
Интернетмагазин:
www.dmkpress.com

Оптовая продажа:
КТК «Галактика»
email: books@alians-kniga.ru www.дмк.рф

Инструменты разработки мобильных приложений развиваются
очень быстро, и с помощью Flutter – открытого бесплатного SDK
от Google – вы можете создавать приложения для Android, iOS
и Google Fuchsia.
На базе примеров из книги вам предлагается создать три
полноценных приложения (органайзер, мессенджер и игру),
которые можно установить на мобильные устройства или
доработать для реального использования. Знакомство с Flutter
начинается с изучения основ, а для закрепления своих знаний
вы разработаете два традиционных приложения. Затем вы
научитесь создавать игры на Flutter и познакомитесь с новыми
возможностями этого фреймворка. В книге показано, какие
проблемы могут возникнуть при создании Flutter-приложений,
рассмотрены способы их решения.
Полезные советы на каждый день облегчат вашу работу!

Прочитав книгу, вы научитесь:

· создавать проекты на Flutter и грамотно их структурировать;
· использовать готовые элементы пользовательского интерфейса
 во Flutter, включая виджеты, контролы и расширения;
· компоновать пользовательский интерфейс;
· использовать среду разработки Android Studio;
· создавать серверные backend-приложения и подключаться
 к ним из Flutter-приложений.

Эта книга предназначена для разработчиков, которые ищут
возможность создавать мобильные приложения сразу для
нескольких платформ на основе общей базы исходных
кодов. Желательны наличие опыта разработки программного
обеспечения и знание основ iOS и Android.

FLUTTER
на практике

Фрэнк Заметти

F
L

U
T

T
E

R
 н

а п
р

акти
ке

9 785970 608081

ISBN 978-5-97060-808-1

Фрэнк Заметти

Flutter на практике

Frank Zammetti

Practical Flutter
Improve your Mobile Development

with Google’s Latest Open-Source SDK

Фрэнк Заметти

Flutter на практике
Прокачиваем навыки мобильной разработки
с помощью открытого фреймворка от Google

Москва, 2020

УДК 004.43
ББК 32.972
	 З26

Заметти Ф.
З26	 �Flutter на практике: Прокачиваем навыки мобильной разработки

с помощью открытого фреймворка от Google / пер. с анг. А. С. Тищенко. –
М.: ДМК Пресс, 2020. – 328 с.: ил.

ISBN 978-5-97060-808-1
Познакомьтесь с возможностями Flutter – открытого фреймворка от

Google. В книге описываются история Flutter, его функционал и конкретные
примеры использования. Вы узнаете, как создавать проекты на Flutter и гра-
мотно их структурировать, компоновать пользовательский интерфейс, ис-
пользуя готовые элементы (виджеты, контролы, расширения), разрабаты-
вать серверные backend-приложения и подключаться к ним из Flutter-при-
ложений. Практическим результатом работы с книгой станет создание трех
полноценных приложений – органайзера, мессенджера и игры. Впослед-
ствии изучение материала книги позволит вам перейти к более сложным
проектам.

Издание предназначено для разработчиков, желающих создавать мо-
бильные приложения сразу для нескольких платформ на основе общей
базы исходных кодов. Наличие опыта разработки программного обеспе-
чения и знание основ iOS и Android приветствуется.

УДК 004.43
ББК 32.972

First published in English under the title Practical Flutter; Improve your Mobile De-
velopment with Google’s Latest Open-Source SDK by Frank Zammetti, edition: 1.

This edition has been translated and published under licence from APress Media,
LLC, part of Springer Nature.

APress Media, LLC, part of Springer Nature takes no responsibility and shall not be
made liable for the accuracy of the translation.

Все права защищены. Любая часть этой книги не может быть воспроизведена
в какой бы то ни было форме и какими бы то ни было средствами без письменного
разрешения владельцев авторских прав

Материал, изложенный в данной книге, многократно проверен. Но, поскольку
вероятность технических ошибок все равно существует, издательство не может га-
рантировать абсолютную точность и правильность приводимых сведений. В связи
с этим издательство не несет ответственности за возможные ошибки, связанные
с использованием книги.

ISBN 978-5-97060-808-1 (рус.)	 Copyright © Frank Zammetti, 2019
ISBN 978-1-4842-4971-0 (анг.)	 © Оформление, издание, ДМК Пресс, 2020

От издателя
Отзывы и пожелания
Мы всегда рады отзывам наших читателей. Расскажите нам, что вы думаете об
этой книге – что понравилось или, может быть, не понравилось. Отзывы важ-
ны для нас, чтобы выпускать книги, которые будут для вас максимально по-
лезны.

Вы можете написать отзыв на нашем сайте www.dmkpress.com, зайдя на стра-
ницу книги и оставив комментарий в разделе «Отзывы и рецензии». Также
можно послать письмо главному редактору по адресу dmkpress@gmail.com; при
этом укажите название книги в теме письма.

Если вы являетесь экспертом в какой-либо области и заинтересованы в напи-
сании новой книги, заполните форму на нашем сайте по адресу http://dmkpress.
com/authors/publish_book/ или напишите в издательство по адресу dmkpress@
gmail.com.

Скачивание исходного кода примеров
Скачать файлы с дополнительной информацией для книг издательства «ДМК
Пресс» можно на сайте www.dmkpress.com на странице с описанием соответ-
ствующей книги.

Список опечаток
Хотя мы приняли все возможные меры для того, чтобы обеспечить высокое
качество наших текстов, ошибки все равно случаются. Если вы найдете ошиб-
ку в одной из наших книг – возможно, ошибку в основном тексте или про-
граммном коде, – мы будем очень благодарны, если вы сообщите нам о ней.
Сделав это, вы избавите других читателей от недопонимания и поможете нам
улучшить последующие издания этой книги.

Если вы найдете какие-либо ошибки в коде, пожалуйста, сообщите о них
главному редактору по адресу dmkpress@gmail.com, и мы исправим это в следу-
ющих тиражах.

Нарушение авторских прав
Пиратство в интернете по-прежнему остается насущной проблемой. Изда-
тельства «ДМК Пресс» и Apress очень серьезно относятся к вопросам защиты
авторских прав и лицензирования. Если вы столкнетесь в интернете с неза-
конной публикацией какой-либо из наших книг, пожалуйста, пришлите нам
ссылку на интернет-ресурс, чтобы мы могли применить санкции.

Ссылку на подозрительные материалы можно прислать по адресу электрон-
ной почты dmkpress@gmail.com.

Мы высоко ценим любую помощь по защите наших авторов, благодаря ко-
торой мы можем предоставлять вам качественные материалы.

http://www.dmkpress.com
http://dmkpress@gmail.com
http://dmkpress.com/authors/publish_book/
http://dmkpress.com/authors/publish_book/
http://www.dmkpress.com
http://dmkpress@gmail.com
http://dmkpress@gmail.com

Я бы хотел посвятить эту книгу бабочкам, которые
порхают на ветру.

Хотя постойте, это слишком просто.
Я бы хотел посвятить эту книгу игрокам, которые, как выража-
ются британцы, «a flutter on the horses» (перевод: «делают ставки

на лошадей [во время скачек]»).
Да, вообще-то это и есть реальное использование слова flutter

[прим. пер.: одно из значений flutter – «делать небольшие ставки»],
но это тоже слишком просто.

Нет, я бы хотел посвятить эту книгу всему неизведанному, что
человечеству только предстоит открыть или даже создать.

По своей натуре я пессимист, но я борюсь с этим каждый день,
поскольку я признаю, что вселенная – это удивительнейшее место,
и несмотря на все, что нам говорят в вечерних новостях, челове-

чество способно эту великую и чудесную красоту создать.
И с моей заявленной целью – быть бессмертным, потому что

смерть – это не я, это то, что было до меня, я просто хочу идти
дальше и пропустить это, – я с нетерпением жду, чтобы увидеть

всё на свете!

7

Оглавление

Об авторе . 12

О техническом рецензенте (обозревателе) . 13

О переводе . 14

Благодарности . 15

Введение . . 16

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ . 18

Медитации над бездной . 18
Что за (глупое) название? . 19
Dart: язык богов? . 21
Виджеты окружают! . 23
Ближе к делу: плюсы и минусы Flutter . 27
Хватит болтать, начинаем практику с Flutter! . 30

Flutter SDK . 30
Android Studio . 31

Типичное приложение «Hello, World!» . 32
Горячая перезагрузка: вот что я люблю! . 40
Базовая структура приложения Flutter . 42
Еще парочка моментов «под прикрытием» . . 44
Итого . 45

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART . 46

Вещи, которые вы должны знать . . 46
Все о комментариях – без лишних комментариев . 47
Все меняется: переменные . 49
Ну он и тип... типы данных . 51
Перечисления – если одного значения мало! . . 56
А ты его точно знаешь? Ключевые слова «as» и «is» . 57
Плыть по течению: управление логикой потока команд . 57
Больше, чем ничто: void . 59
Операторы . 60
Коротко про ООП в Dart . . 62
Кое-что о функциях . 71
Что такое Assertions . 73
Вне времени: асинхронность . 74

8

Тсс, тихо! Библиотеки (и видимость) . . 75
Для тебя я сделаю исключение: обработка исключений . . 76
У меня есть сила: генераторы . . 78
Мета-Dart: метаданные . 79
Пообобщаемся? Дженерики, или обобщения . 80

Подведем итоги . . 82

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I . 83

Набор виджетов . 83
Layout (компоновка) . 83
Навигация . . 94
Ввод данных . 103
Диалоговые и всплывающие окна . 115

Подведем итоги главы . 122

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II . 123

Виджеты стиля . 123
Theme и ThemeData . 124
Opacity . 125
DecoratedBox . 125
Transform . 126

Анимации и переходы . 127
AnimatedContainer . 127
AnimatedCrossFade . 128
AnimatedDefaultTextStyle . 129
Несколько других: AnimatedOpacity, AnimatedPosition, PositionTransition, SlideTransition,
AnimatedSize, ScaleTransition, SizeTransition и RotationTransition . 130

Drag и Drop . 131
Просмотр данных . . 132

Table . 133
DataTable . . 134
GridView . 136
ListView и ListTile . . 138

Остальные виджеты . 140
CircularProgressIndicator (CupertinoActivityIndicator)
и LinearProgressIndicator . 141
Icon . 141
Image . 143
Chip . . 145
FloatingActionButton . 146
PopupMenuButton . 148

Базовые библиотеки . 149
Основные библиотеки фреймворка Flutter . 150
Библиотеки Dart . 153

9

Вспомогательные библиотеки . 156
Итого . 157

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I . 158

Что мы делаем? . 158
Старт проекта . 160
Конфигурации и библиотеки . 161
Структура UI . . 162
Структура кода приложения . 163
Отправная точка . . 163
Глобальные утилиты . 166
Управление состоянием . . 168
Начнем с простого: заметки . 172

Точка отсчета: Notes.dart . 172
Модель: NotesModel.dart . 174
Слой базы данных: NotesDBWorker.dart . 175
Экран списка: NotesList.dart . 179
Экран ввода: NotesEntry.dart . 184

Что в итоге . 191

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II . 192

Сделаем это: задачи . 192
TasksModel.dart . 192
TasksDBWorker.dart . 193
Tasks.dart . . 193
TasksList.dart . 193
TasksEntry.dart . 196

Назначим свидание: Appointments (встречи) . 197
AppointmentsModel.dart . . 197
AppointmentsDBWorker.dart . 198
Appointments.dart . 198
AppointementsList.dart . 198
AppointmentsEntry.dart . . 204

Как с вами связаться: контакты . 206
ContactsModel.dart . . 206
ContactsDBWorker.dart . 207
Contacts.dart . 207
ContactsList.dart . 207
ContactsEntry.dart . 211

Подведем итоги . 217

ГЛАВА 7  FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР . 218

Можем ли мы это построить? Да, мы можем! Но... что «это»?! . 218
Node . . 219

10

Сохранение линий связи открытыми: socket.io . 222
Код сервера FlutterChat . . 226

Два Bits of State и Object заходят в Bar... . 227
Поймай меня, если сможешь: сообщения . . 228
Заходим в парадную дверь: проверка пользователей . . 229

Итого . 238

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ . 239

Model.dart . . 239
Connector.dart . 242

Связанные с сервером функции сообщений . 245
Связанные с клиентом обработчики сообщений . 246

main.dart . 249
LoginDialog.dart . 252

Вход для существующих пользователей . . 255
Home.dart . 257
AppDrawer.dart . 258
Lobby.dart . 260
CreateRoom.dart . 264

Строим форму . 266
UserList.dart . 268
Room.dart . 271

Меню . 272
Содержимое главного экрана . 275
Приглашение или исключение пользователей . 278

Итого . 281

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER . 282

История такова . 282
Базовая компоновка . 283
Структура каталога и исходные файлы компонентов . . 284
Конфигурация: pubspec.yaml . 286
Класс GameObject . 287
Расширение GameObject: класс Enemy . 291
Расширение GameObject: класс Player . 293
Место, где все начинается: main.dart . 296
Основной игровой цикл и основная игровая логика . 301

Начнем . 301
Первичная инициализация . 302
Коротко об анимациях во Flutter . 303
Сброс состояния игры . . 305
Основной игровой цикл . 307
Проверка на наличие столкновений . 310
Размещение объекта в случайной точке . . 312

11

Передача энергии . 312
Все под контролем: InputController.dart . 315
Что дальше? . . 317

Указатель . 319

12

Об авторе

Фрэнк Заметти – автор ряда популярных технических книг, был програм-
мистом около 40 лет, 25 из которых занимался этим профессионально, надо же
ему было что-то кушать. В те времена на его визитке значилось архитектор,
хотя он продолжал писать тупой код и каждый день крутился как мог. Фрэнк –
первоклассный гик: если он не заставляет свой компьютер выполнять прика-
зы (скорее всего, дьявольские), то занят просмотром, чтением или написанием
научной фантастики, моделированием рельсотрона, катушки Теслы или лю-
бой другой штуковины, способной прикончить его в любой момент; он любит
без причины цитировать «Вавилон 5», «Властелин колец», «Хроники Риддика»
или «Настоящих гениев», а также играть в компьютерные игры. Еще Фрэнк –
рок-музыкант (клавишник) и заядлый любитель пиццы и других углеводов.
У него есть жена, собака и несколько детей. Если подвести итог его крутости,
то он тот, кто всегда готов воскликнуть «С тобой мой меч!» (ну да, обычно гики
цитируют «Властелин колец» без очевидной причины).

13

О техническом рецензенте (обозревателе)

Герман ван Росмален работает разработчиком
и архитектором программного обеспечения
для De Nederlandsche Bank NV, центрального	
банка в Нидерландах. За его плечами более 30
лет опыта разработки приложений на разных
языках программирования. Герман был вовле-
чен в создание приложений для мейнфреймов,
десктопов, серверов, веб-браузеров и смарт-
фонов. Последние 4 года он занимается в ос-
новном разработкой на .NET/C# и Angular по-
сле 15 лет работы с Java.

Герман живет в маленьком городке Пейнак
кер в Нидерландах со своей женой Лизбет
и детьми Барбарой, Леони и Рамоном. Наравне
с разработкой софта в свободное время Фрэнк
тренирует женскую футбольную команду на
протяжении последних 10 лет.

И конечно же, он болеет за Фейеноорд (фут-
больный клуб из города Роттердам в Нидер-
ландах, который считается одним из ведущих
клубов страны)!

14

О переводе

Данная книга была переведена специалистами компании Binwell, а также дей-
ствующими преподавателями Binwell University. Надеемся, что наши книги
и переводы позволят вам легко освоить новые технологии, а также построить
успешную карьеру в сфере информационных технологий.

Над переводом книги «Flutter на практике» работали:

Артем Тищенко, переводчик – руководитель направления Mobile в ком-
пании Binwell, специалист в разработке нативных (iOS Swift/Objective C), а так-
же кросс-платформенных (Xamarin и Flutter) мобильных приложений. Ментор
Binwell University, соавтор ряда популярных статей для Microsoft Developer
Blogs и Хабрахабры.

Вячеслав Черников, редактор перевода – руководитель разработки в ком
пании Binwell, руководитель Binwell University. Работает в сфере Mobile и раз-
работки ПО с 2005 года. Создавал приложения и игры для iOS, Android, Symbian,
Windows Mobile, Meego, Linux и Windows UWP. Имеет богатый опыт разра-
ботки нативных (iOS Swift/Objective C) и кросс-платформенных (Xamarin, Qt,
PhoneGap/HTML5, Unity) мобильных приложений. Автор книги «Разработка
мобильных приложений на C# для iOS и Android» (ДМК Пресс, 2020), а также
популярных статей для Хакера, Хабрахабры, Microsoft Developer Blogs, спикер,
преподаватель и немного [безумный] ученый.

Также выражаем благодарность Александру Рыжкову и Сергею Селютину
за помощь с корректировками.

15

Благодарности

Если вы никогда не занимались написанием книги, то я открою вам секрет: на-
писание самой книги – это лишь малая часть большой работы над ней. Иногда,
мне кажется, наименьшая часть!

Поэтому я хочу поблагодарить всех, кто усердно работал и помогал с этим
проектом (не важно, лично или с редактурой), включая Нэнси Чен, Луиса Кор-
ригана, Джеймса Маркхэма, Германа ван Росмалена, Вэлмода Спара и Даниша
Кумара. Если вашего имени нет в списке, хотя оно должно здесь быть, я прино-
шу свои искренние извинения и благодарю вас.

Также я хотел бы поблагодарить Ларса Бака и Каспера Ланга за создание
Dart, довольно элегантного и очень приятного в использовании языка про-
граммирования, лежащего в основе Flutter. Говорю как человек, который со-
здал свой собственный язык и набор инструментов для него много лет назад,
я очень-очень ценю то, что вы сделали, ребята. Честь вам и слава!

Работа над книгой по Flutter требует от меня благодарности почти всей ко-
манде разработчиков этого фреймворка. Я занимаюсь мобильной разработ-
кой около 20 лет (посмотрите на etherient.com, страницу Products, а конкрет-
но Eliminator – игра, которую я выпустил в 2001 году для платформы Pocket
PC; я верю, что это было мое первое мобильное приложение, по крайней мере
первая удачная попытка), и тогда, насколько я могу судить, я использовал до-
статочно много утилит, фреймворков и библиотек. Учитывая весь этот опыт,
я могу с уверенностью сказать, что Flutter даже с первой версии был на голову
выше всех.

Это поразительно, сколько команда Flutter смогла сделать за такой отно-
сительно короткий период времени, и без их тяжелой работы я бы, очевидно,
не написал эту книгу! Я с нетерпением жду возможности все больше и больше
использовать Flutter, а также мне очень интересно, что будет с Flutter дальше!

16

Введение

Создание кросс-платформенных приложений, которые выглядят и работают
как нативные, – сложная задача даже после многих лет работы над ее решени-
ем. Вы можете писать отдельные программы для каждой платформы и пытать-
ся сделать их дизайн максимально похожим. Но фактически это значит напи-
сать одно приложение несколько раз. Заказчики, как правило, не готовы за та-
кое платить!

Может, взять HTML-страницу и использовать один и тот же код для всех
платформ? Но тогда вы можете остаться в дураках с точки зрения возможно-
стей самого устройства, не говоря уже о том, что производительность часто на-
ходится на низком уровне (существуют способы минимизирования проблем,
но они никогда не исчезнут полностью).

Я занимаюсь этим уже второе десятилетие (серьезно!), поэтому я видел та-
кое много раз. И если я замечу на горизонте образ единорога, то буду сомне-
ваться до конца. Однако если, подойдя поближе, окажется, что единорог дей-
ствительно реален?

Итак, я представляю вам единорога, который на самом деле существует, –
Flutter!

Благодаря талантливым инженерам из Google Flutter – это платформа, по-
зволяющая писать (более или менее) кросс-платформенный код, который
одинаково работает на Android и iOS, при этом обеспечивая производитель-
ность, идентичную нативным приложениям. Flutter, созданный с использова-
нием современных инструментов и методов разработки, открывает програм-
мистам мир мобильной разработки, в котором, даже не побоюсь сказать, весе-
ло работать!

В этой книге вы познакомитесь с Flutter, создав два реальных приложения
вместо надуманных примеров, предназначенных лишь для демонстрации тех-
нологии. На этом пути вы узнаете много реальных тонкостей, включая проб
лемы, с которыми я столкнулся, и решения, которые я нашел. При этом вы по-
лучите практический опыт реального использования Flutter, который подго-
товит вас к созданию собственных приложений в будущем.

Вы также узнаете то, как создавать серверные приложения на Node.js и Web
Sockets. Эти бонусы являются полезным дополнением к описанию самого
фреймворка Flutter и языка Dart.

Кроме того, вы сможете создать дополнительное третье приложение, кото-
рое разительно отличается от первых двух, – игру! Да, мы вместе создадим игру
на Flutter, чтобы рассмотреть такие возможности, которые редко встречают-
ся в настоящих приложениях, но дают вам взглянуть на фреймворк с разных
сторон и получить максимум опыта. Эта игра может быть не совсем «практич-
ной», но игры всегда увлекательны, а немного веселья никому не повредит!

Дочитав до конца, вы получите представление о том, что такое Flutter, и у
вас будет отличная возможность создать свое новое крутое приложение на его
основе.

17

ВВЕДЕНИЕ ﻿

Если вы были компьютерным энтузиастом в 80-х годах, то наверняка пом-
ните, каково это было – набивать на своем компьютере машинный код из жур-
нальной статьи в 20 страниц мелким шрифтом, чтобы сыграть в игру или за-
пустить приложение для сверки ваших доходов и расходов (да, мы действи-
тельно это делали – были даже радиостанции, транслировавшие исходники,
которые затем компилировались в готовое приложение с помощью специаль-
ной утилиты, подобно тому как сейчас кодируется звук для передачи по теле-
фонной линии).

Итак, прежде чем начать, я предлагаю вам зайти на веб-сайт Apress, найти
эту книгу и скачать себе исходные коды примеров. Это позволит обойтись без
стирания пальцев в кровь, перепечатывая листинги из книги!

Не забывайте, лучший способ чему-то научиться – это делать, поэтому обя-
зательно скачайте и измените примеры под себя, увидев своими глазами, на
что эти изменения повлияют. После прочтения каждой главы, связанной с при-
ложением, заходите в исходные коды и пробуйте добавить одну или две свои
функции, и я даже дам вам пару советов. Думаю, вскоре вы поймете, что благо-
даря возможностям Flutter небольшие изменения могут существенно повлиять
на то, что появляется на экране.

Итак, приготовьтесь к приятной и информативной поездке в мир Flutter!
Я надеюсь, что вам понравится эта книга и вы многому научитесь. Это моя

главная цель! Так что перекусите, сядьте в кресле поудобнее, подготовьте но-
утбук и приступайте. Вас ждут приключения! (Да, я прекрасно понимаю, как
банально это звучит.)

Исходные коды примеров вы можете найти в репозитории на GitHub:
https://github.com/Apress/practical-flutter.

https://github.com/Apress/practical-flutter

18

ГЛАВА 1

FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

Поехали!
Если вы спросите десятерых разных разработчиков мобильных приложений,

как они их разрабатывают для Android и iOS, то, скорее всего, получите десять
разных ответов. Но это ненадолго, благодаря дебютанту на этой сцене – Flutter.

В первой главе мы рассмотрим разработку для мобильных устройств, то, как
Flutter вписывается в эту картину и, возможно, полностью ее меняет. Мы нач-
нем с ним работать, получим базовое представление о языке и фреймворке,
а также подготовим почву для создания реальных приложений.

Итак, давайте сразу поговорим о том, что же такое мобильная разработка.

Медитации над бездной
Разработка софта – это непростая задача!

Я не хочу утомлять вас историей, но факт в том, что я начал, так или иначе,
программировать с 7 лет, а это означает, что я занимаюсь этим почти 40 лет
(около 25 из них профессионально). Я много повидал и много сделал, но глав-
ное, что я понял: разработка софта – это непростая задача. Конечно, некото-
рые отдельные задачи и проекты могут быть простыми, но в целом это до-
вольно сложная работа, которой мы занимаемся!

И это мы еще не говорим о мобильной разработке, которая куда сложнее!
Я начал разработку мобильных приложений примерно два десятилетия на-

зад, еще во времена Windows CE/Pocket PC и Palm Pilot (были и другие платфор-
мы, но именно эти две были единственными настоящими игроками на рынке).
Тогда все было не так уж и плохо, несмотря на ограниченный набор устройств
и возможностей инструментов разработки, которыми мы располагали. Безус-
ловно, использование этих инструментов было не таким приятным, как сегод-
ня, но был всего один способ разработки приложений для Pocket PC, один спо-
соб разработки приложений для Palm OS. Звучит не очень, но отсутствие вы-
бора приводит к отсутствию путаницы, что является одной из самых больших
трудностей в области разработки софта на сегодняшний день.

А еще, хотя сегодня это считается непопулярным, тогда не было понятия
кросс-платформенной разработки. Раньше приходилось писать код дважды,
чтобы приложение работало на обеих платформах. Учитывая различия между
ними, это было не так-то просто.

С тех пор индустрия мобильных устройств и приложений претерпела не-
мало эволюционных изменений, подъемов и падений. Долгое время у нас
было много платформ для поддержки: Android, iOS, webOS, Tizen, Windows
Mobile и несколько других, которые я даже не помню. Все это время перенос

19

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

приложений между платформами был нормой, поскольку не было хорошего
кросс-платформенного подхода, по крайней мере без существенных компро-
миссов. Да, со временем стало проще, потому что улучшился инструмента-
рий для нативной разработки. Apple выпустила свой SDK для iOS в 2008 году,
а Google выпустил свой Android SDK год спустя – в 2009-м. Нам приходилось
разрабатывать приложения для каждой платформы, поскольку разработка iOS
основана на языке Objective-C (сегодня чаще на языке Swift), в то время как
разработка Android основана преимущественно на языке Java (теперь чаще на
Kotlin).

В конце концов, количество платформ стало сокращаться. На сегодняшний
день это гонка Android и iOS, хотя есть и другие платформы, которые чаще
всего используются только при решении специфических задач. В связи с этим
применение кросс-платформенных инструментов становится более привле-
кательным.

Наша прогрессивная эпоха интернета предлагает создавать приложения
с помощью технологий, лежащих в его основе, и как результат получить при-
ложение, которое выглядит и работает примерно одинаково на обеих платфор-
мах (теоретически и на других тоже). Это сопровождается компромиссами, ко-
торые со временем минимизируются, но все еще существуют. Такие вещи, как
производительность и прямой доступ к возможностям «железа», все еще слож-
но совместить с веб-технологиями.

Однако, помимо веб-технологий, в последние несколько лет мы наблюда-
ли рождение и других кросс-платформенных инструментов, которые позволя-
ют нам написать приложение один раз и работать с ним примерно одинаково
в разных операционных системах. Популярные варианты – Corona SDK (в пер-
вую очередь для игр, но не обязательно), Xamarin, PhoneGap (просто веб-тех-
нологии, умно завернутые в собственный компонент WebView), Titanium
и Sencha Touch (опять же, на основе веб-технологий, но с хорошим слоем аб-
стракции над ним), может, еще несколько. Так что сейчас нам доступно мно-
жество различных вариантов, каждый со своими плюсами и минусами.

А теперь внимание! На арену выходит новый конкурент, жаждущий убить
остальных и показать единственный верный путь написания кросс-платфор-
менных мобильных приложений: Flutter.

Да, это немного глупое название... но знаете, мы можем закрыть на это гла-
за, потому что преимуществ у него выше крыши!

Что за (глупое) название?
Flutter – это продукт Google – ну, вы знаете, корпорации, которая основатель-
но контролирует интернет, хорошо это или плохо (в случае с Flutter я думаю,
что хорошо). Изначально этот фреймворк родился под именем Sky в 2015 году
на саммите разработчиков Dart (не забудьте это слово, Dart, мы к нему скоро
вернемся). Сначала он работал только на операционной системе Android от са-

20

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

мого Google, но вскоре был портирован и на iOS, так что сегодня он поддержи-
вает две ведущие мобильные операционные системы.

Первые версии Flutter были выпущены сразу после его анонса, а кульми-
нацией стал выпуск стабильной версии «Flutter 1.0» 4 декабря 2018 года. Пос
ле этого Flutter был готов к прайм-тайму, и пришло время для разработчиков
запрыгивать на борт! Популярность Flutter можно было бы охарактеризовать
как метеорическую, и на это есть веские причины.

Одна из них заключается в следующем: первоначально заявленная цель Flut
ter или, по крайней мере, одна из основных, заключалась в отрисовке пользова-
тельского интерфейса со скоростью 120 кадров в секунду. Google осознавал, что
отзывчивый интерфейс приведет пользователей в восторг, поэтому эта функ-
циональность и легла в основу Flutter. Это благородная цель, которой достига-
ют лишь немногие кросс-платформенные фреймворки (даже нативные инстру-
менты – и те часто испытывают трудности со скоростью отрисовки сложного
интерфейса).

Flutter также предоставляет свои готовые компоненты пользовательского
интерфейса – в отличие, например, от Xamarin и ReactNative, он не использует
нативные контролы. Другими словами, когда вы хотите, чтобы Flutter отобра-
зил кнопку, он рисует ее сам, а не просит об этом операционную систему, как
делают другие фреймворки. Именно это и отличает Flutter от остальных и по-
зволяет приложениям быть одинаковыми на разных платформах. Важно то,
что новые компоненты пользовательского интерфейса, или виджеты (это сло-
во тоже запомните, потому что, как и Dart, оно тоже скоро встретится), могут
быть добавлены во Flutter быстро и легко, не беспокоясь о том, поддерживает
ли их сама операционная система.

Это также позволяет Flutter предоставлять специфические наборы видже-
тов в стилистиках Material и Cupertino. Первый реализует Material Design от
самой Google – стиль Android по умолчанию. Последний реализует стиль iOS
от Apple.

Flutter можно разделить на четыре основные части, включая Dart. Я собира-
юсь оставить это до следующего раздела, так что давайте перейдем ко второ-
му компоненту – основному движку Flutter. Этот движок в основном написан
на C++ и использует библиотеку Skia, так что производительность отрисовки
сравнима с нативной. Skia – это небольшая графическая библиотека с откры-
тым исходным кодом, которая также написана на C++ и имеет очень высокую
производительность на всех поддерживаемых платформах.

В качестве третьего основного компонента Flutter предоставляет унифици-
рованный доступ к возможностям поддерживаемых операционных систем.
Другими словами, код для запуска камеры на iOS и Android будет единым, а для
этого можно использовать готовые методы Flutter.

Последний компонент – это виджеты, но, как и Dart, они тоже заслуживают
собственного раздела, так что вернемся к ним позднее.

Если коротко, то Flutter состоит из этих четырех модулей, поэтому не так уж
и много нужно знать, чтобы начать на нем разрабатывать. Тем не менее я ду-

21

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

маю, что немного углубленное изучение инструментов никогда не будет лиш-
ним. Надеюсь, вы согласны!

Теперь давайте более детально разберем Dart и виджеты, о которых говори-
ли ранее.

Dart: язык богов?
Когда Google начал работать над Flutter, им предстояло ответить на главный
вопрос: какой язык программирования выбрать? Может быть, язык веб-раз-
работки, такой как JavaScript? Или же Java, язык Android? Или ради поддержки
iOS выбрать Swift (в конце концов, Swift является языком с открытым исход-
ным кодом)? Возможно, что-то вроде Go или Ruby было бы хорошим вариан-
том. Как насчет «старой школы», C/C++? А может, попробовать C # от Microsoft
(у него тоже открытый исходный код)?

Я уверен, что было много вариантов, но в конце концов Google решил (не
без причины!) использовать язык, который они создали несколько лет назад:
Dart.

Вся следующая глава посвящена Dart, поэтому сейчас я воздержусь от дета-
лей, но приведу небольшой пример:

import "dart:math" as math;

class Point {
	 final num x, y;
	 Point(this.x, this.y);
	 Point.origin() : x = 0, y = 0;
	 num distanceTo(Point other) {
	 	 var dx = x – other.x;
	 	 var dy = y – other.y;
	 	 return math.sqrt(dx * dx + dy * dy);
	 }

	 Point operator +(Point other) => Point(x + other.x, y + other.y);
}

void main() {
	 var p1 = Point(10, 10);
	 var p2 = Point.origin();
	 var distance = p1.distanceTo(p2);
	 print(distance);
}

Не обязательно сразу детально понимать всё, что вы здесь видите. Тем не
менее если вы работали раньше с любым С-подобным языком, например Java
или JavaScript, то готов поспорить, что вы без проблем во всем разберетесь.
В этом и заключается главное преимущество Dart: большинство современных
разработчиков смогут написать и понять подобный код довольно легко.

22

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

ПРИМЕЧАНИЕ. Интересно, что мы называем языки C-подобными, но сам C – потомок гораздо более
старого языка ALGOL. Я думаю, что ALGOL никогда не получит заслуженного уважения, так что этой ре-
маркой я выражаю всю любовь к нему!

Не вдаваясь во все мельчайшие подробности (для этого предназначена сле-
дующая глава), я думаю, что даже небольшой справки по Dart будет достаточ-
но. Google создал Dart еще в 2011 году, и изначально он был представлен на
конференции GOTO в Орхусе, Дания. Первый релиз 1.0 состоялся в ноябре
2013 года, примерно за два года до выпуска Flutter. За Dart стоит благодарить
Ларса Бака (который разработал ещё и JavaScript-движок V8, используемый
в Chrome и Node.js) и Каспера Лунда.

Dart – это лаконичный язык, который быстро набирает обороты, в основном
благодаря Flutter. Поскольку он считается языком общего назначения, его ши-
роко используют для создания веб-приложений, серверного кода и приложе-
ний IoT (Internet of Things, «интернет вещей»). Пока я писал эту главу, вышел
опрос о том, какие языки программирования вызывают наибольший интерес
разработчиков в 2019 году, опубликованный JAXenter: https://jaxenter.com/
poll-results-dart-word-2019-154779.html. В результате два языка заметно
опередили остальные: Dart и Python, Dart вырвался вперед. Dart испытал наи-
больший рост в 2018 году. И хотя Flutter – почти наверняка один из самых по-
пулярных вариантов его использования, но, несмотря на это, Dart развивает-
ся во всех направлениях. Так что будьте уверены, Dart не обделен вниманием.

Так что же такое Dart? Предыдущий пример кода демонстрирует главные
ключевые моменты, о которых я хотел сказать:

•	 Dart полностью объектно-ориентирован;

•	 инфраструктура языка включает в себя сборщик мусора, поэтому нет не-
обходимости следить за памятью;

•	 его синтаксис основан на C, который подойдет большинству разработчи-
ков (тем не менее, как и у любого другого языка с похожим синтаксисом,
у него есть ряд особенностей, которые поначалу могут сбить вас с толку);

•	 он поддерживает общие языковые конструкции, такие как интерфей-
сы, наследование, абстрактные классы, шаблонные классы (generics, или
«дженерики») и статическую типизацию;

•	 Dart включает проверку соответствия типов. Это позволяет использовать
алгоритм для контроля правильности вашего кода;

•	 он поддерживает многопоточность, так что одновременно может испол-
няться несколько отдельных процессов, обеспечивая высокую произво-
дительность;

•	 Dart может компилироваться в нативный код для повышения производи-
тельности. Он не только компилируется в код для процессоров ARM и x86
в режиме Ahead Of Time (при сборке приложения), но и может транслиро-

https://jaxenter.com/poll-results-dart-word-2019-154779.html
https://jaxenter.com/poll-results-dart-word-2019-154779.html

23

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

ваться в JavaScript, а также поддерживает динамическую компиляцию во
время исполнения (Just In Time);

•	 Dart позволяет использовать большой набор репозиториев с готовыми биб
лиотеками, которые обеспечивают дополнительную функциональность
для всего, что может понадобиться разработчикам;

•	 поддержка популярных сред разработки, включая Visual Studio Code и IntelliJ
IDEA;

•	 ядро Dart поддерживает создание «слепков» (snapshots), которые позво-
ляют упаковать весь исполняемый код (не только ваш код, но и библиоте-
ки) в единый двоичный файл, что ускоряет запуск приложения.

Dart также зарегистрирован в качестве международного стандарта ECMA-408,
а его актуальную спецификацию всегда можно получить на сайте www.dartlang.
org/guides/language/spec.

Как я уже отмечал ранее, вся вторая глава будет посвящена Dart, а пока мы
перейдем к следующей важной теме.

Виджеты окружают!
Давайте вернемся к разговору о главном госте нашего шоу, Flutter, и концеп-
ции, которая лежит в его основе, – виджетах.

Flutter – это и есть виджет. Когда я говорю, что он и есть виджет, я имею
в виду... ну... я имею в виду, что почти все в нем является виджетом (гораздо
сложнее найти во Flutter то, что виджетом не является!).

Что же такое виджет, спросите вы? Это части вашего пользовательского ин-
терфейса (хотя и не все виджеты явно отображаются на экране). Виджет также
представляет собой фрагмент кода, например:

Text("Hello!")

и это также виджет...

RaisedButton(
	 onPress : function() {
	 	 // Сделай что-нибудь.
	 },
	 child : Text("Click me!")
)

и это тоже виджет...

ListView.builder(
	 itemCount : cars.length,
	 itemBuilder : (inContext, inNum) {
	 	 return new CarDescriptionCard(card[inNum]);
	 }
)

http://www.dartlang.org/guides/language/spec
http://www.dartlang.org/guides/language/spec

24

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

и наконец, это виджет:

Center(
	 child : Container(
		 child : Row(
	 	 	 Text("Child 1"),
	 	 	 Text("Child 2"),
			 RaisedButton(
	 	 	 	 onPress : function() {
	 	 	 	 	 // Do something.
	 	 	 	 },
	 	 	 	 child : Text("Click me")
)
)
)
)

Последний пример интересен тем, что на самом деле это иерархия видже-
тов: виджет Center, а в нем виджет Container, содержащий виджет Row, кото-
рый, в свою очередь, содержит дочерние виджеты Text и кнопку RaisedButton.

Не важно, что это за виджеты (хотя названия их отлично характеризуют),
главное, что вся иерархия виджетов, которую вы видите, сама по себе также
считается виджетом Flutter.

Да, во Flutter повсюду виджеты! Виджеты окружают! Flutter – это Опра [По-
пулярная ведущая ТВ-шоу в США. – Прим. перев.] в мире фреймворков пользо-
вательского интерфейса: вам нужен виджет – вы получаете виджет! Да, вы по-
лучаете виджет! Вы ВСЕ получаете вииииииджеты!

Как я сказал ранее, во Flutter практически все – это виджет. Есть очевидные
вещи, о которых люди думают, употребляя слово виджет в контексте пользо-
вательского интерфейса: кнопки, списки, изображения, поля текстовых форм
и все такое прочее. Это все виджеты. Но во Flutter то, что вы виджетами не счи-
таете, это все еще они. Например, рамка вокруг изображения, состояние поля
текстовой формы, текст, отображаемый на экране, даже тема, которую исполь-
зует приложение.

В результате мы видим, что код во Flutter – это гигантская иерархия вид-
жетов (и эта иерархия имеет конкретное имя во Flutter: Widgets Tree, «дерево
виджетов»). Видите ли, большинство виджетов являются контейнерами, это
означает, что они могут иметь дочерние элементы. Некоторые виджеты могут
иметь только один такой элемент, в то время как другие могут иметь много.
И тогда у каждого из них может быть один или несколько дочерних элементов,
и так далее, и так далее!

Все виджеты являются классами Dart, и у них есть обязательное требование:
предоставить метод build(). Этот метод должен возвращать... подождите, по-
дождите... другие виджеты! Есть очень мало исключений из этого, например
низкоуровневые виджеты, такие как виджет Text, который возвращает при-

25

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

митивный тип (в нашем случае – String), но большинство возвращает один или
несколько виджетов. Помимо этого требования, виджет – это старый добрый
класс Dart, который не отличается от класса в любом другом объектно-ориен-
тированном языке (за исключением синтаксиса).

Виджет во Flutter расширяет (extends) один из стандартных классов, кото-
рые он же и предоставляет, что характерно для объектно-ориентированной
парадигмы. Расширенный класс (extended class) определяет, с каким видже-
том мы имеем дело на фундаментальном уровне. Есть два самых базовых клас-
са, которые вы будете использовать, вероятно, 99 % времени: StatelessWidget
и StatefulWidget.

Виджет, унаследованный от StatelessWidget, не изменяется после отображе-
ния и называется виджетом без состояния, потому что он не имеет состояния
(логично). Такие виджеты, как Icon (отображает небольшие изображения) и Text
(отображает строки текста), тоже называют виджетом без состояния. Примером
подобного класса может быть следующее:

class MyTextWidget extends StatelessWidget {
	 Widget build(inContext) {
	 	 return new Text("Hello!");
	 }
}

Да, здесь нет ничего особенного!
В отличие от StatelessWidget, наследники базового класса StatefulWidget

изменяются, когда пользователь взаимодействует с ним. CheckBox, Slider,
TextField – это все известные примеры виджетов с состоянием (и, кстати, ког-
да вы видите, что они написаны с большой буквы, то это означает, что я имею
в виду фактические имена классов Flutter, а не общие термины). Когда вы коди-
руете такой виджет, вам нужно создать два класса: сам класс виджета с состоя-
нием (StatefulWidget) и класс состояния (State), связанный с ним. Вот пример
виджета StatefulWidget и связанного с ним класса State:

class LikesWidget extends StatefulWidget {
	 @override
	 LikesWidgetState createState() => LikesWidgetState();
}

class LikesWidgetState extends State<LikesWidget> {
	 int likeCount = 0;

	 void like() {
	 	 setState(() {
	 	 	 likeCount += 1;
	 	 });
	 }

	 @override

26

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ
	 Widget build(BuildContext inContext) {
		 return Row(
	 	 	 children : [
				 RaisedButton(
	 	 	 	 	 onPressed : like,
	 	 	 	 	 child : Text(‘$likeCount’)
)
]
);
	 }
}

Опять же, я не жду, что вы полностью поймете этот код, так как расширять
знания по Dart мы начнем позже. Но я всё равно считаю, что вы приблизи-
тельно понимаете, что здесь происходит. По крайней мере, то, как код виджета
и его объект состояния взаимодействуют и связаны. Может, это не так уж оче-
видно, но не беспокойтесь, это ненадолго!

Возвращаясь к виджетам без состояния, следует отметить, что термин «вид-
жет без состояния» не совсем точен, потому что, будучи классом Dart, который
имеет свойства и инкапсулированные данные, виджеты без состояния в не-
котором смысле имеют состояние. Основное различие между StatelessWidget
и StatefulWidget заключается в том, что виджет без состояния (stateless) не
умеет автоматически перерисовываться при изменении его «состояния», тог-
да как виджет с состоянием может. Когда виджет с состоянием изменяется, не-
зависимо от того, что вызывает изменение, возникают определенные события
жизненного цикла. Когда состояние виджета изменяется, то происходит вызов
определенных методов, и он перерисовывается (если необходимо, то Flutter
делает это автоматически).

Представьте: оба типа виджетов могут иметь состояние, но Flutter распозна-
ет и управляет только stateful-виджетом. Таким образом, только StatefulWidget
может быть автоматически перерисован в ответ на внешнее событие, и это
контролируется самим Flutter, а вам не нужно прописывать код вручную.

Возможно, теперь вы захотите пользоваться только виджетами с состояния-
ми, так как это сократит вашу работу, но вскоре вы поймете, что это не совсем
так. В результате вы предпочтете виджет без состояния, даже если сейчас это
кажется вам нелогичным. Но давайте опустим это ненадолго.

Есть два важных аспекта, на которые вы уже наверняка обратили внимание.
Во-первых, пользовательский интерфейс построен путем создания виджетов.
Это приводит к дереву виджетов, о котором я упоминал ранее. В то время как
код самих виджетов является обычным классом, важно учитывать вложенность
и расположение виджетов на экране. Это важно потому, что большинство вид-
жетов Flutter сами по себе довольно просты, и только через композицию вы мо-
жете создать сложный пользовательский интерфейс. Даже относительно три-
виальный пользовательский интерфейс содержит в себе целую группу видже-
тов.

27

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

Во-вторых, пользовательский интерфейс во Flutter описывается напря-
мую в коде. Я знаю, что это кажется очевидным, но задумайтесь вот над чем:
для пользовательского интерфейса Flutter нет отдельного языка разметки,
как HTML в веб-разработке. Преимущество заключается в том, что есть толь-
ко один язык для изучения, единая парадигма для восприятия. Может, снача-
ла это и незаметно, но это важное преимущество Flutter над конкурирующими
вариантами.

Пока это все, что нужно знать о виджетах. Мы изучим каталог виджетов более
подробно начиная с главы 3, и, конечно, мы рассмотрим использование каждо-
го из них в главе 4, когда будем делать приложения с ними. В конце концов,
вы получите хорошие знания о наиболее распространенных виджетах Flutter,
а также другие, не менее полезные базовые навыки использования и создания
виджетов в целом.

Ближе к делу: плюсы и минусы Flutter
Как и с любым фреймворком, нам как хорошим разработчикам нужно оценить
преимущества и подводные камни Flutter. Во Flutter есть и то, и другое, я же
не буду бросаться в крайности и говорить, что это «панацея от всех бед» или
же полный провал. И если кто-то говорит вам, что он идеален, то вам просто
пускают пыль в глаза. Во Flutter есть свои недостатки, но я скромно предполо-
жу, что есть довольно много проектов и разработчиков, для которых он может
стать отличным вариантом, если не лучшим.

Давайте уже обсудим все плюсы и минусы Flutter, а также сравним его с кон-
курентами.

•	 За: горячая перезагрузка (hot reload) – к ней я вернусь после того, как мы
изучим настройку окружения и взглянем на первый пример приложения, –
вы сами убедитесь, что это большое преимущество Flutter. ReactNative так-
же включает возможность горячей перезагрузки, особенно если вы ис-
пользуете сторонний компонент Expo. Однако во Flutter эта функциональ-
ность реализована более качественно и стабильно. Немногие фреймворки,
даже нативные, могут похвастаться подобными возможностями.

•	 Против: только для мобильных устройств. На момент написания этой
книги можно было использовать Flutter только для разработки мобиль-
ных приложений iOS и Android. Если вы полюбите Flutter, то будете разо-
чарованы тем, что не сможете использовать его для разработки всех ва-
ших приложений. Тем не менее обратите внимание, что я начал со слов
«на момент написания». Это потому, что с высокой степенью вероятности
Flutter также будет доработан для поддержки приложений для веб-брау-
зеров, Windows, macOS, Linux и других платформ. [И да! Flutter портиро-
вали на веб-браузеры и десктопные платформы, хотя процесс этот еще
только начался. – Прим. перев.]

28

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

•	 За: да, он действительно кросс-платформенный – ваши приложения
Flutter будут корректно работать на iOS и Android (и в конечном итоге
преемнике Android – Fuchsia). Flutter поставляет два набора виджетов из
коробки, один для iOS и один для Android, поэтому ваши приложения мо-
гут как выглядеть одинаково на обеих платформах, так и учитывать сти-
листику целевой операционной системы.

•	 Против: веб-разработчики, не привыкшие видеть описание логики по-
ведения и разметки пользовательского интерфейса в одном классе, как
правило, очень эмоционально реагируют на примеры Flutter. Для сравне-
ния, ReactNative, у которого также в одном классе описывается и логика,
и разметка, первое время страдал от подобных жалоб, но потом разработ-
чики привыкли.

•	 За: Dart – простой и мощный, объектно-ориентированный и строго ти-
пизированный, что позволяет разработчикам быть очень продуктивны-
ми, быстрыми и делать меньше ошибок. Как только вы пройдете тернис
тый начальный путь обучения, вам понравится Dart, особенно в сравне-
нии с JavaScript, Objective-C или Java.

•	 Против: Google – я причисляю это к недостаткам, и вы определенно мо-
жете со мной не согласиться (раньше я часто спорил об этом сам с собой).
Некоторые люди чувствуют себя некомфортно от такого контроля Google
над интернетом, даже если Google этим активно не пользуется. Когда вы
доминируете, то, как правило, многое контролируете. Тем не менее неко-
торые люди опасаются, что Google наращивает обороты и на еще одном
направлении – для них это может быть уже слишком. Другие, конечно,
посмотрят на это и скажут, как здорово, что гигант поддерживает такую
замечательную технологию. Так что этот «недостаток» можно назвать
спорным. И выбрать сторону можете только вы.

•	 За: виджеты – Flutter предоставляет разработчикам богатый набор видже-
тов, и этого может быть вполне достаточно для построения любого при-
ложения. Вы также можете создавать и свой собственный виджет (на са-
мом деле вы всегда будете так делать, не важно, на каком уровне), и даже
использовать многие сторонние виджеты, дабы расширить возможности
приложения. Эти виджеты так же просты в использовании, как и те, что
нам предлагает сам Flutter.

•	 Против: дерево виджетов (widgets tree) может стать недостатком, ведь
иногда вы будете сталкиваться с очень глубоко вложенной иерархией,
и разобраться со структурой кода станет не так-то просто. С развитием
интернета мы к этому уже привыкли, потому что HTML сам по себе явля-
ется древовидным, однако поскольку практически все во Flutter является
виджетами, иерархия иногда может быть даже глубже HTML, а стиль кода
Dart выглядит сложнее. Конечно, есть методы, позволяющие это упрос
тить. Но о них я расскажу позже на примерах реального кода, и да, это все

29

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

еще недостаток, потому что вы должны осознавать его и уметь работать
с ним самостоятельно. Ни Flutter, ни Dart не предложат вам подсказок в
решении.

•	 За: инструменты – как вы увидите в следующем разделе, настроить сре-
ду разработки для Flutter очень легко. Тем не менее вы можете выйти за
пределы этой базовой среды и использовать многие уже привычные вам
инструменты.

•	 Против: реактивное программирование и управление состоянием – Flut
ter обычно считается реактивным (reactive). Метод build(), который вы
видели ранее, принимает в качестве аргумента текущее состояние, а то,
что он возвращает, – это визуальное представление этого виджета, на ос-
нове обновленного состояния. Когда обновляется состояние, виджет «реа
гирует» на это и обновляет себя с помощью повторного вызова метода
build(). Всё это – стандартный механизм Flutter и типовой жизненный
цикл виджета. Сравните это с «нереактивными» подходами, когда вы соз-
даете виджет, а затем самостоятельно вызываете нужные методы для его
модификации или обновления. В целом реактивная парадигма довольно
удобна, хотя для Flutter она может быть и недостатком, потому что иногда
это усложняет простые вещи (вы сами увидите подобные проблемы в по-
следующих главах, а также научитесь с ними справляться). С этим связа-
на и сложность управления состояниями, которая является недостатком
Flutter в том смысле, что нет канонически правильного и неправильно-
го способа это делать. Существует множество подходов, и у каждого есть
свои плюсы и минусы, а вам нужно будет решить, что лучше соответству-
ет вашим потребностям (и да, я буду предлагать то, что считаю хорошим
подходом). Google работает над таким каноничным подходом прямо сей-
час, но пока он не готов, я буду рассматривать отсутствие определенного
пути как недостаток (хотя некоторые считают гибкость преимуществом!).

•	 За: специфические для платформы виджеты – поскольку интерфейсы
Flutter пишутся с помощью кода, у вас может быть одна кодовая база, ко-
торая поддерживает как iOS, так и Android, но даже в ней есть различия,
которые вам нужно учитывать. Например, вы всегда можете узнать в коде
значения Platform.isAndroid и Platform.isIOS, чтобы определить, на ка-
ком устройстве работает ваше приложение, а затем добавить условие для
создания разных виджетов для разных платформ. Возможно, вам нужен
RaisedButton на Android и Button на iOS.

•	 Против: размер приложения – приложения Flutter, как правило, немно-
го больше своих нативных аналогов, потому что они включают основной
движок Flutter, библиотеки и другие ресурсы фреймворка. Размер прило-
жения элементарного «Hello, World!» на Flutter может превышать 7 МБ.
Поэтому если вам решительно важен размер приложения, то Flutter мо-
жет стать не лучшим выбором.

30

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

Надеюсь, что к этому моменту у вас появилось понимание сильных и слабых
сторон Flutter, поэтому предлагаю перейти к практике.

Хватит болтать, начинаем практику с Flutter!
Прежде чем мы доберемся до кода, нам следует установить Flutter и некото-
рые инструменты, которые могут понадобиться. Надеюсь, вы понимаете, что
не так уж просто начать писать код на Flutter, не установив его!

К счастью, настроить рабочее окружение довольно легко.

Flutter SDK
Первый шаг, который вы должны сделать, – это загрузка, установка и настрой-
ка Flutter SDK. Это очень важно! Второй шаг, который технически не обязате-
лен, но необходим для целей этой книги, – это загрузка, установка и настройка
Android Studio, включая Android SDK и эмулятор.

Во-первых, зайдите на https://flutter.io для загрузки установочных па-
кетов и получения документации Flutter. Нажмите кнопку Get Started в верх-
ней части. Найдите Install и выберите свою операционную систему (Windows,
MacOS или Linux).

Обратите внимание, что мне совсем не стыдно признать, что я в первую очередь пользователь Win
dows. Это то, в чем я разбираюсь и что предпочитаю! Так что эта книга будет ориентирована на Windows,
и если вы используете другую ОС, то вы в какой-то степени будете сами по себе. С учетом вышесказан-
ного я буду обращать ваше внимание на особенности инструментов для разных ОС, если будут иметь-
ся существенные различия. На самом деле их не должно быть вне зависимости от того, используете вы
Windows или нет. При этом Flutter сам проинструктирует вас, если возникнут проблемы.

Выберите соответствующую ссылку, и Flutter предоставит вам информацию
о загрузке и установке SDK. SDK не отличается от любого другого софта, по
этому трудностей быть не должно. Хочу отметить, что в инструкции вас про-
сят указать путь для SDK. Но вы можете пропустить этот шаг. Просто обратите
внимание, что если вы пропустите его, все команды должны быть выполнены
из каталога SDK или с указанием полных путей до приложений в этом катало-
ге. Как только мы дойдем до шага с Android Studio, вы обнаружите, что добав-
ление SDK к пути действительно не имеет значения, Android Studio сделает это
за вас. Но если вы собираетесь работать с командной строкой, то не забудьте
прописать полный путь.

Первая команда, которую вы будете выполнять из командной строки, и пер-
вая, которую вы будете делать сразу после установки SDK в соответствии с ин-
струкциями на сайте, – это «flutter doctor». Большинство команд, которые вы
будете вводить при работе с SDK, если не все из них, начинаются с flutter, кото-
рый фактически является исполняемым файлом, например doctor – это одна

https://flutter.io

31

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

из команд, которую вы можете выполнить с его помощью. Это важно, потому
что команда doctor проверит, сможете ли вы начать работать, и если нет, то
скажет вам, что не так.

Если вы запустите ее сейчас, то, скорее всего, обнаружите проблемы, так
и должно быть на данном этапе, не волнуйтесь, следующий шаг это исправит:
установка Android Studio.

Android Studio
Еще раз, инструкции на сайте Flutter сопровождают вас и имеют незначитель-
ные различия для каждой ОС, но как только вы установили Android Studio, за-
пустите её и воспользуйтесь мастером настройки. Это загрузит Android SDK,
образы эмулятора и все необходимое для его работы. Затем установите специ-
альные плагины Dart и Flutter, в документации это подробно описано.

Если вы продолжите следовать инструкциям, запустится процесс подклю-
чения вашего Android телефона или планшета к компьютеру, но убедитесь, что
flutter doctor его видит. Однако вы можете пропустить этот шаг! Конечно,
если у вас есть устройство Android, то необходимость в эмуляторе пропадает.

Однако если вы предпочитаете iOS или если вам не нравится использовать
реальное устройство при разработке кода Flutter – я не подключаю свой те-
лефон, – тогда мое предложение состоит в том, чтобы войти в Android Studio,
запустить менеджер AVD (Android Virtual Machine), который вы можете найти
в меню конфигурации на экране запуска, и создать себе виртуальное устрой-
ство Android. Я предлагаю создать виртуальное устройство Pixel_2, используя
уровень API 28 (убедитесь, что вы установили данную версию API), и задать
ему разрешение 1080×1920 (420 dpi) с операционной системой Android 9. За-
тем выберите образ x86 (x86_64). Если говорить о производительности, вир-
туальные устройства Android долгое время имели плохую репутацию, но сей-
час этот тип виртуальных устройств работает исключительно хорошо, дости-
гая почти нативной производительности в большинстве случаев. Хотя это не
имеет значения, идем дальше и настроим его SD-карту на 512 МБ. Значения по
умолчанию должны соответствовать вашим желаниям, но уровень API и тип
процессора – это ключевые аспекты.

Когда всё будет готово – запускаем код Flutter на эмуляторе. Или вы можете
сделать все это из командной строки с помощью SDK. Мы же в данной книге
будем делать это в Android Studio.

Обратите внимание, что если вы повторно запустите flutter doctor, он все
равно будет сообщать о проблеме, а именно что он не может найти устройство
Android, предполагая, что виртуальное устройство, которое вы создали, не ра-
ботает. Но если flutter doctor обнаружит его, он выдаст вам справку, что все
хорошо. Наконец, если вы видите сообщение о том, что эмулятор не запущен,
при условии что реальное устройство Android подключено и это единственная
проблема, о которой сообщает flutter doctor, то вы можете не обращать на нее
внимания.

32

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

Если вас сейчас интересует iOS, пожалуйста, успокойтесь! Хоть мы исполь-
зуем Android Studio, это никоим образом не означает, что все это не примени-
мо для iOS. Об iOS необходимо знать в первую очередь то, что если вы хоти-
те протестировать реальное устройство iOS или создать свое приложение для
продажи, вам понадобится компьютер Mac и Apple Xcode IDE. Приложения для
продажи не рассматриваются в этой книге, хотя, будь то для iOS или Android,
эмулятор отлично соответствует нашим задачам.

Типичное приложение «Hello, World!»
Если вы продолжите следовать инструкции на веб-сайте, то последним шагом
станет создание небольшого приложения Flutter. Документация там отличная,
но я предлагаю пропустить ее и позволить мне провести вас по этому пути са-
мому.

Первым шагом необходимо позволить Android Studio (в сочетании с Flutter
SDK) создать приложение для нас. Процесс довольно прост, и как только мы
запустим это базовое приложение на нашем виртуальном устройстве, мы не-
много изменим его, чтобы вы могли видеть горячую перезагрузку наглядно.

Но сначала давайте создадим проект! При первом запуске Android Studio вы
увидите окно, как показано на рис. 1-1.

Рисунок 1-1. Первый шаг в Android Studio

33

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

Видите строчку Start a new Flutter Project? Это то, что нужно, кликайте! Вы уви-
дите начальный экран мастера нового приложения, как показано на рис. 1-2.

Рисунок 1-2. Выберите тип проекта Flutter, который хотите создать

Существует четыре типа проектов Flutter, которые вы можете создать:

•	 Flutter Application (его мы будем использовать в этой книге);

•	 Flutter Plugin (плагин позволяет использовать нативную функциональ-
ность Android или iOS для ваших приложений Flutter на основе Dart);

•	 Flutter Package (необходим только в том случае, если вы хотите распро-
странять пользовательский виджет независимо от приложения);

•	 Flutter Module (позволяет встраивать приложение Flutter в нативное при-
ложение Android).

Выберите Flutter Application и нажмите кнопку Next (Далее). Откроется
окно, как показано на рис. 1-3.

34

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

Рисунок 1-3. Ввод необходимой информации о вашем приложении

Здесь вы введете информацию о создаваемом приложении. Вы можете дать
проекту любое название или описание, а также оставить значения по умолча-
нию. При необходимости обновите поле Project location (или просто исполь-
зуйте значение по умолчанию). Вы видите эту ошибку внизу? Не пугайтесь,
вы уже выбрали нужный путь. Но если вы видите это, то Android Studio еще
не знает, где находится Flutter SDK, и вам необходимо его указать. Просто пе-
рейдите к SDK, который вы должны были установить ранее, и убедитесь, что
Android Studio этим доволен (ошибка исчезнет), и снова нажмите кнопку Next,
чтобы перейти к экрану с рис. 1-4.

35

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

Рисунок 1-4. Окончательная информация о проекте

Этот экран требует немного больше информации, в первую очередь домен
компании. Если у вас нет домена, то вы можете поместить любое значение, ко-
торое вам нравится. Тебя зовут Jim? Ты можешь ввести «Jim»! Ты можешь на-
писать «Jim», даже если это не твое имя, хотя это было бы немного странно.
Обратите внимание, что полное имя пакета состоит из названия приложения
и домена вашей компании, введенного на последнем экране. Это имя пакета
должно быть уникальным, если вы хотите опубликовать приложение в мага-
зине приложений, хотя для нашего тестирования здесь это не имеет значения.

Примечание. Вы также можете увидеть поле Sample Application, в зависимости от версии
Android Studio и установленного плагина Flutter. Это для того, чтобы мастер сгенерировал образец кода
для вас, если хотите, но нам это не нужно.

Наконец, выберите язык платформы, оставляя Kotlin неотмеченным, так
как Swift будет наиболее подходящим. Это относится к базовому языку плат-
формы, используемому под обертками Flutter, и если вы не собираетесь взаи-

36

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

модействовать с нативным кодом приложения, вам, по идее, должно быть без
разницы. В конечном счете это не имеет значения для целей книги.

Так что нажмите кнопку Finish, и Android Studio покажет вам простое при-
ложение Flutter. Это может занять несколько минут, поэтому проверьте стро-
ку состояния внизу, чтобы убедиться, что все задачи выполнены. Когда всё бу-
дет готово, посмотрите в верхнюю часть Android Studio, на панель инструмен-
тов, и найдите выпадающий элемент, в котором перечислены подключенные
устройства, как показано на рис. 1-5.

Рисунок 1-5. Выпадающий список устройств в Android Studio

Вы должны увидеть созданный ранее эмулятор. Выберите его, и, если он
еще не запущен, он должен запуститься в ближайшее время. Как только это
произойдет, нажмите на значок Run (зеленую стрелку рядом с выпадающим
списком main.dart) – это точка запуска приложения. Подождите, пока прило-
жение будет собрано, развернуто и запущено на эмуляторе (в зависимости от
вашей машины это может занять до минуты, поэтому будьте терпеливы – про-
цесс ускорится после первой сборки). Вы должны увидеть в эмуляторе что-то
вроде рис. 1-6.

37

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

Рисунок 1-6. Мое первое приложение Flutter!

Это простое приложение, но оно многое показывает. Нажмите на круглую
кнопку со знаком «плюс» (она называется «плавающей кнопкой действия»,
или Floating Action Button, FAB) и обратите внимание, что счетчик увеличива-
ется с каждым щелчком мыши.

Получившийся код должен автоматически открываться в Android Studio
(если файл main.dart найден в директории верхнего уровня) и быть следую-
щим (я, конечно, удалил комментарии и отформатировал его, чтобы он лучше
выглядел в печатном варианте):

import ‘package:flutter/material.dart’;

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

	 @override
	 Widget build(BuildContext context) {
		 return MaterialApp(
	 	 	 title: ‘Flutter Demo’,
	 	 	 theme: ThemeData(
	 	 	 	 primarySwatch: Colors.blue,

38

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ
),
	 	 	 	 home: MyHomePage(title: ‘Flutter Demo Home Page’),
);
		 }
	 }

	 class MyHomePage extends StatefulWidget {

	 	 MyHomePage({Key key, this.title}) : super(key: key);

	 	 final String title;

		 @override
	 	 _MyHomePageState createState() => _MyHomePageState();
	 }

	 class _MyHomePageState extends State<MyHomePage> {

	 	 int _counter = 0;

	 	 void _incrementCounter() {
	 	 	 setState(() {
	 	 	 _counter++;
	 	 });
	 }

	 @override
	 Widget build(BuildContext context) {
		 return Scaffold(
			 appBar: AppBar(
	 	 	 	 title: Text(widget.title),
),
	 	 	 body: Center(
	 	 	 	 child: Column(
	 	 	 	 	 mainAxisAlignment: MainAxisAlignment.center,
	 	 	 	 	 children: <Widget>[
	 	 	 	 	 	 Text(
	 	 	 	 	 	 	 ‘You have pushed the button this many times:’,
),
	 	 	 	 	 	 Text(
	 	 	 	 	 	 	 ‘$_counter’,
	 	 	 	 	 	 	 style: Theme.of(context).textTheme.display1,
),
],
),
),
	 	 	 floatingActionButton: FloatingActionButton(
	 	 	 	 onPressed: _incrementCounter,
	 	 	 	 tooltip: ‘Increment’,

39

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ
	 	 	 	 child: Icon(Icons.add),
),
);
	 }
}

Хотя здесь не так много кода, зато он много делает. Думаю, пока вам недо-
статочно знаний, чтобы полностью разобраться в происходящем, ведь мы еще
не говорили о Dart настолько подробно. Но я не хочу оставлять вас абсолютно
в неведении, так что есть несколько ключевых моментов, которые я разъясню.

Во-первых, обратите внимание, что основная точка входа каждого приложе-
ния Flutter является методом main(). В main() вызывается метод runApp(), кото-
рый возвращает виджет верхнего уровня. В начале иерархии всегда есть виджет,
который содержит все остальные, здесь это экземпляр класса MyApp. Этот класс
является виджетом без состояния, поэтому единственная его задача – предоста-
вить метод build(). Виджет, возвращаемый из него (помните: build() – всегда
возвращающий виджет, в котором могут быть дочерние элементы, а могут и не
быть), – это экземпляр MaterialApp, который является виджетом, предостав-
ленным Flutter (это можно увидеть в самом начале нашего кода). Мы погово-
рим об этом виджете в главе 3, когда будем подробнее рассматривать виджеты
Flutter, но главное, что он обеспечивает базовую инфраструктуру для приложе-
ния Material. Как видите, мы задали название в одном из аргументов конструк-
тора MaterialApp, это название вы увидите в строке состояния (Status Bar) вашего
приложения. Также вы можете установить тему для приложения Flutter и предо-
ставить подробную информацию о ней, например основной цвет, который она
использует, у нас он синий.

Наш виджет MaterialApp содержит один дочерний элемент, который пред-
ставлен экземпляром класса MyHomePage.

Класс MyHomePage определяет виджет с состоянием, так что нам понадобится
два класса, класс «core», который наследуется от StatefulWidget, и класс состоя
ния, связанный с ним, наследуется от State.

В любом случае, метод build() этого виджета снова возвращает единствен-
ный виджет, на этот раз Scaffold. Но не зацикливайтесь на этом, потому что
в главе 3 мы разберем каждый из них. Если в двух словах, то Scaffold обеспе-
чивает фундаментальный визуальный макет для приложения, включая такие
элементы, как строка состояния (AppBar – это фактически виджет), где нахо-
дится название. Scaffold также обеспечивает механизмы, позволяющие «за-
цепить» FAB, – экземпляр виджета FloatingActionButton передается в кон-
структор Scaffold.

Другой аргумент, переданный в конструктор Scaffold, – это тело, в которое
мы добавляем другие виджеты в качестве дочерних. Здесь вы можете наблю-
дать мантру «все это виджет» в действии, потому что у нас есть центральный
виджет, который является контейнерным виджетом, который – как вы уже до-
гадались – центрирует свой дочерний элемент. В этом случае дочерним яв-
ляется виджет Column, который размещает уже своих детей в одну колонну.

40

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

Column содержит два дочерних виджета Text – один для статического текста
«You have pushed the button this many times:», а другой для отображения коли-
чества нажатий кнопки.

Все станет понятнее, когда мы в течение следующих двух глав углубимся
в Dart, а затем во Flutter. И хотя я опустил много деталей, мне кажется, этого
объяснения вполне достаточно для достойного представления о том, что про-
исходит в коде.

Горячая перезагрузка: вот что я люблю!
Здесь все становится невероятно крутым! Убедитесь, что у вас есть приложе-
ние, работающее в эмуляторе, а затем перейдите к Android Studio и найдите
эту строку кода:

Text(
	 ‘You have pushed the button this many times:’,
),

Итак, вы можете изменить данный текст, поменяв «button» на «FAB» и зажав
Ctrl+S, или выберите Save All в меню File. Теперь наблюдайте за эмулятором,
и почти сразу вы увидите, что ваше изменение отражается на экране (это мо-
жет занять несколько секунд, но всё же быстрее, чем при первом запуске).

Очень круто, не правда ли?
Горячая перезагрузка работает только в режиме отладки, в котором вы на-

ходитесь; это можно понять благодаря отладочному баннеру в правом верх-
нем углу приложения. В этом режиме ваше приложение фактически работа-
ет в виртуальной машине Dart (VM), а не компилируется в собственный код
процессора, что происходит, когда вы создаете реальное приложение (да, ваше
приложение будет работать медленнее в режиме отладки). Горячая перезагруз-
ка работает путем обновления измененных файлов исходного кода в уже ра-
ботающую виртуальную машину Dart, на которой размещается ваше приложе-
ние. Когда это происходит, VM обновляет классы, которые изменились, обнов-
ляя любые измененные поля и методы. Затем структура Flutter инициирует
перестроение дерева виджетов, и ваши изменения отражаются автоматиче-
ски. Вам не нужно пересобирать или перезапускать что-либо; все происходит
автоматически по мере необходимости, чтобы ваши изменения были отобра-
жены на экране как можно быстрее.

Время от времени вы можете обнаружить, что изменение не приводит к пе-
резагрузке, как ожидалось. Если это произойдет, первое, что нужно попробо-
вать, – это нажать на значок горячей перезагрузки на панели инструментов,
который на рис. 1-7 выглядит как молния (вы также можете найти опцию го-
рячей перезагрузки в меню Run с соответствующей горячей клавишей Ctrl+/).

41

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

Рисунок 1-7. Значок горячей перезагрузки в Android Studio

Это должно помочь вам. Также обратите внимание на консоль, которая
должна находиться в нижней части Android Studio, там вы увидите следующее
сообщение:
Performing hot reload...
Reloaded 1 of 448 libraries in 2,777ms.

Кроме того, небольшая подсказка должна появиться рядом с консолью во
время перезагрузки.

Обратите внимание, если вы нажали на FAB несколько раз, а затем измени-
ли текст, текущее состояние приложения продолжит существование. Другими
словами, количество повторных нажатий на кнопку сохранится после горячей
перезагрузки (hot reload). Это позволяет легко изменять пользовательский ин-
терфейс и мгновенно отображать текущее состояние, так что вы можете быс
тро и просто сверять вашу верстку с дизайном. Но что, если вы хотите, чтобы
состояние не сохранялось? Тогда вы, вероятно, захотите выполнить горячий
перезапуск (restart). Поэтому вам следует сделать это вручную (в отличие от
горячей перезагрузки, которая происходит автоматически, когда вы вносите
изменения в код и сохраняете его), выбрав опцию Hot restart (горячий переза-
пуск – не перезагрузка) в меню Run или нажав соответствующую горячую кла-
вишу (Ctrl+Shift+/).

Интересно, что значка для горячего перезапуска на панели инструментов
нет, но это всё же перезапустит ваше приложение, хоть и не выполнит новую
сборку и очистку состояния.

Вы, естественно, можете перезапускать сборку в любое время (это происхо-
дит по команде Run), но каждый раз вы будете дожидаться компиляции, что
ни капельки не экономит ваше время. Горячий перезапуск (restart) сработает
почти так же быстро, как и горячая перезагрузка (reload), потому что работы
он делает намного меньше, но достигает примерно того же эффекта.

Надеюсь, вы видите, насколько вы можете быть эффективны, используя горя-
чую перезагрузку. Мне кажется, вы оцените это, когда познакомитесь с Flutter
поближе!

42

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

Базовая структура приложения Flutter
Одна из последних тем, которой я коснусь во вступительной главе, – это общая
структура приложения, которое было создано для вас. На рис. 1-8 вы видите
первичную структуру каталога.

Рисунок 1-8. Первичная структура каталога проекта

43

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

Как видите, существует пять каталогов верхнего уровня. А теперь подроб-
нее о каждом из них:

•	 android – содержит специфический для Android код и ресурсы, такие как
значки приложений, код Java, а также конфигурацию Gradle и ресурсы
(Gradle является системой сборки Android). На самом деле это фактиче-
ски целый проект Android, который вы можете построить с использова-
нием стандартных инструментов Android. По большому счету, вам нуж-
но изменять только значки (которые находятся в каталогах android/app/
src/main/res, где каждый подкаталог имеет разное разрешение) и, в за-
висимости от того, что делает ваше приложение, файл AndroidManifest.
xml в android/app/src/main, где вы можете установить специальные свой-
ства приложения для Android;

•	 ios – как и android, этот каталог содержит код проекта, специфичный
для iOS. Критическим содержимым здесь является каталог ios/Runner/
Assets.xcassets, в котором находятся значки для вашего приложения,
и файл Info.plist в ios/Runner, который служит той же цели, что и файл
AndroidManifest.xml для приложений Android;

•	 lib – хотя сначала это может показаться странным, это место, где будет
жить ваш код! Вы можете относительно свободно организовывать свой код,
создавая любую структуру каталогов, хотя вам понадобится один файл, ко-
торый служит точкой входа, и большую часть времени им будет main.dart,
созданный автоматически;

•	 res – этот каталог содержит такие ресурсы, как строки для перевода ва-
шего приложения на иностранные языки. Но в данной книге мы не будем
иметь с ними дело;

•	 test – здесь вы найдете Dart-файлы для тестирования вашего приложе-
ния. Flutter предоставляет утилиту Widget Tester, которая использует ав-
томатические тесты, чтобы подтвердить функциональность ваших вид-
жетов. Мы не будем с ним работать, так же как и с res, потому что это
необязательная часть разработки Flutter, о которой отдельно можно на-
писать целую книгу! Тестирование – это, конечно, важно, но пока вы не
научитесь писать приложения Flutter, вам будет нечего тестировать, а эта
книга фокусируется на первой части вашего пути.

Хоть он и скрыт по умолчанию в Android Studio, есть также каталог .idea,
в котором хранится информация о конфигурации Android Studio, поэтому вы
можете его игнорировать (обратите внимание, что Android Studio основана на
IDE IntelliJ IDEA, отсюда и название). Существует также скрытый каталог сбор-
ки, содержащий информацию, которую используют Android Studio и Flutter
SDK для создания вашего приложения. Но мы проигнорируем и это.

Помимо каталогов, вы также найдете некоторые файлы в корне проекта.
Это, как правило, единственные файлы, о которых вам нужно беспокоиться за

44

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

пределами каталога lib (все остальное на скриншоте вам не нужно знать вооб-
ще), и это:

•	 .gitignore – файл управления версиями Git используется, чтобы знать, ка-
кие файлы игнорировать из управления версиями. Использование Git со-
вершенно необязательно при написании приложений Flutter, но этот файл
генерируется в любом случае. Управление версиями – это то, что не смо-
жет охватить даже целая книга, поэтому вы можете игнорировать данный
файл;

•	 .metadata – данные, которые Android Studio отслеживает в вашем проек-
те. Вы можете игнорировать и это, так как вы никогда не будете редакти-
ровать их самостоятельно;

•	 .packages – у Flutter есть свой собственный менеджер пакетов для управ-
ления зависимостями в вашем проекте. Этот менеджер пакетов назы-
вается Pub, и он используется для отслеживания зависимостей в вашем
проекте. Вы не будете взаимодействовать с ними напрямую или даже на-
прямую с Pub, поэтому его тоже можно оставить без внимания;

•	 *.iml – этот файл должен быть назван в честь вашего проекта и является
файлом конфигурации проекта Android Studio. Вы никогда не будете ре-
дактировать его напрямую, так что игнорируем;

•	 pubspec.lock и pubspec.yaml – вы когда-нибудь работали с NPM? Знако-
мы с package.json и файлами package-lock.json, которые он использует?
Ну, это те же вещи, но для Pub! Если вы незнакомы с NPM, pubspec.yaml –
это то, как вы описываете свой проект для Pub, включая его зависимости.
Файл pubspec.lock – это внутренний файл Pub. Вы определенно можете
редактировать pubspec.yaml, но не pubspec.lock, а pubspec.yaml мы позже
подробно рассмотрим;

•	 README.md – файл readme, который вы можете использовать, как хотите.
Как правило, это файл Markdown – сайты, такие как GitHub, используют
для отображения информации о вашем проекте при переходе к репози-
торию, где этот файл находится в корневом каталоге.

Самым важным файлом здесь является pubspec.yaml, и он один из немно-
гих, которые вам нужно будет редактировать, поэтому, если вы все забыли, его
лучше запомните! Мы доберемся до него позже, когда нам нужно будет доба-
вить зависимости в наш проект, но на данный момент сгенерированного фай-
ла вполне достаточно для наших нужд.

Еще парочка моментов «под прикрытием»
Если вы посмотрите на некоторые из файлов в каталоге ios, то заметите сло-
во «Runner». Это подсказка о том, как работают приложения Flutter при сбор-
ке и запуске установочного пакета. Как отмечалось ранее, горячая перезагруз-

45

ГЛАВА 1  FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ

ка работает, потому что в режиме отладки ваш код запускается в виртуаль-
ной машине. Однако при сборке установочного пакета это так не работает.
Ваш код компилируется в собственный код ARM. Фактически компилируется
в библиотеку для процессора ARM, которую в дальнейшем использует натив-
ное приложение, это объясняет, почему ваш код находится в каталоге lib.

Библиотеки Flutter наряду с вашим кодом приложения компилируются «до
запуска» (Ahead-Of-Time, AOT) с помощью LLVM (Low-Level Virtual Machine,
инфраструктура компилятора, написанная на C++, которая предназначена для
компиляции и оптимизации программ, написанных на различных языках про-
граммирования) на iOS. На Android используется Native Development Kit (NDK)
для сборки ARM-библиотеки. Эта библиотека включена в так называемый
«runner», который является просто нативным приложением, которое... подо-
ждите, подождите... запускает ваше приложение. Представьте, что это тонкая
обертка вокруг вашего приложения, которая знает, как запустить приложение,
и предоставляет необходимые условия. В некотором смысле runner по-преж-
нему представлен виртуальной машиной, хотя и очень тонкой (почти как кон-
тейнер Docker, если вы с ним знакомы).

Наконец, runner вместе со скомпилированной библиотекой упаковывается
в файл .ipa для iOS или файл .apk для Android, и у вас есть полный, готовый
к установке или публикации пакет! Когда приложение запускается, runner за-
гружает библиотеку Flutter и ваш код приложения, и с этого момента вся визуа
лизация, ввод/вывод и обработка событий делегируются скомпилированному
приложению Flutter.

ПРИМЕЧАНИЕ. Это очень похоже на то, как работает большинство кросс-платформенных мобильных
игровых движков. Ранее я написал книгу о Corona SDK, библиотеке, которую я очень люблю, она работает
очень похожим образом, хотя там используется язык Lua вместо Dart (который, могу поспорить, команда
Flutter тоже рассматривала!). Любопытно, что Google, по сути, черпал вдохновение из игровых движков,
чтобы создать Flutter, потому что это доказывает то, что я всегда говорил: если вы хотите быть лучшим
программистом, единственный вид проекта, в котором вам следует отточить свои навыки, – это игровой.
На этот раз мир получил целую платформу приложений! И если вы еще не заглянули вперед, последние
две главы этой книги посвящены созданию игры Flutter, потому что я всегда советую создавать игры!

Итого
С этой главой вы начали свое путешествие в мир Flutter! Вы узнали о том, что
такое Flutter, что он предлагает и почему вам стоит его использовать (и даже
некоторые причины, по которым вы не захотите его использовать). Вы узнали
о важных концепциях, таких как Dart и виджеты; узнали, как настроить свою
среду разработки, чтобы работать с кодом Flutter; создали свое первое очень
простое приложение Flutter и запустили его в эмуляторе.

В следующей главе вы поближе познакомитесь с Dart и получите хорошую
базу, чтобы приступить к созданию реальных приложений Flutter!

46

ГЛАВА 2

МГНОВЕННОЕ РУКОВОДСТВО ПО DART

В предыдущей главе вы получили краткое введение в Dart, язык, который
Google выбрал для Flutter. Это была очень короткая справка по общим аспек-
там Dar, чтобы вам было проще понять базовые примеры кода.

Так как все приложения Flutter написаны на Dart, то вам необходимо усво-
ить информацию, предоставленную в данной главе. После ее прочтения вы по-
знакомитесь с Dart поближе, по крайней мере достаточно близко, чтобы смело
кодить в последующих главах (надеюсь, что знания из этой главы задержатся
в вашем мозгу надолго). Мы углубимся в Dart, но не будем забывать и о Flutter,
ведь только так сформируется полная картина.

Если честно, это не будет исчерпывающим взглядом на Dart. Я постараюсь
заполнить пробелы в последующих главах, когда мы будем изучать код прило-
жения, но некоторые темы либо очень редко используются, либо очень специа
лизированные, и если вы их пропустите, вам это не помешает. Всё, что описа-
но в этой книге, составляет около 95 % информации о Dart. Естественно, в он-
лайн-документации по Dart (на www.dartlang.org) вы найдете дополнительные
материалы, охватывающие и подробно раскрывающие все аспекты языка, так
что если вы действительно хотите погрузиться в Dart c головой, то после про-
чтения этой главы я рекомендую ознакомиться и с информацией на сайте.

Давайте начнем наше путешествие с основ и ключевых понятий, которые
вы должны знать для лучшего понимания Dart.

Вещи, которые вы должны знать
Как и любой современный язык программирования, Dart предлагает много воз-
можностей, хотя он и основан на тех же концепциях, что и большинство других
языков, хотя Dart имеет и свои уникальные особенности.

Но прежде чем мы начнем говорить о концепциях, хотите увидеть кое-что
крутое? Взгляните на рис. 2-1. Это веб-приложение известно как DartPad, и оно
предоставлено веб-сайтом dartlang.org, а именно https://dartpad.dartlang.
org.

http://www.dartlang.org
https://dartpad.dartlang.org
https://dartpad.dartlang.org

47

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

Рисунок 2-1. �FlutterPad – ваша экспериментальная площадка для кода Dart
в интернете!

Этот лаконичный инструмент позволяет проверить большинство возможно-
стей Dart в режиме реального времени без необходимости установки каких-ли-
бо приложений! Это отличный способ быстро и легко проверить ваши навыки.
Просто введите слева код, нажмите Run (Выполнить), и справа вы увидите ре-
зультаты!

Ну что же, давайте начнем!
Все языки, включая Dart, имеют перечень ключевых слов, которые можно

использовать только по прямому назначению. Давайте рассмотрим эти клю-
чевые слова. Я попытался сгруппировать их, чтобы дать вам как можно больше
контекста для их изучения.

ПРИМЕЧАНИЕ. Эта книга предполагает, что вы уже не новичок в программировании и что у вас есть
опыт работы с C-подобным языком. Это особенно актуально для текущей главы, потому что многие из
ключевых слов Dart не отличаются от любого другого C-подобного языка, с которым вы знакомы. Я при-
ложу только очень краткие описания и оставлю более подробные объяснения для тех ключевых слов
и понятий, которые уникальны для Dart или, если не уникальны, по крайней мере, немного неординарны.

Все о комментариях – без лишних комментариев
Я хочу начать с обсуждения, потому что чувствую, что с комментариями раз-
работчики работали и работают недостаточно эффективно. Комментарии –
это важная часть программирования, нравится вам это или нет, и Dart предла-
гает три формы комментариев.

48

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

Во-первых, Dart поддерживает однострочные комментарии, используя зна-
комую вам комбинацию символов //. Компилятор игнорирует все символы
в строке, которые следуют за двумя слешами. То есть два слеша могут нахо-
диться как в начале, так и в конце строки:

// Определяем возраст пользователя.
int age = 25; // Возраст 25

Не поймите меня неправильно: я не утверждаю, что это пример хороше-
го или правильного комментирования! На самом деле наоборот! Я просто ис-
пользую его в качестве примера, чтобы продемонстрировать эту форму ком-
ментария в Dart.

Вторая форма – многострочные комментарии, Dart здесь также типичен
и использует открывающую последовательность символов /* и закрывающую
*/. Например:

/*
	 Эта функция вычисляет баланс счета с использованием метода
	 расчета стоимости Миллера-Хоторна.
*/

Все между последовательностями /* и */ игнорируется.
Последняя форма комментариев, предоставляемых Dart, называется «ком-

ментарии документации» (comments for documentation). Эти комментарии пред-
назначены для автоматической генерации документации на основе исходных
кодов. Они могут быть однострочными или многострочными за счет последова-
тельностей /// или /** и */:

/// Это комментарий документации.
/**
	 Это тоже
	 комментарий документации.
*/

Как и в случае с другими форматами, все в строке, начинающейся с последо-
вательности /// (может быть как в начале, так и в конце строки), игнорирует-
ся. Однако есть исключение: все, заключенное в таком комментарии в скобки,
воспринимается как ссылка на класс, метод, поле, переменную верхнего уров-
ня, функцию или параметр и попадает в документацию по родительскому эле-
менту. Так, например:

class Pet {
	 num legs;
	 /// Накормите вашего питомца [Treats].
	 feed(Treats treat) {
	 	 // Покормите зверюгу!
	 }
}

49

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

При генерации документация (вы можете сделать это с помощью инстру-
мента dartdoc из Dart SDK) текст «[Treats]» станет ссылкой на документацию
для класса Treats (при условии что dartdoc может найти Treats в области ви-
димости класса Pet).

Совет. Пожалуйста, комментируйте свой код и комментируйте его хорошо, особенно если с ним пред-
стоит работать другим разработчикам (поверьте мне, даже если вы думаете, что такого не произойдет, –
хорошо написанный комментарий к коду, в который вы сами не заглядывали годами, будет настоящей
находкой). В мире программирования существует вечная дискуссия о комментировании. Некоторые
разработчики вообще не хотят писать какие-либо комментарии (это лагерь «самодокументирующегося
кода»), другие просто хотят, чтобы люди писали полезные комментарии. Я уже давно принадлежу к по-
следнему лагерю. Для меня комментарии так же важны, как и код. Я пришел к этому выводу после 25 лет
профессиональной разработки софта, поскольку понял, что поддержание кода других людей и даже мо-
его собственного – это огромная проблема. Да, попробуйте написать «самодокументируемый» код, по-
верьте, это очень полезно. Но потом, как только вы это сделаете, прокомментируйте его!�
  Конечно, если вы говорите в своем комментарии, что код «i++;» увеличивает i на единицу, то это
пустая потеря времени. Поэтому пишите полезные комментарии.

Все меняется: переменные
Начнем с того, что все в Dart является объектом. Переменные в Dart, как и в лю-
бом другом языке, хранят значение или ссылку на объект. В некоторых язы-
ках существует разница между примитивами, такими как числа (int, double
и т. д.) и строки (string), и объектами, которые являются экземплярами клас-
сов. Но только не в Dart! Здесь объектом является все, даже целые числа, функ-
ции и сам null – все это объекты, экземпляры классов, и все они происходят от
общего класса Object.

Объявление и инициализация переменной
В Dart вы можете объявить переменную двумя способами:

var x;

или

<some specific type> x;

Обратите внимание, что здесь x имеет значение null, даже если оно имеет
числовой тип. Это значение по умолчанию, если вы не определяете перемен-
ную на этапе создания:

var x = "Mel Brooks";
String x = "Mel Brooks";

Вы видите кое-что интересное: когда вы используете var x, Dart сам опре-
деляет тип переменной из присвоенного значения. Он знает, что x здесь –
это ссылка на String. Но вы также можете объявить тип явно, как в String x.

50

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

Существует руководство по стилю написания программ в Dart, которое гласит,
что вы должны объявлять локальные переменные, такие как var и другие, ис-
пользуя явное указание типа (например, String x = "Mel Brooks"), но это во-
прос ваших предпочтений.

Также есть третий вариант:

dynamic x = "Mel Brooks";

Здесь тип dynamic («динамический») говорит Dart о том, что переменная х
может меняться со временем. Например, если позже вы напишете

x = 42;

Dart не будет жаловаться, что x теперь указывает на числовое значение, а не
на строку.

Существует, по сути, четвертый и последний вариант объявления перемен-
ной:

Object x = "Mel Brooks";

Поскольку все в Dart происходит из общего класса Object, то и подобное
объявление корректно работает, так как присваиваемая строка (String) явля-
ется потомком класса Object.

Константы и конечные значения
Наконец, со всем этим связаны ключевые слова const и final, которые опре-
деляют переменную как константу (const) или конечное (неизменяемое) зна-
чение (final):

const x = "Mel Brooks";

Они также работают с аннотациями типа:

const String x = "Mel Brooks";

Вместо этого вы можете использовать final:

final x = "Mel Brooks";

И это не просто вопрос предпочтений. Разница в том, что переменные const
являются постоянными во время компиляции, так что их значение не может
присваиваться во время работы приложения. Итак, если вы попытаетесь на-
писать

const x = DateTime.now();

то это не сработает. Но вы можете сделать так:

final x = DateTime.now();

По сути, final означает, что вы можете установить значение переменной
только один раз, зато сделать это во время выполнения вашей программы,

51

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

а const означает, что вы можете установить значение только один раз, но оно
должно быть явно задано уже в исходных кодах (до компиляции).

И вот еще кое-что о const: вы можете применить его как к значениям, так
и к переменной. Например (и не беспокойтесь о том, что незнакомы с типом
List, мы скоро до него доберемся – но я уверен, что вы все равно все поймете!):

List lst = const [1, 2, 3];
print(lst);
lst = [4, 5, 6];
print(lst);
lst[0] = 999;
print(lst);

Все работает так, как ожидалось: печатается первоначальный список зна-
чений (1, 2, 3), затем появляется ссылка и печатается новый список (4, 5, 6), и,
наконец, обновляется первый элемент, и список печатается снова (999, 5, 6).
Однако если вы переместите lst[0] = 999 на третью строку, то вы получите
исключение (exception), потому что пытаетесь изменить список, который был
помечен как const. Это одна из специфических особенностей Dart (я уверен,
что и другие языки сталкиваются с подобным, хотя такая ситуация и не очень
распространена).

Примечание. Переменные и другие идентификаторы могут начинаться с буквы или подчеркивания,
а затем сопровождаться любой комбинацией букв и цифр (и, конечно, столько комбинаций, сколько вы
захотите!). Все, что начинается с подчеркивания, имеет особое значение: оно является закрытым (private)
для библиотеки (или класса), в котором находится, то есть не видно внешним классам. Dart не имеет клю-
чевых слов видимости, таких как public и private, которые можно найти в других языках, например
Java. Переменные, у которых названия начинаются с подчеркивания, автоматически считаются закрыты-
ми (private).

Ну он и тип... типы данных
Dart является строго типизированным языком программирования, но, как ни
странно, вам не обязательно задавать эти типы в коде. Они необязательны, по-
скольку Dart определяет типы автоматически, когда вы не указываете их вруч-
ную.

Строковые значения
Для работы со строками в Dart предлагается использовать тип String, который
представляет собой последовательность символов в кодировке UTF-16. Для
присваивания переменной строки должны быть заключены в одиночные или
двойные кавычки. Они могут включать выражения, использующие синтаксис
${expression}. Если выражение ссылается на идентификатор, то вы можете уда-
лить фигурные скобки. Итак:

52

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART
String s1 = "Rickety Rocket";
String s2 = "${s1} blast off!";
String s3 = ‘$s1 blast off!’;
print (s2);
print (s3);

Здесь вы видите двойные и одинарные кавычки, а также обе формы выра-
жений (иногда называемые маркерами).

Для склеивания строк из частей вы можете использовать оператор +, как
и во многих других языках. Также можно использовать следующий синтаксис:

return "Skywalker," "Luke";

Все строковые значения, конечно, могут содержать ключевые слова или лю-
бые последовательности символов в кодировке UTF-16.

Числовые значения
По старой доброй традиции, обычные целочисленные значения имеют тип int.
Значения int в Dart VM лежат в диапазоне от –263 до 263 – 1 (вне зависимости от
того, под какую платформу компилируется Dart-приложение – для чисел типа
int всегда выделяется 64 бита).

Число с плавающей запятой двойной точности, как указано в стандарте IEEE
754, имеет тип double.

int и double – это подклассы num, поэтому вы можете определить перемен-
ную как num w = 5 или num x = 5.5, а также int y = 5 или double z = 5.5. Dart
знает, что x является double на основе его значения, так же он знает и про z,
тип для которого вы указали вручную.

Числовое значение может быть преобразовано в строковое с помощью ме-
тода toString() класса int и double:

int i = 5;
double d = 5.5;
String si = i.toString();
String sd = d.toString();
print(i);
print(d);
print(si);
print(sd);

А строковое может быть преобразовано в числовое с помощью метода parse()
для классов int и double:

String si = "5";
String sd = "5.5"; int i = int.parse(si);
double d = double.parse(sd);
print(si);

53

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART
print(sd);
print(i);
print(d);

Примечание. Обратите внимание, что String – единственный примитивный тип данных, название
которого начинается с заглавной буквы. Я считаю, что это стоит пояснить. На самом деле это не совсем
верно: названия классов Map и List также начинаются с заглавных букв. Тем не менее я не уверен, что
они должны быть в той же категории, что и String, учитывая, что String является более «внутренним»
типом данных, таким как int и double. Но мы можем обсудить это в другой раз – просто усвойте, что
названия одних типов данных начинаются с заглавной буквы, а других – нет!

Логические значения
Логические переменные имеют тип bool и могут принимать только значения
истина/ложь (ключевые слова true и false соответственно).

Обратите внимание, что безопасность типов Dart означает, что вы не може-
те написать код, как в языке C:

if (some_non_boolean_variable)

Вместо этого вы должны написать что-то вроде:

if (some_non_boolean_variable.someMethod())

Другими словами, логические операции Dart всегда требуют явного значения
true/false при работе с переменными типа bool. [В языке С, например, значе-
ние false эквивалентно числу 0, а любая другая цифра – true. Это позволяет ис-
пользовать целые числа, и не только их, вместо true/false. – Прим. перев.]

Классы List и Map
Класс List в Dart сродни массиву (array) в других языках. List (список) пред-
ставляет собой список значений, создаваемый в синтаксисе JavaScript:

List lst = [1, 2, 3];

Примечание. Как правило, вы видите названия list (а затем set и map) с маленькой буквы при обра-
щении к конкретному экземпляру класса, а при обращении к самим классам Map, Set или List вы должны
писать их с большой буквы.

Вы, конечно, можете сделать это следующим образом:

var lst1 = [1, 2, 3];
Object lst2 = [1, 2, 3];

Списки индексируются с нуля, поэтому list.length-1 дает вам индекс по-
следнего элемента. Вы можете получить доступ к его элементам по индексу:

print (lst[1]);

54

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

List имеет набор доступных методов. Я не собираюсь обсуждать их все, так
как эта глава не справочное руководство, тем более большинство из них мож-
но найти практически в любом другом языке, который предлагает похожую на
List конструкцию. Вы, вероятно, и сами уже знакомы с большинством из них,
я же приведу несколько примеров методов List:

List lst = [8, 3, 12];
lst.add(4);
lst.sort((a, b) => a.compareTo(b));
lst.removeLast();
print(lst.indexOf(4));
print(lst);

Dart также предлагает класс Set (множество), который похож на List, но это
неупорядоченный список, а значит, вы не можете получить элементы по ин-
дексу, вы должны использовать методы contains() и containsAll() вместо
прямого обращения:

Set cookies = Set();
cookies.addAll(["oatmeal", "chocolate", "rainbow"]);
cookies.add("oatmeal"); // Это не вызовет ошибку
cookies.remove("chocolate");
print(cookies);
print(cookies.contains("oatmeal"));
print(cookies.containsAll(["chocolate", "rainbow"]));

В нашем примере вызов contains() возвращает true, в то время как вы-
зов containsAll() возвращает false, так как chocolate был удален методом
remove(). Обратите внимание, что добавление существующего значения в спи-
сок типа Set с помощью метода add() не вызывает ошибку.

В Dart также есть класс Map (карта/отображение), который иногда называ-
ют dictionary (словарь) или hash (хеш-таблица), или object literal в JavaScript,
экземпляр которого может быть создан несколькими способами:

var actors = {
	 "Ryan Reynolds" : "Deadpool",
	 "Hugh Jackman" : "Wolverine"
};
print(actors);

var actresses = Map();
actresses["scarlett johansson"] = "Black Widow";
actresses["Zoe Saldana"] = "Gamora";
print (actresses);

var movies = Map<String, int>();
movies["Iron Man"] = 3;
movies["Thor"] = 3;

55

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART
print(movies);

print(actors["Ryan Reynolds"]);
print(actresses["Elizabeth Olsen"]);
movies.remove("Thor");
print(movies);
print(actors.keys);
print(actresses.values);

Map sequels = { };
print(sequels.isEmpty);
sequels["The Winter Soldier"] = 2;
sequels["Civil War"] = 3;
sequels.forEach((k, v) {
	 print(k + " sequel #" + v.toString());
});

Первый вариант отображения с актерами создается с помощью фигурных
скобок с данными, определенными непосредственно внутри них. Map с актри-
сами использует ключевое слово new для создания нового экземпляра отобра-
жения. Здесь элементы добавляются таким образом, что содержимое внутри
скобок – это ключ, а то, что после знака равно, – значение. Теперь это нераз-
рывная связка ключ–значение. Третья версия показывает, что вы сами можете
определить типы для ключей и их значений. Таким образом, если вы попытае
тесь сделать:

Movies[3] = "Iron Man";

то получите ошибку компиляции, потому что 3 – это int, но изначально тип
ключа определен как String.

Далее мы рассмотрим часто используемые методы. Метод remove() удаля-
ет элемент из map. Вы можете получить список ключей (keys) или значений
(values) с помощью обращения к одноименным свойствам keys и values клас-
са Map (на самом деле будут вызываться специальные методы геттеры (getter),
о которых мы поговорим позже). Метод isEmpty() сообщает вам, является ото-
бражение (Map) пустым или нет (есть также метод isNotEmpty(), если вы пред-
почитаете его). Map также предоставляет методы contains() и containsAll(),
как это делает List. Наконец, метод forEach() позволяет выполнить произ-
вольную функцию для каждого элемента отображения (это еще не все возмож-
ности, но пока не беспокойтесь о деталях).

В классе Map, как и в List, доступно гораздо больше служебных методов, чем
мы можем здесь рассмотреть, вскоре мы встретимся с некоторыми из них в ис-
ходном коде примеров.

Существует также специальный тип dynamic (динамический), который, по
сути, обходит систему безопасности типов Dart. Представьте, что вы пишете:

Object obj = some_object;

56

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

Dart знает, что для любого класса можно вызвать методы toString()
и hashCode(), так как эти методы описаны в Object, а любой другой класс на-
следуется от него. Если вы попытаетесь вызвать obj.fakeMethod(), то получи-
те предупреждение, потому что Dart во время компиляции определяет, что
fakeMethod() не является методом класса Object. Но если вы напишете

dynamic obj = some_object;

и затем вызовите obj.fakeMethod(), то не получите предупреждение во вре-
мя компиляции, зато получите ошибку во время выполнения. Подумайте
о dynamic как о способе сказать Dart: «Эй, я здесь главный, поверь мне, я знаю,
что делаю!» Динамический тип обычно используется с такими вещами, как
данные, передаваемые между процессами, поэтому вы можете нечасто с этим
сталкиваться, но стоит понимать, что он принципиально отличается от типа
Object.

Перечисления – если одного значения мало!
Вам нужен объект, который содержит фиксированное количество постоянных
значений? Не хотите иметь кучу переменных, захламляющих все вокруг, и вам
не нужен полноценный класс? Тогда enum (сокращенно от enumeration, пере-
числение) вам подойдет! Смотрите! Вот он!

enum SciFiShows { Babylon_5, Stargate_SG1, Star_Trek };

И вот что вы можете с ним сделать:

main() {
assert(SciFiShows.Babylon_5.index == 0);
assert(SciFiShows.Stargate_SG1.index == 1);
assert(SciFiShows.Star_Trek.index == 2);
print(SciFiShows.values);
print(SciFiShows.Stargate_SG1.index);
var show = SciFiShows.Babylon_5;
switch (show) {
	 	 case SciFiShows.Babylon_5: print("B5"); break;
	 	 case SciFiShows.Stargate_SG1: print("SG1"); break;
	 	 case SciFiShows.Star_Trek: print("ST"); break;
	 }
}

Каждое значение в enum имеет скрытый индекс (свойство index), поэтому
вы всегда можете найти порядковый номер заданного элемента (вы получите
ошибку компиляции, если значение в enum отсутствует). Еще вы можете полу-
чить список всех значений enum через свойство values (которое также имеет
скрытый метод getter). Наконец, перечисления особенно полезны в операто-
рах switch, и Dart выдаст вам ошибку компиляции, если у вас нет подходяще-
го значения в enum.

57

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

А ты его точно знаешь? Ключевые слова «as» и «is»
Эти два оператора часто используются вместе: ключевое слово is позволяет
вам определить, относится ли объект к конкретному типу; as приводит объект
к определенному типу. Например:

if (shape is Circle){
	 print(shape.circumference);
}

Метод print() (который записывает контент в консоль) выведет значение
поля circumference, только если объект shape является Circle.

Или же попробуйте сделать следующее:

(shape as Circle).circumference = 20;

Таким образом, если переменная shape имеет значение типа Circle или мо-
жет быть приведена к Circle, то у вас не возникнет никаких проблем (напри-
мер, shape имеет значение типа Oval, который является подклассом Circle).

Обратите внимание, что в примере с is ничего не произойдет, если фигура
не является Circle, а в примере с as вы получите исключение (exception), если
фигура не может быть приведена к Circle.

Плыть по течению: управление логикой потока команд
Для выполнения логических операций Dart включает ряд выражений и кон-
струкций, большинство из которых будут знакомы почти всем программистам.

Циклы
Цикл в Dart очень похож на циклы в других языках:

for (var i = 0; i < 10; i++) {
	 print(i);
}

Существует также выражение for-in, если целевой класс реализует итера-
тор, позволяющий переходить к следующему элементу списка:

List starfleet = ["1701", "1234", "1017", "2610", "7410"];
main() {
	 for (var shipNum in starfleet) {
	 	 print("NCC-" + shipNum);
	 }
}

List – один из классов, который реализует итератор, поэтому этот код от-
лично работает. Если вы предпочитаете функциональный стиль, то можете ис-
пользовать метод forEach следующим образом:

58

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART
main() {
	 starfleet.forEach((shipNum) => print("NCC-" + shipNum));
}

Примечание. Не беспокойтесь об этих функциях, особенно если синтаксис выглядит немного чуждо.
Мы перейдем к функциям всего через несколько разделов, это достаточно просто, если сосредоточить-
ся на изучении.

Циклы do и while предлагают знакомые конструкции do-while и while-do:

while (!isDone()) {
	 // Делать что-нибудь
}
do {
	 showStatus();
} while (!processDone());

Обратите внимание, что, как и в большинстве других языков, в Dart доступ-
но ключевое слово continue, которое позволяет сразу перейти к следующему
шагу цикла, прервав текущий шаг. Чтобы выйти из цикла досрочно, существу-
ет ключевое слово break (оно также работает и в операторе switch).

Switch
Dart предлагает использовать привычный оператор switch для конструкций
множественного выбора, которые создаются с помощью ключевых слов case,
break и default:

switch (someVariable) {
	 case 1:
	 	 // Сделайте что-нибудь
		 break;
	 case 2:
	 	 // Сделайте что-нибудь еще
		 break;
	 default:
	 	 // Это не первое или второе
	 break;
}

Оператор switch в Dart может работать с целочисленными или строковыми
типами, при этом сравниваемые объекты должны быть одного и того же типа
(и никакие подклассы общего предка здесь недопустимы!). Также сравнивае-
мые классы не должны переопределять оператор сравнения ==.

59

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

Оператор if
Наконец-то добрались и до оператора if, который по сути является ключе-
вым элементом управления потоком команд в программе. Обратите внима-
ние, что условия оператора if в Dart должны всегда принимать значения типа
bool. И конечно же, вы можете использовать ключевое слово else:

if (mercury == true || venus == true ||
	 earth == true || mars == true
){
	 print ("It’s an inner planet");
} else if (jupiter || saturn || uranus || neptune) {
	 print ("It’s an outer planet");
} else {
	 print("Poor Pluto, you are NOT a planet");
}

Обратите внимание, что если mercury, venus, earth и mars были типами bool,
то запись if (mercury || venus || earth || mars) также будет здесь работать.

Больше, чем ничто: void
В большинстве языков, если функция ничего не возвращает, вам нужно поста-
вить перед ней ключевое слово void. В Dart, который поддерживает void, вы
тоже можете это сделать, но это не обязательно.

Тем не менее в Dart void более... любопытен, чем в других языках.
Во-первых, если функция ничего не возвращает, вы можете полностью опус

тить тип возвращаемых данных; вам даже не нужно ставить void перед ней,
как в большинстве языков (хотя вы можете сделать это, если хотите). В таких
случаях в конец функции добавляется неявный возврат null (return null;).
Это касается всех примеров кода.

Если вы поставите void перед функцией, то получите ошибку компиляции
при попытке что-либо вернуть из нее. Иногда в этом есть смысл. Но если вы
попытаетесь вернуть null, ошибки не будет. Вы также можете вернуть функ-
цию void (функцию, перед которой стоит void). Здесь это действительно ста-
новится странновато:

void func() { }

class MyClass {
	 void sayHi() {
	 	 print("Hi");
	 	 dynamic a = 1;
		 return a;
	 }
}

60

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART
main() {
	 MyClass mc = MyClass();
	 var b = mc.sayHi();
	 print(b);
}

Учитывая, что sayHi() является функцией void, вы ждете, что ее возврат
приведет к ошибке, верно? Как бы не так! Он будет скомпилирован. Ну, он бу-
дет скомпилирован, за исключением строки print(b). Это вызовет ошибку
компиляции. Причина в том, что void не возвращает какого-либо значения,
а возможность писать var b = mc.sayHi(); нужна только для прикола.

Так что да, void в Dart – это странная штука. Советую не использовать его,
если не знаете, зачем это вам нужно.

Но void используется не только для функций, которые не возвращают дан-
ные. Вы также можете использовать его в качестве параметра шаблонного
класса (generic class) вместо Object:

main() {
	 List<void> l = [1, 2];// Эквивалент List<Object> = [1, 2];
	 print(l);
}

А вот почему вы можете так сделать, я расскажу в разделе об асинхронном
коде.

Операторы
Dart имеет типичный набор операторов, с большинством из которых вы зна-
комы. Список этих операторов вы можете увидеть в табл. 2-1.

Таблица 2-1. Операторы Dart
Оператор Значение
+ Сложение

- Вычитание

-expr Префиксный оператор «унарный минус» (он же отрицание / обратный знак выра-
жения)

* Умножение

/ Деление

~/ Вернуть целочисленный результат деления

% Получить остаток целочисленного деления (по модулю)

++var Префиксный оператор «инкрементирование» (increment, приращение), эквивалент-
но записи var = var + 1 (значение выражения var + 1), выполняется перед обращени-
ем к текущему значению переменной

61

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

Оператор Значение
var++ Постфиксный оператор «инкрементирование», аналогичен ++var, но выполняется

после обращения к текущему значению переменной

--var Префиксный оператор «декрементирование» (decrement, уменьшение), эквивалент-
ный var = var – 1 (значение выражения – это var – 1)

var-- Постфиксный оператор «декрементирование», аналогично var = var – 1 (значение
выражения var – 1)

== Равно

!= Не равно

> Больше

< Меньше

>= Больше или равно

<= Меньше или равно

= Присваивание

& Логическое И (AND)

| Логическое ИЛИ (OR)

^ Логическое ИСКЛЮЧАЮЩЕЕ ИЛИ (XOR)

~expr Унарное побитовое дополнение (нули становятся единицами, а единицы становятся
нулями)

<< Сдвиг влево

>> Сдвиг вправо

a ? b : c Тернарное условное выражение, эквивалентно if (a) b else c;

a ?? b Двоичное условное выражение: если a не null, то возвращает a, в противном случае
возвращает b

.. Каскадная нотация

() Функция

[] Доступ к списку

. Доступ к членам

Примечание по оператору равенства (==): это проверка значений, а не про-
верка объектов. Когда вам нужно проверить, ссылаются ли две переменные на
один и тот же объект, используйте глобальную функцию identical().

При использовании оператора == (как в if (a == b)) true возвращается,
если они оба имеют значение null, false – если только один. Когда выполня-
ется это выражение, на самом деле вызывается метод ==() первого операнда
(да, «==» – это действительно название метода!).

Итак:

if (a == b)

62

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

эквивалентно…

if (a.==(b))

Примечание по оператору присваивания (=): существует также оператор
??=, который выполняет назначение только в том случае, если первый операнд
равен null.

Еще одна заметка об операторе =: существует множество составных опера-
торов, которые объединяют назначение и операцию, такие как

-= /= %= >>= A= += *= ~/= <<= &= |=

Примечание к оператору доступа к членам класса (.): существует также ус-
ловная версия написания ?., которая позволяет вам получить доступ к методу
или свойству объекта, если этот объект не null.

Рассмотрим такой пример:

var person = findPerson("Frank Zammetti");

Если person может быть null, то написание print(person?.age) позволит из-
бежать ошибки нулевого указателя (null pointer exception). Результат операции
в этом случае будет null, но без ошибки.

Примечание к оператору каскадной записи (..): он позволяет составить
код следующим образом:

var person = findPerson("Frank Zammetti");
obj.age = 46;
obj.gender = "male";
obj.save();

или написать его так:

findPerson("Frank Zammetti")
...age = 46
..gender = "male"
..save();

Используйте любой стиль, на ваш вкус и цвет, Dart все равно. Классы также
могут определять пользовательские операторы, но в этом нет смысла, пока мы
не поговорим о классах, так что давайте сделаем это сейчас!

Коротко про ООП в Dart
Dart является объектно-ориентированным языком, так что мы имеем дело с клас-
сами и объектами. Создать класс так же просто, как

class Hero { }

Да, это все!

63

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

Экземпляры класса
Классы очень редко бывают пустыми, чаще они содержат какие-либо перемен-
ные (их также называют «члены», «поля» или «свойства»). Чтобы объявить их,
вам нужно написать следующий код:

class Hero {
	 String firstName;
	 String lastName;
}

Любое поле экземпляра класса, которое вы не инициализируете значением,
имеет по умолчанию значение null. Dart будет автоматически генерировать ме-
тод getter («получатель», возвращает текущее значение) для каждой перемен-
ной, и он также будет генерировать setter («установитель», устанавливает но-
вое значение) для любых переменных, не отмеченных словом final.

Переменные могут быть помечены как статические, это означает, что вы мо-
жете использовать их без создания экземпляра класса:

class MyClass {
	 static String greeting = "Hi";
}
main() {
	 print(MyClass.greeting);
}

Этот код выведет «Hi» без создания экземпляра MyClass.

Методы
Классы также могут иметь функции, называемые методами:

class Hero {
	 String firstName;
	 String lastName;
	 String sayName() {
	 	 return "$lastName, $firstName";
	 }
}

Мы рассмотрим функции более подробно в следующем разделе, но я уверен,
что вы уже и так с ними знакомы. Если же нет, то эта книга, вероятно, не луч-
шая отправная точка для вас, так как она предполагает, что вы программист
хотя бы начального уровня. А пока усвойте, что ключевое слово return возвра-
щает значение из функции (или метода, если он часть класса) и завершает ее
выполнение.

Теперь у нас есть метод sayName(), который мы могли бы вызвать так:

main() {

64

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART
	 Hero h = new Hero ();
	 h.firstName = "Luke";
	 h.lastName = "Skywalker";
	 print(h.sayName());
}

Этот код показывает, что методы работы со свойствами (getter, setter) дей-
ствительно были созданы за нас автоматически, поэтому h.firstName = «Luke»;
работает.

Я кое-что пропустил: как и практически во всех объектно-ориентирован-
ных языках, ключевое слово new создает объекты заданного типа, как показа-
но в предыдущем примере. Тем не менее в Dart ключевое слово new не являет-
ся обязательным. Таким образом, в дополнение к предыдущему коду вы также
можете написать

var h = Hero();

Честно говоря, это было, на мой взгляд, одной из самых странных вещей,
к которым нужно привыкнуть в Dart! Я не уверен, что есть какая-то веская при-
чина, чтобы делать именно так, поэтому просто пишите, как считаете нужным!

Методы также могут быть помечены как статические с помощью ключево-
го слова static:

class MyClass {
	 static sayHi() {
	 	 print("Hi");
	 }
}
main() {
	 MyClass.sayHi();
}

Как и в примере со статической переменной, здесь снова выводится «Hi»,
но на этот раз в результате вызова sayHi() без создания экземпляра MyClass.

Конструкторы
Классы зачастую содержат конструкторы, то есть специальные функции, кото-
рые выполняются при создании их экземпляра. Просто добавим один:

class Hero {
	 String firstName;
	 String lastName;
	 Hero(String fn, String ln) {
	 	 firstName = fn;
	 	 lastName = ln;
	 }
	 String sayName() {

65

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART
	 	 return "$lastName, $firstName";
	 }
}

Конструктор всегда имеет то же имя, что и класс, и не имеет return. А наш
тестовый код будет выглядеть так:

main() {
	 Hero h = new Hero("Luke", "Skywalker");
	 print(h.sayName());
}

Однако конструктор, который просто устанавливает значения переменных
экземпляра класса, используется очень часто, поэтому в Dart есть сокращен-
ная форма для его записи:

class Hero {
	 String firstName;
	 String lastName;
	 Hero(this.firstName, this.lastName);
	 String sayName() {
	 	 return "$lastName, $firstName";
	 }
}

Ключевое слово «this»
Ключевое слово this ссылается на текущий экземпляр класса, внутри которо-
го выполняется блок кода. Как правило, вы должны использовать this только
в случае конфликта имен. Например:

class Account {
	 int balance;
	 Account(int balance) {
	 	 this.balance = balance;
	 }
}

Философы спорят о том, следует ли вам когда-либо употреблять this в дру-
гих случаях, так как это позволяет устранить неоднозначность (мой личный
опыт говорит, что вы никогда не будете этого делать, так как эта позиция до-
статочно спорна). А также это ключевое слово необходимо для краткой записи
конструктора класса – this().

Обратите внимание, что если ваш класс не содержит конструктора, как в пер-
вых трех версиях Hero, упомянутых ранее, Dart автоматически сгенерирует кон-
структор без аргументов, который просто вызовет конструктор родительского
класса без аргументов (в примере выше «родителем», или суперклассом, явля-

66

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

ется Object). Кроме того, обратите внимание, что подклассы не наследуют кон-
структоры.

Конструктор также может быть помечен ключевым словом factory. Оно ис-
пользуется, когда конструктор может не возвращать экземпляр своего класса.
Я знаю, звучит странно, потому что это необычная возможность для большин-
ства объектно-ориентированных языков, но такое может произойти, если, на-
пример, вы хотите вернуть существующий экземпляр класса из кеша уже по-
строенных объектов и не создавать новый объект, как происходит по умолча-
нию.

Конструктор factory может также возвращать экземпляр подкласса, а не сам
класс. В противном случае factory работает так же, как и любой другой кон-
структор, и вы можете вызывать его похожим образом, с той лишь разницей,
что внутри него нет доступа к this.

Подкласс
Я упомянул подклассы минуту назад, так как же мы их определяем? Вот прос
той пример:

class Hero {
	 String firstName;
	 String lastName;
	 Hero.build(this.firstName, this.lastName);
	 String sayName() {
	 	 return "$lastName, $firstName";
	 }
}

class UltimateHero extends Hero {
	 UltimateHero(fn, ln) : super.build(fn, ln);
	 String sayName() {
	 	 return "Jedi $lastName, $firstName";
	 }
}

Ключевое слово extends, за которым следует имя класса, от которого мы на-
следуемся, – это все, что нужно.

Тем не менее здесь происходит немного больше интересного. Во-первых,
понятие именованных конструкторов. Взгляните на класс Hero. Видите метод
Hero.build()? Это тоже конструктор, который мы называем именованным. При-
чина, по которой необходим this, заключается в том, что в классе UltimateHero
конструкторы не наследуются. Но, учитывая, что конструктор должен делать
то же самое, что и Hero.build(), нет смысла дублировать код (принцип DRY –
Don’t Repeat Yourself, не повторяй себя). Так как же вызвать конструктор ро-
дительского класса? А вот как: super.build(fn, ln); эта часть следует за кон-
структором UltimateHero(fn, ln). Ключевое слово super позволяет вызывать

67

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

методы или свойства, доступные в родительском классе. Но способа вызвать
неименованный конструктор, к сожалению, нет. Другими словами, super(fn,
ln), который работает в большинстве иных языков, не работает в Dart. Един-
ственное, что мы можем сделать, – это вызвать именованный конструктор, что
мы и делаем, используя синтаксис после двоеточия.

Методы Getter и Setter
Теперь я хочу вернуться к понятиям getter (получает) и setter (устанавлива-
ет). В Dart есть возможность создавать свои собственные getter и setter, по-
мимо автоматически генерируемых, что дает возможность управлять логикой
объектов на лету. Для этого Dart предлагает ключевые слова get и set:

class Hero {
	 String firstName;
	 String lastName;
	 String get fullName => "$lastName, $firstName";
	 set fullName(n) => firstName = n;
	 Hero(String fn, String ln) {
	 	 firstName = fn;
	 	 lastName = ln;
	 }
	 String sayName() {
	 	 return "$lastName, $firstName";
	 }
}

Здесь у нас появляется поле fullName. Когда мы попытаемся получить к нему
доступ, то получим такое же объединение lastName и firstName, как и в sayName(),
но когда мы попытаемся задать его, мы перезапишем поле firstName. Итак, те-
перь мы можем это проверить:

main() {
	 Hero h = new Hero("Luke", "Skywalker");
	 print(h.sayName());
	 print(h.fullName);
	 h.fullName = "Anakin";
	 print(h.fullName);
}

Вывод здесь будет таким:

Skywalker, Luke
Skywalker, Luke
Skywalker, Anakin

Надеюсь, вы понимаете, почему!

68

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

Интерфейсы
Dart, как и большинство других объектно-ориентированных языков, не раз-
личает понятия классов и интерфейсов. Вместо этого класс Dart также неяв-
но определяет интерфейс. Следовательно, мы могли бы повторно реализовать
класс UltimateHero следующим образом:

class UltimateHero implements Hero {
	 @override
	 String firstName;
	 @override
	 String lastName;
	 UltimateHero(this.firstName, this.lastName);
	 String sayName() {
	 	 return "Jedi $lastName, $firstName";
	 }
}

@override – это аннотация, но мы перейдем к ней позже. А пока просто за-
помните, что необходимо указать Dart, что мы переопределяем метод getter
и setter суперкласса для двух отмеченных полей, а без этого получим ошиб-
ку. С этими доработками нам также нужно изменить конструктор, потому что
теперь мы не наследуемся от класса и не имеем доступа к конструктору Hero.
build() (поскольку конструкторы никогда не наследуются, а реализация интер-
фейса также означает, что у нас нет доступа к поведению класса, который обес
печивает интерфейс, мы просто говорим, что наш новый класс предоставляет те
же функциональные возможности, что и контрактные обязательства интерфей-
са), поэтому сделаем конструктор, который повторяет то, что есть в Hero. Един-
ственное новое изменение – это замена ключевого слова extends на implements,
поскольку теперь мы реализуем интерфейс, определенный классом Hero, а не
наследуемся от него.

Совет. Как правильно использовать implements или extends? Это вопрос, который часто звучит
в мире объектно-ориентированного программирования. Некоторые люди считают, что композиционная
модель, которая реализует implements, чище. Другие считают, что иерархия классов лучше подходит
классическому ООП, и поэтому предпочитают extends. Независимо от вашего мнения, поймите один
ключевой момент: это разные понятия, а в Dart, как и в Java и многих других языках ООП, вы можете на-
следоваться напрямую только от одного класса, а интерфейсов реализовать столько, сколько хотите. Итак,
если ваша цель – создать класс, который предоставляет единый интерфейс для нескольких классов, то,
скорее всего, вам нужно слово implements. Иначе вы можете выбрать путь extends.

Абстрактные классы
Давайте кратко обсудим abstract. Это ключевое слово обозначает абстракт-
ный класс, например:

69

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART
abstract class MyAbstractClass {
	 someMethod();
}

Для класса MyAbstractClass нет возможности создать экземпляры, так как
у него нет реализации. Однако этот класс может быть унаследован потомком,
который реализует необходимые методы, и сам может иметь экземпляры. Ме-
тоды внутри абстрактных классов могут обеспечивать реализацию или даже
сами могут быть абстрактными, и в этом случае они всегда должны быть реа-
лизованы подклассом. Метод someMethod() считается абстрактным, потому что
у него нет тела метода, однако вместо этого вы можете сделать так:

abstract class MyAbstractClass {
	 someMethod() {
	 	 // Сделай что-нибудь
	 }
}

В этом случае someMethod() имеет реализацию по умолчанию, и поэтому под-
класс не обязан реализовывать ее, если не хочет.

В дополнение к наследованию классов, реализации интерфейсов и абстракт-
ным классам Dart также предлагает понятие подмешивания (mixin) классов,
вместе с которым в игру вступает ключевое слово with:

class Person {}

mixin Avenger {
	 bool wieldsMjolnir = false;
	 bool hasArmor = false;
	 bool canShrink = true;
	 whichAvenger() {
	 	 if (wieldsMjolnir) {
	 	 	 print("I’m Thor");
	 	 } else if (hasArmor) {
	 	 	 print("I’m Iron Man");
		 } else {
	 	 	 print("I’m Ant Man");
		 }
	 }
}

class Superhero extends Person with Avenger { }

main() {
	 Superhero s = new Superhero();
	 s.whichAvenger();
}

70

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

Здесь у нас есть два класса, Person и Superhero, и один mixin Avenger (который
мы задаем при помощи ключевого слова mixin, стоящего перед его определе-
нием). Обратите внимание, что Person и Superhero являются пустыми класса-
ми, это означает, что вызов whichAvenger() должен поступать из другого места,
и это так: мы «подмешиваем Мстителя в класс Супергероя», указав with Avenger
в определении класса Superhero. Теперь, что бы ни было в mixin Avenger, это бу-
дет присутствовать и в Superhero.

Видимость
В Java и многих других языках ООП вам обычно нужно указать, какой уровень
видимости должен быть у членов класса, используя ключевые слова, такие как
public, private и protected. Dart другой: все общедоступно, если название не
начинается с подчеркивания, которое помечает его как доступное только для
текущей библиотеки или класса.

Операторы
Как говорил Стив Джобс: «Еще кое-что!»

Из различных операторов, которые предоставляет Dart, специальными яв-
ляются следующие (запятые и точка не являются операторами!): <, >, <=, >=, -,
+, /, ~/, *, %, |, ^, &, <<, >>, [], []=, ~, ==. Почему же они специальные? Ну, толь-
ко их вы можете переопределить в классе, используя ключевое слово operator:

class MyNumber {
	 num val;
	 num operator + (num n) => val * n;
	 MyNumber(v) { this.val = v; }
}

main() {
	 MyNumber mn = MyNumber(5);
	 print(mn + 2);
}

Здесь класс MyNumber переопределяет оператор +. Данная реализация опера-
тора вернет значение val * n (умножить) вместо ожидаемого val + n. Таким
образом, когда main() выполнится, то в консоли вы увидите 10 (5*2) вместо 7
(5+2), чего ожидали бы по умолчанию. Это произошло из-за того, что мы пере-
определили оператор +.

Есть одна хитрость: если вы переопределяете оператор ==, вы также долж-
ны переопределить getter для свойства hashCode. В противном случае эквива-
лентность не может быть достоверно определена.

Уф, это было непросто! Ведь данный раздел, вероятно, охватывает большую
часть того, что вам нужно знать о классах и объектах в Dart.

71

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

Кое-что о функциях
У функций Dart есть свой тип: Function. Это означает, что функции могут быть
переменными, могут передаваться как параметры, а также могут быть неза-
висимыми объектами. Есть одна ключевая функция, о которой вы уже знаете,
и это main().

Функции в Dart не лишены синтаксического сахара. Они могут иметь имено-
ванные и необязательные параметры. Даже если вы используете именованные
параметры или только позиционные (типичный стиль списка параметров),
у вас могут быть и необязательные параметры, но вы не можете смешивать эти
два стиля. Вы также можете задать для параметров значения по умолчанию.
Изучите этот код:

greet(String name) {
	 print("Hello, $name");
}

class MyClass {
	 greetAgain({ Function f, String n = "human" }) {
	 	 f(n);
	 }
}

main() {
	 MyClass mc = new MyClass();
	 greet("Frank");
	 mc.greetAgain(f : greet, n : "Traci");
	 mc.greetAgain(f : greet);
}

Здесь вы наглядно видите большую часть того, о чем я говорил. Во-первых,
у нас есть функция greet(), а еще класс с методом greetAgain(). Этот метод
принимает список именованных параметров, и да, один из этих параметров
является функцией! Посмотрите, параметр n имеет значение по умолчанию.
Круто, да? Затем внутри функции greatAgain() мы вызываем функцию, на ко-
торую ссылается f, передавая ей значение параметра n. Другими словами, лю-
бая функция может передаваться в качестве значения параметра f, потому что
она записана как функция, и мы можем использовать переменную f для ее вы-
зова.

Теперь, в функции main() мы сначала просто вызываем greet(), передавая
ему имя, чтобы вывести приветствие. Затем мы вызываем метод greetAgain()
экземпляра MyClass mc, и на этот раз мы передаем именованные параметры,
а значение параметра f является ссылкой на функцию greet(). Я продемон-
стрировал это дважды, чтобы вы могли запомнить, как это работает. Итак, если
вы не передадите имя, то увидите приветствие обычного человека (human).

72

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

Примечание. Во многих языках данные, которые вы передаете функциям, называются аргументами.
Это термин, на котором я вырос, но документация по Dart предпочитает слово «параметр» (parameter).
Честно говоря, иногда я могу смешивать эти термины, но в данном контексте они означают одно и то же.

К сожалению, DartPad на момент написания этой книги не позволит импор-
тировать библиотеки, поэтому нам понадобится аннотация @required, кото-
рая должна быть перед параметром n в greetAgain(), а не параметром f. Итак,
поскольку вы можете запустить код в DartPad и попробовать его, я опустил эту
аннотацию. Также обратите внимание, что при использовании позиционных
параметров вы не используете @required, вместо этого вы заключаете необя-
зательные параметры в квадратные скобки.

Хотя у большинства функций есть имя, они могут быть и анонимными. В ка-
честве примера:

main() {
	 var bands = ["Dream Theater", "Kamelot", "Periphery"];
	 bands.forEach((band) {
	 	 print("${bands.indexOf(band)}: $band");
	 });
}

Здесь есть функция, передаваемая методу forEach() для объектов из List,
но у нее нет имени, и в результате она существует только на время выполне-
ния forEach().

Для функций очень важна область, которую они задают. Dart считается «лек-
сически ограниченным» (lexically scoped) языком, а значит, видимость пере-
менной в основном определяется структурой самого кода. Если она заключена
в фигурные скобки, то находится в пределах этой области видимости, и эта об-
ласть расширяется вниз, что означает, что если у вас есть вложенные функции
(да, это можно сделать в Dart!), без разницы, как глубоко вы двигаетесь, вам все
равно доступна переменная, определенная выше. Чтобы понять это, ознакомь-
тесь с примером:

bool topLevel = true;

main() {
	 var insideMain = true;

	 myFunction() {
	 	 var insideFunction = true;
	 	 nestedFunction() {
	 	 	 var insideNestedFunction = true;
	 	 	 assert(topLevel);
	 	 	 assert(insideMain);
	 	 	 assert(insideFunction);
	 	 	 assert(insideNestedFunction);
		 }

73

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART
	 }
}

nestedFunction() может использовать любую переменную вплоть до верх-
него уровня.

Dart также поддерживает концепцию замыканий (closure), так что функция
захватывает, или «замыкает», свою лексическую область видимости, даже если
функция используется за пределами исходной области видимости. Другими
словами, если функция имеет доступ к переменной, то она в некотором смыс-
ле «запомнит» эту переменную, даже если области, в которой находится пере-
менная, больше не существует, когда функция выполняется.

В качестве примера:

remember(int inNumber) {
	 return () => print(inNumber);
}

main() {
	 var jenny = remember(8675309);
	 jenny();
}

Здесь вызов jenny() выдает 8675309, хотя параметр не был ему передан. Это
происходит потому, что jenny() включает лексическую область remember()
и контекст выполнения, который содержит значение, переданное в вызов
remember() при получении ссылки. Это сбивает с толку, если вы никогда не встре-
чались с этим раньше, но хорошая новость заключается в том, что вам, вероятно,
не нужно будет использовать много замыканий в Dart (по сравнению с JavaScript,
где это происходит постоянно).

Dart также поддерживает стрелки, или лямбда-нотацию для определения
функций. Это одно и то же:

talkl() { print("abc"); }
talk2() => print("abc");

Что такое Assertions
Ключевое слово assert, как и в большинстве других языков, используется толь-
ко для тестовых сборок. Оно используется для прерывания выполнения, когда
заданное условие ложно, и выдает исключение AssertionException. Например:

assert (firstName == null);
assert (age > 25);

При необходимости вы можете добавить сообщение к assert следующим об-
разом:

assert (firstName != null, "First name was null");

74

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

Вне времени: асинхронность
Асинхронное программирование – это важная составляющая в наши дни! Оно
есть везде, на всех языках, и Dart не исключение. В Dart ключевыми для асин-
хронности являются два класса, Future и Stream, наряду с двумя ключевыми
словами, async и await. Оба класса – это объекты, которые возвращают асин-
хронные функции до завершения длительной операции, позволяя программе
ожидать результата и продолжать при этом выполнять другие действия, а за-
тем продолжить работу с того места, где началось ожидание.

Чтобы вызвать функцию, которая возвращает Future, вы используете клю-
чевое слово await:

await someLongRunningFunction();

И это все! Ваш код в фоне будет ждать, пока не завершится someLongRunning
Function(). Программа продолжит выполнять другие процессы, а не заблоки-
руется длительной операцией (например, если someLongRunningFunction() сде-
лать синхронной, то обработчик нажатия кнопки все заблокирует). Сама асин-
хронная функция должна быть помечена, перед определением ее тела, ключе-
вым словом async и возвращать Future:

Future someLongRunningFunction() async {
	 // Делаем что-то, что занимает много времени
}

Есть еще кое-что: функция, которая вызывает someLongRunningFunction(),
сама должна быть помечена как async:

MyFunction() async {
	 await someLongRunningFunction();
}

Вы можете ждать сколько угодно функций в одной асинхронной функции,
ожидание сработает для каждой из них.

Примечание. Существует также Future API, который позволяет вам делать то же самое, но без исполь-
зования async и await. Я не рассматриваю это только потому, что большинство считает async/await
более элегантными, и я разделяю это мнение. Не бойтесь исследовать этот API самостоятельно, если вам
интересно.

Streams обрабатываются практически так же, но для чтения их данных не-
обходимо использовать асинхронный цикл for:

await for (varOrType identifier in expression) {
	 // Выполняется каждый раз, когда Stream выдает значение.
}

Разница между ними в том, что использование Future означает, что возврат
из длительной функции не будет происходить до тех пор, пока эта функция не

75

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

завершится, сколь бы она ни выполнялась. А функция Stream может постепен-
но возвращать данные, так что ваш код, ожидающий их, будет выполняться
каждый раз, когда Stream выдает значение. Вы можете прервать цикл, чтобы
остановить чтение Stream, и цикл сам завершится, когда асинхронная функ-
ция закроет этот Stream. Как и прежде, использование await разрешено только
внутри функции с async.

Тсс, тихо! Библиотеки (и видимость)
Библиотеки используются в Dart, чтобы сделать код модульным и разделяе-
мым. Библиотека предоставляет внешний API для вашего кода. Она также слу-
жит методом изоляции в том смысле, что все в библиотеке, что начинается
с подчеркивания, видно только внутри этой библиотеки. Интересно, что каж
дое приложение Dart автоматически становится библиотекой, независимо от
того, делаете вы что-то для этого или нет! Библиотеки могут быть упакова-
ны и доставлены другим пользователям с помощью инструмента публикации
Dart SDK, который является менеджером пакетов и ресурсов.

Обратите внимание, я не буду рассказывать о создании библиотек, поскольку это слишком долго и не
понадобится в данной книге. Так что если вы заинтересованы в распространении своих библиотек, то вам
следует обратиться к документации Dart. Хочу отметить, что Dart SDK входит в состав Flutter SDK, так что
он у вас уже есть.

Чтобы использовать библиотеку, в игру вступает ключевое слово import:

import "dart:html";

Некоторые библиотеки предоставляются вашим собственным кодом, а дру-
гие встроены в Dart, как эта. Для встроенных библиотек есть специальные URI,
они начинаются со слова dart:, которое является частью схемы URI.

Если библиотека, которую вы импортируете, берется из какого-либо пакета
(мы кратко затронули это в главе 1, а подробнее поговорим в следующей гла-
ве), тогда вместо dart: вам стоит использовать package: схему:

import "package:someLib.dart";

Если библиотека представлена частью вашего кода или файлом, который вы
скопировали в свою кодовую базу, тогда URI – это относительный путь файло-
вой системы:

import "../libs/myLibrary.dart";

Иногда вы можете импортировать две библиотеки, но в них есть конфлик-
тующие идентификаторы. Например, у libl есть класс Account, как и у lib2, но
вам нужно импортировать оба. В этом случае вступает в игру ключевое слово
as:

import "libs/libl.dart";

76

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART
import "libs/lib2.dart" as lib2;

Теперь, если вы хотите ссылаться на класс Account в libl, вы пишете:

Account a = new Account();

Но если вам нужен Account из lib2, вы должны написать:

lib2.Account = new lib2.Account();

При таком способе все в библиотеке будет импортировано. Однако вы мо-
жете импортировать только части библиотеки:

import "package:lib1.dart" show Account;
import "package:lib2.dart" hide Account;

Здесь будет импортирован лишь класс Account из libl, и будет импортиро-
вано все, кроме класса Account из lib2.

Все предыдущие способы немедленно импортируют библиотеку при старте
приложения. Но вы можете и отложить загрузку, это поможет сократить время
первоначального запуска:

import "libs/libl.dart" deferred as libl;

Осталось еще немного работы! Когда вы дойдете до места в коде, где вам
нужна эта библиотека, загрузите ее:

await lib1.loadLibrary();

Как вы узнали в предыдущем разделе, этот код должен быть в функции, по-
меченной async.

Обратите внимание, что многократный вызов loadLibrary() для библиоте-
ки – это нормально и не принесет никакого вреда. Кроме того, до тех пор, пока
библиотека не загружена, константы, определенные в ней, если таковые име-
ются, на самом деле не являются константами – они не существуют, пока биб
лиотека не загружена, поэтому вы не можете их использовать.

Если вы захотите провести A/B-тестирование с вашим приложением, отло-
женная загрузка может быть также полезна, поскольку вы сможете динамиче-
ски загружать разные библиотеки, чтобы их сравнить.

Для тебя я сделаю исключение: обработка исключений
Обработка исключений (exception) в Dart проста и очень похожа на Java или
JavaScript, или даже большинство других языков. В отличие от них, в Dart не
обязательно объявлять, какие именно исключения должна выдавать функция,
а какие вы не должны перехватывать. Другими словами, все исключения в Dart
не проверяются.

Для начала вы можете сами «бросить» (throw) исключение:

throw FormatException("This value isn’t in the right format");

77

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

Исключения – это объекты, поэтому вам нужно создать один, чтобы затем
«бросить».

Интересно, что в Dart вам не обязательно бросать какой-либо специальный
exception, это может быть даже строка. Вы можете бросить строку в качестве
исключения:

throw "This value isn’t in the right format";

Это exception, и это очень удобно. Однако, с учетом вышесказанного, бро-
сать все, что выходит за пределы классов Error или Exception, считается дур-
ным тоном, поэтому «выбрасывать всякую фигню» – это одна из возможно-
стей в Dart, которую все намеренно игнорируют!

Идем дальше! Чтобы поймать исключение, вы пишете:

try {
	 somethingThatMightThrowAnException();
} on FormatException catch (fe) {
	 print(fe);
} on Exception catch (e) {
	 Print("Some other Exception: " + e);
} catch (u) {
	 print("Unknown exception");
} finally {
	 print("All done!");
}

Здесь заслуживают отдельного внимания несколько вещей. Во-первых, вы
оборачиваете код, который может генерировать исключение (запомните: луч-
ше обрабатывать только те исключения, которые вы ожидаете), в блок try. За-
тем вы обрабатываете одно или несколько исключений по вашему усмотрению.
Здесь функция thatMightThrowAnException() может генерировать исключение
FormatException, которое мы хотим обработать. Потом мы будем обрабатывать
любой другой объект, который является подклассом Exception, и отображать
его сообщение. Наконец, все, что было выброшено, будет обработано как неиз-
вестное исключение.

Далее обратите внимание на синтаксические различия: вы можете пи-
сать в <exception_type> catch или можете просто написать catch(<object_
identifier>), где object_identifier – это объект, который был выброшен под
любым именем, которое вы хотите обработать в блоке catch. Разница в вашей
цели: если вы просто хотите обработать исключение, но не заботитесь о бро-
шенном объекте, вы можете игнорировать его тип. Если вам не важен тип, но вы
хотите получить брошенный объект, просто используйте catch. Когда вам важен
и тип, и сам объект, используйте <exception_type> catch(<object_identifier>).

Вы также можете добавить finally к блоку try... catch. Такой код будет
выполняться независимо от того, было выброшено какое-либо исключение

78

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

или нет. Код в finally будет выполняться после того, как все активные блоки
catch закончат свою работу.

Наконец, вы можете определить свои собственные классы исключений, прос
то унаследовавшись от Exception или Error, и ваши исключения будут работать
точно так же, как и предоставленные Dart.

У меня есть сила: генераторы
Иногда у вас есть код, который возвращает несколько значений. Возможно, этот
код опирается на удаленную систему, которую ему нужно вызвать. В этом слу-
чае вы не захотите блокировать интерфейс вашего приложения, пока эти зна-
чения загружаются, для решения задачи можно сгенерировать этот список
«ленивым» (lazy) способом. Или же вы можете просто не хотеть или не иметь
возможности создать весь список сразу. В любом случае вам будет полезно по-
знакомиться с генераторами (generator).

В Dart есть два типа генераторов: синхронный, который возвращает объект
Iterable, и асинхронный, который возвращает объект Stream. Давайте снача-
ла обсудим синхронный:

Iterable<int> countTo(int max) sync* {
	 int i = 0;
	 while (i < max) yield i++;
}
main() {
	 Iterable it = countTo(5);
	 Iterator i = it.iterator;
	 while (i.moveNext()) {
	 	 print(i.current);
	 }
}

Первое, на что нужно обратить внимание, – это маркер sync* перед телом
функции. Он говорит Dart о том, что это функция генератора (кстати, генера-
тор всегда является функцией). Второй важный момент – использование клю-
чевого слова yield внутри генератора. Оно добавляет значение к Iterable, ко-
торое создается за кулисами и возвращается из функции.

Вызов countTo() немедленно вернет объект перечисления (iterable). Затем
ваш код может извлечь из него итератор, чтобы начать проход по списку резуль-
татов, даже если он еще не заполнен. Интересно, что countTo() не будет выпол-
няться, пока вызывающий его код не извлечет этот итератор, а затем не вызовет
для него moveNext(). Когда это произойдет, countTo() будет выполняться, пока
точка не достигнет оператора yield. Выражение i++ вычисляется и «возвраща-
ется» вызывающей стороне через «невидимый» итератор. Затем countTo() при-
останавливается (так как он еще не выполнил условие завершения), а moveNext()
возвращает true. Поскольку код, использующий countTo(), выполняет итерацию

79

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

за итерацией, мы можем только прочитать его текущее значение через свойство
current.

Затем countTo() возобновляет выполнение и вызывает moveNext(). Когда цикл
заканчивается, метод неявно вызывает return, что приводит к его завершению.
В этот момент moveNext() возвращает false вызывающей стороне, и цикл while
завершается.

Второй тип генератора можно продемонстрировать с помощью такого кода:

Stream<int> countTo(int max) async* {
	 int i = 0;
	 while (i < max) yield i++;
}

main() async {
	 Stream s = countTo(5);
	 await for (int i in s) { print(i); }
}

Разница заключается в использовании Stream в качестве возвращаемого
типа и применении маркера async* вместо sync* перед телом функции. Другое
отличие заключается в использовании метода countTo(). Поскольку это асин-
хронный метод, нам нужно, чтобы функция, в которую он был вызван, также
была помечена как асинхронная. Поэтому добавляется await. Это форма цик-
ла for с поддержкой многопоточности. Поскольку цикл for ожидает функцию
countTo(), чтобы выполнить свою работу, эта функция фактически «выталки-
вает» значение в цикл for через Stream. Из примера выше может показаться
неочевидным, почему нужно делать именно так, но представьте, что, вместо
того чтобы просто увеличивать i, приходится делать запрос на сервер, чтобы
получить следующее значение. Надеюсь, так ценность генераторов более на-
глядна.

Мета-Dart: метаданные
Dart также поддерживает понятие метаданных, встроенных в ваш код. В дру-
гих языках их называют аннотациями, как и в Dart (документация называет
это «аннотациями метаданных», metadata annotations, что, на мой взгляд, не-
много многословно, но более точно).

Dart предоставляет две аннотации, одну из которых вы видели ранее: @override.
Она используется для указания того, что класс намеренно переопределяет член
своего родительского суперкласса.

Другая аннотация Dart – это @deprecated. Она помечает поле, которое уже
устарело и может быть скоро удалено. @deprecated часто используют для ме-
тодов в классе, которые будут удалены в следующей версии.

Еще вы можете создавать собственные аннотации. Аннотация – просто класс,
так что это может быть аннотацией:

80

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART
class MyAnnotation {
	 final String note;
	 const MyAnnotation(this.note);
}

Здесь аннотация может принимать аргумент, поэтому мы используем его
следующим образом:

@MyAnnotation("This is my function")
Void myFunction() {
	 	 // Делать что-нибудь
}

Вы можете задать аннотации для следующих языковых элементов: библио-
теки, классы, определения типов, параметры методов, конструкторы, фабри-
ки (factory), функции, поля, объявления переменных, а также директив import
и export. Метаданные, переносимые аннотациями, могут быть извлечены во
время выполнения с помощью рефлексии в Dart, но я оставлю это в качестве
упражнения для вас.

Пообобщаемся? Дженерики, или обобщения
Дженерики (generics) используются в Dart для создания шаблонов классов и ме-
тодов. Например, если вы пишете

var ls = List<String>();

то Dart знает, что список ls может содержать только строки. На этапе ком-
пиляции по шаблону создается класс List, работающий лишь со строками
(String).

Не лучше ли было назвать это «уточнителями»(specifics)? Вы говорите Dart,
какой конкретно (specifically) тип данных содержит этот список. Дженерики
вступают в игру, когда вы пишете что-то вроде:

abstract class Things<V> {
	 T getByName(String name);
	 void setByName(String name, V value);
}

Здесь мы говорим Dart, что класс Things можно использовать для любого
типа, где V является его заменой (универсальные типы, подобные V, обознача-
ются одной буквой, чаще всего E, K, S, T или V). Теперь, когда класс Things<V>
служит интерфейсом, вы можете реализовать много разных версий, используя
разные типы (например, Person, Car, Dog и Planet, которые могут реализовы-
вать один и тот же базовый интерфейс).

Lists и Maps могут быть определены так, как это было показано ранее, но вы
можете использовать и упрощенную форму:

81

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART
var brands = <String>["Ford", "Pepsi", "Disney"];
	 var movieStars = <String, String>{
	 	 "Pitch Black : "Vin Diesel",
	 	 "Captain American" : "Chris Evans",
		 "Star Trek" : "William Shatner"
};

В Dart шаблонные типы материализуются (reified), это означает, что тип клас-
са-параметра сохраняется с ними на время выполнения программы, что позво-
ляет вам проверить тип коллекции ключевым словом is:

var veggies = List<String>();
veggies.addAll(["Peas", "Carrots", "Cauliflower"]);
print(veggies is List<String>);

Как и следовало ожидать, это выведет в консоль true благодаря рефлексии.
Хотя все кажется очевидным, но это не всегда работает в других языках. Java,
например, использует затирание (erasure) вместо материализации (reification),
это значит, что шаблонный тип удаляется во время выполнения. Таким обра-
зом, вы сможете проверить, что переменная типа List, но не сможете прове-
рить, что это List<String>. Я рад, что в Dart это работает не так! Наконец, ме-
тоды могут использовать дженерики так же, как и классы:

class C {
	 E showFirst<E>(List<E> lst) {
	 	 E item = lst[0];
	 	 if (item is num) {
	 	 	 print("It’s a number");
		 }
	 	 print(item);
		 return item;
	 }
}

main() async {
	 C c = new C();
	 c.showFirst(<String>["Java", "Dart"]);
	 c.showFirst(<num>[42, 66]);
}

Как видите, мы можем передать любой тип методу showFirst(), а он уже
определяет его с помощью ключевого слова is и действует соответственно.
В этом одно из ключевых преимуществ дженериков: вам не нужно писать две
разные версии showFirst(), одну для обработки строк и одну для обработки чи-
сел. С этим прекрасно справится всего один метод.

ГЛАВА 2  МГНОВЕННОЕ РУКОВОДСТВО ПО DART

Подведем итоги
В этой главе вы познакомились с тем, что может предложить Dart. Вы узнали
об основах, таких как типы данных, операторы, комментарии, логические опе-
раторы и управление потоком, а также о понятиях среднего уровня, таких как
классы, дженерики и библиотеки. Наконец, вы познакомились с более слож-
ными темами: асинхронность функции, генераторы и аннотации метаданных.
Так что у вас должна была сформироваться достаточно прочная основа из зна-
ний о языке Dart, с которой уже можно начать изучение Flutter.

В следующей главе мы проведем обзор Flutter, сосредоточившись прежде все-
го на виджетах, которые он предлагает. Мы начнем использовать наши знания
о Dart, одновременно изучая Flutter, что подготовит нас к созданию реальных
проектов в 4-й главе!

83

ГЛАВА 3

СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ
ДРУГУ FLUTTER. ЧАСТЬ I

В первой главе вы получили краткое введение во Flutter, а во второй – позна-
комились с Dart. Теперь пришло время снова подробнее взглянуть на Flutter.

Учитывая, что во Flutter уйма виджетов, здесь мы рассмотрим только часть
из них. А как работать с API операционных систем, мы рассмотрим в следую-
щей главе.

Эта глава (вместе со следующей), как и предыдущая, не стремится стать
справочным материалом. Подробное описание более чем 100 доступных вид-
жетов (и каждого с многочисленными опциями, методами и событиями) за-
няло бы сотни страниц и просто продублировало бы документацию с сайта
flutter.io. Мы же рассмотрим и подробно обсудим те виджеты и API-интер-
фейсы, которые, по моему мнению, большинство разработчиков будут ис-
пользовать регулярно. Я также опишу виджеты, которые демонстрируют об-
щие концепции.

Но, безусловно, виджетов заметно больше, чем вы найдете в этой и следу-
ющей главах, также есть шанс, что к моменту выхода книги на прилавки вид-
жетов будет еще больше, чем когда я ее писал. Однако эта и следующая главы
предоставят вам отличный обзор того, что доступно мне сейчас, и подготовят
вас к написанию кода приложения.

Набор виджетов
Мы начнем с рассмотрения виджетов, и, как я упоминал ранее, на момент на-
писания этой книги их было более ста. Я попытался организовать их в логиче-
ские группы, чтобы дать вам о них общее представление.

Примечание. Там, где это возможно, я пытался сопоставить Material-в виджеты (стиль Android) с по-
добными виджетами в стиле iOS. Некоторые из них уникальны для той или иной платформы или не име-
ют прямого сходства, но большинство имеют, так что вы сможете это увидеть самостоятельно. Я думаю,
что такой подход поможет вам понять, как работать с кросс-платформенными проектами.

Layout (компоновка)
Виджеты компоновки (layout) помогут вам организовать пользовательский

интерфейс и структурировать его различными способами. В некотором смыс-
ле они позволяют вам создать каркас вашего приложения.

http://flutter.io

84

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

MaterialApp, Scaffold, Center, Row, Column, Expanded, Align и Text
Компоновка во Flutter строится на основе сеточной структуры, которая включа-
ет строки (Row) и столбцы (Column), следовательно, мы будем работать с вид-
жетами Row и Column. Каждый из них может иметь один или несколько дочерних
элементов, и эти дочерние элементы будут расположены горизонтально (по-
перек экрана) в случае виджета Row или вертикально (сверху вниз) для виджета
Column.

Использовать их очень просто, вы можете видеть это в листинге 3-1.

Листинг 3-1. Основы
import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

	 @override
	 Widget build(BuildContext context) {
	 	 return MaterialApp(title : "Flutter Playground",
			 home : Scaffold(
	 	 	 	 body : Center(
					 child : Row(
	 	 	 	 	 	 children : [
	 	 	 	 	 	 	 Text("Child1"),
	 	 	 	 	 	 	 Text("Child2"),
	 	 	 	 	 	 	 Text("Child3")
]
)
)
)
);
	 }
}

На рис. 3-1 показан результат выполнения данного кода.

85

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

Рисунок 3-1. Основы в картинках!

Здесь используются не только виджеты Row и Column, поэтому давайте раз-
берем пример подробнее.

Это приложение Flutter, поэтому оно начинается с обычного импорта. Библио
тека Dart включает виджеты стиля Material. Затем идет функция main(), кото-
рая создает экземпляр класса MyApp и передает его функции runApp(), которую
предоставляет Flutter. MyApp – это виджет верхнего уровня Flutter, необходимый
для запуска приложения.

Класс MyApp – это StatelessWidget, так как для него нам не нужно никакого
состояния, а метод build() создает виджет типа MaterialApp, который создает
для нас некую «инфраструктуру», поэтому с него мы и начнем. Если хотите, то
вы можете использовать другой виджет – WidgetsApp, но тогда потребуется на-
писать немного больше кода, чтобы как минимум определить маршруты (мы
разберем их в главе про экраны) вашего приложения, так что без необходимо-
сти не стоит использовать такой подход. Даже при разработке под iOS вы все
равно можете использовать MaterialApp в качестве виджета верхнего уровня
(в настоящее время в iOS нет специального виджета CupertinoApp или чего-то
в этом роде, хотя мог бы быть).

Параметр title (заголовок), который вы здесь видите, является свойством
этого виджета. Заголовок – это строка текста, которая используется операци-

86

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

онной системой в качестве названия приложения. Виджет MaterialApp предо-
ставляет довольно много других свойств. Например: свойство color, которое
определяет основной цвет, используемый для приложения в интерфейсе ОС,
и theme, которое принимает в качестве значения виджет ThemeData и описыва-
ет цвета, используемые для приложения.

Для виджета MaterialApp также требуется свойство home, значение которого
должно быть виджетом. home – это начало дерева виджетов для основного экра-
на вашего приложения (или, по крайней мере, экрана, с которого пользова-
тель начинает, главный он или нет). Обычно это виджет Scaffold («строитель-
ные леса»). Существует несколько виджетов Scaffold, но все они служат одной
цели – реализации базовой структуры макета для ваших страниц в приложе-
ние. Как и MaterialApp, базовый виджет Scaffold заботится об общих элемен-
тах пользовательского интерфейса, таких как Navigation Bar (верхняя панель
навигации, где обычно располагается кнопка Назад), Drawer (выдвигающееся
боковое меню) и Bottom Sheet (диалоговое окно, выезжающее снизу экрана).
Другим классом виджетов Scaffold является CupertinoPageScaffold, он создан
специально для iOS и предоставляет базовую структуру разметки страниц iOS.
Здесь есть верхняя панель навигации и место для контента на странице. А еще
CupertinoTabScaffold, он похож на CupertinoPageScaffold, но содержит панель
навигации со вкладками внизу.

Примечание. Чтобы использовать виджеты Cupertino, вам необходимо импортировать в при-
ложение «package:flutter/cupertino.dart»;. Затем, если хотите, вы можете поменять Scaffold на
CupertinoPageScaffold, здесь вместо свойства home используется свойство child. Также обра-
тите внимание, что нет никаких ограничений на применение виджетов Cupertino на Android-устрой-
ствах. Напомним, что Flutter рисует интерфейс сам, а не полагается на ОС, что позволит вам иметь одина-
ковый интерфейс на всех поддерживаемых платформах!

Виджет Scaffold предоставляет ряд свойств, включая:

•	 floatingActionButton, который позволяет вашему приложению поддержи-
вать Floating Action Button, или FAB (этот виджет мы рассмотрим позже);

•	 drawer, позволяющий указать виджет для бокового выезжающего меню;

•	 bottomNavigationBar, который дает возможность вашему приложению
иметь панель навигации внизу, например для отображения вкладок;

•	 backgroundColor, позволяющий вам задать цвет фона страницы.

Какой бы вариант Scaffold вы не взяли, ему необходим дочерний виджет, ко-
торый указывается с помощью свойства body. Если хотите, чтобы все ваши вид-
жеты были расположены вертикально по центру, используйте виджет Center.
Он будет центрировать все свои дочерние элементы внутри себя. Имейте
в виду, что виджет Center будет автоматически заполнять собой все простран-
ство, которое позволит занять его родительский виджет. В этом случае роди-

87

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

тельским виджетом является Scaffold, который автоматически занимает весь
размер экрана, поэтому виджет Center также будет заполнять весь экран.

Дочерний элемент внутри Center – это виджет Row, который, таким образом,
будет располагаться по центру экрана. У виджета Row есть свойство children, по-
зволяющее нам указывать массив виджетов, которые будут расположены в Row.
Здесь определены три дочерних элемента: три виджета Text. Виджет Text ото-
бражает одну или несколько строк текста. Вот некоторые интересные свойства,
которые поддерживает Text:

•	 overflow, которое сообщает Flutter, что делать, когда текст выходит за
границы своего контейнера (например, TextOverflow.ellipsis приводит
к добавлению многоточия в конце);

•	 textAlign позволяет вам определить, как текст должен быть выровнен по
горизонтали;

•	 textScaleFactor, который масштабирует текст.

Если вы попробуете запустить пример (а вы УЖЕ попробовали, верно?!), то
увидите, что все виджеты Text будут сдвинуты влево. А вдруг мы хотим, что-
бы они были центрированы горизонтально? Тогда нам нужно задать MainAxis
Alignment.center для поля mainAxisAlignment у Row (это просто другое свой-
ство, сродни children).

Теперь дочерние элементы у Row должны вписываться в горизонтальное
пространство, которое он заполняет. Сразу скажу, что будет ошибкой иметь до-
черние элементы, которым нужно больше места, чем может предоставить Row
(или другой контейнер), если он не поддерживает прокрутку. Но что, если мы
хотим, чтобы второй Text заполнил все доступное пространство? Тогда мы мо-
жем сделать это с помощью нового виджета:

Expanded(child : Text("Child2"))

Виджет Expanded приводит к тому, что его дочерний элемент заполняет все
доступное пространство. Теперь, после рендеринга первого и третьего виджетов
Text, оставшееся пространство будет заполнено виджетом с текстом «Child2».

Стоит упомянуть здесь еще один виджет – Align. Как и виджет Center, Align
обычно используется, когда у вас есть только один дочерний элемент, он вы-
полняет те же функции, что и Center, но обладает большей гибкостью, посколь-
ку предназначен не только для центрирования контента. Он выравнивает свой
дочерний элемент внутри себя, а также может изменять размер в зависимости
от размера дочернего элемента. Ключом к его использованию является свой-
ство alignment (выравнивание). Если вы задали ему значение Alignment.center,
поздравляем, вы только что создали клон виджета Center! Значением свой-
ства alignment является экземпляр класса Alignment, но значение Alignment.
center – это статический экземпляр, значения x и y которого равны 0 и 0. Зна-
чения x и y – это то, как вы определяете выравнивание, при этом 0, 0 – это центр
прямоугольной области, которую занимает виджет Align. Если у вас есть значе-

88

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

ния –1 и –1, то это верхний левый угол прямоугольника, а 1, 1 – нижний правый
(начинаете понимать, как это работает?)

Наконец, у нас еще есть виджет Column, который я оставил напоследок, потому
что практически все, что обсуждалось для виджета Row, применимо и к Column.
Очевидное отличие состоит в том, что его дочерние элементы располагаются
вертикально. Почти все, что применимо для Row, также подходит Column, разве
что в вертикальном направлении. Конечно, вы можете вкладывать виджеты Row
в виджеты Column и, наоборот, создавать произвольные сложные макеты интер-
фейса, именно к этому и сводится большая часть разработки пользовательского
интерфейса во Flutter!

Container, Padding, Transform
Виджет Container наряду с Row и Column (без учета виджетов уровня приложе-
ния или страниц), вероятно, один из наиболее популярных виджетов, пред-
лагаемых Flutter для компоновки вашего пользовательского интерфейса. Он
мастер на все руки в том смысле, что поддерживает большое количество воз-
можностей, доступных в других виджетах.

Например, что вы будете делать, если захотите указать отступы вокруг вто-
рого виджета Text из предыдущего примера? Ответ прост – обернуть его в вид-
жет Padding:

Padding(padding : EdgeInsets.all(20), child : Text("Child2"))

Мы задаем отступы в 20 пикселей вокруг текста (сверху, снизу, слева и спра-
ва, посредством EdgeInsets.all(20)). Вы можете использовать only() вместо
all(), чтобы указать отступы слева, справа, сверху и снизу по отдельности, или
можете использовать absolute(), чтобы указать вертикальное и горизонталь-
ное значение, которое будет применено одновременно к «верхнему и нижне-
му» и/или «левому и правому» отступам.

Что, если вы хотите увеличить этот текст до 200 %? Тут в игру вступает вид-
жет Transform:

Transform.scale(scale : 2, child : Text("Child2"))

Статический метод scale() возвращает новый виджет Transform с масштаб-
ным коэффициентом 2, это в два раза больше обычного.

Вы спросите, какое отношение это имеет к Container? Ну, это связано с тем,
что Container поддерживает из коробки всю эту функциональность и многое
другое! Например, мы можем имитировать виджет Center, заменив его следу-
ющим Container:

Container(alignment : Alignment.center, child...

Мы также можем масштабировать с ним Text:

Container(transform : Matrix4.identity().scale(2.0), child :
Text("Child2"))

89

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

Синтаксис немного сложнее, потому что теперь мы должны использовать
матричную математику для ручного масштабирования дочернего виджета, хотя
виджет Transform автоматически делает это за нас (хорошая причина выбрать
его!).

Аналогично, если вы хотите добавить отступ:

Container(padding : EdgeInsets.all(20.0), child : Text("Child2"))

Разработчики Flutter часто используют Container с чем-нибудь еще, и это
работает. Тем не менее я бы посоветовал использовать специализированные
виджеты, а Container только в качестве запасного «универсального» варианта
или, например, если у вас нет конкретных целей и нужно просто обернуть дру-
гой виджет.

ConstrainedBox, FittedBox, RotatedBox, SizedBox
Flutter предлагает несколько компонентов «box», которые во многом похожи на
Row, Column и Container, но предоставляют различные возможности позицио
нирования, определения размера и других манипуляций для одного дочерне-
го элемента.

ConstrainedBox используется для накладывания дополнительных ограниче-
ний на его дочерний элемент. Допустим, вы хотите, чтобы второй виджет Text
в предыдущем примере занимал минимум 200 пикселей в ширину, вы можете
обернуть его в ConstrainedBox и задать это ограничение:

ConstrainedBox(constraints : BoxConstraints(minWidth : 200.0), child :
Text("Child2"))

Класс BoxConstraints предлагает свойства для указания ограничений по
ширине и высоте, причем minWidth (минимальная ширина), minHeight (мини-
мальная высота), maxWidth (максимальная ширина) и maxHeight (максимальная
высота) являются наиболее часто используемыми.

Далее следует FittedBox, который масштабирует и позиционирует свой до-
черний элемент внутри себя в соответствии со свойством fit («поместить»).
Он может быть полезен, например, в предыдущем примере с масштабирова-
нием текста, когда виджет Text не увеличивался или не размещался на экране
так, как мы ожидали.

Виджет FittedBox может решить эту проблему, и он прекрасно работает в со-
четании с виджетом ConstrainedBox:

ConstrainedBox(constraints : BoxConstraints(minWidth: 200.0), child :
FittedBox(fit: BoxFit.fill, child : Text("Child2")))

Это масштабирует виджет Text, но, в отличие от предыдущего примера, он
также перемещает его, позволяя остаться выровненным по центру. Он тоже
увеличивает размер текста, чтобы его минимальная ширина была 200 пиксе-
лей. Если вы сравните этот код с прошлым примером масштабирования, то
увидите, что такое поведение логичнее и больше похоже на ожидаемое.

90

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

Точно так же виджет RotatedBox дает нам возможность поворачивать дочер-
ний элемент:

RotatedBox(quarterTurns : 3, child : Text("Child2"))

Свойство quarterTurns – это число четвертей оборота по часовой стрелке, на
которые поворачивается дочерний элемент (например, 3 четверти – 270 граду-
сов). Итак, если вам нужна четверть оборота, этот виджет идеален, но если вам
нужны произвольные градусы, придется иметь дело с Transform.

Наконец, виджет SizedBox задает дочернему элементу определенные шири-
ну и высоту:

SizedBox(width : 200, height : 400, child : Text("Child2"))

Попробуйте запустить этот код, и вы заметите, что в результате виджет Text
будто уплывает вверх и влево от своей обычной позиции. По умолчанию текст
в виджете Text выровнен по левому верхнему углу, поэтому при присвоении
ему размера происходит «уплывание» в левый верхний угол родительского вид-
жета, который теперь занимает указанные 200×400 пикселей. Что именно вид-
жет SizedBox сделает со своим дочерним элементом, будет зависеть от того, как
этот дочерний элемент реагирует на указание ему ширины и высоты (при усло-
вии что он вообще поддерживает эти свойства).

Divider
Виджет Divider (разделитель) очень прост. Он отображает горизонтальную ли-
нию толщиной в один пиксель с небольшим отступом с обеих сторон. Просто
добавьте его между элементами Text:

Text("Child1"),
Divider(),
Text("Child2"),
Divider(),
Text("Child3")

и вы ничего не увидите! Это потому, что Divider может быть только горизон-
тальным, а когда макет находится в Row, он не отображается. Итак, просто из-
мените Row на Column, и вы увидите несколько красивых линий между видже-
тами текста!

Card
Card (карточка) – это виджет Material Design, представляющий собой прямо
угольник с закругленными углами и небольшой тенью. Как правило, он ис-
пользуется для отображения списка информации. Использовать его очень
просто. Это показано в листинге 3-2.

Листинг 3-2. Card в действии
import "packageflutter/material.dart";

91

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I
void main() => runApp(MyApp());
class MyApp extends StatelessWidget {

	 @override
	 Widget build(BuildContext context) {
	 	 return MaterialApp(title : "Flutter Playground",
			 home : Scaffold(
	 	 	 	 body : Center(
	 	 	 	 	 child : Card(
	 	 	 	 	 	 child : Column(mainAxisSize: MainAxisSize.min,
	 	 	 	 	 	 	 children : [
	 	 	 	 	 	 	 	 Text("Child1"),
	 	 	 	 	 	 	 	 Divider(),
	 	 	 	 	 	 	 	 Text("Child2"),
	 	 	 	 	 	 	 	 Divider(),
	 	 	 	 	 	 	 	 Text("Child3")
]
)
)
)
)
);
	 }
}

Вы можете заменить оператор return в предыдущем примере кода или прос
то посмотреть на рис. 3-2.

92

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

Рисунок 3-2. Виджет Card

Виджет Card не обладает большим количеством свойств, но вот самые инте-
ресные: color позволит вам задать цвет фона; elevation – установить размер
тени; shape – изменить закругление углов.

Drawer
Виджет Drawer чаще всего задается в качестве значения свойства drawer вид-
жета Scaffold, хотя это не обязательно. Он представляет собой панель Material
Design, которая вызывается свайпом слева – это обычное меню. Другой вид-
жет, AppBar, обычно идет вместе с Drawer, потому что он автоматически предо-
ставляет соответствующий IconButton (виджет кнопки, на которой отобража-
ется только значок), чтобы показать и скрыть Drawer (что также можно сделать
с помощью свайпа слева направо).

Как показано в листинге 3-3, код для Drawer прост, если он внутри Scaffold.

Листинг 3-3. Drawer в действии
import "packageflutter/material.dart";

void main() => runApp(MyApp());
class MyApp extends StatelessWidget {

	 @override
	 Widget build(BuildContext context) {
	 	 return MaterialApp(title : "Flutter Playground",

93

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I
			 home : Scaffold(
				 appBar : AppBar(
	 	 	 	 	 title : Text("Flutter Playground!")
),
	 	 	 	 drawer : Drawer(
	 	 	 	 	 child : Column(
	 	 	 	 	 	 children : [
	 	 	 	 	 	 	 Text("Item 1"),
	 	 	 	 	 	 	 Divider(),
	 	 	 	 	 	 	 Text("Item 2"),
	 	 	 	 	 	 	 Divider(),
	 	 	 	 	 	 	 Text("Item 3")
]
)
),
	 	 	 	 body : Center(
					 child : Row(
	 	 	 	 	 	 children : [
	 	 	 	 	 	 	 Text("Child1"),
	 	 	 	 	 	 	 Text("Child2"),
	 	 	 	 	 	 	 Text("Child3")
]
)
)
)
);
	 }
}

Здесь вы можете увидеть AppBar, а также Drawer. При желании вы можете за-
дать любой контент, но обычно используется ListView, у которого первым эле-
ментом является виджет DrawerHeader, отображающий информацию о поль-
зователе. Но опять же, его использование не является обязательным. Помимо
дочернего виджета, Drawer имеет свойство elevation, такое же, как у виджета
Card. На рис. 3-3 показано, как это выглядит. До и после того, как пользователь
щелкнет на значок меню (еще его называют «hamburger»).

94

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

Рисунок 3-3. Виджет Drawer до и после раскрытия

Это все, что нужно знать о Drawer!

Примечание. Виджет CupertinoNavigationBar – это грубый эквивалент виджета AppBar, ко-
торый обычно используется для приложений Material (Android).

Навигация
Виджеты навигации позволяют пользователю перемещаться по вашему при-
ложению, при необходимости ваше приложение может делать это и без его
вмешательства.

Сначала поговорим о виджете Navigator (навигатор). Поскольку чаще всего
вы запускаете свое приложение с помощью WidgetsApp или MaterialApp, вы ав-
томатически получаете виджет Navigator (вы можете создать его вручную, но
это не очень распространенная практика). Navigator – это стек, который управ-
ляет набором дочерних виджетов. Иными словами, виден только последний
добавленный элемент, а остальные находятся под ним. Эти элементы являются
различными экранами ваших приложений, которые называются маршрутами
(route). Навигатор предоставляет такие методы, как push() и pop() для добав-
ления и удаления маршрутов.

Вы уже несколько раз наблюдали использование MaterialApp и видели, как
применяется его свойство home. И что? А то, что значение этого свойства – пер-
вый маршрут в вашем приложении! Вы использовали Navigator, даже не подо-
зревая об этом!

95

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

Вы можете сами добавить маршруты в Navigator с помощью push(). Напри-
мер:

Navigator.push(context, MaterialPageRoute<void>(
	 builder : (BuildContext context) {
		 return Scaffold(
	 	 	 body : Center(child : Text("My new page"))
);
	 }
));

Вы всегда используете виджет MaterialPageRoute при вызове push(), и это
требует применения паттерна builder. Он необходим для осуществления пере-
хода на новую страницу, так как заданный виджет (в нашем примере Scaffold)
будет создаваться и пересоздаваться много раз в разных контекстах. Поэтому
прямое указание дочерних элементов может привести к ситуации, когда ваш
код будет выполняться в неверном контексте. Паттерн builder позволяет избе-
жать этой проблемы, поскольку всегда использует нужный контекст.

Когда вы вызываете push() для добавления маршрута в стек, он сразу ото-
бражается. Чтобы вернуться к предыдущему маршруту, вы должны вызвать ме-
тод pop() у Navigator, передавая текущий контекст сборки:

Navigator.pop(context);

Маршрут всегда должен начинаться со знака /, а после должно идти назва-
ние страницы, которую вы хотите открыть. Например, вы добавляете маршрут
в MaterialApp следующим образом:

routes : <String, WidgetBuilder> {
	 "/announcements" : (BuildContext bc) => Page(title : "P1"),
	 "/birthdays" : (BuildContext bc) => Page(title : "P2"),
	 "/data" : (BuildContext bc) => Page(title : "Pe"),
}

Теперь вы можете вызвать маршрут по имени:

Navigator.pushNamed(context, "/birthdays");

Вы также можете вкладывать виджеты Navigator друг в друга. Иными слова-
ми, маршрут Navigator может иметь дочерний Navigator. Это позволяет осу-
ществлять дополнительную навигацию, не меняя первичную.

BottomNavigationBar
Иногда Navigator не лучший выбор для навигации по приложению. Важным
фактором является отсутствие визуального представления этого виджета.
К счастью, Flutter предлагает несколько виджетов для визуальной навигации,
один из них – BottomNavigationBar. Он представляет собой панель внизу экра-

96

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

на со значками и текстом, по которым пользователь может нажимать, чтобы
перемещаться по вашему приложению.

Фактически этот виджет не выполняет никакой навигации, поэтому его на-
звание немного некорректно. В действительности вся навигация осуществля-
ется внутри вашего кода. Тем не менее обычно BottomNavigationBar использу-
ется для навигации, и вот один из таких способов.

Листинг 3-4. BottomNavigationBar

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatefulWidget {
	 MyApp({Key key}) : super(key : key);
	 @override
	 _MyApp createState() => _MyApp();
}

class _MyApp extends State {
	 var _currentPage = 0;

	 var _pages = [
	 	 Text("Page 1 – Announcements"),
	 	 Text("Page 2 – Birthdays"),
	 Text("Page 3 – Data")
];

	 @override
	 Widget build(BuildContext context) {
	 	 return MaterialApp(title : "Flutter Playground",
			 home : Scaffold(
	 	 	 	 body : Center(child : _pages.elementAt(_currentPage)),
	 	 	 	 bottomNavigationBar : BottomNavigationBar(
	 	 	 	 	 items : [
	 	 	 	 	 	 BottomNavigationBarItem(
	 	 	 	 	 	 	 icon : Icon(Icons.announcement),
	 	 	 	 	 	 	 title : Text("Announcements")
),
	 	 	 	 	 	 BottomNavigationBarItem(
	 	 	 	 	 	 	 icon : Icon(Icons.cake),
	 	 	 	 	 	 	 title : Text("Birthdays")
),
	 	 	 	 	 	 BottomNavigationBarItem(
	 	 	 	 	 	 	 icon : Icon(Icons.cloud),
	 	 	 	 	 	 	 title : Text("Data")
),
],

97

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I
	 	 	 	 	 currentIndex : _currentPage,
	 	 	 	 	 fixedColor : Colors.red,
	 	 	 	 	 onTap : (int inIndex) {
	 	 	 	 	 	 setState(() { _currentPage = inIndex; });
					 }
)
)
);
	 }
}

На рис. 3-4 показано, что производит этот код.

Рисунок 3-4. Виджет BottomNavigationBar

Итак, мы начнем с создания виджета с состоянием. Это необходимо, потому
что виджет верхнего уровня создается один раз, и если он не имеет состояния,
то при нажатии на вкладку ничего не изменится. Следовательно, мы должны
сделать виджет с состоянием, чтобы обеспечить корректное поведение. Вы
помните, что при работе с состоянием необходимо создавать два класса: пер-
вый должен наследоваться от StatefulWidget, а второй от State. Это может по-
казаться странным (по мне, так точно!), но класс _MyApp, который на самом деле

98

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

определяет вкладки на панели, наследуется от State, а не от StatefulWidget.
Считаете вы это странным или нет, но фишка в том, чтобы распознать паттерн.
Обычно класс StatefulWidget выглядит так, как показано в примере, а класс
State похож на наследников StatelessWidget, которых вы уже видели ранее.

Переменная, которая хранит текущий индекс, находится в классе _MyApp
и называется _currentPage. Это значение передается методу elementAt() из
списка _pages. А уже это определяет, какой именно элемент отображается внут
ри виджета Center (который может быть целым набором виджетов, а не одним
Text). Свойство bottomNavigationBar виджета Scaffold принимает в качестве
значения экземпляр BottomNavigationBar, в котором есть свойство items. Это
свойство представляет собой список виджетов BottomNavigationBarItem. Каж-
дый из них может иметь значок и заголовок. Flutter поставляет набор иконок
в классе Icons, поэтому вам не нужно париться по этому поводу! Так что вам
не придется запоминать или искать значки, когда они вам понадобятся! Свой-
ство currentIndex элемента BottomNavigationBar сообщает нам, какой из эле-
ментов на панели выбран в настоящий момент, а свойство fixedColor задает
цвет выбранному элементу.

Теперь, когда пользователь нажимает на один из элементов, ничего не проис-
ходит. Чтобы исправить это, существует свойство onTap. Это функция, которой
передается индекс выбранного элемента. Теперь мы знаем, какой элемент из
_pages нужно отобразить, но как обновится значение _currentPage? Здесь в игру
вступает метод setState(), расширяющий класс State. Все, что нам нужно сде-
лать, – это вызвать этот метод и обновить в нем переменную _currentPage. Вид-
жет сам обновится. Поскольку _currentPage теперь другой, то пользователь пе-
рейдет на новую страницу.

TabBar (CupertinoTabBar) и TabBarView (CupertinoTabView)
Другой вездесущий элемент навигации – это TabBar и его эквивалент iOS Cupertino
TabBar. Вместе с ними используются виджеты TabBarView и CupertinoTabView
соответственно (обратите внимание, что здесь и далее мы будем говорить
только о TabBar и TabBarView, но все сказанное относится к CupertinoTabBar
и CupertinoTabView).

TabBarView представляет собой стек экранов (или views, если хотите), где
виден только один, а пользователь может перемещаться между ними. Чтобы
увидеть остальные экраны, нужно взаимодействовать с TabBar. Нужно тапнуть
на значок одной из вкладок или свайпнуть для переключения между ними.
Обычно между экранами есть анимация, например слайд.

Давайте рассмотрим пример в листинге 3-5 и на рис. 3-5.

Листинг 3-5. Виджет TabBar

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

99

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I
	 @override
	 Widget build(BuildContext context) {

		 return MaterialApp(
	 	 	 home : DefaultTabController(
	 	 	 	 length : 3,
				 child : Scaffold(
	 	 	 	 	 appBar : AppBar(title : Text("Flutter Playground"),
						 bottom : TabBar(
	 	 	 	 	 	 	 tabs : [
	 	 	 	 	 	 	 	 Tab(icon : Icon(Icons.announcement)),
	 	 	 	 	 	 	 	 Tab(icon : Icon(Icons.cake)),
	 	 	 	 	 	 	 	 Tab(icon : Icon(Icons.cloud))
]
)
),
	 	 	 	 	 body : TabBarView(
	 	 	 	 	 	 children : [
	 	 	 	 	 	 	 Center(child : Text("Announcements")),
	 	 	 	 	 	 	 Center(child : Text("Birthdays")),
	 	 	 	 	 	 	 Center(child : Text("Data"))
]
)
)
)
);
	 }
}

Виджет TabController будет сам отвечать за отслеживание текущей вкладки
и отображение содержимого каждой из них. Вы можете создать его вручную,
но это потребует дополнительной работы, поэтому большую часть времени вы
просто будете использовать виджет DefaultTabController в качестве значения
свойства home виджета MaterialApp, который обо всем позаботится.

100

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

Рисунок 3-5. Виджет TabBar

Однако, сделав это, вы должны сообщить TabController через свойство length
о том, сколько всего вкладок существует. После этого вам нужно описать каждую
вкладку для TabController, которому вы предоставляете массив (свойство tabs),
где каждый элемент – это виджет Tab. Здесь мы просто указываем значок для
каждого.

Как только сами вкладки определены в TabController, мы должны указать
контент для каждой из них, и это делается с помощью установки виджета
TabBarView в качестве свойства body. Каждый дочерний элемент в списке мо-
жет быть настолько сложным деревом виджетов, насколько вам нужно. В при-
мере выше заданы же только виджеты Center с дочерними Text внутри.

Далее взаимодействие между вкладками происходит автоматически, и поль-
зователь может свободно перемещаться между ними.

Stepper
Последний виджет навигации, который я хочу обсудить, – это виджет Stepper.
Он необходим, чтобы провести пользователя через определенную последова-
тельность событий. Представьте себе процесс покупки на Amazon или у дру-
гого онлайн-продавца. Сначала необходимо ввести информацию о доставке,
потом нажать кнопку Продолжить. Затем вы вводите информацию об оплате
и нажимаете кнопку Продолжить. Наконец, вы должны решить, нужна ли вам
подарочная упаковка и другие услуги. Вы нажимаете кнопку в последний раз

101

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

и делаете заказ. Это последовательность из трех шагов, а Stepper обеспечивает
ту же функциональность в приложении Flutter.

Посмотрите на пример этого кода в листинге 3-6.

Листинг 3-6. Шаг за шагом с виджетом Stepper

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatefulWidget {
	 MyApp({Key key}) : super(key : key);
	 @override
	 _MyApp createState() => _MyApp();
}

class _MyApp extends State {

	 var _currentStep = 0;

	 @override
	 Widget build(BuildContext context) {
	 	 return MaterialApp(title : "Flutter Playground",
			 home : Scaffold(
	 	 	 	 appBar : AppBar(title : Text("Flutter Playground")),
	 	 	 	 body : Stepper(
	 	 	 	 	 type : StepperType.vertical,
	 	 	 	 	 	 currentStep : _currentStep,
	 	 	 	 	 onStepContinue : _currentStep < 2 ?
	 	 	 	 	 	 () => setState(() => _currentStep += 1) : null,
	 	 	 	 	 onStepCancel : _currentStep > 0 ?
	 	 	 	 	 	 () => setState(() => _currentStep -= 1) : null,
	 	 	 	 	 steps : [
						 Step(
	 	 	 	 	 	 	 title : Text("Get Ready"), isActive : true,
	 	 	 	 	 	 	 content : Text("Let’s begin...")
),
						 Step(
	 	 	 	 	 	 	 title : Text("Get Set"), isActive : true,
	 	 	 	 	 	 	 content : Text("Ok, just a little more...")
),
						 Step(
	 	 	 	 	 	 	 title : Text("Go!"), isActive : true,
	 	 	 	 	 	 	 content : Text("And, we’re done!")
)
]
)
)

102

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I
);
	 }
}

На рис. 3-6 показано, как это выглядит.

Рисунок 3-6. Мы уже столько нашагали (и это только разминка)!

Пока мы не доберемся до Stepper, вложенного в Scaffold, большая часть
кода должна быть вам более-менее понятна. Сначала укажите, хотите ли вы,
чтобы ваши шаги отображались вертикально или горизонтально через свой-
ство type. С помощью переменной _currentStep укажите, на каком этапе на-
ходится пользователь в данный момент. Это виджет с состоянием, так как зна-
чение переменной _currentStep определяет то, какой шаг отображается, что
точно соответствует понятию «состояние» во Flutter.

Еще нам следует предоставить код для Stepper, обрабатывающий нажатия
пользователя на кнопки Continue (Продолжить) и Cancel (Отмена), реализован-
ные Stepper. Значение _currentStep увеличивается при нажатии кнопки Continue,
пока мы не окажемся на последнем шаге, и уменьшается при нажатии кнопки
Cancel, пока мы не вернемся к первому этапу. Это позволяет пользователю произ-
вольно перемещаться по последовательности.

Далее нам нужно определить шаги последовательности; каждый шаг пред-
ставлен виджетом Step. Он принимает текст заголовка, чтобы отобразить его
рядом с кругом. Свойство isActive делает серым виджет отдельного шага,
если установлено значение false (обратите внимание, что это ничего не ме-

103

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

няет, кроме изменения цвета круга – ваш код должен сам обрабатывать необ-
ходимые вам сценарии). После этого мы определяем контент, который может
быть таким сложным деревом виджетов, каким захотите.

Каждый Step может иметь подзаголовок (свойства subtitle), если необхо-
димо, и свойство state, которые определяют стиль компонента и возможность
взаимодействовать с ним. Опять же, ваш код должен обеспечивать функцио-
нальность для поддержки этого процесса. Также обратите внимание, что вид-
жет Stepper предоставляет свойство onStepTapped, которое представляет со-
бой функцию, вызываемую нажатием пользователя на один из шагов. Очевид-
но, что чаще всего вы пишете код для прямого перехода к выбранному шагу.

Ввод данных
Виджеты ввода (input) используются для получения данных, введенных поль-
зователем (очевидно!). Flutter предоставляет широкий спектр таких виджетов,
некоторые из них могут вас удивить.

Form (форма)
Во Flutter рассмотрение механизмов ввода данных начинается с виджета Form.
Что не совсем верно, ведь Form не является обязательным. Но поскольку он
предлагает такую опцию и часто используется для ввода данных, давайте по-
говорим о нем, как если бы он был для нас обязательным!

Form – это контейнер для полей формы: есть виджет FormField, который обо-
рачивает все поля ввода и делает их дочерними. Преимущество этого виджета
в том, что он предоставляет вам расширенные возможности, такие как сохра-
нение данных, их сброс и валидацию. Без Form нам пришлось бы реализовывать
это вручную, так почему бы не использовать готовое решение?

Давайте рассмотрим пример Form – это типичная форма ввода, которая так-
же продемонстрирует и другие механизмы, связанные с вводом данных.

Листинг 3-7. Виджет Form и его элементы

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatefulWidget {
	 MyApp({Key key}) : super(key : key);
	 @override
	 _MyApp createState() => _MyApp();
}

class LoginData {
	 String username = "";
	 String password = "";
}

104

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I
class _MyApp extends State {

	 LoginData _loginData = new LoginData();
	 GlobalKey<FormState> _formKey = new GlobalKey<FormState>();

	 @override
	 Widget build(BuildContext inContext) {
		 return MaterialApp(home : Scaffold(
	 	 	 body : Container(
	 	 	 	 padding : EdgeInsets.all(50.0),
	 	 	 	 child : Form(
	 	 	 	 	 key : this._formKey,
	 	 	 	 	 child : Column(
	 	 	 	 	 	 children : [
	 	 	 	 	 	 	 TextFormField(
	 	 	 	 	 	 	 	 keyboardType :
	 	 	 	 	 	 	 	 	 TextInputType.emailAddress,
	 	 	 	 	 	 	 	 validator : (String inValue) {
	 	 	 	 	 	 	 	 	 if (inValue.length == 0) {
										 return "Please enter username";
									 }
									 return null;
	 	 	 	 	 	 	 	 },
	 	 	 	 	 	 	 	 onSaved: (String inValue) {
	 	 	 	 	 	 	 	 	 this._loginData.username = inValue;
	 	 	 	 	 	 	 	 },
	 	 	 	 	 	 	 	 decoration : InputDecoration(
	 	 	 	 	 	 	 	 	 hintText : "none@none.com",
	 	 	 	 	 	 	 	 	 labelText : "Username (eMail address)"
)
),
	 	 	 	 	 	 	 TextFormField(
	 	 	 	 	 	 	 	 obscureText : true,
	 	 	 	 	 	 	 	 	 validator : (String inValue) {
	 	 	 	 	 	 	 	 	 	 if (inValue.length < 10) {
	 	 	 	 	 	 	 	 	 	 	 return "Password must be >=10 in length";
										 }
										 return null;
	 	 	 	 	 	 	 	 	 },
	 	 	 	 	 	 	 	 	 onSaved : (String inValue) {
	 	 	 	 	 	 	 	 	 	 this._loginData.password = inValue;
	 	 	 	 	 	 	 	 	 },
	 	 	 	 	 	 	 	 	 decoration : InputDecoration(
	 	 	 	 	 	 	 	 	 	 hintText : "Password",
	 	 	 	 	 	 	 	 	 	 labelText : "Password"
)

105

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I
),
								 RaisedButton(
	 	 	 	 	 	 	 	 	 child : Text("Log In!"),
	 	 	 	 	 	 	 	 	 onPressed : () {
	 	 	 	 	 	 	 	 	 	 if (_formKey.currentState.validate()) {
	 	 	 	 	 	 	 	 	 	 	 _formKey.currentState.save();
	 	 	 	 	 	 	 	 	 	 	 print("Username: ${_loginData.username}");
	 	 	 	 	 	 	 	 	 	 	 print("Password: ${_loginData.password}");
										 }
									 }
)
]
)
)
)
));
	 }
}

Посмотрите на результат выполнения этого кода на рис. 3-7. Это не супер-
круто, но приятно видеть, что код делает именно то, что вы от него хотите.

Рисунок 3-7. Виджет Form

106

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

Следом за стандартными функциями import и main() мы имеем дело со
Stateful Widget, поэтому у нас есть обычное определение класса для него. Но,
прежде чем мы дойдем до класса State, который, как вы знаете, идет вместе
с ними, рассмотрим еще один небольшой класс: LoginData. Экземпляр это-
го класса будет хранить введенные имя пользователя и пароль. Это типичный
шаблон при работе с формами Flutter. Он хорош тем, что упрощает работу, объ-
единяя все входные данные в одном объекте.

Далее идет класс состояния (State) _MyApp. Он выглядит так же, как и любой
другой класс с состоянием, который вы видели ранее, но здесь есть несколь-
ко отличий. Во-первых, у нас есть экземпляр LoginData, о котором я упоми-
нал. Затем идет GlobalKey – уникальный ключ, который не повторяется ни-
где в текущем приложении. Обычно такой ключ используется в качестве поля
key у виджета, что необходимо для замены одного виджета другим в дереве
виджетов. Если тип (runtimeType) и ключ (key) этих виджетов равны, то новый
виджет заменяет старый, обновляя родительский элемент. В противном слу-
чае старый элемент удаляется из дерева объектов, а вместо него создается но-
вый и вставляется в дерево. Использование GlobalKey в качестве ключа (в от-
личие от LocalKey, который обеспечивает уникальность только в текущем ро-
дительском элементе) позволяет элементу перемещаться по дереву виджетов
без потери состояния. Когда найден новый виджет (это означает, что его key
и runtimeType не совпадают с предыдущим виджетом в том же месте дерева)
с тем же GlobalKey в другом месте дерева, то новый виджет перемещается на
его место.

Хотелось бы сказать, что свойство key чрезвычайно полезно, потому что оно
дает возможность перемещать виджеты, не изменяя их состояние, хотя, если
честно, этим редко пользуются. Например, добавьте новую переменную в класс
_MyApp следующим образом:

GlobalKey _btnKey = newGlobalKey();

Затем в RaisedButton добавьте key, ссылающийся на него:

key: _btnKey,

Наконец, в обработчике onPressed кнопки сделайте следующее:

print ((
	 _btnKey.currentWidget as RaisedButton).child as Text).data
);

Результатом будет выведенный из данного виджета текст. Чтобы все рабо-
тало, мы должны привести _btnKey.currentWidget к RaisedButton, используя
ключевое слово as, так как currentWidget – это Widget, который не имеет свой-
ства Text. После приведения можно увидеть свойство data, это будет наш текст.
Таким образом, если вы знаете ключ (будь то GlobalKey или LocalKey), то може-
те получить доступ к любому свойству любого виджета или выполнить вызов
его методов. Но я думаю, что не стоит делать подобное, это чуждо реактивной

107

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

природе Flutter. Для управления такими взаимодействиями принято исполь-
зовать состояние. Но это будет козырем в вашем рукаве. А еще использование
key поможет вам лучше понять внутренности Flutter.

Далее идет метод build(). Он выглядит знакомо, но теперь у нас в дереве
есть виджет Form. Обычно виджет, который является единственным дочерним
элементом другого виджета, не нуждается в названии, поэтому вы не видели
свойство key ранее, но оно является ссылкой на _formKey.

Как видите, у Form есть свойство child, поэтому если мы хотим задать в Form
несколько полей, мы просто добавим контейнер, в данном случае Column.

В этом Column есть три поля ввода и кнопка Log In. Первые два используют
виджет TextFormField, эффективно объединяющий два других: FormField, ко-
торый должен оборачивать все поля в форме, и TextField – виджет для ввода
текста пользователем (есть также соответствующий CupertinoTextField). Имя
пользователя является TextFormField; поскольку именем пользователя часто
является email (распространенная, но не особенно хорошая практика, не обес
печивающая безопасность), то мы хотим, чтобы отображаемая клавиатура
была удобна для ввода электронной почты. Свойство keyboardType позволяет
нам это сделать. В классе TextInputType есть несколько констант для различ-
ных типов клавиатуры, в данном случае применяется emailAddress.

Виджет TextFormField также имеет свойство validator, которое определяет
функцию, выполняющую проверку поля при нажатии кнопки Log In. Эта функ-
ция может делать все, что вы хотите, но она должна либо вернуть строку с со-
общением об ошибке (красный текст под полем ввода), либо null, если ошибок
нет.

Обратите внимание, что сами данные в поле никогда нигде не сохраняются;
они только временно существуют в Form. Это не очень хорошо, и чтобы решить
эту проблему, нам нужно реализовать функцию для свойства onSaved. Она бу-
дет срабатывать при вызове у Form метода save(), позже вы увидите, как это
происходит (на самом деле вызов произойдет не в самой Form, но это вы тоже
увидите в ближайшее время). Функция обработчика onSaved просто сохранит
значение inValue, переданное в поле username объекта _loginData.

Хотя это и необязательно, но можно использовать свойство InputDecoration
для изменения стиля текста. Также часто используется свойство hintText для
отображения подсказки (отображается в поле, пока ничего не введено) и свой-
ство labelText, надпись, отображаемая над полем.

Поле пароля (password) аналогично полю имени пользователя (username), за
исключением того, что, будучи паролем, введенные пользователем символы
не должны отображаться на экране, поэтому свойство obscureText имеет зна-
чение true. Во втором случае у нас есть другая функция validator, выполняю-
щая проверку данных, и обработчик onSaved для сохранения данных, а также
экземпляр InputDecoration.

Наконец, мы переходим к кнопке Log In. С ней мы делаем пару интересных
вещей. Во-первых, вызывается метод validate() через переменную _formKey.
Она даст нам ссылку на виджет, внутри которого есть свойство currentState,

108

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

которое содержит значение, введенное в форме. Это объект (в нашем случае –
строка, введенная пользователем), для которого фактически вызывается ме-
тод validate() виджета, и так как каждое поле ввода имеет подобную функцию,
то мы можем пройтись по всем виджетам формы и провести проверку введен-
ных данных, при необходимости отображая ошибки. Также мы вызываем save()
у currentState, что приводит к тому, что все обработчики onSaved запускаются
и данные формы сохранятся в _loginData. Наконец, мы печатаем эту информа-
цию в консоль, чтобы убедиться, что все сработало должным образом.

Checkbox
Да, вы знакомы с Checkbox! Это маленький ящик, который нужно... подождите,
подождите... отметить!

Я очень рад, что у Flutter есть такой виджет, это действительно замеча-
тельно.

Примечание. Листинг 3-8 демонстрирует Checkbox, а также переключатель Switch, Slider и Radio,
а рис. 3-8 покажет, как это выглядит. В следующих разделах вы с ними познакомитесь.

Листинг 3-8. Checkbox, Switch, Slider и Radio

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatefulWidget {
	 MyApp({Key key}) : super(key : key);
	 @override
	 _MyApp createState() => _MyApp();
}

class _MyApp extends State {

	 GlobalKey<FormState> _formKey = new GlobalKey<FormState>();
	 var _checkboxValue = false;
	 var _switchValue = false;
	 var _sliderValue = .3;
	 var _radioValue = 1;

	 @override
	 Widget build(BuildContext inContext) {
		 return MaterialApp(home : Scaffold(
	 	 	 body : Container(
	 	 	 	 padding : EdgeInsets.all(50.0),
	 	 	 	 child : Form(
	 	 	 	 	 key : this._formKey,
	 	 	 	 	 child : Column(
	 	 	 	 	 	 children : [

109

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I
	 	 	 	 	 	 	 Checkbox(
	 	 	 	 	 	 	 	 value : _checkboxValue,
	 	 	 	 	 	 	 	 onChanged : (bool inValue) {
	 	 	 	 	 	 	 	 	 setState(() { _checkboxValue = inValue; });
								 }
),
							 Switch(
	 	 	 	 	 	 	 	 value : _switchValue,
	 	 	 	 	 	 	 	 onChanged : (bool inValue) {
	 	 	 	 	 	 	 	 	 setState(() { _switchValue = inValue; });
								 }
),
							 Slider(
	 	 	 	 	 	 	 	 min : 0, max : 20,
	 	 	 	 	 	 	 	 value : _sliderValue,
	 	 	 	 	 	 	 	 onChanged : (inValue) {
	 	 	 	 	 	 	 	 	 setState(() => _sliderValue = inValue);
								 }
),
	 	 	 	 	 	 	 Row(children : [
	 	 	 	 	 	 	 	 Radio(value : 1, groupValue : _radioValue,
	 	 	 	 	 	 	 	 onChanged : (int inValue) {
	 	 	 	 	 	 	 	 	 setState(() { _radioValue = inValue; });
								 }
),
	 	 	 	 	 	 	 Text("Option 1")
]),
	 	 	 	 	 	 Row(children : [
	 	 	 	 	 	 	 Radio(value : 2, groupValue : _radioValue,
	 	 	 	 	 	 	 	 onChanged : (int inValue) {
	 	 	 	 	 	 	 	 	 setState(() { _radioValue = inValue; });
								 }
),
	 	 	 	 	 	 	 Text("Option 2")
]),
	 	 	 	 	 	 Row(children : [
	 	 	 	 	 	 	 Radio(value : 3, groupValue : _radioValue,
	 	 	 	 	 	 	 	 onChanged : (int inValue) {
	 	 	 	 	 	 	 	 	 setState(() { _radioValue = inValue; });
								 }
),
	 	 	 	 	 	 	 Text("Option 3")
])
]
)

110

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I
)
)
));
}

Рисунок 3-8. Группа виджетов Checkbox, Switch, Slider и Radio

Да, это все! Если StatefulWidget содержит переменную checkboxValue, зна-
чит, все идет хорошо. Кроме того, вы можете реализовать функцию onChanged,
чтобы описать дополнительную логику при изменении состояния. И у Checkbox
есть специальное свойство tristate типа bool, которое допускает три значе-
ния: отмеченный (true), неотмеченный (false) и null. Последнее состояние бу-
дет отображаться пунктиром.

Следует отметить, что виджет Checkbox не поддерживает отображения тек-
стовой подсказки, хотя это часто встречается в таких компонентах. Чтобы до-
стичь этого, вам нужно создать текст самостоятельно, поместив Checkbox и вид-
жет Text в контейнер Row (при условии что вы хотите добавить метку рядом
с Checkbox, в противном случае используйте Column или другую структуру ком-
поновки).

Switch (CupertinoSwitch)
Виджет Switch и его аналог для iOS CupertinoSwitch похож на Checkbox, но
с другим визуальным представлением: он выглядит как маленький переклю-

111

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

чатель. Фактически, если вы вернетесь к коду и замените Checkbox на Switch,
все будет работать!

Обратите внимание, что если значение свойства onChanged не задано (уста-
новлено в null), Switch будет отключен и не будет реагировать на взаимодей-
ствие с пользователем, так же как и Checkbox.

Slider (CupertinoSlider)
Виджет Slider представляет собой ползунок, который пользователь передви-
гает для выбора значения из предопределенного диапазона. CupertinoSlider –
это версия для iOS, и работает она аналогично. Вот вам пример:

Slider(
	 min : 0, max : 20,
	 value : _sliderValue,
	 onChanged : (inValue) {
	 	 setState(() => _sliderValue = inValue);
})

Свойства min и max определяют нижний и верхний пределы диапазона зна-
чений, между которыми находится текущее значение. Это главные свойства
Slider. Так как Slider – это StatefulWidget, то его текущее значение должно
быть переменной в текущем State. Наконец, onChanged требуется для установки
значения в State при перемещении Slider.

Существуют такие свойства, как activeColor и inactiveColor для настройки
цвета активной и неактивной частей Slider. Вы также можете задать количес
тво делений в пределах диапазона (при нулевом значении Slider автоматиче-
ски создает деления, представляющие собой непрерывный и дискретный набор
значений в диапазоне от минимального до максимального значений). Сущест
вуют также обработчики событий, когда пользователь начинает перемещать
Slider(onChangeStart) и когда он его отпускает (onChangeEnd).

Radio
О подобном размышлять немного странно, но я в таком возрасте, что могу нос
тальгировать по временам, когда были автомобильные радиоприемники с ря-
дом кнопок, по одной на сохраненную радиостанцию, и когда вы нажмете одну,
остальные выскочат обратно. Держу пари, что многие из вас никогда такого не
видели! А вот во Flutter есть виджет под названием Radio, который работает по
тому же принципу!

Виджет Radio очень похож на CheckBox или Switch, но, в отличие от них, он
никогда не существует самостоятельно. В виджете Radio всегда есть один или
несколько родственных виджетов Radio, и они являются взаимоисключающи-
ми: выбор одного любого Radio приводит к отмене выбора другого в его группе.

Column(children : [
	 Row(children : [

112

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I
	 	 Radio(value : 1, groupValue : _radioValue,
	 	 	 onChanged : (int inValue) {
	 	 	 	 setState(() { _radioValue = inValue; });
			 }
),
	 	 Text("Option 1")
]),
	 Row(children : [
	 	 Radio(value : 2, groupValue : _radioValue,
	 	 	 onChanged : (int inValue) {
	 	 	 	 setState(() { _radioValue = inValue; });
			 }
),
	 	 Text("Option 2")
]),
	 Row(children : [
	 	 Radio(value : 3, groupValue : _radioValue,
	 	 	 onChanged : (int inValue) {
	 	 	 	 setState(() { _radioValue = inValue; });
			 }
),
	 	 Text("Option 3")
])
])

Здесь присутствуют три виджета Radio, каждый со своим текстовым обозначе-
нием. Обратите внимание, что у всех одинаковое значение свойства groupValue.
Так задумано: благодаря тому что все они имеют одну и ту же ссылку _radioValue,
они становятся частью одной и той же группы, что передает им взаимную ис-
ключительность (один включили, остальные выключились), о которой я упоми-
нал. У каждого из них есть свое значение, поэтому при выборе первого Radio его
значение передается в _radioValue благодаря вызову setState() в обработчике
onChanged. Код, использующий виджеты Radio, может проверить это значение,
чтобы определить, какое из них было выбрано.

Выбор даты и времени (CupertinoDatePicker, CupertinoTimerPicker)
Выбор даты и времени в приложении – это обычное дело, поэтому и Flutter пре-
доставляет для этого готовые виджеты. Точнее, он предоставляет функции вызо-
ва, чтобы показать компоненты пользовательского интерфейса для этой цели, по
крайней мере на Android. На этой платформе у нас есть функции showDatePicker()
и showTimePicker(), как в листинге 3-9.

Листинге 3-9. Выбор даты и времени

import "package:flutter/material.dart";

113

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I
void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
	 @override
	 Widget build(BuildContext context) {
	 	 return MaterialApp(home : Scaffold(body : Home()));
	 }
}

class Home extends StatelessWidget {

	 Future<void> _selectDate(inContext) async {
	 	 DateTime selectedDate = await showDatePicker(
	 	 	 context : inContext,
	 	 	 initialDate : DateTime.now(),
	 	 	 firstDate : DateTime(2017),
	 	 	 lastDate : DateTime(2021)
);
	 	 print(selectedDate);
	 }

	 Future<void> _selectTime(inContext) async {
	 	 TimeOfDay selectedTime = await showTimePicker(
	 	 	 context : inContext,
	 	 	 initialTime : TimeOfDay.now(),
);
	 	 print(selectedTime);
	 }
	 @override
	 Widget build(BuildContext inContext) {
		 return Scaffold(
	 	 	 body : Column(
	 	 	 	 children : [
	 	 	 	 	 Container(height : 50),
					 RaisedButton(
	 	 	 	 	 	 child : Text("Test DatePicker"),
	 	 	 	 	 	 onPressed : () => _selectDate(inContext)
),
					 RaisedButton(
	 	 	 	 	 	 child : Text("Test TimePicker"),
	 	 	 	 	 	 onPressed : () => _selectTime(inContext)
)
]
)
);
	 }
}

114

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

Обе эти функции асинхронны, поэтому мы используем методы _selectDate()
и _selectTime(), которые вызываются двумя кнопками в основном макете.

Рисунок 3-9. Выбор даты и времени

Как видите (и в коде, и на рис. 3-9), они используют showDatePicker() и show
TimePicker(). Для первого требуется контекст сборки, initialDate, выбранный
по умолчанию, а также firstDate и lastDate, которые предоставляют выбор
(в данном случае – годы). Объект DateTime возвращается и отображается. Для
showTimePicker() необходимы только контекст сборки и initialTime.

Виджеты CupertinoDatePicker и CupertinoTimerPicker для iOS представля-
ют собой обычные виджеты, поэтому функции для их вызова не нужны.

Обратите внимание, что есть три других способа выбрать дату, доступных
на Android: DayPicker для выбора дня месяца, MonthPicker для выбора месяца
и YearPicker для выбора года.

Dismissible
Виджет Dismissible – это элемент, от которого пользователь может избавить-
ся, смахнув его в заданном направлении. У виджета есть свойство direction,
которое определяет, в каком направлении его можно перетащить. Когда поль-
зователь перетаскивает его, дочерний элемент выходит из поля зрения, и если
необязательное свойство resizeDirection не равно null, Dismissible аними-
рует его высоту или ширину, в зависимости от того, что перпендикулярно на-
правлению отклонения.

Вот пример:

115

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I
Dismissible(
	 key : GlobalKey(),
	 onDisDisDismissed : (direction) { print("Goodbye!"); },
	 child : Container(
	 	 color : Colors.yellow, width : 100, height : 50,
	 	 child : Text("Swipe me")
)
)

Если хотите, вы также можете добавить специальный «фоновый виджет» с по-
мощью свойства background. В этом случае указанный виджет прячется под до-
черним элементом Dismissible и отображается, когда этот дочерний элемент пе-
ретаскивают.

Функция onDismissed будет вызываться при изменении размеров виджета
до нуля, если задано свойство resizeDuration, или сразу после анимации пе-
ретаскивания, если не задано. Поле Key также должно быть определено, чтобы
этот метод сработал; в показанном примере он не участвует, вместо него я ис-
пользую экземпляр GlobalKey.

Диалоговые и всплывающие окна
Существуют способы взаимодействия с пользователем, чтобы показать ему
контент, не являющийся частью текущей страницы. В общем, это диалоги (dia
logs), в которых мы запрашиваем сведения, всплывающие окна (popups), где
показываем срочную информацию, которая требует внимания, и сообщения
(messages), в них вы встретите быстрые и временные фрагменты информации.

Tooltip
Виджет Tooltip (подсказка) удобен для отображения описания какого-либо
другого виджета, когда вы выполняете соответствующее действие (например,
длительное нажатие кнопки). Вы оборачиваете целевой виджет в Tooltip, на-
пример так:

Tooltip(
	 message : "Tapping me will destroy the universe. Ouch!",
	 child : RaisedButton(
	 	 child : Text("Do Not Tap!"),
	 	 onPressed : () { print("BOOM!"); }
)
)

На самом деле некоторые виджеты предусматривают всплывающие подсказ-
ки, которые автоматически оборачивают виджет в Tooltip, но вы также можете
сделать это вручную.

116

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

Обычно всплывающая подсказка отображается под виджетом, который она
оборачивает, но вы можете установить значение false для ее свойства preferBelow,
чтобы отменить ее (это произойдет автоматически, если для ее отображения не-
достаточно места). Вы также можете настроить свойство verticalOffset, чтобы
определить расстояние между всплывающей подсказкой и ее целевым видже-
том.

SimpleDialog (CupertinoDialog)
SimpleDialog – это всплывающий элемент, который предлагает пользователю
выбор между несколькими вариантами. SimpleDialog может иметь текст заго-
ловка, который отображается над параметрами. Обычно выбор визуализиру-
ется с помощью виджета SimpleDialogOption. Экземпляр SimpleDialog переда-
ется в функцию showDialog() для отображения, как показано в листинге 3-10.

Листинг 3-10. SimpleDialog

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
	 @override
	 Widget build(BuildContext context) {
	 	 return MaterialApp(home : Scaffold(body : Home()));
	 }
}

class Home extends StatelessWidget {
	 @override
	 Widget build(BuildContext inContext) {

	 	 Future _showIt() async {
	 	 	 switch (await showDialog(
	 	 	 	 context : inContext,
	 	 	 	 builder : (BuildContext inContext) {
	 	 	 	 	 return SimpleDialog(
	 	 	 	 	 	 title : Text("What’s your favorite food?"),
	 	 	 	 	 	 children : [
	 	 	 	 	 	 	 SimpleDialogOption(
	 	 	 	 	 	 	 	 onPressed : () {
	 	 	 	 	 	 	 	 	 Navigator.pop(inContext, "brocolli");
	 	 	 	 	 	 	 	 },
	 	 	 	 	 	 	 	 child : Text("Brocolli")
),
	 	 	 	 	 	 	 SimpleDialogOption(
	 	 	 	 	 	 	 	 onPressed : () {
	 	 	 	 	 	 	 	 	 Navigator.pop(inContext, "steak");

117

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I
	 	 	 	 	 	 	 	 },
	 	 	 	 	 	 	 	 child : Text("Steak")
)
]
);
				 }
)) {
	 	 	 	 case "brocolli": print("Brocolli"); break;
	 	 	 	 case "steak": print("Steak"); break;
			 }
		 }
		 return Scaffold(
	 	 	 body : Center(
				 child : RaisedButton(
	 	 	 	 	 child : Text("Show it"),
					 onPressed : _showIt
)
)
);
	 }
}

Как это выглядит на экране, можно увидеть на рис. 3-10.

Рисунок 3-10. Простой SimpleDialog

118

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

Когда RaisedButton нажата, он вызывает функцию _timeForADialog(). Эта
функция ожидает возвращаемого значения из showDialog() в качестве значения
оператора switch. Когда пользователь тапает по одному из параметров, диалог
должен быть скрыт, за что отвечает вызов Navigator.pop(). В этот момент dialog
находится в верхней части стека навигации, следовательно, pop() его скрывает.
Второй аргумент pop() – возвращаемое значение, которое затем обрабатывают
два оператора case, чтобы вывести print() на консоль.

Существует виджет CupertinoDialog и соответствующий виджет Cupertino
DialogAction для обеспечения такого же вида диалога на iOS, и работают они
аналогичным образом.

Примечание. Структура здесь немного отличается от того, что вы видели раньше. Причина в том, что если вы
попытаетесь вызвать showDialog() непосредственно из обработчика onPressed от RaisedButton,
то обнаружите ошибку, сообщающую о необходимости MaterialLocalization. Проблема в том, что
showDialog() должен вызываться в контексте сборки, где в качестве родительского элемента выступает
MaterialApp, который по умолчанию включает в себя виджет MaterialLocalization, связанный с
локализацией приложений. Контекст сборки внутри обработчика onPressed от RaisedButton не име-
ет такого элемента (даже если метод build() возвратил MaterialApp в качестве виджета верхнего
уровня, который представляет другой контекст сборки, нежели переданный в сам build()). Решение за-
ключается в создании виджета верхнего уровня MaterialApp, а затем свойства home как указателя на
другой виджет, в данном случае Scaffold, который содержит виджет Home в качестве дочернего элемен-
та (Scaffold здесь необязателен, но он необходим для других последующих примеров, которые будут на
этом основаны). Таким образом, контекст компоновки для виджета верхнего уровня применяется к вызову
showDialog(), у которого в качестве родительского элемента есть MaterialApp, и, таким образом,
ошибки исключаются. Хотя я не делал так в большинстве примеров кода, вы видите здесь более типичную
структуру. До сих пор это не имело значения, поэтому я сохраню код упрощенным (и продолжу так делать,
за исключением случаев, когда это имеет значение, как здесь).

AlertDialog (CupertinoAlertDialog)
AlertDialog очень похож на SimpleDialog, за исключением того, что он пред-
назначен для срочных ситуаций, которые требуют немедленного внимания и,
как правило, не требуют какого-либо другого двоичного выбора (или вообще
выбора). Основываясь на примере кода SimpleDialog, все, что нам нужно изме-
нить, – это функция _showIt():

_showIt() {
	 return showDialog(
	 	 context : inContext,
	 	 barrierDismissible : false,
	 	 builder : (BuildContext context) {
	 	 	 return AlertDialog(
	 	 	 	 title : Text("We come in peace..."),
	 	 	 	 content : Center(child :

119

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I
	 	 	 	 	 Text("...shoot to kill shoot to kill shoot to kill")
),
	 	 	 	 actions : [
	 	 	 	 	 FlatButton(
	 	 	 	 	 	 child : Text(‘’Beam me up, Scotty!"),
	 	 	 	 	 	 onPressed : () { Navigator.of(context).pop(); }
)
]
);
		 }
);
}

Как и раньше, используется showDialog(), но на этот раз функция builder()
возвращает AlertDialog. С помощью свойства content мы сообщаем AlertDialog,
что отображать. Затем свойство actions позволяет нам предоставить массив
элементов, по которым пользователь может щелкнуть, в данном случае это Flat
Button. Как и в SimpleDialog, нам нужно убрать (pop()) диалоговое окно из стека
навигатора, но на этот раз возвращать нечего, поэтому второй аргумент не тре-
буется. Свойство barrierDismissable, установленное в false, обязует пользова-
теля тапнуть FlatButton; диалоговое окно не может быть закрыто, если щелк
нуть в другом месте экрана, как с SimpleDialog. Это подходит для информаци-
онного всплывающего окна, предназначенного для оповещения пользователя
о чем-то важном.

Обратите внимание, что существует версия этого диалога для iOS, которая
называется CupertinoAlertDialog, и вы используете ее точно так же.

SnackBar
SnackBar представляет собой компонент для оповещений, который показыва-
ет временное сообщение в нижней части экрана, которое, при желании, можно
закрыть. Основываясь на том же примере, что и для SimpleDialog и AlertDialog,
мы изменим функцию _showIt(), как показано здесь:

_showIt() {
	 Scaffold.of(inContext).showSnackBar(
		 SnackBar(
	 	 	 backgroundColor : Colors.red,
	 	 	 duration : Duration(seconds : 5),
	 	 	 content : Text("I like pie!"),
			 action : SnackBarAction(
	 	 	 	 label : "Chow down",
	 	 	 	 onPressed: () {
	 	 	 	 	 print("Gettin’ fat!");
				 }
)

120

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I
)
);
}е

На рис. 3-11 представлен результат.

Рисунок 3-11. Виджет SnackBar (внизу)

Мы должны использовать вызов Scaffold.of(inContext), чтобы получить
ссылку на Scaffold – родительский виджет, вызывающий эту функцию. Этот
Scaffold содержит метод showSnackBar(), который мы и вызываем. Мы можем
дополнительно установить backgroundColor, а также продолжительность, для по-
следнего требуется экземпляр класса Duration (который может принимать зна-
чения в разных форматах, таких как часы, минуты и секунды). Content – это текст,
отображаемый на SnackBar. Свойство action необязательно, но если оно присут-
ствует, отображается часть текста, на которую можно нажать. Обычно вы можете
скрыть SnackBar при нажатии, но ничто не заставляет вас на него нажимать. Если
вы этого не сделаете, то SnackBar автоматически исчезнет по истечении указан-
ной длительности (или продолжительности по умолчанию, если она не задана).

BottomSheet (CupertinoActionSheet)
Нижние шторки, предоставляемые виджетом BottomSheet (дословно: нижний
лист) и его аналогом для iOS CupertinoActionSheet, представляют собой вид-
жеты, отображаемые в нижней части экрана, чтобы показать пользователю
дополнительный контент и попросить его о выборе. Это нечто среднее меж-

121

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

ду SimpleDialog и SnackBar. Давайте продолжим изменять предыдущий при-
мер и снова перепишем функцию _showIt(), результаты которой показаны на
рис. 3-12.

_showIt() {
	 showModalBottomSheet(context : inContext,
	 	 builder : (BuildContext inContext) {
	 	 return new Column(
	 	 	 	 mainAxisSize : MainAxisSize.min,
	 	 	 	 children : [
	 	 	 	 	 Text("What’s your favorite pet?"),
	 	 	 	 	 FlatButton(child : Text("Dog"),
	 	 	 	 	 	 onPressed : () { Navigator.of(inContext).pop(); },
),
	 	 	 	 	 FlatButton(child : Text("Cat"),
	 	 	 	 	 	 onPressed : () { Navigator.of(inContext).pop(); },
),
	 	 	 	 	 FlatButton(child : Text("Ferret"),
	 	 	 	 	 	 onPressed : () { Navigator.of(inContext).pop(); }
)
]
);
		 }
);
}

Рисунок 3-12. BottomSheet... шторка не сверху или сбоку, а снизу!

ГЛАВА 3  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I

На самом деле есть два варианта BottomSheet, один из которых отображается
с помощью вызова showModalBottomSheet(), а другой – вызова showBottomSheet()
виджета Scaffold. Разница в том, что первый не позволяет пользователю взаи-
модействовать с другими частями приложения до тех пор, пока диалог не будет
скрыт (это называется модальный, modal), тогда как другой называется «постоян-
ный» (persistent), потому что он остается на экране до тех пор, пока не будет уда-
лен, но при этом не запрещает взаимодействие с другими элементами страницы.
В любом случае BottomSheet создаётся одинаково. Интерактивность отображае-
мого контента зависит только от вас. В этом примере у меня есть текстовый за-
головок с тремя виджетами FlatButton под ним. Нажатие на любой из них при-
водит к тому, что BottomSheet будет скрыт через вызов Navigator.of(inContext).
pop(), который вы уже видели несколько раз.

Подведем итоги главы
Это была большая глава! Я думаю, сейчас отличный момент, чтобы немного
отдохнуть.

В этой главе вы начали понимать то, какие виджеты предоставляет Flutter,
но впереди еще много интересного, включая дополнительные виджеты и раз-
ные API.

Итак, перекусите, сделайте растяжку, прогуляйтесь, если нужно, и встре-
тимся в главе 4!

123

ГЛАВА 4

СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ
ДРУГУ FLUTTER. ЧАСТЬ II

В последней главе вы начали изучение виджетов, с которыми работает Flutter.
А теперь мы продолжим их рассматривать и затем бегло пройдемся по неко-
торым API.

Виджеты стиля
Во Flutter богатая система стилизации виджетов различными способами.

Обратите внимание, что для следующих четырех разделов листинг 4-1, хотя
и не напечатан здесь, будет полностью рабочим примером. На рис. 4-1 пока-
зан результат его запуска, поэтому обращайтесь к этому скриншоту при про-
чтении следующих четырех разделов.

Рисунок 4-1. �Демонстрация следующих четырех разделов книги
(поверьте, в цвете это выглядит лучше)

124

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

Theme и ThemeData
Виджет Theme (тема) применяет тему к дочерним виджетам. Они включают
в себя цвета и настройки шрифтов.

Если посмотрите на виджет MaterialApp, то увидите, что у него есть свойство
theme, которое можно использовать для объявления темы, применяемой ко
всему приложению. Виджет Theme вступает в игру, когда вы хотите переопре-
делить тему во всем приложении для необходимого подмножества виджетов.
Или же вы можете просто обернуть все дерево виджетов приложения в виджет
Theme и применить тему таким образом.

Есть два варианта при работе с виджетом Theme: расширение родительской
темы или создание новой. Расширение родительской темы полезно, когда вы
хотите только изменить подмножество элементов. Сделать это легко:

Theme(
	 data : Theme.of(context).copyWith(accentColor : Colors.red),
	 child : // Ваше дерево виджетов будет стилизовано этой темой
)

Метод Theme.of() – это как спросить «эй, Flutter, какая тема подойдёт к это-
му виджету?» Независимо от того, у какого родительского виджета есть тема,
он найдет ее (и помните: даже если вы нигде не задаете тему намеренно, всег-
да есть тема по умолчанию). Этот метод возвращает объект ThemeData, у кото-
рого есть метод copyWith(), который возвращает новый объект ThemeData, но
все переданные ему свойства переопределяют то, что было в ней ранее. Здесь
мы заставляем свойство accentColor (новой ThemeData) использовать Colors.
red, переопределяя все, что было раньше. Теперь все виджеты под этим Theme
будут выделены красным цветом.

Создать совершенно новую Theme еще проще:

Theme(
	 data : ThemeData(accentColor : Colors.red),
	 child : // Ваше древо виджетов будет стилизовано этой темой
);

Не нужно получать родительский ThemeData; вы просто создаете новый эк-
земпляр и задаете желаемые свойства. ThemeData поддерживает много свойств,
даже слишком много, чтобы перечислять их здесь, поэтому вам нужно обра-
титься к документации по Flutter, чтобы увидеть, что именно там есть.

Теперь, когда вы определили виджет Theme, вы все равно должны использо-
вать его в отдельных виджетах. Но гораздо проще, когда Theme на месте:

Theme (
	 data : ThemeData(accentColor : Colors.red),
	 child : Container(
	 	 color : Theme.of(context).accentColor,
	 	 child : Text(

125

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II
	 	 	 "Text with a background color,"
	 	 	 style : Theme.of(context).textTheme.title,
)
)
)

Запомните ключевой момент: поскольку Container здесь обернут в Theme,
Theme.of(context) вернет ThemeData этой темы; если Container не был обер-
нут в Theme, то будут использоваться ThemeData уровня приложения для Theme
(указанные в свойстве theme виджета MaterialApp). Если тема не была указана
в MaterialApp, тогда Theme и ThemeData будут создаваться под капотом и исполь-
зоваться по умолчанию.

Opacity
Виджет Opacity (полупрозрачность) очень прост: он делает дочерний элемент
в нужной степени прозрачным. В качестве простой демонстрации замените
второй Text в предыдущем примере:

Opacity(opacity: .25, child : Text("Faded"))

При повторном запуске вы увидите, что текст теперь полупрозрачен (или
если сформулировать иначе: непрозрачен на 25 %, 100 % – полностью непро-
зрачен).

DecoratedBox
Виджет DecoratedBox – это именно то, что написано: коробка, которая украше-
на! Если подробнее, он «украшает» другой контейнерный виджет, дочерний
элемент DecoratedBox. Практически всегда вместе с DecoratedBox используется
виджет BoxDecoration, который определяет желаемое «украшение».

Рассмотрим пример:

DecoratedBox(
	 decoration : BoxDecoration(
	 	 gradient : LinearGradient(
	 	 	 begin : Alignment.topCenter,
	 	 	 end : Alignment.bottomCenter,
	 	 	 colors : [Color(0xFF000000), Color(0xFFFF0000)],
			 tileMode : TileMode.repeated
)
),
	 child : Container(width : 100, height : 100,
	 	 child : Text("Hello",
	 	 	 style : TextStyle(color : Colors.white)
)
)
)

126

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

Здесь мы оборачиваем DecoratedBox вокруг Container, который является ро-
дительским для виджета Text. Сам по себе DecoratedBox ничего не отобразит;
вот где начинает работать BoxDecoration. Нам нужно дать ему эту возможность,
для чего и предназначен Container. Text внутри – это просто дополнительный
бонус, показывающий, что декорируется именно Container, а не Text.

Когда мы решаем, как «украсить», в игру вступает свойство decoration, зна-
чением которого является виджет BoxDecoration. Он позволяет декорировать
цветом или изображениями (например, чтобы фоновое изображение было
применено к Container) либо играть с границами (например, с закругленными
углами) и применять тени или градиенты, последний из которых здесь пока-
зан. LinearGradient – это один из нескольких классов градиентов (в дополне-
ние к RadialGradient и SweepGradient), которые могут вам пригодиться. У него
вы можете задать место начала и окончания градиента, используемые цвета
и способ повторения градиента, если необходимо.

DecoratedBox в сочетании с BoxDecoration – это удобный и гибкий способ
добавления стилей любому элементу контейнера.

Transform
Виджет Transform (изменять) применяет своего рода геометрическое преобра-
зование к своему дочернему элементу. Практически любой вид преобразова-
ния может быть закодирован с его помощью. В качестве примера:

Center(
	 child : Container(
	 	 color : Colors.yellow,
		 child : Transform(
	 	 	 alignment : Alignment.bottomLeft,
	 	 	 transform : Matrix4.skewY(0.4)..rotateZ(-3 / 12.0),
	 	 	 child : Container(
	 	 	 	 padding : const EdgeInsets.all(12.0),
	 	 	 	 color : Colors.red,
	 	 	 	 child : Text("Eat at Joe’s!")
)
)
)
)

Показанный Transform вращает и наклоняет красное поле с желтым фоном,
на котором есть текст, сохраняя при этом нижний левый угол окна, прикреплен-
ный к его первоначальному расположению. Может, это и не особенно полезный
пример, но он демонстрирует возможности, которые предоставляет этот вид-
жет, если вы знакомы с матричными преобразованиями.

В дополнение к этому конструктору есть также Transform.rotate(), Transform.
scale() и Transform.translate(), каждый из которых возвращает виджет

127

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

Transform, специально настроенный на три наиболее распространенных типа
преобразований, а именно вращение, масштабирование и перемещение. Гото-
вые классы значительно проще в использовании, поскольку не требуют знания
матричных операций (они принимают простое подмножество аргументов, ко-
торое, если хотите, будет менее математическим), поэтому если вам нужен один
из этих распространенных типов преобразования, я очень рекомендую исполь-
зовать их вместо конструктора Transform().

Анимации и переходы
Анимации в пользовательском интерфейсе – это большой бизнес в наши дни!
Пользователи ждут, что их приложения будут визуально привлекательны.
Именно в этих целях Flutter предоставляет виджеты анимаций. Учитывая, что
демонстрация скриншотов на эту тему не имеет особого смысла, я их не при-
вожу. Но вы могли бы запустить Android Studio и создать базовый проект. Это
будет отличным упражнением, чтобы проверить ваше понимание и показать
вам, как все происходит.

AnimatedContainer
Для относительно простых анимаций идеально подходит виджет Animated
Container. Он постепенно меняет нужное свойство самого себя в течение опре-
деленного периода времени. Это происходит автоматически – вы просто задае-
те ему начальные, а затем конечные значения, и он будет анимировать нужное
свойство между этими значениями.

Вот простой пример:

class _MyApp extends State {

	 var _color = Colors.yellow;
	 var _height = 200.0;
	 var _width = 200.0;

	 @override
	 Widget build(BuildContext context) {
		 return MaterialApp(home : Scaffold(
	 	 	 body : Center(child : Column(
	 	 	 	 mainAxisAlignment : MainAxisAlignment.center,
	 	 	 	 children : [
	 	 	 	 	 AnimatedContainer(
	 	 	 	 	 	 duration : Duration(seconds : 1),
	 	 	 	 	 	 color : _color, width : _width, height : _height
),
					 RaisedButton(
	 	 	 	 	 	 child : Text("Animate!"),

128

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II
	 	 	 	 	 	 onPressed : () {
	 	 	 	 	 	 	 _color = Colors.red;
	 	 	 	 	 	 	 _height = 400.0;
	 	 	 	 	 	 	 _width = 400.0;
	 	 	 	 	 	 	 setState(() {});
						 }
)
]
))
));
	 }
}

Здесь у нас есть AnimatedContainer со свойством duration, установленным
на одну секунду – столько времени займет анимация. Мы устанавливаем ис-
ходные свойства color, width и height для значений переменных, определен-
ных в State. Затем, когда пользователь нажимает RaisedButton, значения всех
трех переменных изменяются и вызывается setState(), что вызывает перери-
совку, но теперь Flutter будет делать это в течение одной секунды, постепенно
увеличивая и окрашивая в красный цвет AnimatedContainer.

Вы также найдете DecoratedBoxTransition, который можно использовать для
анимации различных свойств DecoratedBox, поэтому он концептуально очень
похож на AnimatedContainer, но для определенного целевого виджета.

AnimatedCrossFade
AnimatedCrossFade – это виджет, специально разработанный для плавного пе-
рехода между двумя элементами. Плавный переход – это когда один элемент
исчезает, а другой появляется в том же месте. Он прост в использовании:

class _MyApp extends State {

	 var _showFirst = true;

	 @override
	 Widget build(BuildContext context) {
		 return MaterialApp(home : Scaffold(
	 	 	 body : Center(child : Column(
	 	 	 	 mainAxisAlignment : MainAxisAlignment.center,
	 	 	 	 children : [
	 	 	 	 	 AnimatedCrossFade(
	 	 	 	 	 	 duration : Duration(seconds : 2),
	 	 	 	 	 	 firstChild : FlutterLogo(
	 	 	 	 	 	 	 style : FlutterLogoStyle.horizontal,
	 	 	 	 	 	 	 size : 100,0
),

129

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II
	 	 	 	 	 	 secondChild : FlutterLogo(
	 	 	 	 	 	 	 style : FlutterLogoStyle.stacked,
	 	 	 	 	 	 	 size : 100,0
),
	 	 	 	 	 	 crossFadeState : _showFirst ?
	 	 	 	 	 	 	 CrossFadeState.showFirst :
	 	 	 	 	 	 	 CrossFadeState.showSecond,
),
					 RaisedButton(
	 	 	 	 	 	 child : TextC’Cross-Fade!"),
	 	 	 	 	 	 onPressed : () {
	 	 	 	 	 	 	 _showFirst = false;
	 	 	 	 	 	 	 setState(() {});
						 }
)
]
))
));
	 }
}

Во-первых, это первое знакомство с виджетом FlutterLogo. Как вы могли
догадаться, он отображает виджет Flutter с различными стилями. Вам не нуж-
но добавлять его в качестве ресурса или чего-то в этом роде, он используется
автоматически.

Мы встроили парочку таких в виджеты AnimatedCrossFade, установив свой-
ства firstChild и secondChild для экземпляров FlutterLogo.

Как и у AnimatedContainer, у него есть свойство duration, которое здесь рав-
но двум секундам.

Свойство crossFadeState самое важное: оно сообщает, какой из двух вид-
жетов отображать. Если установлено значение CrossFadeState.showFirst, оно
показывает первый. Когда значение CrossFadeState.showSecond – второй.

Это основано на значении логической переменной _showFirst, которая на-
чинается с true, поэтому первое изображение появляется, но затем устанавли-
вается в false при нажатии RaisedButton, и вуаля, у нас есть плавный переход!

Обратите внимание, что существует также FadeTransition, который аними-
рует прозрачность элемента.

Вы можете, если хотите, создать свой собственный AnimatedCrossFade с дву-
мя виджетами FadeTransition, работающими одновременно (я не проверял,
но готов поспорить, что именно так реализован AnimatedCrossFade).

AnimatedDefaultTextStyle
AnimatedDefaultTextStyle – хороший выбор для анимации текста. Он работает
очень схоже с AnimatedContainer и AnimatedCrossFade:

130

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II
class _MyApp extends State {

	 var _color = Colors.red;
	 var _fontSize = 20.0;

	 @override
	 Widget build(BuildContext context) {
		 return MaterialApp(home : Scaffold(
	 	 	 body : Center(child : Column(
	 	 	 	 mainAxisAlignment : MainAxisAlignment.center,
	 	 	 	 children : [
	 	 	 	 	 AnimatedDefaultTextStyle(
	 	 	 	 	 	 duration : const Duration(seconds : 1),
	 	 	 	 	 	 style : TextStyle(
	 	 	 	 	 	 	 color : _color, fontSize : _fontSize
),
	 	 	 	 	 	 child : Text("I am some text")
),
					 RaisedButton(
	 	 	 	 	 	 child : Text("Enhance! Enhance! Enhance!"),
	 	 	 	 	 	 onPressed : () {
	 	 	 	 	 	 	 _color = Colors.blue;
	 	 	 	 	 	 	 _fontSize = 40.0;
	 	 	 	 	 	 	 setState(() {});
						 }
)
]
))
));
	 }
}

Здесь Text, дочерний по отношению к AnimatedDefaultTextStyle, увеличи-
вается на 100 %, а его цвет меняется в течение одной секунды. Думаю, здесь не
нужно много объяснять, учитывая, насколько похожи последние три виджета.

Несколько других: AnimatedOpacity, AnimatedPosition,
PositionTransition, SlideTransition, AnimatedSize, ScaleTransition,
SizeTransition и RotationTransition
Я собираюсь сэкономить немного места в книге и просто упомянуть, не по-
казывая примеров, что помимо виджетов, которые вы видели в этом разделе,
есть и другие, которые вы видите в заголовке. Они могут использоваться точ-
но так же, как и предыдущие, для анимации прозрачности элемента, положе-
ния элемента, его размеров или поворота.

131

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

Обратите внимание, что виджет AnimatedOpacity следует использовать с умом,
потому что анимация полупрозрачности является относительно дорогостоящей
операцией (это также относится к виджетам AnimatedCrossFade и FadeTransition).

Также обратите внимание, что виджет AnimatedPosition работает, только если
его дочерний элемент является элементом виджета Stack, который мы еще не
обсуждали. Вкратце, он позволяет отображать несколько дочерних элементов,
накладывающихся друг на друга (независимо от того, одинакового они размера
или нет, это означает, что если больший элемент находится ниже меньшего, то
более крупный элемент может «выглянуть» из-за меньшего элемента). Вы опре-
деленно встретите его снова в последующих главах, но запомните, что стек на-
вигатора – это совсем другое понятие. Виджет Stack – это просто контейнер для
других элементов, которые могут быть расположены друг над другом.

Интересное примечание о виджетах *Transition: все они поддерживают
физику, что позволяет создавать не просто линейные анимации. Это верно и
для виджетов Animated*, но реализация в виджетах Transition имеет немного
более интересную визуализацию, а это означает, что вы можете получить бо-
лее захватывающие анимации.

Drag и Drop
Хотя взаимодействие с перетаскиванием мало распространено на мобильных
устройствах, оно часто встречается на стационарных компьютерах, и Flutter его
поддерживает. Он делает это с помощью двух основных виджетов: Draggable
и DragTarget. Они довольно просты в использовании:

class MyApp extends StatelessWidget {

	 @override
	 Widget build(BuildContext context) {
		 return MaterialApp(home : Scaffold(
	 	 	 body : Center(child : Column(mainAxisAlignment :
	 	 	 MainAxisAlignment.center,
	 	 	 children : [
	 	 	 	 DragTarget(
	 	 	 	 	 builder : (BuildContext context,
	 	 	 	 	 	 List<String> accepted,
	 	 	 	 	 	 List<dynamic> rejected) {
	 	 	 	 	 	 	 return new Container(width : 200, height : 200,
	 	 	 	 	 	 	 	 color : Colors.lightBlue);
	 	 	 	 	 	 },
	 	 	 	 	 	 onAccept : (data) => print(data)
),
	 	 	 	 	 Container(height : 50),
	 	 	 	 	 Draggable(
	 	 	 	 	 	 data : "I was dragged",

132

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II
	 	 	 	 	 	 child : Container(width : 100, height : 100,
	 	 	 	 	 	 	 color : Colors.red),
	 	 	 	 	 	 feedback : Container(width : 100, height : 100,
	 	 	 	 	 	 	 color : Colors.yellow)
)
]
))
));
	 }
}

Во-первых, у нас есть DragTarget, куда можно перетаскивать объект. Нам
нужно указать тип данных, который будет принимать эта цель, и в данном слу-
чае это старая добрая String. Функция builder() возвращает Container, но она
может возвращать все, что мы хотим.

Затем второй Container добавляется в макет Column, чтобы дать нам немно-
го места между DragTarget и Draggable. В первую очередь нам нужно предоста-
вить свойство data, представляющее собой произвольные данные, которые вы
хотите предоставить DragTarget; а затем свойство feedback – виджет, который
пользователь будет физически (или виртуально? Физически/виртуально? Ка-
кое слово больше подходит?!) перетаскивать.

Видите ли, перетаскивание работает, потому что оригинальный виджет, ко-
торый указывается с помощью child, никогда не перемещается. Вместо этого,
когда пользователь начинает перемещать дочерний Container, виджет, опре-
деляемый feedback, визуализируется и начинает перетаскиваться. Когда он
помещается в DragTarget, там запускается функция-обработчик onAccept, по-
лучающая значение свойств данных Draggable.

Существует множество других функций callback, которые могут запускать-
ся в различных ситуациях на обоих виджетах, но наиболее полезный обработ-
чик – функция onDragComplete, которая запускается при опускании Draggable
на DragTarget. Обычно это место, где вы скрываете исходный дочерний вид-
жет или делаете что-то еще.

Наконец, есть LongPressDraggable – виджет, который можно использовать
вместо Draggable. Разница в том, что процесс перетаскивания запускается толь-
ко после долгого нажатия. Это небольшая разница взаимодействия, которая за-
висит только от вас.

Просмотр данных
Использование специальных виджетов для отображения наборов данных явля-
ется типичным шаблоном любого приложения. Flutter предоставляет для этого
несколько специальных виджетов (вы всегда можете создать свой собственный
с различными компонентами прокрутки, но обычно это не требуется).

133

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

Table
Виджет Table (таблица) – пожалуй, самый простой из виджетов «data views»,
используемых для отображения коллекций данных. Если вы знакомы с табли-
цей HTML, то у вас уже есть общее представление о виджете Table: отображе-
ние элементов в организации строк и столбцов. Посмотрите на пример кода
в листинге 4-2 и результат на рис. 4-2.
Листинг 4-2. Создание таблицы с помощью виджета Table

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

	 Widget build(BuildContext inContext) {
		 return MaterialApp(home : Scaffold(
	 	 	 body : Column(children : [
	 	 	 	 Container(height : 100),
				 Table(
					 border : TableBorder(
	 	 	 	 	 	 top : BorderSide(width : 2),
	 	 	 	 	 	 bottom : BorderSide(width : 2),
	 	 	 	 	 	 left : BorderSide(width : 2),
	 	 	 	 	 	 right : BorderSide(width : 2)
),
	 	 	 	 	 children : [
						 TableRow(
	 	 	 	 	 	 	 children : [
	 	 	 	 	 	 	 	 Center(child : Padding(
	 	 	 	 	 	 	 	 	 padding : EdgeInsets.all(10),
	 	 	 	 	 	 	 	 	 child : Text("1"))
),
	 	 	 	 	 	 	 	 Center(child : Padding(
	 	 	 	 	 	 	 	 	 padding : EdgeInsets.all(10),
	 	 	 	 	 	 	 	 	 child : Text("2"))
),
	 	 	 	 	 	 	 	 Center(child : Padding(
	 	 	 	 	 	 	 	 	 padding : EdgeInsets.all(10),
	 	 	 	 	 	 	 	 	 child : Text("3"))
)
]
)
]
)
])
));

134

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II
	 }
}

Рисунок 4-2. Базовый пример Table!

Все просто, да? Вы можете задать границу Table, но по умолчанию ее не бу-
дет вообще. Затем вам нужно просто добавить несколько строк через дочер-
ние элементы, которые могут быть любым виджетом или деревом видже-
тов, но в верхней части должен быть экземпляр TableRow, а дочерние элемен-
ты каждого – это ячейка или столбец в строке. Каждая строка в Table должна
иметь одинаковое количество дочерних элементов. Вы можете вручную задать
ширину столбцов с помощью свойства columnWidth, а вертикальное выравни-
вание содержимого в каждой ячейке можно настроить с помощью свойства
defaultVerticalAlignment.

DataTable
Отображение данных в табличной форме очень распространено в Ul, поэтому
Flutter предоставляет для этой цели виджет DataTable.

Листинг 4-3. Виджет DataTable

import "package:flutter/material.dart";

135

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II
void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

	 Widget build(BuildContext inContext) {
		 return MaterialApp(home : Scaffold(
	 	 	 body : Column(children : [
	 	 	 	 Container(height : 100),
	 	 	 	 DataTable(sortColumnIndex : 1,
	 	 	 	 	 columns : [
	 	 	 	 	 	 DataColumn(label : Text("First Name")),
	 	 	 	 	 	 DataColumn(label : Text("Last Name"))
],
	 	 	 	 	 rows : [
	 	 	 	 	 	 DataRow(cells : [
	 	 	 	 	 	 	 DataCell(Text("Leia")),
	 	 	 	 	 	 	 DataCell(Text("Organa"), showEditIcon : true)
]),
	 	 	 	 	 	 DataRow(cells : [
	 	 	 	 	 	 	 DataCell(Text("Luke")),
	 	 	 	 	 	 	 DataCell(Text("Skywalker"))
]),
	 	 	 	 	 	 DataRow(cells : [
	 	 	 	 	 	 	 DataCell(Text("Han")),
	 	 	 	 	 	 	 DataCell(Text("Solo"))
])
]
)
])
));
	 }
}

Проще говоря, DataTable требует, чтобы вы указали ему, что представляют
собой столбцы в таблице и, конечно же, каковы строки данных для отображе-
ния. Каждый столбец определяется с помощью экземпляра DataColumn, а каждая
строка – экземпляром DataRow, который содержит коллекцию ячеек, членами
которых являются экземпляры DataCell. Хотя это и не обязательно, вы можете
предоставить свойство sortColumnIndex, чтобы указать, по какому столбцу сор
тируются данные в настоящее время. Обратите внимание, что это всего лишь
визуальный индикатор – ваш код отвечает за логику сортировки данных (боль-
шую часть времени вы не будете предоставлять статичные данные, как в этом
примере; вместо этого у вас будет какая-то функция, которая создает список).
Вы можете увидеть большую часть этого на рис. 4-3.

136

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

Рисунок 4-3. DataTable

DataColumn может отображать всплывающую подсказку при длительном нажа-
тии на столбец. DataCell может включать свойство showEditIcon, которое, если
оно true, показывает небольшой значок карандаша, чтобы указать, что ячей-
ка может быть отредактирована. Однако фактическое редактирование должно
быть обеспечено вашим кодом.

Обратите внимание, что DataTable – довольно дорогой виджет в вычислитель-
ном отношении из-за процесса компоновки, который он должен реализовать.
Поэтому если у вас много данных для отображения, рекомендуется вместо него
использовать виджет PaginatedDataTable. Он работает так же, как DataTable, но
разбивает данные на страницы, между которыми пользователь может переме-
щаться. Таким образом, нужно отобразить только одну часть за раз, это дешевле.

GridView
Виджет GridView отображает двумерную сетку виджетов. Он может прокручи-
ваться в любом направлении в соответствии со свойством scrollDirection (по
умолчанию Axis.vertical) и предоставляет несколько макетов, наиболее рас-
пространенный генерируется конструктором GridView.count(), как показано
в листинге 4-4.

137

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

Листинг 4-4. GridView полон логотипов Flutter
import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

	 @override
	 Widget build(BuildContext inContext) {
		 return MaterialApp(home : Scaffold(
	 	 	 body : GridView.count(
	 	 	 	 padding : EdgeInsets.all(4.0),
	 	 	 	 crossAxisCount : 4, childAspectRatio : 1.0,
	 	 	 	 mainAxisSpacing : 4.0, crossAxisSpacing : 4.0,
	 	 	 	 children: [
	 	 	 	 	 GridTile(child : new FlutterLogo()),
	 	 	 	 	 GridTile(child : new FlutterLogo()),
	 	 	 	 	 GridTile(child : new FlutterLogo()),
	 	 	 	 	 GridTile(child : new FlutterLogo()),
	 	 	 	 	 GridTile(child : new FlutterLogo()),
	 	 	 	 	 GridTile(child : new FlutterLogo()),
	 	 	 	 	 GridTile(child : new FlutterLogo()),
	 	 	 	 	 GridTile(child : new FlutterLogo()),
	 	 	 	 	 GridTile(child : new FlutterLogo())
]
)
));
	 }
}

Это создает макет, показанный на рис. 4-4, с фиксированным количеством
элементов (называемых плитками) на поперечной оси. Другие варианты вклю-
чают GridView.extentQ, который создает макет с плитками, имеющими макси-
мальный размер поперечной оси. Вы также можете использовать конструктор
GridView.builderQ, если у вас есть «бесконечное» количество плиток для ото-
бражения.

138

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

Рисунок 4-4. GridView

Обратите внимание, что GridView очень похож на ListView, который в не-
котором смысле представляет собой линейный GridView (мы вот-вот рассмот
рим ListView).

ListView и ListTile
Виджет ListView – вероятно, наиболее важный из виджетов отображения дан-
ных. Вы будете часто использовать его со списком прокручиваемых элементов
для отображения. Простейшая форма его кодирования выглядит, как показано
в листинге 4-5.

Листинг 4-5. Код простого статического ListView

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

@override
	 Widget build(BuildContext inContext) {
		 return MaterialApp(home : Scaffold(
	 	 	 body : ListView(children : [
	 	 	 	 ListTile(leading: Icon(Icons.gif), title: Text("1")),

139

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II
	 	 	 	 ListTile(leading: Icon(Icons.book), title: Text("2")),
	 	 	 	 ListTile(leading: Icon(Icons.call), title: Text("3")),
	 	 	 	 ListTile(leading: Icon(Icons.dns), title: Text("4")),
	 	 	 	 ListTile(leading: Icon(Icons.cake), title: Text("5")),
	 	 	 	 ListTile(leading: Icon(Icons.pets), title: Text("6")),
	 	 	 	 ListTile(leading: Icon(Icons.poll), title: Text("7")),
	 	 	 	 ListTile(leading: Icon(Icons.face), title: Text("8")),
	 	 	 	 ListTile(leading: Icon(Icons.home), title: Text("9")),
	 	 	 	 ListTile(leading: Icon(Icons.adb), title: Text("10")),
	 	 	 	 ListTile(leading: Icon(Icons.dvr), title: Text("11")),
	 	 	 	 ListTile(leading: Icon(Icons.hd), title: Text("12")),
	 	 	 	 ListTile(leading: Icon(Icons.toc), title: Text("3")),
	 	 	 	 ListTile(leading: Icon(Icons.tv), title: Text("14")),
	 	 	 	 ListTile(leading: Icon(Icons.help), title: Text("15"))
])
));
	 }
}

Дочерним объектом ListView может быть что угодно, но обычно вы буде-
те использовать виджеты ListTile (точнее, несколько из них). ListTile – это
виджет, представляющий собой строку с фиксированной высотой, которая со-
держит текст и начальный или конечный значок. ListTile может отображать
до трех строк текста, включая подзаголовок (subtitle). В этом примере свойство
leading («ведущий элемент») используется для отображения Icon (иконка) пе-
ред текстом, который вы можете видеть на рис. 4-5.

140

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

Рисунок 4-5. Виджет ListView в сочетании с ListTile

ListView может прокручиваться вертикально или горизонтально в зависи-
мости от установки свойства scrollDirection. Вы даже можете настроить спо-
соб управления прокруткой в ListView, настроив свойство physics, экземпляр
Scroll Physics.

ListView предоставляет несколько различных конструкторов, один из которых
показан в примере. Существует также конструктор ListView.builder(), который
использует функцию builder для визуализации строк. ListView.separated() так-
же доступен, и это предоставит вам ListView, в котором между каждым элемен-
том коллекции будет отображаться заданный вами разделитель. Конструктор
ListView.custom() дает вам большую гибкость в настройке, чтобы ListView вы-
глядел и работал так, как вы захотите.

Существует также виджет PageView, который поддерживает разбиение на
страницы. Это хороший выбор, если у вас есть много элементов, которые вы
хотите отобразить, но не просто отобразить, а разбить на группы, где каждая
группа становится отдельной страницей.

Остальные виджеты
Некоторые виджеты не поддаются классификации. Но ненадолго, потому что
теперь есть категория «разное» (miscellaneous) специально для них!

141

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

CircularProgressIndicator (CupertinoActivityIndicator)
и LinearProgressIndicator

Что вы показываете пользователям своих приложений во время длительно-
го ожидания? Есть много вариантов, но CircularProgressIndicator – один из
лучших. Это примитивный анимированный круг, но он выполняет свою рабо-
ту и очень прост в использовании:

CircularProgressIndicator()

Да, в общем-то, это все, что вам нужно! Остальное Flutter нарисует за вас. Есть
несколько опций, которые могут вас заинтересовать. Во-первых, strokeWidth –
позволяет задать толщину круга. Свойство backgroundColor дает возможность
установить цвет фона за индикатором. Наконец, valueColor позволяет опреде-
лить цвет самого круга. К сожалению, это не так просто, как установить цвет из
класса Colors. Нет, вы должны предоставить экземпляр класса Animation или
одного из его потомков. Почти всегда это будет класс AlwaysStoppedAnimation,
у которого есть конструктор, принимающий color в качестве аргумента, так
что это не намного сложнее.

Для iOS можно использовать CupertinoActivityIndicator, который выглядит
и работает примерно так же. Чтобы работать с ним, вам нужно импортировать
package:flutter/cupertino.dart, как и для всех виджетов Cupertino. Кроме
того, CupertinoActivityIndicator не обладает той же гибкостью, что и Circular
ProgressIndicator: у него есть только свойство radius, чтобы определить раз-
мер круга, – никаких настроек цветов нет.

Наконец, есть LinearProgressIndicator, который показывает прогресс в виде
цветной линии:

LinearProgressIndicator(
	 value : .25,
	 backgroundColor : Colors.yellow
)

Здесь value представляет собой число от нуля до единицы, которое определя-
ет текущий прогресс и окрашивает эту часть цветовой шкалы. BackgroundColor –
это цвет части индикатора, соответствующей оставшемуся прогрессу, в то вре-
мя как значение valueColor (которое, подобно CircularProgressIndicator, