModelIndex	createdIndex	=	mAlbumModel->addAlbum(album);	

								ui->albumList->setCurrentIndex(createdIndex);	

				}	

}	

We	already	worked	with	the	QInputDialog	class	in	Chapter	1,	Get	Your	Qt	Feet	Wet.	This	time
we	are	using	it	to	ask	the	user	to	enter	an	album's	name.	Then	we	create	an	Album	class	with
the	requested	name.	This	object	is	just	a	"data	holder;"	addAlbum()	will	use	it	to	create	and
store	the	real	object	with	a	unique	ID.

The	function	addAlbum()	returns	us	the	QModelIndex	value	corresponding	to	the	created
album.	From	here,	we	can	request	the	list	view	to	select	this	new	album.

Creating	a	ThumbnailProxyModel
The	future	AlbumWidget	view	will	display	a	grid	of	thumbnails	with	the	pictures	attached	to
the	selected	Album.	In	Chapter	3,	Dividing	Your	Project	and	Ruling	Your	Code,	we	designed
the	gallery-core	library	to	be	agnostic	of	how	a	picture	should	be	displayed:	a	Picture	class
contains	only	a	mUrl	field.

In	other	words,	the	generation	of	the	thumbnails	has	to	be	done	in	gallery-desktop	rather
than	gallery-core.	We	already	have	the	PictureModel	class	that	is	responsible	for	retrieving
the	Picture	information,	so	it	would	be	great	to	be	able	to	extend	its	behavior	with	the
thumbnail	data.

This	is	possible	in	Qt	with	the	use	of	the	QAbstractProxyModel	class	and	its	subclasses.	The
goal	of	this	class	is	to	process	data	from	a	base	QAbstractItemModel	(sorting,	filtering,
adding	data,	and	so	on)	and	present	it	to	the	view	by	proxying	the	original	model.	To	take	a
database	analogy,	you	can	view	it	as	a	projection	over	a	table.

The	QAbstractProxyModel	class	has	two	subclasses:

The	QIdentityProxyModel	subclass	proxies	its	source	model	without	any	modification
(all	the	indexes	match).	This	class	is	suitable	if	you	want	to	transform	the	data()
function.
The	QSortFilterProxyModel	subclass	proxies	its	source	model	with	the	ability	to	sort
and	filter	the	passing	data.

The	former,	QIdentityProxyModel,	fits	our	requirements.	The	only	thing	we	need	to	do	is	to
extend	the	data()	function	with	the	thumbnail	generation	content.	Create	a	new	class
named	ThumbnailProxyModel.	Here	is	the	ThumbnailProxyModel.h	file:

#include	<QIdentityProxyModel>	

#include	<QHash>	

#include	<QPixmap>	

	

class	PictureModel;	

	

class	ThumbnailProxyModel	:	public	QIdentityProxyModel	

{	

public:	

				ThumbnailProxyModel(QObject*	parent	=	0);	

	

				QVariant	data(const	QModelIndex&	index,	int	role)	const	override;	

				void	setSourceModel(QAbstractItemModel*	sourceModel)	override;	

				PictureModel*	pictureModel()	const;	

	

private:	

				void	generateThumbnails(const	QModelIndex&	startIndex,	int	count);	

				void	reloadThumbnails();	

	

private:	

			QHash<QString,	QPixmap*>	mThumbnails;	

	

};	

This	class	extends	QIdentityProxyModel	and	overrides	a	couple	of	functions:

The	data()	function	to	provide	the	thumbnail	data	to	the	client	of	ThumbnailProxyModel
The	setSourceModel()	function	to	register	to	signals	emitted	by	sourceModel

The	remaining	custom	functions	have	the	following	goals:

The	pictureModel()	is	a	helper	function	that	casts	the	sourceModel	to	a	PictureModel*
The	generateThumbnails()	function	takes	care	of	generating	the	QPixmap	thumbnails	for
a	given	set	of	pictures
The	reloadThumbnails()	is	a	helper	function	that	clears	the	stored	thumbnails	before
calling	generateThumbnails()

As	you	might	have	guessed,	the	mThumbnails	class	stores	the	QPixmap*	thumbnails	using
the	filepath	for	the	key.

We	now	switch	to	the	ThumbnailProxyModel.cpp	file	and	build	it	from	the	ground	up.	Let's
focus	on	generateThumbnails():

const	unsigned	int	THUMBNAIL_SIZE	=	350;	

...	

void	ThumbnailProxyModel::generateThumbnails(

																																												const	QModelIndex&	startIndex,	int	

count)	

{	

				if	(!startIndex.isValid())	{	

								return;	

				}	

	

				const	QAbstractItemModel*	model	=	startIndex.model();	

				int	lastIndex	=	startIndex.row()	+	count;	

				for(int	row	=	startIndex.row();	row	<	lastIndex;	row++)	{	

								QString	filepath	=	model->data(model->index(row,	0),		

																																																			

PictureModel::Roles::FilePathRole).toString();	

								QPixmap	pixmap(filepath);	

								auto	thumbnail	=	new	QPixmap(pixmap	

																																					.scaled(THUMBNAIL_SIZE,	THUMBNAIL_SIZE,	

																																													Qt::KeepAspectRatio,	

																																													Qt::SmoothTransformation));	

								mThumbnails.insert(filepath,	thumbnail);	

				}	

}	

This	function	generates	the	thumbnails	for	a	given	range	indicated	by	the	parameters
(startIndex	and	count).	For	each	picture,	we	retrieve	the	filepath	from	the	original	model,
using	model->data(),	and	we	generate	a	downsized	QPixmap	that	is	inserted	in
the	mThumbnails	QHash.	Note	that	we	arbitrarily	set	the	thumbnail	size	using	const
THUMBNAIL_SIZE.	The	picture	is	scaled	down	to	this	size	and	respects	the	aspect	ratio	of	the
original	picture.

Each	time	that	an	album	is	loaded,	we	should	clear	the	content	of	the	mThumbnails	class	and
load	the	new	pictures.	This	work	is	done	by	the	reloadThumbnails()	function:

void	ThumbnailProxyModel::reloadThumbnails()	

{	

				qDeleteAll(mThumbnails);	

				mThumbnails.clear();	

				generateThumbnails(index(0,	0),	rowCount());	

}	

In	this	function,	we	simply	clear	the	content	of	mThumbnails	and	call
the	generateThumbnails()	function	with	parameters	indicating	that	all	the	thumbnails	should
be	generated.	Let's	see	when	these	two	functions	will	be	used,	in	setSourceModel():

void	ThumbnailProxyModel::setSourceModel(QAbstractItemModel*	sourceModel)	

{	

				QIdentityProxyModel::setSourceModel(sourceModel);	

				if	(!sourceModel)	{	

								return;	

				}	

	

				connect(sourceModel,	&QAbstractItemModel::modelReset,		

																		[this]	{	

								reloadThumbnails();	

				});	

	

				connect(sourceModel,	&QAbstractItemModel::rowsInserted,		

																	[this]	(const	QModelIndex&	parent,	int	first,	int	last)	{	

								generateThumbnails(index(first,	0),	last	-	first	+	1);	

				});	

}	

When	the	setSourceModel()	function	is	called,	the	ThumbnailProxyModel	class	is	configured
to	know	which	base	model	should	be	proxied.	In	this	function,	we	register	lambdas	to	two
signals	emitted	by	the	original	model:

The	modelReset	signal	is	triggered	when	pictures	should	be	loaded	for	a	given	album.	In
this	case,	we	have	to	completely	reload	the	thumbnails.
The	rowsInserted	signal	is	triggered	each	time	new	pictures	are	added.	At	this
point,	generateThumbnails	should	be	called	to	update	mThumbnails	with	these
newcomers.

Finally,	we	have	to	cover	the	data()	function:

QVariant	ThumbnailProxyModel::data(const	QModelIndex&	index,	int	role)	const	

{	

				if	(role	!=	Qt::DecorationRole)	{	

								return	QIdentityProxyModel::data(index,	role);	

				}	

	

				QString	filepath	=	sourceModel()->data(index,		

																																	PictureModel::Roles::FilePathRole).toString();		

				return	*mThumbnails[filepath];	

}	

For	any	role	that	is	not	Qt::DecorationRole,	the	parent	class	data()	is	called.	In	our	case,	this
triggers	the	data()	function	from	the	original	model,	PictureModel.	After	that,	when	data()
must	return	a	thumbnail,	the	filepath	of	the	picture	referenced	by	the	index	is	retrieved	and
used	to	return	the	QPixmap	object	of	mThumbnails.	Luckily	for	us,	QPixmap	can	be	implicitly
cast	to	QVariant,	so	we	do	not	have	anything	special	to	do	here.

The	last	function	to	cover	in	the	ThumbnailProxyModel	class	is	the	pictureModel()	function:

PictureModel*	ThumbnailProxyModel::pictureModel()	const	

{	

				return	static_cast<PictureModel*>(sourceModel());	

}	

Classes	that	will	interact	with	ThumbnailProxyModel	will	need	to	call	some	functions	that	are
specific	to	PictureModel	to	create	or	delete	pictures.	This	function	is	a	helper	to	centralize	the
cast	of	the	sourceModel	to	PictureModel*.

As	a	side	note,	we	could	have	tried	to	generate	thumbnails	on-the-fly	to	avoid	a	possible
initial	bottleneck	during	the	album	loading	(and	the	call	to	generateThumbnails()).
However,	data()	is	a	const	function,	meaning	that	it	cannot	modify	the	ThumbnailProxyModel
instance.	This	rules	out	any	way	of	generating	a	thumbnail	in	the	data()	function	and	storing
it	in	mThumbnails.

As	you	can	see,	QIdentityProxyModel,	and	more	generally	QAbstractProxyModel,
are	valuable	tools	to	add	behavior	to	an	existing	model	without	breaking	it.	In	our	case,	this	is
enforced	by	design	in	so	far	as	the	PictureModel	class	is	defined	in	gallery-core	rather
than	gallery-desktop.	Modifying	PictureModel	implies	modifying	gallery-core	and
potentially	breaking	its	behavior	for	other	users	of	the	library.	This	approach	lets	us	keep
things	cleanly	separated.

Displaying	the	selected	album	with
AlbumWidget
This	widget	will	display	the	data	of	the	selected	album	from	AlbumListWidget.	Some	buttons
will	allow	us	to	interact	with	this	album.

Here	is	the	layout	of	the	AlbumWidget.ui	file:

The	top	frame,	albumInfoFrame,	with	a	horizontal	layout,	contains:

albumName:	This	object	displays	the	album's	name	(Lorem	ipsum	in	the	designer)
addPicturesButton:	This	object	allows	the	user	to	add	pictures	selecting	files
editButton:	This	object	is	used	to	rename	the	album
deleteButton:	This	object	is	used	to	delete	the	album

The	bottom	element,	thumbnailListView,	is	a	QListView.	This	list	view	represents	items
from	PictureModel.	By	default,	QListView	is	able	to	display	a	picture	next	to	text
requesting	Qt::DisplayRole	and	Qt::DecorationRole	from	the	model.

Take	a	look	at	the	header	AlbumWidget.h	file:

#include	<QWidget>	

#include	<QModelIndex>	

	

namespace	Ui	{	

class	AlbumWidget;	

}	

	

class	AlbumModel;	

class	PictureModel;	

class	QItemSelectionModel;	

class	ThumbnailProxyModel;	

	

class	AlbumWidget	:	public	QWidget	

{	

				Q_OBJECT	

	

public:	

				explicit	AlbumWidget(QWidget	*parent	=	0);	

				~AlbumWidget();	

	

				void	setAlbumModel(AlbumModel*	albumModel);	

				void	setAlbumSelectionModel(QItemSelectionModel*	albumSelectionModel);	

				void	setPictureModel(ThumbnailProxyModel*	pictureModel);	

				void	setPictureSelectionModel(QItemSelectionModel*	selectionModel);	

	

signals:	

				void	pictureActivated(const	QModelIndex&	index);	

	

private	slots:	

				void	deleteAlbum();	

				void	editAlbum();	

				void	addPictures();	

	

private:	

				void	clearUi();	

				void	loadAlbum(const	QModelIndex&	albumIndex);	

	

private:	

				Ui::AlbumWidget*	ui;	

				AlbumModel*	mAlbumModel;	

				QItemSelectionModel*	mAlbumSelectionModel;	

	

				ThumbnailProxyModel*	mPictureModel;	

				QItemSelectionModel*	mPictureSelectionModel;	

};	

As	this	widget	needs	to	deal	with	Album	and	Picture	data,	this	class	has	AlbumModel
and	ThumbnailProxyModel	setters.	We	also	want	to	know	and	share	the	model	selection	with
other	widgets	and	views	(that	is,	AlbumListWidget).	That	is	why	we	also	have	Album
and	Picture	model	selection	setters.

The	signal	pictureActivated()	will	be	triggered	when	the	user	double-clicks	on	a	thumbnail.
We	will	see	later	how	MainWindow	will	connect	to	this	signal	to	display	the	picture	at	full	size.

The	private	slots,	deleteAlbum(),	editAlbum(),	and	addPictures(),	will	be	called	when	the
user	clicks	on	one	of	these	buttons.

Finally,	the	loadAlbum()	function	will	be	called	to	update	the	UI	for	a	specific	album.
The	clearUi()function	will	be	useful	to	clear	all	information	displayed	by	this	widget	UI.

Take	a	look	at	the	beginning	of	the	implementation	in	the	AlbumWidget.cpp	file:

#include	"AlbumWidget.h"	

#include	"ui_AlbumWidget.h"	

	

#include	<QInputDialog>	

#include	<QFileDialog>	

	

#include	"AlbumModel.h"	

#include	"PictureModel.h"	

	

AlbumWidget::AlbumWidget(QWidget	*parent)	:	

				QWidget(parent),	

				ui(new	Ui::AlbumWidget),	

				mAlbumModel(nullptr),	

				mAlbumSelectionModel(nullptr),	

				mPictureModel(nullptr),	

				mPictureSelectionModel(nullptr)	

{	

				ui->setupUi(this);	

				clearUi();	

	

				ui->thumbnailListView->setSpacing(5);	

				ui->thumbnailListView->setResizeMode(QListView::Adjust);	

				ui->thumbnailListView->setFlow(QListView::LeftToRight);	

				ui->thumbnailListView->setWrapping(true);	

	

				connect(ui->thumbnailListView,	&QListView::doubleClicked,	

												this,	&AlbumWidget::pictureActivated);	

	

				connect(ui->deleteButton,	&QPushButton::clicked,	

												this,	&AlbumWidget::deleteAlbum);	

	

				connect(ui->editButton,	&QPushButton::clicked,	

												this,	&AlbumWidget::editAlbum);	

	

				connect(ui->addPicturesButton,	&QPushButton::clicked,	

												this,	&AlbumWidget::addPictures);	

}	

	

AlbumWidget::~AlbumWidget()	

{	

				delete	ui;	

}	

The	constructor	configures	thumbnailListView,	our	QListView	that	will	display	thumbnails
of	the	current	selected	album.	We	set	here	various	parameters:

setSpacing():	In	this	parameter,	by	default	items	are	glued	to	each	other.	You	can	add

spacing	between	them.
setResizeMode():	This	parameter	dynamically	lays	out	items	when	the	view	is	resized.
By	default,	items	keep	their	original	placement	even	if	the	view	is	resized.
setFlow():	This	parameter	specifies	the	list	direction.	Here	we	want	to	display	items
from	left	to	right.	By	default,	the	direction	is	TopToBottom.
setWrapping():	This	parameter	allows	an	item	to	wrap	when	there	is	not	enough	space
to	display	it	in	the	visible	area.	By	default,	wrapping	is	not	allowed	and	scrollbars	will	be
displayed.

The	end	of	the	constructor	performs	all	the	signal	connections	related	to	the	UI.	The	first	one
is	a	good	example	of	signal	relaying,	explained	in	Chapter	1,	Get	Your	Qt	Feet	Wet.	We
connect	the	QListView::doubleClicked	signal	to	our	class
signal,	AlbumWidget::pictureActivated.	Other	connections	are	common;	we	want	to	call	a
specific	slot	when	the	user	clicks	on	a	button.	As	always	in	the	Qt	Designer	Form	Class,	the
destructor	will	delete	the	member	variable	ui.

Let's	see	the	AlbumModel	setter	implementation:

void	AlbumWidget::setAlbumModel(AlbumModel*	albumModel)	

{	

				mAlbumModel	=	albumModel;	

	

				connect(mAlbumModel,	&QAbstractItemModel::dataChanged,	

								[this]	(const	QModelIndex	&topLeft)	{	

												if	(topLeft	==	mAlbumSelectionModel->currentIndex())	{	

																loadAlbum(topLeft);	

												}	

				});	

}	

	

void	AlbumWidget::setAlbumSelectionModel(QItemSelectionModel*	

albumSelectionModel)	

{	

				mAlbumSelectionModel	=	albumSelectionModel;	

	

				connect(mAlbumSelectionModel,	

												&QItemSelectionModel::selectionChanged,	

												[this]	(const	QItemSelection	&selected)	{	

																if	(selected.isEmpty())	{	

																				clearUi();	

																				return;	

																}	

																loadAlbum(selected.indexes().first());	

				});	

}	

If	the	selected	album's	data	changed,	we	need	to	update	the	UI	with	the	loadAlbum()	function.
A	test	is	performed	to	ensure	that	the	updated	album	is	the	currently	selected	one.	Notice	that

the	QAbstractItemModel::dataChanged()	function	has	three	parameters	but	the	lambda	slot
syntax	allows	us	to	omit	unused	parameters.

Our	AlbumWidget	component	must	update	its	UI	according	to	the	currently	selected	album.	As
we	share	the	same	selection	model,	each	time	the	user	selects	an	album
from	AlbumListWidget,	the	signal	QItemSelectionModel::selectionChanged	is	triggered.	In
this	case,	we	update	the	UI	by	calling	the	loadAlbum()	function.	As	we	do	not	support	album
multi-selection,	we	can	restrict	the	process	to	the	first	selected	element.	If	the	selection	is
empty,	we	simply	clear	the	UI.

It	is	now	the	turn	of	the	PictureModel	setter	implementation:

void	AlbumWidget::setPictureModel(PictureModel*	pictureModel)	

{	

				mPictureModel	=	pictureModel;	

				ui->thumbnailListView->setModel(mPictureModel);	

}	

	

void	AlbumWidget::setPictureSelectionModel(QItemSelectionModel*	selectionModel)	

{	

				ui->thumbnailListView->setSelectionModel(selectionModel);	

}	

It	is	very	simple	here.	We	set	the	model	and	the	selection	model	of	thumbnailListView,
our	QListView	that	will	display	the	selected	album's	thumbnails.	We	also	keep	the	picture
model	to	manipulate	the	data	later	on.

We	can	now	cover	the	features	one	by	one.	Let's	start	with	album	deletion:

void	AlbumWidget::deleteAlbum()	

{	

				if	(mAlbumSelectionModel->selectedIndexes().isEmpty())	{	

								return;	

				}	

				int	row	=	mAlbumSelectionModel->currentIndex().row();	

				mAlbumModel->removeRow(row);	

	

				//	Try	to	select	the	previous	album	

				QModelIndex	previousModelIndex	=	mAlbumModel->index(row	-	1,	

								0);	

				if(previousModelIndex.isValid())	{	

								mAlbumSelectionModel->setCurrentIndex(previousModelIndex,	

													QItemSelectionModel::SelectCurrent);	

								return;	

				}	

	

				//	Try	to	select	the	next	album	

				QModelIndex	nextModelIndex	=	mAlbumModel->index(row,	0);	

				if(nextModelIndex.isValid())	{	

								mAlbumSelectionModel->setCurrentIndex(nextModelIndex,	

												QItemSelectionModel::SelectCurrent);	

								return;	

				}	

}	

The	most	important	task	in	the	deleteAlbum()	function	is	to	retrieve	the	current	row	index
from	mAlbumSelectionModel.	Then,	we	can	request	mAlbumModel	to	delete	this	row.	The	rest	of
the	function	will	only	try	to	automatically	select	the	previous	or	the	next	album.	Once	again,
as	we	shared	the	same	selection	model,	AlbumListWidget	will	automatically	update	its	album
selection.

The	following	snippet	shows	the	album	rename	feature:

void	AlbumWidget::editAlbum()	

{	

				if	(mAlbumSelectionModel->selectedIndexes().isEmpty())	{	

								return;	

				}	

	

				QModelIndex	currentAlbumIndex	=		

								mAlbumSelectionModel->selectedIndexes().first();	

	

				QString	oldAlbumName	=	mAlbumModel->data(currentAlbumIndex,	

								AlbumModel::Roles::NameRole).toString();	

	

				bool	ok;	

				QString	newName	=	QInputDialog::getText(this,	

																																												"Album's	name",	

																																												"Change	Album	name",	

																																												QLineEdit::Normal,	

																																												oldAlbumName,	

																																												&ok);	

	

				if	(ok	&&	!newName.isEmpty())	{	

								mAlbumModel->setData(currentAlbumIndex,	

																													newName,	

																													AlbumModel::Roles::NameRole);	

				}	

}	

Here,	again	the	QInputDialog	class	will	help	us	to	implement	a	feature.	You	should	be
confident	with	its	behavior	now.	This	function	performs	three	steps:

1.	 Retrieve	the	current	name	from	album	model.
2.	 Generate	a	great	input	dialog.
3.	 Request	the	album	model	to	update	the	name

As	you	can	see,	the	generic	functions	data()	and	setData()	from	the	models	are	very
powerful	when	combined	with	ItemDataRole.	As	already	explained,	we	do	not	directly	update

our	UI;	this	will	be	automatically	performed	because	setData()	emits	a
signal,	dataChanged(),	which	AlbumWidget	handles.

The	last	feature	allows	us	to	add	some	new	picture	files	in	the	current	album:

void	AlbumWidget::addPictures()	

{	

				QStringList	filenames	=	

								QFileDialog::getOpenFileNames(this,	

												"Add	pictures",	

													QDir::homePath(),	

												"Picture	files	(*.jpg	*.png)");	

	

				if	(!filenames.isEmpty())	{	

								QModelIndex	lastModelIndex;	

								for	(auto	filename	:	filenames)	{	

												Picture	picture(filename);	

												lastModelIndex	=	mPictureModelâ†’pictureModel()-

>addPicture(picture);	

								}	

								ui->thumbnailListView->setCurrentIndex(lastModelIndex);	

				}	

}	

The	QFileDialog	class	is	used	here	to	help	the	user	select	several	picture	files.	For	each
filename,	we	create	a	Picture	data	holder,	like	we	have	already	seen	in	this	chapter	for	album
creation.	Then	we	can	request	mPictureModel	to	add	this	picture	in	the	current	album.	Note
that,	because	mPictureModel	is	a	ThumbnailProxyModel	class,	we	have	to	retrieve	the
real	PictureModel	using	the	helper	function,	pictureModel().	As	the	function	addPicture()
returns	us	the	corresponding	QModelIndex,	we	finally	select	the	most	recently	added	picture
in	thumbnailListView.

Let's	complete	AlbumWidget.cpp:

void	AlbumWidget::clearUi()	

{	

				ui->albumName->setText("");	

				ui->deleteButton->setVisible(false);	

				ui->editButton->setVisible(false);	

				ui->addPicturesButton->setVisible(false);	

}	

	

void	AlbumWidget::loadAlbum(const	QModelIndex&	albumIndex)	

{	

				mPictureModel->pictureModel()->setAlbumId(mAlbumModel->data(albumIndex,	

								AlbumModel::Roles::IdRole).toInt());	

	

				ui->albumName->setText(mAlbumModel->data(albumIndex,	

								Qt::DisplayRole).toString());	

	

				ui->deleteButton->setVisible(true);	

				ui->editButton->setVisible(true);	

				ui->addPicturesButton->setVisible(true);	

}	

The	clearUi()function	clears	the	album's	name	and	hides	the	buttons,	while	the	loadAlbum()
function	retrieves	the	Qt::DisplayRole	(the	album's	name)	and	displays	the	buttons.

Enhancing	thumbnails	with	PictureDelegate
By	default,	a	QListView	class	will	request	Qt::DisplayRole	and	Qt::DecorationRole	to
display	text	and	a	picture	for	each	item.	Thus,	we	already	have	a	visual	result,	for	free,	that
looks	like	this:

However,	our	Gallery	application	deserves	better	thumbnail	rendering.	Hopefully,	we	can
easily	customize	it	using	the	view's	delegate	concept.	A	QListView	class	provides	a	default
item	rendering.	We	can	do	our	own	item	rendering	by	creating	a	class	that
inherits	QStyledItemDelegate.	The	aim	is	to	paint	your	dream	thumbnails	with	a	name	banner
like	the	following	screenshot:

Let's	take	a	look	at	PictureDelegate.h:

#include	<QStyledItemDelegate>	

	

class	PictureDelegate	:	public	QStyledItemDelegate	

{	

				Q_OBJECT	

public:	

				PictureDelegate(QObject*	parent	=	0);	

	

				void	paint(QPainter*	painter,	const	QStyleOptionViewItem&	

								option,	const	QModelIndex&	index)	const	override;	

	

				QSize	sizeHint(const	QStyleOptionViewItem&	option,	

								const	QModelIndex&	index)	const	override;	

};	

That	is	right,	we	only	have	to	override	two	functions.	The	most	important	function,	paint(),
will	allow	us	to	paint	the	item	like	we	want.	The	sizeHint()	function	will	be	used	to	specify
the	item	size.

We	can	now	see	the	painter	work	in	PictureDelegate.cpp:

#include	"PictureDelegate.h"	

	

#include	<QPainter>	

	

const	unsigned	int	BANNER_HEIGHT	=	20;	

const	unsigned	int	BANNER_COLOR	=	0x303030;	

const	unsigned	int	BANNER_ALPHA	=	200;	

const	unsigned	int	BANNER_TEXT_COLOR	=	0xffffff;	

const	unsigned	int	HIGHLIGHT_ALPHA	=	100;	

	

PictureDelegate::PictureDelegate(QObject*	parent)	:	

				QStyledItemDelegate(parent)	

{	

}	

	

void	PictureDelegate::paint(QPainter*	painter,	const	QStyleOptionViewItem&	

option,	const	QModelIndex&	index)	const	

{	

				painter->save();	

	

				QPixmap	pixmap	=	index.model()->data(index,	

								Qt::DecorationRole).value<QPixmap>();	

				painter->drawPixmap(option.rect.x(),	option.rect.y(),	pixmap);	

	

				QRect	bannerRect	=	QRect(option.rect.x(),	option.rect.y(),	

								pixmap.width(),	BANNER_HEIGHT);	

				QColor	bannerColor	=	QColor(BANNER_COLOR);	

				bannerColor.setAlpha(BANNER_ALPHA);	

				painter->fillRect(bannerRect,	bannerColor);	

	

				QString	filename	=	index.model()->data(index,	

								Qt::DisplayRole).toString();	

				painter->setPen(BANNER_TEXT_COLOR);	

				painter->drawText(bannerRect,	Qt::AlignCenter,	filename);	

	

				if	(option.state.testFlag(QStyle::State_Selected))	{	

								QColor	selectedColor	=	option.palette.highlight().color();	

								selectedColor.setAlpha(HIGHLIGHT_ALPHA);	

								painter->fillRect(option.rect,	selectedColor);	

				}	

	

				painter->restore();	

}	

Each	time	QListView	needs	to	display	an	item,	this	delegate's	paint()	function	will	be	called.
The	paint	system	can	be	seen	as	layers	that	you	paint	one	on	top	of	each	other.	The	QPainter
class	allows	us	to	paint	anything	we	want:	circles,	pies,	rectangles,	text,	and	so	on.	The	item
area	can	be	retrieved	with	option.rect().	Here	are	the	steps:

1.	 It	is	easy	to	break	the	painter	state	passed	in	the	parameter	list,	thus	we	must	save	the
painter	state	with	painter->save()	before	doing	anything,	to	be	able	to	restore	it	when
we	have	finished	our	drawing.

2.	 Retrieve	the	item	thumbnail	and	draw	it	with	the	QPainter::drawPixmap()	function.
3.	 Paint	a	translucent	gray	banner	on	top	of	the	thumbnail	with	the	QPainter::fillRect()

function.
4.	 Retrieve	the	item	display	name	and	draw	it	on	the	banner	using

the	QPainter::drawText()	function.

5.	 If	the	item	is	selected,	we	paint	a	translucent	rectangle	on	the	top	using	the	highlight
color	from	the	item.

6.	 We	restore	the	painter	state	to	its	original	state.

Tip

If	you	want	to	draw	a	more	complex	item,	check	the	QPainter	official	documentation
at	doc.qt.io/qt-5/qpainter.html.

This	is	the	sizeHint()	function's	implementation:

QSize	PictureDelegate::sizeHint(const	QStyleOptionViewItem&	/*option*/,	const	

QModelIndex&	index)	const	

{	

				const	QPixmap&	pixmap	=	index.model()->data(index,	

								Qt::DecorationRole).value<QPixmap>();	

				return	pixmap.size();	

}	

This	one	is	easier.	We	want	the	item's	size	to	be	equal	to	the	thumbnail	size.	As	we	kept	the
aspect	ratio	of	the	thumbnail	during	its	creation	in	Picture::setFilePath(),	thumbnails	can
have	a	different	width	and	height.	Hence,	we	basically	retrieve	the	thumbnail	and	return	its
size.

Tip

When	you	create	an	item	delegate,	avoid	directly	inheriting	the	QItemDelegate	class	and
instead	inherit	QStyledItemDelegate.	This	last	one	supports	Qt	style	sheets,	allowing	you	to
easily	customize	the	rendering.

Now	that	PictureDelegate	is	ready,	we	can	configure	our	thumbnailListView	to	use	it,
updating	the	AlbumWidget.cpp	file	like	this:

AlbumWidget::AlbumWidget(QWidget	*parent)	:	

				QWidget(parent),	

				ui(new	Ui::AlbumWidget),	

				mAlbumModel(nullptr),	

				mAlbumSelectionModel(nullptr),	

				mPictureModel(nullptr),	

				mPictureSelectionModel(nullptr)	

{	

				ui->setupUi(this);	

				clearUi();	

	

				ui->thumbnailListView->setSpacing(5);	

				ui->thumbnailListView->setResizeMode(QListView::Adjust);	

				ui->thumbnailListView->setFlow(QListView::LeftToRight);	

				ui->thumbnailListView->setWrapping(true);	

				ui->thumbnailListView->setItemDelegate(

http://doc.qt.io/qt-5/qpainter.html

								new	PictureDelegate(this));	

				...	

}	

Tip

Qt	tip

An	item	delegate	can	also	manage	the	editing	process	with	the
QStyledItemDelegate::createEditor()	function.

Displaying	a	picture	with	PictureWidget
This	widget	will	be	called	to	display	a	picture	at	its	full	size.	We	also	add	some	buttons	to	go
to	the	previous/next	picture	or	delete	the	current	one.

Let's	start	to	analyze	the	PictureWidget.ui	form,	here	is	the	design	view:

Here	are	the	details:

backButton:	This	object	requests	to	display	the	gallery
deleteButton:	This	object	removes	the	picture	from	the	album
nameLabel:	This	object	displays	the	picture	name
nextButton:	This	object	selects	the	next	picture	in	the	album
previousButton:	This	object	selects	the	previous	picture	in	the	album
pictureLabel:	This	object	displays	the	picture

We	can	now	take	a	look	at	the	header	PictureWidget.h:

#include	<QWidget>	

#include	<QItemSelection>	

	

namespace	Ui	{	

class	PictureWidget;	

}	

	

class	PictureModel;	

class	QItemSelectionModel;	

class	ThumbnailProxyModel;	

	

class	PictureWidget	:	public	QWidget	

{	

				Q_OBJECT	

	

public:	

				explicit	PictureWidget(QWidget	*parent	=	0);	

				~PictureWidget();	

				void	setModel(ThumbnailProxyModel*	model);	

				void	setSelectionModel(QItemSelectionModel*	selectionModel);	

	

signals:	

				void	backToGallery();	

	

protected:	

				void	resizeEvent(QResizeEvent*	event)	override;	

	

private	slots:	

				void	deletePicture();	

				void	loadPicture(const	QItemSelection&	selected);	

	

private:	

				void	updatePicturePixmap();	

	

private:	

				Ui::PictureWidget*	ui;	

				ThumbnailProxyModel*	mModel;	

				QItemSelectionModel*	mSelectionModel;	

				QPixmap	mPixmap;	

};	

No	surprises	here,	we	have	the	ThumbnailProxyModel*	and	QItemSelectionModel*	setters	in
the	PictureWidget	class.	The	signal	backToGallery()	is	triggered	when	the	user	clicks	on
the	backButton	object.	It	will	be	handled	by	MainWindow	to	display	again	the	gallery.	We
override	resizeEvent()	to	ensure	that	we	always	use	all	the	visible	area	to	display	the	picture.
The	deletePicture()slot	will	process	the	deletion	when	the	user	clicks	on	the	corresponding
button.	The	loadPicture()function	will	be	called	to	update	the	UI	with	the	specified	picture.
Finally,	updatePicturePixmap()	is	a	helper	function	to	display	the	picture	according	to	the
current	widget	size.

This	widget	is	really	similar	to	the	others.	As	a	result,	we	will	not	put	the	full	implementation
code	of	PictureWidget.cpp	here.	You	can	check	the	full	source	code	example	if	needed.

Let's	see	how	this	widget	is	able	to	always	display	the	picture	at	its	full	size	in
PictureWidget.cpp:

void	PictureWidget::resizeEvent(QResizeEvent*	event)	

{	

				QWidget::resizeEvent(event);	

				updatePicturePixmap();	

}	

	

void	PictureWidget::updatePicturePixmap()	

{	

				if	(mPixmap.isNull())	{	

								return;	

				}	

				ui->pictureLabel->setPixmap(mPixmap.scaled(ui->pictureLabel->size(),	

Qt::KeepAspectRatio));	

}	

So,	every	time	the	widget	is	resized,	we	call	updatePicturePixmap().	The	mPixmap	variable	is
the	full-size	picture	from	PictureModel.	This	function	will	scale	the	picture	to
the	pictureLabel	size,	keeping	the	aspect	ratio.	You	can	freely	resize	the	window	and	enjoy
your	picture	with	the	biggest	possible	size.

Composing	your	Gallery	app
Alright,	we	completed	AlbumListWidget,	AlbumWidget,	and	PictureWidget.	If	you	remember
correctly,	AlbumListWidget	and	AlbumWidget	are	contained	in	a	widget	called	GalleryWidget.

Let's	take	a	look	at	the	GalleryWidget.ui	file:

This	widget	does	not	contain	any	standard	Qt	widgets	but	only	our	created	widgets.	Qt
provides	two	ways	to	use	your	own	widgets	in	the	Qt	designer:

Promoting	widgets:	This	is	the	fastest	and	easiest	way
Creating	widget	plugin	for	Qt	designer:	This	is	more	powerful	but	more	complex

In	this	chapter,	we	will	use	the	first	way,	which	consists	of	placing	a	generic	QWidget	as	a
placeholder	and	then	promoting	it	to	our	custom	widget	class.	You	can	follow	these	steps	to
add	the	albumListWidget	and	the	albumWidget	objects	to	the	GalleryWidget.ui	file	from	the
Qt	designer:

1.	 Drag	and	drop	a	Widget	from	Containers	to	your	form.
2.	 Set	the	objectName	(for	example,	albumListWidget)	from	the	Property	Editor.
3.	 Select	Promote	to...	from	the	widget	contextual	menu.
4.	 Set	the	promoted	class	name	(for	example,	AlbumWidget).
5.	 Check	that	header	file	is	correct	(for	example,	AlbumWidget.h).
6.	 Click	on	the	Add	button	and	then	click	on	Promote.

If	you	fail	your	widget	promotion,	you	can	always	reverse	it	with	Demote	to	QWidget	from
the	contextual	menu.

There	is	nothing	really	exciting	in	the	header	and	implementation	of	GalleryWidget.	We	only
provide	setters	for	the	model	and	model	selection	of	Album	and	Picture	to	forward	them

to	albumListWidget	and	albumWidget.	This	class	also	relays	the	signal	pictureActivated
from	albumWidget.	Please	check	the	full	source	code	if	needed.

This	is	the	final	part	of	this	chapter.	We	will	now	analyze	MainWindow.	Nothing	is	done
in	MainWindow.ui	because	everything	is	handled	in	the	code.	This	is	MainWindow.h:

#include	<QMainWindow>	

#include	<QStackedWidget>	

	

namespace	Ui	{	

class	MainWindow;	

}	

	

class	GalleryWidget;	

class	PictureWidget;	

	

class	MainWindow	:	public	QMainWindow	

{	

				Q_OBJECT	

	

public:	

				explicit	MainWindow(QWidget	*parent	=	0);	

				~MainWindow();	

	

public	slots:	

				void	displayGallery();	

				void	displayPicture(const	QModelIndex&	index);	

	

private:	

				Ui::MainWindow	*ui;	

				GalleryWidget*	mGalleryWidget;	

				PictureWidget*	mPictureWidget;	

				QStackedWidget*	mStackedWidget;	

};	

The	two	slots,	displayGallery()	and	displayPicture(),	will	be	used	to	switch	the	display
between	the	gallery	(album	list	with	the	album	and	thumbnail)	and	the	picture	(full-size).
The	QStackedWidget	class	can	contain	various	widgets	but	display	only	one	at	a	time.

Let's	take	a	look	to	the	beginning	of	the	constructor	in	the	MainWindow.cpp	file:

ui->setupUi(this);	

	

AlbumModel*	albumModel	=	new	AlbumModel(this);	

QItemSelectionModel*	albumSelectionModel	=	

				new	QItemSelectionModel(albumModel,	this);	

mGalleryWidget->setAlbumModel(albumModel);	

mGalleryWidget->setAlbumSelectionModel(albumSelectionModel);	

First,	we	initialize	the	UI	by	calling	ui->setupUi().	Then	we	create	AlbumModel	and

its	QItemSelectionModel.	Finally,	we	call	the	setters	of	GalleryWidget	that	will	dispatch	them
to	the	AlbumListWidget	and	AlbumWidget	objects.

Continuing	our	analysis	of	this	constructor:

PictureModel*	pictureModel	=	new	PictureModel(*albumModel,	this);	

ThumbnailProxyModel*	thumbnailModel	=	new	ThumbnailProxyModel(this);	

thumbnailModel->setSourceModel(pictureModel);	

	

QItemSelectionModel*	pictureSelectionModel	=	

				new	QItemSelectionModel(pictureModel,	this);	

	

mGalleryWidget->setPictureModel(thumbnailModel);	

mGalleryWidget->setPictureSelectionModel(pictureSelectionModel);	

mPictureWidget->setModel(thumbnailModel);	

mPictureWidget->setSelectionModel(pictureSelectionModel);	

The	behavior	with	Picture	is	close	to	the	previous	one	with	Album.	But	we	also
share	ThumbnailProxyModel,	which	is	initialized	from	PictureModel,	and
its	QItemSelectionModel	with	PictureWidget.

The	constructor	now	performs	the	signal/slot	connections:

connect(mGalleryWidget,	&GalleryWidget::pictureActivated,	

								this,	&MainWindow::displayPicture);	

	

connect(mPictureWidget,	&PictureWidget::backToGallery,	

								this,	&MainWindow::displayGallery);	

Do	you	remember	the	pictureActivated()	function?	This	signal	is	emitted	when	you	double-
click	on	a	thumbnail	in	albumWidget.	We	can	now	connect	it	to	our	displayPicture	slot,
which	will	switch	the	display	with	the	picture	at	its	full	size.	Do	not	forget	to	also	connect
the	backToGallery	signal	emitted	when	the	user	clicks	on	the	backButton
from	PictureWidget.	It	will	switch	again	to	display	the	gallery.

The	last	part	of	the	constructor	is	easy:

mStackedWidget->addWidget(mGalleryWidget);	

mStackedWidget->addWidget(mPictureWidget);	

displayGallery();	

	

setCentralWidget(mStackedWidget);	

We	add	our	two	widgets,	mGalleryWidget	and	mPictureWidget,	to	the	mStackedWidget	class.
When	the	application	starts,	we	want	to	display	the	gallery,	so	we	call	our	own
slot	displayGallery().	Finally,	we	define	mStackedWidget	as	the	main	window's	central
widget.

To	finish	this	chapter,	let's	see	what	happens	in	these	two	magic	slots	that	allows	to	switch	the
display	when	the	user	requests	it:

void	MainWindow::displayGallery()	

{	

				mStackedWidget->setCurrentWidget(mGalleryWidget);	

}	

	

void	MainWindow::displayPicture(const	QModelIndex&	/*index*/)	

{	

				mStackedWidget->setCurrentWidget(mPictureWidget);	

}	

That	seems	ridiculously	easy.	We	just	request	mStackedWidget	to	select	the	corresponding
widget.	As	PictureWidget	shares	the	same	selection	model	with	other	views,	we	can	even
ignore	the	index	variable.

Summary
The	real	separation	between	data	and	representation	is	not	always	an	easy	task.	Dividing	the
core	and	the	GUI	in	two	different	projects	is	a	good	practice.	It	will	force	you	to	design
separated	layers	in	your	application.	At	first	sight,	the	Qt	model/view	system	can	appear
complex.	But	this	chapter	taught	you	how	powerful	it	can	be	and	how	easy	it	is	to	use.	Thanks
to	the	Qt	framework,	the	persistence	of	data	in	a	database	can	be	done	without	headaches.

This	chapter	built	on	top	of	the	foundations	laid	with	the	gallery-core	library.	In	the	next
chapter,	we	will	reuse	the	same	core	library	and	create	a	mobile	UI	with	Qt	Quick	in	QML.

Chapter	5.		Dominating	the	Mobile	UI
In	Chapter	3,	Dividing	Your	Project	and	Ruling	Your	Code,	we	created	a	strong	core	library	to
handle	a	picture	gallery.	We	will	now	use	this	gallery-core	library	to	create	a	mobile
application.

We	will	teach	you	how	to	create	a	Qt	Quick	project	from	scratch.	You	will	create	custom	Qt
Quick	views	with	QML.	This	chapter	will	also	cover	how	your	QML	views	can	communicate
with	the	C++	library.

At	the	end	of	this	chapter,	your	gallery	application	will	run	on	your	mobile	(Android	or	iOS)
with	a	dedicated	GUI	compliant	with	touch	devices.	This	application	will	offer	the	same
features	as	the	desktop	application.

This	chapter	covers	the	following	topics:

Creating	a	Qt	Quick	project
QML
Qt	Quick	controls
Qt	for	mobile	(Android	and	iOS)
Calling	C++	functions	from	QML

Starting	with	Qt	Quick	and	QML
Qt	Quick	is	another	way	of	creating	applications	with	Qt.	You	can	use	it	to	create	a	complete
application	in	place	of	Qt	Widgets.	The	Qt	Quick	module	provides	transitions,	animations,
and	visual	effects.	You	can	also	customize	graphical	effects	with	shaders.	This	module	is
especially	efficient	at	making	software	for	devices	using	touchscreens.	Qt	Quick	uses	a
dedicated	language:	Qt	Modeling	Language	(QML).	It	is	a	declarative	language;	the	syntax	is
close	to	the	JSON	(JavaScript	Object	Notation)	syntax.	Furthermore,	QML	also	supports
JavaScript	expressions	inline	or	in	a	separate	file.

Let's	begin	with	a	simple	example	of	a	Qt	Quick	application	using	QML.	Create	a	new	file
called	main.qml	with	this	code	snippet:

import	QtQuick	2.5	

import	QtQuick.Window	2.2	

	

Window	{	

				visible:	true	

				width:	640;	height:	480	

	

				//	A	nice	red	rectangle	

				Rectangle	{	

								width:	200;	height:	200	

								color:	"red"	

				}	

}	

Qt	5	provides	a	nice	tool	called	qmlscene	to	prototype	a	QML	user	interface.	You	can	find	the
binary	file	in	your	Qt	installation	folder,	for	example:	Qt/5.7/gcc_64/bin/qmlscene.	To	load
your	main.qml	file,	you	can	run	the	tool	and	select	the	file,	or	use	the	CLI	with	the	.qml	file	in
an	argument:	qmlscene	main.qml.	You	should	see	something	like	this:

To	use	a	Qt	Quick	module,	you	need	to	import	it.	The	syntax	is	easy:

import	<moduleName>	<moduleVersion>	

In	this	example	we	import	QtQuick,	which	is	the	common	module	that	will	provide	basic
components	(Rectangle,	Image,	Text)	and	we	also	import	the	QtQuick.Window	module	that
will	provide	the	main	window	application	(Window).

A	QML	component	can	have	properties.	For	example,	we	set	the	width	property	of	the	Window
class	to	the	value	640.	Here	is	the	generic	syntax:

<ObjectType>	{	

				<PropertyName>:	<PropertyValue>	

}	

We	can	now	update	main.qml	file	with	some	new	rectangles:

import	QtQuick	2.5	

import	QtQuick.Window	2.2	

	

Window	{	

				visible:	true	

				width:	640;	height:	480	

	

				Rectangle	{	

								width:	200;	height:	200	

								color:	"red"	

				}	

	

				Rectangle	{	

								width:	200;	height:	200	

								color:	"green"	

								x:	100;	y:	100	

	

								Rectangle	{	

												width:	50;	height:	50	

												color:	"blue"	

												x:	100;	y:	100	

								}	

				}	

}	

Here	is	the	visual	result:

Your	QML	file	describes	the	UI	as	a	hierarchy	of	components.	The	hierarchy	below
the	Window	element	is	the	following:

Red	Rectangle
Green	Rectangle
Blue	Rectangle

Each	nested	item	will	always	have	its	x,	y	coordinates	relative	to	its	parent.

To	structure	your	application,	you	can	build	reusable	QML	components.	You	can	easily	create
a	new	component.	All	QML	components	must	have	a	single	root	item.	Let's	build	a	new
MyToolbar	component	by	creating	a	new	file	called	MyToolbar.qml:

import	QtQuick	2.5	

	

import	QtQuick	2.5	

	

Rectangle	{	

				color:	"gray"	

				height:	50	

	

				Rectangle	{	

								id:	purpleRectangle	

								width:	50;	height:	parent.height	

								color:	"purple"	

								radius:	10	

				}	

	

				Text	{	

								anchors.left:	purpleRectangle.right	

								anchors.right:	parent.right	

								text:	"Dominate	the	Mobile	UI"	

								font.pointSize:	30	

				}	

}	

The	gray	Rectangle	element	will	be	our	root	item	used	as	background.	We	also	created	two
items:

A	purple	Rectangle	element	that	can	be	identified	with	the	ID	purpleRectangle.	The
height	of	this	item	will	be	the	height	of	its	parent,	that	is,	the	gray	Rectangle	element.
A	Text	item.	In	this	case,	we	use	anchors.	It	will	help	us	to	layout	items	without	using
hardcoded	coordinates.	The	left	of	the	Text	item	will	be	aligned	with	the	right
of	purpleRectangle,	and	the	right	of	the	Text	item	will	be	aligned	with	the	right	of	the
parent	(the	gray	Rectangle	element).

Note

Qt	Quick	provides	a	lot	of	anchors:	left,	horizontalCenter,	right,	top,	verticalCenter,
and	bottom.	You	can	also	use	convenience	anchors	such	as	fill	or	centerIn.	For	more
information	on	anchors,	take	a	look	at	http://doc.qt.io/qt-5/qtquick-positioning-anchors.html.

You	can	use	MyToolbar	in	your	window	by	updating	your	main.qml:

Window	{	

				...	

				MyToolbar	{	

								width:	parent.width	

				}	

}	

We	set	the	width	to	the	parent	width.	Like	this,	the	toolbar	fills	the	window's	width.	Here	is	the
result:

Anchors	are	great	to	align	specific	items,	but	if	you	want	to	layout	several	items	in	grid,	row,
or	column	fashion,	you	can	use	the	QtQuick.layouts	module.	Here	is	an	example	of	the
updated	main.qml:

http://doc.qt.io/qt-5/qtquick-positioning-anchors.html

import	QtQuick	2.5	

import	QtQuick.Window	2.2	

import	QtQuick.Layouts	1.3	

	

Window	{	

				visible:	true	

				width:	640;	height:	480	

	

				MyToolbar	{	

								id:	myToolbar	

								width:	parent.width	

				}	

	

				RowLayout	{	

								anchors.top:	myToolbar.bottom	

								anchors.left:	parent.left	

								anchors.right:	parent.right	

								anchors.bottom:	parent.bottom	

	

								Rectangle	{	width:	200;	height:	200;	color:	"red"	}	

								Rectangle	{	width:	200;	height:	200	color:	"green"	}	

								Rectangle	{	width:	50;	height:	50;	color:	"blue"	}	

				}	

}	

You	should	get	something	like	this:

As	you	can	see,	we	use	a	RowLayout	element	that	fits	under	the	myToolbar	and	to	its	parent,
a	Window	element.	This	item	provides	a	way	to	dynamically	layout	items	in	a	row.	Qt	Quick
also	provides	other	layout	items:	GridLayout	and	ColumnLayout.

Your	custom	component	can	also	expose	custom	properties	that	can	be	modified	outside	of
the	component	itself.	You	can	do	it	by	adding	the	property	attribute.	Please
update	MyToolbar.qml:

import	QtQuick	2.5	

	

Rectangle	{	

	

				property	color	iconColor:	"purple"	

				property	alias	title:	label.text	

	

				color:	"gray"	

				height:	50	

	

				Rectangle	{	

								id:	purpleRectangle	

								width:	50;	height:	parent.height	

								color:	iconColor	

								radius:	10	

				}	

	

				Text	{	

								id:	label	

								anchors.left:	purpleRectangle.right	

								anchors.right:	parent.right	

								text:	"Dominate	the	Mobile	UI"	

								font.pointSize:	30	

				}	

}	

The	iconColor	is	a	really	new	property	that	is	a	fully-fledged	variable.	We	also	update
the	Rectangle	attribute	to	use	this	property	as	color.	The	title	property	is	only	an	alias,	you
can	see	it	as	a	pointer	to	update	the	label.text	property.

From	outside	you	can	use	these	attributes	with	the	same	syntax;	please	update	the	main.qml
file	with	the	following	snippet:

import	QtQuick	2.5	

import	QtQuick.Window	2.2	

import	QtQuick.Layouts	1.3	

	

Window	{	

				visible:	true	

				width:	640;	height:	480	

	

				MyToolbar	{	

								id:	myToolbar	

								width:	parent.width	

	

								title:	"Dominate	Qt	Quick"	

								iconColor:	"yellow"	

				}	

			...	

}	

You	should	get	a	nice	updated	toolbar	like	this	one:

We	have	covered	the	basics	of	QML,	now	we	are	going	to	proceed	to	mobile	application
development	using	QML.

Checking	your	development	environment
To	be	able	to	create	a	Qt	application	for	Android,	you	must	have:

A	device	with	Android	v2.3.3	(API	10)	or	later
Android	SDK
Android	NDK
JDK
Qt	Prebuilt	Components	for	Android	x86	(from	the	Qt	Maintenance	Tool)
Qt	Prebuilt	Components	for	Android	ARMv7	(from	the	Qt	Maintenance	Tool)

To	be	able	to	create	a	Qt	application	for	iOS,	you	must	have:

A	device	with	iOS	5.0	or	later
A	Mac	desktop	computer
Xcode
Qt	for	iOS	(from	Qt	Maintenance	Tool)

When	starting,	Qt	Creator	will	detect	and	create	Android	and	iOS	Qt	kits.	You	can	check	your
existing	kits	from	Tools	|	Options	|	Build	&	Run	|	Kits,	as	shown	in	the	following
screenshot:

Creating	a	Qt	Quick	project
This	chapter	will	follow	the	same	project	structure	we	covered	in	Chapter	4,	Conquering	the
Desktop	UI:	a	parent	project	ch05-gallery-mobile.pro	will	host	our	two
subprojects,	gallery-core	and	the	new	gallery-mobile.

In	Qt	creator,	you	can	create	a	Qt	Quick	subproject	from	File	|	New	File	or	Project
|	Application	|	Qt	Quick	Controls	Application	|	Choose.

The	wizard	will	allow	you	to	customize	your	project	creation:

Location
Choose	a	project	name	(gallery-mobile)	and	a	location

Details
Deselect	With	ui.qml	file
Deselect	Enable	native	styling

Kits
Select	your	desktop	kit
Select	at	least	one	mobile	kit

Summary
Be	sure	to	add	gallery-mobile	as	a	subproject	of	ch05-gallery-mobile.pro

Let's	take	some	time	to	explain	why	we	created	our	project	with	these	options.

The	first	thing	to	analyze	is	the	application	template.	By	default,	Qt	Quick	only	provides	basic
QML	components	(Rectangle,	Image,	Text,	and	so	on).	Advanced	components	will	be	handled
by	Qt	Quick	modules.	For	this	project	we	will	use	Qt	Quick	Controls
(ApplicationWindow,	Button,	TextField,	and	so	on).	That	is	why	we	chose	to	begin	with	a	Qt
Quick	Controls	application.	Keep	in	mind	that	you	can	always	import	and	use	Qt	Quick
modules	later.

In	this	chapter,	we	will	not	use	the	Qt	Quick	Designer.	As	a	consequence,	.ui.qml	files	are	not
required.	Even	if	the	designer	can	help	a	lot,	it	is	good	to	understand	and	write	QML	files
yourself.

The	desktop	"native	styling"	is	disabled	because	this	project	mainly	targets	mobile	platforms.
Moreover,	disabling	"native	styling"	avoids	heavy	dependency	on	the	Qt	widgets	module.

Finally,	we	select	at	least	two	kits.	The	first	one	is	our	desktop	kit.	The	other	kits	are	the
mobile	platforms	you	target.	We	usually	use	the	following	development	workflow:

Fast	iterations	on	desktop
Check	and	fix	behavior	on	mobile	emulator/simulator

Real	test	on	the	mobile	device

Deployment	on	a	real	device	is	generally	longer	so	you	can	do	most	development	with	the
desktop	kit.	The	mobile	kits	will	allow	you	to	check	your	application	behavior	on	a	real
mobile	device	or	on	an	emulator	(for	example	with	a	Qt	Android	x86	kit).

Let's	talk	about	the	files	automatically	generated	by	the	wizard.	Here	is	the	main.cpp	file:

#include	<QGuiApplication>	

#include	<QQmlApplicationEngine>	

	

int	main(int	argc,	char	*argv[])	

{	

				QGuiApplication	app(argc,	argv);	

	

				QQmlApplicationEngine	engine;	

				engine.load(QUrl(QStringLiteral("qrc:/main.qml")));	

	

				return	app.exec();	

}	

We	use	here	QGuiApplication	and	not	QApplication	because	we	do	not	use	Qt	widgets	in	this
project.	Then,	we	create	the	QML	engine	and	load	qrc:/mail.qml.	As	you	may	have	guessed
(with	the	qrc:/	prefix),	this	QML	file	is	in	a	Qt	resource	file.

You	can	open	the	qml.qrc	file	to	find	the	main.qml:

import	QtQuick	2.5	

import	QtQuick.Controls	1.4	

	

ApplicationWindow	{	

				visible:	true	

				width:	640	

				height:	480	

				title:	qsTr("Hello	World")	

	

				menuBar:	MenuBar	{	

								Menu	{	

												title:	qsTr("File")	

												MenuItem	{	

																text:	qsTr("&Open")	

																onTriggered:	console.log("Open	action	triggered");	

												}	

												MenuItem	{	

																text:	qsTr("Exit")	

																onTriggered:	Qt.quit();	

												}	

								}	

				}	

	

				Label	{	

								text:	qsTr("Hello	World")	

								anchors.centerIn:	parent	

				}	

}	

The	first	thing	to	do	is	to	import	types	used	in	the	file.	Notice	the	module	version	at	the	end	of
each	import.	The	QtQuick	module	will	import	basic	QML	elements	(Rectangle,	Image,	and	so
on)	while	the	QtQuick.Controls	module	will	import	advanced	QML	elements	from
the	QtQuick	Controls	submodule	(ApplicationWindow,	MenuBar,	MenuItem,	Label,	and	so	on).

Then,	we	define	the	root	element	of	type	ApplicationWindow.	It	provides	a	top-level
application	window	with	the	following	items:	MenuBar,	ToolBar	and	StatusBar.	The
properties	visible,	width,	height,	and	title	of	ApplicationWindow	are	primitive	types.	The
syntax	is	simple	and	intelligible.

The	menuBar	property	is	more	complex.	This	MenuBar	property	is	composed	of	a	Menu	file,
itself	composed	of	two	MenuItems:	Open	and	Exit.	A	MenuItem	emits	a	triggered()signal
each	time	it	is	activated.	In	this	case,	the	MenuItem	file	will	log	a	message	on	the	console.	The
exit	MenuItem	terminates	the	application.

Finally,	a	Label	displaying	"Hello	World"	is	added	in	the	content	area	of
our	ApplicationWindow	type.	Positioning	items	with	anchors	is	useful.	In	our	case	the	label	is
centered	vertically	and	horizontally	in	its	parent,	ApplicationWindow.

Before	going	ahead,	check	that	this	sample	runs	correctly	on	your	desktop	and	on	your
mobile.

Preparing	your	Qt	Quick	gallery	entry
point
First	of	all,	you	need	to	link	this	project	to	our	gallery-core	library.	We	already	covered
how	to	link	an	internal	library	in	Chapter	4,	Conquering	the	Desktop	UI.	For	more	details,
refer	to	it.	This	is	the	updated	gallery-mobile.pro	file:

TEMPLATE	=	app	

	

QT	+=	qml	quick	sql	svg	

	

CONFIG	+=	c++11	

	

SOURCES	+=	main.cpp	

	

RESOURCES	+=	gallery.qrc	

	

LIBS	+=	-L$$OUT_PWD/../gallery-core/	-lgallery-core	

INCLUDEPATH	+=	$$PWD/../gallery-core	

DEPENDPATH	+=	$$PWD/../gallery-core	

	

contains(ANDROID_TARGET_ARCH,x86)	{	

				ANDROID_EXTRA_LIBS	=	\	

								$$[QT_INSTALL_LIBS]/libQt5Sql.so	

}	

Please	notice	that	we	made	several	changes	here:

We	added	the	sql	module	to	deploy	the	dependency	on	your	mobile	device
We	added	the	svg	module	for	the	button	icons
The	qml.qrc	file	has	been	renamed	in	gallery.qrc
We	linked	the	gallery-core	library
By	default,	the	sql	shared	object	(libQt5Sql.so)	will	not	be	deployed	on	your	Android
x86	device.	You	have	to	explicitly	include	it	in	your	.pro	file.

You	can	now	use	classes	from	the	gallery-core	library	in	our	gallery-mobile	application.
Let's	see	how	to	bind	C++	models	with	QML.	This	is	the	updated	main.cpp:

#include	<QGuiApplication>	

#include	<QQmlApplicationEngine>	

#include	<QQmlContext>	

#include	<QQuickView>	

	

#include	"AlbumModel.h"	

#include	"PictureModel.h"	

	

int	main(int	argc,	char	*argv[])	

{	

				QGuiApplication	app(argc,	argv);	

	

				AlbumModel	albumModel;	

				PictureModel	pictureModel(albumModel);	

	

				QQmlApplicationEngine	engine;	

	

				QQmlContext*	context	=	engine.rootContext();	

				context->setContextProperty("albumModel",	&albumModel);	

				context->setContextProperty("pictureModel",	&pictureModel);	

	

				engine.load(QUrl(QStringLiteral("qrc:/qml/main.qml")));	

	

				return	app.exec();	

}	

Our	models	will	be	instantiated	in	C++	and	exposed	to	QML	using	the	root	QQmlContext
object.	The	setContextProperty()	function	allows	us	to	bind	a	C++	QObject	to	a	QML
property.	The	first	argument	will	be	the	QML	property	name.	We	are	only	binding	a	C++
object	to	a	QML	property;	the	context	object	does	not	take	ownership	of	this	object.

Let's	now	talk	about	the	mobile	application	itself.	We	will	define	three	pages	with	specific
roles:

AlbumListPage

Displays	existing	albums
Album	creation
Album	selection

AlbumPage

Displays	existing	pictures	as	thumbnails
Adds	pictures	in	album
Album	rename
Album	deletion
Picture	selection

PicturePage

Displays	selected	picture
Picture	selection
Picture	deletion

To	handle	the	navigation,	we	will	use	a	StackView	component	from	Qt	Quick	Controls.	This
QML	component	implements	a	stack-based	navigation.	You	can	push	a	page	when	you	want	to
display	it.	When	the	user	requests	to	go	back,	you	can	pop	it.	Here	is	the	workflow	using
a	StackView	component	for	our	gallery	mobile	application.	The	page	with	the	solid	border	is
the	page	currently	displayed	on	screen:

This	is	the	implementation	of	main.qml:

import	QtQuick	2.6	

import	QtQuick.Controls	2.0	

	

ApplicationWindow	{	

	

				readonly	property	alias	pageStack:	stackView	

	

				id:	app	

				visible:	true	

				width:	768	

				height:	1280	

	

				StackView	{	

								id:	stackView	

								anchors.fill:	parent	

								initialItem:	AlbumListPage	{}	

				}	

	

				onClosing:	{	

								if	(Qt.platform.os	==	"android")	{	

												if	(stackView.depth	>	1)	{	

																close.accepted	=	false	

																stackView.pop()	

												}	

								}	

				}	

}	

This	main	file	is	really	simple.	The	application	is	constructed	around	the	StackView
component.	We	set	the	id	property	to	allow	our	StackView	to	be	identified	and	referred	to	by
other	QML	objects.	The	anchors	property	will	set	stackView	to	fill	its	parent,
the	ApplicationWindow	type.	Finally,	we	set	the	initialItem	property	to	a
page,	AlbumListPage	that	will	be	implemented	soon.

On	Android,	onClosing	will	be	executed	each	time	the	user	presses	the	back	button.	To	mimic
a	native	Android	application,	we	will	first	pop	the	last	stacked	page	before	really	closing	the
application.

At	the	top	of	the	file,	we	define	a	property	alias	for	the	stackView.	A	property	alias	is	a
simple	reference	to	another	existing	property.	This	alias	will	be	useful	to	access	stackView
from	other	QML	components.	To	prevent	a	QML	component	to	crush	the	stackView	we	are
using	the	readonly	keyword.	After	initialization,	the	components	can	access	the	property	but
not	change	its	value.

Displaying	albums	with	ListView
Let's	make	our	first	page	for	this	mobile	application!	Create	a	file	in	gallery.qrc
called	AlbumListPage.qml.	Here	is	the	page	header	implementation:

import	QtQuick	2.0	

import	QtQuick.Layouts	1.3	

	

import	QtQuick.Controls	2.0	

	

Page	{	

	

				header:	ToolBar	{	

								Label	{	

												Layout.fillWidth:	true	

												text:	"Albums"	

												font.pointSize:	30	

								}	

				}	

...	

}	

A	Page	is	a	container	control	with	a	header	and	footer.	In	this	application,	we	will	only	use	the
header	item.	We	assign	a	ToolBar	to	the	header	property.	The	height	of	this	toolbar	will	be
handled	by	Qt	and	will	be	adjusted	depending	on	the	target	platform.	In	this	first	simple
implementation,	we	only	put	a	Label	displaying	the	text	"Albums".

Add	a	ListView	element	to	this	page	after	the	header	initialization:

ListView	{	

				id:	albumList	

				model:	albumModel	

				spacing:	5	

				anchors.fill:	parent	

	

				delegate:	Rectangle	{	

								width:	parent.width	

								height:	120	

								color:	"#d0d1d2"	

	

								Text	{	

												text:	name	

												font.pointSize:	16	

												color:	"#000000"	

												anchors.verticalCenter:	parent.verticalCenter	

								}	

				}	

}	

The	Qt	Quick	ListView	is	the	Qt	Widget	QListView	equivalent.	It	displays	a	list	of	items	from

a	provided	model.	We	set	the	model	property	to	value	albumModel.	This	refers	to	the	C++
model	from	main.cpp	file	accessible	from	QML	because	we	used	the	setContextProperty()
function.	In	Qt	Quick,	you	must	provide	a	delegate	to	describe	how	a	row	will	be	displayed.	In
this	case,	a	row	will	only	display	the	album's	name	with	a	Text	item.	Accessing	the	album's
name	in	QML	is	easy	because	our	AlbumModel	model	exposes	its	role	list	to	QML.	Let's
refresh	your	memory	concerning	the	overridden	roleNames()	function	of	AlbumModel:

QHash<int,	QByteArray>	AlbumModel::roleNames()	const	

{	

				QHash<int,	QByteArray>	roles;	

				roles[Roles::IdRole]	=	"id";	

				roles[Roles::NameRole]	=	"name";	

				return	roles;	

}	

So	each	time	your	delegate	from	Qt	Quick	uses	the	name	role,	it	will	call	the	AlbumModel
function	data()	with	the	correct	role	integer	and	return	the	correct	album	name	string.

To	handle	the	mouse,	click	on	a	row	and	add	a	MouseArea	element	on	the	delegate:

ListView	{	

				...	

				delegate:	Rectangle	{	

								...	

								MouseArea	{	

												anchors.fill:	parent	

												onClicked:	{	

																albumList.currentIndex	=	index	

																pictureModel.setAlbumId(id)	

																pageStack.push("qrc:/qml/AlbumPage.qml",	

																							{	albumName:	name,	albumRowIndex:	index	})	

												}	

								}	

				}	

}	

The	MouseArea	is	an	invisible	item	that	can	be	used	with	any	visible	item	to	handle	mouse
events.	This	also	applies	to	a	simple	touch	on	a	phone	touch	screen.	Here	we	tell
the	MouseArea	element	to	take	the	full	area	of	the	parent	Rectangle.

In	our	case,	we	only	perform	tasks	on	the	clicked	signal.	We	update	the	currentIndex	of
the	ListView	with	index.	This	index	is	a	special	role	containing	the	index	of	the	item	in	the
model.

When	the	user	clicks,	we	will	tell	pictureModel	to	load	the	selected	album	with
the	pictureModel.setAlbumId(id)	call.	We	will	see	soon	how	QML	can	call	C++	methods.

Finally,	we	push	AlbumPage	on	pageStack	property.	The	push()	function	allows	us	to	set	a	list

of	QML	properties	using	a	{key:	value,	...	}	syntax.	Each	property	will	be	copied	into	the
pushed	item.	Here	the	name	and	the	index	will	be	copied	in	the	albumName	and	albumRowIndex
properties	of	AlbumPage.	It	is	a	simple	yet	powerful	way	to	instantiate	a	QML	page	with
properties	arguments.

From	your	QML	code,	you	can	only	call	some	specific	C++	methods:

Properties	(using	Q_PROPERTY)
Public	slot
Function	decorated	as	invokable	(using	Q_INVOKABLE)

In	this	case	we	will	decorate	PictureModel::setAlbumId()	as	Q_INVOKABLE,	please	update
the	PictureModel.h	file:

class	GALLERYCORESHARED_EXPORT	PictureModel	:	public	QAbstractListModel	

{	

				Q_OBJECT	

public:	

			...	

				Q_INVOKABLE	void	setAlbumId(int	albumId);	

			...	

};	

Theming	the	application	with	a	QML
singleton
Styling	and	theming	a	QML	application	can	be	done	in	various	ways.	In	this	chapter,	we	will
declare	a	QML	singleton	with	the	theme	data	used	by	custom	components.	Moreover,	we	will
also	create	a	custom	Page	component	to	handle	the	toolbar	and	its	default	item	(back	button
and	page's	title).

Please	create	a	new	Style.qml	file:

pragma	Singleton	

import	QtQuick	2.0	

	

QtObject	{	

				property	color	text:	"#000000"	

	

				property	color	windowBackground:	"#eff0f1"	

				property	color	toolbarBackground:	"#eff0f1"	

				property	color	pageBackground:	"#fcfcfc"	

				property	color	buttonBackground:	"#d0d1d2"	

	

				property	color	itemHighlight:	"#3daee9"	

}	

We	declare	a	QtObject	component	that	will	only	contain	our	theme	properties.	A	QtObject	is	a
non-visual	QML	component.

Declaring	a	singleton	type	in	QML	requires	two	steps.	First	you	need	to	use	the	pragma
singleton,	it	will	indicate	the	use	of	a	single	instance	of	the	component.	The	second	step	is	to
register	it.	This	can	be	done	in	C++	or	by	creating	a	qmldir	file.	Let's	see	the	second	step.
Create	a	new	plain-text	file	called	qmldir:

singleton	Style	1.0	Style.qml	

This	simple	line	will	declare	a	QML	singleton	type	named	Style	with	the	version	1.0	from
the	file	named	Style.qml.

It	is	now	time	to	use	these	theme	properties	in	custom	components.	Let's	see	a	simple	example.
Create	a	new	QML	file	called	ToolBarTheme.qml:

import	QtQuick	2.0	

import	QtQuick.Controls	2.0	

	

import	"."	

	

ToolBar	{	

					background:	Rectangle	{	

									color:	Style.toolbarBackground	

					}	

	

}	

This	QML	object	describes	a	customized	ToolBar.	Here,	the	background	element	is	a
simple	Rectangle	with	our	color.	We	can	easily	access	our	singleton	Style	and	its	theme
property	using	Style.toolbarBackground.

Note

QML	Singletons	require	an	explicit	import	to	load	the	qmldir	file.	The	import	"."	is	a
workaround	for	this	Qt	bug.	For	more	information,	please
check	https://bugreports.qt.io/browse/QTBUG-34418.

We	will	now	create	a	QML	file	PageTheme.qml,	with	the	aim	of	containing	all	the	code	related
to	the	page's	toolbar	and	theme:

import	QtQuick	2.0	

	

import	QtQuick.Layouts	1.3	

import	Qt.labs.controls	1.0	

import	QtQuick.Controls	2.0	

import	"."	

	

Page	{	

	

				property	alias	toolbarButtons:	buttonsLoader.sourceComponent	

				property	alias	toolbarTitle:	titleLabel.text	

	

				header:	ToolBarTheme	{	

								RowLayout	{	

												anchors.fill:	parent	

												ToolButton	{	

																background:	Image	{	

																				source:	"qrc:/res/icons/back.svg"	

																}	

																onClicked:	{	

																				if	(stackView.depth	>	1)	{	

																								stackView.pop()	

																				}	

																}	

												}	

	

												Label	{	

																id:	titleLabel	

																Layout.fillWidth:	true	

																color:	Style.text	

																elide:	Text.ElideRight	

																font.pointSize:	30	

https://bugreports.qt.io/browse/QTBUG-34418

												}	

	

												Loader	{	

																Layout.alignment:	Qt.AlignRight	

																id:	buttonsLoader	

												}	

								}	

				}	

	

				Rectangle	{	

								color:	Style.pageBackground	

								anchors.fill:	parent	

				}	

}	

This	PageTheme	element	will	customize	the	page's	header.	We	use	our	previously
created	ToolBarTheme.	This	toolbar	only	contains	a	RowLayout	element	to	display	items
horizontally	in	one	row.	This	layout	contains	three	elements:

ToolButton:	This	is	the	"back"	that	displays	an	image	from	gallery.qrc	and	pops	the
current	page	if	required
Label:	This	is	the	element	that	displays	the	page	title
Loader:	This	is	the	element	that	allows	a	page	to	dynamically	add	specific	items	in	this
generic	toolbar

The	Loader	element	owns	a	sourceComponent	property.	In	this	application,	this	property	can	be
assigned	by	PageTheme	pages	to	add	specific	buttons.	These	buttons	will	be	instantiated	at
runtime.

The	PageTheme	pages	also	contain	a	Rectangle	element	that	fits	the	parent	and	configures	the
page	background	color	using	the	Style.pageBackground.

Now	that	our	Style.qml	and	PageTheme.qml	files	are	ready,	we	can	update
the	AlbumListPage.qml	file	to	use	it:

import	QtQuick	2.6	

import	QtQuick.Controls	2.0	

import	"."	

	

PageTheme	{	

	

				toolbarTitle:	"Albums"	

	

				ListView	{	

								id:	albumList	

								model:	albumModel	

								spacing:	5	

								anchors.fill:	parent	

	

								delegate:	Rectangle	{	

												width:	parent.width	

												height:	120	

												color:	Style.buttonBackground	

	

												Text	{	

																text:	name	

																font.pointSize:	16	

																color:	Style.text	

																anchors.verticalCenter:	parent.verticalCenter	

												}	

												...	

								}	

				}	

}	

Now	that	AlbumListPage	is	a	PageTheme	element,	we	do	not	manipulate	header	directly.	We
only	need	to	set	the	property	toolbarTitle	to	display	a	nice	"Albums"	text	in	the	toolbar.	We
can	also	enjoy	nice	colors	using	properties	from	the	Style	singleton.

By	centralizing	the	theme	properties	in	a	single	file,	you	can	easily	change	the	look	and	feel
of	your	application.	The	source	code	of	the	project	also	contains	a	dark	theme.

Loading	a	database	on	mobile
Before	continuing	the	UI	implementation,	we	have	to	take	care	of	the	database	deployment	on
mobile.	Spoiler:	this	will	not	be	fun.

We	have	to	jump	back	to	DatabaseManager.cpp	in	the	gallery-core	project:

DatabaseManager&	DatabaseManager::instance()	

{	

				return	singleton;	

}	

	

DatabaseManager::DatabaseManager(const	QString&	path)	:	

				mDatabase(new	QSqlDatabase(QSqlDatabase::addDatabase("QSQLITE"))),	

				albumDao(*mDatabase),	

				pictureDao(*mDatabase)	

{	

				mDatabase->setDatabaseName(path);	

				...	

}	

Whereas	on	Desktop,	the	SQLite3	database	is	created	at	the	instruction	mDatabase-
>setDatabaseName(),	on	mobile	it	does	not	work	at	all.	This	is	due	to	the	fact	that	the
filesystem	is	very	specific	on	each	mobile	platform	(Android	and	iOS).	An	application	has
only	access	to	a	narrow	sandbox	where	it	cannot	mess	with	the	rest	of	the	filesystem.	All	the
files	inside	the	application	directory	must	have	specific	file	permissions.	If	we	let	SQLite3
create	the	database	file,	it	will	not	have	the	right	permission	and	the	OS	will	block	the
database	from	opening.

As	a	consequence,	the	database	will	not	be	properly	created	and	your	data	cannot	be	persisted.
When	using	the	native	API,	this	is	not	a	problem	since	the	OS	takes	care	of	the	proper
configuration	of	the	database.	Because	we	are	developing	with	Qt,	we	do	not	have	easy	access
to	this	API	(except	by	using	JNI	or	other	black	magic).	A	workaround	is	to	embed	a	"ready-to-
use"	database	in	the	application's	package	and	copy	it	at	the	right	filesystem	path	with	the
correct	rights.

This	database	should	contain	an	empty	created	database	without	any	content.	The	database	is
available	in	the	source	code	of	the	chapter	(you	can	also	generate	it	from	the	source	code	of
Chapter	4,	Conquering	the	Desktop	UI).	You	can	add	it	to	the	gallery.qrc	file.

Because	our	layers	are	clearly	defined,	we	just	have	to	modify	the
DatabaseManager::instance()	implementation	to	handle	this	case:

DatabaseManager&	DatabaseManager::instance()	

{	

#if	defined(Q_OS_ANDROID)	||	defined(Q_OS_IOS)	

				QFile	assetDbFile(":/database/"	+	DATABASE_FILENAME);	

				QString	destinationDbFile	=	QStandardPaths::writableLocation(

																												QStandardPaths::AppLocalDataLocation)	

																				.append("/"	+	DATABASE_FILENAME);	

	

								if	(!QFile::exists(destinationDbFile))	{	

												assetDbFile.copy(destinationDbFile);	

												Qfile::setPermissions(destinationDbFile,	

																												QFile::WriteOwner	|	QFile::ReadOwner);	

								}	

				}	

				static	DatabaseManager	singleton(destinationDbFile);	

#else	

				static	DatabaseManager	singleton;	

#endif	

				return	singleton;	

}	

We	first	retrieve	the	platform-specific	path	of	the	application	with	a	nifty	Qt	class:
QStandardPaths.	This	class	return	paths	for	multiple	types
(AppLocalDataLocation,	DocumentsLocation,	PicturesLocation,	and	so	on).	The	database
should	be	stored	in	the	application	data	directory.	If	the	file	does	not	exist,	we	copy	it	from
our	assets.

Finally,	the	permissions	of	the	file	are	modified	to	ensure	that	the	OS	does	not	block	the
opening	of	the	database	(due	to	permissions	not	being	restrictive	enough).

When	everything	is	done,	the	DatabaseManager	singleton	is	instantiated	with	the	correct
database	file	path	and	the	constructor	can	open	this	database	transparently.

Note

In	the	iOS	Simulator,	the	QStandardPaths::writableLocation()	function	will	not	return	the
proper	path.	Since	iOS	8,	the	simulator's	storage	path	on	the	host	has	changed	and	Qt	does	not
reflect	this.	For	more	information,	please	check
out	https://bugreports.qt.io/browse/QTCREATORBUG-13655.

These	workarounds	were	not	trivial.	This	shows	the	limitations	of	a	cross-platform
application	on	mobile.	Each	platform	has	its	own	very	specific	way	of	handling	the	filesystem
and	deploying	its	content.	Even	if	we	manage	to	write	platform	agnostic	code	in	QML,	we	still
have	to	deal	with	differences	between	the	OSes.

https://bugreports.qt.io/browse/QTCREATORBUG-13655

Creating	a	new	album	from	a	custom
InputDialog
The	AlbumListPage	needs	some	data	to	display.	The	next	step	is	to	be	able	to	add	a	new	album.
To	do	this,	at	some	point	we	will	have	to	call	an	AlbumModel	function	from	QML	to	add	this
new	album.	Before	building	the	UI,	we	have	to	make	a	small	modification	in	gallery-core.

The	AlbumModel	function	is	already	available	in	QML.	However,	we	cannot	directly
call	AlbumModel::addAlbum(const	Album&	album)	from	the	QML	code;	the	QML	engine	will
not	recognize	the	function	and	will	throw	an	error	TypeError:	Property	'addAlbum'	of
object	AlbumModel(...)	is	not	a	function.	This	can	be	fixed	by	simply	decorating	the	desired
function	with	the	Q_INVOKABLE	macro	(as	we	did	for	PictureModel::setAlbumId()).

