Th
Pra ematic

ogrammers

Web Development with
lojure

Build Bulletproof Web Apps
with Less Code

Dmitri Sotnikov
edited by Michael Swaine

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Early Praise for Web Development with Clojure

This is a great resource and one I will insist all my trainee Clojure web developers
read.

» Colin Yates, principal engineer and technical team leader, QFI Consulting
LLP

Clojure is an awesome language, and using it for developing web applications is

pure joy. This book is a valuable and timely resource for getting started with the

various libraries of the Clojure web-development toolbox.

» Fred Daoud, web-development specialist and coauthor of Seven Web Frame-
works in Seven Weeks

In Web Development with Clojure, Dmitri Sotnikov manages to take the sting out
of getting started building real applications with Clojure. If you know the basics
but are still trying to “get” Clojure, this is the book for you.

» Russ Olsen, vice president, consulting services, Cognitect

Sotnikov illustrates Clojure’s flexible approach to web development by teaching
the use of state-of-the-art libraries in making realistic websites.

» Chris Houser, Joy of Clojure coauthor

With this book, you’ll jump right into web development using powerful functional
programming techniques. As you follow along, you’ll make your app more scalable
and maintainable—and you’ll bring the expressiveness of Clojure to your client-
side JavaScript.

» Ian Dees, author, Cucumber Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

Dmitri’s book successfully walks a narrow line of introducing language features
while also solving real, modern software-development problems. This represents
a significant return on investment for the time you devote to a technical book.

» Brian Sletten, Bosatsu Consulting, author of Resource-Oriented Architecture
Patterns for Webs of Data

This is a fast-paced, no-cruft intro to applying your Clojure chops to making web
apps. From Chapter 1 you're running a real web app and then adding databases,
security, JavaScript, and more. No dogma, no preaching, no fluff! To the point,
productive, and clear. This book gives you all you need to get started and have a
real app that you can continue to grow.

» Sam Griffith Jr., polyglot programmer at Interactive Web Systems, LLC

www.it-ebooks.info

http://www.it-ebooks.info/

Web Development with Clojure

Build Bulletproof Web Apps with Less Code

Dmitri Sotnikov

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

www.it-ebooks.info

http://www.it-ebooks.info/

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)

Potomac Indexing, LLC (indexer)
Candace Cunningham (copyeditor)
David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-937785-64-2

Encoded using the finest acid-free high-entropy binary digits.

Book version: P1.0—January 2014

www.it-ebooks.info

http://pragprog.com
http://www.it-ebooks.info/

Introduction .

Getting Your Feet Wet .
Setting Up Your Environment
Your First Project

Clojure Web Stack
Routing Requests with Ring

Defining the Routes with Compojure

Application Architecture
Beyond Compojure and Ring
What You've Learned

Liberator Services
Creating the Project
Defining Resources
Putting It All Together
What You've Learned

Database Access
Working with Relational Databases
Report Generation

What You've Learned

Picture Gallery

The Development Process
What'’s in a Gallery

Creating the Application
Application Data Model

Task A: Account Registration
Task B: Login and Logout
Task C: Uploading Pictures

www.it-ebooks.info

Contents

ix

) = -

25
26
30
33
42
54

55
56
56
60
66

67
67
72
79

81
81
81
83
84
86
95
97

http://www.it-ebooks.info/

Al.

A2,

Task D: Displaying Pictures

Task E: Deleting Pictures
Task F: Account Deletion
What You've Learned

Finishing Touches .
Adding Some Style
Unit Tests

Logging

Application Profiles
Packaging Applications
What You've Learned

Mixing It Up
Using Selmer

Upgrading to ClojureScript

SQL Korma

Creating Application Templates

What You've Learned

Alternative IDE Options
Installing Eclipse
Installing Emacs
Alternatives

Clojure Primer . .
A Functional Perspective
Data Types

Using Functions
Anonymous Functions
Named Functions
Higher-Order Functions
Closures

Threading Expressions
Being Lazy

Structuring the Code
Destructuring Data
Namespaces

Dynamic Variables
Calling Out to Java
Calling Methods

www.it-ebooks.info

Contents ® vi

110
115
121
123

125
125
128
132
135
137
143

145
145
158
168
171
173

177
177
178
180

181
181
183
184
184
185
187
188
188
189
189
190
192
194
195
195

http://www.it-ebooks.info/

Contents ® vii

Dynamic Polymorphism 196
What about Global State? 197
Writing Code That Writes Code for You 198
The Read-Evaluate-Print Loop 200
Summary 200
A3. Document-Oriented Database Access 201
Picking the Right Database 201
Using CouchDB 202
Using MongoDB 205
Index e . . . e . 209

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

This book’s cover has a bonsai tree on it. I chose it to represent elegance and
simplicity, as these qualities make Clojure such an attractive language. A
good software project is like a bonsai. You have to meticulously craft it to
take the shape you want, and the tool you use should make it a pleasant
experience. I hope to convince you here that Clojure is that tool.

What You Need

This book is aimed at readers of all levels. While having some basic proficiency
with functional programming will be helpful, it's by no means required to
follow the material in this book. If you're not a Clojure user already, this book
is a good starting point, as it focuses on applying the language to solve con-
crete problems. This means we’ll focus on a small number of language features
needed to build common web applications.

Why Clojure?

Clojure is a small language that has simplicity and correctness as its primary
goals. Being a functional language, it emphasizes immutability and declarative
programming. As you’ll see in this book, these features make it easy and
idiomatic to write clean and correct code.

There are many languages to choose from and as many opinions on what
makes any one of them a good language. Some languages are simple but
verbose. You've probably heard people say that verbosity really doesn’t matter,
the argument being that when two languages are Turing complete, anything
that can be written in one language can also be written in the other with a
bit of extra code.

I think that’s missing the point, however. The real question is not whether
something can be expressed in principle. It's how well the language maps to
the problem being solved. One language will let you think in terms of your
problem domain while another will force you to translate the problem to its
constructs.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Introduction ® x

The latter is often tedious and rarely enjoyable. You end up writing a lot of
boilerplate code and constantly repeating yourself. There’s a certain amount
of irony involved in having to write repetitive code.

Other languages aren’t verbose and they provide many different tools for
solving problems. Unfortunately, having many tools does not directly translate
into higher productivity.

The more features there are, the more things you have to keep in your head
to work with the language effectively. With many languages I find myself
constantly expending mental overhead thinking about all the different features
and how they interact with one another.

What matters to me in a language is whether I can use it without thinking
about it. When a language is lacking in expressiveness I'm acutely aware that
I'm writing code that I shouldn’t be. On the other hand, when a language has
too many features I often feel overwhelmed or I get distracted playing with
them.

To make an analogy with mathematics, having a general formula that you
can derive others from is better than having to memorize a whole bunch of
formulas for specific problems.

This is where Clojure comes in. It allows us to easily derive a solution to a
particular problem from a small set of general patterns. All you need to become
productive is to learn a few simple concepts and a bit of syntax. These concepts
can then be combined in a myriad ways to solve all kinds of problems.

Why Make Web Apps in Clojure?

Clojure boasts tens of thousands of users; it’s used in a wide range of settings,
including banks and hospitals. Clojure is likely the most popular Lisp dialect
today for starting new development. Despite being a young language, it has
proven itself in serious production systems and the feedback from users has
been overwhelmingly positive.

As web development is one of the major domains for using Clojure, several
popular libraries and frameworks have sprouted in this area. The Clojure web
stack is based on the Ring and Compojure libraries."” Ring is the base HTTP
library, while Compojure provides routing on top of it. In the following chapters
you’ll become familiar with the web stack and how to use it effectively to build
your web applications.

1. https://github.com/ring-clojure/ring
2. https://github.com/weavejester/compojure

www.it-ebooks.info

https://github.com/ring-clojure/ring
https://github.com/weavejester/compojure
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Why Make Web Apps in Clojure? ® xi

There are many platforms for doing web development, so why should you
choose Clojure over other options?

Well, consider those options. Many popular platforms force you to make trade-
offs. Some platforms lack performance, others require a lot of boilerplate, and
others lack the infrastructure necessary for real-world applications.

Clojure addresses the questions of performance and infrastructure by being
a hosted language. The Java Virtual Machine is a mature and highly perfor-
mant environment with great tooling and deployment options. Clojure brings
expressive power akin to that of Ruby and Python to this excellent platform.
When working with Clojure you won’'t have to worry about being limited by
your runtime when your application grows.

The most common way to handle the boilerplate in web applications is by
using a framework. There are many frameworks, such as Ruby on Rails,
Django, and Spring. The frameworks provide canned functionality needed for
building a modern site.

The benefits the frameworks offer also come with inherent costs. Since many
operations are done implicitly, you have to memorize what effects any action
might have. This opaqueness makes your code more difficult to reason about.
When you need to do something that is at odds with the framework’s design
it can quickly become awkward and difficult. You might have to dive deep
into the internals of the particular framework and create hacks around the
expected behaviors.

So instead of using frameworks, Clojure makes a number of powerful libraries
available, and we can put these libraries together in a way that makes sense
for our particular project. As you'll see, we manage to avoid having to write
boilerplate while retaining the code clarity we desire. As you read on I think
you’ll agree that this model has clear advantages over the framework-based
approach.

My goal is to give you both a solid understanding of the Clojure web stack
and the expertise to quickly and easily build web applications using it. The
following chapters will guide you all the way from setting up your development
environment to having a complete real-world application. I will show what’s
available, then guide you in structuring your application using the current
best practices.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

CHAPTER 1

Getting Your Feet Wet

In the Introduction, on page ix, we talked about some of the benefits of the
functional style when it comes to writing applications. Of course, you can’t
learn a language simply by reading about it. To really get a feel for it you have
to write some code yourself.

In this chapter we’ll cover how to develop a simple guestbook application that
allows users to leave messages for each other. We'll see the basic structure
of a web application as well as the tools necessary for effective Clojure devel-
opment. If you're new to Clojure, I recommend taking a look at Appendix 2,
Clojure Primer, on page 181, for a crash course on the basic concepts and
syntax.

Setting Up Your Environment

Clojure requires the Java Virtual Machine (JVM) to run, and you will need a
working Java Development Kit, version 1.6 or higher.' Clojure distribution is
provided as a JAR that simply needs to be available on your project’s class-
path. Clojure applications can be built with the standard Java tools, such as
Maven and Ant;>® however, I strongly recommend that you use Leiningen,*
which is designed specifically for Clojure.

Managing Projects with Leiningen

Leiningen lets you create, build, test, package, and deploy your projects. In
other words, it’s your one-stop shop for all your project-management-related
needs.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/

http://ant.apache.org/

http://leiningen.org/

WD

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/
http://ant.apache.org/
http://leiningen.org/
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 1. Getting Your Feet Wet * 2

Leiningen is the Clojure counterpart of Maven, a popular tool for managing
Java dependencies. Leiningen is compatible with Maven, so it has access to
large and well-maintained repositories of Java libraries. In addition, Clojure
libraries are commonly found in the Clojars repository.® This repository is, of
course, enabled by default in Leiningen.

With Leiningen, you don’t need to worry about manually downloading all the
libraries for your project. You can simply specify the top-level dependencies,
and they will cause the libraries they depend on to be pulled in automatically.

Installing Leiningen is as simple as downloading the installation script from
the official project page and running it.°

Let’s test this. We'll create a new project by downloading the script and run-
ning the following commands:

wget https://raw.github.com/technomancy/leiningen/stable/bin/lein
chmod +x lein
mv lein ~/bin
lein new myapp

Since we're running lein for the first time, it will need to install itself. Once
the install is finished you should see the following output if the command
completes successfully:

Generating a project called myapp based on the 'default' template.
To see other templates (app, lein plug-in, etc), try “lein help new’.

A new folder called myapp has been created, containing a skeleton application.
The code for the application can be found in the src folder. There we’ll have
another folder called myapp containing a single source file named core.clj. This
file has the following code inside:

(ns myapp.core)

(defn foo
"I don't do a whole lot."
[x]
(println x "Hello, World!"))

Note that the namespace declaration matches the folder structure. Since the
core namespace is inside the myapp folder, its name is myapp.core.

5. https://clojars.org/
6. http://leiningen.org/#install

www.it-ebooks.info

https://clojars.org/
http://leiningen.org/#install
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Setting Up Your Environment ¢ 3

What's in the Leiningen Project File

Inside the myapp project folder we have a project.clj file. This file contains the
description of our application. With close scrutiny, you'll see that this file is
written using standard Clojure syntax and contains the application name,
version, URL, license, and dependencies.

(defproject myapp "0.1.0-SNAPSHOT"
:description "FIXME: write description"
:url "http://example.com/FIXME"
:license {:name "Eclipse Public License"
turl "http://www.eclipse.org/legal/epl-v10.html"}
:dependencies [[org.clojure/clojure "1.5.1"11])

The project.clj file will allow us to manage many different aspects of our appli-
cation, as well. For example, we could set the foo function from the myapp.core
namespace as the entry point for the application using the :main key:

(defproject myapp "0.1.0-SNAPSHOT"

:description "FIXME: write description"

:url "http://example.com/FIXME"

:license {:name "Eclipse Public License"

:url "http://www.eclipse.org/legal/epl-v10.html"}

:dependencies [[org.clojure/clojure "1.5.1"]]

;,this will set foo as the main function

:main myapp.core/foo)

The application can now be run from the command line using lein run. Since
the foo function expects an argument, we’ll have to pass one in:

lein run First
First Hello, World!

In the preceding example we created a very simple application that has only
a single dependency: the Clojure runtime. If we used this as the base for a
web application, then we’d have to write a lot of boilerplate to get it up and
running. Let’s see how we can use a Leiningen template to create a web-
application project with all the boilerplate already set up.

Leiningen Templates

The templates consist of skeleton projects that are instantiated when the
name of the template is supplied to the lein script. The templates themselves
are simply Clojure projects that use the lein-newnew plug-in.” Later on we’ll
see how we can create such templates ourselves.

7. https://github.com/Raynes/lein-newnew

www.it-ebooks.info

https://github.com/Raynes/lein-newnew
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 1. Getting Your Feet Wet ¢ 4

For now, we’ll use the compojure-app template to instantiate our next applica-
tion.® The template name is specified as the argument following the new
keyword when running lein, followed by the name of the project. To make a
web application instead of the default one as we did a moment ago, we only
have to do the following:

lein new compojure-app guestbook

This will cause Leiningen to use the compojure-app template when creating
the guestbook application. This type of application needs to start up a web
server in order to run. To do that we can run lein ring server instead of lein run.

When we run the application, we’ll see the following output in the console
and a new browser window will pop up showing the home page.

lein ring server

guestbook is starting

2013-07-14 18:21:06.603:INFO:0ejs.Server:jetty-7.6.1.v20120215
2013-07-14 18:21:06.639:INF0:0ejs.AbstractConnector:
StartedSelectChannelConnector@®.0.0.0:3000

Started server on port 3000

Now that we know how to create and run our applications, we’ll look at our
editor options.

You might have noticed that Clojure code can quickly end up having lots of
parentheses. Keeping them balanced by hand would quickly turn into an
exercise in frustration. Luckily, Clojure editors will do this for us.

In fact, not only do the editors balance the parentheses, but some are even
structurally aware. This means the editor knows where one expression ends
and another begins. Therefore, we can navigate and select code in terms of
blocks of logic instead of lines of text.

In this chapter we’ll be using Light Table to work with our guestbook applica-
tion.” It’s very easy to get up and running and will allow us to quickly dive
into writing some code. However, its functionality is somewhat limited and
you may find it insufficient for larger projects. Alternative development envi-
ronments are discussed in Appendix 1, Alternative IDE Options, on page 177.

Using Light Table

Light Table does not require any installation and we can simply run the exe-
cutable after it’s downloaded.

8. https://github.com/yogthos/compojure-template
9. http://www.lighttable.com/

www.it-ebooks.info

https://github.com/yogthos/compojure-template
http://www.lighttable.com/
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Setting Up Your Environment ® 5

Light Table offers a very minimal look. By default it simply shows the editor
pane with the welcome message (see the following figure).

8 00 Light Table e

==
LIGHT TABLE

Welcome to the latest version of Light Table. To see the full list of
what's been added/changed, checkout the - Some of
the highlights include deeper Javascript support, inline browsers,
and Python eval! If you're new, you might want to take a look at

Light Table's docs to get started.

1/1

Figure 1—Light Table workspace

We'll add the workspace pane from the menu by selecting View -> Workspace
or pressing Ctrl-T on Windows/Linux or Cmd-T on OS X.

From there we can open the guestbook project by navigating to the Folder
tab on the top left, as the following figure shows.

B0 i L s i o
folder | file | recent

Add files or folders
to the workspace
or open a recent
one to get started.

Figure 2—Opening a project

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 1. Getting Your Feet Wet * 6

Once the project is selected we can navigate the project tree and select files
we wish to edit (see the following figure).

(ns guestbook.routes.home
T (:reguire [compojure.core :refer :all]
[guestbook.views.layout :as layout]))

(defn home []
(layout/common [:hl "Hello World!"]))

(defroutes home-routes
(GET "/" [] (home)))

B 1/:

Figure 3—Light Table project

Now that we have our development environment set up, we can finally look
at adding some functionality to our guestbook application.

Your First Project

You should have your guestbook project running in the console and available
at http://localhost:3000/. We'll stop this instance by pressing Ctrl-C in the terminal.
Since we have it open in our Light Table workspace, we can run it from the
editor instead.

We'll now go a step further and create a Read-Evaluate-Print Loop (REPL)
connection from Light Table to our project. Navigate to View -> Connections
in the menu to open the Connections tab. There we can click the Add Connec-
tion button shown in Figure 4, Light Table connection, on page 7.

www.it-ebooks.info

report erratum « discuss

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Your First Project ® 7

(ns guestbook.routes.home
~ (:require [compojure.core :refer :all]
[guestbook.views.layout :as layout]))
{defn home []
(layout/common [:hl "Hello World!"])) Eval in an editor or explicitly

add a connection above.
(defroutes home-routes
(GET "/" [] (home)))

B i/

Figure 4—Light Table connection

At this point a list of different connection options will pop up. We'll select the
Clojure option, as seen in Figure 5, Light Table Clojure connection, on page
8. Then we'll navigate to the guestbook project folder and select the project.clj
file.

With our project connected to Light Table we can start evaluating things right
in the editor!

You can try this immediately by navigating to any function and pressing
Ctrl-Enter on Windows and Linux or Cmd-Enter on OS X. If we do this while the
cursor is on the home function, we’ll see the following printed next to it:

#'guestbook. routes.home/home

This says that the function has been evaluated in the REPL and is now
available for use.

We can also open an Instarepl by pressing Ctrl+spacebar and typing in repl.
This will open a scratch editor that we can use to run arbitrary code (see
Figure 6, Light Table Instarepl, on page 8).

www.it-ebooks.info

report erratum « discuss

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 1. Getting Your Feet Wet * 8

(ns guestbock.routes.home
~ (:require [compojure.core :refer :all]
[guestbook.views.layout :as layout]))

{defn home []
(layout/commen [:hl "Hello World!"]))

(defroutes home-routes
(GET "/" [] (home)))

B i/

Figure 5—Light Table Clojure connection

[|

{ns guestbook.routes.home

(:require [compojure.core :refer :all] i
[guestbook.views.layout :as layout])) _

(defn home []

Instarepl: Make current editor

(layout/common [:hl "Hello World!"])) e
(defroutes home-routes '_WInduw_ iz Refresh Light Table
(GET "/" []1 (home))) e —
Editor: Set current editor
syntax
Settings: Default keymap

Settings: Default behaviors

B i/

Figure 6—Light Table Instarepl

www.it-ebooks.info report erratum - discuss

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Your First Project ® 9

By default the Instarepl evaluates everything as soon as any changes are
made. This is referred to as the live mode. We can now reference the guest-
book.repl namespace here and run the start-server function.

(use 'guestbook.repl)
(start-server)

When the code is evaluated the HTTP server will start up and a new browser
window will open, pointing to the home page (as in the following figure).

8 00 Light Table e

folder | file | recent home.clj | Instarepl*

;7 Anything you type in here will be executed live
;; immediately with the results shown on the

i: right.

(use 'guestbook.repl) nil

(start-server) [nil

guestbook/ i
resources/ ;2;
public/ 4
css/ 3
5Creen.css
img/
is/
src/
guestbook/
models/
routes/
home.clj
views/
layout.clj
handler.clj
repl.clj
target/
db.sq3
project.clj
8 4/15

Figure 7—Running the server in the Instarepl

Since we don’t wish start-server to continue being called, we’ll remove the pre-
ceding code from the editor.

Alternatively, we could disable the live evaluation by clicking the live icon on
the top right. With the live mode disabled we can run commands using Alt-Enter.

Now let’s reference our home namespace by running (use 'guestbook.routes.home)
and call the home function, as Figure 8, Using the REPL, on page 10 shows.

As you can see, calling home simply generates an HTML string for our home
page. This is what gets rendered in the browser when we navigate to
http://localhost:3000.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 1. Getting Your Feet Wet * 10

home.clj

i; Anything you type in here will be executed -
7; immediately with the results shown on the
:: right,

(use 'guestbook.routes.home) (A

(home)

B s/7

Figure 8—Using the REPL

Notice that we use Clojure vectors to represent the corresponding HTML tags
in our code. If we add some new tags and reload the page, we'll see the

changes. For example, let’s update our home function to display a heading
and a form to enter a message.

(defn home []
(layout/common
[:h1l "Guestbook"]
[:p "Welcome to my guestbook"]
[:hr]
[:form
[:p "Name:"]
[:input]
[:p "Message:"]
[:textarea {:rows 10 :cols 40}]1]1))

When we reload the page, we’ll immediately see the changes we made (refer
to Figure 9, Guestbook, on page 11).

www.it-ebooks.info report erratum - discuss

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Your First Project ® 11

.

L e .0 B_ 4 D Welcome to guestbook x

« > C | [localhost:3000 ﬁ|

Guestbook

Welcome to my guestbook

MName:

Message:

Figure 9—Guestbook

You might have guessed that the code directly below the home function is
responsible for binding the "/* route to it.

(defroutes home-routes
(GET "/" [1 (home)))

Here, we use defroutes to define the routes for the guestbook.routes.home namespace.
Each route represents a URI to which your application responds. It starts
with the type of the HTTP request it responds to, such as GET or POST, fol-
lowed by the parameters and the body.

Before we move on to add any more functionality to the project, we’ll take a
quick look at the files that were generated for our guestbook application.

Understanding Application Structure
When we expand our project in the Workspace tab it should look like this:

guestbook/
resources/
public/
css/
screen.css
img/
js/
src
guestbook/

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 1. Getting Your Feet Wet ® 12

models/
routes/
home.clj
views/
layout.clj
handler.clj
repl.clj
test/
guestbook/
test/
hanlder.clj
project.clj
README . md

In our project’s root folder is the project.clj file that is used for configuring and
building the application.

We also have several folders in our project. The src folder is where the appli-
cation code lives. The resources folder is where we’ll put any static resources
associated with the application, such as CSS files, images, and JavaScript.
Finally, we have the test folder where we can add tests for our application.

Clojure namespaces follow Java packaging conventions, meaning that if a
namespace contains a prefix, it must live in a folder matching the name of
the prefix. Note that if a namespace contains any dashes, they must be con-
verted to underscores for the corresponding folder and file names.

This is because the dash is not a valid character in Java package names.
Given that Clojure compiles to JVM bytecode, it must follow this convention
as well.

Since we called our application guestbook, all its namespaces live under the
src/guestbook folder. Let’s look at what these are. First we have the guestbook.handler
namespace found in src/guestbook/handler.clj. This namespace contains the entry
point to our application and defines the handler that’s going to handle all the
requests to it.

The guestbook.repl namespace found in src/guestbook/repl.clj contains functions that
start and stop the server when running from the REPL. We can use it to
launch our application directly from the editor instead of running it via lein.

Next, we have a folder called models. This is reserved for namespaces used to
define the application’s model layer. Such namespaces might deal with
database connections, table definitions, and records access.

In the routes folder we have the namespaces dealing with the route definitions.
The routes constitute entry points for any workflows we choose to implement.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Your First Project ® 13

Currently, there’s a single namespace called guestbook.routes.home with the route
to your home page defined in it. This namespace lives in src/guestbook/routes/
home.clj.

The views folder comes next; it’s used to hold namespaces that deal with your
application’s visual layout. It comes populated with the guestbook.views.layout
namespace, which defines the basic page structure. Once again, the corre-
sponding file for the layout namespace is src/guestbook/views/layout.clj.

Adding Some Functionality

Let’s look at creating the user interface (UI) for our guestbook. Don’t worry if
you can’t immediately follow all of the code; it will be covered in detail in the
following chapters. Instead of focusing on the minutiae of each function,
notice how we’ll structure our application and where we put different parts
of application logic.

We created a form earlier by writing out its tags by hand. We’ll now replace
it with a better implementation using helper functions from the Hiccup
library. '

In order to use these functions, we’ll have to reference the library in our
namespace declaration as seen here:

(ns guestbook.routes.home
(:require [compojure.core :refer :all]
[guestbook.views.layout :as layout]
[hiccup.form :refer :alll))

We'll start by creating a function to render the existing messages. This function
renders an HTML list containing the existing comments. For the time being
we’ll simply hardcode a couple of test comments.

(defn show-guests []
[:ul.guests
(for [{:keys [message name timestamp]}
[{:message "Howdy" :name "Bob" :timestamp nil}
{:message "Hello" :name "Bob" :timestamp nil}]]
[:1i

[:blockquote message]

[:p "-" [:cite name]]

[:time timestamp]l]l)])

Next, let’s update the home function to allow the guests to see the messages
left by the previous guests, and provide a form to create a new message.

10. https://github.com/weavejester/hiccup

www.it-ebooks.info

https://github.com/weavejester/hiccup
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 1. Getting Your Feet Wet * 14

(defn home [& [name message error]]
(layout/common
[:hl "Guestbook"]
[:p "Welcome to my guestbook"]
[:p error]
;here we call our show-guests function
;to generate the list of existing comments
(show-guests)
[:hr]
;here we create a form with text fields called "name" and "message"
;these will be sent when the form posts to the server as keywords of
;the same name
(form-to [:post "/"]
[:p "Name:"]
(text-field "name" name)
[:p "Message:"]
(text-area {:rows 10 :cols 40} "message" message)
[:br]
(submit-button "comment"))))

When we navigate to the browser we can see the test messages displayed
along with the form. Notice that the home function now takes several optional
parameters. We'll render the values of these parameters on the page. When
the parameters are nil they will be rendered as empty strings.

The form we created sends an HTTP POST to the "/" route, so let’s add a route
to handle this action. This route will call a helper function called save-message,
which we’ll define shortly.

guestbook/src/guestbook/routes/home.clj

(defroutes home-routes

(GET "/" [1 (home))

(POST "/" [name message] (save-message name message)))

The save-message function will check that name and message parameters are
set, then call the home function. When both parameters are supplied the
message will be printed to the console; otherwise, an error message will be
generated.

(defn save-message [name message]
(cond
(empty? name)
(home name message "Some dummy forgot to leave a name")
(empty? message)
(home name message "Don't you have something to say?")
relse
(do
(println name message)
(home))))

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/guestbook/src/guestbook/routes/home.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Your First Project ® 15

Try adding a comment in the guestbook to see that the name and the message
are printed in the console. Next, try leaving the name or the message blank
and see if an error is rendered.

We've now added the ability to view and submit messages from the Ul. How-
ever, we don’t really have anywhere to store these messages at the moment.

Adding the Data Model

Since our application will need to store the comments visitors post, let’s add
the JDBC and SQLite dependencies to our project.clj.'' The :dependencies section
of our project should look like the following, with the new dependencies added.

:dependencies [[org.clojure/clojure "1.5.1"]
[compojure "1.1.5"]
[hiccup "1.0.4"]
[ring-server "0.3.0"]
; ;JDBC dependencies
[org.clojure/java.jdbc "0.2.3"]
[org.xerial/sqlite-jdbc "3.7.2"]1]

Since we've added new dependencies we’ll need to reconnect our project to
the REPL. To do this, navigate to the Connect tab and click the Disconnect
button, then follow the previously detailed steps to connect a new REPL
instance (shown in Figure 10, Disconnecting the REPL, on page 16).

Once we reconnect the REPL we’ll need to run (start-server) in the Instarepl, as
we did earlier.

We're now ready to create a model for our application. We’'ll create a new
namespace under the src/guestbook/models folder. We’ll call this namespace
guestbook.models.db. To do that, right-click on the models folder in the workspace
and choose the New File option. When the file is created name it db.clj.

As the name implies, the db namespace will govern the model for our applica-
tion and provide functions to store and read the data from the database.

First, we'll need to add the namespace declaration and reference the database
dependencies. We'll do this by writing the following namespace declaration:

guestbook/src/guestbook/models/db.clj

(ns guestbook.models.db
(:require [clojure.java.jdbc :as sql])
(:import java.sql.DriverManager))

11. http://www.sqlite.org/

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/guestbook/src/guestbook/models/db.clj
http://www.sqlite.org/
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 1. Getting Your Feet Wet * 16

Instarepl* e connection

(ns guestbook.routes.home
(:require [compojure.core :refer :
[guestbook.views. layout

(defn home []
(layout/common [:hl "Hello World!™

(defroutes home-routes

(GET /" [] (home))) [#'guestbook.1

B w0/

Figure 10—Disconnecting the REPL

Notice that we use the :require keyword to reference other Clojure namespaces,
but we have to use :import to reference the Java classes.

Next, we’ll create the definition for our database connection. The definition
is simply a map containing the class for the JDBC driver, the protocol, and
the name of the database file used by SQLite.

guestbook/src/guestbook/models/db.clj

(def db {:classname "org.sqlite.JDBC",
:subprotocol "sqlite",
:subname "db.sq3"})

Now that we have a database connection declared, let’s write a function to
create the table for storing the guest messages.

guestbook/src/guestbook/models/db.clj
(defn create-guestbook-table []
(sql/with-connection
db
(sql/create-table
:guestbook

www.it-ebooks.info

report erratum « discuss

http://media.pragprog.com/titles/dswdcloj/code/guestbook/src/guestbook/models/db.clj
http://media.pragprog.com/titles/dswdcloj/code/guestbook/src/guestbook/models/db.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Your First Project ® 17

[:id "INTEGER PRIMARY KEY AUTOINCREMENT"]
[:timestamp "TIMESTAMP DEFAULT CURRENT TIMESTAMP"1]
[:name "TEXT"]
[:message "TEXT"])
(sql/do-commands "CREATE INDEX timestamp index ON guestbook (timestamp)")))

This function uses the with-connection statement, which ensures that the
database connection is properly cleaned up after use. Inside it, we call the
create-table function and pass it the key representing the table name, followed
by vectors representing the table columns. Just to be thorough, we’ll create
an index on the timestamp field.

To run (create-guestbook-table) in the Instarepl we first have to reference the
namespace, as we did with the guestbook.routes.home earlier.

(use 'guestbook.models.db)

(create-guestbook-table)

You should now be able to run (create-guestbook-table) in the Instarepl to create
the table. If you have the live mode enabled you’ll want to disable it before
doing this. Otherwise create-guest-book-table will be called any time the scratch
buffer is updated and produce errors.

With the table created, we can write a function to read the messages from
the database.

guestbook/src/guestbook/models/db.clj
(defn read-guests []
(sql/with-connection
db
(sql/with-query-results res
["SELECT * FROM guestbook ORDER BY timestamp DESC"]
(doall res))))

Here we use with-query-results to run a select statement and return its result.
The reason we call doall before returning the result is because res is lazy and
doesn’t load all results into memory.

By calling doall we force res to be completely evaluated. If we do not, then our
connection will be closed when we leave the function scope and we won’t be
able to access the results outside it.

We'll also need to create a function to save new messages to our guestbook
table. This function will call insert-values and pass it the name and the message
to be stored as parameters.

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/guestbook/src/guestbook/models/db.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 1. Getting Your Feet Wet * 18

guestbook/src/guestbook/models/db.clj
(defn save-message [name message]
(sql/with-connection
db
(sql/insert-values
:guestbook
[:name :message :timestamp]
[name message (new java.util.Date)])))

Now that we’ve written functions to read and write messages, we can try them
out in the REPL. We'll need to rerun (use 'guestbook.models.db) in the Instarepl to
access the newly added functions. However, both the guestbook.models.db and
the guestbook.routes.home namespaces define a function called save-message.

If we try to reload the guestbook.models.db namespace we’ll get an error stating
that save-message has already been referenced in the guestbook.routes.home
namespace. To avoid this problem we’ll remove the current reference to
save-message by running ns-unmap in the Instarepl before running (use
'guestbook.models.db).

(ns-unmap 'user 'save-message)
(use 'guestbook.models.db)

Now we can try running the following code and see if the logic for saving and
reading messages works as expected:

(save-message "Bob" "hello")
(read-guests)

We should see the output shown in Figure 11, Testing the save function, on
page 19 after saving a message and reading guests from our database.

With our persistence layer in place, we can go back and update our home
namespace to use it instead of the dummy data we created earlier.

Putting It All Together
We'll now add the db dependency to our home route declaration.

guestbook/src/guestbook/routes/home.clj
(ns guestbook.routes.home
(:require [compojure.core :refer :all]
[guestbook.views.layout :as layout]
[hiccup.form :refer :all]
[guestbook.models.db :as db]))

Next, we’ll change the show-guests function to call db/read-guests:

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/guestbook/src/guestbook/models/db.clj
http://media.pragprog.com/titles/dswdcloj/code/guestbook/src/guestbook/routes/home.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Your First Project ® 19

home.clj db.clj

i+ Anything you type in here will be executed -
i+ immediately with the results shown on the

77 right.

(use 'guestbook.models.db)

(create—guestbook-table)

(save-message "Bob" "hello")

(read-guests)

@ s/20

Figure 11—Testing the save function

(defn show-guests []
[:ul.guests
(for [{:keys [message name timestamp]} (db/read-guests)]

[:1i
[:blockquote message]
[:p "-" [:cite name]]

[:time timestamp]l)])

Finally, we’ll change the save-message function to call db/save-message instead of
printing the submitted params:

guestbook/src/guestbook/routes/home.clj
(defn save-message [name message]
(cond
(empty? name)
(home name message "Some dummy forgot to leave a name")
(empty? message)
(home name message "Don't you have something to say?")
relse
(do
(db/save-message name message)
(home))))

www.it-ebooks.info report erratum - discuss

http://media.pragprog.com/titles/dswdcloj/code/guestbook/src/guestbook/routes/home.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 1. Getting Your Feet Wet * 20

With these changes in place we can navigate to our page and see that the
message we added earlier in the REPL is displayed, as it is in the following
figure.

ﬂ‘f [* welcome to guestbook * \L_____j. ™
€ - C' [I localhost:3000 v

Guestbook

Welcome to my guestbook
. hello
-Bob
1374335468644

MName:

Message:

| comment |

Figure 12—Working guestbook

We can now try adding more messages to confirm that our guestbook is indeed
working as intended.

You've probably noticed that we still have a wart in the way we display the
messages on our page. The time is simply shown as a number representing
the milliseconds. This isn’t terribly user-friendly, so let's add a function to
format it instead.

To do that, we’ll use Java interop to create an instance of SimpleDateFormat to
format the timestamps for us:

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Your First Project ® 21

guestbook/src/guestbook/routes/home.clj
(defn format-time [timestamp]

(-> "dd/MM/yyyy"
(java.text.SimpleDateFormat.)
(.format timestamp)))

(defn show-guests []
[:ul.guests
(for [{:keys [message name timestamp]} (db/read-guests)]
[:1l1i
[:blockquote messagel
[:p "-" [:cite name]]
[:time (format-time timestamp)]1]1)])

Finishing Touches

We're almost done building our guestbook. There’s only one thing left to do.

Since we need to have the database table created in order to access it, we’ll
add the code for doing that to our handler namespace. First, we'll reference our
db namespace in the declaration of our handler.

(ns guestbook.handler

(:require ...
[guestbook.models.db :as dbl))

Then we’ll update our init function to check whether the database exists and
try to create the guestbook table if needed.

guestbook/src/guestbook/handler.clj
(defn init []
(println "guestbook is starting")
(if-not (.exists (java.io.File. "./db.sq3"))
(db/create-guestbook-table)))

Since the init function runs once on load, it ensures that the database is
available before we start using the application.

What Did We Just Do?

The preceding example gives us a taste of what to expect when developing
web applications with Clojure. You might have noticed that you need to write
very little code to get a working application. The code that you do write has
little to no boilerplate.

At this point you should feel comfortable with the application’s structure, its
major components, and how they all fit together.

As you'll recall, the application consists of the following namespaces.

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/guestbook/src/guestbook/routes/home.clj
http://media.pragprog.com/titles/dswdcloj/code/guestbook/src/guestbook/handler.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 1. Getting Your Feet Wet * 22

There is the guestbook.handler namespace responsible for bootstrapping and
creating the handler the server uses to pass the client requests to the
application.

Next we have the guestbook.routes.home namespace. This is where we set up the
workflows for the actual functionality and where the bulk of application logic
lives. As you add more workflows you would create new namespaces under
guestbook.routes. For example, you might have a guestbook.routes.auth namespace,
where you would handle user registration and authentication.

Each namespace under routes will typically encapsulate a self-contained
workflow in the application. All the code pertaining to it can be found in one
place and will work independently from the other routes. A workflow might
represent handling user authentication, editing content, or performing
administration.

The guestbook.views.layout namespace manages the application layout. Here is
where we put the code to generate the common page elements and govern
the structure for the pages in our application. The layout generally takes care
of including static resources, such as CSS and JavaScript files the pages
need, as well as setting up other common elements like headers and footers.

Finally, we have the guestbook.models.db namespace. This namespace governs
the data model for the application. The table definitions will dictate the data
types, and what data you persist from the client.

As we move on to build larger applications these things will remain constant.
A properly structured Clojure application is easy to understand and maintain.
This is great news for your application’s overall life cycle, as you never have
to navigate complex hierarchies like you often do when dealing with large
code bases in some other languages.

We developed our application using the Light Table development environment.
Although it's easy to use, it’s still rough around the edges and lacks some
useful features available in other integrated development environments (IDEs).
These features include code completion, structural code editing, and integrated
dependency management.

At this point I encourage you to take the time to try out a more mature envi-

12,13

ronment such as Eclipse or Emacs. The rest of the book will assume

Eclipse as the development environment; however, it should be easy to follow

12. http://www.eclipse.org/
13. http://www.gnu.org/software/emacs/

www.it-ebooks.info

http://www.eclipse.org/
http://www.gnu.org/software/emacs/
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Your First Project ® 23

regardless of the editor you're using. To see the instructions for setting up
an alternative IDE, please refer to Appendix 1, Alternative IDE Options, on
page 177.

You'll notice that we actively use the REPL while developing the application.
This is different from most development environments, where the REPL is not
integrated with the editor. Being able to execute code in the REPL makes you
more productive by providing you with a faster feedback cycle.

In this chapter we set up our development environment and covered how a
typical Clojure web application is structured. In the next chapter, we’ll look
at the core libraries that comprise the Clojure web stack. You'll learn about
the request/response life cycle, defining routes, session management, and
use of middleware to augment the core request-handling functionality.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

CHAPTER 2

Clojure Web Stack

In the last chapter we jumped right into building a simple application. This
let us get comfortable with the development environment and provided a
glimpse at what to expect in terms of project structure. At this point we’ll step
back and take the time to understand how all the components work in detail.

Because the Clojure community values simplicity and flexibility, things tend
not to be monolithic or prescriptive. Practically all the components of the web
stack have a number of alternatives. You can pick and choose the ones that
fit your style and the type of application you're developing. In this book we’ll
focus on the popular Ring/Compojure stack that’'s well established and has
been used to build many real-world applications.

The previous chapter introduced a simple application that allows users to
leave messages and view those left by others. We covered the directory layout
and the files found in the project, as well as their purpose. However, we didn’t
focus very closely on the code in these files. In this chapter, you’ll learn the
background necessary to fully understand our guestbook application.

Since the Clojure web stack is built on top of the Java HTTP Servlet application
programming interface (API),' applications can be deployed on any servlet
container, such as Jetty, GlassFish, or Tomcat.>**

Clojure applications can be run standalone or can be deployed side-by-side
with existing Java applications using an application server.

http://www.oracle.com/technetwork/java/index-jsp-135475.html
http://www.eclipse.org/jetty/

https://glassfish.java.net/

http://tomcat.apache.org/

WD

www.it-ebooks.info

http://www.oracle.com/technetwork/java/index-jsp-135475.html
http://www.eclipse.org/jetty/
https://glassfish.java.net/
http://tomcat.apache.org/
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 2. Clojure Web Stack ® 26

Since many cloud services run on the Java Virtual Machine, you would be
able to deploy your applications there, as well. Such services include Amazon
Web Services, Google App Engine, Heroku, and Jelastic.>®"®

A servlet receives requests and generates corresponding responses based on
the HTTP protocol specification. The API provides many of the core features
needed in a web application, such as cookies, sessions, and URL rewriting.
However, servlets are designed to be used from Java, and using them directly
from Clojure does not provide the best experience for the user.

Unlike many platforms, such as Rails or Django, the Clojure web stack does
not offer a single opinionated framework. Instead, you can put together a
number of libraries to build your application. In this book we’ll focus on sev-
eral libraries commonly used for web development.

We'll start by looking at the Clojure libraries that provide the native Clojure
API for working with servlets. These libraries are called Ring and Compojure.
Ring acts as a wrapper around Java servlets. In turn, Compojure uses it to
map request-handler functions to specific URLs. The application sits on top
of this stack, using these libraries to interact with the client and manage the
application state.

Routing Requests with Ring

Ring aims to abstract the details of HTTP into a simple and modular API that
can be used to build a large spectrum of applications. If you've developed web
applications in Python or Ruby, then you’ll find it similar to the WSGI and
Rack libraries found in those languages.®'°

Since Ring has become the de facto standard for building web applications,
a lot of tools and middleware have been developed around it. While in most
cases you won't need to use Ring directly, it’s useful to have a high-level
understanding of its design, as it will help you in developing and troubleshoot-
ing your applications.

Ring applications consist of four basic components: the handler, the request,
the response, and the middleware. Let’s look at each one of these.

http://aws.amazon.com/
https://developers.google.com/appengine/
https://www.heroku.com/
http://jelastic.com/

. http://wsgi.readthedocs.org/en/latest/
10. http://rack.github.io/

© P NG

www.it-ebooks.info

http://aws.amazon.com/
https://developers.google.com/appengine/
https://www.heroku.com/
http://jelastic.com/
http://wsgi.readthedocs.org/en/latest/
http://rack.github.io/
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Routing Requests with Ring * 27

Handling Requests

Ring uses standard Clojure maps to represent the client requests and the
responses returned by the server. The handlers are functions that process
the incoming requests. They accept request maps and return response maps.
A very simple Ring handler might look like this:

(defn handler [request-map]
{:status 200

rheaders {"Content-Type" "text/html"}

:body (str "<html><body> your IP is: "
(:remote-addr request-map)
"</body></html>")})

As you can see, it accepts a map representing an HTTP request and returns
a map representing an HTTP response. Ring then takes care of generating an
HTTP servlet request, and response objects from these maps.

The preceding handler simply serves an HTML string with the client’s IP
address and sets the response status to 200. Since this is a common operation,
the Ring API provides a helper function for generating such responses:

(defn handler [request-map]
(response

(str "<html><body> your IP is:
(:remote-addr request-map)
"</body></html>")))

If you wanted to create a custom response, you'd simply have to write a
function that would accept a request map, and return a response map repre-

senting your custom response. Let’s look at the format for the request and
response maps.

Request and Response Maps

The request and response maps will contain information such as the server
port, URI, remote address, and content type, plus the body with the actual
payload. The keys in these maps are based on the servlet API and the official
HTTP RFC."

What's in the Request Map

The request defines the following standard keys. Note that not all of these
keys, such as :ssl-client-cert, are guaranteed to be present in a request.

11. http://www.w3.org/Protocols/rfc2616/rfc2616.html

www.it-ebooks.info

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 2. Clojure Web Stack * 28

e :server-port — The port on which the server is handling the request.

e :server-name — The server’s IP address or the name it resolves to.

¢ :remote-addr — The client’s IP address.

e :query-string — The request’s query string.

¢ :scheme — The specifier of the protocol, which can be either :http or :https.

e :request-method — The HTTP request method, such as :get, :head, :options, :put,
:post, or :delete.

e :request-string — The request’s query string.

e :content-type — The request body’s MIME type.

e :content-length — The number of bytes in the request.

e :character-encoding — The name of the request’s character encoding.
¢ :headers — A map containing the request headers.

* :body — An input stream for the body of the request.

e :context — The context in which the application can be found when not
deployed as root.

¢ :uri — The request URI path on the server; this string will have the :context
prepended when available.

e :ssl-client-cert — The client’s SSL certificate.

In addition to the standard keys from the Ring specification, it is possible to
use middleware functions to extend the request map with other application-
specific keys. Later in this chapter we’ll cover how to accomplish this.

What's in the Response Map
The response map contains only three keys needed to describe the HTTP response:
e :status — The response’s HTTP status

e :headers — Any HTTP headers to be returned to the client
¢ :body — The response’s body

The status is a number representing one of the status codes specified in the
HTTP RFC, the lowest allowed number being 100.

The header is a map containing the HTTP-header key/value pairs. Headers
may be strings or a sequence of strings, in which case a key and a value will
be sent for each string in the sequence.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Routing Requests with Ring ® 29

Finally, the response body can contain either a string, a sequence, a file, or
an input stream. The body must correspond appropriately with the response’s
status code.

When the response body is a string, it will be sent back to the client as is. If
it is a sequence, then a string representing each element is sent to the client.
Finally, if the response is a file or an input stream, then the server sends its
contents to the client.

Adding Functionality with Middleware

The middleware allows wrapping the handlers in functions that can modify
the way the request is processed. Middleware functions are often used to
extend the base functionality of Ring handlers to match your application’s
needs.

A middleware handler is a function that accepts an existing handler with
some optional parameters, then returns a new handler with some added
behavior. The following is an example of such a function:

(defn handler [request]
(response
(str "<html><body> your IP is: "
(:remote-addr request)
"</body></html>")))

(defn wrap-nocache [handler]
(fn [request]
(let [response (handler request)]
(assoc-in response [:headers "Pragma"] "no-cache"))))

(def app (wrap-nocache handler))

The wrapper in our example accepts the handler and returns a function that
in turn acts as a handler. Since the returned function was defined in the local
scope, it can reference the handler internally. When invoked, it will call the
handler with the request and add Pragma: no-cache to the response map.

The wrapper function is called a closure because it closes over the handler
parameter and makes it accessible to the function it returns.

The technique we've just seen allows us to create small functions, each
dealing with a particular aspect of the application. We can then easily chain
them together to provide complex behaviors needed for real-world applications.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 2. Clojure Web Stack ® 30

What Are the Adapters?

Adapters sit between the handlers and the underlying HTTP protocol. They
provide any necessary configuration, such as port mappings, and handle
parsing HTTP requests into request maps and constructing HTTP responses
from the handler response maps. You will generally not need to interact with
adapters directly. We won’t say anything more about them.

Defining the Routes with Compojure

Compojure is a routing library built on top of Ring. It provides an easy way
to associate handler functions with a URL and an HTTP method. A Compojure
route might look like this:

(GET "/:id" [id] (str "<p>the id is: " id "</p>"))

The route name maps to an HTTP method name, such as GET, POST, PUT,
DELETE, or HEAD. There’s also a route called ANY that matches any method
the client supplies. The URI can contain keys denoted by using a colon, and
their values can be used as parameters to the route. This feature was inspired
by a similar mechanism used in Rails and Sinatra.'>'® The route’s response
will be automatically wrapped in the Ring response described earlier.

Since we're likely to have more than a single route in our application, Compo-
jure provides the routes function that creates a Ring handler from multiple
routes. For example, if we had routes /all-items and item/iid, then we could
combine these into a single handler as follows:

(defn foo-handler []
"foo called")

(defn bar-handler [id]
(str "bar called, id is: " id))

(def handler
(routes
(GET "/foo" [] (foo-handler))
(GET "/bar/:id" [id] (bar-handler id))))

Since defining routes is a very common operation, Compojure also provides
the defroutes macro that generates a Ring handler from the supplied routes:

(defroutes handler
(GET "/fo0" [] (foo-handler))
(GET "/bar/:id" [id] (bar-handler id)))

12. http://rubyonrails.org/
13. http://www.sinatrarb.com/

www.it-ebooks.info

http://rubyonrails.org/
http://www.sinatrarb.com/
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Defining the Routes with Compojure * 31

Using Compojure routes, we can easily map functionality to each URL of our
site, and provide much of the core functionality needed in a web application.
We can then group these routes together using the defroutes macro as we did
previously. Compojure, in turn, takes care of creating the Ring handlers.

Compojure also provides a powerful mechanism for filtering out common
routes in the application based on the shared path elements. Let's say we
have several routes that handle operations for a specific user:
(defn display-profile [id]
;,TODO: display user profile
)
(defn display-settings [id]
;,TODO: display user account settings
)
(defn change-password [id]
;,TOD0O: display the page for setting a new password
)
(defroutes user-routes
(GET "“/user/:id/profile" [id] (display-profile id))
(GET "/user/:id/settings" [id] (display-settings id))
(GET "/user/:id/change-password" [id] (change-password-page id))

There’s a lot of repetition in that code, where each route starts with the /user;:id
segment. We can use the context macro to factor out the common portion of
these routes:

(def user-routes
(context "/user/:id" [id]
(GET "/profile" [] (display-profile id))
(GET "/settings" [] (display-settings id))
(GET "/change-password" [] (change-password-page id))))

In that code the routes defined in the context of /user/:id will behave exactly
the same as the previous version and have access to the id parameter. The
context macro exploits the fact that handlers are closures. When the outer
context handler closes over the common parameters, they are also available
to handlers defined inside it.

Accessing Request Parameters

For some routes, we'll need to access the request map to access the request
parameters. We do this by declaring the map as the second argument to the route.

(GET "/foo" request (interpose ", " (keys request)))

That route reads out all the keys from the request map and displays them.
The output will look like the following.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 2. Clojure Web Stack ® 32

:ssl-client-cert, :remote-addr, :scheme, :query-params, :session, :form-params,
:multipart-params, :request-method, :query-string, :route-params, :content-type,
:cookies, :uri, :server-name, :params, :headers, :content-length, :server-port,
:character-encoding, :body, :flash

Compojure also provides some useful functionality for handling the request
maps and the form parameters. For example, in the guestbook application,
which we created in Chapter 1, Getting Your Feet Wet, on page 1, we saw
the following route defined:

(POST "/" [name message] (save-message name message))

This route extracts the :name and :message keys from the request params, then
binds them to variables of the same name. We can now use them as any
other declared variable within the route’s scope.

It's also possible to use the regular Clojure destructuring inside the route.
Given a request map containing the following parameters...

{:params {"name" "some value"}}

...we can extract the parameter with the key "name" as follows:

(GET "/:foo" {{value "name"} :params}
(str "The value of name is " value))

Furthermore, Compojure lets you destructure a subset of form parameters
and create a map from the rest:

[xy & z]

x -> "foo"

y -> "bar"

z -> {:v "baz", :w "qux"}

In the preceding code, parameters x and y have been bound to variables, while
parameters v and w remain in a map called z. Finally, if we need to get at the
complete request along with the parameters, we can do the following:

(GET "/" [x y :as r] (str x y r))

Here we bind the form parameters x and y, and bind the complete request
map to the variable r.

Armed with the functionality that Ring and Compojure provide, we can easily
create pages and routes for our site. However, any nontrivial application
requires many other features, such as page templating, session management,
and input validation. For these tasks we’ll use the libraries best adapted for
each task.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Application Architecture ® 33

Application Architecture

The approach that a typical Compojure web application takes is probably
different from what you're used to. Most frameworks favor using the model-
view-controller (MVC) pattern for partitioning the application logic with strong
separation between the view, the controller, and the model. Compojure does
not enforce any strict separation between the view and the controller.

Instead, we create handlers for each application route. The handler processes
HTTP requests from the client and dispatches actions based on them. The
handlers drive the model that’s responsible for handling the domain logic.
This approach provides a clean separation between the domain logic and the
presentation layer of your application without introducing any unnecessary
indirection.

However, since the Clojure web stack is designed to be flexible, it will ultimate-
ly let you design the site any way you like. If you do feel strongly about having
a traditional-style MVC in your application, there’s nothing stopping you from
doing that.

A typical application would be broken up into several logical components
(mentioned when we discussed the structure of the guestbook application).
Let’s look at these in some more detail. The major components that will be
present in most applications are as follows:

* hanlder — This namespace is responsible for handling requests and
responses.

* routes — The routes contain the core of our application, such as the logic
to render pages and handle client requests.

e model — This namespace is reserved for the data model of the application
and the persistence layer.

¢ views — This namespace contains common logic for generating the appli-
cation layout.

Application Handler

The handler is the entry point for the application. It is typically defined in the
handler namespace. It is responsible for aggregating all the routes for the
application and defining any application-handler functions wrapped with any
necessary middleware.

The handler namespace also defines some base routes for the application that
aren’t related to any specific workflows. In the handler from the guestbook

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 2. Clojure Web Stack * 34

application, we have two routes: a route for static resources and a catch-all
route for handling request URIs that haven’t been defined.

(defroutes app-routes
(route/resources "/")
(route/not-found "Not Found"))

Routes related to specific workflows, such as posting and viewing messages
in the guestbook, are grouped in their own namespaces. The application-
specific namespaces, in turn, live under the routes namespace.

The handler namespace also provides the init and destroy functions. These are
called when the application starts and shuts down. Any code that needs to
be run on startup or shutdown should be called from these functions,
respectively.

One example of using an init function would be to check whether the database
connection is available, as we did with our guestbook application.
(defn init []

(println "guestbook is starting")

(if-not (.exists (java.io.File. "./db.sq3"))
(db/create-guestbook-table)))

Next, we define the entry point, called app, through which all the requests to
our application will be routed.

(def app (handler/site (routes home-routes app-routes)))

In that code, the compojure.handler/site function is used to generate a Ring handler
wrapped in middleware suitable for a typical website.

The site function simply creates a handler wrapped in some common middle-
ware that is suitable for a common website. This middleware consists of the
following wrappers:

e wrap-session

¢ wrap-flash

e wrap-cookies

e wrap-multipart-params
® wrap-params

e wrap-nested-params
® wrap-keyword-params

The application handler, init function, and destroy function are bound in the
project.cli under the :ring key. We can see an example of this in our guestbook
application from Chapter 1, Getting Your Feet Wet, on page 1.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Application Architecture ® 35

:ring {:handler guestbook.handler/app
1init guestbook.handler/init
:destroy guestbook.handler/destroy}

This is all there is to bootstrapping the application core. Now let’s see how
we can add some routes to provide the functionality specific to our application.

Routing Requests

As we discussed earlier, application routes represent URIs that the client can
call to cause the server to perform an action. Each route is mapped to a par-
ticular function that will be called when the client requests the URI associated
with it.

Any real-world applications will require more than a single route. For example,

in our guestbook application we had two separate routes, each performing a
distinct action:

guestbook/src/guestbook/routes/home.clj

(defroutes home-routes

(GET "/" [1 (home))

(POST "/" [name message] (save-message name message)))

The first route was bound to / and would retrieve the messages from the
database and render a page displaying them alongside a form for creating a
new message.

The second route would handle the user input. If the input turns out to be
valid, then the message is stored in the database; otherwise the page is ren-
dered with an accompanying error.

Since both of these routes have related functionality—storing and displaying
user messages—they are considered to be part of the same workflow.

When you identify a specific workflow in your application, it makes sense to
group all the logic relating to this workflow in a single place. The routes package
in your application is reserved for the namespaces that describe these
workflows.

Since our guestbook application is very small, we define a single set of routes,
along with some helper functions right in the guestbook.routes.home namespace.

In an application that has more pages, we would want to create additional
namespaces to keep the code manageable. We would then create separate
routes under each namespace and group them together in the handler names-
pace using the routes macro Compojure provides.

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/guestbook/src/guestbook/routes/home.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 2. Clojure Web Stack * 36

The routes macro will combine all the routes into a single set from which the
final handler can be created. Be aware that routes can mask other routes.
Since our app-routes contains (route/not-found "Not Found"), we should put it last, or
the not-found route will prevent any routes defined after it from resolving.

Application Model

All but the most trivial applications need some sort of a model. The model
describes the data stored by the application and interrelations between indi-
vidual data elements. In our guestbook application, the model consists of a
user table and a messages table.

All namespaces dealing with the model and the persistence layer traditionally
live under the application’s models package. We'll focus on this fairly large
topic in the next chapter.

Application Views

The views package is reserved for providing the visual layouts and other com-
mon elements for our pages. It comes prepopulated with the layout namespace.
This namespace includes the common layout declaration to take care of gener-
ating the base page template for us.

The common layout adds the head and title tags, includes resources such as
CSS, and appends the content to the body. Since the content is wrapped
using the html5 macro, an HTML string is automatically generated from the
content when the common layout is called. This handler will then serve the
string back to the client.

It’s idiomatic to create a common layout that provides the basic page structure
and use it to define the individual pages. This way all the common page ele-
ments, such as headers, footers, and menus, can be kept in one place. Any
time we create a page we’ll simply wrap its body with the layout we defined.

Defining Pages
The pages are defined by creating routes that accept the request parameters and
generate the appropriate response. A route can return HTML markup, perform a

server-side operation, redirect to a different page, or return a specific type of data,
such as a JavaScript Object Notation (JSON) string or a file.

In many cases a page will have multiple route components. One route responds
to GET requests and returns HTML to be rendered by the browser. The rest
handle events such as form submissions generated by the client when the
user interacts with the page.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Application Architecture ¢ 37

The page body can be generated by any means we choose, and Compojure is
agnostic as to the method we use. This leaves us with the option of using any
templating library we like, and there are several to choose from. Some popular
choices are Hiccup, Enlive, Selmer, and Stencil.'*'>'%"”

Hiccup simply uses Clojure data structures to define the markup and gener-
ates the corresponding HTML from it. Enlive takes the opposite approach of
defining pages using pure HTML without the use of any special processing
tags. The HTML templates are then transformed by adapters specific to your
models and domains.

Unlike Hiccup and Enlive, Stencil and Selmer are based on the existing tem-
plating systems that aren’t rooted in Clojure. Stencil is an implementation of
Mustache, which is a popular logicless templating system. Selmer is modeled
on the Django template system from Python.

In this book we’ll primarily focus on using Hiccup because it doesn’t necessi-
tate learning any special syntax outside of using standard Clojure functions.
However, later on you’ll see how to transform an application written using
Hiccup to use Selmer templates instead.

Another option is to not do any server-side templating at all. Instead you
could use one of many popular JavaScript libraries to do the templating on
the client and communicate with the server using Ajax. This provides a clean
separation between your application’s client and server components. It also
facilitates using other clients with the server, such as native mobile interfaces.
This approach is particularly popular when writing single-page applications.'®

Regardless of your favorite templating strategy, it's good practice not to mix
domain logic with views. In a properly designed application it should be rela-
tively easy to swap out one templating engine for another.

Page Templating with Hiccup

We'll now look at some of the basics of using Hiccup and exactly how page
elements are generated from it.

As I mentioned previously, Hiccup templates are written in plain Clojure, so
you don’t have to learn a separate domain-specific language to use it.

14. https://github.com/weavejester/hiccup

15. https://github.com/cgrand/enlive

16. https://github.com/yogthos/Selmer

17. https://github.com/davidsantiago/stencil

18. http://en.wikipedia.org/wiki/Single-page_application

www.it-ebooks.info

https://github.com/weavejester/hiccup
https://github.com/cgrand/enlive
https://github.com/yogthos/Selmer
https://github.com/davidsantiago/stencil
http://en.wikipedia.org/wiki/Single-page_application
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 2. Clojure Web Stack ¢ 38

Hiccup uses Clojure vectors with optional maps of attributes to represent
HTML elements. The structure of the element corresponds to the structure
of the resulting HTML tag, as shown here:

[:tag-name {:attribute-key "attribute value"} tag body]
<tag-name attribute-key="attribute value">tag body</tag-name>

If we wanted to create a div with a paragraph in it, we could create a vector,
where the first element is a keyword :div, followed by the map containing the
ID and the div’s class. The rest of the content consists of a vector representing
the paragraph.

[:div {:id "hello", :class "content"} [:p "Hello world!"]]

To generate an HTML string from our vector, we use hiccup.core/html macro:
(html [:div {:id "hello", :class "content"} [:p "Hello world!"]])

<div id="hello" class="content"><p>Hello world!</p></div>

Because Hiccup allows you to set element attributes via the attribute map,
you could style elements inline if you wanted. However, you should resist this
temptation and instead use CSS for the styling of elements. This will ensure
that the structure is kept separate from the presentation.

Since setting the ID and the class for elements is a very common operation,
Hiccup provides CSS style shortcuts for these actions. Instead of what we
wrote earlier, we could simply write our div as follows:

[:div#hello.content [:p "Hello world!"]1]

Hiccup also provides a number of helper functions for defining common ele-
ments such as forms, links, and images. All of these functions output vectors
in the Hiccup format described previously.

When a function doesn’t do what you need, you can either write out the literal
form for the element by hand or modify its output to fit your needs. Each
function that describes an HTML element can also take an optional map of
attributes as its first parameter. We’ll now look at some of the most commonly
used Hiccup helpers to get a better feel for the library.

First, let’s look at the link-to helper that creates an a tag.
(link-to {:align "left"} "http://google.com" "google")
That code will produce the following vector:

[:a {:align "left", :href #<URI http://google.com>} ("google")]

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Application Architecture ¢ 39

There we have the keyword :a as the first item, followed by the map of
attributes and a list representing the content.

Again, we can output the HTML based on this vector by wrapping our link-to
function in the html macro.

(html (link-to {:align "left"} "http://google.com" "google"))
google

Another commonly used function is form-to, used for generating HTML forms.
We used this function in the previous chapter to create a form that submits
messages to the server.

(form-to [:post "/"]
[:p "Name:" (text-field "name")]
[:p "Message:" (text-area {:rows 10 :cols 40} "message")]
(submit-button "comment"))

This helper takes a vector with the type of the HTTP request specified as a
keyword, followed by the URL string. The rest of the arguments should eval-
uate to vectors representing HTML elements. The preceding code will be
converted to the following HTML when the html macro is called:

<form action="/" method="POST">
<p>Name:<input id="name" name="name" type="text" /></p>
<p>Message:<textarea cols="40" id="message" name="message" rows="10">
</textarea></p><input type="submit" value="comment" />

</form>

Another useful helper is the defhtml macro. With it we can define a function
that will implicitly generate HTML from its body. It means we don’t need to
use the html macro for each individual element when constructing our pages.

(defhtml page [& body]
[:html
[:head
[:title "Welcome"]]
[:body bodyl])

Hiccup also provides a number of macros to produce specific HTML variants
such as HTML4, HTML5, and XHTML in the hiccup.page namespace. You'll see
that we used the html5 macro in our guestbook layout:

(defn common [& body]
(html5
[:head
[:title "Welcome to guestbook"]
(include-css "/css/screen.css")]
[:body body]))

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 2. Clojure Web Stack ® 40

Including Resources

Any nontrivial website will, of course, include JavaScript and CSS in the
pages. Hiccup provides a couple of utility functions in the hiccup.page namespace
for this purpose. You can use include-css to include any CSS files, and include-js
to include JavaScript resources. Here’'s an example of CSS and JavaScript
resources being included in the common layout.

(defn common [& content]
(html5
[:head
[:title "My App"]
(include-css "/css/mobile.css"
"/css/screen.css")
(include-js "//code. jquery.com/jquery-1.10.1.min.js"
"/js/uielements.js")]
[:body content]))

As you can see, both include-css and include-js can accept multiple strings, each
specifying a resource URI. The output of these is, of course, a Hiccup vector,
which will be converted to HTML.

;,output of include-css
([:link

{:type "text/css", :href #<URI /css/reset.css>, :rel "stylesheet"}]
[:link

{:type "text/css", :href #<URI /css/screen.css>, :rel "stylesheet"}])

;s output of include-js
([:script
{:type "text/javascript",
1src
#<URI //code.jquery.com/jquery-1.10.1.min.js>}]
[:script {:type "text/javascript", :src #<URI /js/uielements.js>}])

Hiccup also provides a helper for including images using the /image function
found in the hiccup.element namespace:

(image "/img/test.jpg")

[:img {:src #<URI /img/test.jpg>}1]

(image "/img/test.jpg" "alt text")
[:img {:src #<URI /img/test.jpg>, :alt "alt text"}]

Hiccup APl Overview

You've seen some of the commonly used functions, but there are many more
available. The majority of the helper functions are found under the element
and form namespaces. Here we find functions for defining elements such as
images, links, script tags, check boxes, drop-downs, and input fields.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Application Architecture ® 41

As you can see, Hiccup provides a concise API for generating HTML templates
in addition to the literal vector syntax. Armed with our understanding of
Hiccup, let’s take a closer look at the code in our guestbook application.

Revisiting the Guestbook Application

Let’s start by taking another look at the functions defined in the home
namespace. If you run the application and navigate to it from the browser,
you can inspect and compare the output HTML to its definition.

First, we have the show-guests function to generate an unordered list with a
class guests. It loops over the messages in the database and creates a list item
for each message.

(defn show-guests []
[:ul.guests
(for [{:keys [message name timestamp]} (db/read-guests)]
[:11
[:blockquote messagel
[:p "-" [:cite name]]
[:time (format-time timestamp)]])])

The function uses a helper to format each timestamp for display. This function
uses the java.text.SimpleDateFormat to generate a formatted string given a date
object. We use the threading macro to instantiate the formatter with the format
string. We then use its instance to format the timestamp we got from the
database.

(defn format-time [timestamp]
(-> "dd/MM/yyyy"
(java.text.SimpleDateFormat.)
(.format timestamp)))

You'll notice that the actual home function is a bit more complicated, as it
renders the existing comments in addition to providing the submision form.

Things to note here are the error paragraph used to display the value of the
error key populated by the controller, and the use of the show-guests function
to render the comments.

The home function generates the HTML for the page by wrapping its content
with layout/common.

(defn home [& [name message error]]
(layout/common
[:h1l "Guestbook"]
[:p "Welcome to my guestbook"]
[:p error]

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 2. Clojure Web Stack ® 42

(show-guests)

[:hr]
(form-to [:post "/"]
[:p "Name:" (text-field "name" name)]
[:p "Message:" (text-area {:rows 10 :cols 40} "message" message)]

(submit-button "comment"))))

As you can see, creating page templates using Hiccup takes very little code
and produces output markup that’s easy to correlate back to the template
definitions.

Lastly, we have our route definitions, where Compojure routes are defined.

(defroutes home-routes
(GET "/" [name message error] (home name message error))
(POST "/" [name message] (save-message name message)))

Up to now all we've done is create routes to render pages and handle form
parameters from the client. As we noted earlier, a real application will need
a few other things on top of what Ring and Compojure provide. Let’s explore
how to add more functionality to our applications.

Beyond Compojure and Ring

Lots of libraries are available for doing tasks such as session management,
input validation, and authentication. As always, you can pick and choose the
components that are right for you.

The library we'll focus on is lib-noir."” It’'s a comprehensive suite of utilities
for handling the most common operations in a web application. As we did
with Hiccup, we’ll focus our attention on the most commonly used features
and then segue into an overview of the API.

First, we’ll need to add lib-noir to our project.clj to use it. We’ll do this by adding
[lib-noir "0.7.6"] to our dependencies vector.

If you have your project running as you follow along, which you should be
doing, then you’ll need to restart it for the dependency to be picked up. Now
let’s see how we can use lib-noir to add some functionality to our application.

Handling Redirects

In some cases we’ll want to redirect the client to another page after an action
is performed. For example, if a user registers an account on the registration
page, we would want to redirect the user to the home page afterward.

19. https://github.com/noir-clojure/lib-noir

www.it-ebooks.info

https://github.com/noir-clojure/lib-noir
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Beyond Compojure and Ring * 43

Let’s add a page that lets the user register an account on our site. We’ll add
the page to a new namespace called guestbook.routes.auth. The namespace will
need to reference other namespaces, similar to the home namespace.

(ns guestbook.routes.auth
(:require [compojure.core :refer [defroutes GET POST]]
[guestbook.views.layout :as layout]
[hiccup.form :refer
[form-to label text-field password-field submit-button]]))

The function to render our page will have a form that asks the user to enter
an ID and a password.

(defn registration-page []
(layout/common
(form-to [:post "/register"]
(label "id" "screen name")
(text-field "id")
[:br]
(label "pass" "password")
(password-field "pass")
[:br]
(label "passl" "retype password")
(password-field "passi")
[:br]
(submit-button "create account"))))

You'll notice that the function has a very repetitive structure. Each input
needs a label and should be followed by a break. Since Hiccup uses standard
Clojure data structures to represent the markup, we can trivially factor out
the repeating elements into a helper function:

(defn control [field name text]
(list (label name text)
(field name)
[:br]))

(defn registration-page [1]
(layout/common
(form-to [:post "/register"]
(control text-field :id "screen name")
(control password-field :pass "Password")
(control password-field :passl "Retype Password")
(submit-button "Create Account"))))

In that code we use the list function instead of making a vector as we normally
would. This is because Hiccup uses vectors to represent HTML tags and the
tag content cannot itself be a vector.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 2. Clojure Web Stack * 44

To make our new page available to the client, we’ll have to define a new route
for it. We'll wrap it in a route definition called auth-routes.

(defroutes auth-routes
(GET "/register" [_1 (registration-page)))

The underscore () in the user page’s arguments vector is simply a convention
to indicate that the function won’t use the argument.

Since we created a new set of routes, we’ll need to update our app handler
with them as well. To do that we’ll have to reference the new namespace in
our handler namespace declaration and add the routes to our app definition,
as shown here.

(ns guestbook.handler

(:require ...
[guestbook.routes.auth :refer [auth-routes]]))

(def app
(handler/site
(routes auth-routes home-routes app-routes)))

Note that new routes should be added before app-routes, as the (route/not-found
"Not Found") route is defined there. This route will mask any other routes defined
after it.

If you have the site running in the REPL, then you’ll need to restart it to pick
up the new routes.

Once the site is restarted, navigate to http://localhost:3000/register to confirm that
the page loads correctly. If all went well, we can add the handler for the
registration page.

The handler will redirect the user to the home page upon successful registra-

tion. A redirect is simply a map containing the status, headers, and body:

{:status 302, :headers {"Location" "/"}, :body ""}

Ring provides a redirect function in its ring.util.response namespace. Since we're
already using lib-noir, we’ll use noirresponse/redirect instead. The version from
lib-noir allows specifying an optional key indicating the redirect’s status code.
It defaults to :found, corresponding to the redirect code 302.

We'll need to reference this namespace to access it, so let’s add it to the :require
section of the auth namespace.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Beyond Compojure and Ring * 45

(ns guestbook.routes.auth
(:require ...
[noir.response :refer [redirect]]))

Now we can add our handler to the auth-routes definition. At the moment we’ll
simply check if the entered passwords match, and redirect to the home page.
Otherwise we’ll render the page again.

(defroutes auth-routes

(GET "/register" [] (registration-page))
(POST "/register" [id pass passl]
(if (= pass passl)

(redirect "/")
(registration-page))))

Managing Sessions

When users interact with our application we need a way to keep track of each
user session’s state. Luckily, lib-noir provides a way to manage sessions via
its noirsession namespace. A client session is represented by a map that can
be accessed using the following helper functions:

e clear! — Clears everything from the session

e flash-put — Stores a value for a single retrieval

e flash-get — Retrieves a flash-stored value and clears it
¢ get — Gets a value from the session

e put! — Puts a value in session

¢ remove! — Removes a value from session

The functions used to change the session’s state are marked with an excla-
mation point (!), as per Clojure convention for indicating in-place mutation.
Let’s look at an example where we’ll implement login and logout pages. Each
of these actions should update the session accordingly.

To use lib-noir sessions we’ll have to wrap the app handler with the session
middleware. This is needed because the original handler is not aware of ses-
sions and doesn’t provide a method for persisting state between requests.

The middleware requires that we provide a store where the session state will
be persisted. This could be in-memory or backed by an external store such
as Redis.”

We'll simply use the ring.middleware.session.memory/memory-store for our application.
Both the middleware and the store will first have to be referenced in the
namespace declaration.

20. http://redis.io/

www.it-ebooks.info

http://redis.io/
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 2. Clojure Web Stack ® 46

(ns guestbook.handler

(:require ...
[noir.session :as session]
[ring.middleware.session.memory
:refer [memory-storel]l))

Next, we’ll wrap our app using the session middleware. The wrap-noir-session
middleware accepts a map of parameters containing the :store key. We bind
this key to the memory-store.

(def app
(->
(handler/site
(routes auth-routes
home-routes
app-routes))
(session/wrap-noir-session
{:store (memory-store)})))

Now let’s see what’s involved in creating a login page and adding the user to
the session. Let’s navigate to the auth namespace and add the following function
to it.

(defn login-page []
(layout/common
(form-to [:post "/login"]
(control text-field :id "screen name")
(control password-field :pass "Password")
(submit-button "login"))))

The function creates a login form that collects the user ID and the password,
and wraps it using the common layout. The form will do an HTTP post to the
/login URI when the Submit button is clicked.

We’'ll now update our route definitions to create the GET and POST /login routes
for our application. We’ll also have to reference the noir.session for our routes
to work.

(ns guestbook.routes.auth
(:require ...
[noir.session :as session]))

(defroutes auth-routes
(GET "/register" [] (registration-page))
(POST "/register" [id pass passl]
(if (= pass passl)
(redirect "/")
(registration-page)))

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Beyond Compojure and Ring ® 47

(GET "/login" [] (login-page))

(POST "/login" [id pass]
(session/put! :user id)
(redirect "/")))

The GET login route simply calls the login-page function to render the page.
The POST login route uses the noir.session/put! function to add the user to the
session with the key :user before redirecting to the home page. Now we can
navigate to /login in our browser and try out the functionality we've added.

To see that the user is in session, we’d have to update our home page to
display the user ID. We can do this by calling (session/get :user) when our home
function renders the page. As usual, we’ll have to remember to include a ref-
erence to noir.session in our home namespace declaration.

(ns guestbook.routes.home
(:require ... [noir.session :as session])

guestbook-with-auth/src/guestbook/routes/home.clj
(defn home [& [name message error]]
(layout/common
[:h1l "Guestbook " (session/get :user)]
[:p "Welcome to my guestbook"]
[:p error]

(show-guests)
[:hr]

(form-to [:post "/"]
[:p "Name:" (text-field "name" name)]
[:p "Message:" (text-area {:rows 10 :cols 40} "message" message)]
(submit-button "comment"))))

Next we’ll create the logout page to call noir.session/clear!. When the user clicks
the logout button, this will purge any information that was accumulated
during the session.

(defroutes auth-routes
(GET "/register" [] (registration-page))
(POST "/register" [id pass passl]
(if (= pass passl)
(redirect "/")
(registration-page)))

(GET "/login" []1 (login-page))

(POST "/login" [id pass]
(session/put! :user id)
(redirect "/"))

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/guestbook-with-auth/src/guestbook/routes/home.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 2. Clojure Web Stack * 48

(GET "/logout" [1]
(layout/common
(form-to [:post "/logout"]
(submit-button "logout"))))
(POST "/logout" []
(session/clear!)
(redirect "/")))

Keep in mind that the session namespace must be accessed within the context
of a request, meaning that it should not be used outside the scope of a route
declaration.

Handling Input Validation

When creating forms, we need a way to check if they have been filled out
correctly and to notify the user about missing or improperly completed fields.
Up to now we've simply been populating an error key in our parameters and
displaying it on the page.

Continuing with that approach, we would use the cond statement to decide
whether to render the login page with an error or put the user in session and
redirect:

(defn login-page [& [error]]
(layout/common
(if error [:div.error "Login error: " error])
(form-to [:post "/login"]
(control text-field :id "screen name")
(control password-field :pass "Password")
(submit-button "login"))))

(defn handle-login [id pass]
(cond
(empty? id)
(login-page "screen name is required")
(empty? pass)
(login-page "password is required")
(and (= "foo" id) (= "bar" pass))
(do
(session/put! :user id)
(redirect "/"))

telse
(login-page "authentication failed")))

Next, we update our POST /login route to use the handle-login function as its
handler.

(POST "/login" [id pass]
(handle-login id pass))

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Beyond Compojure and Ring ® 49

Although this approach works for simple cases, it would quickly become
tedious to do for more complex sets of rules. Once again, lib-noir provides an
excellent way to handle input validation using the noir.validation namespace.
Let’s reference it in our auth namespace and see how we can improve our
validation using it.

(ns guestbook.routes.auth
(:require ...
[noir.validation
:refer [rule errors? has-value? on-error]])

To use the validation functions, we’ll also have to wrap our handler in wrap-
noir-validation middleware. To do that we’ll require noirvalidation in the handler
namespace.

(ns guestbook.handler

(:require ...
[noir.validation
:refer [wrap-noir-validationl]l]))

guestbook-with-auth/src/guestbook/handler.clj
(def app
(->
(handler/site
(routes auth-routes
home-routes
app-routes))
(wrap-base-url)
(session/wrap-noir-session
{:store (memory-store)})
(wrap-noir-validation)))

If you're following along with the REPL, then you'll need to reload the applica-
tion to recompile the routes.

Instead of using a cond statement, we now use the noir.validation/rule helper. Each
rule is checked independently to see whether it passes. At the end of the
function we call noirvalidation/errors? to check if any of the rules have set an
error. If so, we render the login page; otherwise we put the user in the session
and redirect to the home page.

(defn handle-login [id pass]
(rule (has-value? id)
[:id "screen name is required"])
(rule (= id "foo")
[:id "unknown user"])
(rule (has-value? pass)
[:pass "password is required"])

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/guestbook-with-auth/src/guestbook/handler.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 2. Clojure Web Stack ® 50

(rule (= pass "bar")
[:pass "invalid password"])

(if (errors? :id :pass)
(Llogin-page)

(do
(session/put! :user id)
(redirect "/"))))

Each of the rules we created has the following form:

(rule validator [:field-name "error message"l)

The validator can be any expression that evaluates to a Boolean value. It is
also possible to set multiple errors for each key; these will all be aggregated
into an error vector. The error is generated when the validator returns false.

For example, when we say (= id "foo"), the error will be generated when the id
field has any value other than foo.

Because we set only a single error per item, we create a helper for grabbing
it and displaying the paragraph with the error.

guestbook-with-auth/src/guestbook/routes/auth.clj
(defn format-error [[error]]
[:p.error error])

We now update the control function to call on-error with the name of the control.
It will grab the errors for the supplied key and use the format-error to format
them.

guestbook-with-auth/src/guestbook/routes/auth.clj
(defn control [field name text]
(list (on-error name format-error)
(label name text)
(field name)
[:br]))

Since we no longer need to pass the error directly to the login-page, we’ll update
it accordingly.

guestbook-with-auth/src/guestbook/routes/auth.clj
(defn login-page [1]
(layout/common
(form-to [:post "/login"]
(control text-field :id "screen name")
(control password-field :pass "Password")
(submit-button "login"))))

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/guestbook-with-auth/src/guestbook/routes/auth.clj
http://media.pragprog.com/titles/dswdcloj/code/guestbook-with-auth/src/guestbook/routes/auth.clj
http://media.pragprog.com/titles/dswdcloj/code/guestbook-with-auth/src/guestbook/routes/auth.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Beyond Compojure and Ring ¢ 51

To sum up, we can create rules for any fields we’d like to validate. Each rule will
use a test to determine whether the field is valid. If any of the fields fail validation,
then an error is generated and displayed to the user via the on-error helper.

We can do this because validation errors are associated with the request.
Since the function responsible for rendering the page is called within the
scope of the same request, it will have access to the errors.

Adding Security

lib-noir also provides a simple way to hash and validate passwords using
noir.util.crypt. This namespace provides two functions, encrypt and compare. The
first encrypts and salts the password, and the second compares the raw
password to the hash string generated by the first. We use the popular jBCrypt
library to do the actual encryption.”’

The signature for the compare function looks like this:

(compare raw encrypted)

The encrypt function allows specifying the salt, and generates one if none is
provided.

(encrypt salt raw)
(encrypt raw)

We salt passwords to prevent rainbow-table attacks.”” A rainbow table is
effectively a dictionary containing precalculated hashes along with many
common passwords used to generate them. Such a table is optimized to make
hash lookups efficient, and allows the attacker to easily discover the original
password string given its hash. The salt constitutes a randomly generated
string that is concatenated with the hashed password. The final hash that’s
generated is no longer susceptible to such an attack.

Again, we need to require this namespace to our auth namespace to use it.

(ns guestbook.routes.auth
(:require ...
[noir.util.crypt :as crypt])

Until now, we've been sticking user records in our session. Let’s implement
the functionality to persist the user details when a user registers on our site.
We first need to create a user table and write a function to add users to and
retrieve users from our database in the db namespace.

21. http://www.mindrot.org/projects/jBCrypt/
22. http://en.wikipedia.org/wiki/Rainbow _table

www.it-ebooks.info

http://www.mindrot.org/projects/jBCrypt/
http://en.wikipedia.org/wiki/Rainbow_table
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 2. Clojure Web Stack ® 52

guestbook-with-auth/src/guestbook/models/db.clj
(defn create-user-table []
(sql/with-connection
db
(sql/create-table
rusers
[:id "varchar(20) PRIMARY KEY"]
[:pass "varchar(100)"1)))

(defn add-user-record [user]
(sql/with-connection db
(sql/insert-record :users user)))

(defn get-user [id]
(sql/with-connection db
(sql/with-query-results
res ["select * from users where id = ?" id] (first res))))

Once that’s done, we can reload our db namespace so that the new functions
become available, and run (create-user-table) at the REPL console.

We can now navigate back to our auth namespace and write the handle-registration
function. Note that we’ll also have to require the db namespace in our
declaration.

(ns guestbook.routes.auth
(:require ... [guestbook.models.db :as db]))

guestbook-with-auth/src/guestbook/routes/auth.clj
(defn handle-registration [id pass passl]
(rule (= pass passl)
[:pass "password was not retyped correctly"])
(if (errors? :pass)
(registration-page)
(do
(db/add-user-record {:id id :pass (crypt/encrypt pass)})
(redirect "/login"))))

We'll update the POST /register route to use this function when called.

(POST "/register" [id pass passl]
(handle-registration id pass passl))

When a user attempts to log in subsequently, we’ll check his credentials in
our login function.

guestbook-with-auth/src/guestbook/routes/auth.clj
(defn handle-login [id pass]
(Let [user (db/get-user id)]
(rule (has-value? id)
[:id "screen name is required"])

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/guestbook-with-auth/src/guestbook/models/db.clj
http://media.pragprog.com/titles/dswdcloj/code/guestbook-with-auth/src/guestbook/routes/auth.clj
http://media.pragprog.com/titles/dswdcloj/code/guestbook-with-auth/src/guestbook/routes/auth.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Beyond Compojure and Ring ¢ 53

(rule (has-value? pass)
[:pass "password is required"])
(rule (and user (crypt/compare pass (:pass user)))
[:pass "invalid password"])
(if (errors? :id :pass)
(login-page)
(do
(session/put! :user id)
(redirect "/")))))

We do that by using the crypt/compare function to compare the supplied pass-
word to the hashed version we created during the registration.

Specifying MIME Types

In some cases we may wish to specify our data’s content type, such as plain
text, JSON, and so on. We can do this easily by wrapping the response in the
content-type function found in the noir.response namespace.

(GET "/records" [1]
(noir.response/content-type "text/plain" "some plain text"))

Helpers for serving JSON and XML can also be found in noir.response. For JSON
responses, the data structure will be automatically converted into a JSON
string.

(GET "/get-message" [1]
(noir.response/json {:message "everything went better than expected!"))

