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Preface

Building compilers has been a challenging activity since the advent of digital computers in the late 1940s
and early 1950s. At that time, implementing the concept of automatic translation from a form familiar to
mathematicians into computer instructions was a difficult task. One needed to figure out how to translate
arithmetic expressions into instructions, how to store data in memory, and how to choose instructions to
build procedures and functions. During the late 1950s and 1960s these processes were automated to the
extent that simple compilers could be written by most computer science professionals. In fact, the
concept of “small languages” with corresponding translators is fundamental in the UNIX community.

From the beginning, there was a need for translators that generated efficient code: The translator must
use the computer productively. Originally this constraint was due to computers’ small memories and
slow speed of execution. During each generation of hardware, new architectural ideas have been added.
At each stage the compilers have also needed to be improved to use these new machines more
effectively. Curiously, pundits keep predicting that less efficient and less expensive translators will do
the job. They argue that as machines keep getting faster and memory keeps expanding, one no longer
needs an optimizing compiler. Unfortunately, people who buy bigger and faster machines want to use the
proportionate increase in size and speed to handle bigger or more complex problems, so we still have the
need for optimizing compilers. In fact, we have an increased need for these compilers because the
performance of the newer architectures is sensitive to the quality of the generated code. Small changes in
the order and choice of the instructions can have much larger effects on machine performance than
similar choices made with the complex instruction set computing (CISC) machines of the 1970s and
1980s.

The interplay between computer architecture and compiler performance has been legitimized with the
development of reduced instruction set computing (RISC) architectures. Compilers and computer
architecture have a mutually dependent relationship that shares the effort to build fast applications. To
this end, hardware has been simplified by exposing some of the details of hardware operation, such as
simple load-store instruction sets and instruction scheduling. The compiler is required to deal with these
newly exposed details and provide faster execution than possible on CISC processors.
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This book describes one design for the optimization and code-generation phases of such a compiler.
Many compiler books are available for describing the analysis of programming languages. They
emphasize the processes of lexical analysis, parsing, and semantic analysis. Several books are also
available for describing compilation processes for vector and parallel processors. This book describes the
compilation of efficient programs for a single superscalar RISC processor, including the ordering and
structure of algorithms and efficient data structures.

The book is presented as a high-level design document. There are two reasons for this. Initially, I
attempted to write a book that presented all possible alternatives so that the reader could make his or her
own choices of methods to use. This was too bulky, as the projected size of the volume was several
thousand pages—much too large for practical purposes. There are a large number of different algorithms
and structures in an optimizing compiler. The choices are interconnected, so an encyclopedic approach to
optimizing compilers would not address some of the most difficult problems.

Second, | want to encourage this form of design for large software processes. The government uses a
three-level documentation system for describing software projects: The A-level documents are overview
documents that describe a project as a whole and list its individual pieces. B-level documents describe
the operation of each component in sufficient detail that the reader can understand what each component
does and how it does it, whereas the C-level documents are low-level descriptions of each detail.

As a developer | found this structure burdensome because it degenerated into a bureaucratic device
involving large amounts of paper and little content. However, the basic idea is sound. This book will
describe the optimization and code-generation components of a compiler in sufficient detail that the
reader can implement these components if he or she sees fit. Since | will be describing one method for
each of the components, the interaction between components can be examined in detail so that all of the
design and implementation issues are clear.

Each chapter will include a section describing other possible implementation techniques. This section
will include bibliographic information so that the interested reader can find these other techniques.

Philosophy for Choosing Compiler Techniques

Before starting the book, | want to describe my design philosophy. When | first started writing compilers
(about 1964), I noticed that much research and development work had been described in the literature.
Although each of these projects is based on differing assumptions and needs, the availability of this
information makes it easier for those who follow to use previous ideas without reinventing them. |
therefore design by observing the literature and other implementations and choosing techniques that meet
my needs. What I contribute is the choice of technique, the engineering of the technique to fit with other
components, and small improvements that | have observed.

One engineering rule of thumb must be added. It is easy to decide that one will use the latest techniques
that have been published. This policy is dangerous. There are secondary effects from the choice of any
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optimization or code-generation technique that are observed only after the technique has been used for
some time. Thus | try to avoid techniques that | have not seen implemented at least twice in prototype or
production compilers. | will break this rule once or twice when | am sure that the techniques are sound,
but no more frequently.

In the course of writing this book, my view of it has evolved. It started out as a recording of already
known information. | have designed and built several compilers using this existing technology. As the
book progressed, | have learned much about integrating these algorithms. What started out as a
concatenation of independent ideas has thus become melded into a more integrated whole. What began as
simple description of engineering choices now contains some newer ideas. This is probably the course of
any intellectual effort; however, | have found it refreshing and encouraging.

How to Use This Book

This book is designed to be used for three purposes. The first purpose is to describe the structure of an
optimizing compiler so that a reader can implement it or a variation (compiler writers always modify a
design). The book’s structure reflects this purpose. The initial chapters describe the compilation phases
and the interactions among them; later chapters describe the algorithms involved in each compilation
phase.

This book can also be used as a textbook on compiler optimization techniques. It takes one example and
describes each of the compilation processes using this example. Rather than working small homework
problems, students work through alternative examples.

Practically, the largest use for this book will be informing the curious. If you are like me, you pick up
books because you want to learn something about the subject. | hope that you will enjoy this book and
find what you are looking for. Good reading.

Table of Contents
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Dedication

| dedicate this book to some of the people who have inspired me. My mother and father, Florence and
Charles William Morgan, taught me the concept of work. Jordan Baruch introduced me to the wonders
of Computer Research. Louis Pitt, Jr., and Bill Clough have been instrumental in helping me understand
life and the spirit. My wife, Leigh Morgan, has taught me that there is more than computers and
books—there is also life.
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Chapter 1
Overview

What is an optimizing compiler? Why do we need them? Where do they come from? These questions are
discussed in this chapter, along with how to use the book. Before presenting a detailed design in the body
of the book, this introductory chapter provides an informal history of optimizing compiler development
and gives a running example for motivating the technology in the compiler and to use throughout the rest
of the book.

1.1 What Is an Optimizing Compiler?

How does a programmer get the performance he expects from his application? Initially he writes the
program in a straightforward fashion so that the correct execution of the program can be tested or proved.
The program is then profiled and measured to see where resources such as time and memory are used,
and modified to improve the uses of these resources. After all reasonable programmer modifications have
been made, further improvements in performance can come only from how well the programming
language is translated into instructions for the target machine.

The goal of an optimizing compiler is to efficiently use all of the resources of the target computer. The
compiler translates the source program into machine instructions using all of the different computational
elements. The ideal translation is one that keeps each of the computational elements active doing useful
(and nonredundant) work during each instruction execution cycle.

Of course, this idealized translation is not usually possible. The source program may not have a balanced
set of computational needs. It may do more integer than floating point arithmetic or vice versa, or more
load and store operations than arithmetic. In such cases the compiler must use the overstressed
computational elements as effectively as possible.

The compiler must try to compensate for unbalanced computer systems. Ideally, the speed of the
processor is matched to the speed of the memory system, which are both matched to the speed of the
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input/output (1/O) system. In modern reduced instruction set computer (RISC) systems this is not true:
The processors are much faster than the memory systems. To be able to use the power of the processor,
the compiler must generate code that decreases the use of the memory system by either keeping values in
registers or organizing the code so that needed data stays in the memory cache.

An added problem is fetching instructions. A significant fraction of the memory references are references
to instructions. One hopes that the instructions stay in one of the memory caches; however, this is not
always the case. When the instructions do not fit in the cache, the compiler should attempt to generate as
few instructions as possible. When the instructions do fit in the cache and there are heavy uses of data,
then the compiler is free to add more instructions to decrease the wait for data. Achieving a balance is a
difficult catch-22.

In summary, the optimizing compiler attempts to use all of the resources of the processor and memory as
effectively as possible in executing the application program. The compiler must transform the program to
regain a balanced use of computational elements and memory references. It must choose the instructions
well to use as few instructions as possible while obtaining this balance. Of course, all of this is
impossible, but the compiler must do as well as it can.

1.2 A Biased History of Optimizing Compilers

Compiler development has a remarkable history, frequently ignored. Significant developments started in
the 1950s. Periodically, pundits have decided that all the technology has already been developed. They
have always been proven wrong. With the development of new high-speed processors, significant
compiler developments are needed today. | list here the compiler development groups that have most
inspired and influenced me. There are other groups that have made major contributions to the field, and |
do not mean to slight them.

Although there is earlier work on parsing and compilation, the first major compiler was the Fortran
compiler (Backus) for the IBM 704/709/7090/7094. This project marked the watershed in compiler
development. To be accepted by programmers, it had to generate code similar to that written by machine
language programmers, so it was a highly optimizing compiler. It had to compile a full language,
although the design of the language was open to the developers. And the technology for the project did
not exist; they had to develop it. The team succeeded beautifully, and their creation was one of the best
compilers for about ten years. This project developed the idea of compiler passes or phases.

Later, again at IBM, a team developed the Fortran/Level H compilers for the IBM 360/370 series of
computers. Again, these were highly optimizing compilers. Their concept of quadruple was similar to the
idea of an abstract assembly language used in the design presented in this book. Subsequent
improvements to the compilers by Scarborough and Kolsky (1980) kept this type of compiler one of the
best for another decade.

During the late 1960s and throughout the 1970s, two research groups continued to develop the ideas that
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were the basis of these compilers as well as developing new ideas. One group was led by Fran Allen at
IBM, the other by Jack Schwartz at New York University (NYU). These groups pioneered the ideas of
reaching definitions and bit-vector equations for describing program transformation conditions. Much of
their work is in the literature; if you can get a copy of the SETL newsletters (NYU 1973) or the reports
associated with the SETL project, you will have a treat.

Other groups were also working on optimization techniques. William Wulf defined a language called
Bliss (Wulf et al. 1975). This is a structured programming language for which Wulf and his team at
Carnegie Mellon University (CMU) developed optimizing compiler techniques. Some of these
techniques were only applicable to structured programs, whereas others have been generalized to any
program structure. This project evolved into the Production-Quality Compiler-Compiler (PQCC) project,
developing meta-compiler techniques for constructing optimizing compilers (Leverett et al. 1979). These
papers and theses are some of the richest and least used sources of compiler development technology.

Previous | Table of Contents [Next
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Other commercial companies were also working on compiler technology. COMPASS developed
compiler techniques based on p-graph technology (Karr 1975). This technology was superior to reaching
definitions for compiler optimization because the data structures were easily updated; however, the initial
computation of p-graphs was much slower than reaching definitions. P-graphs were transformed by Reif
(Reif and Lewis 1978) and subsequent developers at IBM Yorktown Heights (Cytron et al. 1989) into the
Static Single Assignment Form of the flow graph, one of the current flow graph structures of choice for
compiler development.

Ken Kennedy, one of the students at NYU, established a compiler group at Rice University to continue
his work in compiler optimization. Initially, the group specialized in vectorization techniques.
Vectorization required good scalar optimization, so the group continued work on scalar optimization
also. Some of the most effective work analyzing multiple procedures (interprocedural analysis) has been
performed at Rice under the group led by Keith Cooper (1988, 1989). This book uses much of the flow
graph structure designed by the Massive Scalar Compiler Project, the group led by Cooper.

With the advent of supercomputers and RISC processors in the later 1970s and early 1980s, new
compiler technology had to be developed. In particular, instructions were pipelined so that the values
were available when needed. The instructions had to be reordered to start a number of other instructions
before the result of the first instruction was available. These techniques were first developed by compiler
writers for machines such as the Cray-1. An example of such work is Richard Sites’ (1978) paper on
reordering Cray-1 assembly language. Later work by the IBM 801 (Auslander and Hopkins 1982) project
and Gross (1983) at CMU applied these technques to RISC processors. Other work in this area includes
the papers describing the RS6000 compilers (Golumbic 1990 and Warren 1990) and research work
performed at the University of Wisconsin on instruction scheduling.

In the 1970s and early 1980s, register allocation was a difficult problem: How should the compiler assign
the values being computed to the small set of physical registers to minimize the number of times data
need to be moved to and from memory? Chaitin (1981, 1982) reformulated the problem as a graph-
coloring problem and developed heuristics for coloring the graphs that worked well for programs with
complex flows. The PQCC project at Carnegie Mellon developed a formulation as a type of bin-packing
problem, which worked best with straight-line or structure procedures. The techniques developed here
are a synthesis of these two technigues using some further work by Laurie Hendron at McGill University.
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1.3 What Have We Gained with All of This Technology?

Considering this history, all the technology necessary to build a high-performance compiler for modern
RISC processors existed by about 1972, certainly by 1980. What is the value of the more recent
research? The technology available at those times would do the job, but at a large cost. More recent
research in optimizing compilers has led to more effective and more easily implemented techniques for
optimization. Two examples will make this clearer. The Fortran/Level H compiler was one of the most
effective optimizing compilers of the late 1960s and early 1970s. It used an algorithm to optimize loops
based on identifying the nesting of loops. In the late 1970s Etienne Morel developed the technique called
Elimination of Partial Redundancies that performed a more effective code motion without computing
anything about loops (Morel and Renvoise 1979).

Similarly, the concepts of Static Single Assignment Form have made a number of transformation
algorithms similar and more intuitive. Constant propagation, developed by Killdall (1973), seemed
complex. Later formulations by Wegman and Zadeck (1985) make the technique seem almost intuitive.

The new technology has made it easier to build optimizing compilers. This is vital! These compilers are
large programs, prone to all of the problems that large programs have. When we can simplify a part of
the compiler, we speed the development and compilation times and decrease the number of bugs (faults,
defects) that occur in the compiler. This makes a cheaper and more reliable product.

1.4 Rules of the Compiler Back-End Game

The compiler back end has three primary functions: to generate a program that faithfully represents the
meaning of the source program, to allocate the resources of the machine efficiently, and to recast the
program in the most efficient form that the compiler can deduce. An underlying rule for each of these
functions is that the source program must be faithfully represented.

Unfortunately, there was a time when compiler writers considered it important to get most programs right
but not necessarily all programs. When the programmer used some legal features in unusual ways, the
compiler might implement an incorrect version of the program. This gave optimizing compilers a bad
name.

It is now recognized that the code-generation and optimization components of the compiler must exactly
represent the meaning of the program as described in the source program and in the language reference
manual for the programming language. This does not mean that the program will give exactly the same
results when compiled with optimization turned on and off. There are programs that violate the language
definition in ways not identifiable by a compiler. The classic example is the use of a variable before it is
given a value. These programs may get different results with optimization turned on and turned off.

Fortunately, standards groups are becoming more aware of the needs of compiler writers when
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describing the language standards. Each major language standard now describes in some way the limits
of compiler optimization. Sometimes this is done by leaving certain aspects of the language as
“undefined” or “implementation defined.” Such phrases mean that the compiler may do whatever it
wishes when it encounters that aspect of the language. However, be cautious—the user community
frequently has expectations of what the compiler will do in those cases, and a compiler had better honor
those expectations.

What does the compiler do when it encounters a portion of the source program that uses language
facilities in a way that the compiler does not expect? It must make a conservative choice to implement
that facility, even at the expense of runtime performance for the program. Even when conservative
choices are being made, the compiler may be clever. It might, for example, compile the same section of
code in two different ways and generate code to check which version of the code is safe to use.
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1.5 Benchmarks and Designing a Compiler

Where does the compiler writer find the set of improvements that must be included in an optimizing
compiler? How is one variant of a particular optimization chosen over another? The compiler writer uses
information about the application area for the target machine, the languages being compiled, and good
sense to choose a particular set of optimizations and their organization.

Any application area has a standard set of programs that are important for that area. Sorting and
databases are important for commercial applications. Linear algebra and equation solution are important
for numeric applications. Other programs will be important for simulation. The compiler writer will
investigate these programs and determine what the compiler must do to translate these programs well.
While doing this, the compiler writer and his client will extract sample code from these programs. These
samples of code become benchmarks that are used to measure the success of the compiler.

The source languages to be compiled are also investigated to determine the language features that must
be handled. In Fortran, an optimizing compiler needs to do strength reduction since the programmer has
no mechanism for simplifying multiplications. In C, strength reduction is less important (although still
useful); however, the compiler needs to compile small subroutines well and determine as much
information about pointers as possible.

There are standard optimizations that need to be implemented. Eliminating redundant computations and
moving code out of loops will be necessary in an optimizing compiler for an imperative language. This is
actually a part of the first criterion, since these optimizations are expected by most application
programmers.

The compiler writer must be cautious. It is easy to design a compiler that compiles benchmarks well and
does not do as well on general programs. The Whetstone benchmark contained a kernel of code that
could be optimized by using a trigonometric identity. The SPEC92 benchmarks have a kernel, EQNTOT,
that can be optimized by clever vectorization of integer instructions.

Should the compiler writer add special code for dealing with these anomalous benchmarks? Yes and no.

file:///D|/Convert/Building_an_Optimizing_Compiler/ch01/006-010.html (1 of 4) [10/17/2003 1:04:41 AM]



Building an Optimizing Compiler:Overview

One has to add the special code in a competitive world, since the competition is adding it. However, one
must realize that one has not really built a better compiler unless there is a larger class of programs that
finds the feature useful. One should always look at a benchmark as a source of general comments about
programming. Use the benchmark to find general improvements. In summary, the basis for the design of
optimizing compilers is as follows:

1. Investigate the important programs in the application areas of interest. Choose compilation
techniques that work well for these programs. Choose kernels as benchmarks.

2. Investigate the source languages to be compiled. Identify their weaknesses from a code quality
point of view. Add optimizations to compensate for these weaknesses.

3. Make sure that the compiler does well on the standard benchmarks, and do so in a way that
generalizes to other programs.

1.6 Outline of This Book

Before developing a compiler design, the writer must know the requirements for the compiler. This is as
hard to determine as writing the compiler. The best way that | have found for determining the
requirements is to take several typical example programs and compile them by hand, pretending that you
are the compiler. No cheating! You cannot do a transformation that cannot be done by some compiler
using some optimization technique.

This is what we do in Chapter 2 for one particular example program. It is too repetitious to do this for
multiple examples. Instead, we will summarize several other requirements placed on the compiler that
occur in other examples.

Then we dig into the design. Each chapter describes a subsequent phase of the compiler, giving the
theory involved in the phase and describing the phase in a high-level pseudo-code.

We assume that the reader can develop detailed data structures from the high-level descriptions given
here. Probably the most necessary requirement for a compiler writer is to be a “data structure junkie.”
You have to love complex data structures to enjoy writing compilers.

1.7 Using This Book as a Textbook

This compiler design can be used as a textbook for a second compiler course. The book assumes that the
reader is familiar with the construction of compiler front ends and the straightforward code-generation
techniques taught in a one-term compiler course. | considered adding sets of exercises to turn the book
into a textbook. Instead, another approach is taken that involves the student more directly in the design
process.

The example procedure in Figure 1.1 is used throughout the book to motivate the design and demonstrate
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the details. As such, it will be central to most of the illustrations in the book. Students should use the
three examples in Figures 1.2-1.4 as running illustrations of the compilation process. For each chapter,
the student should apply the technology developed therein to the example. The text will also address
these examples at times so the student can see how his or her work matches the work from the text.

Figure 1.4 Recursive Version of a Binary Search

Figure 1.2 is a version of the classic matrix multiply algorithm. It involves a large amount of floating
point computation together with an unbalanced use of the memory system. As written, the inner loop
consists of two floating point operations together with three load operations and one store operation. The
problem will be to get good performance from the machine when more memory operations are occurring
than computations.

Figure 1.3 computes the length of the longest monotone subsequence of the vector A. The process uses
dynamic programming. The array C(l) keeps track of the longest monotone sequence that starts at
position I. It computes the next element by looking at all of the previously computed subsequences that
can have X(I) added to the front of the sequence computed so far. This example has few floating point
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operations. However, it does have a number of load and store operations together with a significant
amount of conditional branching.

Figure 1.4 is a binary search algorithm written as a recursive procedure. The student may feel free to
translate this into a procedure using pointers on a binary tree. The challenge here is to optimize the use of
memory and time associated with procedure calls.

| recommend that the major grade in the course be associated with a project that prototypes a number of
the optimization algorithms. The implementation should be viewed as a prototype so that it can be
implemented quickly. It need not handle the complex memory management problems existing in real
optimizing compilers.
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Chapter 2
Compiler Structure

The compiler writer determines the structure of a compiler using information concerning the source
languages to be compiled, the required speed of the compiler, the code quality required for the target
computer, the user community, and the budget for building the compiler. This chapter is the story of the
process the compiler writer must go through to determine the compiler structure.

The best way to use this information to design a compiler is to manually simulate the compilation
process using the same programs provided by the user community. For the sake of brevity, one principle
example will be used in this book. We will use this example to determine the optimization techniques
that are needed, together with the order of the transformations.

For the purpose of exposition this chapter simplifies the process. First we will describe the basic
framework, including the major components of the compiler and the structure of the compilation unit
within the compiler. Then we will manually simulate an example program.

The example is the Fortran subroutine in Figure 2.1. It finds the largest element in each column of a
matrix, saving both the index and the absolute value of the largest element. Although it is written in
Fortran, the choice of the source language is not important. The example could be written in any of the
usual source languages. Certainly, there are optimizations that are more important in one language than
another, but all languages are converging to a common set of features, such as arrays, pointers,
exceptions, procedures, that share many characteristics. However, there are special characteristics of each
source language that must be compiled well. For example, C has a rich set of constructs involving
pointers for indexing arrays or describing dynamic storage, and Fortran has special rules concerning
formal parameters that allow increased optimization.
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Figure 2.1 Finding Largest Elements in a Column

2.1 Outline of the Compiler Structure

This book is a simplification of the design process. To design a compiler from scratch one must iterate
the process. First hypothesize a compiler structure. Then simulate the compilation process using this
structure. If it works as expected (it won‘t) then the design is acceptable. In the process of simulating the
compilation, one will find changes one wishes to make or will find that the whole framework does not
work. So, modify the framework and simulate again,. Repeat the process until a satisfactory framework
Is found. If it really does not work, scrap the framework and start again.

There are two major decisions to be made concerning the structure: how the program is represented and
in what order the transformations are performed. The source program is read by the compiler front end
and then later translated into a form, called the intermediate representation (IR), for optimization, code
generation, and register allocation. Distinct collections of transformations, called phases, are then applied
to the IR.

2.1.1 Source Program Representation

The source program must be stored in the computer during the translation process. This form is stored in
a data structure called the IR. Past experience has shown that this representation should satisfy three
requirements:

1. The intermediate form of the program should be stored in a form close to machine language,
with only certain operations kept in high-level form to be “lowered” later. This allows each phase
to operate on all instructions in the program. Thus, each optimization algorithm can be applied to
all of the instructions. If higher-level operators are kept in the IR, then the subcomponents of
these operations cannot be optimized or must be optimized later by specialized optimizers.

2. Each phase of the compiler should retain all information about the program in the IR. There
should be no implicit information, that is, information that is known after one phase and not after
another. This means that each phase has a simple interface and the output may be tested by a
small number of simulators. An implication of this requirement is that no component of the
compiler can use information about how another component is implemented. Thus components
can be modified or replaced without damage to other components.

3. Each phase of the compiler must be able to be tested in isolation. This means that we must
write support routines that read and write examples of the IR. The written representation must be
in either a binary or textual representation.
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The second requirement circumvents one of the natural tendencies of software development teams. When
implementing its component, one team may use the fact that another team has implemented its
component-in a certain way. This works until some day in the future the first team changes some part of
its implementation. Suddenly the second component will no longer work. Even worse problems can
occur if the second team has the first team save some information on the side to help their component.
Now the interface is no longer the intermediate representation of the program but the intermediate
representation plus this other (possibly undocumented) data. The only way to avoid this problem is to
require the interfaces to be documented and simple.

Optimizing compilers are complex. After years of development and maintenance, a large fraction of a
support team’s effort will go to fixing the problems. Little further development can be done because
there is no time. This situation happens because most compilers can only be tested as a whole. A test
program will be compiled and some phase will have an error (or the program compiles and runs
incorrectly). Where is the problem? It is probably not at the point in the compiler where you observe the
problem. A pithy phrase developed at COMPASS was “Expletive runs downhill.” (The actual expletive
was used, of course.) This means that the problem occurs somewhere early in the compiler and goes
unnoticed until some later phase, typically the register allocation, or object module formation. Several
things can be done to avoid this problem:

 Subroutines must be available to test the validity of the intermediate representation. These
routines can be invoked by compile-time switches to check which phases create an inappropriate
representation.

 Assertions within the phases must be used frequently to check that situations that are required to
be true are in fact true. This is often done in production compilers.

* A test and regression suite must be created for each phase. These tests involve special versions
of the IR in which a program that has been compiled up to the point of this phase. This IR is input
to the phase and then the output is simulated to see if the resulting program runs correctly.

Having these requirements, how is the program stored? The choice is based on experience and then
ratified by the manual simulations discussed earlier. In this compiler, each procedure will be stored
internally in a form similar to assembly language for a generic RISC processor.
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Experience with the COMPASS Compiler Engine taught that the concept of a value computed by an
operator must be general. The value may be a vector, scalar, or structural value. Early in the compilation
process, the concept of value must be kept as close to the form in the source program as possible so that
the program can be analyzed without losing information.

These observations are almost contradictory. We need to be able to manipulate the smallest pieces of the
program while still being able to recover the overall structure present in the source program. This
contradiction led to the idea of the gradual lowering of the intermediate representation. At first, LOAD
instructions have a complete set of subscript expressions. Later these specialized load instructions are
replaced by machine-level load instructions.

What does an assembly language program look like? There is one machine instruction per line. Each
instruction contains an operation code, indicating the operation to be performed; a set of operands; and a
set of targets to hold the results. The following gives the exact form for the intermediate representation,
except that the representation is encoded:

1. The instruction, encoded as a record that is kept in a linked list of instructions.

2. An operation code describing action performed. This is represented as a built-in enumeration
of all operations.

3. A set of constant operands. Some instructions may involve constant operands. These are less
prone to optimization and so are inserted directly in the instruction. The compiler initially will not
use many constant operands because doing so decreases the chances for optimization. Later, many
constants will be stored in the instructions rather than using registers.

4. A list of registers representing the inputs to the instruction. For most instructions there is a
fixed number of inputs, so they can be represented by a small array. Initially, there is an
assumption of an infinite supply of registers called temporaries.

5. A target register that is the output of the instruction.
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The assembly program also has program labels that represent the places to which the program can
branch. To represent this concept, the intermediate representation is divided into blocks representing
straight-line sequences of instructions. If one instruction in a block is executed, then all instructions are
executed. Each block starts with a label (or is preceded by a conditional branching instruction) and ends
with a branching instruction. Redundant branches are added to the program to guarantee that there is a
branch under every possible condition at the end of the block. In other words, there is no fall-through into
the next block.

The number of operation codes is large. There is a distinct operation code for each instruction in the
target machine. Initially these are not used; however, the lowering process will translate the set of
machine-independent operation codes into the target machine codes as the compilation progresses. There
IS no need to list all of the operation codes here. Instead the subset of instructions that are used in the
examples is listed in Figure 2.2.

Now the source program is modeled as a directed graph, with the nodes being the blocks. There is a
directed edge between two blocks if there is a possible branch from the first block to the second. A
unigue node called Entry represents the entry point for the source program. The entry node has no
predecessors in the graph. Similarly, a unique node called Exit represents the exit point for the source
program, and that node has no successors. In Figure 2.3 the entry node is node B0, and the exit node is
node B5.

Figure 2.2 Operation Codes Used In Examples
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Figure 2.3 Example Flow Graph

The execution of the source program is modeled by a path through the graph. The path starts at the entry
node and terminates at the exit node. The computations within each node in the path are executed in
order of the occurrence of nodes on the path. In fact, the computations within the node are used to
determine the next node in the path. In Figure 2.3, one possible path is BO, B1, B2, B4, B1, B3, B4, B5.
This execution path means that all computations in BO are executed, then all computations in B1, then
B2, and so on. Note that the computations in B1 and B4 are executed twice.

2.1.2 Order of Transformations

Since the compiler structure is hard to describe linearly, the structure is summarized here and then
reviewed during the remainder of the chapter. The rest of the book provides the details. The compiler is
divided into individual components called phases as shown in Figure 2.4. An overview of each of the
phases is presented next.

The compiler front end is language specific. It analyzes the source file being compiled and performs all
lexical analysis, parsing, and semantic checks. It builds an abstract syntax tree and symbol table. I will
not discuss this part of the compiler, taking it as a given, because most textbooks do an excellent job of
describing it. There is a distinct front end for each language, whereas the rest of the compiler can be
shared among compilers for different languages as long as the specialized characteristics of each
language can be handled.

After the front end has built the abstract syntax tree, the initial optimization phase builds the flow graph,
or intermediate representation. Since the intermediate representation looks like an abstract machine
language, standard single-pass code-generation techniques, such as used in 1cc (Frazer and Hanson
1995), can be used to build the flow graph. Although these pattern-matching techniques can be used, the
flow graph is sufficiently simple that a straightforward abstract syntax tree walk generating instructions
on the fly is sufficient to build the IR. While building the flow graph some initial optimizations can be
performed on instructions within each block.
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The Dominator Optimization phase performs the initial global optimizations. It identifies situations
where values are constants, where two computations are known to have the same value, and where
instructions have no effect on the results of the program. It identifies and eliminates most redundant
computations. At the same time it reapplies the optimizations that have already occurred within a single
block. It does not move instructions from one point of the flow graph to another.

l Bl Ll L PGl |

Figure 2.4 Compiler Structure

The Interprocedural Optimization phase analyzes the procedure calls within this flow graph and the flow
graphs of all of the other procedures within the whole program. It determines which variables might be
modified by each procedure call, which variables and expressions might be referencing the same memory
location, and which parameters are known to be constants. It stores this information for other phases to
use.

The Dependence Optimization phase attempts to optimize the time taken to perform load and store
operations. It does this by analyzing array and pointer expressions to see if the flow graph can be
transformed to one in which fewer load/stores occur or in which the load and store operations that occur
are more likely to be in one of the cache memories for the RISC chip. To do this it might interchange or
unroll loops.

The Global Optimization phase lowers the flow graph, eliminating the symbolic references to array
expressions and replacing them with linear address expressions. While doing so, it reforms the address
expressions so that the operands are ordered in a way that ensures that the parts of the expressions that
are dependent on the inner loops are separated from the operands that do not depend on the inner loop.
Then it performs a complete list of global optimizations, including code motion, strength reduction, and
dead-code elimination.

After global optimization, the exact set of instructions in the flow graph has been found. Now the
compiler must allocate registers and reorder the instructions to improve performance. Before this can be
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done, the flow graph is transformed by the Limiting Resources phase to make these later phases easier.
The Limiting Resources phase modifies the flow graph to reduce the number of registers needed to match
the set of physical registers available. If the compiler knows that it needs many more registers than are
available, it will save some temporaries in memory. It will also eliminate useless copies of temporaries.

Next an initial attempt to schedule the instructions is performed. Register allocation and scheduling
conflict, so the compiler attempts to schedule the instructions. It counts on the effects of the Limiting
Resources phase to ensure that the register allocation can be performed without further copying of values
to memory. The instruction scheduler reorders the instructions in several blocks simultaneously to
decrease the time that the most frequently executed blocks require for execution.
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After instruction scheduling, the Register Allocation phase replaces temporaries by physical registers.
This is a three-step process in which temporaries computed in one block and used in another are assigned
first, then temporaries within a block that can share a register with one already assigned, and finally the
temporaries assigned and used in a single block. This division counts on the work of the Limiting
Resources phase to decrease the likelihood that one assignment will interfere with a later assignment.

It is hoped that the Register Allocation phase will not need to insert store and load operations to copy
temporaries into memory. If such copies do occur, then the Instruction Scheduling phase is repeated. In
this case, the scheduler will only reschedule the blocks that have had the instructions inserted.

Finally, the IR is in the form in which it represents an assembly language procedure. The object module
IS now written in the form needed by the linker. This is a difficult task because the documentation of the
form of object modules is notoriously inaccurate. The major work lies in discovering the true form. After
that it is a clerical (but large) task to create the object module.

2.2 Compiler Front End

To understand each of the phases, we simulate a walk-through of our standard example in Figure 2.1 for
each phase, starting with the front end. The front end translates the source program into an abstract
syntax tree. As noted earlier, 1 will not discuss the operation of the front end; however, we do need to
understand the abstract syntax tree. The abstract syntax tree for the program in Figure 2.1 is given in
Figure 2.5.

There is a single tree for each procedure, encoding all of the procedure structure. The tree is represented
using indentation; the subtrees of each node are indented an extra level. Thus the type of a node occurs at
one indentation and the children are indented slightly more. | am not trying to be precise in describing
the abstract syntax tree. The name for the type of each node was chosen to represent the node naturally to
the reader. For example, the nodes with type “assign” are assignment nodes.

The “list” node represents a tree node with an arbitrary number of children, used in situations in which
there can be an arbitrary number of components, such as blocks of statements. The “symbol” node takes
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a textual argument indicating the name of the variable; of course, this will actually be represented as a
pointer to the symbol table.

The “fetch” node differentiates between addresses and values. This compiler has made a uniform
assumption about expressions: Expressions always represent values. Thus the “assign” node takes two
expressions as operands—one representing the address of the location for getting the result and the other
representing the value of the right side of the assignment. The “fetch” node translates between addresses
and values. It takes one argument, which is the address of a location. The result of the “fetch” node is the
value stored in that location.

Figure 2.5 Abstract Syntax Tree for MAXCOL

Note that this tree structure represents the complete structure of the program, indicating which parts of
the subroutine are contained in other parts.

2.3 Building the Flow Graph

The abstract syntax tree is translated into the flow graph using standard code generation techniques
described in introductory compiler books. The translation can be done in two ways. The more advanced
method is to use one of the tree-based pattern-matching algorithms on the abstract syntax tree to derive
the flow graph. This technique is not recommended here because of the RISC nature assumed for the
target machine. Complex instructions will be generated later by pattern matching the flow graph. Instead,
the abstract syntax tree should be translated into the simplest atomic instructions possible. This procedure
allows more opportunity for optimization.

Thus, the translation should occur as a single walk of the abstract syntax tree. Simple instructions should
be generated wherever possible. Normal operations such as addition and multiplication can be lowered to
a level in which each entry in the program flow graph represents a single instruction. However,
operations that need to be analyzed later (at the equivalent of source program level) are translated into
higher-level operations equivalent to the source program construct. These will later be translated into
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lower-level operations after completion of the phases that need to analyze these operations. The
following four classes of operations should be kept in higher-level form:

1. A fetch or store of a subscript variable, A [i,j,k] is kept as a single operation, with operands
being the array name and the expressions for the subscripts. Keeping subscripted variables in this
form rather than linearizing the subscript expression allows later dependence analysis to solve sets
of linear equations and inequalities involving the subscripts.

2. Extra information is kept with normal load and store operations also. This information is
needed to determine which store operations can modify locations loaded by load operations. This
Is particularly important in languages involving pointers. Extra analysis, called pointer alias
analysis, is needed to determine which storage locations are modified. Loads and stores of
automatic variables, that is, variables declared within a routine whose values are lost at the end of
the routine, are not generated. Instead these values are handled as if they were temporaries within
the program flow graph.

3. Subroutine calls are kept in terms of the expression representing the name of the procedure and
the expression representing the arguments.Methods for passing the arguments, such as call-by-
value and call-by-reference, are not expanded. This allows more detailed analysis by the
interprocedural analysis components later in the compiler.