Nonetheless,	there	is	another	issue	here:	Album	is	a	C++	class	which	is	not	recognized	in
QML.	If	we	wanted	to	have	full	access	to	Album	in	QML,	it	would	involve	important
modifications	to	the	class:

Force	Album	class	to	inherit	from	the	QObject	class.
Add	a	Q_PROPERTY	macro	to	specify	which	property	of	the	class	should	be	accessible
from	QML.
Add	multiple	constructors	(copy	constructor,	QObject*	parent,	and	so	on).
Force	AlbumModel::addAlbum()	function	to	take	an	Album*	rather	than	an	Album&.	For
complex	objects	(that	is,	not	primitive	types),	QML	can	only	handle	pointers.	This	is	not
a	big	problem,	but	using	references	instead	of	pointers	tends	to	make	the	code	safer.

These	modifications	are	perfectly	reasonable	if	the	class	is	heavily	manipulated	in	QML.	Our
use	case	is	very	limited:	we	only	want	to	create	a	new	album.	Throughout	the	application,	we
will	rely	on	the	native	Model/View	API	to	display	the	album	data	and	nothing	specific	to
Album	will	be	used.

For	all	these	reasons,	we	will	simply	add	a	wrapper	function	in	AlbumModel:

//	In	AlbumModel.h	

...	

QModelIndex	addAlbum(const	Album&	album);	

Q_INVOKABLE	void	addAlbumFromName(const	QString&	name);	

...	

	

//	In	AlbumModel.cpp	

void	AlbumModel::addAlbumFromName(const	QString&	name)	

{	

				addAlbum(Album(name));	

}	

The	new	function	addAlbumFromName()	just	wraps	the	call	to	addAlbum()	with	the	desired
album	name	parameter.	It	can	be	called	from	the	QML	with	the	Q_INVOKABLE	macro.

We	can	now	switch	back	to	the	UI	in	the	gallery-mobile	project.	We	will	add	this	album
using	a	QML	Dialog.	QtQuick	provides	various	default	implementations	of	dialogs:

ColorDialog:	This	dialog	is	used	to	choose	a	color
Dialog:	This	dialog	is	uses	the	generic	dialog	with	standard	buttons	(equivalent	of
a	QDialog)
FileDialog:	This	dialog	is	used	to	choose	a	file	from	the	local	filesystem
FontDialog:	This	dialog	is	used	to	choose	a	font
MessageDialog:	This	dialog	is	used	to	display	a	message

You	would	have	expected	to	see	an	InputDialog	in	this	list	(as	we	used	the	QInputDialog
widget	in	Chapter	4,	Conquering	the	Desktop	UI)	but	Qt	Quick	does	not	have	it.	Create	a
new	QML	File	(Qt	Quick	2)	and	name	it	InputDialog.qml.	The	content	should	look	like	so:

import	QtQuick	2.6	

import	QtQuick.Layouts	1.3	

import	Qt.labs.controls	1.0	

import	QtQuick.Dialogs	1.2	

import	QtQuick.Window	2.2	

import	"."	

	

Dialog	{	

	

				property	string	label:	"New	item"	

				property	string	hint:	""	

				property	alias	editText	:	editTextItem	

	

				standardButtons:	StandardButton.Ok	|	StandardButton.Cancel	

				onVisibleChanged:	{	

								editTextItem.focus	=	true	

								editTextItem.selectAll()	

				}	

				onButtonClicked:	{	

								Qt.inputMethod.hide();	

				}	

				Rectangle	{	

	

								implicitWidth:	parent.width	

								implicitHeight:	100	

	

								ColumnLayout	{	

												Text	{	

																id:	labelItem	

																text:	label	

																color:	Style.text	

												}	

	

												TextInput	{	

																id:	editTextItem	

																inputMethodHints:	Qt.ImhPreferUppercase	

																text:	hint	

																color:	Style.text	

												}	

								}	

				}	

}	

In	this	custom	InputDialog,	we	take	the	generic	Qt	Quick	Dialog	and	modify	it	to	contain
our	TextInput	item	referenced	by	the	ID	editTextItem.	We	also	added	a	labelItem	just
above	editTextItem	to	describe	the	expected	input.	There	are	several	things	to	note	in	this
dialog.

First,	because	we	want	this	dialog	to	be	generic,	it	has	to	be	configurable.	The	caller	should
be	able	to	provide	parameters	to	display	its	specific	data.	This	is	done	with	the	three
properties	at	the	top	of	the	Dialog	element:

label:	This	property	configures	the	displayed	text	in	labelItem.
hint:	This	property	is	the	default	text	displayed	in	editTextItem.
editText:	This	property	references	the	"local"	editTextItem	element.	This	will	let	the
caller	retrieve	the	value	when	the	dialog	is	closed.

We	also	configure	the	Dialog	element	to	automatically	use	the	platform	buttons	to	validate	or
cancel	the	dialog	with	standardButtons:	StandardButton.Ok	|	StandardButton.Cancel
syntax.

Finally,	to	make	the	dialog	a	bit	more	user-friendly,	editTextItem	has	the	focus	when
the	Dialog	element	becomes	visible	and	the	text	is	selected.	These	two	steps	are	done	in
the	onVisibleChanged()	callback	function.	When	the	dialog	is	hidden	(that	is,	Ok	or	Cancel
has	been	clicked),	we	hide	the	virtual	keyboard	with	Qt.InputMethod.hide().

The	InputDialog	is	ready	to	be	used!	Open	AlbumListPage.qml	and	modify	it	like	so:

PageTheme	{	

	

				toolbarTitle:	"Albums"	

				toolbarButtons:	ToolButton	{	

								background:	Image	{	

												source:	"qrc:/res/icons/album-add.svg"	

								}	

								onClicked:	{	

												newAlbumDialog.open()	

								}	

				}	

	

				InputDialog	{	

								id:	newAlbumDialog	

								title:	"New	album"	

								label:	"Album	name:"	

								hint:	"My	Album"	

	

								onAccepted:	{	

												albumModel.addAlbumFromName(editText.text)	

								}	

				}	

We	add	InputDialog	with	the	ID	newAlbumDialog	inside	PageTheme	element.	We	define	all	our
custom	properties:	title,	label,	and	hint.	When	the	user	clicks	on	the	Ok	button,
the	onAccepted()	function	is	called.	Here,	it	is	a	simple	matter	of	calling	the	wrapper
function	addAlbumFromName()	in	the	AlbumModel	element	with	the	entered	text.

This	Dialog	element	is	not	visible	by	default,	we	open	it	by	adding	a	ToolButton	in
	toolbarButtons.	This	ToolButton	will	be	added	at	the	far	right	of	the	header	as	we	specified
in	the	PageTheme.qml	file.	To	match	mobile	standards,	we	simply	use	a	custom	icon	inside	that
button	rather	than	text.

Here	you	can	see	that	it	is	possible	to	reference	images	stored	in	the	.qrc	file	with	the
syntax	qrc:/res/icons/album-add.svg.	We	use	SVG	files	to	have	scalable	icons,	but	you	are
free	to	use	your	own	icons	for	the	gallery-mobile	application.

When	the	user	clicks	on	the	ToolButton,	the	onClicked()	function	is	called,	where	we
open	newAlbumDialog.	On	our	reference	device,	a	Nexus	5X,	this	is	how	it	looks:

When	the	user	clicks	on	the	OK	button,	the	whole	Model/View	pipeline	starts	to	work.	This
new	album	is	persisted,	the	AlbumModel	element	emits	the	correct	signals	to	notify
our	ListView,	albumList,	to	refresh	itself.	We	are	starting	to	leverage	the	power	of
our	gallery-core,	which	can	be	used	in	a	desktop	application	and	a	mobile	application

without	rewriting	a	significant	portion	of	the	engine	code.

Loading	images	with	an	ImageProvider
It	is	now	time	to	display	the	thumbnails	for	our	freshly	persisted	album.	These	thumbnails
have	to	be	loaded	somehow.	Because	our	application	is	targeted	at	mobile	devices,	we	cannot
afford	to	freeze	the	UI	thread	while	loading	thumbnails.	We	would	either	hog	the	CPU	or	be
killed	by	the	OS,	neither	of	which	are	desirable	destinies	for	gallery-mobile.	Qt	provides	a
very	handy	class	to	handle	the	image	loading:	QQuickImageProvider.

The	QQuickImageProvider	class	provides	an	interface	to	load	the	QPixmap	class	in	your	QML
code	in	an	asynchronous	manner.	This	class	automatically	spawns	threads	to	load	the	QPixmap
class	and	you	simply	have	to	implement	the	function	requestPixmap().	There	is	more	to
it,	QQuickImageProvider	caches	by	default	the	requested	pixmap	to	avoid	hitting	the	data
source	too	much.

Our	thumbnails	must	be	loaded	from	the	PictureModel	element,	which	gives	access	to
the	fileUrl	of	a	given	Picture.	Our	implementation	of	rQQuickImageProvider	will	have	to
get	the	QPixmap	class	for	a	row	index	in	PicturelModel.	Create	a	new	C++	class
named	PictureImageProvider,	and	modify	PictureImageProvider.h	like	this:

#include	<QQuickImageProvider>	

	

class	PictureModel;	

	

class	PictureImageProvider	:	public	QQuickImageProvider	

{	

public:	

	

				PictureImageProvider(PictureModel*	pictureModel);	

	

				QPixmap	requestPixmap(const	QString&	id,	QSize*	size,		

												const	QSize&	requestedSize)	override;	

	

private:	

				PictureModel*	mPictureModel;	

};	

A	pointer	to	the	PictureModel	element	has	to	be	provided	in	the	constructor	to	be	able	to
retrieve	fileUrl.	We	override	requestPixmap(),	which	takes	an	id	parameter	in	its
parameters	list	(the	size	and	requestedSize	can	be	safely	ignored	for	now).	This	id
parameter	will	be	provided	in	the	QML	code	when	we	want	to	load	a	picture.	For	a
given	Image	in	QML,	the	PictureImageProvider	class	will	be	called	like	so:

Image	{	source:	"image://pictures/"	+	index	}	

Let's	break	it	down:

image:	This	is	the	scheme	for	the	URL	source	of	the	image.	This	tells	Qt	to	work	with	an
image	provider	to	load	the	image.
pictures:	This	is	the	identifier	of	the	image	provider.	We	will	link
the	PictureImageProvider	class	and	this	identifier	at	the	initialization	of		QmlEngine
in	main.cpp.
index:	This	is	the	ID	of	the	image.	Here	it	is	the	row	index	of	the	picture.	This
corresponds	to	the	id	parameter	in	requestPixmap().

We	already	know	that	we	want	to	display	a	picture	in	two	modes:	thumbnail	and	full
resolution.	In	both	cases,	a	QQuickImageProvider	class	will	be	used.	These	two	modes	have	a
very	similar	behavior:	they	will	request	PictureModel	for	fileUrl	and	return	the
loaded	QPixmap.

There	is	a	pattern	here.	We	can	easily	encapsulate	these	two	modes	in	PictureImageProvider.
The	only	thing	we	have	to	know	is	when	the	caller	wants	a	thumbnail	or	a	full
resolution	QPixmap.	This	can	be	easily	done	by	making	the	id	parameter	more	explicit.

We	are	going	to	implement	the	requestPixmap()	function	to	be	able	to	be	called	in	two	ways:

images://pictures/<index>/full:	Using	this	syntax	to	retrieve	the	full	resolution
picture
images://pictures/<index>/thumbnail:	Using	this	syntax	to	retrieve	the	thumbnail
version	of	the	picture

If	the	index	value	was	0,	these	two	calls	would	set	the	ID	to	0/full	or	0/thumbnail
in	requestPixmap().	Let's	see	the	implementation	in	PictureImageProvider.cpp:

#include	"PictureModel.h"	

	

PictureImageProvider::PictureImageProvider(PictureModel*	pictureModel)	:	

				QQuickImageProvider(QQuickImageProvider::Pixmap),	

				mPictureModel(pictureModel)	

{	

}	

	

QPixmap	PictureImageProvider::requestPixmap(const	QString&	id,	QSize*	/*size*/,	

const	QSize&	/*requestedSize*/)	

{	

				QStringList	query	=	id.split('/');	

				if	(!mPictureModel	||	query.size()	<	2)	{	

								return	QPixmap();	

				}	

	

				int	row	=	query[0].toInt();	

				QString	pictureSize	=	query[1];	

	

				QUrl	fileUrl	=	mPictureModel->data(mPictureModel->index(row,	0),							

PictureModel::Roles::UrlRole).toUrl();	

				return	??	//	Patience,	the	mystery	will	be	soon	unraveled	

}	

We	start	by	calling	the	QQuickImageProvider	constructor	with
the	QQuickImageProvider::Pixmap	parameter	to	configure	QQuickImageProvider	to
call	requestPixmap().	The	QQuickImageProvider	constructor	supports	various	image	types
(QImage,	QPixmap,	QSGTexture,	QQuickImageResponse)	and	each	one	has	its
specific	requestXXX()	function.

In	the	requestPixmap()	function,	we	start	by	splitting	this	ID	with	the	/	separator.	From	here,
we	retrieve	the	row	values	and	the	desired	pictureSize.	The	fileUrl	is	loaded	by	simply
calling	the	mPictureModel::data()	function	with	the	right	parameters.	We	used	the	exact	same
call	in	Chapter	4,	Conquering	the	Desktop	UI.

Great,	we	know	which	fileUrl	should	be	loaded	and	what	the	desired	dimension	is.	However,
we	have	one	last	thing	to	handle.	Because	we	manipulate	a	row	and	not	a	database	ID,	we	will
have	the	same	request	URL	for	two	different	pictures,	which	are	in	different	albums.
Remember	that	PictureModel	loads	a	list	of	pictures	for	a	given	Album.

We	should	picture	(pun	intended)	the	situation.	For	an	album	called	Holidays,	the	request	URL
will	be	images://pictures/0/thumbnail	to	load	the	first	picture.	It	will	be	the	same	URL	for
another	album	Pets,	which	will	load	the	first	picture	with	images://pictures/0/thumbnail.
As	we	said	earlier,	QQuickImageProvider	automatically	generates	a	cache	which	will	avoid
subsequent	calls	to	requestPixmap()	for	the	same	URL.	Thus,	we	will	always	serve	the	same
picture,	no	matter	which	album	is	selected.

This	constraint	forces	us	to	disable	the	cache	in	PictureImageProvider	and	to	roll	out	our
own	cache.	This	is	an	interesting	thing	to	do;	here	is	a	possible	implementation:

//	In	PictureImageProvider.h	

	

#include	<QQuickImageProvider>	

#include	<QCache>	

	

...	

public:	

				static	const	QSize	THUMBNAIL_SIZE;	

	

				QPixmap	requestPixmap(const	QString&	id,	QSize*	size,	const	QSize&	

requestedSize)	override;	

	

				QPixmap*	pictureFromCache(const	QString&	filepath,	const	QString&	

pictureSize);	

	

private:	

				PictureModel*	mPictureModel;	

				QCache<QString,	QPixmap>	mPicturesCache;	

};	

	

//	In	PictureImageProvider.cpp	

const	QString	PICTURE_SIZE_FULL	=	"full";	

const	QString	PICTURE_SIZE_THUMBNAIL	=	"thumbnail";	

const	QSize	PictureImageProvider::THUMBNAIL_SIZE	=	QSize(350,	350);	

	

QPixmap	PictureImageProvider::requestPixmap(const	QString&	id,	QSize*	/*size*/,	

const	QSize&	/*requestedSize*/)	

{	

				...	

				return	*pictureFromCache(fileUrl.toLocalFile(),	pictureSize);	

}	

	

QPixmap*	PictureImageProvider::pictureFromCache(const	QString&	filepath,	const	

QString&	pictureSize)	

{	

				QString	key	=	QStringList{	pictureSize,	filepath	}	

																				.join("-");	

	

								QPixmap*	cachePicture	=	nullptr;	

				if	(!mPicturesCache.contains(pictureSize))	{	

								QPixmap	originalPicture(filepath);	

								if	(pictureSize	==	PICTURE_SIZE_THUMBNAIL)	{	

												cachePicture	=	new	QPixmap(originalPicture	

																																		.scaled(THUMBNAIL_SIZE,	

																																										Qt::KeepAspectRatio,	

																																										Qt::SmoothTransformation));	

								}	else	if	(pictureSize	==	PICTURE_SIZE_FULL)	{	

												cachePicture	=	new	QPixmap(originalPicture);	

								}	

								mPicturesCache.insert(key,	cachePicture);	

				}	else	{	

								cachePicture	=	mPicturesCache[pictureSize];	

				}	

	

				return	cachePicture;	

}	

This	new	pictureFromCache()	function	aims	to	store	the	generated	QPixmap
in	mPicturesCache	and	return	the	proper	QPixmap.	The	mPicturesCache	class	relies	on
a	QCache;	this	class	lets	us	store	data	in	a	key/value	fashion	with	the	possibility	to	assign	a	cost
for	each	entry.	This	cost	should	roughly	map	the	memory	cost	of	the	object	(by	default,	cost
=	1).	When	QCache	is	instantiated,	it	is	initialized	with	a	maxCost	value	(by	default	100).	When
the	cost	of	the	sum	of	all	objects'	exceeds	the	maxCost,	QCache	starts	deleting	objects	to	make
room	for	the	new	objects,	starting	with	the	less	recently	accessed	objects.

In	the	pictureFromCache()	function,	we	first	generate	a	key	composed	of	the	fileUrl	and
the	pictureSize	before	trying	to	retrieve	the	QPixmap	from	the	cache.	If	it	is	not	present,	the

proper	QPixmap	(scaled	to	THUMBNAIL_SIZE	macro	if	needed)	will	be	generated	and	stored
inside	the	cache.	The	mPicturesCache	class	becomes	the	owner	of	this	QPixmap.

The	last	step	to	complete	the	PictureImageProvider	class	is	to	make	it	available	in	the	QML
context.	This	is	done	in	main.cpp:

#include	"AlbumModel.h"	

#include	"PictureModel.h"	

#include	"PictureImageProvider.h"	

	

int	main(int	argc,	char	*argv[])	

{	

				QGuiApplication	app(argc,	argv);	

				...	

	

				QQmlContext*	context	=	engine.rootContext();	

				context->setContextProperty("thumbnailSize",	

PictureImageProvider::THUMBNAIL_SIZE.width());	

				context->setContextProperty("albumModel",	&albumModel);	

				context->setContextProperty("pictureModel",	&pictureModel);	

	

				engine.addImageProvider("pictures",	new	

																												PictureImageProvider(&pictureModel));	

				...	

}	

The	PictureImageProvider	class	is	added	to	the	QML	engine
with	engine.addImageProvider().	The	first	argument	will	be	the	provider	identifier	in	QML.
Note	that	the	engine	takes	ownership	of	the	passed	PictureImageProvider.	One	last	thing,
the	thumbnailSize	parameter	is	also	passed	to	engine,	it	will	constrain	the	thumbnails	to	be
displayed	with	the	specified	size	in	the	QML	code.

Displaying	thumbnails	in	a	GridView
The	next	step	is	to	display	these	thumbnails.	Create	a	new	QML	file	named	AlbumPage.qml:

import	QtQuick	2.6	

import	QtQuick.Layouts	1.3	

import	QtQuick.Controls	2.0	

import	"."	

	

PageTheme	{	

	

				property	string	albumName	

				property	int	albumRowIndex	

	

				toolbarTitle:	albumName	

	

				GridView	{	

								id:	thumbnailList	

								model:	pictureModel	

								anchors.fill:	parent	

								anchors.leftMargin:	10	

								anchors.rightMargin:	10	

								cellWidth	:	thumbnailSize	

								cellHeight:	thumbnailSize	

	

								delegate:	Rectangle	{	

												width:	thumbnailList.cellWidth	-	10	

												height:	thumbnailList.cellHeight	-	10	

												color:	"transparent"	

	

												Image	{	

																id:	thumbnail	

																anchors.fill:	parent	

																fillMode:	Image.PreserveAspectFit	

																cache:	false	

																source:	"image://pictures/"	+	index	+	"/thumbnail"	

												}	

								}	

				}	

}	

This	new	PageTheme	element	defines	two	properties:	albumName	and	albumRowIndex.
The	albumName	property	is	used	to	update	the	title	in	toolbarTitle;	albumRowIndex	will	be
used	to	interact	with	AlbumModel	in	order	to	rename	or	delete	the	album	from	the	current
page.

To	display	thumbnails,	we	rely	on	a	GridView	element	which	will	layout	the	thumbnails	in	a
grid	of	cells.	This	thumbnailList	item	uses	the	pictureModel	to	request	its	data.	The	delegate
is	simply	a	Rectangle	element	with	a	single	Image	inside.	This	Rectangle	element	is	slightly

smaller	than	the	thumbnailList.cellWidth	or	thumbnailList.cellHeight.	The	GridView
element	does	not	provide	a	spacing	property	(like	ListView)	for	some	room	between	each
item.	Thus,	we	simulate	it	by	using	a	smaller	area	to	display	the	content.

The	Image	item	will	try	to	take	all	the	available	space	with	anchors.fill:	parent	but	will	still
keep	the	aspect	ratio	of	the	provided	picture	with	fillMode:	Image.PreserveAspectFit.	You
recognize	the	source	attribute	where	the	current	delegate	index	is	provided	to	retrieve	the
thumbnail.	Finally,	the	cache:	false	attribute	ensures	that	the	PictureImageProvider	class
will	not	try	to	use	the	native	cache.

To	display	AlbumPage.qml,	we	have	to	update	the	stackView	(located	in	main.qml).	Remember
that	stackView	has	been	declared	as	a	property	(pageStack),	it	is	thus	accessible	from	any
QML	file.

The	AlbumPage	element	will	be	displayed	when	the	user	clicks	on	the	MouseArea	element	for	a
given	Album	value	in	AlbumListPage.qml.

We	will	now	give	the	ability	to	the	user	to	add	a	new	picture.	To	do	this,	we	will	rely	on	a
QtQuick	Dialog:	FileDialog.	Here	is	the	updated	version	of	AlbumPage.qml:

import	QtQuick	2.6	

import	QtQuick.Layouts	1.3	

import	QtQuick.Controls	2.0	

import	QtQuick.Dialogs	1.2	

import	"."	

	

PageTheme	{	

	

				property	string	albumName	

				property	int	albumRowIndex	

	

				toolbarTitle:	albumName	

				toolbarButtons:	RowLayout	{	

								ToolButton	{	

												background:	Image	{	

																source:	"qrc:/res/icons/photo-add.svg"	

												}	

												onClicked:	{	

																dialog.open()	

												}	

								}	

				}	

	

				FileDialog	{	

								id:	dialog	

								title:	"Open	file"	

								folder:	shortcuts.pictures	

								onAccepted:	{	

												var	pictureUrl	=	dialog.fileUrl	

												pictureModel.addPictureFromUrl(pictureUrl)	

												dialog.close()	

								}	

				}	

	

				GridView	{	

								...	

}	

The	FileDialog	element	is	straightforward	to	implement.	By	using	the	folder:
shortcuts.pictures	property,	QtQuick	will	automatically	position	the	FileDialog	element	in
the	platform-specific	pictures	directory.	Even	better,	on	iOS	it	will	open	the	native	photo
application	where	you	can	pick	your	own	picture.

When	the	user	validates	his	picture	choice,	the	path	is	available	in	the	onAccepted()function
with	the	dialog.fileUrl	field,	which	we	stored	in	the	pictureUrl	variable.	This	pictureUrl
variable	is	then	passed	to	a	new	wrapper	function	of	PictureModel:	addPictureFromUrl().
The	pattern	used	is	exactly	the	same	as	we	did	for	AlbumModel::addAlbumFromName():
a	Q_INVOKABLE	wrapper	function	around	PictureModel::addPicture().

The	only	missing	parts	of	AlbumPage	are	the	delete	album	and	rename	album	features.	They
follow	patterns	we	already	covered.	The	deletion	will	be	done	using	a	wrapper	function
in	AlbumModel,	and	the	rename	reuses	the	InputDialog	we	created	for	AlbumListPage.qml.
Please	refer	to	the	source	code	of	the	chapter	to	see	the	implementation	for	these	features.
This	is	how	the	thumbnails	will	look	on	an	Android	device:

Swiping	through	full	resolution	pictures
The	last	page	we	have	to	implement	in	gallery-mobile	is	the	full	resolution	picture	page.
In	Chapter	4,	Conquering	the	Desktop	UI,	we	navigated	through	the	pictures	using
previous/next	buttons.	In	this	chapter,	we	target	the	mobile	platform.	Therefore,	the	navigation
should	be	done	using	a	touch-based	gesture:	a	fling.

Here	is	the	implementation	of	this	new	PicturePage.qml	file:

import	QtQuick	2.0	

import	QtQuick.Layouts	1.3	

import	QtQuick.Controls	2.0	

import	"."	

	

PageTheme	{	

	

				property	string	pictureName	

				property	int	pictureIndex	

	

				toolbarTitle:	pictureName	

	

				ListView	{	

								id:	pictureListView	

								model:	pictureModel	

								anchors.fill:	parent	

								spacing:	5	

								orientation:	Qt.Horizontal	

								snapMode:	ListView.SnapOneItem	

								currentIndex:	pictureIndex	

	

								Component.onCompleted:	{	

												positionViewAtIndex(currentIndex,	

																																ListView.SnapPosition)	

								}	

	

								delegate:	Rectangle	{	

												property	int	itemIndex:	index	

												property	string	itemName:	name	

	

												width:	ListView.view.width	==	0	?	

																			parent.width	:	ListView.view.width	

												height:	pictureListView.height	

												color:	"transparent"	

	

												Image	{	

																fillMode:	Image.PreserveAspectFit	

																cache:	false	

																width:	parent.width	

																height:	parent.height	

																source:	"image://pictures/"	+	index	+	"/full"	

												}	

								}	

				}	

}	

We	first	define	two	properties,	pictureName	and	pictureIndex.	The	current	pictureName
property	is	displayed	in	the	toolbarTitle	and	pictureIndex	is	used	to	initialize	the
correct	currentIndex	in	ListView,	currentIndex:	pictureIndex.

To	be	able	to	swipe	through	the	pictures,	we	again	use	a	ListView.	Here,	each	item	(a
simple	Image	element)	will	take	the	full	size	of	its	parent.	When	the	component	is	loaded,	even
if	currentIndex	is	correctly	set,	the	view	has	to	be	updated	to	be	positioned	at	the	correct
index.	This	is	what	we	do	in	pictureListView	with	this:

Component.onCompleted:	{	

				positionViewAtIndex(currentIndex,	ListView.SnapPosition)	

}	

This	will	update	the	position	of	the	current	visible	item	to	currentIndex.	So	far	so	good.
Nonetheless,	when	a	ListView	is	created,	the	first	thing	it	does	is	to	initialize	its	delegate.
A	ListView	has	a	view	property,	which	is	filled	with	the	delegate	content.	That	implies	that
the	ListView.view	(yes,	it	hurts)	does	not	have	any	width	in	Component.onCompleted().	As	a
consequence,	the	positionViewAtIndex()	function	does...	absolutely	nothing.	To	prevent	this
behavior,	we	have	to	provide	a	default	initial	width	to	the	delegate	with	the	ternary
expression	ListView.view.width	==	0	?	parent.width	:	ListView.view.width.	The	view
will	then	have	a	default	width	on	the	first	load	and	the	positionViewAtIndex()	function	can
happily	move	until	ListView.view	is	properly	loaded.

To	swipe	through	each	picture,	we	set	the	snapMode	value	of	the	ListView
to	ListView.SnapOneItem.	Each	fling	will	snap	to	the	next	or	previous	picture	without
continuing	the	motion.

The	Image	item	of	the	delegate	looks	very	much	like	the	thumbnail	version.	The	sole
difference	is	the	source	property,	where	we	request	PictureImageProvider	class	with
the	full	resolution.

When	PicturePage	opens,	the	correct	pictureName	property	is	displayed	in	the	header.
However,	when	the	user	flings	to	another	picture,	the	name	is	not	updated.	To	handle	this,	we
have	to	detect	the	motion	state.	Add	the	following	callbacks	in	pictureListView:

onMovementEnded:	{	

				currentIndex	=	itemAt(contentX,	contentY).itemIndex	

}	

	

onCurrentItemChanged:	{	

				toolbarTitleLabel.text	=	currentItem.itemName	

}	

The	onMovementEnded()	class	is	triggered	when	the	motion	started	by	the	swipe	has	ended.	In
this	function,	we	update	the	ListViewcurrentIndex	with	the	itemIndex	of	the	visible	item	at
the	contentX	and	contentY	coordinates.

The	second	function,	onCurrentItemChanged(),	is	called	upon	the	currentIndex	update.	It
will	simply	update	the	toolbarTitleLabel.text	with	the	picture	name	of	the	current	item.

To	display	PicturePage.qml,	the	same	MouseArea	pattern	is	used	in	the	thumbnailList
delegate	of	AlbumPage.qml:

MouseArea	{	

				anchors.fill:	parent	

				onClicked:	{	

								thumbnailList.currentIndex	=	index	

								pageStack.push("qrc:/qml/PicturePage.qml",		

				{	pictureName:	name,	pictureIndex:	index	})	

				}	

}	

Again,	the	PicturePage.qml	file	is	pushed	on	the	pageStack	and	the	needed	parameters
(pictureName	and	pictureIndex)	are	provided	in	the	same	manner.

Summary
This	chapter	brings	closure	to	the	development	of	the	gallery	application.	We	built	a	strong
foundation	with	gallery-core,	created	a	widget	UI	with	gallery-desktop,	and	finally	crafted
a	QML	UI	with	gallery-mobile.

QML	enables	a	very	fast	approach	to	UI	development.	Unfortunately,	the	technology	is	still
young	and	rapidly	changing.	The	integration	with	mobile	OSes	(Android,	iOS)	is	under	heavy
development	and	we	hope	that	it	will	lead	to	great	mobile	applications	with	Qt.	For	now,	the
inherent	limits	of	a	mobile	cross-platform	toolkit	are	still	hard	to	overcome.

The	next	chapter	will	take	QML	technology	to	new	shores:	the	development	of	a	snake	game
running	on	a	Raspberry	Pi.

Chapter	6.		Even	Qt	Deserves	a	Slice	of
Raspberry	Pi
In	the	previous	chapter,	we	created	a	QML	UI	targeted	at	Android	and	iOS.	We	will	continue
our	journey	in	the	embedded	world	by	discovering	how	we	can	deploy	a	Qt	application	on	a
Raspberry	Pi.	The	example	project	to	illustrate	this	topic	will	be	a	snake	game	using	the	Qt3D
modules.	The	player	will	control	a	snake	trying	to	eat	apples	to	get	as	big	as	possible.

In	this	chapter,	you	will	learn:

The	architecture	of	the	Qt3D	modules
The	basic	principles	of	cross-compilation
How	to	build	your	own	Qt	Creator	kit	to	compile	and	deploy	your	game	on	a	Raspberry
Pi
How	to	handle	the	differences	and	limitations	of	various	platforms	(desktop,	Raspberry
Pi)
The	Factory	design	pattern
How	to	write	a	complete	game	engine	using	JavaScript	and	QML
The	usage	of	the	QML	Profiler

Discovering	Qt3D
The	example	project	of	this	chapter	will	rely	on	3D	rendering.	For	this,	we	will	use	Qt3D.
This	part	of	the	framework	is	divided	into	various	Qt	modules	that	enable	the	application	to
have	a	near-real	time	simulation	of	a	3D	environment.	Built	on	OpenGL,	Qt3D	offers	a	high-
level	API	to	describe	complex	scenes	without	having	to	resort	to	writing	low-level	OpenGL
instructions.	Qt3D	supports	the	following	basic	features:

2D	and	3D	rendering	for	C++	and	Qt	Quick
Meshes
Materials
GLSL	shaders
Shadow	mapping
Deferred	rendering
Instance	rendering
Uniform	Buffer	Object

All	these	features	are	implemented	in	the	ECS	(entity	component	system)	architecture.	Each
mesh,	material,	or	shader	that	you	define	is	a	component.	The	aggregation	of	these
components	makes	an	entity.	If	you	wanted	to	draw	a	3D	red	apple,	you	would	need	the
following	components:

A	mesh	component,	holding	the	vertices	of	your	apple
A	material	component,	applying	a	texture	on	the	mesh	or	coloring	it

These	two	components	will	then	be	regrouped	to	define	the	entity	Apple.	You	see	here	the	two
parts	of	the	ECS:	entities	and	components.	The	overall	architecture	looks	like	this:

Each	of	these	components	can	be	regrouped	in	aspects.	An	aspect	is	a	"slice"	of	multiple
components	working	on	the	same	part	(rendering,	audio,	logic,	and	physics).	When	the	graph
of	all	your	entities	is	processed	by	the	Qt3D	engine,	each	layer	of	aspects	is	processed
sequentially.

The	underlying	approach	is	to	favor	composition	over	inheritance.	In	a	game,	an	entity	(an
apple,	a	player,	an	enemy)	can	have	various	states	during	its	life	cycle:	spawning,	animating
for	a	given	state,	dying	animation,	and	so	on.	Using	inheritance	to	describe	these	states	will
lead	to	a	nerve-wracking	tree:	AppleSpawn,	AppleAnimationShiny,	AppleDeath,	and	so	on.	It
would	become	quickly	unmaintainable.	Any	modification	to	a	class	could	have	huge	impact
on	many	other	classes	and	the	number	of	possible	combinations	of	states	would	get	out	of
hand.	Saying	that	a	state	is	simply	a	component	for	a	given	entity,	gives	the	flexibility	to	easily
swap	components	and	still	keep	the	entity	abstraction;	an	apple	Entity	element	is	still	an
apple,	even	though	it	is	using	the	AnimationShinyComponent	instead	of
the	AnimationSpawnComponent.

Let's	see	how	to	define	a	basic	Entity	element	in	QML.	Imagine	that	this	is	the	apple	we	have
been	talking	about.	The	Apple.qml	file	would	look	like	this:

import	Qt3D.Core	2.0	

import	Qt3D.Render	2.0	

import	Qt3D.Extras	2.0	

	

Entity	{	

	

				property	alias	position:	transform.translation	

				PhongMaterial	{	

								id:	material	

								diffuse:	"red"	

				}	

	

				SphereMesh	{	

								id:	mesh	

				}	

	

				Transform	{	

								id:	transform	

				}	

	

				components:	[material,	mesh,	transform]	

}	

In	a	very	few	lines,	you	describe	every	aspect	of	the	Entity	element:

Entity:	This	is	the	root	object	of	the	file;	it	follows	the	same	QML	pattern	we	studied
in	Chapter	5,	Dominating	the	Mobile	UI.
PhongMaterial:	This	defines	how	the	surface	will	be	rendered.	Here,	it	uses	the	Phong
shading	technique	to	achieve	smooth	surfaces.	It	inherits	QMaterial,	which	is	the	base
class	for	all	the	material	classes.
CuboidMesh:	This	defines	what	type	of	mesh	will	be	used.	It	inherits	QGeometryRenderer,
which	also	gives	the	ability	to	load	custom	models	(exported	from	3D	modeling
software).
Transform:	This	defines	the	transformation	matrix	of	the	component.	It	can	customize	the
translation,	scale,	and	position	of	the	Entity	element.
Position:	This	is	a	property	to	expose	transform.translation	for	a	given	caller/parent.
This	might	quickly	become	handy	if	we	want	to	move	the	apple	around.
Components:	This	is	the	array	containing	all	the	IDs	of	all	the	components	for	the	Entity
element.

If	we	want	to	make	this	Apple	a	child	of	another	Entity,	it	is	simply	a	matter	of	defining	the
Apple	inside	this	new	Entity	element.	Let's	call	it	World.qml:

import	Qt3D.Core	2.0	

import	Qt3D.Render	2.0	

import	Qt3D.Extras	2.0	

	

Entity	{	

				id:	sceneRoot	

					RenderSettings	{	

								id:	frameFraph	

								activeFrameGraph:	ForwardRenderer	{	

												clearColor:	Qt.rgba(0,	0,	0,	1)	

								}	

				}	

	

				Apple	{	

								id:	apple	

								position:	Qt.vector3d(3.0,	0.0,	2.0)	

				}	

	

				components:	[frameGraph]	

}	

Here,	the	World	Entity	has	no	visual	representation;	we	want	it	to	be	the	root	of	our	3D
scene.	It	only	contains	the	Apple	we	defined	earlier.	The	x,	y,	z	coordinates	of	the	apple	are
relative	to	the	parent.	When	the	parent	makes	a	translation,	the	same	translation	will	be	applied
to	the	apple.

This	is	how	the	hierarchy	of	entities/components	is	defined.	If	you	write	your	Qt3D	code	in
C++,	the	same	logic	applies	to	the	equivalent	C++	classes	(QEntity,	QComponent,	and	so	on).

Because	we	decided	to	use	the	World.qml	file	as	the	root	of	our	scene,	it	has	to	define	how	the
scene	will	be	rendered.	The	Qt3D	rendering	algorithm	is	data-driven.	In	other	words,	there	is
a	clear	separation	between	what	should	be	rendered	(the	tree	of	entities	and	components)
and	how	it	should	be	rendered.

The	how	relies	on	a	similar	tree	structure	using	framegraph.	In	Qt	Quick,	a	single	method	of
rendering	is	used	and	it	covers	the	2D	drawing.	On	the	other	hand,	in	3D,	the	need	for	flexible
rendering	makes	it	necessary	to	decouple	the	rendering	techniques.

Consider	this	example:	you	play	a	game	where	you	control	your	avatar	and	you	encounter	a
mirror.	The	same	3D	scene	must	be	rendered	from	multiple	viewports.	If	the	rendering
technique	is	fixed,	this	poses	multiple	problems:	which	viewport	should	be	drawn	first?	Is	it
possible	to	parallelize	the	rendering	of	the	viewports	in	the	GPU?	What	if	we	need	to	make
multiple	passes	for	the	rendering?

In	this	code	snippet,	we	use	the	traditional	OpenGL	rendering	technique	with	the
ForwardRenderer	tree,	where	each	object	is	rendered	directly	on	the	back	buffer,	one	at	a
time.	Qt3D	offers	the	possibility	to	choose	the	renderer
(ForwardRenderer,	DeferredRenderer,	and	so	on)	and	configure	how	the	scene	should	be
rendered.

OpenGL	typically	uses	the	double-buffering	technique	to	render	its	content.	The	front-buffer
is	what	is	displayed	on	the	screen	and	the	back-buffer	is	where	the	scene	is	being	rendered.
When	the	back-buffer	is	ready,	the	two	buffers	are	swapped.

One	last	thing	to	notice	at	the	top	of	each	Entity	element	is	that	we	specified	the	following:

import	Qt3D.Core	2.0	

import	Qt3D.Render	2.0	

import	Qt3D.Extras	2.0	

There	are	only	Qt3D	modules	in	the	import	section.	Qt3D	classes	do	not	inherit	Item	so
cannot	be	directly	mixed	with	QML	components.	This	inheritance	tree	of	the	basic	Qt3D
building	blocks	is:

The	QNode	class	is	the	base	class	of	all	Qt3D	node	classes.	It	relies	on	the	QObject	class	to
define	the	parenting	relationship.	Each	QNode	class	instance	also	adds	a	unique	id	variable,
which	allows	it	to	be	recognized	from	other	instances.

Even	though	QNode	cannot	be	mixed	with	Qt	Quick	types,	they	can	be	added	to	a	Q3DScene
element	(or	Scene3D	in	QML),	which	serves	as	the	canvas	for	Qt3D	content	and	can	be	added
to	a	Qt	Quick	Item.	Adding	World.qml	to	a	scene	is	as	simple	as	this:

Rectangle	{	

	

				Scene3D	{	

								id:	scene	

								anchors.fill:	parent	

								focus:	true	

	

								World	{	}	

				}	

}	

The	Scene3D	element	includes	a	World	instance	and	defines	common	Qt	Quick	properties
(anchors,	focus).

Configuring	Qt	for	your	Raspberry	Pi
This	project	targets	a	new	embedded	platform:	the	Raspberry	Pi.	Qt	officially	supports	the
Raspberry	Pi	2,	but	we	got	the	project	running	without	any	trouble	on	a	Raspberry	Pi	3.	If	you
do	not	have	one	of	these	devices,	it	might	be	nonetheless	interesting	to	read	this	section	to
know	how	the	cross-compilation	works	and	how	to	configure	your	own	kit	in	Qt	Creator.	The
rest	of	the	chapter	will	work	on	a	Desktop	platform	anyway.

Before	diving	into	the	Raspberry	Pi	configuration,	let's	take	a	step	back	to	understand	our
aim.	Your	computer	is	probably	running	on	an	x86	CPU	architecture.	This	means	that	every
program	you	run	will	be	executed	with	the	x86	instructions	set	of	your	CPU.	In	Qt	Creator,
this	translates	to	your	available	kits.	A	kit	must	match	your	target	platform.	On	startup,	Qt
Creator	searches	for	available	kits	in	your	computer	and	loads	them	for	you.

In	Chapter	5,	Dominating	the	Mobile	UI,	we	targeted	different	platforms:	Android	and	iOS.
These	platforms	are	running	on	a	different	CPU	instruction	set:	ARM.	Luckily,	the	people
behind	Qt	automatically	configured	for	us	the	necessary	nuts	and	bolts	to	make	it	work.

The	Raspberry	Pi	also	runs	on	ARM	but	it	is	not	ready	for	Qt	by	default.	We	have	to	prepare	it
before	playing	with	it	in	Qt	Creator.	Note	that	the	following	commands	are	run	from	a	Linux
box,	but	you	should	be	able	to	run	them	from	Mac	or	Windows	with	Cygwin.

Note

Please	follow	the	complete	guide	to	prepare	your	Raspberry	Pi	for	Qt	at
https://wiki.qt.io/RaspberryPi2EGLFS,	or	simply	download	a	precompiled	bundle
from	http://www.qtrpi.com.

The	complete	Raspberry	Pi	installation	guide	is	outside	the	scope	of	the	book.	It	is	interesting
nonetheless	to	sum	up	the	main	steps:

1.	 Add	development	packages	to	the	Raspberry	Pi.
2.	 Retrieve	the	complete	toolchain,	including	the	cross-compiler	that	will	be	executed	from

your	machine.
3.	 Create	a	sysroot	folder	on	your	machine	that	will	mirror	the	necessary	directories	from

the	Raspberry	Pi.
4.	 Compile	Qt	with	the	cross-compiler	in	the	sysroot	folder.
5.	 Synchronize	this	sysroot	with	the	Raspberry	Pi.

A	sysroot	is	simply	a	directory	containing	a	minimal	filesystem	for	a	given	platform.	It
typically	contains	the	/usr/lib	and	/usr/include	directories.	Having	this	directory	on	your
machine	enables	the	cross-compiler	to	properly	compile	and	link	the	output	binary	without
being	executed	from	the	Raspberry	Pi.

https://wiki.qt.io/RaspberryPi2EGLFS
http://www.qtrpi.com

All	these	steps	are	done	to	avoid	compiling	anything	directly	on	the	Raspberry	Pi.	Being	a
low-powered	device,	the	execution	of	any	compilation	would	take	a	very,	very	long	time.
Compiling	Qt	on	a	Raspberry	Pi	would	easily	take	more	than	40	hours.	Knowing	this,	the	time
spent	on	configuring	the	cross-compiler	seems	much	easier	to	bear.

The	qopenglwidget	example	mentioned	in	the	wiki	should	be	properly	running	before
proceeding.	Once	this	has	been	done,	we	have	to	cross-compile	a	few	more	Qt	modules	to
have	our	project	running:

Qtdeclarative:	This	model	is	used	to	access	Qt	Quick
qt3d:	This	model	is	used	to	construct	a	3D	world
qtquickcontrols:	This	model	is	used	to	include	interesting	controls	(Label)
qtquickcontrols2:	This	model	is	used	to	make	some	new	layouts	available

For	each	of	these	modules,	execute	the	following	commands	(from	your	~/raspi	directory):

git	clone	git://code.qt.io/qt/<modulename>.git	-b	5.7

cd	<modulename>

~/raspi/qt5/bin/qmake	-r

make

make	install

Tip

You	can	speed	up	the	compilation	by	adding	the	parameter	-j	(or	--jobs)	to	make.	The	make
command	will	try	to	parallelize	the	compilations	jobs	over	your	CPU	cores,	if	you	have	four
cores,	use	make	-j	4,	eight	cores,	make	-j	8,	and	so	on.

When	everything	has	been	compiled,	synchronize	your	sysroot	directory	again	with:

rsync	-avz	qt5pi	pi@IP:/usr/local

In	the	previous	command,	you	must	replace	the	IP	with	the	real	Raspberry	Pi	address.

The	Raspberry	Pi	is	ready	to	execute	our	Qt	code.	However,	we	have	to	create	our	own	kit	in
Qt	Creator	to	be	able	to	compile	and	deploy	our	program	on	it.	A	kit	is	composed	of	the
following	parts:

A	compiler	that	will	compile	your	code	using	the	CPU	instruction	set	of	the	target
platform
A	debugger	that	will	know	the	instruction	set	of	the	target	platform	to	properly	break
and	read	the	memory	content
A	Qt	version	compiled	for	the	targeted	platform	to	compile	and	link	your	binary	to	the
target	platform's	shared	objects
A	device	to	which	Qt	Creator	can	connect	to	deploy	and	execute	your	program

We	will	start	with	the	compiler.	In	Qt	Creator:

1.	 Go	to	Tools	|	Options	|	Build	&	Run	|	Compilers.
2.	 Click	on	Add	|GCC.
3.	 Browse	to	~/raspi/tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-

raspbian/bin/arm-linux-gnueabihf-g++.
4.	 Rename	the	compiler	to	Rpi	GCC.

This	strange	binary	name	makes	it	easier	for	Qt	to	parse	the	ABI	(application	binary
interface)	to	find	out	the	platform	architecture,	file	format,	and	so	on.	It	should	look	like	this:

Now	for	the	debugger.	As	we	said	earlier,	we	are	building	this	project	from	a	Linux	box
(Ubuntu).	Cross-compilation	and	embedded	development	tend	to	be	easier	on	Linux	but	you
should	be	able	to	do	the	same	on	a	Windows	or	Mac	with	a	few	additional	steps.

On	Ubuntu	Linux,	just	install	a	multi-architecture	gdb	with	the	command	sudo	apt-get
install	gdb-multiarch.	In	Qt	Creator,	add	this	new	debugger	in	the	Debuggers	tab:

Next,	add	the	cross-compiled	Qt	explained	on	the	wiki	page	in	the	Qt	Versions	tab.	Click
on	Add	and	browse	to	~/raspi/qt5/bin/qmake.	This	is	the	resulting	Qt	Version:

We	are	almost	there!	Before	building	the	kit,	we	simply	have	to	configure	Raspberry	Pi
device	access.	In	Options	|	Devices,	follow	this	procedure:

1.	 Click	on	Add..	|	Generic	Linux	Device	|	Start	Wizard.
2.	 The	name	will	be	Rpi	2	(or	3	if	you	have	one).
3.	 Enter	the	IP	address	of	your	device	(indeed,	you	have	to	be	connected	to	your	local

network!).
4.	 The	default	username	is	pi.

5.	 The	default	password	is	"raspberry".
6.	 Click	on	Next	to	test	the	connection	to	the	device.

If	everything	went	well,	this	is	your	new	device:

Finally,	the	kit	will	compose	all	these	parts	into	a	valid	Qt	Creator	platform.	Go	back	to	Build
&	Run	|	Kits.	From	here	you	simply	have	to	point	to	each	of	the	parts	we	built	previously.
Here	is	the	resulting	kit:

Note	that	the	Sysroot	filed	should	point	to	the	sysroot	folder	we	previously	created
at	~/raspi/sysroot.

Tip

If	you	click	on	the	button	to	the	right	of	Name,	you	can	choose	a	custom	picture	for	a	kit,	such
as	the	Raspberry	Pi	logo.

Everything	is	now	ready	to	make	an	awesome	snake	game.

Creating	an	entry	point	for	your	Qt3D	code
For	those	who	did	not	play	the	snake	game	in	their	youth,	here	is	a	quick	reminder	of	the
gameplay:

You	control	a	snake	moving	in	an	empty	area
This	area	is	surrounded	by	walls
An	apple	spawns	randomly	in	the	game	area
If	the	snake	eats	the	apple,	it	grows	and	you	gain	a	point.	Right	after,	another	apple
spawns	in	the	game	area
If	the	snake	touches	a	wall	or	a	part	of	its	own	body,	you	lose

The	goal	is	to	eat	as	many	apples	as	possible	to	have	the	highest	score.	The	longer	the	snake,
the	harder	it	will	become	to	avoid	the	wall	and	its	own	tail.	Oh,	and	the	snake	goes	faster	and
faster	each	time	it	eats	an	apple.	The	architecture	of	the	game	will	be	the	following:

All	the	game	items	will	be	defined	using	Qt3D	in	QML
All	the	game	logic	will	be	done	in	JavaScript,	which	will	communicate	with	the	QML
elements

We	will	keep	the	2D	feel	of	the	original	snake	game	by	placing	the	camera	above	the	game
area	but	we	will	spice	things	up	with	3D	models	and	some	shaders.

Alright,	we	spent	an	awful	lot	of	pages	preparing	for	this	moment.	It	is	now	time	to	begin	the
snake	project.	Create	a	new	Qt	Quick	Controls	Application	named	ch06-snake.	In	the	project
details:

1.	 Select	Qt	5.6	for	the	minimal	required	Qt	version	field.
2.	 Uncheck	With	ui.qml	file.
3.	 Uncheck	Enable	native	styling.
4.	 Click	on	Next	and	select	the	following	kits:

RaspberryPi	2
Desktop

5.	 Click	on	Next	|	Finish.

We	have	to	add	the	Qt3D	modules.	Modify	ch06-snake.pro	like	this:

TEMPLATE	=	app	

	

QT	+=	qml	quick	3dcore	3drender	3dquick	3dinput	3dextras	

CONFIG	+=	c++11	

	

SOURCES	+=	main.cpp	

	

RESOURCES	+=	\	

				snake.qrc	

	

HEADERS	+=	

	

target.files	=	ch06-snake	

target.path	=	/home/pi	

INSTALLS	+=	target	

We	have	to	prepare	the	entry	point	of	the	application	to	have	a	proper	OpenGL	context	with
which	Qt3D	can	work.	Open	and	update	main.cpp	like	so:

#include	<QGuiApplication>	

#include	<QtGui/QOpenGLContext>	

#include	<QtQuick/QQuickView>	

#include	<QtQml/QQmlEngine>	

	

int	main(int	argc,	char	*argv[])	

{	

				QGuiApplication	app(argc,	argv);	

	

				qputenv("QT3D_GLSL100_WORKAROUND",	"");	

	

				QSurfaceFormat	format;	

				if	(QOpenGLContext::openGLModuleType()	==	

								QOpenGLContext::LibGL)	{	

								format.setVersion(3,	2);	

								format.setProfile(QSurfaceFormat::CoreProfile);	

				}	

				format.setDepthBufferSize(24);	

				format.setStencilBufferSize(8);	

	

				QQuickView	view;	

				view.setFormat(format);	

				view.setResizeMode(QQuickView::SizeRootObjectToView);	

				QObject::connect(view.engine(),	&QQmlEngine::quit,		

																					&app,	&QGuiApplication::quit);	

				view.setSource(QUrl("qrc:/main.qml"));	

				view.show();	

	

				return	app.exec();	

}	

The	idea	is	to	configure	a	QSurfaceFormat	to	properly	handle	OpenGL	and	to	give	it	to	a
custom	QQuickView	view.	This	view	will	use	this	format	to	paint	itself.

The	qputenv("QT3D_GLSL100_WORKAROUND",	"")	instruction	is	a	workaround	related	to	Qt3D
shaders	on	some	embedded	Linux	devices,	such	as	the	Raspberry	Pi.	It	will	enable	a	separate
GLSL	1.00	snippet	for	the	lights	required	by	some	embedded	devices.	If	you	do	not	use	this
workaround,	you	will	get	a	black	screen	and	will	not	be	able	to	properly	run	the	project	on
Raspberry	Pi.

Tip

The	details	of	the	Qt3d	lights	workaround	are	here:https://codereview.qt-
project.org/#/c/143136/.

We	chose	to	handle	the	view	using	Qt	Quick.	Another	approach	would	be	to	create	a	C++	class
that	inherits	QMainWindow	and	make	it	the	parent	of	the	QML	content.	This	approach	can	be
found	in	many	Qt3D	example	projects.	Both	are	valid	and	work.	You	tend	to	write	more	code
with	the	QMainWindow	approach,	but	it	allows	you	to	create	3D	scenes	with	C++	only.

Note	that	view	from	the	main.cpp	file	tries	to	load	a	main.qml	file.	You	can	see	it	coming;
here	is	the	main.qml:

import	QtQuick	2.6	

import	QtQuick.Controls	1.4	

	

Item	{	

				id:	mainView	

	

				property	int	score:	0	

				readonly	property	alias	window:	mainView	

	

				width:	1280;	height:	768	

				visible:	true	

	

				Keys.onEscapePressed:	{	

								Qt.quit()	

				}	

	

				Rectangle	{	

								id:	hud	

	

								color:	"#31363b"	

								anchors.left:	parent.left	

								anchors.right:	parent.right	

								anchors.top	:	parent.top	

								height:	60	

	

								Label	{	

												id:	snakeSizeText	

												anchors.centerIn:	parent	

												font.pointSize:	25	

												color:	"white"	

												text:	"Score:	"	+	score	

								}	

				}	

}	

Here	we	define	the	HUD	(heads	up	display)	at	the	top	of	the	screen,	where	the	score	(the
number	of	apples	eaten)	will	be	displayed.	Note	that	we	bound	the	Escape	key	to

https://codereview.qt-project.org/#/c/143136/

the	Qt.quit()	signal.	This	signal	is	connected	in	main.cpp	to	the	QGuiApplication::quit()
signal	to	quit	the	application.

The	QML	context	is	now	ready	to	welcome	Qt3D	content.	Modify	main.qml	like	so:

import	QtQuick	2.6	

import	QtQuick.Controls	1.4	

import	QtQuick.Scene3D	2.0	

	

Item	{	

				...	

	

				Rectangle	{	

								id:	hud	

								...	

				}	

	

				Scene3D	{	

								id:	scene	

								anchors.top:	hud.bottom	

								anchors.bottom:	parent.bottom	

								anchors.left:	parent.left	

								anchors.right:	parent.right	

								focus:	true	

								aspects:	"input"	

				}	

}	

The	Scene3D	element	takes	all	the	available	space	below	the	hud	object.	It	takes	the	focus	of
the	window	to	be	able	to	intercept	keyboard	events.	It	also	enables	the	input	aspect	to	let	the
Qt3D	engine	process	keyboard	events	in	its	graph	traversal.

Setting	up	the	scene
We	can	now	start	writing	Qt3D	code.	The	first	step	is	to	define	the	root	of	the	scene.	Create	a
new	file	named	GameArea.qml:

import	Qt3D.Core	2.0	

import	Qt3D.Render	2.0	

import	Qt3D.Extras	2.0	

	

Entity	{	

				id:	root	

	

				property	alias	gameRoot:	root	

	

				Camera	{	

								id:	camera	

								property	real	x:	24.5	

								property	real	y:	14.0	

	

								projectionType:	CameraLens.PerspectiveProjection	

								fieldOfView:	45	

								aspectRatio:	16/9	

								nearPlane	:	0.1	

								farPlane	:	1000.0	

								position:	Qt.vector3d(x,	y,	33.0)	

								upVector:	Qt.vector3d(0.0,	1.0,	0.0)	

								viewCenter:	Qt.vector3d(x,	y,	0.0)	

				}	

	

	

	

				RenderSettings	{	

								id:	frameFraph	

								activeFrameGraph:	ForwardRenderer	{	

												clearColor:	Qt.rgba(0,	0,	0,	1)	

												camera:	camera	

								}	

				}	

	

				components:	[frameFraph]	

}	

The	first	thing	we	do	is	create	a	camera	and	position	it.	Remember	that,	in	OpenGL,	the
coordinates	follow	the	thumb	on	your	right	hand	points	left!:

By	placing	the	camera	at	Qt.vector3d(x,	y,	33),	we	make	it	come	"out	of	the	screen"	to	be
able	to	express	our	yet-to-be-created	entitiy's	coordinates	with	the	simple	x,	y	axis.	The
upVector:	Qt.vector3d(0.0,	1.0,	0.0)	specifies	the	up	vector	of	the	camera,		in	our	case	it
is	the	Y	axis.	Finally,	we	point	at	Qt.vector(x,	y,	0),	meaning	the	center	of	the	screen.

The	overall	goal	is	to	simplify	coordinate	expression.	By	positioning	the	camera	this	way,
placing	an	object	at	the	coordinate	0,	0	will	put	it	in	the	bottom-left	part	of	the	window,
whereas	the	coordinates	50,	28	mean	the	top-right	part	of	the	window.

We	also	configure	RenderSettings	with	a	ForwardRendered	that	defines	two	properties:

clearColor:	This	property	Qt.rgba(0,	0,	0,	1)	means	that	the	background	will	be
pitch-black
camera:	This	property	is	used	to	determine	the	viewport	to	be	rendered

The	scene	is	ready	to	be	rendered,	but	we	need	to	handle	user	input,	namely	the	keyboard.	To
capture	keyboard	events,	modify	GameArea.qml	to	look	like	this:

import	Qt3D.Core	2.0	

import	Qt3D.Render	2.0	

import	Qt3D.Input	2.0	

	

Entity	{	

				...	

				RenderSettings	{	

								...	

				}	

	

				KeyboardDevice	{	

								id:	keyboardController	

				}	

	

				InputSettings	{	id:	inputSettings	}	

	

				KeyboardHandler	{	

								id:	input	

								sourceDevice:	keyboardController	

								focus:	true	

								onPressed:	{	}	

				}	

	

				components:	[frameFraph,	input]	

}	

The	KeyboardDevice	element	is	in	charge	of	dispatching	key	events	to	the
active	KeyboardHandler,	namely	input.	The	KeyboardHandler	component	is	attached	to	the
controller	and	the	onPressed()	function	will	be	called	each	time	a	key	is	pressed.
The	KeyboardHandler	is	a	component;	therefore	it	needs	to	be	added	to	the	list	of	components
for	GameArea.

The	last	missing	part	of	GameArea	is	preapring	the	engine	execution	(initialization	and	update):

import	Qt3D.Core	2.0	

import	Qt3D.Render	2.0	

import	Qt3D.Input	2.0	

import	QtQuick	2.6	as	QQ2	

	

Entity	{	

				id:	root	

	

				property	alias	gameRoot:	root	

				property	alias	timerInterval:	timer.interval	

				property	int	initialTimeInterval:	80	

				property	int	initialSnakeSize:	5	

				property	string	state:	""	

				...	

	

				KeyboardDevice	{	

								id:	keyboardController	

				}	

	

				QQ2.Component.onCompleted:	{	

								console.log("Start	game...");	

								timer.start()	

				}	

	

				QQ2.Timer	{	

								id:	timer	

								interval:	initialTimeInterval	

								repeat:	true	

								onTriggered:	{}	

				}	

	

				components:	[frameFraph,	input]	

}		

Here	we	mix	Qt	Quick	elements	with	Qt3D.	Due	to	possible	name	collisions,	we	have	to
import	the	module	using	the	alias	QQ2.	We	already	met	Component.onCompleted	in	Chapter
5,	Dominating	the	Mobile	UI.	Its	job	will	be	to	start	the	game	engine	and	start	the	timer
defined	right	after.

This	timer	variable	will	repeat	every	80	milliseconds	(as	defined	in	the	initialTimeInterval
property)	and	call	the	engine's	update()	function.	This	function	will	be	covered	when	we
build	the	engine	code,	later	in	this	chapter.	The	goal	is	to	emulate	the	original	snake	game	as
closely	as	possible.	The	whole	game	logic	will	be	updated	at	this	interval	and	not	at	the
normal	frame	refresh	interval.	After	each	call	to	update(),	the	snake	will	advance.	As	a	result,
the	snake's	movement	will	not	be	smooth	but	rather	jerky.	This	is	clearly	a	design	choice	we
made	to	have	a	retro-gaming	feeling.

Each	time	the	snake	eats	an	apple,	two	things	happen:

The	interval	of	the	timer	will	be	reduced	by	the	engine	(accessed	by	the	timerInterval
property).
The	snake	will	grow.	Its	initial	size	is	defined	in	the	intialSnakeSize	property.

Reducing	the	timer	interval	will	make	the	snake	advance	faster	until	it	becomes	very	hard	to
manage	its	direction.

Assembling	your	Qt3D	entities
We	will	now	proceed	to	create	the	building	blocks	of	the	game,	each	in	the	form	of	an	Entity
element:

Wall:	This	represents	the	limit	of	where	the	snake	cannot	go
SnakePart:	This	represents	a	part	of	the	snake's	body
Apple:	This	represents	the	apple	(no	way!)	spawned	at	a	random	location
Background:	This	represents	a	good-looking	background	behind	the	snake	and	the	apple

Each	entity	will	be	placed	on	a	grid	handled	by	the	engine	and	will	have	a	type	identifier	to
make	it	easier	to	find.	To	factorize	these	properties,	let's	create	a	parent	QML	file	named
GameEntity.qml:

import	Qt3D.Core	2.0	

	

Entity	{	

				property	int	type:	0	

				property	vector2d	gridPosition:	Qt.vector2d(0,	0)	

}	

This	Entity	element	only	defines	a	type	property	and	a	gridPosition	property	,	which	will
be	used	by	the	engine	to	lay	out	the	content	on	the	grid.

The	first	item	we	will	build	is	the	Wall.qml	file:

import	Qt3D.Core	2.0	

	

GameEntity	{	

				id:	root	

	

				property	alias	position:	transform.translation	

	

				Transform	{	

								id:	transform	

				}	

	

				components:	[transform]	

}	

As	you	can	see,	the	Wall	type	does	not	have	any	visual	representation.	Because	we	target	a
Raspberry	Pi	device,	we	have	to	be	very	careful	with	the	CPU/GPU	consumption.	The	game
area	will	be	a	grid	where	each	cell	contains	an	instance	of	one	of	our	entities.	The	snake	will
be	surrounded	by	Wall	instances.	The	Raspberry	Pi	is	much	slower	than	your	average
computer,	to	the	extent	that	the	game	would	become	unbearably	slow	if	we	displayed	all	the
walls.

To	address	this	issue,	the	walls	are	invisible.	They	will	be	placed	outside	the	visible	viewport
and	the	borders	of	the	window	will	act	as	the	visual	limit	of	the	snake.	Of	course,	if	you	do
not	target	the	Raspberry	Pi,	but	rather	your	computer,	it	is	fine	to	display	the	walls	and	make
them	look	fancier	than	just	nothing.

The	next	Entity	element	we	will	implement	is	SnakePart.qml:

import	Qt3D.Core	2.0	

import	Qt3D.Render	2.0	

import	Qt3D.Extras	2.0	

	

GameEntity	{	

				id:	root	

	

				property	alias	position:	transform.translation	

	

				PhongMaterial	{	

								id:	material	

								diffuse:	"green"	

				}	

	

				CuboidMesh	{	

								id:	mesh	

				}	

	

				Transform	{	

								id:	transform	

				}	

	

				components:	[material,	mesh,	transform]	

}	

If	added	to	the	GameArea	scene,	the	SnakePart	block	will	display	a	single	green	cube.
The	SnakePart	block	is	not	the	complete	snake,	rather	a	part	of	its	body.	Remember	that	the
snake	grows	each	time	it	eats	an	apple.	Growing	means	adding	a	new	instance	of	SnakePart	to
a	list	of	SnakePart.

Let's	proceed	with	the	Apple.qml:

import	Qt3D.Core	2.0	

import	Qt3D.Render	2.0	

import	Qt3D.Extras	2.0	

	

GameEntity	{	

				id:	root	

	

				property	alias	position:	transform.translation	

				property	alias	color:	material.diffuse	

	

				Transform	{	

								id:	transform	

								scale:	0.5	

				}	

	

				Mesh	{	

								id:	mesh	

								source:	"models/apple.obj"	

				}	

	

				DiffuseMapMaterial	{	

								id:	material	

								diffuse:	"qrc:/models/apple-texture.png"	

				}	

	

				components:	[material,	mesh,	transform]	

}	

This	snippet	starts	with	introducing	more	complex	yet	easy-to-use	features	of	Qt3D,	namely	a
custom	mesh	and	a	texture	applied	to	it.	Qt3D	supports	the	Wavefront	obj	format	to	load
custom	meshes.	Here	we	added	a	home-cooked	apple	to	the	.qrc	file	of	the	application	and	we
just	have	to	provide	the	path	to	this	resource	to	load	it.

The	same	principle	is	applied	for	the	DiffuseMapMaterial	element.	We	added	a	custom
texture	and	added	it	as	a	source	of	the	component.

As	you	can	see,	the	Entity	definition	and	its	components	look	very	much	the	same.	Yet	we
effortlessly	traded	a	Qt3D	CuboidMesh	with	a	custom	model.

We	will	push	things	even	further	with	Background.qml:

import	Qt3D.Core	2.0	

import	Qt3D.Render	2.0	

import	Qt3D.Extras	2.0	

	

Entity	{	

				id:	root	

	

				property	alias	position:	transform.translation	

				property	alias	scale3D:	transform.scale3D	

	

				MaterialBackground	{	

								id:	material	

				}	

	

				CuboidMesh	{	

								id:	mesh	

				}	

	

				Transform	{	

								id:	transform	

				}	

	

				components:	[material,	mesh,	transform]	

}	

The	Background	block	will	be	displayed	behind	the	snake	and	the	apple.	At	first	sight,	this
entity	looks	very	much	like	SnakePart.	However,	Material	is	not	a	Qt3D	class.	It	is	a	custom
defined	Material	that	relies	on	shaders.	Let's	see	MaterialBackground.qml:

import	Qt3D.Core	2.0	

import	Qt3D.Render	2.0	

	

Material	{	

				id:	material	

	

				effect:	Effect	{	

								techniques:	[

												Technique	{	

																graphicsApiFilter	{	

																				api:	GraphicsApiFilter.OpenGL	

																				majorVersion:	3	

																				minorVersion:	2	

																}	

																renderPasses:	RenderPass	{	

																				shaderProgram:	ShaderProgram	{	

																								vertexShaderCode:			

																								loadSource("qrc:/shaders/gl3/grass.vert")	

																								fragmentShaderCode:		

																								loadSource("qrc:/shaders/gl3/grass.frag")	

																				}	

																}	

												}	

]	

				}	

}	

If	you	are	not	familiar	with	shaders,	we	can	summarize	them	in	the	following	statement:
shaders	are	computer	programs	written	in	a	C-style	syntax	that	are	executed	by	the	GPU.	Data
from	your	logic	will	be	fed	by	the	CPU	and	made	available	to	the	GPU	memory	where	your
shaders	will	run.	Here	we	manipulate	two	types	of	shader:

Vertex	shader,	which	is	executed	on	each	vertex	of	the	source	of	your	mesh
Fragment,	which	is	executed	on	each	pixel	to	produce	the	final	rendering

By	being	executed	on	the	GPU,	these	shaders	utilize	the	huge	parallelization	power	of	the
GPU	(which	is	orders-of-magnitude	higher	than	your	CPU).	It	enables	modern	games	to	have
such	stunning	visual	rendering.	Covering	shaders	and	the	OpenGL	pipeline	is	beyond	the
scope	of	this	book	(you	can	fill	several	bookshelves	on	this	subject	alone).	We	will	limit
ourselves	to	showing	you	how	you	can	use	shaders	in	Qt3D.

Note

If	you	want	to	delve	into	OpenGL	or	sharpen	your	skills	with	shaders,	we	recommend	the
OpenGL	SuperBible,	by	Graham	Sellers,	Richard	S	Wright	Jr.,	and	Nicholas	Haemel.

Qt3D	supports	shaders	in	a	very	convenient	way.	Simply	add	your	shader	file	to	the	.qrc
resource	file	and	load	it	in	the	effect	property	of	a	given	Material.

In	this	snippet,	we	specify	that	this	shader	Technique	should	be	run	only	on	OpenGL	3.2.	This
is	indicated	in	the	graphicsApiFilter	block.	This	version	of	OpenGL	targets	your	desktop
machine.	Because	the	performance	gap	between	your	desktop	and	your	Raspberry	Pi	is	very
marked,	we	have	the	ability	to	execute	different	shaders	depending	on	the	platform.

Thus,	here	is	the	Raspberry	Pi-compatible	technique:

Technique	{	

				graphicsApiFilter	{	

								api:	GraphicsApiFilter.OpenGLES	

								majorVersion:	2	

								minorVersion:	0	

				}	

	

				renderPasses:	RenderPass	{	

								shaderProgram:	ShaderProgram	{	

												vertexShaderCode:		

																loadSource("qrc:/shaders/es2/grass.vert")	

												fragmentShaderCode:		

																loadSource("qrc:/shaders/es2/grass.frag")	

								}	

				}	

}	

You	just	have	to	add	it	to	the	techniques	property	of	the	Material.	Note	that	the	targeted
OpenGL	version	is	OpenGLES	2.0,	which	will	run	fine	on	your	Raspberry	Pi	and	even	your
iOS/Android	phone.

A	last	thing	to	cover	is	how	parameters	can	be	passed	to	shaders.	Here	is	an	example:

Material	{	

				id:	material	

	

				parameters:		[

								Parameter	{	

												name:	"score";	value:	score	

								}	

]	

				...	

}	

The	score	variable	will	be	accessible	in	the	shader	with	this	simple	section.	Please	take	a	look
at	the	source	code	for	the	chapter	to	see	the	complete	content	of	this	Material	element.	We	had

the	fun	of	writing	a	shader	displaying	a	moving	and	glowing	wave	over	a	grass	texture.

The	only	fixed	element	of	the	game	is	the	background.	We	can	directly	add	it	to	GameArea.qml:

Entity	{	

				id:	root	

				...	

	

				Background	{	

								position:	Qt.vector3d(camera.x,	camera.y,	0)	

								scale3D:	Qt.vector3d(camera.x	*	2,	camera.y	*	2,	0)	

				}	

	

				components:	[frameFraph,	input]	

}	

The	Background	element	is	positioned	to	cover	the	whole	visible	area	behind	the	snake	and
the	apple.	Being	defined	inside	GameArea,	it	will	be	automatically	added	to	the
entity/component	tree	and	will	be	drawn	right	away.

Preparing	the	board	game
Even	if	our	game	has	a	3D	representation,	we	will	implement	2D	gameplay	like	the	original
snake	game.	Our	game	items	are	born,	will	live,	and	die	in	a	2D	area.	Like	chess,	this	board
will	be	composed	of	rows	and	columns.	But	in	our	snake	game,	each	square	can	be:

An	apple
A	snake
A	wall
Empty

Here	is	an	example	of	a	board	representation	from	the	point	of	view	of	the	engine:

This	is	a	small	10x8	board;	even	if	the	size	does	not	matter,	you	will	be	able	to	define	a
bigger	one.	Your	game,	your	rules!	We	have	walls	(W)	surrounding	the	game	area.	An	apple
(A)	is	spawned	at	7x2.	Finally,	we	have	a	snake	(S)	beginning	at	3x4	and	ending	at	5x5.

It	is	time	to	create	our	board	class.	Please	create	a	JS	file	called	board.js:

function	Board(columnCount,	rowCount,	blockSize)	{	

				this.columnCount	=	columnCount;	

				this.rowCount	=	rowCount;	

				this.blockSize	=	blockSize;	

				this.maxIndex	=	columnCount	*	rowCount;	

				this.data	=	new	Array(this.maxIndex);	

}	

This	object	constructor	function	required	three	parameters.	The	columnCount	and	rowCount
parameters	will	help	you	to	choose	the	board	dimension.	The	last	parameter,	blockSize,	is	the
size	of	a	board	square	in	the	OpenGL	world.	For	example,	we	can	set	blockSize	to	10.	In	this
case,	the	apple	in	7x2	on	the	board	we	be	displayed	with	x	=	70	and	y	=	20	in	the	OpenGL
world.	In	this	chapter,	we	will	use	a	blockSize	of	1,	so	the	board	coordinates	match	OpenGL

coordinates.

Let's	add	some	utility	functions	to	board.js:

Board.prototype.init	=	function()	{	

				for	(var	i	=	0;	i	<	this.data.length;	i++)	{	

								this.data[i]	=	null;	

				}	

}	

	

Board.prototype.index	=	function(column,	row)	{	

				return	column	+	(row	*	this.columnCount);	

}	

	

Board.prototype.setData	=	function(data,	column,	row)	{	

				this.data[this.index(column,	row)]	=	data;	

}	

	

Board.prototype.at	=	function(column,	row)	{	

				return	this.data[this.index(column,	row)];	

}	

Defining	a	class	in	JavaScript	can	be	disturbing	for	a	C++	developer.	Every	JavaScript	object
has	a	prototype	object	to	which	you	can	add	functions.	We	are	using	it	to	add	class	methods	to
Board.

Here	is	a	summary	of	the	purpose	of	each	function	of	the	Board	class:

init():	This	function	initializes	all	array	values	to	the	null	value
index():	This	function	returns	the	array	index	from	column/row	coordinates
setData():	This	function	assigns	the	data	value	on	the	board	from	column/row
coordinates
at():	This	function	retrieves	the	data	value	in	an	array	from	column/row	coordinates

Please	note	that,	in	our	case,	a	null	square	means	an	empty	square.

Crafting	entities	from	the	factory
Now	that	we	have	a	board	to	receive	items,	we	will	create	the	game	items	factory.	The	factory
is	a	design	pattern	that	allows	us	to	create	an	object	without	exposing	the	creation	logic	to	the
caller.	This	factory	can	be	seen	as	a	helper	class	that	will	handle	all	the	dirty	tasks	required
when	you	want	to	create	a	new	game	item	from	JavaScript.	Do	you	remember
GameEntity.qml?	It	is	the	parent	class	of	Apple.qml,	Snake.qml,	and	Wall.qml.	The	factory
will	be	able	to	create	a	specific	entity	for	a	given	a	type	and	coordinates.	We	will	use	the
property	type	to	identify	an	entity	kind.	Here	is	the	factory	pattern	schema	used	in	our	snake
game:

We	can	now	create	the	factory.js	file,	which	begins	like	this:

var	SNAKE_TYPE	=	1;	

var	WALL_TYPE		=	2;	

var	APPLE_TYPE	=	3;	

	

var	snakeComponent	=	Qt.createComponent("Snake.qml");	

var	wallComponent	=	Qt.createComponent("Wall.qml");	

var	appleComponent	=	Qt.createComponent("Apple.qml");	

First	of	all,	we	define	all	the	game	entity	types.	In	our	case	we	have	apple,	snake,	and	wall
types.	Then,	we	create	game	item	components	from	QML	files.	These	components	will	be	use
by	the	factory	to	dynamically	create	new	game	entities.

We	can	now	add	the	constructor	and	a	removeAllEntities()	utility	function	to	remove	all
instantiated	entities:

function	GameFactory()	{	

	

				this.board	=	null;	

				this.parentEntity	=	null;	

				this.entities	=	[];	

}	

	

GameFactory.prototype.removeAllEntities	=	function()	{	

				for(var	i	=	0;	i	<	this.entities.length;	i++)	{	

								this.entities[i].setParent(null);	

				}	

This	factory	has	three	member	variables:

A	reference	to	the	game	board	described	in	the	previous	section
A	reference	to	the	parentEntity	variable,	that	is,	the	game	area
An	entities	array	that	keeps	a	reference	to	created	items

The	removeAllEntities()	function	will	remove	the	items	from	their	parent	(that	is,	the	game
area)	and	create	a	new	empty	entities	array.	This	ensures	that	old	entities	are	deleted	by	the
garbage	collector.

Let's	add	the	core	function	createGameEnity()	in	the	factory:

GameFactory.prototype.createGameEntity	=	function(type,	column,	row)	{	

				var	component;	

				switch(type)	{	

				case	SNAKE_TYPE:	

								component	=	snakeComponent;	

								break;	

	

				case	WALL_TYPE:	

								component	=	wallComponent;	

								break;	

	

				case	APPLE_TYPE:	

								component	=	appleComponent;	

								break;	

				}	

				var	gameEntity	=	component.createObject(this.parentEntity);	

				gameEntity.setParent(this.parentEntity);	

	

				this.board.setData(gameEntity,	column,	row);	

				gameEntity.gridPosition	=	Qt.vector2d(column,	row);	

				gameEntity.position.x	=	column	*	this.board.blockSize;	

				gameEntity.position.y	=	row	*	this.board.blockSize;	

	

				this.entities.push(gameEntity);	

				return	gameEntity;	

}	

As	you	can	see,	the	caller	provides	an	entity	type	and	board	coordinates	(column	and	row).
The	first	part	is	a	switch	to	select	the	correct	QML	component.	Once	we	have	the	component,
we	can	call	component.createObject()	to	create	an	instance	of	this	component.	The	parent	of

this	new	component	will	be	this.parentEntity,	in	our	case,	GameArea.	Then,	we	can	update
the	board,	update	the	entity	position,	and	add	this	new	entity	in	the	entities	array.

The	last	thing	to	do	is	to	update	our	QML	game	entities	with	the	proper	factory	type.	Please
open	Apple.qml	and	update	the	file	like	this:

import	"factory.js"	as	Factory	

	

GameEntity	{	

	

				id:	root	

				type:	Factory.APPLE_TYPE	

				...	

}	

You	can	now	update	Snake.qml	with	the	Factory.SNAKE_TYPE	type	and	Wall.qml	with
the	Factory.WALL_TYPE	type.

Building	a	snake	engine	in	JavaScript
It	is	time	to	get	your	hands	dirty.	Let's	see	how	to	create	an	engine	in	JavaScript	to	manage	a
snake	game	using	our	board,	our	factory,	and	the	power	of	QML.

