
[1]

www.it-ebooks.info

http://www.it-ebooks.info/

Clojure Reactive Programming

Design and implement highly reusable reactive
applications by integrating different frameworks
with Clojure

Leonardo Borges

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Clojure Reactive Programming

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2015

Production reference: 1160315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-666-8

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Leonardo Borges

Reviewers
Eduard Bondarenko

Colin Jones

Michael Kohl

Falko Riemenschneider

Acquisition Editor
Harsha Bharwani

Content Development Editor
Arun Nadar

Technical Editor
Tanvi Bhatt

Copy Editors
Vikrant Phadke

Sameen Siddiqui

Project Coordinator
Neha Bhatnagar

Proofreaders
Simran Bhogal

Maria Gould

Indexer
Mariammal Chettiyar

Graphics
Abhinash Sahu

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Leonardo Borges is a programming languages enthusiast who loves writing code,
contributing to open source software, and speaking on subjects he feels strongly
about. After nearly 5 years of consulting at ThoughtWorks, where he worked in two
commercial Clojure projects, among many others, he is now a software engineer at
Atlassian. He uses Clojure and ClojureScript to help build real-time collaborative
editing technology. This is his first full-length book, but he contributed a couple of
chapters to Clojure Cookbook, O'Reilly.

Leonardo has founded and runs the Sydney Clojure User Group in Australia.
He also writes posts about software, focusing on functional programming, on
his website (http://www.leonardoborges.com). When he isn't writing code,
he enjoys riding motorcycles, weightlifting, and playing the guitar.

www.it-ebooks.info

http://www.leonardoborges.com
http://www.it-ebooks.info/

Acknowledgments

I would like to take this opportunity and start by thanking my family: my
grandparents, Altamir and Alba, for their tireless support; my mother, Sônia, for her
unconditional love and motivation; and my uncle, Altamir Filho, for supporting me
when I decided to go to school at night so that I could start working as a programmer.
Without them, I would have never pursued software engineering.

I would also like to thank my fiancee, Enif, who answered with a resounding "yes"
when asked whether I should take up the challenge of writing a book. Her patience,
love, support, and words of encouragement were invaluable.

During the writing process, Packt Publishing involved several reviewers and their
feedback was extremely useful in making this a better book. To these reviewers,
thank you.

I am also sincerely grateful for my friends who provided crucial feedback on key
chapters, encouraging me at every step of the way: Claudio Natoli, Fábio Lessa,
Fabio Pereira, Julian Gamble, Steve Buikhuizen, and many others, who would
take multiple pages to list.

Last but not least, a warm thanks to the staff at Packt Publishing, who helped me
along the whole process, being firm and responsible, yet understanding.

Each of you helped make this happen. Thank you!

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Eduard Bondarenko is a software developer living in Kiev, Ukraine. He started
programming using Basic on ZXSpectrum a long time ago. Later, he worked in the
web development domain.

He has used Ruby on Rails for about 8 years. Having used Ruby for a long time,
he discovered Clojure in early 2009, and liked the language. Besides Ruby and
Clojure, he is interested in Erlang, Go, Scala, and Haskell development.

Colin Jones is director of software services at 8th Light, where he builds web, mobile,
and desktop systems for clients of all sizes. He's the author of Mastering Clojure Macros:
Write Cleaner, Faster, Smarter Code, Pragmatic Bookshelf. Colin participates actively in
the Clojure open source community, including work on the Clojure Koans, REPLy,
leiningen, and makes small contributions to Clojure itself.

Michael Kohl has been developing with Ruby since 2004 and got acquainted
with Clojure in 2009. He has worked as a systems administrator, journalist, systems
engineer, German teacher, software developer, and penetration tester. He currently
makes his living as a senior Ruby on Rails developer. He previously worked with
Packt Publishing as a technical reviewer for Ruby and MongoDB Web Development
Beginner's Guide.

www.it-ebooks.info

http://www.it-ebooks.info/

Falko Riemenschneider started programming in 1989. In the last 15 years,
he has worked on numerous Java Enterprise software projects for backends as well
as frontends. He's especially interested in designing complex rich-user interfaces.
In 2012, he noticed and learned Clojure. He quickly came in contact with ideas such
as FRP and CSP that show great potential for a radically simpler UI architecture for
desktop and in-browser clients.

Falko works for itemis, a Germany-based software consultancy firm with strong
competence for language- and model-based software development. He cofounded
a Clojure user group, and encourages other developers within and outside itemis
to learn functional programming.

Falko posts regularly on http://www.falkoriemenschneider.de.

www.it-ebooks.info

http://www.falkoriemenschneider.de
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

[i]

Table of Contents
Preface	 v
Chapter 1: What is Reactive Programming?	 1

A taste of Reactive Programming	 2
Creating time	 4
More colors	 6
Making it reactive	 7
Exercise 1.1	 8

A bit of history	 9
Dataflow programming	 10
Object-oriented Reactive Programming	 11
The most widely used reactive program	 13
The Observer design pattern	 14
Functional Reactive Programming	 15
Higher-order FRP	 15

Signals and events	 16
Implementation challenges	 17

First-order FRP	 17
Asynchronous data flow	 18
Arrowized FRP	 18

Applications of FRP	 19
Asynchronous programming and networking	 19
Complex GUIs and animations	 19

Summary	 20
Chapter 2: A Look at Reactive Extensions	 21

The Observer pattern revisited	 21
Observer – an Iterator's dual	 22

Creating Observables	 23
Custom Observables	 26

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Manipulating Observables	 27
Flatmap and friends	 29

One more flatmap for the road	 32
Error handling	 34

OnError	 34
Catch	 35
Retry	 36

Backpressure	 37
Sample	 38
Backpressure strategies	 39

Summary	 40
Chapter 3: Asynchronous Programming and Networking	 41

Building a stock market monitoring application	 41
Rolling averages	 45
Identifying problems with our current approach	 47
Removing incidental complexity with RxClojure	 48

Observable rolling averages	 50
Summary	 54

Chapter 4: Introduction to core.async	 55
Asynchronous programming and concurrency	 55
core.async	 57

Communicating sequential processes	 58
Rewriting the stock market application with core.async	 62

Implementing the application code	 63
Error handling	 66
Backpressure	 68

Fixed buffer	 69
Dropping buffer	 70
Sliding buffer	 71

Transducers	 71
Transducers and core.async	 73

Summary	 75
Chapter 5: Creating Your Own CES Framework with core.async	 77

A minimal CES framework	 77
Clojure or ClojureScript?	 78
Designing the public API	 81
Implementing tokens	 82
Implementing event streams	 82
Implementing behaviors	 88

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Exercises	 90
Exercise 5.1	 90
Exercise 5.2	 91

A respondent application	 92
CES versus core.async	 94
Summary	 95

Chapter 6: Building a Simple ClojureScript Game with Reagi	 97
Setting up the project	 98

Game entities	 100
Putting it all together	 106
Modeling user input as event streams	 107
Working with the active keys stream	 111

Reagi and other CES frameworks	 115
Summary	 116

Chapter 7: The UI as a Function	 117
The problem with complex web UIs	 117
Enter React.js	 120

Lessons from functional programming	 121
Clojurescript and Om	 123
Building a simple Contacts application with Om	 124

The Contacts application state	 124
Setting up the Contacts project	 126
Application components	 127
Om cursors	 129
Filling in the blanks	 130

Intercomponent communication	 134
Creating an agile board with Om	 135
The board state	 136
Components overview	 137
Lifecycle and component local state	 138
Remaining components	 140
Utility functions	 141

Exercises	 142
Summary	 143

Chapter 8: Futures	 145
Clojure futures	 146
Fetching data in parallel	 147
Imminent – a composable futures library for Clojure	 152

Creating futures	 153
Combinators and event handlers	 154

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

The movies example revisited	 157
Futures and blocking IO	 161
Summary	 162

Chapter 9: A Reactive API to Amazon Web Services	 163
The problem	 163
Infrastructure automation	 164
AWS resources dashboard	 165
CloudFormation	 166

The describeStacks endpoint	 166
The describeStackResources endpoint	 167

EC2	 167
The describeInstances endpoint	 167

RDS	 168
The describeDBInstances endpoint	 168

Designing the solution	 169
Running the AWS stub server	 171
Setting up the dashboard project	 172
Creating AWS Observables	 174
Combining the AWS Observables	 177
Putting it all together	 179

Exercises	 181
Summary	 181

Appendix A: The Algebra of Library Design	 183
The semantics of map	 184

Functors	 185
The Option Functor	 187

Finding the average of ages	 191
Applicative Functors	 192
Gathering stats about ages	 196
Monads	 197
Summary	 202

Appendix B: Bibliography	 203
Index	 205

www.it-ebooks.info

http://www.it-ebooks.info/

[v]

Preface
Highly concurrent applications such as user interfaces have traditionally managed
state through the mutation of global variables. Various actions are coordinated via
event handlers, which are procedural in nature.

Over time, the complexity of a system increases. New feature requests come in,
and it becomes harder and harder to reason about the application.

Functional programming presents itself as an extremely powerful ally in building
reliable systems by eliminating mutable states and allowing applications to be
written in a declarative and composable way.

Such principles gave rise to Functional Reactive Programming and Compositional
Event Systems (CES), programming paradigms that are exceptionally useful in
building asynchronous and concurrent applications. They allow you to model
mutable states in a functional style.

This book is devoted to these ideas and presents a number of different tools and
techniques to help manage the increasing complexity of modern systems.

What this book covers
Chapter 1, What is Reactive Programming?, starts by guiding you through a
compelling example of a reactive application written in ClojureScript. It then takes
you on a journey through the history of Reactive Programming, during which some
important terminology is introduced, setting the tone for the following chapters.

Chapter 2, A Look at Reactive Extensions, explores the basics of this Reactive
Programming framework. Its abstractions are introduced and important subjects
such as error handling and back pressure are discussed.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[vi]

Chapter 3, Asynchronous Programming and Networking, walks you through building
a stock market application. It starts by using a more traditional approach and
then switches to an implementation based on Reactive Extensions, examining
the trade-offs between the two.

Chapter 4, Introduction to core.async, describes core.async, a library for asynchronous
programming in Clojure. Here, you learn about the building blocks of Communicating
Sequential Processes and how Reactive Applications are built with core.async.

Chapter 5, Creating Your Own CES Framework with core.async, embarks on the ambitious
endeavor of building a CES framework. It leverages knowledge gained in the previous
chapter and uses core.async as the foundation for the framework.

Chapter 6, Building a Simple ClojureScript Game with Reagi, showcases a domain where
Reactive frameworks have been used for great effects in games development.

Chapter 7, The UI as a Function, shifts gears and shows how the principles of
functional programming can be applied to web UI development through the
lens of Om, a ClojureScript binding for Facebook's React.

Chapter 8, Futures, presents futures as a viable alternative to some classes' reactive
applications. It examines the limitations of Clojure futures and presents an
alternative: imminent, a library of composable futures for Clojure.

Chapter 9, A Reactive API to Amazon Web Services, describes a case study taken from a
real project, where a lot of the concepts introduced throughout this book have been
put together to interact with a third-party service.

Appendix A, The Algebra of Library Design, introduces concepts from Category Theory
that are helpful in building reusable abstractions. The appendix is optional and won't
hinder learning in the previous chapters. It presents the principles used in designing
the futures library seen in Chapter 8, Futures.

Appendix B, Bibliography, provides all the references used throughout the book.

What you need for this book
This book assumes that you have a reasonably modern desktop or laptop computer
as well as a working Clojure environment with leiningen (see http://leiningen.
org/) properly configured.

Installation instructions depend on your platform and can be found on the leiningen
website (see http://leiningen.org/#install).

www.it-ebooks.info

http://leiningen.org/
http://leiningen.org/
http://leiningen.org/#install
http://www.it-ebooks.info/

Preface

[vii]

You are free to use any text editor of your choice, but popular choices include
Eclipse (see https://eclipse.org/downloads/) with the Counterclockwise plugin
(see https://github.com/laurentpetit/ccw), IntelliJ (https://www.jetbrains.
com/idea/) with the Cursive plugin (see https://cursiveclojure.com/), Light
Table (see http://lighttable.com/), Emacs, and Vim.

Who this book is for
This book is for Clojure developers who are currently building or planning to build
asynchronous and concurrent applications and who are interested in how they can
apply the principles and tools of Reactive Programming to their daily jobs.

Knowledge of Clojure and leiningen—a popular Clojure build tool—is required.

The book also features several ClojureScript examples, and as such, familiarity with
ClojureScript and web development in general will be helpful.

Notwithstanding, the chapters have been carefully written in such a way that as long
as you possess knowledge of Clojure, following these examples should only require
a little extra effort.

As this book progresses, it lays out the building blocks required by later chapters,
and as such my recommendation is that you start with Chapter 1, What is Reactive
Programming?, and work your way through subsequent chapters in order.

A clear exception to this is Appendix A, The Algebra of Library Design, which is
optional and can be read independent of the others—although reading Chapter 8,
Futures, might provide a useful background.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

www.it-ebooks.info

https://eclipse.org/downloads/
https://github.com/laurentpetit/ccw
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://cursiveclojure.com/
http://lighttable.com/
http://www.it-ebooks.info/

Preface

[viii]

A block of code is set as follows:

(def numbers (atom []))

(defn adder [key ref old-state new-state]
 (print "Current sum is " (reduce + new-state)))

(add-watch numbers :adder adder)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

(-> (repeat-obs 5)
 (rx/subscribe prn-to-repl))

;; 5
;; 5

Any command-line input or output is written as follows:

lein run -m sin-wave.server

New terms and important words are shown in bold. Words that you see on
the screen, in menus, or dialog boxes, for example, appear in the text like this:
"If this was a web application our users would be presented with a web server
error such as the HTTP code 500 – Internal Server Error."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[ix]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

[x]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of this book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[1]

What is Reactive
Programming?

Reactive Programming is both an overloaded term and a broad topic. As such,
this book will focus on a specific formulation of Reactive Programming called
Compositional Event Systems (CES).

Before covering some history and background behind Reactive Programming
and CES, I would like to open with a working and hopefully compelling example:
an animation in which we draw a sine wave onto a web page.

The sine wave is simply the graph representation of the sine function. It is a
smooth, repetitive oscillation, and at the end of our animation it will look like
the following screenshot:

This example will highlight how CES:

•	 Urges us to think about what we would like to do as opposed to how
•	 Encourages small, specific abstractions that can be composed together
•	 Produces terse and maintainable code that is easy to change

www.it-ebooks.info

http://www.it-ebooks.info/

What is Reactive Programming?

[2]

The core of this program boils down to four lines of ClojureScript:

(-> sine-wave
 (.take 600)
 (.subscribe (fn [{:keys [x y]}]
 (fill-rect x y "orange"))))

Simply by looking at this code it is impossible to determine precisely what it does.
However, do take the time to read and imagine what it could do.

First, we have a variable called sine-wave, which represents the 2D coordinates we
will draw onto the web page. The next line gives us the intuition that sine-wave
is some sort of collection-like abstraction: we use .take to retrieve 600 coordinates
from it.

Finally, we .subscribe to this "collection" by passing it a callback. This callback
will be called for each item in the sine-wave, finally drawing at the given x and y
coordinates using the fill-rect function.

This is quite a bit to take in for now as we haven't seen any other code yet—but that
was the point of this little exercise: even though we know nothing about the specifics
of this example, we are able to develop an intuition of how it might work.

Let's see what else is necessary to make this snippet animate a sine wave on our screen.

A taste of Reactive Programming
This example is built in ClojureScript and uses HTML 5 Canvas for rendering and
RxJS (see https://github.com/Reactive-Extensions/RxJS)—a framework for
Reactive Programming in JavaScript.

Before we start, keep in mind that we will not go into the details of these
frameworks yet—that will happen later in this book. This means I'll be asking
you to take quite a few things at face value, so don't worry if you don't immediately
grasp how things work. The purpose of this example is to simply get us started in
the world of Reactive Programming.

For this project, we will be using Chestnut (see https://github.com/plexus/
chestnut)—a leiningen template for ClojureScript that gives us a sample working
application we can use as a skeleton.

To create our new project, head over to the command line and invoke leiningen
as follows:

lein new chestnut sin-wave
cd sin-wave

www.it-ebooks.info

https://github.com/Reactive-Extensions/RxJS
https://github.com/plexus/chestnut
https://github.com/plexus/chestnut
http://www.it-ebooks.info/

Chapter 1

[3]

Next, we need to modify a couple of things in the generated project. Open up sin-
wave/resources/index.html and update it to look like the following:

<!DOCTYPE html>
<html>
 <head>
 <link href="css/style.css" rel="stylesheet" type="text/css">
 </head>
 <body>
 <div id="app"></div>
 <script src="/js/rx.all.js" type="text/javascript"></script>
 <script src="/js/app.js" type="text/javascript"></script>
 <canvas id="myCanvas" width="650" height="200" style="border:1px
solid #d3d3d3;">
 </body>
</html>

This simply ensures that we import both our application code and RxJS. We haven't
downloaded RxJS yet so let's do this now. Browse to https://github.com/
Reactive-Extensions/RxJS/blob/master/dist/rx.all.js and save this file to
sin-wave/resources/public. The previous snippets also add an HTML 5 Canvas
element onto which we will be drawing.

Now, open /src/cljs/sin_wave/core.cljs. This is where our application code
will live. You can ignore what is currently there. Make sure you have a clean slate
like the following one:

(ns sin-wave.core)

(defn main [])

Finally, go back to the command line—under the sin-wave folder—and start up the
following application:

lein run -m sin-wave.server

2015-01-02 19:52:34.116:INFO:oejs.Server:jetty-7.6.13.v20130916

2015-01-02 19:52:34.158:INFO:oejs.AbstractConnector:Started
SelectChannelConnector@0.0.0.0:10555

Starting figwheel.

Starting web server on port 10555 .

Compiling ClojureScript.

Figwheel: Starting server at http://localhost:3449

Figwheel: Serving files from '(dev-resources|resources)/public'

www.it-ebooks.info

https://github.com/Reactive-Extensions/RxJS/blob/master/dist/rx.all.js
https://github.com/Reactive-Extensions/RxJS/blob/master/dist/rx.all.js
http://www.it-ebooks.info/

What is Reactive Programming?

[4]

Once the previous command finishes, the application will be available at
http://localhost:10555, where you will find a blank, rectangular canvas.
We are now ready to begin.

The main reason we are using the Chestnut template for this example is that it
performs hot-reloading of our application code via websockets. This means we
can have the browser and the editor side by side, and as we update our code, we
will see the results immediately in the browser without having to reload the page.

To validate that this is working, open your web browser's console so that you can
see the output of the scripts in the page. Then add this to /src/cljs/sin_wave/
core.cljs as follows:

(.log js/console "hello clojurescript")

You should have seen the hello clojurescript message printed to your browser's
console. Make sure you have a working environment up to this point as we will be
relying on this workflow to interactively build our application.

It is also a good idea to make sure we clear the canvas every time Chestnut reloads
our file. This is simple enough to do by adding the following snippet to our core
namespace:

(def canvas (.getElementById js/document "myCanvas"))
(def ctx (.getContext canvas "2d"))

;; Clear canvas before doing anything else
(.clearRect ctx 0 0 (.-width canvas) (.-height canvas))

Creating time
Now that we have a working environment, we can progress with our animation.
It is probably a good idea to specify how often we would like to have a new
animation frame.

This effectively means adding the concept of time to our application. You're free to
play with different values, but let's start with a new frame every 10 milliseconds:

(def interval js/Rx.Observable.interval)
(def time (interval 10))

As RxJS is a JavaScript library, we need to use ClojureScript's interoperability to call
its functions. For convenience, we bind the interval function of RxJS to a local var.
We will use this approach throughout this book when appropriate.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[5]

Next, we create an infinite stream of numbers—starting at 0—that will have a new
element every 10 milliseconds. Let's make sure this is working as expected:

(-> time
 (.take 5)
 (.subscribe (fn [n]
 (.log js/console n))))

;; 0
;; 1
;; 2
;; 3
;; 4

I use the term stream very loosely here. It will be defined more
precisely later in this book.

Remember time is infinite, so we use .take in order to avoid indefinitely printing
out numbers to the console.

Our next step is to calculate the 2D coordinate representing a segment of the sine
wave we can draw. This will be given by the following functions:

(defn deg-to-rad [n]
 (* (/ Math/PI 180) n))

(defn sine-coord [x]
 (let [sin (Math/sin (deg-to-rad x))
 y (- 100 (* sin 90))]
 {:x x
 :y y
 :sin sin}))

The sine-coord function takes an x point of our 2D Canvas and calculates the y
point based on the sine of x. The constants 100 and 90 simply control how tall and
sharp the slope should be. As an example, try calculating the sine coordinate when
x is 50:

(.log js/console (str (sine-coord 50)))
;;{:x 50, :y 31.05600011929198, :sin 0.766044443118978}

We will be using time as the source for the values of x. Creating the sine wave now
is only a matter of combining both time and sine-coord:

(def sine-wave
 (.map time sine-coord))

www.it-ebooks.info

http://www.it-ebooks.info/

What is Reactive Programming?

[6]

Just like time, sine-wave is an infinite stream. The difference is that instead
of just integers, we will now have the x and y coordinates of our sine wave,
as demonstrated in the following:

(-> sine-wave
 (.take 5)
 (.subscribe (fn [xysin]
 (.log js/console (str xysin)))))

 ;; {:x 0, :y 100, :sin 0}
 ;; {:x 1, :y 98.42928342064448, :sin 0.01745240643728351}
 ;; {:x 2, :y 96.85904529677491, :sin 0.03489949670250097}
 ;; {:x 3, :y 95.28976393813505, :sin 0.052335956242943835}
 ;; {:x 4, :y 93.72191736302872, :sin 0.0697564737441253}

This brings us to the original code snippet which piqued our interest, alongside a
function to perform the actual drawing:

(defn fill-rect [x y colour]
 (set! (.-fillStyle ctx) colour)
 (.fillRect ctx x y 2 2))

(-> sine-wave
 (.take 600)
 (.subscribe (fn [{:keys [x y]}]
 (fill-rect x y "orange"))))

As this point, we can save the file again and watch as the sine wave we have just
created gracefully appears on the screen.

More colors
One of the points this example sets out to illustrate is how thinking in terms of very
simple abstractions and then building more complex ones on top of them make for
code that is simpler to maintain and easier to modify.

As such, we will now update our animation to draw the sine wave in different colors.
In this case, we would like to draw the wave in red if the sine of x is negative and
blue otherwise.

We already have the sine value coming through the sine-wave stream, so all we need
to do is to transform this stream into one that will give us the colors according to the
preceding criteria:

(def colour (.map sine-wave
 (fn [{:keys [sin]}]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

 (if (< sin 0)
 "red"
 "blue"))))

The next step is to add the new stream into the main drawing loop—remember
to comment the previous one so that we don't end up with multiple waves being
drawn at the same time:

(-> (.zip sine-wave colour #(vector % %2))
 (.take 600)
 (.subscribe (fn [[{:keys [x y]} colour]]
 (fill-rect x y colour))))

Once we save the file, we should see a new sine wave alternating between red and
blue as the sine of x oscillates from –1 to 1.

Making it reactive
As fun as this has been so far, the animation we have created isn't really reactive.
Sure, it does react to time itself, but that is the very nature of animation. As we will
later see, Reactive Programming is so called because programs react to external
inputs such as mouse or network events.

We will, therefore, update the animation so that the user is in control of when the
color switch occurs: the wave will start red and switch to blue when the user clicks
anywhere within the canvas area. Further clicks will simply alternate between red
and blue.

We start by creating infinite—as per the definition of time—streams for our color
primitives as follows:

(def red (.map time (fn [_] "red")))
(def blue (.map time (fn [_] "blue")))

On their own, red and blue aren't that interesting as their values don't change.
We can think of them as constant streams. They become a lot more interesting when
combined with another infinite stream that cycles between them based on user input:

(def concat js/Rx.Observable.concat)
(def defer js/Rx.Observable.defer)
(def from-event js/Rx.Observable.fromEvent)

(def mouse-click (from-event canvas "click"))

www.it-ebooks.info

http://www.it-ebooks.info/

What is Reactive Programming?

[8]

(def cycle-colour
 (concat (.takeUntil red mouse-click)
 (defer #(concat (.takeUntil blue mouse-click)
 cycle-colour))))

This is our most complex update so far. If you look closely, you will also notice that
cycle-colour is a recursive stream; that is, it is defined in terms of itself.

When we first saw code of this nature, we took a leap of faith in trying to understand
what it does. After a quick read, however, we realized that cycle-colour follows
closely how we might have talked about the problem: we will use red until a mouse
click occurs, after which we will use blue until another mouse click occurs. Then, we
start the recursion.

The change to our animation loop is minimal:

(-> (.zip sine-wave cycle-colour #(vector % %2))
 (.take 600)
 (.subscribe (fn [[{:keys [x y]} colour]]
 (fill-rect x y colour))))

The purpose of this book is to help you develop the instinct required to model
problems in the way demonstrated here. After each chapter, more and more of this
example will make sense. Additionally, a number of frameworks will be used both
in ClojureScript and Clojure to give you a wide range of tools to choose from.

Before we move on to that, we must take a little detour and understand how we
got here.

Exercise 1.1
Modify the previous example in such a way that the sine wave is drawn using all
rainbow colors. The drawing loop should look like the following:

(-> (.zip sine-wave rainbow-colours #(vector % %2))
 (.take 600)
 (.subscribe (fn [[{:keys [x y]} colour]]
 (fill-rect x y colour))))

Your task is to implement the rainbow-colours stream. As everything up until now
has been very light on explanations, you might choose to come back to this exercise
later, once we have covered more about CES.

The repeat, scan, and flatMap functions may be useful in solving this exercise.
Be sure to consult RxJs' API at https://github.com/Reactive-Extensions/RxJS/
blob/master/doc/libraries/rx.complete.md.

www.it-ebooks.info

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/libraries/rx.complete.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/libraries/rx.complete.md
http://www.it-ebooks.info/

Chapter 1

[9]

A bit of history
Before we talk about what Reactive Programming is, it is important to understand
how other relevant programming paradigms influenced how we develop software.
This will also help us understand the motivations behind reactive programming.

With few exceptions most of us have been taught—either self-taught or at
school/university—imperative programming languages such as C and Pascal
or object-oriented languages such as Java and C++.

In both cases, the imperative programming paradigm—of which object-oriented
languages are part—dictates we write programs as a series of statements that
modify program state.

In order to understand what this means, let's look at a short program written in
pseudo-code that calculates the sum and the mean value of a list of numbers:

numbers := [1, 2, 3, 4, 5, 6]
sum := 0
for each number in numbers
 sum := sum + number
end
mean := sum / count(numbers)

The mean value is the average of the numbers in the list,
obtained by dividing the sum by the number of elements.

First, we create a new array of integers, called numbers, with numbers from 1 to 6,
inclusive. Then, we initialize sum to zero. Next, we iterate over the array of integers,
one at a time, adding to sum the value of each number.

Lastly, we calculate and assign the average of the numbers in the list to the mean
local variable. This concludes the program logic.

This program would print 21 for the sum and 3 for the mean, if executed.

Though a simple example, it highlights its imperative style: we set up an application
state—sum—and then explicitly tell the computer how to modify that state in order
to calculate the result.

www.it-ebooks.info

http://www.it-ebooks.info/

What is Reactive Programming?

[10]

Dataflow programming
The previous example has an interesting property: the value of mean clearly has a
dependency on the contents of sum.

Dataflow programming makes this relationship explicit. It models applications as a
dependency graph through which data flows—from operation to operation—and as
values change, these changes are propagated to its dependencies.

Historically, dataflow programming has been supported by custom-built languages
such as Lucid and BLODI, as such, leaving other general purpose programming
languages out.

Let's see how this new insight would impact our previous example. We know that
once the last line gets executed, the value of mean is assigned and won't change
unless we explicitly reassign the variable.

However, let's imagine for a second that the pseudo-language we used earlier does
support dataflow programming. In that case, assigning mean to an expression that
refers to both sum and count, such as sum / count(numbers), would be enough
to create the directed dependency graph in the following diagram:

Note that a direct side effect of this relationship is that an implicit dependency from
sum to numbers is also created. This means that if numbers change, the change is
propagated through the graph, first updating sum and then finally updating mean.

This is where Reactive Programming comes in. This paradigm builds on dataflow
programming and change propagation to bring this style of programming to
languages that don't have native support for it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

For imperative programming languages, Reactive Programming can be made
available via libraries or language extensions. We don't cover this approach in this
book, but should the reader want more information on the subject, please refer to
dc-lib (see https://code.google.com/p/dc-lib/) for an example. It is a framework
that adds Reactive Programming support to C++ via dataflow constraints.

Object-oriented Reactive Programming
When designing interactive applications such as desktop Graphical User Interfaces
(GUIs), we are essentially using an object-oriented approach to Reactive Programming.
We will build a simple calculator application to demonstrate this style.

Clojure isn't an object-oriented language, but we will be interacting
with parts of the Java API to build user interfaces that were developed
in an OO paradigm, hence the title of this section.

Let's start by creating a new leiningen project from the command line:

lein new calculator

This will create a directory called calculator in the current folder. Next, open the
project.clj file in your favorite text editor and add a dependency on Seesaw, a
Clojure library for working with Java Swing:

(defproject calculator "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}
 :dependencies [[org.clojure/clojure "1.5.1"]
 [seesaw "1.4.4"]])

At the time of this writing, the latest Seesaw version available is 1.4.4.

Next, in the src/calculator/core.clj file, we'll start by requiring the Seesaw
library and creating the visual components we'll be using:

(ns calculator.core
 (:require [seesaw.core :refer :all]))

(native!)

(def main-frame (frame :title "Calculator" :on-close :exit))

www.it-ebooks.info

https://code.google.com/p/dc-lib/
http://www.it-ebooks.info/

What is Reactive Programming?

[12]

(def field-x (text "1"))
(def field-y (text "2"))

(def result-label (label "Type numbers in the boxes to add them up!"))

The preceding snippet creates a window with the title Calculator that ends the
program when closed. We also create two text input fields, field-x and field-y, as
well as a label that will be used to display the results, aptly named result-label.

We would like the label to be updated automatically as soon as a user types a new
number in any of the input fields. The following code does exactly that:

(defn update-sum [e]
 (try
 (text! result-label
 (str "Sum is " (+ (Integer/parseInt (text field-x))
 (Integer/parseInt (text field-y)))))
 (catch Exception e
 (println "Error parsing input."))))

(listen field-x :key-released update-sum)
(listen field-y :key-released update-sum)

The first function, update-sum, is our event handler. It sets the text of result-label
to the sum of the values in field-x and field-y. We use try/catch here as a really
basic way to handle errors since the key pressed might not have been a number.
We then add the event handler to the :key-released event of both input fields.

In real applications, we never want a catch block such as the
previous one. This is considered bad style, and the catch block
should do something more useful such as logging the exception,
firing a notification, or resuming the application if possible.

We are almost done. All we need to do now is add the components we have created
so far to our main-frame and finally display it as follows:

(config! main-frame :content
 (border-panel
 :north (horizontal-panel :items [field-x field-y])
 :center result-label
 :border 5))

(defn -main [& args]
 (-> main-frame pack! show!))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Now we can save the file and run the program from the command line in the
project's root directory:

lein run -m calculator.core

You should see something like the following screenshot:

Experiment by typing some numbers in either or both text input fields and watch how
the value of the label changes automatically, displaying the sum of both numbers.

Congratulations! You have just created your first reactive application!

As alluded to previously, this application is reactive because the value of the result
label reacts to user input and is updated automatically. However, this isn't the whole
story—it lacks in composability and requires us to specify the how, not the what of
what we're trying to achieve.

As familiar as this style of programming may be, making applications reactive this
way isn't always ideal.

Given previous discussions, we notice we still had to be fairly explicit in setting up
the relationships between the various components as evidenced by having to write
a custom handler and bind it to both input fields.

As we will see throughout the rest of this book, there is a much better way to handle
similar scenarios.

The most widely used reactive program
Both examples in the previous section will feel familiar to some readers. If we call the
input text fields "cells" and the result label's handler a "formula", we now have the
nomenclature used in modern spreadsheet applications such as Microsoft Excel.

The term Reactive Programming has only been in use in recent years, but the idea
of a reactive application isn't new. The first electronic spreadsheet dates back to 1969
when Rene Pardo and Remy Landau, then recent graduates from Harvard University,
created LANPAR (LANguage for Programming Arrays at Random) [1].

www.it-ebooks.info

http://www.it-ebooks.info/

What is Reactive Programming?

[14]

It was invented to solve a problem that Bell Canada and AT&T had at the time:
their budgeting forms had 2000 cells that, when modified, forced a software
re-write taking anywhere from six months to two years.

To this day, electronic spreadsheets remain a powerful and useful tool for
professionals of various fields.

The Observer design pattern
Another similarity the keen reader may have noticed is with the Observer design
pattern. It is mainly used in object-oriented applications as a way for objects to
communicate with each other without having any knowledge of who depends
on its changes.

In Clojure, a simple version of the Observer pattern can be implemented using watches:

(def numbers (atom []))

(defn adder [key ref old-state new-state]
 (print "Current sum is " (reduce + new-state)))

(add-watch numbers :adder adder)

We start by creating our program state, in this case an atom holding an empty vector.
Next, we create a watch function that knows how to sum all numbers in numbers.
Finally, we add our watch function to the numbers atom under the :adder key
(useful for removing watches).

The adder key conforms with the API contract required by add-watch and receives
four arguments. In this example, we only care about new-state.

Now, whenever we update the value of numbers, its watch will be executed,
as demonstrated in the following:

(swap! numbers conj 1)
;; Current sum is 1

(swap! numbers conj 2)
;; Current sum is 3

(swap! numbers conj 7)
;; Current sum is 10

The highlighted lines above indicate the result that is printed on the screen each time
we update the atom.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

Though useful, the Observer pattern still requires some amount of work in setting
up the dependencies and the required program state in addition to being hard
to compose.

That being said, this pattern has been extended and is at the core of one of the
Reactive Programming frameworks we will look at later in this book, Microsoft's
Reactive Extensions (Rx).

Functional Reactive Programming
Just like Reactive Programming, Functional Reactive Programming—FRP for
short—has unfortunately become an overloaded term.

Frameworks such as RxJava (see https://github.com/ReactiveX/RxJava),
ReactiveCocoa (see https://github.com/ReactiveCocoa/ReactiveCocoa), and
Bacon.js (see https://baconjs.github.io/) became extremely popular in recent
years and had positioned themselves incorrectly as FRP libraries. This led to the
confusion surrounding the terminology.

As we will see, these frameworks do not implement FRP but rather are inspired by it.

In the interest of using the correct terminology as well as understanding what
"inspired by FRP" means, we will have a brief look at the different formulations
of FRP.

Higher-order FRP
Higher-order FRP refers to the original research on FRP developed by Conal Elliott
and Paul Hudak in their paper Functional Reactive Animation [2] from 1997. This
paper presents Fran, a domain-specific language embedded in Haskell for creating
reactive animations. It has since been implemented in several languages as a library
as well as purpose built reactive languages.

If you recall the calculator example we created a few pages ago, we can see how
that style of Reactive Programming requires us to manage state explicitly by directly
reading and writing from/to the input fields. As Clojure developers, we know that
avoiding state and mutable data is a good principle to keep in mind when building
software. This principle is at the core of Functional Programming:

(->> [1 2 3 4 5 6]
 (map inc)
 (filter even?)
 (reduce +))
;; 12

www.it-ebooks.info

https://github.com/ReactiveX/RxJava
https://github.com/ReactiveCocoa/ReactiveCocoa
https://baconjs.github.io/
http://www.it-ebooks.info/

What is Reactive Programming?

[16]

This short program increments by one all elements in the original list, filters all even
numbers, and adds them up using reduce.

Note how we didn't have to explicitly manage local state through at each step of the
computation.

Differently from imperative programming, we focus on what we want to do, for
example iteration, and not how we want it to be done, for example using a for loop.
This is why the implementation matches our description of the program closely.
This is known as declarative programming.

FRP brings the same philosophy to Reactive Programming. As the Haskell
programming language wiki on the subject has wisely put it:

FRP is about handling time-varying values like they were regular values.

Put another way, FRP is a declarative way of modeling systems that respond to
input over time.

Both statements touch on the concept of time. We'll be exploring that in the
next section, where we introduce the key abstractions provided by FRP: signals
(or behaviors) and events.

Signals and events
So far we have been dealing with the idea of programs that react to user input.
This is of course only a small subset of reactive systems but is enough for the
purposes of this discussion.

User input happens several times through the execution of a program: key presses,
mouse drags, and clicks are but a few examples of how a user might interact with
our system. All these interactions happen over a period of time. FRP recognizes
that time is an important aspect of reactive programs and makes it a first-class
citizen through its abstractions.

Both signals (also called behaviors) and events are related to time. Signals represent
continuous, time-varying values. Events, on the other hand, represent discrete
occurrences at a given point in time.

For example, time is itself a signal. It varies continuously and indefinitely. On the
other hand, a key press by a user is an event, a discrete occurrence.

It is important to note, however, that the semantics of how a signal changes need not
be continuous. Imagine a signal that represents the current (x,y) coordinates of your
mouse pointer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

This signal is said to change discretely as it depends on the user moving the mouse
pointer—an event—which isn't a continuous action.

Implementation challenges
Perhaps the most defining characteristic of classical FRP is the use of continuous time.

This means FRP assumes that signals are changing all the time, even if their value is
still the same, leading to needless recomputation. For example, the mouse position
signal will trigger updates to the application dependency graph—like the one we
saw previously for the mean program—even when the mouse is stationary.

Another problem is that classical FRP is synchronous by default: events are
processed in order, one at a time. Harmless at first, this can cause delays, which
would render an application unresponsive should an event take substantially
longer to process.

Paul Hudak and others furthered research on higher-order FRP [7] [8] to address
these issues, but that came at the cost of expressivity.

The other formulations of FRP aim to overcome these implementation challenges.

Throughout the rest of the chapter, I'll be using signals and behaviors interchangeably.

