- 1[///////////////%

CQuick
Syntax
Reference

Mikael Olsson

1SS S S S SITITTTE -
Apress-

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

L

Apress*

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

About the Author ... ———————— xi
About the Technical ReVIEWErucsssmssssssssmssssssssassssssssassnsassnsnss Xiii
INtroduction........cccvsemmismmsesmns s —————— Xv
Chapter 1: Hello World.........cccuunmmmmmmmmsmmmmmmmmmmssssssssssmsssssssssssssssssnns 1
Chapter 2: Compile and Run..........cccinisemmmmnssssmsmmmmssssnmsssssssssnssssnns 3
Chapter 3: Variablesccccuummmmisanmmsssnmssssssssssssssssssesssssessssssssnsnssss 5
Chapter 4: 0peratorsccccummmssesssnnnmmmmmsssss s —————————— 15
Chapter 5: POINters......ccciumemmmmmsssansmmmssssnnnmssssssssssssssssssssssnsnsnsssnnns 19
Chapter 6: Arrayscccsssssssssssssmsssssssssssesssnsesssnsesssnsesssnsesssnnssssnnes 21
Chapter 7: Stringcccivnnemmmmnnnsemnmmmmsssnnmmssssnmsssssnessssssnnn 23
Chapter 8: Conditionalscccvsssemmmmnssssnnmmssssssnnmsssssssssssssssnsssssnnns 27
Chapter 9: LOOPS.....cuueeemmmisssnnnmmssssnssssssssnssssssssssssssssssnsssssssnnsssssnnns 29
Chapter 10: FUNCLIONSccccnninsemmmmnssssnnnmnssssssnmsssssssssssssssnsssssnnns 31
Chapter 11: Typedef........ccusmmmmssnmmmmmssssnnmmssssssnsmssssssnssssssssnsssssnnns 37
Chapter 12: ENUMccccevviiisemnmmmssssssnmssssssssmssssssssssssssssssssssssssssssnnns 39
Chapter 13: Structcccinmmnnn s —————— 43
Chapter 14: Union......ccccimmussemmmmmssssssmmsssssssmsssssssssssssssssssssssnsnsssssnnns 47
Chapter 15: Type CONVErsSioNSccccurusssensssssssssnsssssssssssssssssssssssnnns 49
Chapter 16: Storage ClassSesu.ccusssusmsssanssssanssssnnssssansssssnssssnnnss 51
ii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS AT A GLANCE

Chapter 17: Constants........ccccusemmmsmmmmssssmmssssmsssssmsssssssssssssssssssssnns 55

Chapter 18: PreproCessor.....ccccuuussemsmmsssssnsssssssansssssssansssssssnnsssssass 57

Chapter 19: Memory Managementccccusemmmmmsssensmmsssssssnnsnns 63

Chapter 20: Command Line Argumentscccccmmmmssensnmssssssssnsans 67

Chapter 21: Headersccciuuseemmmmssseesmmsssssssnmssssssssssssssnssnsssssnssnssans 69
INA@X..ceiiiiisnmnnnnssssnnnnsssssnnnmnssssnnnnnssssnnnnnssssnnnnessssnnnnnssssnnnnnsssnnnnnnssnnnns 73
iv

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

The C programming language is a general-purpose, middle-level language originally
developed by Dennis M. Ritchie at Bell Labs. It was created over the period 1969 through
1973 for the development of the UNIX operating system, which had previously been
written in assembly language. The name C was chosen because many of its features
derived from an earlier language called B. Whereas the B language is no longer in
common use, C became and still remains one of the most popular and influential
programming languages in use today.

Although C is a general-purpose language it is most often used for systems
programming. This includes software that controls the computer hardware directly, such
as drivers, operating systems, and software for embedded microprocessors. C can also be
used for writing applications, which run on top of system software. However, it has largely
been superseded in that domain by higher-level languages, such as C++, Objective-C, C#,
Swift, and Java. The features of these and many other languages are heavily influenced by
C, as can be seen in some of their names.

The development of C was a major milestone in computer science as it was the
first widely successful middle-level language for system development. The foremost
reasons for its success were that the language was concise, fast, and powerful. It offered
comparable speed to assembly with far improved usability. The high-level constructs
of the language allowed programmers to focus mainly on the software’s design, while
its low-level capabilities still provided direct access to the hardware when needed, as
assembly had done. Furthermore, the language is relatively simple to understand with
few keywords and what many consider to be an elegant syntax.

Another major reason for the success of C was its portability. Unlike assembly the
C language is platform independent. A standards-compliant C program can therefore
be compiled for a wide variety of computer systems with few changes to its source code.
Moreover, the C compiler was small and easy to port to different CPU architectures,
which together with the language’s popularity has made C compilers available on most
computer systems.

C versions

In 1978, Brian Kernighan and Dennis Ritchie produced the first publicly available
description of C, now known as K&R C. This description was succeeded in 1989 when

the American National Standards Institute (ANSI) provided a comprehensive definition
of C known as ANSI C or C89. In the following year the same specification was adopted

as an international standard by the International Organization for Standardization and
became known as ISO C90 or just C90. C has since undergone three more revisions by ISO
(successively adopted by ANSI) with further language extensions, including C95, C99, and
most recently C11, which is the latest ANSI standard for the C programming language.

XV

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Hello World

To begin programming in C you need a text editor and a C compiler. You can get both at

the same time by installing an Integrated Development Environment (IDE) that includes

support for C. A good choice is Microsoft's Visual Studio Community Edition, which is a

free version of Visual Studio that is available from Microsoft’s website.! This IDE has built-in

support for the C89 standard and also includes many features of C99 as of the 2013 version.
Some other popular cross-platform IDEs include Eclipse CDT, Code::Blocks, and

CodelLite. Alternatively, you can develop using a simple text editor - such as Notepad -

although this is less convenient than using an IDE. If you choose to do so, just create an

empty document with a .c file extension and open it in the editor of your choice.

By convention, the .c extension is used for files that contain source code for C programs.

Creating a Project

After installing Visual Studio, go ahead and launch the program. You then need to create a
project, which will manage the C source files and other resources. Go to File » New » Project
to display the New Project window. From there select the Visual C++ template type in the left
frame. Then select the Win32 Console Application template in the right frame. At the bottom
of the window you can configure the name and location of the project. When you are finished,
click the OK button, and another dialog box will appear titled Win32 Application Wizard.

Click next, and a couple of application settings will be displayed. Leave the application type

as Console application and check the Empty project checkbox. Then click Finish to let the
wizard create your empty project.

Adding a Source File

You have now created a C/C++ project. In the Solution Explorer panel (View » Solution
Explorer) you can see that the project consists of three empty folders: Header Files, Resource
Files, and Source Files. Right-click on the Source Files folder and select Add » New Item.
From the Add New Item dialog box choose the C++ File (.cpp) template. Give this source file
the name “myapp.c.” The .c file extension will make the file compile in C instead of C++. Click
the Add button, and the empty C file will be added to your project and opened for you.

'http://www.visualstudio.com.

www.it-ebooks.info

http://www.visualstudio.com/
http://www.it-ebooks.info/

CHAPTER 1 * HELLO WORLD

Hello World

The first thing to add to the source file is the main function. This is the entry point of the
program, and the code inside of the curly brackets is what will be executed when the program
runs. The brackets, along with their content, is referred to as a code block, or just a block.

int main(void) {}

Your first application will simply output the text "Hello World" to the screen. Before
this can be done the stdio.h header needs to be included. This header provides input and
output functionality for the program, and is one of the standard libraries that come with
all C/C++ compilers. What the #include directive does is to effectively replace the line
with everything in the specified header before the file is compiled.

#include <stdio.h>
int main(void) {}

With stdio.h included you gain access to several new functions, including the
printf function that is used for printing text - in this case to a console window. To call
this function you type its name followed by a set of parentheses that includes the text
string that will be displayed. The string is delimited by double quotes, and the whole
statement is followed by a semicolon. The semicolon is used in C to mark the end of a
code statement.

#include <stdio.h>

int main(void) {
printf("Hello World");
return 0;

}

The main function here ends with a return statement, which returns a status code
as the program exits. This can be useful if the intent is for your program to be executed
by another program. The status code can then signal to the caller the success or failure
of your program to complete its function. By convention, the return code zero is used to
indicate that a program or function has executed successfully.

The C89 standard requires the return statement to be present, but following C90
the statement became optional. As of C90 the compiler will automatically include the
return statement if it is omitted. For brevity the statement will be left out from future
code examples.

IntelliSense

When writing code in Visual Studio a window called IntelliSense will pop up wherever
there are multiple predetermined alternatives from which to choose. This window can be
also brought up manually at any time by pressing Ctrl+Space to provide quick access to
any code entities you are able to use within your program. This is a very powerful feature
that you should learn to make good use of.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Compile and Run

Before a program can be run, the source code has to be translated into an executable
format by a compiler. This step transforms the human-readable source code into binary
machine code, which is a sequence of instructions that can be executed by a computer.

Visual Studio Compilation

Continuing from the last chapter, the Hello World program is now complete and ready
to be compiled and run. You can do this by going to the Build menu and clicking on
Debug » Start Without Debugging (Ctrl+F5). Visual Studio then compiles and runs the
application that displays the text in a console window.

If you select Start Debugging (F5) from the Debug menu instead, the console window
displaying Hello World will close as soon as the main function is finished. To prevent this,
you can add a call to the getchar function at the end of main. This function, included
with the stdio.h header, will read a character from the keyboard and thereby prevent the
program from exiting until the return key is pressed.

#include <stdio.h>

int main(void) {
printf("Hello World");
getchar();

}

Console Compilation

As an alternative to using an IDE you can also compile source files from a terminal
window as long as you have a C compiler. For example, on a Linux machine you can use
the GNU C compiler, which is available on virtually all Unix systems, including Linux
and the BSD family, as part of the GNU Compiler Collection (GCC). This compiler can
also be installed on Windows by downloading MinGW" or on Mac as part of the Xcode
development environment.?

'http://www.mingw.org.
*https://developer.apple.com/xcode/.

www.it-ebooks.info

http://www.mingw.org/
https://developer.apple.com/xcode/
http://www.it-ebooks.info/

CHAPTER 2 COMPILE AND RUN

To use the GNU compiler you type its name “gcc” in a terminal window and give it
the input and output filenames as arguments. It then produces an executable file, which
when run gives the same result as one compiled under Windows in Visual Studio.

gcc myapp.c -0 myapp.exe
./myapp.exe
Hello World

Comments

Comments are used to insert notes into the source code. They have no effect on the end
program and are meant only to enhance the readability of the code, both for you and for
other developers. The C89 standard featured only one comment notation, a multiline
comment delimited by /* and */.

/* multi-line
comment */

The C99 standard added the single-line comment, which starts with // and extends
to the end of the line. This comment was standardized since it was a convenient feature
found in many other programming languages, such as C++. Many C compilers also
started to support the single-line comment long before the C99 standard was formalized.

// single-line comment
Keep in mind that whitespace characters - such as comments, spaces, and tabs - are

generally ignored by the compiler. This allows you a lot of freedom in how to format
your code.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Variables

Variables are used for storing data during program execution.

Data Types

Depending on what data you need to store, there are several different kinds of data types.
The simple types in C consist of four integer types: three floating-point types as well as
the char type.