Please	create	a	new	engine.js	file	with	the	following	snippet:

.import	"factory.js"	as	Factory	

.import	"board.js"	as	Board	

	

var	COLUMN_COUNT	=	50;	

var	ROW_COUNT	=	29;	

var	BLOCK_SIZE	=	1;	

	

var	factory	=	new	Factory.GameFactory();	

var	board	=	new	Board.Board(COLUMN_COUNT,	ROW_COUNT,	BLOCK_SIZE);	

	

var	snake	=	[];	

var	direction;	

The	first	lines	are	the	Qt	way	to	import	a	JavaScript	file	from	another	JavaScript	file.	Then,
we	can	easily	instantiate	a	factory	variable	and	a	50x29	board	variable.	The	snake	array
contains	all	the	snake	game	items	instantiated.	This	array	will	be	useful	to	move	our	snake.
Finally,	the	direction	variable	is	a	2d	vector	handling	the	current	snake	direction.

This	is	the	first	function	of	our	engine:

function	start()	{	

				initEngine();	

	

				createSnake();	

				createWalls();	

	

				spawnApple();	

				gameRoot.state	=	"PLAY";	

}	

This	gives	you	a	summary	of	what	is	done	when	we	start	the	engine:

1.	 Initialize	the	engine.
2.	 Create	the	initial	snake.
3.	 Create	walls	surrounding	the	game	area.
4.	 Spawn	the	first	apple.
5.	 Switch	the	GameArea	state	to	PLAY.

Let's	begin	with	the	initEngine()	function:

function	initEngine()	{	

				timer.interval	=	initialTimeInterval;	

				score	=	0;	

	

				factory.board	=	board;	

				factory.parentEntity	=	gameRoot;	

				factory.removeAllEntities();	

	

				board.init();	

				direction	=	Qt.vector2d(-1,	0);	

}	

This	function	initializes	and	resets	all	the	variables.	The	first	task	is	to	set	the	GameArea	timer
interval	to	its	initial	value.	Each	time	the	snake	eats	an	apple,	this	interval	is	reduced,
increasing	the	game	speed	and	thus	the	snake's	movement	speed.	Logically,	we	reset	the	score
of	the	player	to	0.	Then	we	initialize	the	factory,	giving	the	board	and	gameRoot	references.
The	gameRoot	refers	to	the	GameArea;	this	entity	will	be	the	parent	of	all	items	instantiated	by
the	factory.	Then,	we	remove	all	the	existing	entities	from	the	factory	and	call	the
board's	init()	function	to	clear	the	board.	Finally,	we	set	a	default	direction	for	the	snake.
The	vector	-1,0	means	that	the	snake	will	begin	moving	to	the	left.	If	you	want	the	snake	to
start	moving	up,	you	can	set	the	vector	to	0,	1.

The	next	function	is	creating	the	snake:

function	createSnake()	{	

				snake	=	[];	

				var	initialPosition	=	Qt.vector2d(25,	12);	

				for	(var	i	=	0;	i	<	initialSnakeSize;	i++)	{	

							snake.push(factory.createGameEntity(Factory.SNAKE_TYPE,	

																																	initialPosition.x	+	i,	

																																	initialPosition.y));	

				}	

}	

No	big	deal	here,	we	reset	and	initialize	the	snake	array.	The	first	snake	item	will	be	created	at
25x12.	We	then	proceed	to	create	as	many	snake	items	as	we	need	to	spawn	a	snake	with	the
correct	initial	size.	Please	note	that	other	snake	items	will	be	created	to	the	right	of	the	first
item	(26x12,	27x12,	and	so	on).	You	can	see	how	easy	it	is	to	call	our	factory	and	request	a
new	snake	item	instance.

Let's	add	the	createWalls()	function	to	engine.js:

function	createWalls()	{	

				for	(var	x	=	0;	x	<	board.columnCount;	x++)	{	

								factory.createGameEntity(Factory.WALL_TYPE,	x,	0);	

								factory.createGameEntity(Factory.WALL_TYPE,	x,	board.rowCount	-	1);	

				}	

				for	(var	y	=	1;	y	<	board.rowCount	-	1;	y++)	{	

								factory.createGameEntity(Factory.WALL_TYPE,	0,	y);	

								factory.createGameEntity(Factory.WALL_TYPE,	board.columnCount	-	1,	y);	

				}	

}	

The	first	loop	creates	the	top	and	bottom	walls.	The	second	loop	creates	the	left	and	right
walls.	The	indexes	of	the	second	loop	are	different	from	the	first	one	to	avoid	creating	the
corners	twice.

Let's	see	now	how	to	implement	the	spawnApple()	function	in	engine.js:

function	spawnApple()	{	

				var	isFound	=	false;	

				var	position;	

				while	(!isFound)	{	

								position	=	Qt.vector2d(Math.floor(Math.random()		

																																				*	board.columnCount),	

																															Math.floor(Math.random()		

																																				*	board.rowCount));	

								if	(board.at(position.x,	position.y)	==	null)	{	

												isFound	=	true;	

								}	

				}	

				factory.createGameEntity(Factory.APPLE_TYPE,	position.x,	position.y);	

	

				if	(timerInterval	>	10)	{	

								timerInterval	-=	2;	

				}	

}	

The	first	step	is	to	find	an	empty	square.	The	while	loop	will	generate	a	random	board
position	and	check	whether	a	square	is	empty.	As	soon	as	an	empty	square	is	found,	we
request	the	factory	to	create	an	apple	entity	at	this	position.	Finally,	we	reduce	the
timerInverval	value	of	GameArea	to	speed	up	the	game.

We	will	now	add	some	utility	functions	related	to	the	snake	position	in	engine.js:

function	setPosition(item,	column,	row)	{	

				board.setData(item,	column,	row);	

				item.gridPosition	=	Qt.vector2d(column,	row);	

				item.position.x	=	column	*	board.blockSize;	

				item.position.y	=	row	*	board.blockSize;	

}	

	

function	moveSnake(column,	row)	{	

				var	last	=	snake.pop();	

				board.setData(null,	last.gridPosition.x,	last.gridPosition.y);	

				setPosition(last,	column,	row);	

				snake.unshift(last);	

}	

The	setPosition()	function	handles	all	the	necessary	tasks	when	we	want	to	move	a	game

item.	We	first	assign	the	game	item	to	the	correct	board	square,	then	we	update
the	gridPosition	property	(from	GameEntity)	but	also	the	OpenGL	position.x
and	position.y.

The	second	function,	moveSnake(),	moves	the	snake	to	an	adjacent	square.	Let's	dissect	all	the
steps	performed	by	this	function:

1.	 The	snake	is	our	global	array	containing	all	the	snake	items.	The	pop()	method	removes
and	returns	the	last	element	that	we	store	in	the	last	variable.

2.	 The	last	variable	contains	the	snake's	tail's	grid	position.	We	set	this	board	square
to	null;	that	means	an	empty	square	for	us.

3.	 The	last	variable	is	now	put	on	the	adjacent	square	requested	by	the	caller.
4.	 The	last	variable	is	finally	inserted	at	the	beginning	of	the	snake	array.

The	next	schema	illustrates	the	moveSnake()	process	when	a	snake	is	moving	on	the	left.	We
also	name	snake	items	with	a	letter	to	visualize	how	the	tail	becomes	the	head,	simulating	a
moving	snake:

Now	that	we	can	move	our	snake,	we	must	handle	key	events	to	move	the	snake	in	the	correct
direction.	Please	add	this	new	function	to	engine.js:

function	handleKeyEvent(event)	{	

				switch(event.key)	{	

								//	restart	game	

								case	Qt.Key_R:	

												start();	

												break;	

	

								//	direction	UP	

								case	Qt.Key_I:	

												if	(direction	!=	Qt.vector2d(0,	-1))	{	

																direction	=	Qt.vector2d(0,	1);	

												}	

												break;	

	

								//	direction	RIGHT	

								case	Qt.Key_L:	

												if	(direction	!=	Qt.vector2d(-1,	0))	{	

																direction	=	Qt.vector2d(1,	0);	

												}	

												break;	

	

								//	direction	DOWN	

								case	Qt.Key_K:	

												if	(direction	!=	Qt.vector2d(0,	1))	{	

																direction	=	Qt.vector2d(0,	-1);	

												}	

												break;	

	

								//	direction	LEFT	

								case	Qt.Key_J:	

												if	(direction	!=	Qt.vector2d(1,	0))	{	

																direction	=	Qt.vector2d(-1,	0);	

												}	

												break;	

				}	

}	

In	this	game,	we	use	the	I-J-K-L	keys	to	update	the	snake	direction	vector.	Like	the	original
snake	game,	you	can't	reverse	your	direction.	A	check	is	performed	to	avoid	this	behavior.
Please	notice	that	pressing	the	R	key	will	call	start()	and	so	restart	the	game.	We	will	see
soon	how	to	bind	this	function	with	the	QML	keyboard	controller.

Here	we	are,	the	last	(but	not	least)	function,	the	update()	function	of	engine.js:

function	update()	{	

				if	(gameRoot.state	==	"GAMEOVER")	{	

								return;	

				}	

	

				var	headPosition	=	snake[0].gridPosition;	

				var	newPosition	=	Qt.vector2d(headPosition.x	+	direction.x,	

																																		headPosition.y	+	direction.y);	

				var	itemOnNewPosition	=	board.at(newPosition.x,	

																																					newPosition.y);	

	

			...	

}	

This	function	will	be	called	at	regular	intervals	by	QML.	As	you	can	see,	if	the	gameRoot	(that
is	GameArea)	state	variable	equals	GAMEOVER,	this	function	does	nothing	and	returns
immediately.	Then,	three	important	steps	are	performed:

1.	 Retrieve	the	grid	position	of	the	snake's	head	in	headPosition.
2.	 Process	where	the	snake	goes	using	the	direction	vector	in	newPosition.
3.	 Put	the	item	where	the	snake	is	going	in	itemOnNewPosition.

The	second	part	of	the	update()	function	is	the	following	snippet:

function	update()	{	

				...	

				if(itemOnNewPosition	==	null)	{	

								moveSnake(newPosition.x,	newPosition.y);	

								return;	

				}	

	

				switch(itemOnNewPosition.type)	{	

								case	Factory.SNAKE_TYPE:	

												gameRoot.state	=	"GAMEOVER";	

												break;	

	

								case	Factory.WALL_TYPE:	

												gameRoot.state	=	"GAMEOVER";	

												break;	

	

								case	Factory.APPLE_TYPE:	

												itemOnNewPosition.setParent(null);	

												board.setData(null,	newPosition.x,	newPosition.y);	

												snake.unshift(factory.createGameEntity(

																			Factory.SNAKE_TYPE,	

																			newPosition.x,	

																			newPosition.y));	

												spawnApple();	

												score++;	

												break;	

				}	

}	

If	the	snake	is	going	to	an	empty	square	(itemOnNewPosition	is	null),	it	is	alright	and	we
only	move	the	snake	to	newPosition.

If	the	square	is	not	empty,	we	must	apply	the	correct	rule	depending	on	the	item	type.	If	the
next	square	is	a	snake	part	or	a	wall,	we	update	the	state	to	GAMEOVER.	On	the	other	hand,	if	the
next	square	is	an	apple,	several	steps	are	performed:

1.	 Detach	the	apple	item	from	GameArea,	setting	its	parent	to	null.
2.	 Remove	the	apple	from	the	board,	setting	the	board	square	to	null.
3.	 Grow	the	snake,	creating	a	snake	part	at	the	beginning	of	the	snake	array.
4.	 Spawn	a	new	apple	in	a	random	empty	square.
5.	 Increment	the	score.

Our	snake	engine	is	now	complete.	The	last	step	is	to	call	some	engine	functions	from	QML.
Please	update	GameArea.qml:

...	

import	"engine.js"	as	Engine	

	

Entity	{	

				...	

				QQ2.Component.onCompleted:	{	

								console.log("Start	game...");	

								Engine.start();	

								timer.start()	

				}	

	

				QQ2.Timer	{	

								id:	timer	

								interval:	initialTimeInterval	

								repeat:	true	

								onTriggered:	Engine.update()	

				}	

	

				KeyboardInput	{	

								id:	input	

								controller:	keyboardController	

								focus:	true	

								onPressed:	Engine.handleKeyEvent(event)	

				}	

				...	

}	

You	can	already	play	the	game.	If	you	eat	an	apple,	the	snake	grows	and	you	get	one	point.
When	you	hit	yourself	or	a	wall,	the	game	state	switches	to	GAMEOVER	and	the	game	stops.
Finally,	if	you	press	the	R	key,	the	game	restarts.	The	game	looks	like	the	next	screenshot	on
to	null	Raspberry	Pi:

Varying	the	HUD	with	QML	states
We	will	now	create	a	"Game	Over"	HUD,	displayed	when	you	lose	the	game.	Create	a	new	file
GameOverItem.qml:

Item	{	

				id:	root	

				anchors.fill:	parent	

	

				onVisibleChanged:	{	

								scoreLabel.text	=	"Your	score:	"	+	score	

				}	

	

				Rectangle	{	

								anchors.fill:	parent	

								color:	"black"	

								opacity:	0.75	

				}	

	

				Label	{	

								id:	gameOverLabel	

								anchors.centerIn:	parent	

								color:	"white"	

								font.pointSize:	50	

								text:	"Game	Over"	

				}	

	

				Label	{	

								id:	scoreLabel	

								width:	parent.width	

								anchors.top:	gameOverLabel.bottom	

								horizontalAlignment:	"AlignHCenter"	

								color:	"white"	

								font.pointSize:	20	

				}	

	

				Label	{	

								width:	parent.width	

								anchors.bottom:	parent.bottom	

								anchors.bottomMargin:	50	

								horizontalAlignment:	"AlignHCenter"	

								color:	"white"	

								font.pointSize:	30	

								text:"Press	R	to	restart	the	game"	

				}	

}	

Let's	examine	the	items	of	this	Game	Over	screen:

A	black	rectangle	filling	the	entire	screen	with	an	opacity	value	of	75%.	As	a
consequence,	the	game	area	will	still	be	visible	at	25%	behind	the	game	over	screen.

A	gameOverLabel	label	displaying	the	text	"Game	Over".	This	is	a	traditional	video	game
message	but	you	can	edit	this	label	with	text	such	as	"Loser!"	or	"Too	bad!".
A	dynamic	scoreLabel	label	that	will	display	the	final	score.
A	label	explaining	to	the	player	how	he	can	restart	the	game.

Please	notice	that,	when	the	visibility	of	the	root	item	changes,	the	scoreLabel	text	is	updated
with	the	current	score	variable	from	main.qml.

Qt	Quick	provides	an	interesting	feature	related	to	UI	states.	You	can	define	several	states	for
an	item	and	describe	the	behaviors	for	each	state.	We	will	now	use	this	feature	and	our
GameOverItem	in	a	new	file	called	OverlayItem.qml:

Item	{	

				id:	root	

	

				states:	[

								State	{	

												name:	"PLAY"	

												PropertyChanges	{	target:	root;	visible:	false	}	

								},	

								State	{	

												name:	"GAMEOVER"	

												PropertyChanges	{	target:	root;	visible:	true	}	

												PropertyChanges	{	target:	gameOver;	visible:	true	}	

								}	

]	

	

				GameOverItem	{	

								id:	gameOver	

				}	

}	

You	can	see	that	the	states	element	is	an	Item	property.	By	default,	the	states	element
contains	an	empty	string	state.	Here	we	are	defining	two	State	items	named	PLAY
and	GAMEOVER.	We	are	using	the	same	naming	convention	as	in	engine.js.	Afterwards	we	can
bind	property	values	to	a	state.	In	our	case,	when	the	state	is	GAMEOVER,	we	set	the	visibility
to	true	for	this	OverlayItem	and	its	GameOverItem.	Otherwise,	for	the	state	PLAY,	we	hide	it.

The	overlay	HUD	and	its	"Game	Over"	screen	are	ready	to	be	used.	Please	update	your
mail.qml	with	the	following	snippet:

Item	{	

				id:	mainView	

				property	int	score:	0	

				readonly	property	alias	window:	mainView	

				...	

				OverlayItem	{	

								id:	overlayItem	

								anchors.fill:	mainView	

								visible:	false	

	

								Connections	{	

												target:	gameArea	

												onStateChanged:	{	

																overlayItem.state	=	gameArea.state;	

												}	

								}	

				}	

}	

Our	OverlayItem	element	fits	the	screen	and	is	not	visible	by	default.	Like	a	C++	Qt	Widgets
signal/slot	connection,	you	can	perform	a	QML	connection.	The	target	property	contains	the
item	that	will	send	the	signal.	Then	you	can	use	the	QML	slot	syntax:

on<PropertyName>Changed	

In	our	case,	the	target	is	gameArea.	This	item	contains	the	state	variable,	so	we	can	be	notified
when	the	state	variable	is	updated	using	onStateChanged.	Then,	we	switch	the	state
of	OverlayItem.	This	assignation	will	trigger	all	ProperyChanged	defined	in	OverlayItem
element	and	display	or	hide	our	GameOverItem.

You	can	now	lose	the	game	and	enjoy	your	Game	Over	overlay:

Profiling	your	QML	application
Qt	Creator	provides	a	QML	profiler	to	collect	useful	data	on	your	application	during	the
runtime.	You	can	use	it	on	a	desktop	and	also	on	a	remote	target	such	as	our	Raspberry	Pi.
Let's	check	that	your	debug	build	configuration	allows	QML	debugging	and	profiling.	Click
on	Projects	|	Rpi	2	|	Build.	Then	you	can	click	on	Details	of	qmake	from	Build	Steps.	You
should	also	check	it	for	your	desktop	kit:

By	default,	data	is	only	sent	from	target	to	host	when	you	stop	profiling.	You	can	flush	data
periodically:	Tools	|	Options	|	Analyser	|	QML	Profiler.

Keep	in	mind	that	flushing	data	while	profiling	frees	memory	on	the	target	device	but	takes
time.	Thus,	it	can	affect	your	profiling	result	and	analysis.

While	we	are	using	Qt	Creator	kits,	we	can	start	the	QML	profiler	in	the	same	way	for
desktops	or	remote	devices.	Switch	to	a	kit	and	click	on	Analyze	|	QML	Profiler	to	start	the
QML	profiling.	If	you	are	profiling	an	application	running	on	your	desktop,	Qt	Creator	starts
your	software	with	an	argument	such	as	this:

-qmljsdebugger=file:/tmp/QtCreator.OU7985	

If	you're	profiling	an	application	on	a	remote	device	(such	as	a	Raspberry	Pi),	Qt	Creator
uses	a	TCP	socket	to	retrieve	data,	adding	an	argument	such	as	this:

-qmljsdebugger=port:10000	

For	both	targets,	the	QML	profiler	will	afterwards	try	to	connect	to	your	application.	Another
way	to	start	the	QML	profiler	on	a	remote	device	is	to	start	the	application	yourself	with	the	-
qmljsdebugger	argument,	for	example:

./ch06-snake	-qmljsdebugger=port:3768	

Then,	you	can	click	on	Analyze	|	QML	Profiler	(External).	Select	your	remote	kit	(such	as

Rpi	2),	set	the	port	to	3768,	and	click	on	OK.

Great,	the	QML	profiler	is	started,	a	new	toolbar	appears.	You	can	play	the	game	for	a	few
seconds	and	click	on	the	Stop	button	from	the	QML	Profiler	toolbar.	Then	the	QML	profiler
processes	data	and	displays	something	like	this:

Let's	begin	analyzing	the	top	buttons	from	left	to	right:

1.	 Start	QML	profiler.
2.	 Stop	the	application	and	the	QML	profiler.
3.	 Enable/disable	profiling.	You	can	also	select	an	event	to	capture.
4.	 Discard	data	to	clean	your	profiling	session.
5.	 Search	timeline	event	notes.
6.	 Hide	or	show	event	categories.
7.	 Elapsed	indicates	the	session	duration.
8.	 Views	hides	or	shows	the	Timeline,	Statistics,	and	Flamegraph	tabs.

To	learn	to	use	the	QML	profiler,	we	will	take	a	real	case.	Restarting	the	game	is	a	little	slow
on	the	Raspberry	Pi.	Let's	find	with	the	QML	profiler	what	requires	several	seconds	to	restart

the	game!

Please	follow	this	operational	mode	to	gather	data	from	the	QML	profiler:

1.	 Select	the	Raspberry	Pi	kit.
2.	 Start	the	QML	profiler.
3.	 Wait	for	the	snake	to	hit	a	wall.
4.	 Press	the		R	key	to	restart	the	game.
5.	 Wait	for	the	game	to	restart	and	the	snake	to	move	again.
6.	 Stop	the	QML	profiler.

Let's	begin	our	investigation	using	the	timeline	tab.	This	view	displays	a	chronological	view
of	events,	grouped	by	event	type.	The	JavaScript	row	dissects	your	code	and	displays	useful
information.	You	can	click	on	an	item	to	get	some	details.	Identify	in	the	timeline	when	you
restart	the	game.	The	JavaScript	row	can	be	read	as	a	call	stack,	from	top	to	bottom:

In	our	case,	we	restarted	the	game	around	3.5	seconds	after	the	application	started.	Here	is	the
stack	with	durations	provided	by	the	QML	profiler.	Here	is	the	stack	with	durations	provided
by	the	QML	profiler.	Let's	track	all	functions	called	when	we	restart	the	game	pressing	the	R

key:

The	onPressed()	function	from	GameArea.qml
The	handleKetEvent()	function	from	engine.js
The	start()	function	from	engine.js	at	4.2	seconds

initEngine()	at	80	ms
createSnake()	at	120	ms
createWalls()	at	4.025	seconds!

Here	we	are,	createWalls()	takes	~4	seconds	on	the	Raspberry	Pi	when	we	restart	the	game.

Let's	switch	to	the	Statistics	view:

The	Statistics	view	displays	numbers	concerning	the	call	count	of	an	event.	An	event	can	be	a
QML	binding,	creation,	signal	triggered,	or	a	JavaScript	function.	The	bottom	part	shows
QML	callers	and	callees.

A	caller	is	the	source	of	a	change	in	a	binding.	For	example,	the	JS	function	createWalls()	is
a	caller.

A	callee	is	the	affected	item	that	a	binding	triggers.	For	example,	the	QML	item	Wall.qml	is	a
callee.

Once	again,	createWalls()	requesting	many	factory	item	creation	seems	responsible	for	the
slow	restart	of	the	game	on	Raspberry	Pi.

Take	a	look	at	the	last	view	of	the	QML	profiler,	the	Flamegraph:

The	Flamegraph	view	is	a	compact	summary	of	your	QML	and	JavaScript	code	while
running	the	game.	You	can	see	the	call	count	and	the	amount	of	time	relative	to	the	total
duration.	Like	the	Timeline	view,	you	can	see	the	call	stack	but	from	bottom	to	top!

Again,	the	profiler	indicates	createWalls()		is	a	heavy	function.	On	a	profiling	session	of	10
seconds	with	one	game	restart,	77%	of	the	time	is	spent	in	engine.createWalls().

You	will	now	be	able	to	profile	a	QML	application.	You	can	try	to	edit	the	code	to	speed	up	the
restart.	Here	are	some	hints:

Create	the	walls	only	once	at	application	startup;	do	not	delete	and	recreate	them	on	each

restart.
Implement	a	common	design	pattern	in	video	games:	an	object	pool	of	preloaded	items.
Request	a	wall	when	needed,	and	return	the	wall	to	the	pool	when	you	do	not	use	it.

Summary
In	this	chapter,	we	discovered	how	to	use	the	Qt3D	module.	You	also	learned	how	to
configure	Qt	Creator	to	create	a	new	kit	for	an	embedded	Linux	device.	Your	Raspberry	Pi
can	now	run	your	Qt	applications.	We	created	a	snake	game	using	QML	views	and	an	engine
in	JavaScript.	We	also	covered	the	Factory	design	pattern	to	easily	create	new	game	items
from	the	engine.	Finally,	you	are	now	able	to	investigate	the	bad	behavior	of	QML	software
using	the	powerful	QML	profiler.

Even	if	Qt	is	a	powerful	framework,	sometimes	you	need	to	use	a	third-party	library.	In	the
next	chapter,	we	will	see	how	to	integrate	the	OpenCV	library	into	your	Qt	application.

Chapter	7.		Third-Party	Libraries	Without
a	Headache
In	previous	chapters,	we	have	used	our	own	libraries	or	the	ones	provided	by	Qt.	In	this
chapter,	we	will	learn	how	to	integrate	the	third-party	library	OpenCV	with	a	Qt	project.	This
library	will	give	you	an	impressive	image	processing	toolbox.	For	each	platform,	you	will
learn	to	use	a	different	specific	compiler	link	configuration.

Qt	Designer	is	a	powerful	WYSIWYG	editor.	This	is	why	this	chapter	will	also	teach	you	to
build	a	Qt	Designer	plugin	that	can	be	dragged	and	dropped	from	the	Widget	Box	to
the	Form	Editor,	and	then	configured	directly	from	Qt	Creator.

In	the	example	project,	the	user	can	load	a	picture,	select	a	filter	from	thumbnail	previews,
and	save	the	result.	This	application	will	rely	on	OpenCV	functions	for	image	processing.

This	chapter	will	cover	the	following	topics:

Prepare	a	cross-platform	project	to	host	a	third-party	library
Link	with	a	third	party	library
Build	a	custom	QWidget	class	using	Qt	Designer	plugins
How	the	OpenCV	API	can	work	with	Qt
Create	a	Qt	application	that	relies	on	a	custom	QWidget	class

Creating	your	Qt	Designer	plugin
In	Chapter	4,	Conquering	the	Desktop	UI,	we	created	a	custom	Qt	widget	in	Qt	Designer	using
the	promoting	technique.	It	is	now	time	to	learn	how	to	create	a	custom	Qt	widget	by	building
a	plugin	for	Qt	Designer.	Your	widget	will	be	available	from	the	Design	mode	in	the	Widget
Box	alongside	other	regular	Qt	widgets.	For	this	project	example,	we	will	create
a	FilterWidget	class	that	processes	an	input	image	to	apply	a	filter.	The	widget	will	also
display	the	filter	name	and	a	dynamic	thumbnail	of	the	filtered	picture.

This	project	is	composed	of	two	sub-projects:

filter-plugin-designer:	This	is	a	Qt	Designer	plugin	containing	FilterWidget	class
and	the	image	processing	code.	This	plugin	is	a	dynamic	library	that	will	be	used	by	the
Qt	Creator	to	offer	our	new	FilterWidget	in	the	Form	Editor.
image-filter:	This	is	a	Qt	Widget	application	using	multiple	FilterWidget.	The	user
can	open	an	image	from	their	hard	disk,	select	a	filter	(grayscale,	blur,	and	so	on),	and
save	the	filtered	image.

Our	filter-plugin-designer	will	use	the	third-party	library	OpenCV	(Open	Source
Computer	Vision).	It	is	a	powerful,	cross-platform	open	source	library	to	manipulate	images.
Here	is	an	overview	schema:

You	can	see	a	plugin	as	a	kind	of	module,	which	can	be	easily	added	to	an	existing	software.	A
plugin	must	respect	a	specific	interface	to	be	automatically	called	by	the	application.	In	our
case,	the	Qt	Designer	is	the	application	that	loads	Qt	plugins.	So	creating	a	plugin	allows	us	to

enhance	the	application	without	the	need	to	modify	the	Qt	Designer	source	code	and
recompile	it.	A	plugin	is	a	generally	dynamic	library	(.dll/.so),	so	it	will	be	loaded	at
runtime	by	the	application.

Now	that	you	have	a	clear	mind	about	the	Qt	Designer	plugins,	let's	build	one!	First,	create	a
Subdirs	project	called	ch07-image-filter.	Then,	you	can	add	a	subproject,	filter-plugin-
designer.	You	can	use	the	Empty	qmake	Project	template	because	we	start	this	project	from
scratch.	Here	is	the	filter-plugin-designer.pro	file:

QT	+=	widgets	uiplugin	

CONFIG	+=	plugin	

CONFIG	+=	c++14	

TEMPLATE	=	lib	

DEFINES	+=	FILTERPLUGINDESIGNER_LIBRARY	

	

TARGET	=	$$qtLibraryTarget($$TARGET)	

INSTALLS	+=	target	

Please	note	the	uiplugin	and	plugin	keywords	for	QT	and	CONFIG.	They	are	required	to
create	a	Qt	Designer	plugin.	We	set	the	TEMPLATE	keyword	to	lib	because	we	are	creating	a
dynamic	library.	The	define,	FILTERPLUGINDESIGNER_LIBRARY,	will	be	used	by	the
import/export	mechanism	of	the	library.	We	already	covered	this	topic	in	Chapter	3,	Dividing
Your	Project	and	Ruling	Your	Code.	By	default,	our	TARGET	is	filter-plugin-designer;
the	$$qtLibraryTarget()	function	will	update	it	according	to	your	platform.	For	example,	the
suffix	"d"	(standing	for	debug)	will	be	appended	on	Windows.	Finally,	we	append	target
to	INSTALLS.	Right	now,	this	line	does	nothing,	but	we	will	describe	a	destination	path	for	each
platform	soon;	this	way,	executing	the	make	install	command	will	copy	our	target	library
file	(.dll/.so)	into	the	correct	folder.	To	automatically	perform	this	task	on	each
compilation,	you	can	add	a	new	build	step.

The	deploy	path	is	configured,	but	it	will	not	be	done	automatically.	Open	the	Projects	tab
and	do	the	following:

1.	 Open	the	Build	Settings	|	Build	Steps.
2.	 Click	on	Add	Build	Step	|	Make.
3.	 In	the	Make	arguments	field,	type	install.

You	should	get	something	like	this:

Each	time	you	build	the	project,	the	make	install	command	will	be	called	and	it	will	deploy
the	library	in	Qt	Creator.

Configuring	the	project	for	Windows
Before	preparing	this	project	on	Windows,	let's	talk	about	the	available	choices	when	you
develop	a	Qt	application	on	a	Windows	host.	The	official	Qt	website	provides	multiple	binary
packages.	We	are	mainly	interested	in	the	following:

Qt	for	Windows	32-bit	(MinGW)
Qt	for	Windows	32-bit	(VS	2013)

You	may	already	be	using	one	of	these	versions.	The	first	one	comes	with	a	MinGW	GCC
compiler	and	the	Qt	framework.	The	second	only	provides	the	Qt	framework	and	relies	on
the	Microsoft	Visual	C++	compiler	that	will	be	installed	with	Visual	Studio.

Both	versions	are	fine	when	you	want	to	create	a	common	Qt	application	for	Windows.
However,	for	this	chapter,	we	want	to	link	our	filter-plugin-designer	project	with
OpenCV	libraries.	Qt	Designer	must	also	be	able	to	dynamically	load	filter-plugin-
designer,	so	we	must	use	a	consistent	compiler	version	at	all	stages.

Please	note	that	Qt	Creator	on	Windows	is	always	based	on	MSVC,	even	in	the	MinGW	binary
package!	So	if	you	create	a	Qt	Designer	plugin	using	a	MinGW	compiler,	your	Qt	Creator
will	not	be	able	to	load	it.	OpenCV	for	Windows	provides	only	MSVC	libraries,	compile	for
MSVC11	(which	is	VS	2012),	and	MSVC12	(VS	2013).

Here	is	a	summary	of	the	different	solutions	for	building	our	project	example	in	Windows:

Keep	in	mind	that	for	open-source	software	such	as	Qt	Creator	and	OpenCV	you	can	always
try	to	compile	them	from	a	source	with	a	different	compiler.	So,	if	you	absolutely	want	to	use
a	MinGW	compiler,	you	must	recompile	OpenCV	and	Qt	Creator	from	sources.	Otherwise,
we	suggest	that	you	use	Qt	for	Windows	32-bit	(VS	2013)	as	explained	shortly.	Here	are	the
steps	to	prepare	your	development	environment:

1.	 Download	and	install	Visual	Studio	Community	Edition.
2.	 Download	and	install	Qt	for	Windows	32-bit	(VS	2013).

3.	 Download	and	extract	OpenCV	for	Windows	(for	example:	C:\lib\opencv).
4.	 Create	a	new	OPENCV_HOME:	C:\lib\opencv\build\x86\vc12	environment	variable.
5.	 Append	to	your	system	Path:	C:\lib\opencv\build\x86\vc12\bin	environment

variable.

The	OPENCV_HOME	directory	will	be	used	in	our	.pro	file.	We	also	add	an	OpenCV	libraries
folder	to	the	Path	directory	to	easily	resolve	the	dependencies	at	runtime.

You	can	now	add	the	following	snippet	to	the	filter-plugin-designer.pro	file:

windows	{	

target.path	=	$$(QTDIR)/../../Tools/QtCreator/bin/plugins/designer	

	

debug:target_lib.files	=	$$OUT_PWD/debug/$${TARGET}.lib	

release:target_lib.files	=	$$OUT_PWD/release/$${TARGET}.lib	

target_lib.path	=	$$(QTDIR)/../../Tools/QtCreator/bin/plugins/designer	

				INSTALLS	+=	target_lib	

	

				INCLUDEPATH	+=	$$(OPENCV_HOME)/../../include	

				LIBS	+=	-L$$(OPENCV_HOME)/lib	

								-lopencv_core2413	

								-lopencv_imgproc2413	

}	

The	target	path	is	set	to	the	Qt	Creator	plugin	folder.	We	also	create	a	target_lib	library	to
copy	the	.lib	file	generated	by	MSVC	when	we	make	a	dynamic	library	(.dll).	We	add	the
OpenCV	headers	folder	to	the	INCLUDEPATH	to	easily	include	them	in	our	code.	Finally,	we
update	LIBS	variable	to	link	our	plugin	with	the	OpenCV	modules	(core	and	imgproc)	from
the	OpenCV	lib	folder.

Please	note	that	the	standalone	Qt	Designer	application	and	the	Qt	Creator	are	different
software.	Both	programs	use	a	different	plugin	path.	In	our	case,	we	only	used	the	form	editor
from	the	Qt	Creator,	so	we	are	targeting	the	Qt	Creator	plugin	path.

Just	as	we	appended	target	and	target_lib	to	INSTALLS,	both	.dll	and	.lib	files	will	be
copied	in	the	Qt	Creator	plugin	path	on	a	make	install	command.	Qt	Creator	only	requires
the	.dll	file	to	load	the	plugin	at	runtime.	The	.lib	file	is	only	used	to	resolve	the	links
with	filter-plugin-designer	when	building	our	image-filter	application.	For	simplicity,
we	are	using	the	same	directory.

Configuring	the	project	for	Linux
OpenCV	binaries	are	certainly	available	in	official	software	repositories.	Depending	on	your
distribution	and	your	package	manager,	you	can	install	it	with	commands	such	as	the
following:

apt-get	install	libopencv

yum	install	opencv

When	OpenCV	is	installed	on	your	Linux,	you	can	add	this	snippet	to	the	filter-plugin-
designer.pro	file:

linux	{	

target.path	=	$$(QTDIR)/../../Tools/QtCreator/lib/Qt/plugins/designer/	

	

				CONFIG	+=	link_pkgconfig	

				PKGCONFIG	+=	opencv	

}	

This	time	we	do	not	use	the	LIBS	variable	but	PKGCONFIG,	which	relies	on	pkg-config.	It	is	a
helper	tool	that	will	insert	the	correct	options	into	the	compile	command	line.	In	our	case,	we
will	request	pkg-config	to	link	our	project	with	OpenCV.

Note

You	can	list	all	the	libs	managed	by	pkg-config	with	the	pkg-config	--list-all	command.

Configuring	the	project	for	Mac
The	first	step	in	making	the	project	work	on	Mac	OS	is	to	install	OpenCV.	Fortunately,	this	is
very	easy	using	the	brew	command.	If	you	develop	on	Mac	OS	and	do	not	use	it	already,	you
should	download	it	right	now.	In	a	nutshell,	brew	is	an	alternate	package	manager	that	gives
you	access	to	many	packages	(for	developers	and	non-developers)	that	are	not	available	on
the	Mac	App	Store.

Note

You	can	download	and	install	brew	from	http://brew.sh/.

In	a	terminal,	simply	type	the	following	command:

brew	install	opencv

This	will	download,	compile,	and	install	OpenCV	on	your	machine.	At	the	time	of	writing,	the
latest	OpenCV	version	available	on	brew	was	version	2.4.13.	Once	this	is	done,	open	filter-
plugin-designer.pro	and	add	the	following	block:

macx	{	

target.path	=	"$$(QTDIR)/../../QtCreator.app/Contents/PlugIns/designer/"	

target_lib.files	=	$$OUT_PWD/lib$${TARGET}.dylib	

target_lib.path	=	"$$(QTDIR)/../../QtCreator.app/Contents/PlugIns/designer/"	

				INSTALLS	+=	target_lib	

	

				INCLUDEPATH	+=	/usr/local/Cellar/opencv/2.4.13/include/	

	

				LIBS	+=	-L/usr/local/lib	\	

									-lopencv_core	\	

								-lopencv_imgproc	

}	

We	add	OpenCV	headers	and	link	the	path	with	INCLUDEPATH	and	LIBS	variables.	The	target
definition	and	INSTALLS	are	used	to	automatically	deploy	the	output	shared	object	to	the	Qt
Creator	application	plugins	directory.

The	last	thing	we	have	to	do	is	to	add	an	environment	variable	to	let	the	Qt	Creator	know
where	it	will	find	the	library	that	will	link	it	to	the	final	application.	In	the	Projects	tab,	go
through	the	following	steps:

1.	 Open	the	Details	window	in	Build	Environment.
2.	 Click	on	the	Add	Button.
3.	 Type	DYLD_LIBRARY_PATH	in	the	<VARIABLE>	field.
4.	 Type	the	path	of	the	build	directory	in	<VALUE>	(you	can	copy	and	paste	it	from	the

section	General	|	Build	directory).

http://brew.sh/

Implementing	your	OpenCV	filters
Now	that	your	development	environment	is	ready,	we	can	begin	the	fun	part!	We	will
implement	three	filters	using	OpenCV:

FilterOriginal:	This	filter	does	nothing	and	returns	the	same	picture	(lazy!)
FilterGrayscale:	This	filter	converts	a	picture	from	color	to	grayscale
FilterBlur:	This	filter	smoothes	the	picture

The	parent	class	of	all	these	filters	is	Filter.	Here	is	this	abstract	class:

//Filter.h	

class	Filter	

{	

public:	

Filter();	

virtual	~Filter();	

	

virtualQImage	process(constQImage&	image)	=	0;	

};	

	

//Filter.cpp	

Filter::Filter()	{}	

Filter::~Filter()	{}	

As	you	can	see,	process()	is	a	pure	abstract	method.	All	filters	will	implement	a	specific
behavior	with	this	function.	Let's	begin	with	the	simple	FilterOriginal	class.	Here
is	FilterOriginal.h:

class	FilterOriginal	:	public	Filter	

{	

public:	

FilterOriginal();	

				~FilterOriginal();	

	

QImageprocess(constQImage&	image)	override;	

};	

This	class	inherits	Filter	and	we	override	the		process()	function.	The	implementation	is
also	really	simple.	Fill	FilterOriginal.cpp	with	the	following:

FilterOriginal::FilterOriginal()	:	

Filter()	

{	

}	

	

FilterOriginal::~FilterOriginal()	

{	

}	

	

QImageFilterOriginal::process(constQImage&	image)	

{	

return	image;	

}	

No	modification	is	performed;	we	return	the	same	picture.	Now	that	the	filter	structure	is
clear,	we	can	create	FilterGrayscale.	The	.h/.cpp	files	are	close	to	FilterOriginalFilter,
so	let's	jump	to	the	process()	function	of	FilterGrayscale.cpp:

QImageFilterGrayscale::process(constQImage&	image)	

{	

				//	QImage	=>	cv::mat	

cv::Mattmp(image.height(),	

image.width(),	

																CV_8UC4,	

																(uchar*)image.bits(),	

image.bytesPerLine());	

	

cv::MatresultMat;	

				cv::cvtColor(tmp,	resultMat,	CV_BGR2GRAY);	

	

				//	cv::mat	=>QImage	

QImageresultImage((constuchar	*)	resultMat.data,	

resultMat.cols,	

resultMat.rows,	

resultMat.step,	

QImage::Format_Grayscale8);	

returnresultImage.copy();	

}	

In	the	Qt	framework,	we	use	the	QImage	class	to	manipulate	pictures.	In	the	OpenCV	world,	we
use	the	Mat	class,	so	the	first	step	is	to	create	a	correct	Mat	object	from	the	QImage	source.
OpenCV	and	Qt	both	handle	many	image	formats.	An	image	format	describes	the	data	bytes
organization	with	information	such	as	the	following:

Channel	count:	A	grayscale	picture	only	needs	one	channel	(white	intensity),	while	a
color	picture	requires	three	channels	(red,	green,	and	blue).	You	will	even	need	four
channels	to	handle	the	opacity	(alpha)	pixel	information.
Bit	depth:	The	number	of	bits	used	to	store	a	pixel	color.
Channel	order:	The	most	common	orders	are	RGB	and	BGR.	Alpha	can	be	placed
before	or	after	the	color	information.

For	example,	the	OpenCV	image	format,	CV_8UC4,	means	four	channels	of	unsigned	8-bit,
which	is	the	perfect	fit	for	an	alpha	color	picture.	In	our	case,	we	are	using	a	compatible	Qt
and	OpenCV	image	format	to	convert	our	QImage	in	Mat.	Here	is	a	little	summary:

Please	note	that	some	QImage	class	formats	also	depend	on	your	platform	endianness.	The
preceding	table	is	for	a	little	endian	system.	For	OpenCV,	the	order	is	always	the	same:	BGRA.
It	is	not	required	in	our	project	example,	but	you	can	swap	blue	and	red	channels	as	follows:

//	with	OpenCV	

cv::cvtColor(mat,	mat,	CV_BGR2RGB);	

	

//	with	Qt	

QImage	swapped	=	image.rgbSwapped();	

OpenCV	Mat	and	Qt	QImage	classes	perform	shallow	construction/copy	by	default.	This	means
that	only	metadata	is	really	copied;	the	pixel	data	is	shared.	To	create	a	deep	copy	of	a	picture,
you	must	call	the	copy()	function:

//	with	OpenCV	

mat.clone();	

	

//	with	Qt	

image.copy();	

We	created	a	Mat	class	called	tmp	from	the	QImage	class.	Note	that	tmp	is	not	a	deep	copy
of	image;	they	share	the	same	data	pointer.	Then,	we	can	call	the	OpenCV	function	to	convert
the	picture	from	color	to	grayscale	using	cv::cvtColor().	Finally,	we	create	a	QImage	class
from	the	grayscale	resultMat	element.	In	that	case	too,	resultMat	and	resultImage	share	the
same	data	pointer.	Once	we're	done,	we	return	a	deep	copy	of	resultImage.

It	is	now	time	to	implement	the	last	filter.	Here	is	the	process()	function	of	FilterBlur.cpp:

QImageFilterBlur::process(constQImage&	image)	

{	

				//	QImage	=>	cv::mat	

cv::Mattmp(image.height(),	

image.width(),	

																CV_8UC4,	

																(uchar*)image.bits(),	

image.bytesPerLine());	

	

int	blur	=	17;	

cv::MatresultMat;	

				cv::GaussianBlur(tmp,	

resultMat,	

																					cv::Size(blur,	blur),	

																					0.0,	

																					0.0);	

	

				//	cv::mat	=>QImage	

QImageresultImage((constuchar	*)	resultMat.data,	

resultMat.cols,	

resultMat.rows,	

resultMat.step,	

QImage::Format_RGB32);	

returnresultImage.copy();	

}	

The	conversion	from	QImage	to	Mat	is	the	same.	The	processing	differs	because	we	use
the	cv::GaussianBlur()	OpenCV	function	to	smooth	the	picture.	The	blur	is	the	kernel	size
used	by	the	Gaussian	blur.	You	can	increase	this	value	to	get	a	softer	picture,	but	only	use	an
odd	and	positive	number.	Finally,	we	convert	the	Mat	to	QImage	and	return	a	deep	copy	to	the
caller.

Designing	the	UI	with	FilterWidget
Fine.	Our	filter	classes	are	implemented,	and	we	can	now	create	our	custom	widget.	This
widget	will	take	in	input,	a	source,	and	a	thumbnail	picture.	Then	the	thumbnail	is	immediately
processed	to	display	a	preview	of	the	filter.	If	the	user	clicks	on	the	widget,	it	will	process	the
source	picture	and	trigger	a	signal	with	the	filtered	picture.	Keep	in	mind	that	this	widget	will
later	be	dragged	and	dropped	in	the	Form	Editor	of	Qt	Creator.	That's	why	we	will	provide
properties	with	getters	and	setters	to	select	a	filter	from	Qt	Creator.	Please	create	a	new
widget	called	FilterWidget	using	the	Qt	Designer	Form	Class	template.
The	FilterWidget.ui	is	really	simple:

The	titleLabel	is	a	QLabel	on	top	of	the	QWidget.	Below,	thumbnailLabel	will	display	the
filtered	picture	thumbnail.	Let's	switch	to	FilterWidget.h:

class	FILTERPLUGINDESIGNERSHARED_EXPORT	FilterWidget	:	public	QWidget	

{	

				Q_OBJECT	

	

				Q_ENUMS(FilterType)	

				Q_PROPERTY(QString	title	READ	title	WRITE	setTitle)	

				Q_PROPERTY(FilterTypefilterType	READ	filterType	WRITE	setFilterType)	

	

public:	

enumFilterType	{	Original,	Blur,	Grayscale	};	

	

explicitFilterWidget(QWidget	*parent	=	0);	

				~FilterWidget();	

	

void	process();	

voidsetSourcePicture(constQImage&sourcePicture);	

voidupdateThumbnail(constQImage&sourceThumbnail);	

	

QStringtitle()	const;	

FilterTypefilterType()	const;	

	

public	slots:	

voidsetTitle(constQString&	tile);	

voidsetFilterType(FilterTypefilterType);	

	

signals:	

voidpictureProcessed(constQImage&	picture);	

	

protected:	

voidmousePressEvent(QMouseEvent*)	override;	

	

private:	

Ui::FilterWidget	*ui;	

std::unique_ptr<Filter>mFilter;	

FilterTypemFilterType;	

	

QImagemDefaultSourcePicture;	

QImagemSourcePicture;	

QImagemSourceThumbnail;	

	

QImagemFilteredPicture;	

QImagemFilteredThumbnail;	

};	

The	top	part	defines	all	the	available	filter	types	with	the	enumFilterType.	We	also	use	the
Qtproperty	system	to	expose	the	widget	title	and	the	current	filter	type	to	the	Property	Editor
of	Qt	Creator.	The	syntax	is	like	this:

Q_PROPERTY(<type><name>	READ	<getter>	WRITE	<setter>)	

Please	note	that	exposing	an	enumeration	requires	it	to	be	registered	using	the	Q_ENUM()
macro,	so	the	Property	Editor	will	display	a	combo	box	that	allows	you	to	choose	the	filter
type	from	Qt	Creator.

The	middle	part	lists	all	functions,	slots,	and	signals.	The	most	notable	is	the	process()
function	that	will	use	the	current	filter	to	modify	the	source	picture.	The	pictureProcessed()
signal	will	notify	the	application	with	the	filtered	picture.

The	bottom	part	lists	the	picture	and	thumbnail	QImage	variables	used	in	this	class.	In	both
cases,	we	handle	both	source	and	filtered	pictures.	The	default	source	picture	is	an	embedded
picture	in	the	plugin.	This	allows	you	to	display	a	default	preview	when	no	thumbnail	has
been	provided.	The	mFilter	variable	is	a	smart	pointer	to	the	current	Filter	class.

Let's	switch	to	the	implementation	with	FilterWidget.cpp:

FilterWidget::FilterWidget(QWidget	*parent)	:	

QWidget(parent),	

ui(new	Ui::FilterWidget),	

mFilterType(Original),	

mDefaultSourcePicture(":/lenna.jpg"),	

mSourcePicture(),	

mSourceThumbnail(mDefaultSourcePicture.scaled(QSize(256,	256),	

Qt::KeepAspectRatio,	

Qt::SmoothTransformation)),	

mFilteredPicture(),	

mFilteredThumbnail()	

{	

ui->setupUi(this);	

setFilterType(Original);	

}	

	

FilterWidget::~FilterWidget()	

{	

deleteui;	

}	

Here	are	the	constructor	and	the	destructor.	Please	note	that	the	default	source	picture	loads	an
embedded	picture	of	the	gorgeous	Lenna	often	used	in	image	processing	literature.	The
picture	is	in	the	resource	file,	filter-plugin-designer.qrc.	The	mSourceThumbnail	function
is	initialized	with	a	scaled	picture	of	Lenna.	The	constructor	calls
the	setFilterType()function	to	initialize	an	Original	filter	by	default.	Here	is	the
core	process()	function:

voidFilterWidget::process()	

{	

mFilteredPicture	=	mFilter->process(mSourcePicture);	

emitpictureProcessed(mFilteredPicture);	

}	

The	process()	function	is	powerful,	but	really	simple.	We	call	process()	of	the	current	filter
to	update	our	filtered	picture	from	the	current	source	picture.	Then	we	trigger
the	pictureProcessed()	signal	with	the	filtered	picture.	We	can	now	add	our	QImage	setters:

voidFilterWidget::setSourcePicture(constQImage&sourcePicture)	

{	

mSourcePicture	=	sourcePicture;	

}	

	

voidFilterWidget::updateThumbnail(constQImage&sourceThumbnail)	

{	

mSourceThumbnail	=	sourceThumbnail;	

mFilteredThumbnail	=	mFilter->process(mSourceThumbnail);	

QPixmappixmap	=	QPixmap::fromImage(mFilteredThumbnail);	

ui->thumbnailLabel->setPixmap(pixmap);	

}	

The	setSourcePicture()	function	is	a	simple	setter	called	by	the	application	with	a	new
source	picture.	The	updateThumbnail()	method	will	filter	the	new	source	thumbnail	and
display	it.	Let's	add	the	setters	used	by	Q_PROPERTY:

voidFilterWidget::setTitle(constQString&	tile)	

{	

ui->titleLabel->setText(tile);	

}	

	

voidFilterWidget::setFilterType(FilterWidget::FilterTypefilterType)	

{	

if	(filterType	==	mFilterType&&mFilter)	{	

return;	

				}	

mFilterType	=	filterType;	

	

switch	(filterType)	{	

case	Original:	

mFilter	=	make_unique<FilterOriginal>();	

break;	

	

case	Blur:	

mFilter	=	make_unique<FilterBlur>();	

break;	

	

case	Grayscale:	

mFilter	=	make_unique<FilterGrayscale>();	

break;	

	

default:	

break;	

				}	

	

updateThumbnail(mSourceThumbnail);	

}	

The	setTitle()function	is	a	simple	setter	used	to	customize	the	widget	title.	Let's	talk	about
the	setFilterType()	function.	As	you	can	see,	this	function	does	not	just	update	the	current
filter	type,	mFilterType.	Depending	on	the	type,	the	corresponding	filter	will	be	created.	Do
you	remember	the	smart	pointer	from	Chapter	3,	Dividing	Your	Project	and	Ruling	Your
Code?	Here	we	are	using	a	unique_ptr	pointer	for	the	mFilter	variable,	so	we	can
use	make_unique	instead	of	a	new	raw.	The	FilterWidget	class	takes	the	ownership	of
the	Filter	class,	and	we	do	not	need	to	worry	about	the	memory	management.	Upon
the	make_unique	instruction,	the	old	owned	pointer	(if	there	is	any)	will	be	automatically
deleted.

Finally,	we	call	the	updateThumbnail()	function	to	display	a	filtered	thumbnail

corresponding	to	the	selected	filter	type.	Here	are	the	getters	and	the	mouse	event	handler:

QStringFilterWidget::title()	const	

{	

returnui->titleLabel->text();	

}	

	

FilterWidget::FilterTypeFilterWidget::filterType()	const	

{	

returnmFilterType;	

}	

	

voidFilterWidget::mousePressEvent(QMouseEvent*)	

{	

process();	

}	

The	title()	and	filterType()	functions	are	getters	used	by	the	Qt	Property	System.	We
override	the	mousePressEvent()	function	to	call	our		process()	function	each	time	the	user
clicks	on	the	widget.

Exposing	your	plugin	to	Qt	Designer
The	FilterWidget	class	is	completed	and	ready	to	be	used.	We	now	have	to
register	FilterWidget	with	the	Qt	Designer	plugin	system.	This	glue	code	is	made	using	a
child	class	of	QDesignerCustomWidgetInterface.

Create	a	new	C++	class	named	FilterPluginDesigner	and	update	FilterPluginDesigner.h
like	so:

#include	<QtUiPlugin/QDesignerCustomWidgetInterface>	

	

class		FilterPluginDesigner	:	public	QObject,	public	

QDesignerCustomWidgetInterface	

{	

				Q_OBJECT	

				Q_PLUGIN_METADATA(IID	

								"org.masteringqt.imagefilter.FilterWidgetPluginInterface")	

				Q_INTERFACES(QDesignerCustomWidgetInterface)	

public:	

FilterPluginDesigner(QObject*	parent	=	0);	

};	

The	FilterPlugin	class	inherits	from	two	classes:

The	QObject	class,	to	rely	on	the	Qt	parenting	system
The	QDesignerCustomWidgetInterface	class	to	properly	expose	the	FilterWidget
information	to	the	plugin	system

The	QDesignerCustomWidgetInterface	class	brings	two	new	macros:

The	Q_PLUGIN_METADATA()	macro	annotates	the	class	to	indicate	a	unique	name	for	our
filter	to	the	meta-object	system
The	Q_INTERFACES()	macro	tells	the	meta-object	system	which	interface	the	current	class
has	implemented

Qt	Designer	is	now	able	to	detect	our	plugin.	We	now	have	to	provide	information	about	the
plugin	itself.	Update	FilterPluginDesigner.h:

class		FilterPluginDesigner	:	public	QObject,	public	

QDesignerCustomWidgetInterface	

{	

				...	

FilterPluginDesigner(QObject*	parent	=	0);	

	

QStringname()	const	override;	

QStringgroup()	const	override;	

QStringtoolTip()	const	override;	

QStringwhatsThis()	const	override;	

QStringincludeFile()	const	override;	

QIconicon()	const	override;	

boolisContainer()	const	override;	

QWidget*	createWidget(QWidget*	parent)	override;	

boolisInitialized()	const	override;	

void	initialize(QDesignerFormEditorInterface*	core)	override;	

	

private:	

boolmInitialized;	

};	

This	is	much	less	overwhelming	than	it	looks.	The	body	of	each	one	of	these	functions
usually	takes	a	single	line.	Here	is	the	implementation	of	the	most	straightforward	functions:

QStringFilterPluginDesigner::name()	const	

{	

return	"FilterWidget";	

}	

	

QStringFilterPluginDesigner::group()	const	

{	

return	"Mastering	Qt5";	

}	

	

QStringFilterPluginDesigner::toolTip()	const	

{	

return	"A	filtered	picture";	

}	

	

QStringFilterPluginDesigner::whatsThis()	const	

{	

return	"The	filter	widget	applies	an	image	effect";	

}	

	

QIconFilterPluginDesigner::icon()	const	

{	

returnQIcon(":/icon.jpg");	

}	

	

boolFilterPluginDesigner::isContainer()	const	

{	

return	false;	

}	

As	you	can	see,	there	isn't	much	to	say	about	these	functions.	Most	of	them	will	simply	return
a	QString	value	that	will	be	displayed	on	the	appropriate	spot	in	the	Qt	Designer	UI.	We	will
focus	only	on	the	most	interesting	ones.	Let's	start	with	includeFile():

QStringFilterPluginDesigner::includeFile()	const	

{	

return	"FilterWidget.h";	

}	

This	function	will	be	called	by	uic	(User	Interface	Compiler)	to	generate	the	header
corresponding	to	a	.ui	file.	Continuing	with	createWidget():

QWidget*	FilterPluginDesigner::createWidget(QWidget*	parent)	

{	

return	new	FilterWidget(parent);	

}	

This	function	makes	the	bridge	between	Qt	Designer	and	FilterWidget.	When	you	add
the	FilterWidget	class	in	a	.ui	file,	Qt	Designer	will	call	the	createWidget()	function	to
have	an	instance	of	the	FilterWidget	class	and	display	its	content.	It	also	provides	the	parent
element	to	which	FilterWidget	will	be	attached.

Let's	finish	with	initialize():

voidFilterPluginDesigner::initialize(QDesignerFormEditorInterface*)	

{	

if	(mInitialized)	

return;	

	

mInitialized	=	true;	

}	

Nothing	much	is	done	in	this	function.	However,	the	QDesignerFormEditorInterface*
parameter	is	worth	some	explanation.	This	pointer,	provided	by	Qt	Designer,	gives	access	to	a
few	of	Qt	Designer's	components	via	functions:

actionEditor():	This	function	is	the	action	editor	(bottom	panel	of	the	designer)
formWindowManager():	This	function	is	the	interface	that	enables	you	to	create	a	new
form	window
objectInspector():	This	function	is	the	hierarchical	representation	of	your	layout	(top
right	panel	of	the	designer)
propertyEditor():	This	function	is	the	list	of	all	the	editable	properties	of	the	currently
selected	widget	(bottom	right	panel	of	the	designer)
topLevel():	This	function	is	the	top-level	widget	of	the	designer

We	covered	each	of	these	panels	in	Chapter	1,	Get	Your	Qt	Feet	Wet.	If	your	widget	plugin
needs	to	intervene	in	any	of	these	areas,	this	function	is	the	entry	point	to	customize	the
behavior	of	Qt	Designer.

Using	your	Qt	Designer	plugin
Our	custom	plugin	is	now	finished.	Because	we	added	a	custom	Build	command	to
automatically	deploy	the	filter-widget	library,	it	should	be	visible	in	Qt	Designer.	The	deploy
path	we	specified	is	inside	the	Qt	Creator	directory.	Qt	Creator	integrates	Qt	Designer	via	a
plugin	that	displays	the	UI	inside	Qt	Creator.

When	Qt	Creator	starts,	it	will	try	to	load	every	library	available	in	its	specific	paths.	This
means	that	you	have	to	restart	Qt	Creator	each	time	you	modify	the	plugin	(if	you	want	to	see
the	result	of	your	modifications	in	the	designer).

To	see	the	plugin	in	action,	we	now	have	to	create	the	application	project	of	the	chapter.
Create	a	Qt	Widgets	Application	sub-project	in	the	ch07-image-filter	project
named	image-filter.	In	the	wizard,	let	it	generate	the	form,	MainWindow.ui.

To	properly	use	the	plugin,	just	link	the	filter-plugin-designer	library	in	image-
filter.pro	like	so:

QT							+=	core	gui	

	

greaterThan(QT_MAJOR_VERSION,	4):	QT	+=	widgets	

	

TARGET	=	image-filter	

TEMPLATE	=	app	

	

INCLUDEPATH	+=	../filter-plugin-designer	

	

win32	{	

				LIBS	+=	-L$$(QTDIR)/../../Tools/QtCreator/bin/plugins/designer	-lfilter-

plugin-designer	

}	

	

macx	{	

				LIBS	+=	-L$$(QTDIR)/../../"QtCreator.app"/Contents/PlugIns/designer/	-

lfilter-plugin-designer	

}	

	

linux	{	

				LIBS	+=	-L$$(QTDIR)/../../Tools/QtCreator/lib/Qt/plugins/designer/	-lfilter-

plugin-designer	

}	

	

SOURCES	+=	main.cpp\	

								MainWindow.cpp	

	

HEADERS		+=	MainWindow.h	

	

FORMS				+=	MainWindow.ui	

To	have	access	to	the	headers	of	filter-plugin-designer,	we	simply	add	it	to
the	INCLUDEPATH	directory.	Finally,	the	linker	is	instructed	to	link	to	the	library	we	deployed
in	Qt	Creator.	This	ensures	that	the	same	library	is	used	by	Qt	Designer	and	by	our
application.

Open	the	MainWindow.ui	file	and	scroll	to	the	bottom	of	the	Widget	box.	Lo	and	behold,	you
should	see	this:

The	FilterWidget	plugin	appears	under	the	Mastering	Qt5	section.	It	even	displays	the
famous	Lenna	as	a	preview	icon.	If	you	do	not	see	the	FilterWidget	plugin,	then	restart	Qt
Creator	and	make	sure	that	the	plugin	is	properly	loaded.	To	check	this	(in	the	Design	tab),	go
to	Tools	|	Form	Editor	|	About	Qt	Designer	Plugins.	This	is	what	it	should	display:

If	the	FilterWidget	plugin	does	not	appear	in	this	list,	you	should	check	the	Qt	Creator
plugin	directory	content	(the	path	is	stated	in	image-filter.pro).

Building	the	image-filter	application
We	can	proceed	to	build	the	UI	of	the	application.	The	idea	is	to	open	a	picture	from	the
filesystem	and	apply	to	it	the	various	filters	we	developed	in	the	filter-designer-plugin
project.	If	you	want	to	keep	the	result,	you	can	save	the	resulting	image.

We	will	start	by	designing	the	UI.	Modify	MainWindow.ui	to	look	like	this:

Here	is	the	Object	Inspector	content	to	help	you	build	this	layout:

There	are	three	elements	of	this	UI:

The	menuFile	element,	which	contains	three	possible
actions:	actionOpenPicture,	actionExit,	and	actionSaveAs.	You	can	see	the	details	of
these	actions	in	the	Action	Editor	window.
The	pictureLabel	element,	which	will	display	the	loaded	picture	in	the	empty	top	part.
The	filtersLayout	element,	which	contains	the	three	instances	of	our	FilterWidget
class	in	the	bottom	part.

As	you	add	a	FilterWidget	class	in	filtersLayout,	you	can	see	that	you	can	customize
the	title	and	the	filterType	in	the	Property	Editor	window.	The	preview	will	be
automatically	updated	with	the	selected	filter	applied	to	our	default	picture.	A	dynamic
preview	like	this	is	simply	awesome,	and	you	can	foresee	that	your	custom	Qt	Designer
widgets	can	become	quite	powerful.

Let's	implement	the	logic	of	our	application.	Update	MainWindow.h	like	so:

#include	<QMainWindow>	

#include	<QImage>	

#include	<QVector>	

	

namespaceUi	{	

classMainWindow;	

}	

	

classFilterWidget;	

	

classMainWindow	:	public	QMainWindow	

{	

				Q_OBJECT	

	

public:	

explicitMainWindow(QWidget	*parent	=	0);	

				~MainWindow();	

	

voidloadPicture();	

	

private	slots:	

voiddisplayPicture(constQImage&	picture);	

	

private:	

voidinitFilters();	

voidupdatePicturePixmap();	

	

private:	

Ui::MainWindow	*ui;	

QImagemSourcePicture;	

QImagemSourceThumbnail;	

QPixmapmCurrentPixmap;	

FilterWidget*	mCurrentFilter;	

QVector<FilterWidget*>mFilters;	

};	

Here	are	some	elements	that	we	have	to	explain:

mSourcePicture:	This	element	is	the	loaded	picture.
mSourceThumbnail:	This	element	is	the	generated	thumbnail	from	mSourcePicture.	To
avoid	wasting	CPU	cycles,	mSourcePicture	will	be	resized	only	once,	and	each	of
the	FilterWidget	instances	will	process	this	thumbnail	rather	than	the	full-resolution
picture.
mCurrentPixmap:	This	element	is	the	currently	displayed	QPixmap	in	the	pictureLabel
widget.
mCurrentFilter:	This	element	is	the	currently	applied	filter.	Each	time	the	user	clicks	on
a	different	FilterWidget,	this	pointer	will	be	updated.
mFilters:	This	element	is	a	QVector	of	the	FilterWidget	class	that	we	added
to	MainWindow.ui.	It	is	only	a	helper,	introduced	to	easily	apply	the	same	instructions	to
each	FilterWidget	class.

Now	for	the	functions,	we	will	limit	ourselves	to	a	broad	overview.	The	details	will	be
covered	when	we	look	at	the	implementation	of	each	function:

loadPicture():	This	function	triggers	the	whole	pipeline.	It	will	be	called	when	the	user
clicks	on	actionOpenPicture.
initFilters():	This	function	is	in	charge	of	initializing	mFilters.
displayPicture():	This	function	is	the	slot	called
by	mCurrentWidget::pictureProcessed()	to	display	the	filtered	picture.
updatePicturePixmap():	This	function	handles	the	display	of	mCurrentPixmap
inside	pictureLabel.

Let's	look	at	the	MainWindow	class's	constructor	implementation	in	MainWindow.cpp:

#include	<QFileDialog>	

#include	<QPixmap>	

#include	<QDir>	

	

#include	"FilterWidget.h"	

	

MainWindow::MainWindow(QWidget	*parent)	:	

QMainWindow(parent),	

ui(new	Ui::MainWindow),	

mSourcePicture(),	

mSourceThumbnail(),	

mCurrentPixmap(),	

mCurrentFilter(nullptr),	

mFilters()	

{	

ui->setupUi(this);	

ui->pictureLabel->setMinimumSize(1,	1);	

	

connect(ui->actionOpenPicture,	&QAction::triggered,		

				this,	&MainWindow::loadPicture);	

connect(ui->actionExit,	&QAction::triggered,		

				this,	&QMainWindow::close);	

initFilters();	

}	

We	connect	the	actionOpenPicture::triggered()	signal	to	our	yet-to-be-
implemented	loadPicture()	function.	The	actionExit	is	straightforward;	it	is	simply
connected	to	the	QMainWindow::close()	slot.	Finally,	initFilter()	is	called.	Let's	see	its
body:

voidMainWindow::initFilters()	

{	

mFilters.push_back(ui->filterWidgetOriginal);	

mFilters.push_back(ui->filterWidgetBlur);	

mFilters.push_back(ui->filterWidgetGrayscale);	

	

for	(inti	=	0;	i<mFilters.size();	++i)	{	

connect(mFilters[i],	&FilterWidget::pictureProcessed,	

this,	&MainWindow::displayPicture);	

				}	

mCurrentFilter	=	mFilters[0];	

}	

Each	FilterWidget	instance	is	added	to	mFilters.	We	then	proceed	to	connect
the	pictureProcessed()	signal	to	the	MainWindow::displayPicture	instruction
and	mCurrentFilter	is	initialized	to	the	original	filter.

The	class	is	now	ready	to	load	some	pictures!	This	is	the	implementation	of	loadPicture():

voidMainWindow::loadPicture()	

{	

QString	filename	=	QFileDialog::getOpenFileName(this,	

								"Open	Picture",	

								QDir::homePath(),	

		tr("Images	(*.png	*.jpg)"));	

if	(filename.isEmpty())	{	

return;	

				}	

mSourcePicture	=	QImage(filename);	

mSourceThumbnail	=	mSourcePicture.scaled(QSize(256,	256),	

		Qt::KeepAspectRatio,																																																			

Qt::SmoothTransformation);	

for	(inti	=	0;	i<mFilters.size();	++i)	{	

mFilters[i]->setSourcePicture(mSourcePicture);	

mFilters[i]->updateThumbnail(mSourceThumbnail);	

				}	

	

mCurrentFilter->process();	

}	

The		mSourcePicture	method	is	loaded	using	a	QFileDialog,	and	mSourceThumbnail	is
generated	from	this	input.	Every	FilterWidget	class	is	updated	with	this	new	data	and
the	mCurrentFilter	element	is	triggered	by	calling	its	process()	function.

When	FilterWidget::process()	is	finished,	it	emits	the	pictureProcessed()	signal,	which	is
connected	to	our	displayPicture()	slot.	Let's	switch	to	this	function:

voidMainWindow::displayPicture(constQImage&	picture)	

{	

mCurrentPixmap	=	QPixmap::fromImage(picture);	

updatePicturePixmap();	

}	

Nothing	very	fancy	here:	mCurrentPixmap	is	updated	from	the	given	picture	and
the	updatePicturePixmap()	function	is	in	charge	of	updating	the	pictureLabel	element.	Here
is	the	implementation	of	updatePicturePixmap():

voidMainWindow::updatePicturePixmap()	

{	

if	(mCurrentPixmap.isNull())	{	

return;	

				}	

ui->pictureLabel->setPixmap(

mCurrentPixmap.scaled(ui->pictureLabel->size(),	

						Qt::KeepAspectRatio,	

Qt::SmoothTransformation));	

}	

This	function	simply	creates	a	scaled	version	of	mCurrentPixmap	that	fits

inside	pictureLabel.

The	whole	picture	loading/filter	processing	is	completed.	If	you	run	the	application	you
should	be	able	to	load	and	modify	your	pictures.	However,	if	you	resize	the	window,	you	will
see	that	the	pictureLabel	element	does	not	scale	very	well.

To	address	this	issue,	we	have	to	regenerate	the	scaled	version	of	mCurrentPixmap	each	time
the	window	is	resized.	Update	MainWindow	like	so:

//	In	MainWindow.h	

classMainWindow	:	public	QMainWindow	

{	

				...	

voidloadPicture();	

	

protected:	

voidresizeEvent(QResizeEvent*	event)	override;	

				...	

};	

	

//	In	MainWindow.cpp	

voidMainWindow::resizeEvent(QResizeEvent*	/*event*/)	

{	

updatePicturePixmap();	

}	

Here,	the	separation	of	mCurrentPixmap	and	the	pictureLabel	element's	pixmap	makes	sense.
Because	we	always	generate	the	scaled	version	from	the	full-resolution	mCurrentPixmap,	we
are	sure	that	the	resulting	pixmap	will	look	good.

The	image-filter	application	would	not	be	complete	without	the	ability	to	save	your	filtered
picture.	This	will	not	take	much	effort.	Here	is	the	updated	version	of	MainWindow.h:

classMainWindow	:	public	QMainWindow	

{	

				...	

	

private	slots:	

voiddisplayPicture(constQImage&	picture);	

voidsaveAsPicture();	

				...	

	

private:	

Ui::MainWindow	*ui;	

QImagemSourcePicture;	

QImagemSourceThumbnail;	

QImage&mFilteredPicture;	

				...	

};	

Here,	we	simply	added	a	saveAsPicture()	function	that	will	take	the	mFilteredPicture
element	and	save	it	to	a	file.	The	implementation	in	MainWindow.cpp	should	not	blow	your
mind:

//	In	MainWindow.cpp	

MainWindow::MainWindow(QWidget	*parent)	:	

QMainWindow(parent),	

ui(new	Ui::MainWindow),	

mSourcePicture(),	

mSourceThumbnail(),	

mFilteredPicture(mSourcePicture),	

				...	

{	

ui->setupUi(this);	

ui->actionSaveAs->setEnabled(false);	

ui->pictureLabel->setMinimumSize(1,	1);	

	

connect(ui->actionOpenPicture,	&QAction::triggered,	

this,	&MainWindow::loadPicture);	

connect(ui->actionSaveAs,	&QAction::triggered,	

this,	&MainWindow::saveAsPicture);	

				...	

}	

	

voidMainWindow::loadPicture()	

{	

				...	

if	(filename.isEmpty())	{	

return;	

				}	

ui->actionSaveAs->setEnabled(true);	

				...	

}	

	

voidMainWindow::displayPicture(constQImage&	picture)	

{	

mFilteredPicture	=	picture;	

mCurrentPixmap	=	QPixmap::fromImage(picture);	

updatePicturePixmap();	

}	

	

voidMainWindow::saveAsPicture()	

{	

QString	filename	=	QFileDialog::getSaveFileName(this,	

												"Save	Picture",	

QDir::homePath(),	

tr("Images	(*.png	*.jpg)"));	

if	(filename.isEmpty())	{	

return;	

				}	

mFilteredPicture.save(filename);	

}	

The	code	snippet	is	long,	but	not	very	complex.	The	actionSaveAs	function	is	enabled	only
when	a	picture	is	loaded.	When	the	picture	has	been	processed,	mFilteredPicture	is	updated
with	the	given	picture.	Because	it	is	a	reference,	it	costs	absolutely	nothing	to	store	this
filtered	picture.

Finally,	the	saveAsPicture()	function	asks	the	user	for	a	path	and	saves	it	using	the	QImage
API,	which	tries	to	deduce	the	picture	type	based	on	the	file	extension.

Summary
In	this	chapter,	you	learned	how	to	integrate	a	third-party	library	with	each	desktop	OS
(Windows,	Linux,	and	Mac).	We	chose	the	OpenCV	library,	which	has	been	included	in	a
custom	Qt	Designer	plugin,	and	which	can	display	a	live	preview	of	your	image	processing
result	in	Qt	Designer.	We	created	an	image	filtering	application	that	can	open	pictures,	apply
filters	to	them,	and	save	the	result	on	your	machine.

We	had	a	good	look	at	how	you	can	integrate	third-party	libraries	and	how	to	make	a	Qt
Designer	plugin.	In	the	next	chapter,	we	will	push	things	forward	by	making	the	image-filter
application	ready	to	load	filter	plugins	that	could	be	implemented	by	third-party	developers.
To	make	things	even	cooler,	we	will	cover	the	Qt	animation	framework	to	make	the	image-
filter	more	spectacular.

Chapter	8.		Animations	-	Its	Alive,	Alive!
In	the	previous	chapter,	you	learned	how	to	create	a	custom	Qt	Designer	plugin.	This	chapter
will	push	things	further	and	teach	you	how	to	create	a	distributable	Software	Development	Kit
(SDK)	to	third-party	developers,	how	the	plugin	system	works	with	Qt,	and	how	to	make	your
application	more	attractive	using	fancy	animations.

The	example	project	will	be	a	reimplementation	of	the	project	from	Chapter	7,	Third-Party
Libraries	Without	a	Headache.	You	will	build	the	same	image	processing	application,	but	with
the	ability	to	import	the	filters	from	plugins.

This	chapter	will	teach	you	how	to	do	the	following:

Create	an	SDK	using	the	Qt	Plugin	system
Implement	custom	plugins	using	the	SDK
Factorize	build	tasks	using	.pri
Dynamically	load	plugins	in	your	final	application
Understand	the	Qt	Animation	framework
Use	simple,	sequential,	and	parallel	animations
Apply	custom	effects	using	QPropertyAnimation	and	QGraphics	effects

Preparing	an	SDK
Before	diving	into	the	code,	we	have	to	take	a	moment	to	reflect	on	how	we	are	going	to
structure	it.	This	chapter	has	two	goals:

Cover	the	Qt	Plugin	system	in	more	depth
Study	and	integrate	the	Qt	Animation	Framework

The	first	part	of	the	chapter	will	focus	on	the	plugin	system.	What	we	aim	to	do	is	provide	a
way	to	build	plugins	that	can	be	integrated	in	our	application	to	third-party	developers.	These
plugins	should	be	dynamically	loaded.	The	application	will	be	a	direct	offspring	of	the
example	project	from	Chapter	7,	Third-Party	Libraries	Without	a	Headache.	The	features	will
be	exactly	the	same,	except	it	will	be	using	this	new	plugin	system	and	will	have	fancy
animations.

The	structure	of	the	project	will	be	as	follows:

The	parent	project	is	ch08-image-animation,	which	is	composed	of	the	following:

filter-plugin-original:	A	library	project,	which	is	the	implementation	of	the	original
filter
filter-plugin-grayscale:	A	library	project,	which	is	the	implementation	of	the
grayscale	filter
filter-plugin-blur:	A	library	project,	which	is	the	implementation	of	the	blur	filter
image-animation:	A	Qt	Widgets	application,	which	will	load	the	plugins	needed	to
display	them	and	make	it	possible	to	apply	each	one	to	a	loaded	picture

We	will	develop	each	one	of	these	plugins,	but	keep	in	mind	that	they	might	have	been	created
by	a	third-party	developer.	To	achieve	this	openness,	an	SDK	will	be	available	for	each
plugin.	This	SDK	relies	on	the	Qt	Plugin	system.

It	is	crucial	to	think	about	what	should	be	handled	by	the	plugin.	Our	application	is	an	image
processing	piece	of	software.	We	chose	to	limit	the	responsibility	of	the	plugin	to	the	picture
processing	part,	but	this	is	definitely	a	design	choice.

Another	approach	could	have	been	to	let	the	plugin	developer	provide	its	own	UI	to	configure
the	plugin	(for	example,	to	vary	the	intensity	of	the	blur).	In	this	chapter,	we	have	kept	it
simple	by	focusing	only	on	the	plugin	development	itself.	It	is	really	up	to	you	and	how	you
want	to	design	your	application.	By	opening	up	the	range	of	what	the	plugin	can	do,	you	also
increase	the	burden	for	the	plugin	developer.	There	is	always	a	trade-off;	giving	more	choice
tends	to	increase	the	complexity.	It	is	a	well-known	fact	that	we	developers	are	a	bunch	of	lazy
people.	At	least,	we	want	to	be	lazy	while	the	computer	is	working	for	us.

We	will	start	by	building	the	SDK	that	will	be	deployed	in	each	plugin.	Execute	the	following
steps:

1.	 Create	a	Subdirs	project	named	ch08-image-animation	(do	not	add	a	sub-project	at	the
end	of	the	wizard).

2.	 In	your	filesystem	explorer,	open	the	ch08-image-animation	directory	and	create	an	sdk
directory.

3.	 Inside	sdk,	create	an	empty	Filter.h	file.

Our	SDK	will	consist	of	a	single	file,	Filter.h,	the	interface	(or	header)	that	should	be
implemented	with	each	plugin.	Each	plugin	is	responsible	for	returning	the	modified	picture
according	to	its	desired	features.	Because	this	SDK	is	not	linked	to	any	particular	project,	we
will	simply	display	it	in	Qt	Creator	under	the	special	folder	Other	files.	To	do	so,
update	ch08-image-animation.pro:

TEMPLATE	=	subdirs	

	

CONFIG	+=	c++14	

	

OTHER_FILES	+=	\	

												sdk/Filter.h	

After	ch08-image-animation.pro	has	been	parsed	by	Qt	Creator,	you	should	see	the
following	in	the	Projects	tab:

The	Filter.h	file	is	available	at	the	parent	project	level.	As	a	result,	it	will	be	easier	to
factorize	the	SDK	plumbing	code	between	our	various	plugins.	Let's	implement	Filter.h:

#include	<QImage>	

	

class	Filter	

{	

public:	

				virtual	~Filter()	{}	

				virtual	QString	name()	const	=	0;	

				virtual	QImage	process(const	QImage&	image)	=	0;	

};	

	

#define	Filter_iid	"org.masteringqt.imageanimation.filters.Filter"	

Q_DECLARE_INTERFACE(Filter,	Filter_iid)	

Let's	break	down	this	interface:	a	Filter	subclass	must	provide	a	name	by
implementing	name()	and	returning	a	processed	image	when	implementing	process().	As
you	can	see,	Filter.h	is	indeed	very	close	to	the	version	seen	in	Chapter	7,	Third-Party
Libraries	Without	a	Headache.

