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Preface


Building compilers has been a challenging activity since the advent of digital computers in the late 1940s 
and early 1950s. At that time, implementing the concept of automatic translation from a form familiar to 
mathematicians into computer instructions was a difficult task. One needed to figure out how to translate 
arithmetic expressions into instructions, how to store data in memory, and how to choose instructions to 
build procedures and functions. During the late 1950s and 1960s these processes were automated to the 
extent that simple compilers could be written by most computer science professionals. In fact, the 
concept of “small languages” with corresponding translators is fundamental in the UNIX community. 

From the beginning, there was a need for translators that generated efficient code: The translator must 
use the computer productively. Originally this constraint was due to computers’ small memories and 
slow speed of execution. During each generation of hardware, new architectural ideas have been added. 
At each stage the compilers have also needed to be improved to use these new machines more 
effectively. Curiously, pundits keep predicting that less efficient and less expensive translators will do 
the job. They argue that as machines keep getting faster and memory keeps expanding, one no longer 
needs an optimizing compiler. Unfortunately, people who buy bigger and faster machines want to use the 
proportionate increase in size and speed to handle bigger or more complex problems, so we still have the 
need for optimizing compilers. In fact, we have an increased need for these compilers because the 
performance of the newer architectures is sensitive to the quality of the generated code. Small changes in 
the order and choice of the instructions can have much larger effects on machine performance than 
similar choices made with the complex instruction set computing (CISC) machines of the 1970s and 
1980s. 

The interplay between computer architecture and compiler performance has been legitimized with the 
development of reduced instruction set computing (RISC) architectures. Compilers and computer 
architecture have a mutually dependent relationship that shares the effort to build fast applications. To 
this end, hardware has been simplified by exposing some of the details of hardware operation, such as 
simple load-store instruction sets and instruction scheduling. The compiler is required to deal with these 
newly exposed details and provide faster execution than possible on CISC processors. 
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This book describes one design for the optimization and code-generation phases of such a compiler. 
Many compiler books are available for describing the analysis of programming languages. They 
emphasize the processes of lexical analysis, parsing, and semantic analysis. Several books are also 
available for describing compilation processes for vector and parallel processors. This book describes the 
compilation of efficient programs for a single superscalar RISC processor, including the ordering and 
structure of algorithms and efficient data structures. 

The book is presented as a high-level design document. There are two reasons for this. Initially, I 
attempted to write a book that presented all possible alternatives so that the reader could make his or her 
own choices of methods to use. This was too bulky, as the projected size of the volume was several 
thousand pages—much too large for practical purposes. There are a large number of different algorithms 
and structures in an optimizing compiler. The choices are interconnected, so an encyclopedic approach to 
optimizing compilers would not address some of the most difficult problems. 

Second, I want to encourage this form of design for large software processes. The government uses a 
three-level documentation system for describing software projects: The A-level documents are overview 
documents that describe a project as a whole and list its individual pieces. B-level documents describe 
the operation of each component in sufficient detail that the reader can understand what each component 
does and how it does it, whereas the C-level documents are low-level descriptions of each detail. 

As a developer I found this structure burdensome because it degenerated into a bureaucratic device 
involving large amounts of paper and little content. However, the basic idea is sound. This book will 
describe the optimization and code-generation components of a compiler in sufficient detail that the 
reader can implement these components if he or she sees fit. Since I will be describing one method for 
each of the components, the interaction between components can be examined in detail so that all of the 
design and implementation issues are clear. 

Each chapter will include a section describing other possible implementation techniques. This section 
will include bibliographic information so that the interested reader can find these other techniques. 

Philosophy for Choosing Compiler Techniques 

Before starting the book, I want to describe my design philosophy. When I first started writing compilers 
(about 1964), I noticed that much research and development work had been described in the literature. 
Although each of these projects is based on differing assumptions and needs, the availability of this 
information makes it easier for those who follow to use previous ideas without reinventing them. I 
therefore design by observing the literature and other implementations and choosing techniques that meet 
my needs. What I contribute is the choice of technique, the engineering of the technique to fit with other 
components, and small improvements that I have observed. 

One engineering rule of thumb must be added. It is easy to decide that one will use the latest techniques 
that have been published. This policy is dangerous. There are secondary effects from the choice of any 
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optimization or code-generation technique that are observed only after the technique has been used for 
some time. Thus I try to avoid techniques that I have not seen implemented at least twice in prototype or 
production compilers. I will break this rule once or twice when I am sure that the techniques are sound, 
but no more frequently. 

In the course of writing this book, my view of it has evolved. It started out as a recording of already 
known information. I have designed and built several compilers using this existing technology. As the 
book progressed, I have learned much about integrating these algorithms. What started out as a 
concatenation of independent ideas has thus become melded into a more integrated whole. What began as 
simple description of engineering choices now contains some newer ideas. This is probably the course of 
any intellectual effort; however, I have found it refreshing and encouraging. 

How to Use This Book 

This book is designed to be used for three purposes. The first purpose is to describe the structure of an 
optimizing compiler so that a reader can implement it or a variation (compiler writers always modify a 
design). The book’s structure reflects this purpose. The initial chapters describe the compilation phases 
and the interactions among them; later chapters describe the algorithms involved in each compilation 
phase. 

This book can also be used as a textbook on compiler optimization techniques. It takes one example and 
describes each of the compilation processes using this example. Rather than working small homework 
problems, students work through alternative examples. 

Practically, the largest use for this book will be informing the curious. If you are like me, you pick up 
books because you want to learn something about the subject. I hope that you will enjoy this book and 
find what you are looking for. Good reading. 

Table of Contents 
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Dedication


I dedicate this book to some of the people who have inspired me. My mother and father, Florence and 
Charles William Morgan, taught me the concept of work. Jordan Baruch introduced me to the wonders 

of Computer Research. Louis Pitt, Jr., and Bill Clough have been instrumental in helping me understand 
life and the spirit. My wife, Leigh Morgan, has taught me that there is more than computers and 

books—there is also life. 
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Chapter 1

Overview 


What is an optimizing compiler? Why do we need them? Where do they come from? These questions are 
discussed in this chapter, along with how to use the book. Before presenting a detailed design in the body 
of the book, this introductory chapter provides an informal history of optimizing compiler development 
and gives a running example for motivating the technology in the compiler and to use throughout the rest 
of the book. 

1.1 What Is an Optimizing Compiler?

How does a programmer get the performance he expects from his application? Initially he writes the 
program in a straightforward fashion so that the correct execution of the program can be tested or proved. 
The program is then profiled and measured to see where resources such as time and memory are used, 
and modified to improve the uses of these resources. After all reasonable programmer modifications have 
been made, further improvements in performance can come only from how well the programming 
language is translated into instructions for the target machine. 

The goal of an optimizing compiler is to efficiently use all of the resources of the target computer. The 
compiler translates the source program into machine instructions using all of the different computational 
elements. The ideal translation is one that keeps each of the computational elements active doing useful 
(and nonredundant) work during each instruction execution cycle. 

Of course, this idealized translation is not usually possible. The source program may not have a balanced 
set of computational needs. It may do more integer than floating point arithmetic or vice versa, or more 
load and store operations than arithmetic. In such cases the compiler must use the overstressed 
computational elements as effectively as possible. 

The compiler must try to compensate for unbalanced computer systems. Ideally, the speed of the 
processor is matched to the speed of the memory system, which are both matched to the speed of the 
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input/output (I/O) system. In modern reduced instruction set computer (RISC) systems this is not true: 
The processors are much faster than the memory systems. To be able to use the power of the processor, 
the compiler must generate code that decreases the use of the memory system by either keeping values in 
registers or organizing the code so that needed data stays in the memory cache. 

An added problem is fetching instructions. A significant fraction of the memory references are references 
to instructions. One hopes that the instructions stay in one of the memory caches; however, this is not 
always the case. When the instructions do not fit in the cache, the compiler should attempt to generate as 
few instructions as possible. When the instructions do fit in the cache and there are heavy uses of data, 
then the compiler is free to add more instructions to decrease the wait for data. Achieving a balance is a 
difficult catch-22. 

In summary, the optimizing compiler attempts to use all of the resources of the processor and memory as 
effectively as possible in executing the application program. The compiler must transform the program to 
regain a balanced use of computational elements and memory references. It must choose the instructions 
well to use as few instructions as possible while obtaining this balance. Of course, all of this is 
impossible, but the compiler must do as well as it can. 

1.2 A Biased History of Optimizing Compilers

Compiler development has a remarkable history, frequently ignored. Significant developments started in 
the 1950s. Periodically, pundits have decided that all the technology has already been developed. They 
have always been proven wrong. With the development of new high-speed processors, significant 
compiler developments are needed today. I list here the compiler development groups that have most 
inspired and influenced me. There are other groups that have made major contributions to the field, and I 
do not mean to slight them. 

Although there is earlier work on parsing and compilation, the first major compiler was the Fortran 
compiler (Backus) for the IBM 704/709/7090/7094. This project marked the watershed in compiler 
development. To be accepted by programmers, it had to generate code similar to that written by machine 
language programmers, so it was a highly optimizing compiler. It had to compile a full language, 
although the design of the language was open to the developers. And the technology for the project did 
not exist; they had to develop it. The team succeeded beautifully, and their creation was one of the best 
compilers for about ten years. This project developed the idea of compiler passes or phases. 

Later, again at IBM, a team developed the Fortran/Level H compilers for the IBM 360/370 series of 
computers. Again, these were highly optimizing compilers. Their concept of quadruple was similar to the 
idea of an abstract assembly language used in the design presented in this book. Subsequent 
improvements to the compilers by Scarborough and Kolsky (1980) kept this type of compiler one of the 
best for another decade. 

During the late 1960s and throughout the 1970s, two research groups continued to develop the ideas that 
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were the basis of these compilers as well as developing new ideas. One group was led by Fran Allen at 
IBM, the other by Jack Schwartz at New York University (NYU). These groups pioneered the ideas of 
reaching definitions and bit-vector equations for describing program transformation conditions. Much of 
their work is in the literature; if you can get a copy of the SETL newsletters (NYU 1973) or the reports 
associated with the SETL project, you will have a treat. 

Other groups were also working on optimization techniques. William Wulf defined a language called 
Bliss (Wulf et al. 1975). This is a structured programming language for which Wulf and his team at 
Carnegie Mellon University (CMU) developed optimizing compiler techniques. Some of these 
techniques were only applicable to structured programs, whereas others have been generalized to any 
program structure. This project evolved into the Production-Quality Compiler-Compiler (PQCC) project, 
developing meta-compiler techniques for constructing optimizing compilers (Leverett et al. 1979). These 
papers and theses are some of the richest and least used sources of compiler development technology. 

Previous Table of Contents Next 
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Other commercial companies were also working on compiler technology. COMPASS developed 
compiler techniques based on p-graph technology (Karr 1975). This technology was superior to reaching 
definitions for compiler optimization because the data structures were easily updated; however, the initial 
computation of p-graphs was much slower than reaching definitions. P-graphs were transformed by Reif 
(Reif and Lewis 1978) and subsequent developers at IBM Yorktown Heights (Cytron et al. 1989) into the 
Static Single Assignment Form of the flow graph, one of the current flow graph structures of choice for 
compiler development. 

Ken Kennedy, one of the students at NYU, established a compiler group at Rice University to continue 
his work in compiler optimization. Initially, the group specialized in vectorization techniques. 
Vectorization required good scalar optimization, so the group continued work on scalar optimization 
also. Some of the most effective work analyzing multiple procedures (interprocedural analysis) has been 
performed at Rice under the group led by Keith Cooper (1988, 1989). This book uses much of the flow 
graph structure designed by the Massive Scalar Compiler Project, the group led by Cooper. 

With the advent of supercomputers and RISC processors in the later 1970s and early 1980s, new 
compiler technology had to be developed. In particular, instructions were pipelined so that the values 
were available when needed. The instructions had to be reordered to start a number of other instructions 
before the result of the first instruction was available. These techniques were first developed by compiler 
writers for machines such as the Cray-1. An example of such work is Richard Sites’ (1978) paper on 
reordering Cray-1 assembly language. Later work by the IBM 801 (Auslander and Hopkins 1982) project 
and Gross (1983) at CMU applied these technques to RISC processors. Other work in this area includes 
the papers describing the RS6000 compilers (Golumbic 1990 and Warren 1990) and research work 
performed at the University of Wisconsin on instruction scheduling. 

In the 1970s and early 1980s, register allocation was a difficult problem: How should the compiler assign 
the values being computed to the small set of physical registers to minimize the number of times data 
need to be moved to and from memory? Chaitin (1981, 1982) reformulated the problem as a graph­
coloring problem and developed heuristics for coloring the graphs that worked well for programs with 
complex flows. The PQCC project at Carnegie Mellon developed a formulation as a type of bin-packing 
problem, which worked best with straight-line or structure procedures. The techniques developed here 
are a synthesis of these two techniques using some further work by Laurie Hendron at McGill University. 
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1.3 What Have We Gained with All of This Technology?

Considering this history, all the technology necessary to build a high-performance compiler for modern 
RISC processors existed by about 1972, certainly by 1980. What is the value of the more recent 
research? The technology available at those times would do the job, but at a large cost. More recent 
research in optimizing compilers has led to more effective and more easily implemented techniques for 
optimization. Two examples will make this clearer. The Fortran/Level H compiler was one of the most 
effective optimizing compilers of the late 1960s and early 1970s. It used an algorithm to optimize loops 
based on identifying the nesting of loops. In the late 1970s Etienne Morel developed the technique called 
Elimination of Partial Redundancies that performed a more effective code motion without computing 
anything about loops (Morel and Renvoise 1979). 

Similarly, the concepts of Static Single Assignment Form have made a number of transformation 
algorithms similar and more intuitive. Constant propagation, developed by Killdall (1973), seemed 
complex. Later formulations by Wegman and Zadeck (1985) make the technique seem almost intuitive. 

The new technology has made it easier to build optimizing compilers. This is vital! These compilers are 
large programs, prone to all of the problems that large programs have. When we can simplify a part of 
the compiler, we speed the development and compilation times and decrease the number of bugs (faults, 
defects) that occur in the compiler. This makes a cheaper and more reliable product. 

1.4 Rules of the Compiler Back-End Game

The compiler back end has three primary functions: to generate a program that faithfully represents the 
meaning of the source program, to allocate the resources of the machine efficiently, and to recast the 
program in the most efficient form that the compiler can deduce. An underlying rule for each of these 
functions is that the source program must be faithfully represented. 

Unfortunately, there was a time when compiler writers considered it important to get most programs right 
but not necessarily all programs. When the programmer used some legal features in unusual ways, the 
compiler might implement an incorrect version of the program. This gave optimizing compilers a bad 
name. 

It is now recognized that the code-generation and optimization components of the compiler must exactly 
represent the meaning of the program as described in the source program and in the language reference 
manual for the programming language. This does not mean that the program will give exactly the same 
results when compiled with optimization turned on and off. There are programs that violate the language 
definition in ways not identifiable by a compiler. The classic example is the use of a variable before it is 
given a value. These programs may get different results with optimization turned on and turned off. 

Fortunately, standards groups are becoming more aware of the needs of compiler writers when 
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describing the language standards. Each major language standard now describes in some way the limits 
of compiler optimization. Sometimes this is done by leaving certain aspects of the language as 
“undefined” or “implementation defined.” Such phrases mean that the compiler may do whatever it 
wishes when it encounters that aspect of the language. However, be cautious—the user community 
frequently has expectations of what the compiler will do in those cases, and a compiler had better honor 
those expectations. 

What does the compiler do when it encounters a portion of the source program that uses language 
facilities in a way that the compiler does not expect? It must make a conservative choice to implement 
that facility, even at the expense of runtime performance for the program. Even when conservative 
choices are being made, the compiler may be clever. It might, for example, compile the same section of 
code in two different ways and generate code to check which version of the code is safe to use. 
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1.5 Benchmarks and Designing a Compiler

Where does the compiler writer find the set of improvements that must be included in an optimizing 
compiler? How is one variant of a particular optimization chosen over another? The compiler writer uses 
information about the application area for the target machine, the languages being compiled, and good 
sense to choose a particular set of optimizations and their organization. 

Any application area has a standard set of programs that are important for that area. Sorting and 
databases are important for commercial applications. Linear algebra and equation solution are important 
for numeric applications. Other programs will be important for simulation. The compiler writer will 
investigate these programs and determine what the compiler must do to translate these programs well. 
While doing this, the compiler writer and his client will extract sample code from these programs. These 
samples of code become benchmarks that are used to measure the success of the compiler. 

The source languages to be compiled are also investigated to determine the language features that must 
be handled. In Fortran, an optimizing compiler needs to do strength reduction since the programmer has 
no mechanism for simplifying multiplications. In C, strength reduction is less important (although still 
useful); however, the compiler needs to compile small subroutines well and determine as much 
information about pointers as possible. 

There are standard optimizations that need to be implemented. Eliminating redundant computations and 
moving code out of loops will be necessary in an optimizing compiler for an imperative language. This is 
actually a part of the first criterion, since these optimizations are expected by most application 
programmers. 

The compiler writer must be cautious. It is easy to design a compiler that compiles benchmarks well and 
does not do as well on general programs. The Whetstone benchmark contained a kernel of code that 
could be optimized by using a trigonometric identity. The SPEC92 benchmarks have a kernel, EQNTOT, 
that can be optimized by clever vectorization of integer instructions. 

Should the compiler writer add special code for dealing with these anomalous benchmarks? Yes and no. 
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One has to add the special code in a competitive world, since the competition is adding it. However, one 
must realize that one has not really built a better compiler unless there is a larger class of programs that 
finds the feature useful. One should always look at a benchmark as a source of general comments about 
programming. Use the benchmark to find general improvements. In summary, the basis for the design of 
optimizing compilers is as follows: 

1.  Investigate the important programs in the application areas of interest. Choose compilation 
techniques that work well for these programs. Choose kernels as benchmarks. 
2.  Investigate the source languages to be compiled. Identify their weaknesses from a code quality 
point of view. Add optimizations to compensate for these weaknesses. 
3.  Make sure that the compiler does well on the standard benchmarks, and do so in a way that 
generalizes to other programs. 

1.6 Outline of This Book

Before developing a compiler design, the writer must know the requirements for the compiler. This is as 
hard to determine as writing the compiler. The best way that I have found for determining the 
requirements is to take several typical example programs and compile them by hand, pretending that you 
are the compiler. No cheating! You cannot do a transformation that cannot be done by some compiler 
using some optimization technique. 

This is what we do in Chapter 2 for one particular example program. It is too repetitious to do this for 
multiple examples. Instead, we will summarize several other requirements placed on the compiler that 
occur in other examples. 

Then we dig into the design. Each chapter describes a subsequent phase of the compiler, giving the 
theory involved in the phase and describing the phase in a high-level pseudo-code. 

We assume that the reader can develop detailed data structures from the high-level descriptions given 
here. Probably the most necessary requirement for a compiler writer is to be a “data structure junkie.” 
You have to love complex data structures to enjoy writing compilers. 

1.7 Using This Book as a Textbook

This compiler design can be used as a textbook for a second compiler course. The book assumes that the 
reader is familiar with the construction of compiler front ends and the straightforward code-generation 
techniques taught in a one-term compiler course. I considered adding sets of exercises to turn the book 
into a textbook. Instead, another approach is taken that involves the student more directly in the design 
process. 

The example procedure in Figure 1.1 is used throughout the book to motivate the design and demonstrate 
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the details. As such, it will be central to most of the illustrations in the book. Students should use the 
three examples in Figures 1.2-1.4 as running illustrations of the compilation process. For each chapter, 
the student should apply the technology developed therein to the example. The text will also address 
these examples at times so the student can see how his or her work matches the work from the text. 

Figure 1.1  Running Exercise Throughout Book 

Figure 1.2  Matrix Multiply Example 

Figure 1.3  Computing the Maximum Monotone Subsequence


Figure 1.4  Recursive Version of a Binary Search 

Figure 1.2 is a version of the classic matrix multiply algorithm. It involves a large amount of floating 
point computation together with an unbalanced use of the memory system. As written, the inner loop 
consists of two floating point operations together with three load operations and one store operation. The 
problem will be to get good performance from the machine when more memory operations are occurring 
than computations. 

Figure 1.3 computes the length of the longest monotone subsequence of the vector A. The process uses 
dynamic programming. The array C(I) keeps track of the longest monotone sequence that starts at 
position I. It computes the next element by looking at all of the previously computed subsequences that 
can have X(I) added to the front of the sequence computed so far. This example has few floating point 
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operations. However, it does have a number of load and store operations together with a significant 
amount of conditional branching. 

Figure 1.4 is a binary search algorithm written as a recursive procedure. The student may feel free to 
translate this into a procedure using pointers on a binary tree. The challenge here is to optimize the use of 
memory and time associated with procedure calls. 

I recommend that the major grade in the course be associated with a project that prototypes a number of 
the optimization algorithms. The implementation should be viewed as a prototype so that it can be 
implemented quickly. It need not handle the complex memory management problems existing in real 
optimizing compilers. 
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Chapter 2 
Compiler Structure 

The compiler writer determines the structure of a compiler using information concerning the source 
languages to be compiled, the required speed of the compiler, the code quality required for the target 
computer, the user community, and the budget for building the compiler. This chapter is the story of the 
process the compiler writer must go through to determine the compiler structure. 

The best way to use this information to design a compiler is to manually simulate the compilation 
process using the same programs provided by the user community. For the sake of brevity, one principle 
example will be used in this book. We will use this example to determine the optimization techniques 
that are needed, together with the order of the transformations. 

For the purpose of exposition this chapter simplifies the process. First we will describe the basic 
framework, including the major components of the compiler and the structure of the compilation unit 
within the compiler. Then we will manually simulate an example program. 

The example is the Fortran subroutine in Figure 2.1. It finds the largest element in each column of a 
matrix, saving both the index and the absolute value of the largest element. Although it is written in 
Fortran, the choice of the source language is not important. The example could be written in any of the 
usual source languages. Certainly, there are optimizations that are more important in one language than 
another, but all languages are converging to a common set of features, such as arrays, pointers, 
exceptions, procedures, that share many characteristics. However, there are special characteristics of each 
source language that must be compiled well. For example, C has a rich set of constructs involving 
pointers for indexing arrays or describing dynamic storage, and Fortran has special rules concerning 
formal parameters that allow increased optimization. 

file:///D|/Convert/Building_an_Optimizing_Compiler/ch02/012-014.html (1 of 3) [10/17/2003 1:04:43 AM] 



Building an Optimizing Compiler:Compiler Structure 

Figure 2.1  Finding Largest Elements in a Column 

2.1 Outline of the Compiler Structure

This book is a simplification of the design process. To design a compiler from scratch one must iterate 
the process. First hypothesize a compiler structure. Then simulate the compilation process using this 
structure. If it works as expected (it won‘t) then the design is acceptable. In the process of simulating the 
compilation, one will find changes one wishes to make or will find that the whole framework does not 
work. So, modify the framework and simulate again,. Repeat the process until a satisfactory framework 
is found. If it really does not work, scrap the framework and start again. 

There are two major decisions to be made concerning the structure: how the program is represented and 
in what order the transformations are performed. The source program is read by the compiler front end 
and then later translated into a form, called the intermediate representation (IR), for optimization, code 
generation, and register allocation. Distinct collections of transformations, called phases, are then applied 
to the IR. 

2.1.1 Source Program Representation

The source program must be stored in the computer during the translation process. This form is stored in 
a data structure called the IR. Past experience has shown that this representation should satisfy three 
requirements: 

1.  The intermediate form of the program should be stored in a form close to machine language, 
with only certain operations kept in high-level form to be “lowered” later. This allows each phase 
to operate on all instructions in the program. Thus, each optimization algorithm can be applied to 
all of the instructions. If higher-level operators are kept in the IR, then the subcomponents of 
these operations cannot be optimized or must be optimized later by specialized optimizers. 
2.  Each phase of the compiler should retain all information about the program in the IR. There 
should be no implicit information, that is, information that is known after one phase and not after 
another. This means that each phase has a simple interface and the output may be tested by a 
small number of simulators. An implication of this requirement is that no component of the 
compiler can use information about how another component is implemented. Thus components 
can be modified or replaced without damage to other components. 
3.  Each phase of the compiler must be able to be tested in isolation. This means that we must 
write support routines that read and write examples of the IR. The written representation must be 
in either a binary or textual representation. 
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The second requirement circumvents one of the natural tendencies of software development teams. When 
implementing its component, one team may use the fact that another team has implemented its 
component-in a certain way. This works until some day in the future the first team changes some part of 
its implementation. Suddenly the second component will no longer work. Even worse problems can 
occur if the second team has the first team save some information on the side to help their component. 
Now the interface is no longer the intermediate representation of the program but the intermediate 
representation plus this other (possibly undocumented) data. The only way to avoid this problem is to 
require the interfaces to be documented and simple. 

Optimizing compilers are complex. After years of development and maintenance, a large fraction of a 
support team’s effort will go to fixing the problems. Little further development can be done because 
there is no time. This situation happens because most compilers can only be tested as a whole. A test 
program will be compiled and some phase will have an error (or the program compiles and runs 
incorrectly). Where is the problem? It is probably not at the point in the compiler where you observe the 
problem. A pithy phrase developed at COMPASS was “Expletive runs downhill.” (The actual expletive 
was used, of course.) This means that the problem occurs somewhere early in the compiler and goes 
unnoticed until some later phase, typically the register allocation, or object module formation. Several 
things can be done to avoid this problem: 

•  Subroutines must be available to test the validity of the intermediate representation. These 
routines can be invoked by compile-time switches to check which phases create an inappropriate 
representation. 
•  Assertions within the phases must be used frequently to check that situations that are required to 
be true are in fact true. This is often done in production compilers. 
•  A test and regression suite must be created for each phase. These tests involve special versions 
of the IR in which a program that has been compiled up to the point of this phase. This IR is input 
to the phase and then the output is simulated to see if the resulting program runs correctly. 

Having these requirements, how is the program stored? The choice is based on experience and then 
ratified by the manual simulations discussed earlier. In this compiler, each procedure will be stored 
internally in a form similar to assembly language for a generic RISC processor. 
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Experience with the COMPASS Compiler Engine taught that the concept of a value computed by an 
operator must be general. The value may be a vector, scalar, or structural value. Early in the compilation 
process, the concept of value must be kept as close to the form in the source program as possible so that 
the program can be analyzed without losing information. 

These observations are almost contradictory. We need to be able to manipulate the smallest pieces of the 
program while still being able to recover the overall structure present in the source program. This 
contradiction led to the idea of the gradual lowering of the intermediate representation. At first, LOAD 
instructions have a complete set of subscript expressions. Later these specialized load instructions are 
replaced by machine-level load instructions. 

What does an assembly language program look like? There is one machine instruction per line. Each 
instruction contains an operation code, indicating the operation to be performed; a set of operands; and a 
set of targets to hold the results. The following gives the exact form for the intermediate representation, 
except that the representation is encoded: 

1.  The instruction, encoded as a record that is kept in a linked list of instructions. 
2.  An operation code describing action performed. This is represented as a built-in enumeration 
of all operations. 
3.  A set of constant operands. Some instructions may involve constant operands. These are less 
prone to optimization and so are inserted directly in the instruction. The compiler initially will not 
use many constant operands because doing so decreases the chances for optimization. Later, many 
constants will be stored in the instructions rather than using registers. 
4.  A list of registers representing the inputs to the instruction. For most instructions there is a 
fixed number of inputs, so they can be represented by a small array. Initially, there is an 
assumption of an infinite supply of registers called temporaries. 
5.  A target register that is the output of the instruction. 
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The assembly program also has program labels that represent the places to which the program can 
branch. To represent this concept, the intermediate representation is divided into blocks representing 
straight-line sequences of instructions. If one instruction in a block is executed, then all instructions are 
executed. Each block starts with a label (or is preceded by a conditional branching instruction) and ends 
with a branching instruction. Redundant branches are added to the program to guarantee that there is a 
branch under every possible condition at the end of the block. In other words, there is no fall-through into 
the next block. 

The number of operation codes is large. There is a distinct operation code for each instruction in the 
target machine. Initially these are not used; however, the lowering process will translate the set of 
machine-independent operation codes into the target machine codes as the compilation progresses. There 
is no need to list all of the operation codes here. Instead the subset of instructions that are used in the 
examples is listed in Figure 2.2. 

Now the source program is modeled as a directed graph, with the nodes being the blocks. There is a 
directed edge between two blocks if there is a possible branch from the first block to the second. A 
unique node called Entry represents the entry point for the source program. The entry node has no 
predecessors in the graph. Similarly, a unique node called Exit represents the exit point for the source 
program, and that node has no successors. In Figure 2.3 the entry node is node B0, and the exit node is 
node B5. 

Figure 2.2  Operation Codes Used In Examples 
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Figure 2.3  Example Flow Graph 

The execution of the source program is modeled by a path through the graph. The path starts at the entry 
node and terminates at the exit node. The computations within each node in the path are executed in 
order of the occurrence of nodes on the path. In fact, the computations within the node are used to 
determine the next node in the path. In Figure 2.3, one possible path is B0, B1, B2, B4, B1, B3, B4, B5. 
This execution path means that all computations in B0 are executed, then all computations in B1, then 
B2, and so on. Note that the computations in B1 and B4 are executed twice. 

2.1.2 Order of Transformations

Since the compiler structure is hard to describe linearly, the structure is summarized here and then 
reviewed during the remainder of the chapter. The rest of the book provides the details. The compiler is 
divided into individual components called phases as shown in Figure 2.4. An overview of each of the 
phases is presented next. 

The compiler front end is language specific. It analyzes the source file being compiled and performs all 
lexical analysis, parsing, and semantic checks. It builds an abstract syntax tree and symbol table. I will 
not discuss this part of the compiler, taking it as a given, because most textbooks do an excellent job of 
describing it. There is a distinct front end for each language, whereas the rest of the compiler can be 
shared among compilers for different languages as long as the specialized characteristics of each 
language can be handled. 

After the front end has built the abstract syntax tree, the initial optimization phase builds the flow graph, 
or intermediate representation. Since the intermediate representation looks like an abstract machine 
language, standard single-pass code-generation techniques, such as used in 1cc (Frazer and Hanson 
1995), can be used to build the flow graph. Although these pattern-matching techniques can be used, the 
flow graph is sufficiently simple that a straightforward abstract syntax tree walk generating instructions 
on the fly is sufficient to build the IR. While building the flow graph some initial optimizations can be 
performed on instructions within each block. 

file:///D|/Convert/Building_an_Optimizing_Compiler/ch02/016-020.html (2 of 4) [10/17/2003 1:04:44 AM] 

javascript:displayWindow('images/02-03.jpg',150,342)
javascript:displayWindow('images/02-03.jpg',150,342)


Building an Optimizing Compiler:Compiler Structure 

The Dominator Optimization phase performs the initial global optimizations. It identifies situations 
where values are constants, where two computations are known to have the same value, and where 
instructions have no effect on the results of the program. It identifies and eliminates most redundant 
computations. At the same time it reapplies the optimizations that have already occurred within a single 
block. It does not move instructions from one point of the flow graph to another. 

Figure 2.4  Compiler Structure 

The Interprocedural Optimization phase analyzes the procedure calls within this flow graph and the flow 
graphs of all of the other procedures within the whole program. It determines which variables might be 
modified by each procedure call, which variables and expressions might be referencing the same memory 
location, and which parameters are known to be constants. It stores this information for other phases to 
use. 

The Dependence Optimization phase attempts to optimize the time taken to perform load and store 
operations. It does this by analyzing array and pointer expressions to see if the flow graph can be 
transformed to one in which fewer load/stores occur or in which the load and store operations that occur 
are more likely to be in one of the cache memories for the RISC chip. To do this it might interchange or 
unroll loops. 

The Global Optimization phase lowers the flow graph, eliminating the symbolic references to array 
expressions and replacing them with linear address expressions. While doing so, it reforms the address 
expressions so that the operands are ordered in a way that ensures that the parts of the expressions that 
are dependent on the inner loops are separated from the operands that do not depend on the inner loop. 
Then it performs a complete list of global optimizations, including code motion, strength reduction, and 
dead-code elimination. 

After global optimization, the exact set of instructions in the flow graph has been found. Now the 
compiler must allocate registers and reorder the instructions to improve performance. Before this can be 
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done, the flow graph is transformed by the Limiting Resources phase to make these later phases easier. 
The Limiting Resources phase modifies the flow graph to reduce the number of registers needed to match 
the set of physical registers available. If the compiler knows that it needs many more registers than are 
available, it will save some temporaries in memory. It will also eliminate useless copies of temporaries. 

Next an initial attempt to schedule the instructions is performed. Register allocation and scheduling 
conflict, so the compiler attempts to schedule the instructions. It counts on the effects of the Limiting 
Resources phase to ensure that the register allocation can be performed without further copying of values 
to memory. The instruction scheduler reorders the instructions in several blocks simultaneously to 
decrease the time that the most frequently executed blocks require for execution. 
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After instruction scheduling, the Register Allocation phase replaces temporaries by physical registers. 
This is a three-step process in which temporaries computed in one block and used in another are assigned 
first, then temporaries within a block that can share a register with one already assigned, and finally the 
temporaries assigned and used in a single block. This division counts on the work of the Limiting 
Resources phase to decrease the likelihood that one assignment will interfere with a later assignment. 

It is hoped that the Register Allocation phase will not need to insert store and load operations to copy 
temporaries into memory. If such copies do occur, then the Instruction Scheduling phase is repeated. In 
this case, the scheduler will only reschedule the blocks that have had the instructions inserted. 

Finally, the IR is in the form in which it represents an assembly language procedure. The object module 
is now written in the form needed by the linker. This is a difficult task because the documentation of the 
form of object modules is notoriously inaccurate. The major work lies in discovering the true form. After 
that it is a clerical (but large) task to create the object module. 

2.2 Compiler Front End

To understand each of the phases, we simulate a walk-through of our standard example in Figure 2.1 for 
each phase, starting with the front end. The front end translates the source program into an abstract 
syntax tree. As noted earlier, I will not discuss the operation of the front end; however, we do need to 
understand the abstract syntax tree. The abstract syntax tree for the program in Figure 2.1 is given in 
Figure 2.5. 

There is a single tree for each procedure, encoding all of the procedure structure. The tree is represented 
using indentation; the subtrees of each node are indented an extra level. Thus the type of a node occurs at 
one indentation and the children are indented slightly more. I am not trying to be precise in describing 
the abstract syntax tree. The name for the type of each node was chosen to represent the node naturally to 
the reader. For example, the nodes with type “assign” are assignment nodes. 

The “list” node represents a tree node with an arbitrary number of children, used in situations in which 
there can be an arbitrary number of components, such as blocks of statements. The “symbol” node takes 
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a textual argument indicating the name of the variable; of course, this will actually be represented as a 
pointer to the symbol table. 

The “fetch” node differentiates between addresses and values. This compiler has made a uniform 
assumption about expressions: Expressions always represent values. Thus the “assign” node takes two 
expressions as operands—one representing the address of the location for getting the result and the other 
representing the value of the right side of the assignment. The “fetch” node translates between addresses 
and values. It takes one argument, which is the address of a location. The result of the “fetch” node is the 
value stored in that location. 

Figure 2.5  Abstract Syntax Tree for MAXCOL 

Note that this tree structure represents the complete structure of the program, indicating which parts of 
the subroutine are contained in other parts. 

2.3 Building the Flow Graph

The abstract syntax tree is translated into the flow graph using standard code generation techniques 
described in introductory compiler books. The translation can be done in two ways. The more advanced 
method is to use one of the tree-based pattern-matching algorithms on the abstract syntax tree to derive 
the flow graph. This technique is not recommended here because of the RISC nature assumed for the 
target machine. Complex instructions will be generated later by pattern matching the flow graph. Instead, 
the abstract syntax tree should be translated into the simplest atomic instructions possible. This procedure 
allows more opportunity for optimization. 

Thus, the translation should occur as a single walk of the abstract syntax tree. Simple instructions should 
be generated wherever possible. Normal operations such as addition and multiplication can be lowered to 
a level in which each entry in the program flow graph represents a single instruction. However, 
operations that need to be analyzed later (at the equivalent of source program level) are translated into 
higher-level operations equivalent to the source program construct. These will later be translated into 
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lower-level operations after completion of the phases that need to analyze these operations. The 
following four classes of operations should be kept in higher-level form: 

1.  A fetch or store of a subscript variable, A [i,j,k] is kept as a single operation, with operands 
being the array name and the expressions for the subscripts. Keeping subscripted variables in this 
form rather than linearizing the subscript expression allows later dependence analysis to solve sets 
of linear equations and inequalities involving the subscripts. 
2.  Extra information is kept with normal load and store operations also. This information is 
needed to determine which store operations can modify locations loaded by load operations. This 
is particularly important in languages involving pointers. Extra analysis, called pointer alias 
analysis, is needed to determine which storage locations are modified. Loads and stores of 
automatic variables, that is, variables declared within a routine whose values are lost at the end of 
the routine, are not generated. Instead these values are handled as if they were temporaries within 
the program flow graph. 
3.  Subroutine calls are kept in terms of the expression representing the name of the procedure and 
the expression representing the arguments.Methods for passing the arguments, such as call-by-
value and call-by-reference, are not expanded. This allows more detailed analysis by the 
interprocedural analysis components later in the compiler. 
4.  Library routines are handled differently than other procedure calls. If a library procedure is 
known to be a pure function it is handled as if it were an operator. This allows the use of identities 
involving the library routines. Other procedure calls may be used in other parts of the analysis of 
the program, for example, calls on malloc are known to return either a null pointer or a pointer to 
a section of memory unreferenced in other parts of the program. 
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A straightforward translation will result in the flow graph shown in Figure 2.6. It is shown here to 
describe the process of translation. It is not actually generated, since certain optimizations will be 
performed during the translation process. Note that the temporaries are used in two distinct ways. Some 
temporaries, such as T5, are used just like local variables, holding values that are modified as the 
program is executed. Other temporaries, such as T7, are pure functions of their arguments. In the case of 
T7, it always holds the constant 1. For these temporaries the same temporary is always used for the result 
of the same operation. Thus any load of the constant 1 will always be into T7. The translation process 
must guarantee that an operand is evaluated before it is used. 

To guarantee that the same temporary is used wherever an expression is computed, a separate table called 
the formal temporary table is maintained. It is indexed by the operator and the temporaries of the 
operands and constants involved in the instruction. The result of a lookup in this table is the name of the 
temporary for holding the result of the operation. The formal temporary table for the example routine is 
shown in Figure 2.7. Some entries that will be added later are listed here for future reference. 

What is the first thing that we observe about the lengthy list of instructions in Figure 2.6? Consider block 
B1. The constant 1 is loaded six times and the expression I - 1 is evaluated three times. A number of 
simplifications can be performed as the flow graph is created: 

•  If there are two instances of the same computation without operations that modify the operands 
between the two instances, then the second one is redundant and can be eliminated since it will 
always compute the same value as the first. 
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Figure 2.6  Initial Program Representation 

Figure 2.7  Initial Formal Temporary Table 

• Algebraic identities can be used to eliminate operations. For example, A * 0 can be replaced by 
0. This can only occur if the side effects of computing A can be ignored. There is a large 
collection of algebraic identities that may be applied; however, a small set is always applied with 
the understanding that new algebraic identities can be added if occasions occur where the 
identities can improve the program. 
• Constant folding transforms expressions such as 5 * 7 into the resulting number, 35. This 
frequently makes other simplifications possible. The arithmetic must be done in a form that 
exactly mimics the arithmetic of the target machine. 

These transformations usually remove about 50 percent of the operations in the procedure. The rest of the 
analysis in the compiler is therefore faster since about half of the operations that must be scanned during 
each analysis have been eliminated. The result of these simplifications is given in Figure 2.8. 

2.4 Dominator Optimizations

The preliminary optimization phase takes the program represented as a program flow graph as input. It 
applies global optimization techniques to the program and generates an equivalent program flow graph as 
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the output. These techniques are global in the sense that the transformations take into account possible 
branching within each procedure. 

There are two global optimization phases in this compiler. The initial phase performs as much global 
optimization as possible without moving computations in the flow graph. After interprocedural analysis 
and dependence optimization phases have been executed, a more general global optimization phase is 
applied to clean up and improve the flow graphs further. The following global optimization 
transformations are applied. 

•  If there are two instances of a computation X * Y and the first one occurs on all paths leading 
from the Entry block to the second computation, then the second one can be eliminated. This is a 
special case of the general elimination of redundant expressions, which will be performed later. 
This simple case accounts for the largest number of redundant expressions, so much of the work 
will be done here before the general technique is applied. 
• Copy propagation or value propagation is performed. If an X is a copy of Z, then uses of X can 
be replaced by uses of Z as long as neither X nor Z changes between the point at which the copy is 
made and the point of use. This transformation is useful for improving the program flow graph 
generated by the compiler front end. There are many compiler-generated temporaries such as loop 
counters or components of array dope information that are really copy operations. 

Figure 2.8  Flow Graph after Simplifications 

• Constant propagation is the replacement of uses of variables that have been assigned a constant 
value by the constant itself. If a constant is used to determine a conditional branch in the program, 
the alternative branch is not considered. 
•  As with local optimization, algebraic identities, peephole optimizations, and constant folding 
will also be performed as the other optimizations are applied. 
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The following global optimizations are intentionally not applied because they make the task of 
dependence analysis more difficult later in the compiler. 

• Strength reduction is not applied. Strength reduction is the transformation of multiplication by 
constants (or loop invariant expressions) into repeated additions. More precisely, if one has an 
expression I * 3 in a loop and I is incremented by 1 each time through the loop, then the 
computation of I * 3 can be replaced by a temporary variable T that is incremented by 3 each time 
through the loop. 
• Code motion is not applied. A computation X * Y can be moved from within a loop to before the 
loop when it can be shown that the computation is executed each time through the loop and that 
the operands do not change value within the loop. This transformation inhibits loop interchange, 
which is performed to improve the use of the data caches, so it is delayed until the later global 
optimization phase. 

Now inspect the flow graph, running your finger along several possible paths through the flow graph 
from the start block B0 to the exit block B5. The constant 1 is computed repeatedly on each path. More 
expensive computations are also repeated. Look at blocks B2 and B6. Many of the expressions computed 
in B6 are also computed in B2. Since B2 occurs on each path leading to B6, the computations in B6 are 
unnecessary. 

What kind of technology can cheaply eliminate these computations? B2 is the dominator of B6 (this will 
be defined more precisely shortly), meaning that B2 occurs on each path leading from B0 to B6. There is 
a set of algorithms applied to the Static Single Assignment Form (to be defined shortly) of the flow graph 
that can eliminate repeated computations of constants and expressions when they already occur in the 
dominator. Some Static Single Assignment Form algorithms will be in the compiler anyway, so we will 
use this form to eliminate redundant computations where a copy of the computation already occurs in the 
dominator. This is an inexpensive generalization of local optimizations used during the construction of 
the flow graph, giving the results in Figure 2.9. 

Repeat the exercise of tracing paths through the flow graph. Now there are few obvious redundant 
expressions. There are still some, however. Computations performed each time through the loop have not 
been moved out of the loop. Although they do not occur in this example, there are usually other 
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redundant expressions that are not made redundant by this transformation. 

Where are most of the instructions? They are in block B2, computing the addresses used to load array 
elements. This address expression changes each time through the loop, so it cannot be moved out of the 
loop that starts block B2. It changes in a regular fashion, increasing by 8 each time through the loop, so 
the later global optimization phase will apply strength reduction to eliminate most of these instructions. 

Figure 2.9  After Dominator Value Numbering 

2.5 Interprocedural Analysis

All other phases of the compiler handle the program flow graph for one procedure at a time. Each phase 
accepts as input the program flow graph (or abstract syntax tree) and generates the program flow graph 
as a result. The interprocedural analysis phase accumulates the program flow graphs for each of the 
procedures. It analyzes all of them, feeding the program flow graphs for each procedure, one at a time, to 
the rest of the phases of the compiler. The procedures are not provided in their original order. In the 
absence of recursion, a procedure is provided to the rest of the compiler before the procedures that call it. 
Hence more information can be gathered as the compilation process proceeds. 

The interprocedural analysis phase computes information about procedure calls for other phases of the 
compiler. In the local and global optimization phases of the compiler, assumptions must be made about 
the effects of procedure calls. If the effects of the procedure call are not known, then the optimization 
phase must assume that all values that are known to that procedure and all procedures that it might call 
can be changed or referenced by the procedure call. This is an inconvenient assumption in modern 
languages, which encourage procedures (or member functions) to structure the program. 

To avoid these conservative assumptions about procedure calls, this phase computes the following 
information for each procedure call: 

MOD 
The set of variables that might be modified by this procedure call. 

REF 
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The set of variables that might be referenced by this procedure call. 

Interprocedural analysis also computes information about the relationships and values of the formal 
parameters of a procedure, including the following information: 

Alias 
With call-by-reference parameters, one computes which parameters possibly reference the same 
memory location as another parameter or global variable. 

Constant 
The parameters that always take the same constant value at all calls of the procedure. This 
information can be used to improve on the constant propagation that has already occurred. 

When array references are involved, the interprocedural analysis phase attempts to determine which part 
of the array has been modified or referenced. Approximations must be made in storing this information 
because only certain shapes of storage reference patterns will be stored. When the actual shape does not 
fit one of the usual reference patterns, a conservative choice will be made to expand the shape to one of 
the chosen forms. 
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2.6 Dependence Optimization

The purpose of dependence optimization for a RISC processor is to decrease the number of references to 
memory and improve the pattern of memory references that do occur. 

This goal can be achieved by restructuring loops so that fewer references to memory are made on each 
iteration. The program is transformed to eliminate references to memory, as in Figure 2.10, in which a 
transformation called scalar replacement is used to hold the value of A(I), which is used on the next 
iteration of the loop as the value A(I-1). Classic optimization techniques cannot identify this possibility, 
but the techniques of dependence optimization can. A more complex transformation called unroll and 
jam can be used to eliminate more references to memory for nested loops. 

When the references to memory cannot be eliminated completely, dependence-based optimization can be 
used to improve the likelihood that the values referenced are in the cache, thus providing faster reference 
to memory. The speed of modern processors exceeds the speed of their memory systems. To compensate, 
one or more cache memory systems have been added to retain the values of recently referenced memory 
locations. Since recently referenced memory is likely to be referenced again, the hardware can return the 
value saved in the cache more quickly than if it had to reference the memory location again. 

Figure 2.10  Example of Scalar Replacement


Figure 2.11  Striding Down the Columns 

Consider the Fortran fragment in Figure 2.11 for copying array A into B twice. In Fortran, the elements 
of a column are stored in sequential locations in memory. The hardware will reference a particular 
element. The whole cache line for the element will be read into the cache (typically 32 bytes to 128 
bytes), but the next element will not come from the cache line; instead, the next element is the next 
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element in the row, which may be very far away in memory. By the time the inner loop is completed and 
the next iteration of the outer loop is executing, the current elements in the cache will likely have been 
removed. 

The dependence-based optimizations will transform Figure 2.11 into the right-hand column. The same 
computations are performed, but the elements are referenced in a different order. Now the next element 
from A is the next element in the column, thus using the cache effectively. 

The phase will also unroll loops to improve later instruction scheduling, as shown in Figure 2.12. The left 
column is the original loop; the right column is the unrolled loop. In the original loop, the succeeding 
phases of the compiler would generate instructions that would require that each store to B be executed 
before each subsequent load from A. With the loop unrolled, the loads from A may be interwoven with 
the store operations, hiding the time it takes to reference memory. Another optimization called software 
pipelining is performed later, which increases the amount of interweaving even more. 

Figure 2.12  Original (left) and Unrolled (right) Loop 

This book will not address the concepts of parallelization and vectorization, although those ideas are 
directly related to the work here. These concepts are covered in books by Wolfe (1996) and Allen and 
Kennedy. 

2.7 Global Optimization

The global optimization phase cleans up the flow graph transformed by the earlier phases. At this point 
all global transformations that need source-level information have been applied or the information has 
been stored with the program flow graph in an encoded form. Before the general algorithm is performed, 
several transformations need to be performed to simplify the flow graph. These initial transformations 
are all based on a dominator-based tree walk and the static single assignment method. The optimizations 
include the original dominator optimizations together with the following. 

• Lowering: The instructions are lowered so that each operation in the flow graph represents a 
single instruction in the target machine. Complex instructions, such as subscripted array 
references, are replaced by the equivalent sequence of elementary machine instructions. 
Alternatively, multiple instructions may be folded into a single instruction when constants, rather 
than temporaries holding the constant value, can occur in instructions. 
• Reshaping: Before the global optimization techniques are applied, the program is transformed to 
take into account the looping structure of the program. Consider the expression I * J * K 
occurring inside a loop, with I being the index for the innermost loop, J the index for the next 
loop, and K the loop invariant. The normal associativity of the program language would evaluate 
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this as (I * J) *K when it would be preferable to compute it as I * (J * K) because the computation 
of J * K is invariant inside the innermost loop and so can be moved out of the loop. At the same 
time we perform strength reduction, local redundant expression elimination, and algebraic 
identities. 
• Strength Reduction: Consider computations that change by a regular pattern during consecutive 
iterations of a loop. The major example is multiplication by a value that does not change in the 
loop, such as I * J where J does not change and I increases by 1. The multiplication can be 
replaced by a temporary that is increased by J each time through the loop. 
• Elimination: To assist strength reduction and reshaping, the redundant expression elimination 
algorithm in the dominator optimization phase is repeated. 
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Consider our sample procedure. The expression address(A(J,I)) is computed each time through the inner 
loop. It can be replaced by a temporary that is initialized to address(A(1,I)) and incremented by 8 each 
time through the loop. 

Strength reduction is performed first on the inner loops, then on the successively outer loops. In this flow 
graph there are two nested loops. The inner loop consists of the blocks B2, B6, and B3. The variable that 
changes in an arithmetic progression is J, which is represented by the symbolic register T6. The 
expressions T25, T26, T27, and T28 vary linearly with T6, so they are all candidates for strength 
reduction; however, T25, T26, and T27 are used to compute T28, so we want to perform strength 
reduction of T28. T28 is increased by 8 each time through the loop. 

To have a place in which to put the code to initialize T28, we insert an empty block between blocks B1 
and B2. For mnemonic purposes we will call the block B12, standing for the block between B1 and B2. 
The compiler puts two computations into the loop (if they are not already available): 

1.  The expression to initialize the strength-reduced variable, in this case T28. This involves 
copying all of the expressions involved in computing T28 and inserting them into block B12. 
2.  The expression for the increment to the strength reduction expression.In this case, it is the 
constant 8, which is already available. 

While inserting these expressions into B12, the compiler will perform redundant expression elimination, 
constant propagation, and constant folding. In this case, the compiler knows that J has value 2 on entry to 
the loop, so that constant value will be substituted for J, that is, for T6. 

The code in Figure 2.13 represents the program after strength reduction has been applied to the inner 
loop. T28 no longer represents a pure expression: It is now a compiler-created local variable. This does 
not change how the compiler handles the load and store operations involving T28. Since it is taking on 
the same values that it did when it was a pure expression, the side effects of the load and store 
instructions are the same. 
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Figure 2.13  Strength-Reduced Inner Loop 

In this rough simulation of the compiler, we see that the compiler needs to perform some level of 
redundant expression elimination, constant propagation, and folding before strength reduction. We can 
get that information by performing strength reduction (and expression reshaping) as a part of the 
dominator-based optimizations discussed earlier. 

As a working hypothesis, assume that strength reduction for a single-entry loop is performed after the 
dominator-based transformations for the loop entry and all of its children in the dominator tree. If we 
perform strength reduction for a loop at that point, we gain three advantages. First, strength reduction 
will be applied to inner loops before being applied to outer loops. Second, the loop body will have been 
already simplified by the dominator-based algorithms. And third, the information concerning available 
expressions and constants is still available for a block inserted before the entry to the loop. 

For the sake of description, the computations in block B3 that are no longer used have been eliminated. 
In reality they are eliminated later by the dead-code elimination phase. This order makes the 
implementation of strength reduction easier because the compiler need not worry about whether a 
computation being eliminated is used someplace else. 

Now consider the contents of block B12. We know that the value of J, or T6, is 2. So the compiler 
applies value numbering, constant propagation, and constant folding to this block. One other 
optimization is needed to obtain good code. The compiler multiplies by 8 after it has performed all 
additions. The application of distribution of integer multiplication will result in better code since 8 will 
be added to an already existing value to give the code in Figure 2.14. 

We now perform strength reduction on the outer loop. There are three candidates for strength reduction: 
address(A(1,I)), or T33; address(VALUE(I)), or T17; and address(LARGE(I)), or T13. Again we insert a 
block B01 between blocks B0 and B1 to hold the initialization values for the loop B1, [B2, B6, B3], B4. 
The three pointers will be initialized in block B01 and incremented in block B4. 

One of the values of this simulation process is to observe situations that you would not have imagined 
when designing the compiler. There are two such situations with strength reduction: 

•  The load of the constant 4 into T11 now happens too early. All uses of it have been eliminated, 
except for updating the pointer at the end of the loop. In this case that is not a problem because the 
constant will be folded into an immediate field of an instruction later. More complex expressions 
may be computed much earlier than needed. There is no easy solution to this problem. 
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•  The computation of the constant 8 in block B01 makes the computation in block B1 redundant. 
Later code-motion algorithms had better identify these cases and eliminate the redundant 
expressions. 

After strength reduction on both loops, the compiler has the flow graph in Figure 2.15. 

Figure 2.14  Header Block after Optimization 

Figure 2.15  After Strength-Reducing Outer Loop 

This is a good point to review. The compiler has created the flow graph, simplified expressions, 
eliminated most redundant expressions, applied strength reduction, and performed expression reshaping. 
Except for some specialized code insertions for strength reduction, no expressions have been moved. 
Code motion will move code out of loops. 
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The techniques proposed here for code motion are based on a technique called “elimination of partial 
redundancies” devised by Etienne Morel (Morel and Renvoise, 1979). Abstractly, this technique attempts 
to insert copies of an expression on some paths through the flow graph to increase the number of 
redundant expressions. One example of where it works is with loops. Elimination of partial redundancies 
will insert copies of loop invariant expressions before the loop making the original copies in the loop 
redundant. Surprisingly, this technique works without knowledge of loops. We combine three other 
techniques with code motion: 

1.  A form of strength reduction is included in code motion. The technique is inexpensive to 
implement and has the advantage that it will apply strength reduction in situations where there are 
no loops. 
2.  Load motion is combined with code motion. Moving load operations can be handled as a code 
motion problem by pretending that any store operation is actually a store operation followed by 
the corresponding load operation. So a store operation can be viewed as having the same effect on 
the availability of an expression as a load operation. As will be seen in this example, this will 
increase the number of load operations that can be moved. 
3.  Store operations can also be moved by looking at the flow graph backward and applying the 
same algorithms to the reverse graph that we apply for expressions to the normal flow graph. We 
only look at the reverse graph for store operations. 

In this particular example, code motion only removes the redundant loads of the constants 4 and 8. The 
load of VALUE(I) is moved out of the inner loop. It is not a loop-invariant expression since there is a 
store into VALUE(I) in the loop. However, the observation that a store may be viewed as a store followed 
by a load into the same register means that there is a load of VALUE(I) on each path to the use of 
VALUE(I), making the load within the loop redundant. This gives the code in Figure 2.16. 
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Figure 2.16  After Code Motion 

Now, we can move the store operations forward using partial redundancy on the reverse program flow 
graph, as shown in Figure 2.17. The stores into VALUE(I) and LARGE(I) occurring in the loop can be 
moved to block B4. Although we think of this as a motion out of the loop, the analysis has nothing to do 
with the loop. It depends on the occurrence of these store operations on each path to B4 and the repetitive 
stores that do occur in the loop. Together with dead-code elimination this gives us the final result of the 
optimization phases. 

Figure 2.17  After Store Motion 

2.8 Limiting Resources

The program flow graph for the procedure has now been transformed into a form suitable for generating 
instructions for the target machine. There is a one-to-one correspondence between the operations in the 
program flow graph and instructions for the target machine. There are still three things to determine 
about the resulting program. 

• Peephole optimization: Multiple instructions must be combined into single instructions that 
have the same effect. This includes the classic peephole optimizations together with 
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simplifications involving folding constants into instructions that can use constants. 
• Instruction scheduling: The order of the instructions must be found. By reordering the 
instructions, the delays inherent in instructions that take more than one machine cycle can be 
hidden by the execution of other instructions. 
• Register allocation: The temporaries used for values in the program flow graph must be 
replaced by the use of physical registers. 

Unfortunately, instruction scheduling and register allocation are interdependent. If the compiler reorders 
the instructions to decrease execution time, it will increase the number of physical registers needed to 
hold values. On the other hand, if one allocates the temporaries to physical registers before instruction 
scheduling, then the amount of instruction reordering is limited. This is known as a phase-ordering 
problem. There is no natural order for performing instruction scheduling and register allocation. 

The LIMIT phase performs the first of these three tasks and prepares the code for instruction scheduling 
and register allocation. It attempts to resolve this problem by performing parts of the register allocation 
problem before instruction scheduling, then allowing instruction scheduling to occur. Register allocation 
then follows, plus a possible second round of instruction scheduling if the register allocator generated 
any instructions itself (spill code). 

Before preparing for instruction scheduling and register allocation, the compiler lowers the program 
representation to the most efficient set of instructions. This is the last of the code-lowering phases. 

We begin by modifying the flow graph so that each operation corresponds to an operation in the target 
machine. Since the instruction description was chosen to be close to a RISC processor, most instructions 
already correspond to target machine instructions. This step is usually called code generation; however, 
our view of code generation is more diffuse. We began code generation when we built the flow graph, we 
progressed further into code generation with each lowering of the flow graph, and we complete it now by 
guaranteeing the correspondence between instructions in the flow graph and instructions in the target 
machine. 
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To illustrate this code lowering, we assume that the target machine contains instructions with small­
constant immediate operands. For example, the addition of small constants can be performed with an 
immediate operand. Or load and store operations can take a constant as an additive part of the address 
computation. The target machine also has instructions for adding a multiple of 4 or 8 times one register, 
adding another register, and putting the result in a target register. In other words, we consider a target 
processor such as the Alpha processor. While performing code lowering, the compiler will also perform 
the following operations: 

•  Replacing instructions in the flow graph by equivalent target machine instructions. If the 
instruction in the flow graph is a target machine instruction, then the compiler leaves it as it is. 
•  Removing register-to-register copy operations. The compiler no longer honors the convention 
that a particular expression is computed in a fixed symbolic register. Now all effort is made to 
eliminate register-to-register copies. 
•  In the process of code lowering, some blocks will become empty. The compiler deletes them. 

The important instructions for the Alpha processor that simplify this particular example are as follows: 

•  The S4ADDQ instruction computes 4 times one register plus another, simplifying address 
arithmetic on integer arrays. 
•  The S8ADDQ instruction computes 8 times one register plus another, simplifying address 
arithmetic on double-precision arrays. 
•  The CPYS instruction, which takes two operands, creates a floating point value from the sign of 
one operand and the absolute value of another. It can be used to compute the absolute value. 

The use of these instructions may make other computations unnecessary, such as an instruction that loads 
a constant, or the multiplication or shift operation (and its target register). These unnecessary 
computations must be eliminated also. This can be performed partially during the other optimizations or 
by the execution of the dead-code elimination algorithm. 

The compiler also orders the blocks so that the destination pairs in conditional branches can be replaced 
with fall-through values; however, we do not eliminate the extra part of the branches because register 
allocation may need to insert blocks and such elimination would change the order of blocks. The code in 
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Figure 2.18 shows the results of code lowering. At this point the restriction that the same expression 
always be computed in the same register is discarded since this would add unnecessary instructions. 
Hence the loop variables are incremented by a single iADD instruction. Note that an S8ADDQ 
instruction is used to increment the pointer referencing the A array in the inner loop. 

At the same time that the code is being lowered, the LIMIT phase is preparing for instruction scheduling 
and register allocation by performing the following transformations. 

• Rename: There are many situations in which the same temporary is used in two independent 
parts of the procedure. This can happen through the source program using the same automatic 
variable for two purposes, or through transformations performed by earlier phases of the compiler. 
One of the sets of uses is now renamed to reference a new temporary. By using independent 
names, register allocation is more effective. Rename is illustrated in Figure 2.19. In the code on 
the left, the same index variable is used for two loops. After renaming, two different index 
variables are used, as seen in the code on the right. 
• Coalesce: Many register-to-register operations in the program flow graph can be eliminated. In 
a copy T1 = T2, if neither T1 nor T2 changes on any path from the copy to a use of T1, then all 
references to T1 can be replaced by a reference to T2, eliminating the copy operation. Eliminating 
one copy operation can expose the possibility of eliminating more copies. This compiler uses a 
slightly more general algorithm which eliminates a second temporary if it is known to have the 
same value as one already computed. 

Figure 2.18  After Code Lowering 

• Pressure: The register pressure at a point p in the program flow graph is the number of registers 
needed at p to hold the values that are computed before p and used after p. The maximum register 
pressure is an estimate of the minimum number of registers needed for allocating registers for the 
procedure. It is not a precise lower estimate because more registers may be needed due to the 
interactions of multiple paths through the procedure. However, if the register pressure is higher 
than the number of available registers, then some temporaries will be stored in memory for part of 
the procedure. This is called register spilling. 

Figure 2.19  Computing Right Number of Names 
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• Spilling: LIMIT will consider each point where the register pressure exceeds the number of 
physical registers. It will consider each enclosing loop containing that point and find a temporary 
that is not used in the loop but which holds a value to be used later (in other words, it is holding a 
value passing through the loop). It takes the temporary that has that property on the outermost 
loop, stores it in memory before the loop, and reloads it after the loop (where necessary). This 
decreases the register pressure by 1 everywhere within the loop. If no loop contains a temporary 
of this form, a temporary that holds a value but is unused in the block will be chosen. If no such 
temporary exists, a temporary used or defined within the block will be chosen. This whole process 
will be repeated until the register pressure has been decreased below the number of available 
registers everywhere within the procedure. 
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To compute the register pressure, the compiler needs to know for each point of the flow graph the 
temporaries that hold a value used later, in other words, the set of temporaries that are live at each point 
in the program. For illustrative purposes, the set of points where each temporary is live is represented as 
a set of intervals using the numbers we associated with each instruction in Figure 2.18. If a temporary is 
live at the beginning of the first instruction of an interval, we will indicate that by using a closed bracket. 
If it becomes live in the middle of an instruction, we will use an open parenthesis. Figure 2.20 indicates 
the range of instructions where each register is live. 

This information can be used to compute the number of registers needed at each point in the program, 
otherwise known as the register pressure. If the number of registers needed exceeds the number of 
physical registers available, then not all temporaries will be able to be assigned to registers. The registers 
that are live before and after each instruction in the subroutine are shown in Figure 2.21. In this particular 
case the largest register pressure occurs in the innermost loop. This is frequently true, but is not always 
the case. 

Figure 2.20  Table of Live Ranges 

One computes a separate register pressure for each register set: integer and floating point. We have 
shown the register pressure for integer registers. The register pressure for floating point registers is not 
shown in Figure 2.21 so as to make the table more understandable; however, there are only three floating 
registers in the program, so determining the register pressure is straightforward. 
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Now we compute the register pressure at the beginning of each statement. This is a pair consisting of the 
number of integer and floating point symbolic or physical registers that are live at the beginning of each 
instruction. Recall that the formal parameters are live at the beginning of the program (if they are used 
anywhere in the program), so T1, T2, T3, and T4 are live at the beginning of the subroutine. 

As is frequently the case with small flow graphs, there is no register spilling needed. The maximum 
register pressure is much lower than the number of registers. However, let us pretend that the machine 
only has eight registers. The register pressure is 9 at the end of the inner loop, so we cannot fit the 
number of symbolic registers that are live at that point into the available registers. The symbolic registers 
T1, T3, T4, T5, T6, T8, T14, T24, and T28 are live at the point at which the pressure is 9; however, T1, 
T3, T4, T5, and T8 are not referenced (defined or used) in the inner loop. Therefore one of them can be 
spilled before the loop and reloaded after the loop. This will decrease the register pressure by 1 
throughout the loop. Ideally, we would choose the register that is referenced in as few nested loops as 
possible These temporaries are all referenced in the next loop, however, so we will arbitrarily choose to 
store T5, which is the temporary representing I. 

Figure 2.21  Live Registers and Register Pressure Before Instruction 

We use the stack (SP is a dedicated register) to spill registers to memory. Note that the register pressure 
has peaked at one point, and that by spilling a register we have decreased the register pressure at other 
points. 

The insertion process takes two steps. First insert a store operation at the beginning of the outermost loop 
where the temporary (T5) is not referenced, and insert load operations at the exits from the loop if the 
temporary is live on exit. Second, optimize the placement of the loads and stores by moving the loads as 
far as possible toward the beginning of the program and the stores toward the end of the program. This 
gives us the code in Figure 2.22. 
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Figure 2.22  Load and Store Operations for Spilling 

After the LIMIT phase, the compiler knows that the resources are available at each point to perform the 
operations described in the program flow graph. The remaining phases of the compiler will preserve this 
invariant whenever they perform a transformation. 
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2.9 Instruction Scheduling

A modern RISC processor is implemented using what is called a pipeline architecture. This means that 
each operation is divided into multiple stages, with each stage taking one machine cycle to complete. 
Because each stage takes one cycle, a new instruction may start on each cycle, but it may not complete 
for some number of cycles after its initiation. Unfortunately, most techniques for code generation attempt 
to use a value as soon after its calculation is initiated as possible. This was the preferred technique on 
earlier machines because it limited the number of registers that were needed. However, this order slows 
down the execution on a RISC processor, since the value is not immediately available. The instruction 
scheduler reorders the instructions to initiate instructions earlier than their use so that the processor will 
not be delayed. 

Recent RISC processors can start the initiation of several instructions simultaneously. These instructions 
must be independent and use different function units within the processor. The scheduler must form these 
groups of instructions, called packets. All instructions in a packet can be issued simultaneously. 

The original instruction schedulers scheduled instructions within a single block, possibly taking into 
account the instructions that ended the preceding blocks. They did this by creating a data structure called 
the instruction dependence graph, which contained the operations as nodes and directed edges between 
two nodes if the first operation must be executed before the second operation. The edges were labeled 
with the number of machine cycles that must occur between the execution of the two instructions. The 
scheduler then performed a topological sort of the instruction dependence graph specialized to minimize 
the total number of cycles that the ordering of instructions required. 

Scheduling limited to blocks does not use the multiple instruction-issue character of RISC processors 
effectively. Blocks are usually small, and each instruction within them depends on some other 
instructions in the block. Consider the problem of instruction scheduling as filling in a matrix, with the 
number of columns being the number of instructions that can be issued simultaneously and the number of 
rows being the number of machine cycles it takes to execute the block. Block scheduling will fill in this 
matrix sparsely: There will be many empty slots, indicating that the multiple-issue character of the 
machine is not being used. This is particularly a problem for load, store, multiply, divide, or floating 
point operations which take many cycles to execute. RISC processors usually implement other integer 
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operations in one cycle. There are several techniques incorporated in the compiler for ameliorating this 
problem: 

• Unroll: Earlier phases of the compiler have performed loop unrolling, which increases the size 
of blocks, giving the block scheduler more chance to schedule the instructions together. 
• Superblock: When there is a point in a loop where two paths join, it is difficult to move 
instructions from after the join point to before it. When the succeeding block in the loop is short, 
the compiler has earlier made a copy of the block so that the joined path is replaced by two 
blocks, joined only at the head of the loop. This transformation is applied at the same time that 
loop unrolling is performed. 
• Move: The normal optimization techniques used for code motion attempt to keep temporaries 
live for as short a sequence of instructions as is possible. When scheduling, we will schedule each 
block separately. For blocks that are executed frequently, we will repeat the code motion 
algorithm, but allow the motion of instructions from one block to another even when there is no 
decrease in execution of the instruction. 
• Trace: Consider the most frequently executed block, B, determined either by heuristics or 
profile information. Find the maximal path including B that involves the most frequently executed 
predecessors and successors of each block on the path. Now consider this path as if it were a 
block, with some modifications to the dependence graphs to ensure proper actions at condition 
branches. See if there are any instructions on this path that can be moved to earlier (or later) 
blocks. 
• Software, pipelining: In the special case of a loop that is a single block, software pipelining can 
give a good schedule. Software pipelining uses dependence information provided by the 
dependence graph (not the instruction dependence graph) to overlap the schedules for one 
iteration of the loop with the following iterations. This does not decrease the length of time that 
each iteration takes (it may increase it), but allows the iterations to start more quickly, thereby 
decreasing the execution time of the whole loop. Blocks and loops that can be software pipelined 
are identified before other scheduling occurs and are handled separately. 

During instruction scheduling, some peephole optimization occurs. It can happen during scheduling that 
instructions that were not adjacent have become adjacent, creating situations such as a store followed by 
an immediate load from the same location. It is therefore effective to apply some of the peephole 
optimizations again. 
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When instruction scheduling is completed, the order of instructions is fixed and cannot be changed 
without executing the instruction scheduler again. In that case, it may only be necessary to rerun the 
block scheduler. 

We have shrunk the register requirements so the values in registers can fit in the physical registers at 
each point in the flow graph. Now we will reorder the instructions to satisfy the instruction-scheduling 
constraints of the target processor. We will assume a processor such as the Alpha 21164, which can issue 
four instructions on each clock cycle. Many of the integer instructions take one cycle to complete. Most 
floating point operations take four cycles to complete. In any given cycle one can issue one or two load 
instructions or a single store instruction. A store instruction cannot be issued in the same cycle as a load 
instruction. We will assume that the other integer operations can be filled in as necessary. Instructions 
such as integer multiply or floating point divide take a large number of cycles. 

The problem is to group the instructions into one to four instruction packets such that all the instructions 
in a packet can be issued simultaneously. The compiler also reorders the instructions in an attempt not to 
use an operand until a number of cycles following the issue of the instruction that computes it to ensure 
that the value is available. 

The load and store operations take a variable amount of time, depending on the load on the memory bus 
and whether the values are in caches. In the Alpha 21164, there are two caches on the processor chip, and 
most systems have a further large cache on the processor board. A load instruction takes two cycles for 
the cache nearest the processor, eight cycles in the next cache, twenty cycles in the board cache, and a 
long time if data is in memory. Furthermore, the processor contains hardware to optimize the loading of 
consecutive memory locations. If two load operations are each issued on two consecutive cycles to 
consecutive memory locations, the processor will optimize the use of the memory bus. 

It is important that useless branches are at least not counted when determining scheduling. This is 
marked with an asterisk (*) in the cycle location. 

There are hardware bypasses so that a compare instruction and a branch instruction can be issued in the 
same cycle. Note that the assignment to SI9 (in B1) can be moved forward eliminating an extra slot. Also 
note that B12 is only reached from the preceding block, so NOPs do not need to be inserted. 
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Now note that the inner loop starting with block B2 consists of three blocks. The first block is the 
conditional test and the third block updates the iterations. All but one of the computations from the third 
block can be moved to the first block (hoisting), while the remaining instructions can be scheduled more 
effectively by making a copy of the iteration block (super block scheduling). 

Note that NOPS were inserted in the middle of the code. The machine picks up four instructions at a 
time, aligned on 16-byte boundaries. It must initiate all instructions in this packet of four instructions 
before going on to the next packet. To execute the instructions in the smallest amount of time, we must 
maximize the number of independent instructions in each packet. The resulting scheduled instructions are 
shown in Figure 2.23. 

Figure 2.23  Scheduled Instructions 

2.10 Register Allocation

The register allocation phase modifies the program flow graph by replacing temporaries with physical 
registers. There are categories of techniques for performing register allocation on the complete 
procedure. One is based on graph-coloring algorithms. A graph is formed with each temporary being a 
node. An undirected edge exists between two nodes if they cannot occupy the same physical register. 
Register allocation reduces to coloring this graph, where each color represents a different physical 
register. 

The alternative method for register allocation is based on bin packing, where there is a bin for each 
physical register. Two temporaries can be allocated to the same bin if there is no point in the program 
where both need to have a value. 

Each of these techniques has advantages and disadvantages. The graph-coloring technique is superior 
when considering conditional branching. Since the bin-packing algorithms typically approximate the set 
of points where a temporary holds a value by some data structure where it is easy to take intersections of 
the sets, bin packing does not perform as well as graph coloring with branching. 

Bin packing performs better than graph coloring when straight-line code is considered. Since bin packing 
can traverse the blocks as it performs assignment, it can determine when the same register can be reused 
immediately. It can also use information about the operations in the program and their order to decide 
which temporaries to store to memory when too many registers are needed (this can happen even though 
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the LIMIT phase has been executed). Graph coloring has no concept of locality of reference. 

This compiler’s register allocator combines the two techniques. Because LIMIT has been run, little 
register spilling will occur. Graph coloring is therefore used to assign registers to temporaries that hold 
values at the beginning of some block, in other words, in those situations in which graph coloring 
performs best. A modification of bin packing suggested by Hendron (1993) will be used to schedule 
temporaries within each block. 

Previous attempts at splitting the temporaries that are live at the beginning of blocks (global allocation) 
from those that are live within a block (local allocation) have encountered difficulties because 
performing either global or local allocation before the other could affect the quality of register allocation. 
This problem is resolved by the existence of the LIMIT phase, which has performed spilling of global 
temporaries before either allocation occurs. 

Note that the presence of LIMIT has eliminated most register spilling during register allocation. It does 
not eliminate all of it. There can be secondary effects of conditional branching that can cause register 
spilling during either graph coloring or bin packing. This situation is unavoidable, since optimal register 
allocation is NP-complete. In the situations in which spilling occurs, the register allocator will insert the 
required store and load operations. 
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Now we apply register allocation to the example. First the compiler must recompute the points where 
temporaries are live, because instruction scheduling has changed these points (see Figure 2.24). Note that 
the scheduler has introduced a redefinition of a local register, so we need to either do superblock 
scheduling earlier (when we don’t know that it will pay off) or redo right number of names, or locally 
redo right number of names when we create these problems. We only deal with the integer registers here; 
the floating point registers in this case are simple because they all interfere and so one assigns each to a 
different register. 

After the lifetime information for temporaries has been computed, the compiler uses a graph-coloring 
algorithm to allocate the registers that are live at the beginning of some block, or registers which are 
directly assigned to a physical register. The ones assigned to a physical register are preallocated; 
however, they must be considered here to avoid any accidental assignments. The physical registers will 
be named using $0, $1, and so on. Note that the temporaries corresponding to formal parameters are 
assigned to physical registers specified by the calling standard for the target machine. The globally 
assigned registers are listed in Figure 2.25, together with the kind of register. In this case all of the 
registers needed are called scratch registers, which means that the value in the register need not be saved 
and restored if the register is used in the procedure. 

Figure 2.24  Live Ranges after Scheduling 
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Figure 2.25  Global Register Assignments 

After that the registers that are live at the beginning of any block have been allocated, we can allocate the 
symbolic registers that are live only within a single block. In this small example there are only a few. In 
realistic programs, these registers greatly outnumber the globally live registers. These local registers are 
listed in Figure 2.26. A register is reused if at all possible because the compiler wants to minimize the 
number of registers used. This avoids the necessity of using a register that is not a scratch register and 
would thus require that a store operation be inserted at the beginning of the procedure to save its value 
and a load inserted at the exit to restore the value. 

The resulting assembly code is shown in Figure 2.27. The temporaries have all been replaced by 
registers. There were no spill instructions inserted, so the instruction schedules have not changed. 

Figure 2.26  Local Register Assignments


Figure 2.27  Code after Register Allocation 

2.11 Rescheduling

The next phase is a rescheduling phase, which is only executed if the register allocator has changed the 
set of instructions that are executed. This can happen due to either a peephole optimization or the 
introduction of spill code. Neither of these occurred in this case, so the rescheduling operation is ignored. 

If the register allocator generated any instructions, that is, register spilling occurred, then the instruction 
scheduler is executed again, but in this case only on blocks where load or store operations have been 
inserted. 

2.12 Forming the Object Module

At last, we near the completion of our task. The instructions have been chosen; the registers have been 
chosen. All that remains is the clerical task of translating this information and the information about 
globally allocated data into an object module. This task includes the insertion of debugging information 
for the debugger. Since our task has been long, I am making light of this last phase. It involves little 
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intricate technology. However, it is complex because the structures of object modules are complex and 
undocumented. Every document that I have seen describing object module form has serious errors. So 
this project involves experimental computer science—trying to determine what the linker is expecting. 
This phase will also generate the assembly language listing for the listing file, if it is requested. 
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Chapter 3 
Graphs 

A prime prerequisite for being a compiler writer is being a “data structure junkie.” One must live, 
breathe, and love data structures, so we will not provide the usual complete list of all background 
mathematics that usually appears in a compiler book. We assume that you have access to any one of a 
number of data structure or introductory compiler writing books, such as Lorho (1984) or Fischer and 
LeBlanc (1988). This design assumes that you are familiar with the following topics, which are 
addressed by each of the data structure books referenced. 

• Equivalence relations and partitions. The compiler frequently computes equivalence relations 
or partitions sets. An equivalence relation is frequently represented as a partition: All of the 
elements that are mutually equivalent are grouped together into a set of elements. Hence the 
whole set can be represented by a set of disjoint sets of elements. Partitions are frequently 
implemented as UNION/FIND data structures. This approach was pioneered by Tarjan (1975). 
• Partial ordering relations on sets. A compiler contains a number of explicit and implicit partial 
orderings. Operands must be computed before the expression for which they are an operand, for 
example. The compiler must be able to represent these relations. 

The topics that are addressed in this chapter concern graphs. A number of the data structures within a 
compiler—the flow graph and the call graph, for instance—are represented as directed graphs. 
Undirected graphs are used to represent the interference relationship for register allocation. Thus these 
topics are addressed here to the extent that the theory is used in implementing the compiler. The topics 
addressed are as follows: 

Data structures for implementing directed and undirected graphs 

Depth-first search and the classification of edges in a directed graph 

Dominators, postdominators, and dominance frontiers 

Computing loops in a graph 

Representing sets 
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3.1 Directed Graphs

A directed graph consists of a set of nodes N and a set of edges E. Each edge has a node that is its tail, 
and a node that is its head. Some books define an edge to be an ordered pair of nodes—tail and head; 
however, this makes the description of the compiler more difficult. It is possible to have two edges with 
the same tail and head. In a flow graph containing a C switch statement or a Pascal case statement, two 
different alternatives that have the same statement bodies will create two edges having identical tails and 
heads. 

For a flow graph, there are two distinguished nodes. Entry is a node with no predecessors, representing 
the point where the procedure starts. Exit is a node with no successors, where the procedure exits. All 
execution paths start at Entry; all finite paths representing a complete execution end at Exit. Note that 
infinite-length paths are possible, representing infinite loops in the flow graph. 

If a procedure has multiple entry points, as is possible in Fortran, then a single Entry node is created that 
contains no instructions, with an edge between Entry and each actual entry point. When instructions are 
emitted, the procedure entry code is inserted at each of the entry points. The existence of the single Entry 
node ensures that the program analysis will be performed correctly. Similarly, if there are multiple nodes 
with no successors, then a single Exit node is created, with an edge between each original exit node and 
Exit. 

Each execution of the procedure is represented by a path from Entry to Exit. Unfortunately, the converse 
is not true: there are paths from Entry to Exit that do not represent paths of execution; for example, if 
there are two conditional branches in the flow graph branching on the same conditional expression. In 
this case the second conditional branch can only branch in the same direction as the first one. The path 
that branches the other way is not possible. The compiler cannot identify this situation, so it assumes that 
all paths are possible. This assumption decreases the amount of optimization. 

The graph in Figure 3.1 represents the flow graph for the running example. Node BO is the Entry node. 
Node B5 is the Exit node. Any execution path in the procedure is represented as a path between B0 and 
B5. 

Directed graphs are implemented using two different techniques. Usually the nodes are represented as 
some data structure and the edges are represented by adding two attributes to each node: the set of 
successors and the set of predecessors of the node. The set of successors of X is the set of nodes Y that 
are heads of edges, with the tail X. Similarly, the set of predecessors of X is the set of nodes P that are the 
tails of edges, with head X. Thus in Figure 3.1 the predecessors of B3 are B2 and B6, while the 
successors of B3 are B2 and B4. Note that any node X satisfies the relation: X is a predecessor of each of 
its successors, and X is a successor of each of its predecessors. These sets are implemented as linked lists, 
with the head of the list contained in the data structure representing the node. 
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Figure 3.1  Flow Graph for MAXCOL 

An alternative technique is to assign an integer to each node and represent each edge as a bit in a Boolean 
matrix. If there is an edge between nodes X and Y, then the bit in the position EDGE[X,Y] is set to true; 
otherwise, it is false. 