First-order FRP
The most well-known reactive language in this category is Elm (see http://elm-
lang.org/), an FRP language that compiles to JavaScript. It was created by Evan
Czaplicki and presented in his paper Elm: Concurrent FRP for Functional GUIs [3].

Elm makes some significant changes to higher-order FRP.

It abandons the idea of continuous time and is entirely event-driven. As a result,
it solves the problem of needless recomputation highlighted earlier. First-order FRP
combines both behaviors and events into signals which, in contrast to higher-order
FRP, are discrete.

Additionally, first-order FRP allows the programmer to specify when synchronous
processing of events isn't necessary, preventing unnecessary processing delays.

Finally, Elm is a strict programming language—meaning arguments to functions
are evaluated eagerly—and that is a conscious decision as it prevents space and
time leaks, which are possible in a lazy language such as Haskell.

www.it-ebooks.info

http://elm-lang.org/
http://elm-lang.org/
http://www.it-ebooks.info/

What is Reactive Programming?

[18]

In an FRP library such as Fran, implemented in a lazy language,
memory usage can grow unwieldy as computations are deferred to the
absolutely last possible moment, therefore causing a space leak. These
larger computations, accumulated over time due to laziness, can then
cause unexpected delays when finally executed, causing time leaks.

Asynchronous data flow
Asynchronous Data Flow generally refers to frameworks such as Reactive Extensions
(Rx), ReactiveCocoa, and Bacon.js. It is called as such as it completely eliminates
synchronous updates.

These frameworks introduce the concept of Observable Sequences [4], sometimes
called Event Streams.

This formulation of FRP has the advantage of not being confined to functional
languages. Therefore, even imperative languages like Java can take advantage
of this style of programming.

Arguably, these frameworks were responsible for the confusion around
FRP terminology. Conal Elliott at some point suggested the term CES
(see https://twitter.com/conal/status/468875014461468677).

I have since adopted this terminology (see http://vimeo.com/100688924)
as I believe it highlights two important factors:

•	 A fundamental difference between CES and FRP: CES is entirely event-driven
•	 CES is highly composable via combinators, taking inspiration from FRP

CES is the main focus of this book.

Arrowized FRP
This is the last formulation we will look at. Arrowized FRP [5] introduces two main
differences over higher-order FRP: it uses signal functions instead of signals and is
built on top of John Hughes' Arrow combinators [6].

It is mostly about a different way of structuring code and can be implemented
as a library. As an example, Elm supports Arrowized FRP via its Automaton
(see https://github.com/evancz/automaton) library.

www.it-ebooks.info

https://twitter.com/conal/status/468875014461468677
http://vimeo.com/100688924
https://github.com/evancz/automaton
http://www.it-ebooks.info/

Chapter 1

[19]

The first draft of this chapter grouped the different formulations of FRP
under the broad categories of Continuous and Discrete FRP. Thanks to
Evan Czaplicki's excellent talk Controlling Time and Space: understanding
the many formulations of FRP (see https://www.youtube.com/
watch?v=Agu6jipKfYw), I was able to borrow the more specific
categories used here. These come in handy when discussing the
different approaches to FRP.

Applications of FRP
The different FRP formulations are being used today in several problem spaces by
professionals and big organizations alike. Throughout this book, we'll look at several
examples of how CES can be applied. Some of these are interrelated as most modern
programs have several cross-cutting concerns, but we will highlight two main areas.

Asynchronous programming and networking
GUIs are a great example of asynchronous programming. Once you open a web or a
desktop application, it simply sits there, idle, waiting for user input.

This state is often called the event or main event loop. It is simply waiting for external
stimuli, such as a key press, a mouse button click, new data from the network, or even
a simple timer.

Each of these stimuli is associated with an event handler that gets called when one of
these events happen, hence the asynchronous nature of GUI systems.

This is a style of programming we have been used to for many years, but as business
and user needs grow, these applications grow in complexity as well, and better
abstractions are needed to handle the dependencies between all the components
of an application.

Another great example that deals with managing complexity around network traffic
is Netflix, which uses CES to provide a reactive API to their backend services.

Complex GUIs and animations
Games are, perhaps, the best example of complex user interfaces as they have intricate
requirements around user input and animations.

The Elm language we mentioned before is one of the most exciting efforts in building
complex GUIs. Another example is Flapjax, also targeted at web applications, but
is provided as a JavaScript library that can be integrated with existing JavaScript
code bases.

www.it-ebooks.info

https://www.youtube.com/watch?v=Agu6jipKfYw
https://www.youtube.com/watch?v=Agu6jipKfYw
http://www.it-ebooks.info/

What is Reactive Programming?

[20]

Summary
Reactive Programming is all about building responsive applications. There are
several ways in which we can make our applications reactive. Some are old ideas:
dataflow programming, electronic spreadsheets, and the Observer pattern are all
examples. But CES in particular has become popular in recent years.

CES aims to bring to Reactive Programming the declarative way of modeling
problems that is at the core of Functional Programming. We should worry about
what and not about how.

In next chapters, we will learn how we can apply CES to our own programs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[21]

A Look at Reactive Extensions
Reactive Extensions—or Rx—is a Reactive Programming library from Microsoft to
build complex asynchronous programs. It models time-varying values and events as
observable sequences and is implemented by extending the Observer design pattern.

Its first target platform was .NET, but Netflix has ported Rx to the JVM under the name
RxJava. Microsoft also develops and maintains a port of Rx to JavaScript called RxJS,
which is the tool we used to build the sine-wave application. The two ports work a treat
for us since Clojure runs on the JVM and ClojureScript in JavaScript environments.

As we saw in Chapter 1, What is Reactive Programming?, Rx is inspired by Functional
Reactive Programming but uses different terminology. In FRP, the two main
abstractions are behaviors and events. Although the implementation details are
different, observable sequences represent events. Rx also provides a behavior-like
abstraction through another data type called BehaviorSubject.

In this chapter, we will:

•	 Explore Rx's main abstraction: observables
•	 Learn about the duality between iterators and observables
•	 Create and manipulate observable sequences

The Observer pattern revisited
In Chapter 1, What is Reactive Programming?, we saw a brief overview of the Observer
design pattern and a simple implementation of it in Clojure using watches. Here's
how we did it:

(def numbers (atom []))

(defn adder [key ref old-state new-state]

www.it-ebooks.info

http://www.it-ebooks.info/

A look at Reactive Extensions

[22]

 (print "Current sum is " (reduce + new-state)))

(add-watch numbers :adder adder)

In the preceding example, our observable subject is the var, numbers. The observer is
the adder watch. When the observable changes, it pushes its changes to the observer
synchronously.

Now, contrast this to working with sequences:

(->> [1 2 3 4 5 6]
 (map inc)
 (filter even?)
 (reduce +))

This time around, the vector is the subject being observed and the functions
processing it can be thought of as the observers. However, this works in a pull-based
model. The vector doesn't push any elements down the sequence. Instead, map and
friends ask the sequence for more elements. This is a synchronous operation.

Rx makes sequences—and more—behave like observables so that you can still map,
filter, and compose them just as you would compose functions over normal sequences.

Observer – an Iterator's dual
Clojure's sequence operators such as map, filter, reduce, and so on support Java
Iterables. As the name implies, an Iterable is an object that can be iterated over.
At a low level, this is supported by retrieving an Iterator reference from such object.
Java's Iterator interface looks like the following:

public interface Iterator<E> {
 boolean hasNext();
 E next();
 void remove();
}

When passed in an object that implements this interface, Clojure's sequence operators
pull data from it by using the next method, while using the hasNext method to know
when to stop.

The remove method is required to remove its last element from the
underlying collection. This in-place mutation is clearly unsafe in
a multithreaded environment. Whenever Clojure implements this
interface for the purposes of interoperability, the remove method
simply throws UnsupportedOperationException.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

An observable, on the other hand, has observers subscribed to it. Observers have the
following interface:

public interface Observer<T> {
 void onCompleted();
 void onError(Throwable e);
 void onNext(T t);
}

As we can see, an Observer implementing this interface will have its onNext method
called with the next value available from whatever observable it's subscribed to.
Hence, it being a push-based notification model.

This duality [4] becomes clearer if we look at both the interfaces side by side:

Iterator<E> { Observer<T> {
 boolean hasNext(); void onCompleted();
 E next(); void onError(Throwable e);
 void remove(); void onNext(T t);
} }

Observables provide the ability to have producers push items asynchronously to
consumers. A few examples will help solidify our understanding.

Creating Observables
This chapter is all about Reactive Extensions, so let's go ahead and create a project
called rx-playground that we will be using in our exploratory tour. We will use
RxClojure (see https://github.com/ReactiveX/RxClojure), a library that provides
Clojure bindings for RxJava() (see https://github.com/ReactiveX/RxJava):

$ lein new rx-playground

Open the project file and add a dependency on RxJava's Clojure bindings:

(defproject rx-playground "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}
 :dependencies [[org.clojure/clojure "1.5.1"]
 [io.reactivex/rxclojure "1.0.0"]])"]])

www.it-ebooks.info

https://github.com/ReactiveX/RxClojure
https://github.com/ReactiveX/RxJava
http://www.it-ebooks.info/

A look at Reactive Extensions

[24]

Now, fire up a REPL in the project's root directory so that we can start creating
some observables:

$ lein repl

The first thing we need to do is import RxClojure, so let's get this out of the way
by typing the following in the REPL:

(require '[rx.lang.clojure.core :as rx])
(import '(rx Observable))

The simplest way to create a new observable is by calling the justreturn function:

(def obs (rx/return 10))

Now, we can subscribe to it:

(rx/subscribe obs
 (fn [value]
 (prn (str "Got value: " value))))

This will print the string "Got value: 10" to the REPL.

The subscribe function of an observable allows us to register handlers for three main
things that happen throughout its life cycle: new values, errors, or a notification that
the observable is done emitting values. This corresponds to the onNext, onError,
and onCompleted methods of the Observer interface, respectively.

In the preceding example, we are simply subscribing to onNext, which is why we get
notified about the observable's only value, 10.

A single-value Observable isn't terribly interesting though. Let's create and interact
with one that emits multiple values:

(-> (rx/seq->o [1 2 3 4 5 6 7 8 9 10])
 (rx/subscribe prn))

This will print the numbers from 1 to 10, inclusive, to the REPL. seq->o is a way
to create observables from Clojure sequences. It just so happens that the preceding
snippet can be rewritten using Rx's own range operator:

(-> (rx/range 1 10)
 (rx/subscribe prn))

Of course, this doesn't yet present any advantages to working with raw values or
sequences in Clojure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

But what if we need an observable that emits an undefined number of integers at
a given interval? This becomes challenging to represent as a sequence in Clojure,
but Rx makes it trivial:

(import '(java.util.concurrent TimeUnit))
(rx/subscribe (Observable/interval 100 TimeUnit/MILLISECONDS)
 prn-to-repl)

RxClojure doesn't yet provide bindings to all of RxJava's API.
The interval method is one such example. We're required
to use interoperability and call the method directly on the
Observable class from RxJava.

Observable/interval takes as arguments a number and a time unit. In this case,
we are telling it to emit an integer—starting from zero—every 100 milliseconds.
If we type this in an REPL-connected editor, however, two things will happen:

•	 We will not see any output (depending on your REPL; this is true for Emacs)
•	 We will have a rogue thread emitting numbers indefinitely

Both issues arise from the fact that Observable/interval is the first factory method
we have used that doesn't emit values synchronously. Instead, it returns an Observable
that defers the work to a separate thread.

The first issue is simple enough to fix. Functions such as prn will print to whatever
the dynamic var *out* is bound to. When working in certain REPL environments
such as Emacs', this is bound to the REPL stream, which is why we can generally
see everything we print.

However, since Rx is deferring the work to a separate thread, *out* isn't bound to
the REPL stream anymore so we don't see the output. In order to fix this, we need
to capture the current value of *out* and bind it in our subscription. This will be
incredibly useful as we experiment with Rx in the REPL. As such, let's create a
helper function for it:

(def repl-out *out*)
(defn prn-to-repl [& args]
 (binding [*out* repl-out]
 (apply prn args)))

The first thing we do is create a var repl-out that contains the current REPL stream.
Next, we create a function prn-to-repl that works just like prn, except it uses the
binding macro to create a new binding for *out* that is valid within that scope.

www.it-ebooks.info

http://www.it-ebooks.info/

A look at Reactive Extensions

[26]

This still leaves us with the rogue thread problem. Now is the appropriate time to
mention that the subscribe method from an Observable returns a subscription
object. By holding onto a reference to it, we can call its unsubscribe method to
indicate that we are no longer interested in the values produced by that observable.

Putting it all together, our interval example can be rewritten like the following:

 (def subscription (rx/subscribe (Observable/interval 100 TimeUnit/
MILLISECONDS)
 prn-to-repl))

(Thread/sleep 1000)

(rx/unsubscribe subscription)

We create a new interval observable and immediately subscribe to it, just as we did
before. This time, however, we assign the resulting subscription to a local var. Note
that it now uses our helper function prn-to-repl, so we will start seeing values
being printed to the REPL straight away.

Next, we sleep the current—the REPL—thread for a second. This is enough
time for the Observable to produce numbers from 0 to 9. That's roughly when the
REPL thread wakes up and unsubscribes from that observable, causing it to stop
emitting values.

Custom Observables
Rx provides many more factory methods to create Observables (see https://github.
com/ReactiveX/RxJava/wiki/Creating-Observables), but it is beyond the scope of
this book to cover them all.

Nevertheless, sometimes, none of the built-in factories is what you want. For such
cases, Rx provides the create method. We can use it to create a custom observable
from scratch.

As an example, we'll create our own version of the just observable we used earlier in
this chapter:

(defn just-obs [v]
 (rx/observable*
 (fn [observer]
 (rx/on-next observer v)

www.it-ebooks.info

https://github.com/ReactiveX/RxJava/wiki/Creating-Observables
https://github.com/ReactiveX/RxJava/wiki/Creating-Observables
http://www.it-ebooks.info/

Chapter 2

[27]

 (rx/on-completed observer))))

(rx/subscribe (just-obs 20) prn)

First, we create a function, just-obs, which implements our observable by calling
the observable* function.

When creating an observable this way, the function passed to observable* will
get called with an observer as soon as one subscribes to us. When this happens, we
are free to do whatever computation—and even I/O—we need in order to produce
values and push them to the observer.

We should remember to call the observer's onCompleted method whenever we're
done producing values. The preceding snippet will print 20 to the REPL.

While creating custom observables is fairly straightforward, we
should make sure we exhaust the built-in factory functions first,
only then resorting to creating our own.

Manipulating Observables
Now that we know how to create observables, we should look at what kinds of
interesting things we can do with them. In this section, we will see what it means
to treat Observables as sequences.

We'll start with something simple. Let's print the sum of the first five positive even
integers from an observable of all integers:

(rx/subscribe (->> (Observable/interval 1 TimeUnit/MICROSECONDS)
 (rx/filter even?)
 (rx/take 5)
 (rx/reduce +))
 prn-to-repl)

This is starting to look awfully familiar to us. We create an interval that will emit
all positive integers starting at zero every 1 microsecond. Then, we filter all even
numbers in this observable. Obviously, this is too big a list to handle, so we simply
take the first five elements from it. Finally, we reduce the value using +. The result
is 20.

www.it-ebooks.info

http://www.it-ebooks.info/

A look at Reactive Extensions

[28]

To drive home the point that programming with observables really is just like
operating on sequences, we will look at one more example where we will combine
two different Observable sequences. One contains the names of musicians I'm a fan
of and the other the names of their respective bands:

(defn musicians []
 (rx/seq->o ["James Hetfield" "Dave Mustaine" "Kerry King"]))

(defn bands []
 (rx/seq->o ["Metallica" "Megadeth" "Slayer"]))

We would like to print to the REPL a string of the format Musician name – from:
band name. An added requirement is that the band names should be printed in
uppercase for impact.

We'll start by creating another observable that contains the uppercased band names:

(defn uppercased-obs []
 (rx/map (fn [s] (.toUpperCase s)) (bands)))

While not strictly necessary, this makes a reusable piece of code that can be handy
in several places of the program, thus avoiding duplication. Subscribers interested
in the original band names can keep subscribing to the bands observable.

With the two observables in hand, we can proceed to combine them:

(-> (rx/map vector
 (musicians)
 (uppercased-obs))
 (rx/subscribe (fn [[musician band]]
 (prn-to-repl (str musician " - from: " band)))))

Once more, this example should feel familiar. The solution we were after was a way
to zip the two observables together. RxClojure provides zip behavior through map,
much like Clojure's core map function does. We call it with three arguments: the two
observables to zip and a function that will be called with both elements, one from
each observable, and should return an appropriate representation. In this case, we
simply turn them into a vector.

Next, in our subscriber, we simply destructure the vector in order to access the
musician and band names. We can finally print the final result to the REPL:

"James Hetfield - from: METALLICA"

"Dave Mustaine - from: MEGADETH"

"Kerry King - from: SLAYER"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

Flatmap and friends
In the previous section, we learned how to transform and combine observables
with operations such as map, reduce, and zip. However, the two observables
above—musicians and bands—were perfectly capable of producing values on
their own. They did not need any extra input.

In this section, we examine a different scenario: we'll learn how we can combine
observables, where the output of one is the input of another. We encountered flatmap
before in Chapter 1, What is Reactive Programming? If you have been wondering what its
role is, this section addresses exactly that.

Here's what we are going to do: given an observable representing a list of all positive
integers, we'll calculate the factorial for all even numbers in that list. Since the list is
too big, we'll take five items from it. The end result should be the factorials of 0, 2, 4,
6, and 8, respectively.

The first thing we need is a function to calculate the factorial of a number n, as well
as our observable:

(defn factorial [n]
 (reduce * (range 1 (inc n))))

(defn all-positive-integers []
 (Observable/interval 1 TimeUnit/MICROSECONDS))

Using some type of visual aid will be helpful in this section, so we'll start with a
marble diagram representing the previous observable:

The middle arrow represents time and it flows from left to right. This diagram
represents an infinite Observable sequence, as indicated by the use of ellipsis at the
end of it.

Since we're combining all the observables now, we'll create one that, given a number,
emits its factorial using the helper function defined earlier. We'll use Rx's create
method for this purpose:

(defn fact-obs [n]
 (rx/observable*

www.it-ebooks.info

http://www.it-ebooks.info/

A look at Reactive Extensions

[30]

 (fn [observer]
 (rx/on-next observer (factorial n))
 (rx/on-completed observer))))

This is very similar to the just-obs observable we created earlier in this chapter,
except that it calculates the factorial of its argument and emits the result/factorial
instead, ending the sequence immediately thereafter. The following diagram
illustrates how it works:

We feed the number 5 to the observable, which in turn emits its factorial, 120.
The vertical bar at the end of the time line indicates the sequence terminates then.

Running the code confirms that our function is correct:

(rx/subscribe (fact-obs 5) prn-to-repl)

;; 120

So far so good. Now, we need to combine both observables in order to achieve our
goal. This is where flatmap of Rx comes in. We'll first see it in action and then get
into the explanation:

(rx/subscribe (->> (all-positive-integers)
 (rx/filter even?)
 (rx/flatmap fact-obs)
 (rx/take 5))
 prn-to-repl)

If we run the preceding code, it will print the factorials for 0, 2, 4, 6, and 8, just like
we wanted:

1

2

24

720

40320

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

Most of the preceding code snippet should look familiar. The first thing we do
is filter all even numbers from all-positive-numbers. This leaves us with the
following observable sequence:

Much like all-positive-integers, this, too, is an infinite observable.

However, the next line of our code looks a little odd. We call flatmap and give
it the fact-obs function. A function we know itself returns another observable.
flatmap will call fact-obs with each value it emits. fact-obs will, in turn, return
a single-value observable for each number. However, our subscriber doesn't know
how to deal with observables! It's simply interested in the factorials!

This is why, after calling fact-obs to obtain an observable, flatmap flattens all of
them into a single observable we can subscribe to. This is quite a mouthful, so let's
visualize what this means:

www.it-ebooks.info

http://www.it-ebooks.info/

A look at Reactive Extensions

[32]

As you can see in the preceding diagram, throughout the execution of flatmap, we
end up with a list of observables. However, we don't care about each observable but
rather about the values they emit. Flatmap, then, is the perfect tool as it combines—
flattens—all of them into the observable sequence shown at the bottom of the figure.

You can think of flatmap as mapcat for observable sequences.

The rest of the code is straightforward. We simply take the first five elements from
this observable and subscribe to it, as we have been doing so far.

One more flatmap for the road
You might be wondering what would happen if the observable sequence we're
flatmapping emitted more than one value. What then?

We'll see one last example before we begin the next section in order to illustrate
the behavior of flatMap in such cases.

Here's an observable that emits its argument twice:

(defn repeat-obs [n]
 (rx/seq->o (repeat 2 n)))

Using it is straightforward:

(-> (repeat-obs 5)
 (rx/subscribe prn-to-repl))

;; 5
;; 5

As previously, we'll now combine this observable with the one we created earlier,
all-positive-integers. Before reading on, think about what you expect the
output to be for, say, the first three positive integers.

The code is as follows:

(rx/subscribe (->> (all-positive-integers)
 (rx/flatmap repeat-obs)
 (rx/take 6))
 prn-to-repl)

And the output is as follows:

0
0
1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

1
2
2

The result might be unexpected for some readers. Let's have a look at the marble
diagram for this example and make sure we understand how it works:

Each time repeat-obs gets called, it emits two values and terminates. flatmap then
combines them all in a single observable, making the previous output clearer.

One last thing worth mentioning about flatmap—and the title of this section—is that
its "friends" refer to the several names by which flatmap is known.

For instance, Rx.NET calls it selectMany. RxJava and Scala call it flatMap—though
RxJava has an alias for it called mapMany. The Haskell community calls it bind.
Though they have different names, these functions semantics are the same and are
part of a higher-order abstraction called a Monad. We don't need to know anything
about Monads to proceed.

The important thing to keep in mind is that when you're sitting at the bar talking
to your friends about Compositional Event Systems, all these names mean the
same thing.

www.it-ebooks.info

http://www.it-ebooks.info/

A look at Reactive Extensions

[34]

Error handling
A very important aspect of building reliable applications is knowing what to do when
things go wrong. It is naive to assume that the network is reliable, that hardware won't
fail, or that we, as developers, won't make mistakes.

RxJava embraces this fact and provides a rich set of combinators to deal with failure,
a few of which we examine here.

OnError
Let's get started by creating a badly behaved observable that always throws
an exception:

(defn exceptional-obs []
 (rx/observable*
 (fn [observer]
 (rx/on-next observer (throw (Exception. "Oops. Something went
wrong")))
 (rx/on-completed observer))))

Now let's watch what happens if we subscribe to it:

(rx/subscribe (->> (exceptional-obs)
 (rx/map inc))
 (fn [v] (prn-to-repl "result is " v)))

;; Exception Oops. Something went wrong rx-playground.core/
exceptional-obs/fn--1505

The exception thrown by exceptional-obs isn't caught anywhere so it simply
bubbles up to the REPL. If this was a web application our users would be presented
with a web server error such as the HTTP code 500 – Internal Server Error. Those
users would probably not use our system again.

Ideally, we would like to get a chance to handle this exception gracefully, possibly
rendering a friendly error message that will let ours users know we care about them.

As we have seen earlier in the chapter, the subscribe function can take up to 3
functions as arguments:

•	 The first, or the onNext handler, is called when the observable emits
a new value

•	 The second, or onError, is called whenever the observable throws
an exception

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

•	 The third and last function, or onComplete, is called when the observable has
completed and will not emit any new items

For our purposes we are interested in the onError handler, and using it is
straightforward:

(rx/subscribe (->> (exceptional-obs)
 (rx/map inc))
 (fn [v] (prn-to-repl "result is " v))
 (fn [e] (prn-to-repl "error is " e)))

;; "error is " #<Exception java.lang.Exception: Oops. Something went
wrong>

This time, instead of throwing the exception, our error handler gets called with it.
This gives us the opportunity to display an appropriate message to our users.

Catch
The use of onError gives us a much better experience overall but it isn't very flexible.

Let's imagine a different scenario where we have an observable retrieving data from
the network. What if, when this observer fails, we would like to present the user with
a cached value instead of an error message?

This is where the catch combinator comes in. It allows us to specify a function to be
invoked when the observable throws an exception, much like OnError does.

Differently from OnError, however, catch has to return a new Observable that will
be the new source of items from the moment the exception was thrown:

(rx/subscribe (->> (exceptional-obs)
 (rx/catch Exception e
 (rx/return 10))
 (rx/map inc))
 (fn [v] (prn-to-repl "result is " v)))

;; "result is " 11

In the previous example, we are essentially specifying that, whenever exceptional-
obs throws, we should return the value 10. We are not limited to single values,
however. In fact, we can use any Observable we like as the new source:

(rx/subscribe (->> (exceptional-obs)
 (rx/catch Exception e
 (rx/seq->o (range 5)))

www.it-ebooks.info

http://www.it-ebooks.info/

A look at Reactive Extensions

[36]

 (rx/map inc))
 (fn [v] (prn-to-repl "result is " v)))

;; "result is " 1
;; "result is " 2
;; "result is " 3
;; "result is " 4
;; "result is " 5

Retry
The last error handling combinator we'll examine is retry. This combinator is useful
when we know an error or exception is only transient so we should probably give it
another shot by resubscribing to the Observable.

First, we'll create an observable that fails when it is subscribed to for the first time.
However, the next time it is subscribed to, it succeeds and emits a new item:

(defn retry-obs []
 (let [errored (atom false)]
 (rx/observable*
 (fn [observer]
 (if @errored
 (rx/on-next observer 20)
 (do (reset! errored true)
 (throw (Exception. "Oops. Something went wrong"))))))))

Let's see what happens if we simply subscribe to it:

(rx/subscribe (retry-obs)
 (fn [v] (prn-to-repl "result is " v)))

;; Exception Oops. Something went wrong rx-playground.core/retry-obs/
fn--1476

As expected, the exception simply bubbles up as in our first example. However we
know—for the purposes of this example—that this is a transient failure. Let's see what
changes if we use retry:

(rx/subscribe (->> (retry-obs)
 (.retry))
 (fn [v] (prn-to-repl "result is " v)))

;; "result is " 20

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

Now, our code is responsible for retrying the Observable and as expected we get
the correct output.

It's important to note that retry will attempt to resubscribe indefinitely until
it succeeds. This might not be what you want so Rx provides a variation, called
retryWith, which allows us to specify a predicate function that controls when
and if retrying should stop.

All these operators give us the tools we need to build reliable reactive applications
and we should always keep them in mind as they are, without a doubt, a great
addition to our toolbox. The RxJava wiki on the subject should be referred to for
more information: https://github.com/ReactiveX/RxJava/wiki/Error-
Handling-Operators.

Backpressure
Another issue we might be faced with is the one of observables that produce items
faster than we can consume. The problem that arises in this scenario is what to do
with this ever-growing backlog of items.

As an example, think about zipping two observables together. The zip operator
(or map in RxClojure) will only emit a new value when all observables have emitted
an item.

So if one of these observables is a lot faster at producing items than the others, map
will need to buffer these items and wait for the others, which will most likely cause
an error, as shown here:

(defn fast-producing-obs []
 (rx/map inc (Observable/interval 1 TimeUnit/MILLISECONDS)))

(defn slow-producing-obs []
 (rx/map inc (Observable/interval 500 TimeUnit/MILLISECONDS)))

(rx/subscribe (->> (rx/map vector
 (fast-producing-obs)
 (slow-producing-obs))
 (rx/map (fn [[x y]]
 (+ x y)))
 (rx/take 10))
 prn-to-repl
 (fn [e] (prn-to-repl "error is " e)))

;; "error is " #<MissingBackpressureException rx.exceptions.
MissingBackpressureException>

www.it-ebooks.info

https://github.com/ReactiveX/RxJava/wiki/Error-Handling-Operators
https://github.com/ReactiveX/RxJava/wiki/Error-Handling-Operators
http://www.it-ebooks.info/

A look at Reactive Extensions

[38]

As seen in the preceding code, we have a fast producing observable that emits items
500 times faster than the slower Observable. Clearly, we can't keep up with it and
surely enough, Rx throws MissingBackpressureException.

What this exception is telling us is that the fast producing observable doesn't support
any type of backpressure—what Rx calls Reactive pull backpressure—that is, consumers
can't tell it to go slower. Thankfully Rx provides us with combinators that are helpful
in these scenarios.

Sample
One such combinator is sample, which allows us to sample an observable at a
given interval, thus throttling the source observable's output. Let's apply it to
our previous example:

(rx/subscribe (->> (rx/map vector
 (.sample (fast-producing-obs) 200
 TimeUnit/MILLISECONDS)
 (slow-producing-obs))
 (rx/map (fn [[x y]]
 (+ x y)))
 (rx/take 10))
 prn-to-repl
 (fn [e] (prn-to-repl "error is " e)))

;; 204
;; 404
;; 604
;; 807
;; 1010
;; 1206
;; 1407
;; 1613
;; 1813
;; 2012

The only change is that we call sample on our fast producing Observable before
calling map. We will sample it every 200 milliseconds.

By ignoring all other items emitted in this time slice, we have mitigated our
initial problem, even though the original Observable doesn't support any
form of backpressure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

The sample combinator is only one of the combinators useful in such cases. Others
include throttleFirst, debounce, buffer, and window. One drawback of this
approach, however, is that a lot of the items generated end up being ignored.

Depending on the type of application we are building, this might be an acceptable
compromise. But what if we are interested in all items?

Backpressure strategies
If an Observable doesn't support backpressure but we are still interested in all items
it emits, we can use one of the built-in backpressure combinators provided by Rx.

As an example we will look at one such combinator, onBackpressureBuffer:

(rx/subscribe (->> (rx/map vector
 (.onBackpressureBuffer (fast-producing-
obs))
 (slow-producing-obs))
 (rx/map (fn [[x y]]
 (+ x y)))
 (rx/take 10))
 prn-to-repl
 (fn [e] (prn-to-repl "error is " e)))

;; 2
;; 4
;; 6
;; 8
;; 10
;; 12
;; 14
;; 16
;; 18
;; 20

The example is very similar to the one where we used sample, but the output is fairly
different. This time we get all items emitted by both observables.

The onBackpressureBuffer strategy implements a strategy that simply buffers all
items emitted by the slower Observable, emitting them whenever the consumer is
ready. In our case, that happens every 500 milliseconds.

Other strategies include onBackpressureDrop and onBackpressureBlock.

www.it-ebooks.info

http://www.it-ebooks.info/

A look at Reactive Extensions

[40]

It's worth noting that Reactive pull backpressure is still work in progress and
the best way to keep up to date with progress is on the RxJava wiki on the subject:
https://github.com/ReactiveX/RxJava/wiki/Backpressure.

Summary
In this chapter, we took a deep dive into RxJava, a port form Microsoft's Reactive
Extensions from .NET. We learned about its main abstraction, the observable,
and how it relates to iterables.

We also learned how to create, manipulate, and combine observables in several ways.
The examples shown here were contrived to keep things simple. Nevertheless, all
concepts presented are extremely useful in real applications and will come in handy
for our next chapter, where we put them to use in a more substantial example.

Finally, we finished by looking at error handling and backpressure, both of which
are important characteristics of reliable applications that should always be kept
in mind.

www.it-ebooks.info

https://github.com/ReactiveX/RxJava/wiki/Backpressure
http://www.it-ebooks.info/

Chapter 3

[41]

Asynchronous Programming
and Networking

Several business applications need to react to external stimuli—such as network
traffic—asynchronously. An example of such software might be a desktop application
that allows us to track a company's share prices in the stock market.

We will build this application first using a more traditional approach. In doing so,
we will:

•	 Be able to identify and understand the drawbacks of the first design
•	 Learn how to use RxClojure to deal with stateful computations such as

rolling averages
•	 Rewrite the example in a declarative fashion using observable sequences,

thus reducing the complexity found in our first approach

Building a stock market monitoring
application
Our stock market program will consist of three main components:

•	 A function simulating an external service from which we can query the
current price—this would likely be a network call in a real setting

•	 A scheduler that polls the preceding function at a predefined interval
•	 A display function responsible for updating the screen

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming and Networking

[42]

We'll start by creating a new leiningen project, where the source code for our
application will live. Type the following on the command line and then switch
into the newly created directory:

lein new stock-market-monitor
cd stock-market-monitor

As we'll be building a GUI for this application, go ahead and add a dependency
on Seesaw to the dependencies section of your project.clj:

[seesaw "1.4.4"]

Next, create a src/stock_market_monitor/core.clj file in your favorite editor.
Let's create and configure our application's UI components:

(ns stock-market-monitor.core
 (:require [seesaw.core :refer :all])
 (:import (java.util.concurrent ScheduledThreadPoolExecutor
 TimeUnit)))

(native!)

(def main-frame (frame :title "Stock price monitor"
 :width 200 :height 100
 :on-close :exit))

(def price-label (label "Price: -"))

(config! main-frame :content price-label)

As you can see, the UI is fairly simple. It consists of a single label that
will display a company's share price. We also imported two Java classes,
ScheduledThreadPoolExecutor and TimeUnit, which we will use shortly.

The next thing we need is our polling machinery so that we can invoke the
pricing service on a given schedule. We'll implement this via a thread pool
so as not to block the main thread:

User interface SDKs such as swing have the concept of a main—or
UI—thread. This is the thread used by the SDK to render the UI
components to the screen. As such, if we have blocking—or even
simply slow running— operations execute in this thread, the user
experience will be severely affected, hence the use of a thread pool
to offload expensive function calls.

(def pool (atom nil))

(defn init-scheduler [num-threads]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[43]

 (reset! pool (ScheduledThreadPoolExecutor. num-threads)))
(defn run-every [pool millis f]
 (.scheduleWithFixedDelay pool
 f
 0 millis TimeUnit/MILLISECONDS))

(defn shutdown [pool]
 (println "Shutting down scheduler...")
 (.shutdown pool))

The init-scheduler function creates ScheduledThreadPoolExecutor with the
given number of threads. That's the thread pool in which our periodic function will
run. The run-every function schedules a function f in the given pool to run at the
interval specified by millis. Finally, shutdown is a function that will be called on
program termination and shutdown the thread pool gracefully.

The rest of the program puts all these parts together:

(defn share-price [company-code]
 (Thread/sleep 200)
 (rand-int 1000))

(defn -main [& args]
 (show! main-frame)
 (.addShutdownHook (Runtime/getRuntime)
 (Thread. #(shutdown @pool)))
 (init-scheduler 1)
 (run-every @pool 500
 #(->> (str "Price: " (share-price "XYZ"))
 (text! price-label)
 invoke-now)))

The share-price function sleeps for 200 milliseconds to simulate network latency
and returns a random integer between 0 and 1,000 representing the stock's price.

The first line of our -main function adds a shutdown hook to the runtime.
This allows our program to intercept termination—such as pressing Ctrl + C in
a terminal window—and gives us the opportunity to shutdown the thread pool.

The ScheduledThreadPoolExecutor pool creates non-daemon
threads by default. A program cannot terminate if there are any
non-daemon threads alive in addition to the program's main
thread. This is why the shutdown hook is necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming and Networking

[44]

Next, we initialize the scheduler with a single thread and schedule a function to be
executed every 500 milliseconds. This function asks the share-price function for
XYZ's current price and updates the label.

Desktop applications require all rendering to be done in the UI thread.
However, our periodic function runs on a separate thread and needs
to update the price label. This is why we use invoke-now, which is a
Seesaw function that schedules its body to be executed in the UI thread
as soon as possible.

Let's run the program by typing the following command in the project's root
directory:

lein trampoline run -m stock-market-monitor.core

Trampolining tells leiningen not to nest our program's JVM within
its own, thus freeing us to handle uses of Ctrl + C ourselves through
shutdown hooks.

A window like the one shown in the following screenshot will be displayed, with the
values on it being updated as per the schedule implemented earlier:

This is a fine solution. The code is relatively straightforward and satisfies our original
requirements. However, if we look at the big picture, there is a fair bit of noise in our
program. Most of its lines of code are dealing with creating and managing a thread
pool, which, while necessary, isn't central to the problem we're solving—it's an
implementation detail.

We'll keep things as they are for the moment and add a new requirement:
rolling averages.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[45]

Rolling averages
Now that we can see the up-to-date stock price for a given company, it makes sense
to display a rolling average of the past, say, five stock prices. In a real scenario, this
would provide an objective view of a company's share trend in the stock market.

Let's extend our program to accommodate this new requirement.

First, we'll need to modify our namespace definition:

(ns stock-market-monitor.core
 (:require [seesaw.core :refer :all])
 (:import (java.util.concurrent ScheduledThreadPoolExecutor
 TimeUnit)
 (clojure.lang PersistentQueue)))

The only change is a new import clause, for Clojure's PersistentQueue class.
We will be using that later.

We'll also need a new label to display the current running average:

(def running-avg-label (label "Running average: -"))
(config! main-frame :content
 (border-panel
 :north price-label
 :center running-avg-label
 :border 5))

Next, we need a function to calculate rolling averages. A rolling—or moving—
average is a calculation in statistics, where you take the average of a subset of items
in a dataset. This subset has a fixed size and it shifts forward as data comes in. This
will become clear with an example.

Suppose you have a list with numbers from 1 to 10, inclusive. If we use 3 as the
subset size, the rolling averages are as follows:

[1 2 3 4 5 6 7 8 9 10] => 2.0
[1 2 3 4 5 6 7 8 9 10] => 3.0
[1 2 3 4 5 6 7 8 9 10] => 4.0

The highlighted parts in the preceding code show the current window being used to
calculate the subset average.

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming and Networking

[46]

Now that we know what rolling averages are, we can move on to implement it in
our program:

(defn roll-buffer [buffer num buffer-size]
 (let [buffer (conj buffer num)]
 (if (> (count buffer) buffer-size)
 (pop buffer)
 buffer)))

(defn avg [numbers]
 (float (/ (reduce + numbers)
 (count numbers))))

(defn make-running-avg [buffer-size]
 (let [buffer (atom clojure.lang.PersistentQueue/EMPTY)]
 (fn [n]
 (swap! buffer roll-buffer n buffer-size)
 (avg @buffer))))

(def running-avg (running-avg 5))

The roll-buffer function is a utility function that takes a queue, a number, and
a buffer size as arguments. It adds that number to the queue, popping the oldest
element if the queue goes over the buffer limit, thus causing its contents to roll over.

Next, we have a function for calculating the average of a collection of numbers.
We cast the result to float if there's an uneven division.

Finally, the higher-order make-running-avg function returns a stateful, single
argument function that closes over an empty persistent queue. This queue is used
to keep track of the current subset of data.

We then create an instance of this function by calling it with a buffer size of 5 and
save it to the running-avg var. Each time we call this new function with a number,
it will add it to the queue using the roll-buffer function and then finally return
the average of the items in the queue.

The code we have written to manage the thread pool will be reused as is so all that
is left to do is update our periodic function:

(defn worker []
 (let [price (share-price "XYZ")]
 (->> (str "Price: " price) (text! price-label))
 (->> (str "Running average: " (running-avg price))
 (text! running-avg-label))))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

(defn -main [& args]
 (show! main-frame)
 (.addShutdownHook (Runtime/getRuntime)
 (Thread. #(shutdown @pool)))
 (init-scheduler 1)
 (run-every @pool 500
 #(invoke-now (worker))))

Since our function isn't a one-liner anymore, we abstract it away in its own function
called worker. As before, it updates the price label, but we have also extended it to
use the running-avg function created earlier.

We're ready to run the program once more:

lein trampoline run -m stock-market-monitor.core

You should see a window like the one shown in the following screenshot:

You should see that in addition to displaying the current share price for XYZ, the
program also keeps track and refreshes the running average of the stream of prices.

Identifying problems with our current
approach
Aside from the lines of code responsible for building the user interface, our program
is roughly 48 lines long.

The core of the program resides in the share-price and avg functions, which
are responsible for querying the price service and calculating the average of a list
of n numbers, respectively. They represent only six lines of code. There is a lot of
incidental complexity in this small program.

Incidental complexity is complexity caused by code that is not essential to the
problem at hand. In this example, we have two sources of such complexity—we
are disregarding UI specific code for this discussion: the thread pool and the rolling
buffer function. They add a great deal of cognitive load to someone reading and
maintaining the code.

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming and Networking

[48]

The thread pool is external to our problem. It is only concerned with the semantics
of how to run tasks asynchronously. The rolling buffer function specifies a detailed
implementation of a queue and how to use it to represent the concept.

Ideally, we should be able to abstract over these details and focus on the core of our
problem; Compositional Event Systems (CES) allows us to do just that.

Removing incidental complexity with
RxClojure
In Chapter 2, A Look at Reactive Extensions, we learned about the basic building
blocks of RxClojure, an open-source CES framework. In this section, we'll use
this knowledge in order to remove the incidental complexity from our program.
This will give us a clear, declarative way to display both prices and rolling averages.

The UI code we've written so far remains unchanged, but we need to make sure
RxClojure is declared in the dependencies section of our project.clj file:

[io.reactivex/rxclojure "1.0.0"]

Then, ensure we require the following library:

(ns stock-market-monitor.core
 (:require [rx.lang.clojure.core :as rx]
 [seesaw.core :refer :all])
 (:import (java.util.concurrent TimeUnit)
 (rx Observable)))

The way we approach the problem this time is also different. Let's take a look at the
first requirement: it requires we display the current price of a company's share in the
stock market.

Every time we query the price service, we get a—possibly different—price for the
company in question. As we saw in Chapter 2, A Look at Reactive Extensions, modeling
this as an observable sequence is easy, so we'll start with that. We'll create a function
that gives us back a stock price observable for the given company:

(defn make-price-obs [company-code]
 (rx/return (share-price company-code)))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[49]

This is an observable that yields a single value and terminates. It's equivalent to the
following marble diagram:

Part of the first requirement is that we query the service on a predefined time
interval—every 500 milliseconds in this case. This hints at an observable we have
encountered before, aptly named interval. In order to get the polling behavior we
want, we need to combine the interval and the price observables.

As you probably recall, flatmap is the tool for the job here:

(rx/flatmap (fn [_] (make-price-obs "XYZ"))
 (Observable/interval 500
 TimeUnit/MILLISECONDS))

The preceding snippet creates an observable that will yield the latest stock price for
XYZ every 500 milliseconds indefinitely. It corresponds to the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming and Networking

[50]

In fact, we can simply subscribe to this new observable and test it out. Modify your
main function to the following snippet and run the program:

(defn -main [& args]
 (show! main-frame)
 (let [price-obs (rx/flatmap (fn [_] (make-price-obs "XYZ"))
 (Observable/interval 500 TimeUnit/
MILLISECONDS))]
 (rx/subscribe price-obs
 (fn [price]
 (text! price-label (str "Price: " price))))))

This is very cool! We replicated the behavior of our first program with only a few
lines of code. The best part is that we did not have to worry about thread pools or
scheduling actions. By thinking about the problem in terms of observable sequences,
as well as combining existing and new observables, we were able to declaratively
express what we want the program to do.

This already provides great benefits in maintainability and readability. However,
we are still missing the other half of our program: rolling averages.

Observable rolling averages
It might not be immediately obvious how we can model rolling averages as
observables. What we need to keep in mind is that pretty much anything we can
think of as a sequence of values, we can probably model as an observable sequence.

Rolling averages are no different. Let's forget for a moment that the prices are
coming from a network call wrapped in an observable. Let's imagine we have all
values we care about in a Clojure vector:

(def values (range 10))

What we need is a way to process these values in partitions—or buffers—of size 5 in
such a way that only a single value is dropped at each interaction. In Clojure, we can
use the partition function for this purpose:

(doseq [buffer (partition 5 1 values)]
 (prn buffer))

(0 1 2 3 4)
(1 2 3 4 5)
(2 3 4 5 6)
(3 4 5 6 7)
(4 5 6 7 8)
...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

The second argument to the partition function is called a step and it is the offset of
how many items should be skipped before starting a new partition. Here, we set it to
1 in order to create the sliding window effect we need.

The big question then is: can we somehow leverage partition when working with
observable sequences?

It turns out that RxJava has a transformer called buffer just for this purpose.
The previous example can be rewritten as follows:

(-> (rx/seq->o (vec (range 10)))
 (.buffer 5 1)
 (rx/subscribe
 (fn [price]
 (prn (str "Value: " price)))))

As mentioned previously, not all RxJava's API is exposed through
RxClojure, so here we need to use interop to access the buffer
method from the observable sequence.

As before, the second argument to buffer is the offset, but it's called skip in the
RxJava documentation. If you run this at the REPL you'll see the following output:

"Value: [0, 1, 2, 3, 4]"
"Value: [1, 2, 3, 4, 5]"
"Value: [2, 3, 4, 5, 6]"
"Value: [3, 4, 5, 6, 7]"
"Value: [4, 5, 6, 7, 8]"
...

This is exactly what we want. The only difference is that the buffer method waits
until it has enough elements—five in this case—before proceeding.

Now, we can go back to our program and incorporate this idea with our main function.
Here is what it looks like:

(defn -main [& args]
 (show! main-frame)
 (let [price-obs (-> (rx/flatmap make-price-obs
 (Observable/interval 500 TimeUnit/
MILLISECONDS))
 (.publish))
 sliding-buffer-obs (.buffer price-obs 5 1)]
 (rx/subscribe price-obs
 (fn [price]
 (text! price-label (str "Price: " price))))

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming and Networking

[52]

 (rx/subscribe sliding-buffer-obs
 (fn [buffer]
 (text! running-avg-label (str "Running average: "
(avg buffer)))))
 (.connect price-obs)))

The preceding snippet works by creating two observables. The first one, price-obs,
we had created before. The new sliding buffer observable is created using the buffer
transformer on price-obs.

We can, then, independently subscribe to each one in order to update the price
and rolling average labels. Running the program will display the same screen
we've seen previously:

You might have noticed two method calls we hadn't seen before: publish
and connect.

The publish method returns a connectable observable. This means that the
observable won't start emitting values until its connect method has been called.
We do this here because we want to make sure that all the subscribers receive all
the values emitted by the original observable.

In conclusion, without much additional code, we implemented all requirements in a
concise, declarative manner that is easy to maintain and follow. We have also made
the previous roll-buffer function completely unnecessary.

The full source code for the CES version of the program is given here for reference:

(ns stock-market-monitor.05frp-price-monitor-rolling-avg
 (:require [rx.lang.clojure.core :as rx]
 [seesaw.core :refer :all])
 (:import (java.util.concurrent TimeUnit)
 (rx Observable)))

(native!)

(def main-frame (frame :title "Stock price monitor"
 :width 200 :height 100

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

 :on-close :exit))

(def price-label (label "Price: -"))
(def running-avg-label (label "Running average: -"))

(config! main-frame :content
 (border-panel
 :north price-label
 :center running-avg-label
 :border 5))

(defn share-price [company-code]
 (Thread/sleep 200)
 (rand-int 1000))

(defn avg [numbers]
 (float (/ (reduce + numbers)
 (count numbers))))

(defn make-price-obs [_]
 (rx/return (share-price "XYZ")))

(defn -main [& args]
 (show! main-frame)
 (let [price-obs (-> (rx/flatmap make-price-obs
 (Observable/interval 500 TimeUnit/
MILLISECONDS))
 (.publish))
 sliding-buffer-obs (.buffer price-obs 5 1)]
 (rx/subscribe price-obs
 (fn [price]
 (text! price-label (str "Price: " price))))
 (rx/subscribe sliding-buffer-obs
 (fn [buffer]
 (text! running-avg-label (str "Running average: "
(avg buffer)))))
 (.connect price-obs)))

Note how in this version of the program, we didn't have to use a shutdown hook.
This is because RxClojure creates daemon threads, which are automatically terminated
once the application exits.

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming and Networking

[54]

Summary
In this chapter, we simulated a real-world application with our stock market
program. We've written it in a somewhat traditional way using thread pools
and a custom queue implementation. We then refactored it to a CES style using
RxClojure's observable sequences.

The resulting program is shorter, simpler, and easier to read once you get familiar
with the core concepts of RxClojure and RxJava.

In the next Chapter we will be introduced to core.async in preparation for
implementing our own basic CES framework.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[55]

Introduction to core.async
Long gone are the days when programs were required to do only one thing at a time.
Being able to perform several tasks concurrently is at the core of the vast majority of
modern business applications. This is where asynchronous programming comes in.

Asynchronous programming—and, more generally, concurrency—is about doing
more with your hardware resources than you previously could. It means fetching
data from the network or a database connection without having to wait for the result.
Or, perhaps, reading an Excel spreadsheet into memory while the user can still operate
the graphical interface. In general, it improves a system's responsiveness.

In this chapter, we will look at how different platforms handle this style of
programming. More specifically, we will:

•	 Be introduced to core.async's background and API
•	 Solidify our understanding of core.async by re-implementing the stock

market application in terms of its abstractions
•	 Understand how core.async deals with error handling and backpressure
•	 Take a brief tour on transducers

Asynchronous programming and
concurrency
Different platforms have different programming models. For instance, JavaScript
applications are single-threaded and have an event loop. When making a network
call, it is common to register a callback that will be invoked at a later stage, when
that network call completes either successfully or with an error.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to core.async

[56]

In contrast, when we're on the JVM, we can take full advantage of multithreading
to achieve concurrency. It is simple to spawn new threads via one of the many
concurrency primitives provided by Clojure, such as futures.

However, asynchronous programming becomes cumbersome. Clojure futures
don't provide a native way for us to be notified of their completion at a later stage.
In addition, retrieving values from a not-yet-completed future is a blocking
operation. This can be seen clearly in the following snippet:

(defn do-something-important []
 (let [f (future (do (prn "Calculating...")
 (Thread/sleep 10000)))]
 (prn "Perhaps the future has done its job?")
 (prn @f)
 (prn "You will only see this in about 10 seconds...")))

(do-something-important)

The second call to print dereferences the future, causing the main thread to block
since it hasn't finished yet. This is why you only see the last print after the thread
in which the future is running has finished. Callbacks can, of course, be simulated
by spawning a separate thread to monitor the first one, but this solution is clunky
at best.

An exception to the lack of callbacks is GUI programming in Clojure. Much like
JavaScript, Clojure Swing applications also possess an event loop and can respond
to user input and invoke listeners (callbacks) to handle them.

Another option is rewriting the previous example with a custom callback that is
passed into the future:

(defn do-something-important [callback]
 (let [f (future (let [answer 42]
 (Thread/sleep 10000)
 (callback answer)))]
 (prn "Perhaps the future has done its job?")
 (prn "You should see this almost immediately and then in 10
secs...")
 f))

(do-something-important (fn [answer]
 (prn "Future is done. Answer is " answer)))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[57]

This time the order of the outputs should make more sense. However, if we return
the future from this function, we have no way to give it another callback. We have
lost the ability to perform an action when the future ends and are back to having
to dereference it, thus blocking the main thread again—exactly what we wanted
to avoid.

Java 8 introduces a new class, CompletableFuture, that allows
registering a callback to be invoked once the future completes.
If that's an option for you, you can use interop to make Clojure
leverage the new class.

As you might have realized, CES is closely related to asynchronous programming:
the stock market application we built in the previous chapter is an example of such
a program. The main—or UI—thread is never blocked by the Observables fetching
data from the network. Additionally, we were also able to register callbacks when
subscribing to them.

In many asynchronous applications, however, callbacks are not the best way to go.
Heavy use of callbacks can lead to what is known as callback hell. Clojure provides
a more powerful and elegant solution.

In the next few sections, we will explore core.async, a Clojure library for
asynchronous programming, and how it relates to Reactive Programming.

core.async
If you've ever done any amount of JavaScript programming, you have probably
experienced callback hell. If you haven't, the following code should give you a
good idea:

http.get('api/users/find?name=' + name, function(user){
 http.get('api/orders?userId=' + user.id, function(orders){
 orders.forEach(function(order){
 container.append(order);
 });
 });
});

This style of programming can easily get out of hand—instead of writing more
natural, sequential steps to achieving a task, that logic is instead scattered across
multiple callbacks, increasing the developer's cognitive load.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to core.async

[58]

In response to this issue, the JavaScript community released several promises libraries
that are meant to solve the issue. We can think of promises as empty boxes we can pass
into and return from our functions. At some point in the future, another process might
put a value inside this box.

As an example, the preceding snippet can be written with promises like the following:

http.get('api/users/find?name=' + name)
 .then(function(user){
 return http.get('api/orders?userId=' + user.id);
 })
 .then(function(orders){
 orders.forEach(function(order){
 container.append(order);
 });
 });

The preceding snippet shows how using promises can flatten your callback pyramid,
but they don't eliminate callbacks. The then function is a public function of the
promises API. It is definitely a step in the right direction as the code is composable
and easier to read.

As we tend to think in sequences of steps, however, we would like to write
the following:

user = http.get('api/users/find?name=' + name);
orders = http.get('api/orders?userId=' + user.id);
orders.forEach(function(order){
 container.append(order);
});

Even though the code looks synchronous, the behavior should be no different from
the previous examples. This is exactly what core.async lets us do in both Clojure
and ClojureScript.

Communicating sequential processes
The core.async library is built on an old idea. The foundation upon which it
lies was first described by Tony Hoare—of Quicksort fame—in his 1978 paper
Communicating Sequential Processes (CSP; see http://www.cs.ucf.edu/courses/
cop4020/sum2009/CSP-hoare.pdf). CSP has since been extended and implemented
in several languages, the latest of which being Google's Go programming language.

www.it-ebooks.info

http://www.cs.ucf.edu/courses/cop4020/sum2009/CSP-hoare.pdf
http://www.cs.ucf.edu/courses/cop4020/sum2009/CSP-hoare.pdf
http://www.it-ebooks.info/

Chapter 4

[59]

It is beyond the scope of this book to go into the details of this seminal paper, so
what follows is a simplified description of the main ideas.

In CSP, work is modeled using two main abstractions: channels and processes.
CSP is also message-driven and, as such, it completely decouples the producer from
the consumer of the message. It is useful to think of channels as blocking queues.

A simplistic approach demonstrating these basic abstractions is as follows:

(import 'java.util.concurrent.ArrayBlockingQueue)

(defn producer [c]
 (prn "Taking a nap")
 (Thread/sleep 5000)
 (prn "Now putting a name in queue...")
 (.put c "Leo"))

(defn consumer [c]
 (prn "Attempting to take value from queue now...")
 (prn (str "Got it. Hello " (.take c) "!")))

(def chan (ArrayBlockingQueue. 10))

(future (consumer chan))
(future (producer chan))

Running this code in the REPL should show us output similar to the following:

"Attempting to take value from queue now..."
"Taking a nap"
;; then 5 seconds later
"Now putting a name in que queue..."
"Got it. Hello Leo!"

In order not to block our program, we start both the consumer and the producer in
their own threads using a future. Since the consumer was started first, we most likely
will see its output immediately. However, as soon as it attempts to take a value from
the channel—or queue—it will block. It will wait for a value to become available
and will only proceed after the producer is done taking its nap—clearly a very
important task.

Now, let's compare it with a solution using core.async. First, create a new leiningen
project and add a dependency on it:

[org.clojure/core.async "0.1.278.0-76b25b-alpha"]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to core.async

[60]

Now, type this in the REPL or in your core namespace:

(ns core-async-playground.core
 (:require [clojure.core.async :refer [go chan <! >! timeout]]))

(defn prn-with-thread-id [s]
 (prn (str s " - Thread id: " (.getId (Thread/currentThread)))))

(defn producer [c]
 (go (prn-with-thread-id "Taking a nap ")
 (<! (timeout 5000))
 (prn-with-thread-id "Now putting a name in que queue...")
 (>! c "Leo")))

(defn consumer [c]
 (go (prn-with-thread-id "Attempting to take value from queue now...")
 (prn-with-thread-id (str "Got it. Hello " (<! c) "!"))))

(def c (chan))

(consumer c)
(producer c)

This time we are using a helper function, prn-with-thread-id, which appends the
current thread ID to the output string. I will explain why shortly, but apart from that,
the output will have been equivalent to the previous one:

"Attempting to take value from queue now... - Thread id: 43"
"Taking a nap - Thread id: 44"
"Now putting a name in que queue... - Thread id: 48"
"Got it. Hello Leo! - Thread id: 48"

Structurally, both solutions look fairly similar, but since we are using quite a few
new functions here, let's break it down:

•	 chan is a function that creates a core.async channel. As mentioned
previously, it can be thought of as a concurrent blocking queue and is
the main abstraction in the library. By default chan creates an unbounded
channel, but core.async provides many more useful channel constructors,
a few of which we'll be using later.

•	 timeout is another such channel constructor. It gives us a channel that will
wait for a given amount of time before returning nil to the taking process,
closing itself immediately afterward. This is the core.async equivalent
of Thread/sleep.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[61]

•	 The functions >! and <! are used to put and take values from a channel,
respectively. The caveat is that they have to be used inside a go block,
as we will explain later.

•	 go is a macro that takes a body of expressions—which form a go block—and
creates lightweight processes. This is where the magic happens. Inside a go
block, any calls to >! and <! that would ordinarily block waiting for values
to be available in channels are instead parked. Parking is a special type of
blocking used internally in the state machine of core.async. The blog post by
Huey Petersen covers this state machine in depth (see http://hueypetersen.
com/posts/2013/08/02/the-state-machines-of-core-async/).

Go blocks are the very reason for which I chose to print the thread IDs in our example.
If we look closely, we'll realize that the last two statements were executed in the
same thread—this isn't true 100 percent of the time as concurrency is inherently
non-deterministic. This is a fundamental difference between core.async and
solutions using threads/futures.

Threads can be expensive. On the JVM, their default stack size is 512 kilobytes—
configurable via the -Xss JVM startup option. When developing a highly concurrent
system, creating thousands of threads can quickly drain the resources of the machine
the application is running on.

core.async acknowledges this limitation and gives us lightweight processes.
Internally, they do share a thread pool, but instead of wastefully creating a thread
per go block, threads are recycled and reused when a put/take operation is waiting
for a value to become available.

At the time of writing, the thread pool used by core.async defaults
to the number of available processors x 2, + 42. So, a machine with
eight processors will have a pool with 58 threads.

Therefore, it is common for core.async applications to have dozens of thousands of
lightweight processes. They are extremely cheap to create.

Since this is a book on Reactive Programming, the question that might be in your
head now is: can we build reactive applications using core.async? The short answer
is yes, we can! To prove it, we will revisit our stock market application and rewrite it
using core.async.

www.it-ebooks.info

http://hueypetersen.com/posts/2013/08/02/the-state-machines-of-core-async/
http://hueypetersen.com/posts/2013/08/02/the-state-machines-of-core-async/
http://www.it-ebooks.info/

Introduction to core.async

[62]

Rewriting the stock market application
with core.async
By using an example we are familiar with, we are able to focus on the differences
between all approaches discussed so far, without getting side tracked with new,
specific domain rules.

Before we dive into the implementation, let's quickly do an overview of how our
solution should work.

Just like in our previous implementations, we have a service from which we can
query share prices. Where our approach differs, however, is a direct consequence
of how core.async channels work.

On a given schedule, we would like to write the current price to a core.async
channel. This might look like so:

This process will continuously put prices in the out channel. We need to do two
things with each price: display it and display the calculated sliding window. Since
we like our functions decoupled, we will use two go blocks, one for each task:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[63]

Hold on. There seems to be something off with our approach. Once we take a price
from the output channel, it is not available any longer to be taken by other go blocks,
so, instead of calculating the sliding window starting with 10, our function ends
up getting the second value, 20. With this approach, we will end up with a sliding
window that calculates a sliding window with roughly every other item, depending
on how consistent the interleaving between the go blocks is.

Clearly, this is not what we want, but it helps us think about the problem a little
more. The semantics of core.async prevent us from reading a value from a channel
more than once. Most of the time, this behavior is just fine—especially if you think of
them as queues. So how can we provide the same value to both functions?

To solve this problem, we will take advantage of another channel constructor provided
by core.async called broadcast. As the name implies, broadcast returns a channel,
which, when written to, writes its value into the channels passed to it as arguments.
Effectively, this changes our high-level picture to something like the following:

In summary, we will have a go loop writing prices to this broadcast channel, which
will then forward its values to the two channels from which we will be operating:
prices and the sliding window.

With the general idea in place, we are ready to dive into the code.

Implementing the application code
We already have a project depending on core.async that we created in the previous
section, so we'll be working off that. Let's start by adding an extra dependency on
seesaw to your project.clj file:

 :dependencies [[org.clojure/clojure "1.5.1"]
 [org.clojure/core.async "0.1.278.0-76b25b-alpha"]
 [seesaw "1.4.4"]]

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to core.async

[64]

Next, create a file called stock_market.clj in the src directory and add this
namespace declaration:

(ns core-async-playground.stock-market
 (:require [clojure.core.async
 :refer [go chan <! >! timeout go-loop map>] :as async])
 (:require [clojure.core.async.lab :refer [broadcast]])
 (:use [seesaw.core]))

This might be a good point to restart your REPL if you haven't done so. Don't worry
about any functions we haven't seen yet. We'll get a feel for them in this section.

The GUI code remains largely unchanged, so no explanation should be necessary for
the next snippet:

(native!)

(def main-frame (frame :title "Stock price monitor"
 :width 200 :height 100
 :on-close :exit))

(def price-label (label "Price: -"))
(def running-avg-label (label "Running average: -"))

(config! main-frame :content
 (border-panel
 :north price-label
 :center running-avg-label
 :border 5))

(defn share-price [company-code]
 (Thread/sleep 200)
 (rand-int 1000))

(defn avg [numbers]
 (float (/ (reduce + numbers)
 (count numbers))))

(defn roll-buffer [buffer val buffer-size]
 (let [buffer (conj buffer val)]
 (if (> (count buffer) buffer-size)
 (pop buffer)
 buffer)))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[65]

(defn make-sliding-buffer [buffer-size]
 (let [buffer (atom clojure.lang.PersistentQueue/EMPTY)]
 (fn [n]
 (swap! buffer roll-buffer n buffer-size))))

(def sliding-buffer (make-sliding-buffer 5))

The only difference is that now we have a sliding-buffer function that
returns a window of data. This is in contrast with our original application,
where the rolling-avg function was responsible for both creating the window
and calculating the average. This new design is more general as it makes this
function easier to reuse. The sliding logic is the same, however.

Next, we have our main application logic using core.async:

(defn broadcast-at-interval [msecs task & ports]
 (go-loop [out (apply broadcast ports)]
 (<! (timeout msecs))
 (>! out (task))
 (recur out)))

(defn -main [& args]
 (show! main-frame)
 (let [prices-ch (chan)
 sliding-buffer-ch (map> sliding-buffer (chan))]
 (broadcast-at-interval 500 #(share-price "XYZ") prices-ch sliding-
buffer-ch)
 (go-loop []
 (when-let [price (<! prices-ch)]
 (text! price-label (str "Price: " price))
 (recur)))
 (go-loop []
 (when-let [buffer (<! sliding-buffer-ch)]
 (text! running-avg-label (str "Running average: " (avg
buffer)))
 (recur)))))

Let's walk through the code.

The first function, broadcast-at-interval, is responsible for creating the
broadcasting channel. It receives a variable number of arguments: a number
of milliseconds describing the interval, the function representing the task to be
executed, and a sequence of one of more output channels. These channels are used
to create the broadcasting channel to which the go loop will be writing prices.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to core.async

[66]

Next, we have our main function. The let block is where the interesting bits are.
As we discussed in our high-level diagrams, we need two output channels: one for
prices and one for the sliding window. They are both created in the following:

...
 (let [prices-ch (chan)
 sliding-buffer-ch (map> sliding-buffer (chan))]
...

prices-ch should be self-explanatory; however, sliding-buffer-ch is using a
function we haven't encountered before: map>. This is yet another useful channel
constructor in core.async. It takes two arguments: a function and a target channel.
It returns a channel that applies this function to each value before writing it to the
target channel. An example will help illustrate how it works:

(def c (map> sliding-buffer (chan 10)))
(go (doseq [n (range 10)]
 (>! c n)))
(go (doseq [n (range 10)]
 (prn (vec (<! c)))))

;; [0]
;; [0 1]
;; [0 1 2]
;; [0 1 2 3]
;; [0 1 2 3 4]
;; [1 2 3 4 5]
;; [2 3 4 5 6]
;; [3 4 5 6 7]
;; [4 5 6 7 8]
;; [5 6 7 8 9]

That is, we write a price to the channel and get a sliding window on the other
end. Finally, we create the two go blocks containing the side effects. They loop
indefinitely, getting values from both channels and updating the user interface.

You can see it in action by running the program from the terminal:

$ lein run -m core-async-playground.stock-market

Error handling
Back in Chapter 2, A Look at Reactive Extensions, we learned how Reactive
Extensions treats errors and exceptions. It provides a rich set of combinators
to deal with exceptional cases and are straightforward to use.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[67]

Despite being a pleasure to work with, core.async doesn't ship with much support
for exception handling. In fact, if we write our code with only the happy path in
mind we don't even know an error occurred!

Let's have a look at an example:

(defn get-data []
 (throw (Exception. "Bad things happen!")))

(defn process []
 (let [result (chan)]
 ;; do some processing...
 (go (>! result (get-data)))
 result))

In the preceding snippet, we introduced two functions:

•	 get-data simulates a function that fetches data from the network or an
in-memory cache. In this case it simply throws an exception.

•	 process is a function that depends on get-data to do something interesting
and puts the result into a channel, which is returned at the end.

Let's watch what happens when we put this together:

 (go (let [result (<! (->> (process "data")
 (map> #(* % %))
 (map> #(prn %))))]
 (prn "result is: " result)))

Nothing happens. Zero, zip, zilch, nada.

This is precisely the problem with error handling in core.async: by default, our
exceptions are swallowed by the go block as it runs on a separate thread. We are
left in this state where we don't really know what happened.

Not all is lost, however. David Nolen outlined on his blog a pattern for dealing
with such asynchronous exceptions. It only requires a few extra lines of code.

We start by defining a helper function and macro—this would probably live in a
utility namespace we require anywhere we use core.async:

(defn throw-err [e]
 (when (instance? Throwable e) (throw e))
 e)

(defmacro <? [ch]
 `(throw-err (async/<! ~ch)))

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to core.async

[68]

The throw-err function receives a value and, if it's a subclass of Throwable, it is
thrown. Otherwise, it is simply returned.

The macro <? is essentially a drop-in replacement for <!. In fact, it uses <! to get
the value out of the channel but passes it to throw-err first.

With these utilities in place, we need to make a couple of changes, first to our
process function:

(defn process []
 (let [result (chan)]
 ;; do some processing...
 (go (>! result (try (get-data)
 (catch Exception e
 e))))
 result))

The only change is that we wrapped get-data in a try/catch block. Look closely at
the catch block: it simply returns the exception.

This is important as we need to ensure the exception gets put into the channel.

Next, we update our consumer code:

(go (try (let [result (<? (->> (process "data")
 (map> #(* % %))
 (map> #(prn %))))]
 (prn "result is: " result))
 (catch Exception e
 (prn "Oops, an error happened! We better do something about it
here!"))))
;; "Oops, an error happened! We better do something about it here!"

This time we use <? in place of <!. This makes sense as it will rethrow any exceptions
found in the channel. As a result we can now use a simple try/catch to regain
control over our exceptions.

Backpressure
The main mechanism by which core.async allows for coordinating backpressure
is buffering. core.async doesn't allow unbounded buffers as this can be a source
of bugs and a resource hog.

Instead, we are required to think hard about our application's unique needs and
choose an appropriate buffering strategy.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[69]

Fixed buffer
This is the simplest form of buffering. It is fixed to a chosen number n, allowing
producers to put items in the channel without having to wait for consumers:

(def result (chan (buffer 5)))
(go-loop []
 (<! (async/timeout 1000))
 (when-let [x (<! result)]
 (prn "Got value: " x)
 (recur)))

(go (doseq [n (range 5)]
 (>! result n))
 (prn "Done putting values!")
 (close! result))

;; "Done putting values!"
;; "Got value: " 0
;; "Got value: " 1
;; "Got value: " 2
;; "Got value: " 3
;; "Got value: " 4

In the preceding example, we created a buffer of size 5 and started a go loop to
consume values from it. The go loop uses a timeout channel to delay its start.

Then, we start another go block that puts numbers from 0 to 4 into the result
channel and prints to the console once it's done.

By then, the first timeout will have expired and we will see the values printed
to the REPL.

Now let's watch what happens if the buffer isn't large enough:

(def result (chan (buffer 2)))
(go-loop []
 (<! (async/timeout 1000))
 (when-let [x (<! result)]
 (prn "Got value: " x)
 (recur)))

(go (doseq [n (range 5)]
 (>! result n))
 (prn "Done putting values!")
 (close! Result))

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to core.async

[70]

;; "Got value: " 0
;; "Got value: " 1
;; "Got value: " 2
;; "Done putting values!"
;; "Got value: " 3
;; "Got value: " 4

This time our buffer size is 2 but everything else is the same. As you can see the go
loop finishes much later as it attempted to put another value in the result channel
and was blocked/parked since its buffer was full.

As with most things, this might be OK but if we are not willing to block a fast
producer just because we can't consume its items fast enough, we must look for
another option.

Dropping buffer
A dropping buffer also has a fixed size. However, instead of blocking producers
when it is full, it simply ignores any new items as shown here:

(def result (chan (dropping-buffer 2)))
(go-loop []
 (<! (async/timeout 1000))
 (when-let [x (<! result)]
 (prn "Got value: " x)
 (recur)))

(go (doseq [n (range 5)]
 (>! result n))
 (prn "Done putting values!")
 (close! result))

;; "Done putting values!"
;; "Got value: " 0
;; "Got value: " 1

As before, we still have a buffer of size two, but this time the producer ends quickly
without ever getting blocked. The dropping-buffer simply ignored all items over
its limit.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[71]

Sliding buffer
A drawback of dropping buffers is that we might not be processing the latest items at
a given time. For the times where processing the latest information is a must, we can
use a sliding buffer:

(def result (chan (sliding-buffer 2)))
(go-loop []
 (<! (async/timeout 1000))
 (when-let [x (<! result)]
 (prn "Got value: " x)
 (recur)))

(go (doseq [n (range 5)]
 (>! result n))
 (prn "Done putting values!")
 (close! result))

;; "Done putting values!"
;; "Got value: " 3
;; "Got value: " 4

As before, we only get two values but they are the latest ones produced by the go loop.

When the limit of the sliding buffer is overrun, core.async drops the oldest items
to make room for the newest ones. I end up using this buffering strategy most of
the time.

Transducers
Before we finish up with our core.async portion of the book, it would be unwise
of me not to mention what is coming up in Clojure 1.7 as well as how this affects
core.async.

At the time of this writing, Clojure's latest release is 1.7.0-alpha5—and even
though it is an alpha release, a lot of people—myself included—are already using
it in production.

As such, a final version could be just around the corner and perhaps by the time
you read this, 1.7 final will be out already.

One of the big changes in this upcoming release is the introduction of transducers.
We will not cover the nuts and bolts of it here but rather focus on what it means at a
high-level with examples using both Clojure sequences and core.async channels.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to core.async

[72]

If you would like to know more I recommend Carin Meier's Green Eggs and Transducers
blog post (http://gigasquidsoftware.com/blog/2014/09/06/green-eggs-and-
transducers/). It's a great place to start.

Additionally, the official Clojure documentation site on the subject is another useful
resource (http://clojure.org/transducers).

Let's get started by creating a new leiningen project:

$ lein new core-async-transducers

Now, open your project.clj file and make sure you have the right dependencies:

...
 :dependencies [[org.clojure/clojure "1.7.0-alpha5"]
 [org.clojure/core.async "0.1.346.0-17112a-alpha"]]
...

Next, fire up a REPL session in the project root and require core.async, which we
will be using shortly:

$ lein repl
user> (require '[clojure.core.async :refer [go chan map< filter< into >!
<! go-loop close! pipe]])

We will start with a familiar example:

(->> (range 10)
 (map inc) ;; creates a new sequence
 (filter even?) ;; creates a new sequence
 (prn "result is "))
;; "result is " (2 4 6 8 10)

The preceding snippet is straightforward and highlights an interesting property of
what happens when we apply combinators to Clojure sequences: each combinator
creates an intermediate sequence.

In the previous example, we ended up with three in total: the one created by range, the
one created by map, and finally the one created by filter. Most of the time, this won't
really be an issue but for large sequences this means a lot of unnecessary allocation.

Starting in Clojure 1.7, the previous example can be written like so:

(def xform
 (comp (map inc)
 (filter even?))) ;; no intermediate sequence created

www.it-ebooks.info

http://gigasquidsoftware.com/blog/2014/09/06/green-eggs-and-transducers/
http://gigasquidsoftware.com/blog/2014/09/06/green-eggs-and-transducers/
http://clojure.org/transducers
http://www.it-ebooks.info/

Chapter 4

[73]

(->> (range 10)
 (sequence xform)
 (prn "result is "))
;; "result is " (2 4 6 8 10)

The Clojure documentation describes transducers as composable algorithmic
transformations. Let's see why that is.

In the new version, a whole range of the core sequence combinators, such as map
and filter, have gained an extra arity: if you don't pass it a collection, it instead
returns a transducer.

In the previous example, (map inc) returns a transducer that knows how to apply
the function inc to elements of a sequence. Similarly, (filter even?) returns a
transducer that will eventually filter elements of a sequence. Neither of them do
anything yet, they simply return functions.

This is interesting because transducers are composable. We build larger and more
complex transducers by using simple function composition:

(def xform
 (comp (map inc)
 (filter even?)))

Once we have our transducer ready, we can apply it to a collection in a few different
ways. For this example, we chose sequence as it will return a lazy sequence of the
applications of the given transducer to the input sequence:

(->> (range 10)
 (sequence xform)
 (prn "result is "))
;; "result is " (2 4 6 8 10)

As previously highlighted, this code does not create intermediate sequences;
transducers extract the very core of the algorithmic transformation at hand and
abstracts it away from having to deal with sequences directly.

Transducers and core.async
We might now be asking ourselves "What do transducers have to do
with core.async?"

It turns out that once we're able to extract the core of these transformations and
put them together using simple function composition, there is nothing stopping
us from using transducers with data structures other than sequences!

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to core.async

[74]

Let's revisit our first example using standard core.async functions:

(def result (chan 10))

(def transformed
 (->> result
 (map< inc) ;; creates a new channel
 (filter< even?) ;; creates a new channel
 (into [])))

(go
 (prn "result is " (<! transformed)))

(go
 (doseq [n (range 10)]
 (>! result n))
 (close! result))

;; "result is " [2 4 6 8 10]

This code should look familiar by now: it's the core.async equivalent of the
sequence-only version shown earlier. As before, we have unnecessary allocations
here as well, except that this time we're allocating channels.

With the new support for transducers, core.async can take advantage of the same
transformation defined earlier:

(def result (chan 10))

(def xform
 (comp (map inc)
 (filter even?))) ;; no intermediate channels created

(def transformed (->> (pipe result (chan 10 xform))
 (into [])))

(go
 (prn "result is " (<! transformed)))

(go
 (doseq [n (range 10)]
 (>! result n))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[75]

 (close! result))

;; "result is " [2 4 6 8 10]

The code remains largely unchanged except we now use the same xform
transformation defined earlier when creating a new channel. It's important to note that
we did not have to use core.async combinators—in fact a lot of these combinators
have been deprecated and will be removed in future versions of core.async.

The functions map and filter used to define xform are the same ones we used
previously, that is, they are core Clojure functions.

This is the next big advantage of using transducers: by removing the underlying data
structure from the equation via transducers, libraries such as core.async can reuse
Clojure's core combinators to prevent unnecessary allocation and code duplication.

It's not too far fetched to imagine other frameworks like RxClojure could take
advantage of transducers as well. All of them would be able to use the same core
function across substantially different data structures and contexts: sequences,
channels, and Obervables.

The concept of extracting the essence of computations disregarding
their underlying data structures is an exciting topic and has been
seen before in the Haskell community, although they deal with
lists specifically.
Two papers worth mentioning on the subject are Stream Fusion
[11] by Duncan Coutts, Roman Leshchinskiy and Don Stewart and
Transforming programs to eliminate trees [12] by Philip Wadler. There
are some overlaps so the reader might find these interesting.

Summary
By now, I hope to have proved that you can write reactive applications using core.
async. It's an extremely powerful and flexible concurrency model with a rich API.
If you can design your solution in terms of queues, most likely core.async is the
tool you want to reach for.

This version of the stock market application is shorter and simpler than the version
using only the standard Java API we developed earlier in this book—for instance,
we didn't have to worry about thread pools. On the other hand, it feels like it is a
little more complex than the version implemented using Reactive Extensions in
Chapter 3, Asynchronous Programming and Networking.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to core.async

[76]

This is because core.async operates at a lower level of abstraction when compared
to other frameworks. This becomes especially obvious in our application as we had
to worry about creating broadcasting channels, go loops, and so on—all of which can
be considered incidental complexity, not directly related to the problem at hand.

core.async does, however, provide an excellent foundation for building our own
CES abstractions. This is what we will be exploring next.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[77]

Creating Your Own CES
Framework with core.async

In the previous chapter, it was alluded to that core.async operates at a lower level
of abstraction when compared to other frameworks such as RxClojure or RxJava.

This is because most of the time we have to think carefully about the channels we are
creating as well as what types and sizes of buffers to use, whether we need pub/sub
functionality, and so on.

Not all applications require such level of control, however. Now that we are familiar
with the motivations and main abstractions of core.async we can embark into writing
a minimal CES framework using core.async as the underlying foundation.

By doing so, we avoid having to think about thread pool management as the
framework takes care of that for us.

In this chapter, we will cover the following topics:

•	 Building a CES framework using core.async as its underlying
concurrency strategy

•	 Building an application that uses our CES framework
•	 Understanding the trade-offs of the different approaches presented so far

A minimal CES framework
Before we get start on the details, we should define at a high level what minimal means.

Let's start with the two main abstractions our framework will provide: behaviors and
event streams.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your Own CES Framework with core.async

[78]

If you can recall from Chapter 1, What is Reactive Programming?, behaviors represent
continuous, time-varying values such as time or a mouse position behavior. Event
streams, on the other hand, represent discrete occurrences at a point in time T,
such as key press.

Next, we should think about what kinds of operations we would like to support.
Behaviors are fairly simple so at the very minimum we need to:

•	 Create new behaviors
•	 Retrieve the current value of a behavior
•	 Convert a behavior into an event stream

Event streams have more interesting logic in play and we should at least support
these operations:

•	 Push/deliver a value down the stream
•	 Create a stream from a given interval
•	 Transform the stream with the map and filter operations
•	 Combine streams with flatmap
•	 Subscribe to a stream

This is a small subset but big enough to demonstrate the overall architecture of
a CES framework. Once we're done, we'll use it to build a simple example.

Clojure or ClojureScript?
Here we'll shift gears and add another requirement to our little library: it should
work both in Clojure and ClojureScript. At first, this might sound like a tough
requirement. However, remember that core.async—the foundation of our
framework—works both on the JVM and in JavaScript. This means we have
a lot less work to do to make it happen.

It does mean, however, that we need to be capable of producing two artifacts from
our library: a jar file and a JavaScript file. Luckily, there are leiningen plugins,
which help us do that and we will be using a couple of them:

•	 lein-cljsbuild (see https://github.com/emezeske/lein-cljsbuild):
Leiningen plugin to make building ClojureScript easy

•	 cljx (see https://github.com/lynaghk/cljx): A preprocessor used to
write portable Clojure codebases, that is, write a single file and output both
.clj and .cljs files

www.it-ebooks.info

https://github.com/emezeske/lein-cljsbuild
https://github.com/lynaghk/cljx
http://www.it-ebooks.info/

Chapter 5

[79]

You don't need to understand these libraries in great detail. We are only using their
basic functionality and will be explaining the bits and pieces as we encounter them.

Let's get started by creating a new leiningen project. We'll call our framework
respondent—one of the many synonyms for the word reactive:

$ lein new respondent

We need to make a few changes to the project.clj file to include the dependencies
and configurations we'll be using. First, make sure the project dependencies look like
the following:

:dependencies [[org.clojure/clojure "1.5.1"]
 [org.clojure/core.async "0.1.303.0-886421-alpha"]
 [org.clojure/clojurescript "0.0-2202"]]

There should be no surprises here. Still in the project file, add the necessary plugins:

:plugins [[com.keminglabs/cljx "0.3.2"]
 [lein-cljsbuild "1.0.3"]]

These are the plugins that we've mentioned previously. By themselves they don't do
much, however, and need to be configured.

For cljx, add the following to the project file:

:cljx {:builds [{:source-paths ["src/cljx"]
 :output-path "target/classes"
 :rules :clj}

 {:source-paths ["src/cljx"]
 :output-path "target/classes"
 :rules :cljs}]}
 :hooks [cljx.hooks]

The previous snippet deserves some explanation. cljx allows us to write code that
is portable between Clojure and ClojureScript by placing annotations its preprocessor
can understand. We will see later what these annotations look like, but this chunk of
configuration tells cljx where to find the annotated files and where to output them
once they're processed.

For example, based on the preceding rules, if we have a file called src/cljx/core.
cljx and we run the preprocessor we will end up with the target/classes/core.
clj and target/classes/core.cljs output files. The hooks, on the other hand,
are simply a convenient way to automatically run cljx whenever we start a
REPL session.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your Own CES Framework with core.async

[80]

The next part of the configuration is for cljsbuild:

:cljsbuild
{:builds [{:source-paths ["target/classes"]
 :compiler {:output-to "target/main.js"}}]}

cljsbuild provides leiningen tasks to compile Clojuresript source code into
JavaScript. We know from our preceding cljx configuration that the source.cljs
files will be under target/classes, so here we're simply telling cljsbuild to
compile all ClojureScript files in that directory and spit the contents to target/main.
js. This is the last piece needed for the project file.

Go ahead and delete these files created by the leiningen template as we won't be
using them:

$ rm src/respondent/core.clj
$ rm test/respondent/core_test.clj

Then, create a new core.cljx file under src/cljx/respondent/ and add the
following namespace declaration:

(ns respondent.core
 (:refer-clojure :exclude [filter map deliver])

 #+clj
 (:import [clojure.lang IDeref])

 #+clj
 (:require [clojure.core.async :as async
 :refer [go go-loop chan <! >! timeout
 map> filter> close! mult tap untap]])
 #+cljs
 (:require [cljs.core.async :as async
 :refer [chan <! >! timeout map> filter>
 close! mult tap untap]])

 #+cljs
 (:require-macros [respondent.core :refer [behavior]]
 [cljs.core.async.macros :refer [go go-loop]]))

Here, we start seeing cljx annotations. cljx is simply a text preprocessor, so when
it is processing a file using clj rules—as seen in the configuration—it will keep the
s-expressions preceded by the annotation #+clj in the output file, while removing
the ones prefixed by #+cljs. The reverse process happens when using cljs rules.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[81]

This is necessary because macros need to be compiled on the JVM, so they have to
be included separately using the :require-macros namespace option when using
ClojureScript. Don't worry about the core.async functions we haven't encountered
before; they will be explained as we use them to build our framework.

Also, note how we are excluding functions from the Clojure standard API as we wish
to use the same names and don't want any undesired naming collisions.

This section set us up with a new project and the plugins and configurations needed
for our framework. We're ready to start implementing it.

Designing the public API
One of the requirements for behaviors we agreed on is the ability to turn a given
behavior into an event stream. A common way of doing this is by sampling a
behavior at a specific interval. If we take the mouse position behavior as an example,
by sampling it every x seconds we get an event stream, which will emit the current
mouse position at discrete points in time.

This leads to the following protocol:

(defprotocol IBehavior
 (sample [b interval]
 "Turns this Behavior into an EventStream from the sampled values
at the given interval"))

It has a single function, sample, which we described in the preceding code. There are
more things we need to do with a behavior, but for now this will suffice.

Our next main abstraction is EventStream, which—based on the requirements seen
previously—leads to the following protocol:

(defprotocol IEventStream
 (map [s f]
 "Returns a new stream containing the result of applying f
 to the values in s")
 (filter [s pred]
 "Returns a new stream containing the items from s
 for which pred returns true")
 (flatmap [s f]
 "Takes a function f from values in s to a new EventStream.
 Returns an EventStream containing values from all underlying
streams combined.")
 (deliver [s value]
 "Delivers a value to the stream s")

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your Own CES Framework with core.async

[82]

 (completed? [s]
 "Returns true if this stream has stopped emitting values. False
otherwise."))

This gives us a few basic functions to transform and query an event stream. It does
leave out the ability to subscribe to a stream. Don't worry, I didn't forget it!

Although, it is common to subscribe to an event stream, the protocol itself doesn't
mandate it and this is because the operation fits best in its own protocol:

(defprotocol IObservable
 (subscribe [obs f] "Register a callback to be invoked when the
underlying source changes.
 Returns a token the subscriber can use to cancel the
subscription."))

As far as subscriptions go, it is useful to have a way of unsubscribing from a stream.
This can be implemented in a couple of ways, but docstring of the preceding function
hints at a specific one: a token that can be used to unsubscribe from a stream. This
leads to our last protocol:

(defprotocol IToken
 (dispose [tk]
 "Called when the subscriber isn't interested in receiving more
items"))

Implementing tokens
The token type is the simplest in the whole framework as it has got a single function
with a straightforward implementation:

(deftype Token [ch]
 IToken
 (dispose [_]
 (close! ch)))

It simply closes whatever channel it is given, stopping events from flowing through
subscriptions.

Implementing event streams
The event stream implementation, on the other hand, is the most complex in our
framework. We'll tackle it gradually, implementing and experimenting as we go.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[83]

First, let's look at our main constructor function, event-stream:

(defn event-stream
 "Creates and returns a new event stream. You can optionally provide
an existing
 core.async channel as the source for the new stream"
 ([]
 (event-stream (chan)))
 ([ch]
 (let [multiple (mult ch)
 completed (atom false)]
 (EventStream. ch multiple completed))))

The docstring should be sufficient to understand the public API. What might not
be clear, however, is what all the constructor arguments mean. From left to right,
the arguments to EventStream are:

•	 ch: This is the core.async channel backing this stream.
•	 multiple: This is a way to broadcast information from one channel to many

other channels. It's a core.async concept we will be explaining shortly.
•	 completed: A Boolean flag indicating whether this event stream has

completed and will not emit any new values.

From the implementation, you can see that the multiple is created from the channel
backing the stream. multiple works kind of like a broadcast. Consider the following
example:

 (def in (chan))
 (def multiple (mult in))

 (def out-1 (chan))
 (tap multiple out-1)

 (def out-2 (chan))
 (tap multiple out-2)
 (go (>! in "Single put!"))

 (go (prn "Got from out-1 " (<! out-1)))
 (go (prn "Got from out-2 " (<! out-2)))

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your Own CES Framework with core.async

[84]

In the previous snippet, we create an input channel, in, and mult of it called
multiple. Then, we create two output channels, out-1 and out-2, which are both
followed by a call to tap. This essentially means that whatever values are written
to in will be taken by multiple and written to any channels tapped into it as the
following output shows:

"Got from out-1 " "Single put!"
"Got from out-2 " "Single put!"

This will make understanding the EventStream implementation easier.

Next, let's have a look at what a minimal implementation of the EventStream looks
like the following—make sure the implementation goes before the constructor
function described earlier:

(declare event-stream)

(deftype EventStream [channel multiple completed]
 IEventStream
 (map [_ f]
 (let [out (map> f (chan))]
 (tap multiple out)
 (event-stream out)))

 (deliver [_ value]
 (if (= value ::complete)
 (do (reset! completed true)
 (go (>! channel value)
 (close! channel)))
 (go (>! channel value))))

 IObservable
 (subscribe [this f]
 (let [out (chan)]
 (tap multiple out)
 (go-loop []
 (let [value (<! out)]
 (when (and value (not= value ::complete))
 (f value)
 (recur))))
 (Token. out))))

For now, we have chosen to implement only the map and deliver functions from
the IEventStream protocol. This allows us to deliver values to the stream as well
as transform those values.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[85]

However, this would not be very useful if we could not retrieve the values
delivered. This is why we also implement the subscribe function from the
IObservable protocol.

In a nutshell, map needs to take a value from the input stream, apply a function
to it, and send it to the newly created stream. We do this by creating an output
channel that taps on current multiple. We then use this channel to back the new
event stream.

The deliver function simply puts the value into the backing channel. If the value
is the namespaced keyword ::complete, we update the completed atom and close
the backing channel. This ensures the stream will not emit any other values.

Finally, we have the subscribe function. The way subscribers are notified is by
using an output channel tapped to backing multiple. We loop indefinitely calling
the subscribing function whenever a new value is emitted.

We finish by returning a token, which will close the output channel once disposed,
causing the go-loop to stop.

Let's make sure that all this makes sense by experimenting with a couple of examples
in the REPL:

 (def es1 (event-stream))
 (subscribe es1 #(prn "first event stream emitted: " %))
 (deliver es1 10)
 ;; "first event stream emitted: " 10

 (def es2 (map es1 #(* 2 %)))
 (subscribe es2 #(prn "second event stream emitted: " %))

 (deliver es1 20)
 ;; "first event stream emitted: " 20
 ;; "second event stream emitted: " 40

Excellent! We have a minimal, working implementation of our IEventStream protocol!

The next function we'll implement is filter and it is very similar to map:

 (filter [_ pred]
 (let [out (filter> pred (chan))]
 (tap multiple out)
 (event-stream out)))

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your Own CES Framework with core.async

[86]

The only difference is that we use the filter> function and pred should be a
Boolean function:

 (def es1 (event-stream))
 (def es2 (filter es1 even?))
 (subscribe es1 #(prn "first event stream emitted: " %))
 (subscribe es2 #(prn "second event stream emitted: " %))

 (deliver es1 2)
 (deliver es1 3)
 (deliver es1 4)

 ;; "first event stream emitted: " 2
 ;; "second event stream emitted: " 2
 ;; "first event stream emitted: " 3
 ;; "first event stream emitted: " 4
 ;; "second event stream emitted: " 4

As we witness, es2 only emits a new value if and only if that value is an even number.

If you are following along, typing the examples step by step, you
will need to restart your REPL whenever we add new functions to
any deftype definition. This is because deftype generates and
compiles a Java class when evaluated. As such, simply reloading
the namespace won't be enough.
Alternatively, you can use a tool such as tools.namespace
(see https://github.com/clojure/tools.namespace)
that addresses some of these REPL reloading limitations.

Moving down our list, we now have flatmap:

(flatmap [_ f]
 (let [es (event-stream)
 out (chan)]
 (tap multiple out)
 (go-loop []
 (when-let [a (<! out)]
 (let [mb (f a)]
 (subscribe mb (fn [b]
 (deliver es b)))
 (recur))))
 es))

www.it-ebooks.info

https://github.com/clojure/tools.namespace
http://www.it-ebooks.info/

Chapter 5

[87]

We've encountered this operator before when surveying Reactive Extensions.
This is what our docstring says about it:

Takes a function f from values in s to a new EventStream.

Returns an EventStream containing values from all underlying streams combined.

This means flatmap needs to combine all the possible event streams into a single
output event stream. As before, we tap a new channel to the multiple stream, but
then we loop over the output channel, applying f to each output value.

However, as we saw, f itself returns a new event stream, so we simply subscribe to
it. Whenever the function registered in the subscription gets called, we deliver that
value to the output event stream, effectively combining all streams into a single one.

Consider the following example:

 (defn range-es [n]
 (let [es (event-stream (chan n))]
 (doseq [n (range n)]
 (deliver es n))
 es))

 (def es1 (event-stream))
 (def es2 (flatmap es1 range-es))
 (subscribe es1 #(prn "first event stream emitted: " %))
 (subscribe es2 #(prn "second event stream emitted: " %))

 (deliver es1 2)
 ;; "first event stream emitted: " 2
 ;; "second event stream emitted: " 0
 ;; "second event stream emitted: " 1

 (deliver es1 3)
 ;; "first event stream emitted: " 3
 ;; "second event stream emitted: " 0
 ;; "second event stream emitted: " 1
 ;; "second event stream emitted: " 2

We have a function, range-es, that receives a number n and returns an event stream
that emits numbers from 0 to n. As before, we have a starting stream, es1, and a
transformed stream created with flatmap, es2.

We can see from the preceding output that the stream created by range-es gets
flattened into es2 allowing us to receive all values by simply subscribing to it once.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your Own CES Framework with core.async

[88]

This leaves us with single function from IEventStream left to implement:

 (completed? [_] @completed)

completed? simply returns the current value of the completed atom. We are now
ready to implement behaviors.

Implementing behaviors
If you recall, the IBehavior protocol has a single function called sample whose
docstring states: Turns this Behavior into an EventStream from the sampled values at
the given interval.

In order to implement sample, we will first create a useful helper function that we
will call from-interval:

(defn from-interval
 "Creates and returns a new event stream which emits values at the
given
interval.
 If no other arguments are given, the values start at 0 and increment
by
one at each delivery.

 If given seed and succ it emits seed and applies succ to seed to get
the next value. It then applies succ to the previous result and so
on."
 ([msecs]
 (from-interval msecs 0 inc))
 ([msecs seed succ]
 (let [es (event-stream)]
 (go-loop [timeout-ch (timeout msecs)
 value seed]
 (when-not (completed? es)
 (<! timeout-ch)
 (deliver es value)
 (recur (timeout msecs) (succ value))))
 es)))

The docstring function should be clear enough at this stage, but we would like to
ensure we understand its behavior correctly by trying it at the REPL:

 (def es1 (from-interval 500))
 (def es1-token (subscribe es1 #(prn "Got: " %)))
 ;; "Got: " 0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[89]

 ;; "Got: " 1
 ;; "Got: " 2
 ;; "Got: " 3
 ;; ...
 (dispose es1-token)

As expected, es1 emits integers starting at zero at 500-millisecond intervals.
By default, it would emit numbers indefinitely; therefore, we keep a reference
to the token returned by calling subscribe.

This way we can dispose it whenever we're done, causing es-1 to complete and
stop emitting items.

Next, we can finally implement the Behavior type:

(deftype Behavior [f]
 IBehavior
 (sample [_ interval]
 (from-interval interval (f) (fn [& args] (f))))
 IDeref
 (#+clj deref #+cljs -deref [_]
 (f)))

(defmacro behavior [& body]
 `(Behavior. #(do ~@body)))

A behavior is created by passing it a function. You can think of this function as a
generator responsible for generating the next value in this event stream.

This generator function will be called whenever we (1) deref the Behavior or (2)
at the interval given to sample.

The behavior macro is there for convenience and allows us to create a new Behavior
without wrapping the body in a function ourselves:

 (def time-behavior (behavior (System/nanoTime)))

 @time-behavior
 ;; 201003153977194

 @time-behavior
 ;; 201005133457949

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your Own CES Framework with core.async

[90]

In the preceding example, we defined time-behavior that always contains the
current system time. We can then turn this behavior into a stream of discrete events
by using the sample function:

 (def time-stream (sample time-behavior 1500))
 (def token (subscribe time-stream #(prn "Time is " %)))
 ;; "Time is " 201668521217402
 ;; "Time is " 201670030219351
 ;; ...

 (dispose token)

Always remember to keep a reference to the subscription token
when dealing with infinite streams such as the ones created
by sample and from-interval, or else you might incur
undesired memory leaks.

Congratulations! We have a working, minimal CES framework using core.async!

We didn't prove it works with ClojureScript, however, which was one of the main
requirements early on. That's okay. We will be tackling that soon by developing a
simple ClojureScript application, which makes use of our new framework.

In order to do this, we need to deploy the framework to our local Maven repository.
From the project root, type the following lein command:

$ lein install
Rewriting src/cljx to target/classes (clj) with features #{clj} and 0
transformations.
Rewriting src/cljx to target/classes (cljs) with features #{cljs} and 1
transformations.
Created respondent/target/respondent-0.1.0-SNAPSHOT.jar
Wrote respondent/pom.xml

Exercises
The following sections have a few exercises for you.

Exercise 5.1
Extend our current EventStream implementation to include a function called take.
It works much like Clojure's core take function for sequences: it will take n items
from the underlying event stream after which it will stop emitting items.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[91]

A sample interaction, which takes the first five items emitted from the original event
stream, is shown here:

(def es1 (from-interval 500))
(def take-es (take es1 5))

(subscribe take-es #(prn "Take values: " %))

;; "Take values: " 0
;; "Take values: " 1
;; "Take values: " 2
;; "Take values: " 3
;; "Take values: " 4

Keeping some state might be useful here. Atoms can
help. Additionally, try to think of a way to dispose of
any unwanted subscriptions required by the solution.

Exercise 5.2
In this exercise, we will add a function called zip that zips together items emitted
from two different event streams into a vector.

A sample interaction with the zip function is as follows:

(def es1 (from-interval 500))
(def es2 (map (from-interval 500) #(* % 2)))
(def zipped (zip es1 es2))

(def token (subscribe zipped #(prn "Zipped values: " %)))

;; "Zipped values: " [0 0]
;; "Zipped values: " [1 2]
;; "Zipped values: " [2 4]
;; "Zipped values: " [3 6]
;; "Zipped values: " [4 8]

(dispose token)

For this exercise, we need a way to know when we have enough
items to emit from both event streams. Managing this internal
state can be tricky at first. Clojure's ref types and, in particular,
dosync, can be of use.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your Own CES Framework with core.async

[92]

A respondent application
This chapter would not be complete if we didn't go through the whole development
life cycle of deploying and using the new framework in a new application. This is the
purpose of this section.

The application we will build is extremely simple. All it does is track the position of
the mouse using the reactive primitives we built into respondent.

To that end, we will be using the excellent lein template cljs-start
(see https://github.com/magomimmo/cljs-start), created by Mimmo Cosenza
to help developers get started with ClojureScript.

Let's get started:

lein new cljs-start respondent-app

Next, let's modify the project file to include the following dependencies:

[clojure-reactive-programming/respondent "0.1.0-SNAPSHOT"]
[prismatic/dommy "0.1.2"]

The first dependency is self-explanatory. It's simply our own framework. dommy is a
DOM manipulation library for ClojureScript. We'll briefly use it when building our
web page.

Next, edit the dev-resources/public/index.html file to match the following:

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">

 <title>Example: tracking mouse position</title>
 <!--[if lt IE 9]>
 <script src="http://html5shiv.googlecode.com/svn/trunk/html5.
js"></script>
 <![endif]-->
</head>

<body>
 <div id="test">
 <h1>Mouse (x,y) coordinates:</h1>
 </div>
 <div id="mouse-xy">
 (0,0)

www.it-ebooks.info

https://github.com/magomimmo/cljs-start
http://www.it-ebooks.info/

Chapter 5

[93]

 </div>
 <script src="js/respondent_app.js"></script>
</body>
</html>

In the preceding snippet, we created a new div element, which will contain the
mouse position. It defaults to (0,0).

The last piece of the puzzle is modifying src/cljs/respondent_app/core.cljs
to match the following:

 (ns respondent-app.core
 (:require [respondent.core :as r]
 [dommy.core :as dommy])
 (:use-macros
 [dommy.macros :only [sel1]]))

(def mouse-pos-stream (r/event-stream))
(set! (.-onmousemove js/document)
 (fn [e]
 (r/deliver mouse-pos-stream [(.-pageX e) (.-pageY e)])))

(r/subscribe mouse-pos-stream
 (fn [[x y]]
 (dommy/set-text! (sel1 :#mouse-xy)
 (str "(" x "," y ")"))))

This is our main application logic. It creates an event stream to which we deliver the
current mouse position from the onmousemove event of the browser window.

Later, we simply subscribe to it and use dommy to select and set the text of the div
element we added previously.

We are now ready to use the app! Let's start by compiling ClojureScript:

$ lein compile

This should take a few seconds. If all is well, the next thing to do is to start a REPL
session and start up the server:

$ lein repl
user=> (run)

Now, point your browser to http://localhost:3000/ and drag the mouse around
to see its current position.

Congratulations on successfully developing, deploying, and using your own
CES framework!

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your Own CES Framework with core.async

[94]

CES versus core.async
At this stage, you might be wondering when you should choose one approach over
the other. After all, as demonstrated at the beginning of this chapter, we could use
core.async to do everything we have done using respondent.

It all comes down to using the right level of abstraction for the task at hand.

core.async gives us many low level primitives that are extremely useful when
working with processes, which need to talk to each other. The core.async channels
work as concurrent blocking queues and are an excellent synchronization mechanism
in these scenarios.

However, it makes other solutions harder to implement: for instance, channels are
single-take by default, so if we have multiple consumers interested in the values put
inside a channel, we have to implement the distribution ourselves using tools such
as mult and tap.

CES frameworks, on the other hand, operate at a higher level of abstraction and
work with multiple subscribers by default.

Additionally, core.async relies on side effects, as can be seen by the use of
functions such as >! inside go blocks. Frameworks such as RxClojure promote
stream transformations by the use of pure functions.

This is not to say there aren't side effects in CES frameworks. There most definitely
are. However, as a consumer of the library, this is mostly hidden from our eyes,
allowing us to think of most of our code as simple sequence transformations.

In conclusion, different application domains will benefit more or less from either
approach—sometimes they can benefit from both. We should think hard about our
application domain and analyze the types of solutions and idioms developers are
most likely to design. This will point us in the direction of better abstraction for
whatever application we are developing at a given time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[95]

Summary
In this chapter, we developed our very own CES framework. By developing our own
framework, we have solidified our understanding of both CES and how to effectively
use core.async.

The idea that core.async could be used as the foundation of a CES framework isn't
mine, however. James Reeves (see https://github.com/weavejester)—creator of
the routing library Compojure (see https://github.com/weavejester/compojure)
and many other useful Clojure libraries—also saw the same potential and set off to
write Reagi (see https://github.com/weavejester/reagi), a CES library built on
top of core.async, similar in spirit to the one we developed in this chapter.

He has put a lot more effort into it, making it a more robust option for a pure Clojure
framework. We'll be looking at it in the next chapter.

www.it-ebooks.info

https://github.com/weavejester
https://github.com/weavejester/compojure
https://github.com/weavejester/reagi
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[97]

Building a Simple
ClojureScript Game

with Reagi
In the previous chapter, we learned how a framework for Compositional Event
Systems (CES) works by building our own framework, which we called respondent. It
gave us a great insight into the main abstractions involved in such a piece of software
as well as a good overview of core.async, Clojure's library for asynchronous
programming and the foundation of our framework.

Respondent is but a toy framework, however. We paid little attention to cross-cutting
concerns such as memory efficiency and exception handling. That is okay as we used
it as a vehicle for learning more about handling and composing event systems with
core.async. Additionally, its design is intentionally similar to Reagi's design.

In this chapter, we will:

•	 Learn about Reagi, a CES framework built on top of core.async
•	 Use Reagi to build the rudiments of a ClojureScript game that will teach us

how to handle user input in a clean and maintainable way
•	 Briefly compare Reagi to other CES frameworks and get a feel for when to

use each one

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Simple ClojureScript game with Reagi

[98]

Setting up the project
Have you ever played Asteroids? If you haven't, Asteroids is an arcade space shooter
first released by Atari in 1979. In Asteroids, you are the pilot of a ship flying through
space. As you do so, you get surrounded by asteroids and flying saucers you have to
shoot and destroy.

Developing the whole game in one chapter is too ambitious and would distract us
from the subject of this book. We will limit ourselves to making sure we have a ship
on the screen we can fly around as well as shoot space bullets into the void. By the
end of this chapter, we will have something that looks like what is shown in the
following screenshot:

To get started, we will create a newClojureScript project using the same leiningen
template we used in the previous chapter, cljs-start (see https://github.com/
magomimmo/cljs-start):

lein new cljs-start reagi-game

Next, add the following dependencies to your project file:

 [org.clojure/clojurescript "0.0-2138"]
 [reagi "0.10.0"]
 [rm-hull/monet "0.1.12"]

The last dependency, monet (see https://github.com/rm-hull/monet), is a
ClojureScript library you can use to work with HTML 5 Canvas. It is a high-level
wrapper on top of the Canvas API and makes interacting with it a lot simpler.

www.it-ebooks.info

https://github.com/magomimmo/cljs-start
https://github.com/magomimmo/cljs-start
https://github.com/rm-hull/monet
http://www.it-ebooks.info/

Chapter 6

[99]

Before we continue, it's probably a good idea to make sure our setup is working
properly. Change into the project directory, start a Clojure REPL, and then start
the embedded web server:

cd reagi-game/
lein repl
Compiling ClojureScript.
Compiling "dev-resources/public/js/reagi_game.js" from ("src/cljs" "test/
cljs" "dev-resources/tools/repl")...
user=> (run)
2014-06-14 19:21:40.381:INFO:oejs.Server:jetty-7.6.8.v20121106
2014-06-14 19:21:40.403:INFO:oejs.AbstractConnector:Started
SelectChannelConnector@0.0.0.0:3000
#<Server org.eclipse.jetty.server.Server@51f6292b>

This will compile the ClojureScript source files to JavaScript and start the sample
web server. In your browser, navigate to http://localhost:3000/. If you see
something like the following, we are good to go:

As we will be working with HTML 5 Canvas, we need an actual canvas to render
to. Let's update our HTML document to include that. It's located under dev-
resources/public/index.html:

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>bREPL Connection</title>
 <!--[if lt IE 9]>
 <script src="http://html5shiv.googlecode.com/svn/trunk/html5.
js"></script>
 <![endif]-->
 </head>

 <body>
 <canvas id="canvas" width="800" height="600"></canvas>
 <script src="js/reagi_game.js"></script>

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Simple ClojureScript game with Reagi

[100]

 </body>
</html>

We have added a canvas DOM element to our document. All rendering will happen
in this context.

Game entities
Our game will have only two entities: one representing the spaceship and the other
representing bullets. To better organize the code, we will put all entity-related code
in its own file, src/cljs/reagi_game/entities.cljs. This file will also contain
some of the rendering logic, so we'll need to require monet:

(ns reagi-game.entities
 (:require [monet.canvas :as canvas]
 [monet.geometry :as geom]))

Next, we'll add a few helper functions to avoid repeating ourselves too much:

(defn shape-x [shape]
 (-> shape :pos deref :x))

(defn shape-y [shape]
 (-> shape :pos deref :y))

(defn shape-angle [shape]
 @(:angle shape))

(defn shape-data [x y angle]
 {:pos (atom {:x x :y y})
 :angle (atom angle)})

The first three functions are simply a shorter way of getting data out of our shape
data structure. The shape-data function creates a structure. Note that we are using
atoms, one of Clojure's reference types, to represent a shape's position and angle.

This way, we can safely pass our shape data into monet's rendering functions and
still be able to update it in a consistent way.

Next up is our ship constructor function. This is where the bulk of the interaction
with monet happens:

(defn ship-entity [ship]
 (canvas/entity {:x (shape-x ship)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[101]

 :y (shape-y ship)
 :angle (shape-angle ship)}
 (fn [value]
 (-> value
 (assoc :x (shape-x ship))
 (assoc :y (shape-y ship))
 (assoc :angle (shape-angle ship))))
 (fn [ctx val]
 (-> ctx
 canvas/save
 (canvas/translate (:x val) (:y val))
 (canvas/rotate (:angle val))
 (canvas/begin-path)
 (canvas/move-to 50 0)
 (canvas/line-to 0 -15)
 (canvas/line-to 0 15)
 (canvas/fill)
 canvas/restore))))

There is quite a bit going on, so let's break it down.

canvas/entity is a monet constructor and expects you to provide three arguments
that describe our ship: its initial x, y coordinates and angle, an update function that
gets called in the draw loop, and a draw function that is responsible for actually
drawing the shape onto the screen after each update.

The update function is fairly straightforward:

(fn [value]
 (-> value
 (assoc :x (shape-x ship))
 (assoc :y (shape-y ship))
 (assoc :angle (shape-angle ship))))

We simply update its attributes to the current values from the ship's atoms.

The next function, responsible for drawing, interacts with monet's API more heavily:

(fn [ctx val]
 (-> ctx
 canvas/save
 (canvas/translate (:x val) (:y val))
 (canvas/rotate (:angle val))
 (canvas/begin-path)
 (canvas/move-to 50 0)

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Simple ClojureScript game with Reagi

[102]

 (canvas/line-to 0 -15)
 (canvas/line-to 0 15)
 (canvas/fill)
 canvas/restore))

We start by saving the current context so that we can restore things such as drawing
style and canvas positioning later. Next, we translate the canvas to the ship's x,y
coordinates and rotate it according to its angle. We then start drawing our shape,
a triangle, and finish by restoring our saved context.

The next function also creates an entity, our bullet:

(declare move-forward!)

(defn make-bullet-entity [monet-canvas key shape]
 (canvas/entity {:x (shape-x shape)
 :y (shape-y shape)
 :angle (shape-angle shape)}
 (fn [value]
 (when (not
 (geom/contained?
 {:x 0 :y 0
 :w (.-width (:canvas monet-canvas))
 :h (.-height (:canvas monet-canvas))}
 {:x (shape-x shape)
 :y (shape-y shape)
 :r 5}))
 (canvas/remove-entity monet-canvas key))
 (move-forward! shape)
 (-> value
 (assoc :x (shape-x shape))
 (assoc :y (shape-y shape))
 (assoc :angle (shape-angle shape))))
 (fn [ctx val]
 (-> ctx
 canvas/save
 (canvas/translate (:x val) (:y val))
 (canvas/rotate (:angle val))
 (canvas/fill-style "red")
 (canvas/circle {:x 10 :y 0 :r 5})
 canvas/restore))))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[103]

As before, let's inspect the update and drawing functions. We'll start with update:

(fn [value]
 (when (not
 (geom/contained?
 {:x 0 :y 0
 :w (.-width (:canvas monet-canvas))
 :h (.-height (:canvas monet-canvas))}
 {:x (shape-x shape)
 :y (shape-y shape)
 :r 5}))
 (canvas/remove-entity monet-canvas key))
 (move-forward! shape)
 (-> value
 (assoc :x (shape-x shape))
 (assoc :y (shape-y shape))
 (assoc :angle (shape-angle shape))))

Bullets have a little more logic in their update function. As you fire them from the
ship, we might create hundreds of these entities, so it's a good practice to get rid of
them as soon as they go off the visible canvas area. That's the first thing the function
does: it uses geom/contained? to check whether the entity is within the dimensions
of the canvas, removing it when it isn't.

Different from the ship, however, bullets don't need user input in order to move. Once
fired, they move on their own. That's why the next thing we do is call move-forward!
We haven't implemented this function yet, so we had to declare it beforehand. We'll
get to it.

Once the bullet's coordinates and angle have been updated, we simply return the
new entity.

The draw function is a bit simpler than the ship's version mostly due to its shape
being simpler; it's just a red circle:

(fn [ctx val]
 (-> ctx
 canvas/save
 (canvas/translate (:x val) (:y val))
 (canvas/rotate (:angle val))
 (canvas/fill-style "red")
 (canvas/circle {:x 10 :y 0 :r 5})
 canvas/restore))

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Simple ClojureScript game with Reagi

[104]

Now, we'll move on to the functions responsible for updating our shape's
coordinates and angle, starting with move!:

(def speed 200)

(defn calculate-x [angle]
 (* speed (/ (* (Math/cos angle)
 Math/PI)
 180)))

(defn calculate-y [angle]
 (* speed (/ (* (Math/sin angle)
 Math/PI)
 180)))

(defn move! [shape f]
 (let [pos (:pos shape)]
 (swap! pos (fn [xy]
 (-> xy
 (update-in [:x]
 #(f % (calculate-x
 (shape-angle shape))))
 (update-in [:y]
 #(f % (calculate-y
 (shape-angle shape)))))))))

To keep things simple, both the ship and bullets use the same speed value to
calculate their positioning, here defined as 200.

move! takes two arguments: the shape map and a function f. This function will
either be the + (plus) or the - (minus) function, depending on whether we're moving
forward or backward, respectively. Next, it updates the shape's x,y coordinates using
some basic trigonometry.

If you're wondering why we are passing the plus and minus functions as arguments,
it's all about not repeating ourselves, as the next two functions show:

(defn move-forward! [shape]
 (move! shape +))

(defn move-backward! [shape]
 (move! shape -))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[105]

With movement taken care of, the next step is to write the rotation functions:

(defn rotate! [shape f]
 (swap! (:angle shape) #(f % (/ (/ Math/PI 3) 20))))

(defn rotate-right! [shape]
 (rotate! shape +))

(defn rotate-left! [shape]
 (rotate! shape -))

So far, we've got ship movement covered! But what good is our ship if we can't fire
bullets? Let's make sure we have that covered as well:

(defn fire! [monet-canvas ship]
 (let [entity-key (keyword (gensym "bullet"))
 data (shape-data (shape-x ship)
 (shape-y ship)
 (shape-angle ship))
 bullet (make-bullet-entity monet-canvas
 entity-key
 data)]
 (canvas/add-entity monet-canvas entity-key bullet)))

The fire! function takes two arguments: a reference to the game canvas and the
ship. It then creates a new bullet by calling make-bullet-entity and adds it to
the canvas.

Note how we use Clojure's gensym function to create a unique key for the new entity.
We use this key to remove an entity from the game.

This concludes the code for the entities namespace.

gensym is quite heavily used in writing hygienic macros as you can be
sure that the generated symbols will not clash with any local bindings
belonging to the code using the macro. Macros are beyond the scope
of this book, but you might find this series of macro exercises useful in
the learning process, at https://github.com/leonardoborges/
clojure-macros-workshop.

www.it-ebooks.info

https://github.com/leonardoborges/clojure-macros-workshop
https://github.com/leonardoborges/clojure-macros-workshop
http://www.it-ebooks.info/

Building a Simple ClojureScript game with Reagi

[106]

Putting it all together
We're now ready to assemble our game. Go ahead and open the core namespace file,
src/cljs/reagi_game/core.cljs, and add the following:

(ns reagi-game.core
 (:require [monet.canvas :as canvas]
 [reagi.core :as r]
 [clojure.set :as set]
 [reagi-game.entities :as entities
 :refer [move-forward! move-backward! rotate-left! rotate-
right! fire!]]))

The following snippet sets up various data structures and references we'll need in
order to develop the game:

(def canvas-dom (.getElementById js/document "canvas"))

(def monet-canvas (canvas/init canvas-dom "2d"))

(def ship
 (entities/shape-data (/ (.-width (:canvas monet-canvas)) 2)
 (/ (.-height (:canvas monet-canvas)) 2)
 0))

(def ship-entity (entities/ship-entity ship))

(canvas/add-entity monet-canvas :ship-entity ship-entity)
(canvas/draw-loop monet-canvas)

We start by creating monet-canvas from a reference to our canvas DOM element.
We then create our ship data, placing it at the center of the canvas, and add the
entity to monet-canvas. Finally, we start a draw-loop, which will handle our
animations using the browser's native capabilities—internally it calls window.
requestAnimationFrame(), if available, but it falls back to window.setTimemout()
otherwise.

If you were to try the application now, this would be enough to draw the ship on the
middle of the screen, but nothing else would happen as we haven't started handling
user input yet.

As far as user input goes, we're concerned with a few actions:

•	 Ship movement: rotation, forward, and backward
•	 Firing the ship's gun
•	 Pausing the game

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[107]

To account for these actions, we'll define some constants that represent the ASCII
codes of the keys involved:

(def UP 38)
(def RIGHT 39)
(def DOWN 40)
(def LEFT 37)
(def FIRE 32) ;; space
(def PAUSE 80) ;; lower-case P

This should look sensible as we are using the keys traditionally used for these types
of actions.

Modeling user input as event streams
One of the things discussed in the earlier chapters is that if you can think of events
as a list of things that haven't happened yet; you can probably model it as an event
stream. In our case, this list is composed by the keys the player presses during the
game and can be visualized like so:

There is a catch though. Most games need to handle simultaneously pressed keys.

Say you're flying the spaceship forwards. You don't want to have to stop it in order
to rotate it to the left and then continue moving forwards. What you want is to press
left at the same time you're pressing up and have the ship respond accordingly.

This hints at the fact that we need to be able to tell whether the player is currently
pressing multiple keys. Traditionally this is done in JavaScript by keeping track of
which keys are being held down in a map-like object, using flags. Something similar
to the following snippet:

var keysPressed = {};

document.addEventListener('keydown', function(e) {
 keysPressed[e.keyCode] = true;
}, false);
document.addEventListener('keyup', function(e) {
 keysPressed[e.keyCode] = false;
}, false);

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Simple ClojureScript game with Reagi

[108]

Then, later in the game loop, you would check whether there are multiple keys
being pressed:

function gameLoop() {
 if (keyPressed[UP] && keyPressed[LEFT]) {
 // update ship position
 }
 // ...
}

While this code works, it relies on mutating the keysPressed object which isn't ideal.

Additionally, with a setup similar to the preceding one, the keysPressed object is
global to the application as it is needed both in the keyup/keydown event handlers
as well as in the game loop itself.

In functional programming, we strive to eliminate or reduce the amount of global
mutable state in order to write readable, maintainable code that is less error-prone.
We will apply these principles here.

As seen in the preceding JavaScript example, we can register callbacks to be notified
whenever a keyup or keydown event happens. This is useful as we can easily turn
them into event streams:

(defn keydown-stream []
 (let [out (r/events)]
 (set! (.-onkeydown js/document)
 #(r/deliver out [::down (.-keyCode %)]))
 out))

(defn keyup-stream []
 (let [out (r/events)]
 (set! (.-onkeyup js/document)
 #(r/deliver out [::up (.-keyCode %)]))
 out))

Both keydown-stream and keyup-stream return a new stream to which they deliver
events whenever they happen. Each event is tagged with a keyword, so we can easily
identify its type.

We would like to handle both types of events simultaneously and as such we need a
way to combine these two streams into a single one.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[109]

There are many ways in which we can combine streams, for example, using
operators such as zip and flatmap. For this instance, however, we are interested in
the merge operator. merge creates a new stream that emits values from both streams
as they arrive:

This gives us enough to start creating our stream of active keys. Based on what we
have discussed so far, our stream looks something like the following at the moment:

(def active-keys-stream
 (->> (r/merge (keydown-stream) (keyup-stream))
 ...
))

To keep track of which keys are currently pressed, we will use a ClojureScript set.
This way we don't have to worry about setting flags to true or false—we can simply
perform standard set operations and add/remove keys from the data structure.

The next thing we need is a way to accumulate the pressed keys into this set as new
events are emitted from the merged stream.

In functional programming, whenever we wish to accumulate or aggregate some
type of data over a sequence of values, we use reduce.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Simple ClojureScript game with Reagi

[110]

Most—if not all—CES frameworks have this function built-in. RxJava calls it
scan. Reagi, on the other hand, calls it reduce, making it intuitive to functional
programmers in general.

That is the function we will use to finish the implementation of active-keys-stream:

(def active-keys-stream
 (->> (r/merge (keydown-stream) (keyup-stream))
 (r/reduce (fn [acc [event-type key-code]]
 (condp = event-type
 ::down (conj acc key-code)
 ::up (disj acc key-code)
 acc))
 #{})
 (r/sample 25)))

r/reduce takes three arguments: a reducing function, an optional initial/seed value,
and the stream to reduce over.

Our seed value is an empty set as initially the user hasn't yet pressed any keys.
Then, our reducing function checks the event type, removing or adding the key
from/to the set as appropriate.

As a result, what we have is a stream like the one represented as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[111]

Working with the active keys stream
The ground work we've done so far will make sure we can easily handle game events
in a clean and maintainable way. The main idea behind having a stream representing
the game keys is that now we can partition it much like we would a normal list.

For instance, if we're interested in all events where the key pressed is UP, we would
run the following code:

(->> active-keys-stream
 (r/filter (partial some #{UP}))
 (r/map (fn [_] (.log js/console "Pressed up..."))))

Similarly, for events involving the FIRE key, we could do the following:

(->> active-keys-stream

 (r/filter (partial some #{FIRE}))
 (r/map (fn [_] (.log js/console "Pressed fire..."))))

This works because in Clojure, sets can be used as predicates. We can quickly verify
this at the REPL:

user> (def numbers #{12 13 14})
#'user/numbers
user> (some #{12} numbers)
12
user> (some #{15} numbers)
nil

By representing the events as a stream, we can easily operate on them using familiar
sequence functions such as map and filter.

Writing code like this, however, is a little repetitive. The two previous examples are
pretty much saying something along these lines: filter all events matching a given
predicate pred and then map the f function over them. We can abstract this pattern
in a function we'll call filter-map:

(defn filter-map [pred f & args]
 (->> active-keys-stream
 (r/filter (partial some pred))
 (r/map (fn [_] (apply f args)))))

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Simple ClojureScript game with Reagi

[112]

With this helper function in place, it becomes easy to handle our game actions:

(filter-map #{FIRE} fire! monet-canvas ship)
(filter-map #{UP} move-forward! ship)
(filter-map #{DOWN} move-backward! ship)
(filter-map #{RIGHT} rotate-right! ship)
(filter-map #{LEFT} rotate-left! ship)

The only thing missing now is taking care of pausing the animations when the player
presses the PAUSE key. We follow the same logic as above, but with a slight change:

(defn pause! [_]
 (if @(:updating? monet-canvas)
 (canvas/stop-updating monet-canvas)
 (canvas/start-updating monet-canvas)))

(->> active-keys-stream
 (r/filter (partial some #{PAUSE}))
 (r/throttle 100)
 (r/map pause!))

Monet makes a flag available that tells us whether it is currently updating the
animation state. We use that as a cheap mechanism to "pause" the game.

Note that active-keys-stream pushes events as they happen so, if a user is holding
a button down for any amount of time, we will get multiple events for that key. As
such, we would probably get multiple occurrences of the PAUSE key in a very short
amount of time. This would cause the game to frantically stop/start. In order to
prevent this from happening, we throttle the filtered stream and ignore all PAUSE
events that happen in a window shorter than 100 milliseconds.

To make sure we didn't miss anything, this is what our src/cljs/reagi_game/
core.cljs file should look like, in full:

(ns reagi-game.core
 (:require [monet.canvas :as canvas]
 [reagi.core :as r]
 [clojure.set :as set]
 [reagi-game.entities :as entities
 :refer [move-forward! move-backward! rotate-left! rotate-
right! fire!]]))

(def canvas-dom (.getElementById js/document "canvas"))

(def monet-canvas (canvas/init canvas-dom "2d"))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[113]

(def ship (entities/shape-data (/ (.-width (:canvas monet-canvas)) 2)
 (/ (.-height (:canvas monet-canvas)) 2)
 0))

(def ship-entity (entities/ship-entity ship))

(canvas/add-entity monet-canvas :ship-entity ship-entity)
(canvas/draw-loop monet-canvas)

(def UP 38)
(def RIGHT 39)
(def DOWN 40)
(def LEFT 37)
(def FIRE 32) ;; space
(def PAUSE 80) ;; lower-case P

(defn keydown-stream []
 (let [out (r/events)]
 (set! (.-onkeydown js/document) #(r/deliver out [::down (.-keyCode
%)]))
 out))

(defn keyup-stream []
 (let [out (r/events)]
 (set! (.-onkeyup js/document) #(r/deliver out [::up (.-keyCode
%)]))
 out))

(def active-keys-stream
 (->> (r/merge (keydown-stream) (keyup-stream))
 (r/reduce (fn [acc [event-type key-code]]
 (condp = event-type
 ::down (conj acc key-code)
 ::up (disj acc key-code)
 acc))
 #{})
 (r/sample 25)))

(defn filter-map [pred f & args]
 (->> active-keys-stream
 (r/filter (partial some pred))
 (r/map (fn [_] (apply f args)))))

(filter-map #{FIRE} fire! monet-canvas ship)
(filter-map #{UP} move-forward! ship)

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Simple ClojureScript game with Reagi

[114]

(filter-map #{DOWN} move-backward! ship)
(filter-map #{RIGHT} rotate-right! ship)
(filter-map #{LEFT} rotate-left! ship)

(defn pause! [_]
 (if @(:updating? monet-canvas)
 (canvas/stop-updating monet-canvas)
 (canvas/start-updating monet-canvas)))

(->> active-keys-stream
 (r/filter (partial some #{PAUSE}))
 (r/throttle 100)
 (r/map pause!))

This completes the code and we're now ready to have a look at the results.

If you still have the server running from earlier in this chapter, simply exit the REPL,
start it again, and start the embedded web server:

lein repl
Compiling ClojureScript.
Compiling "dev-resources/public/js/reagi_game.js" from ("src/cljs" "test/
cljs" "dev-resources/tools/repl")...
user=> (run)
2014-06-14 19:21:40.381:INFO:oejs.Server:jetty-7.6.8.v20121106
2014-06-14 19:21:40.403:INFO:oejs.AbstractConnector:Started
SelectChannelConnector@0.0.0.0:3000
#<Server org.eclipse.jetty.server.Server@51f6292b>

This will compile the latest version of our ClojureScript source to JavaScript.

Alternatively, you can leave the REPL running and simply ask cljsbuild to auto-
compile the source code from another terminal window:

lein cljsbuild auto
Compiling "dev-resources/public/js/reagi_game.js" from ("src/cljs" "test/
cljs" "dev-resources/tools/repl")...
Successfully compiled "dev-resources/public/js/reagi_game.js" in 13.23869
seconds.

Now you can point your browser to http://localhost:3000/ and fly around your
spaceship! Don't forget to shoot some bullets as well!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[115]

Reagi and other CES frameworks
Back in Chapter 4, Introduction to core.async, we had an overview of the main
differences between core.async and CES. Another question that might have
arisen in this chapter is this: how do we decide which CES framework to use?

The answer is less clear than before and often depends on the specifics of the tool
being looked at. We have learned about two such tools so far: Reactive Extensions
(encompassing RxJS, RxJava, and RxClojure) and Reagi.

Reactive Extensions (Rx) is a much more mature framework. Its first version for
the .NET platform was released in 2011 and the ideas in it have since evolved
substantially.

Additionally, ports for other platforms such as RxJava are being heavily used in
production by big names such as Netflix.

A drawback of Rx is that if you would like to use it both in the browser and on the
server, you have to use two separate frameworks, RxJS and RxJava, respectively.
While they do share the same API, they are different codebases, which can incur
bugs that might have been solved in one port but not yet in another.

For Clojure developers, it also means relying more on interoperability to interact
with the full API of Rx.

Reagi, on the other hand, is a new player in this space but builds on the solid
foundation laid out by core.async. It is fully developed in Clojure and solves
the in-browser/on-server issue by compiling to both Clojure and ClojureScript.

Reagi also allows seamless integration with core.async via functions such as
port and subscribe, which allow channels to be created from event streams.

Moreover, the use of core.async in ClojureScript applications is becoming
ubiquitous, so chances are you already have it as a dependency. This makes Reagi
an attractive option for the times when we need a higher level of abstraction than
the one provided by core.async.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Simple ClojureScript game with Reagi

[116]

Summary
In this chapter, we learned how we can use the techniques from reactive programming
we have learned so far in order to write code that is cleaner and easier to maintain.
To do so, we insisted on thinking about asynchronous events simply as lists and saw
how that way of thinking lends itself quite easily to being modeled as an event stream.
All our game has to do, then, is operate on these streams using familiar sequence
processing functions.

We also learned the basics of Reagi, a framework for CES similar to the one we created
in Chapter 4, Introduction to core.async, but that is more feature rich and robust.

In the next chapter, we will take a break from CES and see how a more traditional
reactive approach based on data flows can be useful.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[117]

The UI as a Function
So far we have taken a journey through managing complexity by efficiently handling
and modeling asynchronous workflows in terms of streams of data. In particular,
Chapter 4, Introduction to core.async and Chapter 5, Creating Your Own CES Framework
with core.async explored what's involved in libraries that provide primitives and
combinators for Compositional Event Systems. We also built a simple ClojureScript
application that made use of our framework.

One thing you might have noticed is that none of the examples so far have dealt
with what happens to the data once we are ready to present it to our users. It's still
an open question that we, as application developers, need to answer.

In this chapter, we will look at one way to handle Reactive User Interfaces in web
applications using React (see http://facebook.github.io/react/), a modern
JavaScript framework developed by Facebook, as well as:

•	 Learn how React renders user interfaces efficiently
•	 Be introduced to Om, a ClojureScript interface to React
•	 Learn how Om leverages persistent data structures for performance
•	 Develop two fully working ClojureScript applications with Om, including

the use of core.async for intercomponent communication

The problem with complex web UIs
With the rise of single-page web applications, it became a must to be able to manage
the growth and complexity of a JavaScript codebase. The same applies to ClojureScript.

In an effort to manage this complexity, a plethora of JavaScript MVC frameworks have
emerged such as AngularJS, Backbone.js, Ember.js, and KnockoutJS to name a few.

www.it-ebooks.info

http://facebook.github.io/react/
http://www.it-ebooks.info/

The UI as a Function

[118]

They are very different, but share a few common features:

•	 Give single-page applications more structure by providing models,
views, controllers, templates, and so on

•	 Provide client-side routing
•	 Two-way data binding

In this chapter, we'll be focusing on the last goal.

Two-way data binding is absolutely crucial if we are to develop even a moderately
complex single-page web application. Here's how it works.

Suppose we're developing a phone book application. More than likely, we will have a
model—or entity, map, what have you—that represents a contact. The contact model
might have attributes such as name, phone number, and e-mail address.

Of course, this application would not be all that useful if users couldn't update
contact information, so we will need a form which displays the current details
for a contact and lets you update the contact's information.

The contact model might have been loaded via an AJAX request and then might
have used explicit DOM manipulation code to display the form. This would look
something like the following pseudo-code:

function editContact(contactId) {
 contactService.get(contactId, function(data) {
 contactForm.setName(data.name);
 contactForm.setPhone(data.phone);
 contactForm.setEmail(data.email);
 })
}

But what happens when the user updates someone's information? We need to store
it somehow. On clicking on save, a function such as the following would do the trick,
assuming you're using jQuery:

$("save-button").click(function(){
 contactService.update(contactForm.serialize(), function(){
 flashMessage.set("Contact Updated.")
 })

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[119]

This seemingly harmless code poses a big problem. The contact model for this
particular person is now out of date. If we were still developing web applications
the old way, where we reload the page at every update, this wouldn't be a problem.
However, the whole point of single-page web applications is to be responsive, so it
keeps a lot of state on the client, and it is important to keep our models synced with
our views.

This is where two-way data binding comes in. An example from AngularJS would
look like the following:

// JS
// in the Controller
$scope.contact = {
 name: 'Leonardo Borges',
 phone '+61 xxx xxx xxx',
 email: 'leonardoborges.rj@gmail.com'
}

<!-- HTML -->
<!-- in the View -->
<form>
 <input type="text" name="contactName" ng-model="contact.name"/>
 <input type="text" name="contactPhone" ng-model="contact.phone"/>
 <input type="text" name="contactEmail" ng-model="contact.email"/>
</form>

Angular isn't the target of this chapter, so I won't dig into the details. All we need to
know from this example is that $scope is how we tell Angular to make our contact
model available to our views. In the view, the custom attribute ng-model tells Angular
to look up that property in the scope. This establishes a two-way relationship in such
a way that when your model data changes in the scope, Angular refreshes the UI.
Similarly, if the user edits the form, Angular updates the model, keeping everything
in sync.

There are, however, two main problems with this approach:

•	 It can be slow. The way Angular and friends implement two-way data
binding is, roughly speaking, by attaching event handlers and watchers
to view both custom- attributes and model attributes. For complex enough
user interfaces, you will start noticing that the UI becomes slower to render,
diminishing the user experience.

•	 It relies heavily on mutation. As functional programmers, we strive to limit
side effects to a minimum.

www.it-ebooks.info

http://www.it-ebooks.info/

The UI as a Function

[120]

The slowness that comes with this and similar approaches is two-fold: firstly,
AngularJS and friends have to "watch" all properties of every model in the scope in
order to track updates. Once the framework determines that data has changed in the
model, it then looks up parts of the UI, which depend on that information—such as
the fragments using ng-model above—and then it re-renders them.

Secondly, the DOM is the slowest part of most single-page web applications.
If we think about it for a moment, these frameworks are triggering dozens or
perhaps hundreds of DOM event handlers in order to keep the data in sync,
each of which ends up updating a node—or several—in the DOM.

Don't take my word for it though. I ran a simple benchmark to compare a
pure calculation versus locating a DOM element and updating its value to
the result of the said calculation. Here are the results—I've used JSPerf to run
the benchmark, and these results are for Chrome 37.0.2062.94 on Mac OS X
Mavericks (see http://jsperf.com/purefunctions-vs-dom):

document.getElementsByName("sum")[0].value = 1 + 2
// Operations per second: 2,090,202

1 + 2
// Operations per second: 780,538,120

Updating the DOM is orders of magnitude slower than performing a simple
calculation. It seems logical that we would want to do this in the most efficient
manner possible.

However, if we don't keep our data in sync, we're back at square one. There should
be a way by which we can drastically reduce the amount of rendering being done,
while retaining the convenience of two-way data binding. Can we have our cake
and eat it too?

Enter React.js
As we'll see in this chapter, the answer to the question posed in the previous
section is a resounding yes and, as you might have guessed, it involves React.js.

But what makes it special?

It's wise to start with what React is not. It is not an MVC framework and as such it
is not a replacement for the likes of AngularJS, Backbone.js, and so on. React focuses
solely on the V in MVC, and presents a refreshingly different way to think about
user interfaces. We must take a slight detour in order to explore how it does that.

www.it-ebooks.info

http://jsperf.com/purefunctions-vs-dom
http://www.it-ebooks.info/

Chapter 7

[121]

Lessons from functional programming
As functional programmers, we don't need to be convinced of the benefits of
immutability. We bought into the premise long ago. However, should we not
be able to use immutability efficiently, it would not have become commonplace
in functional programming languages.

We owe it to the huge amount of research that went into Purely Functional Data
Structures—first by Okasaki in his book of the same title (see http://www.amazon.
com/Purely-Functional-Structures-Chris-Okasaki/dp/0521663504/ref=sr_1
_1?ie=UTF8&qid=1409550695&sr=8-1&keywords=purely+functional+data+stru
ctures) and then improved by others.

Without it, our programs would be ballooning, both in space and runtime complexity.

The general idea is that given a data structure, the only way to update it is by
creating a copy of it with the desired delta applied:

(conj [1 2 3] 4) ;; [1 2 3 4]

In the preceding image, we have a simplistic view of how conj operates. On the left,
you have the underlying data structure representing the vector we wish to update.
On the right, we have the newly created vector, which, as we can see, shares some
structure with the previous vector, as well as containing our new item.

In reality, the underlying data structure is a tree and the
representation was simplified for the purposes of this book. I
highly recommend referring to Okasaki's book should the reader
want more details on how purely functional data structures work.

www.it-ebooks.info

http://www.amazon.com/Purely-Functional-Structures-Chris-Okasaki/dp/0521663504/ref=sr_1_1?ie=UTF8&qid=1409550695&sr=8-1&keywords=purely+functional+data+structures
http://www.amazon.com/Purely-Functional-Structures-Chris-Okasaki/dp/0521663504/ref=sr_1_1?ie=UTF8&qid=1409550695&sr=8-1&keywords=purely+functional+data+structures
http://www.amazon.com/Purely-Functional-Structures-Chris-Okasaki/dp/0521663504/ref=sr_1_1?ie=UTF8&qid=1409550695&sr=8-1&keywords=purely+functional+data+structures
http://www.amazon.com/Purely-Functional-Structures-Chris-Okasaki/dp/0521663504/ref=sr_1_1?ie=UTF8&qid=1409550695&sr=8-1&keywords=purely+functional+data+structures
http://www.it-ebooks.info/

The UI as a Function

[122]

Additionally, these functions are considered pure. That is, it relates every input to a
single output and does nothing else. This is, in fact, remarkably similar to how React
handles user interfaces.

If we think of a UI as a visual representation of a data structure, which reflects
the current state of our application, we can, without too much effort, think of UI
updates as a simple function whose input is the application state and the output
is a DOM representation.

You'll have noticed I didn't say the output is rendering to the DOM—that would
make the function impure as rendering is clearly a side effect. It would also make
it just as slow as the alternatives.

This DOM representation is essentially a tree of DOM nodes that model how your
UI should look, and nothing else.

React calls this representation a Virtual DOM, and roughly speaking, instead
of watching individual bits and pieces of application state that trigger a DOM
re-render upon change, React turns your UI into a function to which you give
the whole application state.

When you give this function the new updated state, React renders that state to
the Virtual DOM. Remember the Virtual DOM is simply a data structure, so the
rendering is extremely fast. Once it's done, React does one of two things:

•	 It commits the Virtual DOM to the actual DOM if this is the first render.
•	 Otherwise, it compares the new Virtual DOM with the current Virtual DOM,

cached from the previous render of the application. It then uses an efficient
diff algorithm to compute the minimum set of changes required to update
the real DOM. Finally, it commits this delta to the DOM.

Without digging into the nuts and bolts of React, this is essentially how it is
implemented and the reason it is faster than the alternatives. Conceptually,
React hits the "refresh" button whenever your application state changes.

Another great benefit is that by thinking of your UI as a function from application
state to a Virtual DOM, we recover some of the reasoning we're able to do when
working with immutable data structures in functional languages.

In the upcoming sections, we will understand why this is a big win for us
Clojure developers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[123]

ClojureScript and Om
Why have I spent six pages talking about JavaScript and React in a Clojure book?
I promise I'm not trying to waste your precious time; we simply needed some
context to understand what's to come.

Om is a ClojureScript interface to React.js developed by the prolific and amazing
individual David Nolen, from Cognitect. Yes, he has also developed core.logic,
core.match, and the ClojureScript compiler. That's how prolific. But I digress.

When Facebook released React, David immediately saw the potential and, more
importantly, how to take advantage of the assumptions we are able to make when
programming in Clojure, the most important of which is that data structures
don't change.

React provides several component life-cycle functions that allow developers to control
various properties and behaviors. One in particular, shouldComponentUpdate, is used
to decide whether a component needs to be re-rendered.

React has a big challenge here. JavaScript is inherently mutable, so it is extremely
hard, when comparing Virtual DOM Trees, to identify which nodes have changed in
an efficient way. React employs a few heuristics in order to avoid O(n3) worst-case
performance and is able to do it in O(n) most of the time. Since heuristics aren't perfect,
we can choose to provide our own implementation of shouldComponentUpdate and
take advantage of the knowledge we possess when rendering a component.

ClojureScript, on the other hand, uses immutable data structures. As such,
Om provides the simplest and most efficient implementation possible for
shouldComponentUpdate: a simple reference equality check.

Because we're always dealing with immutable data structures, in order to know
whether two trees are the same, all we need to do is compare whether their roots
are the same. If they are, we're done. Otherwise, descend and repeat the process.
This is guaranteed to yield O(log n) runtime complexity and allows Om to always
render the UI from the root efficiently.

Of course, performance isn't the only thing that's good about Om—we will now
explore what makes an Om application.

www.it-ebooks.info

http://www.it-ebooks.info/

The UI as a Function

[124]

Building a simple Contacts application
with Om
This chapter has been very text heavy so far. It's time we get our hands dirty and
build a simple Om application. Since we talked about contacts before, that's what
we will start with.

The main driver behind React and Om is the ability to build highly reusable, self-
contained components and, as such, even in a simple Contacts application, we will
have multiple components working in concert to achieve a common goal.

This is what our users should be able to do in the application:

•	 Display a list of contacts currently in storage
•	 Display the details of a given contact
•	 Edit the details of a specific contact

And once we're done, it will look like the following:

The Contacts application state
As mentioned previously, Om/React will eventually render the DOM based on our
application state. We'll be using data that's in memory to keep the example simple.
Here's what our application state will look like:

(def app-state
 (atom {:contacts {1 {:id 1
 :name "James Hetfield"
 :email "james@metallica.com"
 :phone "+1 XXX XXX XXX"}
 2 {:id 2
 :name "Adam Darski"
 :email "the.nergal@behemoth.pl"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[125]

 :phone "+48 XXX XXX XXX"}}
 :selected-contact-id []
 :editing [false]}))

The reason we keep the state in an atom is that Om uses that to re-render the
application if we swap! or reset! it, for instance, if we load some data from
the server after the application has been rendered for the first time.

The data in the state itself should be mostly self-explanatory. We have a map
containing all contacts, a key representing whether there is currently a contact
selected, and a flag that indicates whether we are currently editing the selected
contact. What might look odd is that both:selected-contact-id and :editing
keys point to a vector. Just bear with me for a moment; the reason for this will
become clear shortly.

Now that we have a draft of our application state, it's time we think about how
the state will flow through the different components in our app. A picture is worth a
thousand words, so the following diagram shows the high-level architecture through
which our data will flow:

www.it-ebooks.info

http://www.it-ebooks.info/

The UI as a Function

[126]

In the preceding image, each function corresponds to an Om component. At the very
least, they take some piece of data as their initial state. What is interesting in this
image is that as we descend into our more specialized components, they request less
state than the main component, contacts-app. For instance, the contacts-view
component needs all contacts as well as the ID of the selected contact. The details-
panel-view component, on the other hand, only needs the currently selected contact,
and whether it's being edited or not. This is a common pattern in Om and we usually
want to avoid over-sharing the application state.

With a rough understanding of our high-level architecture, we are ready to start
building our Contacts application.

Setting up the Contacts project
Once again, we will use a leiningen template to help us get started. This time we'll
be using om-start (see https://github.com/magomimmo/om-start-template),
also by Mimmo Cosenza (see https://github.com/magomimmo). Type this in the
terminal to create a base project using this template:

lein new om-start contacts

cd contacts

Next, let's open the project.clj file and make sure we have the same versions for
the various different dependencies the template pulls in. This is just so that we don't
have any surprises with incompatible versions:

...
 :dependencies [[org.clojure/clojure "1.6.0"]
 [org.clojure/clojurescript "0.0-2277"]
 [org.clojure/core.async "0.1.338.0-5c5012-alpha"]
 [om "0.7.1"]
 [com.facebook/react "0.11.1"]]
...

To validate the new project skeleton, still in the terminal, type the following to auto-
compile your ClojureScript source files:

lein cljsbuild auto
Compiling ClojureScript.
Compiling "dev-resources/public/js/contacts.js" from ("src/cljs" "dev-
resources/tools/repl")...
Successfully compiled "dev-resources/public/js/contacts.js" in 9.563
seconds.

Now, we should see the template default "Hello World" page if we open the
dev-resources/public/index.html file in the browser.

www.it-ebooks.info

https://github.com/magomimmo/om-start-template
https://github.com/magomimmo
http://www.it-ebooks.info/

Chapter 7

[127]

Application components
The next thing we'll do is open the src/cljs/contacts/core.cljs file, which is
where our application code will go, and make sure it looks like the following so that
we have a clean slate with the appropriate namespace declaration:

(ns contacts.core
 (:require [om.core :as om :include-macros true]
 [om.dom :as dom :include-macros true]))

(enable-console-print!)

(def app-state
 (atom {:contacts {1 {:id 1
 :name "James Hetfield"
 :email "james@metallica.com"
 :phone "+1 XXX XXX XXX"}
 2 {:id 2
 :name "Adam Darski"
 :email "the.nergal@behemoth.pl"
 :phone "+48 XXX XXX XXX"}}
 :selected-contact-id []
 :editing [false]}))

(om/root
 contacts-app
 app-state
 {:target (. js/document (getElementById "app"))})

Every Om application starts with a root component created by the om/root function.
It takes as arguments a function representing a component—contacts-app—the
initial state of the application—app-state—and a map of options of which the only
one we care about is :target, which tells Om where to mount our root component
on the DOM.

In this instance, it will mount on a DOM element whose ID is app. This element was
given to us by the om-start template and is located in the dev-resources/public/
index.html file.

Of course, this code won't compile yet, as we don't have the contacts-app template.
Let's solve that and create it above the preceding declaration—we're implementing
the components bottom-up:

(defn contacts-app [data owner]
 (reify

www.it-ebooks.info

http://www.it-ebooks.info/

The UI as a Function

[128]

 om/IRender
 (render [this]
 (let [[selected-id :as selected-id-cursor]
 (:selected-contact-id data)]
 (dom/div nil
 (om/build contacts-view
 {:contacts (:contacts data)
 :selected-id-cursor selected-id-cursor})
 (om/build details-panel-view
 {:contact (get-in data [:contacts
selected-id])
 :editing-cursor (:editing data)}))))))

This snippet introduces a number of new features and terminology, so it deserves a
few paragraphs.

When describing om/root, we saw that its first argument must be an Om component.
The contact-app function creates one by reifying the om/IRender protocol. This
protocol contains a single function—render—which gets called when the application
state changes.

Clojure uses reify to implement protocols or Java interfaces on
the fly, without the need to create a new type. You can read more
about this on the data types page of the Clojure documentation at
http://clojure.org/datatypes.

The render function must return an Om/React component or something
React knows how to render—such as a DOM representation of the component.
The arguments to contacts-app are straightforward: data is the component
state and owner is the backing React component.

Moving down the source file, in the implementation of render, we have
the following:

(let [[selected-id :as selected-id-cursor]
 (:selected-contact-id data)]
 ...)

If we recall from our application state, the value of :selected-contact-id is, at this
stage, an empty vector. Here, then, we are destructuring this vector and giving it a
name. What you might be wondering now is why we bound the vector to a variable
named selected-id-cursor. This is to reflect the fact that at this point in the life cycle
of a component, selected-id-cursor isn't a vector any longer but rather it is a cursor.

www.it-ebooks.info

http://clojure.org/datatypes
http://www.it-ebooks.info/

Chapter 7

[129]

Om cursors
Once om/root creates our root component, sub-components don't have direct access
to the state atom any longer. Instead, components receive a cursor created from the
application state.

Cursors are data structures that represent a place in the original state atom. You
can use cursors to read, delete, update, or create a value with no knowledge of the
original data structure. Let's take the selected-id-cursor cursor as an example:

At the top, we have our original application state, which Om turns into a cursor.
When we request the :selected-contact-id key from it, Om gives us another
cursor representing that particular place in the data structure. It just so happens
that its value is the empty vector.

What is interesting about this cursor is that if we update its value using one of Om's
state transition functions such as om/transact! and om/update!—we will explain
these shortly—it knows how to propagate the change up the tree and all the way
back to the application state atom.

This is important because as we have briefly stated before, it is common practice to
have our more specialized components depend on specific parts of the application
state required for its correct operation.

www.it-ebooks.info

http://www.it-ebooks.info/

The UI as a Function

[130]

By using cursors, we can easily propagate changes without knowing what the
application state looks like, thus avoiding the need to access the global state.

You can think of cursors as zippers. Conceptually, they serve
a similar purpose but have different APIs.

Filling in the blanks
Moving down the contacts-app component, we now have the following:

(dom/div nil
 (om/build contacts-view
 {:contacts (:contacts data)
 :selected-id-cursor selected-id-cursor})
 (om/build details-panel-view
 {:contact (get-in data [:contacts
selected-id])
 :editing-cursor (:editing data)}))

The dom namespace contains thin wrappers around React's DOM classes. It's
essentially the data structure representing what the application will look like. Next,
we see two examples of how we can create Om components inside another Om
component. We use the om/build function for that and create the contacts-view
and details-panel-view components. The om/build function takes as arguments
the component function, the component state, and, optionally, a map of options
which aren't important for this example.

At this point, we have already started to limit the state we will pass into the
sub-components by creating sub-cursors.

According to the source code, the next component we should look at is contacts-
view. Here it is in full:

(defn contacts-view [{:keys [contacts selected-id-cursor]} owner]
 (reify
 om/IRender
 (render [_]
 (dom/div #js {:style #js {:float "left"
 :width "50%"}}
 (apply dom/ul nil
 (om/build-all contact-summary-view (vals
contacts)
 {:shared {:selected-id-cursor
selected-id-cursor}}))))))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[131]

Hopefully, the source of this component looks a little more familiar now. As before,
we reify om/IRender to provide a DOM representation of our component. It comprises
a single div element. This time we give as the second argument to dom/div a hash-map
representing HTML attributes. We are using some inline styles, but ideally we would
use an external style sheet.

If you are not familiar with the #js {…} syntax, it's simply a
reader macro that expands to (clj->js {…}) in order to convert a
ClojureScript hash-map into a JavaScript object. The only thing to watch
for is that it is not recursive, as evidenced by the nested use of #js.

The third argument to dom/div is slightly more complex than what we have seen
so far:

(apply dom/ul nil
 (om/build-all contact-summary-view (vals
contacts)
 {:shared {:selected-id-cursor
selected-id-cursor}}))

Each contact will be represented by a li (list item) HTML node, so we start by
wrapping the result into a dom/ul element. Then, we use om/build-all to build
a list of contact-summary-view components. Om will, in turn, call om/build for
each contact in vals contacts.

Lastly, we use the third argument to om/build-all—the options map—to
demonstrate how we can share state between components without the use of global
state. We'll see how that's used in the next component, contact-summary-view:

 (defn contact-summary-view [{:keys [name phone] :as contact} owner]
 (reify
 om/IRender
 (render [_]
 (dom/li #js {:onClick #(select-contact! @contact
 (om/get-shared owner
:selected-id-cursor))}
 (dom/span nil name)
 (dom/span nil phone)))))

If we think of our application as a tree of components, we have now reached one of
its leaves. This component simply returns a dom/li node with the contact's name
and phone in it, wrapped in dom/span nodes.

It also installs a handler to the dom/li onClick event, which we can use to update
the state cursor.

www.it-ebooks.info

http://www.it-ebooks.info/

The UI as a Function

[132]

We use om/get-shared to access the shared state we installed earlier and pass the
resulting cursor into select-contact! We also pass the current contact, but, if you
look closely, we have to deref it first:

@contact

The reason for this is that Om doesn't allow us to manipulate cursors outside of
the render phase. By derefing the cursor, we have its most recent underlying value.
Now select-contact! has all it needs to perform the update:

(defn select-contact! [contact selected-id-cursor]
 (om/update! selected-id-cursor 0 (:id contact)))

We simply use om/update! to set the value of the selected-id-cursor cursor at
index 0 to the id of the contact. As mentioned previously, the cursor takes care of
propagating the change.

You can think of om/update! as the cursors version of clojure.
core/reset! used in atoms. Conversely, the same applies to om/
transact! and clojure.core/swap!, respectively.

We are moving at a good pace. It's time we look at the next component, details-
panel-view:

(defn details-panel-view [data owner]
 (reify
 om/IRender
 (render [_]
 (dom/div #js {:style #js {:float "right"
 :width "50%"}}
 (om/build contact-details-view data)
 (om/build contact-details-form-view data)))))

This component should now look fairly familiar. All it does is build two other
components, contact-details-view and contact-details-form-view:

(defn contact-details-view [{{:keys [name phone email id] :as contact}
:contact
 editing :editing-cursor}
 owner]
 (reify
 om/IRender
 (render [_]
 (dom/div #js {:style #js {:display (if (get editing 0) "none"
"")}}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[133]

 (dom/h2 nil "Contact details")
 (if contact
 (dom/div nil
 (dom/h3 #js {:style #js {:margin-bottom
"0px"}} (:name contact))
 (dom/span nil (:phone contact)) (dom/br nil)
 (dom/span nil (:email contact)) (dom/br nil)
 (dom/button #js {:onClick #(om/update! editing
0 true)}
 "Edit"))
 (dom/span nil "No contact selected"))))))

The contact-details-view component receives two pieces of state: the contact and
the editing flag. If we have a contact, we simply render the component. However, we
use the editing flag to hide it, if we are editing it. This is so that we can show the edit
form in the next component. We also install an onClick handler to the Edit button so
that we can update the editing cursor.

The contact-details-form-view component receives the same arguments but
renders the following form instead:

(defn contact-details-form-view [{{:keys [name phone email id] :as
contact} :contact
 editing :editing-cursor}
 owner]
 (reify
 om/IRender
 (render [_]
 (dom/div #js {:style #js {:display (if (get editing 0) ""
"none")}}
 (dom/h2 nil "Contact details")
 (if contact
 (dom/div nil
 (dom/input #js {:type "text"
 :value name
 :onChange #(update-
contact! % contact :name)})
 (dom/input #js {:type "text"
 :value phone
 :onChange #(update-
contact! % contact :phone)})
 (dom/input #js {:type "text"
 :value email
 :onChange #(update-
contact! % contact :email)})

www.it-ebooks.info

http://www.it-ebooks.info/

The UI as a Function

[134]

 (dom/button #js {:onClick #(om/update!
editing 0 false)}
 "Save"))
 (dom/div nil "No contact selected"))))))

This is the component responsible for actually updating the contact information
based on the form. It does so by calling update-contact! with the JavaScript event,
the contact cursor, and the key representing the attribute to be updated:

(defn update-contact! [e contact key]
 (om/update! contact key (.. e -target -value)))

As before, we simply use om/update! instead of om/transact! as we are simply
replacing the value of the cursor attribute with the current value of the form field
which triggered the event e.

If you're not familiar with the .. syntax, it's simply a convenience
macro for Java and JavaScript interoperability. The previous example
expands to:

(. (. e -target) -value)

This and other interoperability operators are described in the Java
Interop page of the Clojure website (see http://clojure.org/
java_interop).

This is it. Make sure your code is still compiling—or if you haven't yet, start the
auto-compilation by typing the following in the terminal:

lein cljsbuild auto

Then, open up dev-resources/public/index.html again in your browser and take
our Contacts app for a spin! Note in particular how the application state is always in
sync while you edit the contact attributes.

If there are any issues at this stage, make sure the src/cljs/contacts/core.cljs
file matches the companion code for this book.

Intercomponent communication
In our previous example, the components we built communicated with each other
exclusively through the application state, both for reading and transacting data.
While this approach works, it is not always the best except for very simple use cases.
In this section, we will learn an alternate way of performing this communication
using core.async channels.

www.it-ebooks.info

http://clojure.org/java_interop
http://clojure.org/java_interop
http://www.it-ebooks.info/

Chapter 7

[135]

The application we will build is a super simple virtual agile board. If you've heard of it,
it's similar to Trello (see https://trello.com/). If you haven't, fear not, it's essentially
a task management web application in which you have cards that represent tasks and
you move them between columns such as Backlog, In Progress, and Done.

By the end of this section, the application will look like the following:

We'll limit ourselves to a single feature: moving cards between columns by dragging
and dropping them. Let's get started.

Creating an agile board with Om
We're already familiar with the om-start (see https://github.com/magomimmo/
om-start-template) leiningen template, and since there is no reason to change it,
that's what we will use to create our project—which I called om-pm for Om Project
Management:

lein new om-start om-pm
cd om-pm

As before, we should ensure we have the right dependencies in our project.clj file:

 :dependencies [[org.clojure/clojure "1.6.0"]
 [org.clojure/clojurescript "0.0-2511"]
 [org.om/om "0.8.1"]
 [org.clojure/core.async "0.1.346.0-17112a-alpha"]
 [com.facebook/react "0.12.2"]]

www.it-ebooks.info

https://trello.com/
https://github.com/magomimmo/om-start-template
https://github.com/magomimmo/om-start-template
http://www.it-ebooks.info/

The UI as a Function

[136]

Now validate that we are in good shape by making sure the project compiles properly:

lein cljsbuild auto
Compiling ClojureScript.
Compiling "dev-resources/public/js/om_pm.js" from ("src/cljs" "dev-
resources/tools/repl")...
Successfully compiled "dev-resources/public/js/om_pm.js" in 13.101
seconds.

Next, open the src/cljs/om_pm/core.cljs file and add the namespaces that we
will be using to build the application:

(ns om-pm.core
 (:require [om.core :as om :include-macros true]
 [om.dom :as dom :include-macros true]
 [cljs.core.async :refer [put! chan <!]]
 [om-pm.util :refer [set-transfer-data! get-transfer-data!
move-card!]])
 (:require-macros [cljs.core.async.macros :refer [go go-loop]]))

The main difference this time is that we are requiring core.async functions and
macros. We don't yet have an om-pm.util namespace, but we'll get to that at the end.

The board state
It's time we think what our application state will look like. Our main entity in this
application is the card, which represents a task and has the attributes id, title,
and description. We will start by defining a couple of cards:

(def cards [{:id 1
 :title "Groceries shopping"
 :description "Almond milk, mixed nuts, eggs..."}
 {:id 2
 :title "Expenses"
 :description "Submit last client's expense report"}])

This isn't our application state yet, but rather a part of it. Another important piece of
state is a way to track which cards are on which columns. To keep things simple, we
will work with only three columns: Backlog, In Progress, and Done. By default, all
cards start out in the backlog:

(def app-state
 (atom {:cards cards
 :columns [{:title "Backlog"
 :cards (mapv :id cards)}
 {:title "In Progress"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[137]

 :cards []}
 {:title "Done"
 :cards []}]}))

This is all the state we need. Columns have a :title and a :cards attribute, which
contains the IDs of all cards in that column.

Additionally, we will have a helper function to make finding cards more convenient:

(defn card-by-id [id]
 (first (filterv #(= id (:id %)) cards)))

Beware of lazy sequences
You might have noticed the use of mapv instead of map for retrieving
the cards IDs. This is a subtle but important difference: map is lazy by
default, but Om can only create cursors for maps and vectors. Using
mapv gives us a vector back, avoiding laziness altogether.
Had we not done that, Om would consider the list of IDs as a normal
value and we would not be able to transact it.

Components overview
There are many ways to slice up an Om application into components, and in
this section, we will present one way as we walk through each component's
implementation.

The approach we will follow is similar to our previous application in that from
this point on, we present the components bottom-up.

Before we see our first component, however, we should start with Om's own
root component:

(om/root project-view app-state
 {:target (. js/document (getElementById "app"))})

This gives us a hint as to what our next component will be, project-view:

(defn project-view [app owner]
 (reify
 om/IInitState
 (init-state [_]
 {:transfer-chan (chan)})

 om/IWillMount
 (will-mount [_]

www.it-ebooks.info

http://www.it-ebooks.info/

The UI as a Function

[138]

 (let [transfer-chan (om/get-state owner :transfer-chan)]
 (go-loop []
 (let [transfer-data (<! transfer-chan)]
 (om/transact! app :columns
 #(move-card! % transfer-data))
 (recur)))))

 om/IRenderState
 (render-state [this state]
 (dom/div nil
 (apply dom/ul nil
 (om/build-all column-view (:columns app)
 {:shared {:cards (:cards app)}
 :init-state state}))))))

Lifecycle and component local state
The previous component is fairly different from the ones we have seen so far. More
specifically, it implements two new protocols: om/IInitState and om/IWillMount.
Additionally, we dropped om/IRender altogether in favor of om/IRenderState.
Before we explain what these new protocols are good for, we need to discuss our
high-level design.

The project-view component is our application's main entry point and receives the
whole application state as its first argument. As in our earlier Contacts application,
it then instantiates the remaining components with the data they need.

Different from the Contacts example, however, it creates a core.async channel—
transfer-chan—which works as a message bus. The idea is that when we drag
a card from one column and drop it on another, one of our components will put a
transfer event in this channel and let someone else—most likely a go block—perform
the actual move operation.

This is done in the following snippet taken from the component shown earlier:

 om/IInitState
 (init-state [_]
 {:transfer-chan (chan)})

This creates what Om calls the component local state. It uses a different lifecycle
protocol, om/IInitState, which is guaranteed to be called only once. After all,
we need a single channel for this component. init-state should return a map
representing the local state.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[139]

Now that we have the channel, we need to install a go-loop to handle messages sent
to it. For this purpose, we use a different protocol:

 om/IWillMount
 (will-mount [_]
 (let [transfer-chan (om/get-state owner :transfer-chan)]
 (go-loop []
 (let [transfer-data (<! transfer-chan)]
 (om/transact! app :columns #(move-card! % transfer-data))
 (recur)))))

Like the previous protocol, om/IWillMount is also guaranteed to be called once in
the component life cycle. It is called when it is about to be mounted into the DOM
and is the perfect place to install the go-loop into our channel.

When creating core.async channels in Om applications, it
is important to avoid creating them inside life-cycle functions
that are called multiple times. Besides non-deterministic
behavior, this is a source of memory leaks.

We get hold of it from the component local state using the om/get-state function.
Once we get a message, we transact the state. We will see what transfer-data looks
like very shortly.

We complete the component by implementing its render function:

...
om/IRenderState
 (render-state [this state]
 (dom/div nil
 (apply dom/ul nil
 (om/build-all column-view (:columns app)
 {:shared {:cards (:cards app)}
 :init-state state}))))
...

The om/IRenderState function serves the same purpose of om/IRender, that
is, it should return the DOM representation of what the component should look
like. However, it defines a different function, render-state, which receives the
component local state as its second argument. This state contains the map we
created during the init-state phase.

www.it-ebooks.info

http://www.it-ebooks.info/

The UI as a Function

[140]

Remaining components
Next, we will build multiple column-view components, one per column. Each of them
receives the list of cards from the application state as their shared state. We will use
that to retrieve the card details from the IDs we store in each column.

We also use the :init-state key to initialize the local state of each column view
with our channel, since all columns need a reference to it. Here's what the component
looks like:

(defn column-view [{:keys [title cards]} owner]
 (reify
 om/IRenderState
 (render-state [this {:keys [transfer-chan]}]
 (dom/div #js {:style #js {:border "1px solid black"
 :float "left"
 :height "100%"
 :width "320px"
 :padding "10px"}
 :onDragOver #(.preventDefault %)
 :onDrop #(handle-drop % transfer-chan title)}
 (dom/h2 nil title)
 (apply dom/ul #js {:style #js {:list-style-type "none"
 :padding "0px"}}
 (om/build-all (partial card-view title)
 (mapv card-by-id cards)))))))

The code should look fairly familiar at this point. We used inline CSS in the example
to keep it simple, but in a real application, we would probably have used an external
style sheet.

We implement render-state once more to retrieve the transfer channel, which
will be used when handling the onDrop JavaScript event. This event is fired by
the browser when a user drops a draggable DOM element onto this component.
handle-drop takes care of that like so:

(defn handle-drop [e transfer-chan column-title]
 (.preventDefault e)
 (let [data {:card-id
 (js/parseInt (get-transfer-data! e "cardId"))
 :source-column
 (get-transfer-data! e "sourceColumn")
 :destination-column
 column-title}]
 (put! transfer-chan data)))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[141]

This function creates the transfer data—a map with the keys :card-id, :source-
column, and :destination-column—which is everything we need to move the
cards between columns. Finally, we put! it into the transfer channel.

Next, we build a number or card-view components. As mentioned previously, Om
can't create cursors from lazy sequences, so we use filterv to give each card-view
a vector containing their respective cards. Let's see its source:

(defn card-view [column {:keys [id title description] :as card} owner]
 (reify
 om/IRender
 (render [this]
 (dom/li #js {:style #js {:border "1px solid black"}
 :draggable true
 :onDragStart (fn [e]
 (set-transfer-data! e "cardId" id)
 (set-transfer-data! e "sourceColumn"
column))}
 (dom/span nil title)
 (dom/p nil description)))))

As this component doesn't need any local state, we go back to using the IRender
protocol. Additionally, we make it draggable and install an event handler on the
onDragStart event, which will be triggered when the user starts dragging the card.

This event handler sets the transfer data, which we use from handle-drop.

We have glossed over the fact that these components use a few utility functions.
That's OK, as we will now define them in a new namespace.

Utility functions
Go ahead and create a new file under src/cljs/om_pm/ called util.cljs and add
the following namespace declaration:

(ns om-pm.util)

For consistency, we will look at the functions bottom-up, starting with move-card!:

(defn column-idx [title columns]
 (first (keep-indexed (fn [idx column]
 (when (= title (:title column))
 idx))
 columns)))

www.it-ebooks.info

http://www.it-ebooks.info/

The UI as a Function

[142]

(defn move-card! [columns {:keys [card-id source-column destination-
column]}]
 (let [from (column-idx source-column columns)
 to (column-idx destination-column columns)]
 (-> columns
 (update-in [from :cards] (fn [cards]
 (remove #{card-id} cards)))
 (update-in [to :cards] (fn [cards]
 (conj cards card-id))))))

The move-card! function receives a cursor for the columns in our application state
and simply moves card-id between the source and destination. You will notice we
didn't need any access to core.async or Om specific functions, which means this
function is pure and therefore easy to test.

Next, we have the functions that handle transfer data:

(defn set-transfer-data! [e key value]
 (.setData (-> e .-nativeEvent .-dataTransfer)
 key value))

(defn get-transfer-data! [e key]
 (-> (-> e .-nativeEvent .-dataTransfer)
 (.getData key)))

These functions use JavaScript interoperability to interact with HTML's DataTransfer
(see https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer)
object. This is how browsers share data related to drag and drop events.

Now, let's simply save the file and make sure the code compiles properly. We can
finally open dev-resources/public/index.html in the browser and play around
with the product of our work!

Exercises
In this exercise, we will modify the om-pm project we created in the previous section.
The objective is to add keyboard shortcuts so that power users can operate the agile
board more efficiently.

The shortcuts to be supported are:

•	 The up, down, left, and right arrow keys: These allow the user to navigate
through the cards, highlighting the current one

•	 The n and p keys: These are used to move the current card to the next (right)
or previous (left) column, respectively

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/API/DataTransfer
http://www.it-ebooks.info/

Chapter 7

[143]

The key insight here is to create a new core.async channel, which will contain key
press events. These events will then trigger the actions outlined previously. We can
use the Google closure library to listen for events. Just add the following require to
the application namespace:

(:require [goog.events :as events])

Then, use this function to create a channel from DOM events:

 (defn listen [el type]
 (let [c (chan)]
 (events/listen el type #(put! c %))
 c))

The actual logic of moving the cards around based on keyboard shortcuts can be
implemented in a number of ways, so don't forget to compare your solution with
the answers provided in this book's companion code.

Summary
In this chapter, we saw a different approach on how to handle reactive web
interfaces by Om and React. In turn, these frameworks make this possible and
painless by applying functional programming principles such as immutability
and persistent data structures for efficient rendering.

We also learned to think the Om way by structuring our applications as a series of
functions, which receive state and output a DOM representation of state changes.

Additionally, we saw that by structuring application state transitions through
core.async channels, we separate the presentation logic from the code, which will
actually perform the work, making our components even easier to reason about.

In the next chapter, we will turn to an often overlooked yet useful tool for creating
reactive applications: Futures.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[145]

Futures
The first step towards reactive applications is to break out of synchronous processing.
In general, applications waste a lot of time waiting for things to happen. Maybe we are
waiting on an expensive computation—say, calculating the 1000th Fibonacci number.
Perhaps we are waiting for some information to be written to the database. We could
also be waiting for a network call to return, bringing us the latest recommendations
from our favorite online store.

Regardless of what we're waiting for, we should never block clients of our application.
This is crucial to achieve the responsiveness we desire when building reactive systems.

In an age where processing cores are abundant—my MacBook Pro has eight processor
cores—blocking APIs severely underutilizes the resources we have at our disposal.

As we approach the end of this book, it is appropriate to step back a little and
appreciate that not all classes of problems that deal with concurrent, asynchronous
computations require the machinery of frameworks such as RxJava or core.async.

In this chapter, we will look at another abstraction that helps us develop concurrent,
asynchronous applications: futures. We will learn about:

•	 The problems and limitations with Clojure's implementation of futures
•	 An alternative to Clojure's futures that provides asynchronous,

composable semantics
•	 How to optimize concurrency in the face of blocking IO

www.it-ebooks.info

http://www.it-ebooks.info/

Futures

[146]

Clojure futures
The first step toward fixing this issue—that is, to prevent a potentially long-running
task from blocking our application—is to create new threads, which do the work and
wait for it to complete. This way, we keep the application's main thread free to serve
more clients.

Working directly with threads, however, is tedious and error-prone, so Clojure's core
library includes futures, which are extremely simple to use:

(def f (clojure.core/future
 (println "doing some expensive work...")
 (Thread/sleep 5000)
 (println "done")
 10))
(println "You'll see me before the future finishes")
;; doing some expensive work...
;; You'll see me before the future finishes
;; done

In the preceding snippet, we invoke the clojure.core/future macro with a body
simulating an expensive computation. In this example, it simply sleeps for 5 seconds
before returning the value 10. As the output demonstrates, this does not block the
main thread, which is free to serve more clients, pick work items from a queue,
or what have you.

Of course, the most interesting computations, such as the expensive one, return
results we care about. This is where the first limitation of Clojure futures becomes
apparent. If we attempt to retrieve the result of a future—by derefing it—before
it has completed, the calling thread will block until the future returns a value.
Try running the following slightly modified version of the previous snippet:

(def f (clojure.core/future
 (println "doing some expensive work...")
 (Thread/sleep 5000)
 (println "done")
 10))
(println "You'll see me before the future finishes")
@f
(println "I could be doing something else. Instead I had to wait")

;; doing some expensive work...
;; You'll see me before the future finishes
;; 5 SECONDS LATER
;; done
;; I could be doing something else. Instead, I had to wait

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[147]

The only difference now is that we immediately try to deref the future after we create
it. Since the future isn't done, we sit there waiting for 5 seconds until it returns its
value. Only then is our program allowed to continue.

In general, this poses a problem when building modular systems. Often, a long-
running operation like the one described earlier would be initiated within a specific
module or function, and handed over to the next logical step for further processing.

Clojure futures don't allow us to schedule a function to be executed when the future
finishes in order to perform such further processing. This is an important feature in
building reactive systems.

Fetching data in parallel
To understand better the issues outlined in the previous section, let's build a more
complex example that fetches data about one of my favorite movies, The Lord of
the Rings.

The idea is that given the movie, we wish to retrieve its actors and, for each actor,
retrieve the movies they have been a part of. We also would like to find out more
information about each actor, such as their spouses.

Additionally, we will match each actor's movie against the list of top five movies
in order to highlight them as such. Finally, the result will be printed to the screen.

From the problem statement, we identify the following two main characteristics we
will need to account for:

•	 Some of these tasks need to be performed in parallel
•	 They establish dependencies on each other

To get started, let's create a new leiningen project:

lein new clj-futures-playground

Next, open the core namespace file in src/clj_futures_playground/core.clj and
add the data we will be working with:

(ns clj-futures-playground.core
 (:require [clojure.pprint :refer [pprint]]))

(def movie
 {:name "Lord of The Rings: The Fellowship of The Ring"
 :cast ["Cate Blanchett"
 "Elijah Wood"

www.it-ebooks.info

http://www.it-ebooks.info/

Futures

[148]

 "Liv Tyler"
 "Orlando Bloom"]})

(def actor-movies
 [{:name "Cate Blanchett"
 :movies ["Lord of The Rings: The Fellowship of The Ring"
 "Lord of The Rings: The Return of The King"
 "The Curious Case of Benjamin Button"]}

 {:name "Elijah Wood"
 :movies ["Eternal Sunshine of the Spotless Mind"
 "Green Street Hooligans"
 "The Hobbit: An Unexpected Journey"]}

 {:name "Liv Tyler"
 :movies ["Lord of The Rings: The Fellowship of The Ring"
 "Lord of The Rings: The Return of The King"
 "Armageddon"]}

 {:name "Orlando Bloom"
 :movies ["Lord of The Rings: The Fellowship of The Ring"
 "Lord of The Rings: The Return of The King"
 "Pirates of the Caribbean: The Curse of the Black
Pearl"]}])

(def actor-spouse
 [{:name "Cate Blanchett" :spouse "Andrew Upton"}
 {:name "Elijah Wood" :spouse "Unknown"}
 {:name "Liv Tyler" :spouse "Royston Langdon"}
 {:name "Orlando Bloom" :spouse "Miranda Kerr"}])
(def top-5-movies
 ["Lord of The Rings: The Fellowship of The Ring"
 "The Matrix"
 "The Matrix Reloaded"
 "Pirates of the Caribbean: The Curse of the Black Pearl"
 "Terminator"])

The namespace declaration is simple and only requires the pprint function, which
will help us print our result in an easy-to-read format. With all the data in place, we
can create the functions that will simulate remote services responsible for fetching
the relevant data:

(defn cast-by-movie [name]
 (future (do (Thread/sleep 5000)
 (:cast movie))))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[149]

(defn movies-by-actor [name]
 (do (Thread/sleep 2000)
 (->> actor-movies
 (filter #(= name (:name %)))
 first)))

(defn spouse-of [name]
 (do (Thread/sleep 2000)
 (->> actor-spouse
 (filter #(= name (:name %)))
 first)))

(defn top-5 []
 (future (do (Thread/sleep 5000)
 top-5-movies)))

Each service function sleeps the current thread by a given amount of time to
simulate a slow network. The functions cast-by-movie and Top 5 each returns a
future, indicating we wish to fetch this data on a different thread. The remaining
functions simply return the actual data. They will also be executed in a different
thread, however, as we will see shortly.

The next thing we need is a function to aggregate all fetched data, match spouses
to actors, and highlight movies in the Top 5 list. We'll call it the aggregate-actor-
data function:

(defn aggregate-actor-data [spouses movies top-5]
 (map (fn [{:keys [name spouse]} {:keys [movies]}]
 {:name name
 :spouse spouse
 :movies (map (fn [m]
 (if (some #{m} top-5)
 (str m " - (top 5)")
 m))
 movies)})
 spouses
 movies))

The preceding function is fairly straightforward. It simply zips spouses and movies
together, building a map of keys :name, :spouse, and :movies. It further transforms
movies to append the Top 5 suffix to the ones in the top-5 list.

www.it-ebooks.info

http://www.it-ebooks.info/

Futures

[150]

The last piece of the puzzle is the -main function, which allows us to run the
program from the command line:

(defn -main [& args]
 (time (let [cast (cast-by-movie "Lord of The Rings: The
Fellowship of The Ring")
 movies (pmap movies-by-actor @cast)
 spouses (pmap spouse-of @cast)
 top-5 (top-5)]
 (prn "Fetching data...")
 (pprint (aggregate-actor-data spouses movies @top-5))
 (shutdown-agents))))

There are a number of things worth highlighting in the preceding snippet.

First, we wrap the whole body in a call to time, a simple benchmarking function that
comes with Clojure. This is just so we know how long the program took to fetch all
data—this information will become relevant later.

Then, we set up a number of let bindings. The first, cast, is the result of calling
cast-by-movie, which returns a future.

The next binding, movies, uses a function we haven't seen before: pmap.

The pmap function works like map, except the function is mapped over the items in
the list in parallel. The pmap function uses futures under the covers and that is the
reason movies-by-actor doesn't return a future—it leaves that for pmap to handle.

The pmap function is actually meant for CPU-bound operations,
but is used here to keep the code simple. In the face of blocking
IO, pmap wouldn't perform optimally. We will talk more about
blocking IO later in this chapter.

We get the list of actors by derefing the cast binding, which, as we saw in the previous
section, blocks the current thread waiting for the asynchronous fetch to finish. Once all
results are ready, we simply call the aggregate-actor-data function.

Lastly, we call the shutdown-agents function, which shuts down the Thread Pool
backing futures in Clojure. This is necessary for our program to terminate properly,
otherwise it would simply hang in the terminal.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[151]

To run the program, type the following in the terminal, under the project's
root directory:

lein run -m clj-futures-playground.core

"Fetching data..."
({:name "Cate Blanchett",
 :spouse "Andrew Upton",
 :movies
 ("Lord of The Rings: The Fellowship of The Ring - (top 5)"
 "Lord of The Rings: The Return of The King"
 "The Curious Case of Benjamin Button")}
 {:name "Elijah Wood",
 :spouse "Unknown",
 :movies
 ("Eternal Sunshine of the Spotless Mind"
 "Green Street Hooligans"
 "The Hobbit: An Unexpected Journey")}
 {:name "Liv Tyler",
 :spouse "Royston Langdon",
 :movies
 ("Lord of The Rings: The Fellowship of The Ring - (top 5)"
 "Lord of The Rings: The Return of The King"
 "Armageddon")}
 {:name "Orlando Bloom",
 :spouse "Miranda Kerr",
 :movies
 ("Lord of The Rings: The Fellowship of The Ring - (top 5)"
 "Lord of The Rings: The Return of The King"
 "Pirates of the Caribbean: The Curse of the Black Pearl - (top 5)")})
"Elapsed time: 10120.267 msecs"

You will have noticed that the program takes a while to print the first message.
Additionally, because futures block when they are derefed , the program doesn't
start fetching the list of top five movies until it has completely finished fetching
the cast of The Lord of The Rings.

Let's have a look at why that is so:

 (time (let [cast (cast-by-movie "Lord of The Rings: The
Fellowship of The Ring")
 ;; the following line blocks
 movies (pmap movies-by-actor @cast)
 spouses (pmap spouse-of @cast)
 top-5 (top-5)]

www.it-ebooks.info

http://www.it-ebooks.info/

Futures

[152]

The highlighted section in the preceding snippet shows where the program blocks
waiting for cast-by-movie to finish. As stated previously, Clojure futures don't
give us a way to run some piece of code when the future finishes—like a callback—
forcing us to block too soon.

This prevents top-5—a completely independent parallel data fetch—from running
before we retrieve the movie's cast.

Of course, this is a contrived example, and we could solve this particular annoyance
by calling top-5 before anything else. The problem is that the solution isn't always
crystal clear and ideally we should not have to worry about the order of execution.

As we will see in the next section, there is a better way.

Imminent – a composable futures library
for Clojure
In the past few months, I have been working on an open source library that aims to
fix the previous issues with Clojure futures. The result of this work is called imminent
(see https://github.com/leonardoborges/imminent).

The fundamental difference is that imminent futures are asynchronous by default
and provide a number of combinators that allow us to declaratively write our
programs without having to worry about its order of execution.

The best way to demonstrate how the library works is to rewrite the previous movies
example in it. We will do this in two steps.

First, we will examine individually the bits of imminent's API that will be part of our
final solution. Then, we'll put it all together in a working application. Let's start by
creating a new project:

lein new imminent-playground

Next, add a dependency on imminent to your project.clj:

:dependencies [[org.clojure/clojure "1.6.0"]
 [com.leonardoborges/imminent "0.1.0"]]

Then, create a new file, src/imminent_playground/repl.clj, and add imminent's
core namespace:

(ns imminent-playground.repl
 (:require [imminent.core :as Ii]))

www.it-ebooks.info

https://github.com/leonardoborges/imminent
http://www.it-ebooks.info/

Chapter 8

[153]

(def repl-out *out*)
(defn prn-to-repl [& args]
 (binding [*out* repl-out]
 (apply prn args)))

The preceding snippet also creates a helper function that is useful when we're
dealing with multiple threads in the REPL—this will be explained in detail later,
but for now just take this as being a reliable way to print to the REPL across
multiple threads.

Feel free to type this in the REPL as we go along. Otherwise, you can require the
namespace file from a running REPL like so:

(require 'imminent-playground.repl)

All the following examples should be in this file.

Creating futures
Creating a future in imminent isn't much different from creating a future in Clojure.
It's as simple as the following:

(def age (i/future 31))

;; #<Future@2ea0ca7d: #<Success@3e4dec75: 31>>

What looks very different, however, is the return value. A key decision in imminent's
API is to represent the value of a computation as either a Success or a Failure type.
Success, as in the preceding example, wraps the result of the computation. Failure,
as you might have guessed, will wrap any exceptions that happened in the future:

(def failed-computation (i/future (throw (Exception. "Error"))))
;; #<Future@63cd0d58: #<Failure@2b273f98: #<Exception java.lang.
Exception: Error>>>

(def failed-computation-1 (i/failed-future :invalid-data))
;; #<Future@a03588f: #<Failure@61ab196b: :invalid-data>>

As you can see, you're not limited to exceptions only. We can use the failed-future
function to create a future that completes immediately with the given reason, which,
in the second example, is simply a keyword.

The next question we might ask is "How do we get the result out of a future?".
As with Clojure futures, we can deref it as follows:

@age ;; #<Success@3e4dec75: 31>
(deref @age) ;; 31
(i/dderef age) ;; 31

www.it-ebooks.info

http://www.it-ebooks.info/

Futures

[154]

The idiom of using a double-deref is common, so imminent provides the convenience
shown, dderef, which is equivalent to calling deref twice.

However, different from Clojure futures, this is a non-blocking operation, so if the
future hasn't completed yet, the following is what you'll get:

@(i/future (do (Thread/sleep 500)
 "hello"))
;; :imminent.future/unresolved

The initial state of a future is unresolved, so unless you are absolutely certain a
future has completed, derefing might not be the best way to work with the result
of a computation. This is where combinators become useful.

Combinators and event handlers
Let's say we would like to double the value in the age future. As we would with lists,
we can simply map a function over the future to do just this:

(def double-age (i/map age #(* % 2)))
;; #<Future@659684cb: #<Success@7ce85f87: 62>>

While i/future schedules its body for execution on a separate thread,
it's worth noting that future combinators such as map, filter, and
so on, do not create a new thread immediately. Instead, they schedule
a function to be executed asynchronously in the thread pool once the
original future completes.

Another way to do something with the value of a future is to use the on-success event
handler that gets called with the wrapped value of the future in case it is successful:

(i/on-success age #(prn-to-repl (str "Age is: " %)))
;; "Age is: 31"

Similarly, an on-failure handler exists, which does the same for Failure types.
While on the subject of failures, imminent futures understand the context in which
they are being executed and, if the current future yields a Failure, it simply
short-circuits the computation:

(-> failed-computation
 (i/map #(* % 2)))
;; #<Future@7f74297a: #<Failure@2b273f98: #<Exception java.lang.
Exception: Error>>>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[155]

In the preceding example, we don't get a new error, but rather the original exception
contained in failed-computation. The function passed to map never runs.

The decision to wrap the result of a future in a type such as Success or Failure
might seem arbitrary but is actually quite the opposite. Both types implement the
protocol IReturn—and a couple of other ones—which comes with a set of useful
functions, one of which is map:

(i/map (i/success "hello")
 #(str % " world"))
;; #<Success@714eea92: "hello world">

(i/map (i/failure "error")
 #(str % " world"))
;; #<Failure@6d685b65: "error">

We get a similar behavior here as we did previously: mapping a function over a
failure simply short-circuits the whole computation. If you do, however, wish to
map over the failure, you can use map's counterpart map-failure, which behaves
similarly to map but is its inverse:

(i/map-failure (i/success "hello")
 #(str % " world"))
;; #<Success@779af3f4: "hello">

(i/map-failure (i/failure "Error")
 #(str "We failed: " %))
;; #<Failure@52a02597: "We failed: Error">

This plays well with the last event handlers imminent provides—on-complete:

(i/on-complete age
 (fn [result]
 (i/map result #(prn-to-repl "success: " %))
 (i/map-failure result #(prn-to-repl "error: " %))))

;; "success: " 31

On contrary to on-success and on-failure, on-complete calls the provided
function with the result type wrapper, so it is a convenient way to handle both
cases in a single function.

www.it-ebooks.info

http://www.it-ebooks.info/

Futures

[156]

Coming back to combinators, sometimes we will need to map a function over a
future, which itself returns a future:

(defn range-future [n]
 (i/const-future (range n)))

(def age-range (i/map age range-future))

;; #<Future@3d24069e: #<Success@82e8e6e: #<Future@2888dbf4:
#<Success@312084f6: (0 1 2...)>>>>

The range-future function returns a successful future that yields a range of n.
The const-future function is analogous to failed-future, except it immediately
completes the future with a Success type.

However, we end up with a nested future, which is almost never what you
want. That's OK. This is precisely the scenario in which you would use another
combinator, flatmap.

You can think of it as mapcat for futures—it flattens the computation for us:

(def age-range (i/flatmap age range-future))

;; #<Future@601c1dfc: #<Success@55f4bcaf: (0 1 2 ...)>>

Another very useful combinator is used to bring together multiple computations to
be used in a single function—sequence:

(def name (i/future (do (Thread/sleep 500)
 "Leo")))
(def genres (i/future (do (Thread/sleep 500)
 ["Heavy Metal" "Black Metal" "Death Metal"
"Rock 'n Roll"])))

(-> (i/sequence [name age genres])
 (i/on-success
 (fn [[name age genres]]
 (prn-to-repl (format "%s is %s years old and enjoys %s"
 name
 age
 (clojure.string/join "," genres))))))

;; "Leo is 31 years old and enjoys Heavy Metal,Black Metal,Death
Metal,Rock 'n Roll"

Essentially, sequence creates a new future, which will complete only when all other
futures in the vector have completed or any one of them have failed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[157]

This is a nice segue into the last combinator we will look at—map-future—which we
would use in place of pmap, used in the movies example:

(defn calculate-double [n]
 (i/const-future (* n 2)))

(-> (i/map-future calculate-double [1 2 3 4])
 i/await
 i/dderef)

;; [2 4 6 8]

In the preceding example, calculate-double is a function that returns a future
with the value n doubled. The map-future function then maps calculate-double
over the list, effectively performing the calculations in parallel. Finally, map-future
sequences all futures together, returning a single future, which yields the result of
all computations.

Because we are performing a number of parallel computations and don't really
know when they will finish, we call await on the future, which is a way to block the
current thread until its result is ready. In general, you would use the combinators
and event handlers instead, but for this example, using await is acceptable.

Imminent's API provides many more combinators, which help us write asynchronous
programs in a declarative way. This section gave us a taste of what is possible with the
API and is enough to allow us to write the movies example using imminent futures.

The movies example revisited
Still within our imminent-playground project, open the src/imminent_playground/
core.clj file and add the appropriate definitions:

(ns imminent-playground.core
 (:require [clojure.pprint :refer [pprint]]
 [imminent.core :as i]))

(def movie ...)

(def actor-movies ...)

(def actor-spouse ...)

(def top-5-movies ...)

www.it-ebooks.info

http://www.it-ebooks.info/

Futures

[158]

We will be using the same data as in the previous program, represented in the
preceding snippet by the use of ellipses. Simply copy the relevant declarations over.

The service functions will need small tweaks in this new version:

(defn cast-by-movie [name]
 (i/future (do (Thread/sleep 5000)
 (:cast movie))))

(defn movies-by-actor [name]
 (i/future (do (Thread/sleep 2000)
 (->> actor-movies
 (filter #(= name (:name %)))
 first))))

(defn spouse-of [name]
 (i/future (do (Thread/sleep 2000)
 (->> actor-spouse
 (filter #(= name (:name %)))
 first))))

(defn top-5 []
 (i/future (do (Thread/sleep 5000)
 top-5-movies)))

(defn aggregate-actor-data [spouses movies top-5]
 ...)

The main difference is that all of them now return an imminent future.
The aggregate-actor-data function is also the same as before.

This brings us to the -main function, which was rewritten to use imminent
combinators:

(defn -main [& args]
 (time (let [cast (cast-by-movie "Lord of The Rings: The
Fellowship of The Ring")
 movies (i/flatmap cast #(i/map-future movies-by-actor
%))
 spouses (i/flatmap cast #(i/map-future spouse-of %))
 result (i/sequence [spouses movies (top-5)])]
 (prn "Fetching data...")
 (pprint (apply aggregate-actor-data
 (i/dderef (i/await result)))))))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[159]

The function starts much like its previous version, and even the first binding, cast,
looks familiar. Next we have movies, which is obtained by fetching an actor's movies
in parallel. This in itself returns a future, so we flatmap it over the cast future to
obtain our final result:

movies (i/flatmap cast #(i/map-future movies-by-actor %))

spouses works in exactly the same way as movies, which brings us to result.
This is where we would like to bring all asynchronous computations together.
Therefore, we use the sequence combinator:

result (i/sequence [spouses movies (top-5)])

Finally, we decide to block on the result future—by using await—so we can print
the final result:

(pprint (apply aggregate-actor-data
 (i/dderef (i/await result)))

We run the program in the same way as before, so simply type the following in the
command line, under the project's root directory:

lein run -m imminent-playground.core
"Fetching data..."
({:name "Cate Blanchett",
 :spouse "Andrew Upton",
 :movies
 ("Lord of The Rings: The Fellowship of The Ring - (top 5)"
 "Lord of The Rings: The Return of The King"
 "The Curious Case of Benjamin Button")}
...
"Elapsed time: 7088.398 msecs"

The result output was trimmed as it is exactly the same as before, but two things are
different and deserve attention:

•	 The first output, Fetching data..., is printed to the screen a lot faster than
in the example using Clojure futures

•	 The overall time it took to fetch all that is shorter, clocking in at just over
7 seconds

This highlights the asynchronous nature of imminent futures and combinators.
The only time we had to wait is when we explicitly called await at the end of
the program.

www.it-ebooks.info

http://www.it-ebooks.info/

Futures

[160]

More specifically, the performance boost comes from the following section in the code:

(let [...
 result (i/sequence [spouses movies (top-5)])]
 ...)

Because none of the previous bindings block the current thread, we never have
to wait to kick off top-5 in parallel, shaving off roughly 3 seconds from the overall
execution time. We didn't have to explicitly think about the order of execution—the
combinators simply did the right thing.

Finally, one last difference is that we didn't have to explicitly call shutdown-agents
as before. The reason for this is that imminent uses a different type of thread pool: a
ForkJoinPool (see http://docs.oracle.com/javase/7/docs/api/java/util/
concurrent/ForkJoinPool.html).

This pool has a number of advantages—each with its own trade-off—over the other
thread pools, and one characteristic is that we don't need to explicitly shut it down—
all threads it creates daemon threads.

When the JVM shuts down, it hangs waiting for all non-daemon threads to finish.
Only then does it exit. That's why using Clojure futures would cause the JVM to hang,
if we had not called shutdown-agents.

All threads created by the ForkJoinPool are set as daemon threads by default: when
the JVM attempts to shut down, and if the only threads running are daemon ones,
they are abandoned and the JVM exits gracefully.

Combinators such as map and flatmap, as well as the functions sequence and map-
future, aren't exclusive to futures. They have many more fundamental principles
by which they abide, making them useful in a range of domains. Understanding
these principles isn't necessary for following the contents of this book. Should you
want to know more about these principles, please refer to the Appendix, The Algebra
of Library Design.

www.it-ebooks.info

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ForkJoinPool.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ForkJoinPool.html
http://www.it-ebooks.info/

Chapter 8

[161]

Futures and blocking IO
The choice of using ForkJoinPool for imminent is deliberate. The ForkJoinPool—
added on Java 7—is extremely smart. When created, you give it a desired level
of parallelism, which defaults to the number of available processors.

ForkJoinPool then attempts to honor the desired parallelism by dynamically
shrinking and expanding the pool as required. When a task is submitted to this
pool, it doesn't necessarily create a new thread if it doesn't have to. This allows
the pool to serve an extremely large number of tasks with a much smaller number
of actual threads.

However, it cannot guarantee such optimizations in the face of blocking IO, as it can't
know whether the thread is blocking waiting for an external resource. Nevertheless,
ForkJoinPool provides a mechanism by which threads can notify the pool when they
might block.

Imminent takes advantage of this mechanism by implementing the ManagedBlocker
(see http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/
ForkJoinPool.ManagedBlocker.html) interface—and provides another way to
create futures, as demonstrated here:

 (-> (immi/blocking-future
 (Thread/sleep 100)
 10)
 (immi/await))
 ;; #<Future@4c8ac77a: #<Success@45525276: 10>>

 (-> (immi/blocking-future-call
 (fn []
 (Thread/sleep 100)
 10))
 (immi/await))
 ;; #<Future@37162438: #<Success@5a13697f: 10>>

The blocking-future and blocking-future-call have the same semantics as
their counterparts, future and future-call, but should be used when the task
to be performed is of a blocking nature (that is, not CPU-bound). This allows the
ForkJoinPool to better utilize its resources, making it a powerful and flexible solution.

www.it-ebooks.info

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html
http://www.it-ebooks.info/

Futures

[162]

Summary
In this chapter, we learned that Clojure futures leave a lot to be desired. More
specifically, Clojure futures don't provide a way to express dependencies between
results. It doesn't mean, however, that we should dismiss futures altogether.

They are still a useful abstraction and with the right semantics for asynchronous
computations and a rich set of combinators—such as the ones provided by
imminent—they can be a big ally in building reactive applications that are
performant and responsive. Sometimes, this is all we need.

For the times where we need to model data that varies over time, we turn to
richer frameworks inspired by Functional Reactive Programming (FRP) and
Compositional Event Systems (CES) —such as RxJava—or Communicating
Sequential Processes (CSP) —such as core.async. As they have a lot more
to offer, much of this book has been dedicated to those approaches.

In the next chapter, we will go back to discussing FRP/CES by way of a case study.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[163]

A Reactive API to Amazon
Web Services

Throughout this book, we have learned a number of tools and techniques to aid
us in building reactive applications—futures with imminent, Observables with
RxClojure/RxJava, channels with core.async—and even in building reactive
user interfaces using Om and React.

In the process, we also became acquainted with the concept of Functional Reactive
Programming and Compositional Event Systems, as well as what makes them
different.

In this last chapter, we will bring a few of these different tools and concepts together
by developing an application based on a real-world use case from a client I worked
with in Sydney, Australia. We will:

•	 Describe the problem of infrastructure automation we were trying to solve
•	 Have a brief look at some of Amazon's AWS services
•	 Build an AWS dashboard using the concepts we have learned so far

The problem
This client—which we will call BubbleCorp from now on—had a big problem that is all
too common and well known to big enterprises: one massive monolithic application.

Besides making them move slow, as individual components can't be evolved
independently, this application makes deployment incredibly hard due to its
environment constraints: all infrastructure needs to be available in order for
the application to work at all.

www.it-ebooks.info

http://www.it-ebooks.info/

A Reactive API to Amazon Web Services

[164]

As a result, developing new features and bug fixes involves having only a handful of
development environments shared across dozens of developers each. This requires a
wasteful amount of coordination between teams just so that they won't step on each
other's toes, contributing to slow the whole life-cycle further.

The long-term solution to this problem is to break down this big application
into smaller components, which can be deployed and worked on independently,
but as good as this sounds, it's a laborious and lengthy process.

As a first step, BubbleCorp decided the best thing they could improve in the short
term is to give developers the ability to work in the application independently from
each other, which implies being able to create a new environment as well.

Given the infrastructure constraints, running the application on a single developer
machine is prohibitive.

Instead, they turned to infrastructure automation: they wanted a tool that, with the
press of a button, would spin up a completely new environment.

This new environment would be already preconfigured with the proper application
servers, database instances, DNS entries, and everything else needed to run the
application.

This way, developers would only need to deploy their code and test their changes,
without having to worry about the application setup.

Infrastructure automation
Amazon Web Services (AWS) is the most mature and comprehensive cloud
computing platform available today, and as such it was a natural choice for
BubbleCorp to host its infrastructure in.

If you haven't used AWS before, don't worry, we'll focus only on a few of its services:

•	 Elastic Compute Cloud (EC2): A service that provides users with the ability
to rent virtual computers in which to run their applications.

•	 Relational Database Service (RDS): This can be thought of as a specialized
version of EC2 that provides managed database services.

•	 CloudFormation: With CloudFormation, users have the ability to specify
infrastructure templates, called stacks, of several different AWS resources—
such as EC2, AWS, and many others—as well as how they interact with
each other. Once written, the infrastructure template can be sent to AWS
to be executed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[165]

For BubbleCorp, the idea was to write these infrastructure templates, which once
submitted would result into a completely new, isolated environment containing all
data and components required to run its app. At any given time, there would be
dozens of these environments running with developers working on them.

As decent a plan as this sounds, big corporations usually have an added burden:
cost centers. Unfortunately, BubbleCorp can't simply allow developers to log into the
AWS Console—where we can manage AWS resources—and spin up environments
at will. They needed a way to, among other things, add cost center metadata to the
environment to handle their internal billing process.

This brings us to the application we will be focusing on for the remainder of
this chapter.

AWS resources dashboard
My team and I were tasked with building a web-based dashboard for AWS. This
dashboard would allow developers to log in using their BubbleCorp's credentials
and, once authenticated, create new CloudFormation environments as well as
visualize the status of each individual resource within a CloudFormation stack.

The application itself is fairly involved, so we will focus on a subset of it: interfacing
with the necessary AWS services in order to gather information about the status of
each individual resource in a given CloudFormation stack.

Once finished, this is what our simplified dashboard will look like:

It will display the ID, type, and current status of each resource. This might not
seem like much for now, but given that all this information is coming from different,
independent web services, it is far too easy to end up with unnecessarily complex code.

www.it-ebooks.info

http://www.it-ebooks.info/

A Reactive API to Amazon Web Services

[166]

We will be using ClojureScript for this and therefore the JavaScript version of the
AWS SDK, whose documentation can be found at http://aws.amazon.com/sdk-
for-node-js/.

Before we get started, let's have a look at each of the AWS Services APIs we will be
interacting with.

In reality, we will not be interacting with the real AWS services but
rather a stub server provided for download from the book's GitHub
repository.
The reason for this is to make following this chapter easier, as you
won't need to create an account as well as generate an API access
key to interact with AWS.
Additionally, creating resources incurs cost, and the last thing I want
is for you to be charged hundreds of dollars at the end of the month
because someone accidentally left resources running for longer than
they should—trust me it has happened before.

CloudFormation
The first service we will look at is CloudFormation. This makes sense as the APIs
found in here will give us a starting point for finding information about the resources
in a given stack.

The describeStacks endpoint
This endpoint is responsible for listing all stacks associated with a particular AWS
account. For a given stack, its response looks like the following:

{"Stacks"
 [{"StackId"
 "arn:aws:cloudformation:ap-southeast-2:337944750480:stack/
DevStack-62031/1",
 "StackStatus" "CREATE_IN_PROGRESS",
 "StackName" "DevStack-62031",
 "Parameters" [{"ParameterKey" "DevDB", "ParameterValue" nil}]}]}

Unfortunately, it doesn't say anything about which resources belong to this stack.
It does, however, give us the stack name, which we can use to look up resources
in the next service.

www.it-ebooks.info

http://aws.amazon.com/sdk-for-node-js/
http://aws.amazon.com/sdk-for-node-js/
http://www.it-ebooks.info/

Chapter 9

[167]

The describeStackResources endpoint
This endpoint receives many arguments, but the one we're interested in is the stack
name, which, once provided, returns the following:

{"StackResources"
 [{"PhysicalResourceId" "EC2123",
 "ResourceType" "AWS::EC2::Instance"},
 {"PhysicalResourceId" "EC2456",
 "ResourceType" "AWS::EC2::Instance"}
 {"PhysicalResourceId" "EC2789",
 "ResourceType" "AWS::EC2::Instance"}
 {"PhysicalResourceId" "RDS123",
 "ResourceType" "AWS::RDS::DBInstance"}
 {"PhysicalResourceId" "RDS456",
 "ResourceType" "AWS::RDS::DBInstance"}]}

We seem to be getting somewhere now. This stack has several resources: three EC2
instances and two RDS instances—not too bad for only two API calls.

However, as we mentioned previously, our dashboard needs to show the status of
each of the resources. With the list of resource IDs at hand, we need to look to other
services that could give us detailed information about each resource.

EC2
The next service we will look at is specific to EC2. As we will see, the responses of
the different services aren't as consistent as we would like them to be.

The describeInstances endpoint
This endpoint sounds promising. Based on the documentation, it seems we can give
it a list of instance IDs and it will give us back the following response:

{"Reservations"
 [{"Instances"
 [{"InstanceId" "EC2123",
 "Tags"
 [{"Key" "StackType", "Value" "Dev"}
 {"Key" "junkTag", "Value" "should not be included"}
 {"Key" "aws:cloudformation:logical-id", "Value" "theDude"}],
 "State" {"Name" "running"}}
 {"InstanceId" "EC2456",

www.it-ebooks.info

http://www.it-ebooks.info/

A Reactive API to Amazon Web Services

[168]

 "Tags"
 [{"Key" "StackType", "Value" "Dev"}
 {"Key" "junkTag", "Value" "should not be included"}
 {"Key" "aws:cloudformation:logical-id", "Value" "theDude"}],
 "State" {"Name" "running"}}
 {"InstanceId" "EC2789",
 "Tags"
 [{"Key" "StackType", "Value" "Dev"}
 {"Key" "junkTag", "Value" "should not be included"}
 {"Key" "aws:cloudformation:logical-id", "Value" "theDude"}],
 "State" {"Name" "running"}}]}]}

Buried in this response, we can see the State key, which gives us the status of that
particular EC2 instance. This is all we need as far as EC2 goes. This leaves us with
RDS to handle.

RDS
One might be tempted to think that getting the statuses of RDS instances would be
just as easy as with EC2. Let's see if that is the case.

The describeDBInstances endpoint
This endpoint is equivalent in purpose to the analogous EC2 endpoint we just
looked at. Its input, however, is slightly different: it accepts a single instance ID
as input and, as of the time of this writing, doesn't support filters.

This means that if our stack has multiple RDS instances—say, in a primary/replica
setup—we need to make multiple API calls to gather information about each one
of them. Not a big deal, of course, but a limitation to be aware of.

Once given a specific database instance ID, this service responds with the
following code:

{"DBInstances"
 [{"DBInstanceIdentifier" "RDS123", "DBInstanceStatus"
"available"}]}

The fact that a single instance comes inside a vector hints at the fact that filtering will
be supported in the future. It just hasn't happened yet.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[169]

Designing the solution
We now have all the information we need to start designing our application.
We need to coordinate four different API calls per CloudFormation stack:

•	 describeStacks: To list all available stacks
•	 describeStackResources: To retrieve details of all resources contained

in a stack
•	 describeInstances: To retrieve details of all EC2 instances in a stack
•	 describeDBInstances: To retrieve details of all DB2 instances in a stack

Next, I would like you to step back for a moment and think about how you would
design code like this. Go ahead, I'll wait.

Now that you're back, let's have a look at one possible approach.

If we recall the screenshot of what the dashboard would look like, we realize that, for
the purposes of our application, the difference between EC2 and RDS resources can
be completely ignored so long as each one has the attributes ID, type, and status.

This means whatever our solution may be, it has to somehow provide a uniform way
of abstracting the different resource types.

Additionally, apart from describeStacks and describeStackResources, which
need to be called sequentially, describeInstances and describeDBInstances can
be executed concurrently, after which we will need a way to merge the results.

www.it-ebooks.info

http://www.it-ebooks.info/

A Reactive API to Amazon Web Services

[170]

Since an image is worth a thousand words, the following image is what we would
like the workflow to look like:

The preceding image highlights a number of key aspects of our solution:

•	 We start by retrieving stacks by calling describeStacks
•	 Next, for each stack, we call describeStackResources to retrieve a

list of resources for each one
•	 Then, we split the list by type, ending with a list of EC2 and one with

RDS resources
•	 We proceed by concurrently calling describeInstances and

describeDBInstances, yielding two lists of results, one per resource type
•	 As the response formats are different, we transform each resource into a

uniform representation
•	 Lastly, we merge all results into a single list, ready for rendering

This is quite a bit to take in, but as you will soon realize, our solution isn't too far off
this high-level description.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[171]

We can quite easily think of this problem as having information about several
different types of instances flowing through this graph of API calls—being
transformed as needed in between—until we arrive at the information we're
after, in the format we would like to work with.

As it turns out, a great way to model this problem is to use one of the Reactive
abstractions we learned about earlier in this book: Observables.

Running the AWS stub server
Before we jump into writing our dashboard, we should make sure our AWS stub
server is properly set up. The stub server is a Clojure web application that simulates
how the real AWS API behaves and is the backend our dashboard will talk to.

Let's start by going into our terminal, cloning the book repository using Git and then
starting the stub server:

$ git clone https://github.com/leonardoborges/ClojureReactiveProgramming
$ cd ClojureReactiveProgramming/code/chapter09/aws-api-stub
$ lein ring server-headless 3001
2014-11-23 17:33:37.766:INFO:oejs.Server:jetty-7.6.8.v20121106
2014-11-23 17:33:37.812:INFO:oejs.AbstractConnector:Started
SelectChannelConnector@0.0.0.0:3001
Started server on port 3001

This will have started the server on port 3001. To validate it is working as
expected, point your browser to http://localhost:3001/cloudFormation/
describeStacks. You should see the following JSON response:

{
 "Stacks": [
 {
 "Parameters": [
 {
 "ParameterKey": "DevDB",
 "ParameterValue": null
 }
],
 "StackStatus": "CREATE_IN_PROGRESS",
 "StackId": "arn:aws:cloudformation:ap-southeast-
2:337944750480:stack/DevStack-62031/1",
 "StackName": "DevStack-62031"
 }
]
}

www.it-ebooks.info

http://www.it-ebooks.info/

A Reactive API to Amazon Web Services

[172]

Setting up the dashboard project
As we previously mentioned, we will be developing the dashboard using
ClojureScript with the UI rendered using Om. Additionally, as we have chosen
Observables as our main Reactive abstraction, we will need RxJS, one of the many
implementations of Microsoft's Reactive Extensions. We will be pulling these
dependencies into our project shortly.

Let's create a new ClojureScript project called aws-dash using the om-start
leiningen template:

$ lein new om-start aws-dash

This gives us a starting point, but we should make sure our versions all match.
Open up the project.clj file found in the root directory of the new project
and ensure the dependencies section looks like the following:

...
 :dependencies [[org.clojure/clojure "1.6.0"]
 [org.clojure/clojurescript "0.0-2371"]
 [org.clojure/core.async "0.1.346.0-17112a-alpha"]
 [om "0.5.0"]
 [com.facebook/react "0.9.0"]
 [cljs-http "0.1.20"]
 [com.cognitect/transit-cljs "0.8.192"]]
 :plugins [[lein-cljsbuild "1.0.3"]]
...

This is the first time we see the last two dependencies. cljs-http is a simple HTTP
library we will use to make AJAX requests to our AWS stub server. transit-cljs
allows us to, among other things, parse JSON responses into ClojureScript data
structures.

Transit itself is a format and a set of libraries through which
applications developed in different technologies can speak to each
other. In this case, we are using the Clojurescript library to parse
JSON, but if you're interested in learning more, I recommend
reading the official blog post announcement by Rich Hickey at
http://blog.cognitect.com/blog/2014/7/22/transit.

www.it-ebooks.info

http://blog.cognitect.com/blog/2014/7/22/transit
http://www.it-ebooks.info/

Chapter 9

[173]

Next, we need RxJS, which, being a JavaScript dependency, isn't available via
leiningen. That's OK. We will simply download it into the application output
directory, aws-dash/dev-resources/public/js/:

$ cd aws-dash/dev-resources/public/js/
$ wget https://raw.githubusercontent.com/Reactive-Extensions/RxJS/master/
dist/rx.all.js
--2014-11-23 18:00:21-- https://raw.githubusercontent.com/Reactive-
Extensions/RxJS/master/dist/rx.all.js
Resolving raw.githubusercontent.com... 103.245.222.133
Connecting to raw.githubusercontent.com|103.245.222.133|:443...
connected.
HTTP request sent, awaiting response... 200 OK
Length: 355622 (347K) [text/plain]
Saving to: 'rx.all.js'

100%[========================>] 355,622 966KB/s in 0.4s

2014-11-23 18:00:24 (966 KB/s) - 'rx.all.js' saved [355622/355622]

Moving on, we need to make our application aware of our new dependency on RxJS.
Open the aws-dash/dev-resources/public/index.html file and add a script tag
to pull in RxJS:

<html>
 <body>
 <div id="app"></div>
 <script src="http://fb.me/react-0.9.0.js"></script>
 <script src="js/rx.all.js"></script>
 <script src="js/aws_dash.js"></script>
 </body>
</html>

With all the dependencies in place, let's start the auto-compilation for our ClojureScript
source files as follows:

$ cd aws-dash/
$ lein cljsbuild auto
Compiling ClojureScript.
Compiling "dev-resources/public/js/aws_dash.js" from ("src/cljs" "dev-
resources/tools/repl")...
Successfully compiled "dev-resources/public/js/aws_dash.js" in 0.981
seconds.

www.it-ebooks.info

http://www.it-ebooks.info/

A Reactive API to Amazon Web Services

[174]

Creating AWS Observables
We're now ready to start implementing our solution. If you recall from the Reactive
Extensions chapter, RxJava/RxJS/RxClojure ship with several useful Observables.
However, when the built-in Observables aren't enough, it gives us the tools to build
our own.

Since it is highly unlikely RxJS already provides Observables for Amazon's AWS
API, we will start by implementing our own primitive Observables.

To keep things neat, we will do this in a new file, under aws-dash/src/cljs/aws_
dash/observables.cljs:

(ns aws-dash.observables
 (:require-macros [cljs.core.async.macros :refer [go]])
 (:require [cljs-http.client :as http]
 [cljs.core.async :refer [<!]]
 [cognitect.transit :as t]))

(def r (t/reader :json))

(def aws-endpoint "http://localhost:3001")
(defn aws-uri [path]
 (str aws-endpoint path))

The namespace declaration requires the necessary dependencies we will need in
this file. Note how there is no explicit dependency on RxJS. Since it is a JavaScript
dependency that we manually pulled in, it is globally available for us to use via
JavaScript interoperability.

The next line sets up a transit reader for JSON, which we will use when parsing
the stub server responses.

Then, we define the endpoint we will be talking to as well as a helper function to
build the correct URIs. Make sure the variable aws-endpoint matches the host and
port of the stub server started in the previous section.

All Observables we are about to create follow a common structure: they make a
request to the stub server, extract some information from the response, optionally
transforming it, and then emit each item in the transformed sequence into the new
Observable sequence.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[175]

To avoid repetition, this pattern is captured in the following function:

(defn observable-seq [uri transform]
 (.create js/Rx.Observable
 (fn [observer]
 (go (let [response (<! (http/get uri {:with-
credentials? false}))
 data (t/read r (:body response))
 transformed (transform data)]
 (doseq [x transformed]
 (.onNext observer x))
 (.onCompleted observer)))
 (fn [] (.log js/console "Disposed")))))

Let's break this function down:

•	 observable-seq receives two arguments: the backend URI to which we
will issue a GET request, and a transform function which is given the raw
parsed JSON response and returns a sequence of transformed items.

•	 Then, it calls the create function of the RxJS object Rx.Observable. Note
how we make use of JavaScript interoperability here: we access the create
function by prepending it with a dot much like in Java interoperability.
Since Rx.Observable is a global object, we access it by prepending the
global JavaScript namespace ClojureScript makes available to our program,
js/Rx.Observable.

•	 The Observable's create function receives two arguments. One is a function
that gets called with an Observer to which we can push items to be published
in the Observable sequence. The second function is a function that is called
whenever this Observable is disposed of. This is the function where we could
perform any cleanup needed. In our case, this function simply logs the fact
that it is called to the console.

The first function is the one that interests us though:

(fn [observer]
 (go (let [response (<! (http/get uri
 {:with-credentials?
 false}))
 data (t/read r (:body response))
 transformed (transform data)]
 (doseq [x transformed]
 (.onNext observer x))
 (.onCompleted observer))))

www.it-ebooks.info

http://www.it-ebooks.info/

A Reactive API to Amazon Web Services

[176]

As soon as it gets called, it performs a request to the provided URI using cljs-http's
get function, which returns a core.async channel. That's why the whole logic is
inside a go block.

Next, we use the transit JSON reader we configured previously to parse the body
of the response, feeding the result into the transform function. Remember this
function, as per our design, returns a sequence of things. Therefore, all that is
left to do is push each item into the observer in turn.

Once we're done, we indicate that this Observable sequence won't emit any new
item by invoking the .onCompleted function of the observer object.

Now, we can proceed creating our Observables using this helper function,
starting with the one responsible for retrieving CloudFormation stacks:

(defn describe-stacks []
 (observable-seq (aws-uri "/cloudFormation/describeStacks")
 (fn [data]
 (map (fn [stack] {:stack-id (stack "StackId")
 :stack-name (stack "StackName")})
 (data "Stacks")))))

This creates an observable that will emit one item per stack, in the following format:

({:stack-id "arn:aws:cloudformation:ap-southeast-2:337944750480:stack/
DevStack-62031/1", :stack-name "DevStack-62031"})

Now that we have stacks, we need an Observable to describe its resources:

(defn describe-stack-resources [stack-name]
 (observable-seq (aws-uri "/cloudFormation/describeStackResources")
 (fn [data]
 (map (fn [resource]
 {:resource-id (resource
"PhysicalResourceId")
 :resource-type (resource "ResourceType")}
)
 (data "StackResources")))))

It has a similar purpose and emits resource items in the following format:

({:resource-id "EC2123", :resource-type "AWS::EC2::Instance"}
 {:resource-id "EC2456", :resource-type "AWS::EC2::Instance"}
 {:resource-id "EC2789", :resource-type "AWS::EC2::Instance"}
 {:resource-id "RDS123", :resource-type "AWS::RDS::DBInstance"}
 {:resource-id "RDS456", :resource-type "AWS::RDS::DBInstance"})

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[177]

Since we're following our strategy almost to the letter, we need two more
observables, one for each instance type:

(defn describe-instances [instance-ids]
 (observable-seq (aws-uri "/ec2/describeInstances")
 (fn [data]
 (let [instances (mapcat (fn [reservation]
 (reservation
"Instances"))
 (data "Reservations"))]
 (map (fn [instance]
 {:instance-id (instance "InstanceId")
 :type "EC2"
 :status (get-in instance ["State"
"Name"])})
 instances)))))

(defn describe-db-instances [instance-id]
 (observable-seq (aws-uri (str "/rds/describeDBInstances/" instance-
id))
 (fn [data]
 (map (fn [instance]
 {:instance-id (instance
"DBInstanceIdentifier")
 :type "RDS"
 :status (instance
"DBInstanceStatus")})
 (data "DBInstances")))))

Each of which will emit resource items in the following formats for EC2 and
RDS, respectively:

({:instance-id "EC2123", :type "EC2", :status "running"} ...)
({:instance-id "RDS123", :type "RDS", :status "available"} ...)

Combining the AWS Observables
It seems we have all major pieces in place now. All that is left to do is to combine the
more primitive, basic Observables we just created into more complex and useful ones
by combining them to aggregate all the data we need in order to render our dashboard.

We will start by creating a function that combines both the describe-stacks and
describe-stack-resources Observables:

(defn stack-resources []
 (-> (describe-stacks)
 (.map #(:stack-name %))
 (.flatMap describe-stack-resources)))

www.it-ebooks.info

http://www.it-ebooks.info/

A Reactive API to Amazon Web Services

[178]

Starting in the previous example, we begin to see how defining our API calls in
terms of Observable sequences pays off: it's almost simple combining these two
Observables in a declarative manner.

Remember the role of flatMap: as describe-stack-resources itself returns an
Observable, we use flatMap to flatten both Observables, as we have done before
in various different abstractions.

The stack-resources Observable will emit resource items for all stacks.
According to our plan, we would like to fork the processing here in order
to concurrently retrieve EC2 and RDS instance data.

By following this train of thought, we arrive at two more functions that combine
and transform the previous Observables:

(defn ec2-instance-status [resources]
 (-> resources
 (.filter #(= (:resource-type %) "AWS::EC2::Instance"))
 (.map #(:resource-id %))
 (.reduce conj [])
 (.flatMap describe-instances)))

(defn rds-instance-status [resources]
 (-> resources
 (.filter #(= (:resource-type %) "AWS::RDS::DBInstance"))
 (.map #(:resource-id %))
 (.flatMap describe-db-instances)))

Both the functions receive an argument, resources, which is the result of calling the
stack-resources Observable. That way, we only need to call it once.

Once again, it is fairly simple to combine the Observables in a way that makes sense,
following our high-level idea described previously.

Starting with resources, we filter out the types we're not interested in, retrieve its
IDs, and request its detailed information by flatmapping the describe-instances
and describe-db-instances Observables.

Note, however, that due to a limitation in the RDS API described earlier, we have to
call it multiple times to retrieve information about all RDS instances.

This seemingly fundamental difference in how we use the API becomes a minor
transformation in our EC2 observable, which simply accumulates all IDs into a
vector so that we can retrieve them all at once.

Our simple Reactive API to Amazon AWS is now complete, leaving us with the UI
to create.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[179]

Putting it all together
Let's now turn to building our user interface. It's a simple one, so let's just jump into
it. Open up aws-dash/src/cljs/aws_dash/core.cljs and add the following:

(ns aws-dash.core
 (:require [aws-dash.observables :as obs]
 [om.core :as om :include-macros true]
 [om.dom :as dom :include-macros true]))

(enable-console-print!)

(def app-state (atom {:instances []}))

(defn instance-view [{:keys [instance-id type status]} owner]
 (reify
 om/IRender
 (render [this]
 (dom/tr nil
 (dom/td nil instance-id)
 (dom/td nil type)
 (dom/td nil status)))))

(defn instances-view [instances owner]
 (reify
 om/IRender
 (render [this]
 (apply dom/table #js {:style #js {:border "1px solid black;"}}
 (dom/tr nil
 (dom/th nil "Id")
 (dom/th nil "Type")
 (dom/th nil "Status"))
 (om/build-all instance-view instances)))))

(om/root
 (fn [app owner]
 (dom/div nil
 (dom/h1 nil "Stack Resource Statuses")
 (om/build instances-view (:instances app))))
 app-state
 {:target (. js/document (getElementById "app"))})

Our application state contains a single key, :instances, which starts as an empty
vector. As we can see from each Om component, instances will be rendered as rows
in a HTML table.

www.it-ebooks.info

http://www.it-ebooks.info/

A Reactive API to Amazon Web Services

[180]

After saving the file, make sure the web server is running by starting it from the REPL:

lein repl
Compiling ClojureScript.
nREPL server started on port 58209 on host 127.0.0.1 -
nrepl://127.0.0.1:58209
REPL-y 0.3.5, nREPL 0.2.6
Clojure 1.6.0
Java HotSpot(TM) 64-Bit Server VM 1.8.0_25-b17
 Docs: (doc function-name-here)
 (find-doc "part-of-name-here")
 Source: (source function-name-here)
 Javadoc: (javadoc java-object-or-class-here)
 Exit: Control+D or (exit) or (quit)
 Results: Stored in vars *1, *2, *3, an exception in *e

user=> (run)
2015-02-08 21:02:34.503:INFO:oejs.Server:jetty-7.6.8.v20121106
2015-02-08 21:02:34.545:INFO:oejs.AbstractConnector:Started
SelectChannelConnector@0.0.0.0:3000
#<Server org.eclipse.jetty.server.Server@35bc3669>

You should now be able point your browser to http://localhost:3000/,
but, as you might have guessed, you will see nothing but an empty table.

This is because we haven't yet used our Reactive AWS API.

Let's fix it and bring it all together at the bottom of core.cljs:

(def resources (obs/stack-resources))

(.subscribe (-> (.merge (obs/rds-instance-status resources)
 (obs/ec2-instance-status resources))
 (.reduce conj []))
 #(swap! app-state assoc :instances %))

Yes, this is all we need! We create a stack-resources Observable and pass it as an
argument to both rds-instance-status and ec2-instance-status, which will
concurrently retrieve status information about all instances.

Next, we create a new Observable by merging the previous two followed by a
call to .reduce, which will accumulate all information into a vector, convenient
for rendering.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[181]

Finally, we simply subscribe to this Observable and, when it emits its results,
we simply update our application state, leaving Om to do all the rendering for us.

Save the file and make sure ClojureScript has compiled successfully. Then, go back to
your browser at http://localhost:3000/, and you should see all instance statuses,
as pictured at the beginning of this chapter.

Exercises
With our previous approach, the only way to see new information about the AWS
resources is by refreshing the whole page. Modify our implementation in such a way
that it queries the stub services every so often—say, every 500 milliseconds.

The interval function from RxJS can be helpful in solving
this exercise. Think how you might use it together with our
existing stream by reviewing how flatMap works.

Summary
In this chapter, we looked at a real use case for Reactive applications: building a
dashboard for AWS CloudFormation stacks.

We have seen how thinking of all the information needed as resources/items
flowing through a graph fits nicely with how one creates Observables.

In addition, by creating primitive Observables that do one thing only gives us a
nice declarative way to combine them into more complex Observables, giving us
a degree of reuse not usually found with common techniques.

Finally, we packaged it together with a simple Om-based interface to demonstrate
how using different abstractions in the same application does not add to complexity
as long as the abstractions are chosen carefully for the problem at hand.

This brings us to the end of what hopefully was an enjoyable and informative
journey through the different ways of Reactive Programming.

Far from being a complete reference, this book aims to provide you, the reader,
with enough information, as well as concrete tools and examples that you can
apply today.

It is also my hope that the references and exercises included in this book prove
themselves useful, should you wish to expand your knowledge and seek out
more details.

www.it-ebooks.info

http://www.it-ebooks.info/

A Reactive API to Amazon Web Services

[182]

Lastly, I strongly encourage you to turn the page and read the Appendix, The Algebra
of Library Design, as I truly believe it will, if nothing else, make you think hard about
the importance of composition in programming.

I sincerely wish this book has been as entertaining and instructional to read as it was
to write.

Thank you for reading. I look forward to seeing the great things you build.

www.it-ebooks.info

http://www.it-ebooks.info/

[183]

The Algebra of Library Design
You might have noticed that all reactive abstractions we have encountered in this book
have a few things in common. For one, they work as "container-like" abstractions:

•	 Futures encapsulate a computation that eventually yields a single value
•	 Observables encapsulate computations that can yield multiple values

over time in the shape of a stream
•	 Channels encapsulate values pushed to them and can have them

popped from it, working as a concurrent queue through which
concurrent processes communicate

Then, once we have this "container," we can operate on it in a number of ways,
which are very similar across the different abstractions and frameworks: we
can filter the values contained in them, transform them using map, combine
abstractions of the same type using bind/flatMap/selectMany, execute multiple
computations in parallel, aggregate the results using sequence, and much more.

As such, even though the abstractions and their underlying workings are
fundamentally different, it still feels they belong to some type of higher-level
abstractions.

In this appendix, we will explore what these higher-level abstractions are, the
relationship between them, and how we can take advantage of them in our projects.

www.it-ebooks.info

http://www.it-ebooks.info/

The Algebra of Library Design

[184]

The semantics of map
We will get started by taking a look at one of the most used operations in these
abstractions: map.
We've been using map for a long time in order to transform sequences. Thus, instead
of creating a new function name for each new abstraction, library designers simply
abstract the map operation over its own container type.

Imagine the mess we would end up in if we had functions such as transform-
observable, transform-channel, combine-futures, and so on.

Thankfully, this is not the case. The semantics of map are well understood to the point
that even if a developer hasn't used a specific library before, he will almost always
assume that map will apply a function to the value(s) contained within whatever
abstraction the library provides.

Let's look at three examples we encountered in this book. We will create a new
leiningen project in which to experiment with the contents of this appendix:

$ lein new library-design

Next, let's add a few dependencies to our project.clj file:

...
:dependencies [[org.clojure/clojure "1.6.0"]
 [com.leonardoborges/imminent "0.1.0"]
 [com.netflix.rxjava/rxjava-clojure "0.20.7"]
 [org.clojure/core.async "0.1.346.0-17112a-alpha"]
 [uncomplicate/fluokitten "0.3.0"]]
...

Don't worry about the last dependency—we'll get to it later on.

Now, start an REPL session so that we can follow along:

$ lein repl

Then, enter the following into your REPL:

(require '[imminent.core :as i]
 '[rx.lang.clojure.core :as rx]
 '[clojure.core.async :as async])

(def repl-out *out*)
(defn prn-to-repl [& args]
 (binding [*out* repl-out]
 (apply prn args)))

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[185]

(-> (i/const-future 31)
 (i/map #(* % 2))
 (i/on-success #(prn-to-repl (str "Value: " %))))

(as-> (rx/return 31) obs
 (rx/map #(* % 2) obs)
 (rx/subscribe obs #(prn-to-repl (str "Value: " %))))

(def c (chan))
(def mapped-c (async/map< #(* % 2) c))

(async/go (async/>! c 31))
(async/go (prn-to-repl (str "Value: " (async/<! mapped-c))))

"Value: 62"
"Value: 62"
"Value: 62"

The three examples—using imminent, RxClojure, and core.async, respectively—look
remarkably similar. They all follow a simple recipe:

1.	 Put the number 31 inside their respective abstraction.
2.	 Double that number by mapping a function over the abstraction.
3.	 Print its result to the REPL.

As expected, this outputs the value 62 three times to the screen.

It would seem map performs the same abstract steps in all three cases: it applies the
provided function, puts the resulting value in a fresh new container, and returns it.
We could continue generalizing, but we would just be rediscovering an abstraction
that already exists: Functors.

Functors
Functors are the first abstraction we will look at and they are rather simple: they
define a single operation called fmap. In Clojure, Functors can be represented using
protocols and are used for containers that can be mapped over. Such containers
include, but are not limited to, lists, Futures, Observables, and channels.

www.it-ebooks.info

http://www.it-ebooks.info/

The Algebra of Library Design

[186]

The Algebra in the title of this Appendix refers to Abstract
Algebra, a branch of Mathematics that studies algebraic
structures. An algebraic structure is, to put it simply,
a set with one or more operations defined on it.
As an example, consider Semigroups, which is one such
algebraic structure. It is defined to be a set of elements
together with an operation that combines any two
elements of this set. Therefore, the set of positive integers
together with the addition operation form a Semigroup.
Another tool used for studying algebraic structures is
called Category Theory, of which Functors are part of.
We won't delve too much into the theory behind all
this, as there are plenty of books [9][10] available on
the subject. It was, however, a necessary detour to
explain the title used in this appendix.

Does this mean all of these abstractions implement a Functor protocol? Unfortunately,
this is not the case. As Clojure is a dynamic language and it didn't have protocols
built in—they were added in version 1.2 of the language—these frameworks tend to
implement their own version of the map function, which doesn't belong to any protocol
in particular.

The only exception is imminent, which implements the protocols included in
fluokitten, a Clojure library providing concepts from Category theory such
as Functors.

This is a simplified version of the Functor protocol found in fluokitten:

(defprotocol Functor
 (fmap [fv g]))

As mentioned previously, Functors define a single operation. fmap applies the
function g to whatever value is inside the container, Functor, fv.

However, implementing this protocol does not guarantee that we have actually
implemented a Functor. This is because, in addition to implementing the protocol,
Functors are also required to obey a couple of laws, which we will examine briefly.

The identity law is as follows:

(= (fmap a-functor identity)
 (identity a-functor))

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[187]

The preceding code is all we need to verify this law. It simply says that mapping the
identity function over a-functor is the same as simply applying the identity
function to the Functor itself.

The composition law is as follows:

(= (fmap a-functor (comp f g))
 (fmap (fmap a-functor g) f))

The composition law, in turn, says that if we compose two arbitrary functions f
and g, take the resulting function and apply that to a-functor, that is the same
as mapping g over the Functor and then mapping f over the resulting Functor.

No amount of text will be able to replace practical examples, so we will implement
our own Functor, which we will call Option. We will then revisit the laws to ensure
we have respected them.

The Option Functor
As Tony Hoare once put it, null references are his one billion dollar mistake
(http://www.infoq.com/presentations/Null-References-The-Billion-
Dollar-Mistake-Tony-Hoare). Regardless of background, you no doubt will
have encountered versions of the dreadful NullPointerException. This usually
happens when we try to call a method on an object reference that is null.

Clojure embraces null values due to its interoperability with Java, its host language,
but it provides improved support for dealing with them.

The core library is packed with functions that do the right thing if passed a nil
value—Clojure's version of Java's null. For instance, how many elements are
there in a nil sequence?

(count nil) ;; 0

Thanks to conscious design decisions regarding nil, we can, for the most part, afford
not worry about it. For all other cases, the Option Functor might be of some help.

The remaining of the examples in this appendix should be in a file called option.
clj under library-design/src/library_design/. You're welcome to try this in
the REPL as well.

Let's start our next example by adding the namespace declaration as well as the data
we will be working with:

(ns library-design.option
 (:require [uncomplicate.fluokitten.protocols :as fkp]

www.it-ebooks.info

http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
http://www.it-ebooks.info/

The Algebra of Library Design

[188]

 [uncomplicate.fluokitten.core :as fkc]
 [uncomplicate.fluokitten.jvm :as fkj]
 [imminent.core :as I]))

(def pirates [{:name "Jack Sparrow" :born 1700 :died 1740 :ship
"Black Pearl"}
 {:name "Blackbeard" :born 1680 :died 1750 :ship
"Queen Anne's Revenge"}
 {:name "Hector Barbossa" :born 1680 :died 1740 :ship
nil}])

(defn pirate-by-name [name]
 (->> pirates
 (filter #(= name (:name %)))
 first))

(defn age [{:keys [born died]}]
 (- died born))

As a Pirates of the Caribbean fan, I thought it would be interesting to play with
pirates for this example. Let's say we would like to calculate Jack Sparrow's age.
Given the data and functions we just covered, this is a simple task:

 (-> (pirate-by-name "Jack Sparrow")
 age) ;; 40

However, what if we would like to know Davy Jones' age? We don't actually have
any data for this pirate, so if we run our program again, this is what we'll get:

(-> (pirate-by-name "Davy Jones")
 age) ;; NullPointerException clojure.lang.Numbers.ops
(Numbers.java:961)

There it is. The dreadful NullPointerException. This happens because in the
implementation of the age function, we end up trying to subtract two nil values,
which is incorrect. As you might have guessed, we will attempt to fix this by using
the Option Functor.

Traditionally, Option is implemented as an algebraic data type, more specifically
a sum type with two variants: Some and None. These variants are used to identify
whether a value is present or not without using nils. You can think of both Some
and None as subtypes of Option.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[189]

In Clojure, we will represent them using records:

(defrecord Some [v])

(defrecord None [])

(defn option [v]
 (if v
 (Some. v)
 (None.)))

As we can see, Some can contain a single value whereas None contains nothing.
It's simply a marker indicating the absence of content. We have also created a helper
function called option, which creates the appropriate record depending on whether
its argument is nil or not.

The next step is to extend the Functor protocol to both records:

(extend-protocol fkp/Functor
 Some
 (fmap [f g]
 (Some. (g (:v f))))
 None
 (fmap [_ _]
 (None.)))

Here's where the semantic meaning of the Option Functor becomes apparent: as
Some contains a value, its implementation of fmap simply applies the function g
to the value inside the Functor f, which is of type Some. Finally, we put the result
inside a new Some record.

Now what does it mean to map a function over a None? You probably guessed that
it doesn't really make sense—the None record holds no values. The only thing we
can do is return another None. As we will see shortly, this gives the Option Functor
a short-circuiting semantic.

In the fmap implementation of None, we could have returned a
reference to this instead of a new record instance. I've not done so
simply to make it clear that we need to return an instance of None.

www.it-ebooks.info

http://www.it-ebooks.info/

The Algebra of Library Design

[190]

Now that we've implemented the Functor protocol, we can try it out:

(->> (option (pirate-by-name "Jack Sparrow"))
 (fkc/fmap age)) ;; #library_design.option.Some{:v 40}

(->> (option (pirate-by-name "Davy Jones"))
 (fkc/fmap age)) ;; #library_design.option.None{}

The first example shouldn't hold any surprises. We convert the pirate map we get from
calling pirate-by-name into an option, and then fmap the age function over it.

The second example is the interesting one. As stated previously, we have no data
about Davy Jones. However, mapping age over it does not throw an exception any
longer, instead returning None.

This might seem like a small benefit, but the bottom line is that the Option Functor
makes it safe to chain operations together:

(->> (option (pirate-by-name "Jack Sparrow"))
 (fkc/fmap age)
 (fkc/fmap inc)
 (fkc/fmap #(* 2 %))) ;; #library_design.option.Some{:v 82}

(->> (option (pirate-by-name "Davy Jones"))
 (fkc/fmap age)
 (fkc/fmap inc)
 (fkc/fmap #(* 2 %))) ;; #library_design.option.None{}

At this point, some readers might be thinking about the some-> macro—introduced
in Clojure 1.5—and how it effectively achieves the same result as the Option Functor.
This intuition is correct as demonstrated as follows:

(some-> (pirate-by-name "Davy Jones")
 age
 inc
 (* 2)) ;; nil

The some-> macro threads the result of the first expression through the first form
if it is not nil. Then, if the result of that expression isn't nil, it threads it through
the next form and so on. As soon as any of the expressions evaluates to nil, some->
short-circuits and returns nil immediately.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[191]

That being said, Functor is a much more general concept, so as long as we are
working with this concept, our code doesn't need to change as we are operating
at a higher level of abstraction:

(->> (i/future (pirate-by-name "Jack Sparrow"))
 (fkc/fmap age)
 (fkc/fmap inc)
 (fkc/fmap #(* 2 %))) ;; #<Future@30518bfc: #<Success@39bd662c:
82>>

In the preceding example, even though we are working with a fundamentally
different tool—futures—the code using the result did not have to change. This
is only possible because both Options and futures are Functors and implement
the same protocol provided by fluokitten. We have gained composability and
simplicity as we can use the same API to work with various different abstractions.

Speaking of composability, this property is guaranteed by the second law of Functors.
Let's see if our Option Functor respects this and the first—the identity—laws:

;; Identity
(= (fkc/fmap identity (option 1))
 (identity (option 1))) ;; true

;; Composition
(= (fkc/fmap (comp identity inc) (option 1))
 (fkc/fmap identity (fkc/fmap inc (option 1)))) ;; true

And we're done, our Option Functor is a lawful citizen. The remaining two
abstractions also come paired with their own laws. We will not cover the laws in this
section, but I encourage the reader to read about them (http://www.leonardoborges.
com/writings/2012/11/30/monads-in-small-bites-part-i-functors/).

Finding the average of ages
In this section, we will explore a different use case for the Option Functor. We would
like to, given a number of pirates, calculate the average of their ages. This is simple
enough to do:

(defn avg [& xs]
 (float (/ (apply + xs) (count xs))))

(let [a (some-> (pirate-by-name "Jack Sparrow") age)
 b (some-> (pirate-by-name "Blackbeard") age)
 c (some-> (pirate-by-name "Hector Barbossa") age)]
 (avg a b c)) ;; 56.666668

www.it-ebooks.info

http://www.leonardoborges.com/writings/2012/11/30/monads-in-small-bites-part-i-functors/
http://www.leonardoborges.com/writings/2012/11/30/monads-in-small-bites-part-i-functors/
http://www.it-ebooks.info/

The Algebra of Library Design

[192]

Note how we are using some-> here to protect us from nil values. Now, what
happens if there is a pirate for which we have no information?

(let [a (some-> (pirate-by-name "Jack Sparrow") age)
 b (some-> (pirate-by-name "Davy Jones") age)
 c (some-> (pirate-by-name "Hector Barbossa") age)]
 (avg a b c)) ;; NullPointerException clojure.lang.Numbers.ops
(Numbers.java:961)

It seems we're back at square one! It's worse now because using some-> doesn't help
if we need to use all values at once, as opposed to threading them through a chain of
function calls.

Of course, not all is lost. All we need to do is check if all values are present before
calculating the average:

(let [a (some-> (pirate-by-name "Jack Sparrow") age)
 b (some-> (pirate-by-name "Davy Jones") age)
 c (some-> (pirate-by-name "Hector Barbossa") age)]
 (when (and a b c)
 (avg a b c))) ;; nil

While this works perfectly fine, our implementation suddenly had to become aware
that any or all of the values a, b, and c could be nil. The next abstraction we will
look at, Applicative Functors, fixes this.

Applicative Functors
Like Functors, Applicative Functors are a sort of container and defines two operations:

(defprotocol Applicative
 (pure [av v])
 (fapply [ag av]))

The pure function is a generic way to put a value inside an Applicative Functor.
So far, we have been using the option helper function for this purpose. We will be
using it a little later.

The fapply function will unwrap the function contained in the Applicative ag and
apply it to the value contained in the applicative av.

The purpose of both the functions will become clear with an example, but first,
we need to promote our Option Functor into an Applicative Functor:

(extend-protocol fkp/Applicative
 Some

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[193]

 (pure [_ v]
 (Some. v))

 (fapply [ag av]
 (if-let [v (:v av)]
 (Some. ((:v ag) v))
 (None.)))

 None
 (pure [_ v]
 (Some. v))

 (fapply [ag av]
 (None.)))

The implementation of pure is the simplest. All it does is wrap the value v into
an instance of Some. Equally simple is the implementation of fapply for None.
As there is no value, we simply return None again.

The fapply implementation of Some ensures both arguments have a value for the
:v keyword—strictly speaking they both have to be instances of Some. If :v is non-nil,
it applies the function contained in ag to v, finally wrapping the result. Otherwise, it
returns None.

This should be enough to try our first example using the Applicative Functor API:

(fkc/fapply (option inc) (option 2))
;; #library_design.option.Some{:v 3}

(fkc/fapply (option nil) (option 2))
;; #library_design.option.None{}

We are now able to work with Functors that contain functions. Additionally, we have
also preserved the semantics of what should happen when any of the Functors don't
have a value.

We can now revisit the age average example from before:

(def age-option (comp (partial fkc/fmap age) option pirate-by-name))

(let [a (age-option "Jack Sparrow")
 b (age-option "Blackbeard")
 c (age-option "Hector Barbossa")]
 (fkc/<*> (option (fkj/curry avg 3))
 a b c))
;; #library_design.option.Some{:v 56.666668}

www.it-ebooks.info

http://www.it-ebooks.info/

The Algebra of Library Design

[194]

The vararg function <*> is defined by fluokitten and performs
a left-associative fapply on its arguments. Essentially, it is a
convenience function that makes (<*> f g h) equivalent to
(fapply (fapply f g) h).

We start by defining a helper function to avoid repetition. The age-option function
retrieves the age of a pirate as an option for us.

Next, we curry the avg function to 3 arguments and put it into an option. Then, we
use the <*> function to apply it to the options a, b, and c. We get to the same result,
but have the Applicative Functor take care of nil values for us.

Function currying
Currying is the technique of transforming a function of multiple
arguments into a higher-order function of a single argument that returns
more single-argument functions until all arguments have been supplied.
Roughly speaking, currying makes the following snippets equivalent:

(def curried-1 (fkj/curry + 2))

(def curried-2 (fn [a]

 (fn [b]

 (+ a b))))

((curried-1 10) 20) ;; 30

((curried-2 10) 20) ;; 30

Using Applicative Functors this way is so common that the pattern has been
captured as the function alift, as shown in the following:

 (defn alift
 "Lifts a n-ary function `f` into a applicative context"
 [f]
 (fn [& as]
 {:pre [(seq as)]}
 (let [curried (fkj/curry f (count as))]
 (apply fkc/<*>
 (fkc/fmap curried (first as))
 (rest as)))))

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[195]

The alift function is responsible for lifting a function in such a way that it
can be used with Applicative Functors without much ceremony. Because of
the assumptions we are able to make about Applicative Functors—for instance,
that it is also a Functor—we can write generic code that can be re-used across
any Applicatives.

With alift in place, our age average example turns into the following:

(let [a (age-option "Jack Sparrow")
 b (age-option "Blackbeard")
 c (age-option "Hector Barbossa")]
 ((alift avg) a b c))
;; #library_design.option.Some{:v 56.666668}

We lift avg into an Applicative compatible version, making the code look remarkably
like simple function application. And since we are not doing anything interesting
with the let bindings, we can simplify it further as follows:

((alift avg) (age-option "Jack Sparrow")
 (age-option "Blackbeard")
 (age-option "Hector Barbossa"))
;; #library_design.option.Some{:v 56.666668}

((alift avg) (age-option "Jack Sparrow")
 (age-option "Davy Jones")
 (age-option "Hector Barbossa"))
;; #library_design.option.None{}

As with Functors, we can take the code as it is, and simply replace the underlying
abstraction, preventing repetition once again:

((alift avg) (i/future (some-> (pirate-by-name "Jack Sparrow") age))
 (i/future (some-> (pirate-by-name "Blackbeard") age))
 (i/future (some-> (pirate-by-name "Hector Barbossa")
age)))
;; #<Future@17b1be96: #<Success@16577601: 56.666668>>

www.it-ebooks.info

http://www.it-ebooks.info/

The Algebra of Library Design

[196]

Gathering stats about ages
Now that we can safely calculate the average age of a number of pirates, it might be
interesting to take this further and calculate the median and standard deviation of
the pirates' ages, in addition to their average age.

We already have a function to calculate the average, so let's just create the ones to
calculate the median and the standard deviation of a list of numbers:

(defn median [& ns]
 (let [ns (sort ns)
 cnt (count ns)
 mid (bit-shift-right cnt 1)]
 (if (odd? cnt)
 (nth ns mid)
 (/ (+ (nth ns mid) (nth ns (dec mid))) 2))))

(defn std-dev [& samples]
 (let [n (count samples)
	 mean (/ (reduce + samples) n)
	 intermediate (map #(Math/pow (- %1 mean) 2) samples)]
 (Math/sqrt
 (/ (reduce + intermediate) n))))

With these functions in place, we can write the code that will gather all the stats for us:

 (let [a (some-> (pirate-by-name "Jack Sparrow") age)
 b (some-> (pirate-by-name "Blackbeard") age)
 c (some-> (pirate-by-name "Hector Barbossa") age)
 avg (avg a b c)
 median (median a b c)
 std-dev (std-dev a b c)]
 {:avg avg
 :median median
 :std-dev std-dev})

 ;; {:avg 56.666668,
 ;; :median 60,
 ;; :std-dev 12.472191289246473}

This implementation is fairly straightforward. We first retrieve all ages we're interested
in and bind them to the locals a, b, and c. We then reuse the values when calculating
the remaining stats. We finally gather all results in a map for easy access.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[197]

By now the reader will probably know where we're headed: what if any of those
values is nil?

 (let [a (some-> (pirate-by-name "Jack Sparrow") age)
 b (some-> (pirate-by-name "Davy Jones") age)
 c (some-> (pirate-by-name "Hector Barbossa") age)
 avg (avg a b c)
 median (median a b c)
 std-dev (std-dev a b c)]
 {:avg avg
 :median median
 :std-dev std-dev})
 ;; NullPointerException clojure.lang.Numbers.ops (Numbers.
java:961)

The second binding, b, returns nil, as we don't have any information about Davy
Jones. As such, it causes the calculations to fail. Like before, we can change our
implementation to protect us from such failures:

 (let [a (some-> (pirate-by-name "Jack Sparrow") age)
 b (some-> (pirate-by-name "Davy Jones") age)
 c (some-> (pirate-by-name "Hector Barbossa") age)
 avg (when (and a b c) (avg a b c))
 median (when (and a b c) (median a b c))
 std-dev (when (and a b c) (std-dev a b c))]
 (when (and a b c)
 {:avg avg
 :median median
 :std-dev std-dev}))
 ;; nil

This time it's even worse than when we only had to calculate the average; the code
is checking for nil values in four extra spots: before calling the three stats functions
and just before gathering the stats into the result map.

Can we do better?

Monads
Our last abstraction will solve the very problem we raised in the previous section:
how to safely perform intermediate calculations by preserving the semantics of the
abstractions we're working with—in this case, options.

www.it-ebooks.info

http://www.it-ebooks.info/

The Algebra of Library Design

[198]

It should be no surprise now that fluokitten also provides a protocol for Monads,
simplified and shown as follows:

(defprotocol Monad
 (bind [mv g]))

If you think in terms of a class hierarchy, Monads would be at the bottom of it,
inheriting from Applicative Functors, which, in turn, inherit from Functors. That
is, if you're working with a Monad, you can assume it is also an Applicative and
a Functor.

The bind function of monads takes a function g as its second argument. This function
receives as input the value contained in mv and returns another Monad containing its
result. This is a crucial part of the contract: g has to return a Monad.

The reason why will become clearer after some examples. But first, let's promote
our Option abstraction to a Monad—at this point, Option is already an Applicative
Functor and a Functor:

(extend-protocol fkp/Monad
 Some
 (bind [mv g]
 (g (:v mv)))

 None
 (bind [_ _]
 (None.)))

The implementation is fairly simple. In the None version, we can't really do anything,
so just like we have been doing so far, we return an instance of None.

The Some implementation extracts the value from the Monad mv and applies the
function g to it. Note how this time we don't need to wrap the result as the function
g already returns a Monad instance.

Using the Monad API, we could sum the ages of our pirates as follows:

(def opt-ctx (None.))

(fkc/bind (age-option "Jack Sparrow")
 (fn [a]
 (fkc/bind (age-option "Blackbeard")
 (fn [b]
 (fkc/bind (age-option "Hector Barbossa")
 (fn [c]
 (fkc/pure opt-ctx

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[199]

 (+ a b c))))))))
;; #library_design.option.Some{:v 170.0}

Firstly, we are making use of Applicative's pure function in the inner-most function.
Remember that role of pure is to provide a generic way to put a value into an
Applicative Functor. Since Monads are also Applicative, we make use of them here.

However, since Clojure is a dynamically typed language, we need to hint pure with
the context—container—type we wish to use. This context is simply an instance of
either Some or None. They both have the same pure implementation.

While we do get the right answer, the preceding example is far from what we would
like to write due to its excessive nesting. It is also hard to read.

Thankfully, fluokitten provides a much better way to write monadic code, called the
do-notation:

(fkc/mdo [a (age-option "Jack Sparrow")
 b (age-option "Blackbeard")
 c (age-option "Hector Barbossa")]
 (fkc/pure opt-ctx (+ a b c)))
;; #library_design.option.Some{:v 170.0}

Suddenly, the same code becomes a lot cleaner and easier to read, without losing any
of the semantics of the Option Monad. This is because mdo is a macro that expands to
the code equivalent of the nested version, as we can verify by expanding the macro
as follows:

(require '[clojure.walk :as w])

(w/macroexpand-all '(fkc/mdo [a (age-option "Jack Sparrow")
 b (age-option "Blackbeard")
 c (age-option "Hector Barbossa")]
 (option (+ a b c))))
;; (uncomplicate.fluokitten.core/bind
;; (age-option "Jack Sparrow")
;; (fn*
;; ([a]
;; (uncomplicate.fluokitten.core/bind
;; (age-option "Blackbeard")
;; (fn*
;; ([b]
;; (uncomplicate.fluokitten.core/bind
;; (age-option "Hector Barbossa")
;; (fn* ([c] (fkc/pure opt-ctx (+ a b c)))))))))))

www.it-ebooks.info

http://www.it-ebooks.info/

The Algebra of Library Design

[200]

It is important to stop for a moment here and appreciate the power
of Clojure—and Lisp in general.
Languages such as Haskell and Scala, which make heavy use of
abstractions such as Functors, Applicative, and Monads, also have
their own versions of the do-notation. However, this support is
baked into the compiler itself.
As an example, when Haskell added do-notation to the language, a
new version of the compiler was released, and developers wishing
to use the new feature had to upgrade.
In Clojure, on the other hand, this new feature can be shipped as
a library due to the power and flexibility of macros. This is exactly
what fluokitten has done.

Now, we are ready to go back to our original problem, gathering stats about the
pirates' ages.

First, we will define a couple of helper functions that convert the result of our stats
functions into the Option Monad:

(def avg-opt (comp option avg))
(def median-opt (comp option median))
(def std-dev-opt (comp option std-dev))

Here, we take advantage of function composition to create monadic versions
of existing functions.

Next, we will rewrite our solution using the monadic do-notation we learned earlier:

(fkc/mdo [a (age-option "Jack Sparrow")
 b (age-option "Blackbeard")
 c (age-option "Hector Barbossa")
 avg (avg-opt a b c)
 median (median-opt a b c)
 std-dev (std-dev-opt a b c)]
 (option {:avg avg
 :median median
 :std-dev std-dev}))
;; #library_design.option.Some{:v {:avg 56.666668,
;; :median 60,
;; :std-dev 12.472191289246473}}

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

[201]

This time we were able to write the function as we normally would, without having
to worry about whether any values in the intermediate computations are empty or
not. This semantic that is the very essence of the Option Monad is still preserved,
as can be seen in the following:

(fkc/mdo [a (age-option "Jack Sparrow")
 b (age-option "Blackbeard")
 c (age-option "Hector Barbossa")
 avg (avg-opt a b c)
 median (median-opt a b c)
 std-dev (std-dev-opt a b c)]
 (fkc/pure opt-ctx {:avg avg
 :median median
 :std-dev std-dev}))
;; #library_design.option.None{}

For the sake of completeness, we will use futures to demonstrate how the do-notation
works for any Monad:

(def avg-fut (comp i/future-call avg))
(def median-fut (comp i/future-call median))
(def std-dev-fut (comp i/future-call std-dev))

(fkc/mdo [a (i/future (some-> (pirate-by-name "Jack Sparrow")
age))
 b (i/future (some-> (pirate-by-name "Blackbeard")
age))
 c (i/future (some-> (pirate-by-name "Hector Barbossa")
age))
 avg (avg-fut a b c)
 median (median-fut a b c)
 std-dev (std-dev-fut a b c)]
 (i/const-future {:avg avg
 :median median
 :std-dev std-dev}))
;; #<Future@3fd0b0d0: #<Success@1e08486b: {:avg 56.666668,
;; :median 60,
;; :std-dev
12.472191289246473}>>

www.it-ebooks.info

http://www.it-ebooks.info/

The Algebra of Library Design

[202]

Summary
This appendix has taken us on a brief tour of the world of category theory. We learned
three of its abstractions: Functors, Applicative Functors, and Monads. They were the
guiding principle behind imminent's API.

To deepen our knowledge and understanding, we implemented our own Option
Monad, a common abstraction used to safely handle the absence of values.

We have also seen that using these abstractions allow us to make some assumptions
about our code, as seen in functions such as alift. There are many other functions
we would normally rewrite over and over again for different purposes, but that can
be reused if we recognize our code fits into one of the abstractions learned.

Finally, I hope this encourages readers to explore category theory more, as it will
undoubtedly change the way you think. And if I can be so bold, I hope this will also
change the way you design libraries in the future.

www.it-ebooks.info

http://www.it-ebooks.info/

[203]

Bibliography
[1] Rene Pardo and Remy Landau, The World's First Electronic Spreadsheet:
http://www.renepardo.com/articles/spreadsheet.pdf

[2] Conal Elliott and Paul Hudak, Functional Reactive Animation:
http://conal.net/papers/icfp97/icfp97.pdf

[3] Evan Czaplicki, Elm: Concurrent FRP for Functional GUIs:
http://elm-lang.org/papers/concurrent-frp.pdf

[4] Erik Meijer, Subject/Observer is Dual to Iterator:
http://csl.stanford.edu/~christos/pldi2010.fit/meijer.duality.pdf

[5] Henrik Nilsson, Antony Courtney and John Peterson, Functional Reactive
Programming, Continued: http://haskell.cs.yale.edu/wp-content/
uploads/2011/02/workshop-02.pdf

[6] John Hughes, Generalising Monads to Arrows:
http://www.cse.chalmers.se/~rjmh/Papers/arrows.pdf

[7] Zhanyong Wan, Walid Taha and Paul Hudak, Real-Time FRP:
http://haskell.cs.yale.edu/wp-content/uploads/2011/02/rt-frp.pdf

[8] Walid Taha, Zhanyong Wan, and Paul Hudak, Event-Driven FRP:
http://www.cs.yale.edu/homes/zwan/papers/mcu/efrp.pdf

[9] Benjamin C. Pierce, Basic Category Theory for Computer Scientists:
http://www.amazon.com/Category-Computer-Scientists-Foundations-
Computing-ebook/dp/B00MG7E5WE/ref=sr_1_7?ie=UTF8&qid=1423484917&sr=8-
7&keywords=category+theory

[10] Steve Awodey, Category Theory (Oxford Logic Guides): http://www.amazon.com/
Category-Theory-Oxford-Logic-Guides/dp/0199237182/ref=sr_1_2?ie=UTF8&
qid=1423484917&sr=8-2&keywords=category+theory

www.it-ebooks.info

http://www.renepardo.com/articles/spreadsheet.pdf
http://conal.net/papers/icfp97/icfp97.pdf
http://elm-lang.org/papers/concurrent-frp.pdf
http://csl.stanford.edu/~christos/pldi2010.fit/meijer.duality.pdf
http://haskell.cs.yale.edu/wp-content/uploads/2011/02/workshop-02.pdf
http://haskell.cs.yale.edu/wp-content/uploads/2011/02/workshop-02.pdf
http://www.cse.chalmers.se/~rjmh/Papers/arrows.pdf
http://haskell.cs.yale.edu/wp-content/uploads/2011/02/rt-frp.pdf
http://www.cs.yale.edu/homes/zwan/papers/mcu/efrp.pdf
http://www.amazon.com/Category-Computer-Scientists-Foundations-Computing-ebook/dp/B00MG7E5WE/ref=sr_1_7?ie=UTF8&qid=1423484917&sr=8-7&keywords=category+theory
http://www.amazon.com/Category-Computer-Scientists-Foundations-Computing-ebook/dp/B00MG7E5WE/ref=sr_1_7?ie=UTF8&qid=1423484917&sr=8-7&keywords=category+theory
http://www.amazon.com/Category-Computer-Scientists-Foundations-Computing-ebook/dp/B00MG7E5WE/ref=sr_1_7?ie=UTF8&qid=1423484917&sr=8-7&keywords=category+theory
http://www.amazon.com/Category-Theory-Oxford-Logic-Guides/dp/0199237182/ref=sr_1_2?ie=UTF8&qid=1423484917&sr=8-2&keywords=category+theory
http://www.amazon.com/Category-Theory-Oxford-Logic-Guides/dp/0199237182/ref=sr_1_2?ie=UTF8&qid=1423484917&sr=8-2&keywords=category+theory
http://www.amazon.com/Category-Theory-Oxford-Logic-Guides/dp/0199237182/ref=sr_1_2?ie=UTF8&qid=1423484917&sr=8-2&keywords=category+theory
http://www.it-ebooks.info/

Bibliography

[204]

[11] Duncan Coutts, Roman Leshchinskiy, and Don Stewart, Stream Fusion:
http://code.haskell.org/~dons/papers/icfp088-coutts.pdf

[12] Philip Wadler, Transforming programs to eliminate trees:
http://homepages.inf.ed.ac.uk/wadler/papers/deforest/deforest.ps

www.it-ebooks.info

http://code.haskell.org/~dons/papers/icfp088-coutts.pdf
http://homepages.inf.ed.ac.uk/wadler/papers/deforest/deforest.ps
http://www.it-ebooks.info/

[205]

Index
A
Abstract Algebra 186
agile board

component local state 138, 139
components 137
creating, with Om 135, 136
lifecycle 138, 139
multiple column-view components,

creating 140, 141
state 136, 137
utility functions, adding 141

Amazon Web Services. See AWS
Applicative Functors

about 192-195
fapply function 192
pure function 192
stats, calculating of ages 196, 197
vararg function 194

Arrowized FRP 18
Asteroids 98
asynchronous data flow 18
asynchronous programming 55-57
Automaton

URL 18
AWS

CloudFormation 164
EC2 164
RDS 164
using 164, 165

AWS resources dashboard
building 165
building, with CloudFormation 166
building, with EC2 167
building, with RDS 168

designing 169-171
Observables, combining 177, 178
Observables, creating 174-177
setting up 172, 173
stub server, setting up 171
user interface, building 179-181

B
backpressure

about 37, 38
reference link 40
sample combinator 38, 39
strategies 39, 40

Bacon.js
about 18
URL 15

behaviors. See signals
blocking IO 161
buffering

about 68
dropping buffer 70
fixed buffer 69, 70
sliding buffer 71

C
catch combinator 35
CES

about 1, 33
versus core.async 94
versus FRP 18

Chestnut
URL 2

cljs-start
URL 92, 98

www.it-ebooks.info

http://www.it-ebooks.info/

[206]

cljx
about 78
URL 78

Clojure
futures 146, 147
URL, for documentation 128

ClojureScript 123
ClojureScript game

active keys stream,
working with 111-114

game entities, creating 100-105
implementing 106
project, setting up 98-100
user input, modeling as event

streams 107-110
CloudFormation

about 164
describeStackResources endpoint 167
describeStacks endpoint 166
used, for building AWS resources

dashboard 166
combinators

using 154-157
communicating sequential processes.

See CSP
complex web UIs

features 118
problems 117-120

Compositional Event Systems. See CES
concurrency 55-57
Contacts application

building 124
components 127, 128
contact-details-form-view component,

creating 132, 133
contact-details-view component,

creating 132, 133
contact information, updating 134
contacts-app component, creating 130
contact-summary-view component,

creating 131
contacts-view component, creating 130
cursors, using 129
details-panel-view component, creating 132
project, setting up 126
state 124-126

core.async
about 57, 58
backpressure 68
CSP 58-61
error handling 66-68
features 75, 76
stock market application, rewriting 62, 63
transducers 73-75
using 134
versus CES 94

CSP
about 58-61
URL 58

cursors 129

D
data

fetching, in parallel 147-151
dataflow programming 10, 11
dc-lib

URL 11
describeDBInstances endpoint 168
describeInstances endpoint 167
describeStackResources endpoint 167
describeStacks endpoint 166
dropping buffer 70

E
Elastic Compute Cloud (EC2)

about 164
describeInstances endpoint 167
used, for building AWS resources

dashboard 167
Elm

about 17
URL 17

error handling
about 34
catch combinator 35
in core.async 66-68
onError combinator 34, 35
reference link 37
retry combinator 36, 37

event handlers
using 154-157

events 16

www.it-ebooks.info

http://www.it-ebooks.info/

[207]

F
factory methods

reference link 26
first-order FRP 17
fixed buffer 69, 70
Flapjax 19
flatmap

about 29-32
with multiple values 32, 33

ForkJoinPool
URL 160
using 161

FRP, use cases
animations 19
asynchronous programming 19
complex GUIs 19
networking 19

functional programming 121, 122
Functional Reactive Programming (FRP)

about 15
implementation challenges 17
versus CES 18

function currying 194
Functors

about 185-187
Applicative Functors 192-195
Option Functor 187-191

futures
about 146, 147
blocking IO 161
creating, in imminent 153

G
Graphical User Interfaces (GUIs) 11

H
Haskell 200
higher-order FRP 15, 16
history, Reactive Programming

about 9
dataflow programming 10, 11
FRP 15
higher-order FRP 15, 16

LANguage for Programming Arrays at
Random (LANPAR) 13, 14

object-oriented Reactive
Programming 11-13

Observer design pattern 14, 15

I
imminent

about 152
combinators, using 154-157
event handlers, using 154-157
example 157-160
futures, creating 153
URL 152

implementation challenges, FRP
Arrowized FRP 18
asynchronous data flow 18
first-order FRP 17

incidental complexity
about 47
removing, with RxClojure 48-50

infrastructure automation
problem 163, 164
with AWS 164, 165

intercomponent communication
about 134, 135
agile board, creating 135, 136

Iterator interface 22, 23

J
Java Interop

URL 134
JSPerf

URL 120

L
LANguage for Programming Arrays at

Random (LANPAR) 13, 14
lein-cljsbuild

about 78
URL 78

www.it-ebooks.info

http://www.it-ebooks.info/

[208]

M
macros

reference link 105
ManagedBlocker

reference link 161
map

about 184, 185
Functors 185-187

Mimmo Cosenza
URL 126

minimal CES framework
about 77, 78
behaviors, implementing 88, 89
event streams, implementing 82-87
project, setting up 78-81
public API, designing 81, 82
respondent application, building 92, 93
tokens, implementing 82

Monads
about 33, 197
bind function 198
example 200, 201
using 198

monet
URL 98

N
Netflix 19

O
object-oriented Reactive

Programming 11-13
Observables

combining 177, 178
creating 23-26, 174-177
custom Observables, creating 26, 27
manipulating 27, 28

Observable Sequences 18
Observer design pattern

about 14, 15, 21, 22
Iterator interface 22, 23

Om
about 123
agile board, creating 135, 136

Contacts application, building 124
Om Project Management 135
om-start template

URL 126
onError combinator 34, 35
Option Functor

about 187-191
use case 191, 192

P
Purely Functional Data Structures

about 121
URL 121

R
RDS

about 164
describeDBInstances endpoint 168
used, for building AWS resources

dashboard 168
React

reference link 117
ReactiveCocoa

about 18
URL 15

Reactive Extensions. See Rx
Reactive Programming 1
React.js

about 120
functional programming 121, 122

Reagi
about 115
comparing, with other CES

frameworks 115
Relational Database Service. See RDS
respondent application

building 92, 93
retry combinator 36, 37
Rx

about 18, 21, 115
drawbacks 115
error handling 34
flatmap 29-32
Observables, creating 23-26
Observables, manipulating 27, 28

www.it-ebooks.info

http://www.it-ebooks.info/

[209]

RxClojure
URL 23

RxJava
about 21
URL 15, 23

RxJS
about 21
URL 2

S
sample combinator 38, 39
Scala 200
ScheduledThreadPoolExecutor pool 43
Semigroups 186
signals 16
sine wave animation

about 1, 2
coloring 6, 7
creating 2-4
enhancing 8
time, creating 4-6
updating 7, 8

sliding buffer 71
stock market monitoring application

application code, implementing 63-66
building 41-44
incidental complexity, removing with

RxClojure 48-50
observable rolling averages 50-53
problems, identifying 47
rewriting, with core.async 62, 63
rolling averages, displaying 45-47

stub server
setting up 171

T
Thread Pool 150
tools.namespace

URL 86
using 86

transducers
about 71-73
reference link 72
with core.async 73, 75

transit
about 172
URL 172

Trello
URL 135

V
Virtual DOM 122

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Clojure Reactive Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering Clojure Data Analysis
ISBN: 978-1-78328-413-9 Paperback: 340 pages

Leverage the power and flexibility of Clojure through
this practical guide to data analysis

1.	 Explore the concept of data analysis using
established scientific methods combined
with the powerful Clojure language.

2.	 Master Naïve Bayesian Classification,
Benford's Law, and much more in Clojure.

3.	 Learn with the help of examples drawn
from exciting, real-world data.

Clojure for Machine Learning
ISBN: 978-1-78328-435-1 Paperback: 292 pages

Successfully leverage advanced machine learning
techniques using the Clojure ecosystem

1.	 Covers a lot of machine learning techniques
with Clojure programming.

2.	 Encompasses precise patterns in data to
predict future outcomes using various
machine learning techniques.

3.	 Packed with several machine learning libraries
available in the Clojure ecosystem.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Clojure Data Analysis Cookbook
ISBN: 978-1-78216-264-3 Paperback: 342 pages

Over 110 recipes to help you dive into the world of
practical data analysis using Clojure

1.	 Get a handle on the torrent of data the
modern Internet has created.

2.	 Recipes for every stage from collection
to analysis.

3.	 A practical approach to analyzing data
to help you make informed decisions.

Clojure High Performance
Programming
ISBN: 978-1-78216-560-6 Paperback: 152 pages

Understand performance aspects and write high
performance code with Clojure

1.	 See how the hardware and the JVM
impact performance.

2.	 Learn which Java features to use with
Clojure, and how.

3.	 Deep dive into Clojure's concurrency
and state primitives.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: What is Reactive Programming?
	A taste of Reactive Programming
	Creating time
	More colors
	Making it reactive
	Exercise 1.1

	A bit of history
	Dataflow programming
	Object-oriented Reactive Programming
	The most widely used reactive program
	The Observer design pattern
	Functional Reactive Programming
	Higher-order FRP

	Signals and events
	Implementation challenges
	First-order FRP
	Asynchronous data flow
	Arrowized FRP

	Applications of FRP
	Asynchronous programming and networking
	Complex GUIs and animations

	Summary

	Chapter 2: A Look at Reactive Extensions
	The Observer pattern revisited
	Observer – an Iterator's dual

	Creating observables
	Custom Observables

	Manipulating observables
	Flatmap and friends
	One more flatmap for the road

	Error handling
	OnError
	Catch
	Retry

	Backpressure
	Sample
	Backpressure strategies

	Summary

	Chapter 3: Asynchronous Programming and Networking
	Building a stock market monitoring application
	Rolling averages
	Identifying problems with our current approach
	Removing incidental complexity with RxClojure
	Observable rolling averages

	Summary

	Chapter 4: Introduction to core.async
	Asynchronous programming and concurrency
	core.async
	Communicating sequential processes

	Rewriting the stock market application with core.async
	Implementing the application code

	Error handling
	Backpressure
	Fixed buffer
	Dropping buffer
	Sliding buffer

	Transducers
	Transducers and core.async

	Summary

	Chapter 5: Creating Your own CES Framework with core.async
	A minimal CES framework
	Clojure or ClojureScript?
	Designing the public API
	Implementing tokens
	Implementing event streams
	Implementing behaviors

	Exercises
	Exercise 5.1
	Exercise 5.2

	A respondent application
	CES versus core.async
	Summary

	Chapter 6: Building a Simple ClojureScript Game
with Reagi
	Setting up the project
	Game entities
	Putting it all together
	Modeling user input as event streams
	Working with the active keys stream

	Reagi and other CES frameworks
	Summary

	Chapter 7: The UI as a Function
	The problem with complex web UIs
	Enter React.js
	Lessons from Functional Programming

	Clojurescript and Om
	Building a simple Contacts application with Om
	The Contacts application state
	Setting up the Contacts project
	Application components
	Om cursors
	Filling in the blanks

	Intercomponent communication
	Creating an agile board with Om
	The board state
	Components overview
	Lifecycle and component local state
	Remaining components
	Utility functions

	Exercises
	Summary

	Chapter 8: Futures
	Clojure futures
	Fetching data in parallel
	Imminent – a composable futures library for Clojure
	Creating futures
	Combinators and event handlers

	The movies example revisited
	Futures and blocking IO
	Summary

	Chapter 9: A Reactive API to Amazon Web Services
	The problem
	Infrastructure automation
	AWS resources dashboard
	CloudFormation
	The describeStacks endpoint
	The describeStackResources endpoint

	EC2
	The describeInstances endpoint

	RDS
	The describeDBInstances endpoint

	Designing the solution
	Running the AWS stub server
	Setting up the dashboard project
	Creating AWS Observables
	Combining the AWS Observables
	Putting it all together

	Exercises
	Summary

	Appendix A: The Algebra of Library Design
	The semantics of map
	Functors
	The Option Functor

	Finding the average of ages
	Applicative Functors
	Gathering stats about ages
	Monads
	Summary

	Appendix B: Bibliography
	Index