However,	the	really	new	stuff	comes	right	after	the	class	definition:

#define	Filter_iid	"org.masteringqt.imageanimation.filters.Filter"	

Q_DECLARE_INTERFACE(Filter,	Filter_iid)	

The	Filter_iid	is	a	unique	identifier	to	let	Qt	know	the	interface	name.	This	will	be	enforced
on	the	implementer	side,	which	will	also	have	to	state	this	identifier.

Tip

For	a	real-world	use	case,	you	should	add	a	version	number	to	this	unique	identifier.	This	will
let	you	properly	handle	the	versioning	of	your	SDK	and	the	attached	plugins.

The	Q_DECLARE_INTERFACE	macro	associates	the	class	to	the	given	identifier.	It	will	give	Qt

the	ability	to	check	that	the	loaded	plugin	can	be	safely	casted	to	the	Filter	type.

Tip

In	production	code,	it	is	safer	to	declare	your	interfaces	inside	a	namespace.	You	never	know
the	code	environment	in	which	your	SDK	will	be	deployed.	This,	way,	you	avoid	potential
name	collision.	If	you	do	declare	in	a	namespace,	make	sure	that	the	Q_DECLARE_INTERFACE
macro	is	outside	the	namespace	scope.

Creating	your	plugins
The	SDK	was	painless	to	create.	We	can	now	proceed	to	create	our	first	plugin.	We	already
know	that	all	our	plugins	will	include	the	SDK	we	just	completed.	Fortunately,	this	can	be
easily	factorized	in	a	.pri	file	(PRoject	Include).	A	.pri	file	behaves	exactly	like	a	.pro	file;
the	only	difference	is	that	it	is	intended	to	be	included	inside	.pro	files.

In	the	ch08-image-animation	directory,	create	a	file	named	plugins-common.pri	that	contains
the	following	code:

INCLUDEPATH	+=	$$PWD/sdk	

DEPENDPATH	+=	$$PWD/sdk	

This	file	will	be	included	in	each	.pro	plugin.	It	aims	to	tell	the	compiler	where	it	can	find	the
headers	of	the	SDK	and	where	to	look	to	resolve	dependencies	between	headers	and	sources.
This	will	enhance	the	modification	detection	and	properly	compile	the	sources	when	needed.

To	see	this	file	in	the	project,	we	have	to	add	it	to	the	OTHER_FILES	macro	in	ch08-image-
animation.pro:

OTHER_FILES	+=	\	

												sdk/Filter.h	\	

												plugins-common.pri	

The	most	straightforward	plugin	to	build	is	filter-plugin-original	as	it	does	not	perform
any	specific	processing	on	the	image.	Let's	create	this	plugin	with	the	following	steps:

1.	 Create	a	new	Subproject	in	ch08-image-animation.
2.	 Select	Library	|	C++	Library	|	Choose....
3.	 Choose	a	Shared	Library,	name	it	filter-plugin-original,	and	then	click	on	Next.
4.	 Select	QtCore	and	go	to	QtWidgets	|	Next.
5.	 Name	the	created	class	FilterOriginal	and	click	on	Next.
6.	 Add	it	as	a	subproject	to	ch08-image-animation	then	click	on	Finish.

Qt	Creator	creates	a	lot	of	boilerplate	code	for	us,	but	in	this	case,	we	do	not	need	it.	Update
filter-plugin-original.pro	like	so:

QT							+=	core	widgets	

	

TARGET	=	$$qtLibraryTarget(filter-plugin-original)	

TEMPLATE	=	lib	

CONFIG	+=	plugin	

	

SOURCES	+=	\	

				FilterOriginal.cpp	

	

HEADERS	+=	\	

				FilterOriginal.h	

	

include(../plugins-common.pri)	

We	start	by	specifying	that	the	TARGET	should	be	properly	named	according	to	the	OS
convention	with	$$qtLibraryTarget().	The	CONFIG	property	adds	the	plugin	directive,	which
tells	the	generated	Makefile	to	include	the	necessary	instructions	to	compile	a	dll/so/dylib
(pick	your	OS).

We	removed	the	unnecessary	DEFINES	and	FilterOriginal_global.h.	Nothing	specific	to	the
plugin	should	be	exposed	to	the	caller,	and	therefore,	there	is	no	need	to	handle	the	symbol
export.

We	can	now	proceed	to	FilterOriginal.h:

#include	<QObject>	

	

#include	<Filter.h>	

	

class	FilterOriginal	:	public	QObject,	Filter	

{	

				Q_OBJECT	

				Q_PLUGIN_METADATA(IID	"org.masteringqt.imageanimation.filters.Filter")	

				Q_INTERFACES(Filter)	

	

public:	

				FilterOriginal(QObject*	parent	=	0);	

				~FilterOriginal();	

	

				QString	name()	const	override;	

				QImage	process(const	QImage&	image)	override;	

};	

The	FilterOriginal	class	must	first	inherit	QObject;	when	the	plugin	will	be	loaded,	it	will
first	be	a	QObject	class	before	being	casted	to	the	real	type,	Filter.

The	Q_PLUGIN_METADATA	macro	is	stated	to	export	the	proper	implemented	interface	identifier
to	Qt.	It	annotates	the	class	to	let	the	Qt	metasystem	know	about	it.	We	meet	the	unique
identifier	we	defined	in	Filter.h	again.

The	Q_INTERFACES	macro	tells	the	Qt	metaobject	system	which	interface	the	class	implements.

Finally,	the	FilterOriginal.cpp	barely	deserves	to	be	printed:

FilterOriginal::FilterOriginal(QObject*	parent)	:	

				QObject(parent)	

{	

}	

	

FilterOriginal::~FilterOriginal()	

{	

}	

	

QString	FilterOriginal::name()	const	

{	

				return	"Original";	

}	

	

QImage	FilterOriginal::process(const	QImage&	image)	

{	

				return	image;	

}	

As	you	can	see,	its	implementation	is	a	no-op.	The	only	thing	we	added	to	the	version	from
Chapter	7,	Third-Party	Libraries	Without	a	Headache,	is	the	name()	function,	which
returns	Original.

We	will	now	implement	the	grayscale	filter.	As	we	did	in	Chapter	7,	Third-Party	Libraries
Without	a	Headache,	we	will	rely	on	the	OpenCV	library	to	process	the	picture.	The	same	can
be	said	for	the	following	plugin,	the	blur.

Since	these	two	projects	have	their	own	.pro	file,	you	can	already	foresee	that	the	OpenCV
linking	will	be	the	same.	This	is	a	perfect	use-case	for	a	.pri	file.

Inside	the	ch08-image-animation	directory,	create	a	new	file	called	plugins-common-
opencv.pri.	Do	not	forget	to	add	it	to	OTHER_FILES	in	ch08-image-animation.pro:

OTHER_FILES	+=	\	

												sdk/Filter.h	\	

												plugins-common.pri	\	

												plugins-common-opencv.pri	

Here	is	the	content	of	plugins-common-opencv.pri:

windows	{	

				INCLUDEPATH	+=	$$(OPENCV_HOME)/../../include	

				LIBS	+=	-L$$(OPENCV_HOME)/lib	\	

								-lopencv_core2413	\	

								-lopencv_imgproc2413	

}	

	

linux	{	

				CONFIG	+=	link_pkgconfig	

				PKGCONFIG	+=	opencv	

}	

	

macx	{	

				INCLUDEPATH	+=	/usr/local/Cellar/opencv/2.4.13/include/	

	

				LIBS	+=	-L/usr/local/lib	\	

								-lopencv_core	\	

								-lopencv_imgproc	

}	

The	content	of	plugins-common-opencv.pri	is	a	direct	copy	of	what	we	made	in	Chapter
7,	Third-Party	Libraries	Without	a	Headache.

All	the	plumbing	is	now	ready;	we	can	now	go	ahead	with	the	filter-plugin-grayscale
project.	As	with	filter-plugin-original,	we	will	build	it	the	following	way:

1.	 Create	a	C++	Library	Subproject	of	ch08-image-animation	with	the	Shared	Library
type.

2.	 Create	a	class	named	FilterGrayscale.
3.	 In	the	Required	Modules,	select	QtCore	and	QWidgets.

Here	is	the	updated	version	of	filter-plugin-grayscale.pro:

QT							+=	core	widgets	

	

TARGET	=	$$qtLibraryTarget(filter-plugin-grayscale)	

TEMPLATE	=	lib	

CONFIG	+=	plugin	

	

SOURCES	+=	\	

				FilterGrayscale.cpp	

	

HEADERS	+=	\	

				FilterGrayscale.h	

	

include(../plugins-common.pri)	

include(../plugins-common-opencv.pri)	

The	content	is	very	much	like	filter-plugin-original.pro.	We	only	added	plugins-
common-opencv.pri	to	let	our	plugin	link	with	OpenCV.

As	for	FilterGrayscale,	the	header	is	exactly	like	FilterOriginal.h.	Here	are	the	relevant
pieces	on	FilterGrayscale.cpp:

#include	<opencv/cv.h>	

	

//	Constructor	&	Destructor	here	

...	

	

QString	FilterOriginal::name()	const	

{	

				return	"Grayscale";	

}	

	

QImage	FilterOriginal::process(const	QImage&	image)	

{	

				//	QImage	=>	cv::mat	

				cv::Mat	tmp(image.height(),	

																image.width(),	

																CV_8UC4,	

																(uchar*)image.bits(),	

																image.bytesPerLine());	

	

				cv::Mat	resultMat;	

				cv::cvtColor(tmp,	resultMat,	CV_BGR2GRAY);	

	

				//	cv::mat	=>	QImage	

				QImage	resultImage((const	uchar	*)	resultMat.data,	

																							resultMat.cols,	

																							resultMat.rows,	

																							resultMat.step,	

																							QImage::Format_Grayscale8);	

				return	resultImage.copy();	

}	

The	inclusion	of	plugins-common-opencv.pri	lets	us	properly	include	the	cv.h	header.

The	last	plugin	we	will	implement	is	the	blur	plugin.	Once	again,	create	a	C++	Library	
Subproject	and	create	the	FilterBlur	class.	The	project	structure	and	the	content	of	the	.pro
file	are	the	same.	Here	is	FilterBlur.cpp:

QString	FilterOriginal::name()	const	

{	

				return	"Blur";	

}	

	

QImage	FilterOriginal::process(const	QImage&	image)	

{	

				//	QImage	=>	cv::mat	

				cv::Mat	tmp(image.height(),	

																image.width(),	

																CV_8UC4,	

																(uchar*)image.bits(),	

																image.bytesPerLine());	

	

				int	blur	=	17;	

				cv::Mat	resultMat;	

				cv::GaussianBlur(tmp,	

																					resultMat,	

																					cv::Size(blur,	blur),	

																					0.0,	

																					0.0);	

	

				//	cv::mat	=>	QImage	

				QImage	resultImage((const	uchar	*)	resultMat.data,	

																							resultMat.cols,	

																							resultMat.rows,	

																							resultMat.step,	

																							QImage::Format_RGB32);	

				return	resultImage.copy();	

}	

The	amount	of	blur	is	hard-coded	at	17.	In	a	production	application,	it	could	have	been
compelling	to	make	this	amount	variable	from	the	application.

Tip

If	you	want	to	push	the	project	further,	try	to	include	a	layout	in	the	SDK	that	contains	a	way	to
configure	the	plugin	properties.

Loading	your	plugins	dynamically
We	will	now	deal	with	the	application	loading	these	plugins:

1.	 Create	a	new	Subproject	inside	ch08-image-animation.
2.	 Select	the	type	Qt	Widgets	Application.
3.	 Name	it	image-animation	and	accept	the	default	Class	Information	settings.

We	have	a	few	last	things	to	do	in	the	.pro	files.	First,	image-animation	will	try	to	load	the
plugins	from	somewhere	in	its	output	directory.	Because	each	filter	plugin	project	is
independent,	its	output	directory	is	separated	from	image-animation.	Thus,	each	time	you
modify	a	plugin,	you	will	have	to	copy	yourself	the	compiled	shared	library	inside	the	proper
image-animation	directory.	This	works	to	make	it	available	to	the	image-animation
application,	but	we	are	lazy	developers,	right?

We	can	automate	this	by	updating	plugins-common-pri	like	so:

INCLUDEPATH	+=	$$PWD/sdk	

DEPENDPATH	+=	$$PWD/sdk	

	

windows	{	

				CONFIG(debug,	debug|release)	{	

								target_install_path	=	$$OUT_PWD/../image-animation/debug/plugins/	

				}	else	{	

								target_install_path	=	$$OUT_PWD/../image-animation/release/plugins/	

				}	

	

}	else	{	

				target_install_path	=	$$OUT_PWD/../image-animation/plugins/	

}	

	

#	Check	Qt	file	'spec_post.prf'	for	more	information	about	'$$QMAKE_MKDIR_CMD'	

createPluginsDir.path	=	$$target_install_path	

createPluginsDir.commands	=	$$QMAKE_MKDIR_CMD	$$createPluginsDir.path	

INSTALLS	+=	createPluginsDir	

	

target.path	=	$$target_install_path	

INSTALLS	+=	target	

In	a	nutshell,	the	output	library	is	deployed	in	the	output	image-animation/plugins	directory.
Windows	has	a	different	output	project	structure;	that	is	why	we	have	to	have	a	platform-
specific	section.

Even	better,	the	plugins	directory	is	automatically	created	with	the
instruction	createPluginsDir.commands	=	$$QMAKE_MKDIR_CMD	$$createPluginsDir.path.
Instead	of	using	a	system	command	(mkdir),	we	have	to	use	the	special	$$QMAKE_MKDIR_CMD

command.	Qt	will	then	replace	it	with	the	correct	shell	command	(depending	on	your	OS)	to
create	the	directory	only	if	it	does	not	already	exist.	Do	not	forget	to	add	the	make	install
build	step	to	execute	this	task!

The	last	thing	to	do	in	the	.pro	files	concerns	image-animation.	The	application	will
manipulate	Filter	instances.	As	a	consequence,	it	needs	to	access	the	SDK.	Add	the	following
to	image-animation.pro:

INCLUDEPATH	+=	$$PWD/../sdk	

DEPENDPATH	+=	$$PWD/../sdk	

Fasten	your	seatbelt.	We	will	now	load	our	freshly	baked	plugins.	In	image-animation,	create
a	new	class	named	FilterLoader.	Here	is	the	FilterLoader.h	content:

#include	<memory>	

#include	<vector>	

	

#include	<Filter.h>	

	

class	FilterLoader	

{	

	

public:	

				FilterLoader();	

				void	loadFilters();	

	

				const	std::vector<std::unique_ptr<Filter>>&	filters()	const;	

	

private:	

				std::vector<std::unique_ptr<Filter>>	mFilters;	

};	

This	class	is	responsible	for	loading	the	plugins.	Once	again,	we	rely	on	C++11	smart
pointers	with	unique_ptr	to	explicate	the	ownership	of	the	Filter	instances.
The	FilterLoader	class	will	be	the	owner	with	mFilters	and	provides	a	getter	to	the	vector
with	filters().

Note	that	filter()	returns	a	const&	to	the	vector.	This	semantic	brings	two	benefits:

The	reference	makes	sure	that	the	vector	is	not	copied.	Without	it,	the	compiler	would
have	barked	something	like	"FilterLoader	is	not	the	owner	anymore	of	mFilters
content!"	at	us.	Of	course,	because	it	deals	with	C++	templates,	the	compiler	error	would
have	looked	rather	like	an	astounding	insult	to	the	English	language.
The	const	keyword	makes	sure	that	the	vector	type	cannot	be	modified	by	callers.

Now	we	can	create	the	FilterLoader.cpp:	file:

#include	"FilterLoader.h"	

	

#include	<QApplication>	

#include	<QDir>	

#include	<QPluginLoader>	

	

FilterLoader::FilterLoader()	:	

				mFilters()	

{	

}	

	

void	FilterLoader::loadFilters()	

{	

				QDir	pluginsDir(QApplication::applicationDirPath());	

#ifdef	Q_OS_MAC	

				pluginsDir.cdUp();	

				pluginsDir.cdUp();	

				pluginsDir.cdUp();	

#endif	

				pluginsDir.cd("plugins");	

	

				for(QString	fileName:	pluginsDir.entryList(QDir::Files))	{	

								QPluginLoader	pluginLoader(

																						pluginsDir.absoluteFilePath(fileName));	

								QObject*	plugin	=	pluginLoader.instance();	

								if	(plugin)	{	

												mFilters.push_back(std::unique_ptr<Filter>(

																								qobject_cast<Filter*>(plugin)	

));	

								}	

				}	

}	

	

const	std::vector<std::unique_ptr<Filter>>&	FilterLoader::filters()	const	

{	

				return	mFilters;	

}	

The	meat	of	the	class	lies	in	loadFilter().	We	start	by	moving	in	the	plugins	directory
with	pluginsDir,	located	in	the	output	directory	of	image-animation.	A	special	case	is
handled	for	the	Mac	platform:	QApplication::applicationDirPath()	returns	a	path	inside
the	bundle	of	the	generated	application.	The	only	way	to	get	out	is	to	climb	our	way	up	three
times	with	the	cdUp()	instruction.

For	each	fileName	in	this	directory,	we	try	to	load	a	QPluginLoader	loader.	A	QPluginLoader
provides	access	to	a	Qt	plugin.	It	is	the	cross-platform	way	to	load	a	shared	library.
Moreover,	the	QPluginLoader	loader	has	the	following	benefits:

It	checks	that	the	plugin	is	linked	with	the	same	version	of	Qt	as	the	host	application
It	simplifies	the	loading	of	the	plugin	by	providing	direct	access	to	the	plugin
via	instance()	rather	than	relying	on	C	functions

We	then	proceed	to	try	to	load	the	plugin	using	pluginLoader.instance().	This	will	try	to
load	the	root	component	of	the	plugin.	In	our	case,	the	root	component	is
either	FilerOriginal,	FilterGrayscale,	or		FilterBlur.	This	function	always	returns
a	QObject*;	if	the	plugin	could	not	be	loaded,	it	returns	0.	This	is	the	reason	why	we	inherited
the	QObject	class	in	our	custom	plugins.

The	call	to	instance()	implicitly	tries	to	load	the	plugin.	Once	this	has	been	done,
the	QPluginLoader	does	not	handle	the	memory	of	the	plugin.	From	here,	we	cast	the	plugin
to	Filter*	using	qobject_cast().

The	qobject_cast()	function	behaves	similarly	to	the	standard	C++	dynamic_cast();	the
difference	is	that	it	does	not	require	RTTI	(runtime	type	information).

Last	but	not	least,	the	Filter*	casted	plugin	is	wrapped	inside	a	unique_ptr	and	added
to	mFilters	vector.

Using	the	plugins	inside	the	application
Now	that	the	plugins	are	properly	loaded,	they	have	to	be	reachable	from	the	UI	of	the
application.	To	do	so,	we	are	going	to	take	some	inspiration	(shameless	stealing)	from	the
FilterWidget	class	of	Chapter	7,	Third-Party	Libraries	Without	a	Headache.

Create	a	new	Qt	Designer	Form	Class	using	the	Widget	template	named	FilterWidget.
The	FilterWidget.ui	file	is	exactly	the	same	as	the	one	completed	in	Chapter	7,	Third-Party
Libraries	Without	a	Headache.

Create	the	FilterWidget.h	file	like	this:

#include	<QWidget>	

#include	<QImage>	

	

namespace	Ui	{	

class	FilterWidget;	

}	

	

class	Filter;	

	

class	FilterWidget	:	public	QWidget	

{	

				Q_OBJECT	

	

public:	

				explicit	FilterWidget(Filter&	filter,	QWidget	*parent	=	0);	

				~FilterWidget();	

	

				void	process();	

	

				void	setSourcePicture(const	QImage&	sourcePicture);	

				void	setSourceThumbnail(const	QImage&	sourceThumbnail);	

				void	updateThumbnail();	

	

				QString	title()	const;	

	

signals:	

				void	pictureProcessed(const	QImage&	picture);	

	

protected:	

				void	mousePressEvent(QMouseEvent*)	override;	

	

private:	

				Ui::FilterWidget	*ui;	

				Filter&	mFilter;	

	

				QImage	mDefaultSourcePicture;	

				QImage	mSourcePicture;	

				QImage	mSourceThumbnail;	

	

				QImage	mFilteredPicture;	

				QImage	mFilteredThumbnail;	

};	

Overall,	we	trimmed	everything	concerning	the	Qt	Designer	plugin	and	simply	passed	the
mFilter	value	by	reference	to	the	constructor.	The	FilterWidget	class	is	not	the	owner	of
the	Filter	anymore;	it	is	rather	the	client	that	calls	it.	Remember	that	the	owner	of	Filter
(aka	the	plugin)	is	FilterLoader.

The	other	modification	is	the	new	setThumbnail()	function.	It	should	be	called	in	place	of	the
old	updateThumbnail().	The	new	updateThumbnail()	now	only	performs	the	thumbnail
processing	and	does	not	touch	the	source	thumbnail.	This	division	is	done	to	prepare	the	work
for	the	coming	animation	section.	The	thumbnail	update	will	be	done	only	once	the	animation
has	been	finished.

Note

Please	refer	to	the	source	code	of	the	chapter	to	see	FilterWidget.cpp.

All	the	low	layers	have	been	completed.	The	next	step	is	to	fill	MainWindow.	Once	again,	it
follows	the	same	pattern	we	covered	in	Chapter	7,	Third-Party	Libraries	Without	a	Headache.
The	sole	difference	with	MainWindow.ui	is	that	filtersLayout	is	empty.	Obviously,	the	plugin
is	loaded	dynamically,	so	we	have	nothing	to	put	inside	it	at	compile	time.

Let's	cover	MainWindow.h:

#include	<QMainWindow>	

#include	<QImage>	

#include	<QVector>	

	

#include	"FilterLoader.h"	

	

namespace	Ui	{	

class	MainWindow;	

}	

	

class	FilterWidget;	

	

class	MainWindow	:	public	QMainWindow	

{	

				Q_OBJECT	

	

public:	

				explicit	MainWindow(QWidget	*parent	=	0);	

				~MainWindow();	

	

				void	loadPicture();	

	

protected:	

				void	resizeEvent(QResizeEvent*	event)	override;	

	

private	slots:	

				void	displayPicture(const	QImage&	picture);	

				void	saveAsPicture();	

	

private:	

				void	initFilters();	

				void	updatePicturePixmap();	

	

private:	

				Ui::MainWindow	*ui;	

				QImage	mSourcePicture;	

				QImage	mSourceThumbnail;	

				QImage&	mFilteredPicture;	

				QPixmap	mCurrentPixmap;	

	

				FilterLoader	mFilterLoader;	

				FilterWidget*	mCurrentFilter;	

				QVector<FilterWidget*>	mFilters;	

};	

The	only	notable	thing	is	the	addition	of	mFilterLoader	as	a	member	variable.
In	MainWindow.cpp,	we	will	focus	on	the	changes	only:

void	MainWindow::initFilters()	

{	

				mFilterLoader.loadFilters();	

	

				auto&	filters	=	mFilterLoader.filters();	

				for(auto&	filter	:	filters)	{	

								FilterWidget*	filterWidget	=	new	FilterWidget(*filter);	

								ui->filtersLayout->addWidget(filterWidget);	

								connect(filterWidget,	&FilterWidget::pictureProcessed,	

																this,	&MainWindow::displayPicture);	

								mFilters.append(filterWidget);	

				}	

	

				if	(mFilters.length()	>	0)	{	

								mCurrentFilter	=	mFilters[0];	

				}	

}	

The	initFilters()	function	does	not	load	the	filters	from	the	ui	content.	Rather,	it	starts	by
calling	the	mFilterLoader.loadFilters()	function	to	dynamically	load	the	plugins	from
the	plugins	directory.

After	that,	an	auto&	filter	is	assigned	with	mFilterLoader.filters().	Note	that	it	is	much
more	readable	to	use	auto	keyword.	The	real	type
is	std::vector<std::unique_ptr<Filter>>&,	which	looks	more	like	a	cryptic	incantation

than	a	simple	object	type.

For	each	of	these	filters,	we	create	a	FilterWidget*	and	pass	it	the	reference	of	the	filter.
Here,	filter	is	effectively	a	unique_ptr.	The	people	behind	C++11	wisely	modified	the
dereferencing	operator,	making	it	transparent	to	the	new	FilterWidget(*filter).	The
combination	of	the	auto	keyword	and	the	overload	of	the	->	operator,	or	the	dereference
operator,	makes	the	use	of	new	C++	features	much	more	enjoyable.

Look	at	the	for	loop.	For	each	filter	we	do	the	following	tasks:

1.	 Create	a	FilterWidget	template.
2.	 Add	the	FilterWidget	template	to	the	filtersLayout	children.
3.	 Connect	the	FilterWidget::pictureProcessed	signal	to	the

MainWindow::displayPicture	slot.
4.	 Add	the	new	FilterWidget	template	to	the	QVectormFilters.

In	the	end,	the	first	FilterWidget	is	selected.

The	only	other	modification	to	MainWindow.cpp	is	the	implementation	of	loadPicture():

	void	MainWindow::loadPicture()	

{	

				...	

				for	(int	i	=	0;	i	<mFilters.size();	++i)	{	

								mFilters[i]->setSourcePicture(mSourcePicture);	

								mFilters[i]->setSourceThumbnail(mSourceThumbnail);	

								mFilters[i]->updateThumbnail();	

				}	

				mCurrentFilter->process();	

}	

The	updateThumbnail()	function	has	been	split	into	two	functions,	and	here	is	where	it	is
used.

The	application	can	now	be	tested.	You	should	be	able	to	execute	it	and	see	the	dynamic
plugins	loaded	and	displaying	the	processed	default	Lenna	picture.

Discovering	the	Animation	Framework
Your	application	works	like	a	charm.	It	is	now	time	to	look	at	how	we	can	make	it	jump	and
move,	or,	in	a	word,	live.	The	Qt	Animation	Framework	can	be	used	to	create	and	start
animations	of	Qt	properties.	The	property	value	will	be	smoothly	interpolated	by	an	internal
global	timer	handle	by	Qt.	You	can	animate	anything	as	long	as	it	is	a	Qt	property.	You	can
even	create	a	property	for	your	own	object	using	Q_PROPERTY.	If	you	forgot
about	Q_PROPERTY,	please	refer	to	Chapter	7,	Third-Party	Libraries	Without	a	Headache.

Three	main	classes	are	provided	to	build	animations:

QPropertyAnimation:	This	class	animates	one	Qt	property	animation
QParallelAnimationGroup:	This	class	animates	multiple	animations	in	parallel	(all	the
animations	start	together)
QSequentialAnimationGroup:	This	class	animates	multiple	animations	in	sequence	(the
animations	run	one	by	one	in	a	defined	order)

All	those	classes	inherit	QAbstractAnimation.	Here	is	a	diagram	from	the	official	Qt
documentation:

Please	notice	that	QAbstractAnimation,	QVariantAnimation,	and	QAnimationGroup	are
abstract	classes.	Here	is	a	simple	example	of	a	Qt	animation:

QLabel	label;	

QPropertyAnimation	animation;	

	

animation.setTargetObject(&label);	

animation.setPropertyName("geometry");	

animation.setDuration(4000);	

animation.setStartValue(QRect(0,	0,	150,	50));	

animation.setEndValue(QRect(300,	200,	150,	50));	

animation.start();	

The	preceding	snippet	moves	a	QLabel	label	from	the	0	x	0	position	to	300	x	200	in	four

seconds.	The	first	thing	to	do	is	to	define	the	target	object	and	its	property.	In	our	case,	the
target	object	is	label	and	we	want	to	animate	the	property	called	geometry.	Then,	we	set	the
animation	duration	in	milliseconds:	4000	milliseconds	for	four	seconds.	Finally,	we	can
decide	the	start	and	end	values	of	the	geometry	property,	which	is	a	QRect,	defined	like	this:

QRect(x,	y,	width,	height)	

The	label	object	starts	with	the	0	x	0	position	and	ends	with	300	x	200.	In	this	example,	the
size	is	fixed	(150	x	50),	but	you	can	also	animate	the	width	and	the	height	if	you	want.

Finally,	we	call	the	start()	function	to	begin	the	animation.	In	four	seconds,	the	animation
smoothly	moves	the	label	from	the	0	x	0	position	to	300	x	200.	By	default,	the	animation	uses
a	linear	interpolation	to	provide	intermediate	values,	so,	after	two	seconds,	the	label	will	be
at	the	150	x	100	position.	The	linear	interpolation	of	the	value	looks	like	the	following
schema:

In	our	case,	the	label	object	will	move	with	a	constant	speed	from	the	start	to	the	end
position.	An	easing	function	is	a	mathematical	function	that	describes	the	evolution	of	a	value
over	time.	The	easing	curve	is	the	visual	representation	of	the	mathematical	function.	The
default	linear	interpolation	is	a	good	start,	but	Qt	provides	plenty	of	easing	curves	to	control
the	speed	behavior	of	your	animation.	Here	is	the	updated	example:

QLabel	label;	

QPropertyAnimation	animation(&label,	"geometry");	

animation.setDuration(4000);	

animation.setStartValue(QRect(0,	0,	150,	50));	

animation.setEndValue(QRect(300,	200,	150,	50));	

animation.setEasingCurve(QEasingCurve::InCirc);	

animation.start();	

You	can	set	the	target	object	and	the	property	name	directly	using	the	QPropertyAnimation
constructor.	As	a	result,	we	removed	the	setTargetObject()	and	setPropertyName()
functions.	After	that,	we	use	setEasingCurve()	to	specify	a	curve	for	this	animation.
The	InCirc	looks	like	the	following:

With	this	easing	curve,	the	label	starts	to	move	really	slowly	but	accelerates	progressively
during	the	animation.

Another	way	is	to	define	the	intermediate	key	steps	yourself,	using	the	setKeyValueAt()
function.	Let's	update	our	example:

QLabel	label;	

QPropertyAnimation	animation(&label,	"geometry");	

animation.setDuration(4000);	

animation.setKeyValueAt(0,	QRect(0,	0,	150,	50));	

animation.setKeyValueAt(0.25,	QRect(225,	112.5,	150,	50));	

animation.setKeyValueAt(1,	QRect(300,	200,	150,	50));	

animation.start();	

We	are	now	setting	key	frames	using	setKeyValueAt().	The	first	argument	is	the	time	step	in
the	range	0	to	1.	In	our	case,	step	1	means	four	seconds.	The	key	frames	at	step	0	and	step	1
provide	the	same	positions	as	the	start/end	positions	of	the	first	example.	As	you	can	see,	we
also	add	a	key	frame	at	step	0.25	(that's	one	second	for	us)	with	the	position	225	x	112.5.	The
next	schema	illustrates	this:

You	can	clearly	distinguish	the	three	key	frames	created	with	setKeyValueAt().	In	our
example,	our	label	will	quickly	reach	the	225	x	112.5	position	in	one	second.	Then	the	label

will	slowly	move	to	the	300	x	200	position	during	the	remaining	three	seconds.

If	you	have	more	than	one	QPropertyAnimation	object,	you	can	use	groups	to	create	more
complex	sequences.	Let's	see	an	example:

QPropertyAnimation	animation1(&label1,	"geometry");	

QPropertyAnimation	animation2(&label2,	"geometry");	

...	

QSequentialAnimationGroup	animationGroup;	

animationGroup.addAnimation(&anim1);	

animationGroup.addAnimation(&anim2);	

animationGroup.start();	

In	this	example,	we	are	using	a	QSequentialAnimationGroup	to	run	animations	one	by	one.
The	first	thing	to	do	is	to	add	animations	to	animationGroup.	Then,	when	we	call	start()	on
our	animation	group,	animation1	is	launched.	When	animation1	is	finished,	animationGroup
runs	animation2.	A	QSequentialAnimationGroup	is	finished	when	the	last	animation	of	the	list
ends.	The	next	schema	depicts	this	behavior:

The	second	animation	group,	QParallelAnimationGroup,	is	initialized	and	started	in	the	same
way	as	QSequentialAnimationGroup.	But	the	behavior	is	different:	it	starts	all	the	animations
in	parallel,	waiting	for	the	longest	animation	to	end.	Here	is	an	illustration	of	this:

Keep	in	mind	that	an	animation	group	is	itself	an	animation	(it	inherits	QAbstractAnimation).
As	a	consequence,	you	can	add	animation	groups	to	other	animation	groups	to	create	a	very
complex	animation	sequence!

Making	your	thumbnails	jump
Let's	apply	what	we	learned	about	the	Qt	Animation	Framework	to	our	project.	Each	time	the
user	clicks	on	a	filter	thumbnail,	we	want	to	poke	it.	All	modifications	will	be	done	on	the
FilterWidget	class.	Let's	start	with	FilterWidget.h:

#include	<QPropertyAnimation>	

	

class	FilterWidget	:	public	QWidget	

{	

				Q_OBJECT	

	

public:	

				explicit	FilterWidget(Filter&	filter,	QWidget	*parent	=	0);	

				~FilterWidget();	

				...	

	

private:	

				void	initAnimations();	

				void	startSelectionAnimation();	

	

private:	

				...	

				QPropertyAnimation	mSelectionAnimation;	

};	

The	first	function,	initAnimations(),	initializes	the	animations	used	by	FilterWidget.	The
second	function,	startSelectionAnimation(),	performs	tasks	required	to	start	this	animation
correctly.	As	you	can	see,	we	are	also	declaring	a	QPropertyAnimation	class,	as	covered	in
the	previous	section.

We	can	now	update	FilterWidget.cpp.	Let's	update	the	constructor:

FilterWidget::FilterWidget(Filter&	filter,	QWidget	*parent)	:	

				QWidget(parent),	

				...	

				mSelectionAnimation()	

{	

				...	

				initAnimations();	

				updateThumbnail();	

}	

We	initialize	our	QPropertyAnimation	called	mSelectionAnimation.	The	constructor	also
calls	initAnimations().	Here	is	its	implementation:

void	FilterWidget::initAnimations()	

{	

				mSelectionAnimation.setTargetObject(ui->thumbnailLabel);	

				mSelectionAnimation.setPropertyName("geometry");	

				mSelectionAnimation.setDuration(200);	

}	

You	should	be	familiar	with	these	animation	initialization	steps	now.	The	target	object	is	the
thumbnailLabel	displaying	the	filter	plugin	preview.	The	property	name	to	animate
is	geometry,	because	we	want	to	update	the	position	of	this	QLabel.	Finally,	we	set	the
animation	duration	to	200	ms.	Like	jokes,	keep	it	short	and	sweet.

Update	the	existing	mouse	event	handler	like	this:

void	FilterWidget::mousePressEvent(QMouseEvent*)	

{	

				process();	

				startSelectionAnimation();	

}	

Each	time	the	user	clicks	on	the	thumbnail,	the	selection	animation	moving	the	thumbnail	will
be	called.	We	can	now	add	this	most	important	function	like	this:

void	FilterWidget::startSelectionAnimation()	

{	

				if	(mSelectionAnimation.state()	==	

								QAbstractAnimation::Stopped)	{	

	

								QRect	currentGeometry	=	ui->thumbnailLabel->geometry();	

								QRect	targetGeometry	=	ui->thumbnailLabel->geometry();	

								targetGeometry.setY(targetGeometry.y()	-	50.0);	

	

								mSelectionAnimation.setKeyValueAt(0,	currentGeometry);	

								mSelectionAnimation.setKeyValueAt(0.3,	targetGeometry);	

								mSelectionAnimation.setKeyValueAt(1,	currentGeometry);	

								mSelectionAnimation.start();	

				}	

}	

The	first	thing	to	do	is	to	retrieve	the	current	geometry	of	thumbnailLabel
called	currentGeometry.	Then,	we	create	a	targetGeometry	object	with	the	same	x,	width,
and	height	values.	We	only	reduce	the	y	position	by	50,	so	the	target	position	is	always	above
the	current	position.

After	that,	we	define	our	key	frames:

At	step	0,	the	value	is	the	current	position.
At	step	0.3	(60	ms,	because	the	total	duration	is	200	ms),	the	value	is	the	target	position.
At	step	1	(the	end	of	the	animation),	we	bring	it	to	back	the	original	position.	The
thumbnail	will	quickly	reach	the	target	position,	then	slowly	fall	down	to	its	original
position.

These	key	frames	must	be	initialized	before	each	animation	starts.	Because	the	layout	is
dynamic,	the	position	(and	so	the	geometry)	could	have	been	updated	when	the	user	resizes
the	main	window.

Please	note	that	we	are	preventing	the	animation	from	starting	again	if	the	current	state	is	not
stopped.	Without	this	precaution,	the	thumbnail	could	move	to	the	top	again	and	again	if	the
user	clicks	like	a	mad	man	on	the	widget.

You	can	now	test	your	application	and	click	on	a	filter	effect.	The	filter	thumbnail	will	jump
to	respond	to	your	click!

Fading	the	picture	in
When	the	user	opens	a	picture,	we	want	to	fade	in	the	image	by	playing	with	its	opacity.	The
classes	QLabel	or	QWidget	do	not	provide	an	opacity	property.	However,	we	can	add	a	visual
effect	to	any	QWidget	using	a	QGraphicsEffect.	For	this	animation,	we	will
use	QGraphicsOpacityEffect	to	provide	an	opacity	property.

Here	is	a	schema	to	describe	the	role	of	each	one:

In	our	case,	the	QWidget	class	is	our	QLabel	and	the	QGraphicsEffect	class	is
QGraphicsOpacityEffect.	Qt	provides	the	Graphics	Effect	system	to	alter	the	rendering	of
a	QWidget	class.	The	abstract	class	QGraphicsEffect	has	a	pure	virtual	method	draw()	that	is
implemented	by	each	graphics	effect.

We	can	now	update	the	MainWindow.h	according	to	the	next	snippet:

#include	<QPropertyAnimation>	

#include	<QGraphicsOpacityEffect>	

	

class	MainWindow	:	public	QMainWindow	

{	

				...	

private:	

				...	

				void	initAnimations();	

private:	

				...	

				QPropertyAnimation	mLoadPictureAnimation;	

				QGraphicsOpacityEffect	mPictureOpacityEffect;	

};	

The	initAnimations()	private	function	is	in	charge	of	all	the	animation	initializations.	The
	mLoadPictureAnimation	member	variable	performs	the	fade-in	animation	on	the	loaded
picture.	Finally,	we	declare	mPictureOpacityEffect,	the	mandatory	QGraphicsOpacityEffect.

Let's	switch	to	the	implementation	part	with	the	MainWindow.cpp	constructor:

MainWindow::MainWindow(QWidget	*parent)	:	

				QMainWindow(parent),	

				...	

				mLoadPictureAnimation(),	

				mPictureOpacityEffect()	

{	

				...	

				initFilters();	

				initAnimations();	

}	

No	surprises	here.	We	use	the	initializer	list	to	construct	our	two	new	member	variables.	The
MainWindow	constructor	also	calls	initAnimations().

Let's	look	at	how	this	animation	is	initialized:

void	MainWindow::initAnimations()	

{	

				ui->pictureLabel->setGraphicsEffect(&mPictureOpacityEffect);	

				mLoadPictureAnimation.setTargetObject(&mPictureOpacityEffect);	

				mLoadPictureAnimation.setPropertyName("opacity");	

				mLoadPictureAnimation.setDuration(500);	

				mLoadPictureAnimation.setStartValue(0);	

				mLoadPictureAnimation.setEndValue(1);	

				mLoadPictureAnimation.setEasingCurve(QEasingCurve::InCubic);	

}	

The	first	thing	to	do	is	to	link	our	QGraphicsOpacityEffect	with	our	QLabel.	This	can	be
easily	done	by	calling	the	setGraphicsEffect()	function	on	pictureLabel.

Now	we	can	set	our	animation	up.	In	this	case,	mLoadPictureAnimation
targets	mPictureOpacityEffect	and	will	affect	its	property	named	opacity.	The	animation
duration	is	500	milliseconds.	Next,	we	set	the	opacity	value	when	the	animation	starts	and
ends:

At	the	beginning,	the	picture	is	completely	transparent	(opacity	value	is	0)
At	the	end,	the	picture	is	fully	visible	(opacity	value	is	1)

For	this	animation,	we	use	the	easing	curve	InCubic.	This	curve	looks	like	this:

Feel	free	to	try	other	curves	to	find	the	one	that	looks	the	best	for	you.

Note

You	can	get	the	list	of	all	easing	curves	with	a	visual	preview	here:http://doc.qt.io/qt-
5/qeasingcurve.html

The	last	step	is	to	start	the	animation	at	the	right	place:

void	MainWindow::loadPicture()	

{	

				...	

				mCurrentFilter->process();	

				mLoadPictureAnimation.start();	

}	

You	can	now	start	your	application	and	load	a	picture.	You	should	see	your	picture	fade	in
over	500	milliseconds!

http://doc.qt.io/qt-5/qeasingcurve.html

Flashing	the	thumbnail	in	a	sequence
For	this	last	animation,	we	want	to	display	a	blue	flash	on	each	filter	preview	when	the
thumbnail	is	updated.	We	do	not	want	to	flash	all	previews	at	the	same	time,	but	in	a	sequence,
one	by	one.	This	feature	will	be	achieved	in	two	parts:

Create	a	color	animation	in	FilterWidget	to	display	a	blue	flash
Build	a	sequential	animation	group	in	MainWindow	containing	all	FilterWidget	color
animations

Let's	start	to	add	the	color	animation.	Update	FilterWidget.h	as	shown	in	the	following
snippet:

#include	<QGraphicsColorizeEffect>	

	

class	FilterWidget	:	public	QWidget	

{	

				Q_OBJECT	

	

public:	

				explicit	FilterWidget(Filter&	filter,	QWidget	*parent	=	0);	

				~FilterWidget();	

				...	

				QPropertyAnimation*	colorAnimation();	

	

private:	

				...	

				QPropertyAnimation	mSelectionAnimation;	

				QPropertyAnimation*	mColorAnimation;	

				QGraphicsColorizeEffect	mColorEffect;	

};	

This	time	we	do	not	want	to	affect	the	opacity,	but	rather	colorize	the	thumbnail	in	blue.	Thus,
we	use	another	Qt	standard	effect:	QGraphicsColorizeEffect.	We	also	declare	a
new	QPropertyAnimation	named	mColorAnimation	and	its	corresponding
getter,	colorAnimation().	We	declare	mColorAnimation	as	a	pointer	because	the	ownership
will	be	taken	by	the	animation	group	of	MainWindow.	This	topic	will	be	covered	soon.

Let's	update	the	constructor	in	FilterWidget.cpp:

FilterWidget::FilterWidget(Filter&	filter,	QWidget	*parent)	:	

				QWidget(parent),	

				...	

				mColorAnimation(new	QPropertyAnimation()),	

				mColorEffect()	

{	

				...	

}	

We	just	have	to	construct	our	two	new	member	variables,	mColorAnimation	and	mColorEffect.
Let's	look	at	the	amazing	complexity	of	the	getter:

QPropertyAnimation*	FilterWidget::colorAnimation()	

{	

				return	mColorAnimation;	

}	

It	was	a	lie:	we	always	try	to	write	comprehensive	code!

Now	that	the	preliminaries	are	done,	we	can	initialize	the	color	animation	by	updating	the
	initAnimations()	function	like	this:

void	FilterWidget::initAnimations()	

{	

				...	

				mColorEffect.setColor(QColor(0,	150,	150));	

				mColorEffect.setStrength(0.0);	

				ui->thumbnailLabel->setGraphicsEffect(&mColorEffect);	

	

				mColorAnimation->setTargetObject(&mColorEffect);	

				mColorAnimation->setPropertyName("strength");	

				mColorAnimation->setDuration(200);	

				mColorAnimation->setStartValue(1.0);	

				mColorAnimation->setEndValue(0.0);	

}	

The	first	part	sets	the	color	filter	up.	Here,	we	chose	a	kind	of	turquoise	color	for	the	flash
effect.	The	colorize	effect	is	handled	by	its	strength	property.	By	default,	the	value	is	1.0,	so,
we	set	it	to	0.0	to	keep	it	from	affecting	our	default	thumbnail	of	Lenna.	Finally,	we	link
the	thumbnailLabel	with	this	mColorEffect	calling	setGraphicsEffect().

The	second	part	is	the	color	animation	preparation.	This	animation	targets	the	color	effect
and	its	property,	named	strength.	This	is	a	short	flash;	200	milliseconds	is	enough:

We	want	to	start	with	a	full	strength	effect,	so	we	put	the	start	value	at	1.0
During	the	animation,	the	colorize	effect	will	decrease	until	it	reaches	0.0

The	default	linear	interpolation	is	fine	here,	so	we	do	not	use	any	easing	curve.

Here	we	are.	The	color	effect/animation	is	initialized	and	we	provided	a	colorAnimation()
getter.	We	can	now	begin	the	second	part	of	this	feature,	Updating	MainWindow.h:

#include	<QSequentialAnimationGroup>	

	

class	MainWindow	:	public	QMainWindow	

{	

				Q_OBJECT	

				...	

	

private:	

				...	

				QSequentialAnimationGroup	mFiltersGroupAnimation;	

};	

We	declare	a	QSequentialAnimationGroup	class	to	trigger,	one	by	one,	all	FilterWidget
color	animations	displaying	the	blue	flash.	Let's	update	the	constructor	in	MainWindow.cpp:

MainWindow::MainWindow(QWidget	*parent)	:	

				QMainWindow(parent),	

				...	

				mFiltersGroupAnimation()	

{	

				...	

}	

A	new	member	variable	means	a	new	construction	in	the	initializer	list:	that	is	the	rule!

We	can	now	update	initAnimations()	to	prepare	our	animation	group:

void	MainWindow::initAnimations()	

{	

				...	

				for	(FilterWidget*	filterWidget	:	mFilters)	{	

								mFiltersGroupAnimation.addAnimation(

												filterWidget->colorAnimation());	

				}	

}	

Do	you	remember	that	an	animation	group	is	only	an	animation	container?	As	a	consequence,
we	iterate	on	every	FilterWidget	to	get	its	color	animation	and	fill
our	mFiltersGroupAnimation	calling	addAnimation().	Thanks	to	C++11's	range-based	for
loop,	it	is	really	readable.	Keep	in	mind	that	when	you	add	an	animation	to	an	animation
group,	the	group	takes	ownership	of	this	animation.

Our	animation	group	is	ready.	We	can	now	start	it:

void	MainWindow::loadPicture()	

{	

				...	

				mCurrentFilter->process();	

				mLoadPictureAnimation.start();	

				mFiltersGroupAnimation.start();	

}	

Start	your	application	and	open	a	picture.	You	can	see	that	all	filter	thumbnails	will	flash	one
by	one	from	left	to	right.	This	is	what	we	intended,	but	it's	still	not	perfect	because	all	the
thumbnails	are	already	updated	before	the	flashes.	We	have	this	behavior	because
the	loadPicture()	function	actually	sets	and	updates	all	thumbnails,	and	then	finally	starts	the

sequential	animation	group.	Here	is	a	schema	illustrating	the	current	behavior:

The	schema	only	describes	the	behavior	for	two	thumbnails,	but	the	principle	is	the	same	with
three	thumbnails.	Here	is	the	targeted	behavior:

We	must	only	update	the	thumbnail	when	the	flash	animation	is	over.	Fortunately,
QPropertyAnimation	emits	the	finished	signal	when	the	animation	is	over,	so	we	only	have
to	make	a	few	changes.	Update	loadPicture()	function	from	MainWindow.cpp:

void	MainWindow::loadPicture()	

{	

				...	

				for	(int	i	=	0;	i	<mFilters.size();	++i)	{	

								mFilters[i]->setSourcePicture(mSourcePicture);	

								mFilters[i]->setSourceThumbnail(mSourceThumbnail);	

								//mFilters[i]->updateThumbnail();	

				}	

				...	

}	

As	you	can	see,	we	kept	the	set	and	only	removed	the	update	thumbnail	when	a	new	picture	is
opened	by	the	user.	At	this	stage,	all	FilterWidget	instances	have	the	correct	thumbnail,	but
they	don't	display	it.	Let's	fix	this	by	updating	FilterWidget.cpp:

void	FilterWidget::initAnimations()	

{	

				...	

				mColorAnimation->setTargetObject(&mColorEffect);	

				mColorAnimation->setPropertyName("strength");	

				mColorAnimation->setDuration(200);	

				mColorAnimation->setStartValue(1.0);	

				mColorAnimation->setEndValue(0.0);	

				connect(mColorAnimation,	&QPropertyAnimation::finished,	[this]		

				{	

								updateThumbnail();	

				});	

}	

We	connect	a	lambda	function	to	the	finished	signal	of	the	color	animation.	This	lambda
simply	updates	the	thumbnail.	You	can	now	start	your	application	again	and	load	a	picture.
You	should	see	that	we	not	only	animate	the	sequential	blue	flash,	but	also	the	thumbnail
update.

Summary
In	this	chapter,	you	defined	a	Filter	interface	in	your	own	SDK.	Your	filters	are	now	plugins.
You	know	how	to	create	and	load	a	new	plugin,	so	your	application	is	now	modular	and	can
be	easily	extended.	We	have	also	enhanced	the	application	with	the	Qt	Animation	Framework.
You	know	how	to	animate	the	position,	the	color,	and	the	opacity	of	any	QWidget,
using	QGraphicsEffect	if	necessary.	We	created	a	sequential	animation	that	starts	three
animations	one	by	one	with	QSequentialAnimationGroup.

In	the	next	chapter,	we	will	talk	about	a	big	subject:	threading.	The	Qt	framework	can	help	you
build	a	robust	and	reliable	multithreading	application.	To	illustrate	the	chapter,	we	will	create
a	Mandelbrot	fractal	generator	using	threadpools.

Chapter	9.		Keeping	Your	Sanity	with
Multithreading
In	previous	chapters,	we	managed	to	always	write	code	without	ever	relying	on	threads.	It	is
time	to	face	the	beast	and	truly	understand	how	threading	works	in	Qt.	In	this	chapter,	you	will
develop	a	multithreaded	application	that	displays	a	Mandelbrot	fractal.	It	is	a	heavy
computational	process	that	will	bring	tears	to	your	CPU	cores.

In	the	example	project,	the	user	can	see	the	Mandelbrot	fractal,	zoom	in	the	picture,	and	pan
around	to	discover	the	magic	of	fractals.

The	chapter	covers	the	following	topics:

Deep	understanding	of	the	QThread	framework
Overview	of	all	the	available	threading	technologies	in	Qt
Using	a	QThreadPool	class	to	dispatch	jobs	and	aggregate	the	results
How	to	synchronize	threads	and	minimize	sharing	states
Low-level	drawing	to	optimize	the	performances
Common	threading	pitfalls	and	challenges

Discovering	QThread
Qt	provides	a	sophisticated	threading	system.	We	assume	you	already	know	threading	basics
and	the	associated	issues	(deadlocks,	threads	synchronization,	resource	sharing,	and	so	on)
and	we	will	focus	on	how	Qt	implements	it.

The	QThread	is	the	central	class	of	the	Qt	threading	system.	A	QThread	instance	manages	one
thread	of	execution	within	the	program.

You	can	subclass	QThread	to	override	the	run()	function,	which	will	be	executed	in
the	QThread	framework.	Here	is	how	you	can	create	and	start	a	QThread:

QThread	thread;	

thread.start();	

The	start()	function	calling	will	automatically	call	the	run()	function	of	the	thread	and	emit
the	started()	signal.	Only	at	this	point	will	the	new	thread	of	execution	be	created.
When	run()	is	completed,	the	thread	object	will	emit	the	finished()	signal.

This	brings	us	to	a	fundamental	aspect	of	QThread:	it	works	seamlessly	with	the	signal/slot
mechanism.	Qt	is	an	event-driven	framework,	where	a	main	event	loop	(or	the	GUI	loop)
processes	events	(user	input,	graphical,	and	so	on)	to	refresh	the	UI.

Each	QThread	comes	with	its	own	event	loop	that	can	process	events	outside	the	main	loop.	If
not	overridden,	run()	calls	the	QThread::exec()	function,	which	starts	the	thread	object's
event	loop.	You	can	also	override	QThread	and	call	yourself	exec(),	like	so:

class	Thread	:	public	QThread	

{	

Q_OBJECT	

protected:	

				void	run()		

				{	

						Object*	myObject	=	new	Object();	

								connect(myObject,	&Object::started,		

																this,	&Thread::doWork);	

								exec();	

				}	

	

private	slots:	

				void	doWork();	

};	

The	started()signal	will	be	processed	by	the	Thread	event	loop	only	upon	the	exec()	call.	It
will	block	and	wait	until	QThread::exit()	is	called.

A	crucial	thing	to	note	is	that	a	thread	event	loop	delivers	events	for	all	QObjects	that	are
living	in	that	thread.	This	includes	all	objects	created	in	that	thread	or	moved	to	that	thread.
This	is	referred	to	as	the	thread	affinity	of	an	object.	Let's	see	an	example:

class	Thread	:	public	QThread	

{	

				Thread()	:	

								mObject(new	QObject())	

				{	

				}	

private	:	

				QObject*	myObject;	

};	

	

//	Somewhere	in	MainWindow	

Thread	thread;	

thread.start();	

In	this	snippet,	myObject	is	constructed	in	Thread	class's	constructor,	which	is	created	in	turn
in	MainWindow.	At	this	point,	thread	is	living	in	the	GUI	thread.	Hence,	myObject	is	also	living
in	the	GUI	thread.

Note

An	object	created	before	a	QCoreApplication	object	has	no	thread	affinity.	As	a	consequence,
no	event	will	be	dispatched	to	it.

It	is	great	to	be	able	to	handle	signals	and	slots	in	our	own	QThread,	but	how	can	we	control
signals	across	multiple	threads?	A	classic	example	is	a	long-running	process	that	is	executed
in	a	separate	thread	that	has	to	notify	the	UI	to	update	some	state:

class	Thread	:	public	QThread	

{	

				Q_OBJECT	

				void	run()	{	

								//	long	running	operation	

								emit	result("I	<3	threads");	

				}	

signals:	

				void	result(QString	data);	

};	

	

//	Somewhere	in	MainWindow	

Thread*	thread	=	new	Thread(this);	

connect(thread,	&Thread::result,	this,	&MainWindow::handleResult);	

connect(thread,	&Thread::finished,	thread,	&QObject::deleteLater);	

thread->start();	

Intuitively,	we	assume	that	the	first	connect	sends	the	signal	across	multiple	threads	(to	have
results	available	in	MainWindow::handleResult),	whereas	the	second	connect	should	work	on

thread's	event	loop	only.

Fortunately,	this	is	the	case	due	to	a	default	argument	in	the	connect()	function	signature:	the
connection	type.	Let's	see	the	complete	signature:

QObject::connect(

				const	QObject	*sender,	const	char	*signal,		

				const	QObject	*receiver,	const	char	*method,		

				Qt::ConnectionType	type	=	Qt::AutoConnection)	

The	type	keyword	takes	Qt::AutoConnection	as	a	default	value.	Let's	review	the	possible
values	of	the	Qt::ConectionType	enum	as	the	official	Qt	documentation	states:

Qt::AutoConnection:	If	the	receiver	lives	in	the	thread	that	emits	the
signal,	Qt::DirectConnection	is	used.	Otherwise,	Qt::QueuedConnection	is	used.	The
connection	type	is	determined	when	the	signal	is	emitted.
Qt::DirectConnection:	This	slot	is	invoked	immediately	when	the	signal	is	emitted.	The
slot	is	executed	in	the	signaling	thread.
Qt::QueuedConnection:	This	slot	is	invoked	when	control	returns	to	the	event	loop	of	the
receiver's	thread.	The	slot	is	executed	in	the	receiver's	thread.
Qt::BlockingQueuedConnection:	This	is	the	same	as	Qt::QueuedConnection,	except	that
the	signaling	thread	blocks	until	the	slot	returns.	This	connection	must	not	be	used	if	the
receiver	lives	in	the	signaling	thread,	or	else	the	application	will	deadlock.
Qt::UniqueConnection:	This	is	a	flag	that	can	be	combined	with	any	one	of	the	previous
connection	types,	using	a	bitwise	OR.	When	Qt::UniqueConnection	is
set,	QObject::connect()	will	fail	if	the	connection	already	exists	(that	is,	if	the	same
signal	is	already	connected	to	the	same	slot	for	the	same	pair	of	objects).

When	using	Qt::AutoConnection,	the	final	ConnectionType	is	resolved	only	when	the	signal
is	effectively	emitted.	If	you	look	again	at	our	example,	at	the	first	connect():

connect(thread,	&Thread::result,		

								this,	&MainWindow::handleResult);	

When	result()	is	emitted,	Qt	will	look	at	the	handleResult()	thread	affinity,	which	is
different	from	the	thread	affinity	of	the	result()	signal.	The	thread	object	is	living
in	MainWindow	(remember	that	it	has	been	created	in	MainWindow),	but	the	result()	signal	has
been	emitted	in	the	run()	function,	which	is	running	in	a	different	thread	of	execution.	As	a
result,	a	Qt::QueuedConnection	slot	will	be	used.

We	can	now	take	a	look	at	the	second	connect():

connect(thread,	&Thread::finished,	thread,	&QObject::deleteLater);	

Here,	deleteLater()	and	finished()	live	in	the	same	thread;	therefore,

a	Qt::DirectConnection	slot	will	be	used.

It	is	crucial	that	you	understand	that	Qt	does	not	care	about	the	emitting	object	thread	affinity,
it	looks	only	at	the	signal	"context	of	execution".

Loaded	with	this	knowledge,	we	can	take	another	look	at	our	first	QThread	class	example	to
have	a	full	understanding	of	this	system:

class	Thread	:	public	QThread	

{	

Q_OBJECT	

protected:	

				void	run()		

				{	

								Object*	myObject	=	new	Object();	

								connect(myObject,	&Object::started,		

																this,	&Thread::doWork);	

								exec();	

				}	

	

private	slots:	

				void	doWork();	

};	

When	the	Object::started()	function	is	emitted,	a	Qt::QueuedConnection	slot	will	be	used.
This	is	where	your	brain	freezes.	The	Thread::doWork()	function	lives	in	another	thread
than	Object::started(),	which	has	been	created	in	run().	If	Thread	has	been	instantiated	in
the	UI	thread,	this	is	where	doWork()	would	have	belonged.

This	system	is	powerful,	but	complex.	To	make	things	simpler,	Qt	favors	the	worker	model.	It
splits	the	threading	plumbing	from	the	real	processing.	Here	is	an	example:

class	Worker	:	public	QObject	

{	

				Q_OBJECT	

public	slots:	

				void	doWork()		

				{	

								emit	result("workers	are	the	best");	

				}	

	

signals:	

				void	result(QString	data);	

};	

	

//	Somewhere	in	MainWindow	

QThread*	thread	=	new	Thread(this);	

Worker*	worker	=	new	Worker();	

worker->moveToThread(thread);	

	

connect(thread,	&QThread::finished,		

								worker,	&QObject::deleteLater);	

connect(this,	&MainWindow::startWork,		

								worker,	&Worker::doWork);	

connect(worker,	&Worker::resultReady,		

								this,	handleResult);	

	

thread->start();	

	

//	later	on,	to	stop	the	thread	

thread->quit();	

thread->wait();	

We	start	by	creating	a	Worker	class	that	has:

A	doWork()	slot	that	will	have	the	content	of	our	old	QThread::run()
A	result()	signal	that	will	emit	the	resulting	data

Next	in	the	MainWindow	class,	we	create	a	simple	thread	object	and	an	instance	of	Worker.
The	worker->moveToThread(thread)	is	where	the	magic	happens.	It	changes	the	affinity	of
the	worker	object.	The	worker	now	lives	in	the	thread	object.

You	can	only	push	an	object	from	your	current	thread	to	another	thread.	Conversely,	you
cannot	pull	an	object	that	lives	in	another	thread.	You	cannot	change	the	thread	affinity	of	an
object	if	the	object	does	not	live	in	your	thread.	Once	thread->start()	is	executed,	we	cannot
call	worker->moveToThread(this)	unless	we	are	doing	it	from	this	new	thread.

After	that,	we	do	three	connect():

1.	 We	handle	the	worker	life	cycle	by	reaping	it	when	the	thread	is	finished.	This	signal	will
use	a	Qt::DirectConnection.

2.	 We	start	the	Worker::doWork()	upon	a	possible	UI	event.	This	signal	will	use
a	Qt::QueuedConnection.

3.	 We	process	the	resulting	data	in	the	UI	thread	with	handleResult().	This	signal	will	use
a	Qt::QueuedConnection.

To	sum	up,	QThread	can	be	either	subclassed	or	used	in	conjunction	with	a	worker	class.
Generally,	the	worker	approach	is	favored	because	it	separates	more	cleanly	the	threading
affinity	plumbing	from	the	actual	operation	you	want	to	execute	in	parallel.

Flying	over	Qt	multithreading	technologies
Built	upon	QThread,	several	threading	technologies	are	available	in	Qt.	First,	to	synchronize
threads,	the	usual	approach	is	to	use	a	mutual	exclusion	(mutex)	to	have	a	mutual	exclusion
for	a	given	resource.	Qt	provides	it	by	means	of	the	QMutex	class.	Its	usage	is	straightforward:

QMutex	mutex;	

int	number	=	1;	

	

mutex.lock();	

number	*=	2;	

mutex.unlock();	

From	the	mutex.lock()	instruction,	any	other	thread	trying	to	lock	the	mutex	will	wait
until	mutex.unlock()	has	been	called.

The	locking/unlocking	mechanism	is	error-prone	in	complex	code.	You	can	easily	forget	to
unlock	a	mutex	in	a	specific	exit	condition,	causing	a	deadlock.	To	simplify	this	situation,	Qt
provides	a	QMutexLocker	that	should	be	used	where	the	QMutex	needs	to	be	locked:

QMutex	mutex;	

QMutexLocker	locker(&mutex);	

	

int	number	=	1;	

number	*=	2;	

if	(overlyComplicatedCondition)	{	

				return;	

}	else	if	(notSoSimple)	{	

				return;	

}	

The	mutex	is	locked	when	the	locker	object	is	created	and	will	be	unlocked	when	the	locker
object	is	destroyed;	for	example,	when	it	goes	out	of	scope.	This	is	the	case	for	every
condition	we	stated	where	the	return	statement	appears.	It	makes	the	code	simpler	and	more
readable.

You	may	need	to	create	and	destroy	threads	frequently,	as	managing	QThread	instances	by
hand	can	become	cumbersome.	For	this,	you	can	use	the	QThreadPool	class,	which	manages	a
pool	of	reusable	QThreads.

To	execute	code	within	threads	managed	by	a	QThreadPool	class,	you	will	use	a	pattern	very
close	to	the	worker	we	covered	earlier.	The	main	difference	is	that	the	processing	class	has	to
extend	the	QRunnable	class.	Here	is	how	it	looks:

class	Job	:	public	QRunnable	

{	

				void	run()	

				{	

								//	long	running	operation	

				}	

}	

	

Job*	job	=	new	Job();	

QThreadPool::globalInstance()->start(job);	

Just	override	the	run()	function	and	ask	QThreadPool	to	execute	your	job	in	a	separate	thread.
The	QThreadPool::globalInstance()	is	a	static	helper	function	that	gives	you	access	to	an
application	global	instance.	You	can	create	your	own	QThreadPool	if	you	need	to	have	finer
control	over	the	QThreadPool	life	cycle.

Note	that	the	QThreadPool::start()	function	takes	the	ownership	of	job	and	will
automatically	delete	it	when	run()	finishes.	Watch	out,	this	does	not	change	the	thread	affinity
like	QObject::moveToThread()	does	with	workers!	A	QRunnable	class	cannot	be	reused,	it	has
to	be	a	freshly	baked	instance.

If	you	fire	up	several	jobs,	QThreadPool	automatically	allocates	the	ideal	number	of	threads
based	on	the	core	count	of	your	CPU.	The	maximum	number	of	threads	that	the	QThreadPool
class	can	start	can	be	retrieved	with	QThreadPool::maxThreadCount().

Tip

If	you	need	to	manage	threads	by	hand,	but	you	want	to	base	it	on	the	number	of	cores	of	your
CPU,	you	can	use	the	handy	static	function,	QThreadPool::idealThreadCount().

Another	approach	to	multi-threaded	development	is	available	with	the	Qt	Concurrent
framework.	It	is	a	higher-level	API	that	avoids	the	use	of	mutexes/lock/wait	conditions	and
promotes	the	distribution	of	the	processing	among	CPU	cores.

Qt	Concurrent	relies	on	the	QFuture	class	to	execute	a	function	and	expects	a	result	later	on:

void	longRunningFunction();	

QFuture<void>	future	=	QtConcurrent::run(longRunningFunction);	

The	longRunningFunction()	function	will	be	executed	in	a	separated	thread	obtained	from
the	default	QThreadPool	class.

To	pass	parameters	to	a	QFuture	class	and	retrieve	the	result	of	the	operation,	use	the
following	code:

QImage	processGrayscale(QImage&	image);	

QImage	lenna;	

	

QFuture<QImage>	future	=	QtConcurrent::run(processGrayscale,	

				lenna);	

	

QImage	grayscaleLenna	=	future.result();	

Here	we	pass	lenna	as	a	parameter	to	the	processGrayscale()	function.	Because	we	want
a	QImage	as	a	result,	we	declare	the	QFuture	class	with	the	template	type,	QImage.	After
that,	future.result()	blocks	the	current	thread	and	waits	for	the	operation	to	be	completed	to
return	the	final	QImage.

To	avoid	blocking,	QFutureWatcher	comes	to	the	rescue:

QFutureWatcher<QImage>	watcher;	

connect(&watcher,	&QFutureWatcher::finished,		

								this,	&QObject::handleGrayscale);	

	

QImage	processGrayscale(QImage&	image);	

QImage	lenna;	

QFuture<QImage>	future	=	QtConcurrent::run(processImage,	lenna);	

watcher.setFuture(future);	

We	start	by	declaring	a	QFutureWatcher	class	with	the	template	argument	matching	the	one
used	for	QFuture.	Then	simply	connect	the	QFutureWatcher::finished	signal	to	the	slot	you
want	to	be	called	when	the	operation	has	been	completed.

The	last	step	is	to	tell	the	watcher	object	to	watch	the	future	object
with	watcher.setFuture(future).	This	statement	looks	almost	like	it	comes	from	a	science-
fiction	movie.

Qt	Concurrent	also	provides	a	MapReduce	and	FilterReduce	implementation.	The	MapReduce
is	a	programming	model	that	basically	does	two	things:

Maps	or	distributes	the	processing	of	the	dataset	among	multiple	cores	of	the	CPU
Reduces	or	aggregates	the	results	to	provide	it	to	the	caller

This	technique	was	first	promoted	by	Google	to	be	able	to	process	huge	datasets	within	a
cluster	of	CPUs.

Here	is	an	example	of	a	simple	map	operation:

QList	images	=	...;	

	

QImage	processGrayscale(QImage&	image);	

QFuture<void>	future	=	QtConcurrent::mapped(

																																					images,	processGrayscale);	

Instead	of	QtConcurrent::run(),	we	use	the	mapped	function	that	takes	a	list	and	the	function
to	apply	to	each	element	in	a	different	thread	each	time.	The	images	list	is	modified	in	place,
so	there	is	no	need	to	declare	QFuture	with	a	template	type.

The	operation	can	be	made	to	block	by	using	QtConcurrent::blockingMapped()	instead
of	QtConcurrent::mapped().

Finally,	a	MapReduce	operation	looks	like	this:

QList	images	=	...;	

	

QImage	processGrayscale(QImage&	image);	

void	combineImage(QImage&	finalImage,	const	QImage&	inputImage);	

	

QFuture<void>	future	=	QtConcurrent::mappedReduced(

																																												images,		

																																												processGrayscale,		

																																												combineImage);	

Here	we	added	a	combineImage()	function	that	will	be	called	for	each	result	returned	by	the
map	function,	processGrayscale().	It	will	merge	the	intermediate	data,	inputImage,	into
the	finalImage.	This	function	is	called	only	once	at	a	time	per	thread,	so	there	is	no	need	to
use	a	mutex	to	lock	the	result	variable.

The	FilterReduce	follows	exactly	the	same	pattern;	the	filter	function	simply	allows	you	to
filter	the	input	list	instead	of	transforming	it.

Architecting	the	Mandelbrot	project
The	example	project	of	this	chapter	is	the	multi-threaded	calculation	of	a	Mandelbrot	fractal.
The	user	will	see	the	fractal	and	will	be	able	to	pan	and	zoom	in	that	window.

Before	diving	into	the	code,	we	have	to	have	a	broad	understanding	of	a	fractal	and	how	we
are	going	to	achieve	its	calculation.

The	Mandelbrot	fractal	is	a	numerical	set	that	works	with	complex	numbers	(a	+	bi).	Each
pixel	is	associated	with	a	value	calculated	through	iterations.	If	this	iterated	value	diverges
towards	infinity	then	the	pixel	is	out	of	the	Mandelbrot	set.	If	not,	then	the	pixel	is	inside	the
Mandelbrot	set.	A	visual	representation	of	the	Mandelbrot	fractal	looks	like	this:

Every	black	pixel	in	this	image	tends	to	diverge	to	an	infinite	value,	whereas	white	pixels	are
bounded	to	a	finite	value.	The	white	pixels	belong	to	the	Mandelbrot	set.

What	makes	it	interesting	from	a	multi-threaded	perspective,	is	that	to	determine	if	the	pixel
belongs	or	not	to	the	Mandelbrot	set,	we	have	to	iterate	on	a	formula	to	be	able	to	hypothesize
its	divergence	or	not.	The	more	iterations	we	perform,	the	safer	we	are	in	claiming	"yes,	this
pixel	is	in	the	Mandelbrot	set,	it	is	a	white	pixel".

Even	more	fun,	we	can	take	any	value	in	the	graphical	plot	and	always	apply	the	Mandelbrot
formula	to	deduce	if	the	pixel	should	be	black	or	white.	As	a	consequence,	you	can	zoom
endlessly	inside	the	graphics	of	your	fractal.	There	are	only	two	main	limitations:

The	power	of	your	CPU	hinders	the	picture	generation	speed.
The	floating	number	precision	of	your	CPU	architecture	limits	the	zoom.	If	you	keep
zooming,	you	will	get	visual	artifacts	because	the	scale	factor	can	only	handle	15	to	17
significant	digits.

The	architecture	of	the	application	has	to	be	carefully	designed.	Because	we	are	working	with
threads,	it	is	very	easy	to	cause	deadlock,	starve	threads,	or	even	worse,	freeze	the	UI.

We	really	want	to	maximize	the	use	of	the	CPU.	To	do	so,	we	will	execute	as	many	threads	as
possible	on	each	core.	Each	thread	will	be	responsible	for	calculating	a	part	of	the
Mandelbrot	set	before	giving	back	its	result.

The	architecture	of	the	application	is	as	follows:

The	application	is	divided	into	three	parts:

MandelbrotWidget:	This	requests	a	picture	to	display.	It	handles	the	drawing	and	the	user
interaction.	This	object	lives	in	the	UI	thread.
MandelbrotCalculator:	This	handles	the	picture	requests	and	aggregates	the
resulting	JobResults	before	sending	it	back	to	MandelbrotWidget.	This	object	lives	in	its
own	thread.
Job:	This	calculates	a	part	of	the	final	picture	before	transmitting	the	result	back
to	MandelbrotCalculator.	Each	job	lives	in	its	own	thread.

The	MandelbrotCalculator	thread	will	use	a	QThreadPool	class	to	dispatch	jobs	in	their	own
thread.	This	will	scale	perfectly	according	to	your	CPU	cores.	Each	job	will	calculate	a	single
line	of	the	final	picture	before	sending	it	back	to	MandelbrotCalculator	through	a	JobResult
object.

The	MandelbrotCalculator	thread	is	really	the	orchestrator	of	the	calculation.	Consider	a
user	that	zooms	in	the	picture	before	the	calculation	is	complete;	MandelbrotWidget	will
request	a	new	picture	to	MandelbrotCalculator,	which	in	turn	has	to	cancel	all	the	current
jobs	before	dispatching	new	jobs.

We	will	add	a	last	constraint	to	this	project:	it	has	to	be	mutex	free.	Mutexes	are	very
convenient	tools,	but	they	force	threads	to	wait	for	each	other	and	are	error-prone.	To	do	this,
we	will	rely	on	multiple	concepts	and	technologies	provided	by	Qt:	multi-threaded
signal/slots,	implicit	sharing,	and	so	on.

By	minimizing	the	sharing	state	between	our	threads,	we	will	be	able	to	let	them	execute	as
fast	as	they	possibly	can.	That	is	why	we	are	here,	to	burn	some	CPU	cores,	right?

Now	that	the	broad	picture	is	clearer,	we	can	start	the	implementation.	Create	a	new	Qt
Widget	Application	project	named	ch09-mandelbrot-threadpool.	Remember	to	add
the	CONFIG	+=	c++14	to	the	.pro	file.

Defining	a	Job	class	with	QRunnable
Let's	dive	into	the	project's	core.	To	speed	up	the	Mandelbrot	picture	generation,	we	will	split
the	whole	computation	into	multiple	jobs.	A	Job	is	a	request	of	a	task.	Depending	on	your
CPU	architecture,	several	jobs	will	be	executed	simultaneously.	A	Job	class	produces
a	JobResult	function	containing	result	values.	In	our	project,	a	Job	class	generates	values	for
one	line	of	the	complete	picture.	For	example,	an	image	resolution	of	800	x	600	requires	600
jobs,	each	one	generating	800	values.

Please	create	a	C++	header	file	called	JobResult.h:

#include	<QSize>	

#include	<QVector>	

#include	<QPointF>	

	

struct	JobResult	

{	

				JobResult(int	valueCount	=	1)	:	

								areaSize(0,	0),	

								pixelPositionY(0),	

								moveOffset(0,	0),	

								scaleFactor(0.0),	

								values(valueCount)	

				{	

				}	

	

				QSize	areaSize;	

				int	pixelPositionY;	

				QPointF	moveOffset;	

				double	scaleFactor;	

	

				QVector<int>	values;	

};	

This	structure	contains	two	parts:

Input	data	(areaSize,	pixelPositionY,	...)
Result	values	generated	by	a	Job	class

We	can	now	create	the	Job	class	itself.	Create	a	C++	class	Job	using	the	next	snippet	of	Job.h
for	the	content:

#include	<QObject>	

#include	<QRunnable>	

	

#include	"JobResult.h"	

					

class	Job	:	public	QObject,	public	QRunnable	

{	

				Q_OBJECT	

public:	

				Job(QObject	*parent	=	0);	

				void	run()	override;	

};	

This	Job	class	is	a	QRunnable,	so	we	can	override	run()	to	implement	the	Mandelbrot	picture
algorithm.	As	you	can	see,	Job	also	inherits	from	QObject,	allowing	us	to	use	the	signal/slot
feature	of	Qt.	The	algorithm	requires	some	input	data.	Update	your	Job.h	like	this:

#include	<QObject>	

#include	<QRunnable>	

#include	<QPointF>	

#include	<QSize>	

#include	<QAtomicInteger>	

					

class	Job	:	public	QObject,	public	QRunnable	

{	

				Q_OBJECT	

public:	

				Job(QObject	*parent	=	0);	

				void	run()	override;	

	

				void	setPixelPositionY(int	value);	

				void	setMoveOffset(const	QPointF&	value);	

				void	setScaleFactor(double	value);	

				void	setAreaSize(const	QSize&	value);	

				void	setIterationMax(int	value);	

	

private:	

				int	mPixelPositionY;	

				QPointF	mMoveOffset;	

				double	mScaleFactor;	

				QSize	mAreaSize;	

				int	mIterationMax;	

};	

Let's	talk	about	these	variables:

The	mPixelPositionY	variable	is	the	picture	height	index.	Because	each	Job	generates
data	only	for	one	picture	line,	we	need	this	information.
The	mMoveOffset	variable	is	the	Mandelbrot	origin	offset.	The	user	can	pan	the	picture,
so	the	origin	will	not	always	be	(0,	0).
The	mScaleFactor	variable	is	the	Mandelbrot	scale	value.	The	user	can	also	zoom	into
the	picture.
The	mAreaSize	variable	is	the	final	picture	size	in	a	pixel.
The	mIterationMax	variable	is	the	count	of	iterations	allowed	to	determine	the
Mandelbrot	result	for	one	pixel.

We	can	now	add	a	signal,	jobCompleted(),	and	the	abort	feature	to	Job.h:

#include	<QObject>	

#include	<QRunnable>	

#include	<QPointF>	

#include	<QSize>	

#include	<QAtomicInteger>	

	

#include	"JobResult.h"	

	

class	Job	:	public	QObject,	public	QRunnable	

{	

				Q_OBJECT	

public:	

				...	

signals:	

				void	jobCompleted(JobResult	jobResult);	

	

public	slots:	

				void	abort();	

	

private:	

				QAtomicInteger<bool>	mAbort;	

				...	

};	

The	jobCompleted()	signal	will	be	emitted	when	the	algorithm	is	over.	The	jobResult
parameter	contains	result	values.	The	abort()	slot	will	allow	us	to	stop	the	job	updating
the	mIsAbort	flag	value.	Notice	that	mAbort	is	not	a	classic	bool,	but	a	QAtomicInteger<bool>.
This	Qt	cross-platform	type	allows	us	to	perform	atomic	operations	without	interruption.	You
could	use	a	mutex	or	another	synchronization	mechanism	to	do	the	job,	but	using	an	atomic
variable	is	a	fast	way	to	safely	update	and	access	a	variable	from	different	threads.