The successor/predecessor representation has the advantage that it is efficient to scan through all the 
edges leaving or entering a node. It is also space efficient if the directed graph is sparse, as is true of most 
flow graphs. The matrix approach is more efficient in building the directed graph because it is easier to 
check whether a particular node is already a successor. We will use a derivative of the matrix approach 
during register allocation; otherwise, the successor/predecessor implementation will be used. 

In an undirected graph the edges do not have a sense of direction. One is not traveling from one node to 
another in a particular direction. Instead, undirected graphs represent the idea of neighbors: two nodes 
are adjacent or they are not. The techniques for implementing directed graphs are used to implement 
undirected graphs: for each edge {X,Y} in the undirected graph, build two edges (Y,X) and (Y,X) in the 
implementation. In the matrix form, this means that the matrix is symmetric and only half of the matrix 
need be stored. 

Previous Table of Contents Next 
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3.2 Depth-First Search

There is no natural order for visiting nodes in a directed (or undirected) graph. Most algorithms in the 
compiler visit the nodes in the following fashion. The compiler starts by processing some node, usually 
Entry if it is dealing with the flow graph. 

Assume the compiler is processing some node X. At some point during the processing of X, the compiler 
will process the successors of X. Of course, the compiler does not want to process the same node multiple 
times, so it will not process a successor of X if it has already been processed. Since the algorithm is 
implemented recursively, when X has undergone processing it will return as a procedure so that the 
predecessor that started the processing of X can continue processing. 

If the directed graph is a tree, the depth-first search corresponds to the walk of a tree. Recall that in 
walking a tree there are the concepts of a preorder walk, in which a node is processed before its 
successors are processed; a postorder walk, in which the node’s children are processed before the actual 
work is done on a node; and an in-order walk, in which the work for a node is performed between the 
processing of the children. A similar idea is available with directed graphs. 

During a depth-first search, the algorithm may assign a number to the node in the order in which nodes 
are visited. This is called the preorder. If work is performed on the nodes in this order, it corresponds to 
the preorder walk of a tree. Similarly, a number is assigned to nodes in the order in which they are 
completed. This is called the postorder and corresponds to a postorder walk in a tree. An important order 
is the reverse postorder, since it corresponds to performing work on a node before processing any of its 
successors (except possibly for loops). 

The depth-first walk algorithm is given in Figure 3.2. This walk classifies the edges into four categories. 
An edge (n,S) is a tree edge if S has not been processed when n decides to process this successor. In other 
words, this is the first time that S is being visited. Since each node can have only one predecessor that 
visits it the first time, the nodes together with the tree edges form a tree or a forest of trees, as shown in 
Figure 3.3. This tree structure is important because it allows the compiler to use the concepts of tree 
walks to move around the flow graph. 
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Figure 3.2  Basic Depth-First Search Algorithm 

The second category consists of back edges. These are edges that go from a node to another node that has 
started processing but has not finished yet. If you look at the algorithm, this means that the edge must go 
back to a node that is still being processed by a procedure that directly or recursively calls this one: In 
implementation terms, the head of the edge is a node still on the stack, and that node will be an ancestor 
of the current node in the depth-first tree. This edge goes from a node to an ancestor in the tree formed of 
tree edges. 

Figure 3.3  Depth-First Search Tree for MAXCOL 

The opposite of backward edges are forward edges. A forward edge from n to S is an edge that goes from 
a node to its successor; however, the successor has already been processed. In fact, it was processed as a 
result of the processing of some other successor of n. So this is an edge that goes from an ancestor to a 
descendent in the depth-first search tree. 

No other edge can go up the tree or down the tree, so the fourth category of edges must go from one 
subtree to another. These are called cross edges. The classification of the edges for Figure 3.3 is given in 
Table 3.1. 

Table 3.1Classification of Graph Edges 
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Tree Edges Forward Edges Cross Edges Back Edges 

B0 B1 B0 B5 B6 B3 B3 B2 

B1 B2 B1 B4 B4 B1 

B2 B3 

B2 B6 

B3 B4 

B4 B5 

There is a fundamental principle involving depth-first search. Consider a depth-first search that starts at 
some node n. The set of nodes that will be visited by the depth-first search is exactly the set of nodes that 
are on some path leaving n. Why? Clearly any node visited by a depth-first search walk is on some path, 
because the tree edges form a path. Conversely, consider any finite path starting at n. The next node is a 
successor of n. In a depth-first search, each successor of a node is either visited from that node or has 
already been visited. Since we are starting at n, this successor is visited from n. The edge from n to that 
successor can be replaced by a path of tree nodes from n to the successor. Now consider the next node: It 
is either visited from the second node on the path or has already been visited from the first node. Again a 
path of tree nodes can be spliced in to create a path from n to the second node. This process can continue 
until the last node on the path is reached, at which point we have a path of tree edges from n to the end 
node, indicating that the end node is reached by a depth-first search. 

I recommend that you become comfortable with the depth-first search. It is the basis of all other 
algorithms in the compiler. 

Previous Table of Contents Next 
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3.3 Dominator Relation

Since the program flow graph is used to describe the execution path through the program and 
optimization is a technique for avoiding repeating work that has already been done, we need some 
concept of one block always being before another on all execution paths. This concept is called 
dominance. 

Definition Dominator: Consider a program flow graph (N, Entry, Exit), a block B1 
dominates block B2 if and only if every path from Entry to B2 contains B1. 

Most of the properties of dominators are determined by two kinds of arguments, each based on the 
definition of dominance. The first form of argument reasons by considering all paths from Entry to a 
block B. Since the dominator is on all such paths, properties of dominators can be determined. The 
second form of argument reasons by cutting and pasting paths. Consider a path from Entry to B that does 
not contain a particular block D. This path can be extended to a path to another block by adding an edge 
at the end; the new path still does not go through D. 

Lemma D1: Each block B dominates itself, since B is on each path from S to B. 

Lemma D2: If B2 dominates B1 and B1 dominates B, then B2 dominates B. 

Proof Consider each path from S to B. By definition of dominance, B1 is on each path. 
Consider the subpath from S to B1. By definition of dominance, B2 is on this path; 
hence, B2 is on each path from S to B. That is, B2 dominates B. 

Lemma D3: If B2 dominates B, and B1 dominates B, then either B2 dominates B1 or B1 
dominates B2. In other words, the dominators of B form a linearly ordered 
sequence. The dominator that follows B in this list is called the immediate 
dominator of B and is written idom(B). 
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Proof Consider any path from Entry to B. If the path is not simple, throw away any loops 
in the path to make a simple path. Since B2 and B1 both dominate B, they are both 
on the path. Consider the case where B2 follows B1 on the path (the case where B1 
follows B2 is symmetric). We claim that B1 dominates B2. To show a 
contradiction, assume that B1 does not dominate B2. Then there must be a path 
from S to B2 that does not contain B1. Replace the first part of the original path 
from S to B with this new path from S to B2. We now have a path to B that does not 
contain B1, contradicting the hypothesis that B1 dominates B. 

Lemma D3 implies that the dominator relation can be represented as a tree in which the parent of each 
block is its immediate dominator. We show this tree in Figure 3.4 for the program MAXCOL. Note that 
the entry node, B0, has no immediate dominator, so it is the root of the tree. Any node that has only one 
predecessor has the predecessor as its dominator because each path must come through the predecessor. 
Thus, B2 is the immediate dominator of B6. 

The history of computing the dominator relationship is interesting. Early algorithms were slow. One of 
the first practical algorithms was designed by Purdom (1972). To compute the blocks dominated by B, he 
pretended that B was not in the graph. He then performed a depth-first search. The blocks that had 
become unreachable could only be reached by going through B, so B must dominate them. In the 
program flow graph in Figure 3.1, if we pretend that B2 is not in the flow graph then blocks B2, B3, and 
B6 are not reachable, so B2 dominates these three nodes. B2 does not dominate B4 since there is an 
alternate path from B1 to B4 that avoids B2. 

Figure 3.4  Dominator Tree for MAXCOL 

The current algorithm for computing the tree of immediate dominators was developed by Lengauer and 
Tarjan (1979). This algorithm comes in two forms, with runtime complexity either O(|N|ln|N|) or O(|N| 
α(|N|)), depending on the complexity of the implementation. I do not state the algorithm here, as it is too 
complex to describe accurately in the space available. Instead I will give a rationalization for the 
algorithm and then a simpler algorithm by Purdom that is easy to understand. 

Tarjan calculates the dominator using information gathered during a depth-first search of the program 
flow graph. Note that the dominator of B is an ancestor of B in any depth-first search tree. Frequently it 
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will be the immediate parent in the depth-first search tree. When will it not be so? When there is an edge 
entering B that is not a tree edge in the depth-first search tree. Such an edge means that there is another 
way to get to B besides the path in the tree. In that case the closest block that can be a dominator of B is 
the common ancestor in the tree of B and the tail of the edge. But now things get complex, because that 
block may not be a dominator because of another edge entering one of the blocks in between. 

To resolve these problems and store the information we have been discussing, Tarjan defines a quantity 
called the semi-dominator and computes these values in a bottom-up walk of the depth-first search tree. 
Having these values, he can easily compute the actual dominators. 
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The compiler stores the dominator information as a tree. The nodes of the tree are the blocks in the flow 
graph; however, the tree edges are not necessarily the flow graph edges. The parent of any node in the 
tree is its immediate dominator. For each block B, the compiler keeps two attributes that store the 
dominator information: 

• idom(B) is the immediate dominator of B. 
• children(B) is the set of blocks for which B is the immediate dominator. Logically this 
information is a set; however, it is useful to store the information as a linked list, with the 
successors of B that are dominated by B coming first in the list. This will make some of the later 
optimization algorithms work more efficiently. 

This tree structure results in the tree in Figure 3.4 for the running example. 

The compiler also needs to know the common dominator of a set of blocks. The common dominator is 
the block that dominates each element of the set of blocks and is dominated by every other block that 
dominates each of the blocks of the set. This common dominator can be computed as shown in Figure 
3.5. The algorithm works by observing that if Z does not dominate B, and B does not dominate Z, then 
one can walk up the dominator tree from one of them to find a block that dominates both. 

Although it computes the common dominator of a pair, this algorithm is adequate for any set of blocks 
because the common dominator can be found by pairwise computing the common dominator of blocks. 

Here is a simple algorithm for computing dominators. Recall the basic principle of depth-first searches. 
A depth-first search that visits a node n also visits all nodes reachable from n. Now pretend that n is not 
in the graph by pretending that the edges entering n do not exist and that n does not exist. Perform a 
depth-first search starting at Entry on this mutilated graph. Which nodes are not reachable from Entry 
that were reachable before? A node is not reachable if there is no path to it. If it was reachable before, 
this means that n is on every path to these unreachable nodes. In other words, n is a dominator of all of 
those unreachable nodes. Thus, the algorithm consists of performing a single depth-first search to 
determine all of the reachable nodes. Discard the unreachable nodes. Now for each node n in the flow 
graph, pretend that n is not in the graph and repeat the depth-first search starting at Entry. The nodes that 
are not reachable are the nodes dominated by n. 
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Figure 3.5  Computing the Common Dominator 

3.4 Postdominators

If the compiler is moving computations to earlier points in the flow graph, then the dominator 
information gives the safe positions in the flow graph to which to move the computation. The compiler 
can move the computation to an earlier block that is on each path to the current block. The opposite 
information is also useful. If the compiler wants to move a computation to a later point, where can it be 
moved? This question leads to the idea of postdominance, which has similar characteristics to dominance 
with the exception that the path goes from B to Exit rather than from Entry to B, and successor blocks are 
used rather than predecessor blocks. 

Definition Postdominance: A block X postdominates a block B if and only if each path from 
B to Exit contains the block X. 

The corresponding properties of dominance hold. In fact, postdominance is just the dominance relation 
on the reverse graph, where successors are replaced by predecessors and vice versa. The same algorithms 
can be used to compute postdominance by computing dominance on the reversed graph. The information 
can be stored as a tree, as shown in Figure 3.6. The attributes for postdominance are as follows: 

• pdom(B) represents the immediate postdominator of B and represents the parent of B in the 
postdominator tree. 
• pchildren(B) represents the set of blocks that are immediately postdominated by B. Again this is 
represented as a set implemented as a linked list with the predecessors of B that are also 
dominated by B occurring first in the list. 

Figure 3.6  Postdominator Tree for MAXCOL 
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3.5 Dominance Frontier

Consider any path leaving a block B. Initially the blocks on the path are dominated by B. Eventually a 
block is reached that is not dominated by B. All of the blocks after that are not dominated by B unless the 
path returns to B. The first block that is not dominated by B is significant because it indicates the range of 
blocks over which B dominates and indicates the limits of optimizations using information about the 
computations in B. Considering all paths, the set of blocks possessing this characteristic is called the 
dominance frontier of B. 

Definition	 Dominance Frontier: The dominance frontier DF(B) of a block B is the set of 
all blocks C such that B dominates a predecessor of C but either B equals C or B 
does not dominate C. 

The definition is a restatement of the preceding motivation. If C is a block such that a predecessor is 
dominated by B and C is not, then there is a path from B to the predecessor. Add the edge from that 
predecessor to C and one has a path matching the motivation. Clearly a path matching the motivation 
introduces a block into the dominance frontier. 

Note that the block B is handled specially. A loop starting at B, going through blocks dominated by B and 
returning to B, introduces B into the dominance frontier. 

One way of visualizing the dominance frontier is to consider the subtree of the dominator tree rooted at 
B. A flow graph edge going from one of the blocks in this subtree to a block outside the subtree 
introduces the block outside the subtree into the dominance frontier. For the sake of this discussion, B is 
considered to be outside the subtree. 

This gives an easy algorithm for computing the dominance frontier. Walk the dominator tree bottom-up, 
computing the dominance frontier for children before the parent. When considering a block B, there are 
two cases: 
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•  A flow graph edge leaving B that does not lead to a child of B in the dominator tree must be to a 
block that is either equal to B or not dominated by B. (If the block were dominated by B, then B 
must be its immediate dominator, so it would be a child.) Such blocks belong in the dominance 
frontier of B. 
•  Consider a block X in the dominance frontier of one of the children C of B, in the dominator 
tree. If X is not equal to B and is not dominated by B, then it is in the dominance frontier of B. If X 
is dominated by B, then B must be its immediate dominator, since it is not dominated by C. Since 
B is not its own immediate dominator, the two conditions can be combined to give the algorithm 
shown in Figure 3.7. 

Figure 3.7  Computing the Dominance Frontier 

Table 3.2Dominance Frontiers 

Block Dominance Frontier 


B3 B2 B4 

B6 B3 

B2 B2 B4 

B4 B1 B5 

B1 B1 B5 

B5 Ø 

B0 Ø 

Consider the running example for which the dominator tree is in Figure 3.1. The bottom-up dominator 
tree walk first visits blocks B3, B6, B2, B4, B1, B5, and then B0. As the walk is performed, the 
dominance frontier is computed (see Table 3.2). In the calculation of the dominance frontier, B3 finds B2 
and B4 in its dominance frontier because they are successors and are not dominated by B3. Similarly, B6 
finds B3 in its dominance frontier. During the computation of the dominance frontier of B2, B3 will not 
be in its dominance frontier because B2 dominates B3. However, B2 is in the dominance frontier of B2. 
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3.6 Control Dependence

The compiler needs to know the conditions under which the execution of one block leads to the 
execution of another. The ideas described here are derived from Cytron (1987, 1990 and 1991). Consider 
two blocks B and X. When does B control the execution of X? 

•  If B has only one successor block, it does not control the execution of anything. Once B starts 
executing, it completes executing and goes on to the single next block. Thus B must have multiple 
successors to be considered a block that controls the execution of X. 
• B must have some path leaving it that leads to the Exit block and avoids X. If this were not true, 
then the execution of B would always lead to the execution of X. In other words, B cannot be 
postdominated by X. 
• B must have some path leaving it that leads to X. Again, failure of this condition would violate 
the idea of control. Thus B can be viewed as a switch: Some way out leads to X, and another way 
out avoids X. 
• B should be the latest block that has this characteristic. It’s true that an earlier block may 
similarly control the execution of X; however, that block can be viewed as controlling the 
execution of B, which then controls the execution of X. 

All of these conditions can be summarized in the following definition. 

Definition	 Control Dependence: A block X is control dependent on a block B if and only if 
There is a non-empty path from B to X such that X postdominates each block on 
the path except B. 

X is either the same as B, or X does not postdominate B. 

The first condition summarizes the idea of B being the latest block that has a path to X. If there were a 
later block satisfying the other condition, then X would not postdominate all blocks on the path. The 
second condition together with the existence of the path in the first condition gives the switching 
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condition. There is one way through B that might avoid X, and another way that must lead to X. 

A more precise definition of control dependence is desired because the compiler needs to know 
something about the switching mechanism—which edge out of B must lead to X. This involves an 
addition to the definition that records the edge involved. 

Definition Control Dependence: A block X is control dependent on an edge (B,S) if and 
only if 

There is a non-empty path from B to X starting with the edge (B,S) such that X 
postdominates each block on the path except B. 

X is either the same as B, or X does not postdominate B. 

The definition is unfortunate in that it uses some unknown path. To have an effective way of computing 
control dependence, the compiler needs a more general condition. Fortunately, the condition is the same 
as X postdominating S. 

Observation If B and X are blocks in a flow graph where there is a path from every block to 
Exit, then X postdominates a successor S of B if and only if there is a non-null 
path from B to X through S such that X postdominates every node after B on the 
path. 

Proof Assume the path exists. Since S is on the path, S is postdominated by X. 
Conversely, assume that S is postdominated by X. There is some path from S to 
Exit. Since S is postdominated by X, X is on this path. Cut the path short at X and 
add B and the edge from B to S to the beginning of the path. This gives a path 
from B to X. Each node except B on the path is postdominated by X. If it isn’t, 
then there is a path from it to Exit and by cutting the original path and pasting in 
the new path, one can create a path from S to Exit that avoids X, a contradiction. 
So we have the path. 

Observation If S is a successor of B, then either S is the postdominator of B or pdom(S) is 
postdominated by pdom(B). 

Proof Assume S is not the postdominator of B. Consider any path from S to Exit. It can 
be extended to a path from B to Exit. Thus, pdom(B) is on this path. Thus 
pdom(B) is not equal to S and is on each path from S to Exit, so it is a 
postdominator of S. Thus it must postdominate pdom(S). 
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Now we can give an algorithm for computing the control dependence relation. Look at the definition: the 
edge (B,S) is given. What blocks are control dependent on this edge? Any block that postdominates S and 
does not postdominate B. These are the nodes in the postdominator tree starting at S, pdom(S), 
pdom(pdom(S)), and stopping at but not including pdom(B). The second observation indicates that, 
traversing the tree upward through the parents (postdominators), the algorithm must reach pdom(B) 
eventually. 

The algorithm in Figure 3.8 can be applied to each edge. Actually, it needs to be applied to each edge 
that leaves a block with multiple successors, since a block with a single successor can have no blocks 
control dependent on it. For our running example this gives the results in Table 3.3. Sometimes the 
compiler needs the transpose of this information: for each block, on what blocks it is control dependent. 
In that case the same algorithm is used; however, the information is stored indexed by the dependent 
block rather than by the edge leading to the dependence. 

Figure 3.8  Calculating Control Dependence 

Table 3.3Control Dependences for the Example Program 


Blocks Control 
Edge (B,S) Dependent on (B,S) 

(B0,B5) Ø 

(B0,B1) B1, B4 

(B1,B4) Ø 

(B1,B2) B2, B3 

(B2,B3) Ø 
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(B2,B6) B6 

(B3,B2) Ø 

(B3,B4) Ø 

(B4,B1) B1, B4 

(B4,B5) Ø 

3.7 Loops and the Loop Tree

An optimizing compiler attempts to decrease the number of computations that occur during program 
execution. Thus the compiler needs to determine those areas of the program that are executed most often 
and concentrate on improving them. Determining the areas of frequent execution at compile time is not 
practical or possible. However, parts of the program that execute repeatedly, that is, loops, are the best 
candidates. So the compiler builds a data structure to represent information about loops. 

Definition	 Loop: A loop is a set of blocks, L, such that if B0, B1 ∈ L then there is a path 
from B0 to B1 and a path from B1 to B0. A block B ∈ L is an entry block if B 
has a predecessor that is not in L. A block B ∈ L is an exit block if B has a 
successor that is not in L. 

In other words, a loop is a region of the program where the path of execution can cycle from one block to 
another repeatedly. An entry block is a block where execution can enter the loop, and an exit block is a 
block where execution can leave the loop. Since we assume that there is some path of execution from 
Entry to any block, each loop must have at least one entry block. 

The interesting loops are loops with a single entry block, or single-entry loops. For such loops the entry 
block must dominate all other blocks in the loop. If there is a path that avoids the entry block, then there 
must be a first block in the loop on the path and this block would be another entry. 

The algorithm for computing the blocks in a loop for a single-entry loop is given in Figure 3.9. Consider 
any block B. The only way that it can be the entry block for a single-entry loop is if there is a back edge 
in some depth-first search walk of the flow graph. Consider the alternative: An entry block in a loop must 
be involved in a cyclic path and be the first block in the cycle that is reached in the walk. Thus, all of the 
blocks in the cycle will be descendents of B in the walk, and the edge leading back to B is a back edge. 

The idea behind the algorithm is walking the loop backward. Consider each predecessor of B coming 
from a back edge. Walk the graph backward from these predecessors. Eventually the walk leads back to 
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B, and all of the blocks in the loop will be visited. The algorithm implements this idea using a work-list 
algorithm. The set Queue contains all blocks that are known to be in the loop but whose predecessors 
have not been processed yet. Each block is inserted into Queue at most once because Queue ∴ Loop and 
the insertion occurs only when the block is not already in Loop. 

Later we will generalize this algorithm to handle multiple-entry loops, and use it to compute the nesting 
structure of loops. The compiler not only needs to know the loops, but needs to know which loops are 
contained in other loops. Note that the way the compiler computes loops will ensure that the loops 
identified are either disjoint (no blocks in common) or nested (one loop is a subset of another). The 
nesting structure is used for three purposes: 

1.  The compiler uses the loop nest during dependence-based optimization since these phases 
transform loops to improve program performance. 
2.  The loop nests are used to perform one kind of strength reduction. Values modified in a regular 
fashion during each iteration of a loop may be computed in a more effective way; for example, 
multiplications can be replaced by repeated additions. 
3.  The loop nests are used during register allocation to find points in the program where values 
may be stored or loaded from memory. 

Figure 3.9  Template of Code for Finding a Loop 
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3.7.1 Infinite Loops

A loop may have no exit blocks, in which case it is an infinite loop. Such loops can occur in real 
programs. Consider a program that is using the hardware interrupt or signaling mechanism to perform all 
actions, while the main program remains in a loop. The programmer may write this loop as an infinite 
loop. These are structural infinite loops. There may be other infinite loops that the compiler cannot 
determine due to the actual computations that occur during the execution of the program. 

Many of the global optimization algorithms can give incorrect results when these structural infinite loops 
exist. These algorithms are all based on the idea of decreasing the number of computations on paths from 
Entry to Exit. If there is a block where there is no such path, the algorithms may perform in unexpected 
ways. 

A simple device eliminates these structural infinite loops: Insert an edge from one of the blocks in the 
loop to Exit. Of course, the edge will never be traversed, because there are no instructions in the blocks 
that can make the program flow along that edge. However, the optimization algorithms will now perform 
properly. 

How can the compiler identify these infinite loops? A block is in an infinite loop if there is no path from 
it to Exit. So perform a depth-first search on the reverse of the flow graph (consider the predecessors to 
be the successors and vice versa). The blocks that are not visited are the blocks in infinite loops. After the 
depth-first search, choose one of the blocks that is not visited, create the edge between it and Exit, and 
then attempt to continue the depth-first search using this edge. Figure 3.10 describes this algorithm. 

Figure 3.10  Eliminating Infinite Loops 
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3.7.2 Single- and Multiple-Entry Loops

As noted earlier, loops can be classified by the number of entry blocks. A loop with no entry blocks is 
unreachable: The instructions cannot be executed, so those loops are already eliminated. Single-entry 
loops are the most interesting for the optimizer. Multiple-entry loops must be handled because they might 
occur in programs; however, the optimization techniques will not be as effective. Many of the 
optimization techniques only work with single-entry loops.1 

1Single-entry loops are frequently called reducible loops. Multiple-entry loops are called irreducible 
loops. This compiler uses techniques that optimize single-entry loops. Multiple-entry loops are identified 
to ensure that no incorrect translations occur. 

How does the compiler identify multiple-entry loops? A loop is a union of cyclic paths. Consider one of 
these cyclic paths. During a depth-first search there is a first block B on the path that is visited. All other 
blocks on the cycle are descendants of B, and the cyclic edge entering B is a back edge. Thus a loop with 
entry B is found as in Figure 3.9 by considering these predecessors and walking the loop backward. The 
problem with a multiple-entry loop is that this walk can escape from the loop (walking backward through 
one of the other entries) and eventually lead all the way back to Entry. This means that B does not 
dominate these predecessors. Consider the multiple-entry loop {C,D} in Figure 3.11. If the depth-first 
search visits the blocks in order {A,C,D,E,B}, then C is the first block in the loop that is visited. The edge 
(D,C) is a back edge. When walking backward from D one visits {D,C,B,A}. 

To avoid this problem, the algorithm must be modified to stop the backward walk. But where should the 
walk stop? The compiler wants a single-entry region, even if it is not a loop. So stop the walk at the 
block that is closest to the loop and which dominates all of the blocks in the loop. This will be the block 
that dominates the header B and all of B’s predecessors that reach B by a back edge. Recall that B 
dominates itself. Using this information, the algorithm in Figure 3.9 is modified to the algorithm in 
Figure 3.12. 

The algorithm implements the ideas that we have just discussed. Note that the body of the loop is not 
computed at this point when a multiple-entry loop is encountered. Instead, the set of blocks that lead to 
the loop body are recorded in an attribute called generators. This set will be initialized to empty before 
the identification of loops is started. A block that has a non-empty generators set is the immediate 
dominator of a multiple-entry loop. The loop body is not recognized immediately for the following 
reasons: 

•  We will see shortly that this whole process is embedded in a depth-first search in which the loop 
starting at a block is recognized after all blocks later in the walk have been processed. Recording 
the generators set allows this to be true for multiple-entry loops as well. 
•  More than one multiple-entry loop can have the same immediate dominator. The aggregate will 
be considered one loop for the process of forming the loop nest. 
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•  We will be able to handle loops contained in this loop more effectively. Consider a multiple­
entry loop with entry blocks B1 and B2 with common denominator C. By delaying the 
identification of the loop until all successors have been identified, a loop that occurs on the path 
between C and B1 or C and B2, will be handled as a nested loop. If this subloop is a single-entry 
loop, then the full set of optimizations can be applied to it. If the body of the multiple-entry loop 
were created when either B1 or B2 was processed, then these subloops would not be considered a 
separate loop. 

Figure 3.11  Example Multiple-Entry Loop


Figure 3.12  Identifying a General Loop 

We will make a slight modification to FIND_LOOP in order to build a tree of tested loops, but this is the 
basic algorithm. When a single-entry loop is found, the loop body is identified. When a multiple-entry 
loop is found, the identification of the loop body is delayed until the processing of the block Z. This loop 
body is identified by the existence of a non-empty generators(Z) set. 

Later descriptions will divide FIND_LOOP into two procedures: The first finds the generators and the 
second finds the body of the loop. The procedure is split so that finding the body of a multiple-entry loop 
can use the same code as that for single-entry loops. 
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3.7.3 Computing the Loop Tree

The compiler needs the complete set of loops and the relationship among the loops. This information is 
stored as a tree. Loop L1 is a child of L2 if and only if L1 is a subset of L2 and is not contained in any 
other loop contained in L2. The algorithm used to compute loops finds the maximum loop with a 
particular header block. This ensures that two loops are either disjoint or one is contained in the other, a 
condition allowing the loops to be organized in a tree called the loop tree. There are four kinds of nodes 
in the loop tree: 

1.  The leaves of the tree are the blocks in the flow graph. 
2.  Single-entry loops are one form of interior node in the tree. 
3.  Multiple-entry loops organized as a single-entry region are the other form of interior node. 
Recall that a multiple-entry loop includes the loop together with all tree nodes back from the loop 
to the common dominator of all of the blocks in the loop. 
4.  The root of the tree is a special node representing the whole flow graph. It will not be a loop or 
block because the flow graph includes two blocks: Entry with no predecessors and Exit with no 
successors. These blocks cannot be involved in a loop and are not a single block. 

To record the tree structure, attributes are added to blocks and the other nodes in the loop tree: 

• LoopParent(X) is an attribute indicating which node in the tree this node is a child of. It also 
indicates which loop a loop or block is contained in. LoopParent(X) can also be the root, 
indicating that this block or loop is not contained in another loop. The LoopParent of the root is 
NIL. 
• LoopContains(X) is the set of nodes in the region represented by X. For a block, it is NIL. For a 
loop or the root, it is the set of children of X in the tree that is the same as the set of loops or 
blocks directly contained in this region. 
• LoopEntry(X) is the block that is the entry to this region. 

These attributes allow free moment around the loop tree with full knowledge of which blocks and loops 
are contained in other blocks and loops. 
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As the loop tree is built, each loop is identified and entered in the tree. Once it has been entered in the 
tree it is handled as a single entity. Its interior structure is not viewed again during the construction 
process. The algorithm FIND_LOOP is modified to handle tree nodes and augmented to be part of the 
complete construction process. To form this tree, we need two modifications to the algorithm: 

1.  Consider the blocks in the graph in postorder. Due to the structure of a depth-first search, a 
single-entry loop contained in another single-entry loop has an entry block with a smaller 
postorder number. So by visiting blocks in postorder, the inner loops are identified before the 
outer loops. 
2.  Once identified, handle each loop as if it were a single block. This is done by keeping a datum 
for each block or loop indicating which block or loop it is contained in (if any). When one finds a 
block, use this datum to scan outward to the outermost identified loop that contains this block. 

The compiler now has the complete algorithm. In Figure 3.13 we have the final version of FIND_LOOP, 
which computes the blocks, called the generators, that determine all the other blocks in the loop. If it is a 
single-entry loop, FIND_LOOP goes ahead and builds the node in the loop tree using FIND_BODY. 

FIND_BODY computes the set of nodes in the body of the loop by moving backward from the blocks 
that generate the loop to the header (see Figure 3.14). All blocks in between are in the loop. It builds the 
node in the loop tree and fills in all of the attributes. Care must be taken to ensure the distinction between 
blocks and already computed loops. The loop header and predecessors are always blocks. Before 
inserting a node into the loop tree, the compiler must find the largest enclosing loop that has already been 
computed. This is done by LoopAncestor, shown in Figure 3.15. 

Figure 3.13  Computing Generators of a Loop 

LoopAncestor finds the outermost processed loop that contains the current loop or block by scanning up 
the LoopParent attribute until it finds a node that has a null entry. Since this attribute is updated to a non­
null entry by FIND_BODY as soon as an enclosing loop has been identified, this algorithm gives the 
outermost existing loop. 

Finally, the main procedure for computing loops can be described (see Figure 3.16). 
Calculate_Loop_Tree first performs a depth-first search to compute the postorder numbers for each node 
and the back edges. The implementation may perform this depth-first walk at the same time that the rest 
of the algorithm is being computed—just embed the calculations in a recursive depth-first search 
procedure after a node is visited. 

First Calculate_Loop_Tree initializes all of the attributes for blocks. These could be initialized when the 
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blocks were created; however, the step is described here for completeness. Then the procedure visits the 
blocks in postorder. If the generators set is non-empty, then the block is the head of a multiple-entry 
loop, so that loop is built. Then the procedure checks to see if the block is the head of a single-entry loop. 
Note that a block may be the head of both a multiple-entry loop and a single-entry loop. In that case, the 
compiler builds a nest of two loops: the multiple-entry loop is the innermost loop and the single-entry 
loop is the outer loop. The loop tree for our standing example is given in Figure 3.17. 

Figure 3.14  Computing the Body of a Loop 

Figure 3.15  Finding the Outermost Processed Loop 

Figure 3.16  Computing the Complete Loop Tree 

Figure 3.17  Loop Tree for Example Program 
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3.8 Implementing Sets of Integers

Throughout the compiler, sets of integers are needed. We have already seen one example: the set of nodes 
visited during a depth-first search. There are multiple ways to implement these sets, depending on the 
requirements for computing and using them. 

One form of set consists of nodes where the construction algorithm guarantees that we do not attempt to 
add the same node twice or that the set is small so the search time through the set is small. In this case, 
sets may be implemented as linked lists. Insertion consists of adding an element to the beginning or end 
of the list. Deletion consists of removing the element from the linked list, and searching consists of a scan 
of the list. This form of set is efficient for scanning all of the elements in the set, but is not efficient for 
insertions or deletions. 

Another approach is to use bit vectors to represent sets. Assign a unique integer value to each possible 
element in the universe of values, starting with 0. Then represent any set as an array of bits whose length 
is the maximum number assigned plus 1. This technique gives an efficient implementation of insertion 
(index to find the bit and set it), deletion (index to find the bit and clear it), union, intersection, and search 
(index to find the bit and check if it is 1). If the sets are not sparse this approach is highly efficient on 
space. However, it is not efficient for scanning through all the elements in a set. Unfortunately, scanning 
is a common activity in the compiler. 

An alternative technique was developed by Preston Briggs (1993), based on a hint in Aho, Hopcroft, and 
Ullman (1974). This technique is highly efficient in all of the operations; however, it takes an order of 
magnitude more space than bit vectors, so one does not want to use it if one needs to have a large number 
of sets. 

Consider our universe of integers, numbered from 0 to MAX. Allocate two arrays of MAX + 1 elements 
with initial INDEX[0:MAX] and VALUE[0:MAX] and a single integer variable, NEXTPLACTE. 

The idea behind the algorithm (Figure 3.18) is that the elements of the set are stored in VALUE, starting at 
the bottom and piling them up in adjacent slots. As an element X is added to VALUE, the index in VALUE 
where it is stored is placed in INDEX(X). Otherwise the values of INDEX are not initialized. Curiously, 
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the algorithm is dealing with uninitialized data. 

How does the algorithm know when a value is in the set? It checks the corresponding INDEX(X). That 
information may be uninitialized, so first it checks to see if the value is in range. If it is not, then the 
element is not in the set. If the value is in range it can still be uninitialized, so it checks the corresponding 
value in the VALUE array. If the value matches, then the algorithm knows that the element is in the set. 

To remove an element from the set is a bit trickier. The algorithm must run in a constant time so it cannot 
remove an element and move the others down. Instead it moves the last element in the set down into the 
position that is being vacated. At the same time it adjusts its INDEX value and decreases the counter 
NEXTPLACE. 

Figure 3.18  Efficient Set Algorithm 

The basic operations occur in O(1) time, and scanning the elements in the set is proportional to the actual 
elements in the set. It does take more space, though. Consider an implementation where the elements are 
represented by 16-bit numbers. Thus there are 32 bits for each element, indicating that this representation 
takes 32 times as much space as a bit-vector approach. Thus this representation works well when only a 
small number of sets (usually one or two) is necessary. 
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Chapter 4 
Flow Graph 

The front end of the compiler has completed its task. It has created an abstract syntax tree and symbol 
table for each of the procedures being compiled. Now the compiler builds a different representation—one 
used for improving the procedures (optimization), code generation, instruction scheduling, and register 
allocation. First, we must make two decisions concerning the structure of the compiler. 

4.1 How Are Procedures Stored?

Optimizing compilers use a range of different data structures to represent procedures being compiled. At 
one extreme the procedure may be represented as a tree; at the other, each procedure may be represented 
as a sequence of machine instructions for the target machine. 

Representing the procedure as a tree makes the original structure of the procedure clear. A procedure 
consists of declarations, statements, and expressions. Each of these contains components of the same 
form, so it is natural to represent the procedure as a tree. If a tree structure is used, an abstract syntax tree 
is the natural choice. The abstract syntax tree is the natural organization for tree-oriented optimization 
algorithms such as algebraic identities and Sethi-Ullman register numbering. 

Representing the procedure as machine instructions makes many optimization algorithms easier. They 
can each be individually optimized and positioned. The fastest instruction sequence does not naturally 
match the abstract syntax tree. The individual instructions must be easily manipulated—created, 
replicated, deleted, or moved—which is more easily done with a sequence of instructions rather than a 
tree. 

The compiler presented here gains the advantages of both trees and instruction sequences. A procedure is 
represented as a flow graph of sequences of instructions for an abstract RISC processor. This abstract 
machine has an inexhaustible supply of registers, called temporaries. There is a standard set of 
instructions for manipulating integers, long integers, floating point numbers, and double-precision 
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numbers. 

When tree-oriented algorithms are applicable, the procedure representation is translated into a form 
called static single assignment (SSA) form. When the compiler translates the flow graph into SSA form, 
the compiler reconstructs the expression trees, which can then be used in the tree-oriented algorithms. 
The compiler also computes the nested loops of the procedure, providing the tree structure of statements 
most needed in the compiler. 

The assembly language procedure is not represented as text. As noted in chapter 2, it is stored as a 
directed graph called the flow graph. The flow graph is a variant of the idea of flow charts originally used 
in programming. The flow graph has the following components: 

•  The instructions are much like machine instructions in an abstract RISC processor. Each 
instruction consists of an operation code (opcode) representing the operation being performed, a 
set of input operands that are used to perform the operation indicated by the opcode, and a set of 
output targets that name the values being changed. 
•  The individual instructions have operands that are constants or temporaries. The set of 
temporaries is an arbitrarily large set of objects, like the physical registers in a real processor. 
Each temporary holds a value for some portion of the execution of the procedure. Some set of 
instructions will evaluate an expression and place it in the target temporary. Instructions that use 
this value as an operand reference the temporary as an operand. 
•  The instructions form a program in the same manner that assembly code on a real processor 
forms a program. The execution starts with the first instruction. Instructions are executed in turn 
until a branching instruction is found. The instructions are broken into sequences called blocks. 
The only instruction that is the destination of a branching instruction is the first instruction in a 
block. The only branching instructions are the last instructions in the block. At the end of the 
block there is a branching instruction representing each possible path out of the block. 
•  The blocks form a flow graph having the blocks as nodes in the graph. The edges between the 
blocks represent the possible execution paths leaving the block. The edge (B1, B2) indicates that 
there is some way that the execution of the procedure can travel directly from B1 to B2. The flow 
graph will have two distinguished nodes: the start block Entry and the exit block Exit. 

Consider Figure 4.1 as a fragment of a procedure representing the computation of the statement A = B + 
C * (B+A). The computation is broken into individual computations. Before the value of a variable can 
be referenced, the address of the variable must be loaded and a load operation for the variable must be 
executed. All values are loaded into temporaries. For typographical purposes integer temporaries are 
represented by an integer prefixed with a letter T. Note that the addresses of A and B are used twice and 
loaded only once. The name A indicates the constant address of variable A. The value of B is used twice 
and loaded only once. These are examples of redundant expression elimination. The individual operation 
names (or opcodes) will be described later: iLDC stands for load integer constant, iSLD stands for load 
integer value from static memory, iADD is integer add, iMUL is integer multiply, and iSST is integer 
store into static memory. These names are taken from the Massive Scalar Compiler Project at Rice 
University. 
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For an example involving loops and branches consider Figure 4.2, which computes an integer power of 
2. The argument is the power, and it controls the number of times the loop is executed. The flow graph 
for this program (Figure 4.3) shows a number of characteristics of flow graphs. Each flow graph starts 
with a special pseudo-instruction called prolog and ends with the instruction epilog. These represent 
whatever computations need to be performed at the beginning and end of the procedure. Note that prolog 
takes as an argument the actual parameters of the procedure. In this case the single parameter is i, which 
is stored in temporary T1. 

Figure 4.1  Representation of A = B + C * (B+A)


Figure 4.2  Sample Program 

The program flow graph is divided into blocks labeled B0, B1, and B2. They each begin a block in the 
directed flow graph. The block consists of some number of computational instructions followed by 
branching instructions that end the block. The conditional branching instructions iBCOND are assumed 
to be two-way branches, so there is no implied flow of execution from one block to another. The first 
label is the address to branch to if the condition is true. The second label is branched to if the condition is 
false. 
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Figure 4.3  Program Flow Graph for Sample in Figure 4.2


Figure 4.4  Directed Flow Graph for Sample 

Similarly, branching instructions are included to represent control flow. The intermediate representation 
is represented as a directed graph, G = (N,E), where each node B ∈ N, called a block, represents a 
sequence of computational instructions followed by a branching statement (see Figure 4.4). The operands 
of the branching instructions include the blocks that are possible destinations of the branches. An edge 
(P,F) ∈ E occurs when there is a branching statement in P containing a possible destination, F. 

4.2 Should the Representation Be Lowered?

Initially the procedure is represented by an abstract syntax tree. It is then translated into the flow graph. 
As the compiler processes the flow graph, it is gradually modified until the flow graph represents an 
explicit set of target machine instructions. The gradual modification process is called lowering. Thus 
each phase of the compiler lowers the flow graph, gradually removing source language details and 
replacing them with target machine instruction details. 

Initially the flow graph represents a sequence of computations; however, the level of detail is the same 
level as the abstract syntax tree. Many computations, such as addition and multiplication, are simple to 
begin with, so there is no lowering of detail. More complex operations, such as array references and 
function calls, are represented at an abstract level. 

Consider a subscripted array reference, A[I,J], where A is an integer N x N array with the subscripts 
running between 1 and N. Such an array is implemented as a block of storage. The individual elements of 
the array are referenced using the subscript formula (for Fortran), 
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address(A[I,J]) = address(A) + sizeof(int)*(N*(J-1) + (I-1))


When the compiler is building the flow graph, it could translate an array reference into a collection of 
additions and multiplications as given by this formula; however, most information about the actual array 
reference would be lost. Compiler phases needing information about array references would get 
imprecise information. 

Instead, the compiler creates array load operations and store operations where the array name, subscripts, 
and bounds are listed as operands. After all uses of array information have occurred, the compiler 
translates these operations into the simpler arithmetic and memory references implied by the formula. In 
other words, the level of the flow graph is lowered by replacing higher-level operations by simpler 
instruction-level operations. 

Procedure and function calls are also gradually lowered. There are individual operators for function calls 
and procedure calls. Initially the arguments of each of these are the name of the subroutine (or an 
expression evaluating the name of the subroutine) and a list of actual arguments. The details of a 
procedure call for the target machine are ignored. The level of a function or procedure call is kept at the 
level of the original program. After interprocedural analysis and in-lining has occurred, the procedure 
calls are replaced by a set of instructions that compute the effect of calling and returning from the 
subroutine. 

Code generation, or translation into the instructions of the target machine, is a special case of lowering 
the level. The program flow graph mimics the structure of an assembly language program for an abstract 
RISC processor. There is a one-to-one correspondence between many of the instructions of the target 
machine and the operations allowed in the flow graph. If there are operations in the target machine that 
cannot be represented by a single instruction in the flow graph, then these operations are added to the set 
of operators. Before the final optimization phases, the flow graph is lowered to only use operators that 
have a single-instruction representation in the target machine. 

Some of the generic operations in the flow graph can be viewed as macros to be expanded. The load and 
store byte operations on early Alpha processors are an example of this. A multiple-instruction sequence 
is required to load a byte. If the exact sequence of instructions is generated initially, then some 
optimizations are lost. Similarly, multiplication by a constant needs to be expanded into a sequence of 
shifts and adds. Both of these are examples of gradual lowering since each should not be lowered 
initially, but needs to be done before the final optimization phases so that the individual instructions can 
be optimized. 
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Some operations on the target machine may represent several instructions in the flow graph. The easiest 
example is a load or store operation that takes two arguments, a register and a constant. The address is 
computed as the sum of the register and constant. This load operation performs two computations: the addition 
and the fetch. In the initial flow graph, these are represented as two distinct instructions. Before the final 
optimization phases, these two operations are folded together into a single instruction. 

The compiler assumes that all flow of control is explicitly represented in the flow graph. In other words, the 
flow of control is not gradually lowered. Some flow of control can be hidden within instructions that are not yet 
lowered, such as maximum and minimum operations. However, each instruction has a set of inputs and outputs, 
with flow entering the beginning of the instruction and (except for branching instructions) executing the next 
instruction at the end. 

4.3 Building the Flow Graph

This section describes the code in the compiler for translating the abstract syntax tree into the flow graph. First 
we will consider two situations, an expression and a loop; then we will describe the structure of the code in the 
compiler. 

Consider the statement we discussed earlier: A = B + C * (B+A). The corresponding abstract syntax tree is given 
in Figure 4.5. The tree is represented (as before) by the root being the leftmost entry and each child being 
indented beneath its parent. The tree will be annotated with type information, which is not noted. The 
transcriptions such as symbol(“A”) are used to indicate a symbol node with a pointer to the symbol table for the 
variable A. 

Figure 4.5  Abstract Syntax Tree for A = B + C * (B+A) 

Recall that the semantics of a language can be divided into two distinct sets of rules: static and dynamic 
semantics. Static semantics are the set of rules that describe the structural rules of the language (beyond the 
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lexical and parsing structure). For example, a static semantic rule is that a symbol must be declared before it is 
used. The dynamic semantics are the set of rules that describe the effect of each part of the language. It is part 
of the dynamic semantics to state that the operands of an addition must be evaluated before the addition is 
performed (and possibly to specify the order of evaluation of the operands), or that the meaning of an 
assignment statement is to evaluate the address of the left-hand side, evaluate the value of the right-hand side, 
and store the value from the right side into the address specified by the left side. These rules are all part of the 
language standard or language specification.1 

1Many compiler writers, including myself, have made a good living from the fact that many people are not aware 
of dynamic semantics. Many programmers think that a language is defined if a grammar has been written. The 
grammar is only a small part of the total effort. The real effort comes in describing the static and dynamic 
semantics and the interactions between distinct dynamic semantic rules. 

The language definitions describe the dynamic semantics in terms of the language construct and its operands. 
To build an assignment statement, the compiler must be able to build the operands. This tree-structured 
approach is true of each construct. This fact suggests that the flow graph can be built during a bottom-up walk 
of the abstract syntax tree in which the children are walked in an order described by the dynamic semantics of 
the language construct. For some tree nodes, such as loops, a bottom-up tree walk is inadequate: Instructions 
may be generated before, during, and after the generation of the children. 

The tree walk is a little more complex than a simple bottom-up tree walk because different operations may be 
needed depending on the context in which the tree occurs. There are several contexts that occur, but more may 
be needed depending on the complexity of the language: 

Value Context: When the operand is an expression, the compiler will want to walk the expression and 
create a temporary that contains the corresponding value. As a side effect, it inserts instructions in the 
flow graph. This walk is implemented by calling the procedure 

temporary value_walk(ast * node)


NoValue Context: When the subtree is a statement or an expression used as a statement, the compiler 
walks the subtree creating instructions to represent the effect of the subtree, but no temporary is created 
to hold any final value. There is an opportunity for optimization here—the only instructions that the 
compiler needs to generate are those representing side effects of the subtree, so some instructions need 
not be generated. This walk is implemented by calling the procedure 

void novalue_walk(ast * node)


Flow Value Context: If the subtree represents an expression used to determine branching operations, 
then more efficient instructions can be generated if the compiler walks the subtree generating the testing 
and branching instructions together. The procedure implementing the flow context walk requires an 
added two parameters: the blocks to be branched to if the conditional expression is true and if it is false: 
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void flow_walk(ast * node, block * true_block, block * false_block)


Size Context: If the size of the data represented by the subtree is needed, the subtree must be walked to 
generate a temporary holding the value of the size of the data. The calling sequence for this procedure is 
identical to the value context routine. It just computes a different value—the size: 

temporary size_context(ast * node)


Before discussing the structure of each of these tree-walking procedures (they are all similar), we must discuss 
the structure of the support routines used to build the flow graph. These procedures are structured so that the 
tree walks will read much like dynamic semantic rules. 
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4.3.1 Support Procedures for Initially Building the Flow Graph

There are two different sets of support procedures to manipulate the flow graph. The general set of 
procedures allows the insertion of any instruction in any block, and allows the insertion of one block 
between two other blocks on edges. Effectively, this is a completely general set of procedures for 
manipulating the flow graph. These procedures (to be described later) are used to build the following set 
of procedures for creating the flow graph initially. 

The set of procedures for initially building the flow graph work much as an assembly language 
programmer works. One instruction is added to the flow graph at a time. A block starts after a conditional 
branch instruction or at an instruction that is branched to. Until a new block, is started all instructions 
created are added to the end of the current block. When the current block is completed, a new block is 
started. 

The support procedures do differentiate between creating a block and starting a block. A block may be 
created at any time. When it is created, the block can be involved in conditional branching instructions, 
that is, it can be branched to. However, the block has yet to have instructions inserted in it. Later the 
compiler can start the block. This makes the block the current block and all instructions are added to it 
until the next block is started. 

Why this distinction? The compiler must be able to create a conditional branch instruction to a block that 
is not yet in the flow graph. Consider an if statement. When building the conditional branch instruction, 
neither the then part or the else part has been processed yet. So the compiler creates the blocks for the 
start of the then part and else part before creating the conditional branch instruction. Later it starts 
putting instructions into the then part when that part is processed. This can lead to blocks that remain 
empty. A separate phase of the compiler will eliminate these empty blocks. 

Here are the support procedures for building the initial flow graph: 

initialize_graph: This procedure creates an empty data structure for the flow graph and 
associated tables. It builds two blocks, Entry and Exit, that are the start and exit blocks for the 
flow graph. It then makes the Entry block the current block so the initial instructions will be in 
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that block. 
create_block: This function creates and initializes a new block to be an empty block. It returns 
the block as the return value. 
start_block: This procedure takes a block as argument and makes it the current block. All future 
instructions will be added to the end of this block. 
xxx_instruct: For each class of instructions in the flow graph a separate support procedure is 
present to create an instruction of that form. The arguments to the instruction are the operation 
code, the input constants or temporaries, and the output temporaries. For the load and store 
instructions, further data will be passed indicating what storage locations these instructions might 
modify. 
cond_instruct: The conditional branching instructions have support procedures that terminate the 
current block and insert edges from the current block to each of the destinations of the conditional 
branching instruction, thus keeping the edges of the flow graph up-to-date. The arguments for this 
support procedure are the opcode, the temporary for the value being tested, the destination when 
the condition is true, and the destination when the condition is false. 
uncond_instruct: The unconditional branch instruction has only one argument: the block to be 
branched to. It terminates the current block and inserts the edge between the current block and the 
destination of the branch. 
new_temporary: This procedure takes an enumeration class as an argument indicating which 
register class is being referenced. It then initializes the data structures for a temporary and returns 
it as its value. 

There are also support procedures for dealing with temporaries. We assume an infinite supply of 
temporaries, so we create a new one at any point that a temporary is needed. However, we need some 
conventions concerning the use of temporaries to ease the work of later optimization phases. Later, 
during the Limit phase, some of these conventions will be relaxed. 

Basic Convention: Each time a formal expression, such as B + A is computed, it is computed in the same 
temporary. Why? The algorithms for code motion and eliminating redundant expressions need to know 
where a value is stored. If one instance of B + A is known to be redundant, the compiler wants to delete 
that computation. To do so, it must search the rest of the flow graph looking for all points where B + A is 
computed and copying the result into a temporary to be used in place of the redundant expression. 
Instead, the compiler always computes B + A in the same temporary so that a redundant computation 
need only be deleted. 

The compiler ensures that the convention is met by building a data structure called the formal temporary 
table,2 consisting of records of the operation code and inputs for each instruction together with the 
temporary for the result. There is a unique entry in the formal temporary table even if the instruction 
occurs multiple times in the flow graph. 

2This is a simplification of an idea first suggested by Chow (1983) in his thesis and later used by 
COMPASS in the COMPASS Compilier Engine. The COMPASS approach attempted to use this table for 
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too many purposes. 

Since operands are computed before an expression, temporaries used in expressions are computed before 
they are used. When an instruction is about to be generated, its operation code and inputs are used as 
keys in a table lookup on the formal temporary table. If the instruction has already been inserted, the 
same temporary is used for the target. If this is a new instruction, a new record is inserted in the table 
together with a new temporary. 
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4.3.2 Handling Local Variables as Temporaries

Variables with a scope local to a procedure can be handled as temporaries if their addresses are not used. 
In that case a temporary is used to hold the value of the local variable. The temporary is also used to 
represent the tree, representing a fetch of the local variable in the abstract syntax tree. If the compiler 
cannot keep the variable in a register, it will later store it in memory. 

This optimization has two advantages. Better code will result if the compiler is optimistic about what it 
keeps in registers. The elimination of loads and stores is harder than inserting them when they are 
needed. Secondly, this decreases the size of the flow graph, making all optimizations run faster. 

This leads to one of the few situations where the convention is that identical instructions with identical 
inputs are the only instructions using the same target register. Consider two distinct assignments to i, i = i 
+ 1 and i = i * 3. Assume that the temporary corresponding to the local variable i is T1. The act of 
assigning both of these values to i means that there are two distinct register-to-register copy operations 
that have target T1. 

In fact, the temporaries are divided into two distinct classes: the variable temporaries and the expression 
temporaries. The expression temporaries satisfy the criteria stated above. All instructions that have one 
of these as the target register have exactly the same form. The variable temporaries are all others. 
Different optimizations are used on the two classes of instructions. 

4.3.3 Structure of the Tree-Walking Routines

Now we have the infrastructure to describe the tree walks used to implement the flow graph. We will 
discuss implementing five features: expressions, conditional expressions, branching expressions, 
structured statements, and goto statements. 

The structure of the tree-walking procedures can be seen by considering the tree-walking procedure for 
expressions or nodes that return a value (Figure 4.6). All the other procedures are similar. The structure 
of the procedure is a case statement in which there is one entry for each abstract syntax tree node that can 
be represented in an expression (for the other tree-walking procedures, different nodes may be present 
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and absent from the alternatives). There is an invariant assertion about each procedure that when a 
subtree has been walked, all instructions associated with the subtree have been inserted in the flow graph. 

Consider the alternative associated with the plus node in the abstract syntax tree. It first walks its children 
in the order specified by the dynamic semantics of the language, in this case left to right. It then adds 
instructions to the flow graph to perform the appropriate operations to simulate the dynamic semantics. 
In this case, it checks the type of expression and generates either an integer, floating point, or double­
precision addition operation. 

Figure 4.6  Structure of Expression Tree Walk 

The procedure Binary_Instruct is called to generate any binary instructions. It takes an instruction 
operator and two temporaries as operands, generating and returning the temporary of the result. This 
procedure uses the formal temporary table to ensure that the same temporary is always the result when 
the operator and operands are the same. It also inserts the instruction as the latest instruction in the 
current block. 

Now consider the entry for constants. Here there is no further tree to walk, so the tree-walking procedure 
gets the data associated with the node (the constant value in this case) and generates an instruction that 
has a single constant operand. Again it makes sure that the same temporary is used for all instances of the 
same constant and that the instruction is inserted at the end of the current block. 

If a node of the abstract syntax tree cannot return a value, it has no alternative in the case statement. If 
such a node occurs where an expression is expected, the compiler will give a system error message. This 
check is valuable because it checks the abstract syntax tree for legal structure at no overhead for correct 
trees. 

Processing Structured Statements 

The NoValue_Walk procedure is used for statements. For statements like procedure calls, the processing 
is similar to the processing of expressions. Branching and structured statements are different because 
they can change the block in which the current instructions are being inserted. 

Consider the case statement alternative for a while loop. Consider the flow graph that the compiler needs 
to generate (Figure 4.7). This will describe the code in the alternative. The compiler will generate two 
copies of the loop test. The first copy occurs in the current block to decide if the loop needs to be 
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executed at all. If the loop needs to be executed, then the code for the body of the loop occurs. Another 
copy of the loop test occurs at the end of the body to decide whether the loop needs to be executed again. 
This is a more complex representation of the loop than appears in most textbooks. It is chosen to improve 
the chances for moving code out of the loop. 

Thus the compiler is going to start at least two blocks during the processing of a while loop. The first 
block is the block for the body; the second block is the block following the while loop. We need the 
second block because the compiler must be able to branch to the block following the loop. 

Figure 4.7  Flow Graph for while Loop 

Recall that a break statement can occur inside a while statement. To handle such a statement, the 
translator maintains a stack containing the blocks that follow a looping statement. If a break statement 
occurs, then it is implemented as a branch to the block at the top of this stack. With this information, we 
can describe the code in NoValue_Walk corresponding to a while loop and break statement (see Figure 
4.8). 
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Conditional Branching Expressions 

The short-circuit operators—logical AND, logical OR, and logical NOT—use special processing. A 
logical AND is false if its first argument is false; otherwise, it has the same value as the second 
argument. A logical OR is true if its first argument is true; otherwise, it has the same value as its second 
argument. The flow_walk procedure implements these operations, together with conditional branching 
due to comparisons. 

The structure is similar to the other walks, as shown in Figure 4.9. It directly implements the above 
description of the short-circuit operators. The beauty of this approach is that d’Morgan’s laws for logical 
operations are automatically generated. 

The comparison operations call the Value_Walk procedure to evaluate the binary operation, called a 
comparison. The result is a Boolean value, which is then tested with the conditional branch instruction. 

The opposite situation occurs in Value_Walk, which calls flow_walk to implement the short-circuit 
logical AND and logical OR operations. It compiles them as if they were the conditional expression. In C 
this would mean that A&&B is compiled as if it were the conditional expression (A&&B?1:0). 

Figure 4.8  Fragment of Walking Statements 

Conditional Expressions 

Special note is made of conditional expressions because they are one of the few instances where an 
expression computing a value can have operands or parts of operands in separate blocks. This is one of 
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the reasons that a flow graph approach to the program representation was chosen rather than a tree 
structure. The concept of a temporary does not depend on being in the same block, so an operand can be 
computed in one block and used in another. 

Consider a conditional expression, (E0 ? Et : Ef). The conditional expression E0 is computed in the 
current block. There are distinct blocks to compute the other operands. Where is the result value placed? 
The compiler needs to generate a temporary to hold that value. That temporary must be handled as a 
compiler-generated variable temporary. It cannot satisfy the requirement placed on expression 
temporaries: The instructions for which it is the target register are not all identical. 

Figure 4.9  Structure of flow_walk 

What about the expression that has a conditional expression as an operand? No problem. The operands 
may be computed in separate blocks, but that is not a problem for the compiler. The fragment in Figure 
4.10, to be added to Value_Walk, will handle conditional expressions. 

Figure 4.10  Implementing Conditional Expressions 

goto Statements 

goto statements can be a problem with some translation techniques. Here we have developed enough 
structure that they are quite easy. There are two parts to the processing: the goto statement itself and the 
label position. The following operations need to be performed: 

•  A label is a symbol in the language. There needs to be a symbol table entry for the label, with a 
field to hold the block that starts at that label. 
•  A goto statement is translated into an unconditional branch to the block associated with the 
label. If there is as yet no block associated with the label, use create_block to produce one. 
•  At the point at which the label occurs, insert an unconditional branch to the label in the current 
block. Effectively end the previous block. Then perform start_block on the block associated with 
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the label. If there is no block associated with the label, crate one using create_block. 

This processing translates the goto statement into an unconditional branch. 

4.4 Structure of Data

Many languages have the ability to initialize data at program initiation. This information is identified by 
the compiler front end. This section describes how this information is stored so that it can be 
communicated to the object module. 

The compiler must keep a map of data to be included in the object module. This includes COMMON 
blocks, external variables, and compiler-generated information. The data structure to represent this data 
is relatively simple—there is only one serious problem. 

The compiler adds to the symbol table an extra attribute storing the value to be saved. This data is 
typically a linked list of values. 

The one problem is data that can be repeated a large number of times. This can occur in COMMON 
blocks or the initialization of arrays in C. A special repeat node must be added to linked lists of data. It 
has two components: a repeat count and a list of the data to be repeated. 

If the data is not constant, then the data is initialized by creating assignment statements in the flow graph. 

4.5 Structure of Blocks

Each block is a list of instructions. Since the compiler is frequently inserting and deleting instructions, 
the lists are implemented as doubly linked lists. The lists represent the order of execution of instructions 
in the block. Thus a block is the assembly language equivalent of a label followed by a sequence of 
instructions up to the next branch instruction or label. 

In this compiler, a block always starts at a point that is branched to and is completed by a sequence of 
branching instructions. There are no computational instructions between the instructions at the end of the 
block. This allows the compiler to reorder and combine blocks. 

Later, during instruction scheduling, the blocks will be transformed into a list of small sets of 
instructions, called packets. On multiple-instruction-issue machines, the processor will issue a set of 
instructions on each cycle. These packets represent the compiler’s knowledge of the set of instructions to 
be issued. 

Besides the instructions, each block holds the attributes that describe the edges in the flow graph. Hence 
each block B holds two attributes: SUCC(B) and PRED(B). SUCC(B) is the set of blocks that can follow 
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B during the execution of the flow graph. PRED(B) is the set of blocks that can precede B during the 
execution of the program. 

Previous Table of Contents Next 

Copyright © Digital Press 

file:///D|/Convert/Building_an_Optimizing_Compiler/ch04/108-112.html (4 of 4) [10/17/2003 1:05:13 AM] 

file:///reference/digitalp00001.html


Building an Optimizing Compiler:Flow Graph 

Building an Optimizing Compiler 
by Bob Morgan 
Digital Press 
ISBN: 155558179x  Pub Date: 12/01/97 

Previous Table of Contents Next 

4.6 Structure of Instructions

Each instruction, I, consists of the following components: 

•  An operator, represented as an element of an enumeration class, operation_type. There is one 
name for each operation, whether it is a high-level operation that exists initially in the set of 
instructions or a low-level operation created later during processing. 
•  A set of temporaries that are queried during the evaluation of the instruction. The values of 
these temporaries are used to compute a value or effect for this instruction. The pseudo-code will 
refer to this set of operands as Operands(I). 
•  A set of temporaries that are certain to be modified by the instruction. Usually there is only one 
such instruction. However, more registers may be modified by instructions that do not have a 
simple effect. Thus a procedure or function call may have a larger set of registers that is modified. 
The pseudo-code will refer to this set of registers as Target(I). 

4.7 Structure of Program Flow Graph

Since the graph structure is actually implemented by the successor, SUCC, and predecessor, PRED, 
attributes of the blocks, little information is left to be stored in the flow graph. There are the two 
distinguished blocks: Entry and Exit. Entry is the single block in the flow graph with no predecessors and 
represents the point where execution starts. Exit the single block with no successors and represents the 
block where execution ends. 

From an implementation point of view, all information about the compilation of this one procedure is 
grouped together in one data structure as attributes of the flow graph. This is needed for interprocedural 
analysis. The compiler must be able to store and retrieve all information about a procedure. This eases 
the problem of compilation during the interprocedural analysis phases. 

4.7.1 Critical Edges

Many of the transformations performed by the compiler need to place computations on an edge. Since 
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computations are only in blocks, the compiler must find an equivalent block for the inserted 
computations. If the tail of the edge has only one successor, the computations can be inserted at the end 
of the tail since the only way out of the tail is along that edge. If the target block of the edge has only one 
predecessor the computations can be inserted at the beginning of the target since the only way to the 
target is along that edge. 

Figure 4.11  Dividing a Critical Edge 

The only problems occur when the tail block of the edge has multiple successors and the target block has 
multiple predecessors, as shown in Figure 4.11. Such an edge is called a critical edge. A critical edge can 
be removed by creating an empty block and replacing the original edge by two edges: one edge with the 
original source and the new block as target, and another with the new block as source and the original 
target as target. The two new edges are not critical edges because one of them has a target with only one 
predecessor and the other one has a source with a single successor. 

4.7.2 Classification of Edges in the Flow Graph

The edges in the flow graph can be divided into three categories. Edges that occur because of conditional 
branches to explicit blocks are called normal edges. These are the most frequently occurring edges and 
the easiest to manipulate. If one needs to change the destination of the branch, it is a straightforward task 
to modify the instruction and flow graph at the same time. If the compiler can determine that the branch 
will never be taken or is always taken, then the compiler can change both the set of instructions in the 
block and the flow graph structure. 

For other edges in the program flow graph, the compiler cannot determine the destination of the branch 
by inspecting the instruction that causes the branch. These edges are called abnormal edges. This occurs 
with the setjmp/longjmp operations in C, some implementations of Fortran input/output (I/O), exception 
handling, subroutine calls with nonlocal branching, and the C switch statement in some compilers. In all 
of these cases a transfer of control may occur and there is no clear way in the set of instructions in the 
block to determine where the transfer of control leads. The compiler has built a conservative set of 
successor blocks to ensure that all possible control transfers are accounted for, but the compiler cannot 
determine exactly where the branch will lead or, in some cases, whether the branch will occur at all. 

Abnormal edges are a difficult problem for an optimizing compiler. Most optimizations need to place 
computations on an edge, which means that critical edges must be removed. This is not possible for 
abnormal edges because there is no way of modifying the contents of the blocks to reflect the existence 
of a new block. Furthermore, most abnormal edges are critical edges. The compiler must implement all 
transformations to avoid problems on abnormal edges.3 
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3The COMPASS compiler team referred to this problem as the Mangy Dog Problem. It first was observed 
during the implementation of the register allocator. 

Another category of edges is impossible edges. Many program transformations assume that every block 
is on some path from the Entry to the Exit blocks of the procedure being compiled. This will not happen 
if the block is a member of a loop that has no exits. The compiler must add an edge from some block in 
such a loop to the Exit block. These edges are less of a problem than abnormal edges, because they can 
never be executed. If a transformation needs to insert a computation on such an edge, simply ignore the 
insertion because the code will never be executed. 
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4.8 Classifying Temporaries

Consider an expression (X+Y) * Z consisting of two operands, (X+Y) and Z. The compiler will initially 
create a sequence of instructions that first evaluates X + Y, then Z, and finally (X+Y) * Z. When the 
compiler moves (X+Y) * Z to an earlier point in the flow graph, it must first move (X+Y) and Z. Each of 
the optimization algorithms uses information about the operands to choose the point to place (X+Y) * Z. 
If the compiler moves the computation of the operands, the information concerning the whole expression 
is out-of-date. The information must be computed again. 

To avoid computing this information again, the compiler enforces a convention on the flow graph that 
guarantees that the optimization information will still be accurate. Each expression can be viewed as an 
expression tree. The leaves are the memory loads or uses of temporaries that represent local variables and 
special compiler temporaries. The interior nodes are the operators that make up the subexpressions 
representing the operands. The compiler views the expression as a pure function (without side effects) of 
the temporaries and memory locations that occur at the leaves of this expression, and not as a function of 
its immediate operands. Thus, (X+Y) * Z is viewed as a function of X, Y, and Z. It is not viewed as a 
function of (X+Y). Thus the evaluation of (X+Y) does not inhibit the movement of the complete 
expression. The compiler depends on two characteristics of the compiler algorithms used here: 

1.  For any path from Entry to the evaluation of an expression and each operand, there is an 
evaluation of the operand before the evaluation of the expression, and there are no instructions 
between the two evaluations that might modify the value of the operand. In other words, there is 
an evaluation of (X+Y) on each path from the entry to the evaluation of (X+Y) * Z, and there is no 
instruction that might modify either X or Y between the two. 
2.  The compiler establishes a convention that each occurrence of an expression evaluates its 
value in the same temporary. In our example, suppose X is evaluated in T1, Y is evaluated in T2, Z 
is evaluated in T3, (X+Y) is evaluated in T4, and (X+Y) * Z is evaluated in T5. Therefore the 
instruction representing (X+Y) always represents T4 = T1 + T2, and the complete expression is 
always represented by T5 = T4 * T3. 

Not all temporaries can be put into this form. A temporary representing a local variable can have 
different quantities evaluated into it. As we will see shortly, the temporary variables that are the 
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destinations of load operations will also be used as the destination of a copy operation before a store into 
the same location. For this reason temporaries are divided into two classes: those that satisfy the two 
above conditions (expression temporaries) and those that do not satisfy one or more of the conditions 
(variable temporaries). 

To improve optimization, it is helpful to make the set of expression temporaries as large as possible. This 
may require extra copy operations in the flow graph, which will be removed later during register 
allocation. Consider the increment operation I = I + 1 of a variable temporary I. This can be implemented 
as a single integer add operation in the flow graph, iADD I,#1=> I. Representing the flow graph in this 
way violates the second condition on expression temporaries, and the expression I + 1 cannot be 
optimized. Instead, the flow graph represents this computation as two instructions, iADD I,#1=>T1 and 
i2i T1=>I. With this representation the expression I + 1 can be optimized. 

For an expression temporary, the only way to change its value is to modify one of the variable 
temporaries occurring at the leaves of the corresponding expression tree. So optimizers do not consider 
an evaluation of one of the operands as changing the whole expression. Instead, the optimizer assumes 
that the modification of one of the leaves modifies all expression temporaries that include that temporary 
as one of the leaves of its expression tree. Thus the evaluation of a direct operand is not considered an 
instruction that modifies the whole expression, and the two expressions can be optimized separately. 

Independent optimization of expressions and operands assumes that the operands will be moved at least 
as far back in the flow graph as the whole expression. This is true in the optimization techniques 
described in this book; however, it is not true of all optimization techniques. Early versions of partial 
redundancy elimination (Morel and Renvoise 1979) had this problem. It was later solved by (Drechsler 
and Stodel 1988) and most later authors. 
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4.9 Local Optimization Information

For efficiency of compilation, the flow graph is divided into blocks such that each block is a sequentially 
executed sequence of instructions where if the first one is executed, then all of them are executed. For the 
same efficiency reasons, the optimization computations are divided the same way. The optimization 
information for blocks is called local information, and the optimization for paths through the flow graph 
is called global information. 

The difference in information for expression temporaries and variable temporaries concerns the 
instructions that might modify each temporary. An instruction kills an expression temporary if it assigns 
a new value to one of the temporaries that occurs at the leaves of the corresponding expression tree. An 
instruction kills a variable temporary if it modifies the temporary directly. Given the idea of a temporary 
being killed by an instruction, we can now define the three forms of local optimization information. 

Definition Local Information: Given a block B and a temporary T then 

T is locally anticipated in B if there is an instruction in B that evaluates T and 
there is no instruction preceding that instruction in B that might kill T. 

T is locally available in B if there is an instruction in B that evaluates T and there 
is no instruction following that instruction in B that might kill T. 

T is transparent in B if there is no instruction in B that might kill T. If T is not 
transparent it is killed in B. 

Each definition refers to the concept that one instruction might kill a temporary. For the direct 
computational instructions, it is easy to determine if one instruction might kill a temporary—that 
instruction can only modify the output temporaries. Other instructions, such as procedure calls, are more 
complex. The inner workings of the procedure may not be available and even if available may not 
indicate which temporaries are modified. In that case the compiler must make a conservative estimate. If 
the compiler cannot deduce that a temporary is not killed, then it must assume that it is killed. 
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The language definition may help the compiler make less conservative decisions about the temporaries 
killed by an instruction. In Fortran, the language standard indicates that a legal program cannot modify 
the same location using two different names. Thus the compiler can assume that a modification of a 
formal parameter (dummy argument) does not modify any global variable, local variable, or other formal 
parameter. In ANSI C, a pointer (when not a pointer to characters) cannot modify a storage location of a 
different type. 

In Figure 4.12 the temporaries I and J are variable temporaries, whereas the temporaries T1, T2, and T3 
are expression temporaries. The expression I * J, or T1, is locally anticipated because it occurs in the 
block and no preceding instructions can modify I or J. Similarly I + 1, or T2, is locally anticipated. 
However, I * 5, or T3, is not locally anticipated since I is modified before the instruction. Similarly, T1 
and T2 are not locally available, whereas T3 is. 

Figure 4.12  Sample Block 

As shown in Figure 4.13, the compiler computes the local information for each block by simulating the 
execution of the block. Not knowing the value of temporaries and variables, it only keeps track of the 
temporaries that are evaluated and killed. A temporary is locally anticipated if the first instruction that 
evaluates the temporary precedes any instructions that kill the temporary. The compiler maintains a set of 
all temporaries that have been killed by earlier instructions in the block, making the check for local 
anticipatability straightforward. 

The check for local availability is more difficult because the algorithm does not know which temporaries 
are killed later in the block while it is simulating the execution. A temporary is locally available if it is 
evaluated in the block and the temporary is not killed by a later instruction. The algorithm computes this 
by assuming that a temporary is locally available whenever it is evaluated in the block. When a 
temporary is killed, it is added to the set of killed variables and is removed from the set of locally 
available temporaries. 

Figure 4.13  Computing Local Information 
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To determine which temporaries might have been modified, the compiler needs a set for each temporary 
called modifies. The set modifies(T) contains the set of temporaries and memory locations that are killed 
by an instruction that has T as a target. For expression temporaries this set is empty. For variable 
temporaries, it includes the set of all temporaries that have this temporary as a leaf of the corresponding 
expression tree. The calculation of this set is described in the chapter on alias analysis (Chapter 6). 
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Apply the algorithm to the block in Figure 4.12 (see Figure 4.13). While simulating the first instruction 
T1 is added to both available and anticipated. Since T1 is an expression temporary, it does not kill any 
other temporaries. Similarly, the second instruction adds T2 to both sets and no temporaries are killed. 
The copy into I kills T1, T2, and any other temporaries that use I as an operand. They are both still 
anticipated; however, they are removed from available because a killing instruction follows their 
evaluation. However, T3 is added to available and is not later removed. I is both killed in the block and 
available at the end of the block. 

This algorithm may be the most expensive part of the optimizer. The algorithm is simple, but each 
instruction must be simulated. Other algorithms will consider only the blocks and not the instructions. 
The data structures need to be tuned for speed and space. Here are the data structure choices that I have 
found most effective: 

•  The collection of sets, modifies(T), is large and not dense. For expression temporaries the set is 
empty. Each of these sets should therefore be stored as a small array of temporaries. 
•  The sets available and anticipated occur only once; hence their size is not much of a factor. 
However, elements are repeatedly being added and union and differences are being taken. The 
compiler uses the Briggs set implementation technique to store these sets. 
•  The sets associated with each block, local_anticipated and local_available, should have an 
efficient storage. The storage depends on how the global information is computed. 
•  The set killed(B) needs to be efficient. For each of the possible global optimization algorithms, 
killed(B) is best stored as a bit vector. 

4.10 Global Anticipated Information

Global information is used to move computations in the flow graph. In reality computations are not 
moved. Instead, a copy of the computation is inserted at some point in the flow graph. It will then make 
some other copies of the same computation unnecessary. Insertion and deletion is more effective than 
moving code because more computations may be able to be deleted than just the copy involved in the 
move. 

To insert a copy of a computation in the flow graph, the compiler must guarantee that every path leaving 
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the point of insertion leads to another point where the computation already occurs. Otherwise, the 
compiler will be changing the flow graph to execute more instructions, or, much worse, it may introduce 
an exceptional condition (such as floating overflow) into the flow graph that would not have occurred 
otherwise. This leads to the definition of anticipation. 

Definition	 Anticipation: A temporary T is anticipated at a point p in the flow graph if and 
only if every path from p to Exit contains an instruction that evaluates T and is not 
preceded on that path by an instruction that might kill T. 

The example in Figure 4.14 shows that the temporary T is anticipated at the point p in the flow graph. 
Each path leaving p goes through an occurrence of the computation computing T before reaching a point 
where the value of T is killed. 

Figure 4.14  Demonstrating Anticipation 

Unfortunately, the definition does not give a direct algorithm for computing anticipation. There are two 
algorithms in current use. Both will be presented here. The first one is given in most compiler textbooks. 
The second one is the one recommended for this compiler. However, the time/ space trade-offs are such 
that a switch to the first algorithm may be necessary to improve performance. In other words, the author 
may be wrong. 

To describe anticipation in terms of formulas, consider the Boolean variables ANTIN(B) and 
ANTOUT(B). ANTIN(B) is true if and only if the temporary T is anticipated at the beginning of block B. 
Correspondingly, ANTOUT(B) is true if and only if the temporary T is anticipated at the end of block B. 
What does it mean for ANTOUT(B) to be true? Each path leaving B has a definition of T not preceded by 
a modification of T. If one looks at the next block on the path, this means that ANTIN(S) is true for each 
successor of B. Conversely, if ANTIN(S) is true for each successor then consider any path leaving B. The 
next block in the path is one of the successors, S, and there are no computations between the end of B and 
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S, so each path leaving B has a computation of T before any modification of T. 
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Now consider a path leaving the beginning of B. This path must travel through B to reach the end of B. 
Three different events can happen as the path traverses B: 

1.  There is no instruction in B that either defines T or kills T. In that case nothing happens to T in 
the block, so the path satisfies the anticipation definition if and only if it satisfies the same 
definition at the end of the block; in other words, ANTIN(B) = ANTOUT(B). 
2.  There is an instruction in B that defines T before any instruction that kills T, that is, T ∈ 
local_anticipation(B). Since any path starting at the beginning of the block must go through the 
block, this means that ANTIN(B) = true. 
3.  There is an instruction B that kills T before there is any instruction that defines T. (Whether 
there is an instruction in B that defines T is irrelevant.) Again the block itself is the start of each 
path, so ANTIN(B) = false. 

All of these conditions can be summarized in the set of equations in Figure 4.15. The equations are a 
direct transcription of the analysis in the form of equations. Unfortunately, there is not a unique solution 
to the equations. 

Consider the flow graph fragment in Figure 4.16. From the definition, one has ANTOUT(B1) = true. But 
consider the equations. If one inserts the known value for B3 and eliminates the redundant equation, one 
gets two solutions to the equations (see Table 4.1). Which solution represents the collection of points 
where anticipation is true? 

Figure 4.15  Anticipatability Equations 
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Figure 4.16  Graph for Multiple Solutions 

Observation 1: Given a solution of the anticipation equations. If ANTIN(B) is true then 
the expression is anticipated at the beginning of B. Similarly, if 
ANTOUT(B) is true then the expression is anticipated at the end of B. 

Proof We need to verify that the definition is satisfied. Consider any path 
starting at the start (or end) of B and ending at the exit block. By 
assumption ANTIN(B) is true. Scan through the blocks in the path, 
stopping first at the beginning of the block and then the end of the block. 
If a block is reached when ANTLOC is true, stop, because the definition is 
satisfied. By the equations, if ANTOUT of a block is true then so is 
ANTIN of the next block, so the value can only change from true to false 
as we scan through a block. Stop at the first block W where either Kill(W\) 
is true or ANTOUT(W) is false. Consider the following two cases: 

•  Consider the case where Kill(W) is true. Since ANTIN(W) is true, then the expression must be in 
ANTLOC(W) to get the true value for ANTIN(W). Thus an evaluation occurs at the beginning of 
W, verifying the definition. 
•  Consider the case where ANTOUT(W) is false. Since ANTIN(W) is true, the expression must be 
in ANTLOC(W) to get the true value for ATIN(W), again, verifying the definition. 

In either case we have a path beginning with a sequence of blocks in which there are no modifications to 
the operands of the expressions and ending with a block that contains the expression before instructions 
that modify the operands. The definition is satisfied. 

Observation 2: Assume that ANTIN(B), ANTOUT(B) is the maximum solution to the 
anticipation equations. If ANTIN(B) is false then T is not anticipated at 
the beginning of B. 

Proof The proof is given in Appendix A. 

Table 4.1Two Different Solutions 
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Unknown Solution 1 Solution 2 


ANTOUT(B1) false true 

ANTIN(B2) false true 

ANTOUT(B2) false true 

ANTIN(B3) true true 
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4.11 Global Partial Redundancy Information

To compute the anticipated information and to avoid useless optimization computations later, we need 
another piece of information related to anticipation. T is anticipated at p if every path leaving p leads to 
an evaluation of T before an instruction that kills. T. What if we are only interested in whether there is at 
least one path rather than all paths? 

Definition	 Partial Anticipation: A temporary T is partially anticipated at a point p in the 
flow graph if and only if there is at least one path from p to Exit that contains an 
instruction that evaluates T which is not preceded by an instruction that might kill 
T. 

Partial anticipation means there is some way to get from the point to an evaluation while avoiding 
instructions that kill T. Rather than repeat all of the arguments that gave us the characteristics for 
anticipation, we will note the differences. As with anticipation, we introduce two Boolean attributes for 
each block. PANTIN(B) being true means that T is partially anticipated at the beginning of the block, 
whereas PANTOUT(B) being true means T is partially anticipated at the end of the block. 

In forming the equations, the information about all paths was used to determine that ANTOUT is the 
intersection of ANTIN of the successors. If we are looking for at least one path, then only one of the 
successors need have the attribute; therefore it is a union rather than an intersection. We thus get the 
equations in Figure 4.17. 

We can make the corresponding observations about partial anticipation as we did about anticipation. 
Note that the equations do not have a single solution; however, we want the smallest solution rather than 
the largest. Consider the loop in Figure 4.16 with the evaluation of T removed. Nothing is partially 
anticipated; however, it is possible to get a solution to the equations with PANTIN(B2) = PANTOUT(B2) 
= true when the best solution we want has the value false. In anticipation we looked for the largest 
solution; here we look for the smallest solution. 

file:///D|/Convert/Building_an_Optimizing_Compiler/ch04/124-126.html (1 of 3) [10/17/2003 1:05:19 AM] 



Building an Optimizing Compiler:Flow Graph 

Observation 3: Assume PANTIN(B) and PANTOUT(B) are a set of Boolean values that 
satisfies the equations in Figure 4.17. If PANTIN(B) (correspondingly, 
PANTOUT(B)) is false, then T is not partially anticipated at that point. 

Proof Given a solution to the equations, assume PANTIN(B) is false. Consider any 
path from that point to Exit. We need to show that we reach a killing 
instruction or Exit before we find an evaluation of T. Assume that we reach 
an evaluation of T before a killing instruction. That means we find a block P 
with ANTLOC(P) = true. Now walk backward. Since the values are a 
solution to the equations, PANTOUT of the previous block is true also 
because it is a union operation. By assumption there is no killing instruction 
in the block, so PANTIN is true. Repeat this whole process, walking 
backward until we reach the original point. We have PANTIN being true 
rather than false. We have a contradiction, the assumption that there is an 
evaluation of T before a killing instruction is false. There is no evaluation, so 
T is not partially anticipated. 

Figure 4.17  Partial Anticipation Equations 

Observation 4: Let PANTIN(B) (respectively, PANTOUT(B)) be true if and only if T is 
partially anticipated at the beginning (respectively, the end) of B. Then this 
set of values is a solution to the equation in Figure 4.17. 

Proof We must verify that the values satisfy the equations. Assume they do not. 
Then there is a block B where the equations are not satisfied. Now look at 
the possibilities. The equation for PANTOUT(B) is satisfied by the nature 
of the definition. Similarly, the definition implies that the equation for 
PANTIN(B) is also true. Thus a contradiction. 

Observation 5: Let PANTIN(B) and PANTOUT(B) be the smallest solution to the equation 
in Figure 4.17, then T is partially anticipated at the beginning of B if and 
only if PANTIN(B) is true. 

Proof This argument mimics the argument for anticipation in the Appendix. The 
roles of true and false are switched and the smallest solution is used rather 
than the largest. 
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4.12 Global Available Temporary Information

The anticipation information describes what happens on paths before evaluations of T in the flow graph. 
The compiler also needs information about what happens on paths after evaluations of T. This 
information uses the word “available” rather than “anticipate” and stores information about whether there 
is an evaluation of T on each path leading to a point. There is also the corresponding partial information. 

Definition	 Available: A temporary T is available at a point p in the flow graph if and only 
if given any path from Entry to p there is an evaluation of T on the path that is 
not followed by any instruction that kills T. 

Definition	 Partially Available: A temporary T is partially available at a point p in the 
flow graph if and only if there is some path from Entry to p with an evaluation 
of T on that path that is not followed by any instruction that kills T. 

To illustrate these ideas, consider the flow graph of the running example as shown in Figure 4.18. The 
temporary T is available at the beginning of block B2 since every path (including the ones that go 
through B2 and come back again) from B0 to B2 contains an evaluation of T. The temporary S is 
partially available at the beginning of B2 since the path B0, B1, B2, B3, B2 contains an evaluation of S 
that is not followed by an instruction that kills it. It is interesting that this evaluation is in B2, and we will 
later see that this is a potential condition for moving code out of the loop. 
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Figure 4.18  Flow Graph of Running Example 

The reasoning that led to the equations for anticipatability can be used to create the equations for 
availability. The only differences are that predecessors are used rather than successors, and the reasoning 
involves paths from Entry rather than paths to Exit. This gives us the equations in Figure 4.19, whereas 
before if one has the largest solution, AVIN(B) (respectively, AVOUT(B)) is true if and only if T is 
available at the beginning (respectively, end) of block B. 

Figure 4.19  Equations for Availability 

Figure 4.20  Equations for Partial Availability 

The equations for partial availability are derived by the same techniques as used for partial 
anticipatability, giving the equations in Figure 4.20. The smallest solution to the equation in Figure 4.20, 
PAVIN(B) (respectively, PAVOUT(B)) is true if and only if T is partially available at the beginning 
(respectively, end) of B. 

4.12.1 Solving for Partial Anticipatability and Partial Availability

Before computing anticipatability and availability, the compiler performs a preliminary optimization pass 
that identifies most redundant temporary evaluations: those where one evaluation of T dominates another 
evaluation of T. Thus, information is needed for a small subset of the total number of temporaries. 

Other programmers advocate the use of bit vector techniques to evaluate this information, simultaneously 
computing the information for all temporaries (Aho 1977). For large flow graphs these bit vectors may 
be large. On a modern processor, the size of the bit vectors may continuously flush the cache, thus 
slowing the compiler. 
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This compiler uses an alternative approach, computing the information for each temporary separately. 
The information necessary may be sparse, so computing the information separately may save space and 
avoid flushing the cache during compiler execution. By computing the information on a temporary-by-
temporary basis, the compiler can determine early in the algorithm that some optimization will not be 
effective and avoid computing unneeded information. 

So how does the compiler compute partial anticipatability for evaluations of T? Consider the definition. T 
is partially anticipated at a point if there is a path from that point to an evaluation of T containing no 
instructions that kill T. Looking at this path backward, the compiler can perform a backward graph walk 
(using predecessors) starting at the evaluations of T and stopping when either an instruction that kills T 
occurs, the Entry block occurs, or the walk reaches a point that it has already visited. The first two 
conditions come straight from the definition, and the last one is an optimization: There is no reason to 
walk a point a second time. 

This graph walk can be stated as a work-list algorithm, as given in Figure 4.21. It implements the 
algorithm described in the previous paragraph. It computes the set PANTIN of blocks where T is partially 
anticipated at the beginning of the block. The first loop includes all of the blocks where T is locally 
anticipated. The work list keeps a record of all blocks whose predecessors have not been investigated. 
The work-list loop takes an arbitrary block B and considers each of its predecessors P. If P is not 
transparent, then T will not be partially anticipated at the beginning of the block unless it is locally 
anticipated already. 

Note that WORKLIST ∴ PANTIN because elements are added at the same time and elements are never 
removed from PANTIN. Thus each block can only be added to WORKLIST once; hence, the algorithm 
has time complexity proportional to the number of edges. 
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For efficient compilation, the structure of each of the sets is important. Consider WORKLIST first. The 
operations performed on WORKLIST are insertion, deletion, membership, initialization to the empty set, 
and testing for the empty set. The maximum number of elements in this set is the number of blocks and 
there is only one instance of the set. Assign distinct integer values to each of the blocks and use the 
Briggs set algorithm to implement WORKLIST. 

Figure 4.21  Computing Partial Anticipatability 

The operations on PANTIN are a subset of the operations on WORKLIST. Outside the algorithm the 
compiler must also scan PANTIN, looking at each element in the set. This can be implemented by the 
Briggs set algorithm also. 

KILL is a different matter. This algorithm checks for membership in a collection of sets (indexed by the 
blocks) of temporaries that may not be sparse. Hence KILL should be implemented as an array of bit 
vectors. The array is indexed by block number, and the bit in the bit vector is indexed by an integer 
assigned to each temporary T. 

The algorithm also computes the blocks PANTOUT where T is partially anticipated at the end of the 
block. This computation is not needed to make the algorithm work, so the two statements involving 
PANTOUT can be eliminated if PANTOUT is not needed. PANTOUT should also be implemented using 
the Briggs set algorithm because later use of the data will require a scan of all of the elements. 

The computation for partial availability is the same as partial anticipatability except applied to successors 
rather than predecessors. Note that PAVOUT is the quantity computed rather than PANTIN, so the 
algorithm is looking at the ends of blocks rather than the beginning of blocks. All of the same 
implementations remain for each of the sets. The algorithm is given in Figure 4.22. 
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Figure 4.22  Computing Partial Availability 

Example	 Consider the temporary S in Figure 4.18. The only instruction that kills S is in B4, 
so the backward walk implemented by the algorithm indicates that S is partially 
anticipated at the beginning of blocks B2, B1, B0, B3, and B6. For partial 
availability one uses a forward walk, so S is partially available at the end of blocks 
B2, B3, and B6. 

4.12.2 Computing Availability and Anticipatability

The partial information can now be used to compute anticipatibility and availability. Just by looking at 
the definitions, we see that ANTIN ∴ PANTIN, where ANTIN is the set of blocks in which T is 
anticipated. Similarly, AVOUT ∴ PAVOUT. 

What is the difference between the blocks that are in ANTIN and the blocks in PANTIN? In PANTIN 
there is a path from the beginning of the block to an evaluation of T, but in ANTIN there must be an 
evaluation of T on each path from the beginning of the block. 

The way to compute ANTIN is thus to start with PANTIN and throw out all blocks that start a path that 
does not lead to an evaluation of T. In other words, the rejected block leads either to an instruction that 
kills T or to Exit. The algorithm in Figure 4.23 starts with the partially anticipated set and prunes out the 
blocks that do not satisfy the definition of anticipation. This job requires a work list because the 
elimination of one block from the set may force multiple other blocks out of the set. 

Figure 4.23  Pruning to Correct the Available Set 

To see that the algorithm is correct, consider the following argument. Consider a block B that is in 
PANTIN but not in ANTIN. There is thus some path from the beginning of B to Exit that does not contain 
an evaluation of T before any instructions that kills T. Walk down that path. Since B ∈ PANTIN initially, 
you come to one of the following situations: 

•  One arrives at a block that is not in PANTIN. The previous block is in PANTIN, so the first loop 
in Figure 4.23 will identify that the preceding block is not in ANTIN and remove it from the set, 
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placing it in the work list to remove its predecessors on the path. 
•  One arrives at a block containing a killing instruction. Since we assumed that this path did not 
contain a preceding evaluation of T, T is not locally anticipated in the block and therefore the 
block is not in PANTIN, reducing to the previous example. 
•  One arrives at Exit. Since Exit ∉ PANTIN, this also reduces to the first case. 

Thus the first loop initializes work by identifying the blocks at the boundaries of paths that violate the 
definition. Now the work-list algorithm walks backward along the path, successively removing each 
block until the block B is removed as required by the definition. 

Example	 In the example in Figure 4.18, consider the temporary S. We have already computed 
the points where it is partially anticipated. We must go through that list and throw 
out any block whose successors are not all in the list. Thus B3 is thrown out because 
of B4, B6 is thrown out because of B3, B1 is thrown out because of B4, and B0 is 
thrown out because of B5. Hence S is only anticipated at the beginning of B2. 

Now consider the availability of S. It is partially available at the end of blocks B2, 
B3, and B6. In this case there is nothing to throw out. B2 remains because S is 
locally available in B2. The only predecessor of B6 is B2. The predecessors of B3 
are B2 and B6, where neither of those blocks kills or generates S. Hence the 
partially available expressions are the available ones in this case. 
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4.13 Lifetime Analysis

The anticipated and available data are information about the points where a temporary T is evaluated. 
There is no information about uses. Lifetime information concerns the relation of evaluation points and 
use points for a temporary T. T is live at all points on paths between an evaluation of a temporary and its 
use. 

Definition	 Live: A temporary T is live at a point p in the flow graph if there is a path from 
p to a use of T as an operand that does not contain an instruction evaluating T 
and a path from an evaluation of T to p which does not contain an evaluation of 
T. 

Thus T is live on paths from evaluations of T to uses of T and nowhere else. For an instruction to qualify 
as an evaluation of T, it must guarantee that a new value for T is computed. If the instruction might 
modify T then it is not counted as an evaluation of T. This is not a problem for temporaries because 
temporaries are either modified or not, but we will apply the same ideas to memory references and 
sometimes the compiler knows one particular memory location that will be referenced and another 
collection of memory locations that might be referenced. 

Computing the points where T is live uses much of the same technology used to compute anticipation 
and availability. The form of the equations is the same as the form for partial anticipation, except the 
local information is different. 

Given a temporary T, LiveIn(T) is the set of blocks B that contain a use of the temporary T that is 
not preceded by an evaluation of T. 
Given a block B, LiveKill(B) is the set of temporaries T for which there is an evaluation of T in the 
block B. Do not count instructions that might change T or change only a part of T. 
Global is the set of temporaries that are live at the beginning of a block. This is the same as the 
union of all of the LiveIn sets. 

file:///D|/Convert/Building_an_Optimizing_Compiler/ch04/132-136.html (1 of 3) [10/17/2003 1:05:23 AM] 



Building an Optimizing Compiler:Flow Graph 

This information can be computed by scanning each block backward. Whenever a use of a temporary is 
identified, mark the temporary as live. Whenever an evaluation of T is found, add T to the LiveKill set 
and mark the temporary as not live. As the local information is collected, the set Global is computed. It 
consists of all temporaries that are live at the beginning of some block. The local information is 
summarized in Figure 4.24. 

The global information is computed in the same way as partial anticipation. Each temporary is handled 
separately; however, there is no need to compute anything unless T ∈ Global because the temporary is 
only live within a block, not across block boundaries. The algorithm is given in Figure 4.25. 

Figure 4.24  Setup to Compute Lifetimes 

Figure 4.25  Computing Global Live Information 

To compute the more general definition of lifetime where a temporary is live from an evaluation of T to a 
use of T, one needs to solve another condition, which is similar to partial anticipatability. One must 
compute the set of blocks where there is a path to the beginning of the block from an evaluation of T that 
does not include an instruction that kills T. We will be using this information during register allocation 
when the compiler is only dealing with single temporaries, so there is no need to consider which 
instructions kill a temporary. The only thing in that case that kills a temporary is another evaluation of 
the temporary. The problem thus reduces to a depth-first search starting from the evaluation of a 
temporary. Any block that is marked live by the work-list algorithm in Figure 4.25 and occurs on the 
depth-first search walk has the more general property of liveness that we need for register allocation. 
However, performing the depth-first search has the probability of visiting a large number of blocks. One 
gets the same result by performing the following processes: 

1.  Calculate the set of blocks where T is live at the beginning of the block using the work-list 
algorithm in Figure 4.25. 
2.  Perform a depth-first search starting at each evaluation of T, but only visit blocks where the 
work-list algorithm indicated that T might be live. 
3.  Remove all blocks computed by the work-list algorithm that are not visited during the depth­
first search. 
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4.  The result is the set of blocks where T is live at the beginning of the block. 

Thus we have the general definition of live easily implemented from the more straightforward definition. 
Unfortunately, the work list naturally computes the set of blocks where T is live at the beginning of the 
block. The compiler always needs the set of blocks where T is live at the end of the block, or more 
correctly, it will need the set of temporaries live at the end of each block. This can be computed from the 
other information by the algorithm in Figure 4.26. 

Note that T is in LiveOut(B) if and only if T is live on entry to one of the successors and one can get to B 
by a depth-first search from some evaluation. The last nested loops in the algorithm compute this fact. 
LiveOut is a sparse set, so it should be implemented as a linked list. The test for membership is easy 
because all entries for T are made before entries for any other temporary; thus, if T has already been 
added to LiveOut for a block, it is the element at the head of the list. Therefore one need only check the 
head of the list to see if T has already been added. 

Figure 4.26  Total Lifetime Algorithm 
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Chapter 5 
Local Optimization 

The most effective transformations in an optimizing compiler are the simplest. Consider the expression T 
* 0. The translation techniques that walk the abstract syntax tree creating the flow graph would naturally 
compute T, load 0 into a temporary, and perform the multiplication. Algebraic identities can tell the 
compiler that this expression is 0, so load the constant into a temporary instead. 

This chapter discusses these local transformations. The transformations are used in three places in the 
compiler: during the building of the flow graph, during dominator-based optimization, and later during 
peephole optimization. The optimizations include the following techniques: 

•  Apply algebraic transformations to decrease the number of instructions. As an example, the 
expression N < 1 discussed in Figure 5.1 can be replaced by the expression N ≤ 0, which can be 
encoded in a single instruction without the need of loading the constant. A large collection of 
algebraic identities is listed at the end of this chapter. 
•  The compiler can trace the values stored in temporaries and record the temporaries that have 
already been evaluated. If the same temporary is evaluated again without an intervening 
instruction changing the operands, then the instruction may be eliminated. These two operations 
are combined in a technique called value numbering. 
•  Instructions that are not executed or that generate a temporary that is not used can be 
eliminated. This is a limited form of dead-code elimination. A more complete form of dead-code 
elimination occurs later. 

These simplifications apply to our running example. Consider the code fragment from the initialization 
of the outer loop in Figure 2.1 (see Figure 5.2). The left column is the set of instructions generated by 
translating the abstract syntax tree into the flow graph; the right column is the resulting set of instructions 
after local optimization. 
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Figure 5.1  Value Numbering and Identities 

The compiler tracks the values in temporaries within the current block and applies algebraic identities. In 
this case the compiler knows that T5 has the value 1. The next computation asks whether T5 > T8, which 
the compiler knows is 1 > T8. The compiler knows that this is the same as 0 ≥ T8. 

Figure 5.2  Value-Numbering Example 

After building the program flow graph and performing the initial aliasing analysis, the compiler performs 
local optimizations and transformations to improve the structure of the program flow graph for the rest of 
the optimizer and decrease its size so that it takes less time and space. After cleaning up the program 
flow graph, this phase will perform global constant propagation and folding so that later phases have 
complete constant information. 

Note that most of the algebraic simplifications are applied to integer arithmetic. It must also be applied to 
floating point arithmetic; however, the compiler must be careful on two points. 

The arithmetic must be done at compile time exactly the same way it is done at runtime. Usually this is 
not a problem. It is a problem if the compiler is not running on the same machine as the machine which 
executes the program (a cross compiler). It is also a problem if the floating point rounding mode can 
change. If the rounding mode is not known, constant folding should be avoided. 

Precise IEEE floating arithmetic can also be a problem. Full IEEE arithmetic includes the representation 
of infinities and NaN (Not a Number). The compiler must avoid the evaluation of expressions where one 
of the operands may be a NaN. It must even avoid replacing 0 * X by 0 if X might be a NaN. 

5.1 Optimizations while Building the Flow Graph

Building the flow graph can be optimized to eliminate about half of the instructions generated. The idea 
is that the same computations frequently occur in the same block. This is not true of source code, but it is 
true of the addressing arithmetic generated by the compiler. These same instructions (and more) could be 
eliminated later. Eliminating them decreases the storage required for the flow graph and decreases the 
processing time required in the rest of the compiler. The following instructions can be eliminated from 
the generated block: 
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•  If a second instance of an instruction is about to be inserted in a block, then it can be eliminated 
if the arguments of the previous instruction have not been modified. 
•  If an instruction has constant arguments, then the instruction can be replaced by a load constant 
instruction. The arithmetic must be done precisely as it would be done on the target machine. If 
there is any chance that an exception might be raised by the operation, the computation should be 
left as it is. 
•  The list of algebraic identities at the end of this chapter should be applied to the instructions as 
they are generated. The simpler equivalent instruction sequence should be generated when 
possible. 

The effect of these transformations is shown in the code in Figure 5.3 from the running example. The left 
column is the set of instructions that would be generated by the techniques that have been described in 
the previous section. The right column contains the instructions that are generated after value numbering 
and simplification of algebraic identities. Some statistics indicate that these techniques will eliminate 
about half of the instructions. 

Value numbering divides the instructions in a block into equivalence classes: two instructions are 
equivalent if the compiler can determine that they have the same value. Only one instruction in each 
equivalence class needs to be generated. The code that generates the flow graph operates as described in 
Chapter 4, except the procedures that insert instructions into the flow graph maintain data structures to 
eliminate instructions that are unneeded. 

•  If the instruction to be inserted is equivalent to an instruction already in the block, then the 
instruction is skipped and the target register from the equivalent instruction is returned as holding 
the value needed. 
•  If the operands of the instruction are constants and the operator has no side effects, then a load 
constant for the precomputed result is generated instead. 

Figure 5.3  Optimizations without Side Effects 

•  If the instruction and its operands match a tree corresponding to an algebraic identity, then the 
simplified form of the tree is generated instead. Changing the instructions may cause some 
existing instructions to be unused. They will be eliminated later with dead-code elimination. 
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How does the compiler know when two instructions are equivalent? There are limits to the analysis that 
the compiler can do. For the purposes of code generation the analysis is simple: 

•  Two instructions without side effects are equivalent if they involve the same operator and have 
equivalent inputs. 
•  Two constants are equivalent if they are identical constants. 
•  Two load instructions are equivalent if they load equivalent addresses and no store operation 
has occurred between them that might modify that storage location. 
•  When in doubt, declare that two instructions are not equivalent. For example, a procedure call 
may change a number of variables that are visible to it or procedures that it might call. All such 
variables must be assumed to change at the procedure call. 

To implement the value-numbering scheme, the compiler needs to construct tables that will compute this 
information quickly. The data structures will be described in abstract terms; however, the implementation 
is simple. The temporaries are represented as small integers, representing indices into tables. Each 
abstract data structure can thus be represented as an array or a chain-linked hash table. The following 
data structures are needed: 

constant_temporary(temporary) is a data structure that, given a temporary, returns one of the 

three following classes of values. It returns top or if the temporary does not contain a value 
already computed in this block. It can return the value bottom, or ⊥, which indicates that the 
temporary has been computed in this block but does not have a constant value. Or it can return the 
constant value that was assigned to the temporary. This is the same information that we will use 
later when doing global constant propagation. It is used here to combine the answers to these 
questions: Does the temporary have a constant value? and What is the constant value associated 
with the temporary? This can be implemented as an array in which each entry is a class or record 
indicating one of the two alternative values or the value of the constant. The table value is filled in 
each time a temporary is the target of an instruction. 
value_number(temporary) is a data structure that gives the value number associated with the 
particular temporary. It can be implemented as an array of integers. An entry is filled in each time 
the temporary is the target of an instruction or an instruction occurs with side effects that 
invalidate a previous value number. 
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defining instruction(temporary) is a data structure that returns the instruction that most recently 
defined the temporary in this block. It is updated as each instruction is generated. If another 
instruction forces the value number of a temporary to change (due to making the value unknown) 
or if there is no definition of the temporary in the block, then the entry is NULL. 

These data structures are used during the generation of the intermediate representation. As an example, 
consider the generation of a binary operation using the instruction-generation procedure, binary_instruct, 
discussed in Chapter 4. Its implementation will look like the following pseudo-code: 

temporary binary_struct (opcode, first_operand, second_operand)

 if (constant_temporary(first_operand) is constant)


 ^(constant_temporary(second-operand) is constant) then

 Get temporary T for loading folded constant from formal


 temporary table;

 Generate iLDC of constant into T

 return T;


 endif;

 Get temporary T for (opcode, first_operand, second-operand) from


 formal temporary table;

 if value_number(T) == NULL then


 Generate the instruction I;

value_number(T) = new value number V;


 defining_instruction(I) = V;

 return T;


 endif

 end procedure;


Generating a register copy operation or store operation must destroy the value numbers for any 
temporaries that use that temporary as an operand. This information is available in the formal temporary 
table. 
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5.1.1 List of Local Optimizations

Before all of the other optimizations, some simplifications can be made to the operations in the program 
flow graph. The compiler front end and the Build phase take a simplistic view of the generation of 
operations. The program flow graph generated has not taken into account the simplifications that can be 
made to the program structure. This is as it should be: The simplifications should occur all in one place to 
avoid repetitive code with compilers for multiple languages. Figure 5.3 is a preliminary list of some of 
the local optimizations. Others should be added as the quality of the code generated by the compiler is 
studied and special cases are identified. 

Other local optimizations can change the side effects of the program. The language reference manual 
specifies which side effects must be preserved. For example, in C, integer overflow may be ignored. 
Thus the compiler may eliminate a computation that has no effect on the values computed by the 
program even if it eliminates an integer overflow. The set of local optimizations in Figure 5.4 and the 
similar set for floating point operations in Figure 5.6 can cause side effects, so they must be checked to 
see that the language description is preserved. 

There is also a collection of optimizations based on unary operations (see Figure 5.5). With some of 
these optimizations the order of use of the operands may change. As long as the actual order of 
evaluation of the operands in the program flow graph does not change, this is not a problem. This 
possibility is one of the reasons for choosing the flow graph/operation structure for the internal structure 
of the program. 

The optimization of relational operators in Figures 5.4, 5.5, 5.6 and 5.7 are important in simplifying the 
flow graph. 

Figure 5.4  Optimizations with Side Effects 
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Figure 5.5  Unary Operator Optimizations 

Figure 5.6  Algebraic Identity Optimizations 

Figure 5.7  Relational Optimizations (ρ is relational operator) 

5.2 How to Encode the Pattern Matching

With this number of patterns, how does the compiler writer write the code? There are two ways to do it: 
use a tree pattern-matching system or write the pattern matches by hand. I am going to take a 
controversial approach and use the handwritten pattern-matching system. Although the set of patterns is 
large, each of the patterns is simple, involving a small number of operators. 

The compiler organizes the code using the operator that is at the root of the tree representing the pattern. 

5.3 Why Bother with All of These Identities?

An immediate reaction to this large list of identities is to ask: “Why bother? If the programmer has 
written an inefficient expression, give him inefficient results.” This section attempts to answer this by 
noting that the compiler is not really concerned with what the programmer wrote. Any improvement in 
the source code is a fortunate side effect of improving other code. The compiler itself generates 
expressions, as the following set of instances shows. 

•  During code lowering, where high-level operations are replaced by lower-level instructions, the 
compiler will generate expressions. The most common example is the lowering of subscript 
operations from a subscripted load/store operation to the computation of the address followed by 
an indirect load/store. The compiler generated the expressions, so the compiler must simplify 
them: The programmer cannot do it. 
•  When the compiler in-line expands one subroutine at the point of a subroutine call in another 
subroutine, the compiler must generate expressions to substitute for the formal parameters at each 
use. Frequently this is done by creating temporaries at the beginning of the in-line code to hold 
the values of the parameters and then expanding the body into the flow graph. Many actual 
parameters are constants or simple expressions; when they are used in the subroutine, many of the 
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simplifications listed here may be applicable. 

It can be argued that both of these examples beg the point. If the compiler is generating these 
expressions, then why not generate the simple expressions rather than the complex ones? The reason is 
simplicity. If the compiler must include special case code at each point that instructions are generated, 
the compiler will be large. Furthermore, special cases will be added in one point in the compiler and not 
at others, so the compiler will be unpredictable. It is better to have a small number of general subroutines 
that will simplify all generated instructions in the same manner. 

5.4 References

Bagwell, J. T. Jr. 1970. Local Optimization, SIGPLAN Notices, Association for Computing Machinery 
5(7): 52-66. 

Frailey, D. J. 1970. Expression Optimization Using Unary Complement Operators, SIGPLAN Notices, 
Association for Computing Machinery 5(7): 67-85. 
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Chapter 6 
Alias Analysis 

What does it mean for one instruction to affect another? Remember how the proofs of the theorems about 
available or anticipated expressions developed. During the proofs a walk is performed backward (or 
forward) from a point in the flow graph to a point where the desired computation occurs. There must be 
no instructions on that path that change the computation of the desired expression. In other words, one 
instruction affects another if interchanging the order of the instructions would change the values in the 
target temporaries (or memory) after the instruction pair. 

This section describes the computation of two attributes for each temporary: modifies(T), which is the set 
of temporaries that are affected by the modification of T, and store_modifies(T), which is the set of 
temporaries whose store operations are affected by a modification of T. 

Remember, temporaries are divided into two classes: expression and variable temporaries. Each 
expression temporary occurs as the target of an instruction that is a pure function of its operands. There 
may be multiple points where the expression temporary is evaluated. In each case the same instruction 
occurs, which means the same operator and the same operand temporaries or memory location. Each 
expression temporary represents an expression tree in which the node representing the temporary is 
labeled with the operator and the children are the operands. The root and internal nodes of this tree are all 
expression temporaries. The leaf nodes represent LOAD instructions from memory or variable 
temporaries. An expression temporary is not considered modified by the reevaluation of one of its 
operands that is an expression temporary. It is modified if one of the variable temporaries at the leaves of 
the tree is assigned a new value with a copy operation or if the memory location corresponding to one of 
the load operations is modified. 

Similarly, a store operation can be modified by another store operation. If both store operations may 
reference the same memory location, then they cannot be reordered. 
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Definition	 Modifies: A temporary T modifies temporary U if interchanging the order of the 
instructions that compute the two temporaries will result in different values stored 
in U. 

Consider the fragment of source code in Figure 6.1. Unless there is some unstated relation between A and 
B, such as the Fortran EQUIVALENCE statement or C language rules for formal parameters, the store 
into B(I) does not affect the load of A(I) or A(N). Similarly, the store into A(I) does not affect the load of 
B(I+1). Since the compiler can prove that B(I) and B(I+1) reference different memory locations at each 
point in the program, the store into B(I) does not modify the value of the load operation B(I+1). 

The variable I will be held in a temporary in the flow graph. The increment of I changes the address 
referenced by each of these STORE and LOAD instructions, so the store into I modifies each of these 
instructions. 

This compiler implements dependence analysis, therefore it can notice that A(N) in Figure 6.1 is not 
modified by the store into A(I) since the value of I is always less than N in the loop. However, that is not 
done in this section. Using the techniques in this section, the compiler will be unable to differentiate A(I) 
from A(N). Compilers without dependence analysis cannot notice this. However, the compiler will 
identify the following situations: 

•  When the compiler knows that two addresses are distinct, then no modifies relationship will 
exist between a store and a load. For example, B(I) and B(I+1) are not related by the modifies 
relation. When the compiler is not sure, it must assume that there is a modifies relationship, so 
A(I) and A(J) must be assumed to be related unless the compiler knows something about the 
ranges of values that I and J can take. 

Figure 6.1  Example for Describing Aliasing 

•  The compiler knows that two fields of a nonoverlaid structure cannot be related by the modifies 
relation because they are different offsets from the same address. 
•  The compiler knows that the modifies relation is not transitive. A store into A(I) indicates that 
the whole array A is modified. The modification of A indicates that A(I+1) is potentially modified. 
However, the transitive relation “modification of A(I) indicates that A(I+1) is modified” is false. 
•  Source language restrictions must be taken into account. In C, pointers are typed. Except for 
pointers to characters (which can point to anything for historical reasons), a storage modification 
using a pointer can only modify locations of the same type and data structures containing 
locations of the same type. 
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The modification information can be expressed as a conjunction (logical AND) of several different 
factors: 

•  Consider two different memory references X and Y. If the address of X is never taken in the 
source procedure and X and Y are not related by some overlaying characteristic of the source 
language, then a store to X cannot modify the location Y. This is the only modification 
information used during the creation of the flow graph. It allows the identification of local 
variables that can be stored in temporaries and allows some efficiency gain by the use of value 
numbering within a block during the creation of the flow graph. 
•  There are language-specific rules that also limit the locations that a store to X can affect. In 
Fortran, the compiler is free to assume that a store to a global variable does not modify a dummy 
argument (formal parameter). Furthermore, the compiler can assume that a store to a dummy 
argument does not affect another dummy argument or a global variable. In ANSI C, the compiler 
can assume that a store through a pointer of one type does not affect a load or store through a 
pointer of another type unless one of the types is a pointer to a character. The compiler is free to 
use these rules because the language definition indicates that violation of the rules is a language 
error, in which case the compiler is free to do whatever it wishes. 
•  A store to X cannot affect a load or store to Y if X and Y are different offsets from the beginning 
of the same area of storage. Of course, the difference in offsets must be large enough so that no bit 
affected by X is in the storage area associated with Y. 

These three conditions represent three very different conditions on the store operation. If one of the 
conditions is not satisfied, then a store to X does not affect the load or store of Y. Thus the modification 
relation is the conjunction (logical AND or set intersection) of different conditions. 

This property can be used to refine the modification information as the program progresses through the 
compiler. In other words, computing the modifies attributes is a process of successive refinement. Early 
in the compilation process, a less refined version of the modification information is used; in fact, one 
based on the previous three conditions. Later, more refined information is used that involves analysis of 
the flow graph. Finally, dependence analysis is used to give the most refined information. This 
dependence information is used only in some of the phases of the compiler since the more accurate 
information is not needed in many of the phases. 
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6.1 Level of Alias Analysis

The rest of this chapter will describe the compiler components that compute this modifies relationship. 
The analysis can be divided into levels. The first and usually only level of analysis is the flow-insensitive 
analysis. Then some level of flow-sensitive analysis can be included. For this compiler, this step involves 
dependence analysis. Finally, interprocedural alias information must be taken into account. 

Given a STORE instruction I, flow-insensitive alias analysis computes the set of LOAD instructions that 
might reference the value stored by I and the set of STORE instructions that might replace the value 
stored by I without considering paths of execution. If I occurs someplace in the procedure, and at another 
point there is a LOAD instruction referencing the same memory location, then the modifies relationship 
is assumed to hold even though there may be no path from one of the instructions to the other. 

Thus flow-insensitive analysis is too conservative. It will deduce that a modification is possible when 
none is possible. This is the minimal alias analysis. Other algorithms will be used to refine and eliminate 
parts of the relation determined by the flow-insensitive algorithms. 

The second level of alias analysis is dependence analysis. Again there are several levels of dependence. 
The simplest involves determining whether there is a path from the STORE to the LOADs and STOREs 
that have a modifies relationship with the STORE. The relationship can be ignored if no path exists. For 
arrays, further analysis can be done to determine the conditions under which the modifies relation exists. 

Interprocedural analysis, the third level of alias analysis, answers two issues. In the absence of other 
information, the compiler must assume the most conservative information about formal parameters. This 
is tempered by the semantics of the source language. For example, Fortran specifies that a variable that is 
modified within a procedure can only be named in one fashion. This means that the compiler can assume 
that each store operation involving a formal parameter does not have the modifies relationship with any 
other formal parameter or global variable named in the procedure. 

Second, interprocedural analysis records the actions of procedure calls. In the absence of interprocedural 
analysis, the compiler must assume that every datum addressable by the called procedure has a STORE 
executed and a LOAD executed. Hence the procedure call is modeled as a collection of simultaneous 
STORE and LOAD instructions. 

With interprocedural analysis, the compiler estimates which data are modified and referenced by each 
procedure call. With this information, the compiler can model a procedure call by a smaller set of store 
and load operations. The store operations represent the data that might be modified by the procedure call, 
and the load operations represent the data that might be referenced by the procedure call. 

6.2 Representing the modifies Relation 
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The modifies relation is represented in two different ways, depending on whether the flow graph is in 
normal form or static single assignment form (to be discussed shortly). In either form the compiler must 
provide enough information so that the algorithms analyzing the flow graph can determine if there is a 
possibility of a store operation changing a memory location referenced by another load or store 
operation. 
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6.2.1 Representing modifies in Normal Flow Graph Form 

When the flow graph is in normal form, there is a one-to-one correspondence between temporaries and 
formal expressions. The compiler has built a data structure, called the formal temporary table, to hold 
this correspondence. This table is represented as a graph in which each node consists of the data structure 
in Figure 6.2. 

Figure 6.2  Nodes in Formal Temporary Table 

The formal temporary table is an acyclic graph, with the load operations being the leaves of the graph 
and the store or copy operations being the roots. Rather than making additions to the flow graph, the 
modification information is stored as the modifies information that we described earlier. The algorithms 
operating on the normal form of the flow graph will use this modifies information directly to restrict 
optimizations. This was done earlier when the compiler computed local information for each block in the 
flow graph. 

The modifies relation is recorded in terms of the formal temporary table. Each store and copy operation 
will have an added attribute (called modifies) that records the set of load and store operations in the 
formal computation that have a modifies relationship with this operation. The set of instructions that this 
operation modifies is the set of load operations in its modifies set together with all instructions that use 
the value generated by that load operation either directly or indirectly. Actually the temporary that is the 
result of the load is used to represent the information. Remember that there is a one-to-one 
correspondence between the formal load operations and temporaries. 

6.2.2 Representing modifies in Static Single Assignment Form 

Before describing the changes to the flow graph to represent modifies information for the static single 
assignment form of the flow graph, we need to understand something about this form. The basic idea of 
the static single assignment form of the flow graph is that there is a single instruction that has a particular 
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temporary as its output. The same temporary can be the output of only one single instance of an 
instruction. This differs from the normal form, where a temporary can be the output of multiple 
instructions. To compensate for the limitations of static single assignment form, a new operator called the 
φ-node has been added to the instruction set. This operator takes operands from differing predecessors 
and chooses one of them to be the value copied to the output temporary for the φ-node. 

With the static single assignment form, all information about changing values is directly encoded in the 
single evaluation of the temporary and the φ-nodes rather than implicitly by using the modifies 
relationship on the side. To do this the compiler introduces the idea of tags. 

A tag is a memory-based equivalent of the temporaries. Each tag represents an area of memory, and there 
is a tag for each area of memory that is referenced by instructions in the flow graph. Thus there is a tag 
for A(I) and another tag for the whole array A. There are tags for each element of each structure 
referenced and a tag for the whole structure. Furthermore, there is a tag for all the stack-based data and 
multiple tags for references into the heap. 

As you can see, the tags are related. Some tags represent areas of memory contained within other tags. 
The important thing is that there is a tag for each memory location referenced. There is a tag associated 
with each load operation. Copy operations do not need tags because the direct relationship between the 
instruction that evaluates a temporary and the instruction that uses the temporary is recorded in the flow 
graph when it is in static single assignment form. 

Store operations are more complex. There is a primary tag associated with the address that is being 
modified by the instruction. However, other memory locations (that is, tags) may be modified. To 
represent the modification of these locations in memory, the STORE instruction must consider each tag 
that might be modified by the STORE instruction to be a target of the store operation. These indirect 
targets might be modified, but are not guaranteed to be modified; thus their value must be handled as if 
they were unknown. 

Because of properties of the static single assignment form to be discussed later, the compiler actually 
handles each of the tags that might be modified as both a target and an operand. Thus each store 
operation has added a list of pairs of tags. The first element of the pair is the tag considered as an 
operand; the second element of the pair is the target. When the graph is constructed, both elements of the 
pair are the same. During static single assignment form construction, the tags are modified so that 
conditions of a single assignment to the tag are maintained. 
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6.3 Building the Tag Table

Now that the compiler has the concept of tags, the compiler uses it to compute the modifies information 
in general. The compiler builds a tag for each symbolic memory reference. Hence there is a tag for A(I) 
and another one for A(J), as well as a tag for the whole array A. These tags will be handled much like 
registers, except they do not occur as operands of instructions. Instead they occur as attributes of LOAD, 
STORE, and procedure calling instructions. For the LOAD instruction, the tag indicates the data being 
loaded. For the STORE and procedure call instructions, it indicates which data may be modified by the 
instruction. 

Each tag structure contains a number of fields representing its relationship to other tag structures: 

Temporary: The flow graph always uses the same temporary for loading and storing into the 
symbolically identical memory location. This temporary is stored in the tag. Although not 
absolutely necessary, it provides easy access to the temporary and makes table lookup on the tag 
table easier. At first glance, the reader may consider that there is a one-to-one relationship 
between tags and temporaries so one or the other of them might be eliminated. However, there are 
tags that are not related to temporaries: tags for arrays or whole structures. In the case of tags for 
whole arrays or whole structures the temporary entry is NULL. 
Unique: This is a Boolean field indicating that the tag represents a unique area of memory. This 
attribute is true if the address of the data can be determined at compile or link time or occurs at a 
fixed offset from the beginning of the stack. It is false for tags representing data in the heap or 
tags representing array elements whose address is determined at run time. 
Kind: The kind of the tag describes the specialized fields that are associated with the tag. The 
following kinds of tags exist. The list may be expanded if the language being compiled expands. 

•  Stack: Represents the collection of all data stored in the runtime stack. 
•  Heap: There is a tag for each type of data stored in the heap. The word “type” refers to 
the source language type. This allows the compiler to distinguish elements of different 
types when dealing with pointer dereferencing. 
•  COMMON block 
•  Array 
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•  Structure or union 
•  Atomic: Represents scalars and pointers in memory 

Parent: This field is a pointer to the tag representing the parent tag that includes this tag. If there 
is no parent then the entry is NULL. The following tags have parents: 

•  An array access has the tag for the whole array as the parent. 
•  A structure or union access has the tag for the whole structure as a parent. 
•  An entry in a COMMON block has the tag for the whole COMMON block as the parent. 
•  Any variable allocated to the runtime stack has the tag for the runtime stack as a parent. 
•  Any datum residing in the heap (and which is not a component of a larger object) has a 
parent that indicates a heap object of that type. 

Children: This field lists all of the tags that have this tag as their parent. This is the reverse of the 
parent attribute and is used to scan all of the children whenever necessary. 
Offset: If the tag represents memory that is a constant offset within the parent tag, then the offset 
is placed in this field. Fields of structures or unions are constant offsets from the start of the 
structure or union. Similarly, references to arrays using constant subscripts give a constant offset 
from the beginning of the array. If there is no constant offset, then a value ⊥ is stored in the field 
to represent the fact that the offset is not known. 
Size: The size of the datum represented by the tag is stored in this field. For example, on a 32-bit 
machine, an integer and float will have a size of 4 bytes, whereas a double-precision number has a 
size of 8 bytes. Size information is stored for structures and COMMON blocks also. For arrays 
whose size is not known at compile time, the value ⊥ is inserted. 

6.4 Two Kinds of Modifications: Direct and Indirect

Consider the process of finding all temporaries that are modified by a store operation. Recall that store 
operations are restricted to using the same temporary to store into a particular symbolic memory location. 
Thus search the tag table to find the tag that contains that temporary in the temporary attribute. That tag 
is modified by the store. This is a direct modification of a tag. 

What other tags are modified by the store operation? Certainly the ancestors on the parent chain are 
modified. The question is, Are the children of the parents modified? Not necessarily. In fact, modifying 
all of the children of each parent would generate too many modifications. If one field of a structure is 
modified, then any field that does not overlap is not modified. These modifications are called indirect. 

6.4.1 Indirect Modifications in a Structure or Union

The children of a structure or union tag are the tags for the children that have fixed offset attributes. 
Consider a structure S containing fields a, b, and c. A modification of field S.a indicates that the tag for S 
is also modified. However, the tags for S.b and S.c are modified if and only if their storage, as indicated 
by their offset and size attributes, overlaps that of S.a. 

file:///D|/Convert/Building_an_Optimizing_Compiler/ch06/154-156.html (2 of 3) [10/17/2003 1:05:29 AM] 



Building an Optimizing Compiler:Alias Analysis 

Thus the algorithm for computing the modifies set for a field a of a structure S is as follows. S is the 
parent tag for S.a. Add the temporary for S.a to the modifies set and mark S as modified also. If S has a 
temporary associated with it, then add it to the modifies set. At the same time scan the children of S and 
add each of them to the modifies set for S.a if they overlap S.a in memory. 

If a structure is contained within another structure, then the same process can be applied at the next level 
up in the tag table. Recall that only S.a was modified, so we need only look at fields that overlap S.a even 
though S itself is marked as modified. 

This algorithm handles structures, unions (with overlapping fields), and records that have variant fields. 
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6.4.2 Indirect Modifications in COMMON Blocks

The same algorithm as used for structures can be used for COMMON blocks. Fortran COMMON blocks 
have the characteristic that they can be viewed with different structures within different procedures. The 
COMMON block has the same characteristics as a structure, and the same algorithm can be used to 
determine which variables and arrays within a COMMON block are modified. Each has a fixed size and 
fixed offset so a scan of the children of the COMMON block tag will find the data that overlap the 
variable or array that is modified. 

6.4.3 Modifications Involving the Fortran EQUIVALENCE Statement

The Fortran EQUIVALENCE statement is handled in COMMON blocks by the same scan for 
overlapping data. EQUIVALENCE statements indicate that multiple variables overlap (with possibly 
different types) and indicate the exact offset between each pair of variables. If one of the variables is in a 
COMMON block, then the other variable is also. It is therefore entered in the list of children with its 
offset attribute adjusted as indicated by the EQUIVALENCE statement. Now the modification sets will 
be computed correctly by scanning all of the children to see which overlap. 

Assume that A and B are two variables that occur as a pair in a Fortran EQUIVALENCE statement. If 
one of them is in a COMMON block, we process them as described in the previous section. Otherwise 
consider them as two fields of a union, with different offsets within the union as described by the 
EQUIVALENCE statement. Build a tag for the union and make the paired elements children of the union 
tag. 

If another variable is made equivalent to one of these variables by another EQUIVALENCE statement, 
add that element to the children of the union with the appropriate offset. 

6.5 The Modification Information Used in Building the Flow Graph

The compiler has a chicken-and-egg problem. It cannot compute the modifies information precisely 
before computing the flow graph. While computing the flow graph, the compiler will perform value 
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numbering on the blocks as they are created. This is needed to decrease the size of the flow graph and 
make it more manageable. To perform value numbering, it must know which memory locations are 
modified by each store operation so it can invalidate the value numbers for those locations. 

The compiler requires the front end of the compiler to compute the set of all variables whose addresses 
might have been taken.1 This means computing the variables where the address is copied into a variable 
for use as a procedure parameter or as the value of a pointer. This is not the same as the situation that 
occurs during the construction of the flow graph where the address of each variable is loaded whenever it 
is used. The scalar variables whose addresses are not taken are implemented as temporaries in the flow 
graph: They can only be modified by explicit reference to them. The other structures and arrays whose 
addresses are not taken have no hidden side effects, so their information can be traced as the flow graph 
is constructed. 

1The compiler cannot always determine all variables whose addresses might have been taken. If there is a 
procedure call that is separately compiled, then the address might be taken inside the procedure call and 
stored in a globally available variable. In this case the compiler must assume that all addresses that are 
visible to the procedure (or any procedure that it calls) might be taken. 

To handle other cases, the compiler uses a safe approximation to the eventual modifies information. As 
the flow graph is built, the compiler associates a tag with each symbolic memory address encountered. It 
performs value numbering on single blocks as was described during the construction of the flow graph. 

What does it do when it encounters a store operation? If the store operation is to a tag whose address has 
not been taken, then all explicit tags that overlap this one are assumed to be modified and the value­
number information for those tags is invalidated. 

If the store operation is to a tag whose address is taken or is a pointer, then the value numbers for all tags 
that have the same type (assuming the language rules allow it) and involve storage locations whose 
address might have been taken are considered modified. Any tag representing data that overlap the data 
for one of the modified tags is also considered modified. That includes any tag containing data structures 
and fields that overlap a field that is modified. 

Since modification information need only be computed for a single block, the compiler need not worry 
about references in the flow graph that have not been seen yet. The compiler is traversing the block in 
execution order; it need only invalidate references that have already been seen in this single block. Later 
references have not been seen so they do not need to be invalidated. 

6.6 Tags for Heap Allocation Operations

Getting good modification information for data allocated in the heap is hard. The crudest approach to 
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modification information is to assume that all data on the heap might overlap. In other words, the heap is 
handled as if it were C-union with each datum allocated on the heap considered a different alternative. 
This is the typical approach to implementing modification information for heap objects. 

If the source language (such as C) has language rules about type compatibility, then the compiler can do 
better. If the ANSI language rules are in effect and the source language type is not a pointer to a 
character, then a pointer only points to objects of the same type. Hence only objects of the same type can 
overlap. 

A simple device can sometimes do better. Create a separate tag for each allocation instruction (call on 
malloc in C or the new operation in C++). Consider all allocations that occur at that point in the flow 
graph as potentially overlapping and not overlapping others unless later analysis forces the overlap. 
Frequently a programmer will use a single allocation statement to allocate all data that match a particular 
abstract data type. If that is the case, then this device allows the compiler to differentiate this abstract 
data type from other data types, providing better allocation information. 
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6.7 More Complete Modification Information

After building the flow graph and before dominator-based optimization, the compiler builds more precise 
modification information. Before the flow graph was completed, the compiler assumed that all addresses 
of the same data type (and all structures containing them) overlapped unless the compiler knew the 
address in terms of constant offset and size from a fixed area of memory. Now the compiler will try to do 
better by computing the set of tags to which each memory location or temporary can point. 

Definition	 Points-To Set: Consider any tag or temporary X. The set of tags to which X 
can point is the points-to set for X, or PT(X). When X is not used as a pointer, 
PT(X) is not needed. 

PT(X) is flow-insensitive information. There is no indication of the point in the flow graph where this 
information is being used; it is aggregated over the whole flow graph or the whole program. As we will 
see shortly, the information will be more precise if it is computed simultaneously over all of the flow 
graphs for all of the procedures in the program. 

The basic algorithm is simple, so I will describe it first. Then I will adjust the algorithm to take care of 
the problems that we will see in the original description. Initialize all of the sets PT(X) to the empty set, 
Ø. Now scan through the flow graph in either normal form or static single assignment form. Scan 
through the instructions in any order and consider the targets of each instruction. 

The instructions can be divided into multiple classes. The largest class of instructions are those that can 
never be used in an address computation: 

They add nothing to the set PT(X) for each X that is a target. The second class includes the instructions 
that have some unspecified effects such as procedure calls. In this situation the compiler adjusts the 
PT(X) of each tag or temporary that might be modified in the procedure call. When processing a single 
flow graph at a time, this means that the set of all memory locations that might be referenced within the 
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procedure call must be added to each PT(X) for each tag or temporary of the same value type. When 
dealing with all procedures simultaneously, the procedure call can be viewed as a set of copy operations 
from the actual parameters to the formal parameters. Since the algorithm is flow insensitive, the 
processing of these copies together with the later processing of the body of the procedure will correctly 
update all of the PT(X) sets. 

The last set of instructions are the instructions that might be involved in an address computation. This 
includes load and store operations, load constant operations, addition and subtraction of expressions, and 
the register-to-register copy operations. If the instruction is the load of an address constant, then find the 
corresponding tag and add it to the PT(X) for each temporary or tag that is an output of the instruction. If 
it is a register-to-register copy operation, add PT(Y) to PT(X) for the operand of the instruction. If the 
instruction is a load instruction, add PT(tag) to PT(X), where tag is the tag of the memory location and X 
is the output variable. Addition and subtraction can be considered to not change the point for the 
purposes of computing PT(X). 

As usual, the most difficulty occurs with the store operations. Performing a store adds PT(Y) to PT(tag), 
where Y is the operand being stored and tag is the tag for the primary address in the store operation. 
There are two cases in considering the other tags associated with the store. If a tag represents a memory 
location that is aligned in the same manner as the primary tag and is the same size, then PT(Y) can be 
added to PT(tag) also. 

Where is the problem in this algorithm? What the compiler really wants is to merge the final PT(Y) into 
PT(X) if Y is an address operand for an instruction computing an address X. What the algorithm above 
does is merge the current value (at various points in the algorithm) into PT(X). The way to handle this is 
to build a directed graph, which we will call the address graph (the name is not standard). The nodes of 
the address graph are the tags and temporaries in the set of flow graphs being processed, and there is an 
edge from Y to X if Y is an address expression (or tag containing a pointer) used to compute X. Instead of 
scanning the flow graph and updating the PT(X) sets as we go, the compiler scans the instructions, 
inserting the constants and tags representing memory allocation instructions into the corresponding 
PT(X) and building this graph as it goes. 

Given this graph, the collection of PT(X) sets can be computed in one of two ways (your choice). The 
first technique is a work-list algorithm. Place all of the nodes that contain non-empty PT(X) sets on the 
work list. That condition means that the nodes contain constants of memory allocation tags. Then process 
this work list one node at a time. Assume the compiler is processing the element Y. Then PT(Y) is added 
to PT(X) for each of the successors X of Y in the address graph. X is added to the work list if PT(X) 
changes. 

Another way of computing the sets is to compute the strongly connected components of the reverse graph 
of the address graph. Each element X in a strongly connected component has the same value. By 
processing the nodes in reverse postorder on this (reverse) graph and handling a strongly connected 
component as a single node, the PT(X) values can be computed in a depth-first search. 
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6.7.1 An Approximate Algorithm that Takes Less Time and Space

Note that the above algorithm computes PT(X) for each tag and temporary. These sets can overlap; 
however, if we relax the computation to produce a conservative (larger set) result, then we can store the 
PT(X) information in linear space. Just expand the sets to be an equivalence class. This means that if 
PT(Y) is added to PT(X), we simply make X and Y be in the same partition of the equivalence class, and 
the set PT(X) is all of the address constants and memory allocation tags that are in the same set. This 
algorithm has been noted by Steensgaard (1996). 

The PT information can now be implemented using a standard UNION/FIND data structure. When the 
algorithm would copy PT(Y) into PT(X), simply perform the UNION operation to join these two sets and 
make them identical (and thus make one of them larger than necessary). 
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6.8 Including the Effects of Local Expressions

Recall that a tag indicates a memory area and a potential runtime computable offset within the memory 
area. To correctly compute the modifies information, the compiler must take into account these runtime 
computations. In particular, A(I) must be considered modified if I is modified. In other words, a storage 
reference is modified if its address changes. The address will change only when the variable temporaries 
and the temporaries involved in load and store operations within the address expression change. Thus we 
must compute the modifies information for copy operations. The tag representing a memory location is in 
the modifies set of any variable temporary that is a leaf in the expression tree computing the address. 
How does the compiler compute the modifies information for each copy operation? The algorithm here is 
based on one used in the Rice Massive Scalar Compiler Project. 

To compute this information use an auxiliary data structure called DEPENDS. There is one DEPENDS 
set for each temporary. Consider two temporaries, Tand S. The temporary T is in DEPENDS(S) if T is a 
variable temporary that is used to compute S. These sets can be computed by performing a walk of the 
flow graph. Recall that all of the operands of any expression temporary must be computed on all paths 
leading to the occurrence of the instruction computing that temporary. Thus, a depth-first search through 
the flow graph will visit instructions computing the operands before instructions computing S. 

Initialize all of the DEPENDS sets to empty. Perform a depth-first search of the flow graph. When 
processing any instruction computing an expression temporary, make the DEPENDS set of the target be 
the union of the DEPENDS sets for the operands. When processing an instruction that computes a 
variable temporary, make the DEPENDS set of the target be the target itself. When the walk is completed 
all of the DEPENDS sets have been computed. 

Now scan through the set of all tags, considering the address expression portion of the tag. For the sake 
of discussion consider a single tag X with an address expression computed into T. X is in the modifies set 
for each temporary in DEPENDS(T). 

6.9 Small Amount of Flow-Sensitive Information by Optimization
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Later optimization techniques are used to improve the modification information. Consider a particular 
store operation. What memory locations might be changed by this store operation? Clearly all locations 
that are in the same points-to set as the address of the store operation and every location that might 
overlap one of these memory locations. 

During the dominator-based optimizations, a degree of flow-sensitive information can be gained by 
applying the constant propagation algorithm. At that point the flow graph is in static single assignment 
form, so the set of memory locations that might change is attached to the store operation. A variation on 
constant propagation can be used to prune this set of memory locations. 

Consider a language like C. In C, each pointer must point to a particular data structure. The data structure 
may be statically allocated, on the heap, or on the stack, but the pointer cannot move from one data 
structure to another. Here is the idea. Consider an “alternative” value for the address that consists only of 
the largest data area in which the address points. Thus for an array it is the base of the area. If the address 
is not knowable, make the value be bottom (see the constant propagation algorithm, described in Chapter 
8), which indicates that the compiler has no idea what the value is. 

This alternative value has some interesting computational rules. Adding an integer expression to this 
value does not change it. Hence subscripting does not change it. Similarly, subtracting values does not 
change it. Thus, constant propagation can be applied and an “alternative value” determined for each store 
operation. If the alternative value for the address in a STORE is not bottom, then all memory locations 
that do not overlap this value cannot be changed and can be removed from the list of memory locations 
that might change. 

This algorithm is particularly helpful when arrays are involved or in-line functions have been inserted. It 
will replace the translation of arrays to pointers and the copying of pointers by array semantics when 
possible. 

6.9.1 Handling the Pointer from a Heap Allocation Operation

Another flow-sensitive refinement of the modification can be performed on the static single assignment 
form. In this form, each use of a pointer is directly tied to the instruction that computed it. Thus, pointers 
that have been generated by an allocation instruction, such as malloc, can be identified as a walk of the 
flow graph or the dominator tree is performed. What memory locations can a STORE through this 
pointer affect? 

Initially, the store cannot affect any other memory locations because this is new memory. As the walk 
continues, a STORE through this pointer can only affect memory locations associated with locations in 
which this pointer has been stored. This analysis continues until there is a merging of paths in which one 
value comes from one predecessor and another from an alternate predecessor. Of course, in static single 
assignment form this means a new temporary name. 
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Thus a temporary that holds a pointer that is created by a memory allocation operation holds that value 
for its whole lifetime and can only overlap memory addressed by pointers that are copies of this 
temporary. This interpretation is safe in this compiler because the compiler never attempts to move 
instructions when the flow graph is in static single assignment form. 

6.10 References
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Chapter 7 
Static Single Assignment 

Many optimization algorithms need to know the relationships between uses of temporaries (or variables) 
and the points where they are evaluated. Each of the algorithms needs to know either the set of points in 
the flow graph where the value computed by an instruction is used or the set of evaluations whose values 
might be used at this point in the flow graph. The static single assignment (SSA) form is a compact 
representation of these facts.1 

1An alternative technique called USE-DEF chains can also be used. It frequently requires more space and 
time to compute and is harder to incrementally update. 

Definition Static Single Assignment Form: The flow graph is in static single assignment 
form if each temporary is the target in a single instruction. 

The definition of static single assignment is so restrictive that most programs cannot be translated into 
SSA form. Consider the left flow graph in Figure 7.1. There are two assignments to the variable X: one 
outside the loop and one incrementing X inside the loop. There is no way to put X into SSA form without 
the introduction of a new operator. 

To ensure that all program flow graphs can be put in SSA form, another special instruction, called a φ-
node, is added to the definition of static single assignment form. 
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Definition	 φ-node: Consider a block B in the flow graph with predecessors {P1, P2, ..., Pn}, 

where n > 1.A φ-node T0 = φ(T1, T2, ..., Tn) in B is an instruction that gives T0 the 
value that Ti contains on entrance to B if the execution path leading to B traverses 

the block Pi as the predecessor of B on the path. The set of φ-nodes in B is 

denoted by Φ(B). 

Figure 7.1  Graph (left) and SSA Graph Equivalent (right) 

Consider the program flow on the right graph in Figure 7.1. This graph is equivalent to the one on the left 
(it computes the same values) and is in SSA form. The variable X has been replaced by four variables 
(X0, X1, X2, X3) and two φ-nodes that indicate the points in the program reached by multiple definitions of 

X. One of the φ-nodes is at the beginning of the loop because there is a modification of X inside the loop 
and it is initialized outside the loop. The other φ-node occurs at the merge of two paths through the loop, 
where only one path contains a definition of X. 

A flow graph in SSA form is interpreted in the same way as a normal program flow graph, with the 
addition φ-nodes. Consider a path from Entry to exit: 

•  Each normal instruction is evaluated in order, recording the results of each instruction so that 
these values can be used in the evaluation of later instructions on the path. 
•  All φ-nodes at the beginning of a block are evaluated simultaneously on entrance to the block. 
The value of target temporary T0 is Ti if the path came to the φ-node through the ith predecessor 
of the block. 

The next two sections describe the fundamental operations of translating a flow graph into and out of 
static single assignment form. Two areas that are typically overlooked in the literature are emphasized: 
the simultaneous evaluation of φ-nodes at the beginning of a block, and the handling of abnormal edges 
in the flow graph. 

7.1 Creating Static Single Assignment Form

The algorithm for translating the flow graph into static single assignment form treats each temporary 
independently. In fact, one could partially translate the flow graph leaving some temporaries in normal 
form and some in SSA form. This compiler does not. The translation takes place in two steps: 

file:///D|/Convert/Building_an_Optimizing_Compiler/ch07/165-167.html (2 of 3) [10/17/2003 1:05:33 AM] 

javascript:displayWindow('images/07-01.jpg',430,291)
javascript:displayWindow('images/07-01.jpg',430,291)


Building an Optimizing Compiler:Static Single Assignment 

1.  Determine the points in the program where φ-nodes are inserted. In Figure 7.1, there are two 
points. Insert the φ-nodes with the left-hand operand and all right-hand operands being the same 
value. In Figure 7.1, there would be two insertions of the form X = φ(X,X). 
2.  Rename the temporaries so that each instruction and φ-node having X as a target is given a 
new, unique name. 

Where are φ-nodes needed? Consider a single temporary or variable T and a block B. A φ-node is needed 
at the beginning of B if B has multiple predecessors and different definitions of T occur on distinct paths 
going through at least two predecessors. This leads to the definition of converging paths.2 

2Computing these points is not intuitive; thus, we now descend to a theoretical discussion. A more 
intuitive algorithm was used in an earlier form of static single assignment called p-graphs. P-graphs had 
all of the characteristics of static single assignment; however, computing the points for the insertion of the 
birth points was quadratic to the size of the graph, so was not practical in most compilers. 

Definition 
Converging Paths: Two non-null paths, p from B0 to Bn and q from to , 
converge at a block Z if and only if 

; in other words, the paths start at different points 

; in other words, both paths end at Z. 

If then either i = n or j = m; in other words, the only point on the 
paths that is in common is the end point. Note that one of the paths may loop 
through Z and come back to it. 
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If I1 and I2 are assignments to T, then any basic block Z that is the conjunction of two merging paths from 

I1, and I2 will be a point where a φ-node is inserted because two different definitions of T lie on distinct 

paths reaching that point. But one must go further. Z is now a new definition of T because the φ-node has 
been inserted, so now it too must be included in the set of definitions of T and the process of computing 
merge nodes repeated. 

Using the notation of Cytron et al. (1991), one obtains the notation and formula shown in Figure 7.2 for 
the points where φ-nodes need to be inserted for T. The notation is an abstraction of the idea of the 
previous paragraph. The function J1, takes a set of blocks as an argument and returns the set of merge 
points associated with those blocks. However, this process must be repeated with the set of blocks 
together with the merge point giving J2. By the definition of merge points, if the argument J1 is a larger 

set, then the result is larger also. In other words, . Since there is a finite number of 
blocks, there must come a point where Ji(S) = Ji+1(S). This will be true for all larger values of i, so the 
formula represented as an infinite union actually represents the value of Ji(S) where the sets stop 
increasing in size. 

It is too difficult to directly compute the merge points; another formulation is needed. An efficient 
algorithm is based on dominance frontiers. One point before I discuss the algorithm: In forming static 
single assignment form, each temporary is assumed to have an evaluation at Entry. Think of this 
evaluation as the undefined evaluation. It is the evaluation used when no evaluation has really occurred. 
If this evaluation is used as an operand, then the operand has an undefined value. This cannot happen 
with expressions or compiler-generated temporaries. It can happen with user-defined variables stored as 
temporaries. 

Here is the algorithm. Consider two evaluations of T in blocks B and B′. There are three possibilities: 

• B dominates B′. consider a merge point Z for these two blocks. There are disjoint paths from B 
to Z and from B′ to Z. B′ cannot dominate Z because then B′ would be on the path from B to Z, 
contradicting disjointness. 
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Figure 7.2  join Points for Temporary X 

• B′ dominates B. The same argument as above indicates that B cannot dominate Z. 
•  Neither B nor B′ dominates the other. Then a merge point will not be dominated by either of 
them because two distinct paths reach it. 

Thus the merge points have something to do with the blocks that are not dominated by B. In fact, 
consider an evaluation of T in B. Follow any path leaving B until you arrive at a block Z that is not 
dominated by B. By the definition of dominance frontier, Z ∈ DF(B). Z is also a merge point because 
there is a path from B to Z and a path from Entry to Z. There is an implicit evaluation of T in Entry, so Z 
∈ J(S). In other words, we have DF(S) ∈ J+(S). We can apply the same repetitive formation method to 
the dominance frontier, giving the set of equations in Figure 7.3. 

The claim is that DF+(S) = J+(S) if S contains the entry block. We know that by 

repetitively applying the inequality 	 . Noticing that the sequence of dominance 

frontier sets and join sets are each increasing in size, we know that , so we need 
only establish the reverse inclusion. Proving his is a two-step process that is best described in 
mathematical proofs. 

Lemma	 Let p  be a non-null path. Either


 B dominates each node on the path p, including Z, 


Or there is a block B′ ∈ DF+({B}) on the path p that dominates Z. 


Proof	 Since we need to establish one or the other of the conditions, we can assume that the 
first condition is false and establish the second. Assume that there are blocks on the path 
that are not dominated by B. Consider the first block B1 on the path that is not 
dominated by B. Its predecessor is dominated by B, so B1 is in the dominance frontier of 

there are blocks in the iterated dominance frontier of B on the 
path. Let B′ be the last block in DF+(B) on the path as one walks the path from B to Z. 
The claim is that B′ dominates Z. If B′ does not dominate Z, then there is a first block 
following B′ that is not dominated by B′. That block is therefore in the dominance 
frontier of B′, so it is in DF+(B) by the iterative nature of its definition. This is a 
contradiction since B′ was chosen to be the last such block on the path. 

B. Therefore there are blocks in the dominance frontier of B that are on the path. Since 

Figure 7.3  Iterated Dominance Frontier 
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A loose interpretation of this proof is as follows: Start at B. Move down the path until one finds a 
member B1 of the dominance frontier of B. Now do the same thing starting at B1. Continue this process 
until one reaches the end of the path. The last block of this form on the path dominates all the following 
ones. 

Lemma 
Let B ≠ C be two blocks. If there are two paths p:  and q:  that 

converge at Z, then . 

Proof Using the previous lemma twice, choose a block B′ ∈ DF+(B) on p that dominates Z, and 
a block C′ ∈ DF+(C), on q that dominates Z. There are three cases: 

Suppose B′ is on the path q as well as on the path p. By the definition of two paths 
converging, this means that B′ = Z, so Z ∈ DF+ ({B}). 

Suppose C′ is on the path p as well as on the path q. Again by the definition of 
converging paths, this means Z = C′ ∈ DF+ ({C}). 

Suppose that B′ is not on path q and C′ is not on path p. Now B′ dominates Z, which 
is the last block on the path q. Then B′ must dominate the predecessor, Y, of Z on q, 
because if B′ does not dominate Y, a new path between Entry and Z can be formed 
from a path between Entry and Y that does not include B′ and the edge from Y → Z. 
Recall that Y ≠ B′ since B′ is not on q. This argument can be repeated for each block 
on the path q in reverse order so that B′ dominates every block on q. Now apply the 
same argument with C′ and p and one finds that C′ dominates every block on the 
path p. So B′ dominates and is dominated by C′. The only way that this can happen 
is that B′ = C′, which is a contradiction. So this alternative is not possible. 

Now recall the definitions of converging paths and join set J(S). What this lemma shows is that for any 

set S one has . Now consider the concept of iteration we are using to form from 

DF+ and similarly J+ from J. The sequence of sets is a sequence of 
increasing finite sets with an upper bound being all sets in the graph. Thus there is a point in the 
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sequence where the sets no longer increase; in other words, there is a point where DFi = DFi+1. After this 
point the sets will always continue to be the same because the inputs on each iteration are the same as the 
previous iteration. Also note that DF+(DF+(S)) = DF+(S). We have 

We can now compute the points at which to insert the φ-nodes by computing the points in the iterative 
dominance frontier. 

Computing the iterative dominance frontier can be performed using a work-list algorithm, as shown in 
Figure 7.4. We have computed the dominance frontier for each block B earlier. The dominance frontier 
of a set S is just the union of the dominance frontiers of the elements in the set. The iterative dominance 
frontier means that we must include the dominance frontier of any block that we add into the dominance 
frontier. This is done by keeping a work list of blocks that have been added to the dominance frontier but 
which have not been processed to add the elements of their dominance frontiers yet. 

Since the algorithm is stated in an abstract fashion, I include a number of implementation hints here: 

•  The set DF+(S) is written in the algorithm to indicate that it is dependent on S.The compiler will 
use it on one set at a time so the algorithm takes a single set as input and computes a single set as 
output. No indexing is needed. 
•  The only operation performed on the set S is to scan through the elements to initialize both the 
Worklist and DF+(S) sets, so it can be implemented using any technique that allows accessing all 
members in linear time on the size of the set. In this case, the most likely implementation is as a 
linked list. 

Figure 7.4  Iterated Dominance Algorithm 

•  The Worklist is a set in which the operations are adding an element to the set only when it is 
known that the element is not in the set, and taking an arbitrary element from the set. Note in the 

file:///D|/Convert/Building_an_Optimizing_Compiler/ch07/170-172.html (2 of 3) [10/17/2003 1:05:36 AM] 

javascript:displayWindow('images/07-04.jpg',350,346)
javascript:displayWindow('images/07-04.jpg',350,346)


Building an Optimizing Compiler:Static Single Assignment 

algorithm that an element is added to the Worklist at most once because an element can be added 
to the DF+(S) at most once because of the conditional test. The most likely implementation of 
Worklist is as an array implementing a stack. The maximum size of the array is the number of 
blocks in the graph. 
•  The implementation of DF+(S) is more subtle. The operations performed on it are initializing to 
empty, inserting an element, and checking membership. Outside the algorithm, one will need to 
scan through all the elements in the set. Since it is a subset of the blocks in the graph, its 
maximum size is known. The most likely implementation for this set uses the set membership 
algorithm described in Chapter 3. This set algorithm requires that the elements be mapped to a 
sequence of integers, which can be done using any of the numerical orderings we have computed 
for the blocks, such as reverse postorder. 

Now that we know how to compute DF+(S), we can piece together the algorithm for computing the 
places in which to put φ-nodes. The basic algorithm, as shown in Figure 7.5, is simple. Handle each 
temporary or memory location separately. Form the set of all basic blocks that modify the value being 
considered. Compute the iterated dominators and then insert a φ-node at each block that is in the iterated 
dominance frontier. Initially the node inserted has the same left side and operands. In the renaming phase 
coming shortly, these names will be changed so that the program satisfies the SSA form conditions. 
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The algorithm in Figure 7.5 inserts too many φ-nodes. It inserts the minimum number of φ-nodes to 
guarantee that each temporary and variable always has the correct value and the program satisfies the 
SSA form, but many of these φ-nodes will define temporaries that have no uses, so the φ=nodes can be 
eliminated. Consider a temporary T that is defined and used only in one basic block B. The algorithm 
will still insert φ-nodes at the basic blocks in DF+({B}) even though no uses of T occur outside the block. 
These extra nodes can be eliminated by dead-code elimination; however, they take up space in the 
compiler and require time to generate, slowing the compiler down. There are two techniques, shown in 
Figures 7.6 and 7.7, for eliminating some of these nodes. 

Figure 7.5  Basic Algorithm for Inserting φ-Nodes


Figure 7.6  Inserting Nodes for Global Variables 

The first improvement on the basic algorithm is given in Figure 7.6: Do not compute φ-nodes to be 
inserted for temporaries that do not contain information across a block boundary. If the same temporary 
is used in multiple blocks but no information is stored in it at a block boundary, the renaming algorithm 
will change these into multiple temporaries appropriately. 

Figure 7.7  Inserting Fewest Nodes 

Recall that Globals is the set of temporaries that holds a value at the beginning of some block. This is 
still too coarse; φ-nodes will be inserted at blocks where the value will not be used. In other words, φ-
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nodes need only be inserted where the temporary is live. Figure 7.7 shows the modified algorithm that 
computes which blocks have T live and only inserts φ-nodes in these blocks. 

The work-list algorithm for computing Live given in Chapter 4 is well suited for this algorithm. The 
algorithm only processes temporaries in Global and the work-list algorithm can then be applied to the 
small set of temporaries. 

7.2 Renaming the Temporaries

At this point we have an algorithm for insert φ-nodes; however, the variables have not been renamed so 
that there is a single variable name for each definition. We need a consistent renaming of the temporaries 
in the instructions so that the same name is used when a temporary is evaluated and when it is used. 
Consider a temporary T in the original program. After the φ-nodes are inserted, the uses of T can be 
divided into two groups: 

1.  The uses of T that occurred in the original program. All of these uses are dominated by the 
definition that computes the value used. If this were not true, then there would be another path to 
the use that avoids the definition, which would mean that there is a point where separate paths 
from definitions converge between the definition and the use, thus inserting another definition. In 
other words, each use is dominated by an evaluation of T or a φ-node with target T. 
2.  The uses of T in a φ-node. To each such use there is a corresponding predecessor block. This 
predecessor must be dominated by the definition of T for the same reasons that normal uses of T 
are dominated. 

The renaming algorithm thus reduces to a walk of the dominator tree (see Figure 7.8). Each time one sees 
a definition of a temporary, a new name is given to the temporary, and that name replaces all of the uses 
of the temporary that occur in blocks dominated by the definition. After the subtree dominated by the 
definition has been walked, the previous name is restored so that other subtrees can be walked with the 
previous name. Uses of a temporary in φ-nodes handled in the predecessor block. When a block is 
traversed, all of the φ-nodes in each successor are traversed. Uses of a temporary in the operand position 
corresponding to this (predecessor) block are renamed in the same way that normal uses are renamed. 
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Figure 7.8  Basic SSA Renaming Algorithm 

The whole point of static single assignment is to provide concise information about the uses and 
definitions of temporaries, so we need to add attributes to the renaming process that record this 
information. For each temporary there are two attributes, Definition(T) and Uses(T). Definition(T) is the 
single instruction that defines T. Recall that there can be more than one temporary defined by each 
instruction; however, there is only one instruction that defines a particular temporary. 

Uses(T) is the set of instructions that uses T. This is a set that most likely is implemented as a linked list. 
Since each instruction is only visited once during the renaming process, the only way that an instruction 
can be inserted twice into the set is when the same operand is used two or more times in an instruction. I 
choose to let these multiple insertions occur in the set because later a removal of one operand will only 
remove one of the uses. 

The form of NameStack is the implementation issue. NameStack is a collection of stacks, one for each 
temporary. These stacks are implemented as linked lists to avoid excessive storage. The Push operation 
adds an element to the head of the list, and the Pop operation removes an element from the head of the 
list. Top looks at the element at the head of the list. 

If we are being mathematically pure, we should now prove a lemma that the execution of the static single 
assignment form computes the same values on each path through the flow graph as are computed with 
the normal form of the flow graph. The proof is a clerical application of the ideas that we have discussed 
here, carefully checking that the renaming algorithm is accurate to the execution of the flow graph. If you 
are not convinced, then we leave the proof to you. 
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7.3 Translating from SSA to Normal Form

To return the program to normal form involves replacing the φ-nodes by equivalent copy operations. The 
value of a φ-node in B is the value of its first operand if B is entered from the first predecessor, its second 
operand if B is entered from the second operand, and so on. Translation from SSA form to normal form 
thus consists of replacing the φ-nodes by assignments in the predecessor blocks having the same effect, 
as is shown in Figure 7.9. 

Two characteristics of the SSA form make it difficult to translate back to normal form.3 Consider the 
flow graph and the corresponding optimized SSA form in Figure 7.10, where only relevant instructions 
are shown. All φ-nodes are evaluated simultaneously at the beginning of a block. In this example, B is 
also the predecessor and the variables b1 and a1 are both used as operands and assigned values in B. The 
straightforward translation as in the left flow graph of Figure 7.11 destroys b1 before it is used. The 
variables a1 and b1 are used to define one another. A temporary, t, must be created to hold the value of 
one while it is receiving a new value. 

3These problems were communicated to me by Preston Briggs, now of Tera Computer Company, and 
elaborated on by L. Taylor Simpson of Rice University. The example is a combination of two examples 
created by Taylor Simpson. 

Figure 7.9  Translation from SSA Form 

Also, one of the variables may be modified before it is later used on a different path, as shown in Figure 
7.11. In this example u, which is a copy of a1, is used later in the program. It is eliminated by the 
optimizer and replaced by a use of a1. If a1 is assigned a value at the end of B, then the value of a1 will be 
destroyed before its use. But note the following: 
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•  If a B has only one predecessor, then no φ-nodes can occur. 
•  If a predecessor of B only has B as a successor, then there is no possible alternative path out of 
the block. 

Figure 7.10  Normal and Optimized SSA Form


Figure 7.11  Incorrect and Correct Translation 

•  Thus only critical edges can have this problem, so they must be eliminated before translation by 
inserting an empty block in the middle of the edge. Since abnormal critical edges cannot be 
removed, the optimization algorithms using SSA form must ensure that there will be no need to 
insert a block on an abnormal critical edge. 

7.3.1 General Algorithm for Translating from SSA to Normal Form

Given a flow graph (N, E, Entry, Exit) in SSA form and a partition P = {P1, ..., Pr} of the set of all 
temporaries, rewrite the graph in normal form so that any two temporaries T1 and T2 in Pi are given the 

same temporary name and the φ-nodes are replaced by equivalent copy operations. The partition defines 
an equivalence relation on the temporaries. Equivalent temporaries are renamed to a single temporary in 
the normal form. The partition must ensure that a valid program will be generated. In particular, 

•  In each block B, if two equivalent temporaries are targets of φ-nodes, then corresponding 
arguments must be equivalent. 
•  For each abnormal critical edge (C, B), if T0 = φ(T1, ..., Ti, ..., Tm) is a φ-node in B and C is the 
ith predecessor of B, then T0 and Ti must be equivalent. 

In all of the algorithms in this compiler, the partition of the temporaries will be implemented using the 
UNION/FIND algorithm of Tarjan (1975) as found in most data structure textbooks (Aho 1983 and 
Cormen 1990). Initially each temporary is in a partition by itself. Each partition is always represented by 
a single temporary in the partition. FIND takes a temporary as an argument and returns the representative 
temporary for that partition. UNION takes two temporaries, replaces the two partition subsets holding 
those two temporaries by a single partition subset that is the union of the two, and returns the 
representative temporary for the union. 
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Returning to normal form involves two activities: renaming temporaries in ordinary instructions and 
eliminating φ-nodes (see Figure 7.12). Renaming the temporaries in ordinary instructions is a clerical 
problem. The compiler scans through all instructions in all blocks and, using the FIND function, replaces 
each temporary by a unique representative from the subset in the partition containing that temporary. The 
φ-nodes can be eliminated during the same walk of the flow graph in which the temporaries are renamed. 

Assume we are considering the edge (C, B) where C is the ith predecessor of B. We insert copy 
operations into C to simulate the effect of the φ-nodes in Φ(B). At the same time we will rename the 
operands using FIND. The compiler must sort the copy operations so that any copy involving a 
temporary as an operand occurs before the copy involving the same temporary as a destination. 

•  A temporary (or rather the elements of a partition) can be used multiple times as an operand. 
•  If equivalent temporaries are targets of φ-nodes in B, then corresponding operands are 
equivalent. 
•  Some of the copies will be eliminated because the operand and the target are equivalent. 

Figure 7.12  Renaming to Normal Form 
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The compiler must sort the copy operations so that uses of a temporary precede their definitions and 
create temporaries to create copies for mutually dependent temporaries. We describe a graph, R(B), to 
represent these two relationships. 

•  The nodes of the graph are the members of the partition P. There is one node of R(B) for each 
subset in the partition P that contains a temporary occurring in Φ(B). Equivalent temporaries are 
represented by a single member of the partition. 
•  There is an edge from FIND(Tk) → FIND(Tl) if there are temporaries Tk and Tl such that Tk = φ(. 

. .) ∈ Φ(B) with Tl as the ith operand. 

How does this graph describe the problem of ordering the copy operations? Each node in the graph 
corresponds to the representative of a partition element that occurs as the operand or target of some of the 
φ-nodes. Each representative can occur as the target of at most one copy operation. If an ordering is 
found where uses occur before definitions, then the copy operations can be generated in the same order. 
This is a topological sort of the reverse graph. 

Which nodes generate copy operations? In R(B), there is an edge out of a node if and only if there is a 
copy operation. So each node in R(B) with a successor generates a copy operation. The other nodes 
represent temporaries that are used but not defined. 

What about the case in which there are mutually dependent temporaries? Then the graph will have a 
strongly connected region and the topological sort will not succeed. The strongly connected regions must 
be identified and extra temporaries must be introduced to simulate simultaneous assignment. 

The strongly connected regions have a special form because there is at most one edge leaving each node. 
Look at the definition of an edge; only the ith operand counts, and there can only be one assignment to 
any temporary in a subset in the partition. If equivalent temporaries are assigned, then the operands must 
be equivalent. So there can be at most one edge leaving a node in R(B). These two characteristics imply 
that the strongly connected region has the following characteristics: 

•  A strongly connected region is a simple cycle. There is a path from any member of the region to 
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any other member. Start at one of the nodes. Since there is only one edge out, there is only one 
way to leave the node. As you walk from node to node, there are no choices. Eventually you must 
get to the other node. If you keep walking from node to node, you will eventually get back to the 
original node. You have a simple cycle. 
•  The strongly connected region may have multiple predecessors outside the region, but it can 
have no successors outside the region. The reasoning is the same as before. Since there is only one 
edge out of each node and the strongly connected region is a cycle, there is no way to get to any 
successors. 

This makes the algorithm simpler. We can use the standard strongly connected region algorithm4to 
identify a reverse postorder for topological sorting and identify the strongly connected regions. Each 
strongly connected region can be translated as follows: 

4Actually there are two related but distinct algorithms. Either one can be used. The one here is in most 
modern textbooks. The original algorithm is by Tarjan (1972). 

1.  Enumerate the loop in some order where each successive node is a successor of the previous 
one and the first node is a successor of the last. This can be performed during a depth-first search. 
2.  Generate one extra temporary, T. 
3.  Generate an instruction to copy the temporary representing the first node into T. 
4.  Translate all of the other nodes except the last one as is done for the topologically sorted 
nodes. 
5.  Generate an instruction to copy T into the temporary corresponding to the final node. 

Figure 7.13  Mutually Dependent Temporaries 

Because this algorithm is complex, let’s give an example. Consider four temporaries T1, T2, T3, and T4, 

which are the nodes in a cycle representing a strongly connected region, as in Figure 7.13. The original φ-
nodes are shown on the left side, the resulting copy operations occur in the middle column, and the graph 
representing the copy operations is on the right. An extra temporary. T0 is generated to hold the value of 
T1 while all of the nodes are processed. It is the value used to copy into T4 at the end. 

Now that we have all of the principles, it is time to create the algorithm, as shown in Figure 7.14. It 
involves two parts. The first part creates the directed graph representing the temporaries and is shown in 
Figure 7.15. Most compiler optimizations attempt to avoid copy operations in the normal form of the 
flow graph by defining the partition so that both right and left sides of a copy are in the same partition. 
The algorithm makes special provision to eliminate these extraneous copies. 
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The graph is represented by a set of nodes called NodeSet and two temporary attributes called 
ELIM_PREDECESSORS and ELIM_SUCCESSORS, representing the predecessors successors in the 
directed graph. NodeSet is implemented using Briggs set algorithm because we need to be able to 
efficiently scan the nodes, check for membership, and insert a node. The predecessors and successors can 
be implemented using either linked lists or arrays simulating linked lists. I recommend the latter or the 
use of some collection-based memory allocation method because these data structures are very temporary. 

The second part of the algorithm implements the topological sort and identifications of strongly connected 
regions. These can be done in one algorithm. The topological sort can be performed by pushing each node 
on a stack after all of its successors have been walked in a depth-first search. The first element in the 
topological order is on top of the stack, the second element is next on the stack, and so on. Hence the 
order can be found by listing the elements in the order in which they are removed from this stack. 

Figure 7.14  Converting Edge to Normal Form 

The strongly connected regions can be identified using the same stack. Before popping an element off the 
stack, perform a depth-first search using the predecessors rather than the successors of a node. Do not 
visit any node more than once in this predecessor walk. All of the unvisited nodes reached by this depth­
first search of the predecessors are the elements of the strongly connected region containing the 
predecessor. The algorithm in Figure 7.16 is a transcription of this algorithm (Cormen, Leiserson, and 
Rivest 1990). 

There are three different possibilities when creating the copy to represent a node. If the node has no 
successor, then there is no copy operation and the node can be ignored. If the node has no unvisited 
predecessor, then it is a single node that is not in a strongly connected region, so the copy operation can 
be generated where the operand is the successor in the graph and the target is the current node. 
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Figure 7.15  Building the Auxiliary Graph R(B) 

The third possibility is a strongly connected region. In that case, perform a depth-first walk using the 
predecessors until you get back to the current node (see Figure 7.16). Since a strongly connected region is 
known to be a cycle, this will describe the whole strongly connected region. Before starting the walk 
create a temporary to hold the value of the first node. Then generate all of the copies except the last after 
one has completely visited a node (and its predecessors). This will force the copies to be generated in 
topologically sorted order. The last copy uses the value held in the newly created temporary as its 
operand. Note that the node at the head of the cycle is not officially visited until the end of the depth-first 
walk. This forces the copy with the head as target to be generated first. 

As you will see in the following example, the additional temporary can be avoided if there is a 
predecessor to the head. That temporary already holds the value of the target of the first copy instruction 
and can be used in place of the generated temporary. The algorithm in Figure 7.16 does not include this 
optimization to make the algorithm clearer; the implementor should include it. 

To see how the algorithm works, apply it to the set of φ-nodes in Figure 7.17. The φ-nodes are in the left 
column, with the corresponding auxiliary graph on the right side. Since there is no order among φ-nodes, 
the order of the nodes has been jumbled. Rather than using for temporaries involving a subscripted capital 
T, normal letters are used for distinct temporaries to make the graph easier to read. 

Figure 7.16  Computing Cycle of Temporaries 

The results for this example are given in Figure 7.18. The stack generated by the first pass is given in the 
right column and the generated copies are given in the left. Recall that most edges will not generate any 
copies at all because the algorithms will eliminate them. This particular example was created to show as 
much about the algorithm as possible. Note that H is not the target of a copy since it has no successor. 
Also note that the new temporary U is not needed since E already holds that value. 
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Figure 7.17  Example Graph for an Edge 

Figure 7.18  Results and Stack for Copy Generation 
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Chapter 8 
Dominator-Based Optimization 

The compiler now begins global optimization. Global optimization is divided into four components: 
VALUE, DEPEND, RESHAPE, and MOTION, executed in order (Figure 8.1). VALUE simulates the 
execution of the flow graph. If it can determine that the value or structure of an expression can be 
simplified, it replaces the expression with a simpler form. DEPEND performs loop restructuring using 
dependence-based optimizations. It relies on the simplifications performed by VALUE to make 
dependence analysis more accurate. After loop transformations have been performed, the RESHAPE 
phase is performed. RESHAPE includes all of the transformations in VALUE together with expression 
reshaping and strength reduction. RESHAPE prepares for the code motion performed in MOTION. 
MOTION performs code motion, including moving loads and stores to complete the global optimization 
portion of the compiler. 

This chapter describes the VALUE and RESHAPE phases of the optimizer. VALUE limits its 
transformations so that DEPEND can operate more effectively. It does not do code motion, because the 
loop structure may change dramatically in DEPEND, and it does not do strength reduction, because 
DEPEND relies on the original form of expressions for analyzing subscripts. 

RESHAPE includes all of VALUE. It adds strength reduction to modify multiplications in loops to 
repeated additions. It also applies the distributive and associative laws of arithmetic to integer operations. 
Several other simplifications are added to improve the flow graph as it is prepared for code motion. 

VALUE performs the following transformations. Using the technique of static single assignment (SSA), 
they are inexpensive and suprisingly effective. 

•  The compiler can eliminate globally redundant expressions when there is an instance of the 
expression in a dominator block. This eliminates many of the redundant expressions in the 
procedure; however, it does not perform code motion. Later, the compiler uses a technique called 
elimination of partial redundancies to do code motion. 
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Figure 8.1  Structure of Global Optimizer 

•  The compiler performs global constant propagation and constant folding. This is performed in 
two ways. Initially the compiler performs some constant propagation during the construction of 
the SSA form at the same time that globally redundant expressions are eliminated. Later a full 
global constant propagation algorithm is performed. For dependence-based optimizations, it is 
vital that constants are propagated as thoroughly as possible. 
•  The compiler can perform transformations that are dependent on the branches previously taken 
in the procedure. During the construction of the SSA form, the compiler maintains a data structure 
representing knowledge concerning which branches have been taken. Using this information, the 
compiler can use the results of relational tests to simplify the program. For example, if a previous 
computation performed the same comparison and took the TRUE branch then this branch will 
also take the TRUE branch and thus part of the code may be eliminated. 
•  Dead code is eliminated. Instructions are dead if their evaluation does not contribute to any 
value seen outside the procedure being compiled. 

After dependence-based transformations have been applied, two further dominator-based transformations 
are applied to prepare the program for partial redundancy elimination: 

•  The compiler performs strength reduction. The compiler must identify the variables that are 
incremented by a fixed amount each time through a loop. This information is then used to 
simplify expensive computations(such as integer multiply) within a loop by replacing the 
multiplication with an integer addition and updating the value from a previous time through the 
loop. 
•  The compiler reshapes integer expressions using the associative and distributive laws of 
arithmetic to divide an expression into parts that are unchanging in each of the enclosing loops, 
allowing the later code motion algorithms to move more expressions out of loops. 
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8.1 Adding Optimizations to the Renaming Process

During construction of the static single assignment form, the renaming algorithm is easily adapted to 
include redundant expression elimination, peephole optimization, constant propagation, and expression 
simplification. Consider two distinct evaluations of T * R in blocks B and B′, where B dominates B′. In 
static single assignment form, the two evaluations will compute the same value if the operands have the 
same name. So redundant expression elimination reduces to a table lookup problem. 

Why can these transformations be performed during the renaming process? If one evaluation of T * R 
dominates all other evaluations of the same expression with no modifications of either T or R in between, 
then all of the other evaluations can be eliminated. Conversely, if an occurrence of T * R is redundant, to 
be eliminated in favor of a single evaluation of T * R this earlier occurrence must dominate the 
occurrence being eliminated. Otherwise, there would be a path from the start block to the occurrence that 
avoided the remaining occurrence of the expression. 

Redundant expressions can thus be eliminated by performing a walk of the dominator tree looking for 
multiple occurrences of each expression. When the flow graph is in SSA form, the compiler need only 
look for identical expressions because the modification of an operand will be recorded by using a 
completely different temporary. The compiler can maintain a table of the expressions that have occurred 
on the path through the dominator tree from the start block to the current block. If the next expression is 
already in that table, then the expression is redundant. When an expression is redundant, do not give the 
target operand a new name; instead, give it the name of the target of the instruction that is already in the 
table. 

This table has the same characteristics as the available-expression table used during value numbering. 
Algebraic identities and value numbering can be incorporated in the same way that they were 
incorporated in the value-numbering algorithm for single blocks. The operations required of this table are 
as follows: 

Initialization: Initialize the available-expression table to have no entries. 

Start Block: Begin a basic block. Remember the set of entries currently in the available-
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expression table so that the entries added during this block can be removed later. 
End Block: Restore the available-expression table to the state that it was in when the current 
block was entered. 
Find: Given an instruction I in the flow graph, look up I in the available-expression table using 
only the operator and operands. Insert I in the table if a matching entry is not already there. Return 
an indication of whether I was already in the table. 
Insert: Insert an expression in the available-expression table even though it is not in the flow 
graph. This is used to record added information that can be deduced during the dominator tree 
walk. For example, if a conditional branch tests whether T = 0, then the compiler can record that T 
has the value 0 on one of the alternative branches. 
Finalization: Eliminate all storage reserved for the available-expression table. 

The available-expression table can be implemented using data structures similar to a scope-based symbol 
table. It can be viewed as a stack: Elements are pushed onto the stack if they are not already there. The 
stack is searched from the top of the stack down. Elements are popped off the stack when a block is 
completed. Of course, the data structure used will be more complex, using a chain-linked hash table to 
speed up the searches and an auxiliary array to keep track of the elements in each block on the path from 
the start block to the current block. See the description of symbol tables in McKeeman (1974). 

Given the structure of the available-expression table, the full algorithm can be given in Figure 8.2. Each 
instruction is handled by first renaming its operands. Then any algebraic simplifications are incorporated. 
Finally, the instruction is entered in the available-expression table and given a new name if it is not in the 
table already. 

If the algebraic simplifications lead to the replacement of conditional branches by unconditional 
branches, do not update the dominator tree: This would lead to an iterative algorithm. However, the 
replacement of a conditional branch by an unconditional branch may eliminate φ-nodes in blocks that 
have not been processed yet. 
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Figure 8.2  Renaming with Optimization 
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8.2 Storing Information as well as Optimizations

The stack nature of the data structures used during SSA creation invite the recording of other 
information, such as the branches taken in the dominators and why. This information can be used to 
simplify the program flow graph. Particularly with nested DO loops, the zero-trip test for the outer loop 
may be the same as in an inner loop. 

The algorithm can be modified to store this information also. Consider the point in the renaming 
algorithm where the children in the dominator tree are visited. Consider a block C with the following 
characteristics: 

B is the direct dominator of C. 

B is a direct predecessor of C in the flow graph. 

Every other predecessor of C is dominated by C. 


In this case the only way into C is through B. Look at the conditional expression controlling the branch 
from B to C, Perform the following insertions into the available-expression table: 

•  When the conditional expression has the form T = constant, where constant is a constant and C 
is the destination when the condition is true, enter the expression T in the available-expression 
table with the same name as the constant. The renaming process will now perform constant 
folding on the blocks dominated by C. Follow the same procedure if the conditional expression 
has the form T ≠ constant and C is the destination when the condition is false. 
•  If C is the destination when the conditional expression is true, enter the conditional expression 
in the available-expression table with the same name as the name for the constant true. 
•  If C is the destination when the conditional expression is false, enter the conditional expression 
in the available-expression table with the same name as the name for the constant false. 

Now the normal available-expression processing, constant folding, and identities processing will simplify 
the algorithm. Consider the example described earlier of two nested loops iterating over a square matrix, 
as shown in Figure 8.3. The code is written in C, mimicking the code that a front end will generate for a 
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Fortran DO loop or a C for loop. The test for zero iterations of the loop is made explicit so that code 
motion out of loops can be done. The constant propagation modifies the test for the zero-iteration case to 
test n against 0. The occurrence of two tests of n against 0 is simplified by eliminating the second one—it 
is known that the value is true at that point by the information stored in the available-expression table. 

Figure 8.3  Eliminating a Conditional 

The same information can be used to simplify range checks or checks for pointers being null. Although 
more complex methods can get better results, these tests are a good preamble to the more complex 
solutions since most cases are eliminated here. 

8.3 Constant Propagation

Now that the flow graph is in SSA form, the compiler will perform constant propagation; in other words, 
it will determine the temporaries that hold a constant value through all possible executions of the flow 
graph and determine the value of the constant. Some of this has already occurred. The dominator-based 
value-numbering algorithm performed constant propagation when there was a single load of the constant 
and all of the uses were dominated by the single load. We must now address the problem of multiple 
loads of constants (Wegman and Zadeck 1985). 

Ideally, the compiler simulates all possible executions of the flow graph and observes the temporaries 
that are constants. Of course this is impractical, so an approximation to this simulation must be created 
that can be implemented efficiently. What can the compiler do at compile time? 

•  If the single definition that defines the temporary is a load constant instruction, the compiler 
knows that the temporary holds that constant. 
•  If all of the operands of a φ-node are the same constant, the compiler can deduce that the value 
of the target temporary is the same constant. 
•  If all of the operands of an instruction are constants or an algebraic identity applies that 
indicates that a constant value results, then the target temporary is a constant. 
•  If the compiler can determine that certain paths are not possible because of other constants 
occurring in branching instructions, the compiler can ignore those paths. 

The processing of φ-nodes presents the only difficulty. If the compiler has processed all of the 
predecessor blocks before processing a block that contains a φ-node, then the compiler knows whether all 
of the operands of the node are the same constant so that the target temporary can be described as 
constant or not. This order is not possible with loops. One of the predecessors cannot be processed before 
processing other blocks in the loop. 
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The compiler can make one of two choices when a φ-node is found for which all predecessors have not 
been processed. It can either assume that the node is not a constant (the pessimistic choice) or it can 
ignore that predecessor and make the determination using the other operands (the optimistic choice) with 
the understanding that the compiler must come back later and make sure that the additional operand does 
not violate the optimistic assumption made. During earlier dominator-based value numbering, the 
compiler made the pessimistic choice. Here the compiler makes the optimistic choice because it will find 
more opportunities for identifying constants. 
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8.3.1 Representing Arithmetic

While simulating the execution, the compiler will assign some symbolic value to each temporary. There 
are only three classes of values that the compiler records: undefined values, known constant values, and 
nonconstant values. The compiler adds an attribute value to each temporary to record the simulated value 
in this extended set of numbers. The arithmetic system includes the following members: 

•  A single element called undefined, TOP, or . This value represents the value of a temporary 
when no value has yet been assigned to it. 
•  A member for each constant representable in the target machine. We will use this most often for 
integer constants; however, it can be applied to floating or double-precision constants just as well. 
•  A single element called varying, BOTTOM, or ⊥ This element represents the value of a 
temporary that the compiler has determined might not be a constant. 

The values for the attribute value should be implemented as a variant record, union, or derived class. One 
field, which we will call kind, holds which kind of element this particular value is. The entry for 
constants will hold an additional field indicating the particular constant. 

One important characteristic of this arithmetic system is that the value attribute of each temporary can 

, indicating that they are undefined. As the algorithm progresses it will either mark a temporary as 
having a constant value or ⊥, indicating that it has a varying value. Later the compiler may determine 
that what it thought was a constant was really varying, so it will change a particular constant value to ⊥. 
Once a value becomes ⊥, is never changed back to a constant value. Once a value is defined, it can never 

only change twice. All of the temporaries except the formal parameters are initialized to have the value 

become undefined. Therefore, the maximum sequence of values that a temporary can take is , constant, 
⊥. 

8.3.2 Simulating the Arithmetic

The compiler needs a function to evaluate the effect of each instruction given the values of the operands 
in this extended arithmetic system, namely, CP_EVALUATE, which takes an instruction as an argument 
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and updates the value of the target temporaries. It returns a Boolean value indicating whether any of the 
target temporaries has changed value. 

CP_EVALUATE has a simple structure: It is one large switch or case statement with one entry for each 
opcode. The code for each opcode computes the effect of the instruction on each of the target temporaries 
and returns the value true if any of them changes value. 

What are the arithmetic rules in this extended arithmetic? If you think of as undefined and ⊥ as 
varying, then the rules are what you would expect. Consider the addition table in Figure 8.4. For two 
constant values the arithmetic is target-machine arithmetic. If one of the operands is undefined, then the 
whole value is undefined. If one of the operands has a varying value, then the whole addition has a 
varying value. The only surprise is that an undefined added to a varying temporary could immediately be 
declared a varying temporary. This is not done here so that the rules will match the rules for 
multiplication, where the distinction is important. 

Figure 8.4  Rules for Addition 

For multiplication and the logical operators, algebraic identities can be incorporated. Since 0 * X = 0, one 
operand of a multiplication can be a varying temporary and a constant value can result, as long as the 
other operand is zero. The rules for multiplication (and the logical operators) must be extended to encode 
this as shown in Figure 8.5. 

An undefined value times something else must give an undefined value. If undefined times a varying 

and later discovered to be varying, the sequence of values for the target temporary would be 

temporary were encoded as a varying temporary, then when the undefined value was discovered to be 0 

, ⊥, 0, ⊥. 
The condition that the values can only change twice would therefore not be satisfied. The restriction does 
not cause any problems because any temporary that is evaluated in some execution of the flow graph will 
eventually change the undefined value to one of the other members of the arithmetic system. 

Figure 8.5  Rules for Multiplication


Figure 8.6  Rules for joins 

What is the arithmetic of φ-nodes? This is where the optimistic view of constant propagation occurs in 

the algorithm. Any arguments that are undefined or are ignored in computing the value of a φ-node. 
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•  If any of the remaining arguments has value ⊥, then the value of the φ-node is ⊥. 
•  If any two arguments of the φ-node are distinct constants, then the value of the φ-node is ⊥. 
•  If there is at least one constant operand and the previous conditions are met, then the value of 
the φ-node is that constant. 
•  Otherwise, all arguments of the φ-node are undefined, so the value of the φ-node is undefined. 

For example, consider a block B with two predecessors and a φ-node in that block. If all of the operands 
have the same value, then that is the value of the target temporary. If two of the operands have different 

defined values (not ), then the target temporary must be a varying temporary, i.e., ⊥. When one of the 

operands has value we make the most optimistic assumptiont—that it will later have the same value as 
one of the other operands. This gives the arithmetic table in Figure 8.6, which uses the C language’s 
condition expression operator to indicate that the value is ⊥ if the two constants are different. 
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8.3.3 Simulating Conditional Branches

Many programs are parameterized by constants that are set at compile time or fed as specific constant 
formal parameters at run time to choose one of several alternative operations within a procedure. This 
happens particularly when procedures have been inlined and some of the actual parameters were 
constants. The constant propagation algorithm needs to take advantage of this and eliminate the code that 
cannot be executed. To this end, we describe a set of rules for conditional branches, and jump-table 
instructions that will simulate the effect of the destinations of only the branches that the compiler can 
determine might be executed. 

Initially all temporaries are given an undefined value, . If the argument to a conditional branch is 
undefined, it indicates that no possible paths out of this instruction are yet known, so the compiler will 
stop evaluating instructions at this point. 

If the temporary involved in a conditional branch is ⊥, then any possible destination of the branch is 
assumed to be executable, so both the true and false alternatives are simulated. For jump tables, all of the 
destinations are simulated. 

If the temporary involved in a conditional branch is a constant, then that constant is used to determine 
which single destination is known to be possible. This destination is included in the simulation. 

8.3.4 Simulating the Flow Graph

The compiler uses a simplified technique for simulating the flow graph. Instead of following each 
possible path through the graph (an impossible task, since some paths are arbitrarily long), the compiler 
uses the fact that a temporary can only change its value twice. Thus the compiler need only compute the 
effect of a temporary changing value, and that temporary can only change the effects of the instructions 
where the target temporaries are used. 

These conditions suggest a work-list algorithm. When the compiler knows that an instruction can be 
executed on some path, it need not keep track of all of the paths. Instead it need only simulate the 
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instruction when one of its operands changes. Since each operand can only change twice, the instruction 
will be simulated 2n times, where n is the number of operands. 

How does the compiler know when an instruction may be executed? When a block is executed, some of 
the successor blocks will be executed, depending on the value of the temporary controlling the 
conditional branch. An unconditional branch with an implicit true for the value of the branching 
condition will be executed. Since one conditional branch can introduce multiple possible destination 
blocks, a work-list algorithm is again suggested. So we have two work lists: one for the instructions 
needing reexecution and another for blocks that have become executable. The algorithm for the two 
combined work-list algorithms is given later. The algorithm uses the following data structures: 

BlockList is a work list of blocks. A block enters the list whenever it is possible that the block 
might be executed, that is, each time the conditional branch in one of its predecessors indicates 
that this block has become executable. 

Visit is the set of blocks that have been visited. The algorithm initializes this set to empty, inserts 
blocks, and checks for membership. The Briggs set algorithm is probably the best; however, it is 
overkill. A bit vector can be used also. 

executable is an attribute added to each edge. The attribute has the value true when the edge is 
known to be executable under some circumstances. It is used to determine the value of φ-nodes, 
since some instructions in nonexecutable blocks may have been given constant values even 
though they are not executable. 

WorkList contains the set of instructions that need reevaluation. It has the same operations as 
BlockList, so it too should use the Briggs set algorithm. 

Before looking at the driver procedure that implements the work-list algorithms, let’s first look at the 
support routines. CP_Instruction (Figure 8.7) is called whenever an instruction needs reevaluation. It 
uses the CP_Evaluate procedure that we discussed earlier. The instructions that have a value are 
computed, and if the value has changed, then each of the uses of the resulting temporaries is marked for 
reevaluation by putting them on the work list. 

Figure 8.7  Simulating an Instruction 

Conditional branching instructions are checked to see if more destinations can now be reached. The 
algorithm computes the change using the attribute executable. If the attribute is already true, then the 
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block has already been on the work list so it need not be entered again. The attribute is set to true and the 
destination entered in the work list for all executable blocks that previously had the false attribute. 

The current possible destinations for a branching instruction are as follows. If the controlling temporary 

has value , there are no destinations. If the controlling temporary is a constant, then it is the 
corresponding destination for that constant. If the controlling temporary is a varying temporary with 
value ⊥, then all destinations are possible. 
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Simulating the execution of the block is shown in Figure 8.8. Each block is simulated again when one of 
its predecessor edges becomes executable. This changes the values of the φ-nodes. In fact, this change of 
the values of φ-nodes is the only reason that the instructions cannot be evaluated just once in an order in 
which the operands are evaluated before the instruction with the operands (reverse postorder, for 
instance). When a new edge is present, a new operand becomes relevant in each φ-node. 

The first time a block is processed, all of the other instructions in the block are evaluated. After that the 
reprocessing of instructions will be driven by the reprocessing of the instructions to evaluate their 
operands. 

The initialization code is shown in Figure 8.9. All of the sets are initialized to empty, all edges are 
initialized to not executable, and all temporaries are initialized to have an undefined value. The formal 
parameters need to take a different value. If a formal parameter is known to be a constant because 
interprocedural analysis has indicated that the same value is passed in all procedure calls within this 
program, then the formal parameter is initialized to have that constant value. Otherwise it is initialized to 
indicate that it has a defined but unknown value, that is, it is initialized to ⊥. 

Figure 8.8  Simulating a Block 

Figure 8.9  Initialization of Constant Propagation 
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To start the whole algorithm, the entry block Entry is placed on the work list for blocks. There are φ-
nodes in Entry; however, it will force the evaluation of the instructions in the block and cascade through 
all of the other blocks as the work-list algorithm progresses. 

The algorithms are designed to avoid evaluating instructions until the instruction is known to be 
executable. This cannot be done because the instructions are put on the instruction work list as soon as an 
operand changes whether it is in a block that is executable or not. The only place that this can have an 
effect is in φ-nodes. The φ-nodes are the collectors of values when there is a merge of control flow. 

Figure 8.10  Main Constant Propagation Procedure 

The complete constant propagation algorithm is combined in Figure 8.10. The complexity comes from 
the existence of two independent work lists. The algorithm completes when both are empty: No more 
instructions are changing values, and no more blocks are becoming executable. This algorithm is 
implemented as nested loops, although it could be implemented as one loop with conditional statements. 
This choice was made because it is expected that many more instructions will be reevaluated than edges 
made executable. 

The constant propagation algorithm does not change the flow graph—it computes information about the 
flow graph. The compiler now uses this information to improve the graph in the following ways: 

•  The instructions corresponding to temporaries that evaluate as constants are modified to be load 
constant instructions. 
•  An edge that has not become executable is eliminated, and the conditional branching instruction 
representing that edge is modified to be a simpler instruction. The φ-nodes at the head of the edge 
are modified to have one less operand. 
•  Blocks that become unreachable are eliminated. 

8.3.5 Other Uses of the Constant Propagation Algorithm

The basic constant propagation algorithm can be used in different ways by reinterpreting the ideas of 
arithmetic. We will see shortly that the algorithm is used to identify induction variables. Here we will 
describe how to use the algorithm to eliminate redundant checks for null points and to refine the alias 
information provided by the static alias analysis component of the compiler. 

Eliminating Null Pointer Checks 
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The compiler may not know the exact address; however, it can sometimes determine when a pointer is 
null. Consider a temporary that can hold a pointer or a null pointer. Pretend that there are four elements 

in the arithmetic: and ⊥ as before, and true (when the pointer is not null) and false (when the pointer is 
null). 

•  A copy operation gives the target temporary the same value as the source temporary. 
•  An instruction that checks for a null pointer and traps has as its output the value true. If the 
operand was a null pointer, the instruction would have aborted the program. 
•  An instruction that uses this contrived temporary to load a value has as an output the indication 
that this temporary is not null. This involves the creation of a new temporary and updating the 
flow graph since the compiler is working in SSA form. 
•  The flow graph is slightly modified. At a branch that checks for a null pointer, a new instruction 
with this temporary as target is inserted on the branching, indicating that the temporary is not null. 
The instruction simply records that the temporary has value “not a null pointer.” 
•  All other temporaries have value ⊥. 

The constant propagation algorithm can now be applied to this contrived arithmetic. At the instructions 
where this contrived temporary is used, one can check the value to see the character of this temporary as 
a pointer. If one is executing one of the null-pointer test instructions and the value of the operand is “not 
a null pointer,” then the test can be eliminated. 

What we have done is interpreted a different idea as a system of arithmetic and applied the same constant 
propagation algorithm. 

Alias Analysis Information 

The alias analysis information can be improved by constant propagation in languages such as C where 
pointers can be created to any data structure and pointers can be incremented within a data structure. 

Associate with each data structure a “tag” naming the data structure. Pretend that each load of an address 
constant gives a temporary that tag as a value. Normal arithmetic operations such as addition and 

, the set of tags, and ⊥. 

subtraction take the same tag as one of the operands. Now we can define an arithmetic system containing 

Constant propagation can now be applied giving each temporary a tag or ⊥. The temporaries that have a 
tag value represent pointers into the data structure with that tag. A store through that temporary cannot 
modify the value in memory for any other region. 
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8.4 Computing Loop-Invariant Temporaries

The compiler is preparing for loop strength reduction: replacing certain multiplication operations by 
repeated additions.1 This will involve three different operations. First the compiler must compute the 
temporaries that do not change in a loop. Second, the compiler will compute the set of induction 
temporaries: those that vary regularly in a loop. Finally, the compiler will restructure the expressions in 
the loop to increase the number of expressions that are loop invariant and replace multiplication of 
induction variables with loop-invariant expressions by a repeated addition. 

1There are two different uses of the term strength reduction in compiler literature. One use is the 
replacement of a multiplication by a power of two by a shift or replacing the multiplication by a constant 
by a collection of shift and add operations. I am using the term to refer to replacing multiplication of a 
regularly varying temporary by a constant in a loop with an addition. 

Definition Loop Invariant: A temporary T is a loop invariant in the loop L if it is either 
not computed in the loop or its operands are loop invariants.2 

2This definition is used by Markstein, Markstein, and Zadeck in the ACM book on optimization that has 
yet to be published (Wegman et al. forthcoming). 

The definition is worded in this fashion to handle the case of loop-invariant temporaries that require 
multiple instructions to compute. If a temporary T represents the computation (X + Y) * Z, then it takes 
two instructions to compute T. If the definition specified that T is loop invariant if its operands are 
evaluated outside of L, then this expression would not be loop invariant because X + Y would be 
evaluated inside the loop. A loop-invariant temporary is one in which the leaves of the corresponding 
expression tree are not evaluated in the loop. 
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The immediate reaction is to remove loop-invariant instructions from the loop. If they always evaluate to 
the same value, compute them outside the loop. However, doing so is not safe. A temporary (and its 
corresponding instruction) is loop invariant irrespective of where it occurs in the loop. It may occur in a 
conditional statement. Later optimizations will take care of that. The compiler only needs to know what 
is loop invariant and what is not. 

To record the loop-invariant information, we add an attribute to the temporary T called variant(T), which 
contains the innermost loop in the loop tree in Which T is not loop invariant. If T is invariant in every 
loop, then variant(T) is the root of the loop tree. If T is not invariant in any loop, then variant(T) is null. 
Recall that this is all being performed on the SSA form of the flow graph, so there is a single definition 
for each temporary and that definition dominates the uses in instructions. 

Before describing the algorithm, let’s consider each class of instructions and determine the meaning of 
loop invariance for each: 

•  Consider a φ-node T0 = φ(T1, . . . , Tn). To determine that T0 has the same value each time 
through a loop, the compiler must know the innermost loop in which each of the operands is 
invariant and know which block branches to the block containing the φ-node. The second 
condition is impractical to compute, so the compiler will assume that variant(T0 = φ(T1, . . . , Tn)) 
is the innermost loop containing it. 
•  For an instruction that is a pure function, such as addition, multiplication, or disjunction, the 
instruction varies in the innermost loop in which one of the operands varies. 
•  A copy operation is a pure function in this situation, so the target is variant in the same 
containing loop in which the operand is variant. 
•  A LOAD instruction varies on the innermost loop in which a store operation might modify the 
same location (that is, the same tag). 

The compiler needs an auxiliary function that gives the nearest common ancestor of two nodes of a tree, 
in this case the loop tree. The algorithm is simple: If either node is an ancestor of the other, then that 
node is the result. Otherwise choose one of the nodes and start walking toward the root until a node that 
is an ancestor to (or equal to) the other is found. The algorithm uses the preorder/postorder number test to 
check if one loop is an ancestor of the other. This check runs in constant time. The algorithm is given in 
Figure 8.11. The initial test for L2 being an ancestor of L1 is unnecessary for correct operation of the 
algorithm, but is included for efficiency. 

Figure 8.11  Finding the Nearest Ancestor in a Tree 

If it does not improve the performance of the procedure then it should be removed. 
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For each instruction, the compiler computes the innermost loop in which the computation varies: a direct 
encoding of the conditions for the varying of any temporary. This algorithm is shown in Figure 8.12. The 
algorithm processes a block by first processing the φ-nodes in the block. The target temporaries are 
modified in the block and hence are varying in the innermost loop. The other temporaries are processed 
by looking at each of the operands. Find the innermost common loop for the current block B and the 
point of definition of the operand. Compare this value with the partially computed innermost varying 
loop for this instruction, held in Varying. If the operand is modified in a more inner loop this becomes 
the loop in which the instruction varies. After computing the results of all operands, the targets are given 
this innermost loop on which all of their operands depend. 

Figure 8.12  Computing Nested Varying Loop 

Recall that static single assignment means that each temporary has a single instruction that evaluates it. It 
does not mean that each instruction has only one output. In fact, STORE instructions may be viewed as 
having multiple outputs. 

The driving procedure must ensure that variant for each temporary is computed before it is used. Since 
variant is computed for each φ-node without using the information for the operands, a dominator tree 
walk will ensure that all operands have a value for variant before the instruction in which the operands 
are used. Hence the driving procedure uses the algorithm in Figure 8.13. 
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As with other static single assignment algorithms, this algorithm assumes that all LOAD instructions 
have another operand, called a tag, which is handled like a temporary for the purposes of renaming. Each 
STORE instruction modifies a particular storage location and a number of tags. There are φ-nodes 
included for the tags also. The tags are handled just like temporaries for the purposes of SSA 
computations and are handled like operands in this algorithm for computing invariant temporaries (and 
tags). Thus a load operation inside a loop will be invariant if the address expression is invariant and the 
tag is not modified by any store operation in the loop. 

As an example, consider the running example and the instruction dSLD (TI7) => SF1 in block B2. 
Consider the flow graph after initial dominator-based optimization has occurred. B2 is a block contained 
in the loop {B2,B6,B3}, which is contained in the loop {B1,B2,B6,B3,B4}. T17 is assigned a value in 
block B1, which is in this second loop; hence, Varying starts out pointing at this outer loop. However, the 
store operation in block B6 also affects the load operation through the tag, so SF1 is marked as varying 
on the loop {B2,B6,B3}. However, T17 itself is marked as varying on the outer loop. 

Figure 8.13  Driver for Invariant-Code Identification 

8.5 Computing Induction Variables

Before the expressions can be restructured to improve loops, the compiler must identify the temporaries 
that vary in a regular fashion. Now consider a single loop L and a temporary T that varies in L. 
Temporaries that are incremented by a predictable amount each time through the loop, called induction 
temporaries, are a more tractable form of loop-variant temporary. Operations on these temporaries can 
frequently be simplified—multiplications replaced by repeated additions, for example.3 Since the flow 
graph is in static single assignment form, one cannot talk about incrementing a single temporary. Instead, 
a set of temporaries defines induction set. 

3The description here is based on a description of strength reduction by Markstein (Wegman et al. 
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forthcoming). That work and this are both based on the original paper by Allen, Cocke, and Kennedy 
(1981). 

Definition	 Induction Candidates: Given a loop L, a temporary T is a candidate temporary 
for L if and only if T is evaluated in L and the evaluation has one of the following 
forms: 

T = Ti ± T , where one of the two operands is a candidate temporary and the otherj

operand is loop invariant in L. 


T = Tk, where Tk is a candidate temporary in L. 


T = ±Tk, where Tk is a candidate temporary in L. 


T = Tl, where Tl, is a loop-invariant temporary in L. 


T = φ(T1, . . ., Tm), where each of the operands is either a loop-invariant 

temporary in L or is a candidate temporary in L. 


The set of candidate temporaries is computed by looking at the instruction that evaluates each temporary 
and eliminating those instructions that are not of the correct form. If the instructions are considered in 
evaluation order, then the compiler knows whether the operands are candidates. As usual, the only 
problem is that this is not true for φ-nodes. Some of the operands of the φ-nodes may not have been 
processed already, so the compiler reverts to using a work-list algorithm in which all temporaries are first 
assumed to be candidate temporaries and are eliminated when the assumption is disproved. The 
algorithm is general; however, we will specifically eliminate nonintegral temporaries (floating-point 
temporaries in particular) because the compiler will not be applying strength reduction to these types. 

Figure 8.14  Finding Candidate Temporaries 

A basic work-list algorithm is described in Figures 8.14 and 8.15. The algorithm computes the set of 
temporaries that are candidates for induction temporaries. It includes each temporary that is computed 
using the correct form of instruction from the definition and then eliminates temporaries whose 
evaluating instructions do not have the correct form of operands. When the algorithm stabilizes, the 
largest set of candidates available has been computed. How does one prove that? Clearly all candidates 
are in the initial set and only temporaries that would be removed with any set of candidates are removed, 
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so the algorithm computes the maximum set of candidates. 

Figure 8.15  Pruning to a Valid Set of Temporaries 

The set of candidates describes the temporaries that are evaluated with the correct instructions in the 
loop; however, induction temporaries represent temporaries that are incremented in a regular fashion 
across iterations of the loop, with the value on the next iteration differing by a fixed amount from the 
values on the previous iterations. There are two possible interpretations of this idea.4 This compiler uses 
the following definition. 

4The other definition of induction variables also requires the induction temporary to change by the same 
amount each time through the loop following all possible paths through the loop. This is the definition 
needed for dependence analysis. It is more restrictive than needed for strength reduction. 

Definition	 Induction Sets and Temporaries: An induction temporary T in a loop L is a 
candidate with the following property. Consider the graph with the candidate 
temporaries as nodes with an edge between two candidates T and U if T is used to 
compute the value of U. An induction temporary is a candidate temporary that is a 
member of a strongly connected region in this graph. The set of temporaries in 
such a strongly connected region is called an induction set. 
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In other words, the temporary T is used to compute other temporaries, and those temporaries are used to 
compute others, until the resulting value is used to compute the value of T on the next iteration. 
Eventually the value of T is used to compute the value of T. For a single-entry loop, this means that the 
temporary is involved in a strongly connected region that contains a φ-node at the beginning of the loop. 

The algorithm that the compiler used to compute loops cannot be used here. Starting at a φ-node and 
tracing backward may lead to a number of temporaries that are not in the strongly connected region. 
Instead, the general algorithm for a strongly connected region must be used. Since the algorithm is 
applied at several other places in the design, it will not be repeated here. The algorithm is summarized in 
Figure 8.16. 

If the loop is not single entry, we will not bother to apply strength reduction here. A more limited version 
will be applied later. First calculate the candidate temporaries. Then implicitly create the graph. It does 
not need to be explicitly created because the form of the instructions evaluating the temporaries in 
Candidates is simple. Perform one of the two standard strongly connected region algorithms. Any 
strongly connected region with at least two members and which includes a temporary that is the target of 
a φ-node at the entry is an induction set. 

Figure 8.16  Pruning Candidates to Induction Sets


Figure 8.17  Induction Temporary Example 

As an example, consider Figure 8.17. The left column represents the flow graph for the loop, and the 
right column represents the implicit graph of the candidate temporaries. Note that J1, and J2 are not in a 
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strongly connected region and if one had started at J1, and had traversed the arcs backward one would 
never return to J1, unlike the case of computing loops in the flow graph. The set (I1, I2) represents the 
induction set in this example. 

Consider one induction set {T1, . . ., Tk}. This is a strongly connected region in the graph of Candidates 

temporaries. The only temporaries that can have multiple predecessors in that graph are the φ-nodes. So 
the strongly connected regions have a special form: The normal instructions are divided into subsets that 
form paths, with the joins and separations occurring at the φ-nodes. 

Now add one optimization after identifying the induction sets and induction temporaries. Consider three 
temporaries in an induction set, T1, T2, and T3, where T2 = T1 + RC1 and T3 = T2 + RC2. Recompute T3 as 
T3 T1 + (RC1 + RC2). 

8.6 Reshaping Expressions

The compiler has now determined most of the expressions that are computed outside a loop, the 
expressions that are loop invariant in the loop, and the induction variables within the loop. The compiler 
can now restructure the expressions to increase the number of expressions moved out of the loop later 
during partial redundancy elimination. This is done in a phase called RESHAPE. 

RESHAPE uses the associativity and distributivity rules of integer and logical arithmetic to improve 
later code motion. Assume that there are n nested loops, L1 to Ln. The compiler will reorganize each 
expression E to be of the form 

E = E′ + (LC1 + (LC2 + (LC3 + . . . + LCn))) 

where E′ is an expression that is not loop invariant on the innermost loop, LC1 is loop invariant on the 
innermost loop, LC2 is loop invariant on the next-outer loop, and so on, until LCn is loop invariant on the 
outermost loop. The same transformation will be made for multiplication and logical operators. This 
transformation allows the compiler to compute E′ in the innermost loop while computing the right-hand 
operand outside the innermost loop. Similarly, LC1 can be computed in the next-outer loop while the rest 
of the expression can be computed outside that loop. This repeats until LCn can be computed outside the 
outermost loop. 

The expression for E′ can be written to expose the induction variables. The most important form of 
strength reduction involves integer multiplication. If one operand of a multiplication is an induction 
variable and the other operand does not change in the loop, then the repeated evaluation of the 
multiplication each time through the loop can be replaced by a repeated addition. To identify these cases, 
the compiler divides up E′ into summands of the form 
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E′ = E′′ + FD1 * I1 + FD2 * I2 + . . . + FD  * Im m


where FDj is a loop-invariant expression (FD is an abbreviation for first difference) and Ij is one of the 
induction variables in the innermost loop. Induction variables for the outer loops are loop constants here, 
so they are not a part of this expression. 
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There is danger in this transformation: Wholesale rewriting of expressions may increase the size of the 
generated code and decrease the execution speed. Most of the time this will not be the case. Consider the 
running example, in which strength reduction and rewriting the expressions collapses the code 
remarkably. However, there are cases where this is not true. The compiler attempts to avoid these 
situations by the following devices. 

•  It embeds the reassociation in a dominator tree walk used to eliminate redundant expressions. 
Thus each expression will probably be evaluated once. 
•  This phase of the compiler does not eliminate the original expressions. Later, after global 
optimization, dead-code elimination will remove them. Why? One of the problems with 
reassociation is that it can move expressions into loops. In fact it can move them into conditional 
expressions within loops. The compiler cannot move them out of these conditional expressions 
due to safety concerns. So the compiler leaves the original expressions in place, which causes 
those expressions to be available where the programmer originally placed them. If the compiler 
has not transformed the expression within the loop, the compiler will find that the moved 
expression is redundant and eliminate it from the loop. 

There are four different categories of operators involved in reassociation. The rest of this discussion will 
use these names: addition, subtraction, and multiplication. However, there are many other operators that 
have the same characteristics: logical disjunction, logical conjunction, and logical negation, for instance. 
The compiler applies the same techniques to all of them. The techniques are not applied to floating-point 
operations because they are not associative or distributive in the literal sense. When using the term 
associative, the arithmetic must be literally associative, not approximately associative. 

Commutative operators such as addition and multiplication have the property that x + y = y + x. For these 
operators, the compiler can reorder the operands in any order desired. In our compiler, the operands are 
reordered so that the one with the highest reverse-postorder number in the flow graph occurs first. This 
procedure combined with the value_table structure will automatically identify commuted redundant 
expressions. 

Operations such as subtraction that are the combination of a commutative operation (addition) and an 
inverse operation (negation) are reordered like the corresponding commutative operator; however, an 
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extra flag is maintained, indicating that a negation is also needed. When the instructions are regenerated 
after processing, the negation flag is used to create a subtraction operation rather than an addition. 

Associative operations (such as addition) allow more processing. Assume that an associative operator is 
the root of an expression tree. Group together all of the operands of the associative operator at the root. 
In other words, if the compiler has (x + y) + (w + z), handle it as a single operator with a list of operands 
x, y, w, z. The associative operator can then be rewritten as (x + (y + (w + z))). If the associative operator 
is also commutative, the operands can be reordered so that the first operand is the one with the highest 
reverse postorder. This will automatically set up things so that the expressions for the inner loop are 
computed first, then the operands for the next-outer loop, and so on.5 

5This is an observation by Keith Cooper of Rice University. 

Distributive operations, such as integer multiplication, are the fourth category. The rule x * (y + z) = x * y 
+ x * z can be used to rewrite combinations of addition, subtraction, and multiplication as a sum of 
products. Each term in the sum of products is the product of a constant (the subtraction contributes a -1 to 
the constant), induction temporaries, and other temporaries. Now the elements of the products can be 
ordered using the reverse postorder number as before, and the terms in the sum can be ordered by the 
maximum reverse postorder number of the components of the product. This gives the expression the 
form described at the beginning of the section. 

Before the dominator walk of the blocks of the loop and at the same time that induction variables are 
being identified, identify all expressions with the following properties: 

•  The evaluation of the temporary is implemented with an associative operator. For these 
purposes, the compiler considers subtraction to be an addition with a negate flag. 
•  The temporary is used as the operand of an instruction that is not the same associative operator. 
In other words, the temporary represents the root of an expression tree where the operations near 
the root are all the same associative operator. 

The key insight is that the static single assignment form allows the compiler to view the temporaries in 
the flow graph as nodes of the original expression trees. Consider two temporaries T1 and T2. T1 can be 
considered the parent of T2 in an expression tree if T1 uses T2 as an operand. Thus the edge from T1 to T2 

is given by the Definition attribute of the Operand set for T1 to get to the instruction, and the temporary is 
reached as the Target of that instruction. 

Given the root of an expression tree, perform a tree walk of that expression tree, analyzing it as a sum of 
products and combining like terms. This sum of products need not be stored as instructions: It can be 
stored as a linked list of linked lists in temporary storage. Stop the tree walk when the compiler gets to a 
constant, LOAD instruction, variable temporary, or induction temporary. 
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Having recognized the tree, now rewrite it in instructions in the form described above. The only problem 
is reapplying distributivity. Dividing the expressions into pieces that are invariant in each of the 
enclosing loops is straightforward: The compiler has already ordered the operands, so the compiler need 
only divide the sum into the parts invariant in each loop. 

For each of these sums, distribution should be applied in reverse. This is a greedy algorithm. Consider a 
sum and find the component of a term that is an operand of the largest number of terms. Apply 
distributivity to rewrite those terms as a product of that component with the sum of the other terms 
involving this component. Keep reapplying distributivity in this greedy fashion until no further rewriting 
can occur. Each of the products can now be divided into parts that are invariant in each of the enclosing 
loops by applying the same techniques as were used for addition. 

Now we have a reformed expression tree in temporary storage. Rewrite the expressions as instructions in 
the flow graph. Leave the old expressions there. Use the dominator tree walk to determine if expressions 
are already available so that they need not be generated again, taking up space and potentially escaping 
later optimization phases and causing poor runtime performance. At this point go on to the next tree in 
dominator order. 
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8.7 Strength Reduction

At this point the hard work for strength reduction has been completed. Consider an incremental 
expression E having the form 

E = FD1 * I1 + FD2 * I2 + FDj * Ij + FD  * I  + (LC1 + (LC2
m m


 + (LC3 + . . . + LCn)))


where Ij are the induction variables and all of the other expressions are loop invariant in the loop L. The 
idea of strength reduction is to compute this expression before entering the loop and update it each time 
one of its operands changes. Since the only operands that can change are the induction temporaries, we 
update E each time one of the induction temporaries changes.6 

6This discussion is glossing over a hard problem. There may be many incremental expressions: Keeping 
and updating each one ties up most of the registers for the machine. For a few incremental expressions, 
the discussion given here is best. When there are more incremental expressions, it is probably better to 
consider the linear function of the induction temporaries as the incremental expression and add in the loop­
invariant part separately. The linear function of the induction temporaries is likely to be reused many 
times in the same loop. 

Since the flow graph is in static single assignment form, the compiler cannot update the temporary 
holding the value for E. Instead, the compiler must generate a collection of temporaries E0, . . . , Eq: one 

for each time one of the induction temporaries changes and one for each RC constant involved in a φ-
node. Assignments to compute the value of each of these temporaries are inserted after the update of each 
one of the induction temporaries. 

Besides generating new temporaries to hold the value of E, the compiler must update uses of the 
expression E. At each point that E is used, the value is stored in some temporary. The compiler must 
replace the uses of that temporary with the uses of these new temporaries. This is not difficult: The 
compiler walks through the loop using the dominator tree and keeps a table of redundant expressions. 
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This information can be inserted in this table as a previous computation of E, which will make the real 
computation redundant and update the operands. 

Where can the induction temporaries change? Let ISi be the induction set associated with the induction 
temporary Ii. As noted earlier, the induction set replaces the idea of updating a temporary because the 
flow graph is in static single assignment form. The expression E changes whenever one of the 
temporaries in ISi changes. Consider the cases: 

•  If T1 and T2 are members of ISi where T1 = T2 ±RC, update the value of E by inserting the 
computation E1 = E2 ±RC * FDi after the evaluation of T1. If the table of expressions indicates 
that RC * FDi is already available, then the instructions for it need not be inserted at this point in 
the flow graph; otherwise, insert the multiplication here to be cleaned up by partial redundancy 
elimination later (one hopes). 
•  If T1 and T2 are members of ISi where T1 = ±T2 (including the case of T1 = T2), insert a 
computation E1 = ±E2 directly after the assignment to T1. 

•  If T0 is a temporary in the induction set where T0 = φ(T1, . . . , Tm), then a φ-node for E must be 

inserted at the head of the same block. Be careful: There may already be another φ-node for E in 
the block that was inserted for another induction set—only insert one φ-node for E. Consider each 
predecessor block in turn: 

•  For predecessor block P, if the corresponding temporary Ti is in the induction set for T0 

then the corresponding entry in the new φ-node is the temporary holding the value of E at 
the end of P. Note that P must be in the loop; otherwise, the temporary would not be in the 
induction set. Also note that the value of E may not be the temporary when Ti was updated 
since E is updated by each of the induction sets. 
•  If Ti is not in the induction set, then insert a computation of E at the end of block P and 

place the temporary holding that value into the corresponding entry in the φ-node. Be 
careful! There may already be a computation of the same expression available in P, so do 
not insert it if it is not necessary. 
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8.8 Reforming the Expressions of the Flow Graph

We have been working on the flow graph in static single assignment form. The compiler must now return 
the flow graph to normal form. This means that a partition of all the temporaries must be formed to 
rename them properly. To form this partition, note that no computations have been moved during these 
optimizations. Some computations have been moved and others reformed. In particular, all load 
operations are in the same places that they were originally. Some have been eliminated, but none have 
been moved. This means that the temporaries associated with load operations can all be renamed back to 
the temporary names that they had originally. 

Now consider induction temporaries. Each induction set can be renamed to a single temporary holding 
the value as it is incremented around the loop. Since no computations have been moved, all of the uses of 
each of the induction temporaries die with the assignment to the next temporary, so the correctness 
condition for the partition is satisfied. Inductive expressions that have been reduced by strength reduction 
are no longer expression temporaries; they become variable temporaries like any other local variable. 

All temporaries that are not expression temporaries can be renamed back to the original temporary that 
created them. Again, no use of the temporary has been moved. 

The compiler now has all of the leaves consistently named, so it reconstructs the expression temporary 
names by using the formal temporary table, as was done during the original building of the flow graph. 
How is this implemented? When the static single assignment form is created, keep an added attribute that 
is the original name of the temporary. Also keep a set of temporaries for each induction set. 

8.9 Dead-Code Elimination

Two other static single assignment optimizations are described here that are executed later in the 
compiler. Dead-code elimination and global value numbering occur during the LIMIT phase, where the 
compiler is reducing the number of physical resources (such as registers and instructions) needed in the 
program. By describing them here, the reader is still immersed in the SSA formalism. 
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First consider dead-code elimination. The compiler does not attempt to remove instructions or 
temporaries as soon as there are no references to them. In fact, there are situations in which the compiler 
transforms the flow graph so that there are still references to temporaries, but the temporary is not used in 
computing data that is observable outside the subroutine described by the flow graph. This is particularly 
true of strength reduction, since all references to the loop index may be removed except the instructions 
that increment it. So there are still references to the temporary (namely, the instructions that increment 
it), but no uses of the temporary for computing something worthwhile.7 

7One might ask, why not apply dead-code elimination immediately after strength reduction? Because 
reassociation has occurred earlier. Reassociation has the effect of moving computations into a loop, 
possibly into a conditional statement within the loop. Partial redundancy will not be able to move the 
computation back out unless the original occurrence of the expression is still there to make the moved 
expression redundant. 

The dead-code elimination algorithm represents a simple idea. First mark the instructions that store into 
data structures outside the subprogram. These instructions are not dead. Then mark the instructions that 
compute each of the operands of these instructions. These instructions are not dead. Keep doing this until 
no more instructions are marked. The unmarked instructions are not used directly or indirectly in 
producing data that is available outside the subprogram so the instructions can be eliminated. 

There are two options for operands of conditional branch statements. The simplest option is to 
immediately declare that all instructions computing operands of conditional branches are important. The 
idea is that the path of computation is important.8 This is a conservative approach, but more instructions 
can be eliminated by eliminating conditional branches where possible. This can be done with the 
following steps: 

8This is what we did in the COMPASS Compiler Engine. The result is that many instructions are 
eliminated but the framework instructions implementing the flow graph remain, possibly generating loops 
with no computations within them except the increment of the loop index, or basic blocks with no 
instructions. 

1.  Do not initially mark the conditional branching instructions as important. 
2.  When an instruction in a block B is marked as important, then the appropriate conditional 
branching instructions that lead to B must be marked as important. Which instructions are these? 
The definition of control dependence indicates that the conditional instructions are the ones on 
which the block is control dependent. Therefore mark as important all of the conditional branch 
instructions for the edge on which the current block is control dependent. 
3.  After determining the instructions that are not dead, the compiler deals with the conditional 
instructions that are dead. If a conditional branch is dead, then no block that is control dependent 
on this edge has any instructions, so generate an unconditional branch to the immediate post-
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dominator of this block. 
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The algorithm is implemented as a work-list algorithm, as in Figure 8.18. The set Necessary is the set of 
instructions that are needed in the program. Any instruction that is not in Necessary is dead and can be 
eliminated without modifying any data visible outside the subprogram represented by the flow graph. 
The algorithm initializes Necessary and the work list by scanning the flow graph to determine obviously 
necessary instructions. The obviously necessary instructions include procedure or function calls because 
they can modify global data, and all input/output (I/O) statements because they change the state of the 
operating system. 

The second component of the algorithm determines all instructions that are necessary by using a work­
list algorithm to compute a kind of transitive closure of the uses and Necessary relations. When 
processing an instruction, the algorithm first makes sure that the branches on which this instruction is 
control dependent are made necessary. Then it makes sure that an instructions that define the operands 
are made necessary. Note that this is a standard work-list algorithm: An instruction is only added to the 
work list the first time that the instruction is inserted into Necessary. In fact, the work list is always the 
subset of instructions in Necessary that have not had their operands processed yet. 

Figure 8.18  Eliminating Dead Code


Figure 8.19  Example of Dead-Code Elimination 

When the work list becomes empty, all instructions that might affect data outside the subprogram have 
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been processed. All other instructions are eliminated, and branches to blocks that contain no instructions 
are redirected to the immediate postdominator block. Why the postdominator? If all instructions in the 
block have also been eliminated, then all branching instructions in the block have also been eliminated, 
so there are no instructions in blocks that are control dependent on it. But the control flow must branch 
somewhere. The first available block on any path to Exit is the immediate postdominator. 

Consider the example in Figure 8.19. It is a simple conditional statement containing a simple loop. 
Assume that T is used to compute necessary data and the I’s are used as a loop index that is no longer 
needed. That means that the body of the loop is unnecessary. The assignment to I in the initial block can 
be eliminated. The initial block’s branch to the loop is changed into a branch to the join block at the 
bottom of the example. 

8.10 Global Value Numbering

Later the compiler packs multiple temporaries into a single physical register. Two temporaries can be 
packed into the same physical register only when there is no point in the flow graph where the two 
temporaries both hold a needed value and the temporaries might contain different values. If they contain 
the same value, then clearly they can share a register. If the points where they hold needed values are 
disjoint, they can also share a register. So the compiler must determine when two distinct temporaries are 
guaranteed to hold the same value. 

Recall our discussion of value numbering for local and global optimization. So far, we have discussed 
value numbering within a block or between a dominator block and the blocks it dominates. How can the 
same idea be applied to values that have multiple points of definition? We need to know which 
temporaries have the same value. In other words, we are forming a partition of temporaries: All 
temporaries that are known to contain the same value are in the same element of the partition. 

Unlike the partitions formed using UNION/FIND algorithms, this algorithm never merges elements of 
the partition. In fact, one never needs to know all of the elements of a partition. The only useful question 
is whether two temporaries are in the same partition, that is, whether they are guaranteed to hold the 
same value. To store this information, the compiler adds an attribute value_representative to each 
temporary. The value_representative is a representative member of the partition that is used to name the 
partition. It is the first temporary that is known to have the common value of all temporaries in this 
element of the partition. If two temporaries have the same temporary in their value_representative fields, 
they are known to have the same value. 

Two temporaries have the same value if they are computed using the same operator and the operands 
have the same value. If there is ever any doubt, such as a subroutine call instruction or a STORE 
instruction that may be killing a number of temporaries, then the temporary is assumed to have an 
unknown value different from any other temporary. In other words, the target temporary is put in a new 
equivalence class by itself and becomes the representative for all other temporaries added later. 
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If there are no loops in the flow graph then computing this partition is simple. Visit the blocks in reverse 
postorder and the instructions within each block in execution order. When there are no loops, this 
guarantees that the instructions evaluating the operands are processed before the instructions in which 
they are used. 

•  Two temporaries that load the same constant are put in the same partition. 
•  Two temporaries that load a value from memory where the addresses have the same value and 
the memory locations have the same value are put in the same partition. 
•  Two instructions that have the same operation code with corresponding operands having the 
same value_representative field will have the same value. That is, the targets of two instructions 
with operands of the same value and the same operation code will generate the same result. 

This bookkeeping can be done in a manner similar to the implementation of value numbering for blocks 
and dominators. The compiler can build a table called value_table that stores each of the instructions 
indexed by the operation code and the value_representative of the operands. A lookup is performed for 
each restruction as it is processed. If there is already an instruction with the same operation code and 
equivalent operands in the table, then the target temporary is put in the same partition as the target 
already in the table. 
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φ-nodes present two problems. First, these techniques cannot be used to determine if φ-nodes in distinct 
blocks generate the same result. Implicit in a φ-node is the idea of control flow, so the compiler must 
include the block as an implicit part of the operation code when dealing with φ-nodes. That is, the 
value_table entry for φ-node includes the block in which it occurs. Two φ-nodes from the same block 
may generate the same result. 

The second problem is that there is no way to sort the blocks to guarantee that all operands of φ-nodes 
are processed before the node itself. Consider a loop. There is a φ-node at the beginning of the loop for 
each temporary (in the normal flow graph) that is modified in the loop. When the compiler attempts to 
process the instructions in the loop, the tail of the loop has not been processed. 

The compiler can handle these problems by iteration over the flow graph. Initially, the compiler makes 
an assumption about the operands of the φ-nodes and then iterates over the flow graph updating these 
assumptions. This is inefficient. Instead, the compiler iterates over a data structure called the SSA graph. 
It is implicit in that the information is already stored; this is just a different way of looking at it.9 

9This algorithm is from L. Taylor Simpson’s thesis, “Value Redundancy Elimination,” at Rice University 
(1996). 

Consider the set of temporaries to be a directed graph, called the SSA graph, where the nodes are the 
temporaries and (T1, T2) is an edge if T1 is used as an operand in computing the instruction, with T2 as a 
target. Then topologically sorting the SSA graph orders the instructions so that the computations of all 
operands precede the temporaries they are used to compute. The temporaries that cannot be sorted into 
such an order are the strongly connected regions of this graph. 

Recall that either standard algorithm for a strongly connected region computes the sets of temporaries 
that form the strongly connected regions: C1, . . ., Cs. In the process it also orders these sets of 

temporaries so that if T1 ∈ Ci and T2 ∈ Cj where i < j, then T1 precedes T2 in the reverse postorder of a 
depth-first search. 
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What do strongly connected regions look like in this graph? A strongly connected region is either a 
single instruction or a loop. A single instruction can be processed as discussed above. 

All of the instructions in a loop should be processed simultaneously. Of course, this is not possible. The 
compiler must iterate through the instructions of the loop. The only problem is with the φ-nodes. The 
compiler will make an optimistic assumption about the effects of φ-nodes and then iterate through the 
loop, updating the assumptions until a consistent set of value_representative fields is found. 

When the strongly connected region contains a cycle, some operands have not been evaluated. These can 
only occur as operands of φ-nodes. First consider what it means to process a φ-node. There are three 
possibilities: 

•  An entry has already been made in the value table for a φ-node in the same block with the 
corresponding equivalent operands. Thus the value_representative field for the target of the 
current φ-node is made the same as that of the in the table. 
•  If all operands of the φ-node are equivalent, then the target is made equivalent to each of the 
operands and this φ-node is entered in the value table. 
•  If all operands are not equivalent and an equivalent φ-node is not already in the value table, then 
the target of the φ-node is placed in a new partition; that is, it is made its own entry in the 
value_representative field and the information is entered in the value table. 

Here is where the optimism comes into play. Consider all of the temporaries in a particular strongly 
connected region in the SSA graph. Order these temporaries in reverse postorder (remember that there is 
a single instruction with a temporary as the target). Now the instructions evaluating operands will be 
processed before the uses, except for some φ-nodes. 

Consider the φ-nodes optimistically: If an operand has not been processed yet, assume that it does not 
affect the result. For each temporary, initially assign it a value_representative value of NULL to indicate 
that the temporary is not processed yet. Then φ-nodes are processed by ignoring the operands that have 
not yet been processed, hoping that they will have the same value as the other operands. 

•  If a corresponding entry is already available in the value table, then assign the target of this φ-
node the same value_representative value. 
•  Consider the operands that do not have a value_representative attribute of NULL. If at least two 
of them have different values, then the target of the φ-node is placed in a new partition by itself 
and entered in the table. Since the temporaries are being scanned in reverse postorder, at least one 
of the operands will have been processed already. 
•  Consider the operands that do not have a value_representative attribute of NULL. If all of them 
have the same value, then add the target to the same partition (give it the same 
value_representative value) and enter the instruction in the table. 
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The instructions in the strongly connected region are repeatedly processed until no changes occur, that is, 
the value_representative fields are unchanged during a complete scan of the instructions. This generates 
two problems: avoiding creation of unnecessary partitions, and the pollution of the value table. During 
the processing of φ-nodes, a new partition is generated for the target if two of the operands differ. The 
compiler does not need to generate a new partition each time the set of instructions is scanned. Instead, 
note that if the value_representative field for the target of a φ-node already has a non-null value different 
from one of the operands, then it has already been placed in a new partition and so it need not be 
changed. 
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Pollution of the value table is good news and bad news. Remember that we are processing the SSA 
graph. There may be multiple strongly connected regions in this graph for each loop in the flow graph. 
The false information is good news because it will force potentially equivalent temporaries in another 
strongly connected region to make the same choices and get the same value_representative fields as in 
the current strongly connected region. It is bad news because false information is stored in the table, 
which might have adverse consequences later when processing instructions after the current strongly 
connected region. 

The pollution is avoided by creating another table, called scratch table, which has the same structure as 
value_table. During the processing of a strongly connected region, the scratch table is used rather than 
the value table. After the values have stabilized, the instructions are reprocessed using the value table. 

One more point before summarizing the algorithm and giving an example: Algebraic simplification can 
be combined with this algorithm. Each time the compiler processes instructions, it processes them in 
execution order. Algebraic simplification and peephole optimizations can be applied during the 
processing step. In fact, constant folding can be combined with the processing step simultaneously. The 
description of constant propagation is not included here since constant propagation has already been 
applied at the point in this compiler where global value numbering is applied. 

The algorithm is described in Figure 8.20. Recall that the SSA graph is simply the set of temporaries 
where (T1, T2) is an edge if T1 is used as an operand of the evaluation of T2, so the successor relation in 
this graph is given by the Uses(T) attribute and the predecessor in the graph is given by the Definition(T) 
attribute. 

The algorithm calls CALCULATE_GLOBAL_VALUE_SCC to compute the global value numbers for 
temporaries in a strongly connected region of the SSA graph. When that calculation is completed, all of 
the temporaries have the correct value_representative field; however, the value table must be updated to 
reflect the existence of these instructions for future instructions outside the loop. 

The description of the algorithm avoids some points that the implementer must face. The semantics of an 
instruction (such as a copy operation) may indicate that the target operand has the same value as one of 
the inputs, which the algorithm must reflect. This also occurs with the special processing of φ-nodes. 
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The algorithm in Figure 8.21 describes the processing of instructions in strongly connected regions. The 
processing is simpler than many algorithms since there are no strongly connected regions within strongly 
connected regions. The instructions are scanned repeatedly until there are no changes in the 
value_representative attributes. When an instruction is inserted in the tables, the keys for looking up 
information are the operation code (together with the block if it is a φ-node) and the value_representative 
entries for the operands. The value to be retrieved from the table is the value_representative value for the 
target. When an entry is made there are two possibilities: the resulting value is either the same as one of 
the operands or the resulting temporary is a new entry in a new partition. In the first case, the 
value_representative of the operand is used as the value_representative of the target. In the second case, 
the value_representative of the target is made to be itself, indicating a new partition. 

Figure 8.20  Main Global Value-Numbering Algorithm 

Consider the fragment of the flow graph in the left column of Figure 8.22. Note that the corresponding I 
and J entries always have the same value. The right column represents the SSA graph for the same code. 
In this example there are four strongly connected regions: C1 = {J0}, C2 = {J1, J2}, C3 = {I0}, C4 = {I1, 
I2}, and C5 = {U}. The regions are in the same order in which the algorithm will process them. Note that 
all operands are evaluated before use when the uses and definitions are in different strongly connected 
regions and the temporaries are in reverse postorder within a strongly connected region. Now let us walk 
through the algorithm. 

Figure 8.21  Processing Strongly Connected Regions 

Figure 8.22  Global Value Example 
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Figure 8.23  Entering φ-nodes in value_table 

The temporary J0 is processed and the corresponding entry is made in the value table, indicating that this 
temporary has value 1. Now the first real strongly connected region is processed. Initially the algorithm 
will assume that J1 is the same as J0 since the latter is the only processed operand. It will then determine 
that J2 must be 2 by algebraic simplification. The algorithm reprocesses J1 and finds that the two 

operands of the φ-node are different, so J1 is given itself as a representative of the new partition. Now J2 

does not have any simplification, so J2 is given itself as a representative of the new partition. There will 
be no more changes in processing, so all of the real entries are put into the value table. However, the 
scratch table is left as it is. 

The temporary I0 is processed next. Because the operands of that instruction are the same as J0, I0 is 
given J0 as its value_representative entry. We now come to the strongly connected region {I1, I2}. 

Initially, I1 is given the same value as J0 and I0 since I0 is the only processed operand to the φ-node. The 
nodes for this strongly connected region are processed just like the nodes for Js and since the information 
is in the scratch table, the same representatives are chosen. So, I1 has the same value as J1 and J2 has the 
same value as J2. 

The compiler can determine that U has value 0 since it is the subtraction of two equal values. This is an 
example of algebraic simplification. This simplification is limited. If the example was changed so that U 
was added to I, before I is incremented, the algorithm would be unable to determine that the I and J 
temporaries were equal. 
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Chapter 9 
Advanced Techniques 

Here is the disappointing chapter, which I refer to as the black box chapter. Due to space and time 
considerations, the book cannot include information on dependence-analysis-based transformations and 
interprocedural analysis. However, this is the place in the compiler where these techniques are applied. 
So we will outline the ideas of these phases and refer the reader to the work of Wolfe (1996), Cooper 
(1988 and 1989), Torczon (1985), Callahan, Cooper, Kennedy, and Torczon (1986), and Hall (1991) for 
the details.1 

1If a cohesive set of algorithms is not published by one of the researchers, this may be grounds for a 
second book to complete these ideas. I would rather see a book by one of the researchers that addressed 
these issues in sufficient detail. But if they do not, then we engineers must publish the work to help 
ourselves. 

At this point the flow graph has been simplified by constant folding, elimination of most redundant 
expressions, and algebraic simplification. The compiler now can do the advanced transformations that 
are the basis of much recent research. These are the transformations for improving the use of the memory 
caches and identifying parallel computations. 

9.1 Interprocedural Analysis

Initially the compiler compiles each procedure individually, one procedure or flow graph at a time. In 
fact, the compiler is organized as a production line: Each procedure is translated into a flow graph and 
fed through the compiler, one at a time, until the results are added to the object file. With this structure, 
the compiler does not know about the effects of any procedure or function calls. It does not know which 
variables might be modified by each procedure call, so it must assume the worst. 

For interprocedural analysis, this organization must be changed. However the change can be hidden 
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inside the interprocedural analysis phase if careful data abstractions are maintained. Interprocedural 
analysis requires information about multiple procedures within the application program, so the compile-
one-at-a-time approach must be modified. Instead, the compiler must accumulate the flow graphs (and 
other data) for each procedure. When all of the flow graphs have been found, the whole program can be 
analyzed to find the effects of each procedure call more precisely. Then the rest of the compilation can 
occur, one flow graph at a time (see Figure 9.1). 

Figure 9.1  Schematic of Interprocedural Phase 

In other words, the interprocedural analysis phase can be thought of as the stomach of the compiler. It 
gathers together all of the flow graphs of the application, processes them, and passes each one along to 
the rest of the compiler to be processed. As each flow graph is passed along, the inter-procedural analysis 
information about its calls and where they are called are available for the optimizers and code generators. 

There are many ways in which this repository of information can be stored. One approach is to keep a 
library of procedures and their flow graphs on the disk as a complex data structure that is updated each 
time a file in the application is compiled. Another approach is to keep the repository in memory. In our 
sample case, the whole application will be compiled together. Another alternative is to compile the flow 
graph into an intermediate form that is kept on the disk in place of the object module. Before linking, the 
rest of the compilation is completed on this predigested form. 

9.1.1 The Call Graph

The important data structure during interprocedural analysis is the call graph. This is a directed graph 
built from the flow graphs of all of the procedures. Each node in the graph is one of the procedures or 
flow graphs being compiled. There is an arc in the graph between a node N1 and N2 if there is a 
procedure call in N1 that might call N2. The edge is annotated with information indicating the binding 
between formal parameters (dummy arguments) and actual parameters. More properly, this data structure 
is a multigraph since there may be more than one edge between two nodes. 

The definition of the call graph used the word “might” because the compiler cannot always determine 
which procedure is being called. Each language has a mechanism for dealing with a procedure or 
function that is not known at compile time. Pascal has procedure/function parameters; C has function 
variables; Fortran allows the concept of function arguments. In these cases the compiler has more 
difficulty determining which procedure is being called. When there is a doubt, the compiler must assume 
that there is a call of each possible procedure. 

When there are procedure parameters or variables, the construction of the call graph may be more 
complex than you might imagine. For normal procedure and function calls, the compiler need only 
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construct an edge from the entry for one procedure to the other. When a procedure variable or parameter 
is involved, edges might need to be entered each time a new procedure is discovered in the application 
program. There are two excellent papers on computing the call graph, one by Ryder (1979) and one by 
Hall and Kennedy (1992). 

9.1.2 Simple Interprocedural Analysis Information

Most interprocedural analysis information involves complex properties of the flow graph and usage 
patterns of variables. However, there is an important collection of simple interprocedural information 
that are also useful. 

Remember our discussion of the three types of edges for a flow graph. To build a safe graph, the 
compiler is required to create an abnormal edge from blocks containing a procedure call to the Exit 
block. This edge is inserted to model the case in which the procedure call might execute a longjmp 
operation that will cause control flow to exit that procedure and cause the procedure that performed the 
call to arrive at one of the procedures involved in getting to this point in the application execution. If one 
knows that there are no longjmp or exit operations in a procedure or any of the procedures that it calls (a 
common case), then these edges need not be added. 

Often all calls of a procedure will have one of the arguments the same in all calls. Usually, this argument 
represents some parameter that is always the same in this application, and the user is using some standard 
library of procedures for some resource. Although we will later allude to techniques to compute when 
arguments are constants, it is useful to compute the obvious ones initially. 
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9.1.3 Computing Interprocedural Alias Information

There are four other kinds of information computed during interprocedural analysis: 

1.  The interprocedural analyzer computes alias information. Consider the point in application 
execution immediately after a procedure call inside a procedure. Which of its formal parameters 
(dummy arguments) may reference the same memory location as another variable mentioned in 
the flow graph? This is only a problem for formal parameters passed by reference so that the 
actual parameter is a pointer to the data in memory. Interprocedural analysis will compute an 
estimate of which formal parameters might be sharing the same memory location as other formal 
parameters or global variables. 
2.  The interprocedural analyzer computes modification information. The compiler would like to 
know which variables and memory locations might be modified during a procedure call. This 
includes both the modification of arguments that are passed by reference and global variables that 
are modified as side effects. Again, the word “might” is used since it is too difficult to determine 
whether the data must be modified during a procedure call. 
3.  The interprocedural analyzer computes the variables that might be used in a procedure. Again, 
this includes both variables that are modified because they are associated with formal parameters 
that are passed by reference and global variables. As before, the information is only accurate to 
“might” rather than “must” standards. 
4.  The interprocedural analyzer computes the formal parameters that are always bound to a single 
constant in the application program. 

I will not describe the computation of this information here, instead referring you to the papers 
referenced previously. 

9.2 Inlining Procedures

The one part described in this chapter that is needed in any high-performance compiler is procedure 
inlining. Consider a function such as in Figure 9.2. The cost of calling the function and returning the 
value is probably more expensive than the actual execution of the function body. These costs can be 
avoided by substituting the body of the function into the calling procedure rather than inserting a 
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procedure call. During the substitution, the formal parameters must be replaced by the actual parameters 
in such a fashion that the same computations will be performed after the substitution as would be 
performed by the function call, and local variables must be renamed so that they do not conflict with the 
variables in the calling procedure. Of course global variables—variables common between the called 
function and other functions—must not be renamed. 

When should a function be expanded inline? There is no single good answer to that question because of 
the expansion/contraction problem. The expansion of a function inline within another function initially 
expands the size of the whole program. On the other hand, this expansion may make possible a number 
of simplifications that will result in a smaller program. Consider the example of a function that is a large 
case or switch statement with each alternative being a single statement. If a function call on that function 
with a constant actual parameter is replaced by an in-line expansion of the function, the program initially 
expands in size; however, constant propagation will eliminate all of the code except the corresponding 
one small alternative, thus making the program smaller and faster. Here is the logic that the compiler 
should use for deciding whether a function is to be expanded inline: 

•  If the compiler contains a compile-time command to expand a function inline, then expand it 
inline. This simply means that the programmer is telling the compiler to do it, so do it. 
Correspondingly, if a compile-time directive indicates not to expand a function inline, then do not 
do it under any circumstances. 

Figure 9.2  Example of Function to Inline 

•  If there is only one call on a function, then it can be expanded inline. This will decrease the 
amount of function-call overhead without increasing program size. This situation occurs with 
programs that are written in a top-down programming style. Such a programming style 
encourages the writing of functions called only once. If the resulting function is estimated to be 
larger than some size, such as the size of the fastest cache, then the expansion should not be 
performed automatically. 
•  If the compiler estimates that the size of the function body is smaller than the size of the 
function call, then the function can be expanded inline. The resulting program will be smaller and 
more efficient. 
•  If a procedure has one call site that represents a large fraction of all calls of the procedure, then 
that one call site can be expanded inline, whereas all other calls of the function will be 
implemented normally. This makes the highly frequent call inlined without inlining all of the 
calls. 
•  If the procedure has a flow graph that breaks into many small independent sections of code 
combined in a branching structure that looks like a case or switch statement on one of the formal 
parameters and that formal parameter is always a constant, then expand the procedure inline. In 
each call, only a small amount of code will remain after dead-code elimination. 
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•  Otherwise, specify a heuristic choice function based on the size of the flow graph being inlined, 
the number of call sites, and the frequency information for the calls. If the function is small 
enough, it can always be inlined. If the function is a little bit larger, is frequently called, and has 
few call sites, then it can still be inlined. 

How does the compiler perform in-line expansion? This compiler performs it in the interprocedural 
analysis phase, so it has all of the flow graphs for the procedures available. These flow graphs have had 
an initial level of optimization applied to them to clean up the flow graphs. In-line expansion consists of 
the following steps: 

1.  Consider the call site where a function is to be inlined. Break the block containing the call site 
into three parts: the portion before the call, the portion after the call, and the call itself. 
2.  Replace the block containing the call itself by a copy of the flow graph for the called 
procedure. In the process, rename the temporary names associated with the flow graph so they are 
all different from the temporaries that occur in other parts of the larger flow graph. This is a 
textual renaming problem that can be solved as the copy of the called flow graph is created. 
3.  In the new block representing the block that is the entry block to the called procedure in the 
copied flow graph, insert copy operations to copy the actual parameters into the temporaries 
representing the formal parameters in the called procedure. 
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For C, this form of in-line expansion is sufficient since all formal parameters are passed by value. For 
languages with pass-by-reference, a different mechanism should be used. Consider a formal parameter X 
that is bound to an actual parameter A(I). One could compute the address of A(I) and copy it into a 
temporary within the inlined called procedure. Each reference to X within the procedure can be replaced 
by a pointer dereference through the pointer; however, all information about the array A has been lost. 

Instead, a more complex mechanism is helpful. Identify all loads and stores of X within the procedure. 
These are all simple load or store operations. To bind X to A(I), create a new temporary T to hold the 
value of I and replace each simple load of X by an array load of A(T). Similarly, replace each store of X 
by an array store of A(T). This matches the semantics of pass-by-reference and keeps all information 
about A available for use. The temporary for T can be eliminated by optimization. 

Before leaving in-line expansion, let’s touch on one problem, observed by a number of implementers and 
studied by Keith Cooper (Cooper, Hall, and Torczon 1992), which involves decreases in performance 
that may occur with in-line expansion. The problem is exemplified by the procedure DAXPY in the 
LINPACK library. This is a simple loop to compute the sum of two vectors, where the second one is 
multiplied by a constant. If this procedure is expanded inline in LINPACK, the program may run slower. 
Why? This is a Fortran program, so the compiler (using the language rules) can assume that the formal 
parameters (dummy arguments) do not reference the same memory locations. However, LINPACK calls 
DAXPY with two of the arguments referencing the same array. The compiler is in a tough spot: Since the 
expressions are no longer formal parameters, it cannot assume that they are distinct and will generate 
slower code to ensure that the program runs properly. 

There is no easy solution to this problem. The alias information needs to be expanded to record that 
within these particular blocks in the flow graph, the compiler may assume that two references to the same 
array are actually distinct locations. This would require flow-sensitive alias information, which is beyond 
the scope of this book (or the knowledge of the author). 

9.3 Cloning Procedures

Cloning is a generalization of in-line expansion. Consider a procedure P that is called at a number of call 
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sites C1, . . . , Cm in the program. Procedure cloning occurs when the compiler notices that the set of call 
sites can be partitioned into subsets such that different versions of the procedure P can be used. The same 
version is used at all call sites within the same set in the partition. The different versions will run more 
quickly than the general procedure in each of the contexts in which the specialized version occurs. This is 
a research topic. The best discussion available is by Hall (1991). 