4. Library routines are handled differently than other procedure calls. If a library procedure is
known to be a pure function it is handled as if it were an operator. This allows the use of identities
involving the library routines. Other procedure calls may be used in other parts of the analysis of
the program, for example, calls on malloc are known to return either a null pointer or a pointer to
a section of memory unreferenced in other parts of the program.
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A straightforward translation will result in the flow graph shown in Figure 2.6. It is shown here to
describe the process of translation. It is not actually generated, since certain optimizations will be
performed during the translation process. Note that the temporaries are used in two distinct ways. Some
temporaries, such as T5, are used just like local variables, holding values that are modified as the
program is executed. Other temporaries, such as T7, are pure functions of their arguments. In the case of
T7, it always holds the constant 1. For these temporaries the same temporary is always used for the result
of the same operation. Thus any load of the constant 1 will always be into T7. The translation process
must guarantee that an operand is evaluated before it is used.

To guarantee that the same temporary is used wherever an expression is computed, a separate table called
the formal temporary table is maintained. It is indexed by the operator and the temporaries of the
operands and constants involved in the instruction. The result of a lookup in this table is the name of the
temporary for holding the result of the operation. The formal temporary table for the example routine is
shown in Figure 2.7. Some entries that will be added later are listed here for future reference.

What is the first thing that we observe about the lengthy list of instructions in Figure 2.6? Consider block
B1. The constant 1 is loaded six times and the expression | - 1 is evaluated three times. A number of
simplifications can be performed as the flow graph is created:

« If there are two instances of the same computation without operations that modify the operands
between the two instances, then the second one is redundant and can be eliminated since it will
always compute the same value as the first.
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 Algebraic identities can be used to eliminate operations. For example, A * 0 can be replaced by
0. This can only occur if the side effects of computing A can be ignored. There is a large
collection of algebraic identities that may be applied; however, a small set is always applied with
the understanding that new algebraic identities can be added if occasions occur where the
identities can improve the program.

» Constant folding transforms expressions such as 5 * 7 into the resulting number, 35. This
frequently makes other simplifications possible. The arithmetic must be done in a form that
exactly mimics the arithmetic of the target machine.

These transformations usually remove about 50 percent of the operations in the procedure. The rest of the

analysis in the compiler is therefore faster since about half of the operations that must be scanned during
each analysis have been eliminated. The result of these simplifications is given in Figure 2.8.

2.4 Dominator Optimizations

The preliminary optimization phase takes the program represented as a program flow graph as input. It
applies global optimization techniques to the program and generates an equivalent program flow graph as
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the output. These techniques are global in the sense that the transformations take into account possible
branching within each procedure.

There are two global optimization phases in this compiler. The initial phase performs as much global
optimization as possible without moving computations in the flow graph. After interprocedural analysis
and dependence optimization phases have been executed, a more general global optimization phase is
applied to clean up and improve the flow graphs further. The following global optimization

transformations are applied.

« If there are two instances of a computation X * Y and the first one occurs on all paths leading
from the Entry block to the second computation, then the second one can be eliminated. This is a
special case of the general elimination of redundant expressions, which will be performed later.
This simple case accounts for the largest number of redundant expressions, so much of the work
will be done here before the general technique is applied.

» Copy propagation or value propagation is performed. If an X is a copy of Z, then uses of X can
be replaced by uses of Z as long as neither X nor Z changes between the point at which the copy is
made and the point of use. This transformation is useful for improving the program flow graph
generated by the compiler front end. There are many compiler-generated temporaries such as loop
counters or components of array dope information that are really copy operations.

 Constant propagation is the replacement of uses of variables that have been assigned a constant
value by the constant itself. If a constant is used to determine a conditional branch in the program,

the alternative branch is not considered.
 As with local optimization, algebraic identities, peephole optimizations, and constant folding

will also be performed as the other optimizations are applied.
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The following global optimizations are intentionally not applied because they make the task of
dependence analysis more difficult later in the compiler.

« Strength reduction is not applied. Strength reduction is the transformation of multiplication by
constants (or loop invariant expressions) into repeated additions. More precisely, if one has an
expression | * 3 in a loop and I is incremented by 1 each time through the loop, then the
computation of |1 * 3 can be replaced by a temporary variable T that is incremented by 3 each time
through the loop.

» Code motion is not applied. A computation X * Y can be moved from within a loop to before the
loop when it can be shown that the computation is executed each time through the loop and that
the operands do not change value within the loop. This transformation inhibits loop interchange,
which is performed to improve the use of the data caches, so it is delayed until the later global
optimization phase.

Now inspect the flow graph, running your finger along several possible paths through the flow graph
from the start block BO to the exit block B5. The constant 1 is computed repeatedly on each path. More
expensive computations are also repeated. Look at blocks B2 and B6. Many of the expressions computed
in B6 are also computed in B2. Since B2 occurs on each path leading to B6, the computations in B6 are
unnecessary.

What kind of technology can cheaply eliminate these computations? B2 is the dominator of B6 (this will
be defined more precisely shortly), meaning that B2 occurs on each path leading from BO to B6. There is
a set of algorithms applied to the Static Single Assignment Form (to be defined shortly) of the flow graph
that can eliminate repeated computations of constants and expressions when they already occur in the
dominator. Some Static Single Assignment Form algorithms will be in the compiler anyway, so we will
use this form to eliminate redundant computations where a copy of the computation already occurs in the
dominator. This is an inexpensive generalization of local optimizations used during the construction of
the flow graph, giving the results in Figure 2.9.

Repeat the exercise of tracing paths through the flow graph. Now there are few obvious redundant
expressions. There are still some, however. Computations performed each time through the loop have not
been moved out of the loop. Although they do not occur in this example, there are usually other
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redundant expressions that are not made redundant by this transformation.

Where are most of the instructions? They are in block B2, computing the addresses used to load array

elements. This address expression changes each time through the loop, so it cannot be moved out of the
loop that starts block B2. It changes in a regular fashion, increasing by 8 each time through the loop, so
the later global optimization phase will apply strength reduction to eliminate most of these instructions.
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Figure 2.9 After Dominator Value Numbering
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2.5 Interprocedural Analysis

All other phases of the compiler handle the program flow graph for one procedure at a time. Each phase
accepts as input the program flow graph (or abstract syntax tree) and generates the program flow graph
as a result. The interprocedural analysis phase accumulates the program flow graphs for each of the
procedures. It analyzes all of them, feeding the program flow graphs for each procedure, one at a time, to
the rest of the phases of the compiler. The procedures are not provided in their original order. In the
absence of recursion, a procedure is provided to the rest of the compiler before the procedures that call it.
Hence more information can be gathered as the compilation process proceeds.

The interprocedural analysis phase computes information about procedure calls for other phases of the
compiler. In the local and global optimization phases of the compiler, assumptions must be made about
the effects of procedure calls. If the effects of the procedure call are not known, then the optimization
phase must assume that all values that are known to that procedure and all procedures that it might call
can be changed or referenced by the procedure call. This is an inconvenient assumption in modern
languages, which encourage procedures (or member functions) to structure the program.

To avoid these conservative assumptions about procedure calls, this phase computes the following
information for each procedure call:

MOD

The set of variables that might be modified by this procedure call.
REF
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The set of variables that might be referenced by this procedure call.

Interprocedural analysis also computes information about the relationships and values of the formal
parameters of a procedure, including the following information:

Alias
With call-by-reference parameters, one computes which parameters possibly reference the same
memory location as another parameter or global variable.

Constant
The parameters that always take the same constant value at all calls of the procedure. This
information can be used to improve on the constant propagation that has already occurred.

When array references are involved, the interprocedural analysis phase attempts to determine which part
of the array has been modified or referenced. Approximations must be made in storing this information
because only certain shapes of storage reference patterns will be stored. When the actual shape does not
fit one of the usual reference patterns, a conservative choice will be made to expand the shape to one of
the chosen forms.
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2.6 Dependence Optimization

The purpose of dependence optimization for a RISC processor is to decrease the number of references to
memory and improve the pattern of memory references that do occur.

This goal can be achieved by restructuring loops so that fewer references to memory are made on each
iteration. The program is transformed to eliminate references to memory, as in Figure 2.10, in which a
transformation called scalar replacement is used to hold the value of A(l), which is used on the next
iteration of the loop as the value A(I-1). Classic optimization techniques cannot identify this possibility,
but the techniques of dependence optimization can. A more complex transformation called unroll and
jam can be used to eliminate more references to memory for nested loops.

When the references to memory cannot be eliminated completely, dependence-based optimization can be
used to improve the likelihood that the values referenced are in the cache, thus providing faster reference
to memory. The speed of modern processors exceeds the speed of their memory systems. To compensate,
one or more cache memory systems have been added to retain the values of recently referenced memory

locations. Since recently referenced memory is likely to be referenced again, the hardware can return the

value saved in the cache more quickly than if it had to reference the memory location again.

T I
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L mrarse
F=Frdl
A1l =1
—

Figure 2.10 Example of Scalar Replacement
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Figure 2.11 Striding Down the Columns

Consider the Fortran fragment in Figure 2.11 for copying array A into B twice. In Fortran, the elements
of a column are stored in sequential locations in memory. The hardware will reference a particular
element. The whole cache line for the element will be read into the cache (typically 32 bytes to 128
bytes), but the next element will not come from the cache line; instead, the next element is the next
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element in the row, which may be very far away in memory. By the time the inner loop is completed and
the next iteration of the outer loop is executing, the current elements in the cache will likely have been
removed.

The dependence-based optimizations will transform Figure 2.11 into the right-hand column. The same
computations are performed, but the elements are referenced in a different order. Now the next element
from A is the next element in the column, thus using the cache effectively.

The phase will also unroll loops to improve later instruction scheduling, as shown in Figure 2.12. The left
column is the original loop; the right column is the unrolled loop. In the original loop, the succeeding
phases of the compiler would generate instructions that would require that each store to B be executed
before each subsequent load from A. With the loop unrolled, the loads from A may be interwoven with
the store operations, hiding the time it takes to reference memory. Another optimization called software
pipelining is performed later, which increases the amount of interweaving even more.

—
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Figure 2.12 Original (left) and Unrolled (right) Loop

This book will not address the concepts of parallelization and vectorization, although those ideas are
directly related to the work here. These concepts are covered in books by Wolfe (1996) and Allen and
Kennedy.

2.7 Global Optimization

The global optimization phase cleans up the flow graph transformed by the earlier phases. At this point
all global transformations that need source-level information have been applied or the information has
been stored with the program flow graph in an encoded form. Before the general algorithm is performed,
several transformations need to be performed to simplify the flow graph. These initial transformations
are all based on a dominator-based tree walk and the static single assignment method. The optimizations
include the original dominator optimizations together with the following.

» Lowering: The instructions are lowered so that each operation in the flow graph represents a
single instruction in the target machine. Complex instructions, such as subscripted array
references, are replaced by the equivalent sequence of elementary machine instructions.
Alternatively, multiple instructions may be folded into a single instruction when constants, rather
than temporaries holding the constant value, can occur in instructions.

» Reshaping: Before the global optimization techniques are applied, the program is transformed to
take into account the looping structure of the program. Consider the expression | * J * K
occurring inside a loop, with | being the index for the innermost loop, J the index for the next
loop, and K the loop invariant. The normal associativity of the program language would evaluate
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this as (1 * J) *K when it would be preferable to compute it as | * (J * K) because the computation
of J * K is invariant inside the innermost loop and so can be moved out of the loop. At the same
time we perform strength reduction, local redundant expression elimination, and algebraic
identities.

« Strength Reduction: Consider computations that change by a regular pattern during consecutive
iterations of a loop. The major example is multiplication by a value that does not change in the
loop, such as | * J where J does not change and I increases by 1. The multiplication can be
replaced by a temporary that is increased by J each time through the loop.

 Elimination: To assist strength reduction and reshaping, the redundant expression elimination
algorithm in the dominator optimization phase is repeated.
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Consider our sample procedure. The expression address(A(J,l)) is computed each time through the inner
loop. It can be replaced by a temporary that is initialized to address(A(1,1)) and incremented by 8 each
time through the loop.

Strength reduction is performed first on the inner loops, then on the successively outer loops. In this flow
graph there are two nested loops. The inner loop consists of the blocks B2, B6, and B3. The variable that
changes in an arithmetic progression is J, which is represented by the symbolic register T6. The
expressions T25, T26, T27, and T28 vary linearly with T6, so they are all candidates for strength
reduction; however, T25, T26, and T27 are used to compute T28, so we want to perform strength
reduction of T28. T28 is increased by 8 each time through the loop.

To have a place in which to put the code to initialize T28, we insert an empty block between blocks B1
and B2. For mnemonic purposes we will call the block B12, standing for the block between B1 and B2.
The compiler puts two computations into the loop (if they are not already available):

1. The expression to initialize the strength-reduced variable, in this case T28. This involves
copying all of the expressions involved in computing T28 and inserting them into block B12.
2. The expression for the increment to the strength reduction expression.In this case, it is the
constant 8, which is already available.

While inserting these expressions into B12, the compiler will perform redundant expression elimination,
constant propagation, and constant folding. In this case, the compiler knows that J has value 2 on entry to
the loop, so that constant value will be substituted for J, that is, for T6.

The code in Figure 2.13 represents the program after strength reduction has been applied to the inner
loop. T28 no longer represents a pure expression: It is now a compiler-created local variable. This does
not change how the compiler handles the load and store operations involving T28. Since it is taking on
the same values that it did when it was a pure expression, the side effects of the load and store
Instructions are the same.
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Fig .13 Strength-Reduced Inner Loop

In this rough simulation of the compiler, we see that the compiler needs to perform some level of
redundant expression elimination, constant propagation, and folding before strength reduction. We can
get that information by performing strength reduction (and expression reshaping) as a part of the
dominator-based optimizations discussed earlier.

As a working hypothesis, assume that strength reduction for a single-entry loop is performed after the
dominator-based transformations for the loop entry and all of its children in the dominator tree. If we
perform strength reduction for a loop at that point, we gain three advantages. First, strength reduction
will be applied to inner loops before being applied to outer loops. Second, the loop body will have been
already simplified by the dominator-based algorithms. And third, the information concerning available
expressions and constants is still available for a block inserted before the entry to the loop.

For the sake of description, the computations in block B3 that are no longer used have been eliminated.
In reality they are eliminated later by the dead-code elimination phase. This order makes the
implementation of strength reduction easier because the compiler need not worry about whether a
computation being eliminated is used someplace else.

Now consider the contents of block B12. We know that the value of J, or T6, is 2. So the compiler
applies value numbering, constant propagation, and constant folding to this block. One other
optimization is needed to obtain good code. The compiler multiplies by 8 after it has performed all
additions. The application of distribution of integer multiplication will result in better code since 8 will
be added to an already existing value to give the code in Figure 2.14.

We now perform strength reduction on the outer loop. There are three candidates for strength reduction:
address(A(1,1)), or T33; address(VALUE(I)), or T17; and address(LARGE(I)), or T13. Again we insert a
block BO1 between blocks BO and B1 to hold the initialization values for the loop B1, [B2, B6, B3], B4.
The three pointers will be initialized in block BO1 and incremented in block B4.

One of the values of this simulation process is to observe situations that you would not have imagined
when designing the compiler. There are two such situations with strength reduction:

» The load of the constant 4 into T11 now happens too early. All uses of it have been eliminated,
except for updating the pointer at the end of the loop. In this case that is not a problem because the
constant will be folded into an immediate field of an instruction later. More complex expressions
may be computed much earlier than needed. There is no easy solution to this problem.
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» The computation of the constant 8 in block BO1 makes the computation in block B1 redundant.
Later code-motion algorithms had better identify these cases and eliminate the redundant
expressions.

After strength reduction on both loops, the compiler has the flow graph in Figure 2.15.
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Figure 2.15 After Strength-Reducing Outer Loop
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This is a good point to review. The compiler has created the flow graph, simplified expressions,
eliminated most redundant expressions, applied strength reduction, and performed expression reshaping.
Except for some specialized code insertions for strength reduction, no expressions have been moved.
Code motion will move code out of loops.
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The techniques proposed here for code motion are based on a technique called “elimination of partial
redundancies” devised by Etienne Morel (Morel and Renvoise, 1979). Abstractly, this technique attempts
to insert copies of an expression on some paths through the flow graph to increase the number of
redundant expressions. One example of where it works is with loops. Elimination of partial redundancies
will insert copies of loop invariant expressions before the loop making the original copies in the loop
redundant. Surprisingly, this technique works without knowledge of loops. We combine three other
techniques with code motion:

1. A form of strength reduction is included in code motion. The technique is inexpensive to
implement and has the advantage that it will apply strength reduction in situations where there are
no loops.

2. Load motion is combined with code motion. Moving load operations can be handled as a code
motion problem by pretending that any store operation is actually a store operation followed by
the corresponding load operation. So a store operation can be viewed as having the same effect on
the availability of an expression as a load operation. As will be seen in this example, this will
increase the number of load operations that can be moved.

3. Store operations can also be moved by looking at the flow graph backward and applying the
same algorithms to the reverse graph that we apply for expressions to the normal flow graph. We
only look at the reverse graph for store operations.

In this particular example, code motion only removes the redundant loads of the constants 4 and 8. The
load of VALUE(I) is moved out of the inner loop. It is not a loop-invariant expression since there is a
store into VALUE(I) in the loop. However, the observation that a store may be viewed as a store followed
by a load into the same register means that there is a load of VALUE(I) on each path to the use of
VALUE(1), making the load within the loop redundant. This gives the code in Figure 2.16.
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Figure 2.16 After Code Motion

Now, we can move the store operations forward using partial redundancy on the reverse program flow
graph, as shown in Figure 2.17. The stores into VALUE(I) and LARGE(I) occurring in the loop can be
moved to block B4. Although we think of this as a motion out of the loop, the analysis has nothing to do
with the loop. It depends on the occurrence of these store operations on each path to B4 and the repetitive
stores that do occur in the loop. Together with dead-code elimination this gives us the final result of the
optimization phases.
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Figure 2.17 After Store Motion
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2.8 Limiting Resources

The program flow graph for the procedure has now been transformed into a form suitable for generating
instructions for the target machine. There is a one-to-one correspondence between the operations in the
program flow graph and instructions for the target machine. There are still three things to determine
about the resulting program.

» Peephole optimization: Multiple instructions must be combined into single instructions that
have the same effect. This includes the classic peephole optimizations together with
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simplifications involving folding constants into instructions that can use constants.

« Instruction scheduling: The order of the instructions must be found. By reordering the
instructions, the delays inherent in instructions that take more than one machine cycle can be
hidden by the execution of other instructions.

 Register allocation: The temporaries used for values in the program flow graph must be
replaced by the use of physical registers.

Unfortunately, instruction scheduling and register allocation are interdependent. If the compiler reorders
the instructions to decrease execution time, it will increase the number of physical registers needed to
hold values. On the other hand, if one allocates the temporaries to physical registers before instruction
scheduling, then the amount of instruction reordering is limited. This is known as a phase-ordering
problem. There is no natural order for performing instruction scheduling and register allocation.

The LIMIT phase performs the first of these three tasks and prepares the code for instruction scheduling
and register allocation. It attempts to resolve this problem by performing parts of the register allocation
problem before instruction scheduling, then allowing instruction scheduling to occur. Register allocation
then follows, plus a possible second round of instruction scheduling if the register allocator generated
any instructions itself (spill code).

Before preparing for instruction scheduling and register allocation, the compiler lowers the program
representation to the most efficient set of instructions. This is the last of the code-lowering phases.

We begin by modifying the flow graph so that each operation corresponds to an operation in the target
machine. Since the instruction description was chosen to be close to a RISC processor, most instructions
already correspond to target machine instructions. This step is usually called code generation; however,
our view of code generation is more diffuse. We began code generation when we built the flow graph, we
progressed further into code generation with each lowering of the flow graph, and we complete it now by
guaranteeing the correspondence between instructions in the flow graph and instructions in the target
machine.

Previous | Table of Contents |Next

Copyright © Digital Press

file:///D|/Convert/Building_an_Optimizing_Compiler/ch02/042-047.html (3 of 3) [10/17/2003 1:04:51 AM]


file:///reference/digitalp00001.html

Building an Optimizing Compiler:Compiler Structure

Building an Optimizing Compiler

by Bob Morgan

Digital Press

ISBN: 155558179x Pub Date: 12/01/97

Previous | Table of Contents [Next

To illustrate this code lowering, we assume that the target machine contains instructions with small-
constant immediate operands. For example, the addition of small constants can be performed with an
immediate operand. Or load and store operations can take a constant as an additive part of the address
computation. The target machine also has instructions for adding a multiple of 4 or 8 times one register,
adding another register, and putting the result in a target register. In other words, we consider a target
processor such as the Alpha processor. While performing code lowering, the compiler will also perform
the following operations:

» Replacing instructions in the flow graph by equivalent target machine instructions. If the
instruction in the flow graph is a target machine instruction, then the compiler leaves it as it is.
» Removing register-to-register copy operations. The compiler no longer honors the convention
that a particular expression is computed in a fixed symbolic register. Now all effort is made to
eliminate register-to-register copies.

* In the process of code lowering, some blocks will become empty. The compiler deletes them.

The important instructions for the Alpha processor that simplify this particular example are as follows:

» The S4ADDAQ instruction computes 4 times one register plus another, simplifying address
arithmetic on integer arrays.

» The SBADDQ instruction computes 8 times one register plus another, simplifying address
arithmetic on double-precision arrays.

» The CPYS instruction, which takes two operands, creates a floating point value from the sign of
one operand and the absolute value of another. It can be used to compute the absolute value.

The use of these instructions may make other computations unnecessary, such as an instruction that loads
a constant, or the multiplication or shift operation (and its target register). These unnecessary
computations must be eliminated also. This can be performed partially during the other optimizations or
by the execution of the dead-code elimination algorithm.

The compiler also orders the blocks so that the destination pairs in conditional branches can be replaced
with fall-through values; however, we do not eliminate the extra part of the branches because register
allocation may need to insert blocks and such elimination would change the order of blocks. The code in
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Figure 2.18 shows the results of code lowering. At this point the restriction that the same expression
always be computed in the same register is discarded since this would add unnecessary instructions.
Hence the loop variables are incremented by a single iADD instruction. Note that an SSADDQ
instruction is used to increment the pointer referencing the A array in the inner loop.

At the same time that the code is being lowered, the LIMIT phase is preparing for instruction scheduling
and register allocation by performing the following transformations.

» Rename: There are many situations in which the same temporary is used in two independent
parts of the procedure. This can happen through the source program using the same automatic
variable for two purposes, or through transformations performed by earlier phases of the compiler.
One of the sets of uses is now renamed to reference a new temporary. By using independent
names, register allocation is more effective. Rename is illustrated in Figure 2.19. In the code on
the left, the same index variable is used for two loops. After renaming, two different index
variables are used, as seen in the code on the right.

» Coalesce: Many register-to-register operations in the program flow graph can be eliminated. In
acopy T1 = T2, if neither T1 nor T2 changes on any path from the copy to a use of T1, then all
references to T1 can be replaced by a reference to T2, eliminating the copy operation. Eliminating
one copy operation can expose the possibility of eliminating more copies. This compiler uses a
slightly more general algorithm which eliminates a second temporary if it is known to have the
same value as one already computed.

Figure 2.18 After Code Lowering

» Pressure: The register pressure at a point p in the program flow graph is the number of registers
needed at p to hold the values that are computed before p and used after p. The maximum register
pressure is an estimate of the minimum number of registers needed for allocating registers for the
procedure. It is not a precise lower estimate because more registers may be needed due to the
interactions of multiple paths through the procedure. However, if the register pressure is higher
than the number of available registers, then some temporaries will be stored in memory for part of
the procedure. This is called register spilling.
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Figure 2.19 Computing Right Number of Names
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o Spilling: LIMIT will consider each point where the register pressure exceeds the number of
physical registers. It will consider each enclosing loop containing that point and find a temporary
that is not used in the loop but which holds a value to be used later (in other words, it is holding a
value passing through the loop). It takes the temporary that has that property on the outermost
loop, stores it in memory before the loop, and reloads it after the loop (where necessary). This
decreases the register pressure by 1 everywhere within the loop. If no loop contains a temporary
of this form, a temporary that holds a value but is unused in the block will be chosen. If no such
temporary exists, a temporary used or defined within the block will be chosen. This whole process
will be repeated until the register pressure has been decreased below the number of available
registers everywhere within the procedure.
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To compute the register pressure, the compiler needs to know for each point of the flow graph the
temporaries that hold a value used later, in other words, the set of temporaries that are live at each point
in the program. For illustrative purposes, the set of points where each temporary is live is represented as
a set of intervals using the numbers we associated with each instruction in Figure 2.18. If a temporary is
live at the beginning of the first instruction of an interval, we will indicate that by using a closed bracket.
If it becomes live in the middle of an instruction, we will use an open parenthesis. Figure 2.20 indicates
the range of instructions where each register is live.

This information can be used to compute the number of registers needed at each point in the program,
otherwise known as the register pressure. If the number of registers needed exceeds the number of
physical registers available, then not all temporaries will be able to be assigned to registers. The registers
that are live before and after each instruction in the subroutine are shown in Figure 2.21. In this particular

case the largest register pressure occurs in the innermost loop. This is frequently true, but is not always
the case.
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Figure 2.20 Table of Live Ranges

One computes a separate register pressure for each register set: integer and floating point. We have
shown the register pressure for integer registers. The register pressure for floating point registers is not
shown in Figure 2.21 so as to make the table more understandable; however, there are only three floating
registers in the program, so determining the register pressure is straightforward.
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Now we compute the register pressure at the beginning of each statement. This is a pair consisting of the
number of integer and floating point symbolic or physical registers that are live at the beginning of each
instruction. Recall that the formal parameters are live at the beginning of the program (if they are used
anywhere in the program), so T1, T2, T3, and T4 are live at the beginning of the subroutine.

As is frequently the case with small flow graphs, there is no register spilling needed. The maximum
register pressure is much lower than the number of registers. However, let us pretend that the machine
only has eight registers. The register pressure is 9 at the end of the inner loop, so we cannot fit the
number of symbolic registers that are live at that point into the available registers. The symbolic registers
T1, T3, T4, T5,T6, T8, T14, T24, and T28 are live at the point at which the pressure is 9; however, T1,
T3, T4, T5, and T8 are not referenced (defined or used) in the inner loop. Therefore one of them can be
spilled before the loop and reloaded after the loop. This will decrease the register pressure by 1
throughout the loop. Ideally, we would choose the register that is referenced in as few nested loops as
possible These temporaries are all referenced in the next loop, however, so we will arbitrarily choose to
store T5, which is the temporary representing |.

Figure 2.21 Live Registers and Register Pressure Before Instruction

We use the stack (SP is a dedicated register) to spill registers to memory. Note that the register pressure
has peaked at one point, and that by spilling a register we have decreased the register pressure at other
points.

The insertion process takes two steps. First insert a store operation at the beginning of the outermost loop
where the temporary (T5) is not referenced, and insert load operations at the exits from the loop if the
temporary is live on exit. Second, optimize the placement of the loads and stores by moving the loads as
far as possible toward the beginning of the program and the stores toward the end of the program. This
gives us the code in Figure 2.22.
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Figure 2.22 Load and Store Operations for Spilling

After the LIMIT phase, the compiler knows that the resources are available at each point to perform the

operations described in the program flow graph. The remaining phases of the compiler will preserve this
invariant whenever they perform a transformation.
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2.9 Instruction Scheduling

A modern RISC processor is implemented using what is called a pipeline architecture. This means that
each operation is divided into multiple stages, with each stage taking one machine cycle to complete.
Because each stage takes one cycle, a new instruction may start on each cycle, but it may not complete
for some number of cycles after its initiation. Unfortunately, most techniques for code generation attempt
to use a value as soon after its calculation is initiated as possible. This was the preferred technique on
earlier machines because it limited the number of registers that were needed. However, this order slows
down the execution on a RISC processor, since the value is not immediately available. The instruction
scheduler reorders the instructions to initiate instructions earlier than their use so that the processor will
not be delayed.

Recent RISC processors can start the initiation of several instructions simultaneously. These instructions
must be independent and use different function units within the processor. The scheduler must form these
groups of instructions, called packets. All instructions in a packet can be issued simultaneously.

The original instruction schedulers scheduled instructions within a single block, possibly taking into
account the instructions that ended the preceding blocks. They did this by creating a data structure called
the instruction dependence graph, which contained the operations as nodes and directed edges between
two nodes if the first operation must be executed before the second operation. The edges were labeled
with the number of machine cycles that must occur between the execution of the two instructions. The
scheduler then performed a topological sort of the instruction dependence graph specialized to minimize
the total number of cycles that the ordering of instructions required.

Scheduling limited to blocks does not use the multiple instruction-issue character of RISC processors
effectively. Blocks are usually small, and each instruction within them depends on some other
instructions in the block. Consider the problem of instruction scheduling as filling in a matrix, with the
number of columns being the number of instructions that can be issued simultaneously and the number of
rows being the number of machine cycles it takes to execute the block. Block scheduling will fill in this
matrix sparsely: There will be many empty slots, indicating that the multiple-issue character of the
machine is not being used. This is particularly a problem for load, store, multiply, divide, or floating
point operations which take many cycles to execute. RISC processors usually implement other integer
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operations in one cycle. There are several techniques incorporated in the compiler for ameliorating this
problem:

 Unroll: Earlier phases of the compiler have performed loop unrolling, which increases the size
of blocks, giving the block scheduler more chance to schedule the instructions together.
 Superblock: When there is a point in a loop where two paths join, it is difficult to move
instructions from after the join point to before it. When the succeeding block in the loop is short,
the compiler has earlier made a copy of the block so that the joined path is replaced by two
blocks, joined only at the head of the loop. This transformation is applied at the same time that
loop unrolling is performed.

» Move: The normal optimization techniques used for code motion attempt to keep temporaries
live for as short a sequence of instructions as is possible. When scheduling, we will schedule each
block separately. For blocks that are executed frequently, we will repeat the code motion
algorithm, but allow the motion of instructions from one block to another even when there is no
decrease in execution of the instruction.

 Trace: Consider the most frequently executed block, B, determined either by heuristics or
profile information. Find the maximal path including B that involves the most frequently executed
predecessors and successors of each block on the path. Now consider this path as if it were a
block, with some modifications to the dependence graphs to ensure proper actions at condition
branches. See if there are any instructions on this path that can be moved to earlier (or later)
blocks.

« Software, pipelining: In the special case of a loop that is a single block, software pipelining can
give a good schedule. Software pipelining uses dependence information provided by the
dependence graph (not the instruction dependence graph) to overlap the schedules for one
iteration of the loop with the following iterations. This does not decrease the length of time that
each iteration takes (it may increase it), but allows the iterations to start more quickly, thereby
decreasing the execution time of the whole loop. Blocks and loops that can be software pipelined
are identified before other scheduling occurs and are handled separately.

During instruction scheduling, some peephole optimization occurs. It can happen during scheduling that
instructions that were not adjacent have become adjacent, creating situations such as a store followed by
an immediate load from the same location. It is therefore effective to apply some of the peephole
optimizations again.
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When instruction scheduling is completed, the order of instructions is fixed and cannot be changed
without executing the instruction scheduler again. In that case, it may only be necessary to rerun the
block scheduler.

We have shrunk the register requirements so the values in registers can fit in the physical registers at
each point in the flow graph. Now we will reorder the instructions to satisfy the instruction-scheduling
constraints of the target processor. We will assume a processor such as the Alpha 21164, which can issue
four instructions on each clock cycle. Many of the integer instructions take one cycle to complete. Most
floating point operations take four cycles to complete. In any given cycle one can issue one or two load
instructions or a single store instruction. A store instruction cannot be issued in the same cycle as a load
instruction. We will assume that the other integer operations can be filled in as necessary. Instructions
such as integer multiply or floating point divide take a large number of cycles.

The problem is to group the instructions into one to four instruction packets such that all the instructions
in a packet can be issued simultaneously. The compiler also reorders the instructions in an attempt not to
use an operand until a number of cycles following the issue of the instruction that computes it to ensure
that the value is available.

The load and store operations take a variable amount of time, depending on the load on the memory bus
and whether the values are in caches. In the Alpha 21164, there are two caches on the processor chip, and
most systems have a further large cache on the processor board. A load instruction takes two cycles for
the cache nearest the processor, eight cycles in the next cache, twenty cycles in the board cache, and a
long time if data is in memory. Furthermore, the processor contains hardware to optimize the loading of
consecutive memory locations. If two load operations are each issued on two consecutive cycles to
consecutive memory locations, the processor will optimize the use of the memory bus.

It is important that useless branches are at least not counted when determining scheduling. This is
marked with an asterisk (*) in the cycle location.

There are hardware bypasses so that a compare instruction and a branch instruction can be issued in the
same cycle. Note that the assignment to SI9 (in B1) can be moved forward eliminating an extra slot. Also
note that B12 is only reached from the preceding block, so NOPs do not need to be inserted.
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Now note that the inner loop starting with block B2 consists of three blocks. The first block is the
conditional test and the third block updates the iterations. All but one of the computations from the third
block can be moved to the first block (hoisting), while the remaining instructions can be scheduled more
effectively by making a copy of the iteration block (super block scheduling).

Note that NOPS were inserted in the middle of the code. The machine picks up four instructions at a
time, aligned on 16-byte boundaries. It must initiate all instructions in this packet of four instructions
before going on to the next packet. To execute the instructions in the smallest amount of time, we must
maximize the number of independent instructions in each packet. The resulting scheduled instructions are
shown in Figure 2.23.

—
T ma
iTE =
===
=

i
-t
== -

i

Figure 2.23 Scheduled Instructions
2.10 Register Allocation

The register allocation phase modifies the program flow graph by replacing temporaries with physical
registers. There are categories of techniques for performing register allocation on the complete
procedure. One is based on graph-coloring algorithms. A graph is formed with each temporary being a
node. An undirected edge exists between two nodes if they cannot occupy the same physical register.
Register allocation reduces to coloring this graph, where each color represents a different physical
register.

The alternative method for register allocation is based on bin packing, where there is a bin for each
physical register. Two temporaries can be allocated to the same bin if there is no point in the program
where both need to have a value.

Each of these techniques has advantages and disadvantages. The graph-coloring technique is superior
when considering conditional branching. Since the bin-packing algorithms typically approximate the set
of points where a temporary holds a value by some data structure where it is easy to take intersections of
the sets, bin packing does not perform as well as graph coloring with branching.

Bin packing performs better than graph coloring when straight-line code is considered. Since bin packing
can traverse the blocks as it performs assignment, it can determine when the same register can be reused
immediately. It can also use information about the operations in the program and their order to decide
which temporaries to store to memory when too many registers are needed (this can happen even though
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the LIMIT phase has been executed). Graph coloring has no concept of locality of reference.

This compiler’s register allocator combines the two techniques. Because LIMIT has been run, little
register spilling will occur. Graph coloring is therefore used to assign registers to temporaries that hold
values at the beginning of some block, in other words, in those situations in which graph coloring
performs best. A modification of bin packing suggested by Hendron (1993) will be used to schedule
temporaries within each block.

Previous attempts at splitting the temporaries that are live at the beginning of blocks (global allocation)
from those that are live within a block (local allocation) have encountered difficulties because
performing either global or local allocation before the other could affect the quality of register allocation.
This problem is resolved by the existence of the LIMIT phase, which has performed spilling of global
temporaries before either allocation occurs.

Note that the presence of LIMIT has eliminated most register spilling during register allocation. It does
not eliminate all of it. There can be secondary effects of conditional branching that can cause register
spilling during either graph coloring or bin packing. This situation is unavoidable, since optimal register
allocation is NP-complete. In the situations in which spilling occurs, the register allocator will insert the
required store and load operations.
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Now we apply register allocation to the example. First the compiler must recompute the points where
temporaries are live, because instruction scheduling has changed these points (see Figure 2.24). Note that
the scheduler has introduced a redefinition of a local register, so we need to either do superblock
scheduling earlier (when we don’t know that it will pay off) or redo right number of names, or locally
redo right number of names when we create these problems. We only deal with the integer registers here;
the floating point registers in this case are simple because they all interfere and so one assigns each to a
different register.

After the lifetime information for temporaries has been computed, the compiler uses a graph-coloring
algorithm to allocate the registers that are live at the beginning of some block, or registers which are
directly assigned to a physical register. The ones assigned to a physical register are preallocated;
however, they must be considered here to avoid any accidental assignments. The physical registers will
be named using $0, $1, and so on. Note that the temporaries corresponding to formal parameters are
assigned to physical registers specified by the calling standard for the target machine. The globally
assigned registers are listed in Figure 2.25, together with the kind of register. In this case all of the
registers needed are called scratch registers, which means that the value in the register need not be saved
and restored if the register is used in the procedure.
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Figure 2.24 Live Ranges after Scheduling

Fi (L T

Tl 157 PRimbsdsd

Tl 158 Fermsaiar

L) 15F  Piimkilad

Ll 130 Arwwirk Bepiasas
T dik e LOE P Ll
™ 171 Eivwick helatar
i itk HEEs ML
T 43F  Eidwish Biyjlaier
Tk 191 Brewes mE A
wri AEIE  Pldlii Buialdd
2r GF13 Fleacibsy deraich
gy rppeer  dbb P R
RiduiE BdBibis 097 Ermin Gdderam

file:///D|/Convert/Building_an_Optimizing_Compiler/ch02/060-063.html (1 of 3) [10/17/2003 1:04:56 AM]


javascript:displayWindow('images/02-24.jpg',200,226)
javascript:displayWindow('images/02-24.jpg',200,226)
javascript:displayWindow('images/02-25.jpg',300,228)

Building an Optimizing Compiler:Compiler Structure

Figure 2.25 Global Register Assignments

After that the registers that are live at the beginning of any block have been allocated, we can allocate the
symbolic registers that are live only within a single block. In this small example there are only a few. In
realistic programs, these registers greatly outnumber the globally live registers. These local registers are
listed in Figure 2.26. A register is reused if at all possible because the compiler wants to minimize the
number of registers used. This avoids the necessity of using a register that is not a scratch register and
would thus require that a store operation be inserted at the beginning of the procedure to save its value
and a load inserted at the exit to restore the value.

The resulting assembly code is shown in Figure 2.27. The temporaries have all been replaced by
registers. There were no spill instructions inserted, so the instruction schedules have not changed.

Figure 2.27 Code after Register Allocation

2.11 Rescheduling

The next phase is a rescheduling phase, which is only executed if the register allocator has changed the
set of instructions that are executed. This can happen due to either a peephole optimization or the
introduction of spill code. Neither of these occurred in this case, so the rescheduling operation is ignored.

If the register allocator generated any instructions, that is, register spilling occurred, then the instruction
scheduler is executed again, but in this case only on blocks where load or store operations have been
inserted.

2.12 Forming the Object Module

At last, we near the completion of our task. The instructions have been chosen; the registers have been
chosen. All that remains is the clerical task of translating this information and the information about
globally allocated data into an object module. This task includes the insertion of debugging information
for the debugger. Since our task has been long, I am making light of this last phase. It involves little
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intricate technology. However, it is complex because the structures of object modules are complex and
undocumented. Every document that | have seen describing object module form has serious errors. So
this project involves experimental computer science—trying to determine what the linker is expecting.
This phase will also generate the assembly language listing for the listing file, if it is requested.
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Chapter 3
Graphs

A prime prerequisite for being a compiler writer is being a “data structure junkie.” One must live,
breathe, and love data structures, so we will not provide the usual complete list of all background
mathematics that usually appears in a compiler book. We assume that you have access to any one of a
number of data structure or introductory compiler writing books, such as Lorho (1984) or Fischer and
LeBlanc (1988). This design assumes that you are familiar with the following topics, which are
addressed by each of the data structure books referenced.

» Equivalence relations and partitions. The compiler frequently computes equivalence relations
or partitions sets. An equivalence relation is frequently represented as a partition: All of the
elements that are mutually equivalent are grouped together into a set of elements. Hence the
whole set can be represented by a set of disjoint sets of elements. Partitions are frequently
implemented as UNION/FIND data structures. This approach was pioneered by Tarjan (1975).

« Partial ordering relations on sets. A compiler contains a number of explicit and implicit partial
orderings. Operands must be computed before the expression for which they are an operand, for
example. The compiler must be able to represent these relations.

The topics that are addressed in this chapter concern graphs. A number of the data structures within a
compiler—the flow graph and the call graph, for instance—are represented as directed graphs.
Undirected graphs are used to represent the interference relationship for register allocation. Thus these
topics are addressed here to the extent that the theory is used in implementing the compiler. The topics
addressed are as follows:

Data structures for implementing directed and undirected graphs
Depth-first search and the classification of edges in a directed graph
Dominators, postdominators, and dominance frontiers

Computing loops in a graph

Representing sets
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3.1 Directed Graphs

A directed graph consists of a set of nodes N and a set of edges E. Each edge has a node that is its tail,
and a node that is its head. Some books define an edge to be an ordered pair of nodes—tail and head;
however, this makes the description of the compiler more difficult. It is possible to have two edges with
the same tail and head. In a flow graph containing a C switch statement or a Pascal case statement, two
different alternatives that have the same statement bodies will create two edges having identical tails and
heads.

For a flow graph, there are two distinguished nodes. Entry is a node with no predecessors, representing
the point where the procedure starts. Exit is a node with no successors, where the procedure exits. All
execution paths start at Entry; all finite paths representing a complete execution end at Exit. Note that
infinite-length paths are possible, representing infinite loops in the flow graph.

If a procedure has multiple entry points, as is possible in Fortran, then a single Entry node is created that
contains no instructions, with an edge between Entry and each actual entry point. When instructions are
emitted, the procedure entry code is inserted at each of the entry points. The existence of the single Entry
node ensures that the program analysis will be performed correctly. Similarly, if there are multiple nodes
with no successors, then a single Exit node is created, with an edge between each original exit node and
Exit.

Each execution of the procedure is represented by a path from Entry to Exit. Unfortunately, the converse
IS not true: there are paths from Entry to Exit that do not represent paths of execution; for example, if
there are two conditional branches in the flow graph branching on the same conditional expression. In
this case the second conditional branch can only branch in the same direction as the first one. The path
that branches the other way is not possible. The compiler cannot identify this situation, so it assumes that
all paths are possible. This assumption decreases the amount of optimization.

The graph in Figure 3.1 represents the flow graph for the running example. Node BO is the Entry node.
Node B5 is the Exit node. Any execution path in the procedure is represented as a path between B0 and
B5.

Directed graphs are implemented using two different techniques. Usually the nodes are represented as
some data structure and the edges are represented by adding two attributes to each node: the set of
successors and the set of predecessors of the node. The set of successors of X is the set of nodes Y that
are heads of edges, with the tail X. Similarly, the set of predecessors of X is the set of nodes P that are the
tails of edges, with head X. Thus in Figure 3.1 the predecessors of B3 are B2 and B6, while the
successors of B3 are B2 and B4. Note that any node X satisfies the relation: X is a predecessor of each of
its successors, and X is a successor of each of its predecessors. These sets are implemented as linked lists,
with the head of the list contained in the data structure representing the node.
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Figure 3.1 Flow Graph for MAXCOL

An alternative technique is to assign an integer to each node and represent each edge as a bit in a Boolean
matrix. If there is an edge between nodes X and Y, then the bit in the position EDGE[X,Y] is set to true;
otherwise, it is false.

The successor/predecessor representation has the advantage that it is efficient to scan through all the
edges leaving or entering a node. It is also space efficient if the directed graph is sparse, as is true of most
flow graphs. The matrix approach is more efficient in building the directed graph because it is easier to
check whether a particular node is already a successor. We will use a derivative of the matrix approach
during register allocation; otherwise, the successor/predecessor implementation will be used.

In an undirected graph the edges do not have a sense of direction. One is not traveling from one node to
another in a particular direction. Instead, undirected graphs represent the idea of neighbors: two nodes
are adjacent or they are not. The techniques for implementing directed graphs are used to implement
undirected graphs: for each edge {X,Y} in the undirected graph, build two edges (Y,X) and (Y,X) in the
implementation. In the matrix form, this means that the matrix is symmetric and only half of the matrix
need be stored.
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3.2 Depth-First Search

There is no natural order for visiting nodes in a directed (or undirected) graph. Most algorithms in the
compiler visit the nodes in the following fashion. The compiler starts by processing some node, usually
Entry if it is dealing with the flow graph.

Assume the compiler is processing some node X. At some point during the processing of X, the compiler
will process the successors of X. Of course, the compiler does not want to process the same node multiple
times, so it will not process a successor of X if it has already been processed. Since the algorithm is
implemented recursively, when X has undergone processing it will return as a procedure so that the
predecessor that started the processing of X can continue processing.

If the directed graph is a tree, the depth-first search corresponds to the walk of a tree. Recall that in
walking a tree there are the concepts of a preorder walk, in which a node is processed before its
successors are processed; a postorder walk, in which the node’s children are processed before the actual
work is done on a node; and an in-order walk, in which the work for a node is performed between the
processing of the children. A similar idea is available with directed graphs.

During a depth-first search, the algorithm may assign a number to the node in the order in which nodes
are visited. This is called the preorder. If work is performed on the nodes in this order, it corresponds to
the preorder walk of a tree. Similarly, a number is assigned to nodes in the order in which they are
completed. This is called the postorder and corresponds to a postorder walk in a tree. An important order
Is the reverse postorder, since it corresponds to performing work on a node before processing any of its
successors (except possibly for loops).

The depth-first walk algorithm is given in Figure 3.2. This walk classifies the edges into four categories.
An edge (n,S) is a tree edge if S has not been processed when n decides to process this successor. In other
words, this is the first time that S is being visited. Since each node can have only one predecessor that
visits it the first time, the nodes together with the tree edges form a tree or a forest of trees, as shown in
Figure 3.3. This tree structure is important because it allows the compiler to use the concepts of tree
walks to move around the flow graph.
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Figure 3.2 Basic Depth-First Search Algorithm

The second category consists of back edges. These are edges that go from a node to another node that has
started processing but has not finished yet. If you look at the algorithm, this means that the edge must go
back to a node that is still being processed by a procedure that directly or recursively calls this one: In
implementation terms, the head of the edge is a node still on the stack, and that node will be an ancestor
of the current node in the depth-first tree. This edge goes from a node to an ancestor in the tree formed of
tree edges.

5o |

B&

B3

Figure 3.3 Depth-First Search Tree for MAXCOL

The opposite of backward edges are forward edges. A forward edge from n to S is an edge that goes from
a node to its successor; however, the successor has already been processed. In fact, it was processed as a
result of the processing of some other successor of n. So this is an edge that goes from an ancestor to a
descendent in the depth-first search tree.

No other edge can go up the tree or down the tree, so the fourth category of edges must go from one
subtree to another. These are called cross edges. The classification of the edges for Figure 3.3 is given in
Table 3.1.

Table 3.1Classification of Graph Edges
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Tree Edges Forward Edges Cross Edges Back Edges

BO—®Bl1 BO—®™B5 B6—®™B3 B3—®™B2
Bl1—#B2 Bl1—#B4 B4—#B1
B2 —#B3
B2 —®™B6
B3—#B4
B4 —#B5

There is a fundamental principle involving depth-first search. Consider a depth-first search that starts at
some node n. The set of nodes that will be visited by the depth-first search is exactly the set of nodes that
are on some path leaving n. Why? Clearly any node visited by a depth-first search walk is on some path,
because the tree edges form a path. Conversely, consider any finite path starting at n. The next node is a
successor of n. In a depth-first search, each successor of a node is either visited from that node or has
already been visited. Since we are starting at n, this successor is visited from n. The edge from n to that
successor can be replaced by a path of tree nodes from n to the successor. Now consider the next node: It
is either visited from the second node on the path or has already been visited from the first node. Again a
path of tree nodes can be spliced in to create a path from n to the second node. This process can continue
until the last node on the path is reached, at which point we have a path of tree edges from n to the end
node, indicating that the end node is reached by a depth-first search.

| recommend that you become comfortable with the depth-first search. It is the basis of all other
algorithms in the compiler.
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3.3 Dominator Relation

Since the program flow graph is used to describe the execution path through the program and
optimization is a technique for avoiding repeating work that has already been done, we need some
concept of one block always being before another on all execution paths. This concept is called
dominance.

Definition Dominator: Consider a program flow graph (N, Entry, Exit), a block B1
dominates block B2 if and only if every path from Entry to B2 contains B1.

Most of the properties of dominators are determined by two kinds of arguments, each based on the
definition of dominance. The first form of argument reasons by considering all paths from Entry to a
block B. Since the dominator is on all such paths, properties of dominators can be determined. The
second form of argument reasons by cutting and pasting paths. Consider a path from Entry to B that does
not contain a particular block D. This path can be extended to a path to another block by adding an edge
at the end; the new path still does not go through D.

Lemma D1: Each block B dominates itself, since B is on each path from S to B.
Lemma D2: If B2 dominates B1 and B1 dominates B, then B2 dominates B.

Proof Consider each path from S to B. By definition of dominance, B1 is on each path.
Consider the subpath from S to B1. By definition of dominance, B2 is on this path;
hence, B2 is on each path from S to B. That is, B2 dominates B.

Lemma D3: If B2 dominates B, and B1 dominates B, then either B2 dominates B1 or B1
dominates B2. In other words, the dominators of B form a linearly ordered
sequence. The dominator that follows B in this list is called the immediate
dominator of B and is written idom(B).
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Proof Consider any path from Entry to B. If the path is not simple, throw away any loops
in the path to make a simple path. Since B2 and B1 both dominate B, they are both
on the path. Consider the case where B2 follows B1 on the path (the case where B1
follows B2 is symmetric). We claim that B1 dominates B2. To show a
contradiction, assume that B1 does not dominate B2. Then there must be a path
from S to B2 that does not contain B1. Replace the first part of the original path
from S to B with this new path from S to B2. We now have a path to B that does not
contain B1, contradicting the hypothesis that B1 dominates B.

Lemma D3 implies that the dominator relation can be represented as a tree in which the parent of each
block is its immediate dominator. We show this tree in Figure 3.4 for the program MAXCOL. Note that
the entry node, B0, has no immediate dominator, so it is the root of the tree. Any node that has only one
predecessor has the predecessor as its dominator because each path must come through the predecessor.
Thus, B2 is the immediate dominator of B6.

The history of computing the dominator relationship is interesting. Early algorithms were slow. One of
the first practical algorithms was designed by Purdom (1972). To compute the blocks dominated by B, he
pretended that B was not in the graph. He then performed a depth-first search. The blocks that had
become unreachable could only be reached by going through B, so B must dominate them. In the
program flow graph in Figure 3.1, if we pretend that B2 is not in the flow graph then blocks B2, B3, and
B6 are not reachable, so B2 dominates these three nodes. B2 does not dominate B4 since there is an
alternate path from B1 to B4 that avoids B2.

Bl
IEA
=4 ||
EX
| B2 | 56 |

Figure 3.4 Dominator Tree for MAXCOL

The current algorithm for computing the tree of immediate dominators was developed by Lengauer and
Tarjan (1979). This algorithm comes in two forms, with runtime complexity either O(|N|In|N|) or O(|N|
a(IN])), depending on the complexity of the implementation. | do not state the algorithm here, as it is too
complex to describe accurately in the space available. Instead | will give a rationalization for the
algorithm and then a simpler algorithm by Purdom that is easy to understand.

Tarjan calculates the dominator using information gathered during a depth-first search of the program
flow graph. Note that the dominator of B is an ancestor of B in any depth-first search tree. Frequently it
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will be the immediate parent in the depth-first search tree. When will it not be so? When there is an edge
entering B that is not a tree edge in the depth-first search tree. Such an edge means that there is another
way to get to B besides the path in the tree. In that case the closest block that can be a dominator of B is
the common ancestor in the tree of B and the tail of the edge. But now things get complex, because that
block may not be a dominator because of another edge entering one of the blocks in between.

To resolve these problems and store the information we have been discussing, Tarjan defines a quantity
called the semi-dominator and computes these values in a bottom-up walk of the depth-first search tree.
Having these values, he can easily compute the actual dominators.
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The compiler stores the dominator information as a tree. The nodes of the tree are the blocks in the flow
graph; however, the tree edges are not necessarily the flow graph edges. The parent of any node in the
tree is its immediate dominator. For each block B, the compiler keeps two attributes that store the
dominator information:

 idom(B) is the immediate dominator of B.

« children(B) is the set of blocks for which B is the immediate dominator. Logically this
information is a set; however, it is useful to store the information as a linked list, with the
successors of B that are dominated by B coming first in the list. This will make some of the later
optimization algorithms work more efficiently.

This tree structure results in the tree in Figure 3.4 for the running example.

The compiler also needs to know the common dominator of a set of blocks. The common dominator is
the block that dominates each element of the set of blocks and is dominated by every other block that
dominates each of the blocks of the set. This common dominator can be computed as shown in Figure
3.5. The algorithm works by observing that if Z does not dominate B, and B does not dominate Z, then
one can walk up the dominator tree from one of them to find a block that dominates both.

Although it computes the common dominator of a pair, this algorithm is adequate for any set of blocks
because the common dominator can be found by pairwise computing the common dominator of blocks.

Here is a simple algorithm for computing dominators. Recall the basic principle of depth-first searches.
A depth-first search that visits a node n also visits all nodes reachable from n. Now pretend that n is not
in the graph by pretending that the edges entering n do not exist and that n does not exist. Perform a
depth-first search starting at Entry on this mutilated graph. Which nodes are not reachable from Entry
that were reachable before? A node is not reachable if there is no path to it. If it was reachable before,
this means that n is on every path to these unreachable nodes. In other words, n is a dominator of all of
those unreachable nodes. Thus, the algorithm consists of performing a single depth-first search to
determine all of the reachable nodes. Discard the unreachable nodes. Now for each node n in the flow
graph, pretend that n is not in the graph and repeat the depth-first search starting at Entry. The nodes that
are not reachable are the nodes dominated by n.
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Figure 3.5 Computing the Common Dominator

3.4 Postdominators

If the compiler is moving computations to earlier points in the flow graph, then the dominator
information gives the safe positions in the flow graph to which to move the computation. The compiler
can move the computation to an earlier block that is on each path to the current block. The opposite
information is also useful. If the compiler wants to move a computation to a later point, where can it be
moved? This question leads to the idea of postdominance, which has similar characteristics to dominance
with the exception that the path goes from B to Exit rather than from Entry to B, and successor blocks are
used rather than predecessor blocks.

Definition Postdominance: A block X postdominates a block B if and only if each path from
B to Exit contains the block X.

The corresponding properties of dominance hold. In fact, postdominance is just the dominance relation
on the reverse graph, where successors are replaced by predecessors and vice versa. The same algorithms
can be used to compute postdominance by computing dominance on the reversed graph. The information
can be stored as a tree, as shown in Figure 3.6. The attributes for postdominance are as follows:

» pdom(B) represents the immediate postdominator of B and represents the parent of B in the
postdominator tree.

 pchildren(B) represents the set of blocks that are immediately postdominated by B. Again this is
represented as a set implemented as a linked list with the predecessors of B that are also
dominated by B occurring first in the list.

Figure 3.6 Postdominator Tree for MAXCOL
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3.5 Dominance Frontier

Consider any path leaving a block B. Initially the blocks on the path are dominated by B. Eventually a
block is reached that is not dominated by B. All of the blocks after that are not dominated by B unless the
path returns to B. The first block that is not dominated by B is significant because it indicates the range of
blocks over which B dominates and indicates the limits of optimizations using information about the
computations in B. Considering all paths, the set of blocks possessing this characteristic is called the
dominance frontier of B.

Definition Dominance Frontier: The dominance frontier DF(B) of a block B is the set of
all blocks C such that B dominates a predecessor of C but either B equals C or B
does not dominate C.

The definition is a restatement of the preceding motivation. If C is a block such that a predecessor is
dominated by B and C is not, then there is a path from B to the predecessor. Add the edge from that
predecessor to C and one has a path matching the motivation. Clearly a path matching the motivation
introduces a block into the dominance frontier.

Note that the block B is handled specially. A loop starting at B, going through blocks dominated by B and
returning to B, introduces B into the dominance frontier.

One way of visualizing the dominance frontier is to consider the subtree of the dominator tree rooted at
B. A flow graph edge going from one of the blocks in this subtree to a block outside the subtree
introduces the block outside the subtree into the dominance frontier. For the sake of this discussion, B is
considered to be outside the subtree.

This gives an easy algorithm for computing the dominance frontier. Walk the dominator tree bottom-up,
computing the dominance frontier for children before the parent. When considering a block B, there are
two cases:
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A flow graph edge leaving B that does not lead to a child of B in the dominator tree must be to a
block that is either equal to B or not dominated by B. (If the block were dominated by B, then B
must be its immediate dominator, so it would be a child.) Such blocks belong in the dominance
frontier of B.

 Consider a block X in the dominance frontier of one of the children C of B, in the dominator
tree. If X is not equal to B and is not dominated by B, then it is in the dominance frontier of B. If X
is dominated by B, then B must be its immediate dominator, since it is not dominated by C. Since
B is not its own immediate dominator, the two conditions can be combined to give the algorithm
shown in Figure 3.7.

Figure 3.7 Computing the Dominance Frontier

Table 3.2Dominance Frontiers

Block Dominance Frontier
B3 B2 B4

B6 B3

B2 B2 B4

B4 B1 B5

Bl B1 B5

B5 ]

BO %)

Consider the running example for which the dominator tree is in Figure 3.1. The bottom-up dominator
tree walk first visits blocks B3, B6, B2, B4, B1, B5, and then BO. As the walk is performed, the
dominance frontier is computed (see Table 3.2). In the calculation of the dominance frontier, B3 finds B2
and B4 in its dominance frontier because they are successors and are not dominated by B3. Similarly, B6
finds B3 in its dominance frontier. During the computation of the dominance frontier of B2, B3 will not
be in its dominance frontier because B2 dominates B3. However, B2 is in the dominance frontier of B2.
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3.6 Control Dependence

The compiler needs to know the conditions under which the execution of one block leads to the
execution of another. The ideas described here are derived from Cytron (1987, 1990 and 1991). Consider
two blocks B and X. When does B control the execution of X?

« If B has only one successor block, it does not control the execution of anything. Once B starts
executing, it completes executing and goes on to the single next block. Thus B must have multiple
successors to be considered a block that controls the execution of X.

« B must have some path leaving it that leads to the Exit block and avoids X. If this were not true,
then the execution of B would always lead to the execution of X. In other words, B cannot be
postdominated by X.

» B must have some path leaving it that leads to X. Again, failure of this condition would violate
the idea of control. Thus B can be viewed as a switch: Some way out leads to X, and another way
out avoids X.

B should be the latest block that has this characteristic. It’s true that an earlier block may
similarly control the execution of X; however, that block can be viewed as controlling the
execution of B, which then controls the execution of X.

All of these conditions can be summarized in the following definition.

Definition Control Dependence: A block X is control dependent on a block B if and only if
There is a non-empty path from B to X such that X postdominates each block on
the path except B.

X is either the same as B, or X does not postdominate B.

The first condition summarizes the idea of B being the latest block that has a path to X. If there were a
later block satisfying the other condition, then X would not postdominate all blocks on the path. The
second condition together with the existence of the path in the first condition gives the switching
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condition. There is one way through B that might avoid X, and another way that must lead to X.
A more precise definition of control dependence is desired because the compiler needs to know

something about the switching mechanism—uwhich edge out of B must lead to X. This involves an
addition to the definition that records the edge involved.

Definition Control Dependence: A block X is control dependent on an edge (B,S) if and
only if
There is a non-empty path from B to X starting with the edge (B,S) such that X
postdominates each block on the path except B.

X is either the same as B, or X does not postdominate B.

The definition is unfortunate in that it uses some unknown path. To have an effective way of computing
control dependence, the compiler needs a more general condition. Fortunately, the condition is the same
as X postdominating S.

Observation If B and X are blocks in a flow graph where there is a path from every block to
Exit, then X postdominates a successor S of B if and only if there is a non-null
path from B to X through S such that X postdominates every node after B on the
path.

Proof Assume the path exists. Since S is on the path, S is postdominated by X.
Conversely, assume that S is postdominated by X. There is some path from S to
Exit. Since S is postdominated by X, X is on this path. Cut the path short at X and
add B and the edge from B to S to the beginning of the path. This gives a path
from B to X. Each node except B on the path is postdominated by X. If it isn’t,
then there is a path from it to Exit and by cutting the original path and pasting in
the new path, one can create a path from S to Exit that avoids X, a contradiction.
So we have the path.

Observation If S is a successor of B, then either S is the postdominator of B or pdom(S) is
postdominated by pdom(B).

Proof Assume S is not the postdominator of B. Consider any path from S to Exit. It can
be extended to a path from B to Exit. Thus, pdom(B) is on this path. Thus
pdom(B) is not equal to S and is on each path from S to Exit, so itis a
postdominator of S. Thus it must postdominate pdom(S).

file:///D|/Convert/Building_an_Optimizing_Compiler/ch03/077-079.html (2 of 3) [10/17/2003 1:05:02 AM]



Building an Optimizing Compiler:Graphs

Previous | Table of Contents [Next

Copyright © Digital Press

file:///D|/Convert/Building_an_Optimizing_Compiler/ch03/077-079.html (3 of 3) [10/17/2003 1:05:02 AM]


file:///reference/digitalp00001.html

Building an Optimizing Compiler:Graphs

Building an Optimizing Compiler

by Bob Morgan

Digital Press

ISBN: 155558179x Pub Date: 12/01/97

Previous | Table of Contents [Next

Now we can give an algorithm for computing the control dependence relation. Look at the definition: the
edge (B,S) is given. What blocks are control dependent on this edge? Any block that postdominates S and
does not postdominate B. These are the nodes in the postdominator tree starting at S, pdom(S),
pdom(pdom(S)), and stopping at but not including pdom(B). The second observation indicates that,
traversing the tree upward through the parents (postdominators), the algorithm must reach pdom(B)
eventually.

The algorithm in Figure 3.8 can be applied to each edge. Actually, it needs to be applied to each edge
that leaves a block with multiple successors, since a block with a single successor can have no blocks
control dependent on it. For our running example this gives the results in Table 3.3. Sometimes the
compiler needs the transpose of this information: for each block, on what blocks it is control dependent.
In that case the same algorithm is used; however, the information is stored indexed by the dependent
block rather than by the edge leading to the dependence.

Figure 3.8 Calculating Control Dependence

Table 3.3Control Dependences for the Example Program

Blocks Control

Edge (B,S) Dependent on (B,S)
(B0O,B5) 1)

(BO,B1) B1, B4

(B1,B4) 1)

(B1,B2) B2, B3

(B2,B3) 1)
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(B2,B6) B6
(B3,B2) @
(B3,B4) @
(B4,B1) B1, B4
(B4,B5) @

3.7 Loops and the Loop Tree

An optimizing compiler attempts to decrease the number of computations that occur during program
execution. Thus the compiler needs to determine those areas of the program that are executed most often
and concentrate on improving them. Determining the areas of frequent execution at compile time is not
practical or possible. However, parts of the program that execute repeatedly, that is, loops, are the best
candidates. So the compiler builds a data structure to represent information about loops.

Definition Loop: A loop is a set of blocks, L, such that if BO, B1 O L then there is a path
from BO to B1 and a path from B1 to BO. A block B [J L is an entry block if B
has a predecessor that is not in L. A block B I L is an exit block if B has a
successor that is not in L.

In other words, a loop is a region of the program where the path of execution can cycle from one block to
another repeatedly. An entry block is a block where execution can enter the loop, and an exit block is a
block where execution can leave the loop. Since we assume that there is some path of execution from
Entry to any block, each loop must have at least one entry block.

The interesting loops are loops with a single entry block, or single-entry loops. For such loops the entry
block must dominate all other blocks in the loop. If there is a path that avoids the entry block, then there
must be a first block in the loop on the path and this block would be another entry.

The algorithm for computing the blocks in a loop for a single-entry loop is given in Figure 3.9. Consider
any block B. The only way that it can be the entry block for a single-entry loop is if there is a back edge
in some depth-first search walk of the flow graph. Consider the alternative: An entry block in a loop must
be involved in a cyclic path and be the first block in the cycle that is reached in the walk. Thus, all of the
blocks in the cycle will be descendents of B in the walk, and the edge leading back to B is a back edge.

The idea behind the algorithm is walking the loop backward. Consider each predecessor of B coming
from a back edge. Walk the graph backward from these predecessors. Eventually the walk leads back to
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B, and all of the blocks in the loop will be visited. The algorithm implements this idea using a work-list
algorithm. The set Queue contains all blocks that are known to be in the loop but whose predecessors
have not been processed yet. Each block is inserted into Queue at most once because Queue [J Loop and
the insertion occurs only when the block is not already in Loop.

Later we will generalize this algorithm to handle multiple-entry loops, and use it to compute the nesting
structure of loops. The compiler not only needs to know the loops, but needs to know which loops are
contained in other loops. Note that the way the compiler computes loops will ensure that the loops
identified are either disjoint (no blocks in common) or nested (one loop is a subset of another). The
nesting structure is used for three purposes:

1. The compiler uses the loop nest during dependence-based optimization since these phases
transform loops to improve program performance.

2. The loop nests are used to perform one kind of strength reduction. VValues modified in a regular
fashion during each iteration of a loop may be computed in a more effective way; for example,
multiplications can be replaced by repeated additions.

3. The loop nests are used during register allocation to find points in the program where values
may be stored or loaded from memory.
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Figure 3.9 Template of Code for Finding a Loop
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3.7.1 Infinite Loops

A loop may have no exit blocks, in which case it is an infinite loop. Such loops can occur in real
programs. Consider a program that is using the hardware interrupt or signaling mechanism to perform all
actions, while the main program remains in a loop. The programmer may write this loop as an infinite
loop. These are structural infinite loops. There may be other infinite loops that the compiler cannot
determine due to the actual computations that occur during the execution of the program.

Many of the global optimization algorithms can give incorrect results when these structural infinite loops
exist. These algorithms are all based on the idea of decreasing the number of computations on paths from
Entry to Exit. If there is a block where there is no such path, the algorithms may perform in unexpected
ways.

A simple device eliminates these structural infinite loops: Insert an edge from one of the blocks in the
loop to Exit. Of course, the edge will never be traversed, because there are no instructions in the blocks
that can make the program flow along that edge. However, the optimization algorithms will now perform

properly.

How can the compiler identify these infinite loops? A block is in an infinite loop if there is no path from
it to Exit. So perform a depth-first search on the reverse of the flow graph (consider the predecessors to
be the successors and vice versa). The blocks that are not visited are the blocks in infinite loops. After the
depth-first search, choose one of the blocks that is not visited, create the edge between it and Exit, and
then attempt to continue the depth-first search using this edge. Figure 3.10 describes this algorithm.
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Figure 3.10 Eliminating Infinite Loops
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3.7.2 Single- and Multiple-Entry Loops

As noted earlier, loops can be classified by the number of entry blocks. A loop with no entry blocks is
unreachable: The instructions cannot be executed, so those loops are already eliminated. Single-entry
loops are the most interesting for the optimizer. Multiple-entry loops must be handled because they might
occur in programs; however, the optimization techniques will not be as effective. Many of the
optimization techniques only work with single-entry loops.!

1Single-entry loops are frequently called reducible loops. Multiple-entry loops are called irreducible
loops. This compiler uses techniques that optimize single-entry loops. Multiple-entry loops are identified
to ensure that no incorrect translations occur.

How does the compiler identify multiple-entry loops? A loop is a union of cyclic paths. Consider one of
these cyclic paths. During a depth-first search there is a first block B on the path that is visited. All other
blocks on the cycle are descendants of B, and the cyclic edge entering B is a back edge. Thus a loop with
entry B is found as in Figure 3.9 by considering these predecessors and walking the loop backward. The
problem with a multiple-entry loop is that this walk can escape from the loop (walking backward through
one of the other entries) and eventually lead all the way back to Entry. This means that B does not
dominate these predecessors. Consider the multiple-entry loop {C,D} in Figure 3.11. If the depth-first
search visits the blocks in order {A,C,D,E,B}, then C is the first block in the loop that is visited. The edge
(D,C) is a back edge. When walking backward from D one visits {D,C,B,A}.

To avoid this problem, the algorithm must be modified to stop the backward walk. But where should the
walk stop? The compiler wants a single-entry region, even if it is not a loop. So stop the walk at the
block that is closest to the loop and which dominates all of the blocks in the loop. This will be the block
that dominates the header B and all of B’s predecessors that reach B by a back edge. Recall that B
dominates itself. Using this information, the algorithm in Figure 3.9 is modified to the algorithm in
Figure 3.12.

The algorithm implements the ideas that we have just discussed. Note that the body of the loop is not
computed at this point when a multiple-entry loop is encountered. Instead, the set of blocks that lead to
the loop body are recorded in an attribute called generators. This set will be initialized to empty before
the identification of loops is started. A block that has a non-empty generators set is the immediate
dominator of a multiple-entry loop. The loop body is not recognized immediately for the following
reasons:

» We will see shortly that this whole process is embedded in a depth-first search in which the loop
starting at a block is recognized after all blocks later in the walk have been processed. Recording
the generators set allows this to be true for multiple-entry loops as well.

» More than one multiple-entry loop can have the same immediate dominator. The aggregate will
be considered one loop for the process of forming the loop nest.
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» We will be able to handle loops contained in this loop more effectively. Consider a multiple-
entry loop with entry blocks B1 and B2 with common denominator C. By delaying the
identification of the loop until all successors have been identified, a loop that occurs on the path
between C and B1 or C and B2, will be handled as a nested loop. If this subloop is a single-entry
loop, then the full set of optimizations can be applied to it. If the body of the multiple-entry loop

were created when either B1 or B2 was processed, then these subloops would not be considered a
separate loop.

S a—

ey

— -
| e

Figure 3.12 Identifying a General Loop

We will make a slight modification to FIND_LOOP in order to build a tree of tested loops, but this is the
basic algorithm. When a single-entry loop is found, the loop body is identified. When a multiple-entry
loop is found, the identification of the loop body is delayed until the processing of the block Z. This loop
body is identified by the existence of a non-empty generators(Z) set.

Later descriptions will divide FIND_LOOP into two procedures: The first finds the generators and the

second finds the body of the loop. The procedure is split so that finding the body of a multiple-entry loop
can use the same code as that for single-entry loops.
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3.7.3 Computing the Loop Tree

The compiler needs the complete set of loops and the relationship among the loops. This information is
stored as a tree. Loop L1 isa child of L2 if and only if L1 is a subset of L2 and is not contained in any
other loop contained in L2. The algorithm used to compute loops finds the maximum loop with a
particular header block. This ensures that two loops are either disjoint or one is contained in the other, a
condition allowing the loops to be organized in a tree called the loop tree. There are four kinds of nodes
in the loop tree:

1. The leaves of the tree are the blocks in the flow graph.

2. Single-entry loops are one form of interior node in the tree.

3. Multiple-entry loops organized as a single-entry region are the other form of interior node.
Recall that a multiple-entry loop includes the loop together with all tree nodes back from the loop
to the common dominator of all of the blocks in the loop.

4. The root of the tree is a special node representing the whole flow graph. It will not be a loop or
block because the flow graph includes two blocks: Entry with no predecessors and Exit with no
successors. These blocks cannot be involved in a loop and are not a single block.

To record the tree structure, attributes are added to blocks and the other nodes in the loop tree:

» LoopParent(X) is an attribute indicating which node in the tree this node is a child of. It also
indicates which loop a loop or block is contained in. LoopParent(X) can also be the root,
indicating that this block or loop is not contained in another loop. The LoopParent of the root is
NIL.

» LoopContains(X) is the set of nodes in the region represented by X. For a block, it is NIL. For a
loop or the root, it is the set of children of X in the tree that is the same as the set of loops or
blocks directly contained in this region.

» LoopEntry(X) is the block that is the entry to this region.

These attributes allow free moment around the loop tree with full knowledge of which blocks and loops
are contained in other blocks and loops.
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As the loop tree is built, each loop is identified and entered in the tree. Once it has been entered in the
tree it is handled as a single entity. Its interior structure is not viewed again during the construction
process. The algorithm FIND_LOOP is modified to handle tree nodes and augmented to be part of the
complete construction process. To form this tree, we need two modifications to the algorithm:

1. Consider the blocks in the graph in postorder. Due to the structure of a depth-first search, a
single-entry loop contained in another single-entry loop has an entry block with a smaller
postorder number. So by visiting blocks in postorder, the inner loops are identified before the
outer loops.

2. Once identified, handle each loop as if it were a single block. This is done by keeping a datum
for each block or loop indicating which block or loop it is contained in (if any). When one finds a
block, use this datum to scan outward to the outermost identified loop that contains this block.

The compiler now has the complete algorithm. In Figure 3.13 we have the final version of FIND LOOP,
which computes the blocks, called the generators, that determine all the other blocks in the loop. Ifitis a
single-entry loop, FIND _LOOP goes ahead and builds the node in the loop tree using FIND_BODY.

FIND_BODY computes the set of nodes in the body of the loop by moving backward from the blocks
that generate the loop to the header (see Figure 3.14). All blocks in between are in the loop. It builds the
node in the loop tree and fills in all of the attributes. Care must be taken to ensure the distinction between
blocks and already computed loops. The loop header and predecessors are always blocks. Before
inserting a node into the loop tree, the compiler must find the largest enclosing loop that has already been
computed. This is done by LoopAncestor, shown in Figure 3.15.

Figure 3.13 Computing Generators of a Loop

LoopAncestor finds the outermost processed loop that contains the current loop or block by scanning up
the LoopParent attribute until it finds a node that has a null entry. Since this attribute is updated to a non-
null entry by FIND_BODY as soon as an enclosing loop has been identified, this algorithm gives the
outermost existing loop.

Finally, the main procedure for computing loops can be described (see Figure 3.16).
Calculate_Loop_Tree first performs a depth-first search to compute the postorder numbers for each node
and the back edges. The implementation may perform this depth-first walk at the same time that the rest
of the algorithm is being computed—just embed the calculations in a recursive depth-first search
procedure after a node is visited.

First Calculate_Loop_Tree initializes all of the attributes for blocks. These could be initialized when the
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blocks were created; however, the step is described here for completeness. Then the procedure visits the
blocks in postorder. If the generators set is non-empty, then the block is the head of a multiple-entry
loop, so that loop is built. Then the procedure checks to see if the block is the head of a single-entry loop.
Note that a block may be the head of both a multiple-entry loop and a single-entry loop. In that case, the
compiler builds a nest of two loops: the multiple-entry loop is the innermost loop and the single-entry
loop is the outer loop. The loop tree for our standing example is given in Figure 3.17.
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Figure 3.17 Loop Tree for Example Program
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3.8 Implementing Sets of Integers

Throughout the compiler, sets of integers are needed. We have already seen one example: the set of nodes
visited during a depth-first search. There are multiple ways to implement these sets, depending on the
requirements for computing and using them.

One form of set consists of nodes where the construction algorithm guarantees that we do not attempt to
add the same node twice or that the set is small so the search time through the set is small. In this case,
sets may be implemented as linked lists. Insertion consists of adding an element to the beginning or end
of the list. Deletion consists of removing the element from the linked list, and searching consists of a scan
of the list. This form of set is efficient for scanning all of the elements in the set, but is not efficient for
insertions or deletions.

Another approach is to use bit vectors to represent sets. Assign a unique integer value to each possible
element in the universe of values, starting with 0. Then represent any set as an array of bits whose length
Is the maximum number assigned plus 1. This technique gives an efficient implementation of insertion
(index to find the bit and set it), deletion (index to find the bit and clear it), union, intersection, and search
(index to find the bit and check if it is 1). If the sets are not sparse this approach is highly efficient on
space. However, it is not efficient for scanning through all the elements in a set. Unfortunately, scanning
IS a common activity in the compiler.

An alternative technique was developed by Preston Briggs (1993), based on a hint in Aho, Hopcroft, and
Ullman (1974). This technique is highly efficient in all of the operations; however, it takes an order of
magnitude more space than bit vectors, so one does not want to use it if one needs to have a large number
of sets.

Consider our universe of integers, numbered from 0 to MAX. Allocate two arrays of MAX + 1 elements
with initial INDEX[0:MAX] and VALUE[0:MAX] and a single integer variable, NEXTPLACTE.

The idea behind the algorithm (Figure 3.18) is that the elements of the set are stored in VALUE, starting at
the bottom and piling them up in adjacent slots. As an element X is added to VALUE, the index in VALUE
where it is stored is placed in INDEX(X). Otherwise the values of INDEX are not initialized. Curiously,
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the algorithm is dealing with uninitialized data.

How does the algorithm know when a value is in the set? It checks the corresponding INDEX(X). That
information may be uninitialized, so first it checks to see if the value is in range. If it is not, then the
element is not in the set. If the value is in range it can still be uninitialized, so it checks the corresponding
value in the VALUE array. If the value matches, then the algorithm knows that the element is in the set.

To remove an element from the set is a bit trickier. The algorithm must run in a constant time so it cannot
remove an element and move the others down. Instead it moves the last element in the set down into the
position that is being vacated. At the same time it adjusts its INDEX value and decreases the counter
NEXTPLACE.

Figure 3.18 Efficient Set Algorithm

The basic operations occur in O(1) time, and scanning the elements in the set is proportional to the actual
elements in the set. It does take more space, though. Consider an implementation where the elements are
represented by 16-bit numbers. Thus there are 32 bits for each element, indicating that this representation
takes 32 times as much space as a bit-vector approach. Thus this representation works well when only a
small number of sets (usually one or two) is necessary.
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Chapter 4
Flow Graph

The front end of the compiler has completed its task. It has created an abstract syntax tree and symbol
table for each of the procedures being compiled. Now the compiler builds a different representation—one
used for improving the procedures (optimization), code generation, instruction scheduling, and register
allocation. First, we must make two decisions concerning the structure of the compiler.

4.1 How Are Procedures Stored?

Optimizing compilers use a range of different data structures to represent procedures being compiled. At
one extreme the procedure may be represented as a tree; at the other, each procedure may be represented
as a sequence of machine instructions for the target machine.

Representing the procedure as a tree makes the original structure of the procedure clear. A procedure
consists of declarations, statements, and expressions. Each of these contains components of the same
form, so it is natural to represent the procedure as a tree. If a tree structure is used, an abstract syntax tree
Is the natural choice. The abstract syntax tree is the natural organization for tree-oriented optimization
algorithms such as algebraic identities and Sethi-Ullman register numbering.

Representing the procedure as machine instructions makes many optimization algorithms easier. They
can each be individually optimized and positioned. The fastest instruction sequence does not naturally
match the abstract syntax tree. The individual instructions must be easily manipulated—created,
replicated, deleted, or moved—uwhich is more easily done with a sequence of instructions rather than a
tree.

The compiler presented here gains the advantages of both trees and instruction sequences. A procedure is
represented as a flow graph of sequences of instructions for an abstract RISC processor. This abstract
machine has an inexhaustible supply of registers, called temporaries. There is a standard set of
instructions for manipulating integers, long integers, floating point numbers, and double-precision
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numbers.

When tree-oriented algorithms are applicable, the procedure representation is translated into a form
called static single assignment (SSA) form. When the compiler translates the flow graph into SSA form,
the compiler reconstructs the expression trees, which can then be used in the tree-oriented algorithms.
The compiler also computes the nested loops of the procedure, providing the tree structure of statements
most needed in the compiler.

The assembly language procedure is not represented as text. As noted in chapter 2, it is stored as a
directed graph called the flow graph. The flow graph is a variant of the idea of flow charts originally used
in programming. The flow graph has the following components:

» The instructions are much like machine instructions in an abstract RISC processor. Each
Instruction consists of an operation code (opcode) representing the operation being performed, a
set of input operands that are used to perform the operation indicated by the opcode, and a set of
output targets that name the values being changed.

» The individual instructions have operands that are constants or temporaries. The set of
temporaries is an arbitrarily large set of objects, like the physical registers in a real processor.
Each temporary holds a value for some portion of the execution of the procedure. Some set of
instructions will evaluate an expression and place it in the target temporary. Instructions that use
this value as an operand reference the temporary as an operand.

 The instructions form a program in the same manner that assembly code on a real processor
forms a program. The execution starts with the first instruction. Instructions are executed in turn
until a branching instruction is found. The instructions are broken into sequences called blocks.
The only instruction that is the destination of a branching instruction is the first instruction in a
block. The only branching instructions are the last instructions in the block. At the end of the
block there is a branching instruction representing each possible path out of the block.

» The blocks form a flow graph having the blocks as nodes in the graph. The edges between the
blocks represent the possible execution paths leaving the block. The edge (B1, B2) indicates that
there is some way that the execution of the procedure can travel directly from B1 to B2. The flow
graph will have two distinguished nodes: the start block Entry and the exit block Exit.

Consider Figure 4.1 as a fragment of a procedure representing the computation of the statement A=B +
C * (B+A). The computation is broken into individual computations. Before the value of a variable can
be referenced, the address of the variable must be loaded and a load operation for the variable must be
executed. All values are loaded into temporaries. For typographical purposes integer temporaries are
represented by an integer prefixed with a letter T. Note that the addresses of A and B are used twice and
loaded only once. The name A indicates the constant address of variable A. The value of B is used twice
and loaded only once. These are examples of redundant expression elimination. The individual operation
names (or opcodes) will be described later: iLDC stands for load integer constant, iSLD stands for load
integer value from static memory, IADD is integer add, iMUL is integer multiply, and iSST is integer
store into static memory. These names are taken from the Massive Scalar Compiler Project at Rice
University.
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For an example involving loops and branches consider Figure 4.2, which computes an integer power of
2. The argument is the power, and it controls the number of times the loop is executed. The flow graph
for this program (Figure 4.3) shows a number of characteristics of flow graphs. Each flow graph starts
with a special pseudo-instruction called prolog and ends with the instruction epilog. These represent
whatever computations need to be performed at the beginning and end of the procedure. Note that prolog
takes as an argument the actual parameters of the procedure. In this case the single parameter is i, which
Is stored in temporary T1.
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Figure 4.1 Representation of A=B + C * (B+A)

int powerd(int i) {
imt p = L;
while (L > 0 {
=L~ pr
i=i=1;:
1
return p

Figure 4.2 Sample Program

The program flow graph is divided into blocks labeled B0, B1, and B2. They each begin a block in the
directed flow graph. The block consists of some number of computational instructions followed by
branching instructions that end the block. The conditional branching instructions iBCOND are assumed
to be two-way branches, so there is no implied flow of execution from one block to another. The first
label is the address to branch to if the condition is true. The second label is branched to if the condition is
false.
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Figure 4.3 Program Flow Graph for Sample in Figure 4.2
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Figure 4.4 Directed Flow Graph for Sample

Similarly, branching instructions are included to represent control flow. The intermediate representation
Is represented as a directed graph, G = (N,E), where each node B [ N, called a block, represents a
sequence of computational instructions followed by a branching statement (see Figure 4.4). The operands
of the branching instructions include the blocks that are possible destinations of the branches. An edge
(P,F) O E occurs when there is a branching statement in P containing a possible destination, F.

4.2 Should the Representation Be Lowered?

Initially the procedure is represented by an abstract syntax tree. It is then translated into the flow graph.
As the compiler processes the flow graph, it is gradually modified until the flow graph represents an
explicit set of target machine instructions. The gradual modification process is called lowering. Thus
each phase of the compiler lowers the flow graph, gradually removing source language details and
replacing them with target machine instruction details.

Initially the flow graph represents a sequence of computations; however, the level of detail is the same
level as the abstract syntax tree. Many computations, such as addition and multiplication, are simple to
begin with, so there is no lowering of detail. More complex operations, such as array references and
function calls, are represented at an abstract level.

Consider a subscripted array reference, A[l,J], where A is an integer N x N array with the subscripts
running between 1 and N. Such an array is implemented as a block of storage. The individual elements of
the array are referenced using the subscript formula (for Fortran),
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address(A[1,J]) = address(A) + sizeof(int)*(N*(J-1) + (I1-1))

When the compiler is building the flow graph, it could translate an array reference into a collection of
additions and multiplications as given by this formula; however, most information about the actual array
reference would be lost. Compiler phases needing information about array references would get
imprecise information.

Instead, the compiler creates array load operations and store operations where the array name, subscripts,
and bounds are listed as operands. After all uses of array information have occurred, the compiler
translates these operations into the simpler arithmetic and memory references implied by the formula. In
other words, the level of the flow graph is lowered by replacing higher-level operations by simpler
instruction-level operations.

Procedure and function calls are also gradually lowered. There are individual operators for function calls
and procedure calls. Initially the arguments of each of these are the name of the subroutine (or an
expression evaluating the name of the subroutine) and a list of actual arguments. The details of a
procedure call for the target machine are ignored. The level of a function or procedure call is kept at the
level of the original program. After interprocedural analysis and in-lining has occurred, the procedure
calls are replaced by a set of instructions that compute the effect of calling and returning from the
subroutine.

Code generation, or translation into the instructions of the target machine, is a special case of lowering
the level. The program flow graph mimics the structure of an assembly language program for an abstract
RISC processor. There is a one-to-one correspondence between many of the instructions of the target
machine and the operations allowed in the flow graph. If there are operations in the target machine that
cannot be represented by a single instruction in the flow graph, then these operations are added to the set
of operators. Before the final optimization phases, the flow graph is lowered to only use operators that
have a single-instruction representation in the target machine.

Some of the generic operations in the flow graph can be viewed as macros to be expanded. The load and
store byte operations on early Alpha processors are an example of this. A multiple-instruction sequence
Is required to load a byte. If the exact sequence of instructions is generated initially, then some
optimizations are lost. Similarly, multiplication by a constant needs to be expanded into a sequence of
shifts and adds. Both of these are examples of gradual lowering since each should not be lowered
initially, but needs to be done before the final optimization phases so that the individual instructions can
be optimized.
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Some operations on the target machine may represent several instructions in the flow graph. The easiest
example is a load or store operation that takes two arguments, a register and a constant. The address is
computed as the sum of the register and constant. This load operation performs two computations: the addition
and the fetch. In the initial flow graph, these are represented as two distinct instructions. Before the final
optimization phases, these two operations are folded together into a single instruction.

The compiler assumes that all flow of control is explicitly represented in the flow graph. In other words, the
flow of control is not gradually lowered. Some flow of control can be hidden within instructions that are not yet
lowered, such as maximum and minimum operations. However, each instruction has a set of inputs and outputs,
with flow entering the beginning of the instruction and (except for branching instructions) executing the next
instruction at the end.

4.3 Building the Flow Graph

This section describes the code in the compiler for translating the abstract syntax tree into the flow graph. First
we will consider two situations, an expression and a loop; then we will describe the structure of the code in the
compiler.

Consider the statement we discussed earlier: A =B + C * (B+A). The corresponding abstract syntax tree is given
in Figure 4.5. The tree is represented (as before) by the root being the leftmost entry and each child being
indented beneath its parent. The tree will be annotated with type information, which is not noted. The
transcriptions such as symbol(“A”) are used to indicate a symbol node with a pointer to the symbol table for the
variable A.

aymBal{E
prcwnLuasis
um
Twt il

-.r-u.u':l.']

H L
L L

Figure 4.5 Abstract Syntax Tree for A=B + C * (B+A)

Recall that the semantics of a language can be divided into two distinct sets of rules: static and dynamic
semantics. Static semantics are the set of rules that describe the structural rules of the language (beyond the
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lexical and parsing structure). For example, a static semantic rule is that a symbol must be declared before it is
used. The dynamic semantics are the set of rules that describe the effect of each part of the language. It is part
of the dynamic semantics to state that the operands of an addition must be evaluated before the addition is
performed (and possibly to specify the order of evaluation of the operands), or that the meaning of an
assignment statement is to evaluate the address of the left-hand side, evaluate the value of the right-hand side,
and store the value from the right side into the address specified by the left side. These rules are all part of the
language standard or language specification.!

IMany compiler writers, including myself, have made a good living from the fact that many people are not aware
of dynamic semantics. Many programmers think that a language is defined if a grammar has been written. The
grammar is only a small part of the total effort. The real effort comes in describing the static and dynamic
semantics and the interactions between distinct dynamic semantic rules.

The language definitions describe the dynamic semantics in terms of the language construct and its operands.
To build an assignment statement, the compiler must be able to build the operands. This tree-structured
approach is true of each construct. This fact suggests that the flow graph can be built during a bottom-up walk
of the abstract syntax tree in which the children are walked in an order described by the dynamic semantics of
the language construct. For some tree nodes, such as loops, a bottom-up tree walk is inadequate: Instructions
may be generated before, during, and after the generation of the children.

The tree walk is a little more complex than a simple bottom-up tree walk because different operations may be
needed depending on the context in which the tree occurs. There are several contexts that occur, but more may
be needed depending on the complexity of the language:

Value Context: When the operand is an expression, the compiler will want to walk the expression and
create a temporary that contains the corresponding value. As a side effect, it inserts instructions in the
flow graph. This walk is implemented by calling the procedure

temporary value walk(ast * node)

NoValue Context: When the subtree is a statement or an expression used as a statement, the compiler
walks the subtree creating instructions to represent the effect of the subtree, but no temporary is created
to hold any final value. There is an opportunity for optimization here—the only instructions that the
compiler needs to generate are those representing side effects of the subtree, so some instructions need
not be generated. This walk is implemented by calling the procedure

void novalue walk(ast * node)

Flow Value Context: If the subtree represents an expression used to determine branching operations,
then more efficient instructions can be generated if the compiler walks the subtree generating the testing
and branching instructions together. The procedure implementing the flow context walk requires an
added two parameters: the blocks to be branched to if the conditional expression is true and if it is false:
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void flow_walk(ast * node, block * true_block, block * false_block)

Size Context: If the size of the data represented by the subtree is needed, the subtree must be walked to
generate a temporary holding the value of the size of the data. The calling sequence for this procedure is
identical to the value context routine. It just computes a different value—the size:

temporary size_context(ast * node)

Before discussing the structure of each of these tree-walking procedures (they are all similar), we must discuss
the structure of the support routines used to build the flow graph. These procedures are structured so that the
tree walks will read much like dynamic semantic rules.
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4.3.1 Support Procedures for Initially Building the Flow Graph

There are two different sets of support procedures to manipulate the flow graph. The general set of
procedures allows the insertion of any instruction in any block, and allows the insertion of one block
between two other blocks on edges. Effectively, this is a completely general set of procedures for
manipulating the flow graph. These procedures (to be described later) are used to build the following set
of procedures for creating the flow graph initially.

The set of procedures for initially building the flow graph work much as an assembly language
programmer works. One instruction is added to the flow graph at a time. A block starts after a conditional
branch instruction or at an instruction that is branched to. Until a new block, is started all instructions
created are added to the end of the current block. When the current block is completed, a new block is
started.

The support procedures do differentiate between creating a block and starting a block. A block may be
created at any time. When it is created, the block can be involved in conditional branching instructions,
that is, it can be branched to. However, the block has yet to have instructions inserted in it. Later the
compiler can start the block. This makes the block the current block and all instructions are added to it
until the next block is started.

Why this distinction? The compiler must be able to create a conditional branch instruction to a block that
Is not yet in the flow graph. Consider an if statement. When building the conditional branch instruction,
neither the then part or the else part has been processed yet. So the compiler creates the blocks for the
start of the then part and else part before creating the conditional branch instruction. Later it starts
putting instructions into the then part when that part is processed. This can lead to blocks that remain
empty. A separate phase of the compiler will eliminate these empty blocks.

Here are the support procedures for building the initial flow graph:

initialize_graph: This procedure creates an empty data structure for the flow graph and
associated tables. It builds two blocks, Entry and EXxit, that are the start and exit blocks for the
flow graph. It then makes the Entry block the current block so the initial instructions will be in
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that block.

create_block: This function creates and initializes a new block to be an empty block. It returns
the block as the return value.

start_block: This procedure takes a block as argument and makes it the current block. All future
instructions will be added to the end of this block.

xxx_instruct: For each class of instructions in the flow graph a separate support procedure is
present to create an instruction of that form. The arguments to the instruction are the operation
code, the input constants or temporaries, and the output temporaries. For the load and store
instructions, further data will be passed indicating what storage locations these instructions might
modify.

cond_instruct: The conditional branching instructions have support procedures that terminate the
current block and insert edges from the current block to each of the destinations of the conditional
branching instruction, thus keeping the edges of the flow graph up-to-date. The arguments for this
support procedure are the opcode, the temporary for the value being tested, the destination when
the condition is true, and the destination when the condition is false.

uncond_instruct: The unconditional branch instruction has only one argument: the block to be
branched to. It terminates the current block and inserts the edge between the current block and the
destination of the branch.

new_temporary: This procedure takes an enumeration class as an argument indicating which
register class is being referenced. It then initializes the data structures for a temporary and returns
it as its value.

There are also support procedures for dealing with temporaries. We assume an infinite supply of
temporaries, SO we create a new one at any point that a temporary is needed. However, we need some
conventions concerning the use of temporaries to ease the work of later optimization phases. Later,
during the Limit phase, some of these conventions will be relaxed.

Basic Convention: Each time a formal expression, such as B + A is computed, it is computed in the same
temporary. Why? The algorithms for code motion and eliminating redundant expressions need to know
where a value is stored. If one instance of B + A is known to be redundant, the compiler wants to delete
that computation. To do so, it must search the rest of the flow graph looking for all points where B + A is
computed and copying the result into a temporary to be used in place of the redundant expression.
Instead, the compiler always computes B + A in the same temporary so that a redundant computation
need only be deleted.

The compiler ensures that the convention is met by building a data structure called the formal temporary
table,2 consisting of records of the operation code and inputs for each instruction together with the
temporary for the result. There is a unique entry in the formal temporary table even if the instruction
occurs multiple times in the flow graph.

2This is a simplification of an idea first suggested by Chow (1983) in his thesis and later used by
COMPASS in the COMPASS Compilier Engine. The COMPASS approach attempted to use this table for
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too many purposes.

Since operands are computed before an expression, temporaries used in expressions are computed before
they are used. When an instruction is about to be generated, its operation code and inputs are used as
keys in a table lookup on the formal temporary table. If the instruction has already been inserted, the
same temporary is used for the target. If this is a new instruction, a new record is inserted in the table
together with a new temporary.
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4.3.2 Handling Local Variables as Temporaries

Variables with a scope local to a procedure can be handled as temporaries if their addresses are not used.
In that case a temporary is used to hold the value of the local variable. The temporary is also used to
represent the tree, representing a fetch of the local variable in the abstract syntax tree. If the compiler
cannot keep the variable in a register, it will later store it in memory.

This optimization has two advantages. Better code will result if the compiler is optimistic about what it
keeps in registers. The elimination of loads and stores is harder than inserting them when they are
needed. Secondly, this decreases the size of the flow graph, making all optimizations run faster.

This leads to one of the few situations where the convention is that identical instructions with identical
inputs are the only instructions using the same target register. Consider two distinct assignmentsto i, i =i
+1andi=i* 3. Assume that the temporary corresponding to the local variable i is T1. The act of
assigning both of these values to i means that there are two distinct register-to-register copy operations
that have target T1.

In fact, the temporaries are divided into two distinct classes: the variable temporaries and the expression
temporaries. The expression temporaries satisfy the criteria stated above. All instructions that have one
of these as the target register have exactly the same form. The variable temporaries are all others.
Different optimizations are used on the two classes of instructions.

4.3.3 Structure of the Tree-Walking Routines

Now we have the infrastructure to describe the tree walks used to implement the flow graph. We will
discuss implementing five features: expressions, conditional expressions, branching expressions,
structured statements, and goto statements.

The structure of the tree-walking procedures can be seen by considering the tree-walking procedure for
expressions or nodes that return a value (Figure 4.6). All the other procedures are similar. The structure
of the procedure is a case statement in which there is one entry for each abstract syntax tree node that can
be represented in an expression (for the other tree-walking procedures, different nodes may be present
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and absent from the alternatives). There is an invariant assertion about each procedure that when a
subtree has been walked, all instructions associated with the subtree have been inserted in the flow graph.

Consider the alternative associated with the plus node in the abstract syntax tree. It first walks its children
in the order specified by the dynamic semantics of the language, in this case left to right. It then adds
instructions to the flow graph to perform the appropriate operations to simulate the dynamic semantics.

In this case, it checks the type of expression and generates either an integer, floating point, or double-
precision addition operation.

Figure 4.6 Structure of Expression Tree Walk

The procedure Binary_Instruct is called to generate any binary instructions. It takes an instruction
operator and two temporaries as operands, generating and returning the temporary of the result. This
procedure uses the formal temporary table to ensure that the same temporary is always the result when
the operator and operands are the same. It also inserts the instruction as the latest instruction in the
current block.

Now consider the entry for constants. Here there is no further tree to walk, so the tree-walking procedure
gets the data associated with the node (the constant value in this case) and generates an instruction that
has a single constant operand. Again it makes sure that the same temporary is used for all instances of the
same constant and that the instruction is inserted at the end of the current block.

If a node of the abstract syntax tree cannot return a value, it has no alternative in the case statement. If
such a node occurs where an expression is expected, the compiler will give a system error message. This
check is valuable because it checks the abstract syntax tree for legal structure at no overhead for correct
trees.

Processing Structured Statements

The NoValue_Walk procedure is used for statements. For statements like procedure calls, the processing
is similar to the processing of expressions. Branching and structured statements are different because
they can change the block in which the current instructions are being inserted.

Consider the case statement alternative for a while loop. Consider the flow graph that the compiler needs
to generate (Figure 4.7). This will describe the code in the alternative. The compiler will generate two
copies of the loop test. The first copy occurs in the current block to decide if the loop needs to be
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executed at all. If the loop needs to be executed, then the code for the body of the loop occurs. Another
copy of the loop test occurs at the end of the body to decide whether the loop needs to be executed again.
This is a more complex representation of the loop than appears in most textbooks. It is chosen to improve
the chances for moving code out of the loop.

Thus the compiler is going to start at least two blocks during the processing of a while loop. The first
block is the block for the body; the second block is the block following the while loop. We need the
second block because the compiler must be able to branch to the block following the loop.

E

Hw

Figure 4.7 Flow Graph for while Loop

Recall that a break statement can occur inside a while statement. To handle such a statement, the
translator maintains a stack containing the blocks that follow a looping statement. If a break statement
occurs, then it is implemented as a branch to the block at the top of this stack. With this information, we
can describe the code in NoValue_Walk corresponding to a while loop and break statement (see Figure
4.8).
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Conditional Branching Expressions

The short-circuit operators—logical AND, logical OR, and logical NOT—use special processing. A
logical AND is false if its first argument is false; otherwise, it has the same value as the second
argument. A logical OR is true if its first argument is true; otherwise, it has the same value as its second
argument. The flow_walk procedure implements these operations, together with conditional branching
due to comparisons.

The structure is similar to the other walks, as shown in Figure 4.9. It directly implements the above
description of the short-circuit operators. The beauty of this approach is that d’Morgan’s laws for logical
operations are automatically generated.

The comparison operations call the Value_Walk procedure to evaluate the binary operation, called a
comparison. The result is a Boolean value, which is then tested with the conditional branch instruction.

The opposite situation occurs in Value_Walk, which calls flow_walk to implement the short-circuit
logical AND and logical OR operations. It compiles them as if they were the conditional expression. In C
this would mean that A&&B is compiled as if it were the conditional expression (A&&B?1:0).

Figure 4.8 Fragment of Walking Statements

Conditional Expressions

Special note is made of conditional expressions because they are one of the few instances where an
expression computing a value can have operands or parts of operands in separate blocks. This is one of
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the reasons that a flow graph approach to the program representation was chosen rather than a tree
structure. The concept of a temporary does not depend on being in the same block, so an operand can be
computed in one block and used in another.

Consider a conditional expression, (E, ? E; : E;). The conditional expression E, is computed in the

current block. There are distinct blocks to compute the other operands. Where is the result value placed?
The compiler needs to generate a temporary to hold that value. That temporary must be handled as a
compiler-generated variable temporary. It cannot satisfy the requirement placed on expression
temporaries: The instructions for which it is the target register are not all identical.

Figure 4.9 Structure of flow_walk

What about the expression that has a conditional expression as an operand? No problem. The operands
may be computed in separate blocks, but that is not a problem for the compiler. The fragment in Figure
4.10, to be added to Value_Walk, will handle conditional expressions.

Figure 4.10 Implementing Conditional Expressions

goto Statements

goto statements can be a problem with some translation techniques. Here we have developed enough
structure that they are quite easy. There are two parts to the processing: the goto statement itself and the
label position. The following operations need to be performed:

A label is a symbol in the language. There needs to be a symbol table entry for the label, with a
field to hold the block that starts at that label.

A goto statement is translated into an unconditional branch to the block associated with the
label. If there is as yet no block associated with the label, use create_block to produce one.

« At the point at which the label occurs, insert an unconditional branch to the label in the current
block. Effectively end the previous block. Then perform start_block on the block associated with
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the label. If there is no block associated with the label, crate one using create_block.

This processing translates the goto statement into an unconditional branch.

4.4 Structure of Data

Many languages have the ability to initialize data at program initiation. This information is identified by
the compiler front end. This section describes how this information is stored so that it can be
communicated to the object module.

The compiler must keep a map of data to be included in the object module. This includes COMMON
blocks, external variables, and compiler-generated information. The data structure to represent this data
is relatively simple—there is only one serious problem.

The compiler adds to the symbol table an extra attribute storing the value to be saved. This data is
typically a linked list of values.

The one problem is data that can be repeated a large number of times. This can occur in COMMON
blocks or the initialization of arrays in C. A special repeat node must be added to linked lists of data. It
has two components: a repeat count and a list of the data to be repeated.

If the data is not constant, then the data is initialized by creating assignment statements in the flow graph.

4.5 Structure of Blocks

Each block is a list of instructions. Since the compiler is frequently inserting and deleting instructions,
the lists are implemented as doubly linked lists. The lists represent the order of execution of instructions
in the block. Thus a block is the assembly language equivalent of a label followed by a sequence of
instructions up to the next branch instruction or label.

In this compiler, a block always starts at a point that is branched to and is completed by a sequence of
branching instructions. There are no computational instructions between the instructions at the end of the
block. This allows the compiler to reorder and combine blocks.

Later, during instruction scheduling, the blocks will be transformed into a list of small sets of
instructions, called packets. On multiple-instruction-issue machines, the processor will issue a set of
instructions on each cycle. These packets represent the compiler’s knowledge of the set of instructions to
be issued.

Besides the instructions, each block holds the attributes that describe the edges in the flow graph. Hence
each block B holds two attributes: SUCC(B) and PRED(B). SUCC(B) is the set of blocks that can follow
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B during the execution of the flow graph. PRED(B) is the set of blocks that can precede B during the
execution of the program.
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4.6 Structure of Instructions
Each instruction, I, consists of the following components:

» An operator, represented as an element of an enumeration class, operation_type. There is one
name for each operation, whether it is a high-level operation that exists initially in the set of
instructions or a low-level operation created later during processing.

» A set of temporaries that are queried during the evaluation of the instruction. The values of
these temporaries are used to compute a value or effect for this instruction. The pseudo-code will
refer to this set of operands as Operands(l).

A set of temporaries that are certain to be modified by the instruction. Usually there is only one
such instruction. However, more registers may be modified by instructions that do not have a
simple effect. Thus a procedure or function call may have a larger set of registers that is modified.
The pseudo-code will refer to this set of registers as Target(l).

4.7 Structure of Program Flow Graph

Since the graph structure is actually implemented by the successor, SUCC, and predecessor, PRED,
attributes of the blocks, little information is left to be stored in the flow graph. There are the two
distinguished blocks: Entry and Exit. Entry is the single block in the flow graph with no predecessors and
represents the point where execution starts. Exit the single block with no successors and represents the
block where execution ends.

From an implementation point of view, all information about the compilation of this one procedure is
grouped together in one data structure as attributes of the flow graph. This is needed for interprocedural
analysis. The compiler must be able to store and retrieve all information about a procedure. This eases
the problem of compilation during the interprocedural analysis phases.

4.7.1 Critical Edges

Many of the transformations performed by the compiler need to place computations on an edge. Since

file:///D|/Convert/Building_an_Optimizing_Compiler/ch04/113-115.html (1 of 3) [10/17/2003 1:05:14 AM]



Building an Optimizing Compiler:Flow Graph

computations are only in blocks, the compiler must find an equivalent block for the inserted
computations. If the tail of the edge has only one successor, the computations can be inserted at the end
of the tail since the only way out of the tail is along that edge. If the target block of the edge has only one
predecessor the computations can be inserted at the beginning of the target since the only way to the
target is along that edge.

E\‘l (s

Figure 4.11 Dividing a Critical Edge

The only problems occur when the tail block of the edge has multiple successors and the target block has
multiple predecessors, as shown in Figure 4.11. Such an edge is called a critical edge. A critical edge can
be removed by creating an empty block and replacing the original edge by two edges: one edge with the
original source and the new block as target, and another with the new block as source and the original
target as target. The two new edges are not critical edges because one of them has a target with only one
predecessor and the other one has a source with a single successor.

4.7.2 Classification of Edges in the Flow Graph

The edges in the flow graph can be divided into three categories. Edges that occur because of conditional
branches to explicit blocks are called normal edges. These are the most frequently occurring edges and
the easiest to manipulate. If one needs to change the destination of the branch, it is a straightforward task
to modify the instruction and flow graph at the same time. If the compiler can determine that the branch
will never be taken or is always taken, then the compiler can change both the set of instructions in the
block and the flow graph structure.

For other edges in the program flow graph, the compiler cannot determine the destination of the branch
by inspecting the instruction that causes the branch. These edges are called abnormal edges. This occurs
with the setjmp/longjmp operations in C, some implementations of Fortran input/output (1/0), exception
handling, subroutine calls with nonlocal branching, and the C switch statement in some compilers. In all
of these cases a transfer of control may occur and there is no clear way in the set of instructions in the
block to determine where the transfer of control leads. The compiler has built a conservative set of
successor blocks to ensure that all possible control transfers are accounted for, but the compiler cannot
determine exactly where the branch will lead or, in some cases, whether the branch will occur at all.

Abnormal edges are a difficult problem for an optimizing compiler. Most optimizations need to place
computations on an edge, which means that critical edges must be removed. This is not possible for
abnormal edges because there is no way of modifying the contents of the blocks to reflect the existence
of a new block. Furthermore, most abnormal edges are critical edges. The compiler must implement all
transformations to avoid problems on abnormal edges.3
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3The COMPASS compiler team referred to this problem as the Mangy Dog Problem. It first was observed
during the implementation of the register allocator.

Another category of edges is impossible edges. Many program transformations assume that every block
is on some path from the Entry to the Exit blocks of the procedure being compiled. This will not happen
if the block is a member of a loop that has no exits. The compiler must add an edge from some block in
such a loop to the Exit block. These edges are less of a problem than abnormal edges, because they can

never be executed. If a transformation needs to insert a computation on such an edge, simply ignore the
insertion because the code will never be executed.
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4.8 Classifying Temporaries

Consider an expression (X+Y) * Z consisting of two operands, (X+Y) and Z. The compiler will initially
create a sequence of instructions that first evaluates X + Y, then Z, and finally (X+Y) * Z. When the
compiler moves (X+Y) * Z to an earlier point in the flow graph, it must first move (X+Y) and Z. Each of
the optimization algorithms uses information about the operands to choose the point to place (X+Y) * Z.
If the compiler moves the computation of the operands, the information concerning the whole expression
Is out-of-date. The information must be computed again.

To avoid computing this information again, the compiler enforces a convention on the flow graph that
guarantees that the optimization information will still be accurate. Each expression can be viewed as an
expression tree. The leaves are the memory loads or uses of temporaries that represent local variables and
special compiler temporaries. The interior nodes are the operators that make up the subexpressions
representing the operands. The compiler views the expression as a pure function (without side effects) of
the temporaries and memory locations that occur at the leaves of this expression, and not as a function of
its immediate operands. Thus, (X+Y) * Z is viewed as a function of X, Y, and Z. It is not viewed as a
function of (X+Y). Thus the evaluation of (X+Y) does not inhibit the movement of the complete
expression. The compiler depends on two characteristics of the compiler algorithms used here:

1. For any path from Entry to the evaluation of an expression and each operand, there is an
evaluation of the operand before the evaluation of the expression, and there are no instructions
between the two evaluations that might modify the value of the operand. In other words, there is
an evaluation of (X+Y) on each path from the entry to the evaluation of (X+Y) * Z, and there is no
instruction that might modify either X or Y between the two.

2. The compiler establishes a convention that each occurrence of an expression evaluates its
value in the same temporary. In our example, suppose X is evaluated in T1, Y is evaluated in T2, Z
Is evaluated in T3, (X+Y) is evaluated in T4, and (X+Y) * Z is evaluated in T5. Therefore the
instruction representing (X+Y) always represents T4 = T1 + T2, and the complete expression is
always represented by T5 =T4 * T3.

Not all temporaries can be put into this form. A temporary representing a local variable can have
different quantities evaluated into it. As we will see shortly, the temporary variables that are the
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destinations of load operations will also be used as the destination of a copy operation before a store into
the same location. For this reason temporaries are divided into two classes: those that satisfy the two
above conditions (expression temporaries) and those that do not satisfy one or more of the conditions
(variable temporaries).

To improve optimization, it is helpful to make the set of expression temporaries as large as possible. This
may require extra copy operations in the flow graph, which will be removed later during register
allocation. Consider the increment operation | = | + 1 of a variable temporary I. This can be implemented
as a single integer add operation in the flow graph, iADD |,#1=> |. Representing the flow graph in this
way violates the second condition on expression temporaries, and the expression | + 1 cannot be
optimized. Instead, the flow graph represents this computation as two instructions, iADD | #1=>T1 and
121 T1=>1. With this representation the expression | + 1 can be optimized.

For an expression temporary, the only way to change its value is to modify one of the variable
temporaries occurring at the leaves of the corresponding expression tree. So optimizers do not consider
an evaluation of one of the operands as changing the whole expression. Instead, the optimizer assumes
that the modification of one of the leaves modifies all expression temporaries that include that temporary
as one of the leaves of its expression tree. Thus the evaluation of a direct operand is not considered an
instruction that modifies the whole expression, and the two expressions can be optimized separately.

Independent optimization of expressions and operands assumes that the operands will be moved at least
as far back in the flow graph as the whole expression. This is true in the optimization techniques
described in this book; however, it is not true of all optimization techniques. Early versions of partial
redundancy elimination (Morel and Renvoise 1979) had this problem. It was later solved by (Drechsler
and Stodel 1988) and most later authors.
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4.9 Local Optimization Information

For efficiency of compilation, the flow graph is divided into blocks such that each block is a sequentially
executed sequence of instructions where if the first one is executed, then all of them are executed. For the
same efficiency reasons, the optimization computations are divided the same way. The optimization
information for blocks is called local information, and the optimization for paths through the flow graph
is called global information.

The difference in information for expression temporaries and variable temporaries concerns the
instructions that might modify each temporary. An instruction kills an expression temporary if it assigns
a new value to one of the temporaries that occurs at the leaves of the corresponding expression tree. An
instruction Kills a variable temporary if it modifies the temporary directly. Given the idea of a temporary
being killed by an instruction, we can now define the three forms of local optimization information.

Definition Local Information: Given a block B and a temporary T then

T is locally anticipated in B if there is an instruction in B that evaluates T and
there is no instruction preceding that instruction in B that might kill T.

T is locally available in B if there is an instruction in B that evaluates T and there
Is no instruction following that instruction in B that might kill T.

T is transparent in B if there is no instruction in B that might kill T. If T is not
transparent it is killed in B.

Each definition refers to the concept that one instruction might kill a temporary. For the direct
computational instructions, it is easy to determine if one instruction might kill a temporary—that
instruction can only modify the output temporaries. Other instructions, such as procedure calls, are more
complex. The inner workings of the procedure may not be available and even if available may not
indicate which temporaries are modified. In that case the compiler must make a conservative estimate. If
the compiler cannot deduce that a temporary is not killed, then it must assume that it is killed.
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The language definition may help the compiler make less conservative decisions about the temporaries
killed by an instruction. In Fortran, the language standard indicates that a legal program cannot modify
the same location using two different names. Thus the compiler can assume that a modification of a
formal parameter (dummy argument) does not modify any global variable, local variable, or other formal
parameter. In ANSI C, a pointer (when not a pointer to characters) cannot modify a storage location of a
different type.

In Figure 4.12 the temporaries | and J are variable temporaries, whereas the temporaries T1, T2, and T3
are expression temporaries. The expression | * J, or T1, is locally anticipated because it occurs in the
block and no preceding instructions can modify I or J. Similarly I + 1, or T2, is locally anticipated.
However, | * 5, or T3, is not locally anticipated since I is modified before the instruction. Similarly, T1
and T2 are not locally available, whereas T3 is.

Figure 4.12 Sample Block

As shown in Figure 4.13, the compiler computes the local information for each block by simulating the
execution of the block. Not knowing the value of temporaries and variables, it only keeps track of the
temporaries that are evaluated and killed. A temporary is locally anticipated if the first instruction that
evaluates the temporary precedes any instructions that kill the temporary. The compiler maintains a set of
all temporaries that have been killed by earlier instructions in the block, making the check for local
anticipatability straightforward.

The check for local availability is more difficult because the algorithm does not know which temporaries
are killed later in the block while it is simulating the execution. A temporary is locally available if it is
evaluated in the block and the temporary is not killed by a later instruction. The algorithm computes this
by assuming that a temporary is locally available whenever it is evaluated in the block. When a
temporary is Killed, it is added to the set of killed variables and is removed from the set of locally
available temporaries.

Figure 4.13 Computing Local Information
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To determine which temporaries might have been modified, the compiler needs a set for each temporary
called modifies. The set modifies(T) contains the set of temporaries and memory locations that are killed
by an instruction that has T as a target. For expression temporaries this set is empty. For variable
temporaries, it includes the set of all temporaries that have this temporary as a leaf of the corresponding
expression tree. The calculation of this set is described in the chapter on alias analysis (Chapter 6).
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Apply the algorithm to the block in Figure 4.12 (see Figure 4.13). While simulating the first instruction
T1 is added to both available and anticipated. Since T1 is an expression temporary, it does not kill any
other temporaries. Similarly, the second instruction adds T2 to both sets and no temporaries are killed.
The copy into | kills T1, T2, and any other temporaries that use | as an operand. They are both still
anticipated; however, they are removed from available because a killing instruction follows their
evaluation. However, T3 is added to available and is not later removed. | is both killed in the block and
available at the end of the block.

This algorithm may be the most expensive part of the optimizer. The algorithm is simple, but each
instruction must be simulated. Other algorithms will consider only the blocks and not the instructions.
The data structures need to be tuned for speed and space. Here are the data structure choices that | have
found most effective:

» The collection of sets, modifies(T), is large and not dense. For expression temporaries the set is
empty. Each of these sets should therefore be stored as a small array of temporaries.

» The sets available and anticipated occur only once; hence their size is not much of a factor.
However, elements are repeatedly being added and union and differences are being taken. The
compiler uses the Briggs set implementation technique to store these sets.

» The sets associated with each block, local_anticipated and local_available, should have an
efficient storage. The storage depends on how the global information is computed.

» The set killed(B) needs to be efficient. For each of the possible global optimization algorithms,
killed(B) is best stored as a bit vector.

4.10 Global Anticipated Information

Global information is used to move computations in the flow graph. In reality computations are not
moved. Instead, a copy of the computation is inserted at some point in the flow graph. It will then make
some other copies of the same computation unnecessary. Insertion and deletion is more effective than
moving code because more computations may be able to be deleted than just the copy involved in the
move.

To insert a copy of a computation in the flow graph, the compiler must guarantee that every path leaving
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the point of insertion leads to another point where the computation already occurs. Otherwise, the
compiler will be changing the flow graph to execute more instructions, or, much worse, it may introduce
an exceptional condition (such as floating overflow) into the flow graph that would not have occurred
otherwise. This leads to the definition of anticipation.

Definition Anticipation: A temporary T is anticipated at a point p in the flow graph if and
only if every path from p to Exit contains an instruction that evaluates T and is not
preceded on that path by an instruction that might kill T.

The example in Figure 4.14 shows that the temporary T is anticipated at the point p in the flow graph.
Each path leaving p goes through an occurrence of the computation computing T before reaching a point
where the value of T is killed.

Figure 4.14 Demonstrating Anticipation

Unfortunately, the definition does not give a direct algorithm for computing anticipation. There are two

algorithms in current use. Both will be presented here. The first one is given in most compiler textbooks.
The second one is the one recommended for this compiler. However, the time/ space trade-offs are such
that a switch to the first algorithm may be necessary to improve performance. In other words, the author
may be wrong.

To describe anticipation in terms of formulas, consider the Boolean variables ANTIN(B) and
ANTOUT(B). ANTIN(B) is true if and only if the temporary T is anticipated at the beginning of block B.
Correspondingly, ANTOUT(B) is true if and only if the temporary T is anticipated at the end of block B.
What does it mean for ANTOUT(B) to be true? Each path leaving B has a definition of T not preceded by
a modification of T. If one looks at the next block on the path, this means that ANTIN(S) is true for each
successor of B. Conversely, if ANTIN(S) is true for each successor then consider any path leaving B. The
next block in the path is one of the successors, S, and there are no computations between the end of B and
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S, so each path leaving B has a computation of T before any modification of T.
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Now consider a path leaving the beginning of B. This path must travel through B to reach the end of B.
Three different events can happen as the path traverses B:

1. There is no instruction in B that either defines T or kills T. In that case nothing happens to T in
the block, so the path satisfies the anticipation definition if and only if it satisfies the same
definition at the end of the block; in other words, ANTIN(B) = ANTOUT(B).

2. There is an instruction in B that defines T before any instruction that kills T, that is, T [
local_anticipation(B). Since any path starting at the beginning of the block must go through the
block, this means that ANTIN(B) = true.

3. There is an instruction B that kills T before there is any instruction that defines T. (Whether
there is an instruction in B that defines T is irrelevant.) Again the block itself is the start of each
path, so ANTIN(B) = false.

All of these conditions can be summarized in the set of equations in Figure 4.15. The equations are a
direct transcription of the analysis in the form of equations. Unfortunately, there is not a unique solution
to the equations.

Consider the flow graph fragment in Figure 4.16. From the definition, one has ANTOUT(B1) = true. But
consider the equations. If one inserts the known value for B3 and eliminates the redundant equation, one
gets two solutions to the equations (see Table 4.1). Which solution represents the collection of points
where anticipation is true?

] EE =T
AETE Ty = ANTIE)  alwiie
"nm

MEFIy = ARy o ATORR, - FILL

Figure 4.15 Anticipatability Equations
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Figure 4.16 Graph for Multiple Solutions

Observation 1: Given a solution of the anticipation equations. If ANTIN(B) is true then
the expression is anticipated at the beginning of B. Similarly, if
ANTOUT(B) is true then the expression is anticipated at the end of B.

Proof We need to verify that the definition is satisfied. Consider any path
starting at the start (or end) of B and ending at the exit block. By
assumption ANTIN(B) is true. Scan through the blocks in the path,
stopping first at the beginning of the block and then the end of the block.
If a block is reached when ANTLOC is true, stop, because the definition is
satisfied. By the equations, if ANTOUT of a block is true then so is
ANTIN of the next block, so the value can only change from true to false
as we scan through a block. Stop at the first block W where either Kill(\W\)
is true or ANTOUT(W) is false. Consider the following two cases:

 Consider the case where Kill(W) is true. Since ANTIN(W) is true, then the expression must be in
ANTLOC(W) to get the true value for ANTIN(W). Thus an evaluation occurs at the beginning of
W, verifying the definition.

 Consider the case where ANTOUT(W) is false. Since ANTIN(W) is true, the expression must be
in ANTLOC(W) to get the true value for ATIN(W), again, verifying the definition.

In either case we have a path beginning with a sequence of blocks in which there are no modifications to
the operands of the expressions and ending with a block that contains the expression before instructions
that modify the operands. The definition is satisfied.

Observation 2: Assume that ANTIN(B), ANTOUT(B) is the maximum solution to the
anticipation equations. If ANTIN(B) is false then T is not anticipated at
the beginning of B.

Proof The proof is given in Appendix A.
Table 4.1Two Different Solutions
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Unknown Solution 1 Solution 2
ANTOUT(B1) false true
ANTIN(B2) false true
ANTOUT(B2) false true
ANTIN(B3) true true
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4.11 Global Partial Redundancy Information

To compute the anticipated information and to avoid useless optimization computations later, we need
another piece of information related to anticipation. T is anticipated at p if every path leaving p leads to
an evaluation of T before an instruction that kills. T. What if we are only interested in whether there is at
least one path rather than all paths?

Definition Partial Anticipation: A temporary T is partially anticipated at a point p in the
flow graph if and only if there is at least one path from p to Exit that contains an
instruction that evaluates T which is not preceded by an instruction that might kill
T.

Partial anticipation means there is some way to get from the point to an evaluation while avoiding
instructions that kill T. Rather than repeat all of the arguments that gave us the characteristics for
anticipation, we will note the differences. As with anticipation, we introduce two Boolean attributes for
each block. PANTIN(B) being true means that T is partially anticipated at the beginning of the block,
whereas PANTOUT(B) being true means T is partially anticipated at the end of the block.

In forming the equations, the information about all paths was used to determine that ANTOUT is the
intersection of ANTIN of the successors. If we are looking for at least one path, then only one of the
successors need have the attribute; therefore it is a union rather than an intersection. We thus get the
equations in Figure 4.17.

We can make the corresponding observations about partial anticipation as we did about anticipation.
Note that the equations do not have a single solution; however, we want the smallest solution rather than
the largest. Consider the loop in Figure 4.16 with the evaluation of T removed. Nothing is partially
anticipated; however, it is possible to get a solution to the equations with PANTIN(B2) = PANTOUT(B2)
= true when the best solution we want has the value false. In anticipation we looked for the largest
solution; here we look for the smallest solution.
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Observation 3: Assume PANTIN(B) and PANTOUT(B) are a set of Boolean values that
satisfies the equations in Figure 4.17. If PANTIN(B) (correspondingly,
PANTOUT(B)) is false, then T is not partially anticipated at that point.

Proof Given a solution to the equations, assume PANTIN(B) is false. Consider any
path from that point to Exit. We need to show that we reach a killing
instruction or Exit before we find an evaluation of T. Assume that we reach
an evaluation of T before a killing instruction. That means we find a block P
with ANTLOC(P) = true. Now walk backward. Since the values are a
solution to the equations, PANTOUT of the previous block is true also
because it is a union operation. By assumption there is no killing instruction
in the block, so PANTIN is true. Repeat this whole process, walking
backward until we reach the original point. We have PANTIN being true
rather than false. We have a contradiction, the assumption that there is an
evaluation of T before a killing instruction is false. There is no evaluation, so
T is not partially anticipated.

i"i:' T
PRI = BARTTE, b
(T

P |y AR, e LR, - T

Figure 4.17 Partial Anticipation Equations

Observation 4: Let PANTIN(B) (respectively, PANTOUT(B)) be true if and only if T is
partially anticipated at the beginning (respectively, the end) of B. Then this
set of values is a solution to the equation in Figure 4.17.

Proof We must verify that the values satisfy the equations. Assume they do not.
Then there is a block B where the equations are not satisfied. Now look at
the possibilities. The equation for PANTOUT(B) is satisfied by the nature
of the definition. Similarly, the definition implies that the equation for
PANTIN(B) is also true. Thus a contradiction.

Observation 5: Let PANTIN(B) and PANTOUT(B) be the smallest solution to the equation
in Figure 4.17, then T is partially anticipated at the beginning of B if and
only if PANTIN(B) is true.

Proof This argument mimics the argument for anticipation in the Appendix. The
roles of true and false are switched and the smallest solution is used rather
than the largest.
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4.12 Global Available Temporary Information

The anticipation information describes what happens on paths before evaluations of T in the flow graph.
The compiler also needs information about what happens on paths after evaluations of T. This
information uses the word “available” rather than “anticipate” and stores information about whether there
is an evaluation of T on each path leading to a point. There is also the corresponding partial information.

Definition Available: A temporary T is available at a point p in the flow graph if and only

if given any path from Entry to p there is an evaluation of T on the path that is
not followed by any instruction that kills T.

Definition Partially Available: A temporary T is partially available at a point p in the

flow graph if and only if there is some path from Entry to p with an evaluation
of T on that path that is not followed by any instruction that kills T.

To illustrate these ideas, consider the flow graph of the running example as shown in Figure 4.18. The
temporary T is available at the beginning of block B2 since every path (including the ones that go
through B2 and come back again) from B0 to B2 contains an evaluation of T. The temporary S is
partially available at the beginning of B2 since the path BO, B1, B2, B3, B2 contains an evaluation of S
that is not followed by an instruction that kills it. It is interesting that this evaluation is in B2, and we will
later see that this is a potential condition for moving code out of the loop.
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Figure 4.18 Flow Graph of Running Example

The reasoning that led to the equations for anticipatability can be used to create the equations for
availability. The only differences are that predecessors are used rather than successors, and the reasoning
involves paths from Entry rather than paths to Exit. This gives us the equations in Figure 4.19, whereas
before if one has the largest solution, AVIN(B) (respectively, AVOUT(B)) is true if and only if T is
available at the beginning (respectively, end) of block B.
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Figure 4.19 Equations for Availability
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Figure 4.20 Equations for Partial Availability

The equations for partial availability are derived by the same techniques as used for partial
anticipatability, giving the equations in Figure 4.20. The smallest solution to the equation in Figure 4.20,
PAVIN(B) (respectively, PAVOUT(B)) is true if and only if T is partially available at the beginning
(respectively, end) of B.

4.12.1 Solving for Partial Anticipatability and Partial Availability

Before computing anticipatability and availability, the compiler performs a preliminary optimization pass
that identifies most redundant temporary evaluations: those where one evaluation of T dominates another
evaluation of T. Thus, information is needed for a small subset of the total number of temporaries.

Other programmers advocate the use of bit vector techniques to evaluate this information, simultaneously
computing the information for all temporaries (Aho 1977). For large flow graphs these bit vectors may
be large. On a modern processor, the size of the bit vectors may continuously flush the cache, thus
slowing the compiler.
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This compiler uses an alternative approach, computing the information for each temporary separately.
The information necessary may be sparse, so computing the information separately may save space and
avoid flushing the cache during compiler execution. By computing the information on a temporary-by-
temporary basis, the compiler can determine early in the algorithm that some optimization will not be
effective and avoid computing unneeded information.

So how does the compiler compute partial anticipatability for evaluations of T? Consider the definition. T
Is partially anticipated at a point if there is a path from that point to an evaluation of T containing no
instructions that kill T. Looking at this path backward, the compiler can perform a backward graph walk
(using predecessors) starting at the evaluations of T and stopping when either an instruction that kills T
occurs, the Entry block occurs, or the walk reaches a point that it has already visited. The first two
conditions come straight from the definition, and the last one is an optimization: There is no reason to
walk a point a second time.

This graph walk can be stated as a work-list algorithm, as given in Figure 4.21. It implements the
algorithm described in the previous paragraph. It computes the set PANTIN of blocks where T is partially
anticipated at the beginning of the block. The first loop includes all of the blocks where T is locally
anticipated. The work list keeps a record of all blocks whose predecessors have not been investigated.
The work-list loop takes an arbitrary block B and considers each of its predecessors P. If P is not
transparent, then T will not be partially anticipated at the beginning of the block unless it is locally
anticipated already.

Note that WORKLIST [0 PANTIN because elements are added at the same time and elements are never
removed from PANTIN. Thus each block can only be added to WORKLIST once; hence, the algorithm
has time complexity proportional to the number of edges.
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For efficient compilation, the structure of each of the sets is important. Consider WORKLIST first. The
operations performed on WORKLIST are insertion, deletion, membership, initialization to the empty set,
and testing for the empty set. The maximum number of elements in this set is the number of blocks and
there is only one instance of the set. Assign distinct integer values to each of the blocks and use the
Briggs set algorithm to implement WORKLIST.

The operations on PANTIN are a subset of the operations on WORKLIST. Outside the algorithm the
compiler must also scan PANTIN, looking at each element in the set. This can be implemented by the
Briggs set algorithm also.

KILL is a different matter. This algorithm checks for membership in a collection of sets (indexed by the
blocks) of temporaries that may not be sparse. Hence KILL should be implemented as an array of bit
vectors. The array is indexed by block number, and the bit in the bit vector is indexed by an integer
assigned to each temporary T.

The algorithm also computes the blocks PANTOUT where T is partially anticipated at the end of the
block. This computation is not needed to make the algorithm work, so the two statements involving
PANTOUT can be eliminated if PANTOUT is not needed. PANTOUT should also be implemented using
the Briggs set algorithm because later use of the data will require a scan of all of the elements.

The computation for partial availability is the same as partial anticipatability except applied to successors
rather than predecessors. Note that PAVOUT is the quantity computed rather than PANTIN, so the
algorithm is looking at the ends of blocks rather than the beginning of blocks. All of the same
implementations remain for each of the sets. The algorithm is given in Figure 4.22.
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Figure 4.22 Computing Partial Availability

Example Consider the temporary S in Figure 4.18. The only instruction that kills S is in B4,
so the backward walk implemented by the algorithm indicates that S is partially
anticipated at the beginning of blocks B2, B1, BO, B3, and B6. For partial
availability one uses a forward walk, so S is partially available at the end of blocks
B2, B3, and B6.

4.12.2 Computing Availability and Anticipatability

The partial information can now be used to compute anticipatibility and availability. Just by looking at
the definitions, we see that ANTIN O PANTIN, where ANTIN is the set of blocks in which T is
anticipated. Similarly, AVOUT [0 PAVOUT.

What is the difference between the blocks that are in ANTIN and the blocks in PANTIN? In PANTIN
there is a path from the beginning of the block to an evaluation of T, but in ANTIN there must be an
evaluation of T on each path from the beginning of the block.

The way to compute ANTIN is thus to start with PANTIN and throw out all blocks that start a path that
does not lead to an evaluation of T. In other words, the rejected block leads either to an instruction that
Kills T or to Exit. The algorithm in Figure 4.23 starts with the partially anticipated set and prunes out the
blocks that do not satisfy the definition of anticipation. This job requires a work list because the
elimination of one block from the set may force multiple other blocks out of the set.

Figure 4.23 Pruning to Correct the Available Set

To see that the algorithm is correct, consider the following argument. Consider a block B that is in
PANTIN but not in ANTIN. There is thus some path from the beginning of B to Exit that does not contain

an evaluation of T before any instructions that kills T. Walk down that path. Since B O PANTIN initially,
you come to one of the following situations:

» One arrives at a block that is not in PANTIN. The previous block is in PANTIN, so the first loop
in Figure 4.23 will identify that the preceding block is not in ANTIN and remove it from the set,
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placing it in the work list to remove its predecessors on the path.

» One arrives at a block containing a killing instruction. Since we assumed that this path did not
contain a preceding evaluation of T, T is not locally anticipated in the block and therefore the
block is not in PANTIN, reducing to the previous example.

» One arrives at Exit. Since Exit [ PANTIN, this also reduces to the first case.

Thus the first loop initializes work by identifying the blocks at the boundaries of paths that violate the
definition. Now the work-list algorithm walks backward along the path, successively removing each
block until the block B is removed as required by the definition.

Example In the example in Figure 4.18, consider the temporary S. We have already computed
the points where it is partially anticipated. We must go through that list and throw
out any block whose successors are not all in the list. Thus B3 is thrown out because
of B4, B6 is thrown out because of B3, B1 is thrown out because of B4, and BO is
thrown out because of B5. Hence S is only anticipated at the beginning of B2.

Now consider the availability of S. It is partially available at the end of blocks B2,
B3, and B6. In this case there is nothing to throw out. B2 remains because S is
locally available in B2. The only predecessor of B6 is B2. The predecessors of B3
are B2 and B6, where neither of those blocks kills or generates S. Hence the
partially available expressions are the available ones in this case.
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4.13 Lifetime Analysis

The anticipated and available data are information about the points where a temporary T is evaluated.
There is no information about uses. Lifetime information concerns the relation of evaluation points and
use points for a temporary T. T is live at all points on paths between an evaluation of a temporary and its
use.

Definition Live: A temporary T is live at a point p in the flow graph if there is a path from
p to a use of T as an operand that does not contain an instruction evaluating T
and a path from an evaluation of T to p which does not contain an evaluation of
T.

Thus T is live on paths from evaluations of T to uses of T and nowhere else. For an instruction to qualify
as an evaluation of T, it must guarantee that a new value for T is computed. If the instruction might
modify T then it is not counted as an evaluation of T. This is not a problem for temporaries because
temporaries are either modified or not, but we will apply the same ideas to memory references and
sometimes the compiler knows one particular memory location that will be referenced and another
collection of memory locations that might be referenced.

Computing the points where T is live uses much of the same technology used to compute anticipation
and availability. The form of the equations is the same as the form for partial anticipation, except the
local information is different.

Given a temporary T, Liveln(T) is the set of blocks B that contain a use of the temporary T that is
not preceded by an evaluation of T.

Given a block B, LiveKill(B) is the set of temporaries T for which there is an evaluation of T in the
block B. Do not count instructions that might change T or change only a part of T.

Global is the set of temporaries that are live at the beginning of a block. This is the same as the
union of all of the Liveln sets.
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This information can be computed by scanning each block backward. Whenever a use of a temporary is
identified, mark the temporary as live. Whenever an evaluation of T is found, add T to the LiveKill set
and mark the temporary as not live. As the local information is collected, the set Global is computed. It
consists of all temporaries that are live at the beginning of some block. The local information is
summarized in Figure 4.24.

The global information is computed in the same way as partial anticipation. Each temporary is handled
separately; however, there is no need to compute anything unless T [J Global because the temporary is
only live within a block, not across block boundaries. The algorithm is given in Figure 4.25.

Figure 4.25 Computing Global Live Information

To compute the more general definition of lifetime where a temporary is live from an evaluation of T to a
use of T, one needs to solve another condition, which is similar to partial anticipatability. One must
compute the set of blocks where there is a path to the beginning of the block from an evaluation of T that
does not include an instruction that kills T. We will be using this information during register allocation
when the compiler is only dealing with single temporaries, so there is no need to consider which
instructions kill a temporary. The only thing in that case that kills a temporary is another evaluation of
the temporary. The problem thus reduces to a depth-first search starting from the evaluation of a
temporary. Any block that is marked live by the work-list algorithm in Figure 4.25 and occurs on the
depth-first search walk has the more general property of liveness that we need for register allocation.
However, performing the depth-first search has the probability of visiting a large number of blocks. One
gets the same result by performing the following processes:

1. Calculate the set of blocks where T is live at the beginning of the block using the work-list
algorithm in Figure 4.25.

2. Perform a depth-first search starting at each evaluation of T, but only visit blocks where the
work-list algorithm indicated that T might be live.

3. Remove all blocks computed by the work-list algorithm that are not visited during the depth-
first search.
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4. The result is the set of blocks where T is live at the beginning of the block.

Thus we have the general definition of live easily implemented from the more straightforward definition.
Unfortunately, the work list naturally computes the set of blocks where T is live at the beginning of the
block. The compiler always needs the set of blocks where T is live at the end of the block, or more
correctly, it will need the set of temporaries live at the end of each block. This can be computed from the
other information by the algorithm in Figure 4.26.

Note that T is in LiveOut(B) if and only if T is live on entry to one of the successors and one can get to B
by a depth-first search from some evaluation. The last nested loops in the algorithm compute this fact.
LiveOut is a sparse set, so it should be implemented as a linked list. The test for membership is easy
because all entries for T are made before entries for any other temporary; thus, if T has already been
added to LiveOut for a block, it is the element at the head of the list. Therefore one need only check the
head of the list to see if T has already been added.
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Chapter 5
Local Optimization

The most effective transformations in an optimizing compiler are the simplest. Consider the expression T
* 0. The translation techniques that walk the abstract syntax tree creating the flow graph would naturally
compute T, load 0 into a temporary, and perform the multiplication. Algebraic identities can tell the
compiler that this expression is 0, so load the constant into a temporary instead.

This chapter discusses these local transformations. The transformations are used in three places in the
compiler: during the building of the flow graph, during dominator-based optimization, and later during
peephole optimization. The optimizations include the following techniques:

» Apply algebraic transformations to decrease the number of instructions. As an example, the
expression N < 1 discussed in Figure 5.1 can be replaced by the expression N < 0, which can be
encoded in a single instruction without the need of loading the constant. A large collection of
algebraic identities is listed at the end of this chapter.

» The compiler can trace the values stored in temporaries and record the temporaries that have
already been evaluated. If the same temporary is evaluated again without an intervening
instruction changing the operands, then the instruction may be eliminated. These two operations
are combined in a technique called value numbering.

« Instructions that are not executed or that generate a temporary that is not used can be
eliminated. This is a limited form of dead-code elimination. A more complete form of dead-code
elimination occurs later.

These simplifications apply to our running example. Consider the code fragment from the initialization
of the outer loop in Figure 2.1 (see Figure 5.2). The left column is the set of instructions generated by
translating the abstract syntax tree into the flow graph; the right column is the resulting set of instructions
after local optimization.
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Figure 5.1 Value Numbering and Identities
The compiler tracks the values in temporaries within the current block and applies algebraic identities. In

this case the compiler knows that T5 has the value 1. The next computation asks whether T5 > T8, which
the compiler knows is 1 > T8. The compiler knows that this is the same as 0 > T8.
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Figure 5.2 Value-Numbering Example

After building the program flow graph and performing the initial aliasing analysis, the compiler performs
local optimizations and transformations to improve the structure of the program flow graph for the rest of
the optimizer and decrease its size so that it takes less time and space. After cleaning up the program
flow graph, this phase will perform global constant propagation and folding so that later phases have
complete constant information.

Note that most of the algebraic simplifications are applied to integer arithmetic. It must also be applied to
floating point arithmetic; however, the compiler must be careful on two points.

The arithmetic must be done at compile time exactly the same way it is done at runtime. Usually this is
not a problem. It is a problem if the compiler is not running on the same machine as the machine which
executes the program (a cross compiler). It is also a problem if the floating point rounding mode can
change. If the rounding mode is not known, constant folding should be avoided.

Precise IEEE floating arithmetic can also be a problem. Full IEEE arithmetic includes the representation
of infinities and NaN (Not a Number). The compiler must avoid the evaluation of expressions where one
of the operands may be a NaN. It must even avoid replacing 0 * X by 0 if X might be a NaN.

5.1 Optimizations while Building the Flow Graph

Building the flow graph can be optimized to eliminate about half of the instructions generated. The idea
Is that the same computations frequently occur in the same block. This is not true of source code, but it is
true of the addressing arithmetic generated by the compiler. These same instructions (and more) could be
eliminated later. Eliminating them decreases the storage required for the flow graph and decreases the
processing time required in the rest of the compiler. The following instructions can be eliminated from
the generated block:
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« If a second instance of an instruction is about to be inserted in a block, then it can be eliminated
if the arguments of the previous instruction have not been modified.

« If an instruction has constant arguments, then the instruction can be replaced by a load constant
instruction. The arithmetic must be done precisely as it would be done on the target machine. If
there is any chance that an exception might be raised by the operation, the computation should be
left as it is.

» The list of algebraic identities at the end of this chapter should be applied to the instructions as
they are generated. The simpler equivalent instruction sequence should be generated when
possible.

The effect of these transformations is shown in the code in Figure 5.3 from the running example. The left
column is the set of instructions that would be generated by the techniques that have been described in
the previous section. The right column contains the instructions that are generated after value numbering
and simplification of algebraic identities. Some statistics indicate that these techniques will eliminate
about half of the instructions.

Value numbering divides the instructions in a block into equivalence classes: two instructions are
equivalent if the compiler can determine that they have the same value. Only one instruction in each
equivalence class needs to be generated. The code that generates the flow graph operates as described in
Chapter 4, except the procedures that insert instructions into the flow graph maintain data structures to
eliminate instructions that are unneeded.

« If the instruction to be inserted is equivalent to an instruction already in the block, then the
instruction is skipped and the target register from the equivalent instruction is returned as holding
the value needed.

« If the operands of the instruction are constants and the operator has no side effects, then a load
constant for the precomputed result is generated instead.

EXI F RN

Aird = -\.-

Figure 5.3 Optimizations without Side Effects

« If the instruction and its operands match a tree corresponding to an algebraic identity, then the
simplified form of the tree is generated instead. Changing the instructions may cause some
existing instructions to be unused. They will be eliminated later with dead-code elimination.
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How does the compiler know when two instructions are equivalent? There are limits to the analysis that
the compiler can do. For the purposes of code generation the analysis is simple:

» Two instructions without side effects are equivalent if they involve the same operator and have
equivalent inputs.

« Two constants are equivalent if they are identical constants.

» Two load instructions are equivalent if they load equivalent addresses and no store operation
has occurred between them that might modify that storage location.

* When in doubt, declare that two instructions are not equivalent. For example, a procedure call
may change a number of variables that are visible to it or procedures that it might call. All such
variables must be assumed to change at the procedure call.

To implement the value-numbering scheme, the compiler needs to construct tables that will compute this
information quickly. The data structures will be described in abstract terms; however, the implementation
Is simple. The temporaries are represented as small integers, representing indices into tables. Each
abstract data structure can thus be represented as an array or a chain-linked hash table. The following
data structures are needed:

constant_temporary(temporary) is a data structure that, given a temporary, returns one of the

three following classes of values. It returns top or T if the temporary does not contain a value
already computed in this block. It can return the value bottom, or [J, which indicates that the
temporary has been computed in this block but does not have a constant value. Or it can return the
constant value that was assigned to the temporary. This is the same information that we will use
later when doing global constant propagation. It is used here to combine the answers to these
questions: Does the temporary have a constant value? and What is the constant value associated
with the temporary? This can be implemented as an array in which each entry is a class or record
indicating one of the two alternative values or the value of the constant. The table value is filled in
each time a temporary is the target of an instruction.

value_number(temporary) is a data structure that gives the value number associated with the
particular temporary. It can be implemented as an array of integers. An entry is filled in each time
the temporary is the target of an instruction or an instruction occurs with side effects that
invalidate a previous value number.
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defining instruction(temporary) is a data structure that returns the instruction that most recently
defined the temporary in this block. It is updated as each instruction is generated. If another
instruction forces the value number of a temporary to change (due to making the value unknown)
or if there is no definition of the temporary in the block, then the entry is NULL.

These data structures are used during the generation of the intermediate representation. As an example,
consider the generation of a binary operation using the instruction-generation procedure, binary_instruct,
discussed in Chapter 4. Its implementation will look like the following pseudo-code:

temporary binary struct (opcode, fTirst operand, second operand)
IT (constant_temporary(first operand) is constant)
~N(constant_temporary(second-operand) i1s constant) then
Get temporary T for loading folded constant from formal
temporary table;
Generate i1LDC of constant into T
return T;
endif;
Get temporary T for (opcode, First operand, second-operand) from
formal temporary table;
1T value_number(T) == NULL then
Generate the instruction I;
value number(T) = new value number V;
defining_instruction(l) = V;
return T;
endif
end procedure;

Generating a register copy operation or store operation must destroy the value numbers for any
temporaries that use that temporary as an operand. This information is available in the formal temporary
table.
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5.1.1 List of Local Optimizations

Before all of the other optimizations, some simplifications can be made to the operations in the program
flow graph. The compiler front end and the Build phase take a simplistic view of the generation of
operations. The program flow graph generated has not taken into account the simplifications that can be
made to the program structure. This is as it should be: The simplifications should occur all in one place to
avoid repetitive code with compilers for multiple languages. Figure 5.3 is a preliminary list of some of
the local optimizations. Others should be added as the quality of the code generated by the compiler is
studied and special cases are identified.

Other local optimizations can change the side effects of the program. The language reference manual
specifies which side effects must be preserved. For example, in C, integer overflow may be ignored.
Thus the compiler may eliminate a computation that has no effect on the values computed by the
program even if it eliminates an integer overflow. The set of local optimizations in Figure 5.4 and the
similar set for floating point operations in Figure 5.6 can cause side effects, so they must be checked to
see that the language description is preserved.

There is also a collection of optimizations based on unary operations (see Figure 5.5). With some of
these optimizations the order of use of the operands may change. As long as the actual order of
evaluation of the operands in the program flow graph does not change, this is not a problem. This
possibility is one of the reasons for choosing the flow graph/operation structure for the internal structure
of the program.

The optimization of relational operators in Figures 5.4, 5.5, 5.6 and 5.7 are important in simplifying the
flow graph.
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Figure 5.4 Optimizations with Side Effects
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Figure 5.7 Relational Optimizations (p is relational operator)
5.2 How to Encode the Pattern Matching

With this number of patterns, how does the compiler writer write the code? There are two ways to do it:
use a tree pattern-matching system or write the pattern matches by hand. | am going to take a
controversial approach and use the handwritten pattern-matching system. Although the set of patterns is
large, each of the patterns is simple, involving a small number of operators.

The compiler organizes the code using the operator that is at the root of the tree representing the pattern.

5.3 Why Bother with All of These Identities?

An immediate reaction to this large list of identities is to ask: “Why bother? If the programmer has
written an inefficient expression, give him inefficient results.” This section attempts to answer this by
noting that the compiler is not really concerned with what the programmer wrote. Any improvement in
the source code is a fortunate side effect of improving other code. The compiler itself generates
expressions, as the following set of instances shows.

» During code lowering, where high-level operations are replaced by lower-level instructions, the
compiler will generate expressions. The most common example is the lowering of subscript
operations from a subscripted load/store operation to the computation of the address followed by
an indirect load/store. The compiler generated the expressions, so the compiler must simplify
them: The programmer cannot do it.

» When the compiler in-line expands one subroutine at the point of a subroutine call in another
subroutine, the compiler must generate expressions to substitute for the formal parameters at each
use. Frequently this is done by creating temporaries at the beginning of the in-line code to hold
the values of the parameters and then expanding the body into the flow graph. Many actual
parameters are constants or simple expressions; when they are used in the subroutine, many of the
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simplifications listed here may be applicable.

It can be argued that both of these examples beg the point. If the compiler is generating these
expressions, then why not generate the simple expressions rather than the complex ones? The reason is
simplicity. If the compiler must include special case code at each point that instructions are generated,
the compiler will be large. Furthermore, special cases will be added in one point in the compiler and not
at others, so the compiler will be unpredictable. It is better to have a small number of general subroutines
that will simplify all generated instructions in the same manner.

5.4 References

Bagwell, J. T. Jr. 1970. Local Optimization, SIGPLAN Notices, Association for Computing Machinery
5(7): 52-66.

Frailey, D. J. 1970. Expression Optimization Using Unary Complement Operators, SIGPLAN Notices,
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Chapter 6
Alias Analysis

What does it mean for one instruction to affect another? Remember how the proofs of the theorems about
available or anticipated expressions developed. During the proofs a walk is performed backward (or
forward) from a point in the flow graph to a point where the desired computation occurs. There must be
no instructions on that path that change the computation of the desired expression. In other words, one
instruction affects another if interchanging the order of the instructions would change the values in the
target temporaries (or memory) after the instruction pair.

This section describes the computation of two attributes for each temporary: modifies(T), which is the set
of temporaries that are affected by the modification of T, and store_modifies(T), which is the set of
temporaries whose store operations are affected by a modification of T.

Remember, temporaries are divided into two classes: expression and variable temporaries. Each
expression temporary occurs as the target of an instruction that is a pure function of its operands. There
may be multiple points where the expression temporary is evaluated. In each case the same instruction
occurs, which means the same operator and the same operand temporaries or memory location. Each
expression temporary represents an expression tree in which the node representing the temporary is
labeled with the operator and the children are the operands. The root and internal nodes of this tree are all
expression temporaries. The leaf nodes represent LOAD instructions from memory or variable
temporaries. An expression temporary is not considered modified by the reevaluation of one of its
operands that is an expression temporary. It is modified if one of the variable temporaries at the leaves of
the tree is assigned a new value with a copy operation or if the memory location corresponding to one of
the load operations is modified.

Similarly, a store operation can be modified by another store operation. If both store operations may
reference the same memory location, then they cannot be reordered.
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Definition Modifies: A temporary T modifies temporary U if interchanging the order of the
instructions that compute the two temporaries will result in different values stored
in U.

Consider the fragment of source code in Figure 6.1. Unless there is some unstated relation between A and
B, such as the Fortran EQUIVALENCE statement or C language rules for formal parameters, the store
into B(l) does not affect the load of A(l) or A(N). Similarly, the store into A(l) does not affect the load of
B(I+1). Since the compiler can prove that B(l) and B(1+1) reference different memory locations at each
point in the program, the store into B(l) does not modify the value of the load operation B(1+1).

The variable | will be held in a temporary in the flow graph. The increment of | changes the address
referenced by each of these STORE and LOAD instructions, so the store into | modifies each of these
Instructions.

This compiler implements dependence analysis, therefore it can notice that A(N) in Figure 6.1 is not
modified by the store into A(l) since the value of I is always less than N in the loop. However, that is not
done in this section. Using the techniques in this section, the compiler will be unable to differentiate A(l)
from A(N). Compilers without dependence analysis cannot notice this. However, the compiler will
identify the following situations:

» When the compiler knows that two addresses are distinct, then no modifies relationship will
exist between a store and a load. For example, B(l) and B(I+1) are not related by the modifies
relation. When the compiler is not sure, it must assume that there is a modifies relationship, so
A(l) and A(J) must be assumed to be related unless the compiler knows something about the
ranges of values that | and J can take.

L = i}

while 1 < N Jo
BEEy = B{E+Ly = 1:
ALL1 = A[I)SA{HD:
I=T+ 1}

endunlle:

Figure 6.1 Example for Describing Aliasing

» The compiler knows that two fields of a nonoverlaid structure cannot be related by the modifies
relation because they are different offsets from the same address.

» The compiler knows that the modifies relation is not transitive. A store into A(l) indicates that
the whole array A is modified. The modification of A indicates that A(I+1) is potentially modified.
However, the transitive relation “modification of A(l) indicates that A(I1+1) is modified” is false.
 Source language restrictions must be taken into account. In C, pointers are typed. Except for
pointers to characters (which can point to anything for historical reasons), a storage modification
using a pointer can only modify locations of the same type and data structures containing
locations of the same type.
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The modification information can be expressed as a conjunction (logical AND) of several different
factors:

» Consider two different memory references X and Y. If the address of X is never taken in the
source procedure and X and Y are not related by some overlaying characteristic of the source
language, then a store to X cannot modify the location Y. This is the only modification
information used during the creation of the flow graph. It allows the identification of local
variables that can be stored in temporaries and allows some efficiency gain by the use of value
numbering within a block during the creation of the flow graph.

» There are language-specific rules that also limit the locations that a store to X can affect. In
Fortran, the compiler is free to assume that a store to a global variable does not modify a dummy
argument (formal parameter). Furthermore, the compiler can assume that a store to a dummy
argument does not affect another dummy argument or a global variable. In ANSI C, the compiler
can assume that a store through a pointer of one type does not affect a load or store through a
pointer of another type unless one of the types is a pointer to a character. The compiler is free to
use these rules because the language definition indicates that violation of the rules is a language
error, in which case the compiler is free to do whatever it wishes.

A store to X cannot affect a load or store to Y if X and Y are different offsets from the beginning
of the same area of storage. Of course, the difference in offsets must be large enough so that no bit
affected by X is in the storage area associated with Y.

These three conditions represent three very different conditions on the store operation. If one of the
conditions is not satisfied, then a store to X does not affect the load or store of Y. Thus the modification
relation is the conjunction (logical AND or set intersection) of different conditions.

This property can be used to refine the modification information as the program progresses through the
compiler. In other words, computing the modifies attributes is a process of successive refinement. Early
in the compilation process, a less refined version of the modification information is used; in fact, one
based on the previous three conditions. Later, more refined information is used that involves analysis of
the flow graph. Finally, dependence analysis is used to give the most refined information. This
dependence information is used only in some of the phases of the compiler since the more accurate
information is not needed in many of the phases.
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6.1 Level of Alias Analysis

The rest of this chapter will describe the compiler components that compute this modifies relationship.
The analysis can be divided into levels. The first and usually only level of analysis is the flow-insensitive
analysis. Then some level of flow-sensitive analysis can be included. For this compiler, this step involves
dependence analysis. Finally, interprocedural alias information must be taken into account.

Given a STORE instruction I, flow-insensitive alias analysis computes the set of LOAD instructions that
might reference the value stored by | and the set of STORE instructions that might replace the value
stored by | without considering paths of execution. If | occurs someplace in the procedure, and at another
point there is a LOAD instruction referencing the same memory location, then the modifies relationship
Is assumed to hold even though there may be no path from one of the instructions to the other.

Thus flow-insensitive analysis is too conservative. It will deduce that a modification is possible when
none is possible. This is the minimal alias analysis. Other algorithms will be used to refine and eliminate
parts of the relation determined by the flow-insensitive algorithms.

The second level of alias analysis is dependence analysis. Again there are several levels of dependence.

The simplest involves determining whether there is a path from the STORE to the LOADs and STORES
that have a modifies relationship with the STORE. The relationship can be ignored if no path exists. For
arrays, further analysis can be done to determine the conditions under which the modifies relation exists.

Interprocedural analysis, the third level of alias analysis, answers two issues. In the absence of other
information, the compiler must assume the most conservative information about formal parameters. This
Is tempered by the semantics of the source language. For example, Fortran specifies that a variable that is
modified within a procedure can only be named in one fashion. This means that the compiler can assume
that each store operation involving a formal parameter does not have the modifies relationship with any
other formal parameter or global variable named in the procedure.

Second, interprocedural analysis records the actions of procedure calls. In the absence of interprocedural
analysis, the compiler must assume that every datum addressable by the called procedure has a STORE
executed and a LOAD executed. Hence the procedure call is modeled as a collection of simultaneous
STORE and LOAD instructions.

With interprocedural analysis, the compiler estimates which data are modified and referenced by each
procedure call. With this information, the compiler can model a procedure call by a smaller set of store
and load operations. The store operations represent the data that might be modified by the procedure call,
and the load operations represent the data that might be referenced by the procedure call.

6.2 Representing the modifies Relation
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The modifies relation is represented in two different ways, depending on whether the flow graph is in
normal form or static single assignment form (to be discussed shortly). In either form the compiler must
provide enough information so that the algorithms analyzing the flow graph can determine if there is a

possibility of a store operation changing a memory location referenced by another load or store
operation.
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6.2.1 Representing modifies in Normal Flow Graph Form

When the flow graph is in normal form, there is a one-to-one correspondence between temporaries and
formal expressions. The compiler has built a data structure, called the formal temporary table, to hold
this correspondence. This table is represented as a graph in which each node consists of the data structure
in Figure 6.2.

il dedelm =
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Figure 6.2 Nodes in Formal Temporary Table

The formal temporary table is an acyclic graph, with the load operations being the leaves of the graph
and the store or copy operations being the roots. Rather than making additions to the flow graph, the
modification information is stored as the modifies information that we described earlier. The algorithms
operating on the normal form of the flow graph will use this modifies information directly to restrict
optimizations. This was done earlier when the compiler computed local information for each block in the
flow graph.

The modifies relation is recorded in terms of the formal temporary table. Each store and copy operation
will have an added attribute (called modifies) that records the set of load and store operations in the
formal computation that have a modifies relationship with this operation. The set of instructions that this
operation modifies is the set of load operations in its modifies set together with all instructions that use
the value generated by that load operation either directly or indirectly. Actually the temporary that is the
result of the load is used to represent the information. Remember that there is a one-to-one
correspondence between the formal load operations and temporaries.

6.2.2 Representing modifies in Static Single Assignment Form

Before describing the changes to the flow graph to represent modifies information for the static single
assignment form of the flow graph, we need to understand something about this form. The basic idea of
the static single assignment form of the flow graph is that there is a single instruction that has a particular
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temporary as its output. The same temporary can be the output of only one single instance of an
instruction. This differs from the normal form, where a temporary can be the output of multiple
instructions. To compensate for the limitations of static single assignment form, a new operator called the
@-node has been added to the instruction set. This operator takes operands from differing predecessors
and chooses one of them to be the value copied to the output temporary for the ¢-node.

With the static single assignment form, all information about changing values is directly encoded in the

single evaluation of the temporary and the @-nodes rather than implicitly by using the modifies
relationship on the side. To do this the compiler introduces the idea of tags.

A tag is a memory-based equivalent of the temporaries. Each tag represents an area of memory, and there
Is a tag for each area of memory that is referenced by instructions in the flow graph. Thus there is a tag
for A(l) and another tag for the whole array A. There are tags for each element of each structure
referenced and a tag for the whole structure. Furthermore, there is a tag for all the stack-based data and
multiple tags for references into the heap.

As you can see, the tags are related. Some tags represent areas of memory contained within other tags.
The important thing is that there is a tag for each memory location referenced. There is a tag associated
with each load operation. Copy operations do not need tags because the direct relationship between the
instruction that evaluates a temporary and the instruction that uses the temporary is recorded in the flow
graph when it is in static single assignment form.

Store operations are more complex. There is a primary tag associated with the address that is being
modified by the instruction. However, other memory locations (that is, tags) may be modified. To
represent the modification of these locations in memory, the STORE instruction must consider each tag
that might be modified by the STORE instruction to be a target of the store operation. These indirect
targets might be modified, but are not guaranteed to be modified; thus their value must be handled as if
they were unknown.

Because of properties of the static single assignment form to be discussed later, the compiler actually
handles each of the tags that might be modified as both a target and an operand. Thus each store
operation has added a list of pairs of tags. The first element of the pair is the tag considered as an
operand; the second element of the pair is the target. When the graph is constructed, both elements of the
pair are the same. During static single assignment form construction, the tags are modified so that
conditions of a single assignment to the tag are maintained.
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6.3 Building the Tag Table

Now that the compiler has the concept of tags, the compiler uses it to compute the modifies information
in general. The compiler builds a tag for each symbolic memory reference. Hence there is a tag for A(l)
and another one for A(J), as well as a tag for the whole array A. These tags will be handled much like
registers, except they do not occur as operands of instructions. Instead they occur as attributes of LOAD,
STORE, and procedure calling instructions. For the LOAD instruction, the tag indicates the data being
loaded. For the STORE and procedure call instructions, it indicates which data may be modified by the
instruction.

Each tag structure contains a number of fields representing its relationship to other tag structures:

Temporary: The flow graph always uses the same temporary for loading and storing into the
symbolically identical memory location. This temporary is stored in the tag. Although not
absolutely necessary, it provides easy access to the temporary and makes table lookup on the tag
table easier. At first glance, the reader may consider that there is a one-to-one relationship
between tags and temporaries so one or the other of them might be eliminated. However, there are
tags that are not related to temporaries: tags for arrays or whole structures. In the case of tags for
whole arrays or whole structures the temporary entry is NULL.

Unique: This is a Boolean field indicating that the tag represents a unique area of memory. This
attribute is true if the address of the data can be determined at compile or link time or occurs at a
fixed offset from the beginning of the stack. It is false for tags representing data in the heap or
tags representing array elements whose address is determined at run time.

Kind: The kind of the tag describes the specialized fields that are associated with the tag. The
following kinds of tags exist. The list may be expanded if the language being compiled expands.

« Stack: Represents the collection of all data stored in the runtime stack.

» Heap: There is a tag for each type of data stored in the heap. The word “type” refers to
the source language type. This allows the compiler to distinguish elements of different
types when dealing with pointer dereferencing.

* COMMON block

* Array
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* Structure or union
» Atomic: Represents scalars and pointers in memory

Parent: This field is a pointer to the tag representing the parent tag that includes this tag. If there
Is no parent then the entry is NULL. The following tags have parents:

» An array access has the tag for the whole array as the parent.

A structure or union access has the tag for the whole structure as a parent.

An entry in a COMMON block has the tag for the whole COMMON block as the parent.
Any variable allocated to the runtime stack has the tag for the runtime stack as a parent.
Any datum residing in the heap (and which is not a component of a larger object) has a
parent that indicates a heap object of that type.

Children: This field lists all of the tags that have this tag as their parent. This is the reverse of the
parent attribute and is used to scan all of the children whenever necessary.

Offset: If the tag represents memory that is a constant offset within the parent tag, then the offset
is placed in this field. Fields of structures or unions are constant offsets from the start of the
structure or union. Similarly, references to arrays using constant subscripts give a constant offset
from the beginning of the array. If there is no constant offset, then a value [ is stored in the field
to represent the fact that the offset is not known.

Size: The size of the datum represented by the tag is stored in this field. For example, on a 32-bit
machine, an integer and float will have a size of 4 bytes, whereas a double-precision number has a
size of 8 bytes. Size information is stored for structures and COMMON blocks also. For arrays
whose size is not known at compile time, the value [ is inserted.

6.4 Two Kinds of Modifications: Direct and Indirect

Consider the process of finding all temporaries that are modified by a store operation. Recall that store
operations are restricted to using the same temporary to store into a particular symbolic memory location.
Thus search the tag table to find the tag that contains that temporary in the temporary attribute. That tag
Is modified by the store. This is a direct modification of a tag.

What other tags are modified by the store operation? Certainly the ancestors on the parent chain are
modified. The question is, Are the children of the parents modified? Not necessarily. In fact, modifying
all of the children of each parent would generate too many modifications. If one field of a structure is
modified, then any field that does not overlap is not modified. These modifications are called indirect.

6.4.1 Indirect Modifications in a Structure or Union

The children of a structure or union tag are the tags for the children that have fixed offset attributes.
Consider a structure S containing fields a, b, and c. A modification of field S.a indicates that the tag for S
Is also modified. However, the tags for S.b and S.c are modified if and only if their storage, as indicated
by their offset and size attributes, overlaps that of S.a.
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Thus the algorithm for computing the modifies set for a field a of a structure S is as follows. S is the
parent tag for S.a. Add the temporary for S.a to the modifies set and mark S as modified also. If S has a
temporary associated with it, then add it to the modifies set. At the same time scan the children of S and
add each of them to the modifies set for S.a if they overlap S.a in memory.

If a structure is contained within another structure, then the same process can be applied at the next level
up in the tag table. Recall that only S.a was modified, so we need only look at fields that overlap S.a even
though S itself is marked as modified.

This algorithm handles structures, unions (with overlapping fields), and records that have variant fields.
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6.4.2 Indirect Modifications in COMMON Blocks

The same algorithm as used for structures can be used for COMMON blocks. Fortran COMMON blocks
have the characteristic that they can be viewed with different structures within different procedures. The
COMMON block has the same characteristics as a structure, and the same algorithm can be used to
determine which variables and arrays within a COMMON block are modified. Each has a fixed size and
fixed offset so a scan of the children of the COMMON block tag will find the data that overlap the
variable or array that is modified.

6.4.3 Modifications Involving the Fortran EQUIVALENCE Statement

The Fortran EQUIVALENCE statement is handled in COMMON blocks by the same scan for
overlapping data. EQUIVALENCE statements indicate that multiple variables overlap (with possibly
different types) and indicate the exact offset between each pair of variables. If one of the variables is in a
COMMON block, then the other variable is also. It is therefore entered in the list of children with its
offset attribute adjusted as indicated by the EQUIVALENCE statement. Now the modification sets will
be computed correctly by scanning all of the children to see which overlap.

Assume that A and B are two variables that occur as a pair in a Fortran EQUIVALENCE statement. If
one of them is ina COMMON block, we process them as described in the previous section. Otherwise
consider them as two fields of a union, with different offsets within the union as described by the
EQUIVALENCE statement. Build a tag for the union and make the paired elements children of the union
tag.

If another variable is made equivalent to one of these variables by another EQUIVALENCE statement,
add that element to the children of the union with the appropriate offset.

6.5 The Modification Information Used in Building the Flow Graph

The compiler has a chicken-and-egg problem. It cannot compute the modifies information precisely
before computing the flow graph. While computing the flow graph, the compiler will perform value
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numbering on the blocks as they are created. This is needed to decrease the size of the flow graph and
make it more manageable. To perform value numbering, it must know which memory locations are
modified by each store operation so it can invalidate the value numbers for those locations.

The compiler requires the front end of the compiler to compute the set of all variables whose addresses
might have been taken.! This means computing the variables where the address is copied into a variable
for use as a procedure parameter or as the value of a pointer. This is not the same as the situation that
occurs during the construction of the flow graph where the address of each variable is loaded whenever it
Is used. The scalar variables whose addresses are not taken are implemented as temporaries in the flow
graph: They can only be modified by explicit reference to them. The other structures and arrays whose
addresses are not taken have no hidden side effects, so their information can be traced as the flow graph
IS constructed.

1The compiler cannot always determine all variables whose addresses might have been taken. If there is a
procedure call that is separately compiled, then the address might be taken inside the procedure call and
stored in a globally available variable. In this case the compiler must assume that all addresses that are
visible to the procedure (or any procedure that it calls) might be taken.

To handle other cases, the compiler uses a safe approximation to the eventual modifies information. As
the flow graph is built, the compiler associates a tag with each symbolic memory address encountered. It
performs value numbering on single blocks as was described during the construction of the flow graph.

What does it do when it encounters a store operation? If the store operation is to a tag whose address has
not been taken, then all explicit tags that overlap this one are assumed to be modified and the value-
number information for those tags is invalidated.

If the store operation is to a tag whose address is taken or is a pointer, then the value numbers for all tags
that have the same type (assuming the language rules allow it) and involve storage locations whose
address might have been taken are considered modified. Any tag representing data that overlap the data
for one of the modified tags is also considered modified. That includes any tag containing data structures
and fields that overlap a field that is modified.

Since modification information need only be computed for a single block, the compiler need not worry
about references in the flow graph that have not been seen yet. The compiler is traversing the block in
execution order; it need only invalidate references that have already been seen in this single block. Later
references have not been seen so they do not need to be invalidated.

6.6 Tags for Heap Allocation Operations

Getting good modification information for data allocated in the heap is hard. The crudest approach to
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modification information is to assume that all data on the heap might overlap. In other words, the heap is
handled as if it were C-union with each datum allocated on the heap considered a different alternative.
This is the typical approach to implementing modification information for heap objects.

If the source language (such as C) has language rules about type compatibility, then the compiler can do
better. If the ANSI language rules are in effect and the source language type is not a pointer to a
character, then a pointer only points to objects of the same type. Hence only objects of the same type can
overlap.

A simple device can sometimes do better. Create a separate tag for each allocation instruction (call on
malloc in C or the new operation in C++). Consider all allocations that occur at that point in the flow
graph as potentially overlapping and not overlapping others unless later analysis forces the overlap.
Frequently a programmer will use a single allocation statement to allocate all data that match a particular
abstract data type. If that is the case, then this device allows the compiler to differentiate this abstract
data type from other data types, providing better allocation information.
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6.7 More Complete Modification Information

After building the flow graph and before dominator-based optimization, the compiler builds more precise
modification information. Before the flow graph was completed, the compiler assumed that all addresses
of the same data type (and all structures containing them) overlapped unless the compiler knew the
address in terms of constant offset and size from a fixed area of memory. Now the compiler will try to do
better by computing the set of tags to which each memory location or temporary can point.

Definition Points-To Set: Consider any tag or temporary X. The set of tags to which X
can point is the points-to set for X, or PT(X). When X is not used as a pointer,
PT(X) is not needed.

PT(X) is flow-insensitive information. There is no indication of the point in the flow graph where this
information is being used; it is aggregated over the whole flow graph or the whole program. As we will
see shortly, the information will be more precise if it is computed simultaneously over all of the flow
graphs for all of the procedures in the program.

The basic algorithm is simple, so | will describe it first. Then | will adjust the algorithm to take care of
the problems that we will see in the original description. Initialize all of the sets PT(X) to the empty set,
@. Now scan through the flow graph in either normal form or static single assignment form. Scan
through the instructions in any order and consider the targets of each instruction.

The instructions can be divided into multiple classes. The largest class of instructions are those that can
never be used in an address computation:

They add nothing to the set PT(X) for each X that is a target. The second class includes the instructions
that have some unspecified effects such as procedure calls. In this situation the compiler adjusts the
PT(X) of each tag or temporary that might be modified in the procedure call. When processing a single
flow graph at a time, this means that the set of all memory locations that might be referenced within the
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procedure call must be added to each PT(X) for each tag or temporary of the same value type. When
dealing with all procedures simultaneously, the procedure call can be viewed as a set of copy operations
from the actual parameters to the formal parameters. Since the algorithm is flow insensitive, the
processing of these copies together with the later processing of the body of the procedure will correctly
update all of the PT(X) sets.

The last set of instructions are the instructions that might be involved in an address computation. This
includes load and store operations, load constant operations, addition and subtraction of expressions, and
the register-to-register copy operations. If the instruction is the load of an address constant, then find the
corresponding tag and add it to the PT(X) for each temporary or tag that is an output of the instruction. If
it is a register-to-register copy operation, add PT(Y) to PT(X) for the operand of the instruction. If the
instruction is a load instruction, add PT(tag) to PT(X), where tag is the tag of the memory location and X
Is the output variable. Addition and subtraction can be considered to not change the point for the
purposes of computing PT(X).

As usual, the most difficulty occurs with the store operations. Performing a store adds PT(Y) to PT(tag),
where Y is the operand being stored and tag is the tag for the primary address in the store operation.
There are two cases in considering the other tags associated with the store. If a tag represents a memory
location that is aligned in the same manner as the primary tag and is the same size, then PT(Y) can be
added to PT(tag) also.

Where is the problem in this algorithm? What the compiler really wants is to merge the final PT(Y) into
PT(X) if Y is an address operand for an instruction computing an address X. What the algorithm above
does is merge the current value (at various points in the algorithm) into PT(X). The way to handle this is
to build a directed graph, which we will call the address graph (the name is not standard). The nodes of
the address graph are the tags and temporaries in the set of flow graphs being processed, and there is an
edge from Y to X if Y is an address expression (or tag containing a pointer) used to compute X. Instead of
scanning the flow graph and updating the PT(X) sets as we go, the compiler scans the instructions,
inserting the constants and tags representing memory allocation instructions into the corresponding
PT(X) and building this graph as it goes.

Given this graph, the collection of PT(X) sets can be computed in one of two ways (your choice). The
first technique is a work-list algorithm. Place all of the nodes that contain non-empty PT(X) sets on the
work list. That condition means that the nodes contain constants of memory allocation tags. Then process
this work list one node at a time. Assume the compiler is processing the element Y. Then PT(Y) is added
to PT(X) for each of the successors X of Y in the address graph. X is added to the work list if PT(X)
changes.

Another way of computing the sets is to compute the strongly connected components of the reverse graph
of the address graph. Each element X in a strongly connected component has the same value. By
processing the nodes in reverse postorder on this (reverse) graph and handling a strongly connected
component as a single node, the PT(X) values can be computed in a depth-first search.
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6.7.1 An Approximate Algorithm that Takes Less Time and Space

Note that the above algorithm computes PT(X) for each tag and temporary. These sets can overlap;
however, if we relax the computation to produce a conservative (larger set) result, then we can store the
PT(X) information in linear space. Just expand the sets to be an equivalence class. This means that if
PT(Y) is added to PT(X), we simply make X and Y be in the same partition of the equivalence class, and
the set PT(X) is all of the address constants and memory allocation tags that are in the same set. This
algorithm has been noted by Steensgaard (1996).

The PT information can now be implemented using a standard UNION/FIND data structure. When the
algorithm would copy PT(Y) into PT(X), simply perform the UNION operation to join these two sets and
make them identical (and thus make one of them larger than necessary).
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6.8 Including the Effects of Local Expressions

Recall that a tag indicates a memory area and a potential runtime computable offset within the memory
area. To correctly compute the modifies information, the compiler must take into account these runtime
computations. In particular, A(I) must be considered modified if I is modified. In other words, a storage
reference is modified if its address changes. The address will change only when the variable temporaries
and the temporaries involved in load and store operations within the address expression change. Thus we
must compute the modifies information for copy operations. The tag representing a memory location is in
the modifies set of any variable temporary that is a leaf in the expression tree computing the address.
How does the compiler compute the modifies information for each copy operation? The algorithm here is
based on one used in the Rice Massive Scalar Compiler Project.

To compute this information use an auxiliary data structure called DEPENDS. There is one DEPENDS
set for each temporary. Consider two temporaries, Tand S. The temporary T is in DEPENDS(S) if T is a
variable temporary that is used to compute S. These sets can be computed by performing a walk of the
flow graph. Recall that all of the operands of any expression temporary must be computed on all paths
leading to the occurrence of the instruction computing that temporary. Thus, a depth-first search through
the flow graph will visit instructions computing the operands before instructions computing S.

Initialize all of the DEPENDS sets to empty. Perform a depth-first search of the flow graph. When
processing any instruction computing an expression temporary, make the DEPENDS set of the target be
the union of the DEPENDS sets for the operands. When processing an instruction that computes a
variable temporary, make the DEPENDS set of the target be the target itself. When the walk is completed
all of the DEPENDS sets have been computed.

Now scan through the set of all tags, considering the address expression portion of the tag. For the sake
of discussion consider a single tag X with an address expression computed into T. X is in the modifies set
for each temporary in DEPENDS(T).

6.9 Small Amount of Flow-Sensitive Information by Optimization
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Later optimization techniques are used to improve the modification information. Consider a particular
store operation. What memory locations might be changed by this store operation? Clearly all locations
that are in the same points-to set as the address of the store operation and every location that might
overlap one of these memory locations.

During the dominator-based optimizations, a degree of flow-sensitive information can be gained by
applying the constant propagation algorithm. At that point the flow graph is in static single assignment
form, so the set of memory locations that might change is attached to the store operation. A variation on
constant propagation can be used to prune this set of memory locations.

Consider a language like C. In C, each pointer must point to a particular data structure. The data structure
may be statically allocated, on the heap, or on the stack, but the pointer cannot move from one data
structure to another. Here is the idea. Consider an “alternative” value for the address that consists only of
the largest data area in which the address points. Thus for an array it is the base of the area. If the address
Is not knowable, make the value be bottom (see the constant propagation algorithm, described in Chapter
8), which indicates that the compiler has no idea what the value is.

This alternative value has some interesting computational rules. Adding an integer expression to this
value does not change it. Hence subscripting does not change it. Similarly, subtracting values does not
change it. Thus, constant propagation can be applied and an “alternative value” determined for each store
operation. If the alternative value for the address in a STORE is not bottom, then all memory locations
that do not overlap this value cannot be changed and can be removed from the list of memory locations
that might change.

This algorithm is particularly helpful when arrays are involved or in-line functions have been inserted. It
will replace the translation of arrays to pointers and the copying of pointers by array semantics when
possible.

6.9.1 Handling the Pointer from a Heap Allocation Operation

Another flow-sensitive refinement of the modification can be performed on the static single assignment
form. In this form, each use of a pointer is directly tied to the instruction that computed it. Thus, pointers
that have been generated by an allocation instruction, such as malloc, can be identified as a walk of the
flow graph or the dominator tree is performed. What memory locations can a STORE through this
pointer affect?

Initially, the store cannot affect any other memory locations because this is new memory. As the walk
continues, a STORE through this pointer can only affect memory locations associated with locations in
which this pointer has been stored. This analysis continues until there is a merging of paths in which one
value comes from one predecessor and another from an alternate predecessor. Of course, in static single
assignment form this means a new temporary name.
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Thus a temporary that holds a pointer that is created by a memory allocation operation holds that value
for its whole lifetime and can only overlap memory addressed by pointers that are copies of this
temporary. This interpretation is safe in this compiler because the compiler never attempts to move
instructions when the flow graph is in static single assignment form.

6.10 References

Steensgaard, B. 1996. Points-to analysis by type inference of programs with structures and unions. In
International Conference on Compiler Construction, number 1060. In Lecture Notes in Computer
Science, 136-150.
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Chapter 7
Static Single Assighment

Many optimization algorithms need to know the relationships between uses of temporaries (or variables)
and the points where they are evaluated. Each of the algorithms needs to know either the set of points in
the flow graph where the value computed by an instruction is used or the set of evaluations whose values
might be used at this point in the flow graph. The static single assignment (SSA) form is a compact
representation of these facts.!

LAn alternative technique called USE-DEF chains can also be used. It frequently requires more space and
time to compute and is harder to incrementally update.

Definition Static Single Assignment Form: The flow graph is in static single assignment
form if each temporary is the target in a single instruction.

The definition of static single assignment is so restrictive that most programs cannot be translated into
SSA form. Consider the left flow graph in Figure 7.1. There are two assignments to the variable X: one
outside the loop and one incrementing X inside the loop. There is no way to put X into SSA form without
the introduction of a new operator.

To ensure that all program flow graphs can be put in SSA form, another special instruction, called a ¢-
node, is added to the definition of static single assignment form.
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Definition @-node: Consider a block B in the flow graph with predecessors {P;, P,, ..., P,},

where n>1.A @-node T, = (T4, T, ..., T,) in B is an instruction that gives T, the
value that T; contains on entrance to B if the execution path leading to B traverses

the block P; as the predecessor of B on the path. The set of @-nodes in B is
denoted by ®(B).

Figure 7.1 Graph (left) and SSA Graph Equivalent (right)

Consider the program flow on the right graph in Figure 7.1. This graph is equivalent to the one on the left
(it computes the same values) and is in SSA form. The variable X has been replaced by four variables
(Xgs X1, X5, X3) and two @-nodes that indicate the points in the program reached by multiple definitions of

X. One of the @-nodes is at the beginning of the loop because there is a modification of X inside the loop
and it is initialized outside the loop. The other @-node occurs at the merge of two paths through the loop,
where only one path contains a definition of X.

A flow graph in SSA form is interpreted in the same way as a normal program flow graph, with the
addition ¢@-nodes. Consider a path from Entry to exit:

« Each normal instruction is evaluated in order, recording the results of each instruction so that
these values can be used in the evaluation of later instructions on the path.

« All @-nodes at the beginning of a block are evaluated simultaneously on entrance to the block.
The value of target temporary T is T; if the path came to the ¢-node through the ith predecessor

of the block.

The next two sections describe the fundamental operations of translating a flow graph into and out of
static single assignment form. Two areas that are typically overlooked in the literature are emphasized:

the simultaneous evaluation of @-nodes at the beginning of a block, and the handling of abnormal edges
in the flow graph.

7.1 Creating Static Single Assignment Form

The algorithm for translating the flow graph into static single assignment form treats each temporary
independently. In fact, one could partially translate the flow graph leaving some temporaries in normal
form and some in SSA form. This compiler does not. The translation takes place in two steps:
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1. Determine the points in the program where @-nodes are inserted. In Figure 7.1, there are two
points. Insert the @-nodes with the left-hand operand and all right-hand operands being the same
value. In Figure 7.1, there would be two insertions of the form X = (X, X).

2. Rename the temporaries so that each instruction and ¢@-node having X as a target is given a
new, unigue name.

Where are @-nodes needed? Consider a single temporary or variable T and a block B. A @-node is needed
at the beginning of B if B has multiple predecessors and different definitions of T occur on distinct paths
going through at least two predecessors. This leads to the definition of converging paths.2

2Computing these points is not intuitive; thus, we now descend to a theoretical discussion. A more
intuitive algorithm was used in an earlier form of static single assignment called p-graphs. P-graphs had
all of the characteristics of static single assignment; however, computing the points for the insertion of the
birth points was quadratic to the size of the graph, so was not practical in most compilers.

Definition : " '
Converging Paths: Two non-null paths, p from B, to B, and g from Hﬂ to Bm,

converge at a block Z if and only if

B,

P '
BH il Bm; in other words, both paths end at Z.
B ;= ’ o _ _ _
If J then eitheri=n or j = m; in other words, the only point on the
paths that is in common is the end point. Note that one of the paths may loop
through Z and come back to it.

1
% 'Bﬂ'; in other words, the paths start at different points
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If 1, and I, are assignments to T, then any basic block Z that is the conjunction of two merging paths from
I,, and 1, will be a point where a ¢-node is inserted because two different definitions of T lie on distinct
paths reaching that point. But one must go further. Z is now a new definition of T because the @-node has

been inserted, so now it too must be included in the set of definitions of T and the process of computing
merge nodes repeated.

Using the notation of Cytron et al. (1991), one obtains the notation and formula shown in Figure 7.2 for
the points where @-nodes need to be inserted for T. The notation is an abstraction of the idea of the
previous paragraph. The function J;, takes a set of blocks as an argument and returns the set of merge
points associated with those blocks. However, this process must be repeated with the set of blocks
together with the merge point giving J,. By the definition of merge points, if the argument J, is a larger

set, then the result is larger also. In other words, j,—(ﬁ) 1’;.»Jra:'ﬂ(ﬂ). Since there is a finite number of
blocks, there must come a point where J;(S) = J;,;1(S). This will be true for all larger values of i, so the

formula represented as an infinite union actually represents the value of J;(S) where the sets stop
increasing in size.

It is too difficult to directly compute the merge points; another formulation is needed. An efficient
algorithm is based on dominance frontiers. One point before | discuss the algorithm: In forming static
single assignment form, each temporary is assumed to have an evaluation at Entry. Think of this
evaluation as the undefined evaluation. It is the evaluation used when no evaluation has really occurred.
If this evaluation is used as an operand, then the operand has an undefined value. This cannot happen
with expressions or compiler-generated temporaries. It can happen with user-defined variables stored as
temporaries.

Here is the algorithm. Consider two evaluations of T in blocks B and B'. There are three possibilities:

» B dominates B'. consider a merge point Z for these two blocks. There are disjoint paths from B
to Z and from B’ to Z. B' cannot dominate Z because then B' would be on the path from B to Z,
contradicting disjointness.
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Figure 7.2 join Points for Temporary X

» B’ dominates B. The same argument as above indicates that B cannot dominate Z.

 Neither B nor B’ dominates the other. Then a merge point will not be dominated by either of
them because two distinct paths reach it.

Thus the merge points have something to do with the blocks that are not dominated by B. In fact,
consider an evaluation of T in B. Follow any path leaving B until you arrive at a block Z that is not
dominated by B. By the definition of dominance frontier, Z 1 DF(B). Z is also a merge point because
there is a path from B to Z and a path from Entry to Z. There is an implicit evaluation of T in Entry, so Z

(0 J(S). In other words, we have DF(S) [1 J*(S). We can apply the same repetitive formation method to
the dominance frontier, giving the set of equations in Figure 7.3.

The claim is that DF*(S) = J*(S) if S contains the entry block. We know that 2F7(8) = F(5) py
+
repetitively applying the inequality DF(S) < J°(S ), Noticing that the sequence of dominance

-~

frontier sets and join sets are each increasing in size, we know that DF™(8) < .F ¢ :', S0 we need
only establish the reverse inclusion. Proving his is a two-step process that is best described in
mathematical proofs.

+
Lemma LetpB —> Z be anon-null path. Either
B dominates each node on the path p, including Z,

Or there is a block B' [ DF*({B}) on the path p that dominates Z.

Proof Since we need to establish one or the other of the conditions, we can assume that the
first condition is false and establish the second. Assume that there are blocks on the path
that are not dominated by B. Consider the first block B, on the path that is not
dominated by B. Its predecessor is dominated by B, so B, is in the dominance frontier of

B. Therefore there are blocks in the dominance frontier of B that are on the path. Since

DFB) C HF(B) there are blocks in the iterated dominance frontier of B on the
path. Let B' be the last block in DF*(B) on the path as one walks the path from B to Z.
The claim is that B’ dominates Z. If B does not dominate Z, then there is a first block
following B’ that is not dominated by B'. That block is therefore in the dominance
frontier of B', so it is in DF*(B) by the iterative nature of its definition. This is a
contradiction since B’ was chosen to be the last such block on the path.

Figure 7.3 Iterated Dominance Frontier
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A loose interpretation of this proof is as follows: Start at B. Move down the path until one finds a
member B, of the dominance frontier of B. Now do the same thing starting at B;. Continue this process

until one reaches the end of the path. The last block of this form on the path dominates all the following

ones.

Lemma

Proof

+ +
Let B # C be two blocks. If there are two paths p:B = Z and q:C —> 2 that
converge at Z, then £ € DF*({B}) \w DF"({C)).

Using the previous lemma twice, choose a block B' [0 DF*(B) on p that dominates Z, and
a block C' O DF*(C), on g that dominates Z. There are three cases:

Suppose B' is on the path g as well as on the path p. By the definition of two paths
converging, this means that B' = Z, so Z [0 DF* ({B}).

Suppose C' is on the path p as well as on the path g. Again by the definition of
converging paths, this means Z = C' 0 DF* ({C}).

Suppose that B is not on path g and C' is not on path p. Now B' dominates Z, which
Is the last block on the path g. Then B" must dominate the predecessor, Y, of Z on g,
because if B' does not dominate Y, a new path between Entry and Z can be formed
from a path between Entry and Y that does not include B’ and the edge fromY - Z.
Recall that Y # B’ since B' is not on g. This argument can be repeated for each block
on the path q in reverse order so that B' dominates every block on g. Now apply the
same argument with C" and p and one finds that C' dominates every block on the
path p. So B' dominates and is dominated by C'. The only way that this can happen
Is that B' = C’, which is a contradiction. So this alternative is not possible.

Now recall the definitions of converging paths and join set J(S). What this lemma shows is that for any
set S one has J (S) - DF” (S) Now consider the concept of iteration we are using to form from

DF* and similarly J* from J. The sequence of sets J!']"Fl - ‘DFZ e DIF Is a sequence of
increasing finite sets with an upper bound being all sets in the graph. Thus there is a point in the

file:///D|/Convert/Building_an_Optimizing_Compiler/ch07/170-172.html (1 of 3) [10/17/2003 1:05:36 AM]



Building an Optimizing Compiler:Static Single Assignment

sequence where the sets no longer increase; in other words, there is a point where DF; = DF;,,. After this

point the sets will always continue to be the same because the inputs on each iteration are the same as the
previous iteration. Also note that DF+*(DF*(S)) = DF*(S). We have

J(S8) ¢ DF'(S) for any set S
Jy(S) = J(§ v J(S)) € J(S v DF*(S))

J(DF*(8)) < DF*(DF*(8)) = DF*(S)

J*(8) « DF*(S)

We can now compute the points at which to insert the @-nodes by computing the points in the iterative

dominance frontier.

Computing the iterative dominance frontier can be performed using a work-list algorithm, as shown in
Figure 7.4. We have computed the dominance frontier for each block B earlier. The dominance frontier
of a set S is just the union of the dominance frontiers of the elements in the set. The iterative dominance
frontier means that we must include the dominance frontier of any block that we add into the dominance
frontier. This is done by keeping a work list of blocks that have been added to the dominance frontier but
which have not been processed to add the elements of their dominance frontiers yet.

Since the algorithm is stated in an abstract fashion, | include a number of implementation hints here:

» The set DF*(S) is written in the algorithm to indicate that it is dependent on S.The compiler will
use it on one set at a time so the algorithm takes a single set as input and computes a single set as
output. No indexing is needed.

» The only operation performed on the set S is to scan through the elements to initialize both the
Worklist and DF*(S) sets, so it can be implemented using any technique that allows accessing all
members in linear time on the size of the set. In this case, the most likely implementation is as a

linked list.

Jr

Figure 7.4 Iterated Dominance Algorithm

» The Worklist is a set in which the operations are adding an element to the set only when it is
known that the element is not in the set, and taking an arbitrary element from the set. Note in the
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algorithm that an element is added to the Worklist at most once because an element can be added
to the DF*(S) at most once because of the conditional test. The most likely implementation of
Worklist is as an array implementing a stack. The maximum size of the array is the number of
blocks in the graph.

» The implementation of DF*(S) is more subtle. The operations performed on it are initializing to
empty, inserting an element, and checking membership. Outside the algorithm, one will need to
scan through all the elements in the set. Since it is a subset of the blocks in the graph, its
maximum size is known. The most likely implementation for this set uses the set membership
algorithm described in Chapter 3. This set algorithm requires that the elements be mapped to a
sequence of integers, which can be done using any of the numerical orderings we have computed
for the blocks, such as reverse postorder.

Now that we know how to compute DF*(S), we can piece together the algorithm for computing the
places in which to put @-nodes. The basic algorithm, as shown in Figure 7.5, is simple. Handle each
temporary or memory location separately. Form the set of all basic blocks that modify the value being
considered. Compute the iterated dominators and then insert a ¢-node at each block that is in the iterated
dominance frontier. Initially the node inserted has the same left side and operands. In the renaming phase
coming shortly, these names will be changed so that the program satisfies the SSA form conditions.
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The algorithm in Figure 7.5 inserts too many ¢-nodes. It inserts the minimum number of ¢@-nodes to
guarantee that each temporary and variable always has the correct value and the program satisfies the
SSA form, but many of these @-nodes will define temporaries that have no uses, so the ¢=nodes can be
eliminated. Consider a temporary T that is defined and used only in one basic block B. The algorithm
will still insert @-nodes at the basic blocks in DF+({B}) even though no uses of T occur outside the block.
These extra nodes can be eliminated by dead-code elimination; however, they take up space in the
compiler and require time to generate, slowing the compiler down. There are two techniques, shown in
Figures 7.6 and 7.7, for eliminating some of these nodes.

DELLEE P 8. Aii i S
e e LT
s
L v A s
u B s
R A BN T I T 3 an b
s
e

Figure 7.5 Basic Algorithm for Inserting @-Nodes

Figure 7.6 Inserting Nodes for Global Variables

The first improvement on the basic algorithm is given in Figure 7.6: Do not compute ¢-nodes to be
inserted for temporaries that do not contain information across a block boundary. If the same temporary
is used in multiple blocks but no information is stored in it at a block boundary, the renaming algorithm
will change these into multiple temporaries appropriately.

Figure 7.7 Inserting Fewest Nodes

Recall that Globals is the set of temporaries that holds a value at the beginning of some block. This is
still too coarse; @-nodes will be inserted at blocks where the value will not be used. In other words, ¢-

file:///D|/Convert/Building_an_Optimizing_Compiler/ch07/172-176.html (1 of 3) [10/17/2003 1:05:37 AM]


javascript:displayWindow('images/07-05.jpg',500,159)
javascript:displayWindow('images/07-05.jpg',500,159)
javascript:displayWindow('images/07-06.jpg',500,188)
javascript:displayWindow('images/07-06.jpg',500,188)
javascript:displayWindow('images/07-07.jpg',500,259)
javascript:displayWindow('images/07-07.jpg',500,259)

Building an Optimizing Compiler:Static Single Assignment

nodes need only be inserted where the temporary is live. Figure 7.7 shows the modified algorithm that
computes which blocks have T live and only inserts @-nodes in these blocks.

The work-list algorithm for computing Live given in Chapter 4 is well suited for this algorithm. The
algorithm only processes temporaries in Global and the work-list algorithm can then be applied to the
small set of temporaries.

7.2 Renaming the Temporaries

At this point we have an algorithm for insert @-nodes; however, the variables have not been renamed so
that there is a single variable name for each definition. We need a consistent renaming of the temporaries
in the instructions so that the same name is used when a temporary is evaluated and when it is used.
Consider a temporary T in the original program. After the ¢@-nodes are inserted, the uses of T can be
divided into two groups:

1. The uses of T that occurred in the original program. All of these uses are dominated by the
definition that computes the value used. If this were not true, then there would be another path to
the use that avoids the definition, which would mean that there is a point where separate paths
from definitions converge between the definition and the use, thus inserting another definition. In
other words, each use is dominated by an evaluation of T or a ¢-node with target T.

2. The uses of T in a ¢-node. To each such use there is a corresponding predecessor block. This
predecessor must be dominated by the definition of T for the same reasons that normal uses of T
are dominated.

The renaming algorithm thus reduces to a walk of the dominator tree (see Figure 7.8). Each time one sees
a definition of a temporary, a new name is given to the temporary, and that name replaces all of the uses
of the temporary that occur in blocks dominated by the definition. After the subtree dominated by the
definition has been walked, the previous name is restored so that other subtrees can be walked with the
previous name. Uses of a temporary in @-nodes handled in the predecessor block. When a block is
traversed, all of the @-nodes in each successor are traversed. Uses of a temporary in the operand position
corresponding to this (predecessor) block are renamed in the same way that normal uses are renamed.
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The whole point of static single assignment is to provide concise information about the uses and
definitions of temporaries, so we need to add attributes to the renaming process that record this
information. For each temporary there are two attributes, Definition(T) and Uses(T). Definition(T) is the
single instruction that defines T. Recall that there can be more than one temporary defined by each
instruction; however, there is only one instruction that defines a particular temporary.

Uses(T) is the set of instructions that uses T. This is a set that most likely is implemented as a linked list.
Since each instruction is only visited once during the renaming process, the only way that an instruction
can be inserted twice into the set is when the same operand is used two or more times in an instruction. |
choose to let these multiple insertions occur in the set because later a removal of one operand will only
remove one of the uses.

The form of NameStack is the implementation issue. NameStack is a collection of stacks, one for each
temporary. These stacks are implemented as linked lists to avoid excessive storage. The Push operation
adds an element to the head of the list, and the Pop operation removes an element from the head of the
list. Top looks at the element at the head of the list.

If we are being mathematically pure, we should now prove a lemma that the execution of the static single
assignment form computes the same values on each path through the flow graph as are computed with
the normal form of the flow graph. The proof is a clerical application of the ideas that we have discussed
here, carefully checking that the renaming algorithm is accurate to the execution of the flow graph. If you
are not convinced, then we leave the proof to you.
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7.3 Translating from SSA to Normal Form

To return the program to normal form involves replacing the @-nodes by equivalent copy operations. The
value of a @-node in B is the value of its first operand if B is entered from the first predecessor, its second
operand if B is entered from the second operand, and so on. Translation from SSA form to normal form

thus consists of replacing the @-nodes by assignments in the predecessor blocks having the same effect,
as is shown in Figure 7.9.

Two characteristics of the SSA form make it difficult to translate back to normal form.3 Consider the
flow graph and the corresponding optimized SSA form in Figure 7.10, where only relevant instructions
are shown. All @-nodes are evaluated simultaneously at the beginning of a block. In this example, B is
also the predecessor and the variables b; and &, are both used as operands and assigned values in B. The

straightforward translation as in the left flow graph of Figure 7.11 destroys b, before it is used. The
variables a; and b, are used to define one another. A temporary, t, must be created to hold the value of
one while it is receiving a new value.

3These problems were communicated to me by Preston Briggs, now of Tera Computer Company, and
elaborated on by L. Taylor Simpson of Rice University. The example is a combination of two examples
created by Taylor Simpson.

[ann
n F . &

Figure 7.9 Translation from SSA Form

Also, one of the variables may be modified before it is later used on a different path, as shown in Figure
7.11. In this example u, which is a copy of a,, is used later in the program. It is eliminated by the

optimizer and replaced by a use of a;. If a, is assigned a value at the end of B, then the value of a; will be
destroyed before its use. But note the following:
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« If a B has only one predecessor, then no @-nodes can occur.
« If a predecessor of B only has B as a successor, then there is no possible alternative path out of
the block.

Figure 7.11 Incorrect and Correct Translation

» Thus only critical edges can have this problem, so they must be eliminated before translation by
inserting an empty block in the middle of the edge. Since abnormal critical edges cannot be
removed, the optimization algorithms using SSA form must ensure that there will be no need to
insert a block on an abnormal critical edge.

7.3.1 General Algorithm for Translating from SSA to Normal Form

Given a flow graph (N, E, Entry, Exit) in SSA form and a partition P = {P, ..., P,} of the set of all
temporaries, rewrite the graph in normal form so that any two temporaries T, and T, in P; are given the

same temporary name and the @-nodes are replaced by equivalent copy operations. The partition defines
an equivalence relation on the temporaries. Equivalent temporaries are renamed to a single temporary in
the normal form. The partition must ensure that a valid program will be generated. In particular,

* Ineach block B, if two equivalent temporaries are targets of @-nodes, then corresponding
arguments must be equivalent.

* For each abnormal critical edge (C, B), if T, = (T4, ..., T;, ..., T,,) is @ @-node in B and C is the
ith predecessor of B, then T, and T; must be equivalent.

In all of the algorithms in this compiler, the partition of the temporaries will be implemented using the
UNION/FIND algorithm of Tarjan (1975) as found in most data structure textbooks (Aho 1983 and
Cormen 1990). Initially each temporary is in a partition by itself. Each partition is always represented by
a single temporary in the partition. FIND takes a temporary as an argument and returns the representative
temporary for that partition. UNION takes two temporaries, replaces the two partition subsets holding
those two temporaries by a single partition subset that is the union of the two, and returns the
representative temporary for the union.
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Returning to normal form involves two activities: renaming temporaries in ordinary instructions and
eliminating @-nodes (see Figure 7.12). Renaming the temporaries in ordinary instructions is a clerical
problem. The compiler scans through all instructions in all blocks and, using the FIND function, replaces
each temporary by a unique representative from the subset in the partition containing that temporary. The
@-nodes can be eliminated during the same walk of the flow graph in which the temporaries are renamed.

Assume we are considering the edge (C, B) where C is the ith predecessor of B. We insert copy
operations into C to simulate the effect of the @-nodes in ®(B). At the same time we will rename the
operands using FIND. The compiler must sort the copy operations so that any copy involving a
temporary as an operand occurs before the copy involving the same temporary as a destination.

» A temporary (or rather the elements of a partition) can be used multiple times as an operand.
« If equivalent temporaries are targets of @-nodes in B, then corresponding operands are

equivalent.
» Some of the copies will be eliminated because the operand and the target are equivalent.

Figure 7.12 Renaming to Normal Form
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The compiler must sort the copy operations so that uses of a temporary precede their definitions and
create temporaries to create copies for mutually dependent temporaries. We describe a graph, R(B), to
represent these two relationships.

» The nodes of the graph are the members of the partition P. There is one node of R(B) for each
subset in the partition P that contains a temporary occurring in ®(B). Equivalent temporaries are
represented by a single member of the partition.

 There is an edge from FIND(T,) — FIND(T)) if there are temporaries T, and T, such that T, = ¢(.

..) 1 ®(B) with T, as the ith operand.

How does this graph describe the problem of ordering the copy operations? Each node in the graph
corresponds to the representative of a partition element that occurs as the operand or target of some of the
@-nodes. Each representative can occur as the target of at most one copy operation. If an ordering is
found where uses occur before definitions, then the copy operations can be generated in the same order.
This is a topological sort of the reverse graph.

Which nodes generate copy operations? In R(B), there is an edge out of a node if and only if there is a
copy operation. So each node in R(B) with a successor generates a copy operation. The other nodes
represent temporaries that are used but not defined.

What about the case in which there are mutually dependent temporaries? Then the graph will have a
strongly connected region and the topological sort will not succeed. The strongly connected regions must
be identified and extra temporaries must be introduced to simulate simultaneous assignment.

The strongly connected regions have a special form because there is at most one edge leaving each node.
Look at the definition of an edge; only the ith operand counts, and there can only be one assignment to
any temporary in a subset in the partition. If equivalent temporaries are assigned, then the operands must
be equivalent. So there can be at most one edge leaving a node in R(B). These two characteristics imply
that the strongly connected region has the following characteristics:

» A strongly connected region is a simple cycle. There is a path from any member of the region to
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any other member. Start at one of the nodes. Since there is only one edge out, there is only one
way to leave the node. As you walk from node to node, there are no choices. Eventually you must
get to the other node. If you keep walking from node to node, you will eventually get back to the
original node. You have a simple cycle.

» The strongly connected region may have multiple predecessors outside the region, but it can
have no successors outside the region. The reasoning is the same as before. Since there is only one
edge out of each node and the strongly connected region is a cycle, there is no way to get to any
suCCessors.

This makes the algorithm simpler. We can use the standard strongly connected region algorithm#to
identify a reverse postorder for topological sorting and identify the strongly connected regions. Each
strongly connected region can be translated as follows:

4Actually there are two related but distinct algorithms. Either one can be used. The one here is in most
modern textbooks. The original algorithm is by Tarjan (1972).

1. Enumerate the loop in some order where each successive node is a successor of the previous
one and the first node is a successor of the last. This can be performed during a depth-first search.
2. Generate one extra temporary, T.

3. Generate an instruction to copy the temporary representing the first node into T.

4. Translate all of the other nodes except the last one as is done for the topologically sorted
nodes.

5. Generate an instruction to copy T into the temporary corresponding to the final node.

5L
Cl

Figure 7.13 Mutually Dependent Temporaries

Because this algorithm is complex, let’s give an example. Consider four temporaries T4, T,, T3, and T,,

which are the nodes in a cycle representing a strongly connected region, as in Figure 7.13. The original ¢-
nodes are shown on the left side, the resulting copy operations occur in the middle column, and the graph
representing the copy operations is on the right. An extra temporary. T is generated to hold the value of

T, while all of the nodes are processed. It is the value used to copy into T, at the end.

Now that we have all of the principles, it is time to create the algorithm, as shown in Figure 7.14. It
involves two parts. The first part creates the directed graph representing the temporaries and is shown in
Figure 7.15. Most compiler optimizations attempt to avoid copy operations in the normal form of the
flow graph by defining the partition so that both right and left sides of a copy are in the same partition.
The algorithm makes special provision to eliminate these extraneous copies.
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The graph is represented by a set of nodes called NodeSet and two temporary attributes called
ELIM_PREDECESSORS and ELIM_SUCCESSORS, representing the predecessors successors in the
directed graph. NodeSet is implemented using Briggs set algorithm because we need to be able to
efficiently scan the nodes, check for membership, and insert a node. The predecessors and successors can
be implemented using either linked lists or arrays simulating linked lists. | recommend the latter or the
use of some collection-based memory allocation method because these data structures are very temporary.

The second part of the algorithm implements the topological sort and identifications of strongly connected
regions. These can be done in one algorithm. The topological sort can be performed by pushing each node
on a stack after all of its successors have been walked in a depth-first search. The first element in the
topological order is on top of the stack, the second element is next on the stack, and so on. Hence the
order can be found by listing the elements in the order in which they are removed from this stack.

Figure 7.14 Converting Edge to Normal Form

The strongly connected regions can be identified using the same stack. Before popping an element off the
stack, perform a depth-first search using the predecessors rather than the successors of a node. Do not
visit any node more than once in this predecessor walk. All of the unvisited nodes reached by this depth-
first search of the predecessors are the elements of the strongly connected region containing the
predecessor. The algorithm in Figure 7.16 is a transcription of this algorithm (Cormen, Leiserson, and
Rivest 1990).

There are three different possibilities when creating the copy to represent a node. If the node has no
successor, then there is no copy operation and the node can be ignored. If the node has no unvisited
predecessor, then it is a single node that is not in a strongly connected region, so the copy operation can
be generated where the operand is the successor in the graph and the target is the current node.
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Figure 7.15 Building the Auxiliary Graph R(B)

The third possibility is a strongly connected region. In that case, perform a depth-first walk using the
predecessors until you get back to the current node (see Figure 7.16). Since a strongly connected region is
known to be a cycle, this will describe the whole strongly connected region. Before starting the walk
create a temporary to hold the value of the first node. Then generate all of the copies except the last after
one has completely visited a node (and its predecessors). This will force the copies to be generated in
topologically sorted order. The last copy uses the value held in the newly created temporary as its
operand. Note that the node at the head of the cycle is not officially visited until the end of the depth-first
walk. This forces the copy with the head as target to be generated first.

As you will see in the following example, the additional temporary can be avoided if there is a
predecessor to the head. That temporary already holds the value of the target of the first copy instruction
and can be used in place of the generated temporary. The algorithm in Figure 7.16 does not include this
optimization to make the algorithm clearer; the implementor should include it.

To see how the algorithm works, apply it to the set of ¢-nodes in Figure 7.17. The @-nodes are in the left
column, with the corresponding auxiliary graph on the right side. Since there is no order among @-nodes,
the order of the nodes has been jumbled. Rather than using for temporaries involving a subscripted capital
T, normal letters are used for distinct temporaries to make the graph easier to read.

[ e

Figure 7.16 Computing Cycle of Temporaries

The results for this example are given in Figure 7.18. The stack generated by the first pass is given in the
right column and the generated copies are given in the left. Recall that most edges will not generate any
copies at all because the algorithms will eliminate them. This particular example was created to show as
much about the algorithm as possible. Note that H is not the target of a copy since it has no successor.
Also note that the new temporary U is not needed since E already holds that value.
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Figure 7.17 Example Graph for an Edge
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Figure 7.18 Results and Stack for Copy Generation
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Chapter 8
Dominator-Based Optimization

The compiler now begins global optimization. Global optimization is divided into four components:
VALUE, DEPEND, RESHAPE, and MOTION, executed in order (Figure 8.1). VALUE simulates the
execution of the flow graph. If it can determine that the value or structure of an expression can be
simplified, it replaces the expression with a simpler form. DEPEND performs loop restructuring using
dependence-based optimizations. It relies on the simplifications performed by VALUE to make
dependence analysis more accurate. After loop transformations have been performed, the RESHAPE
phase is performed. RESHAPE includes all of the transformations in VALUE together with expression
reshaping and strength reduction. RESHARPE prepares for the code motion performed in MOTION.
MOTION performs code motion, including moving loads and stores to complete the global optimization
portion of the compiler.

This chapter describes the VALUE and RESHAPE phases of the optimizer. VALUE limits its
transformations so that DEPEND can operate more effectively. It does not do code motion, because the
loop structure may change dramatically in DEPEND, and it does not do strength reduction, because
DEPEND relies on the original form of expressions for analyzing subscripts.

RESHAPE includes all of VALUE. It adds strength reduction to modify multiplications in loops to
repeated additions. It also applies the distributive and associative laws of arithmetic to integer operations.
Several other simplifications are added to improve the flow graph as it is prepared for code motion.

VALUE performs the following transformations. Using the technique of static single assignment (SSA),
they are inexpensive and suprisingly effective.

» The compiler can eliminate globally redundant expressions when there is an instance of the
expression in a dominator block. This eliminates many of the redundant expressions in the
procedure; however, it does not perform code motion. Later, the compiler uses a technique called
elimination of partial redundancies to do code motion.
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Figure 8.1 Structure of Global Optimizer

» The compiler performs global constant propagation and constant folding. This is performed in
two ways. Initially the compiler performs some constant propagation during the construction of
the SSA form at the same time that globally redundant expressions are eliminated. Later a full
global constant propagation algorithm is performed. For dependence-based optimizations, it is
vital that constants are propagated as thoroughly as possible.

» The compiler can perform transformations that are dependent on the branches previously taken
in the procedure. During the construction of the SSA form, the compiler maintains a data structure
representing knowledge concerning which branches have been taken. Using this information, the
compiler can use the results of relational tests to simplify the program. For example, if a previous
computation performed the same comparison and took the TRUE branch then this branch will
also take the TRUE branch and thus part of the code may be eliminated.

» Dead code is eliminated. Instructions are dead if their evaluation does not contribute to any
value seen outside the procedure being compiled.

After dependence-based transformations have been applied, two further dominator-based transformations
are applied to prepare the program for partial redundancy elimination:

» The compiler performs strength reduction. The compiler must identify the variables that are
incremented by a fixed amount each time through a loop. This information is then used to
simplify expensive computations(such as integer multiply) within a loop by replacing the
multiplication with an integer addition and updating the value from a previous time through the
loop.

» The compiler reshapes integer expressions using the associative and distributive laws of
arithmetic to divide an expression into parts that are unchanging in each of the enclosing loops,
allowing the later code motion algorithms to move more expressions out of loops.
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8.1 Adding Optimizations to the Renaming Process

During construction of the static single assignment form, the renaming algorithm is easily adapted to
include redundant expression elimination, peephole optimization, constant propagation, and expression
simplification. Consider two distinct evaluations of T * R in blocks B and B', where B dominates B'. In
static single assignment form, the two evaluations will compute the same value if the operands have the
same name. So redundant expression elimination reduces to a table lookup problem.

Why can these transformations be performed during the renaming process? If one evaluation of T * R
dominates all other evaluations of the same expression with no modifications of either T or R in between,
then all of the other evaluations can be eliminated. Conversely, if an occurrence of T * R is redundant, to
be eliminated in favor of a single evaluation of T * R this earlier occurrence must dominate the
occurrence being eliminated. Otherwise, there would be a path from the start block to the occurrence that
avoided the remaining occurrence of the expression.

Redundant expressions can thus be eliminated by performing a walk of the dominator tree looking for
multiple occurrences of each expression. When the flow graph is in SSA form, the compiler need only
look for identical expressions because the modification of an operand will be recorded by using a
completely different temporary. The compiler can maintain a table of the expressions that have occurred
on the path through the dominator tree from the start block to the current block. If the next expression is
already in that table, then the expression is redundant. When an expression is redundant, do not give the
target operand a new name; instead, give it the name of the target of the instruction that is already in the
table.

This table has the same characteristics as the available-expression table used during value numbering.
Algebraic identities and value numbering can be incorporated in the same way that they were
incorporated in the value-numbering algorithm for single blocks. The operations required of this table are
as follows:

Initialization: Initialize the available-expression table to have no entries.
Start Block: Begin a basic block. Remember the set of entries currently in the available-
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expression table so that the entries added during this block can be removed later.

End Block: Restore the available-expression table to the state that it was in when the current
block was entered.

Find: Given an instruction | in the flow graph, look up I in the available-expression table using
only the operator and operands. Insert I in the table if a matching entry is not already there. Return
an indication of whether | was already in the table.

Insert: Insert an expression in the available-expression table even though it is not in the flow
graph. This is used to record added information that can be deduced during the dominator tree
walk. For example, if a conditional branch tests whether T = 0, then the compiler can record that T
has the value 0 on one of the alternative branches.

Finalization: Eliminate all storage reserved for the available-expression table.

The available-expression table can be implemented using data structures similar to a scope-based symbol
table. It can be viewed as a stack: Elements are pushed onto the stack if they are not already there. The
stack is searched from the top of the stack down. Elements are popped off the stack when a block is
completed. Of course, the data structure used will be more complex, using a chain-linked hash table to
speed up the searches and an auxiliary array to keep track of the elements in each block on the path from
the start block to the current block. See the description of symbol tables in McKeeman (1974).

Given the structure of the available-expression table, the full algorithm can be given in Figure 8.2. Each
instruction is handled by first renaming its operands. Then any algebraic simplifications are incorporated.
Finally, the instruction is entered in the available-expression table and given a new name if it is not in the
table already.

If the algebraic simplifications lead to the replacement of conditional branches by unconditional
branches, do not update the dominator tree: This would lead to an iterative algorithm. However, the
replacement of a conditional branch by an unconditional branch may eliminate @-nodes in blocks that
have not been processed yet.
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Figure 8.2 Renaming with Optimization
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8.2 Storing Information as well as Optimizations

The stack nature of the data structures used during SSA creation invite the recording of other
information, such as the branches taken in the dominators and why. This information can be used to
simplify the program flow graph. Particularly with nested DO loops, the zero-trip test for the outer loop
may be the same as in an inner loop.

The algorithm can be modified to store this information also. Consider the point in the renaming
algorithm where the children in the dominator tree are visited. Consider a block C with the following
characteristics:

B is the direct dominator of C.
B is a direct predecessor of C in the flow graph.
Every other predecessor of C is dominated by C.

In this case the only way into C is through B. Look at the conditional expression controlling the branch
from B to C, Perform the following insertions into the available-expression table:

» When the conditional expression has the form T = constant, where constant is a constant and C
Is the destination when the condition is true, enter the expression T in the available-expression
table with the same name as the constant. The renaming process will now perform constant
folding on the blocks dominated by C. Follow the same procedure if the conditional expression
has the form T # constant and C is the destination when the condition is false.

« If C is the destination when the conditional expression is true, enter the conditional expression
in the available-expression table with the same name as the name for the constant true.

« If C is the destination when the conditional expression is false, enter the conditional expression
in the available-expression table with the same name as the name for the constant false.

Now the normal available-expression processing, constant folding, and identities processing will simplify
the algorithm. Consider the example described earlier of two nested loops iterating over a square matrix,
as shown in Figure 8.3. The code is written in C, mimicking the code that a front end will generate for a
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Fortran DO loop or a C for loop. The test for zero iterations of the loop is made explicit so that code
motion out of loops can be done. The constant propagation modifies the test for the zero-iteration case to
test n against 0. The occurrence of two tests of n against 0 is simplified by eliminating the second one—it
Is known that the value is true at that point by the information stored in the available-expression table.

Figure 8.3 Eliminating a Conditional

The same information can be used to simplify range checks or checks for pointers being null. Although
more complex methods can get better results, these tests are a good preamble to the more complex
solutions since most cases are eliminated here.

8.3 Constant Propagation

Now that the flow graph is in SSA form, the compiler will perform constant propagation; in other words,
it will determine the temporaries that hold a constant value through all possible executions of the flow
graph and determine the value of the constant. Some of this has already occurred. The dominator-based
value-numbering algorithm performed constant propagation when there was a single load of the constant
and all of the uses were dominated by the single load. We must now address the problem of multiple
loads of constants (Wegman and Zadeck 1985).

Ideally, the compiler simulates all possible executions of the flow graph and observes the temporaries
that are constants. Of course this is impractical, so an approximation to this simulation must be created
that can be implemented efficiently. What can the compiler do at compile time?

« If the single definition that defines the temporary is a load constant instruction, the compiler
knows that the temporary holds that constant.

« If all of the operands of a @-node are the same constant, the compiler can deduce that the value
of the target temporary is the same constant.

« If all of the operands of an instruction are constants or an algebraic identity applies that
indicates that a constant value results, then the target temporary is a constant.

* If the compiler can determine that certain paths are not possible because of other constants
occurring in branching instructions, the compiler can ignore those paths.

The processing of @-nodes presents the only difficulty. If the compiler has processed all of the
predecessor blocks before processing a block that contains a @-node, then the compiler knows whether all
of the operands of the node are the same constant so that the target temporary can be described as
constant or not. This order is not possible with loops. One of the predecessors cannot be processed before
processing other blocks in the loop.
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The compiler can make one of two choices when a @-node is found for which all predecessors have not
been processed. It can either assume that the node is not a constant (the pessimistic choice) or it can
ignore that predecessor and make the determination using the other operands (the optimistic choice) with
the understanding that the compiler must come back later and make sure that the additional operand does
not violate the optimistic assumption made. During earlier dominator-based value numbering, the
compiler made the pessimistic choice. Here the compiler makes the optimistic choice because it will find
more opportunities for identifying constants.
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8.3.1 Representing Arithmetic

While simulating the execution, the compiler will assign some symbolic value to each temporary. There
are only three classes of values that the compiler records: undefined values, known constant values, and
nonconstant values. The compiler adds an attribute value to each temporary to record the simulated value
in this extended set of numbers. The arithmetic system includes the following members:

» Assingle element called undefined, TOP, or T. This value represents the value of a temporary
when no value has yet been assigned to it.

« A member for each constant representable in the target machine. We will use this most often for
integer constants; however, it can be applied to floating or double-precision constants just as well.
« Asingle element called varying, BOTTOM, or [ This element represents the value of a
temporary that the compiler has determined might not be a constant.

The values for the attribute value should be implemented as a variant record, union, or derived class. One
field, which we will call kind, holds which kind of element this particular value is. The entry for
constants will hold an additional field indicating the particular constant.

One important characteristic of this arithmetic system is that the value attribute of each temporary can
only change twice. All of the temporaries except the formal parameters are initialized to have the value

T, indicating that they are undefined. As the algorithm progresses it will either mark a temporary as
having a constant value or [J, indicating that it has a varying value. Later the compiler may determine
that what it thought was a constant was really varying, so it will change a particular constant value to [.
Once a value becomes [, is never changed back to a constant value. Once a value is defined, it can never

become undefined. Therefore, the maximum sequence of values that a temporary can take is T, constant,
.

8.3.2 Simulating the Arithmetic

The compiler needs a function to evaluate the effect of each instruction given the values of the operands
in this extended arithmetic system, namely, CP_EVALUATE, which takes an instruction as an argument
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and updates the value of the target temporaries. It returns a Boolean value indicating whether any of the
target temporaries has changed value.

CP_EVALUATE has a simple structure: It is one large switch or case statement with one entry for each
opcode. The code for each opcode computes the effect of the instruction on each of the target temporaries
and returns the value true if any of them changes value.

What are the arithmetic rules in this extended arithmetic? If you think of T as undefined and O as
varying, then the rules are what you would expect. Consider the addition table in Figure 8.4. For two
constant values the arithmetic is target-machine arithmetic. If one of the operands is undefined, then the
whole value is undefined. If one of the operands has a varying value, then the whole addition has a
varying value. The only surprise is that an undefined added to a varying temporary could immediately be
declared a varying temporary. This is not done here so that the rules will match the rules for
multiplication, where the distinction is important.

S iy =

2,0 epminaay
i

Figure 8.4 Rules for Addition

For multiplication and the logical operators, algebraic identities can be incorporated. Since 0 * X = 0, one
operand of a multiplication can be a varying temporary and a constant value can result, as long as the
other operand is zero. The rules for multiplication (and the logical operators) must be extended to encode
this as shown in Figure 8.5.

An undefined value times something else must give an undefined value. If undefined times a varying
temporary were encoded as a varying temporary, then when the undefined value was discovered to be 0

and later discovered to be varying, the sequence of values for the target temporary would be T, [, 0, [
The condition that the values can only change twice would therefore not be satisfied. The restriction does
not cause any problems because any temporary that is evaluated in some execution of the flow graph will
eventually change the undefined value to one of the other members of the arithmetic system.

Fr—— b pupmp——

Figure 8.5 Rules for Multiplication

== T [y ]
1 T [ 9 |
e, + BEH PR EL &

Figure 8.6 Rules for joins

What is the arithmetic of @-nodes? This is where the optimistic view of constant propagation occurs in
the algorithm. Any arguments that are undefined or T are ignored in computing the value of a @-node.
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« If any of the remaining arguments has value [J, then the value of the @-node is [.
« If any two arguments of the @-node are distinct constants, then the value of the @-node is [.
« If there is at least one constant operand and the previous conditions are met, then the value of

the @-node is that constant.
» Otherwise, all arguments of the @-node are undefined, so the value of the ¢-node is undefined.

For example, consider a block B with two predecessors and a @-node in that block. If all of the operands
have the same value, then that is the value of the target temporary. If two of the operands have different

defined values (not T), then the target temporary must be a varying temporary, i.e., [I. When one of the

operands has value T we make the most optimistic assumptiont—that it will later have the same value as
one of the other operands. This gives the arithmetic table in Figure 8.6, which uses the C language’s
condition expression operator to indicate that the value is [ if the two constants are different.
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8.3.3 Simulating Conditional Branches

Many programs are parameterized by constants that are set at compile time or fed as specific constant
formal parameters at run time to choose one of several alternative operations within a procedure. This
happens particularly when procedures have been inlined and some of the actual parameters were
constants. The constant propagation algorithm needs to take advantage of this and eliminate the code that
cannot be executed. To this end, we describe a set of rules for conditional branches, and jump-table
instructions that will simulate the effect of the destinations of only the branches that the compiler can
determine might be executed.

Initially all temporaries are given an undefined value, T. If the argument to a conditional branch is
undefined, it indicates that no possible paths out of this instruction are yet known, so the compiler will
stop evaluating instructions at this point.

If the temporary involved in a conditional branch is [J, then any possible destination of the branch is
assumed to be executable, so both the true and false alternatives are simulated. For jump tables, all of the
destinations are simulated.

If the temporary involved in a conditional branch is a constant, then that constant is used to determine
which single destination is known to be possible. This destination is included in the simulation.

8.3.4 Simulating the Flow Graph

The compiler uses a simplified technique for simulating the flow graph. Instead of following each
possible path through the graph (an impossible task, since some paths are arbitrarily long), the compiler
uses the fact that a temporary can only change its value twice. Thus the compiler need only compute the
effect of a temporary changing value, and that temporary can only change the effects of the instructions
where the target temporaries are used.

These conditions suggest a work-list algorithm. When the compiler knows that an instruction can be
executed on some path, it need not keep track of all of the paths. Instead it need only simulate the
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instruction when one of its operands changes. Since each operand can only change twice, the instruction
will be simulated 2" times, where n is the number of operands.

How does the compiler know when an instruction may be executed? When a block is executed, some of
the successor blocks will be executed, depending on the value of the temporary controlling the
conditional branch. An unconditional branch with an implicit true for the value of the branching
condition will be executed. Since one conditional branch can introduce multiple possible destination
blocks, a work-list algorithm is again suggested. So we have two work lists: one for the instructions
needing reexecution and another for blocks that have become executable. The algorithm for the two
combined work-list algorithms is given later. The algorithm uses the following data structures:

BlockList is a work list of blocks. A block enters the list whenever it is possible that the block
might be executed, that is, each time the conditional branch in one of its predecessors indicates
that this block has become executable.

Visit is the set of blocks that have been visited. The algorithm initializes this set to empty, inserts
blocks, and checks for membership. The Briggs set algorithm is probably the best; however, it is
overkill. A bit vector can be used also.

executable is an attribute added to each edge. The attribute has the value true when the edge is
known to be executable under some circumstances. It is used to determine the value of @-nodes,
since some instructions in nonexecutable blocks may have been given constant values even
though they are not executable.

WorkList contains the set of instructions that need reevaluation. It has the same operations as
BlockList, so it too should use the Briggs set algorithm.

Before looking at the driver procedure that implements the work-list algorithms, let’s first look at the
support routines. CP_Instruction (Figure 8.7) is called whenever an instruction needs reevaluation. It
uses the CP_Evaluate procedure that we discussed earlier. The instructions that have a value are
computed, and if the value has changed, then each of the uses of the resulting temporaries is marked for
reevaluation by putting them on the work list.

1

Figure 8.7 Simulating an Instruction

Conditional branching instructions are checked to see if more destinations can now be reached. The
algorithm computes the change using the attribute executable. If the attribute is already true, then the
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block has already been on the work list so it need not be entered again. The attribute is set to true and the
destination entered in the work list for all executable blocks that previously had the false attribute.

The current possible destinations for a branching instruction are as follows. If the controlling temporary

has value T, there are no destinations. If the controlling temporary is a constant, then it is the
corresponding destination for that constant. If the controlling temporary is a varying temporary with
value [J, then all destinations are possible.
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Simulating the execution of the block is shown in Figure 8.8. Each block is simulated again when one of
its predecessor edges becomes executable. This changes the values of the @-nodes. In fact, this change of
the values of @-nodes is the only reason that the instructions cannot be evaluated just once in an order in
which the operands are evaluated before the instruction with the operands (reverse postorder, for
instance). When a new edge is present, a new operand becomes relevant in each ¢-node.

The first time a block is processed, all of the other instructions in the block are evaluated. After that the
reprocessing of instructions will be driven by the reprocessing of the instructions to evaluate their
operands.

The initialization code is shown in Figure 8.9. All of the sets are initialized to empty, all edges are
initialized to not executable, and all temporaries are initialized to have an undefined value. The formal
parameters need to take a different value. If a formal parameter is known to be a constant because
interprocedural analysis has indicated that the same value is passed in all procedure calls within this
program, then the formal parameter is initialized to have that constant value. Otherwise it is initialized to
indicate that it has a defined but unknown value, that is, it is initialized to [
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Figure 8.8 Simulating a Block

Figure 8.9 Initialization of Constant Propagation
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To start the whole algorithm, the entry block Entry is placed on the work list for blocks. There are ¢-
nodes in Entry; however, it will force the evaluation of the instructions in the block and cascade through
all of the other blocks as the work-list algorithm progresses.

The algorithms are designed to avoid evaluating instructions until the instruction is known to be
executable. This cannot be done because the instructions are put on the instruction work list as soon as an
operand changes whether it is in a block that is executable or not. The only place that this can have an
effect is in @-nodes. The @-nodes are the collectors of values when there is a merge of control flow.

T DRSNS PERRHE
SHIl EF_ISItipl 184
oRlile FRiEILEl = B o RIRHEIA & i

TR ST s i

Figure 8.10 Main Constant Propagation Procedure

The complete constant propagation algorithm is combined in Figure 8.10. The complexity comes from
the existence of two independent work lists. The algorithm completes when both are empty: No more
instructions are changing values, and no more blocks are becoming executable. This algorithm is
implemented as nested loops, although it could be implemented as one loop with conditional statements.
This choice was made because it is expected that many more instructions will be reevaluated than edges
made executable.

The constant propagation algorithm does not change the flow graph—it computes information about the
flow graph. The compiler now uses this information to improve the graph in the following ways:

 The instructions corresponding to temporaries that evaluate as constants are modified to be load
constant instructions.

 An edge that has not become executable is eliminated, and the conditional branching instruction
representing that edge is modified to be a simpler instruction. The ¢@-nodes at the head of the edge
are modified to have one less operand.

 Blocks that become unreachable are eliminated.

8.3.5 Other Uses of the Constant Propagation Algorithm

The basic constant propagation algorithm can be used in different ways by reinterpreting the ideas of
arithmetic. We will see shortly that the algorithm is used to identify induction variables. Here we will
describe how to use the algorithm to eliminate redundant checks for null points and to refine the alias
information provided by the static alias analysis component of the compiler.

Eliminating Null Pointer Checks
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The compiler may not know the exact address; however, it can sometimes determine when a pointer is
null. Consider a temporary that can hold a pointer or a null pointer. Pretend that there are four elements

in the arithmetic: 1 and O as before, and true (when the pointer is not null) and false (when the pointer is
null).

» A copy operation gives the target temporary the same value as the source temporary.

» An instruction that checks for a null pointer and traps has as its output the value true. If the
operand was a null pointer, the instruction would have aborted the program.

» An instruction that uses this contrived temporary to load a value has as an output the indication
that this temporary is not null. This involves the creation of a new temporary and updating the
flow graph since the compiler is working in SSA form.

» The flow graph is slightly modified. At a branch that checks for a null pointer, a new instruction
with this temporary as target is inserted on the branching, indicating that the temporary is not null.
The instruction simply records that the temporary has value “not a null pointer.”

o All other temporaries have value [l.

The constant propagation algorithm can now be applied to this contrived arithmetic. At the instructions
where this contrived temporary is used, one can check the value to see the character of this temporary as
a pointer. If one is executing one of the null-pointer test instructions and the value of the operand is “not
a null pointer,” then the test can be eliminated.

What we have done is interpreted a different idea as a system of arithmetic and applied the same constant
propagation algorithm.

Alias Analysis Information

The alias analysis information can be improved by constant propagation in languages such as C where
pointers can be created to any data structure and pointers can be incremented within a data structure.

Associate with each data structure a “tag” naming the data structure. Pretend that each load of an address
constant gives a temporary that tag as a value. Normal arithmetic operations such as addition and
subtraction take the same tag as one of the operands. Now we can define an arithmetic system containing

T, the set of tags, and L.

Constant propagation can now be applied giving each temporary a tag or [1. The temporaries that have a
tag value represent pointers into the data structure with that tag. A store through that temporary cannot
modify the value in memory for any other region.
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8.4 Computing Loop-Invariant Temporaries

The compiler is preparing for loop strength reduction: replacing certain multiplication operations by
repeated additions.! This will involve three different operations. First the compiler must compute the
temporaries that do not change in a loop. Second, the compiler will compute the set of induction
temporaries: those that vary regularly in a loop. Finally, the compiler will restructure the expressions in
the loop to increase the number of expressions that are loop invariant and replace multiplication of
induction variables with loop-invariant expressions by a repeated addition.

1There are two different uses of the term strength reduction in compiler literature. One use is the
replacement of a multiplication by a power of two by a shift or replacing the multiplication by a constant
by a collection of shift and add operations. | am using the term to refer to replacing multiplication of a
regularly varying temporary by a constant in a loop with an addition.

Definition Loop Invariant: A temporary T is a loop invariant in the loop L if it is either
not computed in the loop or its operands are loop invariants.?

2This definition is used by Markstein, Markstein, and Zadeck in the ACM book on optimization that has
yet to be published (Wegman et al. forthcoming).

The definition is worded in this fashion to handle the case of loop-invariant temporaries that require
multiple instructions to compute. If a temporary T represents the computation (X + Y) * Z, then it takes
two instructions to compute T. If the definition specified that T is loop invariant if its operands are
evaluated outside of L, then this expression would not be loop invariant because X + Y would be

evaluated inside the loop. A loop-invariant temporary is one in which the leaves of the corresponding
expression tree are not evaluated in the loop.
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The immediate reaction is to remove loop-invariant instructions from the loop. If they always evaluate to
the same value, compute them outside the loop. However, doing so is not safe. A temporary (and its
corresponding instruction) is loop invariant irrespective of where it occurs in the loop. It may occur in a
conditional statement. Later optimizations will take care of that. The compiler only needs to know what
is loop invariant and what is not.

To record the loop-invariant information, we add an attribute to the temporary T called variant(T), which
contains the innermost loop in the loop tree in Which T is not loop invariant. If T is invariant in every
loop, then variant(T) is the root of the loop tree. If T is not invariant in any loop, then variant(T) is null.
Recall that this is all being performed on the SSA form of the flow graph, so there is a single definition
for each temporary and that definition dominates the uses in instructions.

Before describing the algorithm, let’s consider each class of instructions and determine the meaning of
loop invariance for each:

 Consider a @-node Ty = (T4, . . ., T,). To determine that T, has the same value each time
through a loop, the compiler must know the innermost loop in which each of the operands is
invariant and know which block branches to the block containing the ¢@-node. The second
condition is impractical to compute, so the compiler will assume that variant(T, = (T4, ..., T))

Is the innermost loop containing it.

 For an instruction that is a pure function, such as addition, multiplication, or disjunction, the
instruction varies in the innermost loop in which one of the operands varies.

A copy operation is a pure function in this situation, so the target is variant in the same
containing loop in which the operand is variant.

« A LOAD instruction varies on the innermost loop in which a store operation might modify the
same location (that is, the same tag).

The compiler needs an auxiliary function that gives the nearest common ancestor of two nodes of a tree,
in this case the loop tree. The algorithm is simple: If either node is an ancestor of the other, then that
node is the result. Otherwise choose one of the nodes and start walking toward the root until a node that
Is an ancestor to (or equal to) the other is found. The algorithm uses the preorder/postorder number test to
check if one loop is an ancestor of the other. This check runs in constant time. The algorithm is given in
Figure 8.11. The initial test for L2 being an ancestor of L1 is unnecessary for correct operation of the
algorithm, but is included for efficiency.

e

Figure 8.11 Finding the Nearest Ancestor in a Tree

If it does not improve the performance of the procedure then it should be removed.
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For each instruction, the compiler computes the innermost loop in which the computation varies: a direct
encoding of the conditions for the varying of any temporary. This algorithm is shown in Figure 8.12. The
algorithm processes a block by first processing the @-nodes in the block. The target temporaries are
modified in the block and hence are varying in the innermost loop. The other temporaries are processed
by looking at each of the operands. Find the innermost common loop for the current block B and the
point of definition of the operand. Compare this value with the partially computed innermost varying
loop for this instruction, held in Varying. If the operand is modified in a more inner loop this becomes
the loop in which the instruction varies. After computing the results of all operands, the targets are given
this innermost loop on which all of their operands depend.

Figure 8.12 Computing Nested Varying Loop

Recall that static single assignment means that each temporary has a single instruction that evaluates it. It
does not mean that each instruction has only one output. In fact, STORE instructions may be viewed as
having multiple outputs.

The driving procedure must ensure that variant for each temporary is computed before it is used. Since

variant is computed for each ¢@-node without using the information for the operands, a dominator tree
walk will ensure that all operands have a value for variant before the instruction in which the operands
are used. Hence the driving procedure uses the algorithm in Figure 8.13.
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As with other static single assignment algorithms, this algorithm assumes that all LOAD instructions
have another operand, called a tag, which is handled like a temporary for the purposes of renaming. Each
STORE instruction modifies a particular storage location and a number of tags. There are @-nodes
included for the tags also. The tags are handled just like temporaries for the purposes of SSA
computations and are handled like operands in this algorithm for computing invariant temporaries (and
tags). Thus a load operation inside a loop will be invariant if the address expression is invariant and the
tag is not modified by any store operation in the loop.

As an example, consider the running example and the instruction dSLD (T17) => SF1 in block B2.
Consider the flow graph after initial dominator-based optimization has occurred. B2 is a block contained
in the loop {B2,B6,B3}, which is contained in the loop {B1,B2,B6,B3,B4}. T17 is assigned a value in
block B1, which is in this second loop; hence, Varying starts out pointing at this outer loop. However, the
store operation in block B6 also affects the load operation through the tag, so SF1 is marked as varying
on the loop {B2,B6,B3}. However, T17 itself is marked as varying on the outer loop.

AT LLLTRLETE L CURLLLITY
sa1) == am

o e
¥ e
i e i L

Figure 8.13 Driver for Invariant-Code Identification

8.5 Computing Induction Variables

Before the expressions can be restructured to improve loops, the compiler must identify the temporaries
that vary in a regular fashion. Now consider a single loop L and a temporary T that varies in L.
Temporaries that are incremented by a predictable amount each time through the loop, called induction
temporaries, are a more tractable form of loop-variant temporary. Operations on these temporaries can
frequently be simplified—multiplications replaced by repeated additions, for example.3 Since the flow
graph is in static single assignment form, one cannot talk about incrementing a single temporary. Instead,
a set of temporaries defines induction set.

3The description here is based on a description of strength reduction by Markstein (Wegman et al.
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forthcoming). That work and this are both based on the original paper by Allen, Cocke, and Kennedy

(1981).
Definition Induction Candidates: Given a loop L, a temporary T is a candidate temporary
for L if and only if T is evaluated in L and the evaluation has one of the following
forms:

T =T; £ T;, where one of the two operands is a candidate temporary and the other
operand is loop invariant in L.
T =T,, where T, is a candidate temporary in L.

T =£T,, where T, is a candidate temporary in L.
T =T,, where T, is a loop-invariant temporary in L.

T=@Ty ..., T,), where each of the operands is either a loop-invariant
temporary in L or is a candidate temporary in L.

The set of candidate temporaries is computed by looking at the instruction that evaluates each temporary
and eliminating those instructions that are not of the correct form. If the instructions are considered in
evaluation order, then the compiler knows whether the operands are candidates. As usual, the only
problem is that this is not true for @-nodes. Some of the operands of the @-nodes may not have been
processed already, so the compiler reverts to using a work-list algorithm in which all temporaries are first
assumed to be candidate temporaries and are eliminated when the assumption is disproved. The
algorithm is general; however, we will specifically eliminate nonintegral temporaries (floating-point
temporaries in particular) because the compiler will not be applying strength reduction to these types.

e
| AR L

Figure 8.14 Finding Candidate Temporaries

A basic work-list algorithm is described in Figures 8.14 and 8.15. The algorithm computes the set of
temporaries that are candidates for induction temporaries. It includes each temporary that is computed
using the correct form of instruction from the definition and then eliminates temporaries whose
evaluating instructions do not have the correct form of operands. When the algorithm stabilizes, the
largest set of candidates available has been computed. How does one prove that? Clearly all candidates
are in the initial set and only temporaries that would be removed with any set of candidates are removed,
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so the algorithm computes the maximum set of candidates.

Figure 8.15 Pruning to a Valid Set of Temporaries

The set of candidates describes the temporaries that are evaluated with the correct instructions in the
loop; however, induction temporaries represent temporaries that are incremented in a regular fashion
across iterations of the loop, with the value on the next iteration differing by a fixed amount from the
values on the previous iterations. There are two possible interpretations of this idea.# This compiler uses
the following definition.

4The other definition of induction variables also requires the induction temporary to change by the same
amount each time through the loop following all possible paths through the loop. This is the definition
needed for dependence analysis. It is more restrictive than needed for strength reduction.

Definition Induction Sets and Temporaries: An induction temporary T inaloop L is a
candidate with the following property. Consider the graph with the candidate
temporaries as nodes with an edge between two candidates T and U if T is used to
compute the value of U. An induction temporary is a candidate temporary that is a
member of a strongly connected region in this graph. The set of temporaries in
such a strongly connected region is called an induction set.
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In other words, the temporary T is used to compute other temporaries, and those temporaries are used to
compute others, until the resulting value is used to compute the value of T on the next iteration.
Eventually the value of T is used to compute the value of T. For a single-entry loop, this means that the

temporary is involved in a strongly connected region that contains a ¢-node at the beginning of the loop.

The algorithm that the compiler used to compute loops cannot be used here. Starting at a @¢-node and
tracing backward may lead to a number of temporaries that are not in the strongly connected region.
Instead, the general algorithm for a strongly connected region must be used. Since the algorithm is
applied at several other places in the design, it will not be repeated here. The algorithm is summarized in
Figure 8.16.

If the loop is not single entry, we will not bother to apply strength reduction here. A more limited version
will be applied later. First calculate the candidate temporaries. Then implicitly create the graph. It does
not need to be explicitly created because the form of the instructions evaluating the temporaries in
Candidates is simple. Perform one of the two standard strongly connected region algorithms. Any
strongly connected region with at least two members and which includes a temporary that is the target of

a -node at the entry is an induction set.

Bt ld T

Figure 8.16 Pruning Candidates to Induction Sets

—

Figure 8.17 Induction Temporary Example

As an example, consider Figure 8.17. The left column represents the flow graph for the loop, and the
right column represents the implicit graph of the candidate temporaries. Note that J;, and J, are not in a
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strongly connected region and if one had started at J;, and had traversed the arcs backward one would
never return to J;, unlike the case of computing loops in the flow graph. The set (I, 1,) represents the
induction set in this example.

Consider one induction set {T4, .. ., T, }. This is a strongly connected region in the graph of Candidates
temporaries. The only temporaries that can have multiple predecessors in that graph are the @-nodes. So
the strongly connected regions have a special form: The normal instructions are divided into subsets that
form paths, with the joins and separations occurring at the ¢@-nodes.

Now add one optimization after identifying the induction sets and induction temporaries. Consider three
temporaries in an induction set, T,, T,, and T, where T, = T, + RC; and T; =T, + RC,. Recompute T as

T3 T; + (RC; + RC,).

8.6 Reshaping Expressions

The compiler has now determined most of the expressions that are computed outside a loop, the
expressions that are loop invariant in the loop, and the induction variables within the loop. The compiler
can now restructure the expressions to increase the number of expressions moved out of the loop later
during partial redundancy elimination. This is done in a phase called RESHAPE.

RESHAPE uses the associativity and distributivity rules of integer and logical arithmetic to improve
later code motion. Assume that there are n nested loops, L, to L. The compiler will reorganize each

expression E to be of the form
E=E + (LG, + (LG, + (LC3 + . . . + LCYI)

where E' is an expression that is not loop invariant on the innermost loop, LC; is loop invariant on the
innermost loop, LC, is loop invariant on the next-outer loop, and so on, until LC,, is loop invariant on the

outermost loop. The same transformation will be made for multiplication and logical operators. This
transformation allows the compiler to compute E' in the innermost loop while computing the right-hand
operand outside the innermost loop. Similarly, LC, can be computed in the next-outer loop while the rest
of the expression can be computed outside that loop. This repeats until LC,, can be computed outside the
outermost loop.

The expression for E' can be written to expose the induction variables. The most important form of
strength reduction involves integer multiplication. If one operand of a multiplication is an induction
variable and the other operand does not change in the loop, then the repeated evaluation of the
multiplication each time through the loop can be replaced by a repeated addition. To identify these cases,

the compiler divides up E' into summands of the form
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E=E'+FD, * 1, + FD, * I, + . . . + FD, * 1|

m

where FD; is a loop-invariant expression (FD is an abbreviation for first difference) and I; is one of the

induction variables in the innermost loop. Induction variables for the outer loops are loop constants here,
so they are not a part of this expression.
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There is danger in this transformation: Wholesale rewriting of expressions may increase the size of the
generated code and decrease the execution speed. Most of the time this will not be the case. Consider the
running example, in which strength reduction and rewriting the expressions collapses the code
remarkably. However, there are cases where this is not true. The compiler attempts to avoid these
situations by the following devices.

* It embeds the reassociation in a dominator tree walk used to eliminate redundant expressions.
Thus each expression will probably be evaluated once.

 This phase of the compiler does not eliminate the original expressions. Later, after global
optimization, dead-code elimination will remove them. Why? One of the problems with
reassociation is that it can move expressions into loops. In fact it can move them into conditional
expressions within loops. The compiler cannot move them out of these conditional expressions
due to safety concerns. So the compiler leaves the original expressions in place, which causes
those expressions to be available where the programmer originally placed them. If the compiler
has not transformed the expression within the loop, the compiler will find that the moved
expression is redundant and eliminate it from the loop.

There are four different categories of operators involved in reassociation. The rest of this discussion will
use these names: addition, subtraction, and multiplication. However, there are many other operators that
have the same characteristics: logical disjunction, logical conjunction, and logical negation, for instance.
The compiler applies the same techniques to all of them. The techniques are not applied to floating-point
operations because they are not associative or distributive in the literal sense. When using the term
associative, the arithmetic must be literally associative, not approximately associative.

Commutative operators such as addition and multiplication have the property that x +y =y + X. For these
operators, the compiler can reorder the operands in any order desired. In our compiler, the operands are
reordered so that the one with the highest reverse-postorder number in the flow graph occurs first. This
procedure combined with the value_table structure will automatically identify commuted redundant
expressions.

Operations such as subtraction that are the combination of a commutative operation (addition) and an
inverse operation (negation) are reordered like the corresponding commutative operator; however, an
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extra flag is maintained, indicating that a negation is also needed. When the instructions are regenerated
after processing, the negation flag is used to create a subtraction operation rather than an addition.

Associative operations (such as addition) allow more processing. Assume that an associative operator is
the root of an expression tree. Group together all of the operands of the associative operator at the root.
In other words, if the compiler has (x +y) + (w + z), handle it as a single operator with a list of operands
X, Y, W, z. The associative operator can then be rewritten as (x + (y + (w + z))). If the associative operator
Is also commutative, the operands can be reordered so that the first operand is the one with the highest
reverse postorder. This will automatically set up things so that the expressions for the inner loop are
computed first, then the operands for the next-outer loop, and so on.>

SThis is an observation by Keith Cooper of Rice University.

Distributive operations, such as integer multiplication, are the fourth category. Therulex * (y +z) =x*y
+ X * z can be used to rewrite combinations of addition, subtraction, and multiplication as a sum of
products. Each term in the sum of products is the product of a constant (the subtraction contributes a -1 to
the constant), induction temporaries, and other temporaries. Now the elements of the products can be
ordered using the reverse postorder number as before, and the terms in the sum can be ordered by the
maximum reverse postorder number of the components of the product. This gives the expression the
form described at the beginning of the section.

Before the dominator walk of the blocks of the loop and at the same time that induction variables are
being identified, identify all expressions with the following properties:

» The evaluation of the temporary is implemented with an associative operator. For these
purposes, the compiler considers subtraction to be an addition with a negate flag.

» The temporary is used as the operand of an instruction that is not the same associative operator.
In other words, the temporary represents the root of an expression tree where the operations near
the root are all the same associative operator.

The key insight is that the static single assignment form allows the compiler to view the temporaries in
the flow graph as nodes of the original expression trees. Consider two temporaries T, and T,. T, can be

considered the parent of T, in an expression tree if T, uses T, as an operand. Thus the edge from T, to T,
Is given by the Definition attribute of the Operand set for T, to get to the instruction, and the temporary is
reached as the Target of that instruction.

Given the root of an expression tree, perform a tree walk of that expression tree, analyzing it as a sum of
products and combining like terms. This sum of products need not be stored as instructions: It can be
stored as a linked list of linked lists in temporary storage. Stop the tree walk when the compiler gets to a
constant, LOAD instruction, variable temporary, or induction temporary.
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Having recognized the tree, now rewrite it in instructions in the form described above. The only problem
Is reapplying distributivity. Dividing the expressions into pieces that are invariant in each of the
enclosing loops is straightforward: The compiler has already ordered the operands, so the compiler need
only divide the sum into the parts invariant in each loop.

For each of these sums, distribution should be applied in reverse. This is a greedy algorithm. Consider a
sum and find the component of a term that is an operand of the largest number of terms. Apply
distributivity to rewrite those terms as a product of that component with the sum of the other terms
involving this component. Keep reapplying distributivity in this greedy fashion until no further rewriting
can occur. Each of the products can now be divided into parts that are invariant in each of the enclosing
loops by applying the same techniques as were used for addition.

Now we have a reformed expression tree in temporary storage. Rewrite the expressions as instructions in
the flow graph. Leave the old expressions there. Use the dominator tree walk to determine if expressions
are already available so that they need not be generated again, taking up space and potentially escaping
later optimization phases and causing poor runtime performance. At this point go on to the next tree in
dominator order.
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8.7 Strength Reduction

At this point the hard work for strength reduction has been completed. Consider an incremental
expression E having the form

E=FDg * Iy + FD, * I, + FD; * 1; + FD, * I, + (LC; + (LC,
+ (LC3 + . . . + LCY)

where I; are the induction variables and all of the other expressions are loop invariant in the loop L. The
idea of strength reduction is to compute this expression before entering the loop and update it each time
one of its operands changes. Since the only operands that can change are the induction temporaries, we
update E each time one of the induction temporaries changes.®

6This discussion is glossing over a hard problem. There may be many incremental expressions: Keeping
and updating each one ties up most of the registers for the machine. For a few incremental expressions,

the discussion given here is best. When there are more incremental expressions, it is probably better to
consider the linear function of the induction temporaries as the incremental expression and add in the loop-
invariant part separately. The linear function of the induction temporaries is likely to be reused many
times in the same loop.

Since the flow graph is in static single assignment form, the compiler cannot update the temporary
holding the value for E. Instead, the compiler must generate a collection of temporaries Ey, . . ., E;: one

for each time one of the induction temporaries changes and one for each RC constant involved in a ¢
node. Assignments to compute the value of each of these temporaries are inserted after the update of each
one of the induction temporaries.

Besides generating new temporaries to hold the value of E, the compiler must update uses of the
expression E. At each point that E is used, the value is stored in some temporary. The compiler must
replace the uses of that temporary with the uses of these new temporaries. This is not difficult: The
compiler walks through the loop using the dominator tree and keeps a table of redundant expressions.
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This information can be inserted in this table as a previous computation of E, which will make the real
computation redundant and update the operands.

Where can the induction temporaries change? Let IS; be the induction set associated with the induction
temporary I;. As noted earlier, the induction set replaces the idea of updating a temporary because the

flow graph is in static single assignment form. The expression E changes whenever one of the
temporaries in 1S; changes. Consider the cases:

 If T, and T, are members of IS; where T, = T, £RC, update the value of E by inserting the
computation E; = E, +RC * FD,; after the evaluation of T,. If the table of expressions indicates
that RC * FD; is already available, then the instructions for it need not be inserted at this point in

the flow graph; otherwise, insert the multiplication here to be cleaned up by partial redundancy
elimination later (one hopes).
 If T, and T, are members of IS; where T, = £T, (including the case of T; = T,), insert a

computation E; = =E, directly after the assignment to T,.
 If T, is a temporary in the induction set where Ty = (T4, . . ., T,,), then a @-node for E must be
inserted at the head of the same block. Be careful: There may already be another @-node for E in

the block that was inserted for another induction set—only insert one @-node for E. Consider each
predecessor block in turn:

« For predecessor block P, if the corresponding temporary T; is in the induction set for T,

then the corresponding entry in the new @-node is the temporary holding the value of E at
the end of P. Note that P must be in the loop; otherwise, the temporary would not be in the
induction set. Also note that the value of E may not be the temporary when T; was updated

since E is updated by each of the induction sets.
« If T; is not in the induction set, then insert a computation of E at the end of block P and

place the temporary holding that value into the corresponding entry in the ¢-node. Be
careful! There may already be a computation of the same expression available in P, so do
not insert it if it is not necessary.
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8.8 Reforming the Expressions of the Flow Graph

We have been working on the flow graph in static single assignment form. The compiler must now return
the flow graph to normal form. This means that a partition of all the temporaries must be formed to
rename them properly. To form this partition, note that no computations have been moved during these
optimizations. Some computations have been moved and others reformed. In particular, all load
operations are in the same places that they were originally. Some have been eliminated, but none have
been moved. This means that the temporaries associated with load operations can all be renamed back to
the temporary names that they had originally.

Now consider induction temporaries. Each induction set can be renamed to a single temporary holding
the value as it is incremented around the loop. Since no computations have been moved, all of the uses of
each of the induction temporaries die with the assignment to the next temporary, so the correctness
condition for the partition is satisfied. Inductive expressions that have been reduced by strength reduction
are no longer expression temporaries; they become variable temporaries like any other local variable.

All temporaries that are not expression temporaries can be renamed back to the original temporary that
created them. Again, no use of the temporary has been moved.

The compiler now has all of the leaves consistently named, so it reconstructs the expression temporary
names by using the formal temporary table, as was done during the original building of the flow graph.
How is this implemented? When the static single assignment form is created, keep an added attribute that
Is the original name of the temporary. Also keep a set of temporaries for each induction set.

8.9 Dead-Code Elimination

Two other static single assignment optimizations are described here that are executed later in the
compiler. Dead-code elimination and global value numbering occur during the LIMIT phase, where the
compiler is reducing the number of physical r