Data Type Size (byte) Description

char 1 Integer or character
short 2 Integer

int 4

long 4or8

long long 8

float 4 Floating-point number
double 8

long double 8orl6

In C, the exact size of the data types is not fixed. The sizes shown in the previous
table are those commonly found on 32-bit and 64-bit systems. The C standard only
specifies the minimum range that is guaranteed to be supported. The minimum size
for char is 8 bits, for short and int it is 16 bits, for long it is 32 bits and long long
must contain at least 64 bits. Most modern compilers make int 32 bits, which nearly
universally means 4 bytes. Each integer type in the table must also be at least as large as
the one preceding it. The same applies to the floating-point types where each one must
provide at least as much precision as the preceding one.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' VARIABLES

Declaring Variables

Before a variable can be used, it first has to be declared. To declare a variable you start
with the data type you want the variable to hold followed by an identifier, which is the
name of the variable.

int myInt;
The identifier can consist of letters, numbers, and underscores, but it cannot start

with a number. It also cannot contain spaces or special characters and must not be a
reserved keyword.

int _myInt32; /* allowed */

int 32Int; /* incorrect (starts with number) */

int my Int; /* incorrect (contains space) */

int Int@32; /* incorrect (contains special character) */
int int; /* incorrect (reserved keyword) */

Note that C is a case sensitive programming language, so uppercase and lowercase
letters have different meanings.

Assigning Variables

To assign a value to a declared variable the equal sign is used, which is known as the
assignment operator (=). This is called assigning or initializing the variable.

myInt = 50;

The declaration and assignment can be combined into a single statement. When a
variable is assigned a value it then becomes defined.

int myInt = 50;

If you need to create more than one variable of the same type there is a shorthand
way of doing it using the comma operator (,).

int x =1, y =2, z

Once a variable has been defined (declared and assigned), you can use it by simply
referencing the variable's name: for example, to copy the value to another variable.

int a = x;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * VARIABLES

Printing Variables

In addition to strings the printf function can be used to print values and variables to
the standard output stream. This is done by embedding format specifiers into the string
where the value is to be printed. Each specifier must be matched by a corresponding
argument to printf of the correct type, as seen in the following example.

#include <stdio.h>

int main() {
int x = 5;
printf("x is %d and 243 is %d", x, 2+3);

}

The %d specifier displays an integer of the char, short or int type. Other commonly
used format specifiers are seen in the following table.

Specifier Output

%d or %i char, short, or int

%c character

%s string of characters

%t float or double

%Lf long double

%1d long int

%11d long long int

%u unsigned char, short or int
%1u unsigned long int

%11u unsigned long long int
%p pointer address

For more information on printf and other standard library functions, you can visit
the C library reference on cplusplus.com.!

thttp://www.cplusplus.com/reference/clibrary/.

www.it-ebooks.info

http://www.cplusplus.com/reference/clibrary/
http://www.it-ebooks.info/

CHAPTER 3 ' VARIABLES

Integer Types

There are four native integer (whole number) types you can use depending on how large
anumber you need the variable to hold. Typical ranges on 32-bit and 64-bit systems are
given below.

char myChar

short myShort
int myInt =
long myLong

; /* -128 to +127 */

; /* -32768 to +32767 */
/* -27°31 to +2"31-1 */
;5 /¥ -27°31 to +2"31-1 */

n n
-

o O © O
-

C99 added support for the long long data type, which is guaranteed to be at least
64 bits in size.

long long myLL = 0; /* -2"63 to +2"63-1 */

To determine the exact size of a data type you can use the sizeof operator. This
operator returns the number of bytes that a type occupies in the system you are compiling
for. The type returned is size_t, which is an alias for an integer type. The specifier %zu
was introduced in C99 as a portable way to format this type with printf. Visual Studio
does not support this specifier and uses %Iu instead.

#include <stdio.h>

int main(void) {
size t s = sizeof(int);
printf("%zu", s); /* "4" (C99) */
printf("%Iu", s); /* "4" (Visual Studio) */
}

In addition to standard decimal notation, integers can also be assigned by using
octal or hexadecimal notation. The following values all represent the same number,
which in decimal notation is 50.

int myDec = 50 /* decimal notation */
int myOct = 062; /* octal notation (0) */
int myHex = 0x32; /* hexadecimal notation (0x) */

Signed and Unsigned

By default, all integer types in C are signed and may therefore contain both positive and
negative values. This can be explicitly declared using the signed keyword.

signed char myChar; /* -128 to +127 */

signed short myShort; /* -32768 to +32767 */
signed int myInt; /* -2"31 to +2"31-1 */
signed long mylong; /* -2731 to +2731-1 */
signed long long myLL; /* -2763 to +2763-1 */

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * VARIABLES

If only positive values need to be stored the integer types can be declared as
unsigned to double their upper range.

unsigned char uChar; /* 0 to 255 */

unsigned short uShort; /* 0 to 65535 */
unsigned int ulnt; /* 0 to 2732-1 */
unsigned long ulong; /* 0 to 2"32-1 */
unsigned long long ull; /* 0 to 2"64-1 */

When an unsigned value is printed the specifier %u is used for the unsigned char,
short, and int types. The unsigned long type is specified with %1u and unsigned
long long with %11u.

unsigned int ulnt = 0;
printf("%u", ulnt); /* "o" */

The signed and unsigned keywords may be used as types on their own, in which
case the int type is assumed by the compiler.

unsigned ulnt; /* unsigned int */
signed sInt; /* signed int */

In the same way, the short and long data types are abbreviations of short int and
long int.

short myShort; /* short int */
long mylLong; /* long int */

Sized Integers

As mentioned before, the actual sizes of the integer types are implementation dependent.
For more precise specification of size the C99 standard introduced a number of exact-
width integer types. They can be enabled by including the stdint.h standard header.

#include <stdint.h>

/* Signed exact-width integers */
int8 t 1iSmall; /* 8 bits */
int16_t iMedium; /* 16 bits */
int32_t ilarge; /* 32 bits */
int64_t iHuge; /* 64 bits */

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' VARIABLES

Unsigned versions of these types are available as well. Like the signed versions, these
exact-width integer types are guaranteed to have the same number of bits across all
implementations.

/* Unsigned exact-width integers */
uint8_t wuSmall; /* 8 bits */
uint16_t uMedium; /* 16 bits */
uint32_t ularge; /* 32 bits */
uint64_t uHuge; /* 64 bits */

It is recommended to use sized integers when available, to more easily keep track
of the range of your integer variables and to enhance the portability of your programs.
Compilers that comply with standards prior to C99 may provide sized integers with
different type names. Visual Studio, for example, has built-in support for the following
signed exact-width integers.

/* Visual Studio signed exact-width integers */
_ int8 iSmall; /* 8 bits */
__int16 iMedium; /* 16 bits */
__int32 ilarge; /* 32 bits */
__int64 iHuge; /* 64 bits */

Floating-Point Types

The floating-point types can store real numbers with different levels of precision.
float myFloat; /* ~7 digits */

double myDouble; /* ~15 digits */

long double myLD; /* typically same as double */

The precision shown above refers to the total number of digits. A float can
accurately represent about 7 digits, whereas a double can handle around 15 of them.

float myFloat = 12345.678;
printf("%f", myFloat); /* "12345.677734" */

When printing a floating-point number you can limit the decimal places to, for
instance, two in the following way.

printf("%.2f", myFloat); /* "12345.68" */

10

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * VARIABLES

Floating-point numbers can be expressed using decimal, exponential, or
hexadecimal notation. Exponential (scientific) notation is used by adding E or e
followed by the decimal exponent, while the hexadecimal floating-point notation uses
P or p to specify the binary exponent. Support for the hexadecimal notation was not
standardized until C99.

double fDec = 1.23;
double fExp = 3e2; /* 3*10”2 = 300 */
double fHex = OxAp2; /* 10*2"2 = 40 */

Literal Suffixes

An integer literal (constant) is normally treated as an int by the compiler, or a larger type
if needed to fit the value. Suffixes can be added to the literal to change this evaluation.
With integers the suffix can be a combination of U and L, for unsigned and long
respectively. C99 also added the LL suffix for the long long type. The order and casing of
these letters do not matter.

int i = 10;
long 1 = 10L;
unsigned long ul = 10UL;

A floating-point literal is treated as a double. The F or f suffix can be used to specify
that a literal is of the float type instead. Likewise, the L or 1 suffix specifies the long
double type.

float f = 1.23F;
double d = 1.23;
long double 1d = 1.23L;
The compiler implicitly converts literals to whichever type is necessary, so this type
distinction for literals is usually not necessary. If the F suffix is left out when assigning to

a float variable the compiler may give a warning since the conversion from double to
float involves a loss of precision.

Char Type

The char type is commonly used to represent ASCII characters. Such character constants
are enclosed in single quotes and can be stored in a variable of char type.

char c = 'x'; /* assigns 120 (ASCII for x) */

11

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' VARIABLES

When the char is printed with the %c format specifier the ASCII character is
displayed.

printf("%c", c); /* "x" */
Use the %d specifier to instead display the numerical value.

printf("%d", c); /* "120" */

Bool Type

C99 introduced a _Bool type to increase compatibility with C++. Variables of this type can
store a Boolean value, which is a value that can only be either 1 (true) or 0 (false).

_Bool b = 0; /* false value */

The type _Bool is usually accessed via its alias name bool defined by the standard
header stdbool.h. This header also defines the macros true and false as aliases for 1 and 0.

#include <stdbool.h>

bool b = true; /* true value */

Variable Scope

The scope of a variable refers to the region of code within which it is possible to use that
variable. Variables in C may be declared both globally and locally. A global variable is
declared outside of any code blocks and is accessible from anywhere after it has been
declared. A local variable, on the other hand, is declared inside of a function and will
only be accessible within that function after it has been declared. The lifetime of a local
variable is also limited. A global variable will remain allocated for the duration of the
program, while a local variable will be destroyed when its function has finished executing.

int globalVar; /* global variable */
int main(void) {

int localVar; /* local variable */

}

12

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * VARIABLES

The default values for these variables are also different. Global variables are
automatically initialized to zero by the compiler, whereas local variables are not
initialized at all. Uninitialized local variables will therefore contain whatever garbage is
already present in that memory location.

int globalVar; /* initialized to 0 */

int main(void) {
int localVar; /* uninitialized */
}

Using uninitialized variables is a common programming mistake that can produce
unexpected results. It is therefore a good idea to always give your local variables an initial
value when they are declared.

int main(void) {
int localvar = 0; /* initialized to 0 */
}

In C89, local variables must be declared before any other statements within their
scope. The later C99 standard changed this to allow variables to be declared anywhere
within a function’s scope, which can be more intuitive.

int main(void) {
int vari;
/* Other statements */
int var2; /* C99 only */
}

13

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Operators

A numerical operator is a symbol that makes the program perform a specific mathematical
or logical manipulation. The numerical operators in C can be grouped into five types:
arithmetic, assignment, comparison, logical, and bitwise operators.

Arithmetic Operators

There are four basic arithmetic operators, as well as the modulus operator (%), which is
used to obtain the division remainder.

float x = 3 + 2; /* 5 - addition */
x =3 - 2; /*¥ 1 - subtraction */
X =3%2; /*6 - multiplication */
X =3/ 2; /%1 - division */
X =13%2; /%1 - modulus (division remainder) */

Notice that the division sign gives an incorrect result. This is because it operates
on two integer values and will therefore truncate the result and return an integer. To get
the correct value, one of the numbers must be explicitly converted to a floating-point
number.

x = 3 / (float)2; /* 1.5 */

Assignment Operators

The second group is the assignment operators. Most important, it is the assignment
operator (=) itself, which assigns a value to a variable.

Combined Assignment Operators

A common use of the assignment and arithmetic operators is to operate on a variable and
then to save the result back into that same variable. These operations can be shortened
with the combined assignment operators.