The partitioning of the call sites involves the identification of some characteristic of the parameters. An 
easy case is a constant parameter that is used as the stride of a loop. More complex relationships can be 
identified by determining the dependency information for the flow graph in terms of the formal 
parameters. When the parameter has certain values, the procedure may be vectorizable, parallelizable, or 
have a form where the cache usage can be controlled. 

There is one case of cloning that should be implemented whether the more advanced technique is 
implemented or not. Consider a function F that has n different call sites, S1, . . . , S . If there is one calln

site that is in a frequently executed region of the program and that call site executes a large proportion of 
all calls on F, then a copy of F should be expanded inline at that site. All other sites should execute a 
normal call on the original copy of F. The frequency and proportion of the calls is a parameter to be 
tuned, and the information to make the choice may be gathered by program profiling. 
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9.4 Simple Procedure-Level Optimization

Whether full interprocedural analysis is performed or cloning is implemented, there are several 
optimizations that can be made when the body of the calling and called procedures are known at compile 
time. Consider the two procedures in Figure 9.3. The first column represents the original two procedures. 
If this section of code is executed frequently, the loop can be moved into a new procedure made from a 
copy of CALLED in which the body of the procedure becomes the body of the loop. The parameters for 
NEWCALLED are not listed; however, enough information must be passed to describe the bounds of the 
loop and the original arguments. 

Figure 9.3  Moving a Loop Inside a Procedure 

This transformation decreases the amount of procedure overhead. At the same time, it increases the 
possibilities that the loop can be software pipelined, vectorized, or parallelized. 

9.5 Dependence Analysis

Modern reduced instruction set computing (RISC) processors are fast. Most integer instructions take one 
cycle to execute. Floating-point operations are pipelined so that one or more instructions can be started 
on each cycle. The major impediment to fast program execution is memory references. The speed of 
memory is increasing more slowly than the speed of the processors. This chapter discusses the program 
transformations that can improve the speed of program execution. This discussion is an overview; further 
details can be found in books by Wolfe (1996) and Kennedy (forthcoming). 

To see the kinds of analysis that the compiler must perform, consider the three loops in Figure 9.4. The 
first loop must be run sequentially. Each iteration of the loop must complete (or nearly complete) before 
the next iteration can begin, since the value A(I - 1) is the value of A(I) computed on the previous 
iteration of the loop. The iterations of the second loop may be executed in any order because A(I) is not 
modified or used in any other iteration of the loop. This loop can be optimized for a parallel or vector 
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machine. The third loop can be optimized for a vector machine, since the value of A(I + 1) used is the 
value that existed before the loop was started. In other words, slight differences in the addresses of the 
values used in a loop can dramatically change the optimizations that can be applied to a loop. 

Figure 9.4  Similar Loops, Different Executions 

As you can see, there are several different ways that the stores into A(I) affect and are affected by the 
load operations from other elements of A(I). The loads and stores involving other arrays do not affect the 
load or stores into the array A unless the memory for the arrays overlaps. 

Definition	 Dependence: Consider two instructions in the flow graph, I1 and I2. The 
instruction I2 is dependent on I1 if and only if there is a path in the flow graph from 
I1 to I2 and the instructions might reference the same memory location. There are 
several categories of dependence: 

• 	 The dependence is a true dependence if I1 is a store operation and I2 is a load 
operation. If a true dependence exists, then the compiler must always 
guarantee that I1 is executed before I2 because a value might be stored that is 
later used in I2. 

• 	 The dependence is an antidependence if I1 is a load operation and I2 is a 
store operation. Again the compiler must guarantee that I1 is executed before 
I2; otherwise, I2 might destroy the value needed by I1 before it is used. 

• 	 The dependence is an output dependence if both instructions are store 
operations. Again the compiler cannot reorder the instructions because the 
compiler must ensure that the correct value is in memory for later references. 

• 	 The dependence is an input dependence if both instructions are load 
instructions. In this case (and in the case of no dependence), the compiler 
can reorder the instructions because no value can be changed before it is 
needed. 

We have been talking about dependencies on instructions; however, the dependencies are really on the 
execution instances of the instructions. We summarize the information with respect to individual 
instructions rather than executions because the compiler will typically not create different instructions for 
different executions. However, the dependence information is computed with respect to the instances. In 
the examples above, the first loop has a true dependence, the second loop has no dependences, and the 
third loop has an antidependence. 
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Note that although there are paths from each store operation to itself in each of the loops, there are no 
output dependencies. This is where the different execution instances come into play. The path from the 
store instruction to itself involves going around the loop, so the store operation is into different memory 
locations; thus, there is no dependence. 

The compiler performs an analysis called dependence analysis to determine the character of each of the 
loops, and records this information in a data structure called the dependence graph. The dependence 
graph contains the set of instructions in the flow graph as nodes. There is an edge between two 
instructions in the following cases: 

•  When there is a true, anti-, or output dependence between the instructions. In such cases, one of 
them must be a store operation and the other either a load or store operation. 
•  There is a dependence between two instructions I1 and I2, and therefore an edge, if I1 evaluates 
a value into a temporary T and I2 uses that temporary. 
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The compiler builds the dependence graph by considering each pair of memory reference instructions. 
Consider the first loop in Figure 9.4. There are two memory reference instructions: the store into A(I) and 
the load from A(I - 1). The compiler must first check to see if there is a path between the two instructions 
and then check to see if there is any situation where the two references might refer to the same memory 
location. This need not happen on the same iteration of the loop, so we are looking for two values I and I′ 
such that 

The value of I is the index for the store operation, and I′ is the index for the load operation. The first two 
inequalities indicate that the indices must be within the loop bounds. The equality indicates that the 
subscripts must be the same to be referencing the same location. Clearly there are values where this set of 
conditions is satisfied, so there is a dependence. The reference to the memory location by the load occurs 
on the next iteration after the store.2 

2The compiler writer wishes to find no dependencies; in other words, one wants no solutions to exist. This 
will mean that there are no dependencies and the compiler therefore has the maximum flexibility in 
reordering the instructions. 

If the array is multiply subscripted, then there is one equation for each subscript. Assuming that the 
language standard specifies that array subscripts must be in bounds, the only way that two memory 
reference instructions can reference the same location is if each of the subscripts has identical value. 

If there is more than one enclosing loop, then there would be extra pairs of loop indices: one for each 
loop, thus generating more inequalities. The problem is to solve both the set of equalities and inequalities 
simultaneously. There are four distinct techniques for doing this in the literature: 
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1.  Ignore the inequalities and see if there are integer solutions to the equalities. This approach 
involves the use of Diophantine equation theory from number theory; however, it works well for 
single subscripts and loops. 
2.  Ignore the fact that the compiler is looking for integer solutions and consider the problem as a 
real-valued problem. Consider the inequalities as defining the domain of a real function, and the 
difference of the left side and right side of the equations as defining a real-valued function. This 
reduces the problem to determining that there is a zero in the domain. That will be true if the 
maximum is positive and the minimum is negative. There are clever formulas for estimating the 
maximum and minimum. 
3.  A more recent general method called the Omega test (Pugh 1992) will replace these two 
techniques. It uses a specialized form of integer programming solution that works well with these 
particular problems. It is much more precise than the previous two techniques. 
4.  Below you will see a simple test that works the vast majority of the time, leaving the other 
tests to deal with the difficult problems. 

The dependence test given here is sufficient for software pipelining, discussed later. The test is described 
in terms of a doubly nested loop and a triply subscripted array. Consider the loop in Figure 9.5. It has 
been made overly complicated to show all of the possibilities. Note that the same loop index is used in 
the corresponding subscript positions in references to A and that at most one loop index is used in any 
subscript positions. The lowercase letters refer to constants in the program, which are not specified so 
that a general formula can be obtained. In summary: 

•  Each subscript has the form <constant> * <loop index> + <another constant> 
•  The same loop index occurs in the same subscript location. This does not mean that the 
outermost index occurs in the first subscript; it means that if a loop index occurs in one of the 
positions, then it occurs in the same position in the other array reference. 

Figure 9.5  Simple Dependence Test 

For this example, one can write down the inequalities and equalities as done earlier. In this case, they 
will give 
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This seems complex; however, one can directly solve for I - I′ and J - J′, getting 

In this case, there is an integer solution if and only if each denominator divides the numerator evenly and 
both expressions for I - I′ give the same answer. This is adequate to determine most dependencies. Of 
course the difference must also be less than the upper bound of the loop minus the lower bound so that 
there are two iterations that provide the difference. 
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9.6 Dependence-Based Transformations

Although we are not giving the theory for dependence-based transformations, we want to list the 
important examples that occur. Later we will see the most important one: software pipelining. During the 
scheduling of loops, the compiler will need to know if it can simultaneously execute parts of different 
iterations during the same actual loop in the machine. In this way the delays caused by lengthy 
instruction execution times can be hidden by wrapping the execution of the source loop around a smaller 
actual machine loop. 

For a scalar machine, the actual problem is to avoid load and store operations as much as possible so that 
the loop is balanced. Consider the number of operations in a loop (usually just the floating-point 
operations are considered). If most of the time is spent performing the load and store operations, then the 
loop is memory-bound and the length of time to execute the floating point operations is unimportant. If 
most of the time is taken executing floating-point operations, then the memory operations are not 
important. Unfortunately, loops are usually memory-bound. For a more detailed discussion of these 
points, see Hall, Kennedy, and McKinley (1991). 

One way to decrease load and store operations is to recognize when a value is already in a temporary. We 
have techniques for doing this within the body of a loop, but dependence information is needed to do this 
around a loop. In the first loop in Figure 9.4, the value of A(I - 1) loaded on an iteration of the loop is 
exactly the value of A(I) stored on the previous iteration, so the compiler can remember the value in a 
temporary and eliminate the load operation, as is shown in Figure 9.6. This is called scalar replacement. 
One load operation was eliminated from the loop, leaving only one store operation. 

In Figure 9.4, we saw simple relationships between the subscripts in load and store operations. We must 
handle more complex situations, as in Figure 9.7, involving multiple nested loops and more complex 
relationships among the subscripts. Note that in this case the variable I occurs as both the first and second 
subscripts of some of the memory references. The inner loops are also triangular—the lower bound of the 
inner loop depends on the loop index of the outer loop. 
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Figure 9.6  Scalar Replacement 

Figure 9.7  More Complex Dependence 

The laundry list of transformations has already been given in Chapter 2. Instead of repeating the list, we 
will give the intent of each of the transformations in the following list: 

Scalar replacement: As shown above, if the compiler can identify that a value is stored on the 
previous iteration of the loop, then the loop can be rewritten, eliminating the load and keeping the 
value in a temporary. This may involve some loop unrolling. 
Loop interchange: Besides decreasing the load and store operations, the compiler wants to 
improve the chances that two references are in the same cache line. Thus the loops may be 
interchanged so that consecutive values are loaded. 
Loop fusion: If there is a sequence of loops, then they may be combined. This will decrease loop 
overhead. If the loops load the same values it may also remove a number of load operations. 
Loop distribution: If a large loop uses too many cache lines, the compiler can divide the loop 
into multiple loops (under the correct circumstances). This will decrease the cache usage, making 
it easier to fit the data in the cache. 
Unroll and jam: Sometimes two iterations of the outer loop can be merged, decreasing the 
number of load operations if some load operations are shared between iterations. 

9.7 Loop Unrolling

Sometimes the body of the loop is too small to use all of the computational units efficiently. In that case 
the loop may be unrolled. Consider the loop in the left column of Figure 9.8. It will not be software 
pipelined on an Alpha because the divide operation is not pipelined. However, the loop can be unrolled 
to hide as much of the memory latency as possible. 

Unrolling the loop is a simple transformation: Make the appropriate number of copies of the loop body 
and adjust the loop index accordingly. Given the current compiler structure, one need not adjust the loop 
index, just leave copies of the assignment operation incrementing the index. The loop index will be fixed 
up by the identification of inductive temporaries and strength reduction during global optimization. 
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The more difficult issue with loop unrolling is to decide how much to unroll a loop. Some loops, such as 
those with conditional branching and procedure calls, do not benefit from unrolling. Thus the typical 
loop to unroll consists of a body that has sequential statements in it without branching. Loops that will be 
software pipelined should not be unrolled, since they will be unrolled later during the process of software 
pipelining. Repeating the unrolling will have no benefit and can harm software pipelining. If there are 
memory references that reference sequential locations in memory, it is probably a good idea to unroll 
enough to deal with a whole cache line. 

There is another form of loop unrolling that applies even when the loop is not a counting loop. This 
technique has benefits when dealing with WHILE loops in which later instruction scheduling is done 
globally. Consider the loop in Figure 9.9. The compiler does not know how many times the loop will 
repeat. It can unroll the loop, leaving the termination conditions in place. In this example it has been 
turned into a BREAK statement meant to have the same semantics as the break statement in C. What is 
the benefit? Given a smart enough scheduler, the load of A can be moved backward to overlap the 
addition. 

Figure 9.8  Loop and Unrolled Loop 

Figure 9.9  Alternate Form of Unrolling 
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Chapter 10 
Global Optimization 

The compiler next performs a complete optimization phase. Most global optimizations have already been 
performed. The compiler has performed constant propagation, value propagation, most strength reduction 
and redundant expression elimination, and has restructured expressions to improve movement of 
instructions out of loops. All of the optimizations performed so far involved changing the operands used 
in instructions or the insertion of instructions. No instructions have been moved. Now the compiler will 
move instructions to less frequent execution points, perform a more complete redundant expression 
elimination, and perform a different strength-reduction algorithm. 

Consider the flow graph in Figure 10.1. The temporary T is evaluated at three points. The modification of 
T in block B6 means that the previous algorithms will not have eliminated any of the three evaluations. 
However, the evaluation of T in B2 is redundant due to the other two evaluations of T. Previous 
redundant expression elimination only identified redundant evaluations when there was a single 
evaluation in a dominator block. The evaluation of S in block B2 can be moved out of the loop starting at 
B2 and placed in a new block between B1 and B2. 

The algorithm operates on each temporary individually. There are five types of instructions in the flow 
graph. These instructions can be identified by the operation code for the instruction; however, they also 
play a role in viewing each expression as an expression tree. At this point the expression tree is implicit, 
having been translated into individual computations; however, it is useful in understanding the larger 
structure of this optimizer. 

•  LOAD instructions are leaves of the expression trees. The LOAD instructions will be moved 
toward the Entry block to a point of less frequent execution. These instructions can be handled 
much like the normal computational instructions, except that LOAD instructions can be killed by 
STORE instructions and procedure calls. During the transformation, the LOAD instruction is 
represented by the destination temporary. This is a unique identification by the assumptions we 
have made about the form of the flow graph. 

file:///D|/Convert/Building_an_Optimizing_Compiler/ch10/249-252.html (1 of 3) [10/17/2003 1:06:04 AM] 



Building an Optimizing Compiler:Global Optimization 

Figure 10.1  Opportunities for Global Optimization 

•  COPY instructions play two roles in expression trees. They occur at the roots of the tree, 
copying the result into the destination temporary or setting up for a STORE instruction. COPY 
instructions are the most difficult to move in the flow graph because moving the copy operation 
depends on both the uses and evaluation points of the temporaries involved in the copy. The copy 
operations will be moved toward the Entry block to a point of less frequent execution. This 
optimization will happen rarely; however, it is important when it can happen. During this 
transformation, the copy operation is represented by a pair: the source temporary and the target 
temporary. This is a unique representation of the instruction since it completely represents the 
instruction. 
•  STORE instructions will be moved either toward Entry or toward Exit. In effect, they do not 
occur in the expression trees. Rather, they occur after the copy operation at the root of the tree. 
During the transformation, the store operation is represented by the temporary being stored. This 
is a unique representation for all store operations; however, it conflicts with the use of the same 
temporary for load operations, so separate sets of global and local information are computed for 
store operations. 
•  Computational instructions are pure functions that compute a value depending only on their 
operands. These instructions will be moved toward Entry to a point of less frequent execution. We 
will see that by using this form of partial redundancy elimination these computations can be 
moved independent of LOAD, STORE, and other computational instructions. During the 
transformation, the instruction is represented by the destination temporary, which uniquely 
represents the instruction by the conventions for the flow graph. 
•  The final class of instructions are those that determine the structure of the flow graph, such as 
procedure calls and branching instructions. These instructions are left in place by these 
optimizations and are not moved. 

The optimization algorithm computes points in the flow graph where the insertion of evaluations of T 
will make all present evaluations of T redundant. Then the algorithm eliminates all of the original 
evaluations. If the algorithm attempts to insert an evaluation into a block that already contains an 
evaluation, neither the insertion nor the deletion will be performed. 

There are three different algorithms depending on the class of instructions to be optimized. The rest of 
this chapter will describe the algorithms and apply them to the running example. 
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Partial redundancy elimination (PRE): This transformation includes moving expressions out of 
loops and eliminating redundant expressions. The compiler determines new positions in the flow 
graph at which to insert evaluations of temporaries to make all of the original evaluations 
redundant. The particular form of partial redundancy used here is a derivative of lazy code 
motion, which ensures that computations are not moved unless there is some path that guarantees 
a decrease of computations. 
Strength reduction (SR): Using a modification of the partial redundancy algorithm, the compiler 
can further optimize temporaries that are functions of induction temporaries. This handles some of 
the strength-reduction situations that were not handled earlier in the dominator-based 
transformation phases. 
Load-store motion (LSM): Another generalization of partial redundancy elimination, this 
technique will move loads of data backward out of loops and move stores forward out of loops in 
some situations in which the data changes in the loop (that is, the data is not loop invariant). 
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10.1 Main Structure of the Optimization Phase

The compiler organizes the global optimization phase as a work-list algorithm. The compiler has already 
identified evaluations of temporaries T that have a single evaluation of T that dominates them and makes 
them redundant. This category includes most of the redundant evaluations of temporaries. This phase 
deals with the rarer instances in which evaluations have multiple preceding evaluations that make the 
current evaluation redundant, and cases in which evaluations are partially redundant. 

Since these instances are rarer, the compiler can use a slightly more complex technique for transforming 
the flow graph that avoids two problems: excessive memory use in the compiler and the necessity of 
repeated applications of the transformations. Most global optimizing compilers use a set representation to 
store the information needed for partial redundancy. Some of this information is highly sparse, making 
the compiler compute a large data structure and then scan it, which is costly in system time and compiler 
run time. Second, some of these transformations create further opportunities for transformation. The 
usual solution is to run all or part of the transformation a second or even more times. Again, this is 
expensive. 

The compiler avoids these two problems by treating each temporary individually and using a work-list 
algorithm to reprocess only those temporaries that might have an opportunity for further improvement. 
The structure of the phase is given in Figure 10.2. To avoid the problems of intermixing the processing of 
expressions, copies, and store operations, three different queues are maintained for them. In each pass 
through the work-list algorithm, the expressions are handled first, then the copies, and finally the store 
operations. The store and copy operations must update the local information when they move store and 
copy operations. If the compiler writer finds this process too expensive, the number of iterations of the 
work-list algorithm can be limited because the flow graph represents a correct program after each 
transformation. 
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Figure 10.2  Main Global Optimization Procedure 

Each temporary is processed independently. We will show below that there is no interaction between the 
motion of expression temporaries. For load and copy operations, the interactions are handled by 
reprocessing. The store operations are reprocessed with the load operations; however, the motion of store 
operations is less sensitive to the motion of other operations. 

10.2 Theory and Algorithms

The execution of the program represented by the flow graph is modeled by a path through the flow graph 
from Entry to Exit. When transforming the placement of evaluations of a temporary T, these 
transformations operate by inserting copies of the evaluation at some points in the flow graph. These 
insertions make some of the other evaluations of T redundant and thus the latter can be eliminated. There 
are two limitations on the points at which evaluations of T can be inserted and other copies deleted: 

Safety: An evaluation of T can be inserted at a point p only when every path leaving p contains an 
evaluation of T that is not preceded by an instruction that kills T. Thus an insertion can only occur 
at points where the temporary is guaranteed to be evaluated later with the same operands. The 
later evaluation would get the same result with the same side effects, such as division by zero. 
Recall the definition of anticipation. This condition is identical to saying that T is anticipated at p. 
Profitability: Consider any path from Entry to Exit. The number of evaluations of T on the path 
after the insertions and deletions must be no larger than the number of evaluations of T on the 
path before the transformation. The number cannot increase; it is hoped that it will decrease, 
allowing the program to execute more quickly. 

Consider the temporary T in Figure 10.1. The evaluation at the beginning of block B2 is redundant, so it 
can be eliminated without the insertion of any new copies of the evaluation of T. Any path starting at 
Entry and going to Exit will go through either B1 or B6 just before going through B2, so the evaluation 
will already have occurred. 

With the temporary S in Figure 10.1, the transformation will perform an insertion. A new block will be 
inserted between B1 and B2 containing an evaluation of S. This makes the evaluation of S in B2 
redundant. Consider any path going from Entry to Exit. If the edge between B1 and B2 is traversed, then 
the loop must be executed at least once, so the new evaluation and the elimination of the old one do not 
increase the number of evaluations. If the loop is iterated more than once, then there is a decrease in the 
number of evaluations because the edge from B1 to B2 is outside the loop. 

Although we have discussed loops, the algorithms have no knowledge of. loops. The loop tree is not 
needed. Instead the algorithms rely on the concept of paths and the number of occurrences of an 
evaluation on a path. 
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10.2.1 Outline of Elimination of Partial Redundancy

Computing the points at which to insert evaluations of T is a two-step process. First the algorithm 
computes the earliest points in the flow graph (those points nearest Entry) where evaluations of T can be 
inserted without violating safety or profitability. In fact, the algorithm guarantees the minimal number of 
evaluations of T on all paths. Then the insertion points are pushed later on each path until the last points 
where the insertions can occur without increasing the number of executed evaluations. 

10.2.2 Computing the Earliest Points of Insertion

We will use the lazy code motion1 variant of partial redundancy elimination.2 This algorithm determines 
the earliest points in the program at which evaluations of T can be inserted to make all evaluations of T 
redundant. These points must satisfy the conditions of safety and profitability. 

1 The original algorithm was developed by Knoop, Ruthing, and Steffen (1992). We will use a variant 
developed by Drechsler and Stadel (1993) because it fits the compiler framework we have developed 
better. 
2 Developed by Etienne Morel (Morel and Renvoise 1979). 

We will consider the insertion of evaluations of T on the edges of the program flow graph. This means 
that one needs to evaluate T if one traverses that edge. If the edge has only one predecessor, this is the 
same as inserting the instruction in the predecessor. If the edge has only one successor, this is the same as 
inserting the instruction in the successor. If evaluations of T are going to be inserted on each edge into a 
block, then insert the evaluation in the beginning of the block instead. Otherwise, if the instruction is to 
be inserted on an edge, create an empty basic block with one successor, the head of the original edge. 
Make the new block be the successor of the tail. In effect, one has spliced an empty basic block into the 
middle of the edge. 

Now consider an arbitrary edge (P, S). Under what conditions would it be the earliest point at which to 
insert an evaluation of T? 
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•  First, T must be anticipated at the beginning of S. If it is not, then the insertion is not safe since 
there is some path to an exit that does not already contain an evaluation of T. 
• T should not be available at the end of P. If it is available at the end of P, then there is no point 
in inserting a new copy, since it would only create two evaluations in succession on some path. 
•  There must be some reason that the computation cannot be placed earlier. There are only two 
possibilities: Either T is killed in the preceding block P or T is not anticipated at the end of P. The 
second condition means there is a path out of P that does not contain an evaluation of T. 

Figure 10.3	 Earliest Placement Equations 

We can directly translate these conditions into a set of equations, as in Figure 10.3. Unfortunately, the 
intuition above does not constitute a proof that placing evaluations of T at these points will make all 
original evaluations redundant or decrease the number of evaluations executed. 

Lemma E1 Consider any path from Entry to a block B with ANTLOCB = true, then either 

There is an edge (P,S) with EARLIESTP,S = true and there are no evaluations of T or 
instructions killing T between the beginning of S and the beginning of B on the path, 
or 

There is some block C on the path that contains an evaluation of T and there are no 
instructions that kill T on the path between the evaluation in C and the beginning of 
B. 

Informally, this means that on each path through the flow graph each original evaluation of T is either 
redundant on the path or preceded by an edge where EARLIEST is true. So placement of evaluations at 
each point where EARLIEST is true will make all original evaluations redundant. 

Proof	 Since we have two conditions, we will assume that one is false and prove that the other is 
true. Assume that walking backward along the path from B one reaches either Entry or an 
instruction killing T before reaching an evaluation of T. In other words, assume that the 
second condition is false. Consider the subpath consisting of the part of the original path 
from the killing instruction (or Entry) to B. 

First note that AVOUT is false for each block on this subpath. Remember that AVOUT is 
true only if there is an evaluation on each path leading to the point. The subpath we are 
considering is one such path that begins either with Entry or an instruction that kills T. If 
AVOUT is true, there must be some evaluation of T on the subpath, contradicting the 
assumption made at the beginning of the proof. 

Now consider the two cases: 
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• Assume that the subpath goes all of the way back to Entry. Now start walking 
backward on the subpath again, starting at B. T is anticipated at B since ANTLOCB = 
true and there are no instructions on the subpath that kill T. Walk backward along the 
path until one comes to a block S where T is anticipated at the beginning of S but not 
at the end of its predecessor, P. Go back and look at the formulas for EARLIEST. They 
are satisfied for (P, S). If T is anticipated at the beginning of each block, simply make 
P be Entry and S its successor on the path. 

• Assume that the subpath starts with a block C that does kill T. Again perform the 
backward walk starting at B looking for the first block S where T is anticipated in S 
but not in its predecessor P. Then the formulas for EARLIEST are satisfied. If there is 
no such block, then make P be C and S be the successor of C. Again the formulas are 
satisfied because the conjunction is satisfied, C killing T. 
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Before going on we need an auxiliary fact about available temporaries. 


Lemma E2 Assume T is available at the beginning of B. Consider a path from Entry to B. Let 
block C be the last block on the path that contains an evaluation of T. Then 
AVOUTD = true for each block from (and including) C up to (but not including) B. 

Proof Since T is available at the beginning of B, each block D (except C) contains no 
evaluations of T and contains no instructions that kill T. Assume that AVOUTD = 
false; then there is a path from Entry to D that either does not contain an evaluation 
of T, or the last evaluation of T is followed by an instruction that kills T. Piece this 
path together with the original path from D to B. This gives us a path that does not 
contain an evaluation of T or the last evaluation of T is followed by an instruction 
that kills T. Thus T is not available at the beginning of B. Thus there is a 
contradiction. 

We now know that insertions at the points where EARLIEST is true make the original evaluations 
redundant. Now we must show that we have not made too many insertions. If an evaluation is redundant, 
do any insertions occur? No! 

Lemma E3	 If T is available at the beginning of block B, then on any path from Entry to B there 
is no edge (P,S) where EARLIESTP,S = true following the last evaluation of T on 
the path. 

Proof	 Since T is available at the beginning of T, AVOUTC = true for each block on the 
path following the last evaluation of T on the path, by Lemma E2. The equations 
for EARLIEST indicate that none of the edges after that last evaluation can give a 
result of true. 

The more complete question is whether the insertions at these points would be profitable. In other words, 
is there any path that contains two edges where EARLIEST is true that is not separated by an original 
evaluation? 
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Lemma E4 Let (P, S) and (Q, R) be two edges in the flow graph. Assume that there is a path 
from S to Q that contains no instructions that kill T. If EARLIESTP,S = true and 
EARLIESTQ,R = true, then there is an evaluation of T on this path. 

Proof	 Look at the equations for EARLIEST. EARLIESTQ,R = true and Q is part of the path, 
so Q does not kill T. So ANTOUTQ = false. Assume there is no evaluation of T on 
the path. Then we have a path from S to Q and extended on that does not contain an 
evalution of T before an instruction killing T. So ANTINS = false by the definition of 
anticipation. This is a contradiction, since EARLIESTP,S = true requires that ANTINS 

= true. 

Theorem E	 Consider the program transformation in which evaluations of T are inserted on each 
edge (P,S) where EARLIESTP,S = true and the initial evaluation of T in each block B 

where ANTLOCB = true is deleted. This transformation satisfies the following 
conditions: 

Safety: Every path from a point of insertion to Exit arrives at a point of 
evaluation of T before Exit or an instruction that kills T. Thus no new side 
effects are generated. 

Correctness: Each path from Entry to a block B where ANTLOCB = true 
contains an edge (P,S) where EARLIESTP,S = true. Thus the evaluation of T at 
the beginning of that block is redundant and can be deleted. 

Profitability: The number of evaluations of T on any path from Entry to Exit 
after the insertions and deletions is less than or equal to the number of 
evaluations before the transformation. 

Proof Safety. By the definition of EARLIEST, T is anticipated at S, so there is an 
evaluation of T on each path out of S. Hence the transformation is safe. 

Correctness. Consider any path from Entry to B where ANTLOCB = true. By 
Lemma E1, either there is an edge (P,S) where EARLIESTP,S = true not 
followed by a killing instruction, or an evaluation of T occurs on the path not 
followed by a killing instruction. In the first case, an evaluation of T is going to 
be inserted on (P,S) that will satisfy the criteria for availability. If there is an 
evaluation of T on the path in some block C, then there are two possibilities. If 
C contains a killing instruction, then that evaluation of T will not be deleted 
and satisfies the criteria for availability. If C does not contain a killing 
instruction for T, then ANTLOCC = true and we can repeat the process on the 
same path, but only considering the path from Entry to C This process is 
repeated until a condition for availability is found. The path keeps getting 
shorter and there are only a finite number of evaluations of T on the path. If one 
reaches the first evaluation of T on the path without finding the criteria for 
availability, then Lemma E1 indicates that an earlier edge must have 
EARLIEST being true, so the condition is eventually satisfied. 
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Profitability. Consider any path from Entry to Exit. Let I1, . . . , I  be them

instructions on the path that are either evaluations of T or instructions that kill 
T. Let I 0 be a pretend instruction at the beginning of the path that kills T. Now 
consider each pair of instructions Ik and Ik+1. 

• If Ik+1 is an instruction that kills T, then T is not anticipated between the two 
instructions, so by the equations for EARLIEST there is no edge where an 
evaluation will be inserted. 

• Suppose Ik and Ik+1 are both evaluations of T. Since we are assuming that 
local optimization has been performed in a block, we know that Ik+1 is in a 
different block than Ik. So Ik+1 is at the beginning of the block. Thus Ik+1 will be 
eliminated by the transformation. Note that only one insertion can occur 
between the two instructions because of Lemma E4 (there would be no 
evaluation between the two), so we have one deletion and at most one 
insertion. 

• Suppose Ik is aninstruction that kills T and Ik+1 is an evaluation of T. If they 
both occur in the same block then there will be no insertions or deletions. 
Assume they occur in separate blocks; thus again Ik+1 is at the beginning of a 
block and will be deleted by the transformation. Again there is at most one 
insertion and one deletion. 

• Following the last evaluation on the path, T is not anticipated, so there are no 
insertions following the last evaluation. 

In summary, the worst case is that there is one deletion for each insertion, that is, 
profitability is satisfied. 
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In one sense this transformation is optimal. There is no other set of insertions that is safe, correct and 
profitable, and that will involve fewer evaluations of T in the transformed flow graph. Later we will see 
another transformation that is better in a different way. 

Theorem EO	 Consider another transformation that is safe, correct, and profitable in the sense of 
Theorem E. The number of evaluations of T on any path from Entry to Exit after this 
transformation will be no less than the number of evaluations of T after the 
EARLIEST transformation 

Proof	 The argument is much like the argument for profitability. Consider a path from Entry 
to Exit and list the instructions I1, . . . , Im on the path that are either evaluations of T 

or instructions that kill T. Pretend that there is an instruction I0 that kills T at the 
beginning of the path. Now consider each pair of instructions. 

• If Ik+1 is an instruction that kills T, then T is not anticipated between the two 
instructions. Since both transformations are safe, neither will insert instructions 
on any edge between the two instructions. 

• Suppose Ik kills T, and Ik+1 is an evaluation of T. If both are in the same block, 
then there is no modification of the two instructions and no insertion between 
them, so assume that they are in different blocks. Thus Ik+1 is at the beginning of 
a block and will be deleted, so both transformations must insert an evaluation of 
T between the two instructions. However, EARLIEST will insert only one, by 
Lemma E4. 
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• The case where Ik and Ik+1 are evaluations of T is the difficult case. We are 
considering one path so we do not know whether T is available or anticipated on 
the whole path since that involves the flow graph rather than the path: There 
may be edges entering and leaving the path. Again we are only interested in the 
case in which the instructions are in separate blocks, since local optimization 
will remove one of them otherwise. Thus Ik+1 is locally anticipated in its block. 
Recall that there are no instructions killing T between these two instructions. 
Walk backward toward Ik until you find an edge (P, S) where T is anticipated at 
the beginning of S and not anticipated at the end of P. If no such edge exists, 
then EARLIEST will make no insertions. If the edge does exist, consider two 
further cases: 

• If T is available at the end of P, then there is no insertion for EARLIEST 
by the definining equations. 

• Otherwise, T is not available at the end of P, so EARLIEST will insert an 
evaluation on (P, S) and no other insertions between the two instructions, 
by Lemma E4. We must show that the other transformation must insert a 
computation between the two instructions also. Since T is not available at 
the end of P, there is a path from Entry to P that contains no evaluation of 
T after the last instruction killing T. This can be pieced together with the 
current path between P and Ik+1. To satisfy correctness (that is, make T 

redundant at Ik+1), the other transformation must insert a computation on 
this constructed path after the last killing instruction. This instruction 
cannot be before P because there is a path out of P to either Exit or a 
killing instruction. That means the inserted evaluation is on the path from 
Ik to Ik+1, proving that at least one insertion happens on this path. 

• Consider the portion of the path from I  to Exit. T is not anticipated at anym

point on this path, so neither transformation will insert an evaluation of T 
because of safety. 

In summary, in each case where EARLIEST inserted an evaluation of T, the other 
transformation was forced to insert an evaluation of T, thus satisfying the theorem. 

Investigating the proof of this optimality theorem reveals the reason that this transformation is called 
EARLIEST. It inserts evaluations of T at the earliest possible points that are safe, profitable, correct, and 
guarantee the fewest number of evaluations. 
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Example	 In the flow graph of Figure 10.1, the temporary T will not have any insertions and 
the evaluation in block B2 will be deleted. The temporary S has an insertion on 
edge (B1, B2) and the evaluation in block B2 is deleted. Now consider a 
hypothetical evaluation of a constant in block B4 where the constant is not 
evaluated anywhere else. There are no instructions that kill a constant, so an 
evaluation will be inserted on the edge (B0,B1) and the evaluation in block B4 
will be eliminated. This is the weakness of EARLIEST: It can evaluate 
temporaries long before they are needed. 

The EARLIEST transformation has been included here for two reasons. The primary reason is that it is 
preliminary to the LATEST transformation, which we will now describe, and the proof techniques lead 
one gradually to understand the proof techniques for LATEST. Secondarily, the compiler is going to use 
the EARLIEST transformation later during register allocation to move register spilling instructions to 
earlier points in the flow graph. In that case, moving instructions further will free up more registers and 
be better. 
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10.2.3 Computing the Latest Point of Insertion

Inserting evaluations of T on the edges described by EARLIEST makes all evaluations of T at the 
beginning of blocks redundant. In fact, EARLIEST gives an optimal solution in terms of number of 
evaluations performed. However, it is far from optimal when taking into consideration the length of time 
that values stay in registers. 

As an example, consider an instruction that loads a constant into a temporary T. Assume that it is used in 
the last block of the flow graph, just before Exit, in a block that postdominates all other blocks in the 
flow graph. EARLIEST will insert an evaluation of the instruction just after Entry although the constant 
may not be used anywhere else in the flow graph. The word EARLIEST means what it says: It places 
evaluations at the earliest conceivable point in the flow graph. Now we must find a way to delay the 
evaluations to the latest efficient point. 

Form a picture in your mind of the geography of EARLIEST insertions and deletions. Consider an 
original evaluation of T in the graph, and the edges where EARLIEST insertions occur. The path from an 
insertion to an original evaluation may involve branching, joining, and looping; however, Lemma E4 
tells us that there are no other edges on that path where EARLIEST is true. 

Now consider a block B and all paths from Entry to B. If each of these paths contains an edge where 
EARLIEST is true and there are no following instructions that evaluate T or kill T, then B is on paths to 
some evaluations of T. If B does not contain an evaluation of T then the insertions can be delayed until 
after B. The insertions can occur just before a block that either contains an evaluation of T or has an 
entering edge coming from an original evaluation of T. In those cases, perform the insertions just before 
this block. To summarize these ideas we define the equations in Figure 10.4. Unlike EARLIEST, these 
equations need to be solved. 

Figure 10.4  Equations for Delaying Insertion 
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As with most Boolean equations the compiler encounters, there is not a unique solution to the equations 
in Figure 10.4. Consider a loop that contains no evaluations of T. As with the equations for 
anticipatability and availability, one gets different values if one assumes that the values in the loop are 
true or false. In this case we are trying to push a value back through the loop to before the loop, so we 
want the maximal solution such that going around a loop does not force the value to false. 

10.2.4 Understanding the LATEST Equations 

Consider a path from Entry to Exit and a block B where LATERINB = true. Walk backward along the 

path. Since LATERINB = true, this means that either EARLIESTP,B = true or LATERINP = true and T ∉ 
ANTLOCP, where P is the predecessor of B on the path. If the second case is true, the process can be 
repeated starting at P rather than B. The result is that any path from Entry to B contains an edge (P,S) 
where EARLIESTP,S = true and no following block up to B contains an evaluation of T before an 
instruction that might kill T. 

Also note that LATERINB = true implies that T is anticipated at the start of B. Consider a path leaving B 
that does not reach an evaluation of T before an instruction that kills T. We can patch together a new 
path. Start with any path from Entry to B and add this path without an evaluation of T. There is an edge 
where EARLIEST is true, so T is anticipated at the head of that edge (look at the formulas). So we have a 
path from Entry to Exit that goes through B. T is anticipated at an edge earlier in the path than B and 
there are no evaluations of T after that edge. So there are no evaluations of T on the path from the head of 
the edge where EARLIEST is true until Exit, contradicting the anticipation of T at the head. 
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10.2.5 Latest Insertions and Deletions

Where does one insert evaluations of T and which evaluations are deleted? As we argued above, we 
delay the insertion of evaluations to the last possible point. That would be the point where an edge 
satisfies the conditions for delay but the node at the head of the edge does not because one of the other 
edges does not have a clear (backward) path to occurrences of EARLIEST. The evaluations that are 
removed are the same as for EARLIEST, except in the case in which the EARLIEST insertions have been 
delayed until the block where the evaluation occurs. In that case there is no point in doing the insertions 
and deletions. This gives the equations in Figure 10.5. 

Example	 In Figure 10.1 assume that there is the evaluation of a constant in block B5. 
EARLIEST will insert evaluations of the constant on edges (B0, B5) and (B0, 
B1). The equations for LATEST make it clear that LATERIN is true for B5, so no 
insertion or deletion will occur. 

The transformation for LATER is less intuitive than the transformation for EARLIEST, so it is even more 
important to prove that the transformation is safe, correct, and profitable. One also needs to prove that it 
is optimal in two senses: that it has the minimum number of evaluations and the shortest sequence of 
instructions between the inserted evaluations and the original evaluations. 

Lemma L1	 Consider a block B. LATERINB = true if and only if each path from Entry to B 

contains an edge (P, S) where EARLIESTP,S = true and there are no evaluations of T 

or instructions that kill T between the beginning of S and the beginning of B on this 
path. 
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Proof	 Assume LATERIN B = true. Consider any path from Entry to B. Let B′ be the 
predecessor of B on this path. LATERB′,B = true by the equations for LATER. This 
means that either EARLIESTB′,B =true, satisfying the condition, or LATERINB′ = true 


and B′ contains no evaluations of T. Walking backward on the path, repeating this 

argument for each block, one eventually must come to an edge (P, S) where 

EARLIESTP,S = true and there are no instructions that evaluate T between the start of 

S and the start of B. Now EARLIESTP,S = true means that T is anticipated at S and 

there are no instructions between S and B that evaluate T, so T must be anticipated at 

B and there must be no instructions between S and B that kill T (otherwise it would 

not be anticipated at S). So the condition is satisfied. 


Assume that each path from Entry to B contains an edge (P, S) where EARLIESTP,S = 

true and there are no instructions between the start of S and the start of B that 

evaluate or kill T. To show that LATERINB = true, we assume that LATERINB = false 

and derive a contradiction. Look at the equations. 


For LATERINB = false there must be a predecessor P0 such that LATERINP0 = false 


and = false. For the intersection to be false, at least one entry in 
the intersection must be false. Let P0 be that predecessor. That means that 

= false, and either LATERINP0 = false or ANTLOCP0 = true. 
However, the assumption is that every path from Entry to B contains an edge where 
EARLIEST is true without any following instructions that evaluate or kill T. So 
ANTLOCP0 cannot be true, because it can be spliced into a path that ends with B. 

This whole process can now be repeated with P0 to get P1. The process will continue 
until either one of the predecessors is Entry or a loop is formed (remember there is 
only a finite number of blocks). If Entry is reached, then we have constructed a path 
that does not contain an edge where EARLIEST is true. This is a contradiction. 

What if a cycle Pi, . . . , Pj is formed where Pi = Pj and i≠ j? Consider all of the 
predecessors of all of the blocks in the cycle. Because we are dealing with the 
maximum solution, LATERIN at any one of the blocks in the cycle is the intersection 
of the condition LATER from each one of the predecessors for every block in the 
cycle. This is true because ANTLOC is false for each block in the cycle, so it follows 
by associativity. For LATERIN for some node to be false, one of the predecessors 
must have LATERIN false. Add new nodes to the path going from Pj until you get to 
a node Pk that is a successor of this node. Then add this new node with LATERIN 

being false into the path. Now continue constructing the path. Each time a cycle is 
found, the above process can be used to add a new node that is outside the path. 
Since there are only a finite number of nodes, the process must get to Entry and 
establish the contradiction. 
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Lemma L2	 Consider a block B and one of its predecessors B′. LATERB′,B = true if and only if 

each path from Entry to B′ contains an edge (P, S) where EARLIESTP,S = true and 
there are no evaluations of T or instructions that kill T between the beginning of S 
and the end of B′ on this path. 

Proof The argument is the same as in Lemma L1. The only addition is that one is dealing 
with the end of the block B′ rather than the beginning of the block B. In this case 
either EARLIESTB′,B is true (in which case the lemma is automatically satisfied) or B′ 
contains no instructions that kill or evaluate T, so the argument for Lemma L1 can be 
used directly. 

Figure 10.5  Insertion and Deletion Equations 

We must now repeat the argument for correctness, profitability, and safety that we made for the 
EARLIEST algorithm, but now for the LATEST algorithm. 

We start with safety. That means that any insertion that is made must lead to an evaluation of T on each 
path leaving the point of insertion. In other words, we must show that T is anticipated at the head of the 
edge where an insertion occurs. 

Lemma L3 If INSERTB′,B = true, then T is anticipated at the start of B. 

Proof INSERTB′,B = true and LATERINB = false (look at the formulas). By Lemma L2, 

LATERINB′,B = true means that each path from Entry to (B′, B) contains an edge (P, 

S) where EARLIESTP,S = true and there are no instructions that evaluate or kill T 

between the start of S and the end of B′. We proved earlier that EARLIESTP,S = true 
means that T is anticipated at S. Now there are no evaluations of T between S and 
the end of B′. Assume T is not anticipated at B. Then there is a path from B to Exit 
that does not contain an evaluation of T before an instruction that kills T. Piece that 
path together with the path from S to B′, and one has a path from S to Exit that does 
not contain an evaluation of T before an instruction that kills T. So T is not 
anticipated at S. Contradiction. 
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We next must prove that the insertions are correct. That means that there is an undeleted or inserted 
evaluation of T on each path from Entry to an evaluation that is deleted, so that T is known to be 
evaluated at the original points of evaluation. 

Lemma L4 Assume that DELETEDB = true. Then after the insertions have occurred, T is 
available at B. 

Proof DELETEB = true means that ANTLOCB = true and LATERINB = false. We apply 
Lemma L1. Consider any path from Entry to B. Either there is an edge (P, S) where 
EARLIESTP,S = true with no instructions between S and B that evaluate or kill T, or 
there is an evaluation of T on the path not followed by an instruction that kills T. 

Consider the two cases. 

• If there is an evaluation of T on the path, then there are two cases. If that 
evaluation does not have DELETE true, then the condition for availability of 
this path is satisfied. If the evaluation does have DELETE true, then the same 
argument we are using can be applied to that evaluation. Eventually we will 
reach either an evaluation with DELETE false or the first evaluation on the 
path, at which point it will be impossible to have a preceding evaluation. 

• Suppose EARLIESTP,S = true and there are no instructions between S and B 

that modify or evaluate T. Then walk down the path from S to B investigating 
the value of LATER and LATERIN. Since there are no instructions that evaluate 
T on the path, and EARLIESTP,S = true, we see by the equations that LATER 

starts out being true and can only become false by LATERIN becoming false. 
So walk the path until we find an edge (P′, S′) where LATERINS′ = false. We 
must find such an edge by the time we reach B, since LATERINB = false. By the 
formula for INSERT, there is an insertion on this edge. Thus an insertion occurs 
without following instructions that might kill T. 

These two cases together prove that T will become available at B. 

We now know correctness and safety. We must prove that the algorithm is profitable. Thus we must 
show that the number of evaluations of T does not increase on any path from Entry to Exit. Before the 
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proof, which is similar to the proof for EARLIEST, we need to show that there must be an original 
evaluation of T in the flow graph between any two insertions on a path without instructions that kill T. 

Lemma L5	 Consider a path from Entry to Exit. Let (P, S) and (Q, R) be two edges on the path 
such that the path from S to Q does not contain instructions that might kill T. If 
INSERTP,S = true and INSERTQ,R′ = true, then there is an evaluation of T on the path 
from S to Q. 

Proof	 We will use Lemma E4, which is the same lemma about EARLIEST rather than 
INSERT. INSERTP,S = true means that LATERP,S = true and LATERINS = false. So 

by Lemma L1 there must be an earlier edge (P′, S′) on the path such that 
EARLIESTP′,S′ = true and there are no instructions between S′ and P that evaluate or 

kill T. Similarly, because INSERTQ,R = true there is an earlier edge (Q′, R′) where 

EARLIESTQ′,R′ = true and there are no instructions between R′ and Q that modify or 
kill T. 

Where is the edge (Q′,R′) in relation to the node S? (Q′, R′) must be later on the 
path than S. Assume (Q′,R′) precedes S on the path. LATERINS = false, so Lemma 
L1 indicates that there is a path from Entry to S that does not contain an edge where 
EARLIEST is true without following instructions that evaluate or kill T. Piece this 
path together with the path from S to Q and we have a path from Entry to Q without 
an edge with EARLIEST being true without following instructions that evaluate or 
kill T. But this contradicts Lemma L1 and the fact that LATERQ,R = true. 

Thus we have the edge (P′, S′) preceding S, which precedes the edge (Q′, R′), which 
precedes Q. EARLIEST is true on these two edges and there are no instructions that 
evaluate T between S′ and S or between R′ and Q. By Lemma E4, there must be an 
evaluation of T between the two edges; however, the only place that that evaluation 
can occur is between S and Q′. Thus we have an evaluation of T between the two 
edges where INSERT is true. 
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Now we are ready to prove that the transformation is profitable. The proof is an adaptation of the same 
proof for EARLIEST. 

Lemma L6	 Consider any path from Entry to Exit. The number of evaluations of T on the path 
after the application of INSERT and DELETE is no greater than the number of 
evaluations originally on the path. 

Proof	 Let I1, . . . , Im be the instructions on the path that are either evaluations of T or 
instructions that kill T. Pretend that there is an initial instruction I0 at the beginning 
of the path that kills T. Now consider each pair of instructions Ik and Ik+1. 

• If Ik+1 is an instruction that kills T, then T is not anticipated at any block or 
edge on this piece of the path. Thus there is no edge where INSERT is true, so 
the number of evaluations of T on this piece of the path is the same as the 
number of evaluations originally. 

• Suppose Ik is an instruction that kills T, and Ik+1 is an evaluation of T. If both 
instructions occur in the same block, then Ik+1 is not locally anticipated so there 
is no insertion or deletion. Consider the case that they are in distinct blocks. 
Then Ik+1 is locally anticipated in its block. Thus there is an earlier (P, S) where 
EARLIESTP,S = true between Ik and Ik+1. Thus LATERP,S = true. Now walk down 
the path from S toward Ik+1. Since there are no instructions that can evaluate or 
kill T, the only way that LATER can become false is if LATERIN becomes false. 
There are two cases: 

1. Suppose there is an edge (P′, S′) between (P, S) and Ik+1 where LATERINS′ 
= false. Then INSERTP¢,S¢ = true. Since there was only one edge where 
EARLIEST was true, LATER and LATERIN remain false until we get to the 
instruction Ik+1. In this case, DELETE is true for Ik+1. We have one insertion 
and one deletion; thus, there is no net gain in evaluations. 

2. If there is no such edge, we have LATERIN being true for the block 
containing Ik+1, so there is no insertion or deletion and no net gain in 
evaluations. 
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• Suppose Ik and Ik+1 are both evaluations of T. Since we are assuming that local 
optimization has occurred, both evaluations are not in the same block, so Ik+1 is 
locally anticipated in its block. There are three cases: 

1. If there is no edge between the two instructions where EARLIEST is true, 
then LATEST cannot be true at any edge or block between the two 
instructions. Thus LATERIN is false for Ik+1, so Ik+1 is deleted, thus 
decreasing the number of evaluations by 1. 

2. If there is an edge where EARLIEST is true between the two instructions, 
and LATERIN is true for Ik+1, then LATERIN and LATER are true between 
that edge and Ik+1. If they became false at any point there is no way for them 
to become true again, since there is only one edge where EARLIEST is true. 
So there is no edge where INSERT is true and there is no deletion. Thus 
there is no change in the number of evaluations. 

3. If there is an edge where EARLIEST is true between the two instructions, 
and LATERIN is false, then there is a first block where LATERIN is false and 
the edge preceding it has INSERT being true. There can only be one such 
edge by Lemma L5. So we have an insertion and a deletion, for no net 
change in the number of evaluations. 

• On the piece of the path after Im, T is not anticipated, so there can be no 

insertions. 


We have investigated all possible segments, and in each case there was either no 

increase in the number of evaluations or a decrease in the number of evaluations. 

Therefore the number of evaluations on the whole path after the transformation 

is no larger than the number of evaluations originally on the path. 


Previous Table of Contents Next 

Copyright © Digital Press 

file:///D|/Convert/Building_an_Optimizing_Compiler/ch10/266-268.html (2 of 2) [10/17/2003 1:06:13 AM] 

file:///reference/digitalp00001.html


Building an Optimizing Compiler:Global Optimization 

Building an Optimizing Compiler 
by Bob Morgan 
Digital Press 
ISBN: 155558179x  Pub Date: 12/01/97 

Previous Table of Contents Next 

We now know that the transformation is correct, safe, and profitable. Like EARLIEST, it is also optimal 
in that it generates the minimum number of evaluations possible. 

Theorem LO	 Consider another transformation that is safe, correct, and profitable in the sense of 
Theorem E. The number of evaluations of T on any path from Entry to Exit after this 
transformation will be no less than the number of evaluations of T after the 
INSERT/DELETE transformation. 

Proof	 We could construct the proof using the same techniques used in Theorem EO; 
however, a simpler observation makes the job easier. Look at the previous proof of 
profitability for INSERT/DELETE. In the case analysis, whenever an insertion from 
EARLIEST occurred, one of two cases happened with LATEST: 

• There was an insertion due to INSERT being true. In that case, just like the 
EARLIEST case, there was a deletion of the succeeding evaluation of T. 

• There was an insertion by EARLIEST; however, LATEST pushed the insertion 
all the way down to the next evaluation of T. This happened when LATERIN was 
true for the block containing the next evaluation. In that case there was no 
insertion or deletion. 

In other words, the number of evaluations after INSERT/DELETE is exactly the 
same as the number of evaluations after EARLIEST. Since EARLIEST is optimal, so 
is INSERT/DELETE. 

We now know that INSERT/DELETE is as good as the EARLIEST transformation. Now we show that it 
is better by showing that the inserted evaluations are as close to the original evaluations as possible. 
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Theorem LC Consider any other algorithm INSERT′/DELETE′ for insertion and deletion of 
evaluations of T. Assume that INSERT′/DELETE′ is safe, correct, profitable, and 
optimal in the sense that for each path from Entry to Exit the number of evaluations 
of T after the transformation is the same as EARLIEST or INSERT/DELETE. 
Consider a path from Entry to Exit with instructions I0, I1, . . . Im, Im + 1, where I0 is a 
pretend instruction at Entry that kills T, Im+1 is a pretend instruction at Exit that kills 

T, and the Ik are all other instructions that either evaluate or kill T. For INSERT′ and 
INSERT, handle an evaluation of T at the beginning of a block that is not deleted as 
an insertion on the preceding edge followed by a delete. Consider any pair of 
instructions, Ik and Ik+1, on the path. If any one of the three transformations inserts 
an evaluation between Ik and Ik+1, then all three do, and the insertion for EARLIEST 

occurs before or at the same edge as the insertion for INSERT, and the insertion for 
INSERT′ occurs before or on the same edge as the insertion for INSERT. 

This is an involved statement of the fact that EARLIEST inserts computations as far away as is possible 
and INSERT inserts evaluations as late as possible to still produce an optimal number of evaluations. Any 
other optimal transformation must be somewhere in between. A nonoptimal transformation can perform 
insertions after INSERT—just consider the transformation that makes no insertions or deletions. This 
nonoptimal transformation has its insertion at the last edge. 

Proof Go back and look at the proof of Theorem EO. We proved that between any two 
instructions Ik and Ik+1, if EARLIEST made an insertion then any other safe, correct, 

profitable transformation had to make at least one insertion. Thus INSERT′/ DELETE′ must 
make at least one insertion whenever EARLIEST does. It cannot make more than one 
insertion or make an insertion when EARLIEST does not, since then any path including the 
path from Ik to Ik+1 would contain more evaluations then for EARLIEST. Since LATEST 

makes an insertion whenever EARLIEST does, this proves the first part of the theorem. 

Consider a pair of instructions Ik and Ik+1 where all three of the transformations perform an 

insertion. Since INSERT′ is safe, the block at the head of the insertion edge must have T 
anticipated. EARLIEST performs an insertion on an edge (P, S) where T is anticipated at S 
and either T is not anticipated at the exit of P or T is killed in P. So the insertion for 
INSERT′ must be either on the same edge as (P,S) or on a later edge, because T is not 
anticipated at any earlier edge. 
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Consider the edge (R,Q) where INSERT inserts the edge. By the equations, LATERR,Q is 
true and LATERINQ is false. The only way that this could become false is if some other 
edge had LATER false. By Lemma L1, this means that there is a path from some evaluation 
of T, call it J, to Q that does not contain any insertion due to EARLIEST. Consider a new 
path from Entry to Exit that includes the path from J to Q, the path from Q to Ik+1, and any 

path on to Exit. If the insertion for INSERT′ between Ik and Ik+1 follows Q, then the path 

from J to Ik+1 contains an insertion due to INSERT′ but no insertion due to EARLIEST or 
INSERT/DELETE, contradicting the first part of the theorem. Thus the insertion for 
INSERT′ must precede the insertion from INSERT. 
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10.3 Relation between an Expression and Its Operands

By handling each temporary independently we have ignored an important implementation detail. The 
compiler must ensure that temporaries are evaluated before the instructions in which they are used. This 
is an assumption of the initial flow graph and the definition of expression temporaries. To this end, 
consider an expression temporary T and one of its operands T′. The following conditions must be true of 
the original flow graph: 

•  If T is locally available at the end of a block, then T′ must be available at the end of the same 
block. Since some optimization has occurred earlier, T′ might not be locally available; however, it 
must have been previously computed on all paths. As a formula, T ∈ AVLOC(B) implies that T′ ∈ 
AVOUT(B). 
•  If T is locally anticipated at the beginning of a block, then either T′ is locally anticipated or it is 
already available from previous blocks. As a formula, this means that T ∈ ANTLOC(B) implies 
that T′ ∈ ANTLOC(B) ∈ AVIN(B). 
•  If no instruction in B kills T, then no instruction in B kills T′. As a formula, this means that T ∈ 
TRANSP(B) means T′ ∈ TRANSP(B). 

When the flow chart is initially constructed, the generator guarantees that these conditions are true by 
ensuring that an evaluation of T′ occurs just before the evaluation of T in any block where T is evaluated. 
Later optimization phases must guarantee that these conditions remain true. 

We must ensure that the operands are always evaluated before the instructions in which they are used. 
Before showing that, we need to know the relationship between the anticipatability of T and of its 
operand T′. 

Lemma S1	 If T is available at the end of block B then T′ is available at the end of B. Expanding 
slightly, T′ is available at each point in the flow graph where T is available. 
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Proof	 Consider a point p where T is available, and consider any path from Entry to p. 
Since T is available, there is a point q on the path where an evaluation of T occurs. 
By the assumptions above, T′ is available at q, so there is an earlier point r where an 
evaluation of T′ occurs. There is no instruction between r and q that kills T′ and 
there is no instruction between q and p that kills T. Since an instruction that kills T′ 
kills T, we have no instruction between r and p that kills T′. Since this can be argued 
for all paths, we have T′ available at p. 

Lemma S2	 If T is anticipated at p, then either T′ is available at p or T′ is anticipated at p. 

Proof	 Since we have two alternatives, we will assume that one is false and show that the 
other is true. Assume T is anticipated at p and T′ is not available at p. That means 
that there is a path from Entry to p not containing an evaluation of T′, or the last 
evaluation is followed by an instruction that kills T′. Now consider any path from p 
to Exit. Since T is anticipated at p, there is an evaluation of T at some point q which 
is not preceded by an instruction that kills T. By the preconditions, there are two 
possibilities: 

• One possibility is that T′ is evaluated in the same block as q. The lack of 
instructions that kill T between p and q means that there are no instructions 
between p and q that kill T′, so there is an evaluation of T′ following p on this 
path with no intervening instructions that kill T′. 
• The other possibility is that there is no evaluation of T′ in the same block as q. 
By the preconditions on the flow graph, that means that T′ must be available at 
q. Now we have constructed a path from Entry through p to q. This path must 
contain an evaluation of T′ that is not followed by instructions that kill T′. By 
the construction of the path, this evaluation cannot precede p so it must be 
between p and q. Lacking instructions between p and q that kill T, and hence T′, 
we have an evaluation of T′ with no preceding killing instructions. Thus T′ is 
anticipated at p. 
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We now have the necessary tools to show that the operands are always evaluated at or before the same 
point as the instructions of which they are operands. 

Theorem ES	 Consider a path from Entry to Exit, T an expression temporary, T′ one of its 
operands, and an edge (P,S') on the path where T ∈ EARLIESTP,S. There are two 
possibilities: 

• There is an evaluation of T′ on the path preceding S that is not followed by 
any instructions that kill T′. 
• There is an edge (P′, S′) on the path preceding S where T′ ∈ EARLIESTP′,S′ 

and them are no instructions between the start of S′ and the end of P that kill 
T′. 

In other words, in the EARLIEST transformation, the operand is either already available or will be 
inserted on the path before the instruction of which it is an operand. 

Proof	 T ∈ EARLIESTP,S means that T is anticipated at the beginning of S and not available at the 

end of P (look at the formulas). T anticipated at the beginning of S means that T′ is either 
available there or T′ is anticipated at the beginning of S. T′ available at the beginning of S

means that it is available at the end of P. 


To show one of two alternatives, we will assume one of them is false and show that the 

other must be true. Assume that there is no preceding evaluation of T′ not followed by 

instructions that kill T′. Thus T′ is not available at the end of P or the beginning of S. Thus 

T′ is anticipated at the beginning of S. March backward along the edge until one of the 

following conditions occurs (one of them must occur): 


• A block P′ is reached where T′ is not anticipated at the end of P′. Then let S′ be the 
successor on the path, and (P′, S′) satisfies the condition. 
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• A block P′ is reached where T′ is killed by some instruction in P′. Then let S′ be the 
successor on the path, and (P′, S′) satisfies the condition. Since neither this nor the 
previous condition has already happened, we know that T′ is still anticipated at the 
beginning of S′. 
• Entry is reached. Then P′ is chosen to be Entry and S′ is its successor on the path. 

There are no other possibilities. While walking backward on the path, one either comes to 
an instruction that kills T′, an instruction that evaluates T′, or a point where T′ is no longer 
anticipated. By assumption, the instruction that evaluates T′ is not possible. The theorem is 
therefore proved. 

The compiler needs the same result for INSERT/DELETE. 

Theorem LS	 Consider a path from Entry to Exit, T an expression temporary, T′ one of its 
operands, and an edge (P, S) on the path where T ∈ INSERTP,S. There are two 
possibilities: 

• There is an evaluation of T′ on the path preceding S that is not followed 
by any instructions that kill T′. 
• There is an edge (P′,S′) on the path preceding S where T′ ∈ INSERTP,S′ 

and there are no instructions between the start of S′ and the end of P that 
kill T′. 

In other words, in the INSERT/DELETE transformation, the operand is either already available or will be 
inserted on the path before the instruction of which it is an operand. 

Proof	 Again we assume that the first alternative is not true and show that the second must then 
be true. Consider the edge (P, S). Assume that there is no preceding evaluation of T′ that is 
not followed by an instruction that kills T′. T is anticipated at the beginning of S, so T′ is 
either available or anticipated at the beginning of S. Since there is no evaluation on this 
path, T′ is not available, so it must be anticipated at the beginning of S. 

Since T ∈ INSERTP,S, we know by Lemma L1 that there is an earlier edge (Q, R) with T ∈ 
EARLIESTQ,R. Now, T is anticipated at all points between the start of R and end of P. 

Since an instruction that kills T′ kills T, and T′ is not evaluated on the path, we have T′ 
anticipated between R and the end of P. Walk backward on the path starting at the end of 
P. As argued in Theorem ES, there is an edge (Q′, R′) where T′ ∈ EARLIESTQ′,R′ and this 

edge must be before (Q, R) since T′ is anticipated at each point between R and P. Thus the 
edge where EARLIEST is true for T′ precedes the edge where EARLIEST is true for T. 
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Now we compute LATEST for both T and T′. By Lemma L1,S is the first block after R on 
the path with an entering path that contains an evaluation of T rather than an edge with 
EARLIEST true. This edge must also contain an evaluation of T′; hence during the 
computation of LATER and LATERIN for T′, one finds that T ∈ LATERINS. So walk in 

execution order from R′ toward S to find the first block where LATERIN is false. The 
preceding edge has INSERT being true. This edge must precede the insertion for T′ since T′ 
∈ LATERINS. Thus we have the insertion for the operand preceding the insertion of the 
instruction in which it is an operand. 
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10.4 Implementing Lazy Code Motion for Temporaries

Fortunately, the theory we have just described is easily implemented. First order all computations in the 
program flow graph so that operands occur before the expressions that contain them. We will then 
optimize each of these computations in order. Consider the evaluation of T. 

Recall that EARLIEST does not require the solution of any equations once availability and anticipatability 
have been computed, so it can be described by the function in Figure 10.6. The function is being written 
this way for descriptive purposes; it is probably inefficient in the production version of the compiler 
since the value of EARLIEST will only be asked when the calling procedure knows that T is anticipated, 
thus, we have redundant references to anticipatability. If the compiler used compiling the compiler 
incorporates in-line expansion of functions, then there should be no inefficiency. 

The major computation for INSERT/DELETE is the computation of LATER and LATERIN. We will 
compute and store the value of LATERIN since it is associated with blocks and we will not need to find 
storage for a value in the data structure representing edges. LATER can be computed from ANTLOC, 
LATERIN, and EARLIEST (Figure 10.7). 

The computation of LATERIN has much the same form as the computation of availability. It is an 
intersection of information from all of the predecessors. 

Figure 10.6  Pseudo-code for EARLIEST 

Figure 10.7  Computing LATER from LATERIN 

The major difference is that ANTLOC is the information in a block that kills the transmission of LATER 
forward to the next block, and the EARLIEST information on an edge is the information that creates the 
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value true rather than the existence of an evaluation at the end of the block. 

The compiler uses a work-list algorithm for computing LATERIN, much like availability, as is shown in 
Figure 10.8. The head of each edge that has EARLIEST true is given the value true for LATERIN, then 
each succeeding block is added if there are no intervening evaluations of T. The first phase gives all 
blocks between an edge where EARLIEST is true and the following evaluation of T the value of true for 
LATERIN. 

Figure 10.8  First Phase of LATERIN Computation 

The second phase prunes the set of blocks where LATERIN is true by eliminating blocks where LATER is 
not true for all predecessors, as shown in Figure 10.9. Initially the algorithm eliminates all blocks that do 
not have LATER true for all incoming edges. At the same time it builds a work list of all blocks that have 
been eliminated, but whose successors have not yet been processed. 

The second part of the work-list algorithm processes each of these eliminated blocks. If the block 
contains an evaluation of T then no further processing is needed since the absence of this block from 
LATERIN cannot affect the presence or absence of its successors. The successors are added to the work 
list if they are removed from LATERIN by the removal of this block. This will happen unless EARLIEST 
is true for the edge between them. 

Figure 10.9  Pruning the LATERIN Set 


Figure 10.10  Computing Insertion and Deletion Points 

Now that LATERIN has been computed, the compiler must compute the edges on which to perform 
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insertions and the evaluations of T to be deleted. This is done in Figure 10.10. The compiler does not 
need to look at all blocks to see if they are not in LATERIN and the entering edge has the attribute 
LATER. since T is anticipated at a block at the head of an edge where the insertion will occur. Thus we 
look for blocks in ANTIN-LATERIN that have a preceding edge with attribute LATER. Insertions occur 
on these edges. To avoid introducing unneeded blocks, perform a special case check for the situation in 
which the tail of the edge has only one successor. In that case, insert the evaluation at the end of that 
block before the unconditional branch. 

The algorithm will not attempt to insert an evaluation on an edge where the head of the edge has only one 
predecessor, since the LATER computation will delay the insertion until after the block. If a block has 
only one predecessor, then LATERP,S = LATERINS so it is not possible that LATERS is false when 
LATERP,S is true. 
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10.5 Processing Impossible and Abnormal Edges

The algorithm for placement and deletion of evaluations of T ignores the type of edges that occur in the 
flow graph. Remember that there are three types of edges. Nearly all of the edges are normal edges, 
representing branching operations occurring in the blocks. Impossible edges are edges inserted to make 
the algorithms function properly; they can never be executed in a running program. Finally there are 
abnormal edges, representing shortjmp or longjmp forms of instructions or exceptions. Abnormal edges 
are edges that can be traversed in an executing program; however, there is no mention of the destination 
block within the tail block for the edge. It is clear how normal edges fit with partial redundancy 
elimination. How does the compiler deal with the other two kinds of edges? 

First consider impossible edges. Note that partial redundancy elimination is one of the algorithms that 
need the insertion of impossible edges to ensure proper functioning. Recall that each argument about 
profitability involved a path from Entry to Exit. Paths that cannot be extended to Exit may have more 
evaluations on them after the transformation than before. The way the compiler solves this problem is to 
insert an impossible (that is, phony) edge from an infinite loop to Exit. 

Since an impossible edge cannot be executed, there is no problem with insertions on such an edge. 
Computations on an impossible edge cannot be executed, so do not insert them. The rest of the algorithm 
will work properly. 

Abnormal edges (P, S) are more difficult because one cannot insert a block in the middle of an edge, 
since there is no way of modifying P to represent a branch to the constructed block in the middle of the 
edge. These edges do get executed, so an insertion must occur someplace. There are two techniques that 
have been used, plus the technique proposed here (making three): 

•  A pessimistic technique is to pretend that all evaluations are killed at the beginning of S, so 
ANTINS is empty. Thus EARLIESTP,S is false and the INSERT/DELETE computations cannot push 
the insertion to this edge. This is overkill since it means that there can be no redundant expression 
elimination in the neighborhood of the edge. 
•  An alternative approach is to handle the abnormal edge like a normal edge. Hopefully, there 
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will be nothing inserted on the edge. If a computation is inserted on the edge, then insert it into the 
tail or the head. This is not safe or profitable, but has been done in the Rice Massive Scalar 
Compiler Project. 

This compiler uses a different approach, which counts on the processing of operands before the 
evaluations that use them. Consider a temporary T. 

Apply partial redundancy elimination as described in the previous sections. Usually there will be no 
insertion on an abnormal edge; in that case, the transformation is complete. The compiler performs more 
processing if an evaluation is inserted on an abnormal edge. 

Consider the set of abnormal edges on which an evaluation of T is inserted. Pretend that T and all 
temporaries that use T directly or indirectly as operands have another operand. For each abnormal edge 
(P, S) on which T is inserted, pretend that this added operand is killed at the head of S. This kills all of 
the instructions dependent on T. Now use partial redundancy to recompute the insertion points. There 
will now be no insertions of T on the abnormal edges. 

Of course, the recomputation may decree that insertions will occur on other abnormal edges that did not 
have insertions before, so repeat the process until there are no insertions of T on any abnormal edges. 
This must happen eventually since a safe placement can be determined by killing this phony operand at 
the head of each abnormal edge in the flow graph, and each iteration will increase the number of 
abnormal edges that have the phony kill at their head. 

10.6 Moving LOAD Instructions

We know how to handle expression temporaries, so now we must address the instructions that occur at 
the leaves and roots of expression trees. There are two forms of instructions that occur at the leaves: load 
operations from memory or constants and register-to-register copy operations. At the roots, there are 
register-to-register copy operations and store operations. The techniques in this phase will move the 
LOAD, STORE, and computational instructions (Figure 10.11). Copy operations will be addressed in a 
later section. 

The same INSERT/DELETE algorithm can be used to move load operations as well. The modifies 
attribute used to compute TRANSP already has incorporated all the information needed to limit 
optimizations when memory changes. If a store operation stores into A(I), then that store operation kills 
all load operations that load from A.3 Furthermore, a modification to the value of I kills all references to 
A(I). 

3The compiler may improve on this comment by noticing that the memory locations referenced by A(I + 
c) are not modified by this store operation, where c is a compile-time constant. 

file:///D|/Convert/Building_an_Optimizing_Compiler/ch10/276-280.html (2 of 4) [10/17/2003 1:06:18 AM] 



Building an Optimizing Compiler:Global Optimization 

Figure 10.11  Schematic of Code Motion 

One improvement can be made for load operations. While constructing the flow graph, the compiler 
always uses the same temporary for the target of a LOAD instruction representing a load from a 
particular symbolic expression. In other words, all load operations for A(I) use the same target temporary. 
When the compiler is generating instructions for a store operation, it first copies the value into the same 
temporary used for a load from the same symbolic expression. 

As an example, consider the subscripted reference VALUE(I) in the running example with code 
sequences extracted in Figure 10.12. The address of VALUE(I) is always computed into temporary, T17. 
A load operation from VALUE(I) always occurs into double-precision temporary SF1. The store 
operation is implemented as two instructions. First the value to be stored is copied into the temporary 
representing the fetch of a value, in this case SF1, and then a store operation is inserted from that 
temporary into memory using the address calculation, in this example, T17. 

Although initially inefficient, this code sequence will be improved by later compiler phases. The copy 
operation will probably be removed by register renaming and register coalescing during the register 
allocation process. 

Figure 10.12  Load and Store Sequences 

If it is not removed, the store will be moved to a less frequent execution point thus gaining from keeping 
the value in a register rather than storing it to memory.4 

4The IBM Tobey compiler team (O’Brien, et al. 1985) made the same observation independently. 
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The compiler improves the optimization of load operations by observing that a store operation can be 
viewed as having two actions: 

1.  First it kills all load operations that load from a memory location that might be modified by 
this store operation, including the memory referenced by the address specified in the store 
operation. 
2.  The store operation can be viewed as implementing an evaluation of the temporary holding the 
value. In other words, the store can be viewed as a store followed by a load from the same address 
into the same register. 

Note that a store operation can never produce a value in ANTLOC for any block, since the memory 
location is killed before the evaluation. The store operation can contribute to the AVLOC information for 
a block. Since the store operation never contributes to ANTLOC, the compiler needs no special checks to 
avoid deleting a store operation when moving a load. With these comments, the load operation is handled 
just like expression temporaries. 

The temporary T in Figure 10.1 is actually the references to VALUE(I), with the following operations in 
these blocks: 

B1: Initialization of VALUE(I). For complete realism there should have been a modification of T

before the evaluation of T in the example, but it would have changed nothing. 

B2: The “eval T” is an actual load operation from VALUE(I). 

B4: The “mod T” occurs when I is incremented. Changing the address kills the load. 

B6: The “mod T” followed by an “eval T” is the store operations updating VALUE(I). 


As we see, the store operation contributes to the elimination of the load in block B2. 

One further improvement to LOAD optimization is based on the semantics of the source language. 
Consider an uninitialized variable or data structure X that is allocated on the runtime stack. Due to 
unexecutable paths5 in the flow graph, the compiler might determine that there are points in the flow 
graph where the variable is referenced but not initialized. The compiler should pretend that there are load 
operations for each of the uninitialized elements of the structure at the beginning of the scope. This can 

file:///D|/Convert/Building_an_Optimizing_Compiler/ch10/280-282.html (1 of 3) [10/17/2003 1:06:19 AM] 



Building an Optimizing Compiler:Global Optimization 

be done by adding the load operation to the AVLOC information for the block at the beginning of the 
scope, even though the load is not there. This has the interpretation of an uninitialized value being loaded 
on all unexecutable paths, making more load operations redundant. 

5There are paths through many programs that cannot be executed. Consider two IF statements in different 
parts of the program that use the same conditional expression. It is not feasible for the compiler to 
determine that both IF statements always branch on the same condition, so the branch on the opposite 
condition leads to an unexecutable path. 

Now that we have the information needed, the same algorithm can be used for load operations as is used 
for expression temporaries in Figure 10.10. 

10.7 Moving STORE Instructions

There are two different ways that store operations can be moved: toward Entry and toward Exit.6 Both 
motions are useful. The store cannot be moved toward Entry until the preceding copy operation is 
moved. The example is a loop such as Figure 10.13. The assignment to T can be moved to before the 
loop. This is accomplished by first moving the address computation for X, then moving the load of X, 
then moving the copy operation for X to the temporary for T, and finally moving the store to T. 

6Store operations can also be moved toward the Entry block. This transformation is less useful than 
LOAD/STORE motion. The author is not proposing it for the current compiler; however, the technique is 
discussed at the end of the chapter for reference. 

Figure 10.13  Example of Moving toward Entry


Figure 10.14  Moving the STORE toward Exit 

Alternatively, the store operation can be moved toward Exit. This motion pays off when the address of 
the store does not change in the loop, but the value being stored does. Consider the loop in Figure 10.14. 
The value stored in B(J) changes with each iteration of the loop; however, the address being stored into 
does not change, so the store and the copy can be moved to after the loop. 
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Recall that all store operations have a special form. Each store operation takes two arguments, the 
address to be stored and the temporary holding the value to be stored. The temporary holding the value is 
the same as the temporary used to fetch the value with a load operation for the same address. Thus two 
store operations that store an explicit value into the same address will always use the same temporary to 
hold the value. Of course there may be other memory locations that might be modified by the store also. 

When the compiler moves a store operation toward either Entry or Exit, it moves the collection of store 
operations having the same temporary. These are guaranteed to have the same address computation and 
the same temporary for the address. 
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10.7.1 Moving the STORE toward Entry 

The compiler uses the same partial redundancy technology developed for expressions to move the store 
operation. To do so we must first understand. what it means to evaluate a store and to kill a store. The 
evaluation of a store instruction is an occurrence of the store operation. 

What does it mean to kill a store operation? An instruction kills a store (or any other operation for that 
matter) if the interchange of the execution order of the two instructions might change the values 
computed by the flow graph. In other words, either the killing instruction does something to the values 
associated with the store operation (the values in registers or in memory) or the STORE instruction does 
something to the values used by the killing instruction so that different values either end up in registers or 
end up in memory. With this understanding, let us identify the instructions that kill the store operation. 
Consider two instructions, S a STORE instruction and I any other instruction. 

•  If S kills I then I kills S. To say that S kills I means that I cannot be moved past S. This is the 
same as I being moved past S. In other words, if S kills any of the operands at the leaves of the 
expression tree representing I, then we cannot move S past I. This includes other store operations. 
If I is a store operation, then S can kill I if there is the possibility that they both store values in the 
same location. Thus the instructions cannot be interchanged. 
•  If I modifies the temporary holding the value to be stored, then S cannot be moved past I. S 
cannot be moved past the copy operation that set up the value to be stored. 
•  If I computes the address expression, then I kills S. The compiler guarantees that no instruction 
between the computation of the address and the store kills the address computation, so the 
compiler need only check that it does not attempt to move the store operation past the address 
computation. 

Now that the compiler knows which instructions kill or evaluate the store operation, we can apply partial 
redundancy to move the store just like any other instruction. The algorithms we have sketched for 
computing local information for expressions must be expanded to compute the local information for store 
operations, using the understanding of killing instructions above. Then the lazy code motion equations 
for moving expressions can be used for moving store operations. Two theoretical problems and one 
practical problem must be addressed. 
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The first theoretical problem is, Why should lazy code motion work on store operations? All of the 
proofs can be repeated, but I prefer another way of looking at the proofs. All of the proofs are based on 
paths from Entry to Exit and the possibility of inserting a computation on that path that will compute the 
same value as was computed later on the path. Rather than viewing the instruction as computing a value, 
view the instruction as having some effect, where computing a value is one effect. A killing instruction is 
one that changes the effect. The concept of anticipatability means that it is guaranteed that a later 
instruction computes the desired effect, whereas the concept of availability means that some earlier 
instruction has already computed that effect. With these understandings, go back and review the proofs 
and you will see that the proofs actually show that lazy code motion applies to “effect” rather than 
“value.” 

The second theoretical problem is, What about the theorems involving subexpressions? They cannot be 
viewed as subeffects since there is no such thing. They don’t apply, so we make the main procedure 
apply all transformations for expressions first, then the transformations for copies, and then the 
transformations for store operations. This also has the advantage that we can avoid trying to move store 
operations if no copy operations are moved. 

The practical problem is as follows. We have used the temporary name to represent the instruction 
computing it: This does not work for store operations since the temporary is already used to represent 
load operations. We therefore build a separate set of data structures for store operations. We have 
STORE_ANTLOC rather than ANTLOC, STORE_AVLOC rather than AVLOC, and STORE_TRANSP 
rather than TRANSP. Since we compute global information on the fly, the global information is 
temporary and so it is not a problem. 

All of this rationalization now allows the compiler to use the same algorithm for moving store operations 
toward Entry as the compiler uses for expressions and load operations. 
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10.7.2 Moving the STORE toward Exit 

This section will discuss moving store operations toward the Exit node. This is part of a pair of 
optimizations called LOAD/STORE motion. We have already implemented the LOAD part, in which the 
presence of store operations was used to move load operations toward the Entry block. By moving the 
store operations toward the Exit block, we will keep the memory value in a temporary as long as it is 
useful without redundant load and store operations. 

The chief advantage of LOAD/STORE motion is in loops. If a datum such as VALUE(I) is referenced 
and changed in a loop, then ordinary code. motion cannot move it out of the loop. By performing 
LOAD/STORE motion, the load can occur before the loop and the store can occur after the loop even 
though the value is changed in the loop. 

The basic idea is to use partial redundancy elimination on the reverse of the flow graph to move store 
operations toward Exit. That means that predecessors are used every place that successors are mentioned 
in the original theory and vice versa. The ideas of anticipation are turned into a computation like 
availability, and availability is turned into a computation like anticipation. This duality will be accurate 
once we specify which instructions can kill and evaluate a store operation. 