It	is	time	to	switch	to	the	implementation	part	with	Job.cpp.	Here	is	the	Job	class's
constructor:

#include	"Job.h"	

	

Job::Job(QObject*	parent)	:	

				QObject(parent),	

				mAbort(false),	

				mPixelPositionY(0),	

				mMoveOffset(0.0,	0.0),	

				mScaleFactor(0.0),	

				mAreaSize(0,	0),	

				mIterationMax(1)	

{	

}	

This	is	a	classic	initialization;	do	not	forget	to	call	the	QObject	constructor.

We	can	now	implement	the	run()	function:

void	Job::run()	

{	

				JobResult	jobResult(mAreaSize.width());	

				jobResult.areaSize	=	mAreaSize;	

				jobResult.pixelPositionY	=	mPixelPositionY;	

				jobResult.moveOffset	=	mMoveOffset;	

				jobResult.scaleFactor	=	mScaleFactor;	

				...	

}	

In	this	first	part,	we	initialize	a	JobResult	variable.	The	width	of	the	area	size	is	used	to
construct	JobResult::values	as	a	QVector	with	the	correct	initial	size.	Other	input	data	is
copied	from	Job	to	JobResult	to	let	the	receiver	of	JobResult	get	the	result	with	the	context
input	data.

Then	we	can	update	the	run()	function	with	the	Mandelbrot	algorithm:

void	Job::run()	

{	

			...	

				double	imageHalfWidth	=	mAreaSize.width()	/	2.0;	

				double	imageHalfHeight	=	mAreaSize.height()	/	2.0;	

				for	(int	imageX	=	0;	imageX	<	mAreaSize.width();	++imageX)	{	

								int	iteration	=	0;	

								double	x0	=	(imageX	-	imageHalfWidth)		

																		*	mScaleFactor	+	mMoveOffset.x();	

								double	y0	=	(mPixelPositionY	-	imageHalfHeight)		

																		*	mScaleFactor	-	mMoveOffset.y();	

								double	x	=	0.0;	

								double	y	=	0.0;	

								do	{	

												if	(mAbort.load())	{	

																return;	

												}	

	

												double	nextX	=	(x	*	x)	-	(y	*	y)	+	x0;	

												y	=	2.0	*	x	*	y	+	y0;	

												x	=	nextX;	

												iteration++;	

	

								}	while(iteration	<	mIterationMax	

																&&	(x	*	x)	+	(y	*	y)	<	4.0);	

	

								jobResult.values[imageX]	=	iteration;	

				}	

	

				emit	jobCompleted(jobResult);	

}	

The	Mandelbrot	algorithm	itself	is	beyond	the	scope	of	this	book.	But	you	have	to	understand
the	main	purpose	of	this	run()	function.	Let's	break	it	down:

The	for	loop	iterates	over	all	x	positions	of	pixels	over	one	line
The	pixel	position	is	converted	into	complex	plane	coordinates
If	the	trial	count	exceeds	the	maximum	authorized	iteration,	the	algorithm	ends
with	iteration	to	the	mIterationMax	value
If	the	Mandelbrot	check	condition	is	true,	the	algorithm	ends	with	iteration	<
mIterationMax

In	any	case,	for	each	pixel,	the	iteration	count	is	stored	in	values	of	JobResult
Finally,	the	jobCompleted()	signal	is	emitted	with	result	values	of	this	algorithm
We	perform	an	atomic	read	with	mAbort.load();	notice	that	if	the	return	value	is	true,
the	algorithm	is	aborted	and	nothing	is	emitted

The	last	function	is	the	abort()	slot:

void	Job::abort()	

{	

				mAbort.store(true);	

}	

This	method	performs	an	atomic	write	of	the	value,	true.	The	atomic	mechanism	ensures	that
we	can	call	abort()	from	multiple	threads	without	disrupting	the	mAbort	read	in	the	run()
function.

In	our	case,	run()	lives	in	the	thread	affected	by	the	QThreadPool	(we	will	cover	it	soon),
while	the	abort()	slot	will	be	called	in	the	MandelbrotCalculator	thread	context.

You	might	want	to	secure	the	operations	on	mAbort	with	a	QMutex.	However,	keep	in	mind	that
locking	and	unlocking	a	mutex	can	become	a	costly	operation	if	you	do	it	often.	Using
a	QAtomicInteger	class	here	presents	only	the	advantages:	the	access	to	mAbort	is	thread-safe
and	we	avoid	an	expensive	lock.

The	end	of	the	Job	implementation	only	contains	setter	functions.	Please	refer	to	the	complete
source	code	if	you	have	any	doubt.

Using	QThreadPool	in
MandelbrotCalculator
Now	that	our	Job	class	is	ready	to	be	used,	we	need	to	create	a	class	to	manage	the	jobs.
Please	create	a	new	class,	MandelbrotCalculator.	Let's	see	what	we	need	in	the
file,	MandelbrotCalculator.h:

#include	<QObject>	

#include	<QSize>	

#include	<QPointF>	

#include	<QElapsedTimer>	

#include	<QList>	

	

#include	"JobResult.h"	

	

class	Job;	

	

class	MandelbrotCalculator	:	public	QObject	

{	

				Q_OBJECT	

public:	

				explicit	MandelbrotCalculator(QObject	*parent	=	0);	

				void	init(QSize	imageSize);	

	

private:	

				QPointF	mMoveOffset;	

				double	mScaleFactor;	

				QSize	mAreaSize;	

				int	mIterationMax;	

				int	mReceivedJobResults;	

				QList<JobResult>	mJobResults;	

				QElapsedTimer	mTimer;	

};	

We	have	already	discussed	mMoveOffset,	mScaleFactor,	mAreaSize,	and	mIterationMax	in	the
previous	section.	We	also	have	some	new	variables:

The	mReceivedJobResults	variable	is	the	count	of	the	JobResult	received,	which	was
sent	by	the	jobs
The	mJobResults	variable	is	a	list	that	contains	received	JobResult
The	mTimer	variable	calculates	the	elapsed	time	to	run	all	jobs	for	a	requested	picture

Now	that	you	get	a	better	picture	of	all	member	variables,	we	can	add	the	signals,	slots,	and
private	methods.	Update	your	MandelbrotCalculator.h	file:

...	

class	MandelbrotCalculator	:	public	QObject	

{	

				Q_OBJECT	

public:	

				explicit	MandelbrotCalculator(QObject	*parent	=	0);	

				void	init(QSize	imageSize);	

	

signals:	

				void	pictureLinesGenerated(QList<JobResult>	jobResults);	

				void	abortAllJobs();	

	

public	slots:	

				void	generatePicture(QSize	areaSize,	QPointF	moveOffset,	

																									double	scaleFactor,	int	iterationMax);	

				void	process(JobResult	jobResult);	

	

private:	

				Job*	createJob(int	pixelPositionY);	

				void	clearJobs();	

	

private:	

				...	

};	

Here	are	the	roles	of	these:

generatePicture():	This	slot	is	used	by	the	caller	to	request	a	new	Mandelbrot	picture.
This	function	prepares	and	starts	jobs.
process():	This	slot	handles	results	generated	by	the	jobs.
pictureLinesGenerated():	This	signal	is	regularly	triggered	to	dispatch	results.
abortAllJobs():	This	signal	is	used	to	abort	all	active	jobs.
createJob():	This	is	a	helper	function	to	create	and	configure	a	new	job.
clearJobs():	This	slot	removes	queued	jobs	and	aborts	active	jobs.

The	header	file	is	completed	and	we	can	now	perform	the	implementation.	Here	is	the
beginning	of	the	MandelbrotCalculator.cpp	implementation:

#include	<QDebug>	

#include	<QThreadPool>	

	

#include	"Job.h"	

	

const	int	JOB_RESULT_THRESHOLD	=	10;	

	

MandelbrotCalculator::MandelbrotCalculator(QObject	*parent)	

				:	QObject(parent),	

						mMoveOffset(0.0,	0.0),	

						mScaleFactor(0.005),	

						mAreaSize(0,	0),	

						mIterationMax(10),	

						mReceivedJobResults(0),	

						mJobResults(),	

						mTimer()	

{	

}	

As	always,	we	are	using	the	initializer	list	with	default	values	for	our	member	variables.	The
role	of	JOB_RESULT_THRESHOLD	will	be	covered	soon.	Here	is	the	generatePicture()	slot:

void	MandelbrotCalculator::generatePicture(QSize	areaSize,	QPointF	moveOffset,	

double	scaleFactor,	int	iterationMax)	

{	

				if	(areaSize.isEmpty())	{	

								return;	

				}	

	

				mTimer.start();	

				clearJobs();	

	

				mAreaSize	=	areaSize;	

				mMoveOffset	=	moveOffset;	

				mScaleFactor	=	scaleFactor;	

				mIterationMax	=	iterationMax;	

	

				for(int	pixelPositionY	=	0;	

								pixelPositionY	<	mAreaSize.height();	pixelPositionY++)	{	

								QThreadPool::globalInstance()->	

												start(createJob(pixelPositionY));	

				}	

}	

If	the	areaSize	dimension	is	0x0,	we	have	nothing	to	do.	If	the	request	is	valid,	we	can
start	mTimer	to	track	the	whole	generation	duration.	Each	new	picture	generation	will	first
cancel	existing	jobs	by	calling	clearJobs().	Then	we	set	our	member	variables	with	the	ones
provided.	Finally,	we	create	a	new	Job	class	for	each	vertical	picture	line.	The	createJob()
function	that	returns	a	Job*	value	will	be	covered	soon.

The	QThreadPool::globalInstance()	is	a	static	function	that	gives	us	the	optimal	global
thread	pool	depending	on	the	core	count	of	our	CPU.	Even	if	we	call	start()	for	all	the	Job
classes,	only	the	firsts	starts	immediately.	Others	are	added	to	the	pool	queue	waiting	for	an
available	thread.

Let's	see	now	how	a	Job	class	is	created	with	the	createJob()	function:

Job*	MandelbrotCalculator::createJob(int	pixelPositionY)	

{	

				Job*	job	=	new	Job();	

	

				job->setPixelPositionY(pixelPositionY);	

				job->setMoveOffset(mMoveOffset);	

				job->setScaleFactor(mScaleFactor);	

				job->setAreaSize(mAreaSize);	

				job->setIterationMax(mIterationMax);	

	

				connect(this,	&MandelbrotCalculator::abortAllJobs,	

												job,	&Job::abort);	

	

				connect(job,	&Job::jobCompleted,	

												this,	&MandelbrotCalculator::process);	

	

				return	job;	

}	

As	you	can	see,	the	jobs	are	allocated	on	the	heap.	This	operation	takes	some	time	in	the
MandelbrotCalculator	thread.	But	the	results	are	worth	it;	the	overhead	is	being	compensated
by	the	multi-threading	system.	Notice	that	when	we	call	QThreadPool::start(),	the	thread
pool	takes	ownership	of	the	job.	As	a	consequence,	it	will	be	deleted	by	the	thread	pool
when	Job::run()	ends.	We	set	the	input	data	of	the	Job	class	required	by	the	Mandelbrot
algorithm.

Then	two	connections	are	performed:

Emitting	our	abortAllJobs()	signal	will	call	the	abort()	slot	of	all	jobs
Our	process()	slot	is	executed	each	time	a	Job	completes	its	task

Finally,	the	Job	pointer	is	returned	to	the	caller,	in	our	case,	the	generatePicture()	slot.

The	last	helper	function	is	clearJobs().	Add	it	to	your	MandelbrotCalculator.cpp:

void	MandelbrotCalculator::clearJobs()	

{	

				mReceivedJobResults	=	0;	

				emit	abortAllJobs();	

				QThreadPool::globalInstance()->clear();	

}	

The	counter	of	received	job	results	is	reset.	We	emit	our	signal	to	abort	all	active	jobs.
Finally,	we	remove	queued	jobs	waiting	for	an	available	thread	in	the	thread	pool.

The	last	function	of	this	class	is	process(),	and	is	maybe	the	most	important	function.	Update
your	code	with	the	following	snippet:

void	MandelbrotCalculator::process(JobResult	jobResult)	

{	

				if	(jobResult.areaSize	!=	mAreaSize	||	

												jobResult.moveOffset	!=	mMoveOffset	||	

												jobResult.scaleFactor	!=	mScaleFactor)	{	

								return;	

				}	

	

				mReceivedJobResults++;	

				mJobResults.append(jobResult);	

	

				if	(mJobResults.size()	>=	JOB_RESULT_THRESHOLD	||	

												mReceivedJobResults	==	mAreaSize.height())	{	

								emit	pictureLinesGenerated(mJobResults);	

								mJobResults.clear();	

				}	

	

				if	(mReceivedJobResults	==	mAreaSize.height())	{	

								qDebug()	<<	"Generated	in	"	<<	mTimer.elapsed()	<<	"	ms";	

				}	

}	

This	slot	will	be	called	each	time	a	job	completes	its	task.	The	first	thing	to	check	is	that	the
current	JobResult	is	still	valid	with	the	current	input	data.	When	a	new	picture	is	requested,
we	clear	the	jobs	queue	and	abort	the	active	jobs.	However,	if	an	old	JobResult	is	still	sent	to
this	process()	slot,	we	must	ignore	it.

After	that,	we	can	increment	the	mReceivedJobResults	counter	and	append	this	JobResult	to
our	member	queue,	mJobResults.	The	calculator	waits	to	get	JOB_RESULT_THRESHOLD	(that	is,
10)	results	before	dispatching	them	by	emitting	the	pictureLinesGenerated()	signal.	You	can
try	to	tweak	this	value	with	caution:

A	lower	value,	for	example	1,	will	dispatch	each	line	of	data	to	the	widget	as	soon	as	the
calculator	gets	it.	But	the	widget	will	be	slower	than	the	calculator	to	handle	each	line.
Moreover,	you	will	flood	the	widget	event	loop.
A	higher	value	relieves	the	widget	event	loop.	But	the	user	will	wait	longer	before	seeing
something	happening.	A	continuous	partial	frame	update	gives	a	better	user	experience.

Also	notice	that	when	the	event	is	dispatched,	the	QList	class	with	the	job	result	is	sent	by
copy.	But	Qt	performs	implicit	sharing	with	QList,	so	we	only	send	a	shallow	copy	not	a
costly	deep	copy.	Then	we	clear	the	current	QList	of	the	calculator.

Finally,	if	the	processed	JobResult	is	the	last	one	in	the	area,	we	display	a	debug	message
with	the	elapsed	time	since	the	user	call,	generatePicture().

Tip

Qt	tip

You	can	set	the	thread	count	used	by	the	QThreadPool	class	with	setMaxThreadCount(x)
where	x	is	the	thread	count.

Displaying	the	fractal	with
MandelbrotWidget
Here	we	are,	the	Mandelbrot	algorithm	is	done	and	the	multi-threading	system	is	ready	to
compute	complex	fractals	over	all	your	CPU	cores.	We	can	now	create	the	widget	that	will
convert	all	JobResult	to	display	a	pretty	picture.	Create	a	new	C++	class
called	MandelbrotWidget.	For	this	widget,	we	will	handle	the	painting	ourselves.	Thus,	we	do
not	need	any	.uiQt	Designer	Form	file.	Let's	begin	with	the	MandelbrotWidget.h	file:

#include	<memory>	

	

#include	<QWidget>	

#include	<QPoint>	

#include	<QThread>	

#include	<QList>	

	

#include	"MandelbrotCalculator.h"	

	

class	QResizeEvent;	

	

class	MandelbrotWidget	:	public	QWidget	

{	

				Q_OBJECT	

	

public:	

				explicit	MandelbrotWidget(QWidget	*parent	=	0);	

				~MandelbrotWidget();	

	

private:	

				MandelbrotCalculator	mMandelbrotCalculator;	

				QThread	mThreadCalculator;	

				double	mScaleFactor;	

				QPoint	mLastMouseMovePosition;	

				QPointF	mMoveOffset;	

				QSize	mAreaSize;	

				int	mIterationMax;	

				std::unique_ptr<QImage>	mImage;	

};	

You	should	recognize	some	known	variable	names	such	as
mScaleFactor,	mMoveOffset,	mAreaSize,	or	mIterationMax.	We	have	already	covered	them	in
the	JobResult	and	Job	implementation.	Here	are	the	real	new	ones:

The	mMandelbrotCalculator	variable	is	our	multi-threaded	Job	manager.	The	widget
will	do	requests	to	it	and	wait	for	results.
The	mThreadCalculator	variable	allows	the	Mandelbrot	calculator	to	run	in	its	own
thread.

The	mLastMouseMovePosition	variable	is	used	by	the	widget	to	handle	user	events	for	the
pan	feature.
The	mImage	variable	is	the	current	picture	displayed	by	the	widget.	It	is	a	unique_ptr
pointer,	so	MandelbrotWidget	is	the	owner	of	mImage.

We	can	now	add	the	functions.	Update	your	code	like	this:

class	MandelbrotWidget	:	public	QWidget	

{	

...	

public	slots:	

				void	processJobResults(QList<JobResult>	jobResults);	

	

signals:	

				void	requestPicture(QSize	areaSize,	QPointF	moveOffset,	double	scaleFactor,	

int	iterationMax);	

	

protected:	

				void	paintEvent(QPaintEvent*)	override;	

				void	resizeEvent(QResizeEvent*	event)	override;	

				void	wheelEvent(QWheelEvent*	event)	override;	

				void	mousePressEvent(QMouseEvent*	event)	override;	

				void	mouseMoveEvent(QMouseEvent*	event)	override;	

	

private:	

				QRgb	generateColorFromIteration(int	iteration);	

	

private:	

				...	

};	

Before	we	dive	into	the	implementation,	let's	talk	about	these	functions:

The	processJobResults()	function	will	handle	the	JobResult	list	dispatched
by	MandelbrotCalculator.
The	requestPicture()	signal	is	emitted	each	time	the	user	changes	the	input	data	(offset,
scale,	or	area	size).
The	paintEvent()	function	draws	the	widget	with	the	current	mImage.
The	resizeEvent()	function	resizes	the	Mandelbrot	area	size	when	the	user	resizes	the
window.
The	wheelEvent()	function	handles	the	user	mouse	wheel	event	to	apply	a	scale	factor.
The	mousePressEvent()	function	and	mouseMoveEvent()	retrieve	user	mouse	events	to
move	the	Mandelbrot	picture.
The	generateColorFromIteration()	is	a	helper	function	to	colorize	the	Mandelbrot
picture.	The	iteration	value	by	pixel	is	converted	into	a	color	value.

We	can	now	implement	the	MandelbrotWidget	class.	Here	is	the	beginning	of
the	MandelbrotWidget.cpp	file:

#include	"MandelbrotWidget.h"	

	

#include	<QResizeEvent>	

#include	<QImage>	

#include	<QPainter>	

#include	<QtMath>	

	

const	int	ITERATION_MAX	=	4000;	

const	double	DEFAULT_SCALE	=	0.005;	

const	double	DEFAULT_OFFSET_X	=	-0.74364390249094747;	

const	double	DEFAULT_OFFSET_Y	=	0.13182589977450967;	

	

MandelbrotWidget::MandelbrotWidget(QWidget	*parent)	:	

				QWidget(parent),	

				mMandelbrotCalculator(),	

				mThreadCalculator(this),	

				mScaleFactor(DEFAULT_SCALE),	

				mLastMouseMovePosition(),	

				mMoveOffset(DEFAULT_OFFSET_X,	DEFAULT_OFFSET_Y),	

				mAreaSize(),	

				mIterationMax(ITERATION_MAX)	

{	

				mMandelbrotCalculator.moveToThread(&mThreadCalculator);	

	

				connect(this,	&MandelbrotWidget::requestPicture,	

								&mMandelbrotCalculator,	

								&MandelbrotCalculator::generatePicture);	

	

				connect(&mMandelbrotCalculator,	

								&MandelbrotCalculator::pictureLinesGenerated,	

								this,	&MandelbrotWidget::processJobResults);	

	

				mThreadCalculator.start();	

}	

At	the	top	of	the	snippet,	we	set	some	constant	default	values.	Feel	free	to	tweak	these	values	if
you	want	a	different	view	when	you	start	the	application.	The	first	thing	the	constructor	does
is	to	change	the	thread	affinity	of	the	mMandelbrotCalculator	class.	In	this	way,	processing
performed	by	the	calculator	(creating	and	starting	jobs,	aggregating	job	results,	and	clearing
jobs)	does	not	disturb	the	UI	thread.	Then	we	perform	connections	with	the	signal	and	slot
of	MandelbrotCalculator.	Because	the	widget	and	the	calculator	have	a	different	thread
affinity,	the	connection	will	be	automatically	a	Qt::QueuedConnection	slot.	Finally,	we	can
start	the	thread	of	mThreadCalculator.	We	can	now	add	the	destructor:

MandelbrotWidget::~MandelbrotWidget()	

{		

				mThreadCalculator.quit();	

				mThreadCalculator.wait(1000);	

				if	(!mThreadCalculator.isFinished())	{	

								mThreadCalculator.terminate();	

				}	

}	

We	need	to	request	the	calculator	thread	to	quit.	When	the	calculator	thread	event	loop	handles
our	request,	the	thread	will	return	a	code	0.	We	wait	1,000	ms	for	the	thread	to	end.	We	can
continue	this	implementation	with	all	the	cases	that	request	a	new	picture.	Here	is	the
resizeEvent()	slot:

void	MandelbrotWidget::resizeEvent(QResizeEvent*	event)	

{	

				mAreaSize	=	event->size();	

	

				mImage	=	std::make_unique<QImage>(mAreaSize,	

								QImage::Format_RGB32);	

				mImage->fill(Qt::black);	

	

				emit	requestPicture(mAreaSize,	mMoveOffset,	mScaleFactor,	

								mIterationMax);	

}	

We	update	mAreaSize	with	the	new	widget	size.	Then,	a	new	black	QImage	is	created	with	the
correct	dimensions.	Finally,	we	request	a	picture	computation	to	MandelbrotCalculator.	Let's
see	how	the	mouse	wheel	is	handled:

void	MandelbrotWidget::wheelEvent(QWheelEvent*	event)	

{	

				int	delta	=	event->delta();	

				mScaleFactor	*=	qPow(0.75,	delta	/	120.0);	

				emit	requestPicture(mAreaSize,	mMoveOffset,	mScaleFactor,	

								mIterationMax);	

}	

The	mouse	wheel	value	can	be	retrieved	from	QWheelEvent::delta().	We	use	a	power
function	to	apply	a	coherent	value	on	mScaleFactor	and	we	request	an	updated	picture.	We	can
now	implement	the	pan	feature:

void	MandelbrotWidget::mousePressEvent(QMouseEvent*	event)	

{	

				if	(event->buttons()	&	Qt::LeftButton)	{	

								mLastMouseMovePosition	=	event->pos();	

				}	

}	

The	first	function	stores	the	mouse	position	where	the	user	begins	the	move	gesture.	Then	the
next	function	will	use	mLastMouseMovePosition	to	create	an	offset:

void	MandelbrotWidget::mouseMoveEvent(QMouseEvent*	event)	

{	

				if	(event->buttons()	&	Qt::LeftButton)	{	

								QPointF	offset	=	event->pos()	-	mLastMouseMovePosition;	

								mLastMouseMovePosition	=	event->pos();	

								offset.setY(-offset.y());	

								mMoveOffset	+=	offset	*	mScaleFactor;	

								emit	requestPicture(mAreaSize,	mMoveOffset,	mScaleFactor,	

												mIterationMax);	

				}	

}	

The	difference	between	the	new	and	the	old	mouse	position	gives	us	the	pan	offset.	Notice	that
we	invert	a	y-axis	value	because	the	mouse	event	is	in	a	top-left	referential,	whereas	the
Mandelbrot	algorithm	relies	on	a	bottom-left	referential.	Finally,	we	request	a	picture	with
updated	input	values.	We	covered	all	the	user	events	that	emit	a	requestPicture()	signal.	Let's
see	now	how	we	handle	JobResult	dispatched	by	MandelbrotCalculator:

void	MandelbrotWidget::processJobResults(QList<JobResult>	jobResults)	

{	

				int	yMin	=	height();	

				int	yMax	=	0;	

	

				for(JobResult&	jobResult	:	jobResults)	{	

	

								if	(mImage->size()	!=	jobResult.areaSize)	{	

												continue;	

								}	

	

								int	y	=	jobResult.pixelPositionY;	

								QRgb*	scanLine	=		

												reinterpret_cast<QRgb*>(mImage->scanLine(y));	

	

								for	(int	x	=	0;	x	<	mAreaSize.width();	++x)	{	

												scanLine[x]	=	

																generateColorFromIteration(jobResult.values[x]);	

								}	

	

								if	(y	<	yMin)	{	

												yMin	=	y;	

								}	

	

								if	(y	>	yMax)	{	

												yMax	=	y;	

								}	

				}	

	

				repaint(0,	yMin,	

												width(),	yMax);	

}	

The	calculator	sends	us	a	QList	of	JobResult.	For	each	one,	we	need	to	check	if	the
concerned	area	size	is	still	valid.	We	directly	update	the	pixel	colors	of	mImage.
The	scanLine()	function	returns	a	pointer	on	the	pixel	data.	It	is	a	fast	way	to	update	a	QImage
pixel	color.	The	JobResult	function	contains	the	iteration	count,	and	our	helper

function,	generateColorFromIteration(),	returns	a	RGB	value	depending	on	the	iteration
value.	A	complete	repaint	of	the	widget	is	not	necessary,	because	we	only	update	several	lines
of	the	QImage.	Thus,	we	repaint	only	the	updated	region.

Here	is	how	we	convert	an	iteration	value	in	an	RGB	value:

QRgb	MandelbrotWidget::generateColorFromIteration(int	iteration)	

{	

				if	(iteration	==	mIterationMax)	{	

								return	qRgb(50,	50,	255);	

				}	

	

				return	qRgb(0,	0,	(255.0	*	iteration	/	mIterationMax));	

}	

Colorizing	a	Mandelbrot	is	an	art	on	its	own.	We	implement	here	a	simple	linear	interpolation
on	the	blue	channel.	A	nice	Mandelbrot	picture	depends	on	the	maximum	iteration	per	pixel
and	its	color	technique.	Feel	free	to	enhance	it	like	you	want!

Here	we	are,	the	last	but	not	least	function,	paintEvent():

void	MandelbrotWidget::paintEvent(QPaintEvent*	event)	

{	

				QPainter	painter(this);	

				painter.save();	

	

				QRect	imageRect	=	event->region().boundingRect();	

				painter.drawImage(imageRect,	*mImage,	imageRect);	

	

				painter.setPen(Qt::white);	

	

				painter.drawText(10,	20,	QString("Size:	%1	x	%2")	

								.arg(mImage->width())	

								.arg(mImage->height()));	

	

				painter.drawText(10,	35,	QString("Offset:	%1	x	%2")	

								.arg(mMoveOffset.x())	

								.arg(mMoveOffset.y()));	

	

				painter.drawText(10,	50,	QString("Scale:	%1")	

								.arg(mScaleFactor));	

	

				painter.drawText(10,	65,	QString("Max	iteration:	%1")	

								.arg(ITERATION_MAX));	

	

				painter.restore();	

}	

We	must	override	this	function	because	we	handle	the	widget	drawing	by	ourselves.	The	first
thing	to	do	is	to	draw	the	updated	region	of	the	image.	The	QPaintEvent	object	contains	the

region	that	needs	to	be	updated.	The	QPainter	class	makes	the	drawing	easy.	Finally,	we	draw
some	information	texts	of	the	current	input	data	in	white.	You	now	have	a	complete	overview
of	the	progressive	picture	display	line	by	line.	Let's	sum	up	the	workflow	of	this	feature:

1.	 Each	Job::run()	generates	a	JobResult	object.
2.	 The	MandelbrotCalculator::process()	signal	aggregates	the	JobResult	object	and

dispatches	them	by	groups	(by	default,	10).
3.	 The	MandelbrotWidget::processJobResults()	signal	updates	only	concerned	lines	of

the	picture	and	requests	a	partial	repaint	of	the	widget.
4.	 The	MandelbrotWidget::paintEvent()	signal	only	redraws	the	picture	with	the	new

values.

This	feature	causes	a	little	overhead,	but	the	user	experience	is	smoother.	Indeed,	the
application	reacts	quickly	to	the	user	events:	the	first	lines	are	updated	almost	immediately.
The	user	does	not	have	to	wait	for	the	full	picture	generation	to	see	something	happening.

The	widget	is	ready;	do	not	forget	to	add	it	to	MainWindow.	Promoting	a	custom	widget	should
be	an	easy	task	for	you	now.	If	you	have	any	doubt,	check	Chapter	4,	Conquering	the	Desktop
UI,	or	the	complete	source	code	of	this	chapter.	You	should	now	be	able	to	display	and
navigate	into	your	multi-threaded	Mandelbrot	set!

If	you	start	the	application,	you	should	see	something	like	this:

Try	to	zoom	now	and	pan	into	the	Mandelbrot	set.	You	should	find	some	funny	places	like	this
one:

Summary
You	discovered	how	a	QThread	class	works	and	learned	how	to	efficiently	use	tools	provided
by	Qt	to	create	a	powerful	multi-threaded	application.	Your	Mandelbrot	application	is	able	to
use	all	cores	of	your	CPU	to	compute	a	picture	quickly.

Creating	a	multi-threaded	application	presents	a	lot	of	pitfalls	(deadlock,	event	loop	flood,
orphan	threads,	overhead,	and	so	on).	The	application	architecture	is	important.	If	you	are
able	to	isolate	the	heavy	code	that	you	want	to	parallelize,	everything	should	go	well.
Nevertheless,	the	user	experience	is	of	primary	importance;	you	will	sometimes	have	to
accept	a	little	overhead	if	your	application	gives	the	user	a	smoother	feeling.

In	the	next	chapter,	we	will	see	several	ways	to	implement	an	IPC	(Inter-Process
Communication)	between	applications.	The	project	example	will	enhance	your	current
Mandelbrot	application	with	a	TCP/IP	socket	system.	So	the	Mandelbrot	generator	will
compute	pictures	over	several	CPU	cores	from	multiple	computers!

Chapter	10.		Need	IPC?	Get	Your	Minions
to	Work
In	the	previous	chapter,	you	learned	how	to	send	information	across	threads	of	the	same
process.	In	this	chapter,	you	will	discover	how	to	share	data	between	threads	of	different
processes.	We	will	even	share	information	between	applications	running	on	different	physical
computers.	We	will	enhance	the	Mandelbrot	generator	application	from	Chapter	9,	Keeping
Your	Sanity	with	Multithreading.	The	Mandelbrot	application	will	now	only	display	results
processed	by	the	worker	programs.	These	minions	have	only	one	mission:	compute	the	tasks
as	fast	as	possible	and	return	a	result	to	your	main	application.

Here	are	the	topics	covered	in	this	chapter:

How	two	applications	can	communicate	together
Creating	a	multithreaded	TCP	server
Reading	and	writing	on	a	TCP	socket
Other	IPC	techniques	like	QSharedMemory,	QProcess,	and	Qt	D-Bus
Network	serialization	using	QDataStream
Computer	clustering
Inter-process	communication	techniques

An	IPC	(inter-process	communication)	is	a	communication	between	two	or	more	processes.
They	can	be	instances	of	the	same	or	a	different	application.	The	Qt	framework	provides
multiple	modules	to	help	you	implement	a	communication	between	your	applications.	Most	of
these	modules	are	cross-platform.	Let's	talk	about	the	IPC	tools	provided	by	Qt.

The	first	tools	are	the	TCP/IP	sockets.	They	provide	a	bidirectional	data	exchange	over	a
network.	Therefore,	you	can	use	them	to	talk	with	processes	on	different	computers.
Moreover,	the	loopback	interface	allows	you	to	communicate	with	processes	running	on	the
same	computer.	All	the	required	classes	are	inside	the	QtNetwork	module.	This	technique
relies	on	a	client-server	architecture.	Here	is	an	example	of	the	server	part:

QTcpServer*	tcpServer	=	new	QTcpServer(this);	

tcpServer->listen(QHostAddress::Any,	5000);	

	

connect(tcpServer,	&QTcpServer::newConnection,	[tcpServer]	{	

				QTcpSocket	*tcpSocket	=	tcpServer->nextPendingConnection();	

				QByteArray	response	=	QString("Hello").toLatin1();	

				tcpSocket->write(response);	

				tcpSocket->disconnectFromHost();	

				qDebug()	<<	"Send	response	and	close	the	socket";	

});	

The	first	step	is	to	instantiate	a	QTcpServer	class.	It	deals	with	the	new	incoming	TCP

connections.	Then,	we	call	the	listen()	function.	You	can	provide	a	network	interface	and
specify	the	port	on	which	the	server	must	listen	for	incoming	connections.	In	this	example,	we
listen	on	all	network	addresses	(for	example,	127.0.0.1,	192.168.1.4,	and	so	on)	on	the
port	5000.	When	a	client	establishes	a	connection	with	this	server,
the	QTcpServer::newConnection()	signal	is	triggered.	Let's	break	together	this	lambda	slot:

1.	 We	retrieve	the	QTcpSocket	class	related	to	this	new	connection	with	a	client.
2.	 A	QByteArray	response	is	prepared	with	the	ASCII	message	"Hello".	Forget	the	lack	of

originality.
3.	 The	message	is	sent	to	the	client	through	the	socket.
4.	 Finally,	we	close	the	socket.	So	the	client,	on	this	side,	will	be	disconnected.

Tip

You	can	test	a	QTcpServer	class	with	a	telnet	tool	like	Putty	on	Windows	or	the	telnet
command	on	Linux	and	Mac	OS.

The	following	snippet	is	the	client	part:

QTcpSocket	*tcpSocket	=	new	QTcpSocket(this);	

tcpSocket->connectToHost("127.0.0.1",	5000);	

	

connect(tcpSocket,	&QTcpSocket::connected,	[tcpSocket]	{	

				qDebug()	<<	"connected";	

});	

connect(tcpSocket,	&QTcpSocket::readyRead,	[tcpSocket]	{	

				qDebug()	<<	QString::fromLatin1(tcpSocket->readAll());	

});	

connect(tcpSocket,	&QTcpSocket::disconnected,	[tcpSocket]	{	

				qDebug()	<<	"disconnected";	

});	

The	client	also	uses	a	QTcpSocket	class	to	communicate.	It	turns	out	that	the	connection	is
initiated	by	the	client,	therefore	we	need	to	call	the	connectToHost()	function	with	the	server
address	and	port.	This	class	provides	a	lot	of	useful	signals	such	as	connected()
and	disconnected()	that	indicate	the	connection	status.	The	readyRead()	signal	is	emitted
when	new	data	is	available	for	reading.	The	readAll()function	returns	QByteArray	with	all
the	available	data.	In	our	case,	we	know	that	the	server	sends	an	ASCII	message	to	its	client.
Thus,	we	can	convert	this	byte	array	in	a	QString	and	display	it.

For	this	example,	the	server	writes	in	the	TCP	socket	and	the	client	reads	in	it.	But	this
communication	is	bidirectional,	so	the	client	can	also	write	data	and	the	server	can	read	it.	Try
to	send	data	from	the	client	and	display	it	in	the	server.	Notice	that	you	need	to	keep	the
communication	alive	by	removing	the	disconnectFromHost()	call	in	the	server	part.

The	Qt	framework	provides	a	helper	class,	QDataStream,	to	easily	send	a	complex	object	and

handle	the	package	fragmentation.	This	notion	will	be	covered	later	with	the	project	example
of	this	chapter.

Let's	talk	about	the	second	IPC	technique:	shared	memory.	By	default,	different	processes	do
not	use	the	same	memory	space.	The	QSharedMemory	class	provides	a	cross-platform	method
to	create	and	use	a	shared	memory	across	multiple	processes.	Nevertheless,	the	processes
must	run	on	the	same	computer.	A	shared	memory	is	identified	by	a	key.	All	the	processes
must	use	the	same	key	to	share	the	same	shared	memory	segment.	The	first	process	will
create	the	shared	memory	segment	and	put	data	in	it:

QString	sharedMessage("Hello");	

QByteArray	sharedData	=	sharedMessage.toLatin1();	

	

QSharedMemory*	sharedMemory	=	new	QSharedMemory(

				"sharedMemoryKey",	this);	

sharedMemory->create(sharedMessage.size());	

	

sharedMemory->lock();	

	

memcpy(sharedMemory->data(),	

							sharedData.data(),	

							sharedData.size());	

	

sharedMemory->unlock();	

Let's	analyze	all	the	steps	together:

1.	 Once	again,	we	want	to	share	the	QString	"Hello"	converted	in	a	QByteArray	class.
2.	 A	QSharedMemory	class	is	initialized	with	the	key,	sharedMemoryKey.	This	same	key

should	be	used	by	the	second	process.
3.	 The	first	process	creates	the	shared	memory	segment	with	a	specific	size	in	bytes.	The

creation	also	attaches	the	process	to	the	shared	memory	segment.
4.	 You	should	now	be	confident	with	the	lock/unlock	system.	The	QSharedMemory	class	uses

semaphore	to	protect	the	shared	access.	You	must	lock	it	before	manipulating	the	shared
memory.

5.	 A	classical	memcpy()	function	is	used	to	copy	data	from	the	QByteArray	class	to
the	QSharedMemory	class.

6.	 Finally,	we	can	unlock	the	shared	memory.

Destroying	a	QShareMemory	class	will	call	the	detach()	function	that	detaches	the	process
from	the	shared	memory	segment.	If	this	process	was	the	last	one	attached,	detach()	also
destroys	the	shared	memory	segment.	While	an	attached	QShareMemory	is	alive,	the	shared
memory	segment	is	available	for	other	processes.	The	next	snippet	describes	how	a	second
segment	can	access	the	shared	memory:

QSharedMemory*	sharedMemory	=	new	QSharedMemory(

				"sharedMemoryKey",	this);	

sharedMemory->attach();	

	

sharedMemory->lock();	

	

QByteArray	sharedData(sharedMemory->size(),	'\0');	

	

memcpy(sharedData.data(),	

							sharedMemory->data(),	

							sharedMemory->size());	

sharedMemory->unlock();	

	

QString	sharedMessage	=	QString::fromLatin1(sharedData);	

qDebug()	<<	sharedMessage;	

	

sharedMemory->detach();	

Here	are	the	key	steps:

1.	 As	with	the	first	process,	this	second	process	initializes	a	QShareMemory	class	with	the
key,	sharedMemoryKey.

2.	 Then	we	attach	the	process	to	the	shared	memory	segment	with	the	attach()	function.
3.	 We	must	lock	the	QShareMemory	class	before	accessing	it.
4.	 We	initialize	a	QByteArray	with	the	null	character,	\0,	with	the	size	of	the	shared

memory.
5.	 The	memcpy()	function	copies	the	data	from	the	QShareMemory	to	the	QByteArray.
6.	 We	can	convert	the	QByteArray	in	a	QString	and	display	our	message.
7.	 The	last	step	is	to	call	the	detach()function	to	detach	the	process	from	the	shared

memory	segment.

Please	notice	that	create()	and	attach()	functions	specify	by	default
a	QShareMemory::ReadWrite	access.	You	can	also	use	the	QShareMemory::ReadOnly	access.

Tip

You	can	use	the	classes,	QBuffer	and	QDataStream	to	serialize	a	complex	object	in	or	from	a
bytes	array.

Another	IPC	way	is	to	use	the	QProcess	class.	The	main	process	starts	an	external	application
as	a	child	process.	The	communication	is	done	using	the	standard	input	and	output	devices.
Let's	create	a	hello	console	application	relying	on	the	standard	input	and	output	channels:

QTextStream	out(stdout);	

QTextStream	in(stdin);	

	

out	<<	QString("Please	enter	your	name:\n");	

out.flush();	

	

QString	name	=	in.readLine();	

	

out	<<	"Hello	"	<<	name	<<	"\n";	

return	0;	

We	use	the	QTextStream	class	to	easily	work	with	the	standards	streams,	stdout	and	stdin.
The	application	prints	the	message	Please	enter	your	name:.	Then	we	wait	while	the	user
types	his	name	by	calling	the	readLine()	function.	Finally,	the	program	displays	the
message	Hello	and	the	user	name.	If	you	start	yourself	this	console	application,	you	must	type
your	name	on	the	keyboard	to	see	the	final	hello	message	with	your	name.

The	following	snippet	runs	and	communicates	with	the	hello	application.	Furthermore,	we
can	programmatically	control	the	child	hello	application:

QProcess*	childProcess	=	new	QProcess(this);	

	

connect(childProcess,		

				&QProcess::readyReadStandardOutput,	[childProcess]	{	

								qDebug().noquote()	<<	"[*]"	<<	childProcess->readAll();	

});	

	

connect(childProcess,	&QProcess::started,	[childProcess]	{	

				childProcess->write("Sophie\n");	

});	

	

childProcess->start("/path/to/hello");	

Here	are	all	the	steps	performed	by	this	main	application:

1.	 We	initialize	a	QProcess	object	that	can	start	an	external	application.
2.	 The	child	process	displays	messages	on	the	console	and	so	writes	in	the	standard	output.

Then,	the	readyReadStandardOutput()	signal	is	sent.	In	this	case,	we	print	the	message
as	debug	text	with	the	prefix	[*]	to	identify	that	it	comes	from	the	child	process.

3.	 As	soon	as	the	child	process	is	started,	the	started()	signal	is	sent.	In	our	case,	we	write
in	the	child	standard	input	the	name	Sophie	(Lenna	will	be	jealous!).

4.	 All	is	ready,	we	can	start	the	QProcess	class	with	the	path	to	the	hello	console
application.

If	you	start	the	main	application	you	should	get	this	result	in	its	console:

[*]	Please	enter	your	name:	

[*]	Hello	Sophie	

Mission	completed!	The	main	application	is	a	wrapper	for	the	hello	application.	We	receive
all	messages	from	the	child	process	and	we	can	send	it	some	information	like	a	specific	name.

Tip

The	QProcess::start()	function	also	accepts	a	second	variable:	the	command	line	arguments
for	the	child	process.

The	last	IPC	mechanism	that	we	will	cover	together	is	the	D-Bus	protocol.	Currently,	the	Qt
D-Bus	module	is	officially	supported	only	on	Linux.	If	you	need	to	use	it	on	Windows,	you
will	have	to	compile	it	from	Qt	sources.	It	can	be	seen	as	a	unified	protocol	for	IPC	and	RPC
(remote	procedure	calling).	Many	forms	of	communication	are	possible,	such	as:

One-to-one
One-to-many
Many-to-many

The	best	thing	about	Qt	D-Bus	is	that	you	can	even	use	the	signal/slot	mechanism	across	the
bus.	A	signal	emitted	from	one	application	can	be	connected	to	a	slot	from	another
application.	Linux	desktop	environments	like	KDE	and	GNOME	use	the	D-Bus.	That	implies
that	you	can	(also)	control	your	desktop	with	D-Bus.

Here	are	the	main	concepts	of	D-Bus:

Bus:	This	is	used	in	many-to-many	communication.	D-Bus	defines	two	buses:	the	system
bus	and	the	session	bus.
Service	name:	This	is	the	identifier	of	a	service	on	a	bus.
Message:	This	is	a	message	sent	by	one	application.	If	a	bus	is	used,	the	message	contains
the	destination.

A	Qt	D-Bus	Viewer	tool	can	be	found	in	your	Qt	installation	folder	(for	example,
/Qt/5.7/gcc_64/bin/qdbusviewer).	All	objects	and	messages	from	all	services	of	the	system
and	the	session	bus	are	displayed.	Try	to	invoke	exposed	methods	and	retrieve	a	result.

Now	that	you	have	messed	about	with	your	Linux	D-Bus	services,	it	is	time	to	create	your
own!	At	first,	we	will	create	a	simple	HelloService	object:

//HelloService.h	

class	HelloService	:	public	QObject	

{	

				Q_OBJECT	

	

public	slots:	

				QString	sayHello(const	QString	&name);	

};	

	

//HelloService.cpp	

QString	HelloService::sayHello(const	QString&	name)	

{	

				qDebug().noquote()	<<	name	<<	"	is	here!";	

				return	QString("Hello	%1!").arg(name);;	

}	

No	big	deal	here,	the	only	function	is	a	public	slot	that	requires	a	name,	displays	who	is	here,
and	returns	a	hello	message.	In	the	following	snippet,	the	main	application	registers	a	new	D-
Bus	service	and	the	HelloService	object:

HelloService	helloService;	

QString	serviceName("org.masteringqt.QtDBus.HelloService");	

	

QDBusConnection::sessionBus().registerService(serviceName);	

QDBusConnection::sessionBus().registerObject("/",		

				&helloService,	QDBusConnection::ExportAllSlots);	

The	main	application	initializes	an	HelloService	object.	Then,	we	register	a	new	service
named	org.masteringqt.QtDBus.HelloService	on	the	session	bus.	Finally,	we	register
the	HelloService	object,	exposing	all	its	slots.	Notice	the	simple	object	path	/	used	for	this
example.	The	service	application	part	is	finished.	Here	is	the	client	application	calling
the	HelloService	object:

QString	serviceName("org.masteringqt.QtDBus.HelloService");	

QDBusInterface	serviceInterface(serviceName,	"/");	

QDBusReply<QString>	response	=	serviceInterface.call(

				"sayHello",	"Lenna");	

qDebug().noquote()	<<	response;	

Let's	analyze	the	client	part	step	by	step:

1.	 We	initialize	a	QDBusInterface	object	with	the	same	service	name	and	path	as	the	service
application.

2.	 We	call	the	remote	method,	sayHello()	on	HelloService,	with	the	parameter	Lenna
(Wait,	where	is	Sophie!?).

3.	 The	response	is	stored	in	a	QDBusReply	object.	In	our	case,	type	QString.
4.	 Finally,	we	display	the	message	generated	by	the	HelloService	object.

If	you	start	the	service	application	and	then	the	client	application,	you	should	get	this	console
output:

//service	application	output	

Lenna	is	here!	

	

//client	application	output	

Hello	Lenna!	

Use	the	QDBusViewer	tool	to	find	your	D-Bus	service.	Select	the	Session	Bus	tab.	Choose	your
service	in	the	list.	Then	you	can	select	the	method	sayHello.	A	right-click	on	it	allows	you	to
call	the	method.	An	input	popup	will	ask	you	to	fill	the	method	parameter	that	is	a	name	in	our
example.	The	following	screenshot	shows	you	what	it	looks	like	(it	seems	that	Sophie	is
here):

Architecturing	an	IPC	project
The	Mandelbrot	picture	generator	from	Chapter	9,	Keeping	Your	Sanity	with	Multithreading,
uses	all	cores	of	your	computer	to	speed	up	the	computing.	This	time,	we	want	to	use	all	the
cores	of	all	your	computers!	The	first	thing	to	do	is	to	choose	an	appropriated	IPC	technique.
For	this	project	example,	we	want	to	establish	communication	between	several	clients	acting
as	workers	to	a	server	running	the	main	application.	The	TCP/IP	sockets	allows	a	one-to-
many	communication.	Moreover,	this	IPC	method	is	not	bounded	to	a	single	computer	and
can	operate	through	a	network	on	multiple	computers.	This	project	example	uses	sockets	by
implementing	a	multi-threaded	TCP	server.

The	next	diagram	describes	the	architecture:

Let's	talk	about	the	global	role	of	each	actor:

mandelbrot-app:	This	is	the	main	application	displaying	the	Mandelbrot	picture	and
handling	user	mouse	events.	However,	in	this	chapter,	the	application	does	not	compute
the	algorithm	itself	but	rather	generates	requests	to	connected	workers.	Then,	it
aggregates	results	provided	by	workers.
mandelbrot-worker:	Here	is	our	minion!	A	worker	is	a	standalone	program.	It	is
connecting	to	the	mandelbrot-app	through	a	TCP	socket.	A	worker	receives	a	request,
computes	a	job,	and	sends	back	a	result.
SDK:	This	regroups	common	stuff	used	by	both	applications.	If	the	SDK	changes,	all	the
dependent	applications	must	be	updated.

As	you	can	see,	this	architecture	fits	well	with	the	one-to-many	communication	required	by
this	project.	The	mandelbrot-app	application	can	use	one	or	many	workers	to	generate	the
same	Mandelbrot	picture.

Now	that	you	get	the	big	picture,	let's	look	in	detail	at	each	module.	You	can	see	all	of	the
classes	in	the	SDK	in	the	following	diagram:

An	SDK	is	essential	when	you	have	several	modules	(applications,	libraries,	and	so	on)	that
communicate	together	or	need	to	perform	the	same	actions.	You	can	give	the	SDK	to	a	third-
party	developer	without	compromising	your	main	source	code.	In	our	project,	mandelbrot-
app	and	mandelbrot-worker	communicate	together	by	exchanging	Message.	The	message
structure	must	be	known	by	both	entities.	A	Message	class	contains	a	type	and	a	raw	data	of
the	type,	QByteArray.	Depending	on	the	message	type,	the	raw	data	can	be	empty	or	can
contain	an	object.	In	this	project,	a	message	data	can	be	a	JobRequest	or	a	JobResult.
The	mandelbrot-app	sends	a	JobRequest	to	mandelbrot-worker.	Then,	the	worker
returns	JobResult	to	the	main	application.	Finally,	MessageUtils	contains	functions	used	by
the	main	application	and	the	workers	to	send	and	retrieve	a	Message.

We	can	now	talk	about	the	mandelbrot-worker	in	more	detail.	The	next	diagram	describes	it:

The	mandelbrot-worker	program	is	able	to	use	all	the	CPU	cores	of	a	machine.	The	socket
mechanism	allows	us	to	run	it	on	multiple	physical	machines	at	the	same	time.
The	WorkerWidget	class	displays	the	status	of	the	Worker	object.	The	Worker	object	handles
the	communication	with	mandelbrot-app	using	a	QTcpSocket.	A	Job	is	a	QRunnable	class	that
computes	a	task.	Here	is	the	workflow	of	this	software:

1.	 Send	a	register	Message	to	mandelbrot-app	application.
2.	 Receive	some	JobRequest	from	mandelbrot-app	and	create	several	Job	instances	to

complete	all	tasks.
3.	 Each	Job	is	running	in	a	dedicated	thread	and	will	generate	a	JobResult.
4.	 Send	JobResult	to	mandelbrot-app.
5.	 On	exit,	send	an	unregister	Message	to	mandelbrot-app.

It	is	now	time	to	talk	about	the	mandelbrot-app	architecture.	Look	at	the	next	diagram:

This	is	the	main	application.	You	can	launch	it	on	a	computer	with	a	weak	CPU	and	the	real
heavy	work	is	done	by	workers	running	the	mandelbrot-worker	software.	The
GUI	MainWindow	and	MandelbrotWidget	objects	are	the	same	as	those	in	Chapter	9,	Keeping
Your	Sanity	with	Multithreading.	The	MandelbrotCalculator	class	is	a	little	different	in	this
project,	because	it	does	not	run	any	QRunnable	itself.	It	is	a	TCP	server	that	handles	all
registered	workers	and	dispatches	tasks	to	those	tasks.	Each	mandelbrot-worker	is	managed
by	a	WorkerClient	object	instance	with	a	dedicated	QTcpSocket.	Here	is	the	workflow
for	mandelbrot-app:

1.	 Run	a	TCP	server	on	a	specific	port.

2.	 Receive	a	register	Message	and	create	a	WorkerClient	object	for	each	registered	worker.
3.	 When	MandelbrotWidget	requests	a	picture	generation,		MandelbrotCalculator	creates

the	JobRequest	object	required	to	compute	the	full	Mandelbrot	picture.
4.	 The	JobRequest	objects	are	sent	to	the	workers.
5.	 Receive	and	aggregate	JobResult	from	the	mandelbrot-worker.
6.	 Transmit	JobResult	to	the	MandelbrotWidget	object	that	displays	the	picture.
7.	 If	an	unregister	Message	is	received	from	a	worker,	the	WorkerClient	object	is	released

and	this	worker	will	not	be	used	for	picture	generation	anymore.

You	should	now	get	a	complete	overview	of	this	project	architecture.	We	can	begin	the
implementation	of	this	project.	Create	a	Subdirs	project	called	ch10-mandelbrot-ipc.	As	you
might	guess,	we	now	create	two	sub-projects:	mandelbrot-app	and	mandelbrot-worker.

The	implementation	in	the	subsequent	sections	follows	the	architecture	presentation	order:

1.	 SDK.
2.	 mandelbrot-worker.
3.	 mandelbrot-app.

The	implementation	is	a	step	up	in	complexity.	Do	not	hesitate	to	take	a	break	and	come	back
to	this	section	to	keep	the	overall	architecture	clear.

Laying	down	the	foundations	with	an	SDK
The	first	step	is	to	implement	the	classes	that	will	be	shared	between	our	application	and	the
workers.	To	do	so,	we	are	going	to	rely	on	a	custom	SDK.	If	you	need	to	refresh	your
memory	about	this	technique,	take	a	look	at	Chapter	8,	Animations--	It's	Alive,	Alive!.

As	a	reminder,	here	is	the	diagram	describing	the	SDK:

Let's	describe	the	job	of	each	of	these	components:

The	Message	component	encapsulates	a	piece	of	information	that	is	exchanged	between
the	application	and	the	worker
The	JobRequest	component	contains	the	necessary	information	to	dispatch	a	proper	job
to	a	worker
The	JobResult	component	contains	the	result	of	the	Mandelbrot	set	calculation	for	a
given	line
The	MessageUtils	component	contains	helper	functions	to	serialize/deserialize	data
across	the	TCP	socket

All	these	files	have	to	be	accessible	from	each	side	of	our	IPC	mechanism	(application	and
worker).	Note	that	the	SDK	will	contain	only	header	files.	We	did	it	on	purpose	to	simplify	the
SDK	usage.

Let's	start	with	Message	implementation	in	the	sdk	directory.	Create	a	Message.h	file	with	the
following	content:

#include	<QByteArray>	

	

struct	Message	{	

	

				enum	class	Type	{	

								WORKER_REGISTER,	

								WORKER_UNREGISTER,	

								ALL_JOBS_ABORT,	

								JOB_REQUEST,	

								JOB_RESULT,	

				};	

	

				Message(const	Type	type	=	Type::WORKER_REGISTER,	

												const	QByteArray&	data	=	QByteArray())	:	

								type(type),	

								data(data)	

				{	

				}	

	

				~Message()	{}	

	

				Type	type;	

				QByteArray	data;	

};		

The	first	thing	to	note	is	the	enum	class	Type	which	details	all	the	possible	message	types:

WORKER_REGISTER:	This	is	the	message	sent	by	the	worker	when	it	first	connects	to	the
application.	The	content	of	the	message	is	only	the	number	of	cores	of	the	worker's	CPU.
We	will	see	soon	why	this	is	useful.
WORKER_UNREGISTER:	This	is	the	message	sent	by	the	worker	when	it	is	disconnected.	This
lets	the	application	know	that	it	should	remove	this	worker	from	its	list	and	stop	sending
any	messages	to	it.
ALL_JOBS_ABORT:	This	is	the	message	sent	by	the	application	each	time	a	picture
generation	is	canceled.	The	worker	is	then	responsible	for	canceling	all	its	current	local
threads.
JOB_REQUEST:	This	is	the	message	sent	by	the	application	to	calculate	a	specific	line	of	the
desired	picture.
JOB_RESULT:	This	is	the	message	sent	by	the	worker	with	the	calculated	result	from
the	JOB_REQUEST	inputs.

A	quick	word	about	the	enum	class	type,	which	is	a	C++11	addition.	It	is	a	safer	version	of
enum	(some	might	say	that	it	is	enum	as	it	should	have	been	from	the	beginning):

The	scope	of	the	values	is	local.	In	this	example,	you	can	only	reference	an	enum	value
with	the	syntax	Message::Type::WORKER_REGISTER;	no	more	Message::WORKER_REGISTER
shortcuts.	The	good	thing	about	this	restriction	is	that	you	do	not	need	to	prefix	enum
values	with	a	MESSAGE_TYPE_	to	be	sure	that	the	name	does	not	conflict	with	anything	else.
There	is	no	implicit	conversion	to	int.	The	enum	class	acts	like	a	real	type,	to	cast
an	enum	class	to	int,	you	have	to	write	static_cast<int>(
Message::Type::WORKER_REGISTER).
There	is	no	forward	declaration.	You	can	specify	that	an	enum	class	is	a	char	type	(with
the	syntax	enum	class	Test	:	char	{	...	}),	but	the	compiler	will	not	be	able	to

deduce	the	enum	class	size	with	a	forward	declaration.	Therefore,	it	has	been	simply
forbidden.

We	tend	to	use	the	enum	class	whenever	possible,	meaning	when	it	does	not	clash	with	Qt	enum
usage.

As	you	can	see,	a	message	has	only	two	members:

type:	This	is	the	message	type	we	just	described
data:	This	is	an	opaque	type	that	contains	the	piece	of	information	to	be	transmitted

We	chose	to	make	data	very	generic	to	place	the	responsibility	of	serializing/deserializing	on
the	Message	callers.	Based	on	the	message	type,	they	should	know	how	to	read	or	write	the
message	content.

By	using	this	approach,	we	avoid	a	tangled	class	hierarchy	with
MessageRegister,	MessageUnregister,	and	so	on.	Adding	a	new	Message	type	is	simply
adding	a	value	in	the	Type	enum	class	and	doing	the	proper	serialization/deserialization
in	data	(which	you	have	to	do	anyway).

To	see	the	file	in	Qt	Creator,	do	not	forget	to	add	the	Message.h	in	ch10-mandelbrot-ipc.pro
file:

OTHER_FILES	+=	\	

sdk/Message.h	

The	next	header	we	will	look	at	is	JobRequest.h:

#include	<QSize>	

#include	<QPointF>	

	

struct	JobRequest	

{	

				int	pixelPositionY;	

				QPointF	moveOffset;	

				double	scaleFactor;	

				QSize	areaSize;	

				int	iterationMax;	

};	

	

Q_DECLARE_METATYPE(JobRequest)	

	

//	In	ch10-mandelbrot-ipc	

OTHER_FILES	+=	\	

				sdk/Message.h	\	

				sdk/JobRequest.h	

This	struct	element	contains	all	the	necessary	data	for	the	worker	to	calculate	a	line	of	the

target	Mandelbrot	picture.	Because	the	application	and	the	worker(s)	will	live	in	different
memory	spaces	(or	even	different	physical	machines),	the	parameters	to	calculate	the
Mandelbrot	set	have	to	be	transmitted	somehow.	This	is	the	purpose	of	JobRequest.	The
meaning	of	each	field	is	the	same	as	JobResult	from	Chapter	9,	Keeping	Your	Sanity	with
Multithreading.

Note	the	presence	of	the	Q_DECLARE_METATYPE(JobRequest)	macro.	This	macro	is	used	to	let
the	Qt	meta-object	system	know	about	JobRequest.	This	is	needed	to	be	able	to	use	the	class	in
conjunction	with	QVariant.	We	will	not	use	QVariant	directly,	but	rather	through	the	use
of	QDataStream	which	relies	on	QVariant.

Speaking	of	JobResult,	here	is	the	new	JobResult.h:

#include	<QSize>	

#include	<QVector>	

#include	<QPointF>	

	

struct	JobResult	

{	

				JobResult(int	valueCount	=	1)	:	

								areaSize(0,	0),	

								pixelPositionY(0),	

								moveOffset(0,	0),	

								scaleFactor(0.0),	

								values(valueCount)	

				{	

				}	

	

				QSize	areaSize;	

				int	pixelPositionY;	

				QPointF	moveOffset;	

				double	scaleFactor;	

	

				QVector<int>	values;	

};	

	

Q_DECLARE_METATYPE(JobResult)	

	

//	In	ch10-mandelbrot-ipc	

OTHER_FILES	+=	\	

				sdk/Message.h	\	

				sdk/JobRequest.h	\	

				sdk/JobResult.h	

The	new	version	is	a	shameless	copy-paste	(with	the	small	Q_DECLARE_METATYPE	addition)	of
the	project	example	of	Chapter	9,	Keeping	Your	Sanity	with	Multithreading.

Working	with	QDataStream	and
QTcpSocket
The	missing	piece	of	the	SDK	is	MesssageUtils.	It	deserves	a	dedicated	section	because	it
covers	two	major	topics:	serialization	and	QDataStream	transactions.

We	will	start	with	the	serialization.	We	already	know	that	Message	stores	only	an
opaque	QByteArray	data	member.	As	a	consequence,	the	desired	data	has	to	be	serialized	as
a	QByteArray	before	being	passed	to	Message.

If	we	take	the	example	of	a	JobRequest	object,	it	is	not	directly	sent.	We	first	put	in	in	a
generic	Message	object	with	the	appropriate	Message	type.	The	following	diagram	summarizes
the	sequence	of	actions	to	be	done:

The	JobRequest	object	is	first	serialized	to	a	QByteArray	class;	it	is	then	passed	to	a	Message
instance	which	is	in	turn	serialized	to	a	final	QByteArray.	The	deserialization	process	is	the
exact	mirror	of	this	sequence	(from	right	to	left).

Serializing	data	brings	a	lot	of	questions.	How	can	we	do	it	in	a	generic	fashion?	How	do	we
handle	the	possible	endianness	of	the	CPU	architecture?	How	do	we	specify	the	length	of	the
data	to	be	able	to	deserialize	it	properly?

Once	again,	the	Qt	folks	did	a	great	job	and	provided	us	a	great	tool	to	deal	with	these	issues:
QDataStream.

The	QDataStream	class	enables	you	to	serialize	binary	data	to	any	QIODevice
(QAbstractSocket,	QProcess,	QFileDevice,	QSerialPort,	and	so	on).	The	great	advantage
of	QDataStream	is	that	it	encodes	the	information	in	a	platform-agnostic	format.	You	do	not
have	to	worry	about	the	byte	order,	the	operating	system,	or	the	CPU.

The	QDataStream	class	implements	the	serialization	of	C++	primitive	types	and	several	Qt	type
(QBrush,	QColor,	QString,	and	so	on).	Here	is	an	example	of	a	basic	write:

QFile	file("myfile");	

file.open(QIODevice::WriteOnly);	

QDataStream	out(&file);	

out	<<	QString("QDataStream	saved	my	day");	

out	<<	(qint32)42;	

As	you	can	see,	QDataStream	relies	on	the	overload	of	the	<<	operator	to	write	data.	To	read
information,	open	the	file	with	the	correct	mode	and	read	with	the	>>	operator.

Back	to	our	case;	we	want	to	serialize	custom	classes,	like	JobRequest.	To	do	so,	we	have	to
overload	the	<<	operator	for	JobRequest.	The	signature	of	the	function	will	be	like	so:

QDataStream&	operator<<(QDataStream&	out,		

																								const	JobRequest&	jobRequest)	

What	we	write	have	here	is	that	we	want	to	overload	the	out	<<	jobRequest	operator	call
with	our	custom	version.	By	doing	so,	we	intend	to	fill	the	out	object	with	the	content
of	jobRequest.	Because	QDataStream	already	supports	the	serialization	of	primitive	types,	all
we	have	to	do	is	serialize	them.

Here	is	the	updated	version	of	JobRequest.h:

#include	<QSize>	

#include	<QPointF>	

#include	<QDataStream>	

	

struct	JobRequest	

{	

			...	

};	

	

inline	QDataStream&	operator<<(QDataStream&	out,		

																															const	JobRequest&	jobRequest)	

{	

				out	<<	jobRequest.pixelPositionY	

								<<	jobRequest.moveOffset	

								<<	jobRequest.scaleFactor	

								<<	jobRequest.areaSize	

								<<	jobRequest.iterationMax;	

				return	out;	

}	

	

inline	QDataStream&	operator>>(QDataStream&	in,		

																															JobRequest&	jobRequest)	

{	

				in	>>	jobRequest.pixelPositionY;	

				in	>>	jobRequest.moveOffset;	

				in	>>	jobRequest.scaleFactor;	

				in	>>	jobRequest.areaSize;	

				in	>>	jobRequest.iterationMax;	

				return	in;	

}	

We	include	QDataStream	and	overload	the	<<	very	easily.	The	returned	out	will	be	updated

with	the	platform-agnostic	content	of	the	passed	jobRequest.	The	>>	operator	overload
follows	the	same	pattern:	we	fill	the	jobRequest	parameter	with	the	content	of	the	in	variable.
Behind	the	scenes,	QDataStream	stores	the	variable	size	in	the	serialized	data	to	be	able	to	read
it	afterwards.

Be	careful	to	serialize	and	deserialize	the	members	in	the	same	order.	If	you	do	not	pay
attention	to	this,	you	might	encounter	very	peculiar	values	in	JobRequest.

The	JobResult	operators	overload	follows	the	same	pattern,	and	it	does	not	deserve	to	be
included	in	the	chapter.	Look	at	the	source	code	of	the	project	if	you	have	any	doubt	about	its
implementation.

On	the	other	hand,	Message	operator	overload	needs	to	be	covered:

#include	<QByteArray>	

#include	<QDataStream>	

	

#include	<QByteArray>	

#include	<QDataStream>	

	

struct	Message	{	

				...	

};	

	

inline	QDataStream	&operator<<(QDataStream	&out,	const	Message	&message)	

{	

				out	<<		static_cast<qint8>(message.type)	

								<<	message.data;	

				return	out;	

}	

	

inline	QDataStream	&operator>>(QDataStream	&in,	Message	&message)	

{	

				qint8	type;	

				in	>>	type;	

				in	>>	message.data;	

	

				message.type	=	static_cast<Message::Type>(type);	

				return	in;	

}	

Because	the	Message::Type	enum	class	signal	does	not	have	an	implicit	conversion	to	int,
we	need	to	explicitly	convert	it	to	be	able	to	serialize	it.	We	know	that	there	will	not	be	more
than	255	message	types,	therefore	we	can	safely	cast	it	to	a	qint8	type.

The	same	story	applies	to	the	reading	part.	We	start	by	declaring	a	qint8	type	variable	that
will	be	filled	with	in	>>	type,	and	then,	the	type	variable	is	casted	to	a	Message::Type
in	message.

Our	SDK	classes	are	ready	to	be	serialized	and	deserialized.	Let's	see	it	in	action	in
MessageUtils	with	the	serialization	of	a	message	and	its	writing	to	a	QTcpSocket	class.

Always	in	the	sdk	directory,	create	a	MessageUtils.h	header	with	the	following	content:

#include	<QByteArray>	

#include	<QTcpSocket>	

#include	<QDataStream>	

	

#include	"Message.h"	

	

namespace	MessageUtils	{	

	

inline	void	sendMessage(QTcpSocket&	socket,	

																								Message::Type	messageType,	

																								QByteArray&	data,	

																								bool	forceFlush	=	false)	

{	

				Message	message(messageType,	data);	

	

				QByteArray	byteArray;	

				QDataStream	stream(&byteArray,	QIODevice::WriteOnly);	

				stream	<<	message;	

				socket.write(byteArray);	

				if	(forceFlush)	{	

								socket.flush();	

				}	

}	

There	is	no	need	to	instantiate	a	MessageUtils	class,	as	it	does	not	hold	any	state.	Here	we
used	a	MessageUtils	namespace	to	simply	protect	our	function	against	any	name	collision.

The	meat	of	the	snippet	lies	in	sendMessage().	Let's	look	at	the	parameters:

socket:	This	is	the	QTcpSocket	class	in	which	the	message	will	be	sent.	It	is	the
responsibility	of	the	caller	to	ensure	that	it	is	properly	opened.
messageType:	This	is	the	type	of	the	message	to	be	sent.
data:	This	is	the	serialized	data	to	be	included	in	the	message.	It	is	a	QByteArray	class,
meaning	that	the	caller	already	serialized	its	custom	class	or	data.
forceFlush:	This	is	a	flag	to	force	the	socket	to	flush	upon	the	message	shipment.	The
OS	keeps	socket	buffers	that	wait	to	be	filled	before	being	sent	across	the	wire.	Some
messages	need	to	be	delivered	immediately,	like	an	abort	all	jobs	message.

In	the	function	itself,	we	start	by	creating	a	message	with	the	passed	parameters.	Then,	a
QByteArray	class	is	created.	This	byteArray	will	be	the	receptacle	of	the	serialized	data.

As	a	matter	of	fact,	byteArray	is	passed	in	the	constructor	of	the	QDataStream	stream,	which	is
opened	in	the	QIODevice::WriteOnly	mode.	It	means	that	the	stream	will	output	its	data	to

the	byteArray.

After	that,	the	message	is	elegantly	serialized	to	stream	with	stream	<<	message	and	the
modified	byteArray	is	written	to	the	socket	with	socket.write(byteArray).

Finally,	if	the	forceFlush	flag	is	set	to	true,	the	socket	is	flushed	with	socket.flush().

Some	messages	will	not	have	any	payload	associated.	For	this	reason,	we	add	a	small	helper
function	for	this	purpose:

inline	void	sendMessage(QTcpSocket&	socket,	

																								Message::Type	messageType,	

																								bool	forceFlush	=	false)	{	

				QByteArray	data;	

				sendMessage(socket,	messageType,	data,	forceFlush);	

}	

Now	that	the	sendMessage()	is	done,	let's	turn	to	the	readMessages().	Because	we	are	working
in	IPC	and	more	specifically	with	sockets,	interesting	issues	arise	when	we	want	to	read	and
parse	messages.

When	something	is	ready	to	be	read	in	the	socket,	a	signal	will	notify	us.	But	how	do	we	know
how	much	to	read?	In	the	case	of	a	WORKER_DISCONNECT	message,	there	is	no	payload.	On	the
other	hand,	a	JOB_RESULT	message	can	be	very	heavy.	Even	worse,	several	JOB_RESULT
messages	can	line	up	in	the	socket,	waiting	to	be	read.

To	make	things	more	difficult,	we	have	to	acknowledge	the	fact	that	we	are	working	with	the
network.	Packets	can	be	lost,	retransmitted,	incomplete	or	whatever.	Sure,	TCP	ensures	that	we
eventually	get	all	of	the	information,	but	it	can	be	delayed.

If	we	had	to	do	it	ourselves,	it	would	have	implied	a	custom	message	header,	with	a	payload
size	and	a	footer	for	each	message.

A	feature	introduced	in	Qt	5.7	comes	to	the	rescue:	QDataStream	transaction.	The	idea	is	the
following:	when	you	start	reading	on	a	QIODevice	class,	you	already	know	how	much	you
have	to	read	(based	on	the	size	of	the	object	you	want	to	fill).	However,	you	might	not	get	all
the	data	in	a	single	read.

If	the	read	is	not	complete,	QDataStream	stores	what	was	already	read	in	a	temporary	buffer
and	restores	it	upon	the	next	read.	The	next	read	will	contain	what	was	already	loaded	plus	the
content	of	the	new	read.	You	can	see	it	as	a	checkpoint	in	the	read	stream	that	can	be	loaded
later.

This	process	can	be	repeated	until	data	is	read.	The	official	documentation	provides	a	simple
enough	example:

in.startTransaction();	

qint8	messageType;	

QByteArray	messageData;	

in	>>	messageType	>>	messageData;	

	

if	(!in.commitTransaction())	

				return;	

In	the	QDataStream	class	in	which	we	want	to	read,	in.startTransaction()	marks	the
checkpoint	in	the	stream.	It	will	then	try	to	read		messageType	and	messageData	atomically.	If	it
cannot	do	it,	in.commitTransaction()	returns	false	and	the	read	data	is	copied	in	an	internal
buffer.

Upon	the	next	call	to	this	code	(more	data	to	read),	in.startTransaction()	will	restore	the
preceding	buffer	and	try	to	finish	the	atomic	read.

In	our	readMessages()	situation,	we	can	receive	several	messages	at	once.	This	is	why	the
code	is	a	bit	more	complex.	Here	is	the	updated	version	of	MessageUtils:

#include	<memory>	

#include	<vector>	

#include	<QByteArray>	

#include	<QTcpSocket>	

#include	<QDataStream>	

	

#include	"Message.h"	

	

...	

	

inline	std::unique_ptr<std::vector<std::unique_ptr<Message>>>	

readMessages(QDataStream&	stream)	

{	

				auto	messages	=	std::make_unique<std::vector<std::unique_ptr<Message>>>();	

				bool	commitTransaction	=	true;	

				while	(commitTransaction	

																				&&	stream.device()->bytesAvailable()	>	0)	{	

								stream.startTransaction();	

								auto	message	=	std::make_unique<Message>();	

								stream	>>	*message;	

								commitTransaction	=	stream.commitTransaction();	

								if	(commitTransaction)	{	

												messages->push_back(std::move(message));	

								}	

				}	

				return	messages;	

}	

	

}	

In	the	function,	the	parameter	is	only	a	QDataStream.	We	assume	that	the	caller	linked	the

stream	with	the	socket	with	stream.setDevice(socket).

Because	we	do	not	know	the	length	of	the	content	to	be	read,	we	prepare	ourselves	to	read
several	messages.	To	explicitly	indicate	ownership	and	avoid	any	memory	leaks,	we	return	a
vector<unique_ptr<Message>>.	This	vector	has	to	be	a	unique_ptr	pointer	to	be	able	to
allocate	it	on	the	heap	and	avoid	any	copy	during	the	return	of	the	function.

In	the	function	itself,	we	start	by	declaring	the	vector.	After	that,	a	while	loop	is	executed.
The	two	conditions	to	stay	in	the	loop	are:

commitTransaction	==	true:	This	an	atomic	read	in	the	stream	that	has	been	performed;
a	complete	message	has	been	read
stream.device().bytesAvailable()	>	0:	This	states	that	there	is	still	data	to	read	in	the
stream

In	the	while	loop,	we	start	by	marking	the	stream	with	stream.startTransaction().	After
that,	we	try	to	perform	an	atomic	read	of	a	*message	signal	and	see	the	result
with	stream.commitTransaction().	If	it	succeeded,	the	new	message	is	added	to	the	messages
vector.	This	is	repeated	until	we	read	all	the	content	of	the	stream	with	the	bytesAvailable()
>	0	test.

Let's	study	a	use	case	to	understand	what	will	happen.	Consider	that	we	receive	multiple
messages	in	readMessages():

The	stream	object	will	try	to	read	it	into	message.
The	commitTransaction	variable	will	be	set	to	true	and	the	first	message	will	be	added
to	messages.
If	there	are	still	bytes	to	read	in	the	stream,	repeat	from	step	one.	Otherwise,	exit	the
loop.

To	sum	up,	working	with	sockets	raises	its	own	set	of	questions.	On	one	hand,	it	is	a	very
powerful	IPC	mechanism	with	a	lot	of	flexibility.	On	the	other	hand,	it	brings	a	lot	of
complexity	due	the	nature	of	the	network	itself.	Luckily,	Qt	(and	moreover	Qt	5.7)	brings
great	classes	to	help	us.

Keep	in	mind	that	we	tolerate	the	QDataStream	serialization	and	transactions	overhead	because
it	fits	well	to	our	need.	If	you	are	working	on	a	constrained	embedded	platform,	you	might
not	have	so	much	liberty	about	serializing	overhead	and	buffer	copies.	However,	you	will	still
have	to	rebuild	messages	by	hand	for	incoming	bytes.

Interacting	with	sockets	in	the	worker
Now	that	the	SDK	is	completed,	we	can	turn	to	the	worker.	The	project	is	complex	enough;	we
can	refresh	our	memory	with	the	mandelbrot-worker	architecture:

We	will	start	by	implementing	the	Job	class.	Inside	the	mandelbrot-worker	project,	create	a
new	C++	class	named	Job.	Here	is	the	Job.h	content:

#include	<QObject>	

#include	<QRunnable>	

#include	<QAtomicInteger>	

	

#include	"JobRequest.h"	

#include	"JobResult.h"	

	

class	Job	:	public	QObject,	public	QRunnable	

{	

				Q_OBJECT	

public:	

				explicit	Job(const	JobRequest&	jobRequest,		

																	QObject	*parent	=	0);	

				void	run()	override;	

	

signals:	

				void	jobCompleted(JobResult	jobResult);	

	

public	slots:	

				void	abort();	

	

private:	

				QAtomicInteger<bool>	mAbort;	

				JobRequest	mJobRequest;	

};	

If	you	remember	the	Job	class	from	Chapter	9,	Keeping	Your	Sanity	with	Multithreading,	this
header	should	ring	a	bell.	The	only	difference	is	that	the	parameters	of	the	job	(area	size,
scale	factor,	and	so	on)	are	extracted	from	the	JobRequest	object	rather	than	stored	directly	as
member	variables.

As	you	can	see,	the	JobRequest	object	is	provided	in	the	constructor	of	Job.	We	will	not
cover	Job.cpp,	as	it	is	very	much	like	the	version	of	it	in	Chapter	9,	Keeping	Your	Sanity	with
Multithreading.