This response helper is very useful when dealing with Ajax requests from the
client.

Noir APl Overview

lib-noir provides even more useful features than we’ve discussed up to this
point.

The cookies namespace provides functions for storing and retrieving cookies.
The io namespace contains functions for accessing static resources and
handing file uploads. The cache namespace provides facilities for basic content
caching. The middleware namespace provides several helpers for creating com-
mon types of application handlers and wrappers. Finally, the route namespace
provides a function for creating restricted routes. This can be useful for
restricting access to pages, as we’ll discuss in Chapter 5, Picture Gallery, on
page 81.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 2. Clojure Web Stack ® 54

What You've Learned

In this chapter we looked at how the Clojure web stack is structured and at
some of the commonly used libraries. We covered the interaction between
Ring, Compojure, and lib-noir by seeing the interplay between these libraries
when accomplishing tasks such as input validation and session management.

Hopefully, you're now comfortable reading and understanding the code in the
guestbook project we created in Chapter 1, Getting Your Feet Wet, on page
1. If this isn’t the case, [urge you to reread this chapter and try the examples
yourself using the REPL environment we set up. Finally, if you haven't already
done so, take this opportunity to integrate the examples from this chapter
into your guestbook application.

In the next chapter, we’ll look at building REST services using the Liberator
library.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

CHAPTER 3

Liberator Services

In the last chapter we talked about how to write a typical web application
and how its components interact with one another. For example, we now
know how to manage the routes, write HTML templates, and use sessions for
state management. In this chapter we’ll look at a different approach to writing
applications.

As you've probably noticed, the separation between the client and the server
portions of the application is not enforced. If we're not careful we could easily
end up with a tightly coupled client and server components. This could become
a problem if we wish to add a different client later on—for example, if we
decided to create a native mobile version of our application.

In this chapter we’ll cover how to use the Liberator library to ensure the
separation of concerns between the server and the client.' Liberator is a Clo-
jure library for writing RESTful services modeled after webmachine,” a popular
service framework for Erlang. Its primary feature is that it puts a strong
emphasis on decoupling the front end from the back end of your application.

Conceptually, Liberator provides a clean way to reason about your service
operations. Each request passes through a series of conditions and handlers
defined in the resource. These map to the codes specified by the HTTP
RFC 2616, such as 200 - OK, 201 - created, 404 - not found, and so on.

This approach makes it very easy to write standards-compliant services and
to group the operations logically. It also means that your services will auto-
matically use the appropriate HTTP codes associated with a particular
response.

1. http://clojure-liberator.github.io/liberator/
2. https://github.com/basho/webmachine

www.it-ebooks.info

http://clojure-liberator.github.io/liberator/
https://github.com/basho/webmachine
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 3. Liberator Services ® 56

Due to its focus on the separation of the front-end and back-end logic, Liber-
ator is a natural choice for writing many types of web applications. These
include general-purpose services, single-page applications, and applications
that might have nonweb clients, such as mobile applications.

Creating the Project

In this section we’ll cover how to create a simple application that serves
static resources, provides basic session management, and handles JavaScript
Object Notation (JSON) operations.

First let’s create a new application called liberator-service using the compojure-
app template.

lein new compojure-app liberator-service

Once the application is created, add Liberator and Cheshire dependencies to
our project.clj dependencies vector:®

:dependencies

[...
[liberator "0.10.0"]
[cheshire "5.2.0"]1]

Cheshire is a fast and easy-to-use JSON parsing library. We'll use it for
parsing the requests from the client and generating the responses.

At this point, we should be able to start up the read-evaluate-print loop (REPL)
by running the start-server in the liberator-service.repl namespace.

Currently, the application displays the default home route created by the
template. Let’s look at how we can render a Liberator route instead.

Defining Resources

Liberator uses the concept of resources to interact with the client. The resources
are simply Ring-compliant handlers that can be used inside your Compojure
routes. These resources are defined using the resource and defresource macros. Let’s
open the liberator-service.routes.home namespace. We'll remove the reference to layout
and add the references for resource and defresource to the declaration:

liberator-snippets/home.clj
(ns liberator-service.routes.home
(:require [compojure.core :refer :all]
[liberator.core
:refer [defresource resource request-method-in]]))

3. https://github.com/dakrone/cheshire

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/liberator-snippets/home.clj
https://github.com/dakrone/cheshire
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Defining Resources ® 57

Now we can replace our "/" route with a resource as follows:

liberator-snippets/home.clj
(defroutes home-routes
(ANY "/" request
(resource
:handle-ok "Hello World!"
retag "fixed-etag"
:available-media-types ["text/plain"])))

If we reload the page we’ll see Hello World! displayed. Note that we're using
ANY Compojure route for our resource. This allows the Liberator resource to
handle the request type.

Say we want to name the resource handler; we can use defresource instead:

liberator-snippets/home.clj

(defresource home
:handle-ok "Hello World!"
retag "fixed-etag"
:available-media-types ["text/plain"])

(defroutes home-routes
(ANY "/" request home))

The request in the preceding route is simply a map that’s described in What's
in the Request Map, on page 27.

A set of keys defined by the Liberator application programming interface
represents each resource. Specific actions are in turn associated with each
key. A key can fall into one of four categories:

¢ Decision

e Handler

e Action

¢ Declaration

Each key can be associated with either constants or functions. The functions
should accept a single parameter that is the current context, and return a
variety of responses.

The context parameter contains a map with keys for the request, the resource,
and optionally the representation. The request key points to the Ring request.
The resource represents the current state of the resource, and the represen-
tation contains the results of content negotiation.

Let’s take a close look at each of the categories and their purposes.

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/liberator-snippets/home.clj
http://media.pragprog.com/titles/dswdcloj/code/liberator-snippets/home.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 3. Liberator Services ® 58

Making Decisions

The decisions are used to figure out how to handle the client request. The
decision keys end with a question mark (?) and their handler must evaluate
to a Boolean value.

A decision function can return a Boolean value indicating the result of the
decision, or it can return a map or a vector. In case a map is returned, the
decision is assumed to have been evaluated to true and the contents of the
map are merged with the response map. In case a vector is returned, it must
contain a Boolean indicating the outcome, followed by a map to be merged
with the response.

When any decision has a negative outcome, its corresponding HTTP code will
be returned to the client. For example, if we wanted to mark as unavailable
the route we defined earlier, we could add a decision key called service-available?
and associate it with a false value:

liberator-snippets/home.clj
(defresource home
:service-available? false
:handle-ok "Hello World!"
:etag "fixed-etag"
:available-media-types ["text/plain"])

If we reload the page we’ll see the 503 response type associated with the
Service not available response.

Alternatively, we could restrict access to the resource by using the method-
allowed? decision key along with a decision function.

(defresource home
:method-allowed?
(fn [context]
(= :get (get-in context [:request :request-method])))
:handle-ok "Hello World!"
:etag "fixed-etag"
:available-media-types ["text/plain"])

Since checking the request method is a common operation, Liberator provides
a key called :allowed-methods. This key should point to a vector of keywords
representing the HTTP methods.

(defresource home
:allowed-methods [:get]
:handle-ok "Hello World!"
retag "fixed-etag"
:available-media-types ["text/plain"])

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/liberator-snippets/home.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Defining Resources ® 59

We can also combine multiple decision functions in the same resource, as
seen here:

liberator-snippets/home.clj
(defresource home
:service-available? true

:method-allowed? (request-method-in :get)

:handle-method-not-allowed
(fn [context]
(str (get-in context [:request :request-method]) " is not allowed"))

:handle-ok "Hello World!"
:etag "fixed-etag"
:available-media-types ["text/plain"])

Creating Handlers

A handler function should return a standard Ring response. Handler keys
start with the handle- prefix. We saw a handler function when we used the
handle-ok key to return the response in our resource.

There are other handlers, such as handle-method-not-allowed and handle-not-found.
The full list of handlers can be found on the official documentation page.*
These handlers can be used in conjunction with the decisions to return a
specific response for a particular decision outcome.

For example, if we wanted to return a specific response when the service is
not available, we could do the following:

liberator-snippets/home.clj

(defresource home
:service-available? false
:handle-service-not-available
"service is currently unavailable..."

:method-allowed? (request-method-in :get)
thandle-method-not-allowed
(fn [context]
(str (get-in context [:request :request-method]) " is not allowed"))

:handle-ok "Hello World!"
:etag "fixed-etag"
ravailable-media-types ["text/plain"])

Our resource now has custom handlers for each decision outcome.

4. http://clojure-liberator.github.io/liberator/doc/handlers.html

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/liberator-snippets/home.clj
http://media.pragprog.com/titles/dswdcloj/code/liberator-snippets/home.clj
http://clojure-liberator.github.io/liberator/doc/handlers.html
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 3. Liberator Services ® 60

Taking Actions

An action represents an update of the current state by the client, such as a
PUT, POST, or DELETE request. The action keys end with an exclamation
point (!) to indicate that they're mutating the application’s internal state.

Once an action occurs, we can return the result to the client using the handle-
created handler.

Writing Declaration

Declarations are used to indicate the resource’s capabilities. For example,
our resource uses the available-media-types declaration to specify that it returns
a response of type text/plain. Another declaration we saw is the etag, allowing
the client to cache the resource.

Putting It All Together

Let’s look at an example of a service that has a couple of resources that allow
the client to read and store some data.

The application will display a list of users and allow the client to add additional
users to the list. The client will be implemented in JavaScript and use Ajax
to communicate with the service.

To start, let’s create a static HTML page in our public directory and call it
home.html. The page contents will look like this:

liberator-snippets/home.html
<html>
<head>
<title>Liberator Example</title>
<script type="text/javascript"
src="//ajax.googleapis.com/ajax/libs/jquery/1.9.0/jquery.min.js">
</script>

<script type="text/javascript">
function renderUsers(users) {
$('#user-list').empty();
for(user in users)
$('#user-list').append($('', {html: users[user]}));
}
function getUsers() {
$.get("/users", renderUsers);
}
function addUser() {
$.post("/add-user", {user: $('#name').val()}, renderUsers);

}

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/liberator-snippets/home.html
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Putting It All Together ® 61

$(function() {getUsers();});
</script>
</head>

<body>
<h1l>Current Users</hl>

<ul id="user-list">
<input type="text" id="name" placeholder="user name"/>
<button onclick="addUser()">Add User</button>

</body>

</html>

The page contains functions to render a list of users from given a JSON array,
get the current users from the /users URI, and add a new user via the /add-user
URI. In addition we have a userlist placeholder for displaying the users, and
a text field along with the Add User button for adding new users. The page
should look like the following image.

8 00 , [Liberator Example ® _, o
&« = C [localhost:3000] —
Current Users

+ foo

* bar
[user name | ["Add User |

We'll now create corresponding resources to handle each of the operations.
To serve the data as JSON well first have to add a reference to
cheshire.core/generate-string in the declaration of our home namespace:

(ns liberator-service.routes.home
(:require ...
[cheshire.core :refer [generate-stringl]))

Next we’ll create an atom to hold the list of users:

(def users (atom ["John" "Jane"]))

The first resource will respond to GET requests and return the contents of
the users atom as JSON.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 3. Liberator Services ® 62

liberator-service/src/liberator_service/routes/home.clj
(defresource get-users
:allowed-methods [:get]
:handle-ok (fn [] (generate-string @users))
:available-media-types ["application/json"1)

In the resource, we use the :allowed-methods key to restrict it to only serve GET
requests. We use the available-media-types declaration to specify that the response
is of type application/json. The resource will generate a JSON string from our
current list of users when called.

The second resource will respond to POST and add the user contained in the
form-params to the list of users. It will then return the new list:

liberator-snippets/home.clj
(defresource add-user
:method-allowed? (request-method-in :post)
:post!
(fn [context]
(let [params (get-in context [:request :form-params])]
(swap! users conj (get params "user"))))
thandle-created (fn [] (generate-string @users))
:available-media-types ["application/json"])

Here we check that the method is POST, and use the post! action to update
the existing list of users. We then use the handle-created handler to return the
new list of users to the client.

Note that with the resource just detailed, the handle-created value must be a
function.

The following resource will compile without errors. However, when it runs
you’ll see the old value of users. This is because (generate-string @users) is evaluated
before the decision graph is run.

liberator-snippets/home.clj
(defresource add-user
:method-allowed? (request-method-in :post)
:post!
(fn [context]
(let [params (get-in context [:request :form-params])]
(swap! users conj (get params "user"))))
rhandle-created (generate-string @users)
ravailable-media-types ["application/json"1)

It is therefore important to ensure that you provide the :handle-created key with
a function that will be run when the decision graph is executed, as we did in
the original example.

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/liberator-service/src/liberator_service/routes/home.clj
http://media.pragprog.com/titles/dswdcloj/code/liberator-snippets/home.clj
http://media.pragprog.com/titles/dswdcloj/code/liberator-snippets/home.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Putting It All Together ® 63

You'll notice that nothing is preventing us from adding a blank user. Let’s
add a check in our service to validate the request to add a new user:

liberator-service/src/liberator_service/routes/home.clj
(defresource add-user
:allowed-methods [:post]
:malformed? (fn [context]
(let [params (get-in context [:request :form-params])]
(empty? (get params "user"))))
rhandle-malformed "user name cannot be empty!"
:post!
(fn [context]
(let [params (get-in context [:request :form-params])]
(swap! users conj (get params "user"))))
:handle-created (fn [] (generate-string @users))
:available-media-types ["application/json"])

Now, if the value of the user parameter is empty, we’ll be routed to handle-mal-
formed, which will inform the client that the user name cannot be empty. Next
time we try to add an empty user, we’ll see a 400 error in the browser:

POST http://localhost:3000/add-user 400 (Bad Request)

We can now update our page to handle the error and display the message,
as follows:

liberator-snippets/home1.html
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Liberator Example</title>

<script type="text/javascript"
src="//ajax.googleapis.com/ajax/libs/jquery/1.9.0/jquery.min.js">
</script>

<script type="text/javascript">
function renderUsers(users) {
$('#user-list').empty();
for(user in users)
$('#user-list').append($('"', {html: users[user]}));
}

function getUsers() {
$.get("/users", renderUsers);

}

function handleError(xhr) {
$('#error').text(xhr.statusText + ": " + xhr.responseText);

}

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/liberator-service/src/liberator_service/routes/home.clj
http://media.pragprog.com/titles/dswdcloj/code/liberator-snippets/home1.html
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 3. Liberator Services * 64

function addUser() {
var jgxhr = $.post("/add-user", {user: $('#name').val()}, renderUsers)

.fail(handleError);
}
$(function() {getUsers();});
</script>
</head>
<body>

<h1l>Current Users</hl>
<p id="error"></p>
<ul id="user-list">
<input type="text" id="name" placeholder="user name"/>
<button onclick="addUser()">Add User</button>
</body>
</html>

Now, if we click the Add User button without filling in the user name field
we’ll see the following error:

’ —]

808 [Liberator Example o T .
€« - C | [localhost:3000 W

Current Users

Bad Request: user name cannot be empty!

+ foo
* bar
|u5erwa-ne | Add User

As a final touch, let’s add a home resource that will serve our home.html file.
To do that we’ll add the lib-noir dependency to our project.clj:

:dependencies [... [lib-noir "0.7.2"]]

Next we’ll add references to noirio and clojure.java.io to the home namespace
declaration:

(ns liberator-service.routes.home
(:require [...
[noir.io :as io]
[clojure.java.io :refer [file]]))

Now we can create a new resource called home that will serve the home.html
file:

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Putting It All Together ® 65

liberator-service/src/liberator_service/routes/home.clj
(defresource home
ravailable-media-types ["text/html"]

rexists?
(fn [context]
[(io/get-resource "/home.html")
{::file (file (str (io/resource-path) "/home.html"))}1)

:handle-ok

(fn [{{{resource :resource} :route-params} :request}]
(clojure.java.io/input-stream (io/get-resource "/home.html")))

:last-modified

(fn [{{{resource :resource} :route-params} :request}]
(.lastModified (file (str (io/resource-path) "/home.html")))))

The resource will check whether the file exists and when it was last modified.
If the file isn’t available then io/get-resource will return a nil and the client will
get a 404 error. If the file wasn’t changed since the last request, the client
will be returned a 304 code instead of the file, indicating that it wasn’t
modified.

Thanks to this check, the file will be served only if it exists and we made
changes to it since it was last requested. We can now add a route to serve
home.html as our default resource:

(ANY "/" request home)

Our home namespace containing the service counterparts to the page should
look like this:

liberator-service/src/liberator_service/routes/home.clj
(ns liberator-service.routes.home
(:require [compojure.core :refer :all]
[liberator.core :refer [defresource resourcel]]
[cheshire.core :refer [generate-string]]
[noir.io :as io]
[clojure.java.io :refer [filell))
(defresource home
:available-media-types ["text/html"]

rexists?
(fn [context]
[(io/get-resource "/home.html")
{::file (file (str (io/resource-path) "/home.html"))}1)

:handle-ok

(fn [{{{resource :resource} :route-params} :request}]
(clojure.java.io/input-stream (io/get-resource "/home.html")))

:last-modified

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/liberator-service/src/liberator_service/routes/home.clj
http://media.pragprog.com/titles/dswdcloj/code/liberator-service/src/liberator_service/routes/home.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 3. Liberator Services ® 66

(fn [{{{resource :resource} :route-params} :request}]
(.lastModified (file (str (io/resource-path) "/home.html")))))

(def users (atom ["foo" "bar"]))

(defresource get-users
:allowed-methods [:get]
rhandle-ok (fn [] (generate-string @users))
:available-media-types ["application/json"])

(defresource add-user
:allowed-methods [:post]
:malformed? (fn [context]
(let [params (get-in context [:request :form-params])]
(empty? (get params "user"))))
rhandle-malformed "user name cannot be empty!"
:post!
(fn [context]
(let [params (get-in context [:request :form-params])]
(swap! users conj (get params "user"))))
:handle-created (fn [] (generate-string @users))
:available-media-types ["application/json"])

(defroutes home-routes
(ANY "/" request home)
(ANY "/add-user" request add-user)
(ANY "/users" request get-users))

As you can see, Liberator ensures separation of concerns by design. With the
Liberator model you will have small self-contained functions, each of which
handles a specific task.

What You've Learned

So far we've been focusing on the server-client-interaction portion of the
application. In the next chapter we’ll take a deeper look at connecting to and
working with databases.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

CHAPTER 4

Database Access

In the previous chapters we've primarily focused on handling the interaction
between the client and the server, and only skimmed over the topic of persist-
ing our data. In this chapter, we’ll cover how to work with relational
databases using the clojure.java.jdbc library. We'll then discuss how to write
a simple application to generate a PDF report from database records.

Working with Relational Databases

By virtue of running on the Java Virtual Machine, Clojure has access to any
database that can be accessed via Java Database Connectivity (J DBC).! With
it, we can easily access a large number of RDBMS databases, such as MySQL,
SQL Server, PostgreSQL, and Oracle. Several libraries are available for
working with these databases. Let’s take a quick look at our options.

The simplest library for dealing with relational databases is clojure.data.jdbc.
When using this library you will have to write custom SQL for each type of
database you intend to use. If you know you're going to be using a particular
database, such as MySQL or PostgreSQL, this will likely not be a problem for
you. However, if you ever decide to migrate, be prepared to modify your queries
to match the syntax of your new database.

Another approach for dealing with RDBMS is to use a higher-level library
such as SQL Korma (http://sgqlkorma.com/). This library will let you write your
queries using a Clojure domain-specific language (DSL) and generate the SQL
statements targeting the specified back end. The obvious advantage here is
that you no longer have to write SQL by hand. However, you will have to learn
the DSL and will be limited to accessing only the databases it supports. Later
in the book we’ll see an example of using it.

1. http://en.wikipedia.org/wiki/Java_Database Connectivity

www.it-ebooks.info

http://sqlkorma.com/
http://en.wikipedia.org/wiki/Java_Database_Connectivity
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 4. Database Access ® 68

For now, we’ll focus on using the clojure.data.jdbc library, as it provides all
the functionality we need without any additional complexity. We’ll use Post-
greSQL as our database engine throughout this book.

If you choose to use a different database engine, be aware that there might
be slight syntactic differences in your SQL queries.

Accessing the Database

To access the database, we first need to include the necessary libraries in
our project.clj file. We need to reference the java.jdbc library as well as the
driver for the database we’ll be accessing. In case of PostgreSQL we’ll require
the following dependencies:

[org.clojure/java.jdbc "0.2.3"]
[postgresql/postgresql "9.1-901.jdbc4"]

With that in place, we can create a new namespace to serve as the model for
the application. This namespace is conventionally called models.db. We first
have to reference the clojure.data.jdbc library the same way we did in the
examples in Chapter 1, Getting Your Feet Wet, on page 1.

(:require [clojure.java.jdbc :as sql])

Next we need to define our database connection. We can do this in several
ways. Let’s look at these options and their pros and cons.

Defining a Parameter Map

The simplest way to define a connection is by providing a map of connection
parameters.
(def db {:subprotocol "postgresql"

:subname "//localhost/my website"

:user "admin"
:password "admin"})

This is a common approach; its downside is that the connection information
is stored directly in the source. The parameters you're able to supply are also
more limited than they would be if you were using the driver directly.

Specifying the Driver Directly

Another option is to provide a JDBC data source and configure it manually.
This option is useful if you wish to specify any driver-specific parameters not
accessible through the idiomatic parameter map configuration.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Working with Relational Databases ® 69

(def db
{:datasource
(doto (PGPoolingDataSource.)

(.setServerName "localhost")
(.setDatabaseName "my website")
(.setUser "admin")
(.setPassword "admin")

(.

setMaxConnections 10))})

Defining a JNDI String

Finally, we can define the connection by specifying the Java Naming and Directory
Interface (JNDI) name for a connection managed by the application server.

(def db {:name "jdbc/myDatasource"})

Here we've provided the JNDI name as a string. The actual connection will
be configured on the application server you're using, and must be given the
same name as the one defined in the application. When the application runs,
it will query the server for the actual connection details using the name
supplied.

This option separates the code in the application from the environment, which
is nice. For example, you might have separate development, staging, and
production servers. You can point the JNDI connection in each one to its
respective database, and when you deploy your application it will pick up the
connection details from the environment. The application code does not need
to change, and you don’t need to remember to keep track of separate profiles
or environment configurations when building it.

Now that we have a database connection, let’s look at how to accomplish
some common tasks with it. Each database operation must be wrapped using
the with-connection macro. This macro ensures that the connection is cleaned
up before the function exits.

Creating Tables

We create tables by calling the create-table function and providing it the table
name, followed by the columns and their types. Let’s write a function to create
a table to store user records, where each record has an ID and a password.

(defn create-users-table []
(sql/with-connection db
(sql/create-table
:users
[:id "varchar(32) PRIMARY KEY"]
[:pass "varchar(100)"1)))

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 4. Database Access ® 70

Here, create-table is called to create a new users table. The macro takes a key-
word specifying the table name, followed by vectors representing the columns.
Each column has the format of [:name type], where name is the name of the
column and the type can either be a SQL string or a keyword such as :int,
:boolean, or :timestamp. Note: the name of the column cannot have dashes because
those are not valid SQL syntax.

Selecting Records

To select records from our database we use the with-query-results macro. It accepts
a vector containing the SQL string followed by its arguments and returns a
result as a lazy sequence. This allows us to work with the returned data
without having to load the entire result into memory.

Because the result is lazy, we must make sure we evaluate it if we intend to
return it from the function. If we don’t, with-connection will close our connection
when we leave the function and the result will be nil. We can use doall to force
the evaluation of the entire result. However, if we simply select an element
as seen in the following code, that will cause the result to be evaluated
implicitly.

(defn get-user [id]

(sql/with-connection db

(sql/with-query-results
res ["select * from users where id = ?" id] (first res))))

In that code, we've created a function that accepts the user ID parameters
and returns the first item from the result set.

Note that we're using a parameterized query by specifying a vector containing
the prepared statement string followed by its parameters. This approach is
commonly used to prevent SQL injection attacks.

Inserting Records

There are a number of options for inserting records into the database. If you
have a map whose keys match the names of the columns in the table, then
you can simply use the insert-record function.

(defn add-user [user]
(sql/with-connection db
(sql/insert-record :users user)))

(add-user {:id "foo" :pass "bar"})

If you want to insert multiple records simultaneously, you can use the insert-
records function instead.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Working with Relational Databases ¢ 71

(sql/with-connection db
(sql/insert-records
jusers
{:id "foo" :pass "x"}
{:id "bar" :pass "y"}))

We can also use the insert-rows function to specify the records given the values.

(defn add-user [id pass]
(sql/with-connection db
(sql/insert-rows :users
[id pass])))

The function expects a vector containing the values for each of the columns
defined in the table. In case we only want to insert a partial row, we can use
insert-values instead.

(sql/insert-values :users [:id] ["foo0"])

The first parameter is the table name. It is followed by a vector specifying the
names of the columns to be updated. Lastly, we have another vector containing
the values for the columns.

Updating Existing Records

To update an existing record, you can use the update-values and update-or-insert-
values functions. The first will require the record to exist in the database, and
the second will attempt to update the record and insert a new one if necessary.

(sql/update-values
1users
[llid=?ll llfooll]
{:pass "bar"})

(sql/update-or-insert-values
1users
[Ilid=?ll Ilfooll]
{:pass "bar"})

Deleting Records
To delete records from the database, we can use the delete-rows function:

(sql/delete-rows :users ["id=?" "foo0"])

Transactions

We use transactions when we want to run multiple statements and ensure
that the statements will be executed only if all of them can be run successfully.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 4. Database Access ® 72

If any of the statements throw an exception, then the transaction will be rolled
back to the state prior to running any of the statements.
(sql/with-connection db
(sql/transaction
(sql/update-values

:users

[Ilid=?ll Ilfooll]

{:pass "bar"})

(sql/update-values
:users
[Ill'dz?ll Ilbar.ll]
{:pass "baz"})))

Report Generation

In this section we’ll cover how we can easily generate reports from the data
we collect in our database using the clj-pdf library.” Then we’ll discuss how
to serve the generated PDF to the browser using the appropriate response

type.
Our application will have an employee table that will be populated with some

sample data. We'll use this data to create a couple of different PDF reports
and allow the users to select the type of report they wish to view.

The first thing we’ll need to do is configure our database. For this example
we’ll be using the PostgreSQL database.

Setting Up the PostgreSQL Database

Installing PostgreSQL is very easy. If you're using OS X, then you can simply
run Postgres.app.’ On Linux, you can install PostgreSQL from your package
manager. For example, if you're using Ubuntu you can run sudo apt-get install
postgresql.

Once installed, we set the password for the user postgres using the psql shell.
The shell can be invoked by running the psgl command from the console.

sudo -u postgres psql postgres
\password postgres

With the default user set up we’ll create an admin user with the password set
to admin.

CREATE USER admin WITH PASSWORD 'admin';

2. https://github.com/yogthos/clj-pdf
3. http://postgresapp.com/

www.it-ebooks.info

https://github.com/yogthos/clj-pdf
http://postgresapp.com/
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Report Generation ® 73

Then we can create a schema called REPORTING to store our reports by running
the following command:

CREATE DATABASE REPORTING OWNER admin;

Note that we’re using the admin user here to save time. You should always
create a dedicated user and grant only the necessary privileges for any
database you wish to run in production.

With the database configuration out of the way, let’s create a new application
called reporting-example using the compojure-app template.

We'll now open the project.clj file and add the necessary dependencies to it:

:dependencies [...
[postgresql/postgresql "9.1-901.jdbc4"]
[org.clojure/java.jdbc "0.2.3"]
[clj-pdf "1.11.6"]

Let’s start the read-evaluate-print loop (REPL) by running (start-server) in the
reporting-example.repl namespace.

With the REPL running, let’s create a new namespace called reporting-example.mod-
els.db and add our database configuration there.

We’'ll navigate to the db namespace and create our database connection using
clojure.java.jdbc.

reporting-example/src/reporting_example/models/db.clj
(ns reporting-example.models.db
(:require [clojure.java.jdbc :as sql]))

(def db {:subprotocol "postgresql"
:subname "//localhost/reporting"
:user "admin"
:password "admin"})

Then we’ll make an employee table and populate it with the sample data:

reporting-example/src/reporting_example/models/db.clj
(defn create-employee-table []
(sql/create-table

:employee

[:name "varchar(50)"]

[:occupation "varchar(50)"]

[:place "varchar(50)"]

[:country "varchar(50)"1))

(sql/with-connection
db
(create-employee-table)

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/reporting-example/src/reporting_example/models/db.clj
http://media.pragprog.com/titles/dswdcloj/code/reporting-example/src/reporting_example/models/db.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 4. Database Access ® 74

(sql/insert-rows

:employee

["Albert Einstein", "Engineer", "Ulm", "Germany"]

["Alfred Hitchcock", "Movie Director", "London", "UK"]
["Wernher Von Braun", "Rocket Scientist", "Wyrzysk", "Poland"]

["Sigmund Freud", "Neurologist", "Pribor", "Czech Republic"]
["Mahatma Gandhi", "Lawyer", "Gujarat", "India"l

["Sachin Tendulkar", "Cricket Player", "Mumbai", "India"]
["Michael Schumacher", "F1 Racer", "Cologne", "Germany"]))

Finally, we’ll write a function to read the records from the table:

reporting-example/src/reporting_example/models/db.clj
(defn read-employees []
(sql/with-connection db
(sql/with-query-results rs ["select * from employee"] (doall rs))))

Let’s run read-employees to make sure everything is working as expected. We
should see something like the following:

(read-employees)

({:country "Germany",
:place "Ulm",
:occupation "Engineer",
:name "Albert Einstein"}
{:country "UK",
:place "London",
:occupation "Movie Director",
:name "Alfred Hitchcock"}
-)

You'll notice that the result of calling read-employees is simply a list of maps
where the keys are the names of the columns in the table.

Let’s see how we can use this to create a table listing the employees in our
database.

Report Generation

The clj-pdf library uses syntax similar to Hiccup’s to define the elements in
the document. The document itself is represented by a vector. The document
vector must contain a map representing the metadata as its first element. The
metadata is followed by one or more elements representing the document’s
content.

Let’'s create a namespace called reporting-example.reports and look at a few
examples of creating PDF documents. We’'ll use the pdf function to create the
reports, and the template function to format the input data.

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/reporting-example/src/reporting_example/models/db.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Report Generation ® 75

(ns reporting-example.reports
(:require [clj-pdf.core :refer [pdf templatell))

The pdf function accepts two arguments. The first can be either a vector rep-
resenting the document or an input stream from which the elements will be
read. The second can be a string representing the output file name or an
output stream.

Let’s generate our first PDF by running the following in our reports namespace:

(pdf

[{:header "Wow that was easy"}

[:list

[:chunk {:style :bold} "a bold item"]

"another item"

"yet another item"]

[:paragraph "I'm a paragraph!"]]
"doc.pdf")

As you can see, the report consists of vectors, each starting with a keyword
identifying the type of element, followed by optional metadata and the content.
In the preceding report we have a list that contains three rows, followed by
a paragraph. The PDF will be written to a file called doc.pdf in our project’s
root. The contents of the file should look like the following figure.

Wow that was easy

- a bold item

- another item

= yet another item
I'm a paragraph!

Figure 13—Our first PDF

Next, let’s see how we can use the template macro to format the employee data
into a nice table. This macro uses $ to create anchors to be populated from
the data using the keys of the same name.

The template returns a function that accepts a sequence of maps and applies
the supplied template to each element in the sequence. In our case, since
we’re building a table, the template is simply a vector with the names of the
keys for each cell in the row. We'll add the following template to the reporting-
example.reports namespace.

(def employee-template
(template [$name $occupation $place $countryl]))

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 4. Database Access ® 76

Let’s add the reference to our db namespace and try running our template
against the database:

reporting-example/src/reporting_example/reports.clj
(ns reporting-example.reports
(:require [clj-pdf.core :refer [pdf template]]
[reporting-example.models.db :as db]))

We should see the following output after running (employee-template (take 2 (db/read-
employees))) in the REPL:

(["Albert Einstein" "Engineer" "Ulm" "Germany"]
["Alfred Hitchcock", "Movie Director", "London", "UK"1)

Looks like our template works as expected. Let’s use it to generate a report
containing the full list of our employees:

(pdf
[{:header "Employee List"}
(into [:table
{:border false
:cell-border false

:header [{:color [0 150 150]} "Name" "Occupation" "Place" "Country"]1}]

(employee-template (db/read-employees)))]
"report.pdf")

The resulting report should look like the following figure.

Employee List

me owuen mae camy
Albert Einstain Engineer Ul Germany

Alfred Hitcheock Movie Direclor London UK

Wembher Vion Braun Rocket Scientist Wyrzysk Poland

Sigmund Freud Neurologist Pribor Czech Republic

Mahalma Gandhi Lawyer Gujarat India

‘Sachin Tendulkar Cricket Player Mumbai India

Michael Schumacher F1 Racer Cologne Germany

Figure 14—Employee table report

Of course, the template we used for this report is boring. Let’s look at another
example. Here we’ll output the data in a list and style each element:

www.it-ebooks.info

report erratum -

discuss

http://media.pragprog.com/titles/dswdcloj/code/reporting-example/src/reporting_example/reports.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Report Generation ® 77

reporting-example/src/reporting_example/reports.clj
(def employee-template-paragraph
(template
[:paragraph

[:heading {:style {:size 15}} $name]
[:chunk {:style :bold} "occupation: "] $occupation "\n"
[:chunk {:style :bold} "place: "1 $place "\n"
[:chunk {:style :bold} "country: "1 $country
[:spacer]]))

Now let’s create a report using the employee-template-paragraph by running the
following:

(pdf
[{:
[:heading {:size 10} "Employees"]
[:line]
[:spacer]
(employee-template-paragraph (db/read-employees))]
"report.pdf")

Our new report will look like the following figure.

Employees
Albert Einstein

occupation: Engineer
place: Um
country: Germany

Alfred Hitchcock
occupation: Movie Director
place: London

country: UK

Wernher Von Braun
occupation: Rocket Scientist
place: Wyrzysk

country: Poland

Sigmund Freud
occupation: Neurologist
place: Pribor

country: Czech Republic

Mahatma Gandhi

occupation: Lawyer
place: Gujarat
country: India

Sachin Tendulkar

Figure 15—Employee list report

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/reporting-example/src/reporting_example/reports.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 4. Database Access ® 78

Displaying the Reports

Now that we've created a couple of reports on our data, let’s see how we can
serve them from our application. We’ll write the functions to create a list and
table reports using the preceding examples:

reporting-example/src/reporting_example/reports.clj
(defn table-report [out]
(pdf
[{:header "Employee List"}
(into [:table
{:border false
:cell-border false
:header [{:color [0 150 1501} "Name" "Occupation" "Place" "Country"]}]
(employee-template (db/read-employees)))]
out))

(defn list-report [out]

(pdf
[{r
[:heading {:size 10} "Employees"]
[:line]
[:spacer]
(employee-template-paragraph (db/read-employees))]
out))

Next, we’ll navigate to reporting-example.routes.home and add some references
needed to generate the report route.

reporting-example/src/reporting_example/routes/home.clj
(ns reporting-example.routes.home
(:require [hiccup.element :refer [link-to]]
[ring.util.response :as response]
[compojure.core :refer [defroutes GET]]
[reporting-example.reports :as reports]
[reporting-example.views.layout :as layout]))

We'll update the home function to provide links to each of the reports:

reporting-example/src/reporting_example/routes/home.clj
(defn home []
(layout/common
[:h1l "Select a report:"]

[:ul
[:1i (link-to "/list" "List report")]
[:1i (link-to "/table" "Table report")11))

Now we’ll write a function to generate the response. We'll create an input
stream using a supplied byte array and set it as the response. We’'ll also set

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/reporting-example/src/reporting_example/reports.clj
http://media.pragprog.com/titles/dswdcloj/code/reporting-example/src/reporting_example/routes/home.clj
http://media.pragprog.com/titles/dswdcloj/code/reporting-example/src/reporting_example/routes/home.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

What You've Learned ¢ 79

the appropriate headers for the content type, the content disposition, and the
length of the content.

reporting-example/src/reporting_example/routes/home.clj
(defn write-response [report-bytes]
(with-open [in (java.io.ByteArrayInputStream. report-bytes)]
(-> (response/response in)

(response/header "Content-Disposition" "filename=document.pdf")
(response/header "Content-Length" (count report-bytes))
(response/content-type "application/pdf"))))

We'll write another function to generate the report. This function will create
a ByteArrayOutputStream that will be used to store the report. Then it will call one
of our report-generation functions with it. Once the report is generated we’ll
call write-response with the contents of the output stream.

reporting-example/src/reporting_example/routes/home.clj
(defn generate-report [report-typel
(try
(Let [out (new java.io.ByteArrayOutputStream)]
(condp = (keyword report-type)
:table (reports/table-report out)
:list (reports/list-report out))
(write-response (.toByteArray out)))

(catch Exception ex
{:status 500
:headers {"Content-Type" "text/html"}
:body (layout/common
[:h2 "An error has occured while generating the report"]
[:p (.getMessage ex)1)})))

Last but not least, we're going to create a new route to serve our reports.

reporting-example/src/reporting_example/routes/home.clj
(defroutes home-routes
(GET "/" [1 (home))
(GET "/:report-type" [report-typel (generate-report report-type)))

You should now be able to navigate to http://localhost:3000 and select a link to
one of the reports. When you click on the link the corresponding report will
be served.

What You've Learned

This covers the basics of working with relational databases. You've now learned
how to do the basic database operations and seen a simple reporting applica-
tion in action. As we've covered in this chapter, database records are easily

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/reporting-example/src/reporting_example/routes/home.clj
http://media.pragprog.com/titles/dswdcloj/code/reporting-example/src/reporting_example/routes/home.clj
http://media.pragprog.com/titles/dswdcloj/code/reporting-example/src/reporting_example/routes/home.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 4. Database Access ® 80

mapped to Clojure data structures. Therefore, the Clojure community sees
object-relational mapping libraries as unnecessary.

In the next chapter we’ll put together all the skills you've learned so far to
write a picture-gallery application.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

CHAPTER 5

Picture Gallery

In this chapter we'll tie together all the concepts you've learned thus far by
building a picture-gallery application.

The Development Process

We'll build our application by creating a brief outline of the features to work
from, then filling in the details as we go along.

We'll be developing our application interactively using the read-evaluate-print
loop (REPL). This will allow us to grow the application without the need for
restarts to see new functionality.

Don’t be afraid to try things out when using the REPL. For example, if you're
writing a particular function to pull some data from the database, try it right
in the editor and see its output before hooking it up to the page.

What's in a Gallery

We'll identify the different use cases for our site and then stub out some pages
around those. Let’s go over a list of actions we’d like our site’s users to be
able to perform. Each of these use cases will constitute a particular workflow
that we can complete independent of others.

Task A: Account Registration

For a user to put content on the site, she needs to have an account. To facil-
itate this we need a page to collect some user details such as an ID and a
password, validate those, and create a database entry for the user.

Task B: Login and Logout

Once a user creates an account, he should be able to log in using the creden-
tials provided. We need to display a login form on our pages if there is no user

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 5. Picture Gallery * 82

in the session. If the user logs in successfully, we want to display a logout
button instead.

Task C: Uploading Pictures

With the preliminaries out of the way, we can focus on adding some core
functionality. First, we need to provide a way for users to upload content to
the site. When a picture is uploaded we need to create a thumbnail to display
when listing the galleries.

Task D: Displaying Pictures

Now that we can upload pictures, we need to display them. We’ll display the
thumbnails and use them as links to the full-sized pictures. Since our site is
a multiuser one, we also need a way to list user galleries. This way visitors
will be able to browse the content from all users.

Task E: Deleting Pictures

Users might wish to remove some of their uploads, and we’ll provide an
interface to do so. When a user chooses to delete some pictures, he’ll need a
way to select them and then delete both the pictures and their thumbnails.

Task F: Account Deletion

A user may also wish to remove her account; hopefully this scenario never
comes up, but we’ll facilitate it just in case. When an account is deleted, we’ll
have to remove the user from our database and remove all the pictures and
thumbnails for that user.

Code Architecture

Now that we've identified what we’d like our site to do, we can begin thinking
about how to implement it. To keep things manageable we’ll create separate
namespaces for each of our workflows. Grouping all the related actions in
the same namespace allows us to compartmentalize the logic.

The first step toward understanding the nature of our application is to con-
sider its data model. Figuring out what data we wish to collect and how it will
be used will help us understand the workflow and our use cases. Therefore,
setting up our database and creating the necessary tables will be the first
step of building our application.

If you've worked with a web framework in an object-oriented language, you're
probably used to creating an object model and then mapping that model to

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Creating the Application * 83

the database, either by writing SQL statements by hand or using an object-
relational mapping framework such as Hibernate to do that for you."'

In our application the database will be our data model. Because the logic is
kept separate from the data in Clojure, there’s no value in copying the maps
returned from the database to different data structures. Following this ratio-
nale, we’ll use our table definitions as the data model for the application. In
a later chapter we’ll cover how we can use a native Clojure domain-specific
language to access the database instead.

Creating the Application

To create the application we’ll open Eclipse and then select a new Leiningen
project. We'll set the project name to picture-gallery and change our profile from
default to compojure-app. If needed, please refer to Chapter 1, Getting Your Feet
Wet, on page 1, for more details on how to complete this step. We'll use
PostgreSQL as our database, so we’ll need to add the necessary dependencies
to our project. Once your project has been initialized, open the project.clj and
add the postgresql, clojure.java.jdbc, and lib-noir dependencies.

picture-gallery-a/project.clj
[postgresql/postgresql "9.1-901.jdbc4"]
[org.clojure/java.jdbc "0.2.3"]
[lib-noir "0.7.6"]

Since we're using lib-noir, we have to add its middleware to our handler for
it to work correctly. We'll open the picture-gallery.handler namespace and add a
few things to it. First we have to reference the libraries we’ll be using. We'll
do this by adding them to the :require section of our namespace definition, at
the top.

(:require ... [noir.util.middleware :as noir-middleware])

We'll use the app-handler middleware found in the noirmiddleware namespace to
set up the handler for our site. The app-handler will set up all the common
middleware, such as session management, for us.

Let’s replace the current app definition with the following one.
(def app (noir-middleware/app-handler [home-routes app-routes]))

We can now remove some of the references from our namespace, since they're
provided by the app-handler. Our namespace declaration should now look like
the following.

1. http://www.hibernate.org/

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-a/project.clj
http://www.hibernate.org/
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 5. Picture Gallery * 84

(ns picture-gallery.handler
(:require [compojure.route :as route]
[compojure.core :refer [defroutes]]
[noir.util.middleware :as noir-middleware]
[picture-gallery.routes.home :refer [home-routes]]))

With our handler set up, let’'s navigate to the picture-gallery.repl namespace in
the package explorer and run it. This should start up a REPL where you can
run the start-server function to start the application. You should see the following
output in the REPL after running (start-server).

;; Clojure 1.5.1

=> (start-server)

picture-gallery is starting

Started server on port 3000

You can view the site at http://localhost:3000

Once the application starts, a new browser window will open, pointing to
localhost:3000 and showing a stock template home page like the one in the fol-
lowing figure.

] a

eoe / [Welcome to picture-galler _\5 =
- = _D localhost:3000) 'ﬂ?

Hello World!

Figure 16—Default page

Application Data Model

We're now ready to start working on creating the application we outlined
earlier. Since defining the data model is a prerequisite for all the following
tasks, we’ll tackle it first.

Configuring the Database

Let’s create a new schema called gallery in the database. In PostgreSQL, create
an admin user with the password set to admin, then run the following command
to add the schema for our application.

CREATE DATABASE GALLERY OWNER admin;

Now that our database is ready to use, let’s look at how to connect to it. We
can use clojure.java.jdbc to set up the Java Database Connectivity connection.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Application Data Model * 85

We'll create a db namespace under models and set up our database connection
there. For simplicity, let’s use the first method of defining the database con-
nection that we discussed in Chapter 4, Database Access, on page 67. With
this method we specify the connection parameters in a map using the format
specified by the clojure.java.jdbc library.

picture-gallery-a/src/picture_gallery/models/db.clj
(ns picture-gallery.models.db
(:require [clojure.java.jdbc :as sql]))

(def db
{:subprotocol "postgresql"
:subname "//localhost/gallery"
:user "admin"
:password "admin"})

Defining the Data Model

With the connection set up, we can now look at defining the necessary tables.
Let’s create a new namespace called picture-gallery.models.schema. This namespace
will hold our table definitions and act as documentation for our model.

picture-gallery-a/src/picture_gallery/models/schema.clj
(ns picture-gallery.models.schema
(:require [picture-gallery.models.db :refer :all]
[clojure.java.jdbc :as sqll))

Our first task will be to implement user registration. As our first step, we
should try to identify the model for storing the user information.

We'll write a function to create a new table to hold the user accounts. This
table will define the user record that we’ll use throughout our application.

Each user will need to have an ID and a password. Both of these variables
can be strings. Since the password will be hashed, we should make this field
long enough to contain it.

Since the user ID represents a unique user, we should make it a primary key.
This will prevent users with duplicate IDs from being created.

picture-gallery-a/src/picture_gallery/models/schema.clj
(defn create-users-table []
(sql/with-connection db
(sql/create-table
rusers
[:id "varchar(32) PRIMARY KEY"]
[:pass "varchar(100)"1)))

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-a/src/picture_gallery/models/db.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-a/src/picture_gallery/models/schema.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-a/src/picture_gallery/models/schema.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 5. Picture Gallery * 86

Let’s run the create-users-table function in the REPL to create the table. You
should see the following output if the table was created successfully:

#<Namespace gallery.models.schema>
(0)

With our users table in place, we're ready to move on to our first task of
showing a registration page and providing a way to create user accounts.

Task A: Account Registration

User registration and authentication is a self-contained workflow that is
unrelated to the rest of the our application’s functionality. This makes it a
good candidate for creating a namespace to hold all the authentication func-
tions and routes. We'll create a picture-gallery.routes.auth namespace and, inside
it, implement the functions to handle this task.

Before we continue we need to understand the workflow involved in user
registration. The user has to enter some identifying information in a form.
The form submission has to be processed by the handler to decide whether
a user account should be created.

Since all the user data can be collected in a single step, we need a single page
with a form to collect the input. The page will call the handler to validate the
input and create the user.

As our first step, let’s reference the relevant libraries in the namespace
declaration.

(ns picture-gallery.routes.auth
(:require [hiccup.form :refer :all]
[compojure.core :refer :all]
[picture-gallery.routes.home :refer :all]
[picture-gallery.views.layout :as layout]
[noir.session :as session]
[noir.response :as resp]))

The next step will be very similar to what we did with our guestbook applica-
tion in Chapter 2, Clojure Web Staclk, on page 25. Registering users consists
of collecting the user information we wish to store and creating a record in
the database. In our case, we’ll simply collect the user ID, a password, and
a retyped password to ensure it was entered correctly. Let’s create the form
and a controller stub for the registration.

We'll start by defining the routes for authentication; the GET route will render
the page, and its POST counterpart will handle the submission from the form.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Task A: Account Registration ® 87

picture-gallery-a/src/picture_gallery/routes/auth.clj
(defroutes auth-routes
(GET "/register" []
(registration-page))

(POST "/register" [id pass passl]
(handle-registration id pass passl)))

With the routes in place we can write the actual functions to render the page
and handle the registration. As you recall, we've already defined our user
table and added the id and pass fields to it. We should use the same names
for these fields in our form.

(defn registration-page [& [id]]
(layout/common
(form-to [:post "/register"]

(label "user-id" "user 1id")
(text-field "id" id)
[:br]
(label "pass" "password")
(password-field "pass")
[:br]
(label "passl" "retype password")
(password-field "passl")
[:br]
(submit-button "create account"))))

(defn handle-registration [id pass passl]
(session/put! :user id)
(resp/redirect "/"))

Now that we've defined our routes and written the handler functions, we need
to expose these in our handler. To do that we need to add a reference to picture-
gallery.routes.auth in the picture-gallery.handler namespace, and update the app
definition to include our new routes.

(:require ...
[picture-gallery.routes.auth :refer [auth-routes]])

(def app (noir-middleware/app-handler
[auth-routes
home-routes
app-routes]))

We should now be able to browse to localhost:3000/register and see our registration
page (which Figure 17, Registration page, on page 88 shows).

Note that occasionally the REPL may get into a bad state. This is often trig-
gered when there’s an error in the code and a namespace fails to compile. In

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-a/src/picture_gallery/routes/auth.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 5. Picture Gallery * 88

el

v .ii "Biii'e "4 [} Welcome to picture-galler, ® '\

« - |D localhost:3000/ register 'ﬁ|

P —
S
otype password|]
create account

Figure 17—Registration page

this scenario a stale version of the code may be running. If you believe this
to be the case, then simply restart the REPL. This will force all the namespaces
to be recompiled, and if there were any errors you’ll be able to see them in
the stack trace that will be displayed in the console.

When the page loads we can check that we're able to submit the user details
to the server. We'll now modify the home function in the picture-gallery.routes.home
namespace to provide our own content instead of the stock template page.

For starters, if a user is available in the session, let’s print the user ID in the
greeting. To do that we’ll need to reference the noir.session namespace.

(ns picture-gallery.routes.home
(:require ... [noir.session :as session]))

Then we’ll simply grab the value for the :user key from the session and display
it on our page.

(defn home []
(layout/common [:hl "Hello

(session/get :user)]))

Now let’s navigate to the localhost:3000/register URL, fill in the user details, and
press the Create Account button. We should be taken to the home page and
the user ID should be displayed in our welcome message, as in Figure 18,
Home page, on page 89.

Now that we have our basic registration workflow functioning, we can add
some validation to it. We should check that the user didn’t forget to provide
an ID and that the entered passwords match.

We’ll open the picture-gallery.routes.auth namespace and add some validation to
the registration form. To do that we’ll have to require noirvalidation in the
namespace declaration.

(:require ... [noir.validation :as valil)

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Task A: Account Registration ® 89

m/ [} Welcome to picture-galler, ® ¥
« => |D localhost:3000 ﬁ| =
Hello foo

Figure 18—Home page

Next, we can add the validation function and the error-item formatter the same
way we did in Chapter 2, Clojure Web Stack, on page 25.

picture-gallery-a/src/picture_gallery/routes/auth.clj
(defn valid? [id pass passl]
(vali/rule (vali/has-value? id)
[:id "user id is required"])
(vali/rule (vali/min-length? pass 5)
[:pass "password must be at least 5 characters"])
(vali/rule (= pass passl)
[:pass "entered passwords do not match"])
(not (vali/errors? :id :pass :passl)))

(defn error-item [[error]]
[:div.error error])

Now we can update our registration page to validate the input and respond
accordingly.

(defn registration-page [& [id]]
(layout/common
(form-to [:post "/register"]

(vali/on-error :id error-item)
(label "user-id" "user 1id")
(text-field "id" id)
[:br]
(vali/on-error :pass error-item)
(label "pass" "password")
(password-field "pass")
[:br]
(vali/on-error :passl error-item)
(label "passl" "retype password")
(password-field "passi")
[:br]
(submit-button "create account"))))

We’ll now update our controller to validate the input and either add the user
to the session and redirect to the home page if validation passes, or render

www.it-ebooks.info

report erratum -

discuss

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-a/src/picture_gallery/routes/auth.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 5. Picture Gallery * 90

the registration page. The error will be set by our valid? function and the page
will display it using the on-error helper.
(defn handle-registration [id pass passl]
(if (valid? id pass passl)
(do (session/put! :user id)
(resp/redirect "/"))

(registration-page id)))
Let’s try to submit an incomplete registration form to test that our validation
rules are now being checked (see the following figure).

m [} Welcome to picture-galler, % '\, '\

« = C |D localhost:3000/ register *|
R

password must be at least 5 characters

!i G

create account

Figure 19—Registration-page error

We can also add a bit of styling to the page to make it look more presentable.
To do that we’ll open the screen.css file generated by the template. The file is
located in the resources/public/css folder. You'll notice that it already has some
stock CSS defined. We'll now add our own style to the existing content.

picture-gallery-a/resources/public/css/screen.css

body {
background-color: #fff;
color: #555;

font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
font-size: 13px;
}
hl {
text-align: center;
}
label {
width:150px;
float:left;
}
.error {
color: red;

}

WWWIt'ebOOkS|nf0 report erratum

- discuss

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-a/resources/public/css/screen.css
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Task A: Account Registration ¢ 91

Now the forms will be aligned nicely and errors will show up in red. We won't
focus much on style at this point since our page elements might change as
we add more functionality. Once we have our pages finalized, we’ll revisit our
application’s styling.

Another feature that we’ll add to the form is tab indexes on input fields. This
way the user can tab through the fields using the keyboard.

(defn registration-page [& [id]]
(layout/common
(form-to [:post "/register"]

(vali/on-error :id error-item)
(label "user-id" "user 1id")
(text-field {:tabindex 1} "id" id)
[:br]
(vali/on-error :pass error-item)
(label "pass" "password")
(password-field {:tabindex 2} "pass")
[:br]
(vali/on-error :passl error-item)
(label "passl" "retype password")
(password-field {:tabindex 3} "passl")
[:br]
(submit-button {:tabindex 4} "create account"))))

That function has a lot of repetition. This is a clear sign that we should
refactor it. Let’s write a helper function to add all the common elements:

picture-gallery-a/src/picture_gallery/routes/auth.clj
(defn control [id label field]
(list
(vali/on-error id error-item)
label field
[:br]))

(defn registration-page [& [id]]
(layout/common
(form-to [:post "/register"]
(control :id
(label "user-id" "user id")
(text-field {:tabindex 1} "id" id))
(control :pass
(label "pass" "password")
(password-field {:tabindex 2} "pass"))
(control :passl
(label "passl" "retype password")
(password-field {:tabindex 3} "passl"))
(submit-button {:tabindex 4} "create account"))))

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-a/src/picture_gallery/routes/auth.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 5. Picture Gallery ® 92

The form should now look a little cleaner and provide all the functionality
one would expect (as we can see in the following figure).

800 ."r DWell:ume to picture-galler x \'_\'3 " . . !l
€& — C | [} localhost:3000/register 'ﬁi =

seric

password must be at least 5 characters

pasewrd R
it SR —

[create account |

Figure 20—Styled registration page

Note that having less code doesn’t always lead to having cleaner code. The
code we refactored isn’t shorter in the absolute, but each of the functions is
clean and easy to read.

It would now be a good idea to provide a link to the registration page so that
users can find it. The most logical place to do this would be in the common
helper located in the picture-gallery.views.layout namespace. This way all the pages
using this layout will display the registration link. Let’s open our picture-
gallery.views.layout namespace and add a couple of extra library references to its
definition.

picture-gallery-a/src/picture_gallery/views/layout.clj
(ns picture-gallery.views.layout
(:require [hiccup.page :refer [html5 include-css]]
[hiccup.element :refer [link-to]]
[noir.session :as session]))

We’ll need noir.session to check if the user exists, and link-to from hiccup.element
to provide a link to the registration page. Since we don’t want the link to be
displayed on the registration page, we’ll rename the current version of common
to base.

picture-gallery-a/src/picture_gallery/views/layout.clj
(defn base [& content]
(html5
[:head
[:title "Welcome to picture-gallery"]
(include-css "/css/screen.css")]
[:body content]))

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-a/src/picture_gallery/views/layout.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-a/src/picture_gallery/views/layout.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Task A: Account Registration ® 93

Now we can add a new common function that checks if there’s a user in the
session. If there is, the layout displays the ID; otherwise it shows a link to
the registration page.

picture-gallery-a/src/picture_gallery/views/layout.clj
(defn common [& content]
(base
(if-let [user (session/get :user)]
[:p user] (link-to "/register" "register"))
content))

Since we don’t wish to display the registration link on the /register page, we’ll
update it to use the base layout instead of common for rendering.

picture-gallery-a/src/picture_gallery/routes/auth.clj
(defn registration-page [& [id]]
(layout/base
(form-to [:post "/register"]
(control :id
(label "user-id" "user id")
(text-field {:tabindex 1} "id" id))
(control :pass
(label "pass" "password")
(password-field {:tabindex 2} "pass"))
(control :passl
(label "passl" "retype password")
(password-field {:tabindex 3} "passi"))
(submit-button {:tabindex 4} "create account"))))

We can test and see that once we register a user, the ID shows up on the
home page when we're directed to it. If we stop and start the server we’ll see
the registration link instead.

Storing Users in the Database

So far, we've been keeping the user in the session. Now it’s time to store the
user information in the database instead. We created a users table earlier.
All we need to do is to create a function to store the user details in it. Let’s
open the db namespace again, and add the following code to it:
picture-gallery-a/src/picture_gallery/models/db.clj
(defn create-user [user]
(sql/with-connection
db
(sql/insert-record :users user)))

There, create-user accepts a map containing two keys. These keys match the
column names in the table and the parameters in the form we created. The

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-a/src/picture_gallery/views/layout.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-a/src/picture_gallery/routes/auth.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-a/src/picture_gallery/models/db.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 5. Picture Gallery * 94

function simply inserts this record in our users table. In case the record
cannot be created, an exception will be thrown.

Let’s open the picture-gallery.routes.auth namespace and update it to store the user
in the database when an account is created. We’ll have to reference picture-
gallery.models.db to use the create-user, as well as noir.util.crypt to hash the password
before storing it.

(:require ...

[noir.util.crypt :as crypt]
[picture-gallery.models.db :as db])

Then we simply update our controller to call create-user if the login information
is valid.

(defn handle-registration [id pass passl]
(if (valid? id pass passl)
(do
(db/create-user {:id id :pass (crypt/encrypt pass)})
(session/put! :user id)
(resp/redirect "/"))
(registration-page id)))

When we try to register a user again, we should see a new user record appear
in our users table. We can check that by running the following command
from the REPL in the db namespace after registering a user:

(sql/with-connection db
(sql/with-query-results res ["select * from users"] (println res)))

({:id foo,
:pass $2a$10$YZ/9wi7GFmplwKWShddgFulLUeSyy2rTIEptw2aI9096TKu50LqToy})

You might have noticed that our registration page has a small problem. If a
user with the same ID already exists in the database, then we get a server
error on our page. Not only is this ugly, but it also poses a security risk, as
we’re exposing the internals of our application to a potential attacker.

Instead, let’s catch this exception and display a meaningful message when
the user ID is taken. Let’'s go back to the picture-gallery.routes.auth namespace
and make the changes to handle errors and display them.

The page controller will now wrap the call to create-user in a try/catch and render
the /register page with an error when an exception is caught instead of redirect-
ing to the home page.

Before that, however, let’s make a helper function to check the type of error
and make a friendly message instead of the raw exception.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Task B: Login and Logout ® 95

picture-gallery-a/src/picture_gallery/routes/auth.clj
(defn format-error [id ex]
(cond
(and (instance? org.postgresql.util.PSQLException ex)
(= 0 (.getErrorCode ex)))
(str "The user with id " id " already exists!")

relse
"An error has occured while processing the request"))

(defn handle-registration [id pass passl]
(if (valid? id pass passl)
(try
(db/create-user {:id id :pass (crypt/encrypt pass)})
(session/put! :user id)
(resp/redirect "/")
(catch Exception ex
(vali/rule false [:id (format-error id ex)])
(registration-page)))
(registration-page id)))

If you now try to register a user with a duplicate ID, then an error indicating
the fact will be displayed in the browser (as we can see here).

m [} Welcome to picture-galler, %

« =2>C lD localhost:3000/register 52?| =

The user with id foo already exists!
user id

pasewor E—
it —

Figure 21—Duplicate-user error

We're now ready to tackle our next task: allowing users to log in and log out
after creating an account on our site.

Task B: Login and Logout

Login and logout actions are very simple to implement. To log in the user will
submit her ID and password using a login form. These will be checked against
the stored credentials, and if they match we’ll put the ID in the session.

Let’s navigate to our picture-gallery.models.db namespace. We've already added a
function to store the users in the database, and we now need to add one to

www.it-ebooks.info

report erratum -

discuss

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-a/src/picture_gallery/routes/auth.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 5. Picture Gallery * 96

read the users based on the IDs. We’ll use the with-query-results macro to get the
records and return the first item. If no record matches the supplied ID, we’'ll
simply get a nil value back.
(defn get-user [id]
(sql/with-connection
db
(sql/with-query-results
res ["select * from users where id = ?" id] (first res))))

Note that we have to keep writing (sql/with-connection db ...) for each db statement.
Since this gets tedious to do, we’ll write a short macro for this task.

picture-gallery-b/src/picture_gallery/models/db.clj
(defmacro with-db [f & body]
" (sql/with-connection ~db (~f ~@body)))

(defn create-user [user]
(with-db sql/insert-record :users user))

(defn get-user [id]
(with-db sql/with-query-results
res ["select * from users where id = ?" id] (first res)))

As you can see, the macro simply templates the code to wrap the connection
and call the function to access the database.

Now that we have a way to query users, let’s add a handler to allow users to
log in. The handler will accept the user ID and the password, then compare
them to what’s stored in the database. We’ll put this handler in the picture-
gallery.routes.auth namespace:

picture-gallery-b/src/picture_gallery/routes/auth.clj
(defn handle-login [id pass]
(Let [user (db/get-user id)]
(if (and user (crypt/compare pass (:pass user)))
(session/put! :user id)))

(resp/redirect "/"))

When a user logs out we’ll want to clear out that session, so the logout handler
will simply call session/clear! to remove any user data that’s been accumulated.

(defn handle-logout []
(session/clear!)
(resp/redirect "/"))

Now we’ll add the routes for these controllers in our auth-routes definition to
expose the functionality to the client.

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-b/src/picture_gallery/models/db.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-b/src/picture_gallery/routes/auth.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Task C: Uploading Pictures ® 97

picture-gallery-b/src/picture_gallery/routes/auth.clj
(defroutes auth-routes
(GET "/register" []
(registration-page))

(POST "/register" [id pass passl]
(handle-registration id pass passl))

(POST "/login" [id pass]
(handle-login id pass))

(GET "/logout" []
(handle-logout)))

We'll also need to add the forms to make these handlers accessible from the
user interface. Since these forms are common to all pages, the layout is a
good candidate for them.

We’'ll update it to also provide the login and logout links as appropriate. For
this we’ll have to include hiccup.form in our namespace declaration.

(:require ... [hiccup.form :refer :alll)

With that out of the way, we’ll update our common layout to add the login form
and a link for the logout route.

picture-gallery-b/src/picture_gallery/views/layout.clj
(defn common [& content]
(base
(if-let [user (session/get :user)]
[:div (link-to "/logout" (str "logout " user))]
[:div (link-to "/register" "register")
(form-to [:post "/login"]
(text-field {:placeholder "screen name"} "id")
(password-field {:placeholder "password"} "pass")
(submit-button "login"))])
content))

We should now be able to test the login and logout functionality by logging
in as a registered user. We've finished implementing all of our authentication
tasks. With these out of the way, we’ll turn our attention to the next task,
which is to allow users to upload their content.

Task C: Uploading Pictures

Since we're creating a new workflow, we should create a new namespace for
it. Let’s make a picture-gallery.routes.upload namespace for handling this task.

The workflow requires a form to facilitate the upload. Once a file is submitted via
this form, we’ll need to create a thumbnail to display when listing the user gallery.

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-b/src/picture_gallery/routes/auth.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-b/src/picture_gallery/views/layout.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 5. Picture Gallery * 98

The functionality for scaling images can be found in the java.awt.geom package
provided by the Java standard library. In this section, we’ll use Java interop
to wrap it in idiomatic Clojure functions for use in our application.

Let’s start by adding all the required references to our namespace. It looks
like a lot, but some of them should be familiar. We’ll cover how the other ones
are used shortly.

picture-gallery-c/src/picture_gallery/routes/upload.clj
(ns picture-gallery.routes.upload
(:require [compojure.core :refer [defroutes GET POST]]

[hiccup.form :refer :all]
[hiccup.element :refer [image]]
[hiccup.util :refer [url-encode]]
[picture-gallery.views.layout :as layout]
[noir.io :refer [upload-file resource-pathl]]
[noir.session :as session]
[noir.response :as resp]
[noir.util.route :refer [restricted]]
[clojure.java.io :as io]
[ring.util.response :refer [file-response]]
[picture-gallery.models.db :as db]
[picture-gallery.util :refer [galleries gallery-pathl])

(:import [java.io File FileInputStream FileOutputStream]
[java.awt.image AffineTransformOp BufferedImagel
java.awt.RenderingHints
java.awt.geom.AffineTransform
javax.imageio.ImageI0))

Next, we’ll create a function to render the upload page, and a handler to
process the form’s POST action. The page will have a form of type multipart/form-
data. The handler will print out the params and render the page. This will let
us see what the form submits.

picture-gallery-c/src/picture_gallery/routes/upload.clj
(defn upload-page [info]
(layout/common
[:h2 "Upload an image"]
[:p info]
(form-to {:enctype "multipart/form-data"}
[:post "/upload"]
(file-upload :file)
(submit-button "upload"))))

(defn handle-upload [params]
(println params)
(upload-page "success"))

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-c/src/picture_gallery/routes/upload.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-c/src/picture_gallery/routes/upload.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Task C: Uploading Pictures ® 99

As usual, we also have to update our route definitions. We’ll have to create
the routes and add them to the app declaration in the picture-gallery.handler
namespace.

(defroutes upload-routes
(GET "/upload" [info] (upload-page info))

(POST "/upload" {params :params} (handle-upload params)))

In picture-gallery.handler the app declaration should now look as follows:

(:require ... [picture-gallery.routes.upload :refer [upload-routes]])

(def app (noir-middleware/app-handler
[auth-routes
home-routes
upload-routes
app-routes]))

We can test the form in the browser to see that we're calling the handler
successfully. When called, the handler should print the params in the console.
{:file
{:size 15,
:tempfile #<File /var/folders/mv/sch8x99yc30gp/T/ring-multipart-60387396.tmp>,

:content-type application/octet-stream,
:filename cloud.jpg}}

We can see that the params have a single key called -file. The :file key points
to a map that in turn contains the following keys:

¢ :tempfile — The file itself

e :filename — The name of the file being uploaded

e :content-type — The content type of the file being uploaded
e :size — The size of the file in bytes

This gives us all the necessary information to save the file. Let’s update our
handler and the route definition to use the :file parameter and check that a
file has been selected:

(defn handle-upload [{:keys [filename] :as file}]
(println file)
(upload-page
(if (empty? filename)
"please select a file to upload"
"success")))
(defroutes upload-routes
(GET "/upload" [info] (upload-page info))

(POST "/upload" [file] (handle-upload file)))

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 5. Picture Gallery * 100

All that’s left is to save the file to disk. The application’s public folder would
be an obvious place to store the files. Unfortunately, when we later package
our application as a JAR this location will no longer be writable. Instead, we’ll
create a galleries directory and store the files there.

Let’s start by creating a add-gallery-path helper:

(defn gallery-path []
"galleries")

We'll use the noirio/upload-file helper function to handle file uploads. It accepts
a path, a map representing the file, and an optional flag signifying whether
the path should be created if it doesn’t exist.

We'll simply call it from our controller and catch any exceptions that might
be thrown if we’re unable to save the file. The message from the exception
will be set as the info parameter for our page to be displayed to the user. If
the upload is successful, we’ll display the image we uploaded.

(defn handle-upload [{:keys [filename] :as file}]
(upload-page
(if (empty? filename)
"please select a file to upload"

(try
(noir.io/upload-file (gallery-path) file :create-path? true)
(image {:height "150px"}
(str "/img/" (url-encode filename)))

(catch Exception ex
(str "error uploading file " (.getMessage ex)))))))

We use url-encode on the file name to ensure that it can be displayed correctly
even if it contains special characters that aren’t valid in a URL string. To
display the image, we have to create a new route and a handler responsible
for serving the file we uploaded to the client.

(defn serve-file [file-name]
(file-response (str (gallery-path) File/separator file-name)))

(defroutes upload-routes
(GET "/img/:file-name" [file-name] (serve-file file-name)))

We can now test that uploading works as expected by going to the upload
page and uploading an image. We’'ll see our image displayed on the page if
everything went well. Refer to the following two figures.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Task C: Uploading Pictures ® 101

m/ [} welcome to picture-galler. %

« - C |D localhost:3000/upload ﬂ?,‘

upload images
logout foo

Upload an image
Choose File | No file chosen upload

Figure 22—Selecting a file to upload

8 00 DWelcome to picture-galler * Y -
J

e —

€« - C | [localhost:3000/upload iy

upload images
logout foo

Upload an image

| Choose File | No file chosen | upload |

Figure 23—File uploaded successfully

We can now browse to the galleries folder at the root of our project and see that

the file was indeed created there.

Generating Thumbnails

Now that we can upload the files, we’ll look at how to generate the thumbnail
when a file is uploaded. The image needs to be scaled and then stored in a
new file. We’ll define the size of our thumbnail as 150 pixels, and prefix the

thumbnail files with thumb_. Let’s make a couple of constants for these values.

(def thumb-size 150)
(def thumb-prefix "thumb ")

www.it-ebooks.info

report erratum - discuss

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 5. Picture Gallery ® 102

Next, we’ll write a function to scale the image. Here we’ll leverage the Affine-
Transform class provided by the Java standard library to create a scale operation,
and use AffineTransformOp to do the transformation. The filter method on the
transform-op will use the original image to produce the scaled image we require.

picture-gallery-c/src/picture_gallery/routes/upload.clj
(defn scale [img ratio width height]
(Let [scale (AffineTransform/getScalelnstance
(double ratio) (double ratio))

transform-op (AffineTransformOp.
scale AffineTransformOp/TYPE BILINEAR)]
(.filter transform-op img (BufferedImage. width height (.getType img)))))

Let’s test that our scale function works correctly; copy an image file with the
name image.jpg into our project’s root and run the following from the REPL:

(ImagelO/write

(scale (ImageIO/read (io/input-stream "image.jpg")) 0.5 150 150)

"jpeg"

(File. "scaled.jpg"))
If the function worked correctly, we should end up with a scaled.jpg in the same
folder, with a size of 150 pixels by 150 pixels.

Next we’ll read the uploaded file’s image data by using the ImagelO class. Once
we have an image, we’ll grab its width and height, and scale it to the height
defined by the thumb-size constant.

picture-gallery-c/src/picture_gallery/routes/upload.clj
(defn scale-image [file]
(Let [img (ImageIO/read file)
img-width (.getWidth img)
img-height (.getHeight img)
ratio (/ thumb-size img-height)]
(scale img ratio (int (* img-width ratio)) thumb-size)))

We'll also test scale-image by calling it from the REPL. It’s a good idea to test it
with a few images with different dimensions to make sure that they all scale
correctly.
(ImageIO/write

(scale-image (io/input-stream "image.jpg"))

Iljpeg "

(File. "scaled.jpg"))
All that’s left to do is write a function to save the thumbnail and call it after
we call upload-file in our controller.

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-c/src/picture_gallery/routes/upload.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-c/src/picture_gallery/routes/upload.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Task C: Uploading Pictures ® 103

picture-gallery-c/src/picture_gallery/routes/upload.clj
(defn save-thumbnail [{:keys [filenamel}]
(Let [path (str (gallery-path) File/separator)]
(ImageIO/write
(scale-image (io/input-stream (str path filename)))
"jpeg"
(File. (str path thumb-prefix filename)))))

(defn save-thumbnail [{:keys [filenamel}]
(Let [path (str (gallery-path) File/separator)]
(ImageIO/write

(scale-image (io/input-stream (str path filename)))

Iljpegll

(File. (str path thumb-prefix filename)))))
In our save-thumbnail function, we call resource-path to get the path of our public
folder. Then we call ImagelO/write with the output of scale-image to generate the
thumbnail file. We can now update the handle-upload function to call save-
thumbnail each time a file is uploaded.

(defn handle-upload [{:keys [filename] :as file}]
(upload-page
(if (empty? filename)
"please select a file to upload"

(try
;;save the file and create the thumbnail
(noir.io/upload-file (gallery-path) file :create-path? true)
(save-thumbnail file)
;,display the thumbnail
(image {:height "150px"}
(str "/img/" thumb-prefix (url-encode filename)))
(catch Exception ex
(str "error uploading file " (.getMessage ex)))))))

Now if we upload a file from our upload page we’ll see both the file and a
thumbnail in our galleries folder.

Saving Files to the User Folder

Since our site has multiple users, each user will have his own gallery. We
now need some logic for figuring out a unique gallery path for each user. The
simplest approach is to employ the user ID that we collect when a new account
is registered, since it’s required to be unique.

We'll update the gallery-path function to generate a unique path in the galleries
folder based on the user ID that’s currently in the session. We should also
extract the base path into a separate variable, so it can be used when viewing
galleries from other users:

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-c/src/picture_gallery/routes/upload.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 5. Picture Gallery * 104

(def galleries "galleries")

(defn gallery-path []
(str galleries File/separator (session/get :user)))

Next, let’s update the serve-file function and its route to use the user ID when
looking up the file:

picture-gallery-c/src/picture_gallery/routes/upload.clj
(defn serve-file [user-id file-name]
(file-response (str galleries File/separator user-id File/separator file-name)))

picture-gallery-c/src/picture_gallery/routes/upload.clj
(GET "“/img/:user-id/:file-name" [user-id file-name]
(serve-file user-id file-name))

Currently, we're checking whether the path exists each time we try to save a
file. It would be better to simply ensure that the path is created during the
registration. Let’s create a new function called create-gallery-path and call it
whenever a user account is created.

The function will use gallery-path to get the path string, and java.io.File to create
a new folder for the user. We’ll have to update our namespace declaration to
reference those:

(ns picture-gallery.routes.auth
(:require ...
[picture-gallery.routes.upload :refer [gallery-path]])
(:import java.io.File))

Then, we’ll add the create-gallery-path function and call it in handle-registration to
ensure that a new gallery path is created each time a user registers.

picture-gallery-c/src/picture_gallery/routes/auth.clj
(defn create-gallery-path []
(Let [user-path (File. (gallery-path))]
(if-not (.exists user-path) (.mkdirs user-path))
(str (.getAbsolutePath user-path) File/separator)))

picture-gallery-c/src/picture_gallery/routes/auth.clj
(defn handle-registration [id pass passl]
(if (valid? id pass passl)
(try
(db/create-user {:id id :pass (crypt/encrypt pass)})
(session/put! :user id)
(create-gallery-path)
(resp/redirect "/")
(catch Exception ex
(vali/rule false [:id (format-error id ex)])
(registration-page)))
(registration-page id)))

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-c/src/picture_gallery/routes/upload.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-c/src/picture_gallery/routes/upload.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-c/src/picture_gallery/routes/auth.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-c/src/picture_gallery/routes/auth.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Task C: Uploading Pictures ® 105

If we upload a file now, we’ll see that both the file and the thumbnail are
created under the galleries/<userid> path.

You might have noticed that we have a small problem. The file-upload page
doesn’t require the user to log in to access it. We should fix this by checking
if the user is in the session before displaying the page.
(defn upload-page [info]
(if (session/get :user)
(layout/common
[:h2 "Upload an image"]
[:p info]
(form-to {:enctype "multipart/form-data"}
[:post "/upload"]
(file-upload :file)
(submit-button "upload")))
(resp/redirect "/")))

With that change we’ll be redirected back to the home page when we try to
navigate to the upload page in the browser without having logged in.

We've solved this particular instance of the problem. However, we also need
to do this for the upload handler and for any other user-specific pages. Writing
the if statement every time is tedious and error-prone.

The good news is that lib-noir provides a way to specify rules for restricting
access to pages. Let’s see how to create a rule to check that the user is present
in the session before displaying a page.

We'll navigate to the picture-gallery.handler namespace and create a new function
called user-page. This function must accept a single parameter that is the
request map. The function can then decide whether the URI should be
accessible. In our case, we simply wish to know that a user is present in the
session before we allow access to the restricted pages.

(ns picture-gallery.handler

(:require ... [noir.session :as session]))

picture-gallery-c/src/picture_gallery/handler.clj
(defn user-page []
(session/get :user))

The underscore () in the userpage’s arguments vector simply indicates that
the argument will be ignored.

We now need to update our handler to set the access rules using the :access-
rules key. The app-handler will use the noir.util. middleware/wrap-access-rules middleware

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-c/src/picture_gallery/handler.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 5. Picture Gallery * 106

to apply the rules to restricted pages. In our case, we have a single rule: the
user-page function.

picture-gallery-c/src/picture_gallery/handler.clj
(def app (noir-middleware/app-handler
[auth-routes
home-routes
upload-routes
app-routes]
raccess-rules [user-pagel))

With the access rules in place, we can use the noir.util.route/restricted macro to
restrict access to pages. Let’s update our upload routes to use this macro.

(ns picture-gallery.routes.upload
(:require ... [noir.util.route :refer [restricted]])

:)

picture-gallery-c/src/picture_gallery/routes/upload.clj
(defroutes upload-routes
(GET "/img/:user-id/:file-name" [user-id file-name]
(serve-file user-id file-name))
(GET "/upload" [info] (restricted (upload-page info)))

(POST "/upload" [file] (restricted (handle-upload file))))

We can now remove the check from our upload page and test that the func-
tionality is still the same.

picture-gallery-c/src/picture_gallery/routes/upload.clj
(defn upload-page [info]
(layout/common
[:h2 "Upload an image"]
[:p info]
(form-to {:enctype "multipart/form-data"}
[:post "/upload"]
(file-upload :file)
(submit-button "upload"))))

Using the restricted macro makes the intent more clear than using an if, and
it’s more flexible in case our restrictions need to be more complex than the
one we already set up.

Storing Image Lists in the Database

Since our next tasks are to display images, we’ll need to create some metadata
for tasks such as looking up all the images belonging to a specific user.

The best place to store such metadata is in the database. We should create
a table and use it to store references for each image that gets uploaded.

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-c/src/picture_gallery/handler.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-c/src/picture_gallery/routes/upload.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-c/src/picture_gallery/routes/upload.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Task C: Uploading Pictures * 107

We'll create a new table called images that will contain a reference to the user
ID and image name. Let’s open the gallery.models.schema namespace and add a
new table definition there.

picture-gallery-c/src/picture_gallery/models/schema.clj
(defn create-images-table []
(sql/with-connection db
(sql/create-table
:images
[:userid "varchar(32)"]
[:name "varchar(100)"1)))

We can now evaluate it and run (create-images-table) in the REPL. With the images
table in place, we simply need to insert a record each time we upload an
image. We’'ll write a function that does that and put it in our db namespace.

picture-gallery-c/src/picture_gallery/models/db.clj
(defn add-image [userid name]
(with-db
sql/transaction

(if (sql/with-query-results
res
["select userid from images where userid = ? and name = ?" userid name]
(empty? res))

(sql/insert-record :images {:userid userid :name name})
(throw
(Exception. "you have already uploaded an image with the same name")))))

In the add-image function, we check to see if the user already uploaded an
image with the same name to prevent accidentally overwriting existing images.

All we have to do now is add the db namespace reference in the upload
namespace and call the add-image function after we upload each image in our
upload page’s controller.

(ns picture-gallery.routes.upload

(:require ... [picture-gallery.models.db :as db]))

picture-gallery-c/src/picture_gallery/routes/upload.clj
(defn handle-upload [{:keys [filename] :as file}]
(upload-page
(if (empty? filename)
"please select a file to upload"
(try
(upload-file (gallery-path) file)
(save-thumbnail file)
(db/add-image (session/get :user) filename)

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-c/src/picture_gallery/models/schema.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-c/src/picture_gallery/models/db.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-c/src/picture_gallery/routes/upload.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 5. Picture Gallery * 108

(image {:height "150px"}
(str "/img/"
(session/get :user)
uy
thumb-prefix
(url-encode filename)))

(catch Exception ex
(str "error uploading file " (.getMessage ex)))))))

Next time we upload an image, we can check that a new record is created in
the database. We've now completed all the functionality needed for users to
upload their files.

We should take a moment to do some cleanup before moving on.

Refactoring Common Code

Some of the code we've written will be useful for other pages. For example,
when we display our galleries we’ll need to know the thumbnail prefix’s name
and the user gallery’s path.

Let’s create a picture-gallery.utii namespace and move the code for the thumb-prefix,
galleries and gallery-path functions there in anticipation of our upcoming tasks.
In addition to that we’ll create a couple of functions for generating the URI
for the image and the thumbnail.

picture-gallery-c/src/picture_gallery/util.clj
(ns picture-gallery.util
(:require [noir.session :as session]
[hiccup.util :refer [url-encodell])
(:import java.io.File))

(def thumb-prefix "thumb ")
(def galleries "galleries")

(defn gallery-path []
(str galleries File/separator (session/get :user)))

(defn image-uri [userid file-name]
(str "/img/" userid "/" (url-encode file-name)))

(defn thumb-uri [userid file-name]
(image-uri userid (str thumb-prefix file-name)))

We now have to remember to update the auth and upload namespaces to refer-
ence the util namespace.

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-c/src/picture_gallery/util.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Task C: Uploading Pictures ® 109

(ns picture-gallery.routes.auth
(:require ...
[picture-gallery.util
:refer [gallery-pathl]))

(ns picture-gallery.routes.upload
(:require ...
[picture-gallery.util
:refer [galleries gallery-path thumb-prefix thumb-uri]]))

The code for handling the upload can now be cleaned up by using the thumb-
uri helper:

picture-gallery-d/src/picture_gallery/routes/upload.clj
(defn handle-upload [{:keys [filename] :as file}]
(upload-page
(if (empty? filename)
"please select a file to upload"
(try
(upload-file (gallery-path) file)
(save-thumbnail file)
(db/add-image (session/get :user) filename)
(image {:height "150px"}
(thumb-uri (session/get :user) filename))
(catch Exception ex
(str "error uploading file " (.getMessage ex)))))))

Now that we have our upload code refactored, we should provide an upload
link in our common layout when there is a user in the session.

(defn common [& content]
(base
(if-let [user (session/get :user)]

(list
[:div (link-to "/upload" "upload images")]
[:div (link-to "/logout" (str "logout " user))])

[:div (link-to "/register" "register")
(form-to [:post "/login"]
(text-field {:placeholder "screen name"} "id")
(password-field {:placeholder "password"} "pass")
(submit-button "login"))1)
content))

We already have a check to see if a user is in the session and to display the
logout button. As we get more pages done, our user menu will continue to
grow. This is a sign that we should extract it into a separate function.

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-d/src/picture_gallery/routes/upload.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 5. Picture Gallery * 110

picture-gallery-c/src/picture_gallery/views/layout.clj
(defn guest-menu []
[:div (link-to "/register
(form-to [:post "/login"]
(text-field {:placeholder "screen name"} "id")
(password-field {:placeholder "password"} "pass")
(submit-button "login"))])

register")

(defn user-menu [user]
(list
[:div (link-to "/upload" "upload images")]
[:div (link-to "/logout" (str "logout " user))l))

(defn common [& content]
(base
(if-let [user (session/get :user)]
(user-menu user)
(guest-menu))
content))

Let’s navigate to our home page and test that everything works as expected
following our refactoring efforts. Specifically, we should still be able to browse
to the upload page after logging in, and upload files as we did previously.

Task D: Displaying Pictures

We now have all the pieces in place to start displaying the pictures in our
gallery. We simply have to load all the thumbnails associated with the user
and show them on the page. When clicked, a thumbnail will display the full-
size picture.

Since we store references to uploaded images in the database, we can easily
write a function to query all images with the given user ID in our db
namespace.
picture-gallery-d/src/picture_gallery/models/db.clj
(defn images-by-user [userid]
(with-db
sql/with-query-results
res ["select * from images where userid = ?" userid] (doall res)))

Let’s test that the function does what we intended by running it against a
user we registered earlier and see if we get a list of pictures we uploaded as
that user.

(images-by-user "foo")

({:name "logo.jpg", :userid "foo"})

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-c/src/picture_gallery/views/layout.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-d/src/picture_gallery/models/db.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Task D: Displaying Pictures ® 111

We can start by displaying the thumbnails on the welcome page when the
user logs in. As this is a brand-new workflow, let’s create a new namespace
called picture-gallery.routes.gallery and add the functions to display the gallery for
the user there.