What instructions affect the store operation for a temporary T? These instructions must either evaluate or 
use T, compute the address of the memory location, or be another LOAD or STORE instruction that 
might reference the same memory location. Let us consider each of the possibilities: 

•  Instructions that use the value in T do not affect the STORE instruction. Since the value to be 
stored is always kept in the same temporary as the value loaded using the same address, and since 
load operations are only moved toward Entry and STORE values are moved toward Exit, the flow 
graph guarantees that the correct value is in the temporary at all points where it can be used. The 
store operation must only guarantee that the value eventually makes it to memory. 
•  A copy operation into T does not kill the STORE instruction. Moving the store past the copy 
does change the immediate value that is to be stored in memory; however, there is a store after 
each copy into T, so interchanging the instructions makes one of the store operations partially 
redundant. 
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•  Another store operation with the same temporary T has the same temporary for an address so is 
identical to this store operation. The store operation is the equivalent of the evaluation of T for 
STOREs (rather than LOADs). 
•  A load or store involving a different temporary T′ that might reference the same memory 
location kills the STORE instruction. If they might reference the same memory location, then 
interchanging the order of the instructions might change the value in memory. This is precisely 
the modifies relation for the store operation for T. 
•  An instruction that kills the address computation for the memory location associated with T also 
kills the store, since that changes the location in memory being referenced. 
•  A load involving the temporary T also kills the store. If the store is moved after the load, then 
the value in memory is not correct and an incorrect value will be loaded. This should be a rare 
situation since earlier optimization of load operations used the existence of the store operation to 
make the load redundant. However, some cases involving partial redundancy can still exist. 

As with load operations, there is an improvement that can be made for data that is stored on the runtime 
stack, such as LOCAL variables implementing data structures. Since the data ceases to exist at the end of 
the execution of the flow graph, the compiler can pretend that there is a store into the memory location in 
the Exit block. This will make some of the other store operations redundant, avoiding those store 
operations that put data into the memory location that are never loaded again. 

We now know the instructions that affect the store operations. Observe that the lazy code motion form of 
partial redundancy can be recast in terms of the reverse graph. The names that are used are given in 
Figure 10.15. Rather than using the name EARLIEST, the name FARTHEST is used to represent the 
farthest toward Exit that the store operation can be moved. Similarly the name NEARER is used to 
represent that the store can be moved nearer to the original position of the store without increasing 
execution frequency. 

The definitions are direct transliterations of the definitions for normal optimization. T being a member of 
ST_AVLOC means that a store of T occurs in the blocks after any instruction that would kill the store. 
Similarly, T ∈ ST_ANTLOC means that a store of T occurs in the block before any instruction which 
would kill the store. T ∈ ST_TRANSP means that no instruction in the block kills a store of T. 

From the local information one can compute the global availability and anticipatability information as 
shown in Figure 10.16. A store is available at a point if each path from the Entry to that point contains an 
instance of the store that is not followed by any instructions that kill T. Similarly, the store is anticipated 
if every path to Exit contains an instance of the store that is not preceded by a killing instruction. 

Given this information we can form the analog to EARLIEST, which is FARTHEST: the edge nearest to 
Exit on which a store can be inserted that will have the same effect as preceding stores. The analog to 
LATER is NEAR, which moves the store back toward the original store as far as is possible without 
introducing extra store operations on any path. These equations are given in Figure 10.17. 
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Figure 10.15  Transliteration on Reverse Graph


Figure 10.16  Global Information for Store 

Now that the equations are recorded, each reader should go through the process of convincing himself or 
herself that the equations do give the correct positions for inserting the store operations nearer to the Exit 
node. 

Figure 10.17  INSERT/DELETE Equations for Stores 
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Convince yourself by going through the proofs, viewing the instructions for their effects rather than the 
individual value, and see that all of the proofs work on the reverse graph as well as on the original 
graph.7 

7The author’s first notice of this observation was in a paper by Dhamdhere, Rosen, and Zadeck (1992). 

Now all of the algorithms that we have developed for normal computations can be applied to store 
operations. When a store operation is moved, there may be more chance for other optimization, so the 
local information for expressions should be updated and the algorithm rerun for each expression that 
might be killed by the store. This can be done by adding the expression to the expression work list. 

As an example of moving store operations, consider the running example for the book. The store 
operations into VALUE(I) and LARGE(I) are moved. The store operations in blocks B1 and B6 are 
moved into block B3. 

10.8 Moving Copy Operations

Moving the copy operations is rarer than moving the load and store operations. Nevertheless, copy 
operations need to be moved so that whole statements can be moved. The copy operations can be moved 
either toward Entry or toward Exit. The same technology can be used to move them as was used to move 
the load and store operations. We must determine what instructions will kill a copy operation. To make 
this discussion clearer, consider a copy from a temporary S (source) to a temporary T (target). As with 
the earlier discussions, an instruction I kills this copy operation if interchanging the two instructions 
might change the values computed by the flow graph. 

• I kills the copy if the copy kills I. This takes care of the case in which the target of the copy is a 
direct or indirect operand of I. 
• I kills the copy if I changes S. Here we have to be more careful, since the theorem about 
subexpressions does not apply to copies because there are multiple copies with the same target but 
different sources. 
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• I kills the copy if I kills S. This is different from the preceding condition, since an instruction 
that computes S does not necessarily kill S. 
• I kills the copy if I is not an identical instruction to the copy and I modifies T. A different copy 
can kill this copy also. Interchanging them would change the values computed. However, a copy 
that has exactly the same form should be viewed as partially redundant, in other words, an 
evaluation rather than a killing instruction. 

Copy operations are different from the expression, load, and store operations we have discussed before in 
that the copy operation is determined by a pair of temporaries: the source and the target. As noted above, 
there are multiple copies with the same target and different sources. Rather than optimizing all of the 
copies together (which cannot be done), each source/ target pair is optimized separately. This includes 
collecting the local information and computing global information on the pair rather than on the single 
target temporary as in all of the other cases. 

With these understandings, the algorithms for moving the copies toward Entry can be performed using 
the same lazy code motion algorithms used for moving all of the other instructions toward Entry. While 
transcribing the algorithms, remember that the compiler is optimizing all of the copies with the same 
source/target pair at the same time. Remember that TRANSFORM_COPIES takes the target temporary as 
a parameter. This means that there is a loop within TRANSFORM_COPIES that loops over all of the 
possible source temporaries and applies the lazy code motion algorithms to each. 

Again, the algorithms for moving store operations toward Exit can be applied to copies, with the same 
understanding that one optimizes a source/target pair rather than a single temporary. 

There is no motion of copy operations within the running example. This is not uncommon. The motion of 
copies will happen more frequently when radical transformations of the loops have been performed by 
either the dependence analysis phase or a transforming preprocessor. Copies are more likely to be 
movable when in-line expansion occurs or when the source program was created by an application­
dependent preprocessor.8 

8Compiler writers frequently make the error of thinking the programs are written by programmers. The 
most troublesome programs are written by other programs. These program generators will generate 
sequences of statements that no programmer in his right mind would ever consider, for example, 9000 
assignment statements in a block. 

10.9 Strength Reduction by Partial Redundancy Elimination

While performing lazy code motion, the compiler applies a limited form of strength reduction to handle 
some situations that are not handled by the loop-oriented strength reduction already performed. This 
technique is a derivative of the observations made by Joshi and Dhamdhere (1982) and Chow (1983). 
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More recently the idea has been proposed as a derivative of lazy code motion (Knoop, Ruthing, and 
Steffen 1993). 

Why bother, since we have already handled most strength reduction using loop-based methods? In fact, 
we have handled only the cases where the induction variables are incremented by loop constants rather 
than constants. The current technique works with increments by constants. 
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Multiplication by constants is extensive and takes a number of instructions. Usually each instruction is 
dependent on the previous one, so that during instruction scheduling the multiplication operands become 
part of the “critical path.”9 Thus every attempt must be made to replace them by less expensive 
instructions. A common coding idiom is to update an array in a section of code that may involve 
conditional branching but no loops. Consider the code fragment in Figure 10.18. An array is being built 
up, with elements being added. Each time an element is added, the index to the loop is incremented. If 
there were no control flow, all of the increments would have been folded into a single increment earlier 
in the compiler. That is not possible in this case. However, the compiler can maintain a running pointer 
to A(I) that gets incremented each time that A is incremented. That is what will happen here. 

9Frequently the argument is made that multiplication and division operations are rare, so they need not be 
fast. Many times this is true; however, the argument must be refined. Frequency counts should not be used 
to weight instructions, but rather the total number of cycles that these instructions occupy in 
computational units in the hardware. Second, it does not matter whether an instruction is rare if the points 
at which it occurs are in the critical paths of important programs for which the processor was designed. 
Both of these factors make multiplication and division more important than the usual arguments show. 

Figure 10.18  Strength Reduction Example 

Another case that this technique will handle is when a variable is almost an induction variable. If most 
modifications of the variable are increments by constants but a few are more complex expressions, then 
this technique will increment a pointer near the increments by constants and generate a new version of 
the pointer near the computations that are general assignments. 
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The technique is based on a simple observation. Consider any computation E of the form C0 + I * C1 or I 
* C1, where C, C0, and C1, are compile-time constants. When the compiler sees an assignment to a 
variable of the form I = I + C or I = I - C, then pretend that these assignments do not kill computations of 
the form E. The compiler can pretend not to kill these computations by modifying the gathering of local 
data ANTLOC and AVLOC. When the compiler sees an increment or decrement by a constant, the 
compiler only signals that computations that are not of the form E are killed. Then the compiler performs 
lazy code motion, which moves the occurrences E using only information about the nonincrement 
evaluations of I. 

After the code motion, the compiler revisits each increment or decrement of I and fixes up the value in 
the temporary for E so that it has the correct value after the increment. If the assignment to I was an 
increment, then the temporary is modified by adding C * C1. If the assignment was a decrement, then the 
value C * C1 is subtracted from the temporary. This need only be done if there is a path from the 
increment or decrement to a use of E that contains no instruction that evaluates E. 

For the example in Figure 10.18 assume that the array A and the values X, Y, and Q are double-precision 
numbers requiring 8 bytes of storage and that I is not used after the fragment. The result of this strength 
reduction is then the left column of Figure 10.19. Note that there are two expressions that satisfy the 
conditions for E: 8 * I and address(A) + 8 * I. Strength reduction is applied to both of them. Note that 
there is no increment of these two expressions at the end of the code fragment because we are assuming 
that I is not used later. 

Later, dead-code elimination is performed, resulting in the computations in the right column of Figure 
10.19. Since I is not used later, the increment to it is removed as well as all references to I8 except the 
first one. The others are not used since the increment of the address expression removes the need for it. 

Figure 10.19  Results of Strength Reduction 
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There are two shortcomings of this technique. Consider two points in the flow graph, p1, and p2, and 
consider these two possibilities: 

•  Suppose that p1 and p2 are the positions of increment instructions for I with no instructions 
between them that kill I. If there is no evaluation of E between p1 and p2, and there is an 
evaluation of E after p2, then the multiplication will be replaced by at least two additions. This is a 
minor problem since earlier phases of the compiler have eliminated as many repetitive additions 
as possible. Thus the compiler will ignore this problem. 
•  If p1 is the position of the insertion of E or the position of an evaluation of E that is not deleted, 
and p2 is the position of an increment of I with evaluation of E between p1 and p2, then the 
strength-reduction transformation would generate a multiplication followed by an addition. On 
this path there is no point in the first multiplication. The multiplication should be put at p2 instead, 
which would change the placement of other multiplications. 

The first algorithm needed to implement strength reduction is the computation of the blocks where E 
must be updated. Start at any block that contains an instance of E that is visible from the beginning of the 
block (B ∈ ANTLOC(E)). Back up until an edge where an insertion will occur is reached. If the block 
containing the occurrence of E has LATERIN false, then there will be no preceding insertions and the 
instance of E stays where it is. 

The work-list algorithm is used since earlier algorithms have already removed most multiplications by 
constants. It is the multiplications by constants that occur outside of loops that are of most importance 
here. The algorithm is given in Figure 10.20 and is a direct transliteration of the description in the 
previous paragraph. The result is the set Update, which is the set of blocks between an insertion and an 
evaluation of E that is in the original flow graph. This computation is used with the modified ANTLOC 
that ignores increments and decrements of I. 

The second auxiliary algorithm that we need computes the situation in which there is a general 
assignment to E followed by an increment of I without an evaluation of E in between. The algorithm 
scans backward starting at each increment. It stops when it comes to an evaluation of E, an instruction 
that kills I, a point of insertion for E, or a computation of E that is not deleted. It determines that the 
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condition exists if it comes to the evaluation of E or a point of insertion. The algorithm for identifying the 
unnecessary addition operations is given in Figure 10.21 

Now we fit the whole algorithm together (Figure 10.22). It is outlined here in a very high-level pseudo­
code. The idea is that lazy code motion is performed under the assumption that all increments of I can be 
incorporated into the multiplications by additions of constants. Then the increments that cause extra 
additions are computed. These increments are then handled like normal assignments, and lazy code 
motion is repeated. If there are no increments that cause extra additions, the algorithm is done. Since this 
algorithm is used infrequently and the extra additions are infrequent, the repetitions should be few. 

Figure 10.20  Blocks In which E Is Updated 

Figure 10.21  Computing When Extra Additions Will Be Generated


Figure 10.22  Major Strength-Reduction Algorithm 
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Chapter 11 
Limiting Resources 

The compiler is now ready to assign machine resources (registers, condition codes, and so forth) to each 
computation. There are several available algorithms for resource allocation, each of which performs best 
on particular classes of programs. Each register allocation algorithm works well when there is an 
abundance of physical registers available. Each performs badly when the required number of physical 
registers greatly exceeds the number available. 

The algorithm presented here is a wedding of these, attempting to use each type of resource allocation 
where it works best. The algorithm is structured as a sequence of algorithms that each do a part of the 
allocation. Previous algorithms organized in this fashion have suffered from the phase-ordering problem: 
allocating one set of temporary registers has made it more difficult to allocate other sets. The compiler 
mitigates this problem by performing the LIMIT phase. 

The first thing that must be done, therefore, is to reduce the number of required registers. This is done 
before the register allocation and scheduling phases, allowing each phase to assume that an adequate 
number of physical registers is available. These functions are performed in the following order, as is 
shown graphically in Figure 11.1: 

1.  The LIMIT phase reduces the need for machine resources as much as possible without slowing 
the execution of the program. It 

•  Performs peephole optimization to create the exact sequence of target instructions. 
•  Performs register coalescing and register renaming to avoid as many copy operations as 
possible and replaces each temporary that is used in multiple independent parts of the flow 
graph by distinct temporaries. 
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Figure 11.1  Back-End Structure 

•  Reduces the register pressure, limiting the number of registers needed at each program 
point to fit the physical registers available. 

2.  The SCHEDULE phase reorganizes the target instructions to reduce the number of machine 
cycles needed for executing the flow graph. At the same time, it avoids increasing the register 
pressure beyond the available set of registers. 
3.  The REGISTER phase assigns the temporaries to physical registers. This is done in three steps. 

•  First, temporaries that are live between blocks (global temporaries) are assigned to 
registers. 
•  Within a block, temporaries that can share storage with a global temporary are assigned 
registers. 
•  Then unassigned temporaries that are live within a block are assigned registers. 

4.  The RESCHEDULE phase is a reexecution of the SCHEDULE phase. It is only performed if 
the register allocator has inserted load and store operations. 

The register allocation phases must use the target resources effectively. That means using the fewest 
possible registers. When there are insufficient registers, the register allocator inserts the fewest possible 
load and store operations. Using the minimum number of registers and inserting the minimum number of 
load and store operations is unrealistic since the problems are NP-complete. Instead, we use heuristics to 
do as good a job as possible. 

11.1 Design of LIMIT

LIMIT performs four actions to reduce the number of instructions and registers used. These are grouped 
into two separate subphases. First, LIMIT performs peephole optimization, register renaming, and 
register coalescing. Then it reduces the number of registers needed (it reduces the register pressure) so 
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that no more registers are needed at any point of the flow graph than exist in the machine. 

As noted above, this compiler combines the operations of peephole optimization, register renaming, and 
register coalescing into a single algorithm. Why? When implemented separately, the algorithms take 
large amounts of space and time. Consider each of the parts: 

•  Register renaming involves breaking a single temporary into multiple temporaries if it is used 
independently in different parts of the flow graph. This involves knowing which evaluations of a 
temporary may be used at each use. This information can be given by the static single assignment 
(SSA) form of the graph. 
•  Register coalescing removes register-to-register copies using a data structure called the conflict 
graph. The conflict graph can be the largest data structure in the compiler. We observe that much 
of renaming can occur as renaming on the static single assignment form of the flow graph without 
the conflict graph. The conflict graph need only be built for a small fraction of the temporary 
registers, decreasing its size. 
•  Peephole optimization works best when the compiler can inspect the definitions of the operands 
of each instruction. We have this with the static single assignment form, so peephole optimization 
can be performed here. It certainly needs to be performed before instruction scheduling. 
•  As a cleanup phase, dead code must be eliminated. Again this algorithm operates on the static 
single assignment form of the flow graph. 

Since the algorithms all work on the static single assignment form, they can be performed sequentially; 
however, they can also be combined. Peephole optimization can be performed at the same time that 
register copies are initially being eliminated for register coalescing. And we will see shortly that register 
renaming and register coalescing can be combined into one algorithm that computes a partition of the 
temporaries for reforming the normal flow graph. 

After these algorithms based on static single assignment form, the algorithm operates on the normal flow 
graph and the loop structure to insert load and store operations to reduce the number of registers needed 
to match the registers available in the target machine. Thus the main procedure for LIMIT has the form 
shown in Figure 11.2. 

The algorithms could be combined further if abnormal edges in the flow graph did not exist.1Peephole 
optimization, local coalescing, and the construction of the static single assignment form could be done 
simultaneously. Since the compiler must avoid copy operations on abnormal edges, these edges and the 
corresponding φ-nodes must be identified before any coalescing or peephole optimizations are 
performed. This identification can be done during the construction of the static single assignment form; 
however, it is described separately for simplicity. 

1By now, you have figured out that abnormal edges are the bane of the compiler writer’s existence. 
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Figure 11.2  LIMIT Main Procedure


Figure 11.3  Effect of Abnormal Edges 

All copies caused by φ-nodes on abnormal edges must be eliminated. So nothing can be done to 
temporaries in these φ-nodes that will cause a copy. This is achieved by not changing the points of 
evaluation or use. Actually, uses can be eliminated but not added. To identify these temporaries, the 
algorithm in Figure 11.3 is performed, which computes two sets: Occurs_In_Abnormal_f_node, which is 
the set of all temporaries involved in these edges, and Pairs_In_AbnormaL_f_node, which is the set of 
pairs that could cause a copy if the compiler is not careful. The algorithm simply looks at all blocks that 
have any φ-nodes and considers each predecessor to see if it is formed with an abnormal edge. If so, each 
of the φ-nodes is scanned and the sets formed. 
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11.2 Peephole Optimization and Local Coalescing

Peephole optimization is a target-machine-dependent optimization with a machine-independent form (see 
Figure 11.4). No matter how good an optimizing compiler is, there are improvements that can be made 
by performing simple pattern matching on the generated code: 

•  A load of X may follow a store of X. The compiler has tried to eliminate these; however, phase­
ordering problems exist that limit all such attempts. 
•  A load operation may take an address that is the sum of a temporary and a constant. If the 
constant is small, the constant can be folded into the offset of the LOAD instruction on the target 
machine. The same is true of STORE instructions. 
•  The target machine may have specialized instructions such as the S4ADDQ instruction on the 
Alpha processor. This instruction multiplies one operand by four and adds the second operand. 
The instruction is faster than a multiplication since the bits of one operand are directly shifted into 
the target register. 
•  The local form of register coalescing—eliminating a copy by using the source operand rather 
than the target operand in all instructions using the target operand—is a machine-independent 
form of peephole optimization. 
•  The compiler can scan through the instructions, symbolically executing them, and remember as 
much information as possible. A logical AND with a constant generates a result that is 0 in the 
bits in which the constant is 0. If later instructions attempt to modify or interrogate those bits, then 
the compiler can change the instruction sequence to generate better code. 

Figure 11.4  Driver for Peephole Optimization 

Normally, peephole optimization is implemented by scanning through the instructions in each block in 
execution order. This compiler visits each of the blocks in a dominator walk of the flow graph. This 
means that each of the operands has been evaluated before the instructions in which they are used. Of 
course, this is not true for φ-nodes. In that case the compiler must make worst-case assumptions: It does 
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not know what is in the temporary. For other temporaries, it records information such as the following: 

•  If the temporary contains a constant value, record that constant value. 
•  If the temporary is not a constant value, does the compiler know information about some of the 
bits? Is the temporary positive? Are certain bits known to be 0 or known to be 1? 

The compiler contains a set of procedures for identifying patterns in the instruction stream: There is one 
procedure for each kind of instruction. That procedure identifies all patterns that end with the particular 
instruction and performs the transformation required for a better code sequence. It also records the 
information for each temporary that is the target of that kind of instruction. If the sequence of instructions 
changes, it restarts the pattern matching with the first instruction in the transformed sequence. Thus 
multiple patterns may be applied to the same instruction. 

Although peephole optimization restarts the scan with the first transformed instruction to allow the 
identification of multiple patterns, some patterns will still not be identified. The whole peephole 
optimization phase is repeated until there are no patterns matched. The information gathered from 
previous iterations is still true for each temporary. This information can be used by φ-nodes to get better 
information on subsequent iterations; however, repetition of the whole peephole optimization phase to 
gain better information at φ-nodes alone should not be performed—there is not enough to be gained by it. 

Transformations which involve adding a use of a temporary in Occurs_In_Abnormal_f_node or moving 
the point at which such temporaries are evaluated must be avoided. By doing so, the compiler guarantees 
that no copies will be introduced later at abnormal edges. 

The algorithm in Figure 11.5 describes the processing of a block. The actions in the block are performed 
in the same order as execution. First the φ-nodes are processed. There are only a few transformations that 
might eliminate φ-nodes; however, information can be gained about the value of the result from the 
information known about the operands. 

Figure 11.5  Peephole Optimization of a Block 

After φ-nodes are processed, the compiler simulates the execution of the block. This is done by calling 
the peephole optimization procedure for each instruction in the list. That procedure will perform any 
transformations. The value true is returned if a transformation is performed. Here is the tricky part of 
peephole optimization. If no transformations are performed, the compiler wants to go on to the next 
instruction. If a transformation has been performed, it wants to reprocess the transformed instructions, 
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which may now be a different instruction from the original instruction. Care must be applied to avoid 
skipping an instruction, attempting to reprocess a deleted instruction, or generally crashing. 

After the block has been processed, the walk of the dominator tree is continued by processing the 
children of the block in the dominator tree. 

We will not describe all of the procedures here since their number and patterns depend on the target 
machine. Instead we will describe the processing of φ-nodes, copy instructions, and integer 
multiplication. The reader can extrapolate to the structure for all machines. 
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When creating the procedure for any of the instructions, first consider the transformations that can be 
applied. With φ-nodes, the following transformations are possible when the φ-node has the form T0 = φ 
(T1, . . ., Tm): 

If each of T1 through Tm are the same temporary, then the φ-node can be changed into a single 
copy operation, T0 = T1. If neither of these temporaries is involved in an abnormal edge, then the 
copy can be eliminated. 
If all except one of the temporaries T1 through T  are the same and that one is the same as T0, thenm

again the φ-node can be turned into a copy operation and potentially eliminated. 

Processing a φ-node thus consists first of identifying these two possibilities and making the 
transformation. Afterward, find all the characteristics that are the same between the operands and give 
the target those characteristics (see Figure 11.6). 

As an example of a normal instruction, consider the integer multiplication instruction. What are the 
peephole optimizations involving it? If it is a multiplication by a constant, it has already been converted 
to shift and add operations. Just in case some instances slip through or are created after the 
replacement,2the check for some simple cases should be made again. Figure 11.7 gives a fragment of this 
function. Note that the check for specialized instructions such as the Alpha S4ADDQ is not done here. It 
is done in the integer add procedure since it is the last operation. 

2These always seem to happen. The compiler is carefully designed so that all instances of a particular 
instruction are transformed at a single point in the compiler; however, later transformations might 
generate the same situation. So if it is not expensive, checks should be made to see that the situation has 
not already occurred. 

The other instruction to consider here is i2i, which is the integer copy operation in the flow graph. Here 
there is only one transformation. If the source and target are not involved in abnormal edges, the source 
can replace all uses of the target, eliminating the target temporary completely. This is illustrated in Figure 
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11.8. The procedure checks to see if the temporaries involved occur in abnormal edges; if not, all 
instructions that use the target are modified. 

While scanning for peephole optimizations, the compiler precomputes the set of temporaries that occur in 
either a copy operation or a φ-node. Later the conflict graph will be computed for only these temporaries, 
decreasing the size of the graph and speeding the compiler. The set Occurs_in_Copy holds the set of 
temporaries that occur in either a copy or a φ-node. Note that this set is recomputed during each pass 
through peephole optimization because the processing of copies may change the set of temporaries 
occurring in copies (Figure 11.8). 

Figure 11.6  Peephole Optimizing φ-nodes 

Figure 11.7  Peephole Optimization for Integer Multiplication


Figure 11.8  Peephole Optimizing Copy Operations 

11.3 Computing the Conflict Graph

The algorithm for register renaming and register coalescing needs a data structure called the conflict 
graph.3The structure represents the concept that two temporaries contain different values at some 
common point in the flow graph. 

3This data structure is normally called the interference graph, which reuses the name for the data structure 
formed during instruction scheduling. Thus I chose to use the name used on the PQCC project at Carnegie 
Mellon University (Leverett et al. 1979). 
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Definition	 Conflict Graph: Given a set of temporaries R, the conflict graph for R is the 
undirected graph formed from the set of temporaries R as the nodes together with 
an edge between T1, T2 ∈ R if there is any point p in the flow graph satisfying 
both of the following conditions: 

T1 and T2 might contain different values. 

T1 and T2 are both live at p. This means that there is a path from an evaluation of 
T1 to a use of T1 that includes the point p, and there is a path from an evaluation 
of T2 to a use of T2 that includes the point p. Note that this means that no edge is 
needed if either temporary is uninitialized. 

How is this data structure represented? The literature describes two representations, which are merged 
into a single representation in this compiler. Since the temporaries are represented as small integers, the 
conflict matrix can be represented as a symmetric bit matrix where C[i,j] is true if and only if the 
temporaries Ti and T  conflict. This makes the check for a conflict a very fast matrix access; however,j

determining all of the temporaries that conflict with a particular temporary is slow. Alternatively, the 
conflict graph can be represented by keeping a list of all conflicting neighboring temporaries for each 
temporary. This makes the determination of the temporaries that conflict with a temporary easy; 
however, it makes the determination of the existence of a particular conflict time-consuming. 

Unfortunately, the algorithm must perform both checks because checks for existing conflicts are needed 
during the construction of the graph, whereas later the algorithm needs to know the temporaries that 
conflict with a particular temporary. Some implementations of the conflict graph first create the bit 
matrix representation and then translate it into a list of neighbors. This costs significant time to do the 
conversion. Others keep both data structures simultaneously, using whichever is more efficient for the 
particular operation. This costs memory in the compiler. 

Our compiler optimizes the construction of the conflict graph in two ways. First the conflict graph is only 
constructed for a subset of the temporaries that are predetermined by the compiler. By keeping the set of 
temporaries small, time and space are saved. Second, the compiler implements the conflict graph as a 
combined hash table and the representation of the conflicting neighbors as a list. The data structures are 
shared between the hash table and graph representation to avoid additional memory consumption. 
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11.3.1 Representation of the Conflict Matrix

This compiler combines the two representations by using a hash table together with a linked-list 
representation of an undirected graph. This is done by representing each edge as an entry in a table. This 
entry is kept on three distinct linked lists: 

•  The hash table is represented as a chain-linked hash table, so there is one field in the entry 
called hashnext that stores the pointer to the next entry in this chain of the hash table. 
•  The neighbors of the smaller-number temporary are kept in a list. The field smallnext represents 
the pointer to the next neighbor in the list of conflicting neighbors for the smaller-numbered node. 
•  Correspondingly, the neighbors of the larger-number temporary are kept in a list, and the field 
largenext represents the pointer to the next neighbor in the list of conflicting neighbors for the 
larger-numbered node. 

For the conflict graph there is no value in representing a temporary that conflicts with itself; thus, an 
edge is between a strictly smaller-number temporary and a strictly larger-number temporary. 

There are two other fields in the entry for the edge: 

•  The field smaller contains the number of the temporary with the smaller value. 
•  The field larger contains the number of the temporary with the larger value. 

Note that there is no data stored in the edge. The existence of the edge is the important thing to the 
algorithms. Thus the data structure for the edge would look something like the description in Figure 11.9. 

To check for the existence of a particular conflict, the compiler uses a chain-linked hash table, 
ConflictHash, of some size HASHSIZE, which can be a power of two since the hash function is simple. 
Let Ti be the temporary represented by the integer i and correspondingly let T  be the temporaryj

represented by the integer j. Since we have no knowledge of the frequencies and interrelationships of the 
temporary, the hash function consists of linearizing the entries in the corresponding symmetrix bit matrix 
(which we did not build) and dividing by the size of the table. In other words, the hash function is which 
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generates an index to a chain in the chain table. Of course, hashnext is used to scan down the chain until 
a matching smaller and larger are found, indicating the presence of the edge. 

Conflict(Ti,Tj) = (if i < j then j(j - 1)/2 + i else


i(i - 1)/2 + j) mod HASHSIZE


Figure 11.9  Structure of a Conflict Entry 

Figure 11.10  Schema for Referencing Neighbors of Ti 

During insertion, new edges are added at the head of the chain, since locality indicates that once an 
insertion occurs it is likely that the same insertion will be attempted shortly. 

The other operation is finding all of the neighbors of a temporary. Let Ti be the temporary corresponding 
to the integer i. To scan down the list of temporaries that conflict with Ti, use an algorithm like the one in 
Figure 11.10. 

The compiler will also keep track of the number of a temporary’s neighbors. This can be accommodated 
by adding an attribute to the temporary, called NumNeighbors, that is initialized to 0 and incremented 
each time a conflict is added. 

11.3.2 Constructing the Conflict Graph

The definition gives the basic technique for computing the conflict graph. Consider each point in the 
flow graph. Generate an edge between any two temporaries that are live at that point and are not known 
to have the same value. This means that the compiler needs to know the set of temporaries live at each 
point. After live/dead analysis, the compiler only knows the temporaries live at the end of each block. 
The way to find those live at any point in the block is to scan the block backward, applying the definition 
of a live temporary to update this set of temporaries, as outlined below: 

1.  Scanning the instructions backward, first mark as dead any temporary that is the target of the 
current instruction. 
2.  Mark as live any uses of temporaries as operands. 
3.  For each pair (T1, T2) live at a particular point, create an edge in the conflict graph between T1 

and T2. 
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This approach is inefficient because two temporaries are usually live at a number of points. The 
algorithm will attempt to insert a conflict at each one of the points. Of course, the compiler will observe 
that the conflict is already there and not insert it. However, a large amount of time will be consumed 
attempting these useless insertions. Instead an observation made by Chaitin (1981) is used to decrease the 
work. 

Observation Consider any path from Entry to a point p where T1 and T2 are live. One of the 
following conditions is true: 

1. T1 is five at some instruction on the path that evaluates T2. 

2. T2 is live at some instruction on the path that evaluates T1. 

3. Either T1 or T2 has no evaluations on the path preceding p, so the 

compiler can ignore the conflict.4 

Proof Given a path, start walking backward on the path toward Entry. Both T1 and T2 

are live when you start the walk. Stop at the first instruction where either one of 
them ceases to be live. Here are the possibilities: 

• Neither instruction becomes dead. In that case, there are no instructions 
that evaluate either of the temporaries on the path before p, so they both 
contain uninitialized data and the third case occurs. 

• One of the temporaries becomes dead because it is the target of an 
instruction. Since we stopped at the first one that becomes dead, the other 
one is still live, so we have one of the first two alternatives. 

• One of the temporaries becomes dead because there are no preceding 
evaluations of that temporary on any path starting from Entry and reaching 
the current point in the walk. In that case, there are no evaluations of that 
temporary on this path, so the third alternative applies. 

4A temporary that does not have a value can share a register with any other temporary. Since we do not 
care what the value is, we can assign it the value in the other temporary. 

By the definitions of live and dead, these are the only alternatives, so we have proven the observation. 
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This observation means that we do not have to create conflicts for each pair of temporaries five at a 
point. The compiler need only create conflicts between temporaries evaluated at a point and the other 
temporaries that are five at that point. This gives the algorithm in Figure 11.11. It computes the lifetime 
information for temporaries that are in Nodes in the same way that live/dead analysis computes the 
information and then uses this information and the last observation to add conflicts to the conflict graph. 

Figure 11.11  Computing a Partial Conflict Graph 

As an example, consider the straight-line code fragment in Figure 11.12. Assume that T5 is the only 
register five after the code fragment, and that TO and T2 are five before the code fragment. Scanning the 
instructions backward, we get the conflicts listed in the second column, which gives the conflicts created 
by the instruction. 

This algorithm will be used in two places within the compiler. First it is used in the register renaming and 
register coalescing algorithm. For that purpose it needs a modification described below. Later it is used 
as stated here for global register allocation. 

During register renaming and register coalescing, the compiler computes a partition of the temporaries: 
Two temporaries in the same partition will be given the same name when the flow graph is translated 
back into normal form. The compiler needs the concept of conflict between two partitions: Two 
partitions conflict if there is any point at which there is an element of each that is live and not known to 
contain the same value. In other words, a partition is live at the union of the points where its elements are 
live. The algorithm for constructing the conflict graph for the partition is the same as for temporaries; 
however, the edge is constructed between (FIND(T1), FIND(T2)) rather than between (T1,T2), where the 
partition is represented by use of a UNION/FIND algorithm. 
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Figure 11.12  Example Conflict Graph 

11.4 Combined Register Renaming and Register Coalescing

LIMIT implements a combined algorithm for register renaming, peephole optimization, and partial 
register coalescing. The combination is based on the observation that both algorithms compute a partition 
of the temporaries to be used during translation back to normal form. Initially forming the static single 
assignment form exceeds the requirements of register renaming: It assigns too many new register names 
and inserts copy operations to copy between them. Register renaming creates the minimum partition that 
eliminates all of these inserted copies. Rather than eliminating them directly, the elimination of the 
copies can be combined with the elimination of the copies done in register coalescing. 

11.4.1 Register Renaming

Register renaming eliminates the situation in which the same temporary is used in distinct parts of the 
flow graph to hold different values. Static single assignment form provides a basis for register renaming. 
Recall that static single assignment form generates a new temporary name for each definition of a value. 
When translating back into normal form, the names are recombined to eliminate the copy operations 
implied by the φ-nodes. Recall that the translation back to normal form is governed by a relation between 
temporaries. Two temporaries that are related share the same name in the normal form of the graph. 

Register renaming is implemented by constructing the minimal relation that eliminates all copies from φ-
nodes. This relation is the transitive closure of the condition that two temporaries are related if one is an 
operand and the other is the target of the same φ-node. The relation is implemented using UNION/FIND 
algorithms to create a partition of all temporaries. Hence the algorithm consists of translating to the 
minimum SSA form, constructing the partition by declaring that the operands and the target of each φ-
node are related, and then translating back into normal form. 
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11.4.2 Register Coalescing

Register coalescing removes as many copy operations as possible. Many of the copy operations have 
already been eliminated during peephole optimization, which eliminated all copies that were not implied 
by φ-nodes and did not involve temporaries associated with φ-nodes at abnormal edges. The largest 
proportion of the copies are removed in this way. The rest of the copies are eliminated using an 
observation of Chaitin (1981): If the source and the destination of a copy do not conflict, then the source 
and destination can be combined into one register. Once the two temporaries have been combined, the 
algorithm can be applied again to another copy. The observation creates a partition of the temporaries: 
Two temporaries are in the same partition if they have been combined during register coalescing. 

The SSA-form register-renaming algorithm can generate φ-nodes associated with abnormal edges in the 
flow graph. These φ-nodes must not generate copy operations when the graph is translated back into 
normal form. Thus the algorithm must avoid eliminating copies that will cause copies to occur on 
abnormal edges. As usual, impossible edges are fine since the code on them can never be executed 
anyway. 

The algorithm consists of using the SSA form to eliminate most copies. Initially the temporaries are 
partitioned so that each temporary is in an element of the partition by itself. Then each φ-node and copy 
instruction is investigated. If an operand and the destination temporaries do not conflict, then both 
temporaries are put in the same partition. The flow graph is then translated back into normal form. 

Note the similarity between register coalescing and register renaming. Both are implemented by creating 
a partition, and both partitions are created to eliminate the copies at the φ-nodes. 

11.4.3 Integrating Ideas

Integrating register renaming and register coalescing is straightforward. Each builds a partition of the 
temporaries for reconstructing the normal form of the flow graph. Build the smallest partition that 
performs register coalescing, and register renaming will happen for free. 
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The driver procedure is described in Figure 11-13. The flow graph is already in static single assignment 
form. First, global value numbering is computed so that the compiler knows which temporaries may have 
the same value: This is used to compute the conflict graph. Initially each temporary is put in a separate 
element of the partition by itself. Then the pairs of temporaries that occur in copies on the abnormal 
edges have their partitions merged so that no copies can occur involving them. We have restricted 
peephole optimization so that this is legal. 

Figure 11.13  Coalescing and Renaming 

Now Chaitin’s observation is used to merge partition sets, which is the same as renaming one temporary 
to be the same as the other. The partition is implemented using a UNION/FIND algorithm with FIND of 
the elements in the partition being used as the representative temporary. Two temporaries can be 
combined into one if they do not conflict. At this point the compiler is only interested in combining 
temporaries that are the source and destination of a copy operation or φ-node. Later during global register 
allocation, the same observation will be used to allocate registers. 

As we will see when we study COALESCE-TEMPORARIES, we need to update the conflict graph as we 
combine two temporaries. However, the update is conservative and not precise, so coalescing is repeated 
with a recomputed conflict graph until no further copies can be eliminated. 

COALESCE_TEMPORARIES in Figure 11.14 performs the walk of the flow graph, checking all copies. 
As noted above there are two forms of copies: the explicit copies that come from the intermediate 
representation and the copies implicit in φ-nodes. Since the elimination of some copies may prevent the 
elimination of others, the flow graph is walked with the most frequently executed blocks being processed 
first. If this information is not available by profiling or static estimates, then walk the innermost blocks of 
the loops first. Without that information, walk the blocks in any order. 

Figure 11.14  Walking the Graph and Checking Coalescing 

Finally, the real work is done in CHECK_COALESCE in Figure 11.15. The conflict information for the 
partition is stored as the conflict information of the representative temporary, so first find the 
representative temporaries. If they are the same representative, then the temporaries have already been 
coalesced either directly or indirectly. Second, check to see if they conflict. If they do, then nothing is 
done; otherwise, the two partitions are merged with a UNION operation and the conflict information for 
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the new representative is given the union of the conflict information for the original partitions. 

Figure 11.15  Coalescing Two Temporaries 

The normal implementation of the UNION/FIND algorithms makes either or be the new 
representative. In that case one of the loops can be eliminated. The elimination of a copy means that 
change is set to true to indicate that some copies were eliminated on this pass. The algorithm can also 
stop if there are no copy operations left. 

What are the advantages of this technique? As noted earlier, local coalescing eliminates most copies 
without use of the conflict graph. Second, global value numbering allows the elimination of cascading 
copies without repeated creations of the conflict graph. Third, the algorithm computes the conflict graph 
only for the temporaries that can be involved in coalescing. 

There are some other target architectures that require a form of implied coalescing. If the target machine 
is not a RISC processor, then it may have instructions in which one of the operands is modified to get the 
result. With the intermediate representation mimicking a RISC processor, the register allocator wants to 
make as many of these targets as possible be the same as one of the operands. This is accomplished by 
substituting two target machine instructions for a RISC instruction: a copy from one operand to the target 
and the target instruction with the target and the (implied) operand the same. Coalescing is used to 
eliminate the copy instruction, that is, make the operand and target be the same temporary. 
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11.5 Computing the Register Pressure

The compiler has reduced the number of temporaries in use as far as possible. Now the compiler needs to 
determine where in the flow graph each temporary gets assigned to a register. Whenever a temporary is 
in use, it is in a register; however, it may be spilled to a temporary memory location between uses. We 
use the register pressure as an approximation to the number of registers that are needed, so the compiler 
must first compute the register pressure or the number of five temporaries at each point. If there are 
multiple register sets, such as distinct integer and floating-point registers, then the register pressure is 
computed separately for each. 

Definition	 Register Pressure: Given a point p in the flow graph, the register pressure is the 
number of temporaries that are live at p. If there are separate register sets, the 
register pressure for each set is computed separately. 

The register pressure can be determined by computing the set of temporaries that are live at the end of 
each block. The size of this set gives the register pressure after the last instruction in the block. Then the 
compiler walks each block backward, keeping track of which registers are live at each point. The size of 
the set is the register pressure. At each instruction the compiler will perform the following steps: 

1.  First, the temporary that holds the value of an instruction is marked dead and removed from 
the set of live registers. If the temporary was not live before being marked dead, the instruction 
can be removed. 
2.  Next, the temporaries that are operands of the instruction are marked live. 
3.  The register pressure before the instruction is the size of the set of five registers after 
processing the instruction. Remember, we are processing the instructions in reverse execution 
order. 

Besides knowing the register pressure at each instruction, the algorithm needs to know the maximum 
register pressure in each block and each loop. For this the compiler uses the loop tree. All of the 
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information about register pressure can be computed in one walk of the loop tree, as described in Figure 
11.16. 

The register pressure is a synthesized attribute of the loop tree. The register pressure for each node is the 
maximum of the register pressures for each of the children. So computing the register pressure for a loop 
is just finding the maximum of the register pressures for the enclosed loops and blocks, as shown in 
Figure 11.17. 

Figure 11.16  Finding Register Pressure In Flow Graph


Figure 11.17  Finding Pressure in a Loop 

Computing the register pressure in a block is shown in Figure 11.18. The structure mimics the 
computation of local lifetime information used for live/dead analysis. The block is scanned in reverse 
execution order and each instruction is executed in backward order. When a definition is found, the 
temporary becomes dead, and when a use is found, the temporary becomes live if it was not already live. 
The register pressure is the number of registers that are five between each pair of instructions. 

Figure 11.18  Computing Pressure in a Block 

Some processors, such as the INTEL i860, contain instructions that define the target register before the 
operands are used. In those cases, this code must be changed to reflect the hardware. For those particular 
instructions, the operands will be referenced first in backward execution order, then the targets will be 
modified. 

11.6 Reducing Register Pressure

The compiler will now simplify the register allocation problem by reducing the register pressure at each 
point in the flow graph to be no greater than the number of physical registers available. If there are 
multiple register sets, this is done separately for each set. The compiler identifies points where the 

file:///D|/Convert/Building_an_Optimizing_Compiler/ch11/316-319.html (2 of 3) [10/17/2003 1:06:33 AM] 

javascript:displayWindow('images/11-16.jpg',400,119)
javascript:displayWindow('images/11-16.jpg',400,119)
javascript:displayWindow('images/11-17.jpg',500,321)
javascript:displayWindow('images/11-17.jpg',500,321)
javascript:displayWindow('images/11-18.jpg',500,401)
javascript:displayWindow('images/11-18.jpg',500,401)


Building an Optimizing Compiler:Limiting Resources 

register pressure is too large. It stores a temporary in memory before that point and reloads it after the 
point. The temporary must be in a register at each use of the temporary. The temporary is no longer live 
between the STORE instruction and LOAD instruction, so the register pressure is decreased. 

To summarize this situation, assume that the register pressure is too high at the point p in the flow graph 
and a temporary T is being spilled to memory. A memory location MEMORY(T) must be assigned to hold 
the value of T. Then instructions must be added to the program to move T to and from the memory 
location. If T is live at a point p in the program where the compiler wants to reuse the register holding T, 
then 

A store operation moving T to MEMORY(T) must be placed on each path between an evaluation 
of T and p. 
A load operation moving MEMORY(T) to T must be placed on each path between p and any 
instruction that might use T as an operand. 

It is not difficult to satisfy these conditions. The compiler could insert a store operation after each 
instruction that computes a value into T, and a load operation before each instruction that uses the value 
in T. The problem is that this generates too many memory-reference instructions. On modern processors, 
memory references are one of the most expensive operations, so the compiler needs to decrease the 
number of such instructions. These instructions also take up space in the instruction cache, further 
decreasing performance. 
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If there is a point in the program where the register pressure exceeds the number of available registers, 
the compiler will spill a temporary to decrease the register pressure.5 Since the compiler is trying to 
decrease the number of load and store operations performed, it will start spilling at the most frequently 
executed point in the program and attempt to insert the load and store operations at less frequently 
executed points. To do this it uses a three-step process applied at the point p in the procedure where the 
register pressure is largest: 

5There are situations in which the register pressure is not an accurate measure of the number of registers 
needed. In some situations, more registers are needed due to complex intertwining of register usage 
patterns. In the presence of uninitialized temporaries and paths through the flow graph that are not 
executable, fewer registers may be needed. However, the register pressure is typically very close to the 
number of registers needed. 

1.  Find the largest loop (most outward loop) containing p where there is some temporary T that is 
live throughout the loop and not used within the loop. T is holding a value that is passed through 
the loop. Insert a single store operation T into MEMORY(T) at the beginning of the loop, and a 
load operation from MEMORY(T) into T at each loop exit where T is live. Attempt to move the 
store operations toward the procedure Entry as far as is possible without increasing the number of 
times they are executed. Attempt to move the load operations toward the procedure Exit as far as 
is possible without increasing the number of times they are executed. This may decrease the 
register pressure at other points. 
2.  If no loop and temporary T can be found, then apply the same technique to the single block 
where the register pressure is too high. Find a temporary T that is five throughout the block and 
not used in the block. Insert the store operation before the block and the load operation after the 
block if T is live after the block. Again attempt to move the store operation toward the procedure 
Entry block and the load operation toward the Exit block. 
3.  If both previous techniques fail to reduce the register pressure, the load and store operations 
must occur within the block where the register pressure is too high. Choose a temporary T that is 
live at p and is not used for the largest number of instructions. Insert a store operation after the 
definition of T (or at the beginning of the block if there is no definition in the block). Insert a load 
operation before the next use of T (or at the end of the block if there is not another use in the 
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block). If a load occurs at the beginning of the block, attempt to move the load as far toward the 
procedure Entry as possible without increasing the frequency of execution. Similarly, move the 
store operation toward the procedure Exit as far as is possible. 

Once the compiler has inserted the load and store operations, it uses the techniques of partial redundancy 
elimination to move the load toward the Entry block and the store toward the Exit block. The EARLIEST 
algorithm is used so that the operations are moved as far as possible. 

Recall that register allocation is an NP-complete problem, so there is no likelihood of finding an 
algorithm that works well in all cases. This means that the implementer (and the author) must resist too 
complex allocation mechanisms: Past experience says that they do not pay off. 

It is more efficient to compute for each loop the temporaries that are available to spill and then scan from 
the outermost loop to the innermost, spilling temporaries if the register pressure is too high. An attribute 
Through(L) is computed for the flow graph, each loop, and each block. The algorithm is given in Figures 
11.19 and 11.20.

The procedure COMPUTE_THROUGH starts the recursive tree walk of the loop tree. Since the attribute 
is only needed for loops with high register pressure, the attribute is not computed for less complex loops. 
This will save some time. Note that this is not true of loops contained within other loops. If the outer loop 
has high register pressure, the register pressure for the inner, less complex loops is still computed. It is 
too complex to avoid the unneeded computation. 

The procedure COMPUTE_THROUGH_LOOP handles blocks separately from loops. For a block, a 
temporary is live throughout the block without references in the block if and only if the temporary is live 
at the beginning of the block and there are no references. Warning: It is not true that a temporary is live 
throughout the block if it is live at the start and end of the block, since it may become dead within the 
block and then five again. Of course, this cannot happen if there are no references to the temporary in the 
block. 

Figure 11.19  Computing Transparent Temporaries


Figure 11.20  Main Through Calculation 

The set of temporaries that are live everywhere in a loop without references is the intersection of the 
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corresponding set for each component of the loop. The COMPUTE_THROUGH_LOOP computes this 
intersection. The compiler is only interested outermost loop in which a temporary is live throughout 
without references, so after computing the Through set for a loop, it removes the references to those 
temporaries from the inner loops. 

For single-entry loops, there is an easier way to compute the Through attribute. For a single-entry loop, a 
temporary is live throughout the loop without references in the loop if and only if it is five at the 
beginning of the entry block and has no references within the loop. This is true because there is a path 
from every block to every other block in the loop. This is not true for multiple-entry loops because the 
compiler has added blocks onto the beginning of the loop to create a single entry region of the flow 
graph. In these added blocks there is not a path from each block to every other block. 
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11.7 Computing the Spill Points

The way the algorithm is described, the compiler finds a point where the register pressure is too high and 
finds a temporary that is just occupying a register throughout a loop and spills it. A simpler 
implementation occurs by walking down the loop tree. At each loop consider the register pressure. If the 
pressure is too high, spill a temporary that is live throughout the loop and not referenced in the loop. 
Keep doing this until the register pressure has been driven down. 

This may be inefficient because the algorithm will choose one temporary to spill in one loop and a 
different one to spill in another; thus, a large number of load and store operations may be inserted 
between two loops even though a single set of temporaries can be spilled in both loops, avoiding the 
loads and stores between them. The compiler attempts to avoid this problem by choosing the temporaries 
to spill based on all of the subloops within a loop. This is only a heuristic because the general problem of 
choosing which temporaries to spill to get the optimal solution is NP-complete. 

The algorithm starts in Figure 11.21 with the driver procedure, which only computes the register pressure 
and the Through sets that contain the temporaries that are live in each loop but not referenced. The 
procedure then starts the walk of the loop tree. The walk stops when the procedure hits a block or a node 
that has a pressure lower than the number of registers. Finally it recomputes the pressure for use during 
instruction scheduling. 

There are two fundamental procedures implementing the algorithm: one reduces the pressure in loops 
(see Figure 11.22), the other uses a different algorithm to reduce the pressure within a block (described 
later in section 11.7.1). The algorithm we have been discussing reduces pressure in loops. Reducing the 
pressure within a block is the last resort and is only performed if there are no temporaries that are live 
throughout the block and unused in it. 

Now let’s discuss reducing pressure within a loop, as described in Figure 11.22. The algorithm 
description is more daunting than the actual idea. Compute the set of loops or blocks, High_Pressure, 
which have an internal register pressure that is too high. The compiler needs to spill a temporary that is 
live in each of these loops if possible. To that end, it computes a priority queue, Excess_Pressure, 
consisting of the loops or blocks contained in High_Pressure. The priority is given by the excess in 
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register pressure. The algorithm chooses a temporary to spill (described shortly) and then spills it (also 
described shortly). When as much spilling as is possible has been performed in this loop, spilling is 
performed in the subloops and blocks if necessary. 

Figure 11.21  Driver for Reducing the Pressure


Figure 11.22  Spilling Temporaries in a Loop 

How is the temporary to spill chosen? Consider the algorithm in Figure 11.23. The loop (or block) with 
the most excessive pressure is chosen. Each of the temporaries in Through for that loop are candidates 
for spilling. The one chosen is that which is also a candidate for spilling in the most other loops that need 
to spill temporaries. This gives the algorithm that optimizes the placement of the load and store 
operations the biggest chance of avoiding some load and store operations. 

The algorithm in Figure 11.24 describes the insertion of the load and store operations. First there must be 
a memory location to hold the value. The same memory location must be used for all references to the 
same temporary. The store operation is inserted before entry into the loop, and load operations are 
inserted at the exit points if the temporary is still live there. Since there are no references to the 
temporary in the loop, this guarantees that the new program has exactly the same computational effect as 
the original program. Then the data structures are updated. If the loop no longer has excess pressure, then 
the loop is removed from Excess_Pressure and High_Pressure. If it still has excessive pressure, the 
priority is decreased by one. 

Figure 11.23  Choosing which Loop Temporary to Spill 

Figure 11.24  Inserting Spilled Loads and Stores 
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Figure 11.25  Updating Pressure 

Updating the register pressure is the most expensive operation, so the compiler uses an approximation 
that reduces the pressure in the preselected loops and blocks. The optimization of the placement of load 
and store operations may decrease it in other places. However, the choice to spill the same temporary in 
as many places as necessary within a loop makes this approximation better. All of the loops or blocks 
that have high pressure and in which the temporary can be spilled do have the temporary spilled and the 
pressure adjusted. It is the blocks or loops where the pressure is not too high that fail to have the pressure 
adjusted. So the algorithm performs a walk of the loop tree, decreasing the recorded pressures by one. It 
stops when the leaves or a loop with low pressure is reached. The algorithm is described in Figure 11.25 
as a simple tree walk down the tree, fixing the values of the attribute Pressure. 
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11.7.1 Reducing the Pressure in a Block

The classic spilling algorithm for one-pass register allocation is used to spill within a block. Scan through 
the block in execution order. When a point is reached where the register pressure is too high, choose a 
temporary that is live at that point (so it will reduce the pressure) and whose next use as an operand of an 
instruction is furthest in the future. Spilling that temporary will maximize the sequence of instructions 
within the block where the pressure is reduced. For the purposes of choosing this temporary, if there are 
no further uses of a five temporary in this block, pretend that a dummy use occurs after the end of the 
block. 

The algorithm is implemented in two passes. The first pass scans backward through the block, building a 
fist of the instructions where each temporary occurring in the block is used and computing the register 
pressure before each instruction (Figure 11.26). It mimics the code that we have used before for 
computing live/dead information and computing register pressure. Note that register coalescing and 
register renaming has ensured that there is only one evaluation of a temporary within the block. The list 
therefore starts at the first point that a temporary becomes five. 

The second pass through the block scans forward (Figure 11.27). As it passes each instruction, it removes 
the instruction from the use lists built in the previous phase so that the lists always hold the uses that 
remain in the block. As it is scanning forward, it maintains a set of all of the temporaries that are five. 
When the register pressure exceeds the number of registers, one of the temporaries is stored to memory 
together with a load operation before the next use. To keep track of the set of temporaries that are live at 
the beginning of the block, the set Live computed in the initial pass is used and the reverse actions are 
performed on the temporaries as the compiler scans forward through the block. 

Figure 11.26  List of Uses for Reducing Pressure 
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Figure 11.27  Reducing Pressure in a Block 

Which temporary should be stored? The temporary whose next use is furthest in the future. In other 
words, scan the set of five temporaries and choose the one whose next entry in the use list is latest. This 
is the classic heuristic used in one-pass register allocators and it makes a register available as long as is 
possible. 

The actual point where the register pressure is too high is within the instruction between the uses of the 
operands (which might decrease register pressure) and the storing of values in the targets (which 
increases register pressure). If the pressure is too high, the temporary being spilled is stored before this 
instruction (the temporary must be one of the operands or another temporary that is five but not used in 
this instruction). The value must be reloaded before the next use. If there are no more uses in the block 
but the temporary is five, then the load operations must be placed on each exit edge where the temporary 
is live and the algorithm to optimize the placement of the spill operations called. Similarly, if the load 
operation is placed at the beginning of the block, then the spill optimizer must be called to improve the 
placement of the spill (see Figure 11.28). 

Figure 11.28  Inserting a Spill within a Block 

11.8 Optimizing the Placement of Spill Instructions

Once the initial positions of store and load operations are determined, the compiler optimizes the 
placement of these STORE and LOAD instructions by moving them to less frequent execution points. 
The act of moving them decreases the register pressure at the points moved over, making the rest of the 
pressure-reduction algorithm easier. 

To optimize the placement of load and store operations, the compiler keeps the following sets for each 
spilled temporary. These sets are maintained throughout the spilling process throughout the whole flow 
graph because spilling a temporary in one region of the flow graph may change the placement of load 
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and store operations in another part of the flow graph. 

STORE_IN(T) is the set of blocks in which there is a STORE instruction T into MEMORY(T) at 

the beginning of the block. 

STORE_OUT(T) is the set of blocks in which there is a STORE instruction of T into MEMORY(T) 

at the end of the block. 

LOAD_IN(T) is the set of blocks in which there is a LOAD instruction of T from MEMORY(T) at 

the beginning of the block. 

LOAD_OUT(T) is the set of blocks in which there is a LOAD instruction of T from MEMORY(T) 

at the end of the block. 


This section describes an algorithm to improve the placement of these load and store operations. Once 
the loop-based algorithm has determined the placement of instructions outside of loops, these load and 
store operations together with the previous load and store operations for the same temporary are used to 
find better places to put the operations. The algorithm used is the EARLIEST algorithm for partial 
redundancy elimination. 
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11.8.1 Optimizing the Store Operations

Consider the store operations used to spill T to MEMORY(T). These instructions can be viewed as unary 
operations, depending only on T. They can be optimized like any other instruction as soon as we define 
what it means to evaluate an occurrence of the store and what will kill the store. 

What instructions perform an evaluation of the store operation? These are instructions that ensure that the 
value in memory is the same as the value in T after the instruction is executed. Clearly, one of the store 
operations that the compiler inserts satisfies this condition. However, a load operation from MEMORY(T) 
to T also satisfies the condition. Thus, the instructions that evaluate the store operation are both the store 
and load instructions. 

What instructions kill the store operation? These are the instructions that cause the condition that the 
value in T is the same as the value in MEMORY(T) to be violated, which will be any instructions that 
modify T. Note that a LOAD instruction first kills T and then has the effect of an evaluation of a store 
operation. 

Note that the uses of T as an operand do not affect the placement of store operations. The store operations 
are being moved toward the Entry block and never change the value of T, so a store can be moved past a 
use of T without affecting any values in registers. This gives us the following definitions for anticipation 
and availability: 

STORE_ANTLOC(I) = STORE_IN(T)

STORE_AVLOC(I) = STORE_OUT(T) ∪ LOAD_OUT(T) 
STORE_TRANSP(B) = {T | No instruction in B modifies T}


These sets can now be used to compute STORE_ANTIN, STORE_ANTOUT, STORE_AVIN, and 
STORE_AVOUT. Then the formulas for EARLIEST can be used to compute STORE_EARLIEST. This 
gives the points at which to insert new STORE instructions and the points at which to delete older 
instances of STORE instructions. 

In contrast to the situation during global optimization of expressions, the STORE instructions should be 
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moved as far as possible. This may decrease the register pressure in other parts of the flow graph and 
avoid further spills that could not be otherwise identified. Therefore the EARLIEST algorithm is used 
rather than the LATEST algorithm. 

The computation of STORE_EARLIEST uses the formulas for EARLIEST, replacing the anticipated and 
available sets by the corresponding sets described here for stores. The algorithm for inserting and 
deleting the STORE instructions also uses the formulas describing insertion and deletion for EARLIEST. 

A further optimization is needed to decrease the number of stores in the flow graph. The EARLIEST 
formulas can describe the insertion of the same computation on all edges leading to a block. In that case, 
the computation should be inserted at the beginning of the block and not on an of the edges. Also, if the 
algorithm describes the insertion of a store at the beginning of a block and the deletion of a store at the 
beginning of the same block, then do not perform either insertion or deletion. This is what happens with 
EARLIEST if a store cannot be moved: The algorithm describes the insertion of a store on each edge 
leading to the block and the deletion of the store in the block. 

The same problem with abnormal edges occurs in this algorithm as with partial redundancy, and the 
solution is the same. If the algorithm attempts to insert a store on an abnormal edge, the compiler will 
pretend that there is an instruction that modifies T at the beginning of the head of the edge. Thus T is not 
anticipated and no insertion will occur on the edge. The algorithm is repeated with this added instruction 
to determine a new set of points at which to insert the store operations. The complete algorithm is 
described in Figure 11.29. 

11.8.2 Optimizing the Placement of Spilled LOADs

The same techniques can be used to move the load operations, except that the compiler needs to move 
the load operations toward Exit. We apply partial redundancy on the reverse graph, using predecessors 
everywhere that successors are used in the normal EARLIEST algorithm. 

To do this, the compiler must know what the evaluation of a LOAD instruction is and what instructions 
kill a LOAD instruction. An instruction evaluates a LOAD instruction if it guarantees that the value in 
the temporary is the same as the value in memory. Obviously, a LOAD instruction evaluates a LOAD 
instruction and so does a STORE instruction. 

Figure 11.29  Inserting and Deleting Spilled STOREs 
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What instructions kill a LOAD instruction? A use or evaluation of the temporary kills a LOAD 
instruction. The use kills it because moving the load past the use will destroy the value for the use. An 
evaluation of the temporary will kill the load since it will generate a value different from the one in 
memory. 

A further optimization can be made by observing that some paths to Exit may not contain any further 
uses of the temporary T. If a LOAD instruction is to be inserted at a point where T is not five, then the 
insertion can be ignored. 

11.9 References
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Chapter 12 
Scheduling and Rescheduling 

Reduced instruction set computing (RISC) processors increase execution speed by making the 
instructions simple (thus keeping the hardware simple) and by a number of other devices for increasing 
the number of instructions that can be executed in a fixed interval of time. 

The processor is pipelined. This means that the execution of individual instructions is broken into small 
tasks that are approximately equal in size. The individual tasks for a single instruction are performed on 
an assembly line (called a pipeline). Pipelining gains the efficiencies of an assembly line. A second 
instruction can start execution, or be issued, when the first instruction is moved from the first stage. One 
instruction can be issued during each instruction cycle for each pipeline. However, each instruction may 
not complete its evaluation for one or more cycles after it is issued. If a later instruction attempts to use 
the value computed in an earlier instruction that has not yet completed all stages of the pipeline, the 
processor will stall, or delay the issuing of the second instruction until the first one has completed. To 
gain performance, the compiler will reorder the instructions to avoid processor stalls.1 

1Early RISC processors did not stall when a value was not ready. Instead they executed the instruction 
using garbage as input. It was the responsibility of the compiler to ensure that such execution did not 
happen. All recent processors will stall while waiting for operands since the indeterminancy of some 
instructions, particularly LOAD, multiply, and divide instructions, made scheduling difficult. 

The processor will issue multiple instructions at the same time. The processor will load a small set of 
instructions, called a packet, and analyze the relationship between the instructions. If the instructions do 
not use or change the operands of the other instructions in the set, then the instructions may be issued at 
the same time. This gains performance if the processor has more than one computing unit, such as an 
integer arithmetic unit and floating-point unit. 

The processor may have more than one integer unit and more than one floating-point unit. In that case, 
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the packet of instructions that can be fetched is larger and more than one arithmetic instruction may be 
issued simultaneously. Not all of the arithmetic units may be identical. In that case the compiler will 
reorder the instructions so that each packet will have instructions that can execute on different arithmetic 
units. 

A processor with these three characteristics is called a superscalar processor. Most processors in use 
today are superscalar. Many of them have an additional characteristic called out-of-order execution. Such 
a processor will operate as described above and will allow later instructions in a packet to execute even 
when the instructions that precede them are constrained from execution. This later characteristic will not 
be discussed here since there are few things that the compiler can do to enhance the execution of out-of-
order processors that are not important for the normal superscalar processors. 

The Digital Alpha 21164 is an example of a superscalar processor. Consider how it matches the criteria 
above. First, the Alpha is not an out-of-order execution processor. All instructions are executed in order; 
if the execution of an instruction is delayed, all instructions following it are delayed also. 

The Alpha is pipelined. Most instructions for the integer arithmetic units take one cycle; the floating­
point instructions take four cycles. Some of the exceptions to these rules are the conditional move, 
LOAD, multiplication, and floating-division instructions. 

The Alpha will attempt to issue four four-byte instructions during each clock cycle. The block of 
instructions must be aligned on an address that is a multiple of sixteen. If the address is not a multiple of 
sixteen, then the packet that contains the current instruction is fetched and the initial instructions in the 
packet are ignored, thus decreasing the number of instruction that can be issued during that clock cycle. 
If the instructions of a packet contain dependences so that they cannot all be issued, then the initial part 
of the packet is issued, up to the first instruction that cannot be issued immediately. 

The Alpha contains two integer arithmetic units and two floating-point units. Both integer arithmetic 
units can execute most integer instructions. The exceptions are that shift operations are done on one of 
the units and branching operations are done on the other. There is a floating-point multiplication unit and 
a floating-point addition unit. Some instructions are shared between the two units. 

Ideally, the Alpha will issue four instructions during a clock cycle. Two of the instructions will be 
executed by the two integer arithmetic units. One of the other instructions will be an instruction that can 
be executed by the floating-point multiplication unit, and the final instruction can be executed by the 
floating-point addition unit. These instructions can occur in any order in the packet of instructions. 
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There are other characteristics of the Alpha that the scheduler must take into account. Consider load 
operations. These are performed by the integer arithmetic unit; however, the length of time to fetch data 
from memory depends on which cache or memory unit currently contains the data. 

The Alpha contains three on-chip caches: one for data, one for instructions, and a larger secondary cache. 
The primary cache contains 8K of data organized as a direct memory-mapped cache with a cache line of 
32 bytes. If data is in this cache, a load operation takes two cycles. There is another 8K on-chip cache for 
instructions; however, it will not be discussed here. 

The secondary on-chip cache holds both instructions and data. The cache will hold 96K of information 
organized as a three-way set-associative cache with each cache line containing 64 bytes of data. A load 
operation when data is in this cache takes nine cycles, including moving the data into the primary cache. 

There is usually a large board-level cache in an Alpha system. This cache contains multiple megabytes of 
data and is organized as a direct memory-mapped cache with each cache line containing 64 bytes of data. 
For data in this cache, a load operation takes twenty cycles, including moving the data into the two 
higher-level caches. 

When data is in memory and not in a cache, the load operation takes a long time: somewhere in the range 
of a hundred cycles, depending on the system involved. This is sufficiently long that there is no point in 
modeling the exact time in the scheduler. The compiler can handle this in one of two ways. It can 
optimistically assume that data is in one of the caches and schedule the instructions for that case, or the 
compiler can be aware that these load operations take a huge amount of time and attempt to move them 
as early in the schedule as possible. 

The effect of pipelining on the execution of a program is that instructions are issued at some point in the 
program and the result becomes available some number of clock cycles later. Due to hardware 
optimizations, the number of cycles that the value takes to become available may depend on how it is 
going to be used, so the delay, or latency, is a function of both the instruction computing a value and the 
instruction that will use the value. 

The SCHEDULE phase reorders the instructions in the procedure being compiled to eliminate as many 
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stalls as possible. There are three different types of schedulers, based on the size of the pieces of the 
procedure that they attempt to reorder: 

• Block schedulers reorder the instructions within individual blocks. The form of the program 
flow graph is not changed. The reordering of each block is independent of the reordering of other 
blocks, with the possible exception of some knowledge about values computed at the end of a 
block (or used at the beginning of a block). 
• Trace schedulers reorder the instructions in a simple path of blocks. The paths that are 
reordered are chosen to be the most frequently executed paths in the program. Instructions may be 
moved from one block to another. In fact, instructions may be moved to places where the value 
computed is not guaranteed to be used (speculative execution). By reordering these larger 
sequences of instructions, more opportunities can be found for eliminating stalls. 
• Software pipeliners reorder and replicate instructions in loops to eliminate stalls. The result of 
software pipelining is a new loop in which values are being simultaneously computed for multiple 
iterations of the original loop. 

For a superscalar processor, block scheduling is inadequate. If the machine can issue four instructions on 
each clock cycle, then a one-cycle delay means that four potential computations are not performed. The 
compiler must find ways to move computations together so that they can be simultaneously executed. 
Since most blocks are small, the compiler must combine computations from multiple blocks or multiple 
iterations of a loop. In other words, the compiler must perform some form of trace scheduling and 
software pipelining. 

Up to this point, we have ignored the amount of time needed to execute instructions and the way that the 
instructions are issued by the processor. The SCHEDULE phase reorders the instructions to avoid stalls. 
The Alpha instruction sequence in Figure 12.1 for the statement A = (B + C) + D * E will waste two 
cycles when the instructions are executed in the order described by the source language. The initial load 
operation takes two cycles to get the data from the data cache. These cycles can be used to execute the 
later load operations, allowing the loads and the subsequent multiplication and addition to overlap. 

Figure 12.1  Instructions Before (left) and After (right) Scheduling 

Figure 12.1 indirectly shows three other concerns. First, the initial instruction sequence can be executed 
using only three registers. The reordered sequence requires four registers. Reordering the instructions can 
increase the number of registers needed, therefore making register allocation harder. There are also cases 
where instruction scheduling will decrease the number of registers needed; however, these are rare. On 
the whole, instruction scheduling makes register allocation more difficult. 

The second problem is, what happens when register allocation cannot put all temporaries in physical 
registers? The register allocator will insert store and load operations to move data to and from memory. 
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These instructions destroy the original schedule of instructions, so instruction scheduling may need to be 
repeated after register allocation. The second time it is called, most temporaries will already have been 
assigned to physical registers so less movement is possible. 

The third problem is implicit in the example shown above. The Alpha processor can issue four 
instructions at the same time. In this example, there are never more than two instructions available to 
issue. Many cycles have no instructions to issue, thus many opportunities for starting instructions 
(cycles) are wasted. How can the compiler reform the program to make more instructions available? We 
have discussed one method already: loop unrolling. If the code in Figure 12.1 were array references 
inside a loop, then four iterations of the loop could be executed simultaneously, using many of the 
wasted cycles. 
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12.1 Structure of the Instruction-Scheduling Phase

The compiler schedules blocks in groups: Each group is a path within the dominator tree. Note that this is 
a generalization of an extended block. Since each extended block is a subtree of the dominator tree, a 
path through an extended block is a path in the dominator tree. One variant of trace scheduling performs 
scheduling on extended blocks, so this is a generalization of that technique. In scheduling the blocks, the 
following operations are performed in order: 

1.  Create the dominator tree. The dominator tree is the basic data structure for global scheduling. 
The compiler will use it to find paths to schedule together. It will also perform value numbering 
on the instructions as they are scheduled to eliminate unneeded computations on paths yet to be 
scheduled. 
2.  Identify each single-block loop. Perform software pipelining on these loops. This involves the 
creation of several blocks to hold instructions to start the loop, instructions to end the loop, and an 
alternative copy of the loop when too few iterations will be performed. These blocks are inserted 
into the dominator tree, and the initial block is marked as a member of a single-block path that is 
already scheduled. 
3.  To perform scheduling the compiler needs to know which temporaries are used or defined 
between a block and a block it dominates. These are called the IDEES and IUSE sets (we will see 
how to compute them shortly). The compiler computes them before beginning the scheduling. 
4.  Compute the paths, or traces, through the dominator tree to be scheduled together. Two 
distinct criteria are used for forming the traces. If execution frequency information is available, 
the most frequently executed path is chosen first, and then the process is repeated on less frequent 
paths. When two blocks have equal likelihood, the block added to the path is the one more likely 
to be mergeable with its predecessor or successor. 
5.  Now perform a depth-first search of the dominator tree. When arriving at a block that starts a 
trace, schedule that trace. As the compiler walks the tree, it performs value numbering to 
determine which instructions are available. An available instruction can be eliminated and need 
not be scheduled. Scheduling consists of two parts: computing the interference graph between 
instructions and then ordering the instructions to overlap execution as much as possible. 

Contrary to other approaches to trace scheduling, this algorithm is applied to the flow graph with 
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temporaries. Registers are assigned later. When the instruction scheduling is applied after register 
allocation, each trace is made one block long so that instruction scheduling only occurs within a block. In 
that case only blocks with new instructions inserted need to be rescheduled. 

12.2 Phase Order

The scheduler is called twice. It follows the LIMIT phase, so we know that there are enough registers to 
hold all values needed at each point in the program. It precedes register allocation, so temporaries still 
exist. It reorders the instructions in the program, leaving a valid representation of the same program. 
After register allocation the scheduler may be called again if there have been any spill operations inserted 
into the program. Note that peephole optimization is performed before scheduling. Thus the sequence of 
phase execution near the scheduler phase is as shown in Figure 12.2. 

Since scheduling happens before temporaries are tied to physical registers, there is a larger degree of 
freedom in moving instructions around. This can increase the number of registers that are live at each 
point in the program. Thus the scheduler must be constrained to not increase the number of registers 
needed at each point of the program beyond the number of registers that are available. If this limits the 
instruction scheduler too much, we will change the LIMIT phase to decrease the register pressure further. 
This can be done experimentally as we test real programs. 

Figure 12.2  Sequence of Phases Involving Scheduling 

Scheduling can create opportunities for peephole optimizations. It can move loads and stores of the same 
location so that they are adjacent. Hence the scheduler must be prepared to do some limited forms of 
peephole optimization as it schedules instructions. 

After register allocation has been performed, the scheduler can be called again if there are any 
instructions inserted by the register allocator. If there is no register spilling in the register allocator, then 
the second execution of the scheduler is unnecessary. 

file:///D|/Convert/Building_an_Optimizing_Compiler/ch12/339-341.html (2 of 3) [10/17/2003 1:06:41 AM] 

javascript:displayWindow('images/12-02.jpg',200,459)
javascript:displayWindow('images/12-02.jpg',200,459)


Building an Optimizing Compiler:Scheduling and Rescheduling 

Previous Table of Contents Next 

Copyright © Digital Press 

file:///D|/Convert/Building_an_Optimizing_Compiler/ch12/339-341.html (3 of 3) [10/17/2003 1:06:41 AM] 

file:///reference/digitalp00001.html


Building an Optimizing Compiler:Scheduling and Rescheduling 

Building an Optimizing Compiler 
by Bob Morgan 
Digital Press 
ISBN: 155558179x  Pub Date: 12/01/97 

Previous Table of Contents Next 

12.3 Example

Two examples are used to illustrate instruction scheduling. First, in Figure 12.3, is the inner loop of the 
running example. We will schedule the body of the loop, gaining some performance even though the 
loop has few instructions. This is typical of many loops in real programs. 

The corresponding scheduled fragment of the flow graph is given in Figure 12.4. All of the store 
operations have been removed from the loop and the superblock2 transformation has replicated the 
instructions at the end of the loop to improve instruction scheduling. 

2Superblock scheduling is discussed in Appendix B. 

Figure 12.5 is used as an example for two purposes. The compiler will software pipeline this loop, 
overlapping the execution of multiple iterations. As well as being used to show software pipelining, we 
will use this example to illustrate how the compiler would compile a loop that is not software pipelined. 
Such a loop may be unrolled to gain more instructions for scheduling. 

Figure 12.3  Inner Loop of Example 

Figure 12.4  Instructions in the inner Loop 
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Figure 12.5  Vectorizable Loop 

Figure 12.6 contains the instructions that are provided after previous compiler phases if the loop will be 
software pipelined. The body of the loop contains the instructions for one iteration of the loop. Figure 
12.7 contains the instructions for the loop that were generated when assuming that the loop would not be 
software pipelined. The loop has been unrolled four times so that the computations can be overlapped. In 
this particular case, the compiler might actually unroll the loop more than four times; however, nothing 
would be gained by depicting more unrolling as an example. 

Figure 12.6  Instructions for Vectorizable Loop


Figure 12.7  Unrolled Loop 

Before describing the scheduling algorithm itself, we will discuss five topics that form the basis for 
scheduling: 

•  Rather than scheduling the instructions in a single block, the compiler will schedule instructions 
in a collection of blocks, called a trace. First the compiler must compute the traces. Then it will 
schedule the instructions in the trace as if they were a single block of instructions. 
•  As you will see momentarily, the traces are not necessarily sequentially contiguous blocks in 
the flow graph. When they are not adjacent, the compiler must compute the temporaries that are 
used or defined between the blocks in the trace. 
•  When the trace and the interblock information is known, the compiler will compute a data 
structure called the interference graph, which describes which instructions must be evaluated 
before other instructions and how far in advance these prior instructions must occur. 
•  Just before the instructions are scheduled, the compiler must compute for each instruction an 
estimate of how many cycles occur between it and the end of the trace. This is called the critical 
path information and will be used to choose the instructions for scheduling. 
•  During scheduling the compiler simulates the execution of the instructions and keeps track of 
which function units within the processor are busy during each execution cycle. This can all be 
done by maintaining a collection of status information and updating it on each cycle. It is more 
efficient to precompute all possible states that the function units can be in and represent this as a 
finite state machine. The update of the state then reduces to a state transition. 

file:///D|/Convert/Building_an_Optimizing_Compiler/ch12/341-345.html (2 of 4) [10/17/2003 1:06:42 AM] 

javascript:displayWindow('images/12-05.jpg',300,94)
javascript:displayWindow('images/12-06.jpg',550,193)
javascript:displayWindow('images/12-06.jpg',550,193)
javascript:displayWindow('images/12-07.jpg',550,417)
javascript:displayWindow('images/12-07.jpg',550,417)


Building an Optimizing Compiler:Scheduling and Rescheduling 

We will discuss each of these topics in turn and then give the scheduling algorithm at the end. 

12.4 Computing the Trace

The idea of scheduling multiple blocks at a time was made popular with trace scheduling, created by 
Fisher (1981). He noted that most programs have blocks that are more frequently executed than others. If 
one chose such a block and extended it by adding blocks that precede and follow it to form a path of 
blocks, then one could schedule all of the instructions in those blocks together. Of course the compiler 
had to insert instructions to repair the effects of branches into and out of the path. 

Trace scheduling works well, but it has one serious disadvantage. The instructions inserted to fix up the 
effects of the branches into and out of the trace, called compensation code, can be numerous and are not 
necessarily well scheduled themselves. Thus a flow graph that has a single predominant trace will be 
scheduled well (most of the time is spent in the single trace). However, flow graphs in which there are 
multiple important traces or in which it is difficult to find a single predominating trace will perform less 
well since the compensation code will slow everything down. 

Freudenberger, Gross, and Lowney (1994) noticed that the compensation code could be mostly 
eliminated if the traces were chosen so that there were no branches into a trace from blocks outside the 
trace and each block in the trace was the successor of only one other block in the trace. This gave nearly 
as good a performance as the general trace algorithm, with the elimination of most compensation code. 
These traces are another name for an extended block. 

Definition	 Extended Block: An extended block in the flow graph is a set of blocks 
satisfying the following conditions: 

• There is a single block B0 in the extended block that has no predecessors 
within the extended block. All of its predecessors occur outside the 
extended block. 

• Every other block B ≠ B0 in the extended block has a single predecessor 
that is a member of the extended block. 

In other words, the extended block is a tree of blocks in the flow graph. Lowney proposed that each trace 
be a path within an extended block. 

This scheduler is based on a generalization of this idea by Sweany and Beaty (1992) and later improved 
by Huber (1995). Sweany chooses traces as paths in the dominator tree. A trace will consist of a 
sequence of blocks in which each block is the immediate dominator of the next. Then the trace is 
scheduled as if it were a block of instructions. The instructions are moved around in this trace so that 
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some instructions may be moved to less frequent execution points or moved into slots where their 
execution time can be hidden. 
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Sweany’s criteria applies to extended blocks. Each block in an extended block is either the entry block or 
is dominated by its predecessor in the extended block. However, Sweany’s trace definition allows other 
possible traces. Consider a structured if statement in a program. If the two alternative branches have 
nearly equal frequency, it may be better to form a trace consisting of the branching statement at the 
beginning and the join statement at the end. 

How is this movement of instructions different from code motion in the optimizer? The optimizer is 
limited in how far it can move instructions: It only moves computations to points where they will always 
be used later, it cannot move a computation to a point where the frequency of execution might increase, 
and it minimizes the sequence of instructions between computation and use. The instruction scheduler is 
not so limited. It can move an instruction to a point where its value is not guaranteed to be used, as long 
as the instruction costs nothing and the register pressure is not exceeded. 

Definition Trace: A trace is a sequence of blocks B1, B2, . . ., B  such that for each 1 < i ≤ nn

the block Bi - 1 immediately dominates the block Bi. That is, a trace is a path in 
the dominator tree. 

The compiler will divide the flow graph into disjoint traces. The first trace formed should represent the 
most frequently executed blocks and be expanded in a way to improve the execution of those blocks. The 
next most important trace is formed from the remaining blocks, and so on. What criteria does the 
compiler use to choose the blocks in the trace? The following factors have to be considered: 

•  The trace should include the most frequently executed block B that has yet to be included in a 
trace. This choice is based on frequency information. This information can be gathered in one of 
three ways: profiling, static estimation of frequency information as in Ball and Larus (1992), or a 
rough estimate in which the innermost loop is considered the most frequent and branches are 
considered equally likely. This block B is called the anchor for the trace since the trace is 
completely determined by the choice of this element. As we will see shortly, the anchor is not the 
entry point for the trace. 
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•  Consider the successors S of B that have B as their only predecessor and are not included in 
another trace. Choose the S with the highest frequency of execution. By necessity the frequency of 
execution will be less than that of B. Include S in the trace and recursively repeat this process for 
the successors of S. The effect of this process is to include the most frequently executed path 
through the extended block that starts at B. 
•  Again consider the immediate dominator D of the anchor B. If it is not already in a trace and is 
not nested in a loop separate from B, then include D in the trace. Since B has the highest 
frequency, the frequency of D cannot be higher than B; however, it can be embedded in a loop not 
containing B. Avoid adding D in that case. Repeat the process for D’s immediate dominator, and 
so on. 
•  If there are no successors available to extend the trace from B, and a child in the dominator tree 
is also a postdominator of B and has the same frequency as B, then include this postdominator 
also. 
•  If the trace gets longer than a fixed size (determined experimentally), terminate the trace. The 
size should be measured in terms of instructions. Some of the scheduling algorithms are not linear 
in the size of the trace, so avoid a trace that is too big. Conversely, if the trace is large then a 
significant amount of instruction overlapping will already be available, so little incremental 
advantage can be had by increasing the size of the trace. 

Given these conditions, the algorithm for computing the trace, given in Figure 12.8, is straightforward. 
Form a priority queue of blocks ordered by execution frequency. Use this queue to find the anchor of a 
trace and then extend it by the rules mentioned above. Scan backward including the dominators until one 
must stop the trace. This gives us the entry point. Now scan forward from the anchor, including either a 
path through the extended block or a postdominator. These rules are flexible. The best choices for traces 
depend on the programming styles of the users and the best programming styles in the source language, 
so be prepared to modify this code to meet these needs. 

Figure 12.8  Calculating Traces 

The compiler needs to have a means to name a trace. The name the compiler uses is the block that is the 
entry to the trace. Each block has an attribute trace(B), which is either NULL because the block has yet 
to be inserted in a trace or is the block that is the entry to the trace. Given this attribute, it is easy to find 
all of the blocks in the trace. The trace consists of a set of blocks forming a path in the dominator tree 
starting at the entry block to the trace. Simply scan down the tree looking at each child. If there is a child 
with the same value for trace, then the trace includes that child. If no child has the same value of trace as 
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its parent, then the trace ends. 

Note that we use the vertical lines, |B|, to represent the number of instructions in B. This is a reasonable 
notation since the vertical lines are used in mathematics to represent cardinality. 

The decision process for adding the dominators of the anchor to the trace is given in Figure 12.9. The 
dominators are added if there are any (the compiler must stop at the root) and they are not already in a 
trace. If the trace has gotten too long, stop the trace. The compiler must also check whether the 
dominator is in a loop that does not include the anchor directly or indirectly. It is appropriate for the 
dominator to be in an outer loop, but not a loop in which the anchor is not directly or indirectly included. 

Figure 12.9  Determining Whether Dominators Can Be Added to a Trace


Figure 12.10  Determining Whether a Successor Can Be Added to a Trace


Previous Table of Contents Next 

Copyright © Digital Press 

file:///D|/Convert/Building_an_Optimizing_Compiler/ch12/345-349.html (3 of 3) [10/17/2003 1:06:43 AM] 

javascript:displayWindow('images/12-09.jpg',550,257)
javascript:displayWindow('images/12-09.jpg',550,257)
javascript:displayWindow('images/12-10.jpg',500,223)
javascript:displayWindow('images/12-10.jpg',500,223)
file:///reference/digitalp00001.html


Building an Optimizing Compiler:Scheduling and Rescheduling 

Building an Optimizing Compiler 
by Bob Morgan 
Digital Press 
ISBN: 155558179x  Pub Date: 12/01/97 

Previous Table of Contents Next 

For extending the trace from the anchor into an extended block, the algorithm in Figure 12.10 is used. 
Find a successor that has only one predecessor. Choose the successor with the highest frequency and that 
is the next block to add to the trace. 

Now consider the running example we have been using throughout the book. We will use the flow graph 
without superblock formation occurring. Forming superblocks will make for a better trace, but that is for 
later discussion. Assume that each loop is executed one hundred times, so the inner loop is actually 
executed nearly ten thousand times. We assume that the maximum value is changed about ten times each 
loop, so that the number of executions of block B6 will be one thousand (see Table 12.1). 

The compiler forms the priority queue of blocks and chooses one of the most frequently executed. There 
is not a unique choice here. One possibility is that block B3 will be chosen first. Then the immediate 
dominators of that block will be scanned, giving a first trace of {B0, B1, B2, B3}. The next trace would 
be the single block {B6}. Then block {B4} forms a trace, with the final trace being {B5}. 

Table 12.1Hypothetical Frequencies 

Block Number of Executions 

B0 1 

B1 100 

B2 9900 

B3 9900 

B4 100 

B5 1 

B6 1000 

Another possibility is that the block B2 is chosen to form the anchor of the first trace. The dominators 
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will be added and the successor in the extended block B6 can be added. This gives the first trace as {B0, 
B1, B2, B6}. Then {B3} will form a trace by itself, as will {B4} and {B5}. 

12.5 Precomputing the Resource Information

This scheduler deals with traces that are paths through the dominator tree. There may be multiple blocks 
between a block and its dominator. The compiler must know what temporaries and memory are used and 
modified in these blocks. 

12.5.1 Definition and Use Information

The scheduler chooses a sequence of blocks B1, B2, . . ., B  such that each block is the immediaten

dominator of its successor. It then schedules these blocks together, potentially moving computations 
from one block to a previous or later one. To do this, the compiler must know which temporaries are 
modified or used between the two blocks. The algorithm here is based on an algorithm of Reif and Lewis 
(1978), which was specialized by Sweany and Beaty (1992) for instruction scheduling. 

Definition OUT: For each block B, OUT(B) is the set of temporaries that are modified by 
the execution of B. 

Definition	 IDEFS: For each block B, IDEFS(B) is the set of temporaries that are defined 
on some path from IDOM(B) to B. This does not include definitions that occur 
in B or in IDOM(B). 

In Figure 12.11, IDEFS(B4) includes T2 and T3 but does not include T1 or T4. T2 and T3 are included 
because each is defined on a path from B1 to B4 where B1 is the immediate dominator of B4. 

Figure 12.11  Flow Graph for IDEFS Compuation 

A similar set of information exists for uses rather than definitions. The idea is identical and the 
computations that we see below are identical. The only difference is that the occurrences of uses of 
temporaries and variables as operands are measured rather than the targets of instructions. 
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Definition	 IUSE: For each block B, IUSE(B) is the set of temporaries that are used as 
operands on some path from IDOM(B) to B. This does not include uses that 
occur in B or in IDOM(B). 
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12.5.2 Computing the Instruction Interference Information

Two observations and a data structure description will describe the technique for computing the IDEFS 
and IUSE sets. Consider any path IDOM(B) = B0, . . ., B  = B from B’s dominator to B. Note that each Bin

is dominated by IDOM(B). 

Begin walking the path starting at IDOM(B). B1 must be a successor of IDOM(B) in the flow graph. This 
means that IDOM(B) is the immediate dominator of B1. Label B1 as the block Z1. Continue walking the 
path. Initially the blocks (possibly an empty set) are dominated by Z1, but eventually one either comes to 
the end of the path or finds a block that is not dominated by Z1. Call this block Z2. The claim is that 
IDOM(B) is also the immediate dominator of Z2. Well, it is dominated by IDOM(B) and is not dominated 
by any other block after IDOM(B) on the path, so its immediate dominator must be IDOM(B). Continue 
this walk until one finds a block not dominated by Z2, call it Z3. Continuing the whole process, a 
sequence of blocks Z1, . . . , Zm is found on the path, where each of these blocks is a child of IDOM(B) in 
the dominator tree. What we need to do is find the temporaries modified on each of the segments 
between Zi and Zi + 1. From this information we can compute the IDEFS(Zi) sets, as we will see shortly. 

The other observation tells us how to compute the temporaries modified between Zi and Zi + 1. Look at Zi 

+ 1. In the flow graph we know each of its predecessors. One of these predecessors is the block on the 
path before Zi + 1. That predecessor is dominated by Zi. If the compiler knows the IDEFS information for 
all of the blocks dominated by Zi, then it can compute the set of temporaries modified on any path from 
Zi to this predecessor (and then combine this with OUT for the predecessor to get the information from Zi 

to Zi + 1). 

Before describing this computation, the compiler needs the formula for relating IDEFS to the set of 
temporaries potentially modified between two blocks P0 and Pr, where P0 dominates P . Consider ther

sequence of blocks P0, . . ., Pr, where Pi - 1 is the immediate dominator of Pi. Any path between P0 and Pr 

contains all of these blocks, and the definition of IDEFS indicates that the set of temporaries that might 
be modified on any path between the two, DEFS, must satisfy the following equation: 

file:///D|/Convert/Building_an_Optimizing_Compiler/ch12/351-353.html (1 of 2) [10/17/2003 1:06:45 AM] 



Building an Optimizing Compiler:Scheduling and Rescheduling 

We have the basic information. How does the compiler piece this together into an algorithm? First the 
compiler must compute this information bottom-up in the dominator tree: It needs the information for 
dominated blocks to compute the information for dominator blocks. Because of the way IDEFS is 
defined, and the previous observation that the information for one child in the dominator tree can affect 
the information for the other children of a block, the information for all children of a node are computed 
simultaneously. 

The compiler needs to know DEFS(Zi,P) where P is a predecessor of Zi + 1. This is the difficult 
information to store efficiently. The storage uses a UNION/FIND algorithm. Consider a block B0 that is 
the current block being processed. Let Z1 through Z  be the children of B0 in the dominator tree. Thusn

each block dominated by B0 is a member of one of the subtrees rooted at one of the Zi. If one has a block 
P that is a predecessor of Zi + 1 on the same path, then one can walk up the dominator tree from P to the 
corresponding child of B0 that is the root of the tree. As one performs this walk, one can compute 
DEFS(Zi,P) using the formula above. By adding in OUT(P) one computes the temporaries potentially 
modified between Zi and Zi + 1 . This is the information we need. 

However, this tree walking is inefficient. A shadow data structure is therefore created that contains the 
same information as walking the tree. The data structure is collapsed as the walk progresses. This data 
structure is based on a UNION/FIND tree with the addition of EVAL operations to compute the sets. 
Here is how it is structured. When a block is processed, it is added into a UNION/FIND structure in 
which the representative of the partition is the block at the root of the subtree that has been processed and 
all blocks in the subtree are dominated by the representative. Of course the standard UNION/FIND 
collapsing occurs to make this tree much shallower than the actual dominator tree. Associated with each 
edge in this UNION/FIND structure is the DEFS set between the parent in the structure and the child. 
When collapsing occurs, the DEFS set is updated to represent the new parent and the child. When EVAL 
is called, collapsing occurs and the resulting DEFS set is returned as the value. 
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We now have everything for the algorithm except the mutual computation of the IDEFS sets for the 
children of a particular node. What does the previous discussion tell us? We can view the children of B0 

as a new graph where there is an edge between the two children if there is a path from one to the other 
that does not go through the parent. Given this new graph, the set of temporaries in IDEFS becomes the 
set of temporaries modified on any path from the roots of the graph (they are the children that are direct 
successors of the parent) to the nodes. This can all be done by topologically sorting the children. Of 
course there can be strongly connected regions. Their effect is that arbitrary paths through the strongly 
connected regions can occur, so the union of all temporaries modified in a strongly connected region 
must be computed. 

Figure 12.12 shows the algorithm for performing this computation. The children, the Zs, are formed into 
a graph by looking at each child’s predecessors and finding the alternate child that dominates that 
predecessor. This gives the edge between two of the children. As noted earlier, this could have been done 
by walking up the dominator tree. Instead it is done with a UNION/FIND algorithm so that paths may be 
collapsed. Then the strongly connected components are computed and ordered in reverse postorder. Now 
we have the effect of a topological sort. Predecessors occur before successors except for strongly 
connected regions. 

Since a path can go around a strongly connected region any number of times, the effect of a strongly 
connected region is the union of the effects of the blocks within it. For a single block, there is no effect 
between the predecessor and the current block. Having computed the summary effect, that information is 
added to the information already computed for the predecessors to give the information about what can 
be computed on a path from the direct dominator through one of its successors that is also a child (and 
root) to the current node. This information is then added to the dominator tree to store the result. 

Figure 12.12  Algorithm for IDEFS 
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Figure 12.13 gives the support procedures for implementing the UNION/FIND and EVAL. They are 
included because the EVAL operation is rarely used in the literature. There are two attributes 
implementing these operations. DEFS indicates the set of temporaries that are changed between the 
parent and the child; the information is stored with the child. FindParent indicates the parent of a block. 
If it is null then this is the root of the current tree. 

Figure 12.13  Algorithms for UNION/FIND/EVAL 

The initialization consists of simply setting all FindParent attributes to null. The DEFS attribute need not 
be initialized since it will only be used after being set. The FIND operation consists of walking up the 
tree to find the root. Once that has occurred, the tree is collapsed using the collapsing procedure to 
shorten any future walks. 

The UNION operation has a fixed block that is made the parent. It is guaranteed to be fed two blocks 
with FindParent being null, so no collapsing will occur. The other attribute is the set of blocks modified 
between the parent and the child, which is simply stored in the data structure. 

The EVAL operation uses FIND to find the root. At the same time a collapse occurs (within the FIND). 
Hence the EVAL consists of simply returning the stored data that has now been updated to be between 
the root (now the parent) and the current block. 

The real work occurs in the COLLAPSE procedure. If the parent is not the root, collapse the parent first. 
Now there are two hops to the root. Collapse it to one hop by using the definition of DEFS to compute 
the temporaries modified between the root and the current block. 

This is sufficiently complex that an example is necessary. Consider the normal flow graph for the 
running example (refer back to Figure 2.1, p. 13). We will deal with a single temporary. In that case we 
can refer to Boolean values rather than sets: The value true occurs if the temporary is in the set. Note that 
block B1 dominates block B2 and block B4. Assume that a temporary T is modified in block B6. What is 
IDEFS(B4)? 

Before processing block B1 (which computes the va1lue of IDEFS(B4)), the algorithm most process B2 
(which computes the values of IDEFS(B3) and IDEFS(B6)). The blocks B3 and B6 form a graph, with B6 
preceding B3. When the algorithm is applied, one gets the value of OUT(B6) added into IDEFS(B3) so 
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that IDEFS(B3) is true. 

Now apply the algorithm to B1, computing the values of IDEFS(B4) and IDEFS(B2). One of the 
predecessors of B4 is B3, which is dominated by B2, so the graph of children is formed with B2 
preceding B4. When computing the IDEFS set for B4, its predecessor B3 is interrogated and we find that 
IDEFS(B3) is true so IDEFS(B4) is true. 

The game algorithm can be applied to compute the IUSE sets using the IN set of temporaries that are 
used as operands instead of the OUT set of temporaries modified. 
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12.6 Instruction Interference Graph

Now that the compiler has determined the set of instructions to schedule, it builds the data structures used 
for scheduling.3 The instruction interference graph records the limitations on the ordering of instructions. 
It is built for each trace and records which instructions must occur before others and how many cycles 
before so that the values will be available when used in the later instruction (see Figure 12.14). 

3Note that I said used rather than needed. It is possible to perform scheduling without building the 
interference graph. Instead, the graph can be implicitly built by keeping track of the instructions 
computing the operands and their placement. It is easier and more effective to build the interference 
graph, although this takes time and space. 

Figure 12.14  Computing the Interference Graph 

Definition Interference Graph: Given a trace of blocks {B0, . . ., Bn} the instruction 
interference graph is an acyclic directed graph. There are three different kinds of 
nodes in the graph: 

• Each instruction in the trace is a node in the graph. These are the essential 
elements of the graph. 
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• For each block B in the trace, there is a Block Start node that will be 
referred to as Block_Start(B). This node is present to determine where 
each block starts. It will also carry dependence information necessary to 
inhibit reordering of instructions that might destroy data needed later. 

• For each block B in the trace, there is a Block_End node referred to as 
Block_End(B). As with the Block_Start nodes, it is present to determine 
which instructions are in each block and to carry dependence information 
necessary to inhibit invalid reordering of instructions. 

An edge (Tail, Head) between two nodes indicates that Tail must precede Head in the final order of 
instructions. The absence of an edge between two nodes means that they can be arranged in any order. 
Each edge is labeled with an integer delay((Tail, Head)) indicating the number of cycles after Tail issues 
that Head may issue. If the delay is 1 then Head may issue on the cycle following Tail. It is possible for 
the delay to be 0. This usually means that there is specialized hardware present to make the value of one 
instruction available to another faster than the normal pipeline timing. 

When is there an edge between two nodes? Two conditions are necessary. Tail must precede Head in the 
initial instruction order; that is, Tail is executed before Head. Second, both instructions must either use or 
define the same resource. There are four cases: 

True dependence: If Tail modifies some resource that is later used by Head, then there is a true 
dependence. An edge exists between the two nodes, with a delay indicating the length of time 
needed for Tail to complete the modification of the resource. The length of the delay depends on 
both Tail and Head since the time for the resource to be available is different for different 
instructions pairs. 
Antidependence: If Tail uses a resource that is later modified by Head, there is antidependence. 
Reordering the instructions cannot be allowed: If Head occurred before Tail then Head would 
destroy the value needed by Tail. Normally the delay is 1, indicating that only the order of the 
store and load is important; however, the architecture may indicate a different delay. On the Alpha 
21164 the delay is 3 for an antidependence edge between a STORE and a LOAD instruction since 
it is more difficult to access data that has just been stored. 
Output dependence: If Tail and Head both modify the same resource, then the initial order must 
be preserved so that later nodes will get the value of the resource modified by Head. Normally the 
delay is 1, indicating that only the order counts. 
Input dependence: There is no restriction on order if both Tail and Head use a resource without 
modifying it. No ordering of the instructions is required, so no edge is created. 

A resource is any quantity that indicates a change of execution state of the program. Hence each 
temporary is a resource. Thus, there is an edge from an instruction that evaluates a temporary to each 
instruction that uses the temporary. There is an edge from an instruction that evaluates a temporary to the 
next instruction that evaluates the same temporary. And there is an edge from each instruction that uses a 
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temporary to the next instruction that evaluates it. 

If the target machine has condition codes, they are a resource. They are handled like temporaries. If the 
set of instructions that set condition codes is pervasive, as in some complex instruction set computing 
(CISC) architectures, then the condition codes should be handled specially since the size of the 
interference graph will be huge. In most RISC architectures only a few instructions set condition codes 
(if they exist) and a few read them. In that case the condition codes are handled as implicit operands or 
targets of the instructions, just as the temporaries are handled as actual arguments. 
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Interferences for LOAD and STORE instructions are computed using the region of memory that each can 
reference. Each region of memory that the compiler can identify is a resource; hence the tags previously 
used for alias analysis indicate separate resources. The edges for the load and store operations match the 
kinds of dependencies that occur: 

•  There is an edge between each store operation and each succeeding load operation from the 
same area of memory. If the compiler can determine that the memory regions do not overlap, then 
no edge is necessary. The compiler can determine this if the areas of memory are different, if the 
addresses are known to be different (for example, if the addresses differ by a constant), or if the 
dependence analyzer leaves information indicating that the store and load do not reference the 
same location in memory. 
•  There is an edge between each store operation and each succeeding store operation. The same 
considerations as with load operations apply. 
•  There is an edge from each load operation to the next store operation into the same region of 
memory. Of course if the addresses are known to be different, the edge is not inserted. 

Not all edges need be inserted in the graph. Assume the compiler is building an edge (Tail, Head) and 
there are already two edges (Tail, Middle) and (Middle, Head) in the graph with 

delay((Tail, Head)) ≤ delay((Tail, Middle)) + delay((Middle, Head)), 

then the new edge is unnecessary. The edges already in the graph place stronger restrictions on 
instruction order than the new edge. Three occurrences of this are easy to identify: 

•  Consider a node Head that uses a resource R. By the definition, there must be an edge from 
every preceding node modifying R to Head. The compiler need only record the edge from the last 
preceding node that modifies R to Head. The set of nodes that modify R form a list of edges in the 
graph since there is an output dependence from each such node to the next one. 
•  There is a similar situation with output dependences. If Head modifies resource R, then there 
need only be one output dependence edge from the preceding node that modifies R to Head. 
•  Consider a node Tail that uses a resource R. There is an edge from Tail to the next node that 
modifies R, recording an antidependence; however, there is no need to record the antidependences 
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with later nodes that modify R since that antidependence is subsumed by the initial 
antidependence and the sequence of output dependences between nodes that modify R. 

What are the conditions for interferences with BlockStart(B) and BlockEnd(B)? These nodes represent 
the boundaries of each block, so the compiler must ensure that the BlockStart node occurs before the 
BlockEnd node and that the BlockEnd node for the dominator occurs before the BlockStart node of the 
dominated block. The other way to view the BlockStart node is that it represents all instructions that 
occur before the block and after the dominator. These ideas give us the conditions for interferences with 
BlockStart and BlockEnd: 

•  There is an interference edge between BlockStart(B) and BlockEnd(B) and an interference edge 
between BlockEnd(IDOM(B)) and BlockStart(B). Thus, the BlockStart and BlockEnd nodes form 
a linked list in the graph. This can be implemented by either forcing these edges to exist or by 
introducing an artificial resource that is written by each BlockStart node and read by each 
BlockEnd node. This creates the same edges as noted above. 
•  Pretend that BlockStart(B) reads every resource that is read by an instruction between B and 
IDOM(B) and writes each resource that is defined between B and IDOM(B). In other words, make 
the set of resources used by BlockStart(B) be IUSE(B), and the set of resources defined by 
BlockStart(B) be IDEFS(B). 
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12.7 Computing the Priority of Instructions

The compiler next computes the priority of each instruction, in other words, how important an instruction 
is to the overall schedule for instructions in the trace. If the compiler delays the scheduling of some 
instructions, the so-called critical instructions, it will make the execution time for the whole trace longer. 
Other instructions have more latitude in their scheduling. 

The priority of an instruction is the minimum time from the place where the instruction is scheduled to 
the end of the execution of the trace. Consider the unscheduled instruction with the longest time interval 
from the point where it will be scheduled until the end of the trace. If we delay the scheduling of this 
instruction by one cycle, we extend the execution length of the whole trace by one cycle. Thus the most 
important instruction to schedule is the one with the longest time interval from its execution to the end of 
the trace. The compiler approximates the time interval from the issue of an instruction until the end of the 
trace by computing the longest path in the interference graph from the instruction to the leaves of the 
interference graph. 

Why is this an approximation? There are two major reasons why this number might not be exact. Using 
the solution to the longest path problem as the length of time assumes that there are sufficient function 
units so that each instruction can be scheduled on any cycle. It also assumes that each function unit is 
available on each cycle. If sufficient function units are not available, then some instructions must be 
delayed for a cycle. On some of the Alpha processors, the multiply instruction can only be issued every 
four cycles. 

Since the interference graph is acyclic, the longest path can be computed efficiently and at the same time 
the approximation can be improved to partially compensate for these two conditions. The compiler must 
compute an attribute priority(I) for each instruction I. This can be done by performing a depth-first walk 
through the interference graph, computing the priority of successors in this graph before computing the 
priority of a node: 

priority(J) = max {delay(J, I) + priority(I) |I ∈ Succ(J)} 
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Since not all instructions are implemented in a simple pipelined fashion, the formula must be made more 
complex. Consider the following two cases in the Alpha 21164 as representative cases: 

•  Integer multiply instructions cannot be issued more frequently than every four to twelve cycles, 
depending on the instructions and sources of the operands. The latency of each multiply 
instruction is eight to sixteen cycles, so the multiply instructions are partially pipelined. 
•  A floating divide instruction cannot be issued until results of the previous divide instruction are 
available. 

To compute a more accurate value for priority, the compiler must compute the total latency caused by 
instructions in each of these classes. The priority cannot be less than each of these values. 

The compiler computes these total values by keeping temporary attributes, multiply_latency and 
divide_latency, for each node in the instruction dependence graph. These attributes are only needed to 
compute priority and can be discarded after its computation. 

The algorithm is described in Figure 12.15. It is a direct implementation of the previous discussion. The 
form of the algorithm is a depth-first search where successors are processed before the current node. The 
maximum length of time to the end of the block is computed using the measures we have discussed. If 
there is other information that should be included, it too can be added to the algorithm. 

Figure 12.15  Computing Instruction Priority 

12.8 Simulating the Hardware

One view of instruction scheduling is that the compiler simulates the hardware keeping track of which 
functional units are in use on each clock cycle. It then chooses the instruction to issue based on which 
functional units are not currently in use and will not be in use at each cycle that the instruction to be 
issued needs them. 

To perform this simulation, the compiler must have a mechanism for tracking the function units currently 
in use. The compiler needs this to be an efficient mechanism, preferably taking a single load instruction 
to determine the current state of all of the function units. 

Historically, the state of the function units has been modeled by a Boolean matrix. Each clock cycle is 
represented by a column, where the first column is the current clock cycle. Each function unit represents 
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a row with the value true in any column (that is, clock cycle) where the function unit has already been 
reserved for use. Similarly, each instruction is modeled by a matrix of the same form (clock cycles 
representing columns, function units representing rows). The instruction can be scheduled if it does not 
use any function units during any of the subsequent cycles that are already reserved, in other words, if the 
element-by-element AND of the two matrices results in a zero matrix. If the instruction can be scheduled, 
then the state can be updated by replacing the state by the OR of the previous state and the instruction 
being scheduled. 

Table 12.2Hypothetical Machine State 

Cycle 0 Cycle 1 Cycle 2 Cycle 3 


Integer true false false false 

Floating Add false false false false 

Floating Multiply false false false false 

Eventually, no instructions will be able to be scheduled either because the function units are busy or there 
are dependencies on previous instructions that are still executing. In that case the compiler advances to 
scheduling the next machine cycle. This consists of shifting the state matrix so that the second column 
becomes the first column, the third column becomes the second, and so on. 

To illustrate this idea, consider a hypothetical machine with an integer functional unit, a floating-point 
addition unit, and a floating-point multiplication unit. Assume that we are in the middle of scheduling a 
machine cycle, as shown by the machine state in Table 12.2. This state indicates that we have already 
scheduled something that is using the integer unit. 

Tables 12.3-12.5 represent the resource matrices for individual instruction classes. More than one 
instruction may share the same pattern of function usage, so these may be combined together in a class to 
make smaller data structures. 

Table 12.3Resource Matrix for Integer Operations 

Cycle 0 Cycle 1 Cycle 2 Cycle 3 

Integer true false false false 

Floating Add false false false false 

Floating Multiply false false false false 
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Table 12.4Resource Matrix for Floating Add 

Cycle 0 Cycle 1 Cycle 2 Cycle 3 

Integer false false false false 

Floating Add true true false false 

Floating Multiply false false false false 

Table 12.5Resource Matrix for Floating Multiply 

Cycle 0 Cycle 1 Cycle 2 Cycle 3 

Integer false false false false 

Floating Add false false false false 

Floating Multiply true false false false 
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The integer class does everything in one cycle, so it ties up the function unit for a cycle and is completed. 
The floating-point add instruction uses the floating-point unit for two cycles, so it is not fully pipelined. 
It can only start a floating-point instruction every other cycle. The floating-point multiply instruction is 
fully pipelined. Actually, it should be represented as multiple function units with one stage for each 
cycle; however, these function units are only used by the floating-point multiplier and are completely 
determined by the first stage in the pipe, so the machine model can be simplified to show only the first 
stage. 

If the scheduler schedules first a floating-point add instruction and then a floating-point multiply 
instruction in the same cycle, then the machine state looks like Table 12.6. There are no more 
instructions that can be scheduled in this cycle. 

Table 12.6End of One Cycle 

Cycle 0 Cycle 1 Cycle 2 Cycle 3 


Integer true false false false 

Floating Add true true false false 

Floating Multiply true false false false 

Table 12.7Machine State at Start of Next Cycle 

Cycle 0 Cycle 1 Cycle 2 Cycle 3 


Integer false false false false 

Floating Add true false false false 

Floating Multiply false false false false 
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To start the next cycle, the machine shifts all of the columns left by one to indicate that the current cycle 
is completed and the next clock cycle has become the current clock cycle. This gives us the state in Table 
12.7. Note that the machine can issue an integer instruction or a floating point multiply. However, the 
floating add instructions cannot be issued since the function unit is still busy. Recall that the floating add 
unit used the same resource twice. 

This description has been a simplified one. There are many more function units and they are not all 
directly connected to the instruction class. For example, there may be an integer register write function 
unit that writes the resulting data into the register file. Also some instructions will use multiple major 
function units: A copy integer to floating register instruction will involve some of the integer function 
units and some of the floating function units. 

The problem is that computing the machine state in this fashion is time consuming and requires 
specialized code in the scheduler. This compiler uses a technique described by Bala and Rubin (1996) for 
simplifying and speeding the processing of state. 

12.8.1 Precomputing the Machine State Machine

The idea is simple. Represent the machine state as a finite state machine. Look at the description given 
above. View each machine state matrix as a state in a finite state machine. Look at each instruction class 
as an element of the vocabulary in which the transition from one state to the next is represented by 
ORing the matrices together as noted above. This gives a nondeterministic finite state machine. Form the 
deterministic finite state machine associated with the nondeterministic one, and one can use this machine 
rather than the matrices. Thus all state transitions are reduced to a lookup in a matrix. 

There is one problem with this dream. The number of states may be large: in the tens of thousands. This 
makes the storage for the finite state machine excessive. However, Bala and Rubin note that processors 
have a very regular structure. The integer unit has very little to do with the individual floating-point 
units. It is time to review the cross-production of finite state machines. Consider two finite state 
machines with states S1 and S2, then one can form the cross-product finite state machine (S1, S2) 
consisting of ordered pairs of states from S1 and S2. The transition from one state to the other is 
performed by doing the transition for each element of the ordered pair and taking the ordered pair of the 
results: that is, τ(s1,s2) = (τ(s1),τ(s2)). 

Here is the plan. Divide the processor up into major functional elements. Form the machine for each part. 
Note that all instructions are part of the vocabulary for each machine; it is just that the integer 
instructions will rarely change the state of the floating-point machine and vice versa. Store both machines 
and perform the lookup using two matrices. The machines for each major functional part are in the 
hundreds of states and you are storing two of them. Thus the state can be expressed as a pair of 16-bit 
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Note that the finite state machine may be nondeterministic. Why? Isn’t the construction we have just 
described deterministic? If there are single function units for each function, then yes. If there are multiple 
units for the same operation (multiple integer function units, for example), then there will be multiple 
transitions under the same instruction class to distinct states. 

What are the start states for this machine? Clearly the state representing the matrix of all false values is a 
start state; however, there are two other classes of start states: 

•  When one machine cycle is completed, the state of the machine must be initialized for the next 
cycle. This involves shifting the matrix left one. So we need a function STATE_SHIFT(S) that 
takes a state S and gives the state that represents the matrix with all values shifted left one column. 
The range of this function must be considered a start state for the scheduling of the next cycle. 
This function is represented internally as a vector indexed by S and giving the state number for the 
state at the beginning of the next cycle. To decrease the number of start states, we require the 
scheduler to issue NOP instructions for all function units if it has no other instructions to schedule 
in a given cycle. This means that all the initial function units will be occupied in a state that ends a 
cycle and we do not have to perform the shift for intermediate states. 
•  At the beginning of a block, the compiler needs to make an estimate for the state of the machine 
after executing one of the preceding blocks. This does not need to be exact: The more accurate a 
computation, the fewer stalls that will occur. Since the compiler does not know which block is 
actually the predecessor, it forms a state from the state at the end of each of the predecessor 
blocks by ORing the state matrices together. Actually we need only consider two predecessors 
because more can be handled by applying the process successively to the rest of the predecessors 
in pairs. So we must form the OR of any two states that end a block and introduce those as new 
start states. We need a function COMBINE_PRED(s1, s2) that takes the OR of the two matrices 
and returns the shifted result as the start state for the first instruction in the block. 

We have outlined the procedure. All of this computation is done during the compiler construction so that 
the code in the machine consists of matrices representing the transition functions and the COMBINE 
PRED function and a vector representing the STATE_SHIFT machine. This is very much like the tables 
required in the use of LEX or YACC. 
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The algorithm is outlined in Figure 12.16. Initially the machine starts with a single state, which is the 
state with nothing busy. The algorithm is written in terms of matrices; however, each matrix for a state is 
stored once and a unique integer to represent the state is used to represent the matrix in all tables that are 
generated for use in the compiler. 

There is a waiting list called StateQueue that holds each state after it is created. Each state only enters 
that queue once because it is entered into the StateTable and the StateQueue at the same time and nothing 
is ever removed from the StateTable. When a state is processed, the generator attempts to create a 
transition under every possible instruction class. 

If there are no transitions generated, then the machine is full for the current clock cycle and the compiler 
must generate a transition to a new start state for the next cycle. This is done by performing that 
manipulation on the matrix for the state and then seeing if a corresponding state already exists. If not, add 
it to the set of states also. 

The whole process is continued until all states have been processed so that all transitions are known. 
After the algorithm is performed, the equivalent deterministic finite state machine must be found. 

12.8.2 Looking at the Instruction Schedule Backward

For some optimizations of the schedule and for software pipelining, the compiler sometimes wants to 
scan backward through the instructions to insert an instruction into an already scheduled list. The state of 
the machine as recorded in the resource matrices and states that we have just computed tells us whether 
an empty slot exists where an instruction can be inserted. It does not tell us whether inserting an 
instruction there will interfere with a later instruction that has already been scheduled. For this we need 
the reverse finite state machine. 

Figure 12.16  Generating State Machine 

Consider the same set of states, but build the transitions in the reverse direction. This gives us a very 
nondeterministic finite state machine from which we can build a deterministic finite state machine. After 
we have scheduled a block, we run the reverse state machine on the block to give a pair of state numbers 
for each instruction. The forward state numbers indicate what legal instructions can occur in the future, 
and the backward state numbers indicate what legal instructions can occur in the past. 

We now have a representation of the state of the machine before an instruction is executed and a 
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representation of the machine following the instruction that is executed. We store this information with 
each instruction. Give each instruction two temporary attributes that exist during instruction scheduling 
and register allocation. ForwardState(I) is the state of the machine before the execution of instruction I. 
BackwardState(I) is the state of the rest of the instructions after I. 
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12.8.3 Replacing One Instruction by Another in a Schedule

Normal instruction scheduling only needs ForwardState(I) to perform list scheduling. In fact it need not 
be stored as an attribute since the compiler only needs the current state, which can be stored as a global 
variable. There are three instances when instructions are scheduled in a nonsequential order: 

•  During normal scheduling one must ensure that a critical instruction is scheduled in the cycle 
that ensures the minimum length of the block. Having done that, there are less critical instructions 
that can be scheduled before it, as long as they do not delay the scheduling of this critical 
instruction. The scheduling can be done by scheduling the next critical instruction and then 
inserting the other instructions before it. 
•  During software pipelining, the compiler will pretend that the scheduling of one instruction will 
actually schedule shadow versions of the same instruction in regularly spaced later cycles. The 
compiler must record the fact that shadow instructions will occur at fixed points later in the 
schedule. Thus, some later instructions must be scheduled before the next current instruction. 
•  Rarely during register allocation, instructions will be spilled into memory. This requires the 
insertion of load and store operations into the schedule. The best way to do this is to find an 
empty slot in the schedule that can be replaced by the LOAD or STORE instruction and directly 
place the instruction in the proper place in the schedule. 

We therefore need to know the conditions under which one instruction can be replaced by another. This 
includes the possibility of inserting an instruction into an empty slot in the schedule. 

Assume that we have the states ForwardState(I) and BackwardState(I) for each slot in the schedule, 
whether there is an instruction there or not. Thus we can implement the schedule as a sufficiently large 
array in which each instruction will occupy a slot. At the beginning we initialize the ForwardState and 
BackwardState attributes to the start state for each of the machines, indicating that all of the resource 
matrices are empty. 

Now consider the conditions under which an instruction I can be inserted in slot IS. To be able to be 
inserted in that position means that the instruction cannot conflict with any instructions that have been 
scheduled in the past. This is the same as having a transition out of ForwardState(IS) because we only 
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created transitions when there was no conflict. The BackwardState(IS) attribute indicates whether there is 
a future instruction already scheduled that will conflict with I. If no future instruction conflicts with I, 
then there is a valid transition out of BackwardState(IS) under I. 

If the instruction I can be placed in slot IS, then the ForwardState and BackwardState attributes of the 
slots must be updated. This involves recomputing the ForwardState attribute forward from the slot IS and 
recomputing the BackwardState backward from IS. This is less expensive than it seems. Since we are 
dealing with finite state machines, we need only scan forward (or backward) as long as the newly 
computed state differs from the previously stored state. 

The recomputation of states will only differ for a few slots. Why? Remember the construction of the 
finite state machine, which involved resource matrices and the shifting of columns. As soon as all 
columns involving the current instruction have been shifted to the left, the current instruction will not be 
visible in the state of the machine. In other words, only a few shifts (the maximum number of columns in 
a matrix) can occur. Practically, only a few iterations are required. 

The pseudo-code summarizing the insertion is given in Figure 12.17. It elaborates the discussion above. 
The value false is returned if the instruction cannot be inserted. Otherwise, the insertion occurs and the 
states are updated. 

Figure 12.17  Inserting Instructions in Slots 
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12.9 The Scheduling Algorithm

The scheduler forms the instructions in the trace into packets. The set of instructions in each packet can 
be issued in the same clock cycle. The instructions in the next packet can be issued in the next clock 
cycle, and so on. For the Digital Alpha 21164, the scheduler will attempt to issue four instructions: two 
integer operations, a floating add, and a floating multiply. If there are no more instructions to issue for a 
particular clock cycle, the scheduler will issue NOP operations for each of the unused function units. 
Thus each packet is always full; however, it may contain NOP instructions. Later the compiler will 
combine packets to eliminate NOP operations. This will not speed the execution of the processor 
directly; however, it will decrease the number of instructions and thus use the instruction cache more 
effectively. 

Thus the SCHEDULE phase attempts to divide the instructions into packets that can be issued 
simultaneously. To do this, it must group the instructions into packets in such a fashion that the 
instructions in a packet do not conflict with one another. 

As noted earlier, this scheduler uses a concept of trace based on the dominator tree. The first thing that is 
done is to compute the auxiliary information: the traces, IDEFS, and IUSE sets. Then a walk of the 
dominator tree is started, as noted in Figure 12.18. The basic structure is to choose a trace, schedule it, 
and then walk down the blocks in the trace performing a trace on the other children not in the trace. As 
we do this, we keep track of the instructions that have already been scheduled using value numbering on 
the dominator tree. The value table is indexed by opcode and the value number of the operands. When a 
temporary is modified, it is either reentered in the table with the new operator and operands or is entered 
with no known instruction but a new value number (as with IDEFS computations). 

Figure 12.18  Driver for the Scheduler 
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Figure 12.19  Example of Hoistable Instruction 

Why the use of value numbering here? Are not all redundant expressions eliminated? No! Instruction 
scheduling can introduce redundant expressions. Consider the source statement in Figure 12.19. If one of 
the branches is included in a trace with the conditional expression at the beginning, then it is quite likely 
that A * B will be scheduled before the conditional branch. It is therefore available before the beginning 
of the other trace. 

Figure 12.20 gives the actual algorithm for walking the dominator tree. First the trace is determined as 
described earlier. It is headed by a block with Trace(B) = B. At most one child in the dominator tree has 
the same value of trace, and so on down the tree until no child has the value of B for the Trace. Then that 
trace is scheduled by a call to SchedulePackets. After the trace is scheduled, then trace an instruction at a 
time, entering the instructions into the value table. When a block boundary is reached, the walk continues 
at the child in the trace; however, the instructions for each of the other children are scheduled before that 
since such blocks must be the beginning of a trace. 

Figure 12.20  Determining the Trace and Walking It 

The real work starts in Figure 12.21. SchedulePackets (notice the plural) first computes the interference 
graph. From this it initializes the attributes Ready(I), which is the first clock cycle where the instruction 
can be scheduled without instruction stalls, and PredLeft(I), which is the number of predecessors that 
have not yet been scheduled. PredLeft(I) is the same attribute used in many topological sorting 
algorithms to control a topological sort. After all, an instruction schedule is a topological sort of the 
interference graph. Ready(I) is the maximum of the times where the operands are available. The operand 
is available after its instruction is scheduled and the delay associated with the pair of instructions has 
occurred. Since it is a maximum, we initialize Ready(I) to 0 and increase it whenever we find an operand 
that gives a larger value. 

Before scheduling the instructions, the procedure checks to see if the instructions at the root of the 
conflict graph are available outside the trace. If they are, the instruction is replaced by a COPY 
instruction. We would like to do better, but we have a phase-ordering problem here. Register coalescing 
has already occurred. We will attempt to make the register allocator allocate the registers to the same 
register; however, this cannot be guaranteed, so the copy must be made, which inhibits other 
optimizations. 
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Figure 12.21  Starting Trace and Scheduling Packets 

The set Ready contains all of the instructions that can be scheduled on this cycle without delay. The set 
Available is the set of instructions that are available to schedule during this or a future cycle. In other 
words, all of the instructions that a member of that set interferes with have been scheduled. To compute 
this set we keep an attribute for each instruction called PredLeft(I), which is the number of predecessors 
in the conflict graph that have not been scheduled. When this attribute reaches 0, the instruction is added 
to the Available set. 

With all of this machinery, the procedure Schedule Packet in Figure 12.22 chooses the instructions from 
Ready that can be scheduled. It chooses the most important instructions first and only instructions that do 
not conflict with instructions that are already scheduled. After all of the instructions have been 
scheduled, the Available set is updated. The PredLeft attribute of each successor of an instruction in the 
packet is decremented. When it reaches 0 its instruction is added to the Available set. 

Figure 12.22  Scheduling a Packet 
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What is Schedule_Importance? This determines the instructions in the Ready set that are scheduled first. 
It is a lexographic sort on the instructions in the Ready set and is based on the ideas of the RS6000 
instruction scheduler described in Warren (1990). For each major function unit the instructions are sorted 
separately, in the following order. 

•  Consider the subset of instructions with the maximum value of Priority(I). These instructions 
are more important than the others, hence they are scheduled first. Ready has already been chosen 
to include the instructions whose operands are now in registers. Compute first the instructions that 
determine the length of the execution sequence. 
•  Of this smaller set of instructions, the instructions that decrease register pressure are more 
important than the instructions that increase register pressure. Increasing the register pressure is 
one of the dangers of instruction scheduling. In fact, if you track the register pressure, avoid 
increasing it past the number of registers available. 
•  Of this smaller set of instructions, the instructions that have more successors are more important 
than the instructions with fewer successors in the interference graph. Scheduling instructions with 
more successors increases the size of the Available set more quickly, so there is likely to be more 
instruction that can be scheduled in the near future. 
•  If there is still not a single best choice, choose the instruction that is earliest in the original trace. 

Of course this is a heuristic ordering. Scheduling is an NP-complete problem in general. Other criteria 
can be added for particular processors. For example, on the newer Alpha processors there is an advantage 
to having multiple stores to sequential locations in memory be adjacent. This can be added as a criterion. 
If the previous cycle contained a store to a location that precedes the store location for an instruction in 
the Ready set, then give this instruction priority. 

12.9.1 Refinements

There are two refinements to this scheduling algorithm that may improve it. It will depend on the 
processor and the set of programs typically scheduled. The first refinement involves looking at 
Schedule_Importance. If there is a critical instruction to schedule, we schedule it; however, an earlier 
instruction that was not critical and was scheduled in an earlier slot may prevent the scheduling of the 
critical instruction. How can the scheduler be modified to (sometimes—remember this is all NP-
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complete) prevent this? 

Consider the set Available, which contains all of the instructions whose operands have begun being 
evaluated. Choose the instruction in this set with the largest Priority. Compute the instruction slot where 
that instruction will have its operands available. Then before executing the normal scheduling process, 
schedule this critical instruction in this slot. 

This is a major modification to the scheduling algorithm; however, it may be useful on some processors. 
This algorithm no longer schedules the instructions in order so that we need only keep track of the 
ForwardState. Now the instruction schedule is considered to be a large array of instructions, initially 
empty, with the ForwardState and BackwardState for each empty instruction slot being the initial state. 
The insertion of an instruction in the schedule must then use the replacement algorithm rather than 
simple insertion. For processors with complex processor architectures, this modification is worthwhile. 

The other modification to the scheduling algorithm is to schedule the instructions backward. In other 
words, schedule the last packet first, then the preceding packet, and so on back to the initial packet. To 
do this the compiler must build the reverse of the interference graph and compute the number of cycles 
from an instruction to the beginning of the block rather than to the end of the block. Otherwise the 
algorithm is identical. 

There are two advantages to scheduling the trace backward. First, the scheduler can track exact register 
pressure. As we have seen before, tracing through a sequence of instructions backward allows the 
compiler to see which instruction is the last use, so the compiler knows when a temporary is live or dead. 

The other advantage to scheduling backward is more subtle. When scheduling instructions forward, there 
are points at which there are no important instructions to schedule; however, there may be other 
instructions that could be scheduled later but will be scheduled early because there is nothing else to do. 
This needlessly increases the register pressure. By scheduling instructions in reverse order, the compiler 
will schedule an instruction at nearly the latest time possible for the value to be available when needed. 

The disadvantage of backward trace scheduling is more of an unknown. Trace scheduling has typically 
scheduled instructions in a forward order. How scheduling backward fits with instruction scheduling 
needs some experimentation. What one would like is to schedule instructions away from the most 
frequently executed blocks in a trace. How does one do this? 

A final refinement to the scheduling algorithm can be made. If some of the predecessors of the head of 
the trace have been scheduled already, then the beginning state is not the initial start state of the finite 
state machine. Instead some of the function units may already be busy. In building the finite state 
machine we computed the Join of two states. This can be used on the predecessors to compute the initial 
state. If a predecessor has not been processed, then ignore that predecessor in forming the Join. 

12.9.2 Block_Start and Block_End
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During the discussion of scheduling, we have not discussed the Block_Start and Block_End nodes in the 
interference graph, which were inserted to mark the boundaries of blocks and to make sure that legal 
schedules were maintained. How do they fit into the whole scheduling process? 

Block_Start and Block_End are treated just like instructions. These are the only instructions that 
reference a fictitious function unit. There is also a fictitious slot in each packet that can hold one of these 
pseudo-instructions. Now perform the scheduling just as the algorithm specifies. The packets that contain 
a Block_Start pseudo-instruction represent the start of that block, and the packets that contain a 
Block_End pseudo-instruction represent the end of the block. Thus the schedule can be parsed back into 
the original blocks. 
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12.10 Software Pipelining

There is a specialized form of scheduling for simple loops. If the body of the loop is scheduled as 
described above, then there is nothing going on at the beginning of the loop. During the loop, the 
function units become active, and at the end of the loop body, the function units are again unused. This is 
an inefficient use of the function units. 

There are two ways to mitigate this problem. First the compiler can unroll the loop some number of times 
and then schedule the unrolled loop body. This decreases the problem since between copies of the loop 
body in the unrolled loop the function units may be kept busy; however, the problem still occurs at the 
front and back of the unrolled loop. Furthermore, the body of the loop may become large and cause 
problems with the instruction cache. 

An alternative way to schedule the loop is software pipelining. Consider some loop L where the compiler 
knows the number of iterations to be executed before the loop begins. If the compiler can arrange that the 
first iteration begins execution shortly before the second iteration, and so on, then the compiler will keep 
the function units busy at the end of each iteration. 

Of course, this is not possible as it is stated. There is only one instruction stream. But the compiler can 
generate separate instruction streams for the first iteration, and the second, and so forth, and then attempt 
to interweave the instruction streams into one instruction stream. Actually what the compiler does is 
more properly modeled by the right-hand column of Figure 12.23. The compiler determines a number 
referred to as II, or the initiation interval. It starts the first loop II cycles before the second loop, which is 
started II cycles before the third loop, and so on. The resulting code consists of three sections. The 
prologue is the code to get the execution of the loop going. It consists of the instructions for most of the 
first iteration of the loop, somewhat less code for the second iteration of the loop, and so on. The purpose 
is to begin the computations continued cyclically in the software-pipelined loop. 

The software-pipelined loop is the important concept. Multiple iterations of the loop are folded upon one 
another. The first time through the software-pipelined loop, the compiler completes the last instructions 
for the first iteration of the loop, earlier instructions for the second iteration of the loop, and so on. 
During the next iteration, the first iteration is already completed. The instructions executed for the second 
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iteration are the same as those for the first iteration during the previous loop body execution, except they 
are for the following iteration. 

Figure 12.23  Schematic of Pipelined Loop 

The software-pipelined loop contains instructions for multiple iterations of the loop. We will see how to 
compute the number of iterations shortly. It is also unrolled to some extent to allow renaming of the 
temporaries to allow valid use of the physical registers. An important point is that each instruction in the 
original loop occurs once in the software-pipelined loop (if the loop is unrolled, it occurs the number of 
times the loop is unrolled). 

What is the benefit? Software pipelining works well when the separate iterations of the loop reference 
independent data. In that case, the computations in one iteration have nothing to do with computations in 
another iteration, so the execution of multiple iterations allows a tighter scheduling of instructions 
(usually much tighter). 

The software-pipelined loop executes until almost all iterations of the loop are completed. It then exits 
into the epilogue code, which completes the final iterations of the loop. 

If the number of iterations of the original loop are small enough, there is no advantage to software 
pipelining. In fact it makes the implementation of the software-pipelined loop more difficult. Also it will 
be simpler to implement software pipelining if the number of iterations of the loop are a multiple of some 
number (to be determined later). These two ideas can be combined by generating two copies of the loop: 
one is the sequential copy and the other is the software-pipelined copy. The compiler compiles the code 
as in Figure 12.24. The constant D, which is the number of iterations before software pipelining is useful, 
and the constant S, representing the number of iterations of the loop, are determined during the 
construction of the software-pipelined loop. 

Figure 12.24  Combining Unrolling and Start 

The compiler must generate the prologue, epilogue, and the software-pipelined loop. Actually, it will 
generate the software-pipelined loop first, and all of the other computations are determined by the loop. 
The agenda is as follows: 
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1.  Determine one schedule of a single iteration of the loop constrained so that it can be folded on 
itself. Think of rolling up a piece of transparent paper with marks on it so that no two marks 
overlap and the marks are evenly spaced when rolled up. 
2.  In this schedule for a single iteration, determine the maximum number of cycles that a 
temporary assigned in the loop is live. This will determine S and together with the schedule 
determine II and the software-pipelined loop. 
3.  Then build the prologue by overlaying multiple executions of the first few iterations of the 
loop as sequential (rather than looping) code. 
4.  Build the epilogue in the same way. Overlay the final executions of the loop as sequential 
code. 

To begin the process we need an estimate for the initiation interval. That is the length of the software­
pipelined loop. This is an initial estimate that will change for several reasons while we determine the 
loop. 
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12.10.1 Estimating Initiation Interval and Limiting Conditions

There are conditions that must be met for software pipelining to apply. We will work with the simplified 
assumption that each iteration of the loop is independent of the others. This condition can be checked 
using differing methods: 

•  If the compiler contains a data dependence analyzer for loop transformation, then this can also 
be used to check if a loop has no loop-carried dependences.4 This is the best technique for testing 
and will find more loops for software pipelining. 

4A loop-carried dependence occurs when a store on one iteration of a loop stores a value that might be 
loaded on a separate iteration of the loop, or a load occurs on one iteration of a loop where a store may 
occur into the same location on another iteration of the loop. Similarly for a store and a store. 

•  The iterations are independent if the array that is stored into on all of the left-hand sides of the 
assignment statements in the loop is not the same as the arrays on the right-hand side. The one 
exception is that a load from the same location that is stored into can occur on the right-hand side. 
This is the minimal condition. It will find a number of the loops for software pipelining but will 
not find many that occur in linear algebra codes. 
•  Loops can be software pipelined if all load and store operations are referenced through 
temporaries that change by the same amount through each loop and they can be seen to reference 
different areas of memory. Suprisingly this is a special purpose and a general technique. It is 
specialized because it can only see a few of the cases. However, if it is used to generate two 
copies of the loop, one for sequential execution and one for pipelined execution, the choice 
between loops can be made at the beginning of the loop by comparing pointers. 

This book is performing a limited form of software pipelining. It is possible to software-pipeline when 
there are loop-carried dependences. The same techniques as we will discuss here apply, with added 
dependences in the interference graph. The number of situations in which this gives an advantage over 
simple unrolling is limited. 
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Having said all of this, what is the initial estimate for the initiation interval II? Consider the loop L. It is 
composed of a number of instructions. Each instruction must be executed in the software-pipelined loop. 
Sort the instructions into buckets, one bucket for each class of function unit: various floating-point units, 
integer units, and load/store units. Divide the number of elements in each bucket by the number of units 
of that type. In the Alpha there are two integer units, so divide the number of integer instructions by 
two.5 The maximum of these ratios is the estimate for the initiation interval II. 

5Yes, I know they are not identical units. This process is to get an approximation. If it does not work, it 
will be increased later. 

This estimate simply means that we must have enough slots in the packets to put all of the instructions. 
So make II be the smallest value at which there are enough slots in the packets. 

12.10.2 Forming the Schedule for a Single Iteration

To form the software-pipelined loop we first determine the schedule for a single iteration of the loop that 
will be rolled back on itself to make the software-pipelined loop. The same techniques for scheduling are 
used that we discussed with traces. However, there are two major differences: First, we are dealing with a 
single block that forms a loop; and second, we are not going to schedule instructions in order. 

This means that we will use the algorithm for replacing instructions in slots that we discussed in the 
section on state machines. Lay out the schedule initially as a large array of packets with each slot empty. 
Initialize the ForwardState and BackwardState attributes to indicate that no function units are busy. Now 
compute the conflict graph just as we did for traces. There is no need is include Block_End or 
Block_Start pseudo-instructions. 

Now perform the scheduling in the way described for traces, with one modification. When an instruction 
is placed into a slot in a packet, insert a copy of the instruction in the same slot in the packet II cycles 
later, 2 * II cycles later, . . ., II cycles earlier, 2 * II cycles earlier, and so on. In other words, there will be 
a copy of that instruction in the same slot in the packets that differ in clock cycle by a multiple of II. 

Since we are simultaneously placing copies of the same instruction in the slots, the compiler does not 
have to check each of the slots to see if the insertion can occur. Each slot has the same ForwardState and 
BackwardState as its copies. If they do not, then the initiation interval is too small, so restart the process 
with a bigger initiation interval. 

It is possible that no schedule can be found. An instruction will need to be inserted, but there is no place 
to put it. In that case, stop, increase the initiation interval, and try again. 

We repeat this process until we get a schedule with copies of the same instruction a distance of II cycles 
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apart. Note that this process must terminate. If the initiation interval II gets to be the same as the length 
of a single schedule for a block, then one will get the same schedule without conflict. However, the 
performance of software pipelining is proportional to the ratio of the original length of a schedule divided 
by II, so when II gets close to the length of the longest path through the interference graph, then the 
whole process should be stopped and loop unrolling used instead. 

The idea is to roll this schedule up into a loop that is II packets long. This does not quite work because of 
temporary names and physical registers. If we rolled the loop up completely, each temporary would be 
clobbered each time through the loop, although the time delay between the point of evaluation and the 
point of use in the sequential execution of instructions may be much longer. The initiation interval could 
be two cycles while the time between evaluation and use is four cycles, for instance. So we must first 
unroll this loop the minimum amount needed to avoid this problem. 
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12.10.3 Unrolling Loops and Renaming Temporaries

For the moment, ignore the copies of instructions in the schedule. Consider only the instructions inserted 
for one iteration. Compute the maximum number of cycles TL that a temporary is live. This is done in the 
usual way that we have used throughout the compiler. Scan the schedule backward, recording when a 
temporary becomes live and when it becomes dead. The maximum length is the maximum lifetime. 

Now form the kernel version of the software-pipelined loop by forming a schedule II long using the last 
II packets of the schedule determined above (now including the copy operations). Unroll this loop S = 
•TL/II• times to ensure that enough distance occurs between definitions and uses. 

We must next rename the temporaries to ensure that the patterns of uses and definitions match the 
original schedule (before all the copies and unrolling). To do this, consider all of the temporaries that are 
evaluated inside the loop: {T1,...Tk}. Generate S different copies of these registers: one for each iteration 
of the loop in the unrolled loop. The original set can be used as one of the sets if you like. 

Now simultaneously go through the original schedule and unrolled schedule, modifying the temporaries 
in the formed loop so that all temporaries that apply to one iteration of the original loop use the same set 
of temporaries. This can be done by looking at each instruction in the rolled schedule. Look at the same 
instruction in the original schedule. For the temporaries that instruction defines, consider all of the uses. 
The instructions in the unrolled loop need to use the same temporary. The instructions can be found in 
the unrolled loop because they are the same distance from the original instruction there as they were in 
the original schedule (taking the wrap around at the end of the loop into account). 

We now have the software-pipelined loop. It consists of S copies of the kernel loop with renaming to 
ensure value use/definition relationships. But we are not done. The register pressure should now be 
computed. If the register pressure is too high so that register spilling will occur, then the initiation 
interval needs to be increased and the whole process repeated until the pressure is brought down. 
Register spilling will circumvent all advantages of software pipelining. 

12.10.4 Forming the Prologue
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To form the prologue, consider the software-pipelined loop. Assume that the prologue had been created. 
The loop itself represents S iterations of the real loop and has length II * S. When the program has 
executed the first II cycles of the kernel loop, we have completed the first iteration of the original loop. 
Since that kernel copy consists of the last II instructions of the original schedule, the prologue can be 
initialized to all but the last II instructions of the original schedule together with the temporaries renamed 
to match the temporaries for the first iteration. 

When the compiler has finished the second II cycles, we have completed the second iteration of the 
original loop. The last II packets of that schedule performed in this kernel, and the previous II packets 
were performed in the previous kernel. So the prologue can have all but the last II packets of an iteration 
added to it, shifted late by II packets, and renamed to use the temporaries from the second iteration. This 
continues until there are no more instructions to be added. 

Although these instructions in the prologue form a valid schedule, the schedule should be combined with 
other surrounding code and can be scheduled better. Thus the prologue should be scheduled as part of a 
trace containing the head of the loop. 

Note that at the end of the unrolled loop, we have executed S iterations of the original loop. The 
complete execution of the unrolled loop will therefore represent some multiple of S iterations of the 
original loop. 

12.10.5 Forming the Epilogue

The epilogue is computed in the same manner as the prologue. When the unrolled loop has been 
executed, an iteration (which is a multiple of S) has been completed. There are •(length of schedule)/II• 
iterations still in execution. The epilogue can be formed by initializing it to the last II of the original 
schedule, with the temporaries renamed to match the next to the last loop body in the unrolled loop. Then 
add on the last 2 * II packets in the original schedule, renaming to match the previous copy of the kernel 
in the unrolled loop, and so on. 

Note that this number of iterations can be bigger than S, so the process may cycle back to the last kernel 
loop in the unrolled loop. If all instructions in the loop take a single cycle, then there is no advantage to 
software pipelining at all. The loops that profit are loops that have floating-point computations or load 
operations. On the Alpha, a floating-point operation takes four cycles. This latency is hidden during 
software pipelining, so a possible speedup of a factor of four is possible. Of course this much 
improvement may not occur if there are already some computations that can be executed in parallel. 
Load operations can give a better payoff. Loads from the S-Cache on the Alpha are eight or nine cycles. 
Software pipelining can hide much of this latency; however, the more latency means the more registers, 
which will limit software pipelining. 

We now have the whole loop, prologue, pipelined loop, and epilogue. What is the maximum payoff that 
can be achieved by software pipelining? Ideally, each function unit executes an instruction each cycle. In 
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the worst case, each function unit is executing at most one instruction at a time, so the best possible 
speedup is the length of the pipeline. The target payoff is for load operations, which may take a large 
number of cycles. 
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12.11 Out-of-Order Execution

Recent RISC processors have included out-of-order execution. This means that the processor keeps a 
buffer of instructions that are prepared to be issued. The processor fetches instructions into this buffer 
and then issues an instruction when its operands are available. If a particular instruction’s operands are 
not available then it waits. It is possible that a later instruction will have its operands available and 
execute before an earlier instruction, thus the name. 

How does the compiler simulate out-of-order execution? This has not been settled in the literature. Here 
are my views on scheduling for out-of-order execution. 

Pretend that the compiler is able to do perfect scheduling so that each instruction is prepared for 
execution at exactly the time that the operands become available. Then there are no delays or stalls and 
the processor will run at full speed. It does not matter what size the instruction buffer is. The instructions 
are available to be executed at exactly the point they are needed. Effectively the buffer is an infinite size: 
It will never overflow with instructions to be executed. 

Perfect scheduling is not possible for two reasons. Some instructions, such as LOAD instructions, 
execute for a period of cycles that is impossible to compute. The compiler can only make guesses at the 
timing of these instructions. Second, the processor makes guesses about which path will be executed out 
of a conditional branch. If the guess is incorrect, the processor must back up and reexecute instructions. 

I view out-of-order execution as handling these uncomputable events: loads and branch prediction. The 
compiler should schedule the instructions as if the processor were not an out-of-order execution 
processor. The more effective this schedule is, the larger the size of the effective instruction buffer. The 
role of the out-of-order component is to handle the unpredictable events. In other words, the compiler 
uses the instruction buffer to hold instructions that are limited by these unpredictable events and buffer 
against the time losses caused by them. 

Schedule as if it were an in-order execution processor and allow the hardware to take care of events that 
are not predictable. This is a reasonable initial guess at scheduling for such processors. It remains to be 
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seen if better scheduling can be done in the future. 
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Chapter 13 
Register Allocation 

The compiler has already performed register renaming and register coalescing, reduced the register 
pressure, and scheduled the instructions. It is time to assign registers to each temporary. The register 
allocator must satisfy the following constraints in order of importance: 

Correctness: The compiler must assign distinct temporaries to distinct registers if there is a point 
in the flow graph where both temporaries might contain distinct values and both are used later. If 
either of the temporaries is uninitialized at that point, then the compiler is free to assume that the 
two temporaries have the same value. 
Avoid spilling: The compiler should assign temporaries to registers so that the number of LOAD 
and STORE instructions inserted by the register allocator are as small as possible during the 
execution of the program. 
Use few registers: The compiler should use as few registers in the register set as possible. 
Registers that are saved by the calling procedure should be used before registers saved by the 
called procedure. 

Many compilers take a simplistic view of register allocation. They describe register allocation in terms of 
some algorithmic problem—such as graph coloring or bin packing—and then use some heuristic solution 
for that particular formulation. Such register allocators perform well on problems needing few registers; 
however, if the number of registers needed is significantly greater than the number of registers available, 
each of these register allocation methods generates a large number of spill instructions, namely, the loads 
and stores to memory generated by the register allocator. 

The problem is that each of these allocation techniques uses one of the two types of information 
available. The graph-coloring allocators use the concept of interference or conflict graphs. The conflict 
graph has no concept of which instructions are near each other, so it performs poorly on blocks. The bin­
packing register allocators perform well on blocks, but have to use an approximation to handle control 
flow. It is possible to create situations where one algorithm will work better than another. This approach 
to register allocation was chosen to expose the best attributes of each of the algorithms. 
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This compiler combines the two. Recall that the compiler has already inserted spilling instructions to 
reduce the register pressure to less than or equal to the number of registers available. The compiler will 
now use three distinct allocation algorithms to allocate registers: 

•  The compiler uses a derivative of graph-coloring register allocation introduced by Preston 
Briggs (1992) to perform allocation of temporaries that are live across block boundaries. 
•  The compiler uses a derivative of the FAT algorithm introduced by Laurie Hendron (1993) to 
perform allocation of the local temporaries that can be allocated to the same registers as global 
temporaries. 
•  The compiler uses the standard single-pass register allocation algorithm to allocate registers to 
temporaries that are live only within a single block. This is a bin-packing algorithm that allocates 
the local temporaries one at a time as the block is walked in reverse execution order. 

By separating the assignment of local and global temporaries, the compiler introduces the possibility of a 
phase-ordering problem: The assignment of global temporaries may inhibit the assignment of local 
temporaries. This is unavoidable since the optimal allocation of registers is an NP-complete problem. 
The design is such that the particular choice of algorithms to use will avoid as much of the problem as is 
possible. 

To illustrate the interplay between global and local register allocation, consider the pictorial 
representation of a block in Figure 13.1 The set of instructions where a temporary is live is represented 
by a horizontal distance. Each temporary is represented by a distinct row. The global register allocator 
will create situations such as R1, R2, and R4. R1 contains a value assigned in another block and used for 
the last time in this block. R2 is assigned a value in this block and used in another block. R4 combines 
the two: R4 is assigned a value in this block, control flow leaves the block, and returns to the block using 
the value earlier in the block. R3 is a typical local temporary. It is assigned a value in the block and used 
for the last time later in the block. In large procedures, this is most of the temporaries. R1, R2, and R4 are 
allocated by the global allocator. R2 and R4 are combined with other local temporaries by the FAT 
algorithm. R3 is allocated using the local allocator. 

Figure 13.1  Pictorial Representation of Block


Figure 13.2  Driver for Register Allocation 

Recall that all of these algorithms are approximations to an optimal allocation. An optimal allocation can 
be discovered by solving an integer programming problem; however, this technique is too expensive for 
a production compiler. 
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The main algorithm for register allocation is to perform each form of allocation in turn. The FAT 
algorithm and the local register allocator work together by the FAT algorithm creating data structures 
that are used by the local register allocator. The calling structure is shown in Figure 13.2. First, perform 
global register allocation and then apply the FAT algorithm and local register allocation algorithms on 
each block. 
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13.1 Global Register Allocation

First, the compiler allocates registers to temporaries that hold a needed value at the boundary of blocks. 
Usually this means the temporary is evaluated in one block and used in another; however, it is possible 
that the temporary is evaluated in this block and control flow leaves the block, returning later, and the 
value is used earlier in the same block. 

The global allocator is based on the Preston Briggs (Briggs, Cooper, and Torczon 1994) modification of 
the Chaitin (1981) graph-coloring register algorithm. It uses the conflict graph and the concept of 
interference or conflict that was introduced earlier during the LIMIT phase. Two temporaries can be 
assigned to the same physical register if there is no point in the flow graph where they both hold 
potentially different values that will be used later, that is, they do not conflict. 

So the allocation problem is to assign a register to each node (temporary) so that two nodes that are 
connected by an edge are not assigned the same register. This is the graph-coloring problem, where the 
set of registers is the set of colors. Unfortunately, graph coloring is an NP-complete problem, so there are 
no known good algorithms for solving it. 

Chaitin resurrected a heuristic for graph coloring that works effectively for complex control flow.1 A 
node in the conflict graph having fewer neighbors than the number of colors (physical registers) can 
always be colored, since it can be assigned any of the colors different from the colors of its neighbors. In 
that case the node can be removed from the graph to be colored later, after all of its neighbors have been 
colored. This process is repeated until all of the nodes have been removed from the graph (if possible). 
Then the process is reversed. Each node is added back into the graph and given a color different from 
each of its neighbors currently in the graph. 

1As Chaitin also noted, one can construct a program to have any undirected graph as its conflict graph, so 
very general graphs can occur. However, most graphs are simpler. For example, most temporaries have 
only one point of definition, and programs are mostly structured so the interactions between temporaries 
are much more limited. 
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Frequently, all nodes can be removed from the graph using this heuristic. In that case the observation 
above gives a complete algorithm for coloring the graph. Chaitin originally proposed an algorithm that 
stopped when there were no nodes with fewer neighbors than colors. The algorithm then chose a node to 
spill to memory. 

The heuristic and a more recent improvement are illustrated by the conflict graph in Figure 13.3. There 
are four temporaries with the edges representing the conflicts. S3 has one neighbor, so it can be removed 
from the graph, leaving S0, S1, and S2. After removing S3, each of them has two neighbors, so any one 
of them can be removed from the graph next, say SO, and then S1, followed by S2. In the end we have a 
sequence of temporaries (S2, S1, S0, S3) that need to be assigned registers. S2 is first. Put it back into the 
graph and assign it to any register, say R0. S1 is next: Put it back into the graph and assign it any register 
except the one assigned to S2, say R1. Similarly for SO, assigning it R2. Finally, S3 needs to be assigned 
a register. It conflicts only with S2 (which is assigned R0), so it can be assigned to either R1 or R2. Thus 
the algorithm can assign registers even though S2 has three neighbors. 

Figure 13.3  Example Conflict Graph 

Although the algorithm has been described in terms of sequences, one sees that the nodes are removed 
from the stack in the opposite order to the order of assigning registers. Thus the nodes are pushed on a 
stack as they are removed and popped off the stack as they are reinserted in the conflict graph. 

Of course, the nodes themselves are not removed from the conflict graph. All that the algorithm uses as 
the nodes are removed is the number of neighbors in the conflict graph. Thus the algorithm must keep a 
count of the number of neighbors still in the graph and update it as nodes are removed. 
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13.1.1 When the Heuristic Does Not Work

The description of the heuristic is not a complete algorithm. It is possible that no node in the conflict 
graph will have fewer neighbors than the number of colors. This will occur more rarely in the current 
compiler since the early reduction in the register pressure makes fewer temporaries live at each point, so 
there are fewer conflicts. However, it is possible. 

Chaitin originally suggested that a temporary that is least important and has the most neighbors should be 
chosen and spilled. Insert store operations into a memory location after each definition of the temporary, 
and insert load operations into the temporary before each use. This will remove all edges to the node 
from the conflict graph and the algorithm can continue removing edges from the graph, hopefully 
removing more nodes from the conflict graph. When the nodes are being removed from the stack and 
being assigned a color, there is always a color available. 

Preston Briggs has suggested a modification of Chaitin’s original algorithm that gives better results. The 
problem with Chaitin’s suggestion is that the coloring heuristic is too coarse. It assumes that each 
neighbor of a temporary will be assigned a different register, so the number of registers needed for other 
temporaries is the number of neighbors. Actually, several neighbors may be given the same color. If that 
is the case, Chaitin’s suggestion would have inserted unneeded store and load operations. 

Briggs, copying Chaitin, suggested that the least important temporary be chosen; however, instead of 
inserting the load and store operations immediately, simply push the temporary on the stack that is being 
formed. Now when nodes are being removed from the stack and being assigned a color, there will be 
situations in which no colors are available. In that case, spill that temporary as was done in Chaitin’s 
algorithm. 

Both Briggs and Chaitin repeat the register allocation in a loop until all temporaries have been assigned 
registers. When register spilling occurs, a pass through the register allocator can complete without 
assigning physical registers to all temporaries. The registers for holding spilled values just before they 
are used and just before they are stored need to be assigned. Since these registers do not exist until the 
middle of a register allocation pass, the most effective way to deal with them is to repeat the coloring 
algorithm using the complete set of registers. 
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The proposed register allocator does not need to repeat the graph-coloring algorithm. The new 
temporaries introduced by spilling are loaded and stored within single blocks, so they can be handled 
later by the local scheduler. This implies that the register pressure may exceed the number of physical 
registers during local register allocation. 

To summarize, the registers that cannot be colored are assigned spill locations in memory exactly as the 
earlier LIMIT phase assigned spill locations. The determination of the load and store locations together 
with the assignment of registers for these temporaries occurs later, during local register allocation. To do 
this the global allocator performs the following transformations when the temporary T is to be spilled: 

•  It allocates a memory location for the spilled temporary, MEMORY(T), if it is not already 
allocated. 
•  It adds the temporary to the set SpillRegisters, which indicates to the local register allocator that 
a LOAD instruction should be inserted before the first use (if not preceded by a definition) and a 
store operation should occur after the last definition (unless the temporary is no longer live). 

Note that this is the reverse of the role that spilling played in LIMIT. In LIMIT the compiler assumed 
that temporaries are in registers and only moved the temporary to memory when absolutely necessary. 
Here the temporary is assumed to be in memory and is moved to a register when needed. So the load 
operations happen before the block and store operations occur after the block. The load operation cannot 
be moved backward, nor can the store operation be moved forward without affecting other already 
allocated temporaries. The placement of these operations thus cannot be improved without moving the 
operations into the block. 

13.1.2 Overall Algorithm

This compiler combines these ideas into an algorithm (see Figure 13.4). First the compiler recomputes 
the conflict matrix for the temporaries that are live at the beginning of any block. A counter 
NeighborsLeft is associated with each node (that is, temporary) of the conflict graph. It is initialized to be 
equal to the number of neighbors this node has. At the same time that NeighborsLeft is initialized, the 
nodes are bucket-sorted into buckets. All nodes in the same bucket have the same number of neighbors. 
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13.1.3 Building the Stack of Temporaries to Color

The heuristic is then used to remove nodes from the conflict graph and push them on the register stack 
Stack. Since the nodes are bucket-sorted, the compiler need only look at one of the buckets. 

Figure 13.4  Driver Procedure for Global Allocation 

Which buckets should be inspected first, the ones containing nodes with the most edges or the ones with 
nodes containing the fewest edges? This is not clear to the author. If one looks at nodes with the most 
edges first, then the total number of edges being removed with each node is greater and it is likely that 
more nodes will have fewer edges than the number of registers. If one looks at nodes with fewer 
neighbors first, then the nodes with fewer neighbors will be the last nodes to be colored where there is 
less latitude. The nodes with more neighbors will be colored first, when there are more registers 
available. There is no clear answer. This design pushes the nodes with fewer edges first because it makes 
the pseudo-code simpler. The only change to experiment with different orders is in the loop that 
references the buckets.2 

2Keith Cooper of Rice University has commented that any plausible improvement to a register allocation 
algorithm can only be validated by experimentation. From my own experience, many changes to 
algorithms that should theoretically only improve the performance of the allocator have decreased the 
performance. This is the nature of NP-complete problems. 

The stacking algorithm, as described in Figure 13.5, has been stated without some of the optimizations 
and data structure choices that can be made. Here are some notes. 

• Stack can be implemented as an array that is preallocated. Its size cannot be any larger than the 
number of global temporaries. 
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•  The compiler must be able to delete arbitrary nodes from buckets. The buckets can be 
implemented as doubly linked lists. Insertions into buckets can always occur at the beginning of 
the list. 
•  The algorithm has written the manipulation of i as simply as possible. One can experiment with 
the order in which nodes are chosen. One can also decrease the number of increments. Consider 
the algorithm as stated. If the current node is in Bucket(i), then the next node by necessity will be 
in Bucket(j), where j >=i - 1 so the loop can restart at that point rather than 0. 

13.1.4 Assigning Registers to Temporaries on the Stack

After the temporaries have been formed in a stack in which simpler-to-allocate temporaries are at the 
bottom of the stack and hard-to-allocate temporaries are at the top of the stack, the algorithm in Figure 
13.6 goes through the stack assigning colors to the temporaries. Each temporary must be assigned a color 
different from the neighbors. 

Figure 13.5  Building Stack of Temporaries to Allocate 

Note that the algorithm does not attempt to keep the number of neighbors that have been returned to the 
graph up-to-date. It does keep the attribute InGraph up-to-date because it is used to signal that a 
temporary has been colored. 

If there are no registers left after looking at all of the neighbors, the temporary is spilled. This consists of 
leaving the InGraph attribute false to indicate that it has no associated physical register and adding the 
temporary to SpillRegisters. The local register allocator will take care of inserting load and store 
operations to effect the spilling. 

Figure 13.6  Register Coloring Algorithm 

13.1.5 Choosing the Actual Physical Register

Any physical register that is not already assigned to a neighboring temporary is an appropriate choice for 
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the register to assign; however, there are certain choices that may improve the final result. If there is a 
physical register that has already been used somewhere else in the procedure, then it is preferable to 
reuse that register. If only unused registers are available, then the compiler must take into account the 
calling standard of the processor. Certain registers are saved and restored by the calling procedure. These 
registers are temporary registers that can be used by the current procedure without added cost. Other 
registers must be saved and restored by the called procedure. The first time that these are used within a 
procedure, code must be inserted in the procedure prologue and epilogue to save and restore these 
registers. 

The algorithm in Figure 13.7 implements these ideas with one addition. Consider the temporary T that is 
being allocated a register. Some of its neighbors (those with InGraph false), call one of them U for the 
moment, have not yet been allocated a register. If T can be allocated to the same register as one of the 
other temporaries that conflict with U, then it might be easier to allocate U when the time comes. 

Figure 13.7  Choosing the Register 

If this heuristic does not work, then attempt to assign T to a physical register that has already been used. 
This will keep the number of registers used down. Remember that scheduling has already occurred, so 
the compiler has already reordered instructions and nothing will be gained by using more registers. 

If no register is available that has already been used, then use one of the CallerSave registers because 
there is no cost for saving and restoring them. Failing that, use a CalleeSave register; however, code must 
be inserted in the prologue and epilogue of the flow graph to save and restore the physical register. 
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13.1.6 Implementing Spilling

Although described in the pseudo-code, we have not discussed the choice of temporary to push on the 
stack when no temporary satisfies the heuristic. We have discussed what to do when there is no register 
available during the assignment of registers. In that case the temporary is placed in a set SpillRegisters 
and the spilling process is delayed until local register allocation. 

This compiler uses Chaitin’s method for choosing a temporary to push on the stack (Chaitin 1982). More 
complex techniques have been proposed more recently; however, their value in the current design is 
undetermined. The more complex techniques seem to work better with straight-line code or situations 
with large register pressure; however, we are dealing with these situations differently. 

There are two factors in choosing a temporary to push on the stack. Since registers are colored in reverse 
order to the order in which they are placed on the stack, the compiler should push the least important 
temporary on the stack. Second, the compiler should push a temporary that conflicts with a large number 
of temporaries that are not yet on the stack. This will decrease the number of edges in the conflict graph 
and make it more likely that more nodes will satisfy the coloring heuristic. The compiler must piece these 
two criteria together into a single algorithm or formula to describe the priority of a node. Many formulas 
would do; we use Chaitin’s, which chooses the temporary with the smallest value: 

Unfortunately, the compiler cannot precompute this information and save it for all cases where spilling 
might occur, since the attribute NumberLeft(T) keeps changing during the process of pushing temporaries 
on the stack. Instead, the compiler precomputes the following formula and then performs the division 
when spilling is necessary: 

Priority(T) = Σ{frequency(p) |p is a point where T is used or defined} 

As far as the code is concerned, the subroutine Compute Priority3 does a walk over the flow graph 
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identifying all load and store operations involving temporaries and computing the numerator of this 
expression. It stores it in the attribute Priority(T). Later, when a temporary must be chosen to push on the 
stack, the division by the denominator is performed and the smallest value resulting is chosen. 

3The code for Compute Priority is not included as pseudo-code. It is a clerical walk of the flow graph 
using the frequency information stored with the block and the occurrences of load and store operations to 
accumulate the information. 

13.2 Local Register Allocation

Global register allocation is completed. Now we must allocate registers that are five in blocks. This 
allocator has a different structure because the regions of the procedure where each temporary is five are 
more regular. The instructions of a block can be enumerated in the order that they are executed. If there 
were no global temporaries already assigned, there are simple algorithms for doing good local allocation 
in straight-line code. This compiler does use these ideas eventually, but first it must deal with the global 
temporaries that have already been assigned registers, so that they do not foul up the simple straight-line 
algorithm (Figure 13.8). 

Before local register allocation, the compiler must fix up the global temporaries that were not allocated 
by the global register allocator. These are the temporaries in the set SpillRegisters. The compiler must go 
through the block and perform three functions. First it must insert a STORE instruction into memory 
after the last assignment of a value to one of these temporaries. Second, it must put a load operation 
before the first use of one of these temporaries if that use is not preceded by an assignment to the 
temporary. Finally, a new name must be given to the temporary within this block. Since a single name is 
associated with each temporary, the compiler must create a new name whenever it splits the references to 
a temporary into separately allocated portions. By giving it a new name the temporary can be allocated to 
different registers in different blocks. 

Figure 13.8  Main Local Allocation Procedure 

The algorithm in Figure 13.9 performs these three tasks in a two-step process. A backward pass is 
performed that determines the last instruction that places a value in one of these temporaries. A store 
operation is inserted after those instructions. At the same time, it determines which temporaries need a 
load operation inserted before them. The algorithm does this by assuming that the load is needed and 
deleting the assumption if an earlier assignment to the temporary is found. 
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The second pass is a forward pass, using the attribute NewName to hold the local name for the spilled 
temporary and inserting the load operation before the first use of the temporary name. 
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After the spilling of global temporaries, the local register allocator classifies the types of temporaries that 
occur in the block. Before this is described, the reader should be made aware that all of the walks in the 
register allocator mimic the computation of live information. In fact, most compute live information. 
They all perform a reverse-execution walk of the flow graph, either implicitly or explicitly computing 
live information and performing whatever processing takes place at the same time. In the case of 
classifying the temporaries, the information collected is a set of sets of temporaries and the maximum 
register pressure, that is, the maximum number of temporaries live at any given time. These sets are 
listed below: 

LiveThrough: The temporaries that are live at each point in the block. They may be referenced in 
the block and possibly modified; however, there is no point between instructions where these 
temporaries are not live. Thus each one of them occupies a physical register for the complete 
block, effectively removing that physical register from any consideration for local allocation. 
LiveStart: The temporaries that are five at the beginning of the block and become dead after some 
instruction in the block. These are the global temporaries that will cause the local register 
allocator problems. This local register allocator walks the block backward (remember the 
simulation of live computation) to allocate temporaries, and it must take great care not to overlap 
the use of a temporary that it allocates with a physical register allocated to a temporary in 
LiveStart. The allocator uses the FAT heuristic for doing that. 

Figure 13.9  Spilling and Classifying Temporaries 

LiveEnd: The temporaries that are live at the end of the block and became live at some instruction 
in the block. These will cause the compiler no problems with local register allocation. In effect, 
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they are preallocated local temporaries for the purposes of allocation within this block. 
LiveTransparent: The temporaries that are live throughout the block and not in the block. As with 
LiveThrough, these temporaries occupy a physical register throughout the block. However, they 
are useful when the register pressure is too high because they can be spilled before and after the 
block, as was done in the LIMIT phase. 
LocalRegisters: Local temporaries that become live within the block and later become dead 
within the block. In computationally intensive programs this is the largest class of temporaries. 
Allocating physical registers to these temporaries is the whole point of this section. Note that the 
newly created temporaries associated with spilled temporaries are in this class. 

The algorithm in Figure 13.10 is precisely a recomputation of live information within the block and uses 
this live information to classify all of the temporaries using the definitions above. For example, a 
temporary in LiveTransparent is live on exit from the block and has no references to it. Thus 
LiveTransparent is initialized to be the set of temporaries live on exit and then a temporary that is 
referenced is removed. The others are handled similarly. 

Having classified the temporaries, it is now time to prepare for register allocation. Suprisingly, the 
compiler computes the conflict graph for the block. Although graph coloring is not the basis for this 
allocator, the graph-coloring heuristic can be viewed in the following useful way: A temporary that has 
fewer neighbors than available colors is always easy to color, thus it can be put aside. By repeating this 
process, the easy temporaries are all put aside, leaving only the temporaries that are difficult to color to 
be dealt with in a specialized way. In fact, the removal of these easy registers removes the clutter, 
making the hard decisions apply only to the hard temporaries. 

The compiler computes two data structures for the local register allocator (see Figure 13.11). The first is 
the local conflict graph, in which the only temporaries that occur in the graph are the temporaries that 
occur in this block. This makes for a small graph, one hopes. There are cases where one procedure is a 
large (think thousands of lines of code) block. In that case, the global conflict graph is small and this one 
is big.4 

4Compiler writers frequently forget that there are two categories of program writers. Human program 
writers are more easily dealt with. The compiler can estimate the patterns of usage. Programs that write 
programs are much more difficult, creating programs with horrid structure. 
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Figure 13.10  Classifying Temporaries in a Block 

The algorithm also computes the range in which the temporary is live. This information is needed by the 
FAT algorithm. The information is recorded by assigning two numbers to each instruction. The end of 
the block is numbered 0, and the numbers increase toward the beginning of the block. The smaller 
number of the pair represents the portion of the instruction that performs modifications of registers. The 
larger number represents the portion of the instruction that fetches the operands. 

Figure 13.11  Building Lifetimes and Local Conflict Graph 

There are two attributes associated with each temporary. StartTime(T) is the counter associated with the 
instruction that writes the temporary. If the temporary is live at the beginning of the block, then it 
references a value preceding the block. EndTime(T) references the operand section of the last instruction 
to reference the temporary. If the temporary is live at the end of the block, then the attribute references 
off the end of the block. These attributes are computed in a single walk through the block that simulates 
the live computation and assigns EndTime the first time the temporary becomes live and assigns 
StartTime when the temporary becomes dead. 
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After the register allocator has computed the conflict and lifetime information, it prepares to do the 
standard graph-coloring heuristic to remove easy temporaries. Just as with the global allocator, the 
temporaries are bucket-sorted (see Figure 13.12). The same attributes are set up in the same way as in the 
global register allocator. 

Now we will describe the algorithm out of order for ease of understanding. What we want to do is go 
through the block assigning physical registers to temporaries as we go. This algorithm is described later 
in Figure 13.15. Before allocation begins, all of the physical registers are placed in a set called 
FreeRegisters, indicating that they are available for use. As we scan through the block (again in reverse 
order, simulating live computation), we assign one of the FreeRegisters to a temporary the first time that 
we see it become live; that is, we find the last use of the temporary. We return the physical register 
allocated to a temporary to FreeRegister at the point where it is defined (if the temporary is not also used 
as an operand). 

The problem is that this does not work if there are global temporaries already allocated physical registers 
at the other end of the block. We may pull a physical register out of FreeRegisters and assign it to a 
temporary whose lifetime overlaps a global temporary that is already using that register. 

The solution is to preprocess the global temporaries that are live at the other end of the block (in this 
case, the start of the block since we are going through the block backward). This is the FAT heuristic. 
Take one of these temporaries, call it T. The FAT heuristic does the following operations: 

1.  It scans through the block finding all of the points where the register pressure is maximum. 
These are called the FAT points. 
2.  For each of these FAT points, it chooses a local temporary that is live at that FAT point. We 
say that the temporary covers that FAT point. The temporaries are chosen so that each FAT point 
is covered and no two temporaries chosen have overlapping lifetimes or lifetimes that overlap 
with T. This may not be possible; in that case, there will be further spilling. After all, this is a 
heuristic, not an algorithm. 
3.  Each one of these temporaries covering the FAT points are assigned the same physical register 
as the T. 
4.  The physical register associated with T and the temporaries that cover the FAT points is taken 
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out of consideration for further allocation. The register pressure is reduced by 1 at each of the 
instructions where one of the covering temporaries is live. In other words, we ignore the physical 
register, T, and the temporaries that cover the FAT points. 
5.  We now repeat this process with the other global temporaries live at the beginning of the block 
until we have processed them all. 
6.  At this point there are no temporaries live at the beginning of the block that we care about so 
we can apply the one-pass local register allocator as described above. 

Figure 13.12  Build Buckets for Local Coloring 

This is the algorithm we use. The only modification is that between the processing of each of these 
temporaries the compiler applies the coloring heuristic to remove easy registers. This is the algorithm 
that we describe in Figure 13.8. We now describe the support procedures. 

The graph-coloring heuristic is implemented by two procedures, ADD_TO_LOCAL_STACK (Figure 
13.13) and GIVE_STACKED_TEMPORARIES_COLOR (Figure 13.14). The algorithms are copies of the 
algorithms during global allocation and will not be described further. Note that the variable 
NumberRegisters starts out being the same as the constant MaxPhysicalRegisters and keeps decreasing 
each time the FAT algorithm is applied. 

Note that there should be no spilling involved with the coloring heuristic. Temporaries are pushed on the 
stack when they have fewer neighbors than colors. Nothing is pushed on the stack that violates that 
condition. When the FAT heuristic is applied, one physical register is taken out of participation, so the 
number of neighbors allowed is decreased by one. This does not affect any earlier temporaries pushed on 
the stack. 

Figure 13.13  Building Local Graph-Coloring Stack 

The one-pass register allocator is described in Figure 13.15. It is a single pass, simulating live 
computation (so it can know when a temporary becomes live) and parceling out free physical registers 
when a temporary becomes live. If a temporary already has a color, then it need not be assigned one. Due 
to failures of the FAT heuristic, it is possible that spilling will be required within the block. 
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Figure 13.14  Coloring the Easy Local Temporaries


Figure 13.15  One-Pass Register Allocation 

The FAT heuristic in Figure 13.16 is a direct implementation of the original description. The 
nonoverlapping lifetimes are chosen by use of the FinishTime local variable. This variable indicates that 
point at which the most recent addition to the covering set becomes dead again in the reverse-execution 
walk. The attribute BeginTime indicates the point where the global temporary that is going to be sharing 
a physical register with all of these temporaries becomes dead. So the next temporary to be chosen has to 
be live at a point of maximum pressure and not have a lifetime that overlaps the global at the beginning 
or the previous temporary in the covering set. 

Figure 13.16  FAT Heuristic 

When spilling is needed, the classic spilling heuristic is used (Figure 13.17). Consider the register 
allocation process at an instruction I where there is an operand that needs a temporary assigned to a 
physical register. There are not enough physical registers, so choose the temporary whose previous use is 
the furthest away. By inserting a load operation after I and a store operation after the last definition of the 
temporary, a register is freed up for use for the largest possible period of time in the block. 

Figure 13.17  Spilling within the Block 
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Chapter 14 
The Object Module 

The compiler has now determined the exact instructions, the order of the instructions, and the layout of 
data. The only four jobs left to do are generate the object, assembly, error, and listing files. These are 
clerical jobs. This does not minimize their difficulty or importance. There is little theory applicable to 
these tasks. 

To understand the generation of object files, remember the four different concepts of time that the 
compiler must understand. Events that happen during compile time are events that happen within the 
compiler—analyzing the program and generating output that will be used to create the program. Events 
that happen at link time are operations that happen while the linker is running. This includes the layout of 
the executable program and the modification of some addresses to represent the actual locations in 
memory rather than the relative addresses specified by the compiler. There is a tight correlation between 
some link-time operations and compile-time operations. The compiler must create a collection of 
commands to specify the operations that the linker must perform to create the image. The creation of the 
commands is a compile-time operation; the execution of the commands is a link-time operation. 

For completeness, there are two more time intervals: load time and run time. Operations that happen at 
load time include further relocation of relative addresses and setting the addresses of shared libraries. 
Load-time operations are the execution of commands that are left in the executable image created by the 
linker. Thus load-time operations are execution of commands created at link time, which further are the 
effects of commands created at compile time. Finally, runtime operations are the processes that occur 
during the execution of the program. Although all instructions are executed at run time, the term usually 
refers to the creation of data structures, such as the static nesting stack, that are maintained at run time. 

As you can see, all of these processes are controlled by commands created by the compiler at compile 
time and inserted into an output file called the object file or object module. 

14.1 What Is the Object Module?
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The object module is a collection of commands to the linker describing how data must be stored in 
memory and how that data must be modified when the data is placed in one position rather than another. 
Consider a particular procedure such as the running example we have used throughout the book, 
MAXCOL. This procedure consists of a contiguous sequence of numbers representing the instructions in 
the procedure, a set of data representing the storage locations for data in the procedure, and a set of 
storage locations holding the constants that require more storage than the immediate field of the 
instructions. 

The compiler knows the relative locations of the instructions in the procedure; however, it does not know 
the absolute locations since it has no knowledge of the other procedures and data that will be loaded with 
this one. Hence the compiler cannot determine the absolute locations for instructions or data; it can only 
determine the relative locations with respect to the other instructions and data in the procedure. If 
required to do so, the linker must adjust the addresses created by the compiler to be absolute addresses 
rather than the relative addresses created by the compiler.1 This process is called relocation. 

1Some instructions represent addresses as offsets from the current program counter. In this case the linker 
does not need to adjust the addresses. Many processors have a set of relative branches together with the 
absolute jump instruction. 

To represent contiguous sequences of numbers, either instructions or data, the object module has the 
concept of a section of data. A section of data consists of the following parts. 

•  Each section has a unique name. Two sections that have the same name are either concatenated 
together or overlaid by the linker. Thus multiple object modules can contribute to the same 
section by using the same name. Similarly, separate parts of the same object module can 
contribute to the same section. 
•  Each section has a set of attributes. The most important attribute is whether this section involves 
concatenation of data from separate section commands or overlaying of data from separate section 
commands. Other attributes include the read and write attributes of the section. The object module 
can specify that a particular section can be read-only or read-write. This information can be used 
by the operating system to invoke page protection when possible. 
•  Each segment has an alignment. Since some data must begin at an address that is a multiple of 
some specified power of two, the segment command must allow the compiler to describe the 
multiple of two on which this portion of the segment must begin. This allows the compiler to 
allocate packets of instructions for multiple issue or data that must be aligned at specified 
addresses. 
•  Each section command indicates a size. This is the number of bytes of memory (or whatever 
memory units are used) to be allocated by this section command. 
•  The section may have data stored in the storage represented by this section command. 
Frequently this data will be instructions; however, it can be data or constants. 
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•  Each section contains a collection of other commands, which will be specified below, for 
performing relocation on the data in the section and storing information about important locations 
in the section. 
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The compiler represents absolute addresses as a section name together with an offset within the section. 
The linker will replace this pair by the absolute address. When the compiler is storing an absolute address 
in an instruction or data, it will actually store the offset and create a command to indicate to the linker 
that the address of this part of the section must be added in also. There is a subtle point here: The linker 
keeps track of which section command is associated with each component of the section and will add in 
the relative offset of the beginning of the data for that section command. 

The object module contains the following commands besides the segment commands above. 

•  A definition command defines a symbol. It contains two parts: the name of the symbol being 
defined and an expression representing the symbol. For our purposes that expression need only be 
a segment name and an offset. Thus the name MAXCOL in our running example must be made 
known to other procedures so it can be called. The entry point is described by a definition 
command, which represents the offset within the segment representing the instructions where the 
entry point occurs. 
•  A use command indicates that a symbol described by a definition command is to be used. It has 
three parts: the name of the symbol, the location in the section where the symbol is to be used, and 
an indication of whether the symbol is to be added or subtracted. When the symbol used is a 
section name, the value added is the beginning address of the piece of the segment created by this 
current section statement. Hence relocation can occur by this command. 

These two commands are used by the compiler to instruct the linker on where to adjust data and where to 
place addresses. More complex commands may be available in the object module; however, these are 
what are needed for basic compilation. Another commonly available command is one to expand the 
current section by a fixed amount of initialized data. This will decrease the size of the object modules 
considerably. 

There are other parts of the object module for debugging. These are less standardized and can vary from 
language compiler to language compiler on the same machine. The basic form of this data is tables of 
information. There must be a table that describes the address of each variable in the program indexed by 
the location where the program has stopped. The data may be in memory, on the stack, or in registers, 
and the debugging symbol table must store this information. Furthermore, a table of line numbers or 
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program statements must be included, indexed by the program counter where the program has stopped. 

Originally, each machine had a distinct object module format. This is still true, although many of the 
object module formats are based on COFF or ELF, which are formats that have developed within the 
UNIX community. However, each manufacturer has developed additions or slightly different 
implementations so that even these are not standard. This is particularly true in the area of the debugging 
tables. 

The major problem with object modules, in my experience, is that all descriptions of object modules are 
inaccurate. The only real definition of an object module is what the linker accepts. The only way to find 
this out is by experimentation. Implementing the object module generator once the object module format 
is known is easy. Finding out what the object module format actually is (not what it is described to be) is 
difficult. 

14.2 What Segments Are Created by the Compiler?

The compiler will generate several object module segments to represent the compiled procedure. 
Typically each of these segments will have a name that is a function of the procedure name, for example, 
the procedure name together with a character that is impossible in a procedure name followed by some 
unique set of characters. 

One of the segments will hold all of the instructions. There are usually other segments, although they can 
be combined together: 

•  A segment to hold all local initialized static data. The nameof this is frequently a function of the 
procedure name; however, the data could be placed in one large segment with all other static data. 
•  A segment to hold all local uninitialized static data. Again the name can either be a function of 
the procedure name or one large segment for all uninitialized data. 
•  Similarly, segments for initialized and uninitialized external data. This is data that can be 
referenced by other procedures. It could be combined with the local data if desired. Actually, each 
external variable may be placed in a segment by itself. This can be useful in languages where the 
originator of the data is not known (such as C or common blocks in Fortran). In that case each 
procedure can create the segment for the data and mark it as an overlay segment. Then only one 
area of storage will be allocated. 
•  A segment may be created to hold all constants referenced in a procedure. Again this segment 
can be combined with others in a number of fashions. 
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14.3 Generating the Object File

How does the compiler generate this collection of object module commands? At this point of the 
compilation, the compiler has a direct representation of each instruction and the order of instructions. It 
knows the exact size of each datum and the initialization of each datum. In other words, the compiler has 
a little bit more knowledge than the input to an assembler. It knows more information since the 
instructions have already been scheduled and peephole-optimized, taking advantage of any special 
characteristics of the instructions. 

Thus the compiler need only simulate a two-pass assembler to generate the object module. What does a 
two-pass assembler do? It scans through the instructions pretending to generate the object module. 
Instead of generating the object module, it keeps track of each address that is associated with the 
beginning of a block in the flow graph. Since each instruction has a fixed size, this can be done in one 
pass. At the same time each set of variables is scanned and the relative address within the segment is 
determined, just as described in introductory compiler textbooks describing the layout of data. 

During the second pass, the compiler does generate the object module. It now knows all addresses 
relative to their corresponding segments, so it can lay out the segments. As it creates the segments it 
keeps a table of definition and use commands to describe the operations that must be performed to update 
each datum or instruction. Thus an instruction that includes an absolute address is represented as a fixed 
number in the segment together with a command describing the use of the segment name to be added into 
the number to represent the full address.2 

2With RISC architectures, the addresses are rarely included in the instruction. Instead the addresses are 
included in the constants, which are loaded into registers to perform an absolute branch. This simply 
replaces the updating of instructions by the updating of constants for relocation. 

After all of the segments for data have been generated, the segments for the debugging tables must be 
generated. They are usually handled like any other data (although they may not be loaded in the 
executable by the linker). Thus the debugging symbol table will have a collection of absolute data, such 
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as the names of the symbols. However, references to memory locations in the program will be 
represented by the use of a defined symbol or by a segment name plus offset. 

14.4 The Complication: Short versus Long Branches

We have not described one problem with the formation of the object module: the generation of short or 
long branches. Most RISC processors contain a set of relative branches, which can branch at an offset 
from the program counter. This usually includes the conditional branch instructions. If the distance that is 
being branched is short, then this is very efficient. Unconditional longer branches are implemented by 
loading the address of the instruction to be branched to and performing the unconditional jump 
instruction. Long conditional jump operations are implemented by using a short conditional branch 
instruction on the negation of the condition to branch around a long unconditional branch instruction. 
Thus there are three different sizes for branch instructions: 

•  A short conditional or unconditional branch instruction. This will typically be one instruction, 
thus 4 bytes on most RISC processors. 
•  A long unconditional jump instruction. This will require two instructions, one to load the 
address constant and one to perform the jump operation. Thus this instruction sequence requires 8 
bytes on most RISC processors. 
•  A long conditional jump instruction will require three instructions: A short conditional 
branching instruction, the loading of an address constant, and the performance of an unconditional 
jump instruction. This requires 12 bytes on most RISC processors. 

There is a phase-ordering problem with the translation of branching instructions into short instructions or 
long instructions. Short instructions do not require extra registers; however, long instructions require a 
register. Thus the compiler wants to translate the branches into long branches before register allocation. 
However, the number of instructions in the program are not known until after register allocation since the 
spill instructions change the number of instructions in the flow graph. 

I propose the following approach. The compiler generates all branches to positions in the flow graph as 
short branches. Subroutine calls and unconditional branches outside the procedure are generated as long 
jump operations. Typically, all branches will be to nearby locations, so there will be no need for 
translation of short branches to long branches. If long branches are necessary, translate the short branches 
here in the object module generator. How is this done? The algorithm for identifying short branches that 
must be translated into long branches is an optimistic one: 

1.  Assume that all branch instructions are short ones. Scan through the flow graph performing the 
first pass of the assembler. Whenever a branch instruction is found that must be long, translate it 
into the appropriate long instruction sequence. If there are no branch instructions translated to 
long instructions (the common case), then the first pass is completed and the compiler can 
proceed to the second pass of the assembler. 
2.  If there are branch instructions translated into long instruction sequences on this scan through 
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the flow graph, repeat pass one of the assembler. The instructions that have already been 
translated into long instructions are no longer considered—their fate has already been determined. 

In the worst case, this is an inefficient algorithm. It can take as many passes through the flow graph as 
the number of branch instructions. It can never take more passes, using the same kind of arguments we 
used to prove that optimization algorithms take no more passes than the number of blocks. It is typically 
an efficient algorithm since usually all of the branches will remain short. This is the algorithm used in the 
Bliss compiler by Wulf et. al. (1975). 

When must a branch instruction be translated into a long jump sequence? The compiler is making a pass 
through the instructions in a flow graph in sequential order and comes upon a branch instruction. If the 
instruction branches to an earlier instruction and it is too far away to be implemented as a short branch, 
then replace the instruction by a long branch. If the branch instruction branches forward and the address 
specified by the previous pass through the flow graph is too far away, then translate the instruction into a 
long jump sequence. 

This procedure obviously is the correct check for backward branches. For forward branches, the previous 
pass will have computed an address both for the branch instruction itself and the forward destination to 
which it is branching. The address of the branch instruction on this pass is greater than or equal to its 
address on the previous pass. Since the compiler is replacing small instructions by larger ones, the 
distance between the destination and the location of the branch is increasing. Whenever the distance is 
greater than that represented by a short branch, change it to a long branch. 

Repeat the process until there are no changes. At that point, leave all branches short that have not already 
been changed. 
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14.5 Generating the Assembly File and Additions to the Listing File

The assembly file is an optional text file that attempts to create input to the assembler so that result of 
assembly will be an object file identical to the original object file.3 This goal is not always achievable. 
The compiler may generate object modules that are not directly expressible in the available assembly 
language. Of course, the assembly language can be extended to support all of these features, but 
frequently the assembler is a less important piece of software, so its support is limited. 

3Let me go on record with all other writers of optimizing compilers: Attempts to edit the assembly file to 
improve performance are misguided. The results will frequently be less efficient, if it works at all. It is 
much more likely that an edit will generate an incorrect program because the editor could not follow all of 
the assumptions made by the compiler. However, advanced users find these files useful, so they should be 
generated. 

This file can be generated during the second assembler pass, at the same time that the object module is 
being generated. The compiler has a representation of the flow graph that mimics the instructions to be 
generated. All that the assembly listing needs to do is translate the internal representation of the 
instructions into an external representation matching the instruction in the flow graph. Since the internal 
representation mirrors the external representation, this is a clerical process. 

At times, a similar representation of the program is desired in the listing file. This too can be performed 
at the same time as the assembly file is generated. In fact, columns can be added to indicate the address 
of the instruction in the segment and the binary representation of the instruction. 

14.6 Generating the Error File

The error file records all errors and warnings that have been identified by the compiler. It is one of the 
most important user interfaces since it communicates to the user about the errors that have occurred 
within the program being compiled. Most of these error messages are associated with parsing or semantic 
analysis. The front end is assumed to generate an abstract syntax tree that represents a program with legal 
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static semantics (that is, it obeys all of the language rules having to do with form). The optimizer and 
code generator should generate few messages. 
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Chapter 15 
Completion and Futures 

We have reached the end of all of the technology. The proof of piecing this technology together will 
come in building a compiler using it. Together with teams I have worked with, I have used most of these 
techniques. I myself (with anyone interested in participating) will implement the design. Of course, I 
invite you to do the same. 

How will I build a compiler? I will build it out of technology that is freely available. I have no desire to 
rebuild something that has a reasonable implementation already. This section will discuss what I plan to 
build and how I will build it. 

15.1 Target Machine

First, for what processor should I build a compiler? The INTEL-based processors have a host of 
reasonable compilers, and each of the UNIX vendors have built reasonable compilers for their RISC 
chips. As you probably noted, I have a fondness for the Alpha processor, but there are a number of good 
compilers for it. I will build a compiler with two targets: a fake RISC processor useful for testing and 
verification of the compiler, and the ARM or StrongARM processor used in real-time systems. 

The fake RISC processor will be used for initial testing. It is based on an idea that I have seen used by 
both Rice University and Bill Waite at University of Colorado. The idea is to define a RISC processor 
where each instruction can be described as a C macro. Consider the iADD instruction for integer add 
operations. It can be defined by the macro 

#define iADD(S1,S2,T) T=S1+S2


where there are global variables defined to represent each of the registers in the register set. All of the 
characteristics of the machine can be simulated in C. What is the advantage? The compiler can run and 
generate assembly language for the program. The program can be executed on any reasonable processor. 
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Each instruction in the assembly language can be simulated in this way. 

In fact, additional expressions can be added to the definitions to measure the characteristics of the 
program. For example, a counter can be incremented in the macro simulating a branch operation. Thus 
we can know how many times all of the branches are executed or, even more specially, how often a 
particular branch is executed. 

The StrongARM processor was chosen as the real machine to compile for because there are inadequate 
optimizing compilers for that processor. I find no joy in building a compiler that will always be worse 
than a compiler that already exists, so I am choosing a processor with less support. Thus I have a chance 
of building a compiler that might be useful. 

15.2 Host Machine

What machine should I use to host this project? I prefer a good-size PC with one of the excellent C/C++ 
program environments: Visual C/C++, Borland C/C++, or Symantec C/C++. These environments make it 
easy to write small sections of code and check-debug them. The support for UNIX facilities like make are 
less adequate; however, there are some facilities for configuration and project management. 

UNIX would be a second choice. In that case, I would use an editor such as GNU EMACS as a 
programming environment in which to embed all other activity. 

15.3 Source Language

I want to write a compiler for a full language, not a toy, and I do not want to write a front end. Thus I will 
compile for the C language and use one of the freely available C front ends as the starting point. In this 
case, I will use LCC, created by Frazer and Hanson. This is a well-written and well-documented C front 
end that can be adapted to generate the intermediate representation that is needed for the optimizing 
compiler. 

Some modifications will need to be made to the front end to increase the information passed to the 
optimization phases. LCC assumes that it is directly generating assembly language or object modules. 
Thus information is used and lost. This information must be preserved. In particular, the alias 
information concerning load and store operations must be preserved for use within the optimizer. Also, 
arrays should not be directly changed into pointer expressions, but kept as array references instead. 
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15.4 Using Other Technology

There are other pieces of software I will use in the project. The intermediate representation in this book is 
based on the intermediate representation used in the Rice Massive Scalar Compiler Project. I will use the 
code that they have written to manipulate the intermediate representation. 

There are other tools for drawing graphs and pretty-printing trees available on the Internet that can be 
used for generating dumps of data structures. Remember the earlier discussion about each phase of the 
compiler needing an interpreter. Actually, we only need four interpreters. The first one interprets the 
abstract syntax tree output by the front end. That can be interpreted by using any of the available LCC 
compilers. The second is an interpretation of the flow graph when it is in normal form. The third is an 
interpretation of the flow graph in static single assignment form, and the final one is an interpreter or 
executor for the object file output. 

15.5 The Spike Approach

The team at COMPASS, Inc. developed a useful approach to building big compilers that I will use on 
this project. It is called the spike approach. First the team develops a medium-level design for the 
compiler. This book fits the bill for that design. With the medium-level design, one knows all of the data 
structures that are necessary and all of the big problems that might occur. 

Then the team develops a minimum implementation of each phase of the compiler. In other words, the 
team builds a spike through the compiler where a little of each phase works. Do a sufficient amount so 
that some application program will work. The obvious first spike is to build enough of the compiler to 
compile and execute the null program. 

Then the team widens the spike, implementing more of each phase. Widen the spike to compile some 
arithmetic statements. Then widen it further to compile “Hello World.” Keep widening the spike until 
complete functionality is provided in the compiler. 

This works when the design is available in advance. What the team is really doing is choosing an order in 
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which to implement algorithms and data structures that are already known to be needed so that the team 
works together to get results through the compiler. This is gratifying to the team: They see some results 
early. It is also gratifying to the clients or management because there is visual verification of progress. 
There is little more distressing than a programmer informing you that all of his module will work, but it 
won’t be available until one month before delivery. 

This approach does not work if the design is insufficient or not done. In that case, part of the compiler 
will be implemented before the team realizes that one or more of the modules is inadequate for the 
quality of compiler needed. The only solution is to go back and rewrite. Do the design first—don’t fall 
into this trap. 
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Appendix A 
Proof of the Anticipation Equations 

The anticipation equations were constructed to match the definition of anticipation. I do not know of a 
book or article that proves the direct correspondence. In fact, the largest solution to the anticipation 
equations is the solution that matches the definition. This appendix provides a proof of this 
correspondence and in the process shows why the largest solution is necessary. Recall that the 
anticipation equation is being applied for a single temporary T. 

Observation Assume that ANTIN and ANTOUT is the maximum solution to the anticipation 
equation. Assume that B0, B1, B2, . . . , Bn, = BO is a cycle in the flow graph such 
that the temporary T is not killed or locally anticipated in any of the blocks in the 
cycle. If there is a block Bi in the cycle such that ANTIN(Bi) is false, then there is 
a block Bj in the cycle with a successor S such that ANTIN(S) is false. 

Proof Note that ANTIN(Bi) being false means that ANTIN(Bk) is false for each block Bk 

in the cycle. Why? ANTOUT for each block is the intersection of the ANTIN 
information for each of its successors. Walk around the cycle backward starting at 
block Bi. Combining the information that none of the blocks kills T or makes T 

locally anticipated with ANTIN(Bi) means that ANTIN is false for the predecessor 
block. Continue the walk; each block in turn will have ANTIN being false. 

To prove the observation, I will assume the negative and show that there is a 
contradiction. Assume that each successor S of the blocks in the cycle has 
ANTIN(S) equal to true. The proof consists of showing that all of the values of 
ANTIN for the blocks in the cycle can be changed to true. This change can then be 
propagated through the rest of the flow graph, changing some of the other values 
of ANTIN to true but never changing a value that was already true. The larger 
solution demonstrates a contradiction since the solution was assumed to be the 
largest. 
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First note that the values of ANTIN (together with the corresponding values of 
ANTOUT) can be changed to true for each block in the cycle without violating the 
equations for the blocks in the cycle. Each successor already has the value true, 
so the ANTOUT values will satisfy the equation. The ANTIN values for the blocks 
in the cycles are required to be the same as the ANTOUT values. Thus they can all 
be changed to true. 

Having made this change, the predecessors of the blocks in the cycle may no 
longer satisfy the equations. Some of the predecessors that initially had false 
values for ANTOUT now have true values. This can change the value of ANTIN 
for these predecessors from false to true. Note that it can never change the value 
from true to false, so continue this process of updating the predecessors (and the 
indirect predecessors) until all blocks again satisfy the equations. Since the values 
can only change from false to true and there is only a finite number of blocks, this 
update process must end and provide a new larger solution. This demonstrates the 
contradiction. 

Observation Consider a flow graph in which there is a path from each block to Exit. Let 
ANTIN and ANTOUT be the maximum solution to the anticipation equations for 
the temporary T. If ANTOUT(B) is false, then T is not anticipated at the end of B. 
If ANTIN(B) is false, then T is not anticipated at the beginning of B. 

Proof Consider the case in which ANTOUT(B) is false. The proof consists of showing 
that there is a path from B to Exit that either contains an instruction that kills T 
before an evaluation of T or contains no evaluations of T at all. 

By assumption, ANTOUT(B) is false, so there is some successor B1 with 
ANTIN(B1) equal to false. ANTIN(B1) being false means that T is not locally 
anticipated in B1. If B1 kills T, then we are done because the path can be extended 
with any path from B1 to Exit giving a path violating the definition of anticipation 
at B. 

Now continue to add blocks B = B0, B1, . . . , Bn to the path such that Bi is a 
predecessor of Bi+1 and T is not locally anticipated or killed in any of the blacks 
after B and ANTOUT(Bi) is false for each of these blocks. The problem is to add 
another block to the path in such a way that a path to Exit can be constructed. 
There are three possibilities: 

• If Bn has no successors, then Bn is equal to Exit since this is the only 
block with no successors. When this situation occurs, a path from B to 
Exit has been constructed containing no instructions that kill or evaluate 
T. The path thus violates the definition of anticipation, and T is not 
anticipated at the end of B. 
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• B  has a successor Bn+1 such that ANTIN(Bn+1) is false and Bn+1 is not onn

the path. Since ANTIN(Bn+1) is false, T is not locally anticipated in the 
block. If T is killed in the block, then the path can be extended from Bn+1 

to Exit by any path, giving a path that violates the definition of 
anticipation. 

• B  has no successor with ANTIN equal to false that is not already on then

path. A way to continue expanding the path must be found. If I can show 
that there is always a way to continue the path, then the proof is 
completed since the two previous possibilities lead to a path violating the 
definition of anticipation. 

If B  has no successors that have ANTIN equal to false and are not in the path, choose one of then

successors S that is already in the path. We have a cycle starting with S and continuing through the other 
blocks on the path until Bn is reached. All of the blocks on this cycle satisfy the conditions of the 
previous observation, so there is a successor Q of one of the blocks Bk that is not in the cycle and has the 
value ANTIN(Q) equal to false. 

Now add the blocks S, . . ., Bk, Q to the path after Bn. Although some blocks have been added to the path 
multiple times, the path has been extended by at least one new block Q. This shows that the third case 
always leads to the addition of at least one block and completes the proof of the observation. 

Table of Contents 

Copyright © Digital Press 

file:///D|/Convert/Building_an_Optimizing_Compiler/appendix-a.html (3 of 3) [10/17/2003 1:08:00 AM] 

file:///reference/digitalp00001.html


Building an Optimizing Compiler:Superblock Formation 

Building an Optimizing Compiler 
by Bob Morgan 
Digital Press 
ISBN: 155558179x  Pub Date: 12/01/97 

Table of Contents 

Appendix B 
Superblock Formation 

When the body of a loop is a nest of simple condition statements, it can be reformed to aid instruction 
scheduling. In this case, the body of the loop performs conditional branching to create multiple paths 
through the loop which branch back together at the end of the loop body. The merging of these paths 
makes instruction scheduling more difficult. The inner loop of the running example demonstrates this 
problem. 

The superblock transformation alleviates this problem. It transforms a directed acyclic subgraph of the 
flow graph containing a single entry block into an extended block which can be easily scheduled. 

The transformation is simple. If there is a block B in the directed acyclic subgraph with two predecessors, 
then make a separate copy of B and the subgraph with entry B for each of the predecessors. Repeat this 
until no block has multiple predecessors in the block. 

When should superblock formation be applied? It should be applied to inner loops containing branches 
that are frequently executed. There is a useful side effect of superblock formation. A single loop is 
changed into a nested set of loops. This gives new opportunities for optimization. 
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Index 

A 

Abnormal edges, 114-115, 167, 234 

critical edges, 178 
definition, 277 
LIMIT phase, 299-300, 302, 304, 313 
partial redundancy elimination, 277-278 
store operations, optimization of, 331 

Abstract syntax tree, 18, 21-24, 94, 98. See also Tree, walk of 

for A = B + C * (B+A), 100-101 
fetch of local variable in, 105 
translation into flow graph of, 24-29 

Addition, 100, 101, 205, 214-215 

Address graph, 160-161 

Addresses, 20 


absolute, 413, 414 
computation, 159-161 
differentiation, 21, 23 
flow-sensitive information, 162-163 
invariant expressions, 207 
modification of, 162 relocation, 413 
variables whose addresses are taken, computing set of, 157-158 

Addressing arithmetic, and instruction elimination, 139 

Aho, A. V., 91 
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Algebraic identities, 28-29, 31, 94, 189-190 

list of, 137-140, 145 

simplification of, 139, 140 


Algebraic simplifications, 190-192, 227, 230 

Alias analysis, 34, 139, 147-164 


constant propagation and, 203-204 
dependence analysis, 151 
direct modification, 155-156 
dominator-based optimization, precise modification information for, 159-161 
flow graph, modification information used to build, 157-158 
flow-insensitive analysis, 150 
flow-sensitive information improved by optimization, 162-164 
Fortran EQUIVALENCE statement, use of, 157 
heap allocation operations, tags for, 158-159 
indirect modification, 156 
interprocedural analysis, 151 
level of, 150-151 
local expressions, including effects of, 161-162 
modifies relation, 120, 151-153 
tag table, building, 154-155 

Allen, Fran, 3 

Allocation instructions, 163 

Alpha processors, 47-48, 99, 301, 421 335-336 


caches, 336 

multiply instruction on, 362 

scheduling, 338, 372, 376 


Ancestor nodes, 205-206 

Anchor, trace, 346, 348 

AND operator, 108-109, 149, 301, 364 

ANSI C language, 149, 158-159 

Anticipated set, 120 

Anticipation 


computing, 122-124, 131-132 

definition, 121 

moving store operations, 284, 286 

operands, 270 

proof of equations, 425-427 
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temporaries, 255, 270 (See also ANTIN; ANT-LOC) 


Antidependence, 241, 242, 358 

ANTIN, 258, 276, 277, 425-427 

ANTLOC,2 256, 264, 273-274, 280, 292 

ANTOUT, 425-426 

Arrays 


analysis of expressions, 20 

flow-sensitive information, 163 

initialization, 112 

interprocedural analysis, 35 

pointers for indexing, 12-13 

subscripted, 98-99, 242-244 

symbolic references, 20 

tags, 154, 155 


Assembly file, generation of, 419-420 

Assembly language, 16, 95 

Assignment nodes, 21 

Assignment statements, 101, 112 

Atomic tags, 155 

Availability 


computing, 131-132 

definition, 126 

moving store operations, 284, 286 

temporaries, 255 


Available set, 120, 375-377 

Available-expression table, 189-190, 192 

AVLOC, 280, 281 

AVOUT, 256-257 


B


Back edges, 68, 81 

BackwardState attribute, 370-371, 383 

Bala, V., 366, 367 Ball, T., 346 

Beaty, S., 345 

Benchmarks (code samples), 6, 7 

Bin packing, 58, 388-389 

Binary_Instruct procedure, 107 
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Bit vectors, 91, 128, 130 

Block scheduling, 339-340 


definition, 337 
limited to single block, 55 
multiple blocks, 344 (See also Traces) 
operations performed, 339-340 
superscalar processors, 337 

Block_End nodes, 358, 360-361, 378 

BlockList work list, 199 

Blocks, 95-96 


boundaries of, 360-361, 378, 389, 390 
building flow graph with, 103 
control dependence, 77-80 
creating, 103, 111 
deleting empty, 47 
destination pairs replaced with fall-through values, 48 
dominance, 70-74 
elimination, 202 
extended, 339-340, 344-345 
insertion, 102-103 
IR, 16-18 
multiple, 350 
peephole optimization, 302-303 
register pressure in, 317-319, 323-324, 326-329 
reordering and combining, 112 
simulating execution of, 119, 200 
starting, 103 
structure of, 112 
subscripted array reference, 98 

Block_Start nodes, 358, 360-361, 378 

Boolean equations, 262 

Boolean matrix, 66, 363-366 

Boolean values, 108, 195 

Boolean variables, 122-126 

Bottom value, 141 

Branches 


between blocks, 16-17 
in extended blocks, 345 
out-of-order execution and, 386-387 
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into traces, 344 

useless, 57 


Branching instructions, 16, 57, 95, 97-98, 102, 112, 194, 251 

conditional, 200, 202, 417-418 

unconditional, 104, 417-418 


Branching operations, 102, 336 

Branching statements, 98, 107, 345 

BREAK statement, 108, 247 

Briggs, Preston, 91, 389, 391, 393 


C language, 6, 114, 118, 193, 422 

characteristics of, 12-13 
data repetition in, 112 
formal parameters, rules for, 148 
function variables, 234 
in-line expansion, 238 
integer overflow, 143 
modification information, 158-159, 163 
switch statement, 65 
varying value, 197 

C++ language, 159, 422 

Cache 


Alpha processor, 336 

flushing, 128 

referenced values in, 35-36 

usage, 246 


Call graphs, 64, 233-234 

Called procedures, 238, 239-240 

CalleeSave/CallerSave registers, 398 

Calling procedures, 239-240, 397-398 

Case statement, 65, 106-108, 195, 236, 237 

Chain-linked hash table, 190, 307-309 

Chaitin, G. J., 4, 310, 313, 314, 391-393, 399 

Chow, F., 290 

Cloning procedures, 239 
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Coalescing. See Register coalescing 

Code generation, 5-6, 13, 24, 47 


for flow graph operation, 139-141, 143 

lowering, 99 

pipeline architecture and, 54 

standard single-pass technique, 18 


Code lowering, 16, 98-100, 145 

global optimization phase, 37 
instructions prior to instruction scheduling and register allocation, 47-49 

Code motion, 20, 32, 55-56, 187, 188 

out of loops, 193 

techniques for, 42-46 


Code samples, 6, 7 

COLLAPSE procedure, 356 

COMBINE PRED function, 368 

COMMON blocks, 112, 154-157 

COMPASS compilers, 3, 104, 115 

Compile time, 412 

Compiler structure, 12-63 


back end, 5-6, 297 

dependence optimization, 35-37 

dominator optimizations (See Dominator optimizations) 

flow graph, building (See Flow graphs) 

front end, 18, 21-23, 422-423 

global optimization (See Global optimization) 

instruction scheduling (See Scheduling) 

interprocedural analysis (See Interprocedural analysis) 

limiting resources (See Limiting resources) 

object module, forming of, 21, 63 

outline of, 13-21 

register allocation (See Register allocation) 

rescheduling, 62-63 


Computational instructions, 118 

insertion on impossible edge, 277 

moving, 251, 278 
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COMPUTE_THROUGH procedures, 321-322 

Conditional branching, 10, 59, 198 


destination pairs replaced with fall-through values, 48 
edges, 114 
expressions, 108-109 
instructions, 97, 103-104 
replacement by unconditional branches, 190-192 
simulating, 197-198 
superblock formation, 248 

Conditional branching instructions, 200, 202, 417-418 

Conditional branching statements, 220-222 

Conditional expressions, 102, 109-111, 192-193 

Conditional jump instructions, 417-418 

Conditional move instructions, 335 

Conflict graphs, 298, 389, 391-392 


computing, 306-312, 314 

conflict matrix, 307-309, 394 

construction, 309-312 

definition, 306 

local, 403-404 

nodes removed from, 394 

partial, 310-311 


Constant folding, 29, 31, 46, 139, 192, 227. 301. See also Constant propagation 
Constant propagation, 31, 39, 163, 188, 189, 193-204, 236 

alias analysis information, 203-204 

arithmetic, representing, 194-195 

arithmetic, simulating, 195-197 

conditional branches, simulating, 197-198 

flow graph, simulating, 198-202 

global, 139 

induction variables, identification of, 202 

initialization of, 200-201 

null pointer checks, elimination of, 202-203 

zero-iteration, modification of test for, 193 


Constants, 35, 95, 141, 192, 196 

equivalence of, 141 

loading into temporaries, 137 
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for load/store operations, 100 

multiple loads of, 193 (See also Constant propagation) 

multiplication by, 99, 290-293 

offsets, 155 

operands, 16, 107 

subscripts, 155 


Control dependence, 77-80, 220, 221 

Control flow, 98, 100, 234, 390-391 

Converging paths, 167-170 

Cooper, Keith, 4, 232, 238, 395 

Copy operations, 374 


on abnormal edges, 299-300, 304 

elimination, 279-280 

for expression temporaries, 116-117 

flow graph computations, 121 

formal temporary table, 152 

global optimization, 252-269 

inserting, 238 

killing, 288-289 

limiting resources and, 296 

loop invariance, 205 

modification, 162 

moving, 250-251, 288-289 

moving store operations and, 284, 285 

peephole optimization, 304-306 

replacing by equivalent, 176-186 

tags for, 153 

temporaries as destinations of, 116 


Copy propagation, 29 

Critical edges, 113-114, 178 

Critical instructions, 361, 370 

Critical path information, 344 

Cross compiler, 138 

Cross edges, 69 

Cytron, R., 168 


D


Data structures, 64, 94, 112. See also Conflict graphs; Flow graphs; Formal temporary table; 

Interference graphs; UNION/FIND 
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of branches taken, 188 

C language pointers, 163 

call graphs, 64, 233-234 

creation of, 413 

dependence graph, 242 

DEPENDS, 162 

dumps of, 423 

elimination of unneeded instructions, 140-141 

local information, computation of, 120 

pointers and, 203 

store operations, 284 

tags, 154, 203-204 

for value-numbering, 141-142 


Dead-code elimination, 20, 44, 137, 141, 173, 188, 197, 214, 219-222, 237, 291, 299 
Debugging, 415, 417 
Definition command, 414-415 
Definition(T) attribute, 176, 215, 227 
DEFS set, 352-355 
DELETE. See INSERT/DELETE transformation 
Deletion 

computations from flow graph, 121 

linked lists, 91 


DEPEND, 187 

Dependence analysis, 148, 151, 240-244 

Dependence graph, 55, 56, 242 

Dependence optimization, 20, 29, 35-37, 82 

Dependence-based transformations, 187-188, 244-246 

DEPENDS data structure, 162 

Depth-first search, 67-70 


dominator tree, 71-74, 339 

infinite loops, identification of, 82-83 

lifetime analysis of temporaries, 135 

loops, computing, 88 

multiple-entry loop identification, 83-85 

points-to set computation, 161 

single-entry loop, 81 

translating SSA to normal form, 183-184 


Dhamdhere, D. M., 288, 290 
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Direct modification, 155-156 
Directed edges, 16-17 
Directed graphs, 64, 65-67, 98. See also specific types of graphs 
Dominance frontier, 75-77, 168-172 
Domination 

multiple-entry loops and, 84, 85 

temporaries, evaluations of, 128 


Dominator optimizations, 18-19, 29-34, 187-231 

constant propagation (See Constant propagation) 
dead-code elimination, 219-222 
expression reshaping, 39 
flow-sensitive information, 163 
global optimization and, 37, 39 
global value numbering, 222-230 
induction variables, computing, 208-212 
local transformations used in, 137 
loop-invariant temporaries, computing, 204-208 
renaming temporaries, 189-192, 218-219 
reshaping expressions, 212-216 
storing information with optimizations, 192-193 
strength reduction, 39, 216-218 

Dominator relation, 70-74 

Dominator tree 


peephole optimization, 302, 303 
reassociation, 214-215 
redundant expression elimination, 189, 190 
scheduling, 372-373 
scheduling and, 339, 345 

Double-precision numbers, 279 

addition operation, 107 
constants, 195 
instructions for manipulation of, 95 
strength reduction and, 291 
tag size, 155 

Dreschsler, K. H., 255 

Dynamic programming, 10 
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Dynamic semantics, 101, 106-107 

Dynamic storage, 13 


E 

EARLIEST transformation, 255-261, 263-269, 321, 330-331\ 

abnormal edges, 277 
LATER computed from, 273 
LATERIN computed from, 273-275 
operands evaluated prior to related instructions, 271-273 
pseudo-code for, 273 

Edges, 96, 103, 234. See also Abnormal edges 

attributes describing, 112 
as Boolean matrix bits, 66 
classification in flow graph, 114-115 
conflict graph, 307-309 
control dependence and, 79 
depth-first walk algorithm, 67-70 
directed, 16-17 
directed graphs, 65-66 
dominance frontier, 76 
eliminating, 202 
executable attribute, 199-200 
impossible, 115, 277, 313 
infinite loops, elimination of, 83 
insertion of T evaluations on, 255, 276 
in interference graph, 358-361 
tail, head, dependence of, 358-360 
undirected graphs, 66-67 

Elimination. see Redundant expressions, elimination of 
Entry block, 80, 86, 96, 113 
Entry node, 17-18, 65, 67 

dominator computation, 73-74 
moving copies toward, 288, 289 
moving STORE instructions toward, 281-284 

Epilogue instruction 

flow graph, 96-97 
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loop, 385-386 

Equivalence relations, 64 

EQUIVALENCE statement, Fortran, 148, 157 

Error file, generation of, 420 

EVAL operation, 354-356 

Excess_Pressure set, 323-324, 326 

Executable attribute, 199-200 

Exit block, 80, 96, 113 


anticipation, computation of, 131-132 

infinite loops and, 82-83, 115 

loops and, 86 


Exit node, 17-18, 65 

moving copies toward, 288 
moving STORE instructions toward, 281-282, 284-288 
postdominators, 74 

Exit operations, 234 

Expression temporaries, 105, 110, 116-117 


instructions killing, 117, 120 

instructions modifying, 117-118, 120 

modification of, 147 

renaming, 219 


Expression tree, 95, 115-117, 120, 147 

instructions in, 249-251, 278 

reshaping expressions in, 215-216 


Expressions, 21, 94 

addition and subtraction of, 160 
branching operations, to determine, 102 
conditional, 109-111 
conditional branching, 108-109 
conditional expression as operand of, 110 
elimination of redundant, 249 (See also Partial redundancy elimination (PRE)) 
generated by compiler, 145 
global optimization, 252 
independent optimization of, 117 
moving out of loops, 251 
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operands of, 101-102, 270-273 

reshaping, 37, 39, 187, 212-216 

simplification, 189 

tree-walking procedure for, 106-107 

used as statement. 102 


Extended blocks, 339-340, 344-345 


F 

FARTHEST transformation, 286 

FAT algorithm, 389, 404-410 

Fetch, 2 


computation, 100 

of local variable in abstract syntax tree, 105 

node, 21, 23 

subscripted variables, 24 


FIND. See UNION/FIND 

Fischer, C. N., 64 

Fisher, J. A., 344 

Floating point, 335-336 


addition functional unit, 364-366 

addition operation, 107 

algebraic simplification, 138 

computation, 9-10 

divide instructions, 57, 335, 362 

manipulation instructions, 95 

multiplication functional unit, 364-366 

operations, 55, 56, 240 

registers, 51, 60, 316 

rounding mode. 138 

temporaries, 209 


Flow graphs, 17, 94-136, 162. See also Static single assignment (SSA) form 


accumulation for each procedure, 34 

building, 18, 24-29, 100-111, 137-144, 157-158 (See also Intermediate representation (IR)) 

critical edges, 113-114 

as directed graphs, 64, 65 

edges, classification of, 114-115 

global anticipated information, 121-124 
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global available temporary information, 126-132 
global optimization of, 29 
global partial redundancy information, 124-126 
higher level operations classes in, 24-25 
instruction structure, 113, 251\ 
lifetime analysis, 132-136 
local optimization information, 117-120 
lowering of, 20, 98-100 
modifies relation, representation of, 151-152 
procedure storage method, 94-98 
simplifications, 25, 28-29 
simulation, 198-202 
structure, 112-115 
support procedures to manipulate, 102-105 
temporaries, classification of, 115-117 

Flow Value context, 102 
Flow-insensitive analysis, 150 
Flow-sensitive information, 162-164 
Flow_walk procedure, 108-109 
Formal temporary table, 25, 104-105, 107, 142, 152, 219 
Fortran, 6, 36, 65, 98, 114, 118 

characteristics of, 13 
COMMON blocks, 112, 154-157 
EQUIVALENCE statement, 148, 157 
function arguments, 234 
in-line expansion, 238-239 
modification information, 148, 149, 151, 156-157 
subroutine, 12-13 

Fortran/Level H compilers, 3, 5 

Forward edges, 69 

ForwardState attribute, 370-371, 383 

FreeRegisters set, 406 Freudenberger, S. M., 344 

Front end, compiler, 18, 21-23, 422-423 

Function calls, 98, 220, 234, 236 


lowering, 99 

Function units, for instructions, 361-366, 378 

G 
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Generators attribute, 84-86, 88 

Global anticipated information, 121-124 

Global available temporary information, 126-132 

Global constant propagation, 138, 188 

Global information 


definition, 117 

live temporaries, 133 

partial redundancy, 124-126 


Global optimization, 20, 29, 37-46, 249-295. See also Dominator optimizations 

abnormal edges, processing, 276-278 
components, 187-189 
copy instructions, moving, 288-289 
expression and its operands, relation between, 270-273 
impossible edges, processing, 276-277 
infinite loops and, 82 
lazy code motion, temporaries, 273-276 
list of, 20 
load instructions, moving, 278-281 
lowering, 37 
main structure, 252-253 
redundant expression elimination, 38, 39 
reshaping, 37, 39 
store instructions, moving, 281-288 
strength reduction, 38-42, 290-295 
theory and algorithms, 253-269 

Global register allocation, 60, 311, 390-400 

assigning registers to temporaries on stack, 395-397 
building stack of temporaries to color 394-395, 407 
heuristic, description of, 391-392 
overall algorithm, 394 
physical register, choice of, 397-398 
spilling, implementation of, 399-400 
when heuristic does not work, 392-394 

Global scheduling, 339 

Global temporaries, 174 


register allocation, 297-298, 389-390, 406-407 
in SpillRegisters, 400-401 
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Global value numbering, 222-230 

Global variables, modification of, 235 

Goto statements, 111 

Graph coloring, 58-60, 388-389, 391-392, 406, 407 

Gross, T., 4, 344 


H


Hall, M. W., 232, 234, 245 

Hardware bypasses, 57 

Hardware simulation, 363-372 

Heap tags, 154, 155, 158-159 

Hendron, Laurie, 4, 389 

High_Pressure set, 323-324, 326 

Host machine, 422 

Huber, B. L., 345 


IDEFS set, 339, 361, 372-373 


computing, 351-356 

definition, 350 


IDOM set, 71, 73, 350-352, 361 

If statement, 103, 345 

Immediate dominator, 71, 72 

Impossible edges, 115, 276-277, 277, 313 

Indirect modification, 156 

Induction candidates, 208 

Induction sets, 210-212 

Induction temporaries, 208-212, 217-218, 252 

Induction variables, 202, 208-213, 291 

Infinite loops, 65, 82-83, 115 

Initiation interval, 379, 381-386 

Inlining procedures, 236-239 

Input dependence, 241, 359 

Input operands, set of, 95 

Input/output (I/O), 2, 114, 220 

INSERT/DELETE transformations, 266-269, 272 


abnormal edges, 277 
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computation of, 273 

moving load operations, 278 

store operation, 286-287 


Instruction dependence graph. See Dependence graph 

Instruction interference graph. See Interference graph 

Instruction sequence, 94-95, 112 

Instructions 


adding to flow graph, 103 
algebraic identities applied to, 140 
algebraic transformation to decrease, 137-138 
blocks as lists of, 112 
components, 16, 95 
constants, operands as, 194 
critical, 370, 3612 
dead, 188 
elimination of, 137, 139-141, 208 
equivalence of, 139-141 
evaluating, 201, 284-286 
fetching, 2 
folding constants into (See Constant folding) 
insertion, 102, 107 
issued, 334-335 
killing copy operations, 288-289 
killing store operations, 282-283, 284-285 
killing temporaries, 117-120 
latency, 337 
moving, 55-56, 249, 345 
operands of, 299, 302 
out-of-order execution, 335 
peephole optimizations, 46 
priority of, 361-363 
representing procedures as, 94 
scheduling (See Scheduling) 
simple, 24 
simulating, 199-200 structure of, 113 
value numbering, 137, 140 

Integer add operations, 107, 421-422 

Integer arithmetic, algebraic simplifications of, 139 

Integer constants, 195 

Integer instructions, 56, 95, 240 

Integer multiply instructions, 57, 304, 362 
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Integer operations, 55 


copy operation, peephole optimization, 304-306 

distributive and associative laws applied to, 187, 189, 213-216 


Integer overflow, 143 

Integer registers, 51, 60, 316 

Integer temporaries, 96 

Integer units, 335-336, 364-366 

Integers 


array of, 141 

implementing sets of, 90-92 

tag size, 155 


Interference graphs, 343, 356-362, 374, 378. See also Conflict graphs 

Intermediate representation (IR), 13-18, 98, 142 

Interprocedural analysis, 4, 19, 29, 34-35, 113, 151, 201, 232-235 

Invariant-code identification, 207 

Irreducible loops, 81, 83-86, 88-89 

IUSE set, 339, 351-356, 361, 372 


J


Join sets, 168-170 

Jump-table instructions, 198 


K


Kennedy, K., 4, 37, 232, 234, 240, 245 

Killdall, G. A., 5 

Kind field, 154, 195 

Knoop, J., 255, 290 


Labels 

goto statements, 111, 112 

program, 16 


Language semantics, rules of, 101, 280-281 
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Language standards, 5-6, 101 

Larus, J. R., 346 

LATER transformation, 273-275 

LATERIN, 262-269, 273-276, 292 

LATEST transformation, 261-269, 273 

Lazy code motion, 251, 255 


implementation for temporaries, 273-276 

moving copy operations, 289 

moving store operation, 283-284, 286 

strength reduction and, 290-295 


LeBlanc, R. J., Jr., 64 

Lewis, H. R., 350 

Lifetime analysis. See Live/dead analysis 

Limiting resources, 20, 46-54, 59, 219, 296-300, 296-333 


combined register renaming and register coalescing, 296, 298, 299-300, 312-316 
conflict graph, computing of, 298, 306-312 
peephole optimization, 296, 298-306 
register pressure, computing of, 316-319 
register pressure, reducing, 297, 298, 319-322 
scheduling and, 340, 341 
spilling, 322-332, 394 

Linked lists, 66, 91, 112, 176, 307 
Linker, commands to, 413, 414 
Live temporaries, 132-136, 174, 321-323, 326-328. See also Register pressure 

across block boundaries, 389 

in blocks, allocation of, 400 

classification of, 401-403 

in conflict graph, 309-311 

definition, 133 


Live/dead analysis, 132-136, 309- 311, 318-319, 327 

Load constant instructions, 139, 140, 160, 194, 202 

LOAD instructions, 56-57, 279, 329-330, 335 


edges, dependencies of, 359-360 

equivalence of, 141 

instructions for, 100 

IR, 15 

killed, 250, 332 
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loop invariance, 205 

modifies relation and, 150-151 

out-of-order execution and, 386-387 

representation in expression tree, 147 

tags, 207 


Load integer constant (iLDC), 96 

Load integer value from static memory (iSLD), 96 

Load operations, 10, 21, 55 


address computation, 160 
Alpha processors, 99, 336 
array, 99 
avoiding, 245 
Compute Priority subroutine, 399-400 
constants, 137 
formal temporary table, 152 
global optimization, 253 
killed by store operations, 278, 280 
modification, 148-150, 162 
moving, 42, 187, 249-250, 252, 278-281, 284, 320, 321, 329, 331-332, 341 
normal, information on, 24 
optimizing placement of spilled LOADs, 331-332 
optimizing time to perform, 20 
peephole optimizations and, 301 
register allocator, insertion by, 298, 299 
register pressure reduction and, 319-321, 323-332 
scheduling, 338 
spilling and, 53-54, 59, 63, 370, 392-393, 401 
tags for, 153-154 
temporaries as destinations of, 116 
values of variables, 96 

Load time, 412 
Local expressions, 161-162 
Local information, 117-120, 133 
Local optimizations, 137-146 
Local register, redefinition of, 60 
Local register allocation, 399, 411 
Local register register allocation, 59, 61 
Local temporaries, allocation of, 105, 120, 389-390 
Local variables, 105, 116 
Logical AND/OR/NOT operators, 108-109, 149, 196, 301, 364, 366, 367 
Longjmp operations, 114, 234, 277 
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Loop distribution, 246 

Loop tree, 86-90, 317-318 

Loop unrolling, 55, 246-248, 338, 341-343, 378, 384 

Loop-invariant temporaries, 204-208 

Loops, 80-90 


blocks in, algorithm for computing, 81 

computing, 88-90 

definition, 80 

disjoint, 82, 86 

generators attribute, 84-86, 88 

infinite, 82-83 

instructions, order of generation of, 101 

moving code out of, 7, 126 

moving inside procedure, 239-240 

multiple-entry, 81, 86, 88-89 

nested (See Nested loops) 

reducing pressure in, 323-324 

restructuring, 187 

scheduling, 341-344 

single-entry, 80-81, 83, 86, 88-89 


Lortho, B., 64 

Lowering. See Code lowering 

Lowney, P. G., 344, 345 


M


Machine state, 363-370, 378 

Massive Scalar Compiler Project, 4, 96, 162, 277, 423 

McKeeman, W. M., 190 

McKinley, K. S., 245 

Memory 


improving pattern of references to, 35-37 

reducing references to, 35 


Memory allocation operations, 163-164 

Memory loads, 115-116 

Memory location (MEMORY(T)), 329-330, 393 


modification, 147 

register pressure reduction and, 319-320 
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tags for, 153 


MOD (modified variables), 34 

Modification, temporaries, 120, 148-156, 161-162, 278. See also Alias analysis 

Morel, Etienne, 5, 42, 255 

MOTION, 187 

Multiple entry points, for procedures, 65 

Multiple-entry loops, 81, 83-86, 88-89 

Multiple-instruction sequence, 99 

Multiplication, 55, 57, 196, 214-215, 335 


loop invariance, 205 

modifying to repeated additions, 187, 189, 208 

strength reduction, 213 


N


NaN (Not a Number), 138 

Nested loops, 81-82, 89, 95 


constant propagation algorithm, 202 

dominator-based optimization, 192-193 

multiple-entry, 85-86 

unroll and jam transformation, 35 

varying, computation of, 206-207 


Nodes 

abstract syntax tree, 21 

depth-first search, 70 

directed graphs, 65-66 

dominator computation, 73-74 

integers assigned to, 66 

predecessor, 66 

successor, 66 

that return a value, 106-107 

undirected graphs, 66-67 


Normal edges, 114, 277 

NoValue context, 102 

NoValue_Walk procedure, 107-108 

Null pointer checks, 193, 202-203 
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O


Object module, 21, 63, 412-420 

Offset tag field, 155 

Operands, 16, 101 


address expressions and, 20 
of branching instructions, 98 
computing, 64 
conditional expressions, 109 
constants, 95 
definitions of, 299 
evaluation, effect on expression of, 117 
evaluation prior to related instructions, 270-273, 302 
expression, 101-102, 270-273 
expression, relationship with, 270-273 
Induction candidates, 208 
of instruction, 140 
of language construct, 101 
moving, 115-116, 117 
NaN (Not a Number), 139 
renaming, 180 
tags treated as, 153 
temporaries, 25, 95 
undefined value, 168 
use of, 57, 143 
variant, value for, 207 

Operands(I), 113 
Operation codes (opcodes), 16-17, 95, 96, 105, 249, 372-373 
Optimizing compilers 

definition, 1-2 

history of, 2-4 

recent developments, 4-5 


OR operator, 108-109, 364, 366, 367 

OUT set, 350, 356 

Out-of-order execution, 335 

Output dependence, 241, 358-359, 2242 

Output operands, set of, 95 


P 
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Packets, 54-55, 57, 112, 334-335, 372 

Partial anticipation 


definition, 124 

solving for, 128-130 


Partial availability 

definition, 126 

solving for, 128, 130-131 


Partial ordering relations on sets, 64 

Partial redundancies 


global information, 124-126 

store motion and, 44 


Partial redundancy elimination (PRE), 42, 117, 188, 189, 219, 251, 252, 254-255, 277-278, 282­
286 

strength reduction by, 290-295 

Partition, temporaries, 178-180, 218, 223, 311-316 

Partition sets, 64 

Pascal language, 65, 234 

Pattern matching, encoding of, 144-145 

Peephole optimization, 31, 46, 56, 189, 227 


copy operations, 304-306 

LIMIT phase, 296, 298-306, 312 

local transformations used in, 137 

rescheduling due to, 62 

scheduling and, 340, 341 


Phases, 13, 18-21. See also specific phases 

abnormal edges, 299-300, 302 

arithmetic of, 197 

constants, operands as, 194 

definition, 165 

determining value of, 199-201 

eliminating, 173-174, 179, 192 

eliminating copies from, 312-315 

evaluation of, 167 


file:///D|/Convert/Building_an_Optimizing_Compiler/book-index.html (24 of 38) [10/17/2003 1:08:09 AM] 



Building an Optimizing Compiler:Index 

global value numbering, 224-230 
induction candidates, 208-212 
insertion points, 167-168, 171, 172-174 
loop invariance, 205 
modification, 202 
peephole optimization, 302-305 
replacing by equivalent copy operations, 176-186 
temporaries used in, 174-175 

Physical registers, 60 

available, 296, 297, 319, 340-341 
choosing, in register allocation, 397-398 
multiple temporaries packed in single, 222-223 
temporaries replaced with, 58-61 

Pipeline architecture, defined, 54 

Pipelined processors, 334, 335 

Pointers, 6, 12-13, 24, 101, 118 


alias analysis, 20, 24, 203 
heap allocation operation, handling from, 163-164 
modification information, 163 
modifies relation, effect on, 149 

Points-to set (PT(x)), 159-161, 162 

definition, 159 

Postdominance, 74-75 

control dependence and, 77, 78 

definition, 74 


Postdominator block, branches redirected to, 222 

PQCC project, 4 

Predecessor (PRED) attributes of blocks, 113-114 

Predecessors, 66 


availability, equations for, 127 
dominators, 71 
multiple-entry loops and, 84 
partial anticipatability, computation of, 128-129 

PredLeft attribute, 374-376 
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Pressure attribute, 326 

Priority attributes, 362-363, 376-377, 400 

Procedure calls, 19, 34, 107-108, 141, 201, 220, 233, 234-235, 251 


interprocedural analysis, 151 

LOAD instructions killed by, 250 

lowering, 99 

modification of tag or temporary, 160 

tags as Attributes of, 154 


Procedures. See also Interprocedural analysis 

components of, 94 

storage of, 94-98 


Profitability (temporary insertion), 254, 258-260, 265-268 

Program flow graph, 70 

Program labels, 16 

Prologue pseudo-instruction, 96-97 


R


Range checks, simplification of, 193 

Ready set, 375-376 

Reassociation, 214, 219 

Reduced instruction set computer (RISC) systems, 2, 4, 47, 95, 240, 421 


branches in, 417 

condition codes, 359 

dependence optimization, purpose of, 35-37 

high-performance compilers for, 4 

instruction initiation, 54-55 

multiple instruction-issue character of, 55 

out-of-order execution, 386 

pipeline architecture, 54 

processing by, 334-335 


Reducible loops. See Single-entry loops 

Redundant branches, 16 

Redundant computations, 7, 18, 32 

Redundant expressions. See also Partial redundancy elimination (PRE) 


elimination of, 29, 38, 39, 96, 187-188, 214 

increasing number of, 42 
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scheduling, resulting from, 373 

Redundant temporary evaluations, 128 
REF (referenced variables), 34 
Register allocation, 4, 13, 20-21, 46-47, 58-62, 279, 298, 370, 388-411 

bin packing, 388-389 
constraints, 388 
direct graph implementation, 66 
FAT algorithm, 389, 404-410 
global (See Global register allocation) 
graph coloring, 388-389, 391-392, 396, 406, 407 
interference relationship, 64 
lifetime analysis of temporaries, 135 
LIMIT phase preparation for, 48-54 
local, 399, 411 
loop nests used during, 82 
optimal allocation, 390 
scheduling and, 46, 338, 340-341, 370, 375 
single-pass, 389, 408-409 

Register coalescing, 48, 296, 298, 299-300, 312-316 

conflict graph and, 311-312 

implied, 316 

local form of, 301, 316 

scheduling and, 375 


Register copy operations, and value numbers, 142 

REGISTER phase, 297-298 

Register pressure, 323 


in block, 317-319 

computing, 50-51, 316-319 

definition, 49-50, 317 

maximum, 317, 401 

multiple register sets, 316, 319 

reducing, 297, 298, 319-322, 323-324 

scheduling and, 341, 376, 377 

transformation, 49-54 

updating, 326 


Register renaming, 296, 298, 299-300, 311-316 

Register set, 51 
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Register spilling. See Spilling 

Register stack, temporaries on, 392-397, 399 

Registers 


input to instructions, 16 
for load/store operations, 100 
modification of, 113 
physical, 20 
reduction of number needed, 20, 296, 298 
target, 16, 110 
temporary, 397 
using as few as possible, 388 

Register-to-register copy operations, 278 

address computation, 160 

removing, 47, 48 


Reif, J. H., 3, 350 

Relational tests, 188 

Relocation, addresses, 413 

Renaming. See also Register renaming 


adding optimizations to process, 189-192 
algorithm, 174 
operands, 180 
temporaries, 48, 174-176, 179-180, 218-219, 237-238, 384, 401 

Repeat nodes, 112 

Rescheduling, 62-63, 298, 340, 341 

RESHAPE, 187, 213 

Resource information, precomputing of, 350-356 


definition and use information, 350-351 

Rosen, B., 288 Rubin, N., 366, 367 

Run time, 412-413 


computation, 161-162 

stack, tags for, 154, 155 


Ruthing, O., 255, 290 

Ryder, B. G., 234 
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S


Safety (temporary insertion), 254-255, 258-260, 265-268 
Scalar optimization, 4 
Scalar replacement, 35, 245-246 
Scalar variables, 158 
Schedule_Importance procedure, 376-378 
Schedule_Packet procedure, 375 
SchedulePackets, 373-374 
Scheduling, 4, 20, 46-47, 54-58, 62-63, 297, 334-387. See also Packets; Traces 

algorithm, 372-378 
example, 341-344 
hardware simulation, 363-372 
interference graph, 356-361 
LIMIT phase preparation for, 48-54 
multiple blocks, 344 (See also Traces) in nonsequential order, 370 
out-of-order execution, 386-387 
priority of instructions, computing, 361-363 
register allocation, effect on, 338, 340-341 
register allocation and (See Register allocation) 
resource information, precomputing of, 350-356 
sequence of phases involving, 340-341 
simultaneous initiation of instructions, 54-55 
in single block, 55 
software pipelining (See Software pipelining) 
structure of instruction-scheduling phase, 339-340 
superblock formation, 248 
techniques, 55-56 
types of schedulers, 337 

Schwartz, Jack, 3 

Scratch registers, 60 

Scratch_table, 226, 230 

Semi-dominator, 72 

Sethi-Ullman register numbering, 94 

Setjmp/longjmp operations, 114 

SETL newsletters, 3 

Shift operations, 335-336 

Shortjmp operations, 277 

Simple procedure-level optimization, 239-240 

Simpson, L. Taylor, 224 

Single-entry loops, 80-81, 83, 86, 88-89 
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Sites, Richard, 4 
Size context, 102 
Size tag field, 155 
Small-constant immediate operands, 47 
Software pipelining, 37, 56, 240, 334, 335, 339, 365, 378-386 

definition, 337 
dependence test, 243 
dependence-based transformations, 244 
epilogue, formation of, 385-386 
execution of program, effect on, 336-337 
initiation interval, estimating, 381-382 
limiting conditions, 381-382 
loop scheduling, 341-344 
loop unrolling and, 247, 384 
nonsequential scheduling, 370 
prologue, formation of, 384-385 
renaming temporaries, 384 
reverse scanning of instruction schedule, 368-370 
single iteration, schedule for, 382-383 

Source language, 422-423 

modifies relation, effect on, 149, 151, 158-159 
semantics, 151 
trace, effect on, 348 

Source languages, 6, 7 

characteristics of, 12-13 

front ends for, 18, 422-423 


Source program, 13 

execution of, 18 
representation, 14-18 
representation of, 5-6 
storage methods, 15 
translation into abstract syntax tree, 18, 21 

Spike approach, 423-424 

Spill code, 47, 62-63 

Spill instructions, optimizing placement of, 329-332 

Spill points, 393 
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choosing temporary to spill, 324 

computing, 322-329 


Spilling, 50, 51-54, 59, 63, 320, 392, 394, 396, 399-400, 401, 410-411 

avoiding in register allocation, 388 

instructions, 370 

pipelining and, 384 


SpillRegisters, 393, 396, 399, 400-401 

Stack, 190, 394-395, 407-408 


moving store operations, 285-286 

register stack, temporaries on, 392-397, 399 

tags, 154, 155 

translating SSA to normal form, 182-183, 185-186 

uninitialized variable or data structure on, 280-281 


Stadel, M. P., 255 
Stalls, processor, 334, 337-338 
Start_block procedure, 103, 111, 190 
StartTime(T) attribute, 405-406 
State, machine, 363-370, 378 
Static single assignment (SSA) form, 3, 5, 95, 165-186. See also Dead-code elimination 

creating, 167-174 

definition, 165 

global value numbering, 222-230 

LIMIT phase, 298-300, 312-313 

modification, 163 

modifies relation, representation of, 151, 152-153 

redundant computations elimination, 32 

redundant expression elimination, 189 

register renaming/coalescing, 312-313 

renaming temporaries, 174-176 

translating to normal form, 176-186 

VALUE transformations, 187-189 


Steensgaard,1 B., 161 

Steffen, B., 255, 290 

Storage 


data, 112 

flow graph, 139 
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procedures, 94-98 
reference, modification of, 161-162 
subscripted variables, 24 

STORE instructions, 56-57, 329, 331 

edges, dependencies of, 359-360 
LOAD instructions killed by, 250 
modifies relation and, 150-151 
moving, 251, 278, 281-288, 320-321, 329 
multiple outputs of, 207 
spilling and, 370, 401 

Store operations, 10, 21, 55, 278 

address computation, 160 
array, 99 
avoiding, 245 
Compute Priority subroutine, 399-400 
formal temporary table, 152 
global information, 286-287 
global optimization, 252-253 
instructions for, 100, 279 
killing, 282-283, 284 
load operations killed by, 278, 280 
load optimization and, 280 
loop invariance, 205 
modification, 148-150, 155-156, 158, 162-164 
moving, 42-46, 187, 280, 341 
normal, information on, 24 
optimizing, for spills, 330-331 
optimizing time to perform, 20 
peephole optimizations and, 301 
register allocator, insertion by, 298, 299 
register pressure reduction and, 319-321, 323-326, 328-332 
spilling and, 53-54, 59, 63, 392-393 
tags, 153-154, 207 
temporaries as destinations of, 116 
value numbers and, 142 

STORE_ANTIN, 330 

STORE_ANTLOC, 284, 286, 330 

STORE_ANTOUT, 330 

STORE_AVIN, 330 
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STORE_AVLOC, 284, 286, 330 
STORE_AVOUT, 330 
STORE_EARLIEST, 331 
STORE_IN(T), 329, 330 
Store_modifies(T) attribute, 147 
STORE_OUT(T), 329, 330 
STORE_TRANSP, 284, 286, 330 
Strength reduction (SR), 6, 20, 32, 187, 188-189, 211, 216-218, 219, 249, 252 

in code motion, 42 

global optimization phase, 38-42 

integer multiplication, 213 

loop nests used during, 82 

by partial redundancy elimination, 290-295 


StrongARM processor, 421-422 

Strongly connected regions, 180-186, 211-212, 224-230 

Structure tags, 155, 156 

Structured statements, processing, 107-108 

Subroutine calls, 24-25, 114, 145 

Subroutines, 6 


expanding at subroutine call point, 145 

to test IR, 15 


Subscripted array reference, 98-99. 242-244 

Subscripted constants, 155 

Subscripted variables, 24 

Successor (SUCC) attributes of blocks, 113-114 

Successors, 66, 70, 115 


anticipation, equations for, 122, 125 

control dependence and, 77, 78 

partial availability, computation of, 130 

postdominators, 74 

trace, 346, 349-350, 376 


Superblock, 55, 60, 341 

formation, 248, 428 

traces, 349 


Supercomputers, 4 

Superscalar processors, 335, 337 
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Sweaney, P. H., 345 

Switch statement, 65, 114, 195, 236, 237 

Switches, and control dependence, 77-78 

Symbol node, 21, 101 

Symbol table, 18, 101, 190 


T


Tags, 153-162, 203-204, 207, 359 

Target machine, 100, 421-422 


instructions, 46, 47, 98 


Target register, 16, 110 Target(I), 113 

Targets, tags treated as, 153 

Tarjan, R. J., 72, 179 

Temporaries, 24, 55, 95, 116. See also Expression temporaries; Formal temporary table; Live 

temporaries; Partition, temporaries; Variable temporaries 


anticipation of, 121-124 

assigning to registers, 20-21, 51, 297-298, 316, 391 

available, 126-132 

classifying, 115-117, 401-403 

conditional expressions, 109-111 

constants, 137, 194 

constant_temporary(temporary) data structure, 141 

conventions for use of, 104-105 

defining instruction(temporary) data structure, 142 

definitions of, 174-176, 194, 339 

evaluation of, 132, 137, 165, 174, 208, 249-269, 298 

expression operand, value of, 101-102 

induction, 208-212 

instructions modifying, 113 

killing, 117-120, 135 

local variables, 105, 116 

loop-invariant, 204-208 

modifies(T) set, 120, 147 

mutually dependent, 180-186 

nonconstant values, 194 

NumNeighbors attribute, 309 

partial anticipation, 124-126 

queried during evaluation of instruction, 113 

redundant evaluations, 128 


file:///D|/Convert/Building_an_Optimizing_Compiler/book-index.html (34 of 38) [10/17/2003 1:08:09 AM] 



Building an Optimizing Compiler:Index 

renaming (See Renaming) 

replacing with physical registers, 58-61 

as resources, 359 

size of data, value of, 102 

spilling, 50, 320 

splitting, 59 

in static single assignment form, 152-153 

store_modifies(T) set, 147 

subroutines, expansion of, 145 

support procedures for, 104 

tags, 204 

transparent, computing of, 321 

undefined evaluation at Entry, 168 

undefined values, 194-195 

use of, 298, 327, 339, 350 

use points, 132 

uses of, 165, 174-176 

value_number(temporary) data structure, 142 

values of variables, 96 

variable, 105, 110 


Temporaries, evaluations of 

elimination (deletion) of, 263-269, 276 (See also INSERT/DELETE transformation) 

Temporary tag field, 154 

Then statement, 103 

Through(L) attribute, 321-323 

Top operation, 176 

Top values, 141 

Topological sort, 180-184, 224, 374 

Torczon, L., 232 Trace attribute, 348 

Traces, 56, 339-340, 343, 372-374 


anchor, 346, 348 

computing, algorithm for, 347-348 

criteria for choosing blocks in, 346 

definition, 337, 345 

disjoint, 346 

dominators, 346, 348-350 

interference graph nodes, 357 

resource information, precomputing of, 350-356 

scheduling backwards, 377 

size of, 346 
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successors, 346, 349-350 


Transformations. See also Phases 

decreasing references to memory, 35 

local, 137-146 

order of, 18-21 


TRANSFORM_COPIES, 289 

Translation process, 14, 24. See also Intermediate representation (IR) 

TRANSP, 278. See also STORE_TRANSP 

Tree. See also Abstract syntax tree 


dominator information, 72-73 

loop tree, 86-90, 317-318 

procedures, representation of, 94-95 


Tree, walk of, 67 


bottom-up, 101 

to build flow graph, 101-102 

dominance frontier, computing, 76-77 

flow graph, structure of, 105-111 

register pressure, determination of, 317-318 


Tree edges, 67-68, 70, 72 

Tree-oriented algorithms, 95 

True dependence, 241, 242, 358 

Two-pass assembler, simulation of, 416-417 


U


Ullman, J. D., 91 

Unary operations, optimization based on, 143 

Unconditional branches, 198, 220 


conditional branches replaced by, 190-192 

goto statement translated into, 111 


Unconditional branching instructions, 104, 417-418 

Unconditional jump instructions, 418 

Undefined values, 194-197 

Undirected graphs, 64, 66-67. See also Depth first search 

Union tags, 155, 156 
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UNION/FIND, 161, 179, 312-313, 314, 316, 352-355 
Unroll. See Loop unrolling 
Unroll and jam, 35-37, 246 
Use command, 415 
USE-DEF chains, 165 
Uses(T) attribute, 176, 227 

VALUE, 187-189 

Value context, of flow graph tree, 101-102 

Value numbering, 137-138, 140-142, 189-190 


global, 313-314 
modification, effect of, 157-158 
scheduling and, 372-373 

Value propagation, 29 

Value table, 372-374 

Value-numbering algorithm, 193 

Value_number(temporary) data structure, 142 

Value_representative attribute, 223-230 

Values 


bottom, 141 
concept of, 15 
constant, 18, 141 
differentiation, 21, 23 
expressions computing, 109-111 
latency, 337 
linked list of, 112 
nonconstant, 19 
in temporaries, tracing of, 137-139 
top, 141 
undefined, 168, 194-195 

Value(T) attribute, 194-195 

Value_table, 224-226, 230 

Value_Walk procedure, 108-109, 110 

Variable, address of, 96 

Variable temporaries, 105, 110, 116-120, 147, 162 

Variant(T) attribute, 205, 207 

Varying value, 195-197 
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Work-list algorithms, 132 


dead-code elimination, 220-222 

dominance frontier, computing, 171-172 

flow graph simulation, 198-202 

global optimization, 252-253 

induction candidate temporaries, finding, 209-210 

LATERIN computation, 274-275 

Live, computation of, 174 

partial anticipatability, computation of, 129 

points-to set computation, 161 

strength reduction, 293 
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