We	now	proceed	to	the	Worker	class.	This	class	has	the	following	roles:

It	interacts	with	the	mandelbrot-app	using	a	QTcpSocket	class
It	dispatches	JobRequests	to	a	QThreadPool	class,	aggregates	the	results,	and	sends	them
back	to	mandelbrot-app	application	through	the	QTcpSocket	class

We	will	start	by	studying	the	interaction	with	the	QTcpSocket	class.	Create	a	new	class
named	Worker	with	the	following	header:

#include	<QObject>	

#include	<QTcpSocket>	

#include	<QDataStream>	

	

#include	"Message.h"	

#include	"JobResult.h"	

	

class	Worker	:	public	QObject	

{	

				Q_OBJECT	

public:	

				Worker(QObject*	parent	=	0);	

				~Worker();	

	

private:	

				void	sendRegister();	

	

private:	

				QTcpSocket	mSocket;	

};	

The	Worker	class	is	the	owner	of	mSocket.	The	first	thing	we	will	implement	is	the	connection
with	mandelbrot-app.	Here	is	the	constructor	of	Worker	in	Worker.cpp:

#include	"Worker.h"	

	

#include	<QThread>	

#include	<QDebug>	

#include	<QHostAddress>	

	

#include	"JobRequest.h"	

#include	"MessageUtils.h"	

	

Worker::Worker(QObject*	parent)	:	

				QObject(parent),	

				mSocket(this)	

{	

				connect(&mSocket,	&QTcpSocket::connected,	[this]	{	

								qDebug()	<<	"Connected";	

								sendRegister();	

				});	

				connect(&mSocket,	&QTcpSocket::disconnected,	[]	{	

								qDebug()	<<	"Disconnected";	

				});	

	

				mSocket.connectToHost(QHostAddress::LocalHost,	5000);	

}	

The	constructor	initializes	mSocket	with	this	as	the	parent	and	it	then	proceeds	to	connecting
the	relevant	mSocket	signals	to	lambdas:

QTcpSocket::connected:	When	the	socket	is	connected,	it	will	send	its	register	message.
We	will	soon	cover	this	function
QTcpSocket::disconnected:	When	the	socket	is	disconnected,	it	simply	prints	a	message
in	the	console

Finally,	mSocket	tries	to	connect	on	the	localhost	on	the	port	5000.	In	the	code	example,	we
assume	that	you	execute	the	worker	and	the	application	on	the	same	machine.	Feel	free	to
change	this	value	if	you	run	the	worker	and	the	application	on	different	machines.

The	body	of	sendRegister()	function	looks	like	this:

void	Worker::sendRegister()	

{	

				QByteArray	data;	

				QDataStream	out(&data,	QIODevice::WriteOnly);	

				out	<<	QThread::idealThreadCount();	

				MessageUtils::sendMessage(mSocket,	

																														Message::Type::WORKER_REGISTER,	

																														data);	

}	

A	QByteArray	class	is	filled	with	the	idealThreadCount	function	of	the	worker's	machine.
After	that,	we	call	MessageUtils::sendMessage	to	serialize	the	message	and	send	it	through
our	mSocket.

Once	the	worker	is	registered,	it	will	start	to	receive	job	requests,	process	them,	and	send	job
results	back.	Here	is	the	updated	Worker.h:

class	Worker	:	public	QObject	

{	

				...	

signals:	

				void	abortAllJobs();	

	

private	slots:	

				void	readMessages();	

	

private:	

				void	handleJobRequest(Message&	message);	

				void	handleAllJobsAbort(Message&	message);	

				void	sendRegister();	

				void	sendJobResult(JobResult	jobResult);	

				void	sendUnregister();	

				Job*	createJob(const	JobRequest&	jobRequest);	

	

private:	

				QTcpSocket	mSocket;	

				QDataStream	mSocketReader;	

				int	mReceivedJobsCounter;	

				int	mSentJobsCounter;	

};	

Let's	review	the	role	of	each	one	of	these	new	members:

mSocketReader:	This	is	the	QDataStream	class	through	which	we	will	read	mSocket
content.	It	will	be	passed	as	a	parameter	to	our	MessageUtils::readMessages()	function.
mReceivedJobsCounter:	This	is	incremented	each	time	a	new	JobRequest	is	received
from	mandelbrot-app.
mSentJobsCounter:	This	is	incremented	each	time	a	new	JobResult	is	sent
to	mandelbrot-app.

Now	for	the	new	functions:

abortAllJobs():	This	is	a	signal	emitted	when	the	Worker	class	receives	the	appropriate
message.
readMessages():	This	is	the	slot	called	each	time	there	is	something	to	read
in	mTcpSocket.	It	parses	the	messages	and,	for	each	message	type,	it	will	call	the
corresponding	function.
handleJobRequest():	This	function	creates	and	dispatches	a	Job	class	according	to
the	JobRequest	object	contained	in	the	message	parameter.
handleAllJobsAbort():	This	function	cancels	all	the	current	jobs	and	clear	the	thread
queue.
sendJobResult():	This	function	sends	the	JobResult	object	to	mandelbrot-app.
sendUnregister():	This	function	sends	the	unregister	message	to	mandelbrot-app.
createJob():	This	is	a	helper	function	to	create	and	properly	connect	the	signals	of	a
new	Job.

The	header	is	now	complete.	We	can	proceed	to	the	updated	constructor	in	Worker.cpp:

Worker::Worker(QObject*	parent)	:	

				QObject(parent),	

				mSocket(this),	

				mSocketReader(&mSocket),	

				mReceivedJobsCounter(0),	

				mSentJobsCounter(0)	

{	

				...	

				connect(&mSocket,	&QTcpSocket::readyRead,	

												this,	&Worker::readMessages);	

	

				mSocket.connectToHost(QHostAddress::LocalHost,	5000);	

}	

The	QDataStream	mSocketReader	variable	is	initialized	with	the	address	of	mSocket.	This
means	that	it	will	read	its	content	from	the	QIODevice	class.	After	that,	we	add	the	new	connect
to	the	QTcpSocket	signal,	readyRead().	Each	time	that	data	is	available	to	read	on	the	socket,
our	slot,	readMessages(),	will	be	called.

Here	is	the	implementation	of	readMessages():

void	Worker::readMessages()	

{	

				auto	messages	=	MessageUtils::readMessages(mSocketReader);	

				for(auto&	message	:	*messages)	{	

								switch	(message->type)	{	

												case	Message::Type::JOB_REQUEST:	

																handleJobRequest(*message);	

																break;	

												case	Message::Type::ALL_JOBS_ABORT:	

																handleAllJobsAbort(*message);	

																break;	

												default:	

																break;	

								}	

				}	

}	

The	messages	are	parsed	with	the	MessageUtils::readMessages()	function.	Note	the	use	of
C++11	semantics	with	auto,	which	elegantly	hides	the	smart	pointers	syntax	and	still	handles
the	memory	for	us.

For	each	parsed	message,	it	is	handled	in	the	switch	case.	Let's	review		handleJobRequest():

void	Worker::handleJobRequest(Message&	message)	

{	

					QDataStream	in(&message.data,	QIODevice::ReadOnly);	

					QList<JobRequest>	requests;	

					in	>>	requests;	

	

					mReceivedJobsCounter	+=	requests.size();	

					for(const	JobRequest&	jobRequest	:	requests)	{	

									QThreadPool::globalInstance()	

																				->start(createJob(jobRequest));	

					}	

}	

In	this	function,	the	message	object	is	already	deserialized.	However,	message.data	still	needs
to	be	deserialized.	To	achieve	this,	we	create	a	QDataStream	in	a	variable	that	will	read
from	message.data.

From	here,	we	parse	the	requests	QList.	Because	QList	already	overrides	the	>>	operator,	it
works	in	cascade	and	calls	our	JobRequest	>>	operator	overload.	Deserializing	data	has
never	been	so	easy!

After	that,	we	increment	mReceivedJobsCounter	and	start	processing	these		JobRequests.	For
each	one,	we	create	a	Job	class	and	dispatch	it	to	the	global	QThreadPool	class.	If	you	have	a
doubt	about	QThreadPool,	get	back	to	Chapter	9,	Keeping	Your	Sanity	with	Multithreading.

The	createJob()	function	is	straightforward	to	implement:

Job*	Worker::createJob(const	JobRequest&	jobRequest)	

{	

				Job*	job	=	new	Job(jobRequest);	

				connect(this,	&Worker::abortAllJobs,	

												job,	&Job::abort);	

				connect(job,	&Job::jobCompleted,	

												this,	&Worker::sendJobResult);	

				return	job;	

}	

A	new	Job	class	is	created	and	its	signals	are	properly	connected.
When	Worker::abortAllJobs	is	emitted,	every	running	Job	should	be	canceled	with
the	Job::abort	slot.

The	second	signal,	Job::jobCompleted	is	emitted	when	the	Job	class	has	finished	calculating
its	values.	Let's	see	the	connected	slot,	sendJobResult():

void	Worker::sendJobResult(JobResult	jobResult)	

{	

				mSentJobsCounter++;	

				QByteArray	data;	

				QDataStream	out(&data,	QIODevice::WriteOnly);	

				out	<<	jobResult;	

				MessageUtils::sendMessage(mSocket,	

																														Message::Type::JOB_RESULT,	

																														data);	

}	

We	first	increment	the	mSentJobsCounter	and	then	serialize	the	JobResult	to	a	QByteArray
data	which	is	passed	to	MessageUtils::sendMessage().

We	completed	the	tour	of	the	JobRequest	handling	and	the	following	JobResult	shipment.	We
still	have	to	cover	handleAllJobsAbort(),	which	is	called	from	readMessages():

void	Worker::handleAllJobsAbort(Message&	/*message*/)	

{	

				emit	abortAllJobs();	

				QThreadPool::globalInstance()->clear();	

				mReceivedJobsCounter	=	0;	

				mSentJobsCounter	=	0;	

}	

The	abortAllJobs()	signal	is	emitted	first	to	tell	all	the	running	jobs	to	cancel	their	process.
After	that,	the	QThreadPool	class	is	cleared	and	the	counters	are	reset.

The	last	piece	of	Worker	is	the	sendUnregister(),	which	is	called	in	the	Worker	destructor:

Worker::~Worker()	

{	

				sendUnregister();	

}	

	

void	Worker::sendUnregister()	

{	

				MessageUtils::sendMessage(mSocket,	

																														Message::Type::WORKER_UNREGISTER,	

																														true);	

}	

The	sendUnregister()	function	just	calls	sendMessage	without	any	data	to	serialize.	Note	that
it	passes	the	forceFlush	flag	to	true	to	make	sure	that	the	socket	is	flushed	and
that	mandelbrot-app	application	will	receive	the	message	as	fast	as	possible.

The	Worker	instance	will	be	managed	by	a	widget	which	will	display	the	progress	of	the
current	calculation.	Create	a	new	class	named	WorkerWidget	and	update		WorkerWidget.h,	like
so:

#include	<QWidget>	

#include	<QThread>	

#include	<QProgressBar>	

#include	<QTimer>	

	

#include	"Worker.h"	

	

class	WorkerWidget	:	public	QWidget	

{	

				Q_OBJECT	

public:	

				explicit	WorkerWidget(QWidget	*parent	=	0);	

				~WorkerWidget();	

	

private:	

				QProgressBar	mStatus;	

				Worker	mWorker;	

				QThread	mWorkerThread;	

				QTimer	mRefreshTimer;	

};	

The	members	of	WorkerWidget	are:

mStatus:	The	QProgressBar	that	will	display	the	percentage	of	processed	JobRequests
mWorker:	The	Worker	instance	owned	and	started	by	WorkerWidget
mWorkerThread:	The	QThread	class	in	which	mWorker	will	be	executed
mRefreshTimer:	The	QTimer	class	that	will	periodically	poll	mWorker	to	know	the	process
advancement

We	can	proceed	to	WorkerWidget.cpp:

#include	"WorkerWidget.h"	

	

#include	<QVBoxLayout>	

	

WorkerWidget::WorkerWidget(QWidget	*parent)	:	

				QWidget(parent),	

				mStatus(this),	

				mWorker(),	

				mWorkerThread(this),	

				mRefreshTimer()	

{	

				QVBoxLayout*	layout	=	new	QVBoxLayout(this);	

				layout->addWidget(&mStatus);	

	

				mWorker.moveToThread(&mWorkerThread);	

	

				connect(&mRefreshTimer,	&QTimer::timeout,	[this]	{	

								mStatus.setMaximum(mWorker.receivedJobsCounter());	

								mStatus.setValue(mWorker.sentJobCounter());	

				});	

	

				mWorkerThread.start();	

				mRefreshTimer.start(100);	

}	

	

WorkerWidget::~WorkerWidget()	

{	

				mWorkerThread.quit();	

				mWorkerThread.wait(1000);	

}	

First,	the	mStatus	variable	is	added	to	the	WorkerWidget	layout.	Then	the	mWorker	thread
affinity	is	moved	to	mWorkerThread	and	mRefreshTimer	is	configured	to	poll	mWorker	and
update	mStatus	data.

Finally,	mWorkerThread	is	started,	triggering	the	mWorker	process.	The	mRefreshTimer	object
is	also	started	with	an	interval	of	100	milliseconds	between	each	timeout.

The	last	thing	to	cover	in	mandelbrot-worker	is	the	main.cpp:

#include	<QApplication>	

	

#include	"JobResult.h"	

	

#include	"WorkerWidget.h"	

	

int	main(int	argc,	char	*argv[])	

{	

				qRegisterMetaType<JobResult>();	

	

				QApplication	a(argc,	argv);	

				WorkerWidget	workerWidget;	

	

				workerWidget.show();	

				return	a.exec();	

}	

We	start	by	registering	JobResult	with	qRegisterMetaType	because	it	is	used	in	the	signal/slot
mechanism.	After	that,	we	instantiate	a	WorkerWidget	layout	and	display	it.

Interacting	with	sockets	from	the
application
The	next	project	to	complete	is	mandelbrot-app.	It	will	contain	the	QTcpServer	that	will
interact	with	the	workers	and	the	picture	drawing	of	the	Mandelbrot	set.	As	a	reminder,	the
diagram	of	the	mandelbrot-app	architecture	is	shown	here:

We	will	build	this	application	from	the	ground	up.	Let's	start	with	the	class	responsible	for
maintaining	the	connection	with	a	specific	Worker:	WorkerClient.	This	class	will	live	in	its
specific	QThread	and	will	interact	with	a	Worker	class	using	the	same		QTcpSocket/QDataStream
mechanism	we	covered	in	the	last	section.

In	mandelbrot-app,	create	a	new	C++	class	named	WorkerClient	and	update		WorkerClient.h
like	so:

#include	<QTcpSocket>	

#include	<QList>	

#include	<QDataStream>	

	

#include	"JobRequest.h"	

#include	"JobResult.h"	

#include	"Message.h"	

	

class	WorkerClient	:	public	QObject	

{	

				Q_OBJECT	

public:	

				WorkerClient(int	socketDescriptor);	

	

private:	

				int	mSocketDescriptor;	

				int	mCpuCoreCount;	

				QTcpSocket	mSocket;	

				QDataStream	mSocketReader;	

};	

	

Q_DECLARE_METATYPE(WorkerClient*)	

It	looks	very	similar	to	Worker.	Yet	it	may	behave	differently	from	a	life	cycle	point	of	view.
Each	time	a	new	Worker	connects	to	our	QTcpServer,	a	new	WorkerClient	will	be	spawned
with	an	associated	QThread.	The	WorkerClient	object	will	take	the	responsibility	of
interacting	with	the	Worker	class	through	the	mSocket.

If	the	Worker	disconnects,	the	WorkerClient	object	will	be	deleted	and	removed	from
the	QTcpServer	class.

Let's	review	the	content	of	this	header,	starting	with	the	members:

mSocketDescriptor:	This	is	the	unique	integer	assigned	by	the	system	to	interact	with	the
socket.	stdin,	stdout,	and	stderr	are	also	descriptors	that	point	to	specific	streams	in
your	application.	For	a	given	socket,	the	value	will	be	retrieved	in	QTcpServer.	More	on
this	later	on.
mCpuCoreCount:	This	is	the	CPU	core	count	for	the	connected	Worker.	This	field	will	be
initialized	when	the	Worker	sends	the	WORKER_REGISTER	message.
mSocket:	This	is	the	QTcpSocket	used	to	interact	with	the	Worker	class.
mSocketReader:	This	has	the	same	role	it	had	in	Worker	-	it	reads	mSocket	content.

Now	we	can	add	the	functions	to	WorkerClient.h:

class	WorkerClient	:	public	QObject	

{	

				Q_OBJECT	

public:	

				WorkerClient(int	socketDescriptor);	

				int	cpuCoreCount()	const;	

	

signals:	

				void	unregistered(WorkerClient*	workerClient);	

				void	jobCompleted(WorkerClient*	workerClient,		

																						JobResult	jobResult);	

				void	sendJobRequests(QList<JobRequest>	requests);	

	

public	slots:	

				void	start();	

				void	abortJob();	

	

private	slots:	

				void	readMessages();	

				void	doSendJobRequests(QList<JobRequest>	requests);	

	

private:	

				void	handleWorkerRegistered(Message&	message);	

				void	handleWorkerUnregistered(Message&	message);	

				void	handleJobResult(Message&	message);	

	

				...	

};	

Let's	see	what	each	function	does:

WorkerClient():	This	function	expects	a	socketDescriptor	as	a	parameter.	As	a
consequence,	a	WorkerClient	function	cannot	be	initialized	without	a	valid	socket.
cpuCoreCount():	This	function	is	a	simple	getter	to	let	the	owner	of	WorkerClient	know
how	many	cores	the	Worker	has.

The	class	has	three	signals:

unregister():	This	is	the	signal	sent	by	WorkerClient	when	it	has	received
the	WORKER_UNREGISTER	message.
jobCompleted():	This	is	the	signal	sent	by	WorkerClient	when	it	has	received
the	JOB_RESULT	message.	It	will	pass	by	copying	the	deserialized	JobResult.
sendJobRequests():	This	is	emitted	from	the	owner	of	WorkerClient	to
pass	JobRequests	in	a	queued	connection	to	the	proper	slot:		doSendJobRequests().

Here	are	the	details	of	the	slots:

start():	This	slot	is	called	when	WorkerClient	can	start	its	process.	Typically,	it	will	be
connected	to	the	start	signal	of	the	QThread	associated	with	the	WorkerClient.
abortJob():	This	slot	triggers	the	shipment	of	the	ALL_JOBS_ABORT	message	to
the	Worker.
readMessages():	This	slot	is	called	each	time	there	is	something	to	read	in	the	socket.
doSendJobRequests():	This	slot	is	the	real	slot	that	triggers	the	shipment	of
the	JobRequests	to	the	Worker.

And	finally,	here	are	the	details	of	the	private	functions:

handleWorkerRegistered():	This	function	processes	the	WORKER_REGISTER	message	and
initializes	mCpuCoreCount
handleWorkerUnregistered():	This	function	processes	the	WORKER_UNREGISTER	message
and	emits	the	unregistered()	signal
handleJobResult():	This	function	processes	the	JOB_RESULT	message	and	dispatches	the
content	through	the	jobCompleted()	signal

The	implementation	in	WorkerClient.cpp	should	be	quite	familiar.	Here	is	the	constructor:

#include	"MessageUtils.h"	

	

WorkerClient::WorkerClient(int	socketDescriptor)	:	

				QObject(),	

				mSocketDescriptor(socketDescriptor),	

				mSocket(this),	

				mSocketReader(&mSocket)	

{	

				connect(this,	&WorkerClient::sendJobRequests,	

												this,	&WorkerClient::doSendJobRequests);	

}	

The	fields	are	initialized	in	the	initialization	list	and	the	sendJobRequests	signal	is	connected
to	the	private	slot,	doSendJobRequests.	This	trick	is	used	to	still	have	a	queued	connection
across	threads	while	avoiding	multiple	functions	declarations.

We	will	proceed	with	the	start()	function:

void	WorkerClient::start()	

{	

				connect(&mSocket,	&QTcpSocket::readyRead,		

												this,	&WorkerClient::readMessages);	

				mSocket.setSocketDescriptor(mSocketDescriptor);	

}	

This	is	very	short	indeed.	It	first	connects	the	readyRead()	signal	from	the	socket	to
our	readMessages()	slot.	After	that,	mSocket	is	properly	configured	with		mSocketDescriptor.

The	connect	has	to	be	done	in	start()	because	it	should	be	executed	in	the	QThread	class
associated	with	our	WorkerClient.	By	doing	so,	we	know	that	the	connect	will	be	a	direct
connection	and	that	mSocket	will	not	have	to	queue	signals	to	interact	with	WorkerClient.

Note	that	at	the	end	of	the	function,	the	associated	QThread	is	not	terminated.	On	the	contrary,
it	is	executing	its	event	loop	with	QThread::exec().	The	QThread	class	will	continue	to	run	its
event	loop	until	someone	calls	QThread::exit().

The	only	purpose	of	the	start()	function	is	to	do	the	mSocket	connect	work	in	the	right	thread
affinity.	After	that,	we	rely	solely	on	the	Qt	signal/slot	mechanism	to	process	data.	There	is	no
need	for	a	busy	while	loop.

The	readMessages()	class	is	waiting	for	us;	let's	see	it:

void	WorkerClient::readMessages()	

{	

				auto	messages	=	MessageUtils::readMessages(mSocketReader);	

				for(auto&	message	:	*messages)	{	

								switch	(message->type)	{	

												case	Message::Type::WORKER_REGISTER:	

																handleWorkerRegistered(*message);	

																break;	

												case	Message::Type::WORKER_UNREGISTER:	

																handleWorkerUnregistered(*message);	

																break;	

												case	Message::Type::JOB_RESULT:	

																handleJobResult(*message);	

																break;	

												default:	

																break;	

								}	

				}	

}	

No	surprises	here.	It's	exactly	like	we	did	for	Worker.	The	Messages	are	deserialized
using	MessageUtils::readMessages()	and,	for	each	message	type,	the	appropriate	function	is
called.

Here	is	the	content	of	each	of	these	functions,	starting	with	handleWorkerRegistered():

void	WorkerClient::handleWorkerRegistered(Message&	message)	

{	

				QDataStream	in(&message.data,	QIODevice::ReadOnly);	

				in	>>	mCpuCoreCount;	

}	

For	the	WORKER_REGISTER	message,	Worker	only	serialized	an	int	in	message.data,	so	we	can
initialize	mCpuCoreCount	on	the	spot	with	in	>>	mCpuCoreCount.

Now	the	body	of	handleWorkerUnregistered():

void	WorkerClient::handleWorkerUnregistered(Message&	/*message*/)	

{	

				emit	unregistered(this);	

}	

It	is	a	relay	to	send	the	unregistered()	signal,	which	will	be	picked	up	by	the	owner
of	WorkerClient.

The	last	"read"	function	is	handleJobResult():

void	WorkerClient::handleJobResult(Message&	message)	

{	

				QDataStream	in(&message.data,	QIODevice::ReadOnly);	

				JobResult	jobResult;	

				in	>>	jobResult;	

				emit	jobCompleted(this,	jobResult);	

}	

This	is	deceptively	short.	It	only	deserializes	the	jobResult	component	from	message.data
and	emits	the	jobCompleted()	signal.

The	"write-to-socket"	functions	are	abortJob()	and	doSendJobRequest():

void	WorkerClient::abortJob()	

{	

				MessageUtils::sendMessage(mSocket,		

																														Message::Type::ALL_JOBS_ABORT,		

																														true);	

}	

	

void	WorkerClient::doSendJobRequests(QList<JobRequest>	requests)	

{	

				QByteArray	data;	

				QDataStream	stream(&data,	QIODevice::WriteOnly);	

				stream	<<	requests;	

	

				MessageUtils::sendMessage(mSocket,		

																														Message::Type::JOB_REQUEST,		

																														data);	

}	

The	abortJob()	function	sends	the	ALL_JOBS_ABORT	message	with	the	forceFlush	flag	set
to	true	and	doSendJobRequests()	serializes	the	requests	to	stream	before	sending	them
using	MessageUtils::sendMessage().

Building	your	own	QTcpServer
Everything	is	ready	to	read	and	write	in	our	sockets.	We	still	need	a	server	to	orchestrate	all
these	instances.	To	do	so,	we	will	develop	a	modified	version	of	the	MandelbrotCalculator
class,	which	was	covered	in	Chapter	9,	Keeping	Your	Sanity	with	Multithreading.

The	idea	is	to	respect	the	same	interface,	in	order	to	have	MandelbrotWidget	oblivious	to	the
fact	that	the	Mandelbrot	picture	generation	is	deported	on	different	processes/machines.

The	main	difference	between	the	old	MandelbrotCalculator	and	the	new	one	is	that	we
replaced	the	QThreadPool	class	by	a	QTcpServer.	The	MandelbrotCalculator	class	now	only
has	the	responsibility	to	dispatch	JobRequests	to	Workers	and	aggregate	the	result,	but	it
never	interacts	anymore	with	a	QThreadPool	class.

Create	a	new	C++	class	named	MandelbrotCalculator.cpp	and	update	
MandelbrotCalculator.h	to	match	this:

#include	<memory>	

#include	<vector>	

	

#include	<QTcpServer>	

#include	<QList>	

#include	<QThread>	

#include	<QMap>	

#include	<QElapsedTimer>	

	

#include	"WorkerClient.h"	

#include	"JobResult.h"	

#include	"JobRequest.h"	

	

class	MandelbrotCalculator	:	public	QTcpServer	

{	

				Q_OBJECT	

public:	

				MandelbrotCalculator(QObject*	parent	=	0);	

				~MandelbrotCalculator();	

	

signals:	

				void	pictureLinesGenerated(QList<JobResult>	jobResults);	

				void	abortAllJobs();	

	

public	slots:	

				void	generatePicture(QSize	areaSize,	QPointF	moveOffset,		

																									double	scaleFactor,	int	iterationMax);	

	

private	slots:	

				void	process(WorkerClient*	workerClient,	JobResult	jobResult);	

				void	removeWorkerClient(WorkerClient*	workerClient);	

	

protected:	

				void	incomingConnection(qintptr	socketDescriptor)	override;	

	

private:	

				std::unique_ptr<JobRequest>	createJobRequest(

																																														int	pixelPositionY);	

				void	sendJobRequests(WorkerClient&	client,		

																									int	jobRequestCount	=	1);	

				void	clearJobs();	

	

private:	

				QPointF	mMoveOffset;	

				double	mScaleFactor;	

				QSize	mAreaSize;	

				int	mIterationMax;	

				int	mReceivedJobResults;	

				QList<JobResult>	mJobResults;	

				QMap<WorkerClient*,	QThread*>	mWorkerClients;	

				std::vector<std::unique_ptr<JobRequest>>	mJobRequests;	

				QElapsedTimer	mTimer;	

};	

The	modified	(or	new)	data	is	highlighted.	First,	note	that	the	class	now	inherits	from
QTcpServer	rather	than	QObject.	The	MandelbrotCalculator	class	is	now	a	QTcpServer	and	is
able	to	accept	and	manage	connections.	Before	digging	into	this	topic,	we	can	review	the	new
members:

mWorkerClients:	This	is	a	QMap	that	stores	the	pair	WorkerClient	and	QThread.	Each	time
a	WorkerClient	is	created,	an	associated	QThread	is	also	spawned	and	both	of	them	are
stored	in	mWorkerClients.
mJobRequests:	This	is	the	list	of	JobRequests	for	the	current	picture.	Each	time	a	picture
generation	is	requested,	the	full	list	of	JobRequest	is	generated,	ready	to	be	dispatched
to	WorkerClients	(that	is,	to	the	Worker	on	the	other	side	of	the	socket).

And	the	functions	are:

process():	This	function	is	a	slightly	modified	version	of	the	one	seen	in	Chapter
9,	Keeping	Your	Sanity	with	Multithreading.	It	not	only	aggregates	JobResults	before
sending	them	with	the	pictureLinesGenerated()	signal,	but	also	dispatches	JobRequest
to	the	passed	WorkerClient	to	keep	them	busy.
removeWorkerClient():	This	function	removes	and	deletes	the	given	WorkerClient
from	mWorkerClients.
incomingConnection():	This	function	is	an	overloaded	function	from	QTcpServer.	It	is
called	each	time	a	new	client	tries	to	connect	to	MandelbrotCalculator.
createJobRequest():	This	is	a	helper	function	that	creates	a	JobRequest	that	is	added
to	mJobRequests.
sendJobRequests():	This	function	is	responsible	for	sending	a	list	of	JobRequests	to	the

specified	WorkerClient.

Let's	turn	to	MandelbrotCalculator.cpp	with	the	constructor:

#include	<QDebug>	

#include	<QThread>	

	

using	namespace	std;	

	

const	int	JOB_RESULT_THRESHOLD	=	10;	

	

MandelbrotCalculator::MandelbrotCalculator(QObject*	parent)	:	

				QTcpServer(parent),	

					mMoveOffset(),	

				mScaleFactor(),	

				mAreaSize(),	

				mIterationMax(),	

				mReceivedJobResults(0),	

				mWorkerClients(),	

				mJobRequests(),	

				mTimer()	

{	

				listen(QHostAddress::Any,	5000);	

}	

This	is	the	common	initialization	list	with	the	listen()	instruction	in	the	body.	Because	we
are	subclassing	QTcpServer,	we	can	call	listen	on	ourselves.	Note	that	QHostAddress::Any
works	either	for	IPv4	and	IPv6.

Let's	see	the	overloaded	function,	incomingConnection():

void	MandelbrotCalculator::incomingConnection(

																																									qintptr	socketDescriptor)	

{	

				qDebug()	<<	"Connected	workerClient";	

				QThread*	thread	=	new	QThread(this);	

				WorkerClient*	client	=	new	WorkerClient(socketDescriptor);	

				int	workerClientsCount	=	mWorkerClients.keys().size();	

				mWorkerClients.insert(client,	thread);	

				client->moveToThread(thread);	

	

				connect(this,	&MandelbrotCalculator::abortAllJobs,	

												client,	&WorkerClient::abortJob);	

	

				connect(client,	&WorkerClient::unregistered,	

												this,	&MandelbrotCalculator::removeWorkerClient);	

				connect(client,	&WorkerClient::jobCompleted,	

												this,	&MandelbrotCalculator::process);	

	

				connect(thread,	&QThread::started,	

												client,	&WorkerClient::start);	

				thread->start();	

	

				if(workerClientsCount	==	0	&&	

								mWorkerClients.size()	==	1)	{	

								generatePicture(mAreaSize,	mMoveOffset,		

																								mScaleFactor,	mIterationMax);	

				}	

}	

Once	listen()	has	been	called,	each	time	someone	connects	to	our	ip/port
pair,	incomingConnection()	will	be	triggered	with	socketDescriptor	passed	as	a	parameter.

Tip

You	can	test	this	on	your	machine	connection	with	a	simple	telnet	127.0.0.1	5000
command.	You	should	see	the	Connected	workerClient	log	in	mandelbrot-app.

We	start	by	creating	a	QThread	class	and	a	WorkerClient.	This	pair	is	immediately	inserted	in
the	mWorkerClients	map	and	client	thread	affinity	is	changed	to	thread.

After	that,	we	do	all	the	connects	to	manage	the	client	(abortJob,	unregister,
and	jobCompleted).	We	continue	with	the	QThread::started()	signal,	which	is	connected	to
the	WorkerClient::start()	slot	and	finally,	thread	is	started.

The	last	part	of	the	function	is	used	to	trigger	a	picture	generation	upon	the	first	client
connection.	If	we	did	not	do	this,	the	screen	would	have	remained	black	until	we	panned	or
zoomed.

We	have	covered	the	WorkerClient	creation;	let's	finish	its	life	cycle	with	its	destruction
with	removeWorkerClient():

void	MandelbrotCalculator::removeWorkerClient(WorkerClient*	workerClient)	

{	

				qDebug()	<<	"Removing	workerClient";	

				QThread*	thread	=	mWorkerClients.take(workerClient);	

				thread->quit();	

				thread->wait(1000);	

				delete	thread;	

				delete	workerClient;	

}	

The	workerClient/thread	pair	is	removed	from	mWorkerClients	and	cleanly	deleted.	Note
that	this	function	can	be	called	from	the	WorkerClient::unregistered	signal	or	in
the	MandelbrotCalculator	destructor:

MandelbrotCalculator::~MandelbrotCalculator()	

{	

				while	(!mWorkerClients.empty())	{	

								removeWorkerClient(mWorkerClients.firstKey());	

				}	

}	

When	MandelbrotCalculator	is	deleted,	mWorkerClients	has	to	be	properly	emptied.	The
iterator	style	while	loop	does	a	good	job	of	calling		removeWorkerClient().

In	this	new	version	of	MandelbrotCalculator,	generatePicture()	does	not	have	exactly	the
same	behavior:

void	MandelbrotCalculator::generatePicture(

																													QSize	areaSize,	QPointF	moveOffset,	

																													double	scaleFactor,	int	iterationMax)	

{	

				//	sanity	check	&	members	initization	

				...	

	

				for(int	pixelPositionY	=	mAreaSize.height()	-	1;			

								pixelPositionY	>=	0;	pixelPositionY--)	{	

								mJobRequests.push_back(move(

																															createJobRequest(pixelPositionY)));	

				}	

	

				for(WorkerClient*	client	:	mWorkerClients.keys())	{	

								sendJobRequests(*client,	client->cpuCoreCount()	*	2);	

				}	

}	

The	beginning	is	the	same.	However,	the	end	is	quite	different.	Rather	than	creating	Jobs	and
giving	them	to	a	QThreadPool,	MandelbrotCalculator	now:

Creates	JobRequests	to	generate	the	whole	picture.	Note	that	they	are	created	in	reverse
order.	We	will	soon	see	why.
Dispatches	a	number	of	JobRequests	to	each	WorkerClient	it	owns.

The	second	point	deserves	a	strong	emphasis.	If	we	want	to	maximize	the	speed	of	our
system,	we	have	to	use	multiple	workers,	each	one	having	multiple	cores	to	process	multiple
jobs	at	the	same	time.

Even	though	a	Worker	class	can	process	multiple	jobs	at	the	same	time,	it	can	only	send
us	JobResults	one	by	one	(through	WorkerClient::jobCompleted).	Each	time	we	process
a	JobResult	object	from	a	WorkerClient,	we	will	dispatch	a	single		JobRequest	to	it.

Assume	that	the	Worker	class	has	eight	cores.	If	we	send	JobRequests	one	by	one,	the	Worker
will	always	have	seven	cores	idle.	We	are	here	to	heat	up	your	CPUs,	not	to	let	them	drink
mojitos	on	the	beach!

To	mitigate	this,	the	first	batch	of	JobResults	we	send	to	a	worker	has	to	be	higher	than
its	coreCount().	By	doing	so,	we	ensure	that	is	always	has	a	queue	of		JobRequests	to	process

until	we	generate	the	whole	picture.	This	is	why	we	send		client->cpuCoreCount()	*	two
initial	JobRequests.	If	you	play	with	this	value,	you	will	see	that:

If	jobCount	<	cpuCoreCount(),	some	cores	of	your	Worker	will	be	idle	and	you	will	not
leverage	the	full	power	of	its	CPU
If	jobCount	>	cpuCoreCount()	by	too	much,	you	might	overload	the	queue	of	one
your	Workers

Remember	that	this	system	is	flexible	enough	to	have	multiple	workers.	If	you	have	a
RaspberryPI	and	an	x86	with	16	cores,	the	RaspberryPI	will	lag	behind	the	x86	CPU.	By
giving	too	much	initial	JobRequests,	the	RaspberryPI	will	hinder	the	whole	picture
generation	while	the	x86	CPU	has	already	finished	all	its	jobs.

Let's	cover	the	remaining	functions	of	MandelbrotCalculator,	starting	with	
createJobRequest():

std::unique_ptr<JobRequest>	MandelbrotCalculator::createJobRequest(int	

pixelPositionY)	

{	

				auto	jobRequest	=	make_unique<JobRequest>();	

				jobRequest->pixelPositionY	=	pixelPositionY;	

				jobRequest->moveOffset	=	mMoveOffset;	

				jobRequest->scaleFactor	=	mScaleFactor;	

				jobRequest->areaSize	=	mAreaSize;	

				jobRequest->iterationMax	=	mIterationMax;	

				return	jobRequest;	

}	

This	is	a	simple	creation	of	a	jobRequest	with	the	member	fields	of		MandelbrotCalculator.
Again,	we	use	unique_ptr	to	explicitly	indicate	the	ownership	of	jobRequest	and	avoid	any
memory	leaks.

Next,	with	sendJobRequests():

void	MandelbrotCalculator::sendJobRequests(WorkerClient&	client,	int	

jobRequestCount)	

{	

				QList<JobRequest>	listJobRequest;	

				for	(int	i	=	0;	i	<	jobRequestCount;	++i)	{	

								if	(mJobRequests.empty())	{	

												break;	

								}	

	

								auto	jobRequest	=	move(mJobRequests.back());	

								mJobRequests.pop_back();	

								listJobRequest.append(*jobRequest);	

				}	

	

				if	(!listJobRequest.empty())	{	

								emit	client.sendJobRequests(listJobRequest);	

				}	

}	

Because	we	can	send	multiple	JobRequests	at	the	same	time,	we	loop	on		jobRequestCount	by
taking	the	last	jobRequest	of	mJobRequests	and	adding	it	to	listJobRequest.	This	is	the
reason	for	which	we	had	to	fill	mJobRequests	in	the	reverse	order.

Finally,	the	client.sendJobRequests()	signal	is	emitted,	which	in	turns	triggers
the	WorkerClient::doSendJobRequests()	slot.

We	are	now	going	to	see	the	modified	version	of	process():

void	MandelbrotCalculator::process(WorkerClient*	workerClient,		

																																			JobResult	jobResult)	

{	

				//	Sanity	check	and	JobResult	aggregation	

	

				if	(mReceivedJobResults	<	mAreaSize.height())	{	

								sendJobRequests(*workerClient);	

				}	else	{	

								qDebug()	<<	"Generated	in"	<<	mTimer.elapsed()	<<	"ms";	

				}	

}	

In	this	version,	we	pass	workerClient	as	a	parameter.	This	is	used	at	the	end	of	the	function,
to	be	able	to	dispatch	a	new	JobRequest	to	the	given	workerClient.

Finally,	the	updated	version	of	abortAllJobs():

void	MandelbrotCalculator::clearJobs()	

{	

				mReceivedJobResults	=	0;	

				mJobRequests.clear();	

				emit	abortAllJobs();	

}	

This	simply	cleared	mJobRequests	instead	of	emptying	QThreadPool.

The	MandelbrotCalculator	class	is	completed!	You	can	copy	and	paste		MandelBrotWidget
and	MainWindow	(.ui	file	included)	from	Chapter	9,	Keeping	Your	Sanity	with	Multithreading.
We	designed	it	to	be	plug	and	play,	without	knowing	who	generates	the	picture:	a
local	QThreadPool	with	QRunnable	or	minions	through	an	IPC	mechanism.

There	is	only	a	tiny	difference	in	main.cpp:

#include	<QApplication>	

#include	<QList>	

	

#include	"JobRequest.h"	

#include	"JobResult.h"	

#include	"WorkerClient.h"	

	

int	main(int	argc,	char	*argv[])	

{	

				qRegisterMetaType<QList<JobRequest>>();	

				qRegisterMetaType<QList<JobResult>>();	

				qRegisterMetaType<WorkerClient*>();	

	

				QApplication	a(argc,	argv);	

				MainWindow	w;	

				w.show();	

	

				return	a.exec();	

}	

You	can	now	launch	mandelbrot-app	and	after	that,	the	one	or	many	mandelbrot-
worker	programs	that	will	connect	to	the	application.	It	should	automatically	trigger	a	picture
generation.	The	Mandelbrot	picture	generation	is	now	working	across	multiple	processes!
Because	we	chose	to	use	sockets,	you	can	start	the	application	and	the	workers	on	different
physical	machines.

Tip

Using	IPv6,	you	may	very	easily	test	the	app/worker	connection	in	different	locations.	If	you
do	not	have	a	high-speed	Internet	connection,	you	will	see	how	the	network	hinders	the
picture	generation.

You	may	want	to	take	some	time	to	deploy	the	application	on	multiple	machines	and	see	how
this	cluster	works	together.	During	our	tests,	we	ramped	up	our	cluster	up	to	18	cores	with
very	heterogeneous	machines	(PC,	laptop,	Macbook,	and	so	on).

Summary
IPC	is	a	fundamental	mechanism	in	computer	science.	In	this	chapter,	you	learned	the	various
techniques	offered	by	Qt	to	do	IPC	and	how	to	create	an	application	that	uses	sockets	to
interact,	send,	and	receive	commands.	You	took	the	original	mandelbrot-threadpool
application	to	the	next	level	by	enabling	it	to	generate	pictures	on	a	cluster	of	machines.

Adding	IPC	on	top	of	a	multi-threaded	application	brings	some	issues.	You	have	many	more
possible	bottlenecks,	chances	of	leaking	memory,	and	have	an	inefficient	calculation.	Qt
provides	multiple	mechanisms	to	do	IPC.	In	Qt	5.7,	the	addition	of	transactions	makes	the
serialization/deserialization	part	much	easier.

In	the	next	chapter,	you	will	discover	the	Qt	Multimedia	framework	and	how	to	save	and	load
an	C++	object	from	a	file.	The	project	example	will	be	a	virtual	drum	machine.	You	will	be
able	to	save	and	load	your	tracks.

Chapter	11.		Having	Fun	with	Serialization
The	previous	chapter	was	a	firework	of	threads,	sockets,	and	workers.	We	hope	that	your
minions	have	been	working	hard.	In	this	chapter,	we	will	turn	our	attention	to	the	serialization
with	Qt.	You	will	learn	how	to	serialize	data	in	multiple	formats	with	a	flexible	system.	The
example	project	will	be	a	virtual	drum	machine,	in	which	you	can	compose	you	own	drum
beat,	record	it,	play	it,	save	it,	and	load	it	back.	Your	drum	beat	will	be	probably	so	awesome
that	you	will	want	to	share	it:	you	will	now	be	able	to	do	it	in	various	formats.

This	chapter	will	cover	the	following	topics:

How	to	architecture	an	application	that	plays	and	records	sounds
The	QVariant	class	and	its	inner	mechanics
A	flexible	serialization	system
JSON	serialization
XML	serialization
Binary	serialization
The	Qt	Multimedia	framework
Drag	and	drop	handling	with	Qt
Triggering	a	button	from	your	keyboard

Architecting	the	drum	machine	project
As	usual,	before	diving	into	the	code,	let's	study	the	structure	of	the	project.	The	aim	of	the
project	is	to	be	able	to:

Play	and	record	a	sound	track	from	a	drum	machine
Save	this	track	to	a	file	and	load	it	to	play	it	back

To	play	a	sound,	we	will	lay	out	four	big	buttons	that	will	play	a	specific	drum	sound	upon
click	(or	a	keyboard	event):	a	kick,	a	snare,	a	hi-hat,	and	a	cymbal	crash.	These	sounds	will	be
.wav	files	loaded	by	the	application.	The	user	will	be	able	to	record	his	sequence	of	sounds
and	replay	it.

For	the	serialization	part,	we	do	not	only	want	to	save	the	track	to	a	single	file	format,	we
would	rather	do	three:

JSON	(JavaScript	Object	Notation)
XML	(eXtensible	Markup	Language)
Binary

Not	only	is	it	more	fun	to	cover	three	formats,	but	it	also	gives	us	the	opportunity	to
understand	the	advantages	and	limitations	of	each	one,	and	how	it	fits	within	the	Qt
framework.	The	architecture	we	are	going	to	implement	will	try	to	be	flexible	to	handle
future	evolutions.	You	never	know	how	a	project	can	evolve!

The	classes'	organization	looks	like	this:

Let's	review	the	role	of	these	classes:

The	SoundEvent	class	is	the	basic	building	block	of	a	track.	It	is	a	simple	class
containing	timestamp	(when	the	sound	has	been	played)	and	soundId	variables	(what
sound	has	been	played).
The	Track	class	contains	a	list	of	SoundEvents,	a	duration	and	a	state	(playing,
recording,	stopped).	Each	time	the	user	plays	a	sound,	a	SoundEvent	class	is	created	and
added	to	the	Track	class.
The	PlaybackWorker	class	is	a	worker	class	that	runs	in	a	different	thread.	It	is
responsible	of	looping	through	the	Track	class's	soundEvents	and	triggering	the	proper
sound	when	its	timestamp	has	been	reached.
The	Serializable	class	is	an	interface	that	must	be	implemented	by	each	class	that	wants
to	be	serialized	(in	our	case:	SoundEvent	and	Track).

The	Serializer	class	is	an	interface	that	must	be	implemented	by	each	format-specific
implementation	class.
The	JsonSerializer,	XmlSerializer,	and	BinarySerializer	are	the	sub-classes
of	Serializer	class	that	do	the	format-specific	job	to	serialize/deserialize
a	Serializable	instance.
The	SoundEffectWidget	class	is	the	widget	that	holds	the	information	to	play	a	single
sound.	It	displays	the	button	for	one	of	our	four	sounds.	It	also	owns	a	QSoundEffect
class	that	sends	the	sound	to	the	audio	card.
The	MainWindow	class	holds	everything	together.	It	owns	the	Track	class,	spawns
the	PlaybackWorker	thread,	and	triggers	the	serialization/deserialization.

The	output	format	should	be	easily	swapped.	To	achieve	this,	we	will	rely	on	a	modified
version	of	the	bridge	design	pattern	that	will	allow	Serializable	and	Serializer	classes	to
evolve	independently.

The	whole	project	revolves	around	this	notion	of	independence	between	modules.	It	goes	to
the	extent	that	a	sound	can	be	replaced	on	the	spot	during	a	playback.	Let's	say	that	you	listen
to	your	incredible	beat,	and	you	want	to	try	another	snare	sound.	You	will	be	able	to	replace	it
with	a	simple	drag	and	drop	of	a	.wav	file	on	the	SoundEffectWidget	class	holding	the	snare
sound.

Creating	a	drum	track
Let's	buckle	up	and	do	this	project!	Create	a	new	Qt	Widgets	Application	project
named	ch11-drum-machine.	As	usual,	add	the	CONFIG	+=	c++14	in	ch11-drum-machine.pro.

Now	create	a	new	C++	class	named	SoundEvent.	Here	is	SoundEvent.h	stripped	from	its
functions:

#include	<QtGlobal>	

	

class	SoundEvent	

{	

	

public:	

				SoundEvent(qint64	timestamp	=	0,	int	soundId	=	0);	

				~SoundEvent();	

	

				qint64	timestamp;	

				int	soundId;	

};	

This	class	contains	only	two	public	members:

timestamp:	A	qint64	(long	long	type)	that	contains	the	current	time	of	the	SoundEvent	in
milliseconds	since	the	beginning	of	the	track
soundId:	The	ID	of	the	sound	that	has	been	played

In	recording	mode,	each	time	the	user	plays	a	sound,	a	SoundEvent	is	created	with	the
appropriate	data.	The	SoundEvent.cpp	file	is	so	boring	that	we	will	not	inflict	it	on	you.

The	next	class	to	build	is	Track.	Again,	create	the	new	C++	class.	Let's	review	Track.h	with	its
members	only:

#include	<QObject>	

#include	<QVector>	

#include	<QElapsedTimer>	

	

#include	"SoundEvent.h"	

	

class	Track	:	public	QObject	

{	

				Q_OBJECT	

public:	

				enum	class	State	{	

								STOPPED,	

								PLAYING,	

								RECORDING,	

				};	

	

				explicit	Track(QObject	*parent	=	0);	

				~Track();	

	

private:	

				qint64	mDuration;	

							std::vector<std::unique_ptr<SoundEvent>>	mSoundEvents;	

				QElapsedTimer	mTimer;	

				State	mState;	

				State	mPreviousState;	

};	

We	can	now	go	into	detail	about	them:

mDuration:	This	variable	holds	the	duration	of	the	Track	class.	This	member	is	reset	to	0
when	a	recording	is	started	and	updated	when	the	recording	is	stopped.
mSoundEvents:	This	variable	is	the	list	of	SoundEvents	for	the	given	Track.	As
the	unique_ptr	semantic	states	it,	Track	is	the	owner	of	the	sound	events.
mTimer:	This	variable	is	started	each	time	Track	is	played	or	recorded.
mState:	This	variable	is	the	current	State	of	Track	class,	which	can	have	three	possible
values:	STOPPED,	PLAYING,	RECORDING.
mPreviousState:	This	variable	is	the	previous	State	of	Track.	This	is	useful	when	you
want	to	know	which	action	to	do	on	a	new	STOPPEDState.	We	will	have	to	stop	the
playback	if	mPreviousState	is	in	the	PLAYING	state.

The	Track	class	is	the	pivot	of	the	business	logic	of	the	project.	It	holds	mState,	which	is	the
state	of	the	whole	application.	Its	content	will	be	read	during	a	playback	of	your	awesome
musical	performance	and	also	be	serialized	to	a	file.

Let's	enrich	Track.h	with	functions:

class	Track	:	public	QObject	

{	

				Q_OBJECT	

public:	

				...	

				qint64	duration()	const;	

				State	state()	const;	

				State	previousState()	const;	

				quint64	elapsedTime()	const;	

				const	std::vector<std::unique_ptr<SoundEvent>>&	soundEvents()	const;	

	

signals:	

				void	stateChanged(State	state);	

	

public	slots:	

				void	play();	

				void	record();	

				void	stop();	

				void	addSoundEvent(int	soundEventId);	

	

private:	

				void	clear();	

				void	setState(State	state);	

	

private:	

				...	

};	

We	will	skip	the	simple	getters	and	concentrate	on	the	important	functions:

elapsedTime():	This	function	returns	the	value	of	the	mTimer.elapsed().
soundEvents():	This	function	is	a	little	more	complicated	getter.	The	Track	class	is	the
owner	of	mSoundEvents	content	and	we	really	want	to	enforce	it.	For	this,	the	getter
returns	a	const	&	to	mSoundEvents.
stateChanged():	This	function	is	emitted	when	the	mState	value	is	updated.	The
new	State	is	passed	as	a	parameter.
play():	This	function	is	a	slot	that	starts	to	play	the	Track.	This	play	is	purely	logical,	the
real	playback	will	be	triggered	by	PlaybackWorker.
record():	This	function	is	a	slot	that	starts	the	recording	state	of	Track.
stop():	This	function	is	a	slot	that	stops	the	current	start	or	record	state.
addSoundEvent():	This	function	creates	a	new	SoundEvent	with	the	given	soundId	and
adds	it	to	mSoundEvents.
clear():	This	function	resets	the	content	of	Track:	it	clears	mSoundEvents	and
sets	mDuration	to	0.
setState():	This	function	is	a	private	helper	function	that
updates	mState,	mPreviousState	and	emits	the	stateChanged()	signal.

Now	that	the	header	has	been	covered,	we	can	study	the	interesting	parts	of	Track.cpp:

void	Track::play()	

{	

				setState(State::PLAYING);	

				mTimer.start();	

}	

Calling	Track.play()	simply	updates	the	state	to	PLAYING	and	starts	mTimer.	The	Track	class
does	not	hold	anything	related	to	the	Qt	Multimedia	API;	it	is	limited	to	an	evolved	data
holder	(as	it	also	manages	a	state).

Now	for	record(),	which	brings	a	lot	of	surprises:

void	Track::record()	

{	

				clearSoundEvents();	

				setState(State::RECORDING);	

				mTimer.start();	

}	

It	starts	by	clearing	the	data,	sets	the	state	to	RECORDING,	and	also	starts	mTimer.	Now
consider	stop(),	which	is	a	slight	variation:

void	Track::stop()	

{	

				if	(mState	==	State::RECORDING)	{	

								mDuration	=	mTimer.elapsed();	

				}	

				setState(State::STOPPED);	

}	

If	we	are	stopping	in	the	RECORDING	state,	mDuration	is	updated.	Nothing	very	fancy	here.	We
saw	three	times	the	setState()	call	without	seeing	its	body:

void	Track::setState(Track::State	state)	

{	

				mPreviousState	=	mState;	

				mState	=	state;	

				emit	stateChanged(mState);	

}	

The	current	value	of	mState	is	stored	in	mPreviousState	before	being	updated.
Finally,	stateChanged()	is	emitted	with	the	new	value.

The	state	system	of	Track	is	completely	covered.	The	last	missing	part	is	the	SoundEvents
interactions.	We	can	start	with	the	addSoundEvent()	snippet:

void	Track::addSoundEvent(int	soundEventId)	

{	

				if	(mState	!=	State::RECORDING)	{	

								return;	

				}	

				mSoundEvents.push_back(make_unique<SoundEvent>(

																															mTimer.elapsed(),	

																															soundEventId));	

}	

A	soundEvent	is	created	only	if	we	are	in	the	RECORDING	state.	After	that,	a	SoundEvent	is
added	to	mSoundEvents	with	the	current	elapsed	time	of	mTimer	and	the	passed	soundEventId.

Now	for	the	clear()	function:

void	Track::clear()	

{	

				mSoundEvents.clear();	

				mDuration	=	0;	

}	

Because	we	use	unique_ptr<SoundEvent>	in	mSoundEvents,	the	mSoundEvents.clear()
function	is	enough	to	empty	the	vector	and	also	delete	each	SoundEvent.	This	is	one	less	thing
you	have	to	worry	with	smart	pointers.

The	SoundEvent	and	Track	are	the	base	classes	that	hold	the	information	about	your	future
beat.	We	are	going	to	see	the	class	responsible	for	reading	this	data	to	play
it:	PlaybackWorker.

Create	a	new	C++	class	and	update	PlaybackWorker.h	like	so:

#include	<QObject>	

#include	<QAtomicInteger>	

	

class	Track;	

	

class	PlaybackWorker	:	public	QObject	

{	

				Q_OBJECT	

public:	

				explicit	PlaybackWorker(const	Track&	track,	QObject	*parent	=	0);	

	

signals:	

				void	playSound(int	soundId);	

				void	trackFinished();	

	

public	slots:	

				void	play();	

				void	stop();	

	

private:	

				const	Track&	mTrack;	

				QAtomicInteger<bool>	mIsPlaying;	

};	

The	PlaybackWorker	class	will	be	running	in	a	different	thread.	If	your	memory	needs	to	be
refreshed,	go	back	to	Chapter	9,	Keeping	Your	Sanity	with	Multithreading.	Its	role	is	to	iterate
through	the	Track	class's	content	to	trigger	the	sounds.	Let's	break	down	this	header:

mTrack:	This	function	is	the	reference	to	the	Track	class	on	which	PlaybackWorker	is
working.	It	is	passed	in	the	constructor	as	a	const	reference.	With	this	information,	you
already	know	that	PlaybackWorker	cannot	modify	mTrack	in	any	way.
mIsPlaying:	This	function	is	a	flag	used	to	be	able	to	stop	the	worker	from	another
thread.	It	is	a	QAtomicInteger	to	guarantee	an	atomic	access	to	the	variable.
playSound():	This	function	is	emitted	by	PlaybackWorker	each	time	a	sound	needs	to	be
played.
trackFinished():	This	function	is	emitted	when	the	playback	has	been	played	until	the
end.	If	it	has	been	stopped	along	the	way,	this	signal	will	not	be	emitted.
play():	This	function	is	the	main	function	of	PlaybackWorker.	In	it,	mTrack	content	will

be	queried	to	trigger	sounds.
stop():	This	function	is	the	function	that	updates	the	mIsPlaying	flag	and	causes	play()
to	exit	its	loop.

The	meat	of	the	class	lies	in	the	play()	function:

void	PlaybackWorker::play()	

{	

				mIsPlaying.store(true);	

				QElapsedTimer	timer;	

				size_t	soundEventIndex	=	0;	

				const	auto&	soundEvents	=	mTrack.soundEvents();	

	

				timer.start();	

				while(timer.elapsed()	<=	mTrack.duration()	

										&&	mIsPlaying.load())	{	

								if	(soundEventIndex	<	soundEvents.size())	{	

												const	auto&	soundEvent	=			

																																		soundEvents.at(soundEventIndex);	

	

												if	(timer.elapsed()	>=	soundEvent->timestamp)	{	

																emit	playSound(soundEvent->soundId);	

																soundEventIndex++;	

												}	

								}	

								QThread::msleep(1);	

				}	

	

				if	(soundEventIndex	>=	soundEvents.size())	{	

								emit	trackFinished();	

				}	

}	

The	first	thing	that	play()	function	does	is	to	prepare	its	reading:	mIsPlaying	is	set	to	true,
a	QElapsedTimer	class	is	declared,	and	a	soundEventIndex	is	initialized.	Each
time	timer.elapsed()	is	called,	we	will	know	if	a	sound	should	be	played.

To	know	which	sound	should	be	played,	soundEventIndex	will	be	used	to	know	where	we	are
in	the	soundEvents	vector.

Right	after	that,	the	timer	object	is	started	and	we	enter	in	the	while	loop.	This	while	loop	has
two	conditions	to	continue:

timer.elapsed()	<=	mTrack.duration():	This	condition	states	that	we	did	not	finish
playing	the	track
mIsPlaying.load():	This	condition	returns	true:	nobody	asked	PlaybackWorker	to	stop

Intuitively,	you	might	have	added	the	soundEventIndex	<	soundEvents.size()	condition	in
the	while	condition.	By	doing	so,	you	would	have	exited	PlaybackWorker	as	soon	as	the	last

sound	has	been	played.	Technically,	it	works,	but	that	would	not	have	respected	what	the	user
recorded.

Consider	a	user	that	created	a	complex	beat	(do	not	underestimate	what	you	can	do	with	four
sounds!)	and	decided	on	a	long	pause	of	5	seconds	at	the	end	of	the	song.	When	he	clicks	on
the	stop	button,	the	time	display	indicates	00:55	(for	55	seconds).	However,	when	he	plays
back	his	performance,	the	last	sound	finishes	at	00:50.	The	playback	stops	at	00:50	and	the
program	does	not	respect	what	he	recorded.

For	this	reason,	the	soundEventIndex	<	size()	test	is	moved	inside	the	while	loop	and	is
used	only	as	a	fuse	for	the	soundEvents	read	through.

Inside	this	condition,	we	retrieve	the	reference	to	the	current	soundEvent.	We	then	compare
the	elapsed	time	against	the	timestamp	of	the	soundEvent.	If	timer.elapsed()	is	greater	or
equal	to	soundEvent->timestamp,	the	signal	playSound()	is	emitted	with	the	soundId.

This	is	only	a	request	to	play	a	sound.	The	PlaybackWorker	class	limits	itself	to	read
through	soundEvents	and	trigger	a	playSound()	at	the	proper	moment.	The	real	sound	will	be
handled	later	on,	with	the	SoundEffectWidget	class.

At	each	iteration	in	the	while	loop,	a	QThread::msleep(1)	is	done	to	avoid	a	busy	loop.	We
minimize	the	sleep	because	we	want	the	playback	to	be	as	faithful	as	possible	to	the	original
score.	The	longer	the	sleep,	the	more	discrepancy	we	may	encounter	in	the	playback	timing.

Finally,	if	the	whole	soundEvents	has	been	processed,	the	trackFinished	signal	is	emitted.

Making	your	objects	serializable	with
QVariant
Now	that	we	implemented	the	logic	in	our	business	classes,	we	have	to	think	about	what	we
are	going	to	serialize	and	how	we	are	going	to	do	it.	The	user	interacts	with	a	Track	class	that
contains	all	the	data	to	be	recorded	and	played	back.

Starting	from	here,	we	can	assume	that	the	object	to	be	serialized	is	Track,	which	in	turn
should	somehow	bring	along	its	mSoundEvents	containing	a	list	of	SoundEvent	instances.	To
achieve	this,	we	will	rely	heavily	on	the	QVariant	class.

You	might	have	worked	with	QVariant	before.	It	is	a	generic	placeholder	for	any	primitive
type	(char,	int,	double,	and	so	on)	but	also	complex	types	(QString,	QDate,	QPoint,	and	many
more).

Note

The	complete	list	of	QVariant	supported	types	is	available	at	http://doc.qt.io/qt-
5/qmetatype.html#Type-enum.

A	simple	example	of	QVariant	is:

QVariant	variant(21);	

	

int	answer	=	variant.toInt()	*	2;	

	

qDebug()	<<	"what	is	the	meaning	of	the	universe,		

													life	and	everything?"	

									<<	answer;	

We	store	21	in	variant.	From	here,	we	can	ask	for	variant	to	have	a	copy	of	the	value	casted
to	our	desired	type.	Here	we	want	an	int	value,	so	we	call	variant.toInt().	There	are	a	lot
of	conversions	already	available	with	the	variant.toX()	syntax.

We	can	take	a	very	quick	peek	at	what	happens	behind	the	curtain	in	QVariant.	How	does	it
store	all	we	feed	it?	The	answer	lies	in	the	C++	type	union.	The	QVariant	class	is	a	kind	of
super	union.

A	union	is	a	special	class	type	that	can	hold	only	one	of	its	non-static	data	members	at	a	time.
A	short	snippet	should	illustrate	this:

union	Sound	

{	

				int	duration;	

http://doc.qt.io/qt-5/qmetatype.html#Type-enum

				char	code;	

};	

	

Sound	s	=	10;	

qDebug()	<<	"Sound	duration:"	<<	s.duration;	

//	output=	Sound	duration:	10	

	

s.code	=	'K';	

qDebug()	<<	"Sound	code:"	<<	s.code;	

//	output=	Sound	code:	K	

First,	a	union	class	is	declared	like	a	struct.	By	default,	all	the	members	are	public.	The
specificity	of	the	union	is	that	it	takes	only	the	largest	member	size	in	memory.	Here,	Sound
will	take	only	as	much	as	the	int	duration	space	in	memory.

Because	union	takes	only	this	specific	space,	every	member	variable	shares	the	same	memory
space.	Therefore,	only	one	member	is	available	at	a	time,	unless	you	want	to	have	undefined
behaviors.

When	using	the	Sound	snippet,	we	start	by	initializing	with	the	value	10	(by	default	the	first
member	is	initialized).	From	here,	s.duration	is	accessible	but	s.code	is	considered
undefined.

Once	we	assign	a	value	to	s.code,	s.duration	becomes	undefined	and	s.code	is	now
accessible.

The	union	class	makes	the	memory	usage	very	efficient.	In	QVariant,	when	you	store	a	value,
it	is	stored	in	a	private	union:

union	Data	

{	

				char	c;	

				uchar	uc;	

				short	s;	

				signed	char	sc;	

				ushort	us;	

				...	

				qulonglong	ull;	

				QObject	*o;	

				void	*ptr;	

				PrivateShared	*shared;	

}	data;	

Note	the	list	of	primitive	types	and	at	the	end	the	complex	types,	QObject*	and	void*.

Besides	Data,	a	QMetaType	object	is	initialized	to	know	the	type	of	the	stored	object.	The
combination	of	union	and	QMetaType	lets	QVariant	know	which	Data	member	it	should	use	to
cast	the	value	and	give	it	back	to	the	caller.

Now	that	you	know	what	a	union	is	and	how	QVariant	uses	it,	you	might	ask:	why	make
a	QVariant	class	at	all?	A	simple	union	would	not	have	been	enough?

The	answer	is	no.	It	is	not	enough	because	a	union	class	cannot	have	members	that	do	not
have	a	default	constructor.	It	drastically	reduces	the	number	of	classes	you	can	put	in	a	union.
Qt	folks	wanted	to	include	many	classes	that	did	not	have	a	default	constructor	in	union.	To
mitigate	this,	QVariant	was	born.

What	makes	QVariant	very	interesting	is	that	it	is	possible	to	store	custom	types.	If	we	wanted
to	convert	SoundEvent	class	to	a	QVariant	class,	we	would	have	added	the	following
in	SoundEvent.h:

class	SoundEvent	

{	

				...	

};	

Q_DECLARE_METATYPE(SoundEvent);	

We	already	used	Q_DECLARE_METATYPE	macro	in	Chapter	10,	Need	IPC?	Get	Your	Minions	to
Work.	This	macro	effectively	registers	SoundEvent	to	the	QMetaType	register,	making	it
available	for	QVariant.	Because	QDataStream	relies	on	QVariant,	we	had	to	use	this	macro	in
the	last	chapter.

Now	to	convert	back	and	forth	with	a	QVariant:

SoundEvent	soundEvent(4365,	0);	

QVariant	stored;	

stored.setValue(soundEvent);	

	

SoundEvent	newEvent	=	stored.value<SoundEvent>();	

qDebug()	<<	newEvent.timestamp;	

As	you	can	guess,	the	output	of	this	snippet	is	4365,	the	original	timestamp	stored
in	soundEvent.

This	approach	would	have	been	perfect	if	we	wanted	to	do	only	binary	serialization.	Data	can
be	easily	written	and	read	from.	However,	we	want	to	output	our	Track	and	SoundEvents	to
standard	formats:	JSON	and	XML.

There	is	a	major	issue	with	the	Q_DECLARE_METATYPE/QVariant	combo:	it	does	not	store	any
key	for	the	fields	of	the	serialized	class.	We	can	already	foresee	that	the	JSON	object	of
a	SoundEvent	class	will	look	like	this:

{	

				"timestamp":	4365,	

				"soundId":	0	

}	

There	is	no	way	the	QVariant	class	could	know	that	we	want	a	timestamp	key.	It	will	only
store	the	raw	binary	data.	The	same	principle	applies	for	the	XML	counterpart.

For	this	reason,	we	are	going	to	use	a	variation	of	a	QVariant	with	a	QVariantMap.
The	QVariantMap	class	is	only	a	typedef	on	QMap<QString,	QVariant>.	This	map	will	be
used	to	store	the	key	names	of	the	fields	and	the	value	in	the	QVariant	class.	In	turn,	these	keys
will	be	used	by	the	JSON	and	XML	serialization	system	to	output	a	pretty	file.

Because	we	aim	to	have	a	flexible	serialization	system,	we	have	to	be	able	to	serialize	and
deserialize	this	QVariantMap	in	multiple	formats.	To	achieve	this,	we	will	define	an	interface
that	gives	the	ability	for	a	class	to	serialize/deserialize	its	content	in	a	QVariantMap.

This	QVariantMap	will	be	used	as	an	intermediate	format,	agnostic	of	the	final	JSON,	XML,	or
binary.

Create	a	C++	header	named	Serializer.h.	Here	is	the	content:

#include	<QVariant>	

	

class	Serializable	{	

public:	

				virtual	~Serializable()	{}	

				virtual	QVariant	toVariant()	const	=	0;	

				virtual	void	fromVariant(const	QVariant&	variant)	=	0;	

};	

By	implementing	this	abstract	base	class,	a	class	will	be	Serializable.	There	are	only	two
virtual	pure	functions:

The	toVariant()	function,	in	which	the	class	must	return	a	QVariant	(or,	more	precisely
a	QVariantMap,	which	can	be	casted	to	a	QVariant	thanks	to	the	QMetaType	system)
The	fromVariant()	function,	in	which	the	class	must	initialize	its	members	from	the
variant	passed	as	a	parameter

By	doing	so,	we	give	the	responsibility	to	the	final	class	to	load	and	save	its	content.	After	all,
who	knows	better	SoundEvent	than	SoundEvent	itself?

Let's	see	Serializable	in	action	with	SoundEvent.	Update	SoundEvent.h	like	this:

#include	"Serializable.h"	

	

class	SoundEvent	:	public	Serializable	

{	

				SoundEvent(qint64	timestamp	=	0,	int	soundId	=	0);	

				~SoundEvent();	

	

				QVariant	toVariant()	const	override;	

				void	fromVariant(const	QVariant&	variant)	override;	

	

				...	

};	

The	SoundEvent	class	is	now	Serializable.	Let's	do	the	real	work	in	SoundEvent.cpp:

QVariant	SoundEvent::toVariant()	const	

{	

				QVariantMap	map;	

				map.insert("timestamp",	timestamp);	

				map.insert("soundId",	soundId);	

				return	map;	

}	

	

void	SoundEvent::fromVariant(const	QVariant&	variant)	

{	

				QVariantMap	map	=	variant.toMap();	

				timestamp	=	map.value("timestamp").toLongLong();	

				soundId	=	map.value("soundId").toInt();	

}	

In	toVariant(),	we	simply	declare	a	QVariantMap	that	gets	filled	with	timestamp	and	soundId.

On	the	other	side,	in	fromVariant(),	we	convert	variant	to	a	QVariantMap	and	retrieve	its
content	with	the	same	keys	we	used	in	toVariant().	It	is	as	simple	as	that!

The	next	class	that	have	to	be	Serializable	is	Track.	After	making	Track	inherit
from	Serializable,	update	Track.cpp:

QVariant	Track::toVariant()	const	

{	

				QVariantMap	map;	

				map.insert("duration",	mDuration);	

	

				QVariantList	list;	

				for	(const	auto&	soundEvent	:	mSoundEvents)	{	

								list.append(soundEvent->toVariant());	

				}	

				map.insert("soundEvents",	list);	

	

				return	map;	

}	

The	principle	is	the	same,	although	a	bit	more	complex.	The	mDuration	variable	is	stored
in	map	object	as	we	have	seen	for	SoundEvent.	For	mSoundEvents,	we	have	to	generate	a	list
of	QVariant	(a	QVariantList)	where	each	item	is	the	converted	QVariant	version	of
a	soundEvent	key.

To	do	so,	we	simply	loop	over	mSoundEvents	and	fill	list	with	the	soundEvent-
>toVariant()	result	we	covered	a	few	paragraphs	before.

Now	for	fromVariant():

void	Track::fromVariant(const	QVariant&	variant)	

{	

				QVariantMap	map	=	variant.toMap();	

				mDuration	=	map.value("duration").toLongLong();	

	

				QVariantList	list	=	map.value("soundEvents").toList();	

				for(const	QVariant&	data	:	list)	{	

								auto	soundEvent	=	make_unique<SoundEvent>();	

								soundEvent->fromVariant(data);	

								mSoundEvents.push_back(move(soundEvent));	

				}	

}	

Here,	for	each	element	of	the	key	soundEvents,	we	create	a	new	SoundEvent,	load	it	with	the
content	of	data,	and	finally	add	it	to	the	vector	mSoundEvents.

Serializing	objects	in	JSON	format
The	Track	and	SoundEvent	classes	can	now	be	converted	to	a	common	Qt	format	QVariant.
We	now	need	to	write	a	Track	(and	its	SoundEvent	objects)	class	in	a	file	with	a	text	or	a
binary	format.	This	example	project	allows	you	to	handle	all	the	formats.	It	will	allow	you	to
switch	the	saved	file	format	in	one	line.	So	where	to	put	the	specific	format	code?	That	is	the
million	dollar	question!	Here	is	a	primary	approach:

In	this	proposition,	the	specific	file	format	serialization	code	is	inside	a	dedicated	child	class.
Well,	it	works	but	what	would	the	hierarchy	look	like	if	we	add	two	new	file	formats?
Moreover,	each	time	we	add	a	new	object	to	serialize,	we	have	to	create	all	these	children
classes	to	handle	the	different	serialization	file	formats.	This	massive	inheritance	tree	can
quickly	become	a	sticky	mess.	The	code	will	be	unmaintainable.	You	do	not	want	to	do	that.
So,	here	is	where	the	bridge	pattern	can	be	a	good	solution:

In	a	bridge	pattern,	we	decouple	the	classes	in	two	inheritance	hierarchies:

The	components	independent	from	the	file	format.	The	SoundEvent	and	Track	objects	do
not	care	about	JSON,	XML,	or	a	binary	format.
The	file	format	implementations.	The	JsonSerializer,	XmlSerializer
and	BinarySerializer	handle	a	generic	format,	Serializable,	not	a	specific	component
such	as	SoundEvent	or	Track.

Notice	that	in	a	classic	bridge	pattern,	an	abstraction	(Serializable)	should	contains	an
implementor	(Serializer)	variable.	The	caller	only	deals	with	the	abstraction.	However	in
this	project	example,	MainWindow	has	the	ownership	of	Serializable	and	also	of	Serializer.
This	is	a	personal	choice	to	use	the	power	of	design	pattern	while	keeping	uncoupled
functional	classes.

The	architecture	of	Serializable	and	Serializer	is	clear.	The	Serializable	class	is	already
implemented	so	you	can	now	create	a	new	C++	header	file	called	Serializer.h:

#include	<QString>	

	

#include	"Serializable.h"	

	

class	Serializer	

{	

public:	

				virtual	~Serializer()	{}	

	

				virtual	void	save(const	Serializable&	serializable,	

								const	QString&	filepath,		

								const	QString&	rootName	=	"")	=	0;	

				virtual	void	load(Serializable&	serializable,		

								const	QString&	filepath)	=	0;	

};	

The	Serializer	class	is	an	interface,	an	abstract	class	with	only	pure	virtual	functions	and	no
data.	Let's	talk	about	the	save()	function:

This	function	saves	Serializable	to	a	file	on	the	hard	disk	drive.
The	Serializable	class	is	const	and	cannot	be	modified	by	this	function.
The	filepath	function	indicates	the	destination	file	to	create.
Some	Serializer	implementations	can	use	the	rootName	variable.	For	example,	if	we
request	to	save	a	Track	object,	the	rootName	variable	could	be	the	string	track.	This	is	the
label	used	to	write	the	root	element.	The	XML	implementation	requires	this	information.

The	load()	function	is	also	easy	to	understand:

This	function	loads	data	from	a	file	to	fill	a	Serializable	class

The	Serializable	class	will	be	updated	by	this	function
The	filepath	function	indicates	which	file	to	read

The	interface	Serializer	is	ready	and	waits	for	some	implementations!	Let's	start	with	JSON.
Create	a	C++	class,	JsonSerializer.	Here	is	the	header	for	JsonSerializer.h:

#include	"Serializer.h"	

	

class	JsonSerializer	:	public	Serializer	

{	

public:	

				JsonSerializer();	

	

				void	save(const	Serializable&	serializable,		

								const	QString&	filepath,	

								const	QString&	rootName)	override;	

				void	load(Serializable&	serializable,	

								const	QString&	filepath)	override;	

};	

No	difficulties	here;	we	have	to	provide	an	implementation	of	save()	and	load().	Here	is
the	save()	implementation:

void	JsonSerializer::save(const	Serializable&	serializable,	

				const	QString&	filepath,	const	QString&	/*rootName*/)	

{	

				QJsonDocument	doc	=					

								QJsonDocument::fromVariant(serializable.toVariant());	

				QFile	file(filepath);	

				file.open(QFile::WriteOnly);	

				file.write(doc.toJson());	

				file.close();	

}	

The	Qt	framework	provides	a	nice	way	to	read	and	write	a	JSON	file	with	the	QJsonDocument
class.	We	can	create	a	QJsonDocument	class	from	a	QVariant	class.	Notice	that	the	QVariant
accepted	by	QJsonDocument	must	be	a	QVariantMap,	QVariantList,	or	QStringList.	No
worries,	the	toVariant()	function	of	Track	class	and	SoundEvent	generates	a	QVariantMap.
Then,	we	can	create	a	QFile	file	with	the	destination	filepath.	The	QJsonDocument::toJson()
function	converts	it	to	a	UTF-8	encoded	text	representation.	We	write	this	result	to	the	QFile
file	and	close	the	file.

Tip

The	QJsonDocument::toJson()	function	can	produce	an	Indented	or	a	Compact	JSON	format.
By	default,	the	format	is	QJsonDocument::Indented.

The	load()	implementation	is	also	short:

void	JsonSerializer::load(Serializable&	serializable,	

				const	QString&	filepath)	

{	

				QFile	file(filepath);	

				file.open(QFile::ReadOnly);	

				QJsonDocument	doc	=	QJsonDocument::fromJson(file.readAll());	

				file.close();	

				serializable.fromVariant(doc.toVariant());	

}	

We	open	a	QFile	with	the	source	filepath.	We	read	all	the	data	with	QFile::readAll().	Then
we	can	create	a	QJsonDocument	class	with	the	QJsonDocument::fromJson()	function.	Finally,
we	can	fill	our	destination	Serializable	with	the	QJsonDocument	converted	to	a	QVariant
class.	Notice	that	the	QJsonDocument::toVariant()	function	can	return	QVariantList	or
a	QVariantMap	depending	the	nature	of	the	JSON	document.

Here	is	an	example	of	a	Track	class	saved	with	this	JsonSerializer:

{	

				"duration":	6205,	

				"soundEvents":	[

								{	

												"soundId":	0,	

												"timestamp":	2689	

								},	

								{	

												"soundId":	2,	

												"timestamp":	2690	

								},	

								{	

												"soundId":	2,	

												"timestamp":	3067	

								}	

]	

}	

The	root	element	is	a	JSON	object,	represented	by	a	map	with	two	keys:

Duration:	This	is	a	simple	integer	value
soundEvents:	This	is	an	array	of	objects.	Each	object	is	a	map	with	the	following	keys:
soundId:	This	is	an	integer
timestamp:	This	is	also	an	integer

Serializing	objects	in	XML	format
The	JSON	serialization	was	a	direct	representation	of	the	C++	objects	and	Qt	already
provides	all	we	need.	However,	the	serialization	of	a	C++	object	can	be	done	with	various
representations	in	an	XML	format.	So	we	have	to	write	the	XML	â†”	QVariant	conversion
ourselves.	We	have	decided	to	use	the	following	XML	representation:

<[name]>	type="[type]">[data]</[name]>	

For	example,	the	soundId	type	gives	this	XML	representation:

<soundId	type="int">2</soundId>	

Create	a	C++	class	XmlSerializer	that	also	inherits	from	Serializer.	Let's	begin	with
the	save()	function,	here	is	XmlSerializer.h:

#include	<QXmlStreamWriter>	

#include	<QXmlStreamReader>	

	

#include	"Serializer.h"	

	

class	XmlSerializer	:	public	Serializer	

{	

public:	

				XmlSerializer();	

	

				void	save(const	Serializable&	serializable,		

								const	QString&	filepath,		

								const	QString&	rootName)	override;	

};	

Now	we	can	see	the	save()	implementation	in	XmlSerializer.cpp:

void	XmlSerializer::save(const	Serializable&	serializable,	const	QString&	

filepath,	const	QString&	rootName)	

{	

				QFile	file(filepath);	

				file.open(QFile::WriteOnly);	

				QXmlStreamWriter	stream(&file);	

				stream.setAutoFormatting(true);	

				stream.writeStartDocument();	

				writeVariantToStream(rootName,	serializable.toVariant(),	

								stream);	

				stream.writeEndDocument();	

				file.close();	

}	

We	create	a	QFile	file	with	the	filepath	destination.	We	construct	a	QXmlStreamWriter	object
that	writes	in	the	QFile.	By	default,	the	writer	will	produce	a	compact	XML;	you	can	generate

a	pretty	XML	with	the	QXmlStreamWriter::setAutoFormatting()	function.
The	QXmlStreamWriter::writeStartDocument()	function	writes	the	XML	version	and	the
encoding.	We	write	our	QVariant	in	the	XML	stream	with	our	writeVariantToStream()
function.	Finally,	we	end	the	document	and	close	the	QFile.	As	already	explained,	writing
a	QVariant	to	an	XML	stream	depends	on	how	you	want	to	represent	the	data.	So	we	have	to
write	the	conversion	function.	Please	update	your	class	with	writeVariantToStream()	like
this:

//XmlSerializer.h	

private:	

				void	writeVariantToStream(const	QString&	nodeName,	

								const	QVariant&	variant,	QXmlStreamWriter&	stream);	

	

//XmlSerializer.cpp	

void	XmlSerializer::writeVariantToStream(const	QString&	nodeName,	

				const	QVariant&	variant,	QXmlStreamWriter&	stream)	

{	

				stream.writeStartElement(nodeName);	

				stream.writeAttribute("type",	variant.typeName());	

	

				switch	(variant.type())	{	

								case	QMetaType::QVariantList:	

												writeVariantListToStream(variant,	stream);	

												break;	

								case	QMetaType::QVariantMap:	

												writeVariantMapToStream(variant,	stream);	

												break;	

								default:	

												writeVariantValueToStream(variant,	stream);	

												break;	

				}	

	

				stream.writeEndElement();	

}	

This	writeVariantToStream()	function	is	a	generic	entry	point.	It	will	be	called	each	time	we
want	to	put	a	QVariant	in	the	XML	stream.	The	QVariant	class	could	be	a	list,	a	map,	or	data.
So	we	apply	a	specific	treatment	if	the	QVariant	is	a	container	(QVariantList
or	QVariantMap).	All	the	other	cases	are	considered	to	be	a	data	value.	Here	are	the	steps	of
this	function:

1.	 Start	a	new	XML	element	with	the	writeStartElement()	function.	The	nodeName	will	be
used	to	create	the	XML	tag.	For	example,	<soundId.

2.	 Write	an	XML	attribute	called	type	in	the	current	element.	We	use	the	name	of	the	type
stored	in	the	QVariant.	For	example,	<soundId	type="int".

3.	 Depending	on	the	QVariant	data	type,	we	call	one	of	our	XML	serialization	functions.
For	example,	<soundId	type="int">2.

4.	 Finally,	we	end	the	current	XML	element	with	writeEndElement():

The	final	result	is:	<soundId	type="int">2</soundId>
In	this	function,	we	call	three	helper	functions	that	we	will	create	now.	The	easiest
one	is	writeVariantValueToStream().	Please	update	your	XmlSerializer	class
with:

//XmlSerializer.h	

void	writeVariantValueToStream(const	QVariant&	variant,	

				QXmlStreamWriter&	stream);	

	

//XmlSerializer.cpp	

void	XmlSerializer::writeVariantValueToStream(

				const	QVariant&	variant,	QXmlStreamWriter&	stream)	

{	

				stream.writeCharacters(variant.toString());	

}	

If	the	QVariant	is	a	simple	type,	we	retrieve	its	QString	representation.	Then	we
use	QXmlStreamWriter::writeCharacters()	to	write	this	QString	in	the	XML	stream.

The	second	helper	function	is	writeVariantListToStream().	Here	is	its	implementation:

//XmlSerializer.h	

private:	

				void	writeVariantListToStream(const	QVariant&	variant,	

								QXmlStreamWriter&	stream);	

	

//XmlSerializer.cpp	

void	XmlSerializer::writeVariantListToStream(

				const	QVariant&	variant,	QXmlStreamWriter&	stream)	

{	

				QVariantList	list	=	variant.toList();	

	

				for(const	QVariant&	element	:	list)	{	

								writeVariantToStream("item",	element,	stream);	

				}	

}	

At	this	step,	we	already	know	that	the	QVariant	is	a	QVariantList.	We
call	QVariant::toList()	to	retrieve	the	list.	Then	we	iterate	over	all	elements	of	the	list	and
call	our	generic	entry	point,	writeVariantToStream().	Notice	that	we	retrieve	the	elements
from	a	list	so	we	do	not	have	an	element	name.	But	the	tag	name	does	not	matter	for	a	list	item
serialization,	so	insert	the	arbitrary	label	item.

The	last	write	helper	function	is	writeVariantMapToStream():

//XmlSerializer.h	

private:	

				void	writeVariantMapToStream(const	QVariant&	variant,	

								QXmlStreamWriter&	stream);	

	

//XmlSerializer.cpp	

void	XmlSerializer::writeVariantMapToStream(

				const	QVariant&	variant,	QXmlStreamWriter&	stream)	

{	

				QVariantMap	map	=	variant.toMap();	

				QMapIterator<QString,	QVariant>	i(map);	

	

				while	(i.hasNext())	{	

								i.next();	

								writeVariantToStream(i.key(),	i.value(),	stream);	

				}	

}	

The	QVariant	is	a	container	but	a	QVariantMap	this	time.	We	call	writeVariantToStream()	for
each	element	found.	The	tag	name	is	important	because	this	is	a	map.	We	use	the	map	key
from	QMapIterator::key()	as	the	node	name.

The	saving	part	is	over.	We	can	now	implement	the	loading	part.	Its	architecture	follows	the
same	spirit	as	the	saving	functions.	Let's	begin	with	the	load()	function:

//XmlSerializer.h	

public:	

				void	load(Serializable&	serializable,		

								const	QString&	filepath)	override;	

	

//XmlSerializer.cpp	

void	XmlSerializer::load(Serializable&	serializable,	

				const	QString&	filepath)	

{	

				QFile	file(filepath);	

				file.open(QFile::ReadOnly);	

				QXmlStreamReader	stream(&file);	

				stream.readNextStartElement();	

				serializable.fromVariant(readVariantFromStream(stream));	

}	

The	first	thing	to	do	is	to	create	a	QFile	with	the	source	filepath.	We	construct
a	QXmlStreamReader	with	the	QFile.	The	QXmlStreamReader	::readNextStartElement()
function	reads	until	the	next	start	element	in	the	XML	stream.	Then	we	can	use	our	read	helper
function,	readVariantFromStream(),	to	create	a	QVariant	class	from	an	XML	stream.	Finally,
we	can	use	our	Serializable::fromVariant()	to	fill	the	destination	serializable.	Let's
implement	the	helper	function,	readVariantFromStream():

//XmlSerializer.h	

private:	

				QVariant	readVariantFromStream(QXmlStreamReader&	stream);	

	

//XmlSerializer.cpp	

QVariant	XmlSerializer::readVariantFromStream(QXmlStreamReader&	stream)	

{	

				QXmlStreamAttributes	attributes	=	stream.attributes();	

				QString	typeString	=	attributes.value("type").toString();	

	

				QVariant	variant;	

				switch	(QVariant::nameToType(

												typeString.toStdString().c_str()))	{	

								case	QMetaType::QVariantList:	

												variant	=	readVariantListFromStream(stream);	

												break;	

								case	QMetaType::QVariantMap:	

												variant	=	readVariantMapFromStream(stream);	

												break;	

								default:	

												variant	=	readVariantValueFromStream(stream);	

												break;	

				}	

	

				return	variant;	

}	

The	role	of	this	function	is	to	create	a	QVariant.	Firstly,	we	retrieve	the	"type"	from	the	XML
attributes.	In	our	case,	we	have	only	one	attribute	to	handle.	Then,	depending	on	the	type,	we
will	call	one	of	our	three	read	helper	functions.	Let's	implement
the	readVariantValueFromStream()	function:

//XmlSerializer.h	

private:	

				QVariant	readVariantValueFromStream(QXmlStreamReader&	stream);	

	

//XmlSerializer.cpp	

QVariant	XmlSerializer::readVariantValueFromStream(

				QXmlStreamReader&	stream)	

{	

				QXmlStreamAttributes	attributes	=	stream.attributes();	

				QString	typeString	=	attributes.value("type").toString();	

				QString	dataString	=	stream.readElementText();	

	

				QVariant	variant(dataString);	

				variant.convert(QVariant::nameToType(

								typeString.toStdString().c_str()));	

				return	variant;	

}	

This	function	create	a	QVariant	with	its	data	depending	on	the	type.	Like	the	previous
function,	we	retrieve	the	type	from	the	XML	attribute.	We	also	read	the	data	as	a	text	with
the	QXmlStreamReader::readElementText()	function.	A	QVariant	class	is	created	with
this	QString	data.	At	this	step,	the	QVariant	type	is	a	QString.	So	we	use
the	QVariant::convert()	function	to	convert	the	QVariant	to	the	real	type	(int	,	qlonglong,
and	so	on).

The	second	read	helper	function	is	readVariantListFromStream():

//XmlSerializer.h	

private:	

				QVariant	readVariantListFromStream(QXmlStreamReader&	stream);	

	

//XmlSerializer.cpp	

QVariant	XmlSerializer::readVariantListFromStream(QXmlStreamReader&	stream)	

{	

				QVariantList	list;	

				while(stream.readNextStartElement())	{	

								list.append(readVariantFromStream(stream));	

				}	

				return	list;	

}	

We	know	that	the	stream	element	contains	an	array.	So,	this	function	creates	and	returns	a
QVariantList.	The	QXmlStreamReader::readNextStartElement()	function	reads	until	the	next
start	element	and	returns	true	if	a	start	element	is	found	within	the	current	element.	We	call
the	entry-point	function,	readVariantFromStream(),	for	each	element.	Finally,	we	return
the	QVariantList.

The	last	helper	function	to	cover	is	readVariantMapFromStream().	Update	your	file	with	the
following	snippet:

//XmlSerializer.h	

private:	

				QVariant	readVariantMapFromStream(QXmlStreamReader&	stream);	

	

//XmlSerializer.cpp	

QVariant	XmlSerializer::readVariantMapFromStream(

				QXmlStreamReader&	stream)	

{	

				QVariantMap	map;	

				while(stream.readNextStartElement())	{	

								map.insert(stream.name().toString(),	

																			readVariantFromStream(stream));	

				}	

				return	map;	

}	

This	function	sounds	like	the	readVariantListFromStream().	This	time	we	have	to	create
a	QVariantMap.	The	key	used	for	inserting	a	new	item	is	the	element	name.	We	retrieve	the
name	with	the	QXmlStreamReader::name()	function.

A	Track	class	serialized	with	the	XmlSerializer	looks	like	this:

<?xml	version="1.0"	encoding="UTF-8"?>	

<track	type="QVariantMap">	

				<duration	type="qlonglong">6205</duration>	

				<soundEvents	type="QVariantList">	

								<item	type="QVariantMap">	

												<soundId	type="int">0</soundId>	

												<timestamp	type="qlonglong">2689</timestamp>	

								</item>	

								<item	type="QVariantMap">	

												<soundId	type="int">2</soundId>	

												<timestamp	type="qlonglong">2690</timestamp>	

								</item>	

								<item	type="QVariantMap">	

												<soundId	type="int">2</soundId>	

												<timestamp	type="qlonglong">3067</timestamp>	

								</item>	

				</soundEvents>	

</track>	

Serializing	objects	in	binary	format
The	XML	serialization	is	fully	functional!	We	can	now	switch	to	the	last	type	of	serialization
covered	in	this	chapter.

The	binary	serialization	is	easier	because	Qt	provides	a	direct	way	to	do	it.	Please	create	a
BinarySerializer	class	that	inherits	from	Serializer.	The	header	is	common,	we	have	only
the	override	functions,	save()	and	load().	Here	is	the	implementation	of	the	save()	function:

void	BinarySerializer::save(const	Serializable&	serializable,	

				const	QString&	filepath,	const	QString&	/*rootName*/)	

{	

				QFile	file(filepath);	

				file.open(QFile::WriteOnly);	

				QDataStream	dataStream(&file);	

				dataStream	<<	serializable.toVariant();	

				file.close();	

}	

We	hope	you	recognized	the	QDataStream	class	used	in	Chapter	10,	Need	IPC?	Get	Your
Minions	to	Work.	This	time	we	use	this	class	to	serialize	binary	data	in	a	destination	QFile.
A	QDataStream	class	accepts	a	QVariant	class	with	the	<<	operator.	Notice	that	the	rootName
variable	is	not	used	in	the	binary	serializer.

Here	is	the	load()	function:

void	BinarySerializer::load(Serializable&	serializable,	const	QString&	filepath)		

{	

				QFile	file(filepath);	

				file.open(QFile::ReadOnly);	

				QDataStream	dataStream(&file);	

				QVariant	variant;	

				dataStream	>>	variant;	

				serializable.fromVariant(variant);	

				file.close();	

}	

Thanks	to	the	QVariant	and	the	QDataStream	mechanism,	the	task	is	easy.	We	open	the	QFile
with	the	source	filepath.	We	construct	a	QDatastream	class	with	this	QFile.	Then,	we	use
the	>>	operator	to	read	the	root	QVariant.	Finally,	we	fill	the	source	Serializable	with
our	Serializable::fromVariant()	function.

Do	not	worry,	we	will	not	include	an	example	of	a	Track	class	serialized	with
the	BinarySerializer	class.

The	serialization	part	is	completed.	The	GUI	part	of	this	example	project	has	been	covered

many	times	during	the	previous	chapters	of	this	book.	The	following	sections	will	only	cover
specific	features	used	in	our	MainWindow	and	SoundEffectWidget	classes.	Check	the	source
code	if	you	need	the	complete	C++	classes.

Playing	low	latency	sounds	with
QSoundEffect
The	project	application	ch11-drum-machine	displays	four	SoundEffectWidget
widgets:	kickWidget,	snareWidget,	hihatWidget,	and	crashWidget.

Each	SoundEffectWidget	widget	displays	a	QLabel	and	a	QPushButton.	The	label	displays	the
sound	name.	If	the	button	is	clicked,	a	sound	is	played.

The	Qt	Multimedia	module	provides	two	main	ways	to	play	an	audio	file:

QMediaPlayer:	This	file	can	play	songs,	movies,	and	Internet	radio	with	various	input
formats
QSoundEffect:	This	file	can	play	low-latency	.wav	files

This	project	example	is	a	virtual	drum	machine,	so	we	are	using	a	QSoundEffect	object.	The
first	step	to	use	a	QSoundEffect	is	to	update	your	.pro	file	like	this:

QT							+=	core	gui	multimedia	

Then	you	can	initialize	the	sound.	Here	is	an	example:

QUrl	urlKick("qrc:/sounds/kick.wav");	

QUrl	urlBetterKick	=	QUrl::fromLocalFile("/home/better-kick.wav");	

	

QSoundEffect	soundEffect;	

QSoundEffect.setSource(urlBetterKick);	

The	first	step	is	to	create	a	valid	QUrl	for	your	sound	file.	The	urlKick	is	initialized	from
a	.qrc	resources	file	path,	while	urlBetterKick	is	created	from	a	local	file	path.	Then	we	can
create	QSoundEffect	and	set	the	URL	sound	to	play	with	the	QSoundEffect::setSource()
function.

Now	that	we	have	a	QSoundEffect	object	initialized,	we	can	play	the	sound	with	the	following
code	snippet:

soundEffect.setVolume(1.0f);	

soundEffect.play();	

Triggering	a	QButton	with	your	keyboard
Let's	explore	the	public	slot,	triggerPlayButton(),	in	the	SoundEffectWidget	class:

//SoundEffectWidget.h	

class	SoundEffectWidget	:	public	QWidget	

{	

...	

public	slots:	

				void	triggerPlayButton();	

				...	

	

private:	

				QPushButton*	mPlayButton;	

				...	

};	

	

//SoundEffectWidget.cpp	

void	SoundEffectWidget::triggerPlayButton()	

{	

			mPlayButton->animateClick();	

}	

This	widget	has	a	QPushButton	called	mPlayButton.	The	triggerPlayButton()	slot	calls
the	QPushButton::animateClick()	function,	which	simulates	a	click	on	the	button	over	100
ms	by	default.	All	signals	will	be	sent	as	a	real	click	does.	The	button	really	appears	to	be
down.	If	you	do	not	want	the	animation	you	can	call	QPushButton::click().

Let's	see	now	how	to	trigger	this	slot	with	a	key.	Each	SoundEffectWidget	has	a	Qt:Key:

//SoundEffectWidget.h	

class	SoundEffectWidget	:	public	QWidget	

{	

...	

public:	

				Qt::Key	triggerKey()	const;	

				void	setTriggerKey(const	Qt::Key&	triggerKey);	

};	

	

//SoundEffectWidget.cpp	

Qt::Key	SoundEffectWidget::triggerKey()	const	

{	

				return	mTriggerKey;	

}	

	

void	SoundEffectWidget::setTriggerKey(const	Qt::Key&	triggerKey)	

{	

				mTriggerKey	=	triggerKey;	

}	

The	SoundEffectWidget	class	provides	a	getter	and	a	setter	to	get	and	set	the	member
variable,	mTriggerKey.

The	MainWindow	class	initializes	the	keys	of	its	four	SoundEffectWidget	like	this:

ui->kickWidget->setTriggerKey(Qt::Key_H);	

ui->snareWidget->setTriggerKey(Qt::Key_J);	

ui->hihatWidget->setTriggerKey(Qt::Key_K);	

ui->crashWidget->setTriggerKey(Qt::Key_L);	

By	default,	the	QObject::eventFilter()	function	is	not	called.	To	enable	it	and	intercept	these
events,	we	need	to	install	an	event	filter	on	the	MainWindow:

installEventFilter(this);	

So	each	time	the	MainWindow	receives	an	event,	the	MainWindow::eventFilter()	function	is
called.

Here	is	the	MainWindow.h	header:

class	MainWindow	:	public	QMainWindow	

{	

				Q_OBJECT	

public:	

				...	

				bool	eventFilter(QObject*	watched,	QEvent*	event)	override;	

	

private:	

				QVector<SoundEffectWidget*>	mSoundEffectWidgets;	

				...	

};	

The	MainWindow	class	has	a	QVector	with	the	four	SoundEffectWidgets
(kickWidget,	snareWidget,	hihatWidget,	and	crashWidget).	Let's	see	the	implementation
in	MainWindow.cpp:

bool	MainWindow::eventFilter(QObject*	watched,	QEvent*	event)	

{	

				if	(event->type()	==	QEvent::KeyPress)	{	

								QKeyEvent*	keyEvent	=	static_cast<QKeyEvent*>(event);	

								for(SoundEffectWidget*	widget	:	mSoundEffectWidgets)	{	

												if	(keyEvent->key()	==	widget->triggerKey())	{	

																widget->triggerPlayButton();	

																return	true;	

												}	

								}	

				}	

				return	QObject::eventFilter(watched,	event);	

}	

The	first	thing	to	do	is	to	check	that	the	QEvent	class	is	a	KeyPress	type.	We	do	not	care	about
other	event	types.	If	the	event	type	is	correct,	we	proceed	to	the	following	steps:

1.	 Cast	the	QEvent	class	to	QKeyEvent.
2.	 Then	we	search	if	the	pressed	key	belongs	to	the	SoundEffectWidget	class.
3.	 If	a	SoundEffectWidget	class	corresponds	to	the	key,	we	call

our	SoundEffectWidget::triggerPlayButton()	function	and	we	return	true	to	indicate
that	we	consumed	the	event	and	it	must	not	be	propagated	to	others	classes.

4.	 Otherwise,	we	call	the	QObject	class	implementation	of	eventFilter().

Bringing	PlaybackWorker	to	life
The	user	can	play	a	sound	live	with	a	mouse	click	or	a	keyboard	key.	But	when	he	records	an
awesome	beat,	the	application	must	be	able	to	play	it	again	with	the	PlaybackWorker	class.
Let's	see	how	MainWindow	uses	this	worker.	Here	is	the	MainWindow.h	related	to
the	PlaybackWorker	class:

class	MainWindow	:	public	QMainWindow	

{	

...	

private	slots:	

				void	playSoundEffect(int	soundId);	

				void	clearPlayback();	

				void	stopPlayback();	

				...	

	

private:	

				void	startPlayback();	

				...	

	

private:	

				PlaybackWorker*	mPlaybackWorker;	

				QThread*	mPlaybackThread;	

				...	

};	

As	you	can	see,	MainWindow	has	PlaybackWorker	and	a	QThread	member	variables.	Let's	see
the	implementation	of	startPlayback():

void	MainWindow::startPlayback()	

{	

				clearPlayback();	

	

				mPlaybackThread	=	new	QThread();	

	

				mPlaybackWorker	=	new	PlaybackWorker(mTrack);	

				mPlaybackWorker->moveToThread(mPlaybackThread);	

	

				connect(mPlaybackThread,	&QThread::started,	

												mPlaybackWorker,	&PlaybackWorker::play);	

				connect(mPlaybackThread,	&QThread::finished,	

												mPlaybackWorker,	&QObject::deleteLater);	

	

				connect(mPlaybackWorker,	&PlaybackWorker::playSound,	

												this,	&MainWindow::playSoundEffect);	

	

				connect(mPlaybackWorker,	&PlaybackWorker::trackFinished,	

												&mTrack,	&Track::stop);	

	

				mPlaybackThread->start(QThread::HighPriority);	

}	

Let's	analyze	all	the	steps:

1.	 We	clear	the	current	playback	with	the	clearPlayback()	function,	which	will	be	covered
soon.

2.	 The	new	QThread	and	PlaybackWorker	are	constructed.	The	current	track	is	given	to	the
worker	at	this	moment.	As	usual,	the	worker	is	then	moved	to	its	dedicated	thread.

3.	 We	want	to	play	the	track	as	soon	as	possible.	So,	when	the	QThread	emits	the	started()
signal,	the	PlaybackWorker::play()	slot	is	called.

4.	 We	do	not	want	to	worry	about	the	PlaybackWorker	memory.	So	when	the	QThread	is
over	and	it	has	sent	the	finished()	signal,	we	call	the	QObject::deleteLater()	slot,
which	schedules	the	worker	for	deletion.

5.	 When	the	PlaybackWorker	class	needs	to	play	a	sound,	the	playSound()	signal	is	emitted
and	our	MainWindow:playSoundEffect()	slot	is	called.

6.	 The	last	connect	covers	when	the	PlaybackWorker	class	finishes	playing	the	whole	track.
A	trackFinished()	signal	is	emitted	and	we	call	the	Track::Stop()	slot.

7.	 Finally,	the	thread	is	started	with	a	high	priority.	Notice	that	some	operating	systems	(for
example,	Linux)	do	not	support	thread	priorities.

We	can	now	see	the	stopPlayback()	body:

void	MainWindow::stopPlayback()	

{	

				mPlaybackWorker->stop();	

				clearPlayback();	

}	

We	call	the	stop()	function	of	the	PlaybackWorker	from	our	thread.	Because	we	use
a	QAtomicInteger	in	stop(),	the	function	is	thread-safe	and	can	be	directly	called.	Finally,	we
call	our	helper	function,	clearPlayback().	This	is	the	second	time	that	we
use	clearPlayback(),	so	let's	implement	it:

void	MainWindow::clearPlayback()	

{	

				if	(mPlaybackThread)	{	

								mPlaybackThread->quit();	

								mPlaybackThread->wait(1000);	

								mPlaybackThread	=	nullptr;	

								mPlaybackWorker	=	nullptr;	

				}	

}	

No	surprises	here.	If	the	thread	is	valid,	we	ask	the	thread	to	exit	and	wait	1	second.	Then,	we
set	the	thread	and	the	worker	to	nullptr.

The	PlaybackWorker::PlaySound	signal	is	connected	to	MainWindow::playSoundEffect().
Here	is	the	implementation:

void	MainWindow::playSoundEffect(int	soundId)	

{	

			mSoundEffectWidgets[soundId]->triggerPlayButton();	

}	

This	slot	retrieves	the	SoundEffectWidget	class	corresponding	to	the	soundId.	Then,	we	call
the	triggerPlayButton(),	the	same	method	that	is	called	when	you	press	the	trigger	key	on
your	keyboard.

So,	when	you	click	on	the	button,	press	a	key,	or	when	the	PlaybackWorker	class	requests	to
play	a	sound,	the	QPushButton	of	SoundEffectWidget	emits	the	signal,	clicked().	This	signal
is	connected	to	our	SoundEffectWidget::play()	slot.	The	next	snippet	describes	this	slot:

void	SoundEffectWidget::play()	

{	

				mSoundEffect.play();	

				emit	soundPlayed(mId);	

}	

Nothing	fancy	here.	We	call	the	play()	function	on	the	QSoundEffect	already	covered.
Finally,	we	emit	the	soundPlayed()	signal	that	is	used	by	Track	to	add	a	new	SoundEvent	if
we	are	in	the	RECORDING	state.

Accepting	mouse	drag	and	drop	events
In	this	project	example,	if	you	drag	and	drop	a	.wav	file	on	a	SoundEffectWidget,	you	can
change	the	sound	played.	The	constructor	of	SoundEffectWidget	performs	a	specific	task	to
allow	drag	and	drop:

setAcceptDrops(true);	

We	can	now	override	the	drag	and	drop	callbacks.	Let's	start	with	the	dragEnterEvent()
function:

//SoundEffectWidget.h	

class	SoundEffectWidget	:	public	QWidget	

{	

...	

protected:	

				void	dragEnterEvent(QDragEnterEvent*	event)	override;	

...	

};	

	

//SoundEffectWidget.cpp	

void	SoundEffectWidget::dragEnterEvent(QDragEnterEvent*	event)	

{	

				if	(event->mimeData()->hasFormat("text/uri-list"))	{	

								event->acceptProposedAction();	

				}	

}	

The	dragEnterEvent()	function	is	called	each	time	the	user	drags	an	object	on	the	widget.	In
our	case,	we	only	want	to	allow	drag	and	drop	on	files	that	are	of	the	MIME	type:	"text/uri-
list"	(a	list	of	URIs,	which	can	be	file://,	http://,	and	so	on).	In	this	case,	though	we	can
call	the	QDragEnterEvent::acceptProposedAction()	function	to	notify	that	we	accept	this
object	for	a	drag	and	drop.

We	can	now	add	a	second	function,	dropEvent():

//SoundEffectWidget.h	

class	SoundEffectWidget	:	public	QWidget	

{	

...	

protected:	

				void	dropEvent(QDropEvent*	event)	override;	

...	

};	

	

//SoundEffectWidget.cpp	

void	SoundEffectWidget::dropEvent(QDropEvent*	event)	

{	

				const	QMimeData*	mimeData	=	event->mimeData();	

				if	(!mimeData->hasUrls())	{	

								return;	

				}	

				const	QUrl	url	=	mimeData->urls().first();	

				QMimeType	mime	=	QMimeDatabase().mimeTypeForUrl(url);	

				if	(mime.inherits("audio/wav"))	{	

								loadSound(url);	

				}	

}	

The	first	step	is	a	sanity	check.	If	the	event	does	not	have	a	URL,	we	do	nothing.	The
QMimeData::hasUrls()	function	returns	true	only	with	the	MIME	type:	"text/uri-text".
Notice	that	a	user	can	drag	and	drop	multiple	files	at	once.	In	our	case,	we	only	handle	the
first	URL.	You	can	check	that	the	file	is	a	.wav	file	with	its	MIME	type.	If	the	MIME	type
is	"audio/wav",	we	call	the	loadSound()	function,	which	updates	the	sound	assigned	to
this	SoundEffectWidget.

The	following	screenshot	show	the	complete	application	for	ch11-drum-machine:

Summary
Serialization	is	a	good	way	to	make	your	data	persistent	when	you	close	your	application.	In
this	chapter,	you	learned	to	make	your	C++	objects	serializable	with	QVariant.	You	created	a
flexible	serialization	structure	with	the	Bridge	pattern.	You	saved	an	object	in	a	different	text
format	such	as	JSON	or	XML	and	also	in	a	binary	format.

You	also	learned	to	use	the	Qt	Multimedia	module	to	play	some	sound	effects.	These	sounds
can	be	triggered	by	a	mouse	click	or	by	a	keyboard	key.	You	implemented	a	friendly	user
interaction,	allowing	you	to	load	a	new	sound	with	a	file	drag	and	drop.

In	the	next	chapter,	we	will	discover	the	QTest	framework	and	how	you	can	organize	your
project	so	it	has	a	clean	application/test	separation.

Chapter	12.	You	Shall	(Not)	Pass	with	QTest
In	the	previous	chapter,	we	created	a	drum	machine	software	with	some	serialization	feature.
In	this	chapter,	we	will	write	the	unit	tests	for	this	application.	To	achieve	this	goal,	we	will
use	Qt	Test,	a	dedicated	test	module	for	Qt	applications.

The	example	project	is	a	test	application	using	CLI	commands	to	execute	and	generate	a	test
report.	We	will	cover	different	types	of	tests	including	datasets,	GUI,	signals,	and
benchmarking.

This	chapter	will	cover	the	following	topics:

Qt	Test	framework
Project	layout	for	unit	tests
Personalize	your	test	execution
Write	tests	with	datasets
Benchmark	your	code
Simulating	GUI	events
Perform	signal	introspection	with	the	QSignalSpy	class

Discovering	Qt	Test
The	Qt	framework	provides	Qt	Test,	a	complete	API	to	create	your	unit	tests	in	C++.	A	test
executes	the	code	of	your	application	and	performs	verification	on	it.	Usually,	a	test	compares
a	variable	with	an	expected	value.	If	the	variable	does	not	match	the	specific	value,	the	test
fails.	If	you	wish	to	go	further,	you	can	benchmark	your	code	and	get	the	time/CPU
tick/events	required	by	your	code.	Clicking	over	and	over	on	a	GUI	to	test	it	can	quickly
become	boring.	Qt	Test	offers	you	the	possibility	to	simulate	keyboard	entries	and	mouse
events	on	your	widgets	to	completely	check	your	software.

In	our	case,	we	want	to	create	a	unit	test	program	named	drum-machine-test.	This	console
application	will	check	the	code	of	our	famous	drum	machine	from	the	previous	chapter.
Create	a	subdirs	project	called	ch12-drum-machine-test	with	the	following	topology:

drum-machine:
drum-machine.pro

drum-machine-test:
drum-machine-test.pro

ch12-drum-machine-test.pro

drum-machine-src.pri

The	drum-machine	and	drum-machine-test	projects	share	the	same	source	code.	So	all
common	files	are	put	in	a	project	include	file:	drum-machine-src.pri.	Here	is	the
updated	drum-machine.pro:

QT	+=	core	gui	multimedia	widgets	

CONFIG	+=	c++14	

	

TARGET	=	drum-machine	

TEMPLATE	=	app	

	

include(../drum-machine-src.pri)	

	

SOURCES	+=	main.cpp	

As	you	can	see,	we	only	perform	a	refactoring	task;	the	project	drum-machine	is	not	affected
by	the	drum-machine-test	application.	You	can	now	create	the	drum-machine-test.pro	file
like	this:

QT	+=	core	gui	multimedia	widgets	testlib	

CONFIG	+=	c++14	console	

	

TARGET	=	drum-machine-test	

TEMPLATE	=	app	

	

include(../drum-machine-src.pri)	

	

DRUM_MACHINE_PATH	=	../drum-machine	

INCLUDEPATH	+=	$$DRUM_MACHINE_PATH	

DEPENDPATH	+=	$$DRUM_MACHINE_PATH	

	

SOURCES	+=	main.cpp	

The	first	thing	to	notice	is	that	we	need	to	enable	the	testlib	module.	Then	even	if	we	are
creating	a	console	application,	we	want	to	perform	a	test	on	the	GUI	so	the	modules
(gui,	multimedia,	and	widgets)	used	by	the	primary	application	are	also	required	here.
Finally,	we	include	the	project	include	file	with	all	application	files	(sources,	headers,	forms,
and	resources).	The	drum-machine-test	application	will	also	contain	new	source	files,	so	we
must	correctly	set	the	INCLUDEPATH	and	DEPENDPATH	variables	to	the	source	files	folder.

Qt	Test	is	easy	to	use	and	relies	on	some	simple	assumptions:

A	test	case	is	a	QObject	class
A	private	slot	is	a	test	function
A	test	case	can	contain	several	test	functions

Notice	that	the	private	slots	with	the	following	names	are	not	test	functions,	but	special
functions	automatically	called	to	initialize	and	clean	up	your	test:

initTestCase():	This	function	is	called	before	the	first	test	function
init():	This	function	is	called	before	each	test	function
cleanup():	This	function	is	called	after	each	test	function
cleanupTestCase():	This	function	is	called	after	the	last	test	function

Alright,	we	are	ready	to	write	our	first	test	case	in	the	drum-machine-test	application.	The
serialization	of	the	drum-machine	object	is	an	important	part.	A	bad	modification	on	the	save
feature	can	easily	break	the	load	feature.	It	can	produce	no	errors	at	compile	time,	but	it	can
lead	to	an	unusable	application.	That	is	why	tests	are	important.	The	first	thing	is	to	validate
the	serialization/deserialization	process.	Create	a	new	C++	class,	DummySerializable.	Here	is
the	header	file:

#include	"Serializable.h"	

	

class	DummySerializable	:	public	Serializable	

{	

public:	

				DummySerializable();	

	

				QVariant	toVariant()	const	override;	

				void	fromVariant(const	QVariant&	variant)	override;	

	

				int	myInt	=	0;	

				double	myDouble	=	0.0;	

				QString	myString	=	"";	

				bool	myBool	=	false;	

};	

It	is	a	simple	class	implementing	our	Serializable	interface	created	in	Chapter	11,	Having
Fun	with	Serialization.	This	class	will	be	helpful	to	validate	the	lower	layer	in	our
serialization	process.	As	you	can	see,	the	class	contains	some	variables	with	various	types	to
ensure	a	complete	functioning	serialization.	Let's	see	the	file,		DummySerializable.cpp:

#include	"DummySerializable.h"	

	

DummySerializable::DummySerializable()	:	

				Serializable()	

{	

}	

	

QVariant	DummySerializable::toVariant()	const	

{	

				QVariantMap	map;	

				map.insert("myInt",	myInt);	

				map.insert("myDouble",	myDouble);	

				map.insert("myString",	myString);	

				map.insert("myBool",	myBool);	

				return	map;	

}	

	

void	DummySerializable::fromVariant(const	QVariant&	variant)	

{	

				QVariantMap	map	=	variant.toMap();	

				myInt	=	map.value("myInt").toInt();	

				myDouble	=	map.value("myDouble").toDouble();	

				myString	=	map.value("myString").toString();	

				myBool	=	map.value("myBool").toBool();	

}	

No	surprise	here;	we	perform	our	operation	with	a	QVariantMap,	as	already	performed	in	the
previous	chapter.	Our	dummy	class	is	ready;	create	a	new	C++	class,	TestJsonSerializer,
with	the	following	header:

#include	<QtTest/QTest>	

	

#include	"JsonSerializer.h"	

	

class	TestJsonSerializer	:	public	QObject	

{	

				Q_OBJECT	

	

public:	

				TestJsonSerializer(QObject*	parent	=	nullptr);	

	

private	slots:	

				void	cleanup();	

				void	saveDummy();	

				void	loadDummy();	

	

private:	

				QString	loadFileContent();	

	

private:	

				JsonSerializer	mSerializer;	

};	

Here	we	are,	our	first	test	case!	This	test	case	performs	verifications	on	our	class,
JsonSerializer.	You	can	see	two	test	functions,	saveDummy()	and	loadDummy().
The	cleanup()	slot	is	the	special	Qt	Test	slot	that	we	covered	earlier,	which	is	executed	after
each	test	function.	We	can	now	write	the	implementation	in	TestJsonSerializer.cpp:

#include	"DummySerializable.h"	

	

const	QString	FILENAME	=	"test.json";	

const	QString	DUMMY_FILE_CONTENT	=	"{\n				"myBool":	true,\n				"myDouble":	

5.2,\n				"myInt":	1,\n				"myString":	"hello"\n}\n";	

	

TestJsonSerializer::TestJsonSerializer(QObject*	parent)	:	

				QObject(parent),	

				mSerializer()	

{	

}	

Two	constants	are	created	here:

FILENAME:	This	is	the	filename	used	to	test	the	save	and	load	the	data
DUMMY_FILE_CONTENT:	This	is	the	referential	file	content	used	by	the	test
functions,	saveDummy()	and	loadDummy()

Let's	implement	the	test	function,	saveDummy():

void	TestJsonSerializer::saveDummy()	

{	

				DummySerializable	dummy;	

				dummy.myInt	=	1;	

				dummy.myDouble	=	5.2;	

				dummy.myString	=	"hello";	

				dummy.myBool	=	true;	

	

				mSerializer.save(dummy,	FILENAME);	

	

				QString	data	=	loadFileContent();	

				QVERIFY(data	==	DUMMY_FILE_CONTENT);	

}	

The	first	step	is	to	instantiate	a	DummySerializable	class	with	some	fixed	values.	So,	we	call
the	function	to	test,	JsonSerializer::save(),	that	will	serialize	our	dummy	object	in

the	test.json	file.	Then,	we	call	a	helper	function,	loadFileContent(),	to	get	the	text
contained	in	the	test.json	file.	Finally,	we	use	a	Qt	Test	macro,	QVERIFY(),	to	perform	the
verification	that	the	text	saved	by	the	JSON	serializer	is	the	same	as	the	expected	value
in	DUMMY_FILE_CONTENT.	If	data	equals	the	correct	value,	the	test	function	succeeds.	Here	is	the
log	output:

PASS			:	TestJsonSerializer::saveDummy()	

If	the	data	is	different	than	the	expected	value,	the	test	fails	and	an	error	is	displayed	in	the
console	log:

FAIL!		:	TestJsonSerializer::saveDummy()		

'data	==	DUMMY_FILE_CONTENT'	returned	FALSE.	()	

Loc:	[../../ch12-drum-machine-test/drum-machine-test/TestJsonSerializer.cpp(31)]	

Let's	briefly	see	the	helper	function,	loadFileContent():

QString	TestJsonSerializer::loadFileContent()	

{	

				QFile	file(FILENAME);	

				file.open(QFile::ReadOnly);	

				QString	content	=	file.readAll();	

				file.close();	

				return	content;	

}	

No	big	deal	here.	We	open	the	file,	test.json,	read	all	the	text	content,	and	return	the
corresponding	QString.

The	macro,	QVERIFY(),	is	great	to	check	a	Boolean	value,	but	Qt	Test	provides	a	better	macro
when	you	want	to	compare	data	to	an	expected	value.	Let's	discover	QCOMPARE()	with	the	test
function,	loadDummy():

void	TestJsonSerializer::loadDummy()	

{	

				QFile	file(FILENAME);	

				file.open(QFile::WriteOnly	|	QIODevice::Text);	

				QTextStream	out(&file);	

				out	<<	DUMMY_FILE_CONTENT;	

				file.close();	

	

				DummySerializable	dummy;	

				mSerializer.load(dummy,	FILENAME);	

	

				QCOMPARE(dummy.myInt,	1);	

				QCOMPARE(dummy.myDouble,	5.2);	

				QCOMPARE(dummy.myString,	QString("hello"));	

				QCOMPARE(dummy.myBool,	true);	

}	

The	first	part	creates	a	test.json	file,	with	a	referential	content.	Then	we	create	an
empty	DymmySerializable	and	call	the	function	to	test	Serializable::load().	Finally,	we	use
the	Qt	Test	macro,	QCOMPARE().	The	syntax	is	simple:

QCOMPARE(actual_value,	expected_value);	

We	can	now	test	each	field	of	the	dummy	loaded	from	JSON.	The	test	function,	loadDummmy(),
will	only	succeed	if	all	QCOMPARE()	calls	succeed.	An	error	with	a	QCOMPARE()	is	much	more
detailed:

FAIL!		:	TestJsonSerializer::loadDummy()	Compared	values	are	not	the	same	

			Actual			(dummy.myInt):	0	

			Expected	(1)										:	1	

Loc:	[../../ch12-drum-machine-test/drum-machine-test/TestJsonSerializer.cpp(45)]	

Each	time	a	test	function	is	executed,	the	special	cleanup()	slot	is	called.	Let's	update	your
file,	TestJsonSerializable.cpp,	like	this:

void	TestJsonSerializer::cleanup()	

{	

				QFile(FILENAME).remove();	

}	

This	is	a	simple	security	that	will	remove	the	test.json	file	after	each	test	function	and
prevent	the	save	and	load	tests	from	colliding.

Executing	your	tests
We	wrote	a	test	case,	TestJsonSerializer,	with	some	test	functions.	We	need	a	main()
function	in	our	drum-machine-test	application.	We	will	explore	three	possibilities:

The	QTEST_MAIN()	function
Write	our	own	simple	main()	function
Write	our	own	enhanced	main()	supporting	multiple	test	classes

The	QTest	module	provides	an	interesting	macro,	QTEST_MAIN().	This	macro	generates	a
complete	main()	function	for	your	application.	This	generated	method	runs	all	the	test
functions	of	your	test	case.	To	use	it,	add	the	following	snippet	at	the	end	of
the	TestJsonSerializer.cpp	file:

QTEST_MAIN(TestJsonSerializer)	

Moreover,	if	you	declare	and	implement	your	test	class	only	in	the	.cpp	file	(without	a	header
file),	you	need	to	include	the	generated	moc	file	after	the	QTEST_MAIN	macro:

QTEST_MAIN(TestJsonSerializer)	

#include	"testjsonserializer"	

If	you	use	the	QTEST_MAIN()	macro,	do	not	forget	to	remove	the	existing	main.cpp.
Otherwise,	you	will	have	two	main()	functions	and	a	compilation	error	will	happen.

You	can	now	try	to	run	your	drum-machine-test	application	and	look	at	the	application	output.
You	should	see	something	similar	to	this:

$./drum-machine-test

*********	Start	testing	of	TestJsonSerializer	*********

Config:	Using	QtTest	library	5.7.0,	Qt	5.7.0	(x86_64-little_endian-lp64	

shared	(dynamic)	release	build;	by	GCC	4.9.1	20140922	(Red	Hat	4.9.1-10))

PASS			:	TestJsonSerializer::initTestCase()

PASS			:	TestJsonSerializer::saveDummy()

PASS			:	TestJsonSerializer::loadDummy()

PASS			:	TestJsonSerializer::cleanupTestCase()

Totals:	4	passed,	0	failed,	0	skipped,	0	blacklisted,	1ms

*********	Finished	testing	of	TestJsonSerializer	*********

Our	test	functions,	saveDummy()	and	loadDummy(),	are	executed	in	the	declaration	order.	Both
succeed	with	the	PASS	status.	The	generated	test	application	handles	some	options.	Commonly,
you	can	display	the	help	menu	executing	this	command:

$./drum-machine-test	-help

Let's	see	some	cool	features.	We	can	execute	only	one	function	with	the	name.	The	following
command	only	executes	the	saveDummy	test	function:

$./drum-machine-test	saveDummy

You	can	also	execute	several	test	functions	separating	their	names	with	a	space.

The	QTest	application	provides	log	detail	options:

-silent	for	silent.	Only	displays	fatal	errors	and	summary	messages.
-v1	for	verbose.	Shows	the	test	function	entered	information.
-v2	for	extended	verbose.	Shows	each	QCOMPARE()	and	QVERIFY().
-vs	for	verbose	signal.	Shows	the	emitted	signal	and	the	connected	slot.

For	example,	we	can	display	details	of	the	execution	of	loadDummy	with	the	following
command:

$./drum-machine-test	-v2	loadDummy

*********	Start	testing	of	TestJsonSerializer	*********

Config:	Using	QtTest	library	5.7.0,	Qt	5.7.0	(x86_64-little_endian-lp64	

shared	(dynamic)	release	build;	by	GCC	4.9.1	20140922	(Red	Hat	4.9.1-10))

INFO			:	TestJsonSerializer::initTestCase()	entering

PASS			:	TestJsonSerializer::initTestCase()

INFO			:	TestJsonSerializer::loadDummy()	entering

INFO			:	TestJsonSerializer::loadDummy()	QCOMPARE(dummy.myInt,	1)

			Loc:	[../../ch12-drum-machine-test/drum-machine-

test/TestJsonSerializer.cpp(45)]

INFO			:	TestJsonSerializer::loadDummy()	QCOMPARE(dummy.myDouble,	5.2)

			Loc:	[../../ch12-drum-machine-test/drum-machine-

test/TestJsonSerializer.cpp(46)]

INFO			:	TestJsonSerializer::loadDummy()	QCOMPARE(dummy.myString,	

QString("hello"))

			Loc:	[../../ch12-drum-machine-test/drum-machine-

test/TestJsonSerializer.cpp(47)]

INFO			:	TestJsonSerializer::loadDummy()	QCOMPARE(dummy.myBool,	true)

			Loc:	[../../ch12-drum-machine-test/drum-machine-

test/TestJsonSerializer.cpp(48)]

PASS			:	TestJsonSerializer::loadDummy()

INFO			:	TestJsonSerializer::cleanupTestCase()	entering

PASS			:	TestJsonSerializer::cleanupTestCase()

Totals:	3	passed,	0	failed,	0	skipped,	0	blacklisted,	1ms

*********	Finished	testing	of	TestJsonSerializer	*********

Another	great	feature	is	the	logging	output	format.	You	can	create	a	test	report	file	with
various	formats	(.txt,	.xml,	.csv,	and	so	on).	The	syntax	requires	a	filename	and	a	file
format	separated	by	a	comma:

$./drum-machine-test	-o	<filename>,<format>

In	the	following	example,	we	create	an	XML	report	named	test-report.xml:

$./drum-machine-test	-o	test-report.xml,xml

Notice	that	some	log	level	affects	only	the	plain	text	output.	Moreover,	the	CSV	format	can	be
used	only	with	the	test	macro	QBENCHMARK,	which	is	covered	later	in	this	chapter.

If	you	want	to	customize	the	generated	test	application,	you	can	write	the	main()	function.
Remove	the	QTEST_MAIN	macro	in	TestJsonSerializer.cpp.	Then	create	a	main.cpp	like	this:

#include	"TestJsonSerializer.h"	

	

int	main(int	argc,	char	*argv[])	

{	

				TestJsonSerializer	test;	

				QStringList	arguments	=	QCoreApplication::arguments();	

				return	QTest::qExec(&test,	arguments);	

}	

In	this	case,	we	are	using	the	static	function,	QTest::qExec(),	to	start	a	TestJsonSerializer
test.	Do	not	forget	to	provide	the	command-line	arguments	to	enjoy	the	QTest	CLI	options.

If	you	wrote	your	test	functions	in	different	test	classes,	you	would	have	created	one
application	by	a	test	class.	If	you	keep	one	test	class	by	test	application	you	can	even	use	the
QTEST_MAIN	macro	to	generate	the	main	functions.

Sometimes	you	want	to	create	only	one	test	application	to	handle	all	your	test	classes.	In	this
case,	you	have	multiple	test	classes	in	the	same	application,	so	you	cannot	use	the	QTEST_MAIN
macro	because	you	do	not	want	to	generate	several	main	functions	for	each	test	class.

Let's	see	a	simple	way	to	call	all	your	test	classes	in	a	unique	application:

int	main(int	argc,	char	*argv[])	

{	

				int	status	=	0;	

				TestFoo	testFoo;	

				TestBar	testBar;	

				status	|=	QTest::qExec(&testFoo);	

				status	|=	QTest::qExec(&testBar);	

				return	status;	

}	

In	this	simple	custom	main()	function,	we	are	executing	the	TestFoo	and	TestBar	tests.	But	we
are	losing	the	CLI	options.	Indeed,	executing	the	QTest::qExec()	function	with	command-line
arguments	more	than	once	will	lead	to	errors	and	bad	behaviors.	For	example,	if	you	want	to
execute	only	one	specific	test	function	from	TestBar.	The	execution	of	TestFoo	will	not	find
the	test	function,	display	an	error	message,	and	stop	the	application.

Here	is	a	workaround	to	handle	several	test	classes	in	a	unique	application.	We	will	create	a
new	CLI	option,	-select,	to	our	test	application.	This	option	allows	you	to	select	a	specific
test	class	to	execute.	Here	is	a	syntax	example:

$./drum-machine-test	-select	foo	fooTestFunction

The	-select	option,	if	used,	must	be	at	the	beginning	of	the	command	followed	by	the	test
class	name	(foo	in	this	example).	Then,	we	can	optionally	add	Qt	Test	options.	To	achieve	this
goal,	we	will	create	an	enhanced	main()	function	that	parses	the	new	select	option	and
execute	the	corresponding	test	class.

We	will	create	our	enhanced	main()	function	together:

QApplication	app(argc,	argv);	

QStringList	arguments	=	QCoreApplication::arguments();	

	

map<QString,	unique_ptr<QObject>>	tests;	

tests.emplace("jsonserializer",	

				make_unique<TestJsonSerializer>());	

tests.emplace("foo",	make_unique<TestFoo>());	

tests.emplace("bar",	make_unique<TestBar>());	

The	QApplication	will	be	required	later	by	our	other	GUI	test	cases.	We	retrieve	the
command	line	arguments	for	later	use.	The	std::map	template	named	tests	contains	the	smart
pointers	of	the	test	classes	and	a	QString	label	is	used	as	a	key.	Notice	that	we	are	using
the	map::emplace()	function	that	does	not	copy	the	source	to	the	map,	but	creates	it	in	place.
Using	the	map::insert()	function	leads	to	an	error	due	to	the	illegal	copy	of	a	smart	pointer.
Another	syntax	that	could	be	used	with	a	std::map	template	and	a	make_unique	is:

tests["bar"]	=	make_unique<TestBar>();	

We	can	now	parse	the	command	line	arguments:

if	(arguments.size()	>=	3	&&	arguments[1]	==	"-select")	{	

				QString	testName	=	arguments[2];	

				auto	iter	=	tests.begin();	

				while(iter	!=	tests.end())	{	

								if	(iter->first	!=	testName)	{	

												iter	=	tests.erase(iter);	

								}	else	{	

												++iter;	

								}	

				}	

				arguments.removeOne("-select");	

				arguments.removeOne(testName);	

}	

If	the	-select	option	is	used,	this	snippet	performs	two	important	tasks:

Removes	from	the	map	tests,	the	test	classes	that	do	not	match	the	test	name
Removes	the	arguments	from	the	-select	option	and	the	testName	variable	to	provide
cleaned	arguments	to	the	QTest::qExec()	function

We	can	now	add	the	final	step	to	execute	the	test	classes:

int	status	=	0;	

for(auto&	test	:	tests)	{	

				status	|=	QTest::qExec(test.second.get(),	arguments);	

}	

	

return	status;	

Without	the	-select	option,	all	the	test	classes	will	be	performed.	If	we	use	the	-select	option
with	a	test	class	name,	only	this	one	will	be	executed.

Writing	factorized	tests	with	datasets
We	will	now	turn	our	attention	to	testing	the	Track	class.	We	will	focus	specifically	on	the
different	states	a	Track	class	can	have:	STOPPED,	PLAYING,	and	RECORDING.	For	each	one	of
these	states,	we	want	to	make	sure	that	adding	SoundEvents	works	only	if	we	are	in	the	proper
state	(RECORDING).

To	do	so,	we	could	write	the	following	test	functions:

testAddSoundEvent():	This	function	puts	the	Track	in	the	STOPPED	state,
calls	track.addSoundEvent(0),	and	checks	track.soundEvents().size	==	0
testAddSoundEvent():	This	function	puts	the	Track	in	the	PLAYING	state,
calls	track.addSoundEvent(0),	and	checks	track.soundEvents().size	==	0
testAddSoundEvent():	This	function	puts	the	Track	in	the	RECORDING	state,
calls	track.addSoundEvent(0),	and	checks	track.soundEvents().size	==	1

As	you	can	see,	the	logic	is	the	same,	we	simply	change	the	inputs	and	the	desired	outputs.	To
factorize	this,	Qt	Test	provides	another	module:	datasets.

A	dataset	can	be	seen	as	a	two-dimensional	table	where	each	row	is	a	test,	and	the	columns	are
the	inputs	and	expected	outputs.	For	our	Track	state	test,	it	would	look	like	this:

With	this	approach,	you	write	a	single	addSoundEvent()	test	function	and	Qt	Test	takes	care
of	iterating	over	this	table	and	comparing	the	result.	Right	now,	it	seems	like	magic.	Let's
implement	it!

Create	a	new	C++	class	named	TestTrack,	following	the	same	pattern	used	for
the	TestJsonSerializer	class	(inherits	QObject,	includes	QTest).	Update	TestTrack.h	like	so:

class	TestTrack	:	public	QObject	

{	

				Q_OBJECT	

public:	

				explicit	TestTrack(QObject	*parent	=	0);	

	

private	slots:	

				void	addSoundEvent_data();	

				void	addSoundEvent();	

};	

Here	we	added	two	functions:

addSoundEvent_data():	This	is	the	function	that	fills	the	dataset	for	the	real	test
addSoundEvent():	This	is	the	function	that	executes	the	test

As	you	can	see,	the	function	that	fills	the	dataset	for	a	given	xxx()	function	must	be
named	xxx_data().	Let's	see	the	implementation	of	addSoundEvent_data():

void	TestTrack::addSoundEvent_data()	

{	

				QTest::addColumn<int>("trackState");	

				QTest::addColumn<int>("soundEventCount");	

	

				QTest::newRow("STOPPED")		

																<<	static_cast<int>(Track::State::STOPPED)		

																<<	0;	

				QTest::newRow("PLAYING")		

																<<	static_cast<int>(Track::State::PLAYING)		

																<<	0;	

				QTest::newRow("RECORDING")		

																<<	static_cast<int>(Track::State::RECORDING)		

																<<	1;	

}	

As	you	can	see,	a	dataset	is	constructed	like	a	table.	We	start	by	defining	the	structure	of	the
table	with	the	trackState	and	soundEventCount	columns.	Note	that	QTest::addColumn	relies
on	templating	to	know	the	type	of	the	variable	(int	in	both	cases).

After	that,	a	row	is	appended	to	the	table	with	the	QTest::newRow()	function,	with	the	name	of
the	test	passed	as	a	parameter.	The	QTest::newRow	syntax	supports	the	<<	operator,	making	it
very	easy	to	pack	all	the	data	for	a	given	row.

Note	that	each	row	added	to	the	dataset	corresponds	to	an	execution	of	the	addSoundEvent()
function	in	which	the	data	of	the	row	will	be	available.

We	can	now	turn	our	attention	to	addSoundEvent():

void	TestTrack::addSoundEvent()	

{	

				QFETCH(int,	trackState);	

				QFETCH(int,	soundEventCount);	

	

				Track	track;	

				switch	(static_cast<Track::State>(trackState))	{	

								case	Track::State::STOPPED:	

												track.stop();	

												break;	

								case	Track::State::PLAYING:	

												track.play();	

												break;	

								case	Track::State::RECORDING:	

												track.record();	

												break;	

								default:	

												break;	

				}	

	

				track.addSoundEvent(0);	

				track.stop();	

	

				QCOMPARE(track.soundEvents().size(),		

													static_cast<size_t>(soundEventCount));	

}	

Because	addSoundEvent()	is	executed	by	QTest	and	is	fed	with	the	dataset	data,	we	can	safely
access	the	current	row	of	the	dataset	like	we	would	do	with	a	cursor	on	a	database.
The	QFETCH(int,	trackState)	is	a	helpful	macro	that	does	two	things:

Declares	an	int	variable	named	trackState
Fetches	the	current	column	index	data	of	the	dataset	and	stores	its	content	in	trackState

The	same	principle	is	applied	to	soundEventCount.	Now	that	we	have	our	desired	track	state
and	the	expected	sound	events	count,	we	can	proceed	to	the	real	test:

1.	 Put	the	track	in	the	proper	state	according	to	trackState.	Remember	that
the	Track::setState()	function	is	private,	because	the	Track	keyword	handles
the	trackState	variable	alone,	based	on	the	caller	instruction
(stop(),	play(),	record()).

2.	 Try	to	add	a	SoundEvent	to	track.
3.	 Stop	the	track.
4.	 Compare	the	number	of	SoundEvents	in	track	to	what	is	expected	in	soundEventCount.

Do	not	forget	to	add	the	TestTrack	class	in	main.cpp:

#include	"TestJsonSerializer.h"	

#include	"TestTrack.h"	

	

...	

	

int	main(int	argc,	char	*argv[])	

{	

				...	

				map<QString,	unique_ptr<QObject>>	tests;	

				tests.emplace("jsonserializer",		

																		make_unique<TestJsonSerializer>());	

				tests.emplace("track",		

																		make_unique<TestTrack>());	

				...	

}	

You	can	now	run	the	tests	and	see	the	three	tests	of	addSoundEvent()	output	their	result	in	the
console:

PASS			:	TestTrack::addSoundEvent(STOPPED)

PASS			:	TestTrack::addSoundEvent(PLAYING)

PASS			:	TestTrack::addSoundEvent(RECORDING)

Datasets	make	the	writing	of	tests	less	dull,	by	factorizing	variations	of	data	for	a	single	test.

You	can	also	run	a	single	test	for	a	specific	entry	of	a	dataset	using	the	command	line:

$./drum-machine-test	<testfunction>:<dataset	entry>

Let's	say	we	want	to	execute	the	test	function	addSoundEvent()	from	TestTrack	with	only
the	RECORDING	state.	Here	is	the	command	line	to	run:

$./drum-machine-test	-select	track	addSoundEvent:RECORDING

Benchmarking	your	code
Qt	Test	also	provides	a	very	easy	to	use	semantic	to	benchmark	the	execution	speed	of	your
code.	To	see	it	in	action,	we	will	benchmark	the	time	it	takes	to	save	a	Track	in	the	JSON
format.	Depending	on	the	track	length	(the	number	of	SoundEvents),	the	serialization	should
take	more	or	less	time.

Of	course,	it	is	more	interesting	to	benchmark	this	feature	with	different	track	lengths	and	see
if	the	time	saving	is	linear.	Datasets	come	to	the	rescue!	It	is	not	only	useful	to	run	the	same
function	with	expected	inputs	and	outputs,	but	also	to	run	the	same	function	with	different
parameters.

We	will	start	by	creating	the	dataset	function	in	TestJsonSerializer:

class	TestJsonSerializer	:	public	QObject	

{	

				...	

	

private	slots:	

				void	cleanup();	

				void	saveDummy();	

				void	loadDummy();	

	

				void	saveTrack_data();	

				...	

};	

	

void	TestJsonSerializer::saveTrack_data()	

{	

				QTest::addColumn<int>("soundEventCount");	

	

				QTest::newRow("1")	<<	1;	

				QTest::newRow("100")	<<	100;	

				QTest::newRow("1000")	<<	1000;	

}	

The	saveTrack_data()	function	simply	stores	the	number	of	SoundEvent	to	be	added	to
a	Track	class	before	it	is	saved.	The	"1",	"100",	and	"1000"	strings	are	here	to	have	a	clear
label	in	the	test	execution	output.	These	strings	will	be	displayed	in	each	execution
of	saveTrack().	Feel	free	to	tweak	these	numbers!

Now	for	the	real	test	with	the	benchmark	call:

class	TestJsonSerializer	:	public	QObject	

{	

				...	

				void	saveTrack_data();	

				void	saveTrack();	

				...	

};	

	

void	TestJsonSerializer::saveTrack()	

{	

				QFETCH(int,	soundEventCount);	

				Track	track;	

				track.record();	

				for	(int	i	=	0;	i	<	soundEventCount;	++i)	{	

								track.addSoundEvent(i	%	4);	

				}	

				track.stop();	

	

				QBENCHMARK	{	

								mSerializer.save(track,	FILENAME);	

				}	

}	

The	saveTrack()	function	starts	by	fetching	the	soundEventCount	column	from	its	dataset.
After	that,	it	adds	the	correct	number	of	soundEvent	(with	the	proper	record()	state!)	and
finally	benchmarks	the	serialization	in	the	JSON	format.

You	can	see	that	the	benchmark	itself	is	simply	a	macro	that	looks	like	this:

QBENCHMARK	{	

				//	instructions	to	benchmark	

}	

The	instructions	enclosed	in	the	QBENCHMARK	macro	will	be	measured	automatically.	If	you
execute	the	test	with	the	updated	TestJsonSerializer	class,	you	should	see	an	output	similar
to	this:

PASS			:	TestJsonSerializer::saveTrack(1)	

RESULT	:	TestJsonSerializer::saveTrack():"1":	

					0.041	msecs	per	iteration	(total:	84,	iterations:	2048)	

PASS			:	TestJsonSerializer::saveTrack(100)	

RESULT	:	TestJsonSerializer::saveTrack():"100":	

					0.23	msecs	per	iteration	(total:	59,	iterations:	256)	

PASS			:	TestJsonSerializer::saveTrack(1000)	

RESULT	:	TestJsonSerializer::saveTrack():"1000":	

					2.0	msecs	per	iteration	(total:	66,	iterations:	32)	

As	you	can	see,	the	QBENCHMARK	macro	makes	Qt	Test	output	very	interesting	data.	To	save
a	Track	class	with	a	single	SoundEvent,	it	took	0.041	milliseconds.	Qt	Test	repeated	this	test
2048	times	and	it	took	a	total	of	84	milliseconds.

The	power	of	the	QBENCHMARK	macro	starts	to	be	visible	in	the	following	test.	Here,
the	saveTrack()	function	tried	to	save	a	Track	class	with	100	SoundEvents.	It	took	0.23
milliseconds	to	do	it	and	it	repeated	the	instruction	256	times.	This	shows	you	that	the	Qt	Test

benchmark	automatically	adjusts	the	number	of	iterations	based	on	the	average	time	a	single
iteration	takes.

The	QBENCHMARK	macro	has	this	behavior	because	a	metric	tends	to	be	more	accurate	if	it	is
repeated	multiple	times	(to	avoid	possible	external	noise).

Tip

If	you	want	your	test	to	be	benchmarked	without	multiple	iterations,	use	QBENCHMARK_ONCE.

If	you	execute	the	test	using	the	command	line,	you	can	provide	additional	metrics	to
QBENCHMARK.	Here	is	the	table	recapitulating	the	available	options:

Name Command-line	argument Availability

Walltime (default) All	platforms

CPU	tick	counter -tickcounter Windows,	OS	X,	Linux,	many	UNIX-like	systems.

Event	Counter -eventcounter All	platforms

Valgrind	Callgrind -callgrind Linux	(if	installed)

Linux	Perf -perf Linux

Each	one	of	these	options	will	replace	the	selected	backend	used	to	measure	the	execution
time	of	the	benchmarked	code.	For	example,	if	you	run	drum-machine-test	with	the	-
tickcounter	argument:

$./drum-machine-test	-tickcounter

...

RESULT	:	TestJsonSerializer::saveTrack():"1":

					88,062	CPU	cycles	per	iteration	(total:	88,062,	iterations:	1)

PASS			:	TestJsonSerializer::saveTrack(100)

RESULT	:	TestJsonSerializer::saveTrack():"100":

					868,706	CPU	cycles	per	iteration	(total:	868,706,	iterations:	1)

PASS			:	TestJsonSerializer::saveTrack(1000)

RESULT	:	TestJsonSerializer::saveTrack():"1000":

					7,839,871	CPU	cycles	per	iteration	(total:	7,839,871,	iterations:	1)

...

You	can	see	that	the	wall	time,	measured	in	milliseconds,	has	been	replaced	by	the	number	of
CPU	cycles	completed	for	each	iteration.

Another	interesting	option	is	-eventcounter,	which	measures	the	numbers	that	were	received

by	the	event	loop	before	they	are	sent	to	their	corresponding	target.	This	could	be	an
interesting	way	of	checking	that	your	code	emits	the	proper	number	of	signals.

Testing	your	GUI
It	is	now	time	to	see	how	you	can	test	your	GUI	using	the	Qt	Test	API.	The	QTest	class	offers
several	functions	to	simulate	keys	and	mouse	events.

To	demonstrate	it,	we	will	stay	with	the	notion	of	testing	a	Track	state,	but	on	an	upper	level.
Rather	than	testing	the	Track	state	itself,	we	will	check	that	the	UI	state	of	the	drum-machine
application	is	properly	updated	when	the	Track	state	is	changed.	Namely,	the	control	buttons
(play,	stop,	record)	should	be	in	a	specific	state	when	a	recording	is	started.

Start	by	creating	a	TestGui	class	in	the	drum-machine-test	project.	Do	not	forget	to	add
the	TestGui	class	in	the	tests	map	of	main.cpp.	As	usual,	make	it	inherit	QObject	and
update	TestGui.h	like	so:

#include	<QTest>	

	

#include	"MainWindow.h"	

	

class	TestGui	:	public	QObject	

{	

				Q_OBJECT	

public:	

				TestGui(QObject*	parent	=	0);	

	

private:	

				MainWindow	mMainWindow;	

};	

In	this	header,	we	have	a	member,	mMainWindow,	which	is	an	instance	of	the	MainWindow
keyword	from	the	drum-machine	project.	Throughout	the	tests	of	TestGui,	a
single	MainWindow	will	be	used,	in	which	we	will	inject	events	and	check	how	it	reacts.

Let's	switch	to	the	TestGui	constructor:

#include	<QtTest/QtTest>	

	

TestGui::TestGui(QObject*	parent)	:	

				QObject(parent),	

				mMainWindow()	

{	

				QTestEventLoop::instance().enterLoop(1);	

}	

The	constructor	initializes	the	mMainWindow	variable.	Notice	that	mMainWindow	is	never	shown
(using	mMainWindow.show()).	We	do	not	need	to	display	it,	we	solely	want	to	test	its	states.

Here,	we	use	a	rather	obscure	function	call	(QTestEventLoop	is	not	documented	at	all)	to	force

the	event	loop	to	be	started	after	1	second.

The	reason	why	we	have	to	do	this	lies	in	the	QSoundEffect	class.	The	QSoundEffect	class	is
initialized	when	the	QSoundEffect::setSource()	function	is	called	(in	MainWindow,	this	is
done	at	the	initialization	of	the	SoundEffectWidgets).	If	we	omit	the	explicit	enterLoop()	call,
the	drum-machine-test	execution	will	crash	with	a	segmentation	fault.

It	seems	that	the	event	loop	has	to	be	explicitly	entered	to	let	the	QSoundEffect	class	properly
complete	its	initialization.	We	found	this	undocumented	workaround	by	studying	the	Qt	unit
tests	of	the	QSoundEffect	class.

Now	for	the	real	GUI	test!	To	test	the	control	buttons,	update	TestGui:

//	In	TestGui.h	

class	TestGui	:	public	QObject	

{	

				...	

private	slots:	

				void	controlButtonState();	

				...	

};	

	

//	In	TestGui.cpp	

#include	<QtTest/QtTest>	

#include	<QPushButton>	

...	

void	TestGui::controlButtonState()	

{	

				QPushButton*	stopButton	=		

								mMainWindow.findChild<QPushButton*>("stopButton");	

				QPushButton*	playButton	=		

								mMainWindow.findChild<QPushButton*>("playButton");	

				QPushButton*	recordButton	=		

								mMainWindow.findChild<QPushButton*>("recordButton");	

	

				QTest::mouseClick(recordButton,	Qt::LeftButton);	

	

				QCOMPARE(stopButton->isEnabled(),	true);	

				QCOMPARE(playButton->isEnabled(),	false);	

				QCOMPARE(recordButton->isEnabled(),	false);	

}	

In	the	controlButtonState()	function,	we	start	by	retrieving	our	buttons	by	using	the
handy	mMainWindow.findChild()	function.	This	function	is	available	in	QObject,	and	the
passed	name	corresponds	to	the	objectName	variable	we	used	for	each	button	in	Qt	Designer
when	we	created	MainWindow.ui.

Once	we	retrieve	all	the	buttons,	we	inject	a	mouse	click	event	using	the	QTest::mouseClick()
function.	It	takes	a	QWidget*	parameter	as	a	target	and	the	button	that	should	be	clicked.	You

can	even	pass	keyboard	modifiers	(control,	shift,	and	so	on)	and	a	possible	click	delay	in
milliseconds.

Once	the	recordButton	has	been	clicked,	we	test	the	states	of	all	the	control	buttons	to	make
sure	that	they	are	in	the	desired	enabled	state.

Note

This	function	can	be	easily	extended	to	test	all	the	states	(PLAYING,	STOPPED,	RECORDING)	with	a
dataset	where	the	input	is	the	desired	state	and	the	outputs	are	the	expected	buttons	states.

The	QTest	class	offers	many	useful	functions	to	inject	events,	including:

keyEvent():	This	function	is	used	to	simulate	a	key	event
keyPress():	This	function	is	used	to	simulate	a	key	press	event
keyRelease():	This	function	is	used	to	simulate	a	key	release	event
mouseClick():	This	function	is	used	to	simulate	a	key	click	event
mouseDClick():	This	function	is	used	to	simulate	a	mouse	double	click	event
mouseMove():	This	function	is	used	to	simulate	a	mouse	move	event

Spying	on	your	application	with
QSignalSpy
The	last	part	we	will	cover	in	the	Qt	Test	framework	is	the	ability	to	spy	on	signals	with
QSignalSpy.	This	class	allows	you	to	do	introspection	of	the	emitted	signal	of	any	QObject.

Let's	see	it	in	action	with	SoundEffectWidget.	We	will	test	that	when
the	SoundEffectWidget::play()	function	is	called,	the	soundPlayed	signal	is	emitted	with	the
correct	soundId	parameter.

Here	is	the	playSound()	function	of	TestGui:

#include	<QTest>	

	

#include	"MainWindow.h"	

	

//	In	TestGui.h	

class	TestGui	:	public	QObject	

{	

				...	

				void	controlButtonState();	

				void	playSound();	

				...	

};	

	

//	In	TestGui.cpp	

#include	<QPushButton>	

#include	<QtTest/QtTest>	

#include	"SoundEffectWidget.h"	

...	

void	TestGui::playSound()	

{	

				SoundEffectWidget	widget;	

				QSignalSpy	spy(&widget,	&SoundEffectWidget::soundPlayed);	

				widget.setId(2);	

				widget.play();	

	

				QCOMPARE(spy.count(),	1);	

				QList<QVariant>	arguments	=	spy.takeFirst();	

				QCOMPARE(arguments.at(0).toInt(),	2);	

}	

We	start	by	initializing	a	SoundEffectWidget	widget	and	a	QSignalSpy	class.	The	spy	class's
constructor	takes	the	pointer	to	the	object	to	spy	and	the	pointer	to	the	member	function	of	the
signal	to	be	watched.	Here,	we	want	to	check	the	SoundEffectWidget::soundPlayed()	signal.

Right	after,	widget	is	configured	with	an	arbitrary	soundId	(2)	and	widget.play()	is	called.

This	is	where	it	gets	interesting:spy	stores	the	signal's	emitted	parameters	in	a	QVariantList.
Each	time	soundPlayed()	is	emitted,	a	new	QVariantList	is	created	in	spy,	which	contains	the
emitted	parameters.

The	first	step	is	to	check	that	the	signal	is	emitted	only	once,	by	comparing	spy.count()	to	1.
Just	after	that,	we	store	the	parameters	of	this	signal	in	arguments	and	check	that	it	has	the
value	2,	the	initial	soundId	that	widget	was	configured	with.

As	you	can	see,	QSignalSpy	is	simple	to	use;	you	can	create	as	many	as	you	need	for	each
signal	you	want	to	spy	on.

Summary
The	Qt	Test	module	gracefully	helps	us	to	easily	create	a	test	application.	You	learned	to
organize	your	project	with	a	standalone	test	application.	You	are	able	to	compare	and	verify	a
specific	value	in	your	simple	tests.	For	your	complex	tests,	you	could	use	the	datasets.	You
implemented	a	simple	benchmark,	recording	the	time	or	the	CPU	ticks	required	to	execute	a
function.	You	have	simulated	GUI	events	and	spy	Qt	signals	to	ensure	that	your	application
works	well.

Your	application	is	created	and	your	unit	tests	indicates	a	PASS	status.	In	the	next	chapter,	we
will	learn	how	to	deploy	your	application.

Chapter	13.		All	Packed	and	Ready	to
Deploy
In	the	previous	chapter,	you	learned	to	create	a	robust	application	with	unit	tests.	The	final	step
for	an	application	is	packaging.	The	Qt	framework	enables	you	to	develop	cross-platform
applications	but	packaging	is	really	a	platform-specific	task.	Moreover,	when	your
application	is	ready	to	be	shipped,	you	need	a	one-step	procedure	to	generate	and	pack	your
application.

In	this	chapter,	we	will	reuse	the	gallery	application	(both	on	desktop	and	mobile	platforms)
to	learn	the	steps	required	to	package	a	Qt	application.	There	are	many	ways	to	prepare	the
packaging	of	an	application.	In	this	chapter,	we	want	to	package	the	gallery	application,	from
Chapters	4,	Conquering	the	Desktop	UI,	and	Chapter	5,	Dominating	the	Mobile	UI,	on	the
supported	platforms	(Windows,	Linux,	Mac,	Android,	and	iOS).

Here	are	the	topics	covered	in	this	chapter:

Packaging	a	Qt	application	on	Windows
Packaging	a	Qt	application	on	Linux
Packaging	a	Qt	application	on	Mac
Packaging	a	Qt	application	on	Android
Packaging	a	Qt	application	on	iOS

Packaging	your	application
You	will	create,	for	each	platform,	a	dedicated	script	to	perform	all	the	tasks	required	to	build
a	standalone	application.	Depending	on	the	OS	type,	the	packaged	application	will	be
gallery-desktop	or	gallery-mobile.	Because	the	whole	gallery	project	has	to	be	compiled,
it	also	has	to	include	gallery-core.	Therefore,	we	will	create	a	parent	project	with	gallery-
core,	gallery-desktop,	and	gallery-mobile.

For	each	platform,	we	will	prepare	the	project	to	be	packaged	and	create	a	specific	script.	All
the	scripts	follow	the	same	workflow:

1.	 Set	the	input	and	output	directories.
2.	 Create	Makefiles	with	qmake.
3.	 Build	the	project.
4.	 Regroup	only	the	necessary	files	in	the	output	directory.
5.	 Package	the	application	with	platform-specific	tasks.
6.	 Store	the	packed	application	in	the	output	directory.

These	scripts	could	run	on	a	developer	computer	or	on	a	continuous	integration	server
running	software	such	as	Jenkins	as	long	as	the	packaging	computer	OS	matches	the	script
target	OS	(except	for	the	mobile	platforms).	In	other	words,	you	need	to	run	the	Windows
script	on	a	computer	that	runs	Windows	to	be	able	to	package	a	Qt	application	for	Windows.

Technically,	you	can	perform	cross-compilation	(given	the	appropriate	toolchain	and
libraries),	but	this	is	beyond	the	scope	of	this	book.	It	is	easy	to	cross-compile	for	a
RaspberryPI	when	you	are	on	Linux,	but	the	same	cannot	be	said	when	you	want	to	compile
for	MacOS	and	you	are	on	Windows.

Note

From	Linux,	you	can	cross-compile	Qt	for	Windows	with	tools	such	as	MXE	at	http://mxe.cc/.

Create	a	new	subdir	project	named	ch13-gallery-packaging	with	the	following	hierarchy:

ch13-gallery-packaging:
gallery-core

gallery-desktop

gallery-mobile

Even	if	you	are	now	an	expert	on	Qt	subdirs	projects,	here	is	the	ch13-gallery-
packaging.pro	file:

TEMPLATE	=	subdirs	

	

http://mxe.cc/

SUBDIRS	+=	\	

				gallery-core	\	

				gallery-desktop	\	

				gallery-mobile	

	

gallery-desktop.depends	=	gallery-core	

gallery-mobile.depends	=	gallery-core	

You	are	now	ready	to	work	through	any	of	the	following	sections,	depending	on	the	platform
you	are	targeting.

Packaging	for	Windows
To	package	a	standalone	application	on	Windows,	you	need	to	provide	all	the	dependencies	of
your	executable.	The	gallery-core.dll	file,	the	Qt	libraries	(for	example,	Qt5Core.dll),	and
compiler-specific	libraries	(for	example,	libstdc++-6.dll)	are	some	examples	of
dependencies	required	by	our	executable.	If	you	forget	to	provide	a	library,	an	error	will	be
displayed	when	you	run	the	gallery-desktop.exe	program.

Note

On	Windows,	you	can	use	the	utility	Dependency	Walker	(depends).	It	will	give	you	a	list	of
all	libraries	required	by	your	application.	You	can	download	it
here:	www.dependencywalker.com.

For	this	section,	we	will	create	a	script	to	build	the	project	via	the	command	line	interface.
Then	we	will	use	the	Qt	tool	windeployqt	to	gather	all	dependencies	required	by	our
application.	This	example	is	for	a	MinGW	compiler	but	you	can	easily	adapt	it	for	a	MSVC
compiler.

Here	is	a	list	of	required	files	and	folders	gathered	by	winqtdeploy,	to	properly	run	gallery-
desktop	on	Windows:

iconengines:
qsvgicon.dll

imageformats:
qjpeg.dll

qwbmp.dll

...

Platforms:
qwindows.dll

	translations:
qt_en.qm

qt_fr.qm

...

D3Dcompiler_47.dll

gallery-core.dll

gallery-desktop.exe

libEGL.dll

libgcc_s_dw2-1.dll

libGLESV2.dll

libstdc++-6.dll

libwinpthread-1.dll

http://www.dependencywalker.com

opengl32sw.dll

Qt5Core.dll

Qt5Gui.dll

Qt5Svg.dll

Qt5Widgets.dll

Check	that	your	environment	variables	are	correctly	set:

Create	a	file,	package-windows.bat,	in	the	scripts	directory:

@ECHO	off	

	

set	DIST_DIR=dist\desktop-windows	

set	BUILD_DIR=build	

set	OUT_DIR=gallery	

	

mkdir	%DIST_DIR%	&&	pushd	%DIST_DIR%	

mkdir	%BUILD_DIR%	%OUT_DIR%	

	

pushd	%BUILD_DIR%	

%QTDIR%\bin\qmake.exe	^	

		-spec	win32-g++	^	

		"CONFIG	+=	release"	^	

		..\..\..\ch13-gallery-packaging.pro	

	

%MINGWROOT%\bin\mingw32-make.exe	qmake_all	

	

pushd	gallery-core	

%MINGWROOT%\bin\mingw32-make.exe	&&	popd	

	

pushd	gallery-desktop	

%MINGWROOT%\bin\mingw32-make.exe	&&	popd	

	

popd	

copy	%BUILD_DIR%\gallery-core\release\gallery-core.dll	%OUT_DIR%	

copy	%BUILD_DIR%\gallery-desktop\release\gallery-desktop.exe	%OUT_DIR%	

%QTDIR%\bin\windeployqt	%OUT_DIR%\gallery-desktop.exe	%OUT_DIR%\gallery-core.dll		

	

popd	

Let's	talk	about	the	steps	performed:

1.	 Set	the	main	path	variables.	The	output	directory	is	DIST_DIR.	All	files	are	generated	in
the	dist/desktop-windows/build	directory.

2.	 Create	all	directories	and	launch	dist/desktop-windows/build.
3.	 Execute	qmake	in	release	mode	for	the	Win32	platform	to	generate	the	parent

project	Makefile.	The	spec	win32-g++	is	for	the	MinGW	compiler.	You	should	use	the
spec	win32-msvc	if	you	want	to	use	the	MSVC	compiler.

4.	 Run	the	mingw32-make	qmake_all	command	to	generate	the	sub-project	Makefiles.	With
an	MSVC	compiler	you	must	replace	mingw32-make	with	nmake	or	jom.

5.	 Perform	the	mingw32-make	commands	to	build	each	required	sub-project.
6.	 Copy	the	generated	files,	gallery-desktop.exe	and	gallery-core.dll,	into	the	gallery

directory.
7.	 Call	the	Qt	tool,	windeployqt,	on	both	files	and	copy	all	required	dependencies	(for

example,	Qt5Core.dll,	Qt5Sql.dll,		libstdc++-6.dll,	qwindows.dll,	and	so	on).

Packaging	for	Linux	with	a	distribution
package
Packaging	an	application	for	a	Linux	distribution	is	a	bumpy	road.	Because	each	distribution
can	have	its	own	packaging	format	(.deb,	.rpm,	and	so	on),	the	first	question	to	answer	is:
which	distribution	do	you	wish	to	target?	Covering	every	major	packaging	format	would	take
several	chapters.	Even	detailing	a	single	distribution	could	be	unfair	(you	wanted	to	package
for	RHEL?	Too	bad,	we	only	covered	Arch	Linux!).	After	all,	from	a	Qt	application
developer	perspective,	what	you	want	is	to	ship	your	product	to	your	users,	you	do	not	(yet)
aim	to	become	an	official	Debian	repository	maintainer.

Having	all	this	in	mind,	we	decided	to	focus	on	a	tool	that	packages	the	application	for	you
for	each	distribution.	That	is	right,	you	do	not	need	to	learn	the	internals	of	Debian	or	Red
Hat!	We	will	still	explain	the	common	principles	in	the	packaging	systems	without	excessive
detail.

For	our	purpose,	we	will	demonstrate	how	a	packaging	can	be	done	using	the	.deb	format	on
an	Ubuntu	machine,	but	as	you	will	see	it	can	be	easily	updated	to	generate	a	.rpm.

The	tool	we	are	going	to	use	is	named	fpm	(eFfing	Package	Management).

Note

The	fpm	tool	is	available	at	https://github.com/jordansissel/fpm.

The	fpm	tool	is	a	Ruby	application	that	aims	to	do	exactly	what	we	need:	take	care	of	the
distribution-specific	details	and	generate	the	final	package.	First,	take	the	time	to	install	fpm
on	your	machine	and	make	sure	that	it	is	working.

In	a	nutshell,	a	Linux	package	is	a	file	format	that	contains	all	the	files	you	want	to	deploy
with	a	lot	of	metadata.	It	can	contain	description	of	the	content,	a	changelog,	a	license	file,	the
list	of	dependencies,	checksums,	pre-	and	post-installation	triggers,	and	much,	much	more.

Note

If	you	want	to	learn	how	to	package	a	Debian	binary	by	hand,	go	to
http://tldp.org/HOWTO/html_single/Debian-Binary-Package-Building-HOWTO/.

In	our	case,	we	still	have	to	do	some	project	preparation	to	let	fpm	do	its	job.	The	files	we
want	to	deploy	have	to	match	the	target	filesystem.	Here	is	how	the	deployment	should	look:

gallery-desktop:	This	binary	should	be	deployed	in	/usr/bin
libgallery-core.so:	This	should	be	deployed	in	/usr/lib

https://github.com/jordansissel/fpm
http://tldp.org/HOWTO/html_single/Debian-Binary-Package-Building-HOWTO/

To	achieve	this,	we	are	going	to	organize	our	outputs	in	dist/desktop-linux	like	so:

The	build	directory	will	contain	the	compiled	project	(it	is	our	release	shadow	build)
The	root	directory	will	contain	the	to-be-packaged	files,	meaning	the	binary	and	library
files	in	the	proper	hierarchy	(usr/bin	and	usr/lib)

To	generate	the	root	directories,	we	will	rely	on	Qt	and	the	power	of	the	.pro	files.	When
compiling	a	Qt	project,	the	target	files	are	already	tracked.	All	we	have	to	do	is	to	add	an
additional	install	target	for	gallery-core	and	gallery-desktop.

Add	the	following	scope	in	gallery-core/gallery-core.pro:

linux	{	

				target.path	=	$$_PRO_FILE_PWD_/../dist/desktop-linux/root/usr/lib/	

				INSTALLS	+=	target	

}	

Here	we	define	a	new	target.path	that	is	going	to	deploy	the	DISTFILES	(the	.so	files)	to	our
desired	root	tree.	Note	the	use	of	$$_PRO_FILE_PWD_,	which	points	to	the	directory	where	the
current	.pro	file	is	stored.

Almost	the	same	procedure	is	carried	out	in	gallery-desktop/gallery-desktop.pro:

linux	{	

				target.path	=	$$_PRO_FILE_PWD_/../dist/desktop-linux/root/usr/bin/	

				INSTALLS	+=	target	

}	

With	these	lines,	when	we	call	make	install,	the	files	are	going	to	be	deployed	in
dist/desktop-linux/root/....

Now	that	the	project	configuration	is	completed,	we	can	switch	to	the	packaging	script.	We
will	cover	the	script	in	two	parts:

Project	compilation	and	root	preparation
The	.deb	package	generation	with	fpm

First,	check	that	your	environment	variables	are	correctly	set:

Create	scripts/package-linux-deb.sh	with	the	following	content:

#!/bin/bash	

	

DIST_DIR=dist/desktop-linux	

BUILD_DIR=build	

ROOT_DIR=root	

	

BIN_DIR=$ROOT_DIR/usr/bin	

LIB_DIR=$ROOT_DIR/usr/lib	

	

mkdir	-p	$DIST_DIR	&&	cd	$DIST_DIR	

mkdir	-p	$BIN_DIR	$LIB_DIR	$BUILD_DIR	

	

pushd	$BUILD_DIR	

$QTDIR/bin/qmake	\	

				-spec	linux-g++	\	

				"CONFIG	+=	release"	\	

				../../../ch13-gallery-packaging.pro	

	

make	qmake_all	

pushd	gallery-core	&&	make	&&	make	install	;	popd	

pushd	gallery-desktop	&&	make	&&	make	install	;	popd	

popd	

Let's	break	this	down:

1.	 Set	the	main	path	variables.	The	output	directory	is	DIST_DIR.	All	files	are	generated	in
the	dist/desktop-linux/build	folder.

2.	 Create	all	the	directories	and	launch	dist/desktop-linux/build.
3.	 Execute	qmake	in	release	mode	for	the	Linux	platform	to	generate	the	parent

project	Makefile.
4.	 Run	the	make	qmake_all	command	to	generate	the	sub-projects	Makefiles.
5.	 Perform	the	make	commands	to	build	each	required	sub-project.
6.	 Use	the	make	install	command	to	deploy	the	binary	and	the	libraries	to

the	dist/desktop-linux/root	directory.

If	you	execute	scripts/package-linux-deb.sh,	the	final	file	tree	in	dist/desktop-linux
looks	like	this:

build/

gallery-core/*.o

gallery-desktop/*.p

Makefile

root/

usr/bin/gallery-desktop

usr/lib/libgallery-core.so

Everything	is	now	ready	for	fpm	to	work.	The	final	part	of	scripts/package-linux-deb.sh

contains	this:

fpm	--input-type	dir	\	

				--output-type	deb	\	

				--force	\	

				--name	gallery-desktop	\	

				--version	1.0.0	\	

				--vendor	"Mastering	Qt	5"	\	

				--description	"A	Qt	gallery	application	to	organize	and	manage	your	pictures	

in	albums"	\	

				--depends	qt5-default	\	

				--depends	libsqlite3-dev	\	

				--chdir	$ROOT_DIR	\	

				--package	gallery-desktop_VERSION_ARCH.deb	

Most	of	the	arguments	are	explicit	enough.	We	will	focus	on	the	most	important	ones:

--input-type:	This	argument	refers	to	what	fpm	will	work	with.	It	can
take	deb,	rpm,	gem,	dir	and	so	on	and	repackage	it	to	another	format.	Here	we	use	the	dir
option	to	tell	fpm	to	use	a	directory	tree	as	the	input	source.
--output-type:	This	argument	refers	to	the	desired	output	type.	Take	a	look	at	the
official	documentation	to	see	how	many	platforms	are	supported.
--name:	This	is	the	name	given	to	the	package	(if	you	want	to	uninstall	it,	you	write	apt-
get	remove	gallery-desktop).
--depends:	This	argument	refers	to	a	library	package	dependency	of	the	project.	You	can
add	as	many	dependencies	as	you	want.	In	our	case,	we	only	depend	on	qt5	-default
and	sqlite3-dev.	This	option	is	very	important	so	be	sure	that	the	application	will	be
able	to	run	on	the	target	platform.	You	can	specify	the	version	of	the	dependency	with	--
depends	library	>=	1.2.3.
--chdir:	This	argument	refers	to	the	base	directory	from	which	fpm	will	run.	We	set	it
to	dist/desktop-linux/root,	where	our	file	tree	is	ready	to	be	loaded!
--package:	This	argument	is	the	name	of	the	final	package.	The	VERSION	and	ARCH	are
placeholders	that	are	automatically	filled	based	on	your	system.

The	rest	of	the	options	are	purely	informative;	you	can	specify	a	changelog,	a	license	file,
and	much	more.	Just	by	changing	the	--output-typedeb	to	rpm,	the	package	format	is
properly	updated.	The	fpm	tool	also	provides	specific	package	format	options,	letting	you
have	fine	control	over	what	is	generated.

If	you	now	execute	scripts/package-linux-deb.sh,	you	should	get	a	new	dist/desktop-
linux/gallery-desktop_1.0.0_amd64.deb	file.	Try	to	install	it	with	the	commands:

sudo	dpkg	-i		dist/desktop-linux/gallery-desktop_1.0.0_amd64.deb

sudo	apt-get	install	-f

The	first	command	deploys	the	package	in	your	system.	You	should	now	have	the	files

/usr/bin/gallery-desktop	and	/usr/lib/libgallery-core.so.

However,	because	we	installed	the	package	using	the	dpkg	command,	the	dependencies	are	not
automatically	installed.	This	would	be	done	if	the	package	was	provided	by	a	Debian
repository	(thus,	installing	the	package	with	apt-get	install	gallery-desktop).	The
missing	dependencies	are	still	"marked"	and	apt-get	install	-f	does	their	installation.

You	can	now	start	gallery-desktop	from	anywhere	in	your	system	with	the
command,	gallery-desktop.	When	we	wrote	this	chapter	in	2016,	if	you	execute	it	on	a
"fresh"	Ubuntu,	you	might	run	into	the	following	issue:

$	gallery-desktop	

gallery-desktop:	/usr/lib/x86_64-linux-gnu/libQt5Core.so.5:	version	`Qt_5.7'	

not	found	(required	by	gallery-desktop)

gallery-desktop:	/usr/lib/x86_64-linux-gnu/libQt5Core.so.5:	version	`Qt_5'	

not	found	(required	by	gallery-desktop)

...

gallery-desktop:	/usr/lib/x86_64-linux-gnu/libQt5Core.so.5:	version	`Qt_5'	

not	found	(required	by	/usr/lib/libgallery-core.so.1)

What	happened?	We	installed	the	dependencies	with	apt-get	install	-f!	We	encounter	here
a	major	pain	point	in	Linux	package	management.	The	dependencies	we	specify	in	our	.deb
could	refer	to	a	specific	version	of	Qt,	but	the	reality	is	that	we	depend	on	the	package	version
maintained	by	the	upstream.	In	other	words,	each	time	a	new	version	of	Qt	is	released,	the
distribution	maintainers	(Ubuntu,	Fedora,	and	so	on)	have	to	repackage	it	to	make	it	available
in	the	official	repository.	This	can	be	a	long	process	and	the	maintainers	have	a	huge	number
of	packages	to	port!

To	be	confident	about	what	we	are	stating,	let's	view	the	library	dependencies	of	gallery-
desktop	with	an	ldd	command:

$	ldd	/usr/bin/gallery-desktop

				libgallery-core.so.1	=>	/usr/lib/libgallery-core.so.1	

(0x00007f8110775000)

				libQt5Widgets.so.5	=>	/usr/lib/x86_64-linux-gnu/libQt5Widgets.so.5	

(0x00007f81100e8000)

				libQt5Gui.so.5	=>	/usr/lib/x86_64-linux-gnu/libQt5Gui.so.5	

(0x00007f810fb9f000)

				libQt5Core.so.5	=>	/usr/lib/x86_64-linux-gnu/libQt5Core.so.5	

(0x00007f810f6c9000)

			...

				libXext.so.6	=>	/usr/lib/x86_64-linux-gnu/libXext.so.6	

(0x00007f810966e000)

As	you	can	see,	libgallery-core.so	is	correctly	resolved	in	/usr/lib	and	the	Qt
dependencies	too	in	/usr/lib/x86_64-linux-gnu.	But	what	version	of	Qt	is	used?	The
answer	lies	in	the	details	of	the	libraries:

$	ll	/usr/lib/x86_64-linux-gnu/libQt5Core.*

-rw-r--r--	1	root	root				1014	may				2	15:37	libQt5Core.prl

lrwxrwxrwx	1	root	root						19	may				2	15:39	libQt5Core.so	->	

libQt5Core.so.5.5.1

lrwxrwxrwx	1	root	root						19	may				2	15:39	libQt5Core.so.5	->	

libQt5Core.so.5.5.1

lrwxrwxrwx	1	root	root						19	may				2	15:39	libQt5Core.so.5.5	->	

libQt5Core.so.5.5.1

-rw-r--r--	1	root	root	5052920	may				2	15:41	libQt5Core.so.5.5.1

The	libQt5Core.so	file	is	a	soft	link	to	libQt5Core.so.5.5.1,	meaning	that	the	system
version	of	Qt	is	5.5.1,	whereas	gallery-desktop	relies	on	Qt	5.7.	You	can	configure	your
system	to	have	the	system	Qt	pointing	to	your	Qt	installation	(done	with	the	Qt	installer).
However,	it	is	highly	improbable	that	your	customer	will	install	Qt	by	hand	just	to
have	gallery-desktop	running.

Even	worse,	for	an	older	version	of	your	distribution,	the	packages	are	usually	not	updated	at
all	after	some	time.	Just	try	to	install	a	Qt	5.7	Debian	package	on	Ubuntu	14.04	to	understand
how	complicated	things	become.	We	did	not	even	mention	incompatible	dependencies.	If	we
rely	on	a	specific	version	of	libsqlite3-dev	and	another	application	needs	another	one,
things	will	get	ugly,	and	only	one	can	survive.

A	Linux	package	has	many	advantages	if	you	want	it	to	be	available	on	an	official	repository
or	if	you	have	specific	needs.	Using	official	repositories	is	a	common	way	of	installing	an
application	on	Linux	and	your	users	will	not	be	disoriented.	If	you	can	restrict	your	Qt
version	to	the	one	deployed	on	the	Linux	distribution	that	may	be	a	fine	solution.

Unfortunately,	it	also	brings	major	headaches:	you	need	to	support	multiple	distributions,
handle	the	dependencies	without	breaking	the	system,	and	make	sure	that	your	application	has
old	enough	dependencies,	and	so	on.

Do	not	worry,	everything	is	not	lost;	smart	people	are	already	resolving	this	issue	on	Linux
with	self-contained	packages.	As	a	matter	of	fact,	we	are	going	to	cover	a	self-contained
package.

Packaging	for	Linux	with	AppImage
On	Windows	or	Mac,	an	application	is	self-sufficient:	it	contains	all	the	dependencies	it	needs
to	be	executed.	On	the	one	hand,	this	creates	more	file	duplication,	and	on	the	other	hand	it
simplifies	packaging	for	the	developer.

Based	on	this	premise,	efforts	have	been	made	to	have	the	same	pattern	on	Linux	(as	opposed
to	a	repository/distribution-specific	package).	Today,	several	solutions	offer	a	self-contained
package	on	Linux.	We	suggest	you	study	one	of	these	solutions:	AppImage.	This	particular
tool	is	gaining	traction	in	the	Linux	community.	There	is	a	growing	number	of	developers
relying	on	AppImage	to	package	and	deploy	their	application.

AppImage	is	a	file	format	that	contains	an	application	with	all	its	libraries	included.	You
download	a	single	AppImage	file,	execute	it,	and	you	are	done:	the	application	is	running.
Behind	the	scenes,	an	AppImage	is	an	ISO	file	on	steroids,	mounted	on-the-fly	when	you
execute	it.	The	AppImage	file	itself	is	read-only	and	can	also	run	in	a	sandbox	such	as	Firejail
(a	SUID	sandbox	program	that	reduces	the	risk	of	security	breaches	by	restricting	the	running
environment	of	applications).

Note

More	information	on	AppImage	is	available	at	http://appimage.org/.

To	package	gallery-desktop	into	an	AppImage,	there	are	two	major	steps:

1.	 Gather	all	the	dependencies	of	gallery-desktop.
2.	 Package	gallery-desktop	and	its	dependencies	in	the	AppImage	format.

Fortunately,	this	whole	process	can	be	done	by	using	a	nifty	tool:	linuxdeployqt.	It	started	as
a	hobby	project	and	became	the	official	way	to	package	a	Qt	application	in	the	AppImage
documentation.

Note

Get	linuxdeployqt	from	https://github.com/probonopd/linuxdeployqt/.

The	script	we	are	going	to	write	now	assumes	that	the	binary	linuxdeployqt	is	available	in
your	$PATH	variable.	Check	that	your	environment	variables	are	correctly	set:

http://appimage.org/
https://github.com/probonopd/linuxdeployqt/

Create	scripts/package-linux-appimage.sh	and	update	it	like	so:

#!/bin/bash	

	

DIST_DIR=dist/desktop-linux	

BUILD_DIR=build	

	

mkdir	-p	$DIST_DIR	&&	cd	$DIST_DIR	

mkdir	-p	$BUILD_DIR	

	

pushd	$BUILD_DIR	

$QTDIR/bin/qmake	\	

				-spec	linux-g++	\	

				"CONFIG	+=	release"	\	

				../../../ch13-gallery-packaging.pro	

make	qmake_all	

pushd	gallery-core	&&	make	;	popd	

pushd	gallery-desktop	&&	make	;	popd	

popd	

	

export	QT_PLUGIN_PATH=$QTDIR/plugins/	

export	LD_LIBRARY_PATH=$QTDIR/lib:$(pwd)/build/gallery-core	

	

linuxdeployqt	\	

				build/gallery-desktop/gallery-desktop	\	

				-appimage	

	

mv	build/gallery-desktop.AppImage	.	

The	first	part	is	the	compilation	of	the	project:

1.	 Set	the	main	path	variables.	The	output	directory	is	DIST_DIR.	All	files	are	generated	in
the	dist/desktop-linux/build	folder.

2.	 Create	all	the	directories	and	go	in	dist/desktop-linux/build.
3.	 Execute	qmake	in	release	mode	for	the	Linux	platform	to	generate	the	parent

project	Makefile.
4.	 Run	the	make	qmake_all	command	to	generate	the	sub-project	Makefiles.
5.	 Perform	the	make	commands	to	build	each	required	sub-project.

The	second	part	of	the	script	concerns	linuxdeployqt.	We	first	have	to	export	some	paths	to
let	linuxdeployqt	properly	find	all	the	dependencies	of	gallery-desktop	(Qt	libraries	and
the	gallery-core	library).

After	that,	we	execute	linuxdeployqt	by	specifying	the	source	binary	to	work	with	and	the
target	file	type	(AppImage).	The	resulting	file	is	a	single	gallery-desktop.AppImage	ready	to
be	launched	on	the	user's	computer	without	any	Qt	package	installed!

Packaging	for	Mac	OS	X
On	OS	X,	applications	are	built	and	run	from	a	bundle:	a	single	directory	that	contains	the
application	binary	and	all	its	dependencies.	In	the	Finder,	these	bundles	are	viewed	as	.app
special	directories.

When	running	gallery-desktop	from	Qt	Creator,	the	application	is	already	bundled	in	a	.app
file.	Because	we	are	using	a	custom	library,	gallery-core,	this	gallery-desktop.app	does
not	contain	all	the	dependencies	and	Qt	Creator	handles	it	for	us.

What	we	aim	to	create	is	a	script	that	completely	packages	gallery-desktop	(gallery-core
included)	in	a	.dmg	file,	a	Mac	OS	X	disk	image	file	that	is	mounted	upon	execution	and	lets
the	user	install	the	application	with	ease.

To	achieve	this,	Qt	provides	the	macdeployqt	tool,	which	gathers	the	dependencies	and	creates
the	.dmg	file.

First,	check	that	your	environment	variables	are	correctly	set:

Create	the	scripts/package-macosx.sh	file	with	the	following	content:

#!/bin/bash	

	

DIST_DIR=dist/desktop-macosx	

BUILD_DIR=build	

	

mkdir	-p	$DIST_DIR	&&	cd	$DIST_DIR	

mkdir	-p	$BUILD_DIR	

	

pushd	$BUILD_DIR	

$QTDIR/bin/qmake	\	

		-spec	macx-clang	\	

		"CONFIG	+=	release	x86_64"	\	

		../../../ch13-gallery-packaging.pro	

make	qmake_all	

pushd	gallery-core	&&	make	;	popd	

pushd	gallery-desktop	&&	make	;	popd	

	

cp	gallery-core/*.dylib	\	

				gallery-desktop/gallery-desktop.app/Contents/Frameworks/	

	

install_name_tool	-change	\	

		libgallery-core.1.dylib	\	

		@rpath/libgallery-core.1.dylib	\	

		gallery-desktop/gallery-desktop.app/Contents/MacOS/gallery-desktop	

popd	

	

$QTDIR/bin/macdeployqt	\	

				build/gallery-desktop/gallery-desktop.app	\	

				-dmg	

	

mv	build/gallery-desktop/gallery-desktop.dmg	.	

We	can	split	the	script	in	two.	The	first	part	prepares	the	application	for	macdeployqt:

1.	 Set	the	main	path	variables.	The	output	directory	is	DIST_DIR.	All	files	are	generated	in
the	dist/desktop-macosx/build	folder.

2.	 Create	all	the	directories	and	go	in	dist/desktop-macosx/build.
3.	 Execute	qmake	in	release	mode	for	the	Mac	OS	X	platform	to	generate	the	parent

project	Makefile.
4.	 Run	the	make	qmake_all	command	to	generate	the	sub-projects	Makefiles.
5.	 Perform	the	make	commands	to	build	each	required	sub-project.

The	following	part	includes	the	gallery-core	library	in	the	generated	gallery-desktop.app.
If	we	do	not	execute	the	cp	command	stated	in	the	script	and	everything	that	comes	after	it,	we
might	be	quite	surprised	by	the	gallery-desktop	binary	content.	Let's	take	a	look	at	it	by
executing	the	following	command:

$	otool	-L	dist/desktop-macosx/build/gallery-desktop/gallery-

desktop.app/Contents/MacOS/gallery-desktop	

dist/desktop-macosx/build/gallery-desktop/gallery-

desktop.app/Contents/MacOS/gallery-desktop:

		libgallery-core.1.dylib	(compatibility	version	1.0.0,	current	version	

1.0.0)

		@rpath/QtWidgets.framework/Versions/5/QtWidgets	(compatibility	version	

5.7.0,	current	version	5.7.0)

...

		/usr/lib/libSystem.B.dylib	(compatibility	version	1.0.0,	current	version	

1226.10.1)

As	you	can	see,	libgallery-core.1.dylib	is	resolved	in	the	local	path	but	not	in	the	special
dependencies	path	as	is	done	for	QtWidget	with	@rpath	(namely	Contents/Frameworks/).	To
mitigate	this,	package-macosx.sh	copies	the	.dylib	file	in	gallery-
desktop.app/Contents/Frameworks/	and	regenerates	the	dependencies	index	of	the	binary
with	install_name_tool.

Finally,	in	package-macosx.sh,	macdeployqt	is	called	with	the	updated	gallery-deskop.app
and	the	target	dmg	format.	The	resulting	gallery-desktop.dmg	can	be	deployed	on	your	user

computer.

Packaging	for	Android
The	aim	of	this	section	is	to	generate	a	standalone	APK	file	for	the	gallery-mobile
application.	Packaging	and	deploying	an	application	for	Android	require	multiple	steps:

1.	 Configure	the	Android	build	details.
2.	 Generate	a	keystore	and	a	certificate.
3.	 Customize	the	Android	manifest	from	a	template.
4.	 Create	a	script	to	automate	the	packaging.

You	can	do	most	of	the	tasks	directly	from	Qt	Creator.	Under	the	hood,	the	Qt	tool,
androiddeployqt,	is	called	to	generate	the	APK	file.	Go	to	Projects	|	Android	for	armeabi-
v7a	|	Build	Steps.	You	should	see	a	special	build	step:	Build	Android	APK.	The	details	look
like	the	following	screenshot:

The	first	thing	to	do	is	to	select	which	Android	API	level	you	want	to	use	to	generate	the
Application.	In	our	case,	we	selected	android-23	for	the	Android	API	Level	23.	Try	to	always
build	your	application	with	the	latest	SDK	version	available.

To	publish	your	application	on	the	Play	Store,	you	must	sign	the	package.	To	be	able	to
update	an	application,	the	signature	of	the	current	version	and	the	new	version	must	be	the
same.	This	procedure	is	a	protection	to	make	sure	that	any	future	versions	of	the	application
were	really	created	by	you.	The	first	time	you	should	create	a	keystore,	the	next	time	you	can
reuse	it	with	the	Browse...	button.	For	now,	click	on	the	Create...	button	on	the	Sign	package	
|Keystore	line.	You	will	get	the	following	popup:

Follow	these	steps	to	generate	a	new	keystore:

1.	 The	keystore	must	be	protected	by	a	password.	Do	not	forget	it	or	you	will	not	be	able	to
use	this	keystore	for	a	future	release.

2.	 Specify	an	Alias	name	for	the	certificate.	The	default	values	for	Keysize
and	Validity(days)	are	fine.	You	can	specify	a	different	password	for	the	certificate	or
use	the	keystore	one.

3.	 In	the	Certificate	Distinguished	Names	group,	enter	information	about	you	and	your

company.
4.	 Save	the	keystore	file	in	a	safe	place.
5.	 Enter	the	keystore	password	to	validate	its	selection	for	the	deployment.

The	next	part	concerns	Qt	deployment.	Indeed,	your	application	needs	some	Qt	libraries.	Qt
supports	three	kinds	of	deployment:

Create	a	minimal	APK	relying	on	Ministro	for	the	Qt	dependencies.	Ministro	is	an
Android	application	that	can	be	downloaded	from	the	Play	Store.	It	acts	as	a	Qt	shared
libraries	installer/provider	for	all	Qt	applications	on	Android.
Create	a	standalone	bundle	APK	that	embeds	Qt	libraries.
Create	an	APK	that	relies	on	the	fact	that	the	Qt	libraries	are	in	a	specific	directory.	The
libraries	are	copied	into	a	temporary	directory	during	the	first	deployment.

During	the	developing	and	debugging	phase,	you	should	select	the	temporary	directory	way
to	reduce	the	packaging	time.	For	a	deployment,	you	can	use	the	Ministro	or	the	bundle
option.	In	our	case,	we	chose	the	standalone	bundle	to	generate	a	complete	APK.

The	Advanced	actions	pane	offers	three	options:

Use	Gradle:	This	option	generates	Gradle	wrappers	and	a	script,	useful	if	you	plan	to
customize	the	Java	part	in	an	IDE	such	as	Android	Studio
Open	package	location	after	build:	This	option	opens	the	directory	with	the	packages
generated	by	androiddeployqt
Verbose	Output:	This	option	displays	additional	information	about
the	androiddeployqt	processing

The	Android	build	details	and	signing	options	are	finished.	We	can	now	customize	the
Android	manifest.	Click	on	Create	Templates,	select	the	gallery-mobile.pro	file,	and	click
on	Finish.	The	wizard	creates	for	you	an	android	sub-directory	with	several	files;	for
example,	AndroidManifest.xml.	The	gallery-mobile.pro	file	has	to	be	updated
automatically	with	these	files.	However,	do	not	forget	to	add	the	android	scope	like	the
following	snippet:

TEMPLATE	=	app	

...	

android	{	

				contains(ANDROID_TARGET_ARCH,x86)	{	

								ANDROID_EXTRA_LIBS	=	\	

												$$[QT_INSTALL_LIBS]/libQt5Sql.so	

				}	

	

				DISTFILES	+=	\	

								android/AndroidManifest.xml	\	

								android/gradle/wrapper/gradle-wrapper.jar	\	

								android/gradlew	\	

								android/res/values/libs.xml	\	

								android/build.gradle	\	

								android/gradle/wrapper/gradle-wrapper.properties	\	

								android/gradlew.bat	

	

				ANDROID_PACKAGE_SOURCE_DIR	=	$$PWD/android	

}	

You	can	now	edit	the	AndroidManifest.xml	file.	Qt	Creator	provides	a	dedicated	editor.	You
can	also	edit	it	with	a	plain	text	editor	with	caution.	You	can	open	it	from	the	hierarchical
project	view:	gallery-mobile	|	Other	files	|	android.

Here	is	our	Android	manifest	in	Qt	Creator:

Here	are	the	most	important	steps:

1.	 Replace	the	default	Package	name	with	yours.
2.	 The	Version	code	is	an	integer	that	must	be	increased	for	each	official	release.
3.	 The	Version	name	is	the	displayed	version	for	users.
4.	 Select	the	Minimum	required	SDK.	Users	with	an	older	version	will	not	be	able	to	install

your	application.
5.	 Select	the	SDK	that	will	be	used	to	compile	your	application	with	the	Target	SDK.

6.	 Change	the	application	and	activity	name.
7.	 Select	an	Application	icon	depending	on	the	screen	DPI	(Dots	per	Inch).	From	left	to

right:	the	low,	medium,	and	high	DPI	icon.
8.	 Finally,	if	required	by	your	application,	you	can	add	some	Android	permissions.

You	can	already	build	and	deploy	your	signed	application	from	Qt	Creator.	You	should	see
the	new	application	name	and	icon	on	your	Android	phone	or	emulator.	However,	we	will
now	create	a	script	to	easily	generate	and	package	the	signed	APK	from	the	command	line.

Several	environment	variables	are	required	by	the	Android	and	Qt	tools	but	also	for	the	script
itself.	Here	is	a	summary	with	an	example:

This	example	is	a	bash	script	but	feel	free	to	adapt	it	to	a	.bat	file	if	you	are	on	Windows.
Create	a	package-android.sh	file	in	the	scripts	directory:

#!/bin/bash	

	

DIST_DIR=dist/mobile-android	

BUILD_DIR=build	

APK_DIR=apk	

KEYSTORE_PATH="$(pwd)/scripts/android-data"	

ANDROID_BUILD_PATH="$(pwd)/$DIST_DIR/$BUILD_DIR/android-build"	

	

mkdir	-p	$DIST_DIR	&&	cd	$DIST_DIR	

mkdir	-p	$APK_DIR	$BUILD_DIR	

	

pushd	$BUILD_DIR	

$QTDIR_ANDROID/bin/qmake	\	

				-spec	android-g++	\	

				"CONFIG	+=	release"	\	

				../../../ch13-gallery-packaging.pro	

make	qmake_all	

pushd	gallery-core	&&	make	;	popd	

pushd	gallery-mobile	&&	make	;	popd	

pushd	gallery-mobile	&&	make	INSTALL_ROOT=$ANDROID_BUILD_PATH	install	;	popd	

	

$QTDIR_ANDROID/bin/androiddeployqt	

				--input	./gallery-mobile/android-libgallery-mobile.so-deployment-

settings.json	\	

				--output	$ANDROID_BUILD_PATH	\	

				--deployment	bundled	\	

				--android-platform	android-23	\	

				--jdk	$JAVA_HOME	\	

				--ant	$ANT_ROOT/ant	\	

				--sign	$KEYSTORE_PATH/android.keystore	myandroidkey	\	

				--storepass	'masteringqt'	

					

cp	$ANDROID_BUILD_PATH/bin/QtApp-release-signed.apk	../apk/cute-gallery.apk	

popd	

Let's	analyze	this	script	together:

1.	 Set	the	main	path	variables.	The	output	directory	is	DIST_DIR.	All	files	are	generated	in
the	dist/mobile-android/build	directory.	The	final	signed	APK	is	copied	in
the	dist/mobile-android/apk	directory.

2.	 Create	all	the	directories	and	go	in	dist/mobile-android/build.
3.	 Execute	qmake	in	release	mode	for	the	Android	platform	to	generate	the	parent	project

Makefile.
4.	 Run	the	make	qmake_all	command	to	generate	the	sub-project	Makefiles.
5.	 Perform	the	make	commands	to	build	each	required	sub-project.
6.	 Run	the	make	install	command	on	the	gallery-mobile	directory	specifying

the	INSTALL_ROOT	to	copy	all	binaries	and	files	required	by	the	APK	generation.

The	final	part	of	the	script	calls	the	androiddeployqt	binary,	a	Qt	tool	to	generate	the	APK.
Take	a	look	at	the	following	options:

The	--deployment	option	used	here	is	bundled	like	the	mode	we	used	in	Qt	Creator.
The	--sign	option	requires	two	parameters:	the	URL	to	the	keystore	file	and	the	alias	to
the	key	for	the	certificate.
The	--storepass	option	is	used	to	specify	the	keystore	password.	In	our	case	the
password	is	"masteringqt".

Finally,	the	generated	signed	APK	is	copied	to	the	dist/mobile-android/apk	directory	with
the	name	cute-gallery.apk.

Packaging	for	iOS
Packaging	a	Qt	application	for	iOS	relies	on	XCode.	When	you	build	and	run	gallery-mobile
from	Qt	Creator,	XCode	will	be	called	under	the	hood.	In	the	end,	an	.xcodeproj	file	is
generated	and	passed	to	XCode.

Knowing	this,	the	packaging	part	will	be	fairly	limited:	the	only	thing	than	can	be	automated
is	the	generation	of	the	.xcodeproj.

First,	check	that	your	environment	variables	are	correctly	set:

Create	scripts/package-ios.sh	and	add	this	snippet	to	it:

#!/bin/bash	

	

DIST_DIR=dist/mobile-ios	

BUILD_DIR=build	

	

mkdir	-p	$DIST_DIR	&&	cd	$DIST_DIR	

mkdir	-p	$BIN_DIR	$LIB_DIR	$BUILD_DIR	

	

pushd	$BUILD_DIR	

$QTDIR_IOS/bin/qmake	\	

		-spec	macx-ios-clang	\	

		"CONFIG	+=	release	iphoneos	device"	\	

		../../../ch13-gallery-packaging.pro	

make	qmake_all	

pushd	gallery-core	&&	make	;	popd	

pushd	gallery-mobile	&&	make	;	popd	

	

popd	

The	script	performs	the	following	steps:

1.	 Set	the	main	path	variables.	The	output	directory	is	DIST_DIR.	All	files	are	generated	in
the	dist/mobile-ios/build	folder.

2.	 Create	all	the	directories	and	go	in	dist/mobile-ios/build.
3.	 Execute	qmake	in	release	mode	for	the	iPhone	device	(as	opposed	to	the	iPhone

simulator)	platform	to	generate	the	parent	project	Makefile.
4.	 Run	the	make	qmake_all	command	to	generate	the	sub-project	Makefiles.
5.	 Perform	the	make	command	to	build	each	required	sub-projects.

Once	this	script	has	been	executed,	dist/mobile-ios/build/gallery-mobile/gallery-
mobile.xcodeproj	is	ready	to	be	opened	in	XCode.	The	remaining	steps	are	entirely	done	in
XCode:

1.	 Open	gallery-mobile.xcodeproj	in	XCode.
2.	 Compile	the	application	for	an	iOS	device.
3.	 Follow	the	Apple	procedure	to	distribute	your	application	(through	the	App	Store	or	as	a

standalone	file).

After	that,	gallery-mobile	will	be	ready	for	your	users!

Summary
Even	if	your	application	runs	well	on	your	computer,	your	development	environment	can
affect	this	behavior.	Its	packaging	must	be	correct	to	run	your	application	on	the	user's
hardware.	You	learned	the	steps	required	to	package	an	application	before	deploying	it.	Some
platforms	required	specific	tasks	that	must	be	followed	carefully.	You	can	now	bake	a
standalone	package	if	your	application	is	running	a	unique	script.

The	next	chapter	describes	some	tricks	that	can	be	useful	for	developing	applications	with	Qt.
You	will	learn	some	tips	concerning	Qt	Creator.

Chapter	14.	Qt	Hat	Tips	and	Tricks
The	previous	chapter	taught	you	how	to	package	a	Qt	application	on	all	the	major	desktop	and
mobile	platforms.	This	was	the	final	step	before	shipping	your	application	to	your	users.	This
chapter	gathers	some	tips	and	tricks	that	will	help	you	to	develop	your	Qt	applications	with
more	ease.

This	chapter	covers	the	following	topics:

Qt	Creator	tips	-	Useful	keyboard	shortcuts,	session	management,	and	more
Examining	the	memory	with	Qt	Creator
Generating	random	numbers
Silencing	unused	variables	and	compiler	warnings
How	to	easily	log	an	object's	content	to	QDebug
Customizing	QDebug	formatting
Saving	logs	to	a	file
Creating	a	friendly	command-line	interface
Sending	HTTPGET	and	POST	requests

Managing	your	workspace	with	sessions
It	is	common	for	a	commercial	product	to	be	composed	of	several	Qt	projects.	We	regularly
encountered	this	practice	in	this	book-for	example,	an	application	composed	of	a	core	project
and	a	GUI	project.	The	Qt	subdirs	project	is	a	nice	way	of	handling	inter-dependent	projects
within	the	same	application.

However,	when	your	product	grows	up,	you'll	want	to	open	some	unrelated	projects	in	Qt
Creator.	In	this	case,	you	should	use	a	session.	A	session	is	a	complete	snapshot	of	your
workspace	in	Qt	Creator.	You	can	easily	create	a	new	session	from	File	|	Session	Manager
|	New.	Do	not	forget	to	switch	to	the	new	session.	For	example,	you	can	create	a	session
"Mastering	Qt5"	and	load	all	project	examples	in	a	common	workspace.

The	sessions	are	useful	when	you	need	to	quickly	switch	between	two	different	workspaces.
The	following	items	in	Qt	Creator	will	be	automatically	saved	in	the	session:

Opened	projects	of	the	hierarchical	view
Editor's	windows	(including	the	splits)
Debug	breakpoints	and	expressions	views
Bookmarks

You	can	change	to	a	different	session	with	File	|	Session	Manager	or	by	using	the	Welcome
tab.	A	session	can	be	destroyed	without	any	impact	on	your	projects.

Searching	with	the	Locator
Another	way	to	improve	your	productivity	with	Qt	Creator	is	to	use	keyboard	shortcuts.	Qt
Creator	provides	a	lot	of	great	keyboard	shortcuts.	Here	is	our	selection:

One	of	our	favorites	is	the	Locator.	Press	Ctrl	+	K	to	activate	it.	Then	you	can	enjoy	several
features:

Enter	a	filename	(you	can	even	use	a	partial	entry)	and	press	Enter	to	open	this	file.	If	the
Locator	suggests	multiple	files,	you	can	use	the	arrows	up	and	down	to	navigate.
Prefix	your	search	by	.		(a	dot	followed	by	a	space)	to	search	C++	symbols	in	the
current	document.	For	example,	on	the	Task.cpp	file	of	the	first	chapter,	try	to	use	the
Locator	with	.	set	and	press	Enter	to	go	to	the		Task::setName()	function.
Enter	l		(L	followed	by	a	space)	to	go	to	a	specific	line.	For	example,	"l	37"	will	bring
us	to	line	37	of	the	current	file

The	Locator	provides	plenty	of	features;	take	a	look	when	you	press	Ctrl	+	K	the	next	time!

Increasing	the	compilation	speed
You	can	speed	up	the	compilation	on	a	multicore	computer.	By	default,	when	you	build	your
project	with	Qt	Creator,	you	only	use	one	job	(and,	therefore,	one	core).	But	make	supports	the
compilation	with	multiple	jobs.	You	can	use	the	make	-j	N	option	to	allow	N	jobs	at	once.	Do
not	forget	to	update	your	packaging	scripts!

If	you	build	your	project	from	Qt	Creator,	you	can	set	this	option	from	Projects	|	Build	Steps
|	Make.	Click	on	Details,	then,	in	the	Make	arguments	field,	put	the	value	-j	8	to	allow	eight
jobs	during	the	compilation,	as	shown	in	the	following	screenshot:

Examining	the	memory	with	Qt	Creator
For	this	section,	we	will	use	the	following	code	snippet:

bool	boolean	=	true;	

int	integer	=	5;	

char	character	=	'A';	

int*	integerPointer	=	&integer;	

	

qDebug()	<<	"boolean	is:"	<<	boolean;	

qDebug()	<<	"integer	is:"	<<	integer;	

qDebug()	<<	"character	is:"	<<	character;	

qDebug()	<<	"integerPointer	is:"	<<	integerPointer;	

qDebug()	<<	"*integerPointer	is:"	<<	*integerPointer;	

qDebug()	<<	"done!";	

We	declared	three	primitive	types:	boolean,	integer,	and	character.	We	also	added	a
	integerPointer	pointer	that	refers	to	the	integer	variable.	Put	a	breakpoint	at	the	last	line
and	start	the	debugging.	On	the	Debug	pane,	you	should	have	the	Locals	and	Expressions
view.	You	can	easily	add/remove	it	from	Window	|	Views	|	Locals	and	Expressions.	Here	is	a
screenshot	of	it:

You	can	see	that	all	our	local	variables	are	displayed	with	their	values.	The	character	line
even	displays	three	formats	(ASCII,	integer,	and	hexadecimal)	of	the	letter	'A'.	You	may	also
notice	that	the	integerPointer	line	displays	the	automatically	dereferenced	value,	not	the
pointer	address.	You	can	disable	it	with	a	right-click	on	the	background	of	the	Locals	and
Expressions	window	and	then	select	Dereference	Pointers	automatically.	You	can	see	the
pointer	address	and	the	dereferenced	value	appearing	as	shown	in	the	following	screenshot:

The	console	output	displays	the	following	information:

boolean	is:	true	

integer	is:	5	

character	is:	A	

integerPointer	is:	0x7ffe601153ac	

*integerPointer	is:	5	

You	can	see	that	we	retrieve	the	same	information	in	the	console	output.	The	Locals	and
Expressions	view	helps	you	to	save	time.	You	can	display	a	lot	of	information	without
logging	it	with	a	qDebug()	function.

Qt	Creator	provides	a	useful	memory	editor.	You	can	open	it	with	a	right-click	on	a	variable
name	in	the	Locals	and	Expressions	window,	and	then	select	Open	Memory	Editor	|	Open
Memory	Editor	at	Object's	Address.

Within	the	memory	editor,	look	at	the	value	of	the	boolean	variable:

A	hexadecimal	editor	appears	with	three	parts	(from	the	left	to	the	right):

The	memory	address	of	the	data
The	hexadecimal	representation	of	the	data
The	ASCII	representation	of	the	data

The	selection	in	the	hexadecimal	representation	corresponds	to	the	variable.	We	can	confirm
that	the	boolean	variable	is	represented	in	memory	by	1	byte.	Because	the	value	is	true,	the
memory	representation	is	0x01.

Let's	examine	the	character	memory	with	the	Memory	Editor	tool:

The	character	is	also	stored	in	memory	with	1	byte.	The	hexadecimal	representation	is	0x41.
The	character	is	encoded	with	the	well-known	ASCII	format.	Note	that,	on	the	right-hand	side,
the	ASCII	representation	displays	the	'A'.

Here	is	the	Memory	Editor	location	of	the	integer	variable:

There	are	two	interesting	facts	to	note.	The	integer	is	stored	on	4	bytes.	The	value	05	is	stored
in	hexadecimal	as	05	00	00	00.	The	byte	order	depends	on	the	endianness	of	your	processor.
We	are	using	an	Intel	CPU	that	is	Little-Endian.	Another	CPU	architecture	with	a	Big-Endian
memory	storage	will	display	the	variable	as	00	00	00	05.

Before	we	continue	to	dive	into	the	memory	of	our	application,	look	at	the	last	three
screenshots	closely.	You	might	notice	that,	in	this	case,	the	three	variables	are	contiguous	in
the	stack	memory.	This	behavior	is	not	guaranteed	depending	on	the	implementation	of	your
OS.

Try	to	open	the	memory	editor	on	the	integerPointer	variable.	The	context	menu	offers	you
two	different	ways:

The	Open	Memory	Editor	at	Object's	Address	option	dereferences	the	pointer	and
brings	you	directly	to	the	pointed	value.	You	get	the	same	result	as	the	integer	memory
view.
The	Open	Memory	Editor	at	Pointer's	Address	option	displays	the	raw	pointer	data,
which	is	a	memory	address	to	where	it	is	pointing.

Here	is	the	Memory	Editor	tool	showing	the	pointer's	address	of	integerPointer:

We	are	on	a	64-bit	OS,	so	our	pointer	is	stored	on	8	bytes.	The	data	of	this	pointer	is	the
hexadecimal	value	ac	53	11	60	fe	7f	00	00.	This	is	the	Little-Endian	representation	of	the
memory	address	0x7ffe601153ac	displayed	by	the	Locals	and	Expressions	and	by	our
console	output.

We	display	the	memory,	but	we	can	also	change	it.	Follow	these	steps:

1.	 Remove	the	current	breakpoint	and	add	a	new	one	on	the	first	qDebug()	line.
2.	 Restart	the	debugging	and	look	at	the	Locals	and	Expressions.	If	you	double-click	a

variable's	value,	you	can	edit	it.	Note	that	the	Memory	Editor	window	immediately
updates	its	representation.

3.	 In	our	case,	we	set	boolean	value	to	false,	character	to	68	(that	is	'D')	and	integer	to	9.

When	you	are	confident	with	your	changes,	continue	the	debugging.

Here	is	the	final	console	output	reflecting	our	modifications:

boolean	is:	false	

integer	is:	9	

character	is:	D	

integerPointer	is:	0x7fff849203dc	

*integerPointer	is:	9	

done!	

The	Memory	Editor	is	a	powerful	tool:	You	can	display	and	change	your	variable's	value,	at
runtime,	without	changing	your	source	code	and	recompiling	your	application.

Generating	random	numbers
Generating	real	random	numbers	is	quite	a	difficult	task	for	a	computer.	Commonly,	we	are
using	only	a	pseudo-random	number	generation	(PRNG).	The	Qt	framework	provides	the
function	qrand(),	a	thread-safe	version	of	std::rand().	This	function	returns	an	integer
between	0	and	RAND_MAX	(defined	in	stdlib.h).	The	following	code	shows	two	pseudo-
random	numbers:

qDebug()	<<	"first	number	is"	<<	qrand()	%	10;	

qDebug()	<<	"second	number	is"	<<	qrand()	%	10;	

We	are	using	a	modulo	operator	to	get	a	value	between	0	and	9.	Try	to	run	your	application
several	times.	The	numbers	are	always	the	same,	in	our	case,	3	then	7.	That	is	because	each
time	we	call	qrand(),	we	retrieve	the	next	number	of	the	pseudo-random	sequence,	but	the
sequence	is	always	the	same!	Fortunately,	we	can	use	qsrand()	to	initialize	the	PRNG	with	a
seed.	A	seed	is	an	unsigned	integer	that	is	used	to	generate	a	sequence.	Try	the	next	snippet:

qsrand(3);	

qDebug()	<<	"first	number	is"	<<	qrand()	%	10;	

qDebug()	<<	"second	number	is"	<<	qrand()	%	10;	

In	this	example,	we	are	using	the	seed	3,	and	we	get	a	different	value	from	qrand()--on	our
computer	it	is	5	and	4.	Great,	but	if	you	run	this	application	several	times,	you	will	always
have	this	sequence.	One	way	of	generating	a	different	sequence	each	time	you	run	your
application	is	to	use	a	different	seed	on	each	run.	Run	the	following	code	snippet:

qsrand(QDateTime::currentDateTime().toTime_t());	

qDebug()	<<	"first	number	is"	<<	qrand()	%	10;	

qDebug()	<<	"second	number	is"	<<	qrand()	%	10;	

As	you	can	see,	we	are	now	initializing	the	PRNG	with	the	epoch	time	from	QDateTime.	You
can	try	to	run	your	application	multiple	times	to	see	that	we	get	different	numbers	each	time!
However,	this	solution	is	not	recommended	for	cryptography.	In	this	case,	you	should	use	a
stronger	random	number	engine.

Silencing	unused	variable	warnings
If	your	compiler	is	configured	to	output	its	warnings,	you	will	probably	sometimes	see	this
kind	of	log:

warning:	unused	parameter	'myVariable'	[-Wunused-parameter]	

This	is	a	safety	warning	to	tell	the	developer	to	keep	their	code	clean	and	avoid	dead
variables.	It	is	a	good	practice	to	try	to	minimize	this	kind	of	warning.	However,	sometimes
you	have	no	choice:	You	override	an	existing	function	and	you	do	not	use	all	the	parameters.
You	now	face	a	conundrum:	On	the	one	hand	you	can	silence	the	warning	for	your	whole
application,	and	on	the	other	hand,	you	can	let	these	safety	warnings	pile	up	in	your	compile
output.	There	must	be	a	better	option.

Indeed,	you	can	silence	the	warning	for	your	function	only.	There	are	two	ways	of	doing	this:

Using	the	C/C++	syntax
Using	a	Qt	macro

Let's	say	you	override	myFunction(QString	name,	QString	myVariable)	and	you	do	not
use	myVariable.	Using	the	C/C++	syntax,	you	just	have	to	implement	myFunction()	like	so:

void	myFunction(QString	name,	QString	/*myVariable*/)	

By	commenting	the	variable's	name,	myVariable,	in	the	function	signature,	you	ensure	that
you	will	not	(that	is,	cannot)	use	the	variable	in	the	function	body.	The	compiler	will	also
interpret	it	like	this	and	will	not	output	any	warning.

Qt	also	provides	a	way	of	marking	unused	variables	with	the	Q_UNUSED	macro.	Let's	see	it	in
action:

void	myFunction(QString	name,	QString	myVariable)	

{	

				Q_UNUSED(myVariable)	

				...	

}	

Simply	pass	myVariable	to	Q_UNUSED	and	it	will	remove	the	warning	from	the	compiler
output.	Behind	the	curtain,	Q_UNUSED	does	not	do	anything	magical	with	the	variable:

#define	Q_UNUSED(x)	(void)x;	

It	is	a	simple	trick	to	fool	the	compiler;	it	sees	myVariable	"used",	but	nothing	is	done	with	it.

Logging	custom	objects	to	QDebug
When	you	are	debugging	complex	objects,	it	is	nice	to	output	their	current	members'	value	to
qDebug().	In	other	languages	(such	as	Java),	you	may	have	encountered	the	toString()
method	or	equivalent,	which	is	very	convenient.

Sure,	you	could	add	a	function	void	toString()	to	each	object	you	want	to	log	in	order	to
write	code	with	the	following	syntax:

qDebug()	<<	"Object	content:"	<<	myObject.toString()	

There	must	be	a	more	natural	way	of	doing	this	in	C++.	Moreover,	Qt	already	provides	this
kind	of	feature:

QDate	today	=	QDate::currentDate();	

qDebug()	<<	today;	

//	Output:	QDate("2016-10-03")	

To	achieve	this,	we	will	rely	on	a	C++	operator	overload.	This	will	look	very	similar	to	what
we	did	with	QDataStream	operators	in	Chapter	10,	Need	IPC?	Get	Your	Minions	to	Work.

Consider	a	struct	Person:

struct	Person	{	

				QString	name;	

				int	age;	

};	

To	add	the	ability	to	properly	output	to	QDebug,	you	just	have	to	override	the	<<	operator
between	QDebug	and	Person	like	so:

#include	<QDebug>	

	

struct	Person	{	

				...	

};	

	

QDebug	operator<<(QDebug	debug,	const	Person&	person)	

{	

				QDebugStateSaver	saver(debug);	

				debug.nospace()	<<	"("	

																				<<	"name:	"	<<	person.name	<<	",	"	

																				<<	"age:	"	<<	person.age	

																				<<	")";	

				return	debug;	

}	

The	QDebugStateSaver	is	a	convenience	class	to	save	the	settings	of	QDebug	and	restore	them

automatically	upon	destruction.	It	is	good	practice	to	always	use	it	to	be	sure	that	you	do	not
break	QDebug	in	an	<<	operator	overload.

The	rest	of	the	function	is	the	usual	way	of	using	QDebug	and	finally	returning	the
modified	debug	variable.	You	can	now	use	Person	like	this:

Person	person	=	{	"Lenna",	64	};	

qDebug()	<<	"Person	info"	<<	person;	

No	need	for	a	toString()	function;	simply	use	the	person	object.	For	those	of	you	who
wondered,	yes,	Lenna	is	really	64	at	the	time	of	wrting	(2016).

Improving	log	messages
Qt	offers	multiple	ways	of	doing	this.	A	good	compromise	between	the	result	and	its
complexity	is	to	combine	the	Qt	log	type	with	a	custom	message	pattern.

Qt	defines	five	log	types,	from	the	least	to	the	most	critical	level:

qDebug():	This	is	used	to	write	custom	debug	messages
qInfo():	This	is	used	to	write	informational	messages
qWarning():	This	is	used	to	write	warnings	and	recoverable	errors	in	your	applications
qCrtitical():	This	is	used	to	write	critical	error	messages	and	report	system	errors
qFatal():	This	is	used	to	write	a	last	message	before	automatically	existing

Try	to	always	use	the	most	appropriate	one!

By	default,	the	message	pattern	is	configured	to	only	display	your	message	without	any	extra
data,	but	you	can	customize	the	pattern	to	display	more	information.	This	pattern	can	be
changed	at	runtime	by	setting	the	QT_MESSAGE_PATTERN	environment	variable.	You	can	also
call	the	qSetMessagePattern	function	from	your	software	to	change	the	pattern.	The	pattern	is
just	a	string	with	some	placeholders.

These	are	the	most	common	placeholders	you	can	use:

%{appname}:	This	is	your	application	name
%{file}:	This	is	the	path	to	the	source	file
%{function}:	This	is	the	function	name
%{line}:	This	is	a	line	in	the	source	file
%{message}:	This	is	an	original	message
%{type}:	This	is	the	Qt	log	type	("debug",	"info",	"warning",	"critical"	or	"fatal")
%{time	[format]}:	This	is	the	system	time	when	the	message	occurred

An	easy	way	to	use	it	is	to	edit	your	main.cpp	file	like	this:

#include	<QApplication>	

#include	<QDebug>	

...	

int	main(int	argc,	char	*argv[])	

{	

				qSetMessagePattern("[%{time	yyyy-MM-dd	hh:mm:ss}]	[%{type}]	

								%{function}	%{message}");	

				qInfo()	<<	"Application	starting...";	

	

				QApplication	a(argc,	argv);	

				...	

				return	a.exec();	

}	

You	should	get	something	like	this	in	your	application	output:

[2016-10-03	10:22:40]	[info]	qMain	Application	starting...	

Try	to	play	around	with	the	Qt	log	types	and	the	custom	message	pattern	until	you	find	a
useful	pattern	for	you.

Tip

For	more	complex	applications,	you	can	use	the	QLoggingCategory	class	to	define	categories
of	logging.	Visit	http://doc.qt.io/qt-5/qloggingcategory.html	for	more	information	on	this.

http://doc.qt.io/qt-5/qloggingcategory.html

Saving	your	logs	to	a	file
A	common	need	for	a	developer	is	to	have	logs.	In	some	situations,	you	cannot	have	access	to
the	console	output,	or	you	have	to	study	the	application	state	afterwards.	In	both	cases,	the	log
has	to	be	outputted	to	a	file.

Qt	provides	a	practical	way	of	redirecting	your	logs	(qDebug,	qInfo,	qWarning,	and	so	on)	to
any	device	that	is	convenient	for	you:	QtMessageHandler.	To	use	it,	you	have	to	register	a
function	that	will	save	the	logs	to	the	desired	output.

For	example,	in	your	main.cpp,	add	the	following	function:

#include	<QFile>	

#include	<QTextStream>	

	

void	messageHander(QtMsgType	type,		

																			const	QMessageLogContext&	context,		

																			const	QString&	message)	{	

				QString	levelText;	

				switch	(type)	{	

								case	QtDebugMsg:	

												levelText	=	"Debug";	

												break;	

								case	QtInfoMsg:	

												levelText	=	"Info";	

												break;	

								case	QtWarningMsg:	

												levelText	=	"Warning";	

												break;	

								case	QtCriticalMsg:	

												levelText	=	"Critical";	

												break;	

								case	QtFatalMsg:	

												levelText	=	"Fatal";	

												break;	

				}	

				QString	text	=	QString("[%1]	%2")	

																								.arg(levelText)	

																								.arg(message);	

				QFile	file("app.log");	

				file.open(QIODevice::WriteOnly	|	QIODevice::Append);	

				QTextStream	textStream(&file);	

				textStream	<<	text	<<	endl;	

}	

The	signature	of	the	function	must	be	respected	to	be	properly	called	by	Qt.	Let's	review	the
parameters:

QtMsgType	type:	This	is	an	enum	that	describes	the	function	that	generated	the	message

(qDebug(),	qInfo(),	qWarning(),	and	so	on)
QMessageLogContext&	context:	This	contains	additional	information	about	the	log
message	(source	file	where	the	log	was	produced,	name	of	the	function,	line	number,	and
so	on)
const	QString&	message:	This	is	the	actual	message	that	was	logged

The	body	of	the	function	formats	the	log	message	before	appending	it	to	a	file	named
app.log.	You	can	easily	add	features	in	this	function	by	adding	a	rotating	log	file,	sending	the
logs	through	the	network,	or	anything	else.

The	last	missing	part	is	the	registration	of	messageHandler(),	which	is	done	in	the	main()
function:

int	main(int	argc,	char	*argv[])	

{	

				QCoreApplication	a(argc,	argv);	

				qInstallMessageHandler(messageHander);	

				...	

}	

The	call	to	the	qInstallMessageHander()	function	is	enough	to	reroute	all	the	log	messages
to	app.log.	Once	this	is	done,	the	logs	will	no	longer	be	displayed	in	the	console	output	and
will	be	appended	to	app.log	only.

Tip

If	you	need	to	unregister	your	custom	message	handler	function,	call
qInstallMessageHandler(0).

Generating	a	command-line	interface
The	command-line	interface	can	be	a	wonderful	way	to	start	your	application	with	some
specific	options.	The	Qt	framework	provides	an	easy	way	to	define	your	options	with	the
QCommandLineParser	class.	You	can	provide	a	short	(for	example,	-t)	or	a	long	(for
example,	--test)	option	name.	The	application	version	and	help	menu	is	automatically
generated.	You	can	easily	retrieve	in	your	code	if	an	option	is	set	or	not.	An	option	can	take	a
value	and	you	can	define	a	default	value.

For	example,	we	can	create	a	CLI	to	configure	the	log	files.	We	want	to	define	three	options:

The	-debug	command,	if	set,	enables	the	log	file	writing
The	-f	or	--file	command	to	define	where	to	write	the	logs
The	-l	or	--level	<level>	command	to	specify	the	minimum	log	level

Look	at	the	following	snippet:

QCoreApplication	app(argc,	argv);	

	

QCoreApplication::setApplicationName("ch14-hat-tips");	

QCoreApplication::setApplicationVersion("1.0.0");	

	

QCommandLineParser	parser;	

parser.setApplicationDescription("CLI	helper");	

parser.addHelpOption();	

parser.addVersionOption();	

	

parser.addOptions({	

				{"debug",	

								"Enable	the	debug	mode."},	

	

				{{"f",	"file"},	

								"Write	the	logs	into	<file>.",	

								"logfile"},	

	

				{{"l",	"level"},	

								"Restrict	the	logs	to	level	<level>.	Default	is	'fatal'.",	

								"level",	

								"fatal"},	

});	

	

parser.process(app);	

	

qDebug()	<<	"debug	mode:"	<<	parser.isSet("debug");	

qDebug()	<<	"file:"	<<	parser.value("file");	

qDebug()	<<	"level:"	<<	parser.value("level");	

Let's	talk	about	each	step:

1.	 The	first	part	uses	the	functions	from	QCoreApplication	to	set	the	application	name	and
version.	This	information	will	be	used	by	the	--version	option.

2.	 Instantiate	a	QCommandLineParser	class.	Then	we	instruct	it	to	automatically	add	the	help
(-h	or	--help)	and	version	(-v	or	--version)	options.

3.	 Add	our	options	with	the	QCommandLineParser::addOptions()	function.
4.	 Request	the	QCommandLineParser	class	to	process	the	command-line	arguments.
5.	 Retrieve	and	use	the	options.

Here	are	the	parameters	to	create	an	option:

optionName:	By	using	this	parameter,	you	can	use	a	single	or	multiple	names
description:	In	this	parameter,	the	description	of	the	option	is	displayed	in	the	help
menu
valueName	(Optional):	This	shows	the	value	name	if	your	option	expects	one
defaultValue	(Optional):	This	shows	the	default	value	of	the	option

You	can	retrieve	and	use	the	option	using	QCommandLineParser::isSet(),	which	returns	true
if	the	option	was	set	by	the	user.	If	your	option	requires	a	value,	you	can	retrieve	it
with	QCommandLineParser::value().

Here	is	the	display	of	the	generated	help	menu:

$./ch14-hat-tips	--help	

Usage:	./ch14-hat-tips	[options]	

Helper	of	the	command-line	interface	

	

Options:	

		-h,	--help												Displays	this	help.	

		-v,	--version									Displays	version	information.	

		--debug															Enable	the	debug	mode.	

		-f,	--file	<logfile>		Write	the	logs	into	<file>.	

		-l,	--level	<level>			Restrict	the	logs	to	level	<level>.	Default	is	'fatal'.	

Finally,	the	following	snippet	displays	the	CLI	in	use:

$./ch14-hat-tips	--debug	-f	log.txt	--level	info	

debug	mode:		true	

file:		"log.txt"	

level:		"info"	

Sending	and	receiving	HTTP	data
Requesting	information	to	an	HTTP	server	is	a	common	task.	Here	again,	the	Qt	folks
prepared	some	useful	classes	to	make	it	easy.	To	achieve	this,	we	will	rely	on	three	classes:

QNetworkAccessManager:	This	class	allows	your	application	to	send	requests	and	receive
replies
QNetworkRequest:	This	class	holds	the	request	to	be	sent	with	all	the	information
(headers,	URL,	data,	and	so	on)
QNetworkReply:	This	class	contains	the	result	of	a	QNetworkRequest	class	with	the
headers	and	the	data

The	QNetworkAccessManager	class	is	the	pivot	point	of	the	whole	Qt	HTTP	API.	It	is	built
around	a	single	QNetworkAccessManager	object	that	holds	the	configuration	of	the	client,
proxy	settings,	cache	information,	and	much	more.	This	class	is	designed	to	be	asynchronous,
so	you	do	not	need	to	worry	about	blocking	your	current	thread.

Let's	see	it	in	action	in	a	custom	HttpRequest	class.	First,	the	header:

#include	<QObject>	

#include	<QNetworkAccessManager>	

#include	<QNetworkReply>	

	

class	HttpRequest	:	public	QObject	

{	

				Q_OBJECT	

public:	

				HttpRequest(QObject*	parent	=	0);	

	

				void	executeGet();	

	

private	slots:	

				void	replyFinished(QNetworkReply*	reply);	

	

private:	

				QNetworkAccessManager	mAccessManager;	

};	

The	QNetworkAccessManager	class	works	with	the	signal/slot	mechanism,	so	HttpRequest
inherits	from	QObject	and	uses	the	Q_OBJECT	macro.	We	declare	the	following	functions	and
member:

executeGet():	This	is	used	to	trigger	an	HTTP	GET	request
replyFinished():	This	is	the	slot	called	when	the	GET	request	has	completed
mAccessManager:	This	is	the	object	that	will	be	used	for	all	our	asynchronous	requests

Let's	turn	our	attention	to	the	constructor	of	the	HttpRequest	class	in	the	HttpRequest.cpp:

HttpRequest::HttpRequest(QObject*	parent)	:	

				QObject(parent),	

				mAccessManager()	

{	

				connect(&mAccessManager,	&QNetworkAccessManager::finished,	

												this,	&HttpRequest::replyFinished);	

}	

In	the	body	of	the	constructor,	we	connect	the	finished()	signal	from	mAccessManager	to
our	replyFinished()	slot.	This	implies	that	every	request	sent	through	mAccessManager	will
trigger	this	slot.

Enough	with	the	preparation;	let's	see	the	request	and	reply	in	action:

//	Request	

void	HttpRequest::executeGet()	

{	

				QNetworkRequest	request(QUrl("http://httpbin.org/ip"));	

				mAccessManager.get(QNetworkRequest(request));	

}	

	

//	Response	

void	HttpRequest::replyFinished(QNetworkReply*	reply)	

{	

				int	statusCode	=	reply-

>attribute(QNetworkRequest::HttpStatusCodeAttribute).toInt();	

				qDebug()	<<	"Reponse	network	error"	<<	reply->error();	

				qDebug()	<<	"Reponse	HTTP	status	code"	<<	statusCode;	

				qDebug()	<<	"Reply	content:"	<<	reply->readAll();	

				reply->deleteLater();	

}	

The	HTTP	GET	request	is	processed	using	mAccessManager.get().	The	QNetworkAccessManager
class	provides	the	function	for	other	HTTP	verbs	(head(),	post(),	put(),	delete(),	and	so
on.	It	expects	a	QNetworkRequest	access,	which	takes	a	URL	in	its	constructor.	This	is	the
simplest	form	of	an	HTTP	request.

Note	that	we	did	our	request	using	the	URL	http://httpbin.org/ip,	which	will	respond	to	the
emitter's	IP	address	in	the	JSON	format:

{	

		"origin":	"1.2.3.4"	

}	

This	website	is	a	practical	developer	resource,	where	you	can	send	your	test	requests	and	have
useful	information	sent	back	to	you.	It	avoids	having	to	launch	a	custom	web	server	to	only
test	a	few	requests.	This	website	is	an	open-source	project	freely	hosted	by	Runscope.	Of
course,	you	can	replace	the	request	URL	with	anything	you	wish.

Note

http://httpbin.org/ip

Take	a	look	at	http://httpbin.org/	to	see	all	the	supported	request	types.

After	the	executeGet()	function	is	completed,	the	mAccessManager	object	executes	the	request
in	a	separate	thread	and	calls	our	slot,	replyFinished(),	with	the	resulting	QNetworkReply*
object.	In	this	code	snippet,	you	can	see	how	to	retrieve	the	HTTP	status	code	and	check	if	any
network	error	happened,	as	well	as	how	to	get	the	body	of	the	response	with	reply-
>readAll().

The	QNetworkReply	class	inherits	from	QIODevice,	and	therefore,	you	can	read	it	all	at	once
with	readAll(),	or	by	chunks	with	a	loop	on	read().	This	lets	you	adapt	the	reading	to	your
needs	using	a	familiar	QIODevice	API.

Note	that	you	are	the	owner	of	the	QNetworkReply*	object.	You	should	not	delete	it	by	hand
(your	application	might	crash	if	you	do	so);	instead,	it's	better	to	use	the	reply-
>deleteLater()	function,	which	will	let	the	Qt	event	loop	pick	the	appropriate	moment	to
delete	this	object.

Now	let's	see	a	more	complex	example	of	QNetworkReply	with	an	HTTP	POST	method.	There
are	times	where	you	will	need	to	keep	track	of	the	QNetworkReply	class	and	have	a	more	fine-
grained	control	over	its	life	cycle.

Here	is	the	implementation	of	an	HTTP	POST	method	that	also	relies
on	HttpRequest::mAccessManager:

void	HttpRequest::executePost()	

{	

				QNetworkRequest	request(QUrl("http://httpbin.org/post"));	

				request.setHeader(QNetworkRequest::ContentTypeHeader,	

																						"application/x-www-form-urlencoded");	

				QUrlQuery	urlQuery;	

				urlQuery.addQueryItem("book",	"Mastering	Qt	5");	

	

				QUrl	params;	

				params.setQuery(urlQuery);	

	

				QNetworkReply*	reply	=	mAccessManager.post(

																											request,	params.toEncoded());	

				connect(reply,	&QNetworkReply::readyRead,		

								[reply]	()	{	

								qDebug()	<<	"Ready	to	read	from	reply";	

				});	

				connect(reply,	&QNetworkReply::sslErrors,		

												[this]	(QList<QSslError>	errors)	{	

								qWarning()	<<	"SSL	errors"	<<	errors;	

				});	

}	

http://httpbin.org/

We	start	by	creating	a	QNetworkRequest	class	with	a	custom	header:	Content-Type	is
now	application/x-www-form-urlencoded	to	respect	the	HTTP	RFC.	After	that,	a	URL	form
is	built,	ready	to	be	sent	with	the	request.	You	can	add	as	many	items	as	you	wish	to
the	urlQuery	object.

The	next	part	gets	interesting.	When	executing	mAccessManager.post()	with	the	request	and
the	URL	encoded	form,	the	QNetworkReply*	object	is	immediately	returned	to	us.	From	here,
we	use	some	lambdas	slots	connected	directly	to	reply	rather	than	using	mAccessManage	slots.
This	lets	you	have	precise	control	over	what	happens	for	each	reply.

Note	that	the	QNetworkReploy::readyRead	signal	comes	from	the	QIODevice	API	and	that	it
does	not	pass	the	QNetworkReply*	object	in	the	parameter.	It	is	your	job	to	store	the	reply	in	a
member	field	somewhere	or	retrieve	the	emitter	of	the	signal.

Finally,	this	code	snippet	does	not	undo	our	preceding	slot,	replyFinished(),	which	is
connected	to	mAccessManager.	If	you	execute	this	code,	you	will	have	the	following	output
sequence:

Ready	to	read	from	reply	

Reponse	network	error	QNetworkReply::NetworkError(NoError)	

Reponse	HTTP	status	code	200	

The	lambda	connected	to	the	QNetworkReply::readyRead	signal	is	first	called,	and	after	that,
the	HttpRequest::replyFinished	signal	is	called.

The	last	feature	we	will	cover	on	the	Qt	HTTP	stack	is	synchronous	requests.	If	you	happen	to
need	to	manage	the	request	threading	yourself,	the	default	asynchronous	work	mode	of
QNetworkAccessManager	can	get	in	your	way.	To	circumvent	this,	you	can	use	a
custom	QEventLoop:

void	HttpRequest::executeBlockingGet()	

{	

				QNetworkAccessManager	localManager;	

				QEventLoop	eventLoop;	

				QObject::connect(

								&localManager,	&QNetworkAccessManager::finished,		

								&eventLoop,	&QEventLoop::quit);	

	

				QNetworkRequest	request(

																QUrl("http://httpbin.org/user-agent"));	

				request.setHeader(QNetworkRequest::UserAgentHeader,		

																						"MasteringQt5Browser	1.0");	

	

				QNetworkReply*	reply	=	localManager.get(request);	

				eventLoop.exec();	

	

				qDebug()	<<	"Blocking	GET	result:"	<<	reply->readAll();	

				reply->deleteLater();	

}	

In	this	function,	we	declare	another	QNetworkAccessManager	that	will	not	interfere	with	the	one
declared	in	HttpRequest.	Right	after,	a	QEventLoop	object	is	declared	and	connected
to	localManager.	When	QNetworkAccessManager	emits	the	finished()	signal,	eventLoop	will
quit	and	the	calling	function	will	resume.

The	request	is	built	as	usual,	the	reply	object	is	retrieved,	and	the	function	becomes	blocked
with	the	call	to	eventLoop.exec().	The	function	is	blocked	until	localManager	has	emitted	its
finished	signal.	In	other	words,	the	request	is	still	done	asynchronously;	the	sole	difference	is
that	the	function	is	blocked	until	the	request	is	completed.

Finally,	the	reply	object	can	be	safely	read	and	deleted	at	the	end	of	the	function.
This	QEventLoop	trick	can	be	used	any	time	a	synchronous	wait	for	a	Qt	signal	is	needed;	use
it	wisely	to	avoid	blocking	the	UI	thread!

Summary
In	this	chapter,	you	learned	some	tips	that	complete	your	Qt	knowledge.	You	should	now	have
the	ability	to	use	Qt	Creator	with	ease	and	efficiency.	The	QDebug	format	should	not	hold	any
secrets	now,	and	you	can	now	save	your	logs	to	a	file	without	even	blinking.	You	can	create	a
good-looking	CLI	interface,	debug	the	memory	of	any	program	without	shaking,	and	execute
an	HTTP	request	with	confidence.

We	sincerely	hope	that	you	had	as	much	fun	reading	this	book	as	we	did	writing	it.	In	our
opinion,	Qt	is	a	great	framework,	and	it	covers	many	areas	that	deserve	to	be	deepened	with	a
book	(or	several	books!).	We	hope	you	keep	coding	C++	Qt	code	with	fun	and	pleasure	by
building	efficient	and	beautifully	crafted	applications.

	Mastering Qt 5
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Get Your Qt Feet Wet
	Creating a project
	MainWindow structure
	Qt Designer
	Signals and slots
	Custom QWidget
	Adding a task
	Using a QDialog
	Distributing code responsibility
	Emitting a custom signal using lambdas
	Simplifying with the auto type and a range-based for loop
	Summary
	2. Discovering QMake Secrets
	Designing a cross-platform project
	Adding the Windows implementation
	Adding the Linux implementation
	Adding the Mac OS implementation
	Transforming SysInfo into a singleton
	Exploring Qt Charts
	CpuWidget using QCharts
	Memory using Qcharts
	The .pro file in depth
	Under the hood of qmake
	Beneath Q_OBJECT and signals/slots
	Summary
	3. Dividing Your Project and Ruling Your Code
	Designing a maintainable project
	Defining data classes
	Storing your data in a database
	Protecting your code with a smart pointer
	Implementing the model
	Summary
	4. Conquering the Desktop UI
	Creating a GUI linked to a core shared library
	Listing your albums with AlbumListWidget
	Creating a ThumbnailProxyModel
	Displaying the selected album with AlbumWidget
	Enhancing thumbnails with PictureDelegate
	Displaying a picture with PictureWidget
	Composing your Gallery app
	Summary
	5. Dominating the Mobile UI
	Starting with Qt Quick and QML
	Checking your development environment
	Creating a Qt Quick project
	Preparing your Qt Quick gallery entry point
	Displaying albums with ListView
	Theming the application with a QML singleton
	Loading a database on mobile
	Creating a new album from a custom InputDialog
	Loading images with an ImageProvider
	Displaying thumbnails in a GridView
	Swiping through full resolution pictures
	Summary
	6. Even Qt Deserves a Slice of Raspberry Pi
	Discovering Qt3D
	Configuring Qt for your Raspberry Pi
	Creating an entry point for your Qt3D code
	Setting up the scene
	Assembling your Qt3D entities
	Preparing the board game
	Crafting entities from the factory
	Building a snake engine in JavaScript
	Varying the HUD with QML states
	Profiling your QML application
	Summary
	7. Third-Party Libraries Without a Headache
	Creating your Qt Designer plugin
	Configuring the project for Windows
	Configuring the project for Linux
	Configuring the project for Mac
	Implementing your OpenCV filters
	Designing the UI with FilterWidget
	Exposing your plugin to Qt Designer
	Using your Qt Designer plugin
	Building the image-filter application
	Summary
	8. Animations - Its Alive, Alive!
	Preparing an SDK
	Creating your plugins
	Loading your plugins dynamically
	Using the plugins inside the application
	Discovering the Animation Framework
	Making your thumbnails jump
	Fading the picture in
	Flashing the thumbnail in a sequence
	Summary
	9. Keeping Your Sanity with Multithreading
	Discovering QThread
	Flying over Qt multithreading technologies
	Architecting the Mandelbrot project
	Defining a Job class with QRunnable
	Using QThreadPool in MandelbrotCalculator
	Displaying the fractal with MandelbrotWidget
	Summary
	10. Need IPC? Get Your Minions to Work
	Architecturing an IPC project
	Laying down the foundations with an SDK
	Working with QDataStream and QTcpSocket
	Interacting with sockets in the worker
	Interacting with sockets from the application
	Building your own QTcpServer
	Summary
	11. Having Fun with Serialization
	Architecting the drum machine project
	Creating a drum track
	Making your objects serializable with QVariant
	Serializing objects in JSON format
	Serializing objects in XML format
	Serializing objects in binary format
	Playing low latency sounds with QSoundEffect
	Triggering a QButton with your keyboard
	Bringing PlaybackWorker to life
	Accepting mouse drag and drop events
	Summary
	12. You Shall (Not) Pass with QTest
	Discovering Qt Test
	Executing your tests
	Writing factorized tests with datasets
	Benchmarking your code
	Testing your GUI
	Spying on your application with QSignalSpy
	Summary
	13. All Packed and Ready to Deploy
	Packaging your application
	Packaging for Windows
	Packaging for Linux with a distribution package
	Packaging for Linux with AppImage
	Packaging for Mac OS X
	Packaging for Android
	Packaging for iOS
	Summary
	14. Qt Hat Tips and Tricks
	Managing your workspace with sessions
	Searching with the Locator
	Increasing the compilation speed
	Examining the memory with Qt Creator
	Generating random numbers
	Silencing unused variable warnings
	Logging custom objects to QDebug
	Improving log messages
	Saving your logs to a file
	Generating a command-line interface
	Sending and receiving HTTP data
	Summary