15

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © OPERATORS

int x = 0;
X 4= 5; /* x = x+5; */
X -=5; /* x = x-5; */
X *¥= 5; /* x = x¥5; */
X /=5; /* x = x/5; */
X %= 5; /* x = x%5; */

Increment and Decrement Operators

Another common operation is to increment or decrement a variable by one. This can be
simplified with the increment (++) and decrement (--) operators.

X++; /* X
X--; /* X

x+1; */
x-1; */

Both of these can be used either before or after a variable.

X++; /* post-increment */
x--; /* post-decrement */
++x; /* pre-increment */
--X; /* pre-decrement */

The result on the variable is the same whichever is used. The difference is that
the post-operator returns the original value before it changes the variable, while the
pre-operator changes the variable first and then returns the value.

int x, y;
X =5; y = x++; /* y=5, x=6 */
X =55y = +x; /* y=6, x=6 */

Comparison Operators

The comparison operators compare two values and return either true or false, represented
as 1 or 0. They are mainly used to specify conditions, which are expressions that evaluate
to either true or false.

int x = (2 == 3); /* 0 - equal to */
x = (2 !=3); /* 1 - not equal to */
x = (2>3); /*o0 - greater than */
x=(2<3); /*1- less than */
x = (2 »=3); /* 0 - greater than or equal to */
x = (2 <= 3); /* 1 - less than or equal to */

16

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © OPERATORS

Logical Operators

The logical operators are often used together with the comparison operators. Logical and
(&&) evaluates to true if both the left and right sides are true, and logical or (| |) is true if
either the left or right side is true. For inverting a Boolean result there is the logical not (!)
operator. Note that for both “logical and” and “logical or” the right-hand side will not be
evaluated if the result is already determined by the left-hand side.

int x = (1 & 0); /* 0 - logical and */
x=(11]] 0); /*1 - logical or */
x = 1(1); /* 0 - logical not */

Recall that as of C99 the stdbool.h header can be included to make use of the bool
type to store Boolean values. The header also defines the constants true and false to
represent 1 and 0, which allows the previous example to be rewritten as seen here.

#include <stdbool.h>

VAR

bool x = (true &% false); /* false - logical and */
x = (true || false); /* true - logical or */
x = !(true); /* false - logical not */

Bitwise Operators

The bitwise operators can manipulate individual bits inside an integer. For example, the
bitwise left shift operator (<<) moves all bits to the left with the specified number of steps.

int x = 5 & 4; /* 101 & 100 = 100 (4) - and */
Xx=51]4; /%101 | 100 = 101 (5) - or */
X =5"4; /*101 » 100 = 001 (1) - xor */
X =4 << 1; /* 100 << 1 = 1000 (8) - left shift */
X =4> 1; /¥100 >> 1 = 10 (2) - right shift */
X = "“4; /* ~00000100 = 11111011 (-5) - invert */

The bitwise operators also have combined assignment operators.

int x = 5; x & = 4; /* 101 & 100 = 100 (4) - and */
X =5; x| =4; /%101 | 100 = 101 (5) - or */
X =5; x~=4; /* 101 » 100 = 001 (1) - xor */
X =4; X <<= 1; /* 100 << 1 = 1000 (8) - left shift */
X =4; x >>=1; /* 100 >> 1 = 10 (2) - right shift */

17

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © OPERATORS

Operator Precedence

In C, expressions are normally evaluated from left to right. However, when an expression
contains multiple operators, the precedence of those operators decides the order in
which they are evaluated. The order of precedence can be seen in the following table,
where the operator with the lowest precedence will be evaluated first. This same order
also applies to many other languages, such as C++ and C#.

Pre Operator Pre Operator
1 O[] . > x++ x-- 8 &

2 I~ ++x --x (type) sizeof * & 9 A

3 * /% 10 |

4 + - 11 &&

5 << > 12 |

6 < K= > >= 13 = op=

7 == = 14 »

To give an example, multiplication binds harder than addition and will therefore be
evaluated first in the following line of code.

int x =4 +3 *2; /* 10 */
This can be clarified by enclosing the part of the expression that will be evaluated
first in parentheses. As seen in the table, parentheses have the highest precedence of all

operators.

int x =4 + (3 *2); /* 10 */

18

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Pointers

A pointer is a variable that contains the memory address of another variable, called the
pointee.

Creating Pointers

Pointers are declared as any other variable, except that an asterisk (*) is placed between
the data type and the pointer’s name. The data type used determines what type of
memory it will point to.

int* p; /* pointer to an integer */
int *q; /* alternative syntax */

A pointer can point to a variable of the same type by prefixing that variable with an
ampersand, in order to retrieve its address and assign it to the pointer. The ampersand is
known as the address-of operator (&).

int i = 10;
p = &i; /* address of i assigned to p */

Dereferencing Pointers

The pointer now contains the memory address to the integer variable. Referencing the
pointer will retrieve this address. To obtain the actual value stored in that address, the
pointer must be prefixed with an asterisk, known as the dereference operator (*).

printf("Address of i: %p \n", p); /* ex. 0017FF1C */
printf("Value of i: %d", *p); /* 10 */

When writing to the pointer the same method is used. Without the asterisk the
pointer is assigned a new memory address, and with the asterisk the actual value of the

variable pointed to will be updated.

p = &i; /* address of i assigned to p */
p = 20; / value of i changed through p */

19

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 * POINTERS

If a second pointer is created and assigned the value of the first pointer, it will then
get a copy of the first pointer’s memory address.

int* p2 = p; /* copy address stored in p */

Pointing to a Pointer

Sometimes it can be useful to have a pointer that can point to another pointer. This

is done by declaring a pointer with two asterisks and then assigning it the address of
the pointer that it will reference. This way, when the address stored in the first pointer
changes, the second pointer can follow that change.

int** r = &p; /* pointer to pointer */

Referencing the second pointer now gives the address of the first pointer.
Dereferencing the second pointer gives the address of the variable, and dereferencing it
again gives the value of the variable.

printf("Address of p: %p \n", 1); /* ex. 0017FF28 */
printf("Address of i: %p \n", *r); /* ex. 0017FF1C */
printf("Value of i: %d", **r); /* 20 */

Null Pointer

A pointer should be set to zero when it is not assigned to a valid address. Such a pointer
is called a null pointer . Doing this allows you to check whether the pointer can be safely
dereferenced, because a valid pointer will never be zero. This check is necessary for
places in the code where you may not know whether a pointer is valid or not.

if (p !=0) { *p = 10; } /* check for null pointer */

The constant NULL can also be used to signify a null pointer. NULL is typically defined
as zero in C, making the choice of which to use a matter of preference. The constant is
defined by several standard library files, including stdio.h and stddef.h.

#include <stdio.h>

/¥ .0 */
if (p != NULL) { *p = 10; }

20

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Arrays

An array is a data structure used for storing a collection of values that all have the same
data type.

Array Declaration and Allocation

To declare an array you start as you would a normal variable declaration, but in addition,
append a set of square brackets following the array’s name. The brackets contain the
number of elements in the array. The default values for these elements are the same as for
variables - elements in global arrays are initialized to their default values, and elements
in local arrays remain uninitialized.

int myArray[3]; /* integer array with 3 elements */

Array Assignment

To assign values to the elements, you can reference them one at a time by placing the
element’s index inside the square brackets, starting with zero.

myArray[0] = 1;
myArray[1] = 2;
myArray[2] = 3;

Alternatively, you can assign values at the same time as the array is declared by
enclosing them in curly brackets. The specified array length may optionally be left out to
let the array size be decided by the number of values assigned.

int myArray[3] = { 1, 2, 3 };
int myArray[] = { 1, 2, 3 }; /* alternative */

Once the array elements are initialized, they can be accessed by referencing the
index of the element you want.

printf("%d", myArray[0]); /* 1 */

21

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © ARRAYS

Multi-Dimensional Arrays

Arrays can be made multi-dimensional by adding more sets of square brackets. As with
single-dimensional arrays, they can either be filled in one at a time or all at once during
the declaration.
int mArray[2][2] = { {0, 1}, {2, 3} }
mArray[0][0] = 0;
mArray[0][1] = 1;
The extra curly brackets are optional, but including them is good practice since it
makes the code easier to understand.

int mArray[2]{2] = { 0, 1, 2, 3 }; /* alternative */

Arrays and Pointers

Any array in C is actually a constant pointer to the first element in the array. Therefore,

the referencing of array elements can be made just as well with pointer arithmetic. By
incrementing the pointer by one, you move to the next element in the array, because
changes to a pointer’s address are implicitly multiplied by the size of the pointer’s data type.

(myArray+1) = 10; / myArray[1] = 10; */

Pointer arithmetic is an advanced feature that should be used with care. The four
arithmetic operators that can be used with pointers include: +, -, ++, and --.

int* ptr = &myArray;
printf("Address of myArray[0]: %p \n", ptr); /* ex. 0028FF14 */

ptr++;
printf("Address of myArray[1]: %p", ptr); /* ex. 0028FF18 */

Array Size

Just as with any other pointer it is possible to exceed the valid range of an array and
thereby rewrite some adjacent memory. This should always be avoided since it can lead
to unexpected results or crash the program.

int myArray[2] = { 1, 2 };
myArray[2] = 3; /* out of bounds */

To determine the length of a regular (statically allocated) array, the sizeof operator
can be used.

int length = sizeof(myArray) / sizeof(int); /* 2 */
22

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

String

A string consists of an array of characters and is delimited by double quotes. There is no
string type for storing strings in C. Instead, strings are commonly assigned to a character
array as shown here.

char myString[] = "Hi";

Strings in C are terminated with a null character \0, which is used to know where the
string ends. The null character is added automatically by the compiler for quoted strings,
as in the previous example. The same statement can also be written using regular array
initialization syntax, in which case the null character needs to be explicitly included.
char myString[3] = { 'H", 'i', '"\o' };

Both statements produce the same result: a char array with three elements. Note that
individual characters are delimited by single quotes and not double quotes. To print a
string the format specifier %s is used with the printf function, which outputs the literals
of the string until the null character is encountered.
printf("%s", myString); /* "Hi" */

As an alternative to the character array, a char pointer may be set to point to a string.
The string is then automatically stored in the compiled file, giving the pointer a location
to point to. In most compilers this location is a read-only block, so unlike the char array

the characters in this string cannot be changed.

char* ptr = "Hi";
printf("%s", ptr); /* "Hi" */

Escape Characters

To add new lines into a string the escape character \n is used for representing a line break.

printf("First line\nSecond line");

23

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STRING

This backslash notation is used to write special characters that are difficult or
impossible to type on a regular keyboard. In addition to the new line and null characters,
there are several other such characters as seen in the following table.

Character Meaning Character ~ Meaning

\n newline \f form feed

\t horizontal tab \a alert sound

\v vertical tab \' single quote

\b backspace \" double quote

\1r carriage return \\ backslash

\0 null character \? question mark

\000 octal number (1-3 digits) \xhh hexadecimal number

Any one of the 128 ASCII characters can be expressed by writing a backslash
followed by the ASCII code for that character, represented as either an octal or
hexadecimal number. This is illustrated below where the new line character is
represented in three different ways.

char line = '\n'; /* escape code */
line = '\012'; /* octal notation */
line = '"\xOA'; /* hexadecimal notation */

String Functions

Because strings in C are arrays, the only way to make changes to them is to change each
element in the array. To simplify common string operations the standard header string.h
includes a collection of functions for manipulating null terminated strings. Consider the
code below that will be used as the template for the following string examples.

#include <stdio.h>
#include <string.h>

int main(void) {
char s1[12] = "Hello";
char s2[12] = "World";
int result;

}

24

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 * STRING

The string function strcat (string concatenation) appends the second string onto
the first string. For this to work, it is important that the destination is large enough to hold
the entire string.

/* Append s2 to s1 */
strcat(s1, s2); /* s1 = "HelloWorld" */

Another string function is strcpy, which copies the characters in the second string
into the first string. The function stops when the terminating null character for the second
argument is reached.

/* Copy sl into s2 */
strcpy(s2, s1); /* s2 = "HelloWorld" */

A string can be compared with another string using the strcmp function. If all
characters match, the function returns zero.

/* Compare sl and s2 */
result = stremp(si, s2); /* 0 (equal) */

When manipulating strings it is important to take their lengths into account to avoid
overwriting any adjacent memory. The length of a string stored in a char array can be
found with the strlen function. With regular (statically allocated) strings the allocated
size can also be retrieved using the sizeof operator.

/* Length of s1 (excluding null char) */
result = strlen(s1); /* 10 */

/* Allocated size for si */
result = sizeof(s1); /* 12 */

25

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Conditionals

Conditional statements are used to execute different code blocks based on different
conditions.

If Statement

The if statement will only execute if the expression inside the parentheses is evaluated
to true. In C, this does not have to be a Boolean expression. It can be any expression that
evaluates to a number, in which case zero is false and all other numbers are true.

if (x < 1) {
printf("x < 1");
}

To test for other conditions, the if statement can be extended by any number of
else/if clauses.

else if (x » 1) {
printf("x > 1");

}

The if statement can have one else clause at the end, which will execute if all
previous conditions are false.

else {
printf("x == 1");
}

27

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © CONDITIONALS

As for the curly brackets, they can be left out if only a single statement needs to be
executed conditionally. However, it is considered good practice to always include them
since they improve readability.

if (x < 1)
printf("x < 1");
else if (x > 1)
printf("x > 1");
else
printf("x == 1");

Switch Statement

The switch statement checks for equality between an integer and a series of case labels,
and then passes execution to the matching case. It may contain any number of case
clauses, and it can end with a default label for handling all other cases.

switch (x) {
case 0: printf("x is 0"); break;
case 1: printf("x is 1"); break;
default: printf("x is not 0 or 1"); break;

}

Note that the statements after each case label end with the break keyword to skip
the rest of the switch. If the break is left out, execution will fall through to the next case,
which can be useful if several cases need to be evaluated in the same way.

Ternary Operator

In addition to the if and switch statements there is the ternary operator (?:) that can
replace a single if/else clause. This operator takes three expressions. If the first one is
true then the second expression is evaluated and returned; and if it is false, the third one
is evaluated and returned.

X = (x < 0.5) ? 0:1; /* ternary operator (?:) */

28

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Loops

There are three looping structures in C, all of which are used to execute a specific code
block multiple times. Just as with the conditional if statement, the curly brackets for the
loops can be left out if there is only one statement in the code block.

While Loop

The while loop runs through the code block only if its condition is true, and will continue
looping for as long as the condition remains true. Bear in mind that the condition is only
checked at the start of each iteration.

int i = 0;
while (i < 10) {

printf("%d", i++); /* 0-9 */
}

Do-While Loop

The do-while loop works in the same way as the while loop, except that it checks the
condition after the code block. It will therefore always run through the code block at least
once. Notice that this loop ends with a semicolon.

int j = 0;
do {

printf("%d", j++); /* 0-9 */
} while (j < 10);

For Loop

The for loop is used to run through a code block a specific number of times. It uses three
parameters. The first one initializes a counter and is always executed once before the
loop. The second parameter holds the condition for the loop and is checked before each
iteration. The third parameter contains the increment of the counter and is executed at
the end of each iteration.

29

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 = LOOPS

int k;

for (k = 0; k < 10; k++) {
printf("%d", k); /* 0-9 */

}

Since the C99 standard the first parameter may contain a declaration, typically a
counter variable. The scope of this variable is limited to the for loop.

for (int k = 0; k < 10; k++) {
printf("%d", k); /* 0-9 */
}

The for loop has several variations. One such variation is to split the first and third
parameters into several statements by using the comma operator.

int k, m;
for (k = 0, m = 0; k < 10; k++, m--) {
printf("%d", k+m); /* 000... (10x) */

}

Another option is to leave out any one of the parameters. If all parameters are left
out, it becomes a never-ending loop, unless there is another exit condition defined.

for (;;) { /* infinite loop */ }

Break and Continue

There are two jump statements that can be used inside loops: break and continue.
The break keyword ends the loop structure, and continue skips the rest of the current
iteration and continues at the beginning of the next iteration.

int i;

for (i = 0; 1< 10; i++)

{
if (i == 2) continue; /* start next iteration */
else if (i == 5) break; /* end loop */
printf("%d", i); /* "0134" */

}

Goto Statement

A third jump statement that may be useful to know of is goto, which performs an
unconditional jump to a specified label within the same function. This instruction is
generally never used since it tends to make the flow of execution difficult to follow.

goto myLabel; /* jump to label */

VALY
myLabel: /* label declaration */
30

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Functions

Functions are reusable code blocks that will only execute when called. They allow
developers to divide their programs into smaller parts that are easier to understand
and reuse.

Defining Functions

A function can be created by typing void followed by the function's name, a set of
parentheses containing another void, and a code block. The first use of the void keyword
specifies that this function will not return a value. The second void inside the parentheses
means that the function does not accept any arguments.

void myFunction(void) {
printf("Hello World");

}

Calling Functions

The previous function will print out a text message when it is called. To invoke it, the
function's name is specified followed by an empty set of parentheses.

int main(void) {
myFunction(); /* "Hello World" */
}

Function Parameters

The parentheses that follow the function’s name are used for passing arguments to the
function. To do this the corresponding parameters must first be added to the function’s
parameter list.

void sum(int a, int b) {
int sum = a + b;

printf("%d", sum);
}

31

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © FUNCTIONS

A function can be defined to take any number of arguments, and they can have
any data types. Just ensure the function is called with the same types and number of
arguments. In this example, the function accepts two integer arguments and displays
their sum.

sum(2, 3); /* "5" */

To be precise, parameters appear in function definitions, while arguments appear in
function calls. However, the two terms are sometimes used interchangeably.

Void Parameter

In C, functions that leave out the void keyword from their parameter list are allowed to
accept an unknown number of arguments. This is different from C++, where leaving out
void means the same as including it: that the function takes no arguments. Therefore, to
have the compiler ensure that no arguments are mistakenly passed to a parameterless
function, it is necessary in C to include void in the parameter list.

/* Accepts no arguments */
void foo(void) {}

/* Accepts an unknown number of arguments */
void bar() {}

As of C99, the use of an empty parameter list has been deprecated and results in a
warning from the compiler.

Return Statement

A function can return a value. The void keyword before the function’s name is then
replaced with the data type the function will return, and the return keyword is added to
the function's body followed by an argument of the specified return type.

int getSum(int a, int b) {

return a + b;

}

Return is a jump statement that causes the function to exit and return the specified
value to the place where the function was called. To illustrate, the previous function can
be passed as an argument to the printf function since it evaluates to an integer.

printf("%d", getSum(5, 10)); /* "15" */

32

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © FUNCTIONS

The return statement can also be used in a void function as a way to exit the
function before the end block is reached.

void dummy(void) { return; }

The main function must be set to return an int type, but including an explicit return
value is only required in the C89 standard. As of C90 the compiler will automatically add a
return statement to the end of the main function if no such statement is present, and with
the C99 standard this implicit return value is guaranteed to be zero.

int main(void) {
return 0; /* optional */

}

Forward Declaration

An important thing to keep in mind in C is that a function must be declared before it can
be called. This can either be achieved by placing the function’s implementation before
any references to it, or by adding a declaration of the function before it is called. This
kind of forward declaration is known as a prototype and provides the compiler with the
information needed to allow the function to be used before it has been defined.

void myFunction(int a); /* prototype */
int main(void) {

myFunction(0);
void myFunction(int a) {}

The parameter names do not need to be included in the prototype; only the data
types are required.

void myFunction(int);

In early versions of C an undeclared function that is referenced is implicitly declared
as a function that returns an int and takes an unspecified number of parameters. Relying
on this behavior is not recommended and usually results in a warning from the compiler.
As of C99 this feature has been removed and will instead result in an error.
int main(void) {

foo();
}

/* Warning: implicit declaration of foo */
int foo() { return o; }

33

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © FUNCTIONS

Variable Parameter Lists

A function can be defined to accept a variable number of arguments, similar to the
printf function. The parameter list of such a function must end with an ellipsis (...) and
there must be at least one additional parameter. An int parameter is typically included to
let the function know the number of extra arguments that are passed to it.

In the following example the function accepts a variable number of arguments that
are summed up and returned to the caller. To access these arguments the stdarg.h header
file is included. This header defines a new type, called va_list, and three functions that
operate on variables of this type: va_start, va_arg, and va_end.

#include <stdio.h>
#include <stdarg.h>

int sum(int num, ...) {
va_list args; /* variable argument list */
int sum = 0, i = 0;

va_start(args, num); /* initialize argument list */

for (i = 0; 1 < num; i++) /* loop through arguments */
sum += va_arg(args, int); /* get next argument */

va_end(args); /* free memory */
return sum;

}

int main(void) {
printf("Sum of 1+2+3 = %d", sum(3,1,2,3)); /* 6 */
}

In contrast to C++, C does not allow function overloading or default parameter
values. However, variable parameter lists can be used to implement functions that behave
in similar ways.

Pass by Value

Variables are by default passed by value. This means that only a copy of the value is
passed to the function. Therefore, changing the parameter in any way will not affect the
original variable, and passing large variables back and forth can have a negative impact
on performance.

#include <stdio.h>

void set(int i) { i = 1; }

34

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © FUNCTIONS

int main(void) {

int x = 0;

set(x);

printf("%d", x); /* "o" */
}

Pass by Address

The alternative to passing by value is to use pointer syntax to instead pass the variable
by address. When an argument is passed by address the parameter can be changed or
replaced, and the change will affect the original variable.

void set(int* i) { *i = 1; }

int main(void) {

int x = 0;

set(8x);

printf("%d", x); /* "1" */
}

Recall that arrays are in effect hidden pointers. As such they will automatically be
passed by address, as shown in the following example.

void set(int a[]) { a[o] = 1; }

int main(void) {

int x[] ={0};

set(x);

printf("%d", x[0]); /* "1" */
}

Return by Value or Address

In addition to passing variables by value or address, a variable may also be returned in
one of these two ways. By default a function returns by value, in which case a copy of the
value is returned to the caller.

int byVal(int i) { return i + 1; }
int main(void) {
int a = 10;

printf("%d", byval(a)); /* "11" */
}

35

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 © FUNCTIONS

To instead return by address the dereference operator is appended to the function’s
return type. The function must then return a variable and not an expression or literal, as is
allowed when returning by value. The variable returned should never be a local variable
since the memory to these variables is released when the function ends. Instead, return
by address is commonly used to return an argument that has also been passed to the
function by address.

int* byAdr(int* i) { (*i)++; return i; }

int main(void) {
int a = 10;
int *p = byAdr(8&a);
printf("%d", *p); /* "11" */
}

Inline Functions

When calling a function it is important to keep in mind that a certain performance
overhead occurs. To potentially remove this overhead the programmer can recommend
that the compiler inlines the calls to a specific function by using the inline function
modifier. This keyword was added in the C99 standard. It is most suited for use with
small functions that are called inside loops, as shown in the following example. Larger
functions should not be inlined since this can significantly increase the size of the code,
which may instead decrease performance.

inline int increment(int a) { return ++a; }

int main(void) {
int i;
for(i = 0; i < 100;) {
i = increment(i);
}
}

Note that the inline keyword is only a recommendation. The compiler may in its
attempts to optimize the code choose to ignore this recommendation, and it may also
inline functions that do not have the inline modifier.

36

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Typedef

An alias for a type can be created using the typedef keyword followed by the type and
alias name. By convention, uppercase letters are commonly used for these definitions.

typedef unsigned char BYTE;
Once defined, the alias can be used as a synonym for its specified type.
BYTE b; /* unsigned char */
typedef does not only work for existing types, but can also include a definition of a
user-defined type - such as a struct, union, or enum. This can make a complex type easier
to understand.
typedef struct { int points; } score;
score a, b, c;
a.points = 10;
If used properly a type alias can simplify a long or confusing type name, making

the code easier to understand. Another benefit they provide is the ability to change the
definition of a type from a single location, which can help make a program more portable.

37

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12

Enum

Enum is a user-defined type consisting of a fixed list of named constants. In the
following example, the enumeration type is called color and contains three constants:
RED, GREEN and BLUE.

enum color { RED, GREEN, BLUE };

The color type can be used to create variables that may hold one of these constant
values. In C, the variable declaration must be preceded by enum, whereas this is optional
in C++.

int main(void) {
enum color ¢ =

}

RED;

Enum variables may also be declared when the enum is defined, by placing the
variable names before the final semicolon. This position is known as the declarator list.

enum color { RED, GREEN, BLUE } c, d;

Enum Example

The switch statement provides a good example of when enumerations can be useful.
Compared to using ordinary constants, the enumeration has the advantage that it lets the
programmer clearly specify what values a variable should be allowed to contain.

switch(c) {
case RED: break;
case GREEN: break;
case BLUE: break;

}

39

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © ENUM

Bear in mind that enums in C are not typesafe, unlike their C++ equivalent. It is
up to the programmer to ensure that enum types and constants are used correctly, as
most compilers will not enforce this. Enums in C simply provide a way to group a set of
integer constants and have them be automatically numbered. For this purpose the enum
identifier is not strictly necessary and may optionally be omitted.

enum { RED, GREEN, BLUE } c;

Enum Constant Values

Enumerated constants are of the int type. Usually there is no need to know the
underlying values that these constants represent, but in some cases it can be useful. By
default, the first constant in the enum list has the value zero and each successive constant
is one value higher.

enum color {

RED /* 0 */
GREEN /* 1 */
BLUE /* 2 */

};

These default values can be overridden by assigning values to the constants. The
values can be computed and do not have to be unique.

enum color {

RED =5, /%5 %/

GREEN = RED, /¥ 5 %/

BLUE = GREEN + 2, /* 7 */

ORANGE /% 8 */
};

Enum Conversions

The compiler can implicitly convert an enumerated constant to an integer. An integer can
also be converted back into an enum variable.

int i = RED;
enum color c = i;

Some compilers warn when an integer is assigned to an enum variable since this
makes it possible to assign a value that is not one of its specified constants. To suppress

this warning an explicit type cast can be used.

enum color ¢ = (enum color)i;

40

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © ENUM

Enum Scope

An enum does not have to be declared globally. It can also be placed locally within a
function, in which case it will only be usable within that function after where it has
been defined

/* Global enum */
enum speed { SLOW, NORMAL, FAST };

int main(void) {
/* Local enum */

enum color { RED, GREEN, BLUE };
}

41

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13

Struct

A struct or structure is a user-defined type used for grouping a collection of related
variables under a single name. To define a structure you use the struct keyword,
followed by an optional identifier and a code block containing variable declarations. The
definition of this new type is ended with a semicolon.

struct point {
int x, y;

};

Unlike arrays, structs allow data items of different kinds to be combined. Structs may
contain variables, pointers, arrays, or other user-defined types. In contrast to C++, structs
in C may not contain functions.

Struct Objects

To declare a variable of a struct type, the struct keyword is followed by the type name
and the variable identifier. Variables of struct type are commonly referred to as objects or
instances.

int main(void) {
struct point p; /* object declaration */

}

Objects may also be created when the struct is defined, by placing the object names
before the final semicolon. This position is called the declarator list. If the optional
struct identifier is left out, this becomes the only way to create objects of the struct type.
Such a struct without an identifier is called an unnamed struct and provides a way for
programmers to prevent any more instances of the type from being created.

struct /* unnamed struct */
{

int x, y;
} a, b; /* object declarations */

43

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 © STRUCT

Itis common in C to use typedef when defining structures. This aliasing removes the
need to include the struct keyword when declaring objects of the struct type, resulting in
the shorter syntax used in C++.

typedef struct point point;
struct point {
int x, y;

};

int main(void) {
point p; /* struct omitted */

Member Access

Variables of a struct type are called fields or members. These fields are accessed using
the member of operator (.) prefixed by the object name. Fields of an object are by default
undefined, so it is important to assign them a value before they are read.

int main(void) {

point p;
p.x = 1;
p.y =2;

Similar to an array, struct objects may also be initialized when they are declared
by enclosing the values in curly brackets. The values are then assigned in order to the
corresponding members of the struct. This way of assigning values to a composite type is
known as aggregate initialization.

struct point {

int x, y;
}yr={1,21}; /* assigns x and y */
int main(void) {

point p={1, 2 };

C99 introduced designated initializers, which allow structures to be initialized in
any order by specifying the names of the fields. Any omitted fields will be automatically
initialized to 0.

int main(void) {
point p={ .y =2, .x=11};

44

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 © STRUCT

Struct Pointers

A struct is a value type, not a reference type like an array. As such, any assignment or
argument passing for objects will copy the field values and not the object reference.
This is different from many modern languages where composite types are automatically
assigned and passed by reference.

int main(void) {
point p = { 1, 2 };
point r = p; /* copies field values */

}

For large structures the performance cost of this copy operation may be significant.
Therefore it is common to use pointers when passing objects to functions, to avoid having
to copy and return the whole object.

void init struct(point* a) {
(*a).x = 1;
(*a).y = 2;

}

int main(void) {
point p;
init_struct(&p);
}

As shown in this example, the pointer must be dereferenced before the member of
the operator can be used to access the fields. Since this operation is so common there
is a syntactical shortcut available, known as the infix operator (->), which automatically
dereferences the pointer.

point p;
point* r = &p;
I->x = 1; /* same as (*r).x = 1; */

45

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 © STRUCT

Bit Fields

The C programming language offers a way to optimize memory use within a struct type
by allowing the bit length of integer fields to be specified. Such a field is called a bit field,
and its length is set by placing a colon after the field name followed by the number of bits.
The length must be less than or equal to the bit length of the specified type.

struct my bits

{
unsigned short f1 : 1;
unsigned short f2 : 1;
unsigned short id : 10;

} a;

Bit fields are packed as compactly as possible, while keeping in mind that the size of
an object needs to be a multiple of the size of the types it contain. In this case the needed
12 bits will require 16 bits to be reserved for the object, as that is the size of the short type.
Had bit fields not been used, the 3 shorts and consequently the struct would occupy 48
bits instead.

int main(void) {

printf("%d bytes", sizeof(a)); /* "2 bytes" */
}

This feature is useful when programming for embedded systems, where hardware
resources may be very constrained.

46

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14

Union

The union type is identical to the struct type, except that all fields share the same memory
position. Therefore, the size of a union is the size of the largest field it contains. In the
following code this is the integer field, which is 4 bytes large.

union mix {
char c; /* 1 byte */
short s; /* 2 bytes */
int i; /* 4 bytes */
};

Given this memory sharing, the union type can only be used to store one value at a
time, because changing one field will overwrite the value of the others.

int main(void) {
union mix m;
m.c = OXFF; /* set first 8 bits */
m.s = 0; /* reset first 16 bits */

}

The benefit of a union, in addition to efficient memory usage, is that it provides
multiple ways of using the same memory location. For example, the following union has
three data members that allow access to the same group of 4 bytes in different ways.

union mix {

char c[4]; /* 4 bytes */

struct { short hi, lo; } s; /* 4 bytes */

int i; /* 4 bytes */
}om;

47

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 © UNION

The int field accesses all 4 bytes at once, the struct 2 bytes at a time, and the char
array allows each byte to be referenced individually. The bit pattern for this is illustrated
in the next example. Keep in mind that the internal order of bytes for primitive data types
is not defined in C. Because of this, the order of the 4 bytes that make up the int may be
reversed on some platforms.

m.i=0xFFOOFOOF; /* 11111111 00000000 11110000 00001111 */
m.s.lo; /* 11111111 00000000 */
m.s.hi; /* 11110000 00001111 */
m.c[3]; /* 11111111 */
m.c[2]; /* 00000000 */
m.c[1]; /* 11110000 */
m.c[0]; /* 00001111 */
48

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15

Type Conversions

Converting an expression from one type to another is known as type casting or type
conversion. This can be done either implicitly by the compiler or explicitly with code.

Implicit Conversions

An implicit conversion is performed automatically by the compiler when an expression
needs to be converted into one of its compatible types. For example, any conversions
between the primitive data types can be done implicitly.

long 1

=5; /* int -> long */
double d =

1; /* long -> double */

These implicit conversions can also take place within an expression, allowing you
to mix different primitive types together. When types of different sizes are involved, the
result will be of the larger type, so an int and double will produce a double value.

double d = 5 + 2.5; /* int -> double */

Implicit conversions of primitive types can be further grouped into two kinds:
promotion and demotion. Promotion occurs when an expression gets implicitly converted
into a larger type, and demotion occurs when converting an expression to a smaller type.

/* Promotion */
long 1 = 5; /* int promoted to long */
double d = 1; /* long promoted to double */

/* Demotion */
int i = 10.5; /* warning: possible loss of data */
char c = i; /* warning: possible loss of data */
Because a demotion can result in the loss of information, these conversions generate

a warning on many compilers. If the potential information loss is intentional, the warning
can be suppressed by using an explicit cast.

49

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15 * TYPE CONVERSIONS

Explicit Conversions

An explicit cast is performed by placing the desired data type in parentheses to the left of
the expression that needs to be converted.

int i = (int)10.5; /* double demoted to int */
char ¢ = (char)i; /* int demoted to char */

Keep in mind that casting a variable only makes it temporarily evaluate as a different
type; it does not change the variable’s underlying type.

50

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16

Storage Classes

Every variable has a storage class that determines its scope and lifetime. These storage
classes include the following: auto, register, extern, and static. Each of these classes is also
a keyword that can be placed before the data type to determine to which storage class a
variable belongs.

Auto

The default storage class for local variables is auto, which can be explicitly specified with
the auto keyword. Memory for automatic variables is allocated when the code block is
entered and freed upon exit. The scope of these variables is local to the block in which
they are declared, as well as any nested blocks.

int main(void) {
auto int localVar; /* auto variable */

}

Register

The register storage class hints to the compiler that a local variable will be heavily used
and should therefore be kept in a CPU register instead of RAM memory to provide
quicker access. Variables of the register storage class cannot use the address-of operator
(&) since registers do not have memory addresses. They also cannot be larger than the
register size, which is usually the same as the processor’s word size.

int main(void) {

register int counter; /* register variable */

}

Use of the register keyword has become deprecated since modern compilers are
automatically able to optimize which variables should be stored in registers.

51

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16 © STORAGE CLASSES

External

The external storage class, specified with the extern keyword, is used to reference a
variable or function defined in another compilation unit. A compilation unit consists of a
source file plus any included header files. Functions default to the external storage class,
so marking function prototypes with extern is optional.

/* app.c */
extern void foo(void); /* declared function */
int main(void) {

foo(); /* external function call */

}

/* func.c */
void foo(void) {} /* defined function */

When extern is used with a global variable it becomes declared but not defined,
so no memory is allocated for it. This tells the compiler that the variable is defined
elsewhere. As with functions, it is necessary to declare global variables before they can be
used in a compilation unit outside the one containing the definition.

/* app.c */
int globalVar; /* defined variable */

int main(void) {
globalVar = 1;
}

/* func.c */
extern int globalVar; /* declared variable */

int foo(void) {
globalVar++;
}

Keep in mind that a global variable or function may be declared externally multiple
times in a program, but they may be defined only once.

Static

The static storage class restricts the scope of a global variable or function to the
compilation unit that defines it. The lifetime of static entities is to last for the whole
program duration, which is the same as entities belonging to the external storage class.

/* Only visible within this compilation unit */
static int myInt;
static void myFunc(void) {}

52

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16 © STORAGE CLASSES

Local variables may be declared as static to make the function preserve the variable
for the duration of the program. A static local variable is only initialized once - when
execution first reaches the declaration - and that declaration is then ignored every
subsequent time the execution passes through.

/* Store number of calls to this function */
void myFunc(void) {

static int count = 0;

count++;

}

Knowing that a code entity can only be accessed and altered within a limited scope
simplifies debugging as it reduces potential dependencies between compilation units.
Therefore, it is a good idea to declare all global variables and functions as static, unless
they have an actual need to be exposed outside of their own compilation unit.

Volatile

Another type modifier in C is volatile. This modifier tells the compiler that a variable’s
value may be changed by something external to the program and that the value must
therefore be reread from memory every time it is accessed. Like const, the volatile
modifier can appear either before or after the type, and it can be used together with a
storage class modifier.

volatile int var; /* recommended order */
int volatile var; /* alternative order */

In the following example the function waits for a variable to be set by some external
event. Without the volatile modifier the compiler may decide to optimize this loop
condition by replacing it with an infinite loop, as it assumes the variable is never changed.

volatile int ext = 0;
void poll(void) {

while(ext == 0) {}
}

Global variables should be declared volatile if their value is shared and can be
changed externally. This can occur because an interrupt service routine modifies the
variable, or because it is changed by another thread in a multi-threaded application.
A third use case for volatile is with memory-mapped peripheral devices, which can
change hardware registers outside of the program’s control.

53

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 17

Constants

A constant is a variable with a value that cannot be changed once it has been assigned.
This allows the compiler to enforce that a variable’s value is not changed anywhere in the
code by mistake.

Constant Variables

A variable can be made into a constant by adding the const keyword either before or
after the data type. This modifier makes the variable read-only, and it must therefore be
assigned a value at the same time as it is declared. Attempting to change the constant
anywhere else results in a compile-time error.

const int var = 5; /* recommended order */
int const var2 = 10; /* alternative order */

Constant Pointers

When it comes to pointers, const can be used in two ways. First, the pointer can be made
constant, which means that it cannot be changed to point to another location.

int myPointee;
int* const p = 8myPointee; /* constant pointer */

Second, the pointee can be declared constant. This means that the variable pointed
to cannot be modified through this pointer.

const int* q = &var; /* constant pointee */

It is possible to declare both the pointer and the pointee as constant to make them
both read-only.

const int* const r = &var; /* constant pointer & pointee */

55

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 17 © CONSTANTS

Referencing a constant from a non-constant pointer will produce a warning or error
on most compilers. This is because such an assignment makes it possible to accidentally
rewrite the constant’s value.

int* s = &var; /* error: const to non-const assignment */

Constant Parameters

Function parameters can be made constant to prevent them from being altered within the
function. The main benefit of this is to let programmers know that the function leaves its
pointer arguments untouched. When used consistently, it can also provide information
about which functions can be expected to modify their pointer arguments.

void foo(const int* x) {
if (x != NULL) {
int i = *x; /* allowed */
x = 1; / compile-time error */
}
}

Constant Guideline

In general, it is a good idea to always declare variables constant if they do not need to be
modified. This ensures that the variables are not changed anywhere in the program by
mistake, which in turn can help prevent bugs.

56

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18

Preprocessor

The preprocessor is a text substitution tool that modifies the source code before it is
compiled. This modification is done according to the preprocessor directives that are
included in the source files. The directives are easily distinguished from normal programming
code in that they all start with a hash sign (#). They must always appear as the first
non-whitespace character on a line and do not need to end with a semicolon. The following
table shows the preprocessor directives available in C along with their functions.

Directive Description

#include File include

#define #undef Define macro Undefine macro
#ifdef #ifndef If macro defined If macro not defined

#if #elif #else #endif If Else if Else End if

#line #error #pragma Set line number Abort compilation Set compiler option

Including Source Files

The #include directive inserts the contents of a file into the current source file. Its most
common use is to include header files (.h), both user-defined and library ones. Library
header files are enclosed between angle brackets (<>). This tells the preprocessor to
search for the header in the default directory where it is configured to look for standard
header files.

#include <stdio.h> /* search library directory */

Header files that you create for your own program are enclosed within double quotes
(""). The preprocessor will then search for the file in the same directory as the current
file. In case the header is not found there, the preprocessor will then search among the

standard header files.

#include "myfile.h" /* search current, then default */
57

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18 ' PREPROCESSOR

The double quoted form can also be used to specify an absolute or relative path to
the file.

#include "c:\myfile.h" /* absolute path */
#include "..\myfile.h" /* relative path */

Define

Another important directive is #define, which is used to create compile-time constants,
also called macros. After the directive, the name of the constant is specified followed by
what it will be replaced by.

ftdefine PI 3.14 /* macro definition */

The preprocessor will go through the code and change any occurrences of this
constant with whatever comes after it in its definition until the end of the line.

float f = PI; /* f = 3.14 */

By convention, constants should be named in uppercase letters with each word
separated by an underscore. That way they are easy to spot when reading the source code.

Undefine

A #define directive should not be used to directly override a previously defined macro.
Doing so will give a compiler warning, unless the macro definitions are the same.

In order to redefine an existing macro, it first needs to be undefined using the #undef
directive. Attempting to undefine a macro that is not currently defined will not
generate a warning.

#undef PI /* undefine */
ttundef PI /* allowed */

Predefined Macros

There are a number of macros that are predefined by the compiler. To distinguish them
from other macros, their names begin and end with two underscores. The standard
macros that all ANSI C compliant compilers include are listed in the following table.

58

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18 © PREPROCESSOR

Directive Description

__FILE The name and path for the current file.

__LINE__ The current line number.

__DATE__ The compilation date in MM DD YYYY format.

_ TIME__ This compilation time in HH:MM:SS format.

__func__ The name of the current function. Added in C99.

__STDC__ Defined as 1 if the compiler complies with the ANSI C standard.

A common use for predefined macros is to provide debugging information. To give
an example, the following error message includes the file name and line number where
the message occurs.

printf("Error in %s at line %d", _FILE_, LINE_);

Macro Functions

A macro can be made to take arguments. This allows them to define compile-time
functions. For example, the following macro function gives the square of its argument.

#define SQUARE(x) ((x)*(x))

The macro function is called just as if it was a regular C function. Keep in mind that
for this kind of function to work, the arguments must be known at compile time.

int x = SQUARE(2); /* 4 */

Note the extra parentheses in the macro definition that are used to avoid problems
with operator precedence. Without the parentheses the following example would give an
incorrect result, as the multiplication would then be carried out before the addition.

#define SQUARE(x) x*x

int main(void) {
int x = SQUARE(1+1); /* 1+1*1+1 = 3 */

}

To break a macro function across several lines the backslash character can be used.
This will escape the newline character that marks the end of a preprocessor directive.
For this to work there must not be any whitespace after the backslash.

#define MAX(a,b) \
a>b ? \
a:b

59

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18 ' PREPROCESSOR

Although macros can be powerful, they tend to make the code more difficult to read
and debug. Macros should therefore only be used when they are necessary and should
always be kept short. C code such as constant variables, enums, and inline functions can
often accomplish the same goal more efficiently and safely than #define directives can.

Conditional Compilation

The directives used for conditional compilation can include or exclude part of the source
code if a certain condition is met. First, there is the #if and #endif directives, which
specifies a section of code that will only be included if the condition after the #if directive
is true. Note that this condition must evaluate to a constant expression.

#define DEBUG_LEVEL 3

#if DEBUG_LEVEL > 2
/¥ .00 X/
ftendif

Just as with the C if statement, any number of #elif (else if) directives and one final
#telse directive can be included.

#if DEBUG_LEVEL > 2
/¥ 00 %/

#elif DEBUG _LEVEL == 2
/¥ ... %/

ftelse
VALY |

#endif

Conditional compilation also provides a useful means of temporarily commenting
out large blocks of code for testing purposes. This often cannot be done with the regular
multi-line comment since they cannot be nested.

#if o

/* Removed from compilation */
#endif

Compile if Defined

Sometimes, a section of code should only be compiled if a certain macro has been
defined, irrespective of its value. For this purpose two special operators can be used:
defined and !defined (not defined).

60

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18 © PREPROCESSOR

#define DEBUG

#if defined DEBUG
/* L. X/

#elif !defined DEBUG
/* .0 */

#endif

The same effect can also be achieved using the directives #ifdef and #ifndef
respectively. The #ifdef section is only compiled if the specified macro has been
previously defined. Note that a macro is considered defined even if it has not been
given a value.

#ifdef DEBUG
/* .0 X/
#endif
#ifndef DEBUG
VALY |
#endif

Error and Warning

When the #error directive is encountered the compilation is aborted. This directive
can be useful, for example, to determine whether or not a certain line of code is being
compiled. It can optionally take a parameter that specifies the description of the
generated compilation error.

#error "Compilation aborted"

Many C compilers also include the non-standard directive #warning. This directive
displays a warning message without halting the compilation.

#warning "Function X is deprecated, use Y instead"

A less commonly used directive is #1ine, which can change the line number that is
displayed when an error occurs during compilation. Following this directive the line
number will as usual be increased by one for each successive line. The directive can

take an optional string parameter that sets the filename that will be shown when an
€ITOr OCCUrs.

#line 5 "myapp.c"

61

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18 ' PREPROCESSOR

Pragma

The last standard directive is #pragma, or pragmatic information. This directive is used
to specify options to the compiler; and as such, they are vendor specific. To give an
example, #pragma message can be used with many compilers to output a string to the
build window.

/* Show compiler message */
#pragma message "Compiling " _ FILE

62

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 19

Memory Management

In the examples so far, the programs have only had as much memory available as has
been declared for the variables at compile time. This is referred to as static allocation.
If any additional memory is needed at runtime it becomes necessary to use dynamic
allocation. The C standard library provides several functions for managing dynamically
allocated memory, including: malloc, free, and realloc. These functions are found in
the stdlib.h header file.

Malloc

The malloc function takes a size in bytes and returns a pointer to a block of free memory
of that size. This dynamically allocated memory is uninitialized and can only be accessed
through pointers.

#include <stdio.h>
#include <stdlib.h>

int main(void) {
/* Dynamic memory allocation */
char* ptr = malloc(sizeof(char) * 5);

}

The sizeof operator is used to get the number of bytes for the given data type on the
current system. This number is here multiplied by five to allocate a block large enough to
contain exactly five chars, provided that the system has that much free memory available.
If it does not, malloc returns null to signal that it has failed to allocate the memory, in
which case the function may need to signal to its caller that it too has failed.

char* ptr = malloc(sizeof(char) * 5);
if (ptr == NULL) {

/* No memory allocated, exit function */
return -1;

}

63

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 19 © MEMORY MANAGEMENT

By convention, functions that return a pointer, such as malloc, uses the value NULL
to indicate failure. This is different from functions that return a value, which traditionally
use 0 to indicate success and -1 to signal failure. Additional return values can be used to
give the user of the function more detailed information about the return state.

Free

An important thing to remember about dynamic allocation is that this memory will

not be released when the pointer goes out of scope, as with local variables. Instead, the
memory has to be manually released with the function free, which releases the memory
block at the specified address.

free(ptr); /* release allocated memory */

This allows you to control the lifetime of a dynamically allocated object, but it also
means that you are responsible for freeing that memory once it is no longer needed.
Forgetting to free dynamic memory will give the program unwanted memory leaks,
because that memory will stay allocated until the program shuts down.

As mentioned before, the pointer to the released memory should be set to NULL
immediately to show that it is no longer set to a valid reference. This is especially
important for pointers that are repeatedly allocated and freed within a program.

ptr = NULL; /* null pointer */

It is interesting to note that the function free only accepts one argument, the starting
address for the memory block. The actual size of the block does not need to be provided.
This is because the implementation of malloc and free keeps track of the size of each
block as it is allocated, typically by storing it next to the block.

Realloc

An allocated memory block can be resized with the realloc function. This function takes
two arguments: the pointer to a previously allocated memory block and the new total size
requested. If the pointer passed to realloc is NULL then the function behaves asmalloc.

/* Increase size of memory block */
char* new _ptr = realloc(ptr, sizeof(char) * 10);

The return value is here stored in a new pointer, in case realloc fails to allocate
the extra memory and returns NULL. This prevents the only reference to the previously
allocated memory block from being lost, which would lead to a memory leak.

/* On failure, free memory and exit */

if (new_ptr == NULL) {
free(ptr);

64

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 19 © MEMORY MANAGEMENT

return -1;
}
/* On success, update pointer */
else {

ptr = new_ptr;

}

Void Pointer

It is sometimes necessary to use pointers without regard to the type they reference.
This is achieved by specifying the pointer type as void*, known as a void pointer. A void
pointer can store the address of any type of variable and can be cast to any pointer type,
making them useful as a universal pointer. This type is what allows the free function

to accept any pointer argument, and how malloc returns a pointer that can be cast to
any pointer type. The following example illustrates how the void pointer can be used to
change the values of two variables of different types.

int i;
char c;

void *vptr = &i;
((int)vptr) = 1;

vptr = &c;
((char)vptr) = 'a’;

Note that a void pointer may not be dereferenced without first casting it to the
appropriate pointer type. The compiler is unable to check that this type cast is valid,
which is why void pointers should be used with care.

65

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 20

Command Line Arguments)

When a C program is executed it can accept arguments that are passed to it from the
command line. These command line arguments are useful for controlling the behavior
of the program from outside the code. The arguments are passed to the main function,
which is then set to accept two parameters as shown here.

int main(int argc, char* argv[]) {}

The integer argc is the number of arguments passed, and argv is a pointer array to
the supplied command line arguments. The first argument argv[0] is the name of the
program, so the argument count in argc begins with 1 when no arguments are passed.

If the program name is not available on the host environment, the first element will be an
empty string instead. A simple program that prints all arguments is given here.

#include <stdio.h>

int main(int argc, char* argv[]) {
int i;
for(i=0; i < argc; i++) {
printf("Argument %d is: %s\n", i, argv[i]);

When a program is executed from a terminal window, the string arguments are listed
after the filename, separated by spaces. If the argument itself contains a space it can be
delimited by double quotes. In the following example, the previous program is compiled
and executed with two arguments.

gcc myapp.c -0 myapp.exe
./myapp.exe test "Hello World"
Argument 0 is myapp.exe
Argument 1 is test

Argument 2 is Hello World

67

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21

Headers

As a project grows it is common to split the code up into different source files. When

this happens the interface and implementation are generally separated. The interface is
placed in a header file, which commonly has the same name as the source file and a .h file
extension. This header file contains forward declarations for the source file entities that
need to be accessible to other compilation units in the project.

Why to Use Headers

C requires everything to be declared before it can be used. It is not enough to just compile
the necessary source files in the same project. For example, if a function is placed in
func.c, and a second file named app.c in the same project tries to call it, the compiler will
report that it cannot find the function (or, prior to C99, that it has implicitly declared it).

/* func.c */

void myFunc(void) {
/* .0 X/

}

/* app.c */

int main(void) {

myFunc(); /* error: myFunc identifier not found */

}

To make this work as intended, the function's prototype has to be included in app.c.

/* app.c */
void myFunc(void); /* prototype */

int main(void) {
myFunc(); /* ok */

69

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21 © HEADERS

This can be made more convenient if the prototype is placed in a header file named
func.h and this header is included in app.c through the use of the #include directive.
This way, when changes are made to func.c, there is no need to update the prototypes in
app.c. Furthermore, any source file that wants to use the shared code in func.c can just
include this one header.

/* func.h */
void myFunc(void); /* prototype */

/* app.c */
#include "func.h"

What to Include in Headers

As far as the compiler is concerned there is no difference between a header file and a
source file. The distinction is only conceptual. The key idea is that the header should
contain the interface of the implementation file - that is, the code that other source files
will need to use. This may include shared macros, constants, and type definitions, as
those shown here.

/* app.h - Interface */
#define DEBUG 0

const double PI = 3.14;
typedef unsigned long ulong;

The header can also contain prototypes of the shared functions defined in the source
file. Internal functions used only within the source file should be left out of the header, to
keep them private from the rest of the program.

void myFunc(void); /* prototype */

Additionally, shared global variables are typically declared as extern in the header,
while their definitions lay in the source file.

/* app.h */
extern int myGlobal;

/* app.c */
int myGlobal = 0;

It should be noted that the use of shared global variables is discouraged. This is
because the larger a program becomes, the more difficult it is to keep track of which

functions access and modify these variables. The preferred method is to instead pass
variables to functions only as needed, in order to minimize the scope of those variables.

70

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21 © HEADERS

The header should not include any executable statements, with one exception.
A shared function that is declared as inline needs to be defined in the header. Otherwise,
the compiler will not have the definition necessary for inlining the function available to it.

/* app.h */
inline void inlineFunc(void) {}

If a header requires other headers it is common to include those files as well, to make
the header stand alone. This ensures that everything needed is included in the correct
order, solving potential dependency problems for every source file that needs the header.

/* app.h */
#include <stddef.h>
void mySize(size_t);

Note that since headers mainly contain declarations, any extra headers included
should not affect the size of the program, although they may slow down the compilation.

Include Guards

An important thing to bear in mind when using header files is that a code entity, such as
a constant, typedef, or enum, may only be defined once in every project. Consequently,
including the same header file more than once will often result in compilation errors.

The standard way to prevent this is to use a so-called include guard. An include guard is
created by enclosing the body of the header in a #ifndef section that checks for a macro
specific to that header file. Only when the macro is not defined is the file included and the
macro is then defined, which effectively prevents the file from being included again.

/* app.h */
#ifndef APP_H
#define APP_H
VALY
#endif

71

www.it-ebooks.info

http://www.it-ebooks.info/

Index

A

Arithmetic operators, 15
Arrays
array assignment, 21
array size, 22
declaration and allocation, 21
multi-dimensional, 22
and pointers, 22
Assignment operators, 15

Bit field, 46
Bitwise operators, 17

C

Command line arguments, 67
Comparison operators, 16
Compile and run

comments, 4

console compilation, 3-4

visual studio compilation, 3
Constants

guideline, 56

parameters, 56

pointers, 55-56

variable, 55

D

Declarator list, 39
Dereference operator, 19-20
Do-while loop, 29

E

Enum
color, 39
constant values, 40
conversions, 40
scope, 41
switch statement, 39
variables, 39
Explicit conversions, 50

F

For loop, 29

Free function, 64

Functions
calling, 31
definition, 31
forward declaration, 33
inline, 36
parameters, 31
pass by address, 35
pass by value, 34
return by value/address, 35
return statement, 32
variable parameter lists, 34
void parameter, 32

G

GNU Compiler Collection (GCC), 3-4
Goto statement, 30

H

Headers
function’s prototype, 69
include guards, 71

www.it-ebooks.info

73

http://www.it-ebooks.info/

INDEX

Headers (cont.)
interface and implementation, 69
shared global variables, 70
Hello World
integrated development
environment (IDE), 1
IntelliSense, 2
printf function, 2
project, 1
return statement, 2
source file, 1

,J,K

If statement, 27-28
Implicit conversions, 49
Increment and decrement operators, 16
Integrated development

environment (IDE), 1
IntelliSense, 2

L

Logical operators, 17
Loops
break and continue, 30
do-while, 29
for, 29
goto statement, 30
while, 29

Malloc function, 63-64
Memory management
description, 63
free function, 64
malloc function, 63-64
realloc function, 64-65
void pointer, 65

N

Null pointer, 20

o)

Operator precedence, 18

74

PQ

Pointers
address-of operator, 19
data type, 19
dereferencing, 19-20
null, 20
pointing to pointer, 20
Preprocessor
ANSI C compliant compilers, 58
conditional compilation, 60
define macro (#define), 58
description, 57
error and warning, 61
file include (#include), 57
If macro defined (#ifdef), 61
line, 61
macro functions, 59-60
pragma, 62
undefine macro (#undef), 58

R

Realloc function, 64-65

S

Storage classes
auto, 51
external, 52
register, 51
static, 52-53
volatile, 53
String
character array, 23
escape character, 23
null character, 23
strcat (string concatenation), 25
strcpy (string copy), 25
strlen function, 25
Struct/structure
bit field, 46
member access, 44
objects, 43-44
pointers, 45
user-defined type, 43
Switch statement, 28

www.it-ebooks.info

http://www.it-ebooks.info/

T

Ternary operator, 28

Type conversions
explicit, 50
implicit, 49

Typedef, 37

U

Union, 47-48

\'

Variables
assigning, 6
bool type, 12

char type, 11

data types, 5

declaration, 6

floating-point types, 10

global, 13

integer size, 9-10

integer types, 8

literal suffixes, 11

local, 12-13

printf function, 7-8

signed and unsigned, 8-9
Void pointer, 65

W, XY, Z

While loop, 29

www.it-ebooks.info

INDEX

75

http://www.it-ebooks.info/

C Quick Syntax
Reference

Mikael Olsson

Apress’

www.it-ebooks.info

http://www.it-ebooks.info/

C Quick Syntax Reference
Copyright © 2015 by Mikael Olsson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part

of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6499-6
ISBN-13 (electronic): 978-1-4302-6500-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Steve Anglin

Technical Reviewer: Michael Thomas

Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,
Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editor: Mark Powers

Copy Editor: Karen Jameson

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,

e-mail orders-ny@springer-sbm.com, or visit www. springeronline. com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code,
g0 to www.apress.com/source-code/.

www.it-ebooks.info

http:\\orders-ny@springer-sbm.com
www.springeronline.com
http:\\rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.it-ebooks.info/

Contents

About the AUthOrovivmmmmmmnessnssssss s xi
About the Technical REVIEWETccccssssemsmssanssssansssssnsssssnsssssnssnsans xiii
Introduction ... ——————— Xv
Chapter 1: Hello World..........cccinnssemmmmmmssemsnmmssssssnnssssssssssssssssssnsssnnns 1
Creating @ ProjeCt........ccocvververrerrrrer st 1
Adding @ SOUICE Filecccceeeeeeeeeeececir e 1
g (o100 o 2
INEEIIISENSE......ceceeeeerer e 2
Chapter 2: Compile and Run..........cccivnnsemmmmnmsssssnmmmssssssssssssssssssssnes 3
Visual Studio Compilation............cccevverrrnnrnnnses e seess 3
Console Compilation...........ccceeeeerrrserserser s s 3
COMMENTS ..o r e nne e nnens 4
Chapter 3: Variablesccuccmmmmnnssmmmmmmsssssnmmssssssnmmsssssnmsssssssssnsssnnns 5
(D L B] 0T 5
Declaring Variables..........coooeeereneneseeseesse s sss s sse s s e sessessnnenns 6
Assigning Variables ... s 6
Printing Variables ..o e 7
11T =T 0T SRR 8
Signed and UnSignedccocecrcrcercencerssses s 8
SIZed INTEYEIS ...eererererer et 9
Floating-Point TYPES......cccoeeererrcrrrr s 10
v

www.it-ebooks.info

http://www.it-ebooks.info/

Vi

CONTENTS

Literal SUFfIXEScoerereerereereresere s 11
081 T 1 o T 11
BOOI TYPC ...t 12
Variable SCOPEccevveerierre s s s n e e n e san s 12
Chapter 4: 0peratorscccuueemmmmsssemsnmmsssessnmssssssssssssssssssssssansssssnns 15
Arithmetic OpPerators.........cccvvevcrrierrer e 15
Assignment Operators..........coccceeeeereresesesese e enes 15
Combined Assignment Operators.........c.ccccoeevnrerresessesssesssssssesssesesennes 15
Increment and Decrement OPerators..........ccveevvevrervnvrersessessessessseseens 16
Comparison OPerators...........cccvceererrerserncssesessessese s ssesnesnens 16
LogiCal OPEratOrsScccveererererresesesssse e sss s se e sn s snnnes 17
Bitwise OPErators.........cocvevererererererese s e s sae e ssessessessessens 17
Operator PreCedencCe..........ccvvereerererercssesesese s sse s snesnens 18
Chapter 5: POINters.....ccciuusemmmmmsssmsnmmmsssssnsmsssssssssssssssnssssssssnsssssnnns 19
Creating POINTErS........cccoccevierirrer s e 19
Dereferencing POINTES.........ccocevereneiennss e 19
Pointing t0 @ POINter..........ccooeririerr e 20
T LN a0] 20
Chapter 6: Arrays ...cuceeummiseesmmmmssssmmssssssnssssssssssesssssssssssssnsssssssnnns 21
Array Declaration and AlloCationcccccvrerveercernnnes s 21
Array ASSIGNMENTccceeererreererrrsesrese s e re e sns e srs e sessssesnens 21
Multi-Dimensional Arrays........coceeeeeesersesssssessessssssssessssssssssssssessessessennes 22
Arrays and POINTErS........cccocecrvrcr e 22
F g VTS - 22

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 7: STringcccccmiemmmsssnmmssssmmssssmmsssssssssssesssssssssnssssssssssnnnes 23
EScape CharacCtersccceceeeeeceececscessee s 23
StriNg FUNCLIONScoceverererer ettt 24
Chapter 8: Conditionalsccccuussemmmmsssssnnmmssssssnnmsssssssssssssssnsssssnnns 27
If Statement..........oco e ————— 27
Switch Statement..........coocerecer e ———— 28
Ternary OPeratorccccvcrvrsrsernnsesse s 28
Chapter 9: LOOPS....ccuuuesmmsssnmmsssssmsssnsssssssessansessansesssnsessnnsesssnnsssnnnes 29
WHIIE LOOP...cueierercrirercr s s 29
D0 R T = 0o 29
0] I 0 o S 29
Break and ContinUE...........ccccevrrereresensssse s 30
GOto Statement ... 30
Chapter 10: FUNCLIONSccccimnissemmmmnsssennmmssssssssmsssssssssssssssnsssssnnns 31
Defining FUNCHIONScccovveerrr e 31
Calling FUNCHONS........ccoeerercrcrer e 3
Function Parameters.........cccovvienninnnsnsssssss s snas 31
V0id Parameter...........cccoveienernscrerssesessese s se s sesssesesssnens 32
Return Statement..........ooi s 32
Forward Declaration...........ccoceeererenesesessesssesssessesssse s ssssessssessesnas 33
Variable Parameter Lists ... 34
PaSS DY VAIUE ... 34
PasS DY AQArESScoererrrerriereeseesee s 35
Return by Value or Addresscccvveverrernensnnsessesses e ses e ssesssessessnens 35
INiNE FUNCHIONS.coviircercr e 36

vii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 11: Typedef.......ccccccmnsmmmmsmmmmssmnmmssssmmssssmssssssssssssssssssessnns 37
Chapter 12: ENUMcccccimnnisseenmmmsssessnmmsssssnmssssssssssssssssssssssnnsnnssans 39
ENUM EXAMPIE ...ttt sae e sn s sn e s ne e 39
Enum Constant ValUues..........coocverrrcninncnsssesses s 40
ENUM CONVEISIONS......cov i 40
ENUM SCOPE ...ttt s 41
Chapter 13: Structccccmmrrininnmmnnse s ——————— 43
STrUCt ODJECTS.....cov e ——————— 43
MEMDEI ACCESS.......coeierieirerre e 44
SHUCE POINTEIS ...t 45
Bit FIEIUSccevrererrrsceceseresssss s se e se s se e sessssnnas 46
Chapter 14: UnioNcouuseeeesemmmmmmmmmmssssssssnsmmssssssssssssssssssssssssssnssnnnns 47
Chapter 15: Type CONVErsioNScccumssssemsmmssssnsssssssssnsssssssansssssnns 49
IMPIICit CONVEISIONS......cevereereerreerersee s seesressae e ssae e ssaesssssaessnssnesaeens 49
EXPlICit CONVEISIONScoveieerrereereereesie e sse e ssessessessesssssessesssssssaesaessessesns 50
Chapter 16: Storage ClasSesuccermmmssseesmmmsssennnmsssssssssssssssssssans 51
(o R o1
REGISIEN ... 51
EXternal ... ———- 52
SHALC ...t 52
L0 L1 RSP 53
Chapter 17: Constants.........ccccurermmsmmmsssssmmssssmsssssmssssnssssssssssssssssans 55
Constant Variables...........cocuerernernnrnnessssssssssesssss s sessssssnes 55
Constant POINTEIS.........cccoreerrecrreere e 55
Constant Parameters...........cnnne s 56
Constant GUIAEIINEccoceeerrernseresirersse e 56
viii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 18: PreproCessor.....cuccuuuusssmmssansssssnssssansssssnsssssnsssssnssssnnnss 57
Including SOUICE FileS.......cceeueeeeeerceecer e 57
DEFING ... s 58
UNAEINE ... 58
Predefined MACKOScccviernnerenesiressesesesse s sessesnas 58
MaCI0 FUNCLIONS.......cociecerecrere e 59
Conditional Compilationccccerreericnnrre s 60
Compile if DEfined........cccecrerrrcerrerr e 60
Error and Warningccceeveveeresnennessesssssessessesssssesssssesssssesssssessssssssesnes 61
LN e 61
o0 T 11 62
Chapter 19: Memory Managementcccouseemmmmsssssnmsssssssnsssssnnes 63
11 11 o 63
FIBE o ——————— 64
REAIIOC..... ..ot 64
VOId POINTEYveeceeeeccesnserre e sn e 65
Chapter 20: Command Line Argumentsccccomnsemmmmmsssssnmssssnnn 67
Chapter 21: Headers.......ccuseemmmmmssemnmmmsssssnnmssssssssssssssssssssssssnsssssnnns 69
Why t0 Use Headerscccocvirerirscnscnsesesseses s se s 69
What to Include in Headers............ccereerenesiennsessensssessssssessssesesesesnens 70
INCIUAE GUAKS ... 71
LT 73
ix

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Mikael Olsson is a professional web entrepreneur,
programmer, and author. He works for an R&D
company in Finland where he specializes in software
development. In his spare time he writes books and
creates websites that summarize various fields of
interest. The books he writes are focused on teaching
their subject in the most efficient way possible, by
explaining only what is relevant and practical without
any unnecessary repetition or theory. The portal to his
online businesses and other websites is Siforia.com.

Xi

www.it-ebooks.info

www.apress.com
http://www.it-ebooks.info/

About the Technical
Reviewer

Michael Thomas has worked in software development
for over 20 years as an individual contributor, team
lead, program manager, and vice president of
engineering. Michael has over 10 years of experience
working with mobile devices. His current focus is in
the medical sector using mobile devices to accelerate
information transfer between patients and health care
providers.

xiii

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Hello World
	Creating a Project
	Adding a Source File
	Hello World
	IntelliSense

	Chapter 2: Compile and Run
	Visual Studio Compilation
	Console Compilation
	Comments

	Chapter 3: Variables
	Data Types
	Declaring Variables
	Assigning Variables
	Printing Variables
	Integer Types
	Signed and Unsigned
	Sized Integers
	Floating-Point Types
	Literal Suffixes
	Char Type
	Bool Type
	Variable Scope

	Chapter 4: Operators
	Arithmetic Operators
	Assignment Operators
	Combined Assignment Operators
	Increment and Decrement Operators
	Comparison Operators
	Logical Operators
	Bitwise Operators
	Operator Precedence

	Chapter 5: Pointers
	Creating Pointers
	Dereferencing Pointers
	Pointing to a Pointer
	Null Pointer

	Chapter 6: Arrays
	Array Declaration and Allocation
	Array Assignment
	Multi-Dimensional Arrays
	Arrays and Pointers
	Array Size

	Chapter 7: String
	Escape Characters
	String Functions

	Chapter 8: Conditionals
	If Statement
	Switch Statement
	Ternary Operator

	Chapter 9: Loops
	While Loop
	Do-While Loop
	For Loop
	Break and Continue
	Goto Statement

	Chapter 10: Functions
	Defining Functions
	Calling Functions
	Function Parameters
	Void Parameter
	Return Statement
	Forward Declaration
	Variable Parameter Lists
	Pass by Value
	Pass by Address
	Return by Value or Address
	Inline Functions

	Chapter 11: Typedef
	Chapter 12: Enum
	Enum Example
	Enum Constant Values
	Enum Conversions
	Enum Scope

	Chapter 13: Struct
	Struct Objects
	Member Access
	Struct Pointers
	Bit Fields

	Chapter 14: Union
	Chapter 15: Type Conversions
	Implicit Conversions
	Explicit Conversions

	Chapter 16: Storage Classes
	Auto
	Register
	External
	Static
	Volatile

	Chapter 17: Constants
	Constant Variables
	Constant Pointers
	Constant Parameters
	Constant Guideline

	Chapter 18: Preprocessor
	Including Source Files
	Define
	Undefine
	Predefined Macros
	Macro Functions
	Conditional Compilation
	Compile if Defined
	Error and Warning
	Line
	Pragma

	Chapter 19: Memory Management
	Malloc
	Free
	Realloc
	Void Pointer

	Chapter 20: Command Line Arguments
	Chapter 21: Headers
	Why to Use Headers
	What to Include in Headers
	Include Guards

	Index