Again, we’ll add all the required references to the namespace declaration and
see how they’re used as we add functionality.

picture-gallery-d/src/picture_gallery/routes/gallery.clj
(ns picture-gallery.routes.gallery

(:require [compojure.core :refer :all]

[hiccup.element :refer :all]

[picture-gallery.views.layout :as layout]
[picture-gallery.util
:refer [thumb-prefix image-uri thumb-uri]]

[picture-gallery.models.db :as db]
[noir.session :as session]))

(defn thumbnail-link [{:keys [userid name]}]
[:div.thumbnail
[:a {:href (image-uri userid name)}
(image (thumb-uri userid name))]1])
(defn display-gallery [userid]
(or
(not-empty (map thumbnail-link (db/images-by-user userid)))
[:p "The user " userid " does not have any galleries"]))

(defn gallery-link [{:keys [userid name]}]
[:div.thumbnail
[:a {:href (str "/gallery/" userid)}
(image (thumb-uri userid name))
userid "'s gallery"1])

(defn show-galleries []
(map gallery-link (db/get-gallery-previews)))

(defroutes gallery-routes
(GET "/gallery/:userid" [userid] (layout/common (display-gallery userid))))

We'll create two helper functions. The first will generate a div with our
thumbnail link and add a thumbnail class to it. The second will read the
images for the user in the session and convert them to thumbnails by mapping
thumbnail-link across them. If the user doesn’t have any images to display, we’ll
provide a helpful message to indicate that.

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-d/src/picture_gallery/routes/gallery.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 5. Picture Gallery ® 112

picture-gallery-d/src/picture_gallery/routes/gallery.clj
(defn thumbnail-link [{:keys [userid name]}]
[:div.thumbnail
[:a {:href (image-uri userid name)}
(image (thumb-uri userid name))]])
(defn display-gallery [userid]
(or
(not-empty (map thumbnail-link (db/images-by-user userid)))
[:p "The user " userid " does not have any galleries"]))

We'll also define a new route to display the gallery for a given user ID.

picture-gallery-d/src/picture_gallery/routes/gallery.clj
(defroutes gallery-routes
(GET "/gallery/:userid" [userid] (layout/common (display-gallery userid))))

This means we’ll need to add a reference to picture-gallery.routes.gallery to our picture-
gallery.handler namespace and add the new route to our routes vector.

(:require ...
[picture-gallery.routes.gallery :refer [gallery-routes]])

(def app (noir-middleware/app-handler
[auth-routes
home-routes
upload-routes
gallery-routes
app-routes]
raccess-rules [user-page]))

picture-gallery-d/src/picture_gallery/handler.clj
(def app (noir-middleware/app-handler
[auth-routes
home-routes
upload-routes
gallery-routes
app-routes]
raccess-rules [user-page]))

If we create a user called foo and upload some images, we can then navigate
to http://localhost:3000/gallery/foo and see the images we uploaded. We can also
test that we get a friendly error if we enter an invalid user ID.

Let’s also update our screen.css in the resources/public/css folder to add a bit of
style for the thumbnails.

picture-gallery-d/resources/public/css/screen.css
.thumbnail {

float:left;

padding: 5px;

margin: 8px;

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-d/src/picture_gallery/routes/gallery.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-d/src/picture_gallery/routes/gallery.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-d/src/picture_gallery/handler.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-d/resources/public/css/screen.css
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Task D: Displaying Pictures ® 113

border-style:solid;

border-width:1px;

border-color:#ccc;

box-shadow: 4px 4px 6px -1px #222;

-moz-box-shadow: 4px 4px 6px -1px #222;

-webkit-box-shadow: 4px 4px 6px -1lpx #222;
}

All that’s left is to display links to galleries on the home page. To do that we'll
add another function to our db namespace. This function will pull a single
image for each user.

picture-gallery-d/src/picture_gallery/models/db.clj
(defn get-gallery-previews []
(with-db
sql/with-query-results
res
["select * from
(select *, row number() over (partition by userid) as row number from images)
as rows where row number = 1"]
(doall res)))

We'll also add a function in our gallery namespace to generate the gallery links.
It’s similar to the thumbnail-link function, except that it links to the gallery page
instead.

picture-gallery-d/src/picture_gallery/routes/gallery.clj
(defn gallery-link [{:keys [userid name]}]
[:div.thumbnail
[:a {:href (str "/gallery/" userid)}
(image (thumb-uri userid name))
userid "'s gallery"11)

We can now create a helper to display all the available galleries by user.

picture-gallery-d/src/picture_gallery/routes/gallery.clj
(defn show-galleries []
(map gallery-link (db/get-gallery-previews)))

Finally, we can update our home page to display the available galleries from
all the users on our site.

picture-gallery-d/src/picture_gallery/routes/home.clj
(ns picture-gallery.routes.home
(:require [compojure.core :refer :all]
[picture-gallery.views.layout :as layout]
[noir.session :as session]
[picture-gallery.routes.gallery :refer [show-galleries]]))

(defn home []
(layout/common (show-galleries)))

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-d/src/picture_gallery/models/db.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-d/src/picture_gallery/routes/gallery.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-d/src/picture_gallery/routes/gallery.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-d/src/picture_gallery/routes/home.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 5. Picture Gallery * 114

Now that users are able to navigate to different galleries on the site, we need
to add a Home button in our menu. We'll take this opportunity to further
improve the menu.

picture-gallery-d/src/picture_gallery/views/layout.clj
(defn make-menu [& items]
[:div (for [item items] [:div.menuitem item])])
(defn guest-menu []
(make-menu
(link-to "/" "home")
(link-to "/register" "register")
(form-to [:post "/login"]
(text-field {:placeholder "screen name"} "id")
(password-field {:placeholder "password"} "pass")
(submit-button "login"))))
(defn user-menu [user]
(make-menu
(link-to "/" "home")
(link-to "/upload" "upload images")
(link-to "/logout" (str "logout " user))))

Each menu item is wrapped in a div with the class of menuitem. We’ll add some
CSS to style these items so that they flow across the top of the page.

picture-gallery-d/resources/public/css/screen.css
.menuitem {

float: left;

margin-right: 10px;

}
.content {
clear: both;
padding: 20px;
}

We've also added a content class to clear the left float after the menu and add
some padding to our content. We’ll wrap our content in a div with this class.

picture-gallery-d/src/picture_gallery/views/layout.clj
(defn common [& content]
(base
(if-let [user (session/get :user)]
(user-menu user)
(guest-menu))
[:div.content content]))

By this point, we've built a site where users can register accounts, log in,
upload pictures, and view the pictures grouped by user. We'll now add the
ability for users to delete pictures they have uploaded.

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-d/src/picture_gallery/views/layout.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-d/resources/public/css/screen.css
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-d/src/picture_gallery/views/layout.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Task E: Deleting Pictures ® 115

Task E: Deleting Pictures

It’s reasonable for users to want to remove images they no longer wish to
display. We need to provide a way for users to select images they wish to
remove and tell the application about it. To delete a picture, we'll do the
following:

¢ Delete the image
¢ Delete the thumbnail
e Delete the database entry for the image

Since the images can be removed only by the owner, we’ll check if the page
matches the user in the session. When this is the case, we’ll allow the user
to mark pictures he wishes to delete and submit his selection using the Delete
button.

So far, we've only been creating static pages. Let’s look at how to add some
client-side interaction using Ajax. In this section, we’ll include JavaScript in
our page, call our handler using an HTTP POST from the browser, and return
a JavaScript Object Notation response to the client.

We'll use an Ajax call to notify the server of the images to be deleted and
update the page to reflect the result of the operation.

First, let’s create a function in the picture-gallery.models.db namespace to delete
the image from the database.

picture-gallery-e/src/picture_gallery/models/db.clj
(defn delete-image [userid name]
(with-db
sql/delete-rows :images ["userid=? and name=?" userid name]))

Then we’ll add a function in the picture-gallery.routes.upload namespace to perform
the three deletion tasks we outlined. We need to provide the function with
the user ID and the image name to accomplish its task.

We'll wrap the actions in a try/catch block. If the deletion is successful, we’ll
return ok. If we encounter any errors, we’ll return the error message instead.

picture-gallery-e/src/picture_gallery/routes/upload.clj
(defn delete-image [userid name]
(try
(db/delete-image userid name)
(io/delete-file (str (gallery-path) File/separator name))
(io/delete-file (str (gallery-path) File/separator thumb-prefix name))
" oK™
(catch Exception ex (.getMessage ex))))

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-e/src/picture_gallery/models/db.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-e/src/picture_gallery/routes/upload.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 5. Picture Gallery * 116

Next, we’ll add a handler to handle the deletion of multiple images, along with
its route.

picture-gallery-e/src/picture_gallery/routes/upload.clj
(defn delete-images [names]
(Let [userid (session/get :user)]
(resp/json
(for [name names] {:name name :status (delete-image userid name)}))))

(defroutes upload-routes
(GET "/img/:user-id/:file-name" [user-id file-name]
(serve-file user-id file-name))

(GET "/upload" [info] (restricted (upload-page info)))
(POST "/upload" [file] (restricted (handle-upload file)))

(POST "/delete" [names] (restricted (delete-images names))))

There, delete-images accepts a list of names for the images to be deleted. We
then grab the user ID from the session, call delete-image for each image name,
and return the outcome of each operation to the client.

Since our plan is to be able to select multiple thumbnails and call the /delete
route using Ajax, we need to add some JavaScript to our page. We'll create a
new file under resources/public/js called galleryjs. Our gallery page will load this
file, which will provide the client-side functions for managing the gallery.

Let’s write a function to select some images and make the Ajax call. We'll be
using jQuery to help with our JavaScript, so let’s include it in our base layout.
This necessitates referencing include-js from hiccup.page in the namespace
declaration.

(:require ...
[hiccup.page :refer [html5 include-css include-jsi])

(html5 base [& content]
[:head
[:title "Welcome to picture-gallery"]
(include-css "/css/screen.css")
(include-js "//code. jquery.com/jquery-2.0.2.min.js")]
[:body content])

We're finally ready to write our function to delete the images on the client
side.

function deleteImages() {
var selectedInputs = $("input:checked");
var selectedIds = [];

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-e/src/picture_gallery/routes/upload.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Task E: Deleting Pictures ® 117

selectedInputs
.each(function() {
selectedIds.push($(this).attr('id"'));,
1)
if (selectedIds.length < 1) alert("no images selected");
else
$.post("/delete",
{names: selectedIds},
function(response) {
var errors = $('");
$.each(response, function() {
if("ok" === this.status) {
var element = document.getElementById(this.name);
$(element).parent().parent().remove();

}
else
errors
.append($('"',
{html: "failed to remove " +
this.name +
e+
this.status}));
1)

if (errors.length > 0)
$('#error').empty().append(errors);
1

"json");
}
In that code, we select checked inputs and then grab the ID attribute for each
of them. Next we make an HTTP POST and pass those IDs to our delete-images
handler on the server.

The server returns a list of update statuses. When the update is successful,
the status is set to ok and we delete the corresponding element. Otherwise,
we create an error message based on the status and display it to the user.

The JavaScript file needs to be referenced on the page in order to run. We
can do this using the include-js the same way we did with jQuery in our layout.
Since the JavaScript is specific to the gallery page, we’ll add it directly in the
route declaration.

(:require ... [hiccup.page :refer :alll)

picture-gallery-e/src/picture_gallery/routes/gallery.clj
(defroutes gallery-routes
(GET "/gallery/:userid" [userid]
(layout/common
(include-js "/js/gallery.js")
(display-gallery userid))))

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-e/src/picture_gallery/routes/gallery.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 5. Picture Gallery * 118

We'll also require a couple of changes in the way we render our thumbnails,
as currently there are no check boxes associated with them for the user to
check. Let’s add the necessary references to our gallery namespace and update
the thumbnail-link as follows:

(:require ...
[hiccup.form :refer [check-box]])

picture-gallery-e/src/picture_gallery/routes/gallery.clj
(defn thumbnail-link [{:keys [userid name]}]
[:div.thumbnail
[:a {:class name :href (image-uri userid name)}
(image (thumb-uri userid name))
(if (= userid (session/get :user)) (check-box name))11])

Now, if the userid matches the one in the session, we’ll also render a check
box along with the name of the image in our thumbnail div (see the following
figure).

800 DWeIl:ome to picture-galler = =

|\ -

€& — C [localhost:3000/gallery/foo ity

home upload images |ogout foo

Figure 24—Gallery check box

The check box is there, but we can’t interact with it yet. To do that we’ll update
display-gallery to provide a Delete button and a div to display the errors.

www.it-ebooks.info

report erratum - discuss

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-e/src/picture_gallery/routes/gallery.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Task E: Deleting Pictures ® 119

picture-gallery-e/src/picture_gallery/routes/gallery.clj
(defn display-gallery [userid]
(if-let [gallery (not-empty (map thumbnail-link (db/images-by-user userid)))]
[:div
[:div#error]
gallery
(if (= userid (session/get :user))
[:input#delete {:type "submit" :value "delete images"}])]

[:p "The user " userid " does not have any galleries"]))

Now, if we have a gallery to display we’ll also provide a Delete button when
the user is the owner of the gallery. We'll bind the delete function to the button
in our galleryjs when the page loads.
picture-gallery-e/resources/public/js/gallery.js
$(document) . ready(function(){

$("#delete").click(deleteImages);
b

We should now be able to test and see that each thumbnail has a check box
when the owner of the gallery views the gallery page. If we select a few images
and press the Delete button, they disappear from the page. We can also check
that the images and the thumbnails are correctly deleted on disk and in the
database.

Ajax and the Servlet Context

The preceding code will work fine when the application runs standalone.
However, if we ran our application on an application server, the Ajax request
would fail because the full URL would need to have the application context
prefixed.

Unfortunately for us, the browser is not aware that our application has a
context. One way we can get around this problem is to populate a variable
on the page before we serve it.

The request map contains a key with the name :context. The value of this key
is exactly what we’re looking for. This might appear to be a bit of a conundrum.
After all, we don’t wish to have to pass the request explicitly to all our handlers
just so we can grab the context from it.

Luckily, Compojure uses the compojure.response.Renderable protocol to convert
what the handler returns into a Ring response. This protocol looks like this:

(defprotocol Renderable
(render [this request]
"Render the object into a form suitable for the given request map."))

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-e/src/picture_gallery/routes/gallery.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-e/resources/public/js/gallery.js
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 5. Picture Gallery * 120

As you can see, the protocol defines a single method called render. This method
accepts the object instance and the request that we're after.

To use this protocol, we’ll first need to add a reference to it and the
ring.util.response/response to our picture-gallery.views.layout namespace declaration:

picture-gallery-e/src/picture_gallery/views/layout.clj
(ns picture-gallery.views.layout
(:require [hiccup.page :refer [html5 include-css]]

[hiccup.element :refer [link-to]]
[noir.session :as session]
[hiccup.form :refer :all]
[hiccup.page :refer [include-css include-js]]
[ring.util.response :refer [content-type response]]
[compojure.response :refer [Renderablell]))

Since we're implementing the protocol, we’ll need to set the appropriate
response headers manually. To do that we’ll create the utf-8-response function
to set the content type to text/html and the encoding to UTF-8.

picture-gallery-e/src/picture_gallery/views/layout.clj
(defn utf-8-response [html]
(content-type (response html) "text/html; charset=utf-8"))

Next, we’ll create a RenderablePage type that will extend the Renderable protocol.
We’'ll move the code from our base layout function to the render method.

Since we now have access to the request, we can add a JavaScript variable
to the head section of our page with the value of the context.

Lastly, the body of the render method will have to be wrapped in the response
function we included earlier. The final result is as follows:

picture-gallery-e/src/picture_gallery/views/layout.clj
(deftype RenderablePage [content]
Renderable
(render [this request]
(utf-8-response
(html5
[:head
[:title "Welcome to picture-gallery"]
(include-css "/css/screen.css")
[:script {:type "text/javascript"}
(str "var context=\"" (:context request) "\";")]
(include-js "//code. jquery.com/jquery-2.0.2.min.js")]
[:body content]))))

The base layout function will now return an instance of the RenderablePage instead
of generating the layout:

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-e/src/picture_gallery/views/layout.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-e/src/picture_gallery/views/layout.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-e/src/picture_gallery/views/layout.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Task F: Account Deletion ® 121

picture-gallery-e/src/picture_gallery/views/layout.clj
(defn base [& content]
(RenderablePage. content))

Finally, we’ll update our JavaScript to prepend the variable to the URL when
making the POST request.

picture-gallery-e/resources/public/js/gallery.js
$.post(context + "/delete",
{names: selectedIds},
function(response) {
var errors = $('");
$.each(response, function() {
if("ok" === this.status) {
var element = document.getElementById(this.name);
$(element).parent().parent().remove();

}
else
errors
.append($('',
{html: "failed to remove " +
this.name +
et o+
this.status}));
3

if (errors.length > 0)
$('#error').empty().append(errors);
}

"json");
Now the context will be prepended to the URL. When the context is not
available, the variable will contain a blank string and the request will work
exactly as it did before.

Task F: Account Deletion

When the user decides to delete her account, we need to delete all the user-
related information from the database, as well as all the user’s files. Luckily,
we already wrote a function to delete individual images and their references.
All we have to do is select all images associated with the user and pass them
to this function. Then we have to remove the account from the users table
and delete the user folder.

The picture-gallery.routes.auth namespace contains the logic related to authentica-
tion and user account management. We'll navigate there and add the logic
for account deletion by adding the delete-account-page function.

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-e/src/picture_gallery/views/layout.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-e/resources/public/js/gallery.js
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 5. Picture Gallery ® 122

Account deletion will be applicable only to the user in session, obviously, so
we need to mark the route as restricted. To do that we have to reference
noir.util.route in the namespace declaration.

(:require ... [noir.util.route :refer [restricted]])

Next, we’ll add a route that will delete the account when called.

picture-gallery-f/src/picture_gallery/routes/auth.clj
(GET "/delete-account" []
(restricted (delete-account-page)))

When the user chooses to delete the account, we’d like to make sure it’s not
an accident. The account-deletion page will redirect to a confirmation page
to provide an option to back out.

picture-gallery-f/src/picture_gallery/routes/auth.clj
(defn delete-account-page []
(layout/common
(form-to [:post "/confirm-delete"]
(submit-button "delete account"))
(form-to [:get "/"]
(submit-button "cancel"))))

Let’s add a route for the account-removal confirmation page.

picture-gallery-f/src/picture_gallery/routes/auth.clj
(POST "/confirm-delete" [1]
(restricted (handle-confirm-delete)))

If the user makes it to the /confirm-delete page, then we know she really wishes
to remove the account, and we’ll carry out the necessary tasks.

picture-gallery-f/src/picture_gallery/routes/auth.clj
(defn handle-confirm-delete []
(Let [user (session/get :user)]
(doseq [{:keys [namel} (db/images-by-user user)]
(delete-image user name))
(clojure.java.io/delete-file (gallery-path))
(db/delete-user user))
(session/clear!)
(resp/redirect "/"))

The tasks include calling delete-image from the upload namespace for each image
the user uploaded, deleting the user from the users table in the database, and
deleting the user’s image directory. Once the account data has been deleted,
we'll clear the session and redirect the user to the home page.

For this function to work, we’ll need to reference picture-gallery.routes.upload in
our namespace declaration to use the delete-image function.

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-f/src/picture_gallery/routes/auth.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-f/src/picture_gallery/routes/auth.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-f/src/picture_gallery/routes/auth.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-f/src/picture_gallery/routes/auth.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

What You've Learned ® 123

(:require ... [picture-gallery.routes.upload :refer [delete-imagel])

Finally, we need to create a delete-user function in our db namespace to delete
users from the table.

picture-gallery-f/src/picture_gallery/models/db.clj
(defn delete-user [userid]
(with-db sql/delete-rows :users ["id=?" userid]))

Let’s test that the preceding works by removing one of the users we added
during our testing. If everything worked as expected, we should now add a
link in our user-menu to expose this functionality through our user interface.

picture-gallery-f/src/picture_gallery/views/layout.clj
(defn user-menu [user]
(make-menu
(link-to "/" "home")
(link-to "/upload" "upload images")
(link-to "/logout" (str "logout " user))
(link-to "/delete-account" "delete account")))

This concludes the tasks that we outlined at the start of the chapter. We now
have a fully functional multiuser picture gallery.

What You've Learned

In this chapter we put together the skills acquired in previous chapters to
create our application. In the next chapter we’ll add some final touches and
get our application ready for deployment.

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-f/src/picture_gallery/models/db.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-f/src/picture_gallery/views/layout.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

CHAPTER 6

Finishing Touches

We're now done with all the workflows we set out to create for our application.
Although it’s functional, it’s certainly not visually appealing. Let’s look at how
we could style our user interface a little better using CSS and JavaScript.

Adding Some Style

As we discussed in Chapter 1, Getting Your Feet Wet, on page 1, you shouldn’t
embed the CSS in your Hiccup templates. Instead, we’ll assign the appropriate
ID and class tags to the elements we wish to style. Then we can use those in
a CSS file to specify the actual styles for the elements.

First, let’s set a general style for the body of the page. We’ll open the screen.css
and set the following style for the body.

picture-gallery-style-tests/resources/public/css/screen.css
body {
margin: Opx;
background: #C8D9C9;
color: #525952;
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
font-size: 13px;

}

We'll set the margin to O pixels, add background and text colors, and set the
default font for the body of our pages.

Next, let’s make our menu look a bit nicer. Here we’ll provide an ID to the
menu div, called usermenu, and set the class for each menu item to menuitem.

picture-gallery-style-tests/src/picture_gallery/views/layout.clj
(defn make-menu [& items]
[:div#usermenu (for [item items] [:div.menuitem item])])

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-style-tests/resources/public/css/screen.css
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-style-tests/src/picture_gallery/views/layout.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 6. Finishing Touches * 126

Then we can set the style for the menu tag in CSS so that it spans the whole
width of the page and has a shadow on the bottom. We also need to set inline-
block for display to ensure that it expands to contain the menu items.

picture-gallery-style-tests/resources/public/css/screen.css
#usermenu {
background-color: #878C87;
width: 100%;
border-bottom-color: #dedede;
line-height: 25px;
border:1px solid;
border-color:#ccc;
-webkit-box-shadow: 0 8px 6px -6px #555;
-moz-box-shadow: 0 8px 6px -6px #555;
box-shadow: © 8px 6px -6px #555;
margin-bottom: 25px;
display: inline-block;
}

Next, we’ll style the menu links to make them stand out more.

picture-gallery-style-tests/resources/public/css/screen.css

#usermenu a:link {text-decoration: none; color: white;}
#usermenu a:hover {text-decoration: underline; color: white;}
#usermenu a:visited {text-decoration: none; color: white;}

Now let’s style the menu items themselves.

picture-gallery-style-tests/resources/public/css/screen.css
.menuitem {

color: #D1FODA;

font-size: 15px;

font-weight:bold;

float: left;

list-style: none;

padding: 5px;

margin: 5px;

}

We can also style our Submit button to look nicer by setting its size and
border style.

picture-gallery-style-tests/resources/public/css/screen.css
input/[type=submit] {
background: #99A699;
padding: 5px 8px 5px;
color: #fff;
font-weight: bold;
-moz-border-radius: 5px;
-webkit-border-radius: 5px;
-moz-box-shadow: 0 1px 3px #999;

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-style-tests/resources/public/css/screen.css
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-style-tests/resources/public/css/screen.css
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-style-tests/resources/public/css/screen.css
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-style-tests/resources/public/css/screen.css
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Adding Some Style ® 127

-webkit-box-shadow: 0 1lpx 3px #999;
text-shadow: 0 -1px 1lpx #222;
border-bottom: 1px solid #222;
cursor: pointer;

}

Adding Color with JavaScript

We can add a bit of style to our image thumbnails using JavaScript. We'll use
the AlbumColors library (which you can find on GitHub) to find the dominant
colors in the image and set the background of the thumbnail div to the most
dominant color.'

To use the library we’ll save it to our resources/public/js folder as colors.js and add
a new JavaScript file called site.js for our site. We’ll now include these files in
our base layout.

picture-gallery-style-tests/src/picture_gallery/views/layout.clj
(include-js "//code. jquery.com/jquery-2.0.2.min.js"
"/js/colors.js"
"/js/site.js")

In site.js, we'll call the AlbumColors library to grab the colors for each thumbnail
and style the div accordingly.

picture-gallery-style-tests/resources/public/js/site.js
function colorStr(color) {
return "rgb("+color[0]+", "+color[1]+", "+color[2]+")";
}
function setColor(div, colors) {
var bgColor = colors[0];
var textColor = colors[1];
div.css("background-color", colorStr(bgColor));
div.find('a').css("color", colorStr(textColor));
}
$(document) . ready(function(){
$(".thumbnail")
.each(function() {
var div = $(this);
var url = div.find('img').attr('src');
var thumbColors = new AlbumColors(url);

var color =
thumbColors.getColors(function(colors) {
setColor(div, colors);

1)

1)
b

1. https://github.com/chengyin/albumcolors

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-style-tests/src/picture_gallery/views/layout.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-style-tests/resources/public/js/site.js
https://github.com/chengyin/albumcolors
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 6. Finishing Touches * 128

When we reload our page with these changes, the background for each
thumbnail should be set to its primary color and the font color should be set
to the complementary color. The gallery should now look something like the
following figure.

e 0 O / ijWeltome to picture-galler x -
J/

W,

€« C | [4 localhost:3000/gallery/foo sl =

Figure 25—Picture gallery with style applied

Unit Tests

There are many schools of thought on how, what, and when to test. This is
a very sensitive subject for many people. As such, I will simply give an overview
of the basic tools available for testing and leave it up to you to decide how
and when to use them.

www.it-ebooks.info

report erratum - discuss

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Unit Tests ® 129

The Test API

Clojure provides built-in support for testing via the clojure.test namespace.
When a new project is created a test package will be generated along with it.

Let’s take a quick look at what this application programming interface (API)
looks like and how to work with it. The simplest way to write tests is to create
assertions using the is macro. The following are a few examples of how it
works:

(is (=4 (+22)))
(is (=5 (+ 2 2)))

FAIL in (:1)
expected: (=5 (+ 2
actual: (not (=5 4)

false

2))
)

(is (even? 2))

(is (instance? String 123))

FAIL in (:1)

expected: (instance? String 123)
actual: java.lang.Long

false

As you can see, the is macro can take any expression. If the expression fails,
the macro will print the expression along with the actual result, then return
false; otherwise it will return true.

We can also group our tests together by using the testing macro. This macro
accepts a string name for the group of tests followed by the assertions.

(testing "Collections"
(is (coll? {}))
(is (coll? #{}))
(is (coll? []))
(is (coll? '())))

Finally, we can define tests by using the deftest macro:

(deftest collections-test
(testing "Collections"

(is (coll? {}))

(is (coll? #{}))

(is (coll? []))

)

(is (coll? '()))))

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 6. Finishing Touches ® 130

The tests defined using deftest can be called like regular functions. You can
also run all the tests in the read-evaluate-print loop (REPL) by calling run-tests.
All tests in the application’s test folder can be run via Leiningen by calling lein
test. The API contains a number of other helpers, as well, but I hope that the
preceding examples will prove sufficient for you to get started.

Finally, it’'s worth mentioning that there are a number of test frameworks for
Clojure, such as Midje and Speclj.>® Furthermore, test frameworks are avail-
able specifically for testing web applications. The two popular choices to
explore are Peridot and Kerodon.*®

These frameworks provide many features not found in the core testing API,
and if your testing needs go beyond the basics we explored here, these will
make excellent tools in your Clojure toolbox.

Testing the Application

Our application has two types of routes. There are routes that serve the user-
interface (UI) portion of the application to be rendered by the browser, and
those that expose the handlers for the Ul actions. We'll look at writing some
tests for our application’s login handler.

We already have a test harness defined for our application. You can find it
under the test/picture_gallery/test/ directory. The test handler is called handler.clj.
If we open it up, we can see that it defines a test called test-app.

This test is currently failing because our application doesn’t respond with the
result it expects when the / URI is requested. We'll first identify the scenarios
that we’d like to test:

e No parameters are supplied during the login.
¢ The parameters supplied do not match a user in the database.
e The login is successful.

To request a route in our application we can use the following code:
(app (request <method> <url> <params>))

The response will be a standard Ring response, which was described in
Chapter 2, Clojure Web Stack, on page 25.

https://github.com/marick/Midje
http://speclj.com/
https://github.com/xeqi/peridot
https://github.com/xeqi/kerodon

oLk N

www.it-ebooks.info

https://github.com/marick/Midje
http://speclj.com/
https://github.com/xeqi/peridot
https://github.com/xeqi/kerodon
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Unit Tests ® 131

We'd like to call the /login URL and pass it the user ID and the password.
However, we only wish to test the request handler and not the model. Our
test shouldn’t depend on what users are currently populated in the database.

Unfortunately, the handle-login function in the picture-gallery.routes.auth namespace
calls the get-user from the picture-gallerymodels.db namespace. When we call it
from our tests we’ll be querying the actual users in our database.

In some languages it’s possible to use monkey patching to get around this problem.
This approach allows you to simply redefine the offending function at runtime
with your own version. The downside of this approach is that the change is global
and therefore might interact poorly with code that expects the original version.

Clojure provides a with-redefs macro that redefines Vars within the scope of its
body. This approach gives us the ability to make runtime modifications in a
safer fashion, where we know exactly what code is affected.

For our purposes, we’ll redefine the get-users function with a mock function
for the scope of our tests. It's handy that we didn’t have to plan for this when
writing our application’s business logic. Let’s look at how this works in action.
We'll first define a mock function that will return a test user.

picture-gallery-style-tests/test/picture_gallery/test/handler.clj
(defn mock-get-user [id]
(if (= id "foo")
{:id "foo" :pass (encrypt "12345")}))

We'll also need to reference noir.util.crypt/encrypt for it to encrypt the password.

picture-gallery-style-tests/test/picture_gallery/test/handler.clj
(ns picture-gallery.test.handler
(:require [clojure.test :refer :all]
[ring.mock.request :refer :all]
[noir.util.crypt :refer [encrypt]]
[picture-gallery.handler :refer :all]))

We can now redefine the picture-gallery.models.db/get-user with the mock function
before running our test:

(with-redefs [picture-gallery.models.db/get-user mock-get-user]
(app (request :post "/login" {:id "foo" :pass "12345"})))

When we run the preceding code in the REPL, we see that a redirect is returned
along with a cookie containing our session ID:

{:status 302

rheaders {"Set-Cookie" ("ring-session=0645d310-892b-43c0-a4d5-dcaa87859a67;Path=/")
"Location" "/"}

:body ""}

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-style-tests/test/picture_gallery/test/handler.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-style-tests/test/picture_gallery/test/handler.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 6. Finishing Touches * 132

Now we can test the case for when no user is found:

(with-redefs [picture-gallery.models.db/get-user mock-get-user]
(app (request :post "/login" {:id "bar" :pass "12345"})))

This time no session is created and we're simply redirected to the application’s
/ URL:

{:status 302
:headers {"Set-Cookie" ()
"Location" "/"}
:body ""}

Let’s put this all together and write the unit tests for the login portion of our
application.

picture-gallery-style-tests/test/picture_gallery/test/handler.clj
(ns picture-gallery.test.handler
(:require [clojure.test :refer :all]
[ring.mock.request :refer :alll
[noir.util.crypt :refer [encrypt]]
[picture-gallery.handler :refer :all]))
(defn mock-get-user [id]
(if (= id "foo")
{:id "foo" :pass (encrypt "12345")}))
(deftest test-login
(testing "login success"
(with-redefs [picture-gallery.models.db/get-user mock-get-user]
(is
(-> (request :post "/login" {:id "foo" :pass "12345"})
app :headers (get "Set-Cookie") not-empty))))

(testing "password mismatch"
(with-redefs [picture-gallery.models.db/get-user mock-get-user]
(is
(-> (request :post "/login" {:id "foo" :pass "123456"})
app :headers (get "Set-Cookie") empty?))))

(testing "user not found"
(with-redefs [picture-gallery.models.db/get-user mock-get-user]
(is
(-> (request :post "/login" {:id "bar" :pass "12345"})
app :headers (get "Set-Cookie") empty?)))))

Logging

Most real-world applications require some sort of logging functionality. At the
very least we want to log any errors that happen in our application. This will
allow us to go back and trace the cause of the errors if they happen in
production.

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-style-tests/test/picture_gallery/test/handler.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Logging ® 133

Several logging options are available. In this section we’ll use the Timbre
library.® First, we'll need to include it in our project file:

picture-gallery-logging/project.clj
[com.taoensso/timbre "2.6.1"]

Then we can start using it by requiring it in our namespace and calling the
trace info, warn, debug, and fatal functions. Let’s add logging to the upload names-
pace and log errors if an exception occurs when we try to delete a file.

(ns picture-gallery.routes.upload
(:require ...
[taocensso.timbre
:refer [trace debug info warn error fatalll))

picture-gallery-logging/src/picture_gallery/routes/upload.clj
(defn delete-image [userid name]
(try
(db/delete-image userid name)
(io/delete-file (str (gallery-path) File/separator name))
(io/delete-file (str (gallery-path) File/separator thumb-prefix name))
" oK™
(catch Exception ex
(error ex "an error has occured while deleting" name)
(.getMessage ex))))

That’s all there is to it. To test this, we can upload an image and delete it from
the directory outside the application. Then when we go to delete it from the
UI, we’ll get an exception. This exception will now be logged.

Timbre configuration is specified by a vector containing the keys that represent
the path to a particular configuration item. For example, if we wanted to set
a custom timestamp pattern in our logs, we could call set-config!.

Let’s open the picture-gallery.handler namespace and add a reference to Timbre.

(ns picture-gallery.handler
(:require ... [taoensso.timbre :as timbre]))

Then in the init function, we’ll initialize the configuration as follows:
(timbre/set-config! [:timestamp-pattern] "yyyy-MM-dd HH:mm:ss")

We can also use the configuration to redirect the log output to a specific file.
By default all the logs will end up in the standard out. However, by providing
custom log appenders, we can specify where certain types of logs should go.

6. https://github.com/ptaoussanis/timbre

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-logging/project.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-logging/src/picture_gallery/routes/upload.clj
https://github.com/ptaoussanis/timbre
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 6. Finishing Touches * 134

To specify an appender, we need to add it to the appenders path in the config,
as in the following example:

(timbre/set-config!
[:appenders :info-appender]
{:min-level :info
:enabled? true
rasync? false
:max-message-per-msecs 100
:fn info-appender})

The error-appender is just a function that accepts a map containing the following
keys: :ap-config, :level, :prefix, :message, and :more. A simple appender function
might look like the following:

(defn info-appender [{:keys [level messagel}]
(println "level:" level "message:" message))

We can now replace the println statements with the appropriate log statements:

(defn init []
(timbre/set-config!
[:appenders :info-appender]
{:min-level :info
:enabled? true
rasync? false
:max-message-per-msecs 100
:fn info-appender
1)
(timbre/info "picture-gallery started successfully"))

(defn destroy []
(timbre/info "picture-gallery is shutting down"))

When the server stars up, we’ll see something like the following in the log:

2013-May-04 12:31:12 -0400 Helios.local INFO [picture-gallery.handler]
- picture-gallery started successfully

A more realistic example would be to use a readymade appender like rotor.
Rotor is a rotating log-file appender provided by the following dependency:

picture-gallery-logging/project.clj
[com.postspectacular/rotor "0.1.0"]

We can now create a configuration for rotor that’s similar to one we made
previously:

(ns picture-gallery.handler
(:require ...
[taoensso.timbre :as timbre]
[com.postspectacular.rotor :as rotor]))

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-logging/project.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Application Profiles ® 135

picture-gallery-logging/src/picture_gallery/handler.clj
(defn init []
(timbre/set-config!
[:appenders :rotor]
{:min-level :info
renabled? true
rasync? false ; should be always false for rotor
:max-message-per-msecs nil
:fn rotor/append})

(timbre/set-config!
[:shared-appender-config :rotor]
{:path "error.log" :max-size (* 512 1024) :backlog 10})

(timbre/info "picture-gallery started successfully"))

Note that the rotor appender requires a configuration of its own. We provide
it with a path, a maximum size before rotating the log, and the number of old
log files to retain:

(set-config!

[:shared-appender-config :rotor]
{:path "/var/log/error.log" :max-size (* 512 1024) :backlog 10})

We now have a sensible log configuration for our application. If we happen
to get any errors in production, we’ll be able to go back and see what caused
them. This will help us find the cause and fix them.

Now that we’ve built our exciting gallery application, let’s look at how we can
make it available for consumption. Since we’re running on top of the Java
Virtual Machine, we have excellent deployment options whether we wish to
deploy to a hosting provider, a virtual private server, or a cloud service.

Application Profiles

In many situations you may have to run your application using different
configurations. For example, your application might depend on a set of vari-
ables such as the port it runs on and the database-connection information.
When you run the application locally during development, these variables are
likely to be different from those on the production machine.

A common approach for dealing with this problem is to specify the environment
variables outside the application and have it read them at runtime. In this
section we’ll see how we can read these variables from a Leiningen profile or
the system environment.

Leiningen profiles allow managing many aspects of the application, such as
dependencies, resource paths, and environment variables. You can create a

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-logging/src/picture_gallery/handler.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 6. Finishing Touches * 136

separate profile for each scenario, and when the application is run using that
profile it will have the correct environment information available to it.

The profiles can be specified either directly in the project.clj or in a separate
profiles.clj file in the same location. The latter can be useful for any sensitive
information you might not wish to check into version control. The profiles
specified in profiles.clj will override those in project.cl].

Let’s open the project.clj for the picture gallery. You'll notice that it already has
production and dev profiles set up:

picture-gallery-logging/project.clj

:profiles

{:production

{:ring
{:open-browser? false, :stacktraces? false, :auto-reload? false}}
:dev

{:dependencies [[ring-mock "0.1.5"] [ring/ring-devel "1.2.0"]11}}

We'll update these profiles to add our environment variables:

:profiles
{:production
{:ring {:open-browser? false,
:stacktraces? false,
:auto-reload? false}
renv {:port 3000
:db-url "“//localhost/gallery"
:db-user "admin"
:db-pass "admin"
:galleries-path "galleries"}}
:dev
{:dependencies [[ring-mock "0.1.5"]
[ring/ring-devel "1.2.0"]]
renv {:port 3000
:db-url "//localhost/gallery"
:db-user "admin"
:db-pass "secretProdPasword"
:galleries-path "galleries"}}}

We'll use the Environ library to read the configuration variables from the
profile. To use it we’ll need to add the following dependency and plug-in to
our project:

:dependencies [... [environ "0.4.0"]]
:plugins [... [lein-environ "0.4.0"]]

Now we can update our picture-gallery.models.db namespace to read the database
configuration from the environment:

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-logging/project.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Packaging Applications ® 137

(ns picture-gallery.models.db
(:require ...
[environ.core :refer [env]]))

(def db
{:subprotocol "postgresql"
:subname (env :db-url)
:user (env :db-user)
:password (env :db-pass)})

We can also update the picture-gallery.util/galleries variable to read the path from
the envrionment.
(ns picture-gallery.util
(:require [noir.session :as session]
[hiccup.util :refer [url-encodel]

[environ.core :refer [env]])
(:import java.io.File))

(def galleries (env :galleries-path))

Unfortunately, if you're using Eclipse, the Counterclockwise plug-in will not
load up the variables from the profile. Luckily, Environ can also read environ-
ment variables directly.

To add the variables, simply open Run Configuration in Eclipse and select
our project. We can add these variables under the Environment tab. Next
time we start the REPL, the environment variables will be available and
Environ will pick them up.

Packaging Applications

Our application is now ready to be packaged and deployed. In this section
we’ll discuss how to accomplish this using Leiningen. As you’ll see, this is a
straightforward process. However, you need to be aware of a few things,
depending on how you wish to run the application in production.

Up to this point we’ve been running our application in the REPL or by calling
lein ring server to start up Jetty in development mode. In this mode the server
watches the files for changes and reloads them as needed. This obviously
causes a significant performance hit.

There are two ways to run Clojure web applications in production. Let’s look
at the benefits and drawbacks of these approaches.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 6. Finishing Touches * 138

The first approach is to create a standalone executable with an embedded
server such as Jetty. This way the application will not have any external
dependencies aside from having the Java runtime installed on the system.

The downside of this approach is that we’ll have to manage all our configura-
tion for the server manually. We'll have to configure our own logging, database
connections, SSL configuration, and so on. It also means that each application
will have more overhead, as we need to spawn an independent server for it.

The second approach is to create a web application archive (WAR) that can
be deployed to an application server such as Tomcat. With this approach we
can do all the environment-specific configuration on the application server.
When the applications are deployed, they can read this configuration from
the environment variables.

The application server can also host multiple applications on a shared domain.
This allows us to have less overhead per application and the ability to provide
a common confuguration for all the applications deployed on the server. The
container can keep track of database connection settings, logging configura-
tions, managing HTTPS listeners, and so on.

This approach is especially convenient if you're managing multiple applications
and if you have separate environments for development, staging, and produc-
tion. Since none of the configuration lives in the application, you don’t need
to have separate configurations when deploying to different environments.

The downside of this approach is that the application server will have higher
overhead than embedded Jetty. The application server’s configuration is often
more complex, as well. The work involved may not be justified, depending on
how you plan to manage your application in production.

The good news is that it’s equally easy to package the application for either
type of deployment. If you start with one approach you can switch to the
other with minimal effort.

Standalone Deployment
Here, we’ll take a closer look at what's involved in deployment as a standalone

application.

Running as an Uberjar

When we wish to package the application for standalone deployment, we
simply run the following from the application’s root:

lein ring uberjar

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Packaging Applications ® 139

The resulting artifact will be created in the target folder. We can now run this
JAR by invoking java -jar picture-gallery-0.1.0-SNAPSHOT-standalone.jar. Once the server
starts, you can see it running by browsing to localhost:3000.

The server runs on port 3000 by default. To override the default port use the
$PORT environment variable.

Running with HTTP Kit

The uberjar we created uses an embedded Jetty server. However, it’'s possible
to swap out Jetty for a different container. One such container is HTTP Kit.

HTTP Kit is a Ring-compliant event-driven server for Clojure that aims to be
a drop-in replacement for Jetty. Unlike Jetty, HTTP Kit uses the non-blocking
I/0 model to handle requests. This allows for extremely high throughput and
scalability.

To use HTTP Kit, we’ll have to reference it in our project.clj dependencies and
create our own main method.

:dependencies [... [http-kit "2.1.12"]]

Lein-ring currently doesn’t support HTTP Kit, so we have to create our own
main to run it. Let’s create a new namespace called picture-gallery.main and add
the following to it:

(ns picture-gallery.main
(:use picture-gallery.handler
[org.httpkit.server :only [run-server]]
[ring.middleware file-info file])
(:gen-class))
(defn -main [& [port]]
(let [port (if port (Integer/parselnt port) 3000)]
(run-server app {:port port})
(println (str "You can view the site at http://localhost:" port))))

Our -main function will simply create an instance of the HTTP Kit server by
running org.httpkit.server/run-server and passing it our app handler. The only thing
to note here is that we must use the :gen-class hint in the namespace declaration
to ensure that it gets compiled into Java bytecode.

Note that the hyphen () in front of -main indicates that this function will be
accessible from Java. This is necessary since runnable Java programs require
a main function entry point.

Next, we simply have to specify the main method in the project.clj by adding
the following directive:

:main picture-gallery.main

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 6. Finishing Touches ® 140

We can now compile the application as a standalone executable and run it:

lein uberjar
java -jar target/picture-gallery-0.1.0-SNAPSHOT-standalone.jar

That’s all there is to it. If your application requires the extra performance or
any of the other HTTP Kit features, you can easily swap between it and Jetty.

Running with Leiningen Trampoline

Another way to run the application is by using lein trampoline that terminates
the lein process after executing the command. We can do this as follows:

lein trampoline ring server-headless PORT
Here the PORT would have to be provided as an environment variable.

This method will use the configuration specified under the :ring key in the
project.clj. For example, our picture gallery has the following configuration:

:ring {:handler picture-gallery.handler/app
:init picture-gallery.handler/init
:destroy picture-gallery.handler/destroy}

Using lein trampoline allows us to manage the application’s complete life cycle
via Leiningen.

Running as a Daemon

We can easily run our application as a daemon on *nix systems. For example,
to daemonize it on Ubuntu, we could create an upstart configuration.” To do
that we’ll create a configuration file /etc/init/gallery.conf, where we’ll add the fol-
lowing settings:

Upstart config file (use 'start gallery', 'stop gallery')

stdout and stderr will be captured in /var/log/upstart/gallery.log

author "Me"

description "Start the Picture Gallery webapp on its default port"

start on (local-filesystems and net-device-up IFACE!=10)
exec java -jar /srv/gallery/picture-gallery-0.1.0-SNAPSHOT-standalone.jar

Try to restart up to 10 times within 5 min:
respawn limit 10 300

Application-Server Deployment

Now that we know how to run our application standalone, let’s see how that
compares to running it on an application server.

7. http://upstart.ubuntu.com/

www.it-ebooks.info

http://upstart.ubuntu.com/
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Packaging Applications ® 141

Tomcat Deployment

To deploy your application on Tomcat you will need to download a copy of
the Tomcat server and extract the archive locally.

You start Tomcat by running bin/catalina.sh start under the Tomcat directory.
You can see the server logs under logs/catalina.out. When the server starts, you
should see something like the following in your log:

May 5, 2013 11:12:25 AM org.apache.catalina.core.AprLifecyclelListener init

INFO: The APR based Apache Tomcat Native library which allows optimal performance
in production environments was not found on the java.library.path:
.:/Library/Java/Extensions:/System/Library/Java/Extensions:/usr/1lib/java

May 5, 2013 11:12:25 AM org.apache.coyote.AbstractProtocol init
INFO: Initializing ProtocolHandler ["http-bio-3000"]

Stopping the server is equally simple. To do that we run bin/catalina.sh stop.
To deploy our application as a WAR, we need to use the uberwar option:
lein ring uberwar

This will produce the deployable WAR artifact, which we can then deploy to
the server. Deploying the application consists of copying the generated archive
to the webapps directory under Tomcat.

When the application is deployed it will have a context relative to the server’s
root. By default the context is inferred from the archive name. Let’s deploy
the archive we created as picture-gallery.war

cp target/picture-gallery-0.1.0-SNAPSHOT-standalone.war \
~/tomcat/webapps/picture-gallery.war

The application should now be available at http://localhost:3000/picture-gallery.
Note that it’s also possible to deploy the application at the server’s root. To

do that we have to name the archive ROOT.war.

Immutant Deployment

Another great option for deployment is Immutant. It's an application server
designed specifically for hosting Clojure applications, and it provides its own
Leiningen integration. We can even install Inmutant via Leiningen by running
the following command:

lein immutant install 1.0.2

Once Immutant is installed, we can simply run the following from our appli-
cation’s root directory:

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 6. Finishing Touches * 142

lein immutant deploy

Launching the Immutant server is equally easy using the following:

lein immutant run

The approaches we've discussed require us to manage our own server. An
alternative is to deploy the application on a cloud service. Heroku in particular
provides explicit support for running Clojure applications. In the following
section we’ll look at how to deploy our application there.

Heroku Deployment

Heroku is a cloud service with a free hosting option. Before we start using
Heroku we need to make sure we have Git and Heroku Toolbelt installed.?®

Heroku uses the command specified in a file called Procfile to start up the
application. This file must be placed in the project’s root directory.

A common way to run a Clojure application on Heroku is by using the
Leiningen trampoline option we discussed earlier. To do that we add the fol-
lowing directive in the Procfile:

web: lein with-profile production trampoline ring server

Next we need to initialize a Git repository for our application by running the
following commands:

git init

git add .

git commit -m "init"

Once our repository is created, we can test the application by running foreman
start. If the application starts up fine, then we're ready to deploy it to the cloud
by running the following command:

heroku create
To add Postgres support for the application, we run this command:
heroku addons:add heroku-postgresql

You can find the connection settings for the database on your Heroku
dashboard. You'll need to add these to your database configuration in the
application. We're now ready to push our application to Heroku:

git push heroku master

8. http://git-scm.com/
9. https://toolbelt.heroku.com/

www.it-ebooks.info

http://git-scm.com/
https://toolbelt.heroku.com/
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

What You've Learned ® 143

Once the upload completes, Heroku will attempt to build and deploy your
application. If this process completes successfully, you should be able to
browse to the application URL specified in your administration console.

What You've Learned

This concludes the design, implementation, and deployment of our site. While
building and designing it we covered many aspects of creating a real-world
application, such as handling static resources, database access, and Ajax.

I hope these steps were easy to follow and you’ll be able to apply them in
building real-world applications with Clojure.

Although our site is functional, it clearly could use some improvements. You
may wish to consider implementing paging for large galleries, creation of
multiple galleries per user, upload of multiple images in batches, and setting
the visibility of uploaded images.

So far we've covered only a single set of libraries for developing web applica-
tions. However, the Clojure web stack is very flexible, and it's easy to swap
individual pieces for others. In the next chapter we’ll cover how to update the
picture gallery to use the Selmer templating engine, ClojureScript, and SQL
Korma.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

CHAPTER 7

Mixing It Up

In this chapter we’ll see several alternative ways to write the picture-gallery
application from Chapter 5, Picture Gallery, on page 81. We'll cover how to
swap the HTML templating engines, use ClojureScript, and write SQL queries
using the Korma domain-specific language (DSL).

Using Selmer

In Chapter 2, Clojure Web Stack, on page 25, I mentioned that there’s a
number of templating languages available for Clojure. In this section we’ll
look at the Selmer engine and see what’s involved in converting our picture
gallery to use it instead of Hiccup.'

The reason for picking Selmer over some of the more popular alternatives,
such as Enlive, is its ease of use and familiarity. Enlive has a steep learning
curve and can be difficult to master.

On the other hand, Selmer is based on the Django templating engine.” If you're
already familiar with Django or similar templating languages, you should feel
right at home. Another advantage to using Selmer is that it’s fast.

What's Different about Selmer?

Hiccup is a nice and simple templating engine. Unfortunately, its biggest
advantage is also its greatest weakness. Since Hiccup templates are written
using Clojure data structures, they’re simply part of your regular code.

This makes the templates inaccessible to people not versed in Clojure. For
example, you can’t just give a designer your template to work with.

1. https://github.com/yogthos/Selmer
2. https://docs.djangoproject.com/en/dev/ref/templates/

www.it-ebooks.info

https://github.com/yogthos/Selmer
https://docs.djangoproject.com/en/dev/ref/templates/
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 7. Mixing It Up * 146

Another issue is that it makes it easy for your front-end and back-end logic
to bleed into each other if you'’re not careful. Finally, you have to redeploy
your site any time you wish to make a change to the layout.

Selmer provides a powerful mini language that can be used for general-purpose
templating. When applied to generating HTML templates it encourages a clean
separation between the presentation and the business logic. On top of that,
the templates can be maintained by somebody without any knowledge of
Clojure.

Creating Templates

The templates are simply HTML files with additional template tags. Let’s look
at an example template:

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>My First Template</title>
</head>
<body>
<h2>Hello {{name}}</h2>
</body>
</html>

The templates are rendered using a context represented by a map. The context
contains any variables that we’d like to render in our template. In the previous
code, we have a template representing a page that renders a single variable
called name.

There are two functions for rendering templates, called render and render-file.
The render function accepts a string representing the template. The render-file
function accepts a string representing the path to the file containing the
template.

If we saved the template defined earlier in a file called index.html, then we could
render it as follows:

(ns example.routes.home
(:require [selmer.parser :refer [render-filell))

(defn index [request]
(render-file "example/views/templates/index.html"
{:name "John"}))

The render-file function expects the first argument to be a path to the template.
The path should be relative to the application’s src folder. The second
parameter is the map representing the context for the template.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Using Selmer * 147

In the preceding code we passed in a string as the value for the variable name.
However, we're not restricted to strings and can pass in any type we like. For
example, if we pass in a collection we can iterate it using the for tag:

{% for item in items %}
 {{item}}

{% endfor %}

(render-file "/example/views/templates/items.html
{:items (range 10)})

If an item happens to be a map, we can access the keys by name, as follows:

(render "<p>Hello {{user.first}} {{user.last}}</p>"
{:user {:first "John" :last "Doe"}})

When no special processing is specified in the template, the parameter’s
.toString value will be used.

Using Filters

Filters allow for postprocessing the variables before they are rendered. For
example, you can use a filter to convert the variable to uppercase, compute
a hash, or count the length. Filters are specified by using a pipe symbol (|)
after the variable name, as seen here:

{{name|upper}}

Selmer comes with a number of handy filters, such as upper, date, and pluralize,
out of the box. On top of that we can easily define our own filters using the
selmerfilters/add-filter! function:

(add-filter! :empty? empty?)

(render "{% if files|empty? %}no files{% else %}files{% endif %}"
{:files [1})

By default the content of the filters will be escaped; we can override this
behavior as follows:

(add-filter! :foo
(fn [x] [:safe (.toUpperCase x)1))

(render "{{x|foo}}" {:x "<div>I'm safe</div>"})

Using Template Tags

Selmer provides two types of tags. The first kind are inline tags such as extends
and include. These tags are self-contained statements and do not require an

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 7. Mixing It Up * 148

end tag. The other type are the block tags. These tags have a start and an
end tag, and operate on a block of text. An example of this would be the
if ... endif block.

Defining Custom Tags

In addition to tags already provided, you can easily define custom tags by
using the selmer.parser/add-tag! macro. Let’s look at an example to see how it
works:
(add-tag!
:image
(fn [args context-map]
(str "")))

(render "{% image \"http://foo.com/logo.jpg\" %}" {})

We can also define a block tag by using the overloaded add-tag! definition. In
this case we will provide the opening tag, followed by the handler function
and any closing tags. The handler will accept an addition parameter that
holds the content of each block. The content will be keyed on the name of the
block, as in the following example:
(add-tag! :uppercase

(fn [args context-map content]

(.toUpperCase (get-in content [:uppercase :content])))
:enduppercase)

(render "{% uppercase %}foo {{bar}} baz{% enduppercase %}" {:bar "injected"})

Inheriting Templates

Selmer templates can refer to other templates using the block tag. There are
two ways to refer to a template. We can either extend templates using the
extends tag or include templates with the include tag.

Extending Templates

When we use the extends tag, the current template will use the template it's
extending as the base. Any blocks in the base template with the names
matching the current template will be overwritten.

Let’s look at a concrete example. First, we’ll define our base template and call
it base.html:

<!DOCTYPE html>
<head>

<link rel="stylesheet" href="style.css" />

<title>{% block title %}My amazing site{% endblock %}</title>
</head>

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Using Selmer * 149

<body>
<div id="content">
{% block content %}{% endblock %}
</div>
</body>
</html>

Then we’ll create a new template called home.html that will extend base.html as
follows:

% extends "base.html" %}

{% block content %}

{% for entry in entries %}
<h2>{{ entry.title }}</h2>
<p>{{ entry.body }}</p>

% endfor %}
% endblock %}

When the home.html is rendered the content block will display the entries defined
there. However, since we did not define a block for the title, the one from
base.html will be used.

Note that you can chain extended templates together. In this case the latest
occurrence of a block tag will be the one that’s rendered.

Including Templates

The include tag allows including content from other templates in the current
template. Let’s look at an example. Say we have a base.html template that
includes templates named register.html and home.html, then defines blocks called
register and home:

<!DOCTYPE html>
<head>

<link rel="stylesheet" href="style.css" />

<title>{% block title %}My amazing site{% endblock %}</title>
</head>

<body>
<div id="content">
% 1if user %}
% include "home.html" %}
{% else %}
% include "register.html" %}
{% endif %}
</div>
</body>
</html>

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 7. Mixing It Up * 150

We can now define the content for these tags in separate template files called
home.html and register.html, respectively:

<hl>Hello {{user}}</hl>

<form action="/register" method="POST">
<label for="id">user id</label>
<input id="id" name="id" type="text"></input>
<input pass="pass" name="pass" type="text"></input>
<input type="submit" value="register">

</form>

When the base.html is rendered it will replace the include tags with the content
from the included templates.

Converting the Picture Gallery to Selmer

As we've seen, Selmer uses plain HTML to define the pages. Our first step will
be to identify the parts of the application responsible for rendering the pages
and convert them accordingly.

Let’s see what routes our application has, and which of these are responsible
for serving up the pages:

The home namespace contains a single route to render the home page:
'Y GET II/II

The gallery namespace contains a route for displaying the gallery for a specific
user:

e GET "/gallery/:userid"

The upload namespace contains routes to upload and delete images. Only one
of these routes is responsible for serving a page:

e GET "/upload"
e POST "/upload"
e POST "/delete"

Finally, the auth namespace contains routes for registration, authentication,
and account management:

e GET "/register"

e POST "/register"

POST "/login”

e GET "/logout"

e GET "/delete-account"
POST "/confirm-delete"

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Using Selmer ¢ 151

As you can see, only a few routes are responsible for displaying pages. This
makes our task relatively simple.

We'll open up our project.clj and add the Selmer [selmer "0.5.4"] dependency to it.

Next, we’ll create a picture-gallery.views.templates namespace. This is where all the
Selmer templates will live.

Our current layout uses Hiccup to create the page skeleton and render the
content of our pages using it. Now we can update our layout namespace to
render the templates instead.

As you'll recall, Selmer uses an HTML template and a map of parameters to
process it. We'll replace the common helper in our layout with a render function
that will take care of rendering the templates. To do that we’ll reference the
selmer.parser namespace in the layout declaration:

(ns picture-gallery.views.layout
(:require [selmer.parser :as parser]))

Then we’ll define the path to our templates and write a helper function to
render our templates. This function will take care of prepending the template
path, adding the Servlet context key, and setting the user from the session.

Putting all the boilerplate in the layout will allow us to focus on the parameters
relevant to the task we're working on when rendering the templates.

picture-gallery-selmer/src/picture_gallery/views/layout.clj
(def template-folder "picture gallery/views/templates/")

(defn utf-8-response [html]
(content-type (response html) "text/html; charset=utf-8"))

(deftype RenderablePage [template params]
Renderable
(render [this request]
(->> (assoc params
:context (:context request)
ruser (session/get :user))

(parser/render-file (str template-folder template))
utf-8-response)))

(defn render [template & [params]]
(RenderablePage. template params))

Now that we've updated the layout, let’s create a base template for our pages.
We'll call this file base.html and put it in the src/picture_gallery/views/templates/ folder.

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-selmer/src/picture_gallery/views/layout.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 7. Mixing It Up ® 152

picture-gallery-selmer/src/picture_gallery/views/templates/base.html
<html>
<head>
<title>Welcome to picture-gallery</title>
<link href="{{context}}/css/screen.css" rel="stylesheet" type="text/css" />
<script type="text/javascript">
var context = "{{context}}";
</script>
<script src="//code. jquery.com/jquery-2.0.2.min.js" type="text/javascript"s</script>
<script src="{{context}}/js/colors.js" type="text/javascript"></script>
<script src="{{context}}/js/site.js" type="text/javascript"></script>
</head>
<body>
{% block menu %}
<div id="usermenu">
<div class="menuitem">home</div>
% if user %}
<div class="menuitem">
upload images
</div>
<div class="menuitem">
logout {{user}}
</div>
<div class="menuitem">
delete account
</div>
{% else %}
<div class="menuitem">
register
</div>
<div class="menuitem">
<form action="{{context}}/login" method="POST">
<input id="id"
name="1d"
placeholder="screen name"
type="text">
<input id="pass"
name="pass"
placeholder="password"
type="password">
<input type="submit" value="login">
</form>
</div>
% endif %}
</div>
% endblock %}
{% block content %}
% endblock %}
</body>
</html>

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-selmer/src/picture_gallery/views/templates/base.html
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Using Selmer * 153

The base template fills the same role as the common function in the Hiccup
version of the application. It creates the base layout and includes the necessary
resources. The pages can then extend the template and add their contents
inside the content block. Note that we have to use the Servlet context to ensure
that the local resources are accessible when the application is deployed on
an application server.

Converting the Home Page

Let’s create a new template called home.html and update our home page to use
this template to render its contents. The home template will extend the base
we created earlier and then create the thumbnail links for each gallery. This
template replaces the functionality of the show-galleries function in the gallery
namespace.

picture-gallery-selmer/src/picture_gallery/views/templates/home.html
% extends "picture gallery/views/templates/base.html" %}
{% block content %}
<div class="gallery">
{% for gallery in galleries %}
<div class="thumbnail">

{{gallery.userid}}'s gallery

</div>
% endfor %}
</div>
% endblock %}

With our templates in place, we can now update our home route to use the
render function we defined in layout. Previously, we used show-galleries from the
gallery namespace to render the picture galleries. We can now grab the list of
galleries directly from the db namespace and let the template render them.

picture-gallery-selmer/src/picture_gallery/routes/home.clj
(ns picture-gallery.routes.home
(:require [compojure.core :refer [defroutes GET]]
[picture-gallery.views.layout :as layout]
[picture-gallery.util :refer [thumb-prefix]]
[picture-gallery.models.db :as db]
[noir.session :as session]))
(defn home []
(layout/render "home.html"
{:thumb-prefix thumb-prefix
:galleries (db/get-gallery-previews)}))
(defroutes home-routes
(GET "/" [1 (home)))

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-selmer/src/picture_gallery/views/templates/home.html
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-selmer/src/picture_gallery/routes/home.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 7. Mixing It Up * 154

If we reload our home page we should see the thumbnails for the galleries
just as we did before.

The next step is to create a template to display the thumbnails for each indi-
vidual gallery. To do this, we’ll create a new file called galleryhtml in our templates
package. This template will display a thumbnail with a link for each image
in the user’s gallery.

picture-gallery-selmer/src/picture_gallery/views/templates/gallery.html
% extends "picture gallery/views/templates/base.html" %}

{% block content %}
<div class="gallery">
<div id="error"></div>
<script src="{{context}}/js/gallery.js" type="text/javascript"></script>
<div>
{% for pic in pictures %}
<div class="thumbnail">

% ifequal user page-owner %}
<input id="{{pic.name}}"
name="{{pic.name}}"
type="checkbox"
value="true" />
% endifequal %}

</div>
% endfor %}
{% ifequal user page-owner %}
<input id="delete" type="submit" value="delete images" />
% endifequal %}
</div>
</div>
% endblock %}

As you can see, the template is very similar to the one for home, except that
it now includes the script for gallery management and the thumbnails link
to the full images.

We can now update our gallery namespace to use the Selmer template for
rendering the user galleries.

picture-gallery-selmer/src/picture_gallery/routes/gallery.clj
(ns picture-gallery.routes.gallery
(:require [compojure.core :refer [defroutes GET]]
[picture-gallery.views.layout :as layout]
[picture-gallery.util :refer [thumb-prefix]]
[picture-gallery.models.db :as db]
[noir.session :as session]))

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-selmer/src/picture_gallery/views/templates/gallery.html
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-selmer/src/picture_gallery/routes/gallery.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Using Selmer ® 155

(defn display-gallery [userid]
(layout/render "gallery.html"
{:thumb-prefix thumb-prefix
:page-owner userid
:pictures (db/images-by-user userid)}))

(defroutes gallery-routes
(GET "/gallery/:userid" [userid]
(display-gallery userid)))

You'll notice that as we move our rendering logic to the templates the appli-
cation code shrinks dramatically.

The remaining tasks are to create templates for user registration and file
uploads. Let’s see how we can accomplish these.

Converting the Registration Pages

In the auth namespace, we have two functions responsible for rendering pages
for registration and account deletion. We’'ll create separate templates for each
of these pages.

The registration page is rather straightforward. It's simply a form for the user
to input her ID and set a password. We'll extend our base layout and add this
form to our content block. Let’s call this template registration.html. Notice that we
provide an empty block for the menu so that it’s not rendered on this page.

picture-gallery-selmer/src/picture_gallery/views/templates/registration.html
{% extends "picture gallery/views/templates/base.html" %}
{% block menu %}
{% endblock %}
{% block content %}
<div class="content">

<form action="{{context}}/register" method="POST">

<label for="user-id">user id</label>
<input id="id"

name="1d"
tabindex="1"
type="text"

value="{{id}}" />

<div class="error">{{id-error}}</div>

<label for="pass">password</label>
<input id="pass"

name="pass"

tabindex="2"

type="password" />

<div class="error">{{pass-error}}</div>

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-selmer/src/picture_gallery/views/templates/registration.html
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 7. Mixing It Up * 156

<label for="passl">retype password</label>
<input id="passl"
name="pass1"
tabindex="3"
type="password" />

<input tabindex="4" type="submit" value="create account" />
</form>
</div>
% endblock %}

The account-deletion page looks very similar, except here we have the forms
to confirm deletion or abort. We’ll name this template deleteAccount.html.

picture-gallery-selmer/src/picture_gallery/views/templates/deleteAccount.html
% extends "picture gallery/views/templates/base.html" %}
{% block content %}
<div class="gallery">
<form action="{{context}}/confirm-delete" method="POST">
<input type="submit" value="delete account" />
</form>
<form action="{{context}}/" method="GET">
<input type="submit" value="cancel" />
</form>
</div>
% endblock %}

Meanwhile, our route handlers for the /register and /delete-account URLs simply
render their respective templates:

picture-gallery-selmer/src/picture_gallery/routes/auth.clj
(defn registration-page [& [id]]
(layout/render "registration.html"
{:id id
:id-error (first (vali/get-errors :id))
:pass-error (first (vali/get-errors :pass))}))

Converting the Upload Page

Once again, we'll start by designing our page template and then make changes
to the code to accommodate it.

picture-gallery-selmer/src/picture_gallery/views/templates/upload.html
% extends "picture gallery/views/templates/base.html" %}

{% block content %}
<div class="gallery">
<h2>Upload an image</h2>
% if error %}
<p class="error">{{error}}</p>
% endif %}

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-selmer/src/picture_gallery/views/templates/deleteAccount.html
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-selmer/src/picture_gallery/routes/auth.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-selmer/src/picture_gallery/views/templates/upload.html
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Using Selmer ® 157

% 1if image %}

% endif %}

<form action="{{context}}/upload"
enctype="multipart/form-data"
method="POST">
<input id="file"
name="file"
type="file" />
<input type="submit" value="upload" />
</form>
</div>
% endblock %}

Here we create the form to upload the image, and placeholders to display the
result of the upload action. If the upload is successful then a link to the
thumbnail is returned; otherwise the service will return some error text.

We’'ll now have to make a few tweaks to the upload namespace to use the template:

picture-gallery-selmer/src/picture_gallery/routes/upload.clj
(defn upload-page [params]
(layout/render "upload.html" params))

(defn handle-upload [{:keys [filename] :as file}]
(upload-page
(if (empty? filename)
{:error "please select a file to upload"}
(try
(upload-file (gallery-path) file)
(save-thumbnail file)
(db/add-image (session/get :user) filename)
{:image (thumb-uri (session/get :user) filename)}
(catch Exception ex
(error ex "an error has occured while uploading" name)
{:error (str "error uploading file " (.getMessage ex))})))))

picture-gallery-selmer/src/picture_gallery/routes/upload.clj
(defroutes upload-routes
(GET "/img/:user-id/:file-name" [user-id file-name]
(serve-file user-id file-name))

(GET "/upload" [info] (restricted (upload-page {:info info})))
(POST "/upload" [file] (restricted (handle-upload file)))

(POST "/delete" [names] (restricted (delete-images names))))

As you can see, we were able to switch our templating engines with minimal
effort. Both Hiccup and Selmer offer their own benefits.

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-selmer/src/picture_gallery/routes/upload.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-selmer/src/picture_gallery/routes/upload.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 7. Mixing It Up ® 158

Upgrading to ClojureScript

Up to now, we've been using Clojure exclusively on the server, and plain old
JavaScript for our client-side logic. ClojureScript is a dialect of Clojure that
compiles to JavaScript. This allows us to use the same language for both the
client and the server. Not only that, but it's even possible to share code
between the two.

Let’s look at why we might wish to use ClojureScript for front-end development.
If you've worked with JavaScript you've probably noticed that it has many
shortcomings. Let’s look at some of these and how ClojureScript addresses
them.

JavaScript syntax is full of quirks and it’s easy to write code that looks like
it’s doing one thing, but in fact does something else entirely. Equality checks
are a good example. Since there are different rules for equality depending on
the type of data, it’s easy to make a mistake. It also leads to ugly code such
as the following example:

if (typeof my var !== "undefined" && my var !== null) {

// wow, that's ugly!
}

JavaScript code can be fairly verbose and it doesn’t lend itself well to
metaprogramming. It takes a needless amount of effort to organize your code,
as there is no built-in support for namespacing.

The conventions for what constitutes proper code differ wildly between libraries
and development shops. Some people write functional-style JavaScript, and
others use it to write object-oriented code. A lot of the time these conventions
don’t mesh well together.

There is no Leiningen equivalent for JavaScript. This means that you have
to manually keep track of dependencies and libraries.

For these reasons, it takes a lot of effort and discipline to write robust Java-
Script programs. However, JavaScript does have the advantage of being a
standard programmable environment for all modern browsers. Since it’s
become the de facto standard for the client side, JavaScript engines have
been improving their performance dramatically in recent years.

It would be nice to leverage this platform with a robust programming language
like Clojure. This is precisely where ClojureScript comes into play.

In addition to addressing these problems, ClojureScript brings the advantage
of using the same language for both the client and the server. This means we

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Upgrading to ClojureScript ® 159

can share logic between the two without having to write it twice and potentially
introduce errors and inconsistencies.

Much like its cousin Clojure, ClojureScript embraces its hosting platform and
allows seamless interop with JavaScript. We can continue leveraging mature
JavaScript libraries while enjoying the benefits of Clojure language semantics.

ClojureScript Overview

You should be aware of a couple of points when using ClojureScript. Since
ClojureScript runs in the browser, we cannot leverage any code that relies
on interfacing with Java. Only libraries written in pure Clojure can be shared.
The syntax for interop with JavaScript is also slightly different from that for
interacting with Java.

JavaScript Interop

Interacting with JavaScript turns out to be remarkably simple. Any standard
JavaScript functions can be accessed using the js namespace. For example,
if we want to make a logger that logs to the console, we can write something
like the following:

(defn log [& items]
(.log js/console (apply str items)))

One thing that’s not obvious is the interaction with JavaScript object proper-
ties. To access these we use (.-property obj) notation, where the hyphen (-
indicates that we're referencing a property and not a function. We update
properties by calling the set! function. Here’s an example:

(defn init []
(let [canvas (.getElementById js/document "canvas")
ctx (.getContext canvas "2d")
width (.-width canvas)
height (.-height canvas)]

(log "width: " width " height: " height)
;,set a property
(set! (.-fillStyle ctx) "black")
(.fillRect ctx 0 0 width height)))
Macros
Another area where ClojureScript differs from Clojure is that you have to
reference macros with :require-macros keyword in your namespace declaration:

(ns my.app
(:require-macros [app.macros :as ml))

Note that the :as declaration is required when referencing macros.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 7. Mixing It Up * 160

Concurrency

While ClojureScript supports atoms, there is no Software Transactional
Memory and therefore there are no refs or agents. The binding semantics are
slightly different, as well, because there are no Vars or runtime reification.

Finally, there is no runtime evaluation or compilation in ClojureScript. Aside
from these differences, development in ClojureScript is very similar to that
in regular Clojure.

Let’s look at what’s involved in porting the JavaScript code for our gallery to
ClojureScript. The easiest way to add ClojureScript support to the project is
to use the lein-cljsbuild plug-in.® With it you can specify the ClojureScript
sources, the Clojure namespaces you’d like to reference, and the JavaScript
files to output.

We'll first need to add the ClojureScript library and the Leiningen plug-in to
our project by adding the following to our project.clj:

:dependencies [...
[org.clojure/tools.reader "0.7.10"]
[org.clojure/clojurescript "0.0-1806"]1
:plugins [... [lein-cljsbuild "0.3.2"]]
:cljsbuild
{:builds
[{:source-paths ["src-cljs"]
:compiler
{:pretty-print false
routput-to "resources/public/js/gallery-cljs.js"}}1}

The configuration under :cljsbuild specifies that the ClojureScript code will live
in the src-cljs source folder. The compiled ClojureScript will be output to the
gallery-cljs.js file in our project’s resources/public/js/ directory.

Let’s create the src-cljs directory in our project’s root. We'll follow the same
naming convention as we did with JavaScript and create gallery.cljs and site.cljs
namespaces there.

Note that ClojureScript files must end with the .cljs extension. If you use the
.clj extension the compiler will still attempt to compile the namespace, but
will not be able to interoperate with JavaScript. This means you’ll get errors
trying to call any native JavaScript functions.

There are two options for invoking ClojureScript compilation using lein. We
can either run lein cljsbuild once or lein cljsbuild auto. When using the auto option,
the build will watch for changes in the source and automatically recompile

3. https://github.com/emezeske/lein-cljsbuild

www.it-ebooks.info

https://github.com/emezeske/lein-cljsbuild
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Upgrading to ClojureScript ® 161

them as needed. This takes much less time than compiling using the once
option, and turns out to be quite handy for development.

If we wish to remove any artifacts created by previous builds we can run lein
clisbuild clean to do that.

We'll use the Domina library for manipulating the document-object model
(DOM) elements and handling events, and cljs-ajax to handle our Ajax calls.*®
We can include these libraries just like any other dependency in our project.clj.

:dependencies [...
[domina "1.0.0"]
[cljs-ajax "0.2.0"]1]

At this point we're ready to start the ClojureScript compiler by running the
following;:

lein cljsbuild auto

Once the auto build is running, any changes we make to the namespaces in
the src-clj source folder will be recompiled and become available in the browser
when the page is reloaded.

First, let’s see what our current JavaScript code looks like in site.sj.

picture-gallery-selmer/resources/public/js/site.js
function colorStr(color) {
return "rgb("+color[0]+", "+color[1]+", "+color[2]+")";
}
function setColor(div, colors) {
var bgColor = colors[0];
var textColor = colors[1];
div.css("background-color", colorStr(bgColor));
div.find('a').css("color", colorStr(textColor));
}
$(document) . ready(function(){
$(".thumbnail")
.each(function() {
var div = $(this);
var url = div.find('img').attr('src');
var thumbColors = new AlbumColors(url);
var color = "";
thumbColors.getColors(function(colors) {
setColor(div, colors);
1)
1)
1}

4. https://github.com/levand/domina
5. https://github.com/yogthos/cljs-ajax

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-selmer/resources/public/js/site.js
https://github.com/levand/domina
https://github.com/yogthos/cljs-ajax
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 7. Mixing It Up * 162

Here, we use the AlbumcColors library to find colors to use as the background
and foreground of the div containing our thumbnail. Let’s see how to call this
library from ClojureScript instead.

picture-gallery-cljs/src-cljs/site.cljs

(ns site

(:require [domina :refer [by-class nodes sel attr]]
[domina.css :refer [selll))

(defn rgb-str [[r g b]]
(str "rgb(" r *," g "," b ")"))

(defn set-color [style foreground background]
(set! (.-color style) (rgb-str foreground))
(set! (.-backgroundColor style) (rgb-str background)))

(defn img-url [div]
(-> div (sel "img") (attr "src")))

(defn set-colors [div]
(.getColors (js/AlbumColors. (img-url div))
(fn [[background _ foreground]]
(set-color (.-style div) foreground background))))

(defn ~:export init []
(doseq [div (nodes (by-class "thumbnail"))]
(set-colors div)))

As you can see, the code is quite similar to the JavaScript version. One major
difference is that we have to use an init function to hook into ClojureScript.
Notice that it has the ":export annotation. We need this annotation to protect
the function name during advanced compilation. By default the Closure
compiler will munge the names to shorten the resulting code.

We’'ll now update our base.html template to call the compiled gallery-cljs.js script.
We'll also remove references to the old site.js, galleryjs scripts, and jQuery, as
they’re no longer necessary.

<!DOCTYPE HTML>

<html>
<script src="{{context}}/js/gallery-cljs.js" type="text/javascript">
</script>
<script>

site.init();
</script>
</body>
</html>

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-cljs/src-cljs/site.cljs
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Upgrading to ClojureScript ® 163

Note that all our ClojureScript namespaces will be compiled to a single
JavaScript output file. The content for both the site and the gallery will live
in the same file, which gets loaded once.

Now let’s look at converting the gallery.js to ClojureScript. Here we’'ll make Ajax
calls using the cljs-ajax library.

The galleryjs script looks as follows:

picture-gallery-selmer/resources/public/js/gallery.js
$(document) . ready(function(){
$("#delete").click(deleteImages);
b
function deleteImages() {
var selectedInputs = $("input:checked");
var selectedIds = [];
selectedInputs
.each(function() {
selectedIds.push($(this).attr('id'));
1)
if (selectedIds.length < 1) alert("no images selected");
else
$.post(context + "/delete",
{names: selectedIds},
function(response) {
var errors = $('");
$.each(response, function() {
if ("ok" === this.status) {
var element = document.getElementById(this.name);
$(element).parent().parent().remove();

}
else
errors
.append($('",
{html: "failed to remove " +
this.name +
R
this.status}));
1)

if (errors.length > 0)
$('#error').empty().append(errors);

}

"json");
}
The script handles deleting the images from the user gallery and updating
the page based on the server response. Let’s open gallery.clis and update the
namespace definition to reference the required libraries:

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-selmer/resources/public/js/gallery.js
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 7. Mixing It Up * 164

picture-gallery-cljs/src-cljs/gallery.cljs
(ns gallery
(:require [goog.dom :as dom]
[domina :refer [by-id nodes append!]]
[domina.events :refer [listen!]]
[domina.css :refer [sell]
[ajax.core :refer [POSTI]1))

Since we only want to load our gallery-related functions on the gallery page,
we’ll create an init function for it. The function will bind the click event for the
Delete button.

(defn ~:export init []
(listen! (by-id "delete") :click deletelmages))

We now need to call gallery.init() in our page, but after the gallery-cljs.js script is
loaded. To facilitate that we’ll create a new scripts block in our base.html to allow
pages to add their scripts there.

<html>
<head>
</head>
<body>
{% block scripts %}
% endblock %}

</body>
</html>

Then in our gallery.html we’ll call the init script:

% extends "picture gallery/views/templates/base.html" %}

{% block scripts %}

<script>
gallery.init();

</script>

% endblock %}

Let’s look at how to implement the deletelmages function. First, we have to select
all the checked inputs by using a CSS selector. We then grab the nodes from
the resulting query. We’'d like to grab each node’s name property and return
it. If we didn’t find any checked inputs, we’ll return a nil instead.

(defn find-selected []
(->> (sel "input:checked")
nodes
(map #(.-name %))
not-empty))

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-cljs/src-cljs/gallery.cljs
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Upgrading to ClojureScript ® 165

In deletelmages we’ll try to find the selected check boxes using the find-selected
we just wrote, and show an error if none are found. If any images are selected,

we’d like to POST their names to the server.

picture-gallery-cljs/src-cljs/gallery.cljs
(defn deleteImages []
(if-let [selected (find-selected)]
(POST "/delete" {:params {:names selected}
:handler handle-response})
(js/alert "no images selected")))

The response handler will check the status for each item and either remove
it from the DOM or display the associated error, as was the case with our

JavaScript version.

picture-gallery-cljs/src-cljs/gallery.cljs
(defn handle-response [responsel]
(let [errors (goog.string.StringBuffer. "")]
(doseq [{:keys [name status]} response]
(if (= "ok" status)
(-> (by-id name)
-parentNode)
-parentNode)
(dom/removeNode))

(
(
(

(.append errors (str "failed to remove
(Let [error-str (str "" (.toString errors) "")]

(if (not-empty error-str)
(append! (by-id "error") error-str)))))

name

" status "</1i>"))))

The final rewrite of the JavaScript version should look like this:

picture-gallery-cljs/src-cljs/gallery.cljs
(ns gallery
(:require [goog.dom :as dom]

[domina :refer [by-id nodes append!]]

[domina.events :refer [listen!]]
[domina.css :refer [sel]]
[ajax.core :refer [POST]]))

(defn handle-response [response]
(Llet [errors (goog.string.StringBuffer. "")]
(doseq [{:keys [name status]} responsel]
(if (= "ok" status)
(-> (by-id name)
.-parentNode)
.-parentNode)
(dom/removeNode))

(
(
(

(.append errors (str "failed to remove " name ":
(Let [error-str (str "" (.toString errors) "")]

(if (not-empty error-str)
(append! (by-id "error") error-str)))))

www.it-ebooks.info

" status "</1i>"))))

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-cljs/src-cljs/gallery.cljs
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-cljs/src-cljs/gallery.cljs
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-cljs/src-cljs/gallery.cljs
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 7. Mixing It Up * 166

(defn find-selected []
(->> (sel "input:checked")
nodes
(map #(.-name %))
not-empty))

(defn deleteImages [1
(if-let [selected (find-selected)]
(POST "/delete" {:params {:names selected}
:handler handle-response})
(js/alert "no images selected")))
(defn ~:export init []
(listen! (by-id "delete") :click deletelmages))

As you can see, using ClojureScript for client-side logic is very straightforward.

Since were using ClojureScript we can use the Extensible Data Notation
(EDN) format to transfer data between the client and the server.® This allows
us to use regular Clojure data structures without having to encode them
using an intermediate JavaScript Object Notation. To use it we’ll need to
include the ring-middleware-format middleware to handle the EDN-encoded
requests.”

:dependencies [...
[ring-middleware-format "0.3.1"]]

The POST function in the cljs-ajax library happens to use EDN as its default
format. The only change we need to make is to add the middleware to our
handler. We first reference it in the namespace declaration:

(ns picture-gallery.handler
(:require

[ring.middleware.format :refer [wrap-restful-format]]))

Then we simply pass the middleware to our app definition:

picture-gallery-cljs/src/picture_gallery/handler.clj
(def app (noir-middleware/app-handler
[auth-routes
home-routes
upload-routes
gallery-routes
app-routes]
:middleware [wrap-restful-format]
raccess-rules [user-pagel))

6. https://github.com/edn-format/edn
7. https://github.com/ngrunwald/ring-middleware-format

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-cljs/src/picture_gallery/handler.clj
https://github.com/edn-format/edn
https://github.com/ngrunwald/ring-middleware-format
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Upgrading to ClojureScript ® 167

The middleware will read the body of any EDN-encoded requests and set it
as the :params key on the request.

So far we've been compiling our ClojureScript without any optimizations. If
we look at the resulting script we see that it weighs in at around 1MB! Cleary,
that wouldn’t be acceptable for production use. To bring the size down to a
more reasonable number we need to enable the advanced optimizations.

At this point we’ll create separate profiles for dev and production builds. To
do that we need to update our project.clj as follows:
:cljsbuild
{:builds
{:dev {:source-paths ["src-cljs"]
:compiler
{:pretty-print true
routput-to "resources/public/js/gallery-cljs.js"}}
:prod {:source-paths ["src-cljs"]
:compiler
{:optimizations :advanced
:output-to "resources/public/js/gallery-cljs.js"}}}}

The development profile outputs more readable JavaScript that is easier to
debug and does not attempt to optimize it. The production profile will munge
variable names and apply advanced optimizations to keep the script size down
as much as possible.

We can now build each profile explicitly by specifying it as an argument to
clisbuild:

lein cljsbuild once prod

However, when we compile the production ClojureScript and navigate to our
page, we'll see an error that looks like this:

Uncaught TypeError: Object [object Object] has no method 'Le'

Unfortunately, the error is not terribly descriptive and doesn’t give us much
to go on. It says that we tried to call a method named Le on some object and
that it doesn’t exist.

The hint here is that we never defined a method called Le. The advanced
optimizer will munge the function names. This isn’t a problem for functions
we've defined ourselves, as theyre guaranteed to get consistent naming
throughout. However, we're also calling a function from the AlbumcColors
library. The compiler will also munge its name, and the resulting name will
obviously not be found.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 7. Mixing It Up * 168

Luckily, there’s a simple solution to this problem. The Google Closure compiler
provides a way to protect function names in external libraries by declaring
them in an externs file. We’ll create a new file called externs.js under the resources
directory of our project. Then we’ll declare the functions whose names we
wish to protect in it:

picture-gallery-korma/resources/externs.js

var AlbumColors = {};
AlbumColors.getColors = function() {};

We’ll then reference this file in the :prod build, as follows:

:prod {:source-paths ["src-cljs"]
:compiler
{:optimizations :advanced
:externs ["resources/externs.js"]
routput-to "resources/public/js/gallery-cljs.js"}}

Now if we clean and recompile our ClojureScript everything should work as
expected:

lein cljsbuild clean && lein cljsbuild once prod

The resulting script is weighing in at only around 150kB. It might seem large
for what it’s doing, but remember that it’s also providing the complete Clojure-
Script runtime. This is no worse than having to include jQuery or a similar
JavaScript library when working with plain JavaScript code.

SQL Korma

Now that we've Clojurized our front end, let’s look at doing the same to our
model. Up to now we've been using clojure.java.jdbc and writing SQL queries
by hand. SQL Korma is a native Clojure DSL that allows us to write the queries
using Clojure.®

Korma provides a way to write composable queries using Clojure that are
translated to the resulting SQL. Because the DSL mimics SQL structure, the
resulting queries are efficient and human-readable. The first thing we need
to do is include the Korma dependency in our project:

[korma "0.3.0-RC5"]

We can now remove the org.clojure/fjava.jdbc dependency, as Korma depends on
it and will ensure that it’s pulled into our project. To use Korma, we simply
need to wrap our connection using defdb:

(defdb korma-db db)

8. http://sqlkorma.com/

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-korma/resources/externs.js
http://sqlkorma.com/
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

SQL Korma * 169

This will create a connection pool for your db spec using the c3p0 library.’
The last-created pool is set as the default for all queries.

Korma uses entities to represent SQL tables. The entities represent the core
building blocks of your queries. These entities are created by using the defen-
tity macro. Let’s create the entities for our users and images tables. The entity
name should be the same as the table name.

(defentity users)
(defentity images)

Note that when only a single connection is specified the entities will use it
implicitly. We can now rewrite our user query functions as follows:

picture-gallery-korma/src/picture_gallery/models/db.clj
(defn create-user [user]
(insert users (values user)))

(defn get-user [id]
(first (select users
(where {:id id})
(limit 1))))

(defn delete-user [id]
(delete users (where {:id id})))

(defn add-image [userid name]
(transaction
(if (empty? (select images

(where {:userid userid :name name})
(limit 1)))

(insert images (values {:userid userid :name name}))

(throw

(Exception. "you have already uploaded an image with the same name")))))

(defn images-by-user [userid]
(select images (where {:userid userid})))
(defn delete-image [userid name]
(delete images (where {:userid userid :name name})))

(defn get-gallery-previews []
(exec-raw
["select * from
(select *, row number() over (partition by userid) as row number from images)
as rows where row number = 1" [1]
iresults))

9. http://sourceforge.net/projects/c3p0/

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-korma/src/picture_gallery/models/db.clj
http://sourceforge.net/projects/c3p0/
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 7. Mixing It Up * 170

As you can see, Korma-style queries mimic the original SQL fairly closely,
but they have less noise. Since they’re written in plain Clojure, we can
manipulate them just like any other Clojure code.

The functions for adding, selecting, and deleting images are all easily trans-
lated as well:

picture-gallery-korma/src/picture_gallery/models/db.clj
(defn add-image [userid name]
(transaction
(if (empty? (select images
(where {:userid userid :name name})
(limit 1)))
(insert images (values {:userid userid :name name}))
(throw
(Exception. "you have already uploaded an image with the same name")))))

(defn images-by-user [userid]
(select images (where {:userid userid})))
(defn delete-image [userid name]
(delete images (where {:userid userid :name name})))

So far so good, but the get-gallery-previews function uses a bit more intricate of
a query that can'’t easily be translated to Korma. In a case like that, we can
use the exec-raw helper and pass it the query directly, as we did when using
clojure.java.jdbc:

picture-gallery-korma/src/picture_gallery/models/db.clj
(defn get-gallery-previews []
(exec-raw
["select * from
(select *, row number() over (partition by userid) as row number from images)
as rows where row number = 1" []]
iresults))

You might have noticed that by default Korma produces some noisy logging.
To fix this we need to include a log4j dependency and add a log configuration
for Korma. We’'ll add the following in our project dependencies:
[logdj "1.2.15"
:exclusions [javax.mail/mail
javax.jms/jms
com.sun.jdmk/jmxtools
com.sun.jmx/jmxri]]

Then, we’ll place a logdj.xml configuration file under our project’s resources
directory. The file contents should look like this:

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-korma/src/picture_gallery/models/db.clj
http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-korma/src/picture_gallery/models/db.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Creating Application Templates ® 171

picture-gallery-korma/resources/log4j.xml
<?xml version="1.0" encoding="UTF-8" 7>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">
<logger name="com.mchange">
<level value="WARN"/>
</logger>
</log4j:configuration>

That’s all there is to it; Korma will now handle our SQL queries and we can
express the logic using the standard Clojure notation.

Creating Application Templates

Once we create a particular type of application, such as our picture-gallery
app, we may want to write other similar applications that use the same
structure. It would be nice to be able to create a skeleton application template
that could be used for this task. This is precisely what we can do by creating
Leiningen templates.

Throughout this book we’'ve been using the compojure-app template when we
created new projects. Here we’ll cover how this template works and how to
make templates of our own."°

Leiningen uses the lein-newnew plug-in for template creation. To create a
new template we merely have to run lein new template <template name>."'

Let’s look inside the compojure-app template project to see how it works. Since
it’s a Leiningen project, it contains the project.cl;.

compojure-template/project.clj

(defproject compojure-app/lein-template "0.3.9"
:description "Compojure project template for Leiningen"
:url "https://github.com/yogthos/compojure-template"
:eval-in-leiningen true
:license {:name "Eclipse Public License"

:url "http://www.eclipse.org/legal/epl-v10.html"}

:dependencies [[leinjacker "0.2.0"]])

It looks like a regular project file, except for the eval-in-leiningen key that prevents
Leiningen from launching a separate process for the given project during the
build time.

10. https://github.com/yogthos/compojure-template
11. https://github.com/Raynes/lein-newnew

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/picture-gallery-korma/resources/log4j.xml
http://media.pragprog.com/titles/dswdcloj/code/compojure-template/project.clj
https://github.com/yogthos/compojure-template
https://github.com/Raynes/lein-newnew
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 7. Mixing It Up ® 172

The template itself is found at src/compojure-template/leiningen/new/compojure_app.clj,
and it looks like this:

compojure-template/src/leiningen/new/compojure_app.clj
(ns leiningen.new.compojure-app
(:use [leiningen.new.templates :only [renderer sanitize year ->files]]
[leinjacker.utils :only [lein-generation]]))

(defn check-lein-version []
(if (< (lein-generation) 2)
(throw (new Exception "Leiningen v2 is required..."))))

(defn compojure-app

"Create a new Compojure project"

[name]

(check-lein-version)

(let [data {:name name

:sanitized (sanitize name)
:year (year)}
render #((renderer "compojure app") % data)l
(println "Generating a lovely new Compojure project named" (str name "..."))
(->files data

[".gitignore" (render "gitignore")]
["project.clj" (render "project.clj")]
["README . md" (render "README.md")1]
["src/{{sanitized}}/repl.clj" (render "repl.clj")]
["src/{{sanitized}}/handler.clj" (render "handler.clj")]
["src/{{sanitized}}/routes/home.clj" (render "home.clj")]
["src/{{sanitized}}/views/layout.clj" (render "layout.clj")]
["resources/public/css/screen.css" (render "screen.css")]
"resources/public/js"
"resources/public/img"
"src/{{sanitized}}/models"
["test/{{sanitized}}/test/handler.clj" (render "handler test.clj")])))

The compojure-app function is where all the fun happens, and it's what gets
called when we run lein new compojure-app myapp to create an application using
this template.

The code in the template is mostly self-explanatory. It uses the leiningen.new.tem-
plates/render function to put the template files at the specified path. The
{{sanitized}} tag ensures that the generated names for the package folders are
valid, converting the dashes to underscores.

We find the template files themselves at the src/compojure-template/leiningen/new/com-
pojure_app path. These files don’t need to have the same folder structure as the
resulting project. As you can see in the preceding code, we specify the target
path explicitly in our template.

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/compojure-template/src/leiningen/new/compojure_app.clj
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

What You've Learned ® 173

The templates are just regular files that would be found in the resulting
project. The only difference is that they use the {{name}} anchor whenever
the project name would be referenced. This anchor will be replaced with the
name of the application that we specify when creating the project. Let’s look
at the layout.clj template as an example:

compojure-template/src/leiningen/new/compojure_app/layout.clj
(ns {{name}}.views.layout
(:require [hiccup.page :refer [html5 include-css]]))
(defn common [& body]
(html5
[:head
[:title "Welcome to {{name}}"]
(include-css "/css/screen.css")]
[:body body]))

Once we've created our template, we can install it locally by running lein install.
Then we can start using it instead of having to write the boilerplate for this
kind of project. If we wish to make our template available to others, we can
publish it to Clojars by running lein deploy clojars.

What You've Learned

In this chapter we saw several approaches to structuring the application. We
discussed how to plug in a different templating engine. We discussed how
we’re able to use Clojure on both the server and the client. Finally, we covered
how to use the Korma DSL to access the database using Clojure syntax. As
you probably noticed, we can have as much or as little Clojure as we want in
our application.

At one extreme we could use Hiccup, ClojureScript, and Korma. This type of
application would be written almost entirely in Clojure. The primary benefit
of this approach is that we can do everything uniformly in one language. We
don’t need to remember syntax quirks of SQL and JavaScript, nor do we need
to write any HTML by hand. The obvious downside to this approach is that
we're able to work with only people versed in Clojure.

At the other extreme we have Selmer, JavaScript, and the clojure.java.jdbc
library. Here, Clojure is used only for the application’s business logic. This
approach minimizes the impact of using Clojure. Most importantly, it allows
us to work with people who aren’t familiar with the language, such as DBAs
and designers, as well as easily use powerful JavaScript frameworks such as
AngularJs."”

12. http://angularjs.org/

www.it-ebooks.info

http://media.pragprog.com/titles/dswdcloj/code/compojure-template/src/leiningen/new/compojure_app/layout.clj
http://angularjs.org/
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Chapter 7. Mixing It Up * 174

Having a range of options available provides the flexibility to use Clojure for
a wide variety of projects. More importantly, these options allow you to start
using as much Clojure as you're comfortable with.

The Luminus Framework

The Clojure community eschews traditional-style frameworks, preferring
composable libraries instead. The question is how you identify what libraries
to use. Which work well together and are well maintained? If you're a profes-
sional you probably don’t have a lot of time to discover this through trial and
error.

While I agree that frameworks in a traditional sense don’t add much value, I
think there is certainly a need for having sets of curated libraries and standard
patterns for doing things. Not only does this make it easier to start a project,
but it also simplifies working on other projects that follow the same patterns.

You probably also noticed that there’s some boilerplate involved in creating
the applications. You have to set up the database, create a handler, add the
relevant middleware, and so on.

Luminus aims to handle these things for you so you can focus on writing the
core of your application. '

At its heart, Luminus is simply a Leiningen template that creates all the
boilerplate for a typical web application. Unlike most templates, Luminus
uses optional flags to set up a project using specific features. For example,
we can use a +postgres flag to add support for the Postgres database, or a +cljs
flag to include support for ClojureScript.

If we were building an application similar to our picture gallery, we could
create a new application using the following flags:

lein new luminus picture-gallery +postgres +cljs

This would create an application set up to use the Postgres database,
including the ClojureScript hooks. We’d simply have to add the code that’s
relevant to the application.

Final Words

This concludes our whirlwind tour of developing web applications with Clojure.
We covered a wide range of topics, including development tools, libraries,
configuration, and deployment. My hope is that by reading this text you'll

13. http://www.luminusweb.net/

www.it-ebooks.info

http://www.luminusweb.net/
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

What You've Learned ® 175

have the necessary background to research the topics that we haven’t covered
as the need arises.

Some of the choices for the tools, libraries, and development practices dis-
cussed reflect the author’s personal experience and preferences building web
applications. In many cases there are other options available that are equally
viable. Again, the goal here is to provide you with a solid foundation so that
you can discover these on your own.

I sincerely hope that you enjoyed reading this book and that it will inspire
you to use Clojure for your next web application. Clojure is a young language,
and many quality tools and libraries are available, as is a fantastic community.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

APPENDIX 1

Alternative IDE Options

Although this book introduces Light Table, you very well might prefer using
a different editor for your project. The good news is that Leiningen projects
are editor-agnostic. In this appendix we’ll look at some of the most popular
alternatives to Light Table.

Installing Eclipse

You can download Eclipse from the official site,' and we’ll use the Eclipse IDE
Jfor Java Developers distribution, as it contains everything we’ll need. Once
you have Eclipse downloaded, simply unpack it and run the executable found
in the Eclipse folder.

Eclipse has full support for working with Leiningen projects provided via the
Counterclockwise plug-in.” This allows us to create projects and manage their
dependencies without having to leave the integrated development environment
(IDE).

Installing the Counterclockwise Plug-in

Counterclockwise is available via its official update URL.® To install the plug-
in go to the help menu in Eclipse and select the Install New Software option.
Once there, paste the update-site URL in the Work With box. Select Clojure
Programming and click Finish. You will be asked to confirm the untrusted
source. Do so and then restart Eclipse when prompted.

Although it's not strictly necessary, I would encourage you to enable the
structural-editing mode for Clojure. In this mode, the editor will ensure that

1. http://www.eclipse.org/downloads/
2. http://code.google.com/p/counterclockwise/
3. http://ccw.cgrand.net/updatesite/

www.it-ebooks.info

http://www.eclipse.org/downloads/
http://code.google.com/p/counterclockwise/
http://ccw.cgrand.net/updatesite/
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Appendix 1. Alternative IDE Options ® 178

your parens are properly balanced. It may take a bit of getting used to, but I
guarantee you’ll find yourself much more productive in the end. To enable
this mode, simply navigate to Preferences/Clojure/Editor and check off the
Start Editors in Strict/Paredit Edit Mode option.

Eclipse Configuration

Eclipse uses the concept of perspectives and views to present its user interface.
Each perspective is optimized for a particular task, such as development,
debugging, or source control. Within a perspective we can add different views,
such as an editor, a project browser, a code outline, and so forth.

The most useful perspective for Clojure development is the Java perspective.
There we can add the Package Explorer, Outline, Namespace Browser, and
Console views. To do so, simply navigate to Window/Show View in the menu
and select the views mentioned earlier if they're not already shown.

The Package Explorer allows us to explore our projects and see their files and
dependencies. Outline shows all the functions defined in the currently open
namespace. The Namespace Browser is active only when a read-evaluate-
print loop (REPL) is running, and it provides an overview of all the functions
that have been loaded. The console allows us to see any output from our
application that’s written to the standard out and the standard error.

Installing Emacs

Emacs is probably the oldest IDE that’s still actively used today. Being a
mature project, it has lots of features and plug-ins available, many of which
don’t have counterparts in other IDEs. However, it also means that Emacs
doesn’t follow any of the common patterns since it predates them.

Emacs is available for all the major platforms and can be downloaded from
the official site.* If you're using OS X, you may want to look at Aquamacs,
which is customized for the Mac.’

Unlike in most editors, shortcuts in Emacs often consist of chains of com-
mands. For example, if we want to open a file, we would first type Ctrl-x, which
puts us in command mode, then Ctrl-f, which lets us search for a file to open.
The common abbreviation for the preceding command is C-x-C-f, and this is
the notation we’ll use going forward.

4. http://www.gnu.org/software/emacs/
5. http://aguamacs.org/

www.it-ebooks.info

http://www.gnu.org/software/emacs/
http://aquamacs.org/
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Installing Emacs ® 179

Other commands are invoked by using the meta key—M for short. This key
is usually Alt on Windows and Linux, and Cmd on OS X. For example, we can
update the list of available packages by running M-x package-refresh-contents.

Once you have Emacs downloaded and running, you’ll need to configure it,
and to configure Emacs for use with Clojure you’ll need to install some addi-
tional packages. The recommended approach is to create the init.el file in the
~/.emacs.d/ directory. We’'ll then add the initialization scripts to it. This way, if
you move to a different machine, you can simply copy over your init file and
not have to configure Emacs again.

We first need to initialize our package manager with the URL of the package
repository. Let’s create a new file by running C-x-C-f and specifying the path
as ~/.emacs.d/init.el.

Then we add the following code to initialize the package manager:

(require 'package)
(add-to-list 'package-archives

'("marmalade" . "http://marmalade-repo.org/packages/"))
(package-initialize)

We save the file using C-x-C-s. With the file saved, let’s refresh our package
listing by running M-x package-refresh-contents. Once this completes, the package
listing should be up-to-date. We can now specify the packages we'd like to
be installed by adding them to our init file:

(defvar my-packages '(clojure-mode
clojure-test-mode
nrepl))

(dolist (p my-packages)
(when (not (package-installed-p p))
(package-install p)))

Here we'll use the clojure-mode package to add Clojure editing support.® The
nREPL package provides an Emacs client for the Clojure network REPL server.”
It will allow us to connect to our Leiningen projects from Emacs.

Let’s save again, and evaluate our buffer by running M-x eval-buffer. The new
packages will be downloaded and installed. You may see some warnings
during the process. This is nothing to worry about.

Let’s see how to load up a REPL session for the guestbook project we created

earlier. We can do this by following these steps:

6. https://github.com/clojure-emacs/clojure-mode
7. https://github.com/clojure-emacs/nrepl.el

www.it-ebooks.info

https://github.com/clojure-emacs/clojure-mode
https://github.com/clojure-emacs/nrepl.el
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Appendix 1. Alternative IDE Options ® 180

1. Open a namespace in our project by running C-x-C-f and selecting guest-
book/src/guestbook/repl.clj.

2. With the repl.clj buffer selected, run M-x nrepl-jack-in to start the REPL server
for the project and connect to it.

3. Run C-c-M-n to switch the REPL namespace to our buffer’s.
4. Finally, run C-c-Ck to evaluate the buffer.

If all went well, Emacs will now be connected to your project and you can
start hacking on it. Finally, I recommend taking a look at the Emacs Prelude
project for further enhancements to the default Emacs behavior.®

Alternatives

If you're not satisfied with either Eclipse or Emacs as your Clojure editor,
check out these alternatives.

Cursive

Another promising alternative is Cursive,” a new IDE based on the IntelliJ
platform. At the time of writing it’s in beta, but already usable for many
projects, especially if you're currently an IntelliJ user. It provides full structural
editing, Leiningen dependency management, and REPL support via nREPL.
The installation instructions are available on the official site.

VimClojure

If you're a Vim user, you may wish to check out VimClojure.'® The plug-in
supports many expected features, such as syntax highlighting, indentation,
and code completion. The main drawback of VimClojure is its lack of support
for structural editing.

8. https://github.com/bbatsov/prelude
9. http://cursiveclojure.com
10. https://bitbucket.org/kotarak/vimclojure

www.it-ebooks.info

https://github.com/bbatsov/prelude
http://cursiveclojure.com
https://bitbucket.org/kotarak/vimclojure
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

APPENDIX 2

Clojure Primer

As there are numerous books already available for learning Clojure, I'll keep
this overview short. Even if you're not familiar with Clojure, I hope you’ll find
that most of the code in this book is easy to follow. Instead of looking at
syntax in depth, I'd like to briefly go over the way Clojure programs are
structured and some of the unique aspects of the language.

At first glance Clojure code can look rather alien and you might even feel that
it’s more difficult to read than other languages. I assure you that Clojure code
is not inherently more difficult to understand, and with a bit of practice you
might even feel it’s quite the opposite.

Most of the differences between the mainstream languages are simply syntactic
sugar, and very little effort is needed to move between them. This is not the
case with Clojure. Being a Lisp dialect, it comes from a different branch of
languages and requires some practice before it becomes natural. Don’t be
discouraged if initially the code appears hard to read. This is because you're
learning new concepts as opposed to memorizing slightly different syntax.

A Functional Perspective

Clojure is a functional language. This makes it extremely well positioned for
writing modern applications. As the application grows it’s imperative to be
able to reason about parts of the application in isolation. It’s equally important
to have code that is testable and reusable.

Managing State

Functional languages are ideal for writing large applications because they
eschew global state and favor immutability as the default. When the data is
predominantly immutable we can easily reason about parts of the application
in isolation.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Appendix 2. Clojure Primer ® 182

Immutable data structures might sound like a strange idea at first. However,
many of the benefits associated with functional languages are directly facili-
tated by them. Let’s look at what makes these data structures such a powerful
tool.

In most languages data can be passed around either by value or by reference.
Passing data by value is safe since we know that any changes we make to
the data will not have any effect outside the function. However, it’s also pro-
hibitively expensive in many cases, so any substantial amount of data is
passed around by reference. This can make code very difficult to reason about,
as you have to know all the places where a piece of data is referenced to
update it safely.

Immutable data structures provide us with a third option. Every time a change
is made to a data structure a new revision is created. The price we pay when
altering the data is proportional to the size of the change. When a piece of
data is no longer referenced it simply gets garbage-collected.

I would liken this to using garbage collection instead of manual memory
management. This allows us to effectively “copy” data any time we make a
change without having to worry about where it comes from or what the scope
of our change will be. The language will take care of figuring out what parts
of it can be cleaned up when they’re no longer used.

Having such data structures facilitates writing pure functions. A pure function
is simply a function that has no side effects. Given the same parameters, the
function will always produce the same result. Since such functions can be
reasoned about in isolation, it makes it easy to write large applications that
are composed of individual self-contained components. This type of code is
referred to as being referentially transparent.

Achieving Code Reuse

Object-oriented languages tend to have strong coupling between the data and
the functions that operate on it. In this scenario we can’t easily reuse methods
written in one class when we have a similar problem that we need to solve in
another.

This problem does not exist in a functional language because the logic and
data are kept separate. The language provides a small set of common data
structures such as lists, maps, and sets. All the functions operate on these
data structures and when we come to a new problem, we can easily reuse
any function we write.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Data Types ® 183

Each function represents a certain transformation that we wish to apply to
our data. When we need to solve a problem we simply have to understand
the sequence of transformations and map those to the appropriate functions.
This style of code is referred to as declarative.

Declarative code separates what is being done from how it is done. When we
wish to iterate over a collection, we use an iterator function. The logic that
we want to execute inside the iteration will be passed in as a parameter.

One important advantage of this style is that we benefit from having code
reuse at the function level. An iterator function can be written once to handle
the edge cases and boundary checks. Then we can reuse this logic without
having to worry about remembering to do these checks time and again.

Leveraging Multiprocessing

Functional code also makes it easier to tackle the difficult problems of paral-
lelism and concurrency. While there is no silver bullet for addressing either
problem, the language can certainly make it easier to reason about them.

Since pure functions depend only on their arguments, they do not rely on
any shared state and can safely be computed in parallel. This means we can
easily parallelize many algorithms to take advantage of the extra cores. An
example of this is mapping a function over the items in a collection. We can
start by writing a version using the map function. Should we discover that
each operation takes a significant amount of time, then we can simply switch
to using pmap to run the operations in parallel.

Meanwhile, the immutable data structures provide an excellent tool for
managing shared state. Clojure provides a Software Transactional Memory
(STM) library based on these data structures. With transactional memory we
no longer have to worry about manual locking when dealing with threads.
Additionally, the data only needs to be locked for writing. Since the existing
data is immutable, it can be read safely even while an update is happening.

Data Types
Clojure provides a number of data types, most of which are unsurprising:

e Vars provide mutable storage locations. These can be bound and rebound
on a per-thread basis.

e Booleans can have a value of true or false; nil values are also treated as
false.

e Numbers can be integers, doubles, floats, and fractions.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Appendix 2. Clojure Primer ® 184

e Symbols are used as identifiers for variables.

¢ Keywords are symbols that reference themselves and are denoted by a
colon; these are often used as keys in maps.

e Strings are denoted by double quotes and can span multiple lines.
e Characters are denoted by a forward slash.
* Regular expressions are strings prefixed with a hash symbol.

In addition to the data types, Clojure provides a rich set of standard collec-
tions. These include lists, vectors, maps, and sets.

e List: (123)

e Vector: [12 3]

e Map: {:foo "a" :bar "b"}
e Set: #{"a" "b" "c"}

Interestingly, Clojure code is written using the data structures you've just
seen. This is very different from most languages, where you have one syntax
for defining data and a separate syntax for writing the program logic. Using
the same syntax for both allows for the powerful metaprogramming features.

You can manipulate any piece of Clojure code like any other data structure.
This provides an easy way to create templates for recurring patterns in your
problem domain.

Using Functions

Function calls in Clojure look very similar to those in other languages. Let’s
look at calling a function in Python and in Clojure:

functionName (paraml, param2)

(function-name paraml param?2)

The main difference is that the function name comes after the paren in the
Clojure version. This is because a function call is simply a list containing the
function name and its parameters. A list is a special data structure in Clojure
because the compiler expects the first argument in lists to be callable. If you
wanted to create a list data structure, you’d call the list function.

(list 1 2 3)

Anonymous Functions

Clojure allows creation of functions without having to name them. Such
functions are referred to as lambda expressions. These functions can be

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Named Functions ® 185

defined by using the fn special form. A special form is a type of a primitive
that is evaluated using different rules than the standard primitives. Each
special form can have a unique way to evaluate its arguments.

For example, if we wanted a function that prints a single argument, we could
write the following:

(fn [arg] (println arg))

We could then pass a parameter to this function to be printed.

((fn [arg] (println arg)) "hello")
=>"hello"

Clojure also provides syntactic sugar for defining anonymous functions using
the # notation. The preceding function can be rewritten more concisely as
follows:

#(println %)

Here, the % symbol indicates an unnamed argument. If the function accepted
multiple arguments, then each one would be followed by a number indicating
its position. This can be seen in the next example:

#(println %1 %2 %3)

The preceding anonymous function accepts three arguments and prints them
out in order. This type of function is useful when you need to perform a one-
off operation that doesn’t warrant defining a named function. These functions
are often used in conjunction with the higher-order functions, which we’ll
look at in a moment.

Named Functions

Named functions are simply anonymous functions bound to a symbol used
as an identifier. Clojure provides a special form called def that’s used for cre-
ating global variables. It accepts a name and the body to be assigned to it.
We can create a named function by using def as follows:

(def double (fn ([x] (* 2 x))))

Since this is such a common operation, Clojure provides a special form called
defn that does it for us:

(defn square [x]
(* x x))

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Appendix 2. Clojure Primer ® 186

The first argument to defn is the name of the function being defined. It is fol-
lowed by a vector containing the arguments and the body of the function. In
the preceding code, we passed in a single item for the body; however, we could
pass as many items as we like:

(defn bar [a b]
(println a)
(println b)

(* 2 (+ ab)))

Here we define the function bar that takes parameters a and b. The body consists
of two print statements and a call to sum a and b then multiply the result by 2.
All the expressions are evaluated from the inside out. In the last statement, (+ a
b) is evaluated, then its result is multiplied by two and returned by bar.

One thing to note is that Clojure uses a single pass compiler. For this reason,
the functions must be declared before they are used. In a case when we need
to refer to a function before it’s been defined, we must use the declare macro
to provide a forward declaration.

(declare down)

(defn up [n]
(if (< n 10)
(down (+ 2 n))
n))

(defn down [n]
(up (dec n)))

As you might have noticed, the code structure is a tree. This tree is called the
abstract syntax tree, or AST for short. This is the same AST that the compiler
sees when compiling the code. By being able to see the AST directly, we can
see the relationships between pieces of logic visually.

Since we write our code in terms of data, there are fewer syntactic hints than
in most languages. For example, as you might have noticed, there are no
explicit return statements. Instead, the last expression of the function body
is returned implicitly. This might take a little getting used to if you're accus-
tomed to seeing a lot of annotations in your code. To aid readability, functions
are often kept short (five lines or less is a good rule of thumb) while indentation
and spacing are used for grouping code visually.

In Clojure, there is no distinction between functions and variables. You can assign
a function to a label, pass it as a parameter, or return a function from another
function. Functions that can be treated as data are referred to as being first-class
because they don’t have any additional restrictions attached to them.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Higher-Order Functions * 187

Higher-Order Functions

Functions that take other functions as parameters are called higher-order
functions. One example of such a function is map:

(map #(* % %) [1 2 3 4 5])
=>(14 9 16 25)

Here we pass in two parameters to map. The first parameter is an anonymous
function that squares its argument and the second is a collection of numbers.
The map function will visit each item in the collection and square it. One
advantage of using higher-order functions is that we don’t have to worry about
boundary conditions, such as nil checks. The iterator function handles these
for us.

Another example of a higher-order function is filter. This function goes through
a collection and keeps only the items matching the condition specified.

(filter even? [1 2 3 4 5])
=>(2 4)

You can, of course, chain these functions together to solve problems:

(filter even?
(map #(* 3 %) [12 3 4 5]))
=>(6 12)

Here we multiply each item by 3, then we use filter to only keep the even items
from the resulting sequence.

Because of higher-order functions, you should practically never have to write
loops or explicit recursion. When you need to iterate a collection, use a
function such as map or filter instead. Since Clojure has a rich standard library,
practically any data transformation can be achieved by a combination of
several higher-order functions.

Instead of having to learn a lot of different language features and syntax, you
simply have to learn the functions in the standard library. Once you learn to
associate data transformations with specific functions, many problems can
be solved by simply putting existing functions together.

Here is a real-world example of this idea. The problem is to display a formatted
address given the fields representing it. Commonly an address has a unit
number, a street, a city, a postal code, and a country. We'll have to examine
each of these pieces, remove the null and empty ones, and insert some sepa-
rator between them.

Let’s say we have a table in our database that contains the following fields:

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Appendix 2. Clojure Primer ® 188

unit | street | city | postal code | country
| "1 Main street" | Toronto | nil | Canada

Given the preceding data as strings, we would like to output the following
formatted string:

1 Main street, Toronto, Canada

All we have to do is find the functions for the tasks of removing empty fields,
interposing the separator, and concatenating the result into a string:

(defn concat-fields [& fields]
(apply str (interpose ", " (remove empty? fields))))

(concat-fields "" "1 Main street" "Toronto" nil "Canada")
=>"1 Main street, Toronto, Canada"

Notice that we didn’t have to specify how to do any of the tasks when writing
our code. Much of the time we simply say what we're doing by composing the
functions representing the operations we wish to carry out.

Closures

Next we’ll look at functions that return other functions as a result. One use
for such functions is to provide behavior that is facilitated by constructors
in object-oriented languages. For example, if you want to initialize some
variables before using a function, you can do so as follows:

(defn make-client [url]
(fn [request] (str "sending " request " to " url)))
(let [client (make-client "http://foo.org")]
(println (client "request 1"))
(println (client "request 2")))

Here we create a function that accepts a url parameter and returns a function
that accepts a request as its parameter. The inner function has access to the
url variable since it’s defined in the same scope.

This type of function is called a closure because it closes over its parameters,
in our case the url, and makes them available to the functions it returns.

You'll notice that we're using a form called let to bind the client symbol. This
makes it available to any expressions inside the let form. The let form serves
the same purpose as declaring variables in imperative languages.

Threading Expressions

As you might suspect by now, expressions can become difficult to read if
they’re deeply nested. Luckily for us, Clojure provides a couple of helper forms

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Being Lazy * 189

to address this problem. Let’'s say we have a range of ten numbers, and we
want to increment each number, interpose the number 5 between them, then
sum the result. We could write the following:

(reduce + (interpose 5 (map inc (range 10))))

It’s a little difficult to tell what’s happening in that expression at first glance.
If each step were even a little more complex, we’'d be really lost. On top of
that, if we wanted to rearrange any of the steps, such as interposing 5 before
incrementing, then we’d have to renest all our expressions.

An alternative way to write the preceding is to use the ->> form:
(->> (range 10) (map inc) (interpose 5) (reduce +))

Here, we use the ->> to thread the operations from one to another. This means
we implicitly pass the result of each expression as the last argument of the
next expression. If we wanted to pass it as the first argument instead, we
could use the -> form to do that.

Being Lazy

Many Clojure algorithms use lazy evaluation. This means the operations aren’t
performed unless somebody actually asks for their result. This is crucial to
making many algorithms work efficiently.

For example, you might think the preceding example is very inefficient since
we have to iterate our sequence each time to create the range, map across it,
interpose, and reduce the result.

However, this is not actually the case. The evaluation of each expression
happens on demand. The first value in range is generated and passed to the
rest of the functions, then the next, and so on, until the sequence is
exhausted. This is similar to the way iterators work in languages like Python.

Structuring the Code

One nontrivial difference between Clojure and most other languages is the
way that the code is structured. In imperative languages, a common practice
is for different lines of code to modify shared data, where each line accessing
the memory location sees the result of the previous line of code.

For example, if we have a list of integers and we wish to square each one then
print the even ones, the following Python code would be perfectly valid:

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Appendix 2. Clojure Primer ® 190

1 = [1I 2! 3’ 4! 5]
for i in 1
i=i*i

for i in 1
if (i mod 2 == 0)

print 1

In Clojure this interaction is explicit. Instead of creating a shared memory
location and then having different functions access it sequentially, we chain
functions together and pipe the input through them:

(println
(filter #(= (mod % 2) 0)
(map #(* % %) (range 1 6))))

Or, as we've covered, we could use the ->> macro to flatten the operations:

(->> (range 1 6)
(map #(* % %))
(filter #(= (mod % 2) 0))
(println))

Each function returns a new value instead of modifying the existing data in
place. You might think that this can get very expensive, and it would with a
naive implementation where the entirety of the data is copied with every
change.

In reality, Clojure is backed by persistent data structures that create in-
memory revisions of the data.' Each time a change is made a new revision is
created proportional to the size of the change. With this approach we only
pay the price of the difference between the old and the new data structures
while ensuring that any changes are inherently localized.

Destructuring Data

Clojure has a powerful mechanism called destructuring for declaratively
accessing values in data structures. If you know the data structure’s type,
you can describe it using a literal notation in the binding. Let’s look at some
examples of what this means.

(let [[smaller bigger] (split-with #(< % 5) (range 10))]
(println smaller bigger))

=>(01234) (567809)

1. http://en.wikipedia.org/wiki/Persistent data structure

www.it-ebooks.info

http://en.wikipedia.org/wiki/Persistent_data_structure
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Destructuring Data ® 191

Here we use split-with to split a range of ten numbers into a sequence containing
two elements: numbers less than 5 and numbers greater than or equal to 5.
The split-with function returns a sequence containing two elements: the first is
the sequence of items that are less than 5, and the other is the ones that are
greater. Since we know the result’s format, we can write it in a literal form
as [smaller bigger], and then use these named elements within the let binding.

We can use this type of destructuring in function definitions as well. Next we
have a function called print-user that accepts a vector with three items. It names
the items name, address, and phone, respectively.

(defn print-user [[name address phonell
(println name address phone))

(print-user ["Bob" "12 Jarvis street, Toronto" "416-987-3417"1])

We can also specify variable arguments as a sequence in cases where a vari-
able number of arguments can be supplied. This is done by using the
ampersand followed by the name for the argument list.

(defn foo [& args]
(println args))

(foo "a" "b" "c")
=>(a b c)

Since the variable arguments are stored in a sequence, we can use destruc-
turing with them as well.
(defn foo [first-arg & [second-arg]]
(println (if second-arg
"two arguments were passed in"
"one argument was passed in")))

(foo "bar")
=>"one argument was passed in"

(foo "bar" "baz")
=>"two arguments were passed in"

We can also use destructuring with maps. When destructuring a map, we
create a map with names bound locally to the keys from the original map:

(let [{foo :foo bar :bar} {:foo "foo" :bar "bar"}]
(println foo bar)

It’s possible to destructure a nested data structure, as well. As long as you
know the data’s structure, you can simply write it out.

(let [{[a b c] :items id :id} {:id "foo" :items [1 2 3]}]
(println id " has the following items " a b c))

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Appendix 2. Clojure Primer ® 192

Finally, there is some syntactic sugar for extracting keys from maps, as it’s
a common operation. For example, if we have a map containing the keys :id
and :password, we could write a login function that would extract these keys
in its definition.

(defn login [{:keys [id password]}]

cen)
(login {:id "bob" :password "secret"})

Sometimes we’d like to extract some keys, but also have the original map
available to us.
(defn [{:keys [id pass passl] :as user}]

(if (and id (= pass passl))

(println "valid user")
(println user " is not filled in correctly")))

Namespaces

When writing real-world applications we need the tools to organize our code
into logical groups. In object-oriented languages it's common to use classes
and define methods as members of a class. In Clojure, we group our functions
into namespaces instead. Let’s look at how a namespace is defined.

(ns myns)

(defn print-message [messagel]
(println "message:" message))

(defn say-hello [user]
(print-message (str "hello

user))

Here we have a namespace called myns containing two functions, print-message
and say-hello. The functions in the same namespace can call each other
directly. However, if we wanted to call these functions from a different
namespace we would have to reference the myns first in the declaration of that
namespace.

There are two ways of referencing a namespace in Clojure.

The :use Keyword

The first method is to reference the namespace by delcaring it with the :use
keyword. When referenced in this way, all its Vars become implicitly available
as if they were defined in the namespace that references it.

(ns myotherns
(:use myns))
(say-hello "Bob")

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Namespaces ® 193

There are two downsides to this approach. We don’t know where the function
was originally defined, making it difficult to navigate the code, and if we ref-
erence two namespaces that define the same name for a function, we’ll get
an error.

We can address the first problem by selecting the functions we wish to use
explicitly using the :only keyword in our :use declaration.

(ns myotherns
(:use [myns :only [say-helloll]))

(defn print-message [messagel
(println "in myotherns"))

(say-hello)

This way we document where say-hello comes from, and we’re able to declare
our own print-message in the myotherns namespace without conflicts. However,
say-hello will still use the print-message defined in myns.

The :require Keyword

Another approach is to reference the namespace using the :require keyword.
The :require keyword allows for using multiple strategies. Let’s look at each of
these.

We can require a namespace without providing any further directives. In this
case, any calls to Vars inside it must be prefixed with the namespace decla-
ration indicating their origin.

(ns myotherns
(:require myns))

(myns/say-hello)

This approach is explicit about the origin of the Vars being referenced and
ensures that we won’t have conflicts when referencing multiple namespaces.
One problem is that if our namespace declaration is long, it gets tedious to
have to type it out any time we wish to use a function declared inside it. To
alleviate this problem, the :require statement supports the :as directive, allowing
us to create an alias for the namespace.

(ns myotherns
(:require [myns :as m]))

(m/say-hello)

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Appendix 2. Clojure Primer ® 194

We can also require functions from a namespace by using the :refer keyword.
This is synonymous with the :use notation we saw earlier.

To require all the functions from another namespace, we can write the
following:

(ns myotherns
(:require [myns :refer :alll))

If we wish to select what functions to require by name, we can instead write
this:

(ns myotherns
(:require [myns :refer [say-hello]))

As you can see, there’s a number of options available for referencing Vars
declared in other namespaces. If you're not sure what option to pick, then
requiring the namespace by name or alias is the safest route.

Dynamic Variables

Clojure provides support for declaring dynamic variables that can have their
value changed within a particular scope. Let’s look at how this works.
(declare ~{:dynamic true} *foo*)

(println *foo*)
=>#<Unbound Unbound: #'bar/*foo*>

Here we declared *foo* as a dynamic Var and didn’t provide any value for it.
When we try to print *foo* we get an error indicating that this Var has not
been bound to any value.

Let’s look at how we can assign a value to *foo* using a binding.

(defn with-foo [f]
(binding [*foo* "foo"]
(f)))
(with-foo #(println *foo*))
=>fo0

We set *foo* to a string with value "foo" inside our with-foo function. When our
anonymous function is called inside with-foo we no longer get an error when
trying to print its value.

This technique can be useful when dealing with resources such as file streams,
database connections, or scoped variables. In general, the use of dynamic
variables is discouraged since they make code more opaque and difficult to
reason about. However, there are legitimate uses for them, and it's worth
knowing how they work.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Calling Out to Java ® 195

Calling Out to Java

One advantage of using Clojure is that we can rely on the rich ecosystem of
existing Java libraries. If some functionality is not available natively, we may
wish to call out to a Java library to accomplish a particular task. Calling Java
classes is very simple, and follows the standard Clojure syntax fairly closely.

Importing Classes

When we wish to use a Clojure library, we employ :use and :require statements.
However, when we wish to import a Java class, we have to use the :import
statement.

(ns myns
(:import java.io.File))

We can also group multiple classes from the same package in a single import,
as follows:

(ns myns
(:import [java.io File FileInputStream FileOutputStream]))

Instantiating Classes

To create an instance of a class, we can call new just as we would in Java.
(new File ".")

There is also a commonly used shorthand for creating new objects:

(File. ".")

Calling Methods

Once we have an instance of a class, we can call methods on it. The notation
is similar to making a regular function call. When we call a method, we pass
the object its first parameter followed by any other parameters that the method
accepts.
(let [f (File. ".")]

(println (.getAbsolutePath f)))
There, we created a new file object f, and we called .getAbsolutePath on it. Notice
that methods have a period () in front of them to differentiate them from
regular Clojure functions. If we wanted to call a static function or a variable
in a class, we would use the / notation, as follows.

(str File/separator "foo" File/separator "bar")

(Math/sqrt 256)

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Appendix 2. Clojure Primer ® 196

There’s also a shorthand for chaining multiple method calls together using
the double period (..) notation. Say we wanted to get the string indicating the
file path and then get its bytes; we could write the code for that in two ways.

(.getBytes (.getAbsolutePath (File. ".")))

(.. (File. ".") getAbsolutePath getBytes)

The second notation looks more natural and easier to read. Although there
is other syntactic sugar for working with Java, the preceding is sufficient for
following the material we cover in this book.

Dynamic Polymorphism

Protocols allow defining an abstract set of functions that can be implemented
by a concrete type. Let’s look at an example protocol:

(defprotocol Foo
"Foo doc string"
(bar [this b] "bar doc string")
(baz [this] [this b] "baz doc string"))

As you can see, the Foo protocol specifies two methods, bar and baz. The first
argument to the method will be the object instance followed by its parameters.
Note that the baz method has multiple arity. We can now create a type that
implements the Foo protocol using the deftype macro:

(deftype Bar [datal
Foo
(bar [this param] (println data param))
(baz [this] (println (class this)))
(baz [this param] (println param)))

There we create type Bar that implements protocol Foo. Each method will print
out some of its parameters. Let’s see what it looks like when we create an
instance of Bar and call its methods:

(let [b (Bar. "some data")]
(.bar b "param")
(.baz b)
(.baz b "baz with param"))

some data param
Bar
baz with param

The first method call prints out the data Bar was initialized with and the
parameter that was passed in. The second method call prints out the object’s
class, while the last method call demonstrates the other arity of baz.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

What about Global State? ® 197

We can also use protocols to extend the functionality of existing types,
including existing Java classes. For example, we can use extend-protocol to
extend the java.lang.String class with the Foo protocol:
(extend-protocol Foo

String

(bar [this param] (println this param)))
(bar "hello" "world")

hello world

For the purposes of this text the preceding examples will suffice. However,
there are many other uses for protocols and I encourage you to take the time
to discover them on your own.

What about Global State?

While predominantly immutable, Clojure provides support for shared mutable
data as well via its STM library.? The STM ensures that all updates to mutable
variables are done atomically. There are two major kinds of mutable types:
the atom and the ref. The atom is used in cases where we need to do uncoordi-
nated updates and the ref is used when we might need to do multiple updates
as a transaction.

Let’s look at an example of defining an atom and using it.
(def global-val (atom nil))

We've defined an atom called global-val and its current value is nil. We can now
read its value by using the deref function, which returns the current value.

(println (deref global-val))
=>nil

Since this is a common operation, there is a shorthand for deref: the @ symbol.
So writing (printin @global-val) is equivalent to the preceding.

Let’s look at two ways of setting a new value for our atom. We can either use
reset! and pass in the new value, or we can use swap! and pass in a function
that accepts the current value and updates it.

(reset! global-val 10)
(println @global-val)
=>10
(swap! global-val inc)
(println @global-val)
=>11

2. http://clojure.org/concurrent_programming

www.it-ebooks.info

http://clojure.org/concurrent_programming
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Appendix 2. Clojure Primer ® 198

Note that both swap! and reset! end in an exclamation point (!); this is a conven-
tion to indicate that these functions operate on mutable data.

We define refs the same way we define atoms, but the two are used rather dif-
ferently. Let’s take a quick look at how they work.

(def names (ref []))

(dosync
(ref-set names ["John"])
(alter names #(if (not-empty %)
(conj % "Jane") %)))

In that code, we define a ref called names, then open a transaction using a
dosync statement. Inside the transaction we set the names to a vector with the
value "John". Next, we call alter to check if names is not empty and add "Jane" to
the vector of names if that’s the case.

Note that since this is happening inside a transaction, the check for emptiness
depends on the existing state along with any state built up within the same
transaction. If we tried to add or remove a name in a different transaction, it
would have no visible effect on ours. However, one of the transactions would
end up being retried.

Writing Code That Writes Code for You

Clojure, being a Lisp, also provides a powerful macro system. Macros allow
templating repetitive blocks of code and deferring evaluation, among numerous
other uses. A macro works by treating code as data instead of evaluating it.
This allows us to manipulate the code tree just like any other data structure.

Macros execute before compile time and the compiler sees whatever the result
of executing the macro will be. Because of this level of indirection, macros
can be difficult to reason about, and thus it’s best not to use them when a
function will do the job.

However, there are legitimate uses for macros, and it’s worth understanding
how they work. In this book we use very few macros, so we’ll only touch on
their syntax superficially.

Let’s look at a concrete example of a macro and see how it differs from the
regular code we saw previously. Let’s imagine that we have a session that will
contain a user if one logs in. We might want to load certain content only if a
user is present in the session.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Writing Code That Writes Code for You * 199

(def session (atom {:user "Bob"}))

(defn load-content []
(if (:user @session)
"some content"

"please log in"))

This will work, but it’s tedious and error-prone to write our if statement every
single time. Since our condition’s logic stays the same, we can template this
function as follows:

(defmacro defprivate [name & body]
*(defn ~(symbol name) []
(if (:user @session)
(do ~@body)
"please log in")))

The macros are defined using the defmacro special form. The major difference
between defn and defmacro is that the parameters passed to defmacro are not
evaluated by default.

To evaluate the parameter we use the tilde, as we're doing with ~(symbol name).
Using the ~ notation indicates that we’d like to replace the name with the
value it refers to. This is called unquoting.

The ~@ notation used in (do ~@body) is called unquote splicing. This notation
is used when we're dealing with a sequence. The contents of the sequence
will be merged into the outer form during the splicing. In this case body consists
of a list representing the function’s body. The body must be wrapped in a do
block because the if statement requires having no more than two arguments.

The backtick (') sign means that we wish to treat the following list as data
instead of executing it. This is the opposite of unquoting, and it’s referred to
as syntax-quoting.

As I mentioned earlier, the macros are executed before compile time. To see
what the macro will be rewritten as when the compiler sees it, we can call
macroexpand-1.

(macroexpand-1 '(defprivate foo (println "bar")))

(clojure.core/defn foo []
(if (:user (clojure.core/deref user/session))
(do (println "bar"))
"please log in"))

You can see that (defprivate foo (printin "bar")) gets rewritten with a function defini-
tion that has the if statement inside. This resulting code is what the compiler

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Appendix 2. Clojure Primer ® 200

will see, and it’s equivalent to what we would have to write by hand otherwise.
Now we can simply define a private function using our macro, and it will do
the check for us automatically.

(defprivate foo (println "bar"))

The preceding example might seem a little contrived, but it demonstrates the
power of being able to easily template repetitions in code. This allows creating
a notation that expresses your problem domain using the language that is
natural to it.

The Read-Evaluate-Print Loop

Another big aspect of working in Clojure is the read-evaluate-print loop (REPL).
In many languages you write the code, then run the entire program to see
what it does. In Clojure most development is done interactively using the
REPL. In this mode we can see each piece of code we write in action as soon
as it’s written.

In nontrivial applications it’s often necessary to build up a particular state
before you can add more functionality. For example, a user has to log in and
query some data from a back end, then you need to write functions to format
and display this data. With a REPL you can get the application to the state
where the data is loaded and then write the display logic interactively without
having to reload the application and build up the state every time you make
a change.

I find this method of development satisfying because of the immediate feedback
from the application when you add or modify code. You can easily try things
out and see how they work. It encourages experimentation and refactoring
code as you go, which in turn helps you to write better and cleaner code.

Summary

This concludes our tour of Clojure basics. Although we touched on only a
small portion of the overall language, if you understand the preceding exam-
ples then you should have no trouble following any of the code in the rest of
the book. Once you have your development environment up and running,
don’t hesitate to try out the examples shown here in the REPL and play around
with them until you feel comfortable moving on.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

APPENDIX 3

Document-Oriented Database Access

A SQL database may not always be a good fit for your application. Many
applications do not require a relational schema. If the application simply
needs a persistence layer to store and retrieve records, then a document store
may be a good fit.

Picking the Right Database

There are three main aspects to consider when picking a document-based
database. These are consistency, availability, and partition tolerance, as
defined by the CAP theorem.' Since these goals are at odds with each other,
when picking the data store you’ll have to decide which two are most important
to you.

Consistency

When we have consistency, each client has the same view of the data. This
aspect comes into play when you have a database cluster with multiple nodes.
In a consistent database, each node is guaranteed to have the same view of
the data.

Some databases, such as CouchDB,” provide eventual consistency. This
means that while each node in the cluster is self-consistent, it’s not guaranteed
to be serving up the latest data.

Availability

Availability means there’s no global lock on the database. A client connected
to any node can read and write freely. However, the data is guaranteed to

1. http://en.wikipedia.org/wiki/CAP_theorem
2. http://couchdb.apache.org/

www.it-ebooks.info

http://en.wikipedia.org/wiki/CAP_theorem
http://couchdb.apache.org/
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Appendix 3. Document-Oriented Database Access ® 202

propagate through the cluster eventually. The downside of this approach is
that clients are not guaranteed to see the latest data at all times.

CouchDB uses this model to allow high-availability clustering. Note that the
clusters should always have an odd number of nodes. This allows CouchDB
to use a quorum to decide what record will be kept in case of a conflict. Such
a scenario can occur if two clients are updating a record while connected to
different nodes. One of the clients will end up with a revision conflict in this
scenario.

Partition Tolerance

A partition-tolerant database works well across physical network partitions.
This means that even if your cluster experiences a serious network outage,
the nodes will be able to resync automatically when the network becomes
available.

Using CouchDB

CouchDB values availability and partition tolerance. This makes it ideal for
creating clusters where you want high throughput without a bottleneck.

In this section we’ll cover how to use CouchDB from Clojure to accomplish
basic tasks such as storing, retrieving, and deleting documents.

As a prerequisite to working with the following examples, you’ll need to either
set up a local instance of CouchDB or use one of the free CouchDB services,
such as Iris Couch.? Once you have the database set up, create a new table
using its web user interface, accessible at http://hostname:5984/ utils. We’ll call
this table clutchtest.

Clutch Library

The easiest way to access CouchDB from Clojure is to use the Clutch library.*
Clutch provides a very simple and intuitive interface. To use the library we
must first add its dependency to our project. The latest version at the time
of writing is [com.ashafa/clutch "0.4.0-RC1""].

Connecting to the Database
To use clutch, we must require it in our namespace declaration.

(:require [com.ashafa.clutch :as couch])

3. http://www.iriscouch.com/
4. https://github.com/clojure-clutch/clutch

www.it-ebooks.info

http://www.iriscouch.com/
https://github.com/clojure-clutch/clutch
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Using CouchDB ¢ 203

Then we have to define our connection URL. Since CouchDB is accessible
over HTTP, our URL can be a simple string specifying the database address.

(def db "http://localhost:5984/clutchtest")

We could also add authentication to the URL directly in our connection string.

(def db "http://user:pass@localhost:5984/clutchtest")

Or we could use the URL library to create a URL and attach the credentials
toitas a map.5

(def db (assoc (cemerick.url/url "https://localhost:5984/" "clutchtest")
rusername "user"
:password "pass"))

Now that we have the connection created, let’s look at how to store documents
in our database.

Storing Documents

All interaction with the database must happen inside the with-db macro. This
macro ensures that the connection is closed properly after we're done.

To store a document in the database, we can call the put-document function and
pass it a Clojure map representing our document.

(couch/with-db db
(couch/put-document {:foo "bar"}))

The preceding will create a new document in our database with a randomly
generated ID assigned to it. To assign a specific ID to a document, we must
include the :_id key in our map.

(couch/with-db db

(couch/put-document
{: id "user" :username "foo" :pass "$dfsdf#23434"}))

When we wish to update an existing document, we must also include the
revision of the current document in the map. For example, if we already
inserted a user document into our database, we must now specify the revision
we're updating using the :_rev key:

(couch/with-db db

(couch/put-document
{: id "user" : rev "<revision number>" :username "foo" :pass "$dfsdf#23434"}))

5. https://github.com/cemerick/url

www.it-ebooks.info

https://github.com/cemerick/url
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Appendix 3. Document-Oriented Database Access ® 204

When we retrieve a document from the database it will have both the :_id and
: rev keys populated, so make sure to preserve them for when you wish to
save the document again. Now let’s look at how we get a document from the
database.

Retrieving a Single Document

Documents are retrieved using the get-document function, which accepts a string
representing the ID of the document being retrieved.

(couch/with-db db
(couch/get-document "user"))

We can, of course, combine multiple statements inside a single with-db state-
ment. For example, if we wanted to retrieve the user, set a new username,
and save the document, we could do the following:

(couch/with-db db
(Let [doc (couch/get-document "user")]
(couch/put-document
(assoc doc :username "bar")))
(println (couch/get-document "user")))

Retrieving Multiple Documents

Sometimes we need to do a batch operation to retrieve multiple documents
from the database. Clutch provides a function for doing this, called all-documents.

(couch/with-db db
(couch/all-documents))

The preceding call returns the IDs and revisions for all the documents in the
specified database. It is also possible to retrieve the complete documents from
the database by setting the :include_docs key to true.

(couch/with-db db
(couch/all-documents {:include docs true}))

Additionally, we can restrict the bulk retrieval to a set of documents containing
the IDs specified by the :keys keyword, as follows:
(couch/with-db db

(couch/all-documents

{:include _docs true}
{:keys ["docl" "doc2" "doc3"1}))

To do more-complex selections from CouchDB, you would typically create
views to filter and return documents based on the application’s needs. A view
is analogous to a stored procedure in a relational database.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Using MongoDB ¢ 205

Deleting Documents

Finally, we delete documents by using the delete-document function. It accepts
the document ID as a string and removes that document from the database.

(couch/with-db db
(couch/delete-document "user"))

That’s all there is to it when using CouchDB from Clojure. Clutch makes it
trivial to store and retrieve documents from the database, and more-complex
functionality can be added to the database directly via its rich-views support.
Now let’s look at what’s involved in accessing MongoDB using the Monger
library.®”

Using MongoDB

MongoDB is another popular document-oriented database. Unlike CouchDB,
it favors consistency and partition tolerance as its primary goals. If you're
not concerned with having global locks, then MongoDB is an excellent choice.

Connecting to the Database

We'll use the Monger library for accessing MongoDB. Monger provides an
idiomatic Clojure application programming interface for working with the
database. It provides comprehensive support for the features MongoDB 2.2+
offers. As is the case with Clutch, we can use native Clojure data structures
without having to worry about translating them into the MongoDB/BSON
format. Finally, Monger defaults to configuration that emphasizes safety and
consistency.

Connecting to the database is as easy as calling monger.core/connect!. When
supplied no parameters, connect! will attempt to connect to a local instance of
the database using the default port. Alternatively, we can either provide a
map with the :host and :port keys, or fine-tune the connection using mongo-
options. Let’s see how this looks:

(ns mongo-example.core
(:require [monger.core :as [m]])
(:import
org.bson.types.ObjectId
[com.mongodb MongoOptions]))

;,connects to a local instance
(m/connect!)

6. http://www.mongodb.org/
7. http://clojuremongodb.info/

www.it-ebooks.info

http://www.mongodb.org/
http://clojuremongodb.info/
http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Appendix 3. Document-Oriented Database Access ® 206

;;connect to myhost.com on port 5001
(m/connect! {:host "myhost.com" :port 5001})

;,connect using custom options
(m/connect! (m/server-address "127.0.0.1" 27017)
(m/mongo-options
:threads-allowed-to-block-for-connection-multiplier 300))

We can also set the default database using the *mongodb-database* Var by calling
the set-db! function, as follows:
(defn connect! [& [params]]

((partial monger.core/connect!) params)
(monger.core/set-db! (monger.core/get-db "local")))

Setting the database with set-db! makes it implicitly available to subsequent
queries.

Most of the interaction with the database is provided via the monger.collection
namespace. Here we have functions to insert, select, update, and delete
records. Let’s look at each of these tasks:

Inserting Records

We use the insert function to insert new records in the database. The function
accepts the name of the collection, denoted by a string and a map representing
the document to be inserted.

(monger.collection/insert "users" { :first name "John" :last name "Doe" })

The function returns a write result, the status of which can be checked by
using monger.result/ok?. The monger.result/ok? will return true if the write was
successful.

If we wish to specify an ID for our document, we have to generate it using the
org.bson.types.Objectld:

(monger.collection/insert "users" { :first name "John" :last name "Doe" })

(monger.collection/insert
"users"
{ :_id (ObjectId.) :first_name "John" :last_name "Doe" })

Next, we have the insert-and-return function. It acts exactly like insert, except it
returns the inserted document as a map.

(monger.collection/insert-and-return "users"
{ : id (ObjectId.) :first name "John" :last name "Lennon" })

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Using MongoDB ¢ 207

We can also make batch inserts using the insert-batch function. This function
accepts the collection name followed by a sequence of maps representing the
documents.

(monger.collection/insert-batch
"users"
[{ :first name "John" :last name "Doe" }
{ :first _name "Jane" :last name "Smith" }1)

Selecting Records

Monger provides several functions for searching for records and returning
them as Clojure maps. These functions are find-maps, find-one-as-map, and
find-map-by-id.

The find-maps function can query for documents in the collection using a map
that contains the key and the value. Objects containing the key with the
specified value are returned. All documents will be returned if no parameters
are specified.

(monger.collection/find-maps "users" {:first name "John"})
The find-one-as-map function will return a single object matching the query.

(monger.collection/find-one-as-map "users"
{ :first name "John"})

Finally, the find-map-by-id function accepts an object ID as the search parameter.

(monger.collection/find-map-by-id "users"
(ObjectId. "5147455d03642f52431b5bfe"))

It's also possible to use the standard MonogDB query operators in search
queries, as seen here:

(monger.collection/find-maps "products" { :price { "$gt" 300 "$lte" 5000 } })

Updating Records

We update records by using the update function, which inserts the record if it
doesn’t exist when :upsert true is specified.

(update "users" { :first name "John" :last name "Doe" })
;;update existing or insert a new record
(update "users" { :first name "John" :last name "Doe" } :upsert true)

Deleting Records

Finally, we can delete documents from the database using the remove function.
When no match criteria is specified, all documents are removed.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

Appendix 3. Document-Oriented Database Access ® 208

;;remove ALL documents
(monger.collection/remove "users")

;,remove documents with the specified key
(monger.collection/remove "users" { :language "English" })

As you can see, working with document-oriented databases is quite
straightforward. Depending on your application needs, you may wish to use
a document store instead of a relational store, or a combination of the two.
Whatever approach you choose, Clojure has you covered.

www.it-ebooks.info

http://pragprog.com/titles/dswdcloj/errata/add
http://forums.pragprog.com/forums/dswdcloj
http://www.it-ebooks.info/

SYMBOLS

! (exclamation point), 198
S, as anchors, 75

% symbol, 185

- (hyphen), 139, 159

.. (double period) notation,
196

? (question mark), 58

‘ (backtick) notation, 199
~ (tilde) notation, 199
~@ notation, 199

DIGITS

304 error, 65

404 error, 65

503 response type, 58

A
:a keyword, 39

abstract syntax tree (AST),
186

account deletion, 121

action keys, 60

adapters, Ring, 30

add-tag! macro, 148

add-image function, 107

AffineTransform class, 102

Ajax, 37, 119

AlbumcColors library, 127,
162, 167

all-documents function, 204
:allowed-methods key, 58
Amazon Web Services, 26

anonymous functions (Clo-
jure), 184

Ant, 1
app handler, 34, 44-45

app-handler middleware, 83,
105

application-server deploy-
ment, 140

applications
architecture of, 33
creating templates for,

171

handler, 33
models for, 36
packaging, 137
profiles of, 135
testing, 130
views for, 36

AST (abstract syntax tree),
186

atom, 61

auth namespace, 52, 108, 150
auth-routes definition, 45
availability, of databases, 201

available-media-types declara-
tion, 60

B

backtick (‘) notation, 199
bar function, 186

block tags, 147

:body key, 27-28
Booleans, 183

C

cache namespace, 53
:character-encoding key, 27
characters, 184
Cheshire, 56

www.it-ebooks.info

Index

classes, 195
clj-pdf library, 74
cljs-ajax library, 163
Clojars repository, 2
Clojure
about, 181
anonymous functions,
184
calling methods, 195
calling out to Java, 195
closures, 188
code structure, 189
data types, 183
destructuring data, 190
dynamic polymorphism,
196
dynamic variables, 194
functionality of, 181
functions, 184
global state, 197
higher-order functions,
187
lazy evaluation, 189
named functions, 185
namespaces, 12, 192
read-evaluate-print loop
(REPL), 200
threading expressions,
188
vectors, 10
writing code, 198
Clojure web stack
about, 25
application architecture,
33
beyond Compojure and
Ring, 42

http://www.it-ebooks.info/

defining routes with
Compojure, 30
routing requests with
Ring, 26
clojure.java.jdbc library, 67
ClojureScript
about, 158
concurrency, 160
JavaScript interactions,
159
macros, 159
ClojureScript library, 160
closures (Clojure), 188
Clutch library, 202
code
reuse of, 182
structuring in Clojure,
189
writing in Clojure, 198
color, adding with JavaScript,
127
common function, 36, 93
compare function, 51
Compojure
about, 25
accessing request param-
eters, 31
application model, 36
application views, 36
beyond, 42
defining pages, 36
defining routes with, 30
routing requests, 35
compojure-app template, 4,
73, 171
compojure-app function, 172
compojure.handler/site function,
34
compojure.response.Renderable pro-
tocol, 119
concurrency, in ClojureScript,
160
cond statement, 48
configuring Eclipse, 178
consistency, of databases,
201
content class, 114
:content-length key, 27
content-type function, 27, 53,
99
:context key, 27, 119
control function, 50
CouchDB, 201-202

Counterclockwise plug-in,
137, 177

create-gallery-path function, 104
create-table function, 69
crypt/compare function, 53
Cursive, 180

D
daemon, running as a, 140
dash, 12

data, destructuring in Clo-
jure, 190

data models
adding, 15
defining, 85
data types (Clojure), 183

databases, see alsorelational
databases
configuring, 84
connecting to, 202, 205
selecting, 201
storing image lists in, 106
storing users in, 93

db namespace, 18, 52, 73,
76, 85, 93, 113, 123

debug function, 133
decision keys, 58
declarations, 60

defhtml macro, 39

defresource macro, 56
defroutes macro, 11, 30
deftest macro, 129

deftype macro, 196
DELETE request, 60
delete-account-page function, 121
delete-document function, 205
delete-image function, 122
deletelmages function, 164
delete-rows function, 71
delete-user function, 123

deleting
accounts, 121
documents, 205
pictures, 115
records, 71, 207

:dependencies section, 15

deployment
application server, 140
Heroku, 26, 142
Immutant, 141
standalone, 138
Tomecat, 25, 141

www.it-ebooks.info

Index 210

destructuring data, in Clo-
jure, 190

displaying pictures, 110
Django, 26, 37, 145
doall, 17, 70

document-oriented database
access, 201

documents
deleting, 205
retrieving, 204
storing, 203
domain-specific language
(DSL), 67
Domina library, 161

double period (..) notation,
196

drivers, specifying directly, 68

DSL (domain-specific lan-
guage), 67

dynamic polymorphism, 196

dynamic variables (Clojure),
194

E

Eclipse, 22, 83, 137, 177-178
Emacs, installing, 178
encrypt function, 51

Enlive, 37

Environ library, 136-137
environment, setting up, 1
error-appender function, 134
etag declaration, 60
exclamation point (!), 45
expressions, threading, 188
extends tag, 148

F

fatal function, 133
file key, 99
filename key, 99

files, saving to user folder,
103

filter function, 187

filters (Selmer), 147
find-map-by-id function, 207
find-maps function, 207
find-one-as-map function, 207
first-class functions, 186
for tag, 147

format-error, 50

forms, displaying, 10

http://www.it-ebooks.info/

form-to function, 39

functions, see also specific
functions
anonymous, 184
Clojure, 184
first-class, 186
higher-order, 187
named, 185

G

gallery namespace, 113, 118,
150, 153

gallery.models.schema namespace,
107

gallery-path function, 103, 108
GET route, 47, 86
get-document function, 204
get-gallery-previews function, 170
get-users function, 131
GlassFish, 25

global state (Clojure), 197
Google App Engine, 26
Google Closure compiler, 168

guestbook application
adding data models, 15
adding functionality, 13
finishing touches, 21
putting it all together, 18
read-evaluate-print loop
(REPL) connection, 6,
15
revisiting, 41
setting up environment,
1
structure, 11
guestbook.handler namespace, 22
guestbook.models.db namespace,
15, 22
guestbook.repl namespace, 12
guestbook.routes.auth namespace,
43
guestbook.routes.home names-
pace, 22
guestbook.views.layout names-
pace, 22

H
handle-created handler, 60, 62
handle-malformed error, 63

handle-method-not-allowed handler,
59

handle-not-found handler, 59
handle-login function, 131
handler namespace, 21, 33, 49

handle-registration function, 52
handlers, creating, 59
handle-upload function, 103-104
:headers key, 27-28
headings, displaying, 10
Heroku deployment, 26, 142
Hiccup

about, 37

API, 40

page templating with, 37
hiccup.element namespace, 40
higher-order functions, 187

home function, 9, 13, 18, 41,
47, 61, 64, 78

home namespace, 150

HTTP Kit, running with, 139
HTTP POST, 115

hyphen (-), 139, 159

I

IDE (integrated development
environment) options, 177

if statement, 199

/image function, 40

image lists, storing in
database, 106

immutable data structures,
182

Immutant deployment, 141
importing classes, 195

include tag, 148-149
include-css, 40

init function, 21, 34, 133, 162
inline tags, 147

input validation, handling, 48
insert function, 206
insert-and-return function, 206
insert-batch function, 207
inserting records, 206
insert-record function, 70
insert-records function, 70
insert-values function, 17

installing
Counterclockwise plug-
in, 177
Eclipse, 177
Emacs, 178
Leiningen, 2
PostgreSQL, 72
instantiating classes, 195

instarepl
Light Table, 9

www.it-ebooks.info

Index ® 211

opening, 7
running server in, 9

integrated development envi-
ronment (IDE) options, 177

is macro, 129
iterator function, 187

J

Java
calling out to, 195
interacting with, 20

Java Database Connectivity
(JDBCQC), 15, 67

Java Development Kit, 1

Java HTTP Servlet application
programming interface
(AP]), 25

Java Naming and Directory
Interface (JNDI), 69

Java Virtual Machine (JVM),
1, 26
JavaScript
adding color with, 127
interactions with, 159
syntax, 158

JavaScript Object Notation
(JSON), 36, 115, 166

JDBC (Java Database Connec-
tivity), 15, 67

Jelastic, 26

Jetty, 25, 137, 139

JNDI (Java Naming and Direc-
tory Interface), 69

JSON (JavaScript Object No-
tation), 36, 115, 166

JSON array, 61

JVM (Java Virtual Machine),
1, 26
JVM bytecode, 12

K
keywords, 184

Korma, 168
L

lambda expressions, 184
layout namespace, 151

lazy evaluation (Clojure), 189
Le method, 167

lein ring server, 137
lein-cljsbuild plug-in, 160
lein-newnew plug-in, 171

http://www.it-ebooks.info/

Leiningen
about, 1
managing projects with,
1

plug-in, 160
profiles, 135
project file, 3
templates, 3
Leiningen Trampoline, run-
ning with, 140
leiningen.new.templates/render
function, 172
lein test, 130
lib-noir, 42, 51, 53, 64, 83
Liberator
about, 55
creating handlers, 59
creating the project, 56
defining resources, 56
putting it all together, 60

liberator-service application
creating, 56
defining resources, 56
putting it all together, 60

liberator-service.routes.home
namespace, 56

Light Table, 4, 9, 22, 208, see
also Eclipse, Emacs

list function, 43

logging, 132

login action, 95

login-page function, 47
logout action, 95
Luminus framework, 174

M

macros, ClojureScript, 159
-main function, 139

map function, 187

Maven, 1

‘message key, 32

meta key, 179

method-allowed? decision key, 58
methods, calling, 195

middleware
adding functionality with,
29
wrappers, 34

middleware namespace, 53
MIME types, specifying, 53
model namespace, 33

models folder, 12, 15
models.db namespace, 68

MongoDB, 205
multiprocessing, 183
Mustache, 37

myapp folder, 2

myns namespace, 192
MySQL, 67

N
:name key, 32

named functions (Clojure),
185

Namespace Browser (Eclipse),
178

namespaces (Clojure), 192

NOIR API, 53

noir.middleware namespace, 83

noir.session namespace, 45, 92

noir.session/put! function, 47

noit.util.crypt namespace, 51

noir.util. middleware namespace,
105

noir.validation namespace, 49

ns-unmap, 18

numbers, 183

(@)

on-error, 50

P
Package Explorer (Eclipse),
178
packaging applications, 137
page templating, with Hiccup,
37
pages, defining, 36
parameter maps, defining, 68
partition tolerance, of
databases, 202
passwords, salt, 51
pdf function, 75
picture-gallery application,
see also Selmer; Clojure-
Script; SQL Korma
account deletion, 121
account registration, 86
adding color with Java-
Script, 127
adding style, 125
Ajax and servlet context,
119
application data model,
84
application profiles, 135

www.it-ebooks.info

Index ® 212

code architecture, 82
configuring database, 84
creating, 83
defining data model, 85
deleting pictures, 115
development process, 81
displaying pictures, 110
generating thumbnails,
101
logging, 132
login and logout actions,
95
packaging applications,
137
refactoring common code,
108
saving files to user folder,
103
storing image lists in
database, 106
storing users in database,
93
testing, 128
uploading pictures, 97
use cases, 81
picture-gallery.handler namespace,
83, 87, 99, 105, 112, 133
picture-gallery.models.db names-
pace, 95, 131, 136
picture-gallery.models.schema
namespace, 85

picture-gallery.repl namespace,

picture-gallery.routes.auth names-
pace, 86, 88, 94, 96, 121,
131
picture-gallery.routes.gallery
namespace, 111
picture-gallery.routes.upload
namespace, 115
picture-gallery.util namespace,
108
picture-gallery.views.layout names-
pace, 92, 120
picture-gallery.views.templates
namespace, 151
pictures
deleting, 115
displaying, 110
uploading, 97
polymorphism, dynamic, 196
POST function, 166
POST route, 47, 60, 86, 98,
121
PostgreSQL, 67, 84
printin statements, 134

http://www.it-ebooks.info/

print-message function, 192

project.clj file, 3

projects, managing with
Leiningen, 1

psql shell, 72

public directory, 60

PUT request, 60

put-document function, 203

Python, compared with Clo-
jure, 184

:query-string key, 27
question mark (?), 58

R
Rails, 26
rainbow-table attacks, 51

RDBMS databases, see rela-
tional databases

read-evaluate-print loop (RE-
PL), 6, 15, 56, 73, 81, 130,
200
read-employees function, 74
records
deleting, 71, 207
inserting, 70, 206
selecting, 70, 207
updating, 71, 207
redirect function, 44
redirects, handling, 42
refactoring common code, 108
regular expressions, 184

relational databases
accessing, 68
creating tables, 69
defining JNDI strings, 69
defining parameter maps,
68
deleting records, 71
displaying reports, 78
inserting records, 70
report generation, 72
selecting records, 70
specifying drivers direct-
ly, 68
transactions, 71
updating existing
records, 71
working with, 67
‘remote-addr key, 27
remove function, 207
render function, 120, 146, 151

render-file function, 146

REPL connection, see read-
evaluate-print loop (REPL)

reporting-example applica-
tion, 73

reporting-example.models.db
namespace, 73
reporting-example.reports names-
pace, 74-75
reports
displaying, 78
generating, 72
request key, 57
request maps, 27
‘request-method key, 27

requests
accessing parameters, 31
handling, 27
routing, 26, 35
‘request-string key, 27
‘require keyword, 16, 193, 195
‘require-macros keyword, 159
resource macro, 56
resource key, 57
resources, including, 40
resources folder, 12
response maps, 27
restricted macro, 106
Ring
about, 25
adapters, 30
adding functionality with
middleware, 29
beyond, 42
handling requests, 27
request and response
maps, 27
routing requests with, 26
ring.util.response namespace, 44
rotor appender, 134

routes, defining with Compo-
jure, 30

routes folder, 12

routes namespace, 33
routing requests, 26, 35
run-tests, 130

S
salt passwords, 51
save-message function, 14, 19

save-thumbnail function, 103—
104

say-hello function, 192
scale-image, 102

www.it-ebooks.info

Index ® 213

:scheme key, 27
security, adding, 51
Selmer
about, 37, 145
converting home page in
picture-gallery applica-
tion, 153
converting picture gallery
to, 150
converting registration
pages in picture-gallery
application, 155
converting upload page
in picture-gallery appli-
cation, 156
creating templates in,
146
defining custom tags, 148
extending templates, 148
features of, 145
filters, 147
including templates, 149
inheriting templates, 148
template tags, 147
server, running in instarepl,
9
:server-name key, 27
:server-port key, 27
Service not available re-
sponse, 58
servlet, 26
servlet context, 119
sessions, managing, 45
set! function, 159
show-galleries function, 153
show-guests function, 18, 41
SimpleDateFormat, 20
site function, 34
isize key, 99
Software Transactional Mem-
ory (STM) library, 183
split-with function, 191
SQL Korma, 67, 168
SQLite dependencies, 15
src/guestbook folder, 12
:ssl-client-cert key, 27
standalone applications, 25
standalone deployment, 138
istatus key, 28
Stencil, 37
STM (Software Transactional
Memory) library, 183
strings, 184

http://www.it-ebooks.info/

style, adding to applications,
125

symbols, 184
syntax-quoting, 199

T
tables, creating, 69
tags (Selmer), 148
:tempfile key, 99
template macro, 75
template tags (Selmer), 147
templates
compojure-app, 4, 73,
171
creating for applications,
171
creating in Selmer, 146
extending in Selmer, 148
including in Selmer, 149
inheriting in Selmer, 148
Leiningen, 3
Test API, 128
testing
about, 128
applications, 130
Test API, 128
threading expressions, 188
thumbnails, generating, 101
thumb-prefix function, 108
tilde (~) notation, 199
Timbre library, 133
Tomcat deployment, 25, 141
trace info function, 133

transactions, 71
try/catch block, 115

U
uberjar, running as, 138
Ubuntu, 72

UI (user interface), creating,
13

underscore (), 44
unquote splicing, 199
unquoting, 199
update function, 207

update-or-insert-values function,
71

update-values function, 71
updating records, 207

upload namespace, 108, 122,
133, 150

upload-file, 102
uploading pictures, 97
wuri key, 27

url-encode, 100

:use keyword, 192, 195

user folder, saving files to,
103

user interface (Ul), creating,
13

user-page function, 105
users atom, 61
utf-8-response function, 120
util namespace, 108

www.it-ebooks.info

Index ® 214

\%

variables, dynamic (Clojure),
194

Vars, 183

vectors, 74

views folder, 13, 36
views namespace, 33
VimClojure, 180

W

WAR (web application archive)
file, 34

warn function, 133

web application archive (WAR)
file, 34

with-connection statement, 17,
70

with-db macro, 203
with-foo function, 194

with-query-results macro, 17, 70,
95

with-redefs macro, 131

workspace pane (Light Table),
5

wrap-access-rules middleware,
105

wrap-noir-session middleware, 46

wrap-noir-validation middleware,
49

wrapper function, 29
wrappers, middleware, 34
write-response, 79

http://www.it-ebooks.info/

Clojure and Functional Patterns

Get up to speed on all that Clojure has to offer, and fine-tune your object thinking into a
more functional style.

Programming Clojure (2nd edition)

If you want to keep up with the significant changes in TR mers
this important language, you need the second edition
of Programming Clojure. Stu and Aaron describe the

modifications to the numerics system in Clojure 1.3, Pro ramming
explain new Clojure concepts such as Protocols and d Ojure
Datatypes, and teach you how to think in Clojure. Second Eltion g
Stuart Halloway and Aaron Bedra - 5
(296 pages) ISBN: 9781934356869. $35 ——

http://pragprog.com/book/shcloj2

Stuart Halloway
Aaron Bedra

Forewrd by

sso

Functional Programming Patterns in Scala and Clojure

Solve real-life programming problems with a fraction PR mer

of the code that pure object-oriented programming re-

quires. Use Scala and Clojure to solve in-depth prob- Functional

lems and see how familiar object-oriented patterns can Programming
Patterns

become more concise with functional programming
in Scala and Clojure

and patterns. Your code will be more declarative, with Write/Leafi Prograins e the JVM

fewer bugs and lower maintenance costs.

Michael Bevilacqua-Linn
(250 pages) ISBN: 9781937785475. $36
http://pragprog.com/book/mbfpp

Michael Bevilacqua-Linn
Edited by John Osborn and Fahmida Y. Rashid

www.it-ebooks.info

http://pragprog.com/book/shcloj2
http://pragprog.com/book/mbfpp
http://www.it-ebooks.info/

Long Live the Command Line!

Use tmux and Vim for incredible mouse-free productivity.

tmux

Your mouse is slowing you down. The time you spend e
context switching between your editor and your con-
soles eats away at your productivity. Take control of

your environment with tmux, a terminal multiplexer tmux
that you can tailor to your workflow. Learn how to Productive

3 : s : Taps Mouse-Free
customize, script, and leverage tmux’s unique abilities Development

and keep your fingers on your keyboard’s home row.

Brian P. Hogan
(88 pages) ISBN: 9781934356968. $16.25
http://pragprog.com/book/bhtmux

Practical Vim

Vim is a fast and efficient text editor that will make
you a faster and more efficient developer. It's available
on almost every OS—if you master the techniques in

this book, you’ll never need another text editor. In more Practical
than 100 Vim tips, you'll quickly learn the editor’s core Vim
functionality and tackle your trickiest editing and Edit Text at the

Writing tasks. Speed of Thought ’
Drew Neil
(346 pages) ISBN: 9781934356982. $29

http://pragprog.com/book/dnvim
Drew Neil
Foreword by Tim Pope

Edited by Kay Keppler

www.it-ebooks.info

http://pragprog.com/book/bhtmux
http://pragprog.com/book/dnvim
http://www.it-ebooks.info/

The Joy of Math and Healthy Programming

Rediscover the joy and fascinating weirdness of pure mathematics, and learn how to take

a healthier approach to programming.

Good Math

Mathematics is beautiful—and it can be fun and excit-
ing as well as practical. Good Math is your guide to
some of the most intriguing topics from two thousand
years of mathematics: from Egyptian fractions to Tur-
ing machines; from the real meaning of numbers to
proof trees, group symmetry, and mechanical compu-
tation. If you've ever wondered what lay beyond the
proofs you struggled to complete in high school geom-
etry, or what limits the capabilities of the computer on
your desk, this is the book for you.

Mark C. Chu-Carroll
(282 pages) ISBN: 9781937785338. $34
http://pragprog.com/book/mcmath

The Healthy Programmer

Good Math

A Geek's Guide to the Beauty of
Numbers, Logic. and Computation

é B:Vy/”

Mark C. Chu-Carroll
Edited by John Osborn

o/

To keep doing what you love, you need to maintain
your own systems, not just the ones you write code
for. Regular exercise and proper nutrition help you
learn, remember, concentrate, and be creative—skills
critical to doing your job well. Learn how to change
your work habits, master exercises that make working
at a computer more comfortable, and develop a plan
to keep fit, healthy, and sharp for years to come.

This book is intended only as an informative guide for
those wishing to know more about health issues. In no
way is this book intended to replace, countermand, or
conflict with the advice given to you by your own
healthcare provider including Physician, Nurse Practi-
tioner, Physician Assistant, Registered Dietician, and
other licensed professionals.

Joe Kutner
(254 pages) ISBN: 9781937785314. $36
http://pragprog.com/book/jkthp

www.it-ebooks.info

Sl

The
Healthy
Programmer

Get Fit, Feel Better,
and Keep Coding

Joe Kutner

Foreword by Dr. Ed Wallitt,
physician and software developer
Edited by Brian P. Hogan

http://pragprog.com/book/mcmath
http://pragprog.com/book/jkthp
http://www.it-ebooks.info/

The Pragmatic Bookshelf

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online

This Book’s Home Page
http://pragprog.com/book/dswdcloj
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book

If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http:/pragprog.com/book/dswdcloj

Contact Us

Online Orders: http://pragprog.com/catalog
Customer Service: support@pragprog.com

International Rights: translations@pragprog.com

Academic Use: academic@pragprog.com
Write for Us: http://pragprog.com/write-for-us
Or Call: +1 800-699-7764

www.it-ebooks.info

http://pragprog.com/book/dswdcloj
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/book/dswdcloj
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us
http://www.it-ebooks.info/

	Cover
	Table of Contents
	Introduction
	What You Need
	Why Clojure?
	Why Make Web Apps in Clojure?

	1. Getting Your Feet Wet
	Setting Up Your Environment
	Your First Project

	2. Clojure Web Stack
	Routing Requests with Ring
	Defining the Routes with Compojure
	Application Architecture
	Beyond Compojure and Ring
	What You've Learned

	3. Liberator Services
	Creating the Project
	Defining Resources
	Putting It All Together
	What You've Learned

	4. Database Access
	Working with Relational Databases
	Report Generation
	What You've Learned

	5. Picture Gallery
	The Development Process
	What's in a Gallery
	Creating the Application
	Application Data Model
	Task A: Account Registration
	Task B: Login and Logout
	Task C: Uploading Pictures
	Task D: Displaying Pictures
	Task E: Deleting Pictures
	Task F: Account Deletion
	What You've Learned

	6. Finishing Touches
	Adding Some Style
	Unit Tests
	Logging
	Application Profiles
	Packaging Applications
	What You've Learned

	7. Mixing It Up
	Using Selmer
	Upgrading to ClojureScript
	SQL Korma
	Creating Application Templates
	What You've Learned

	A1. Alternative IDE Options
	Installing Eclipse
	Installing Emacs
	Alternatives

	A2. Clojure Primer
	A Functional Perspective
	Data Types
	Using Functions
	Anonymous Functions
	Named Functions
	Higher-Order Functions
	Closures
	Threading Expressions
	Being Lazy
	Structuring the Code
	Destructuring Data
	Namespaces
	Dynamic Variables
	Calling Out to Java
	Calling Methods
	Dynamic Polymorphism
	What about Global State?
	Writing Code That Writes Code for You
	The Read-Evaluate-Print Loop
	Summary

	A3. Document-Oriented Database Access
	Picking the Right Database
	Using CouchDB
	Using MongoDB

	Index
	– SYMBOLS –
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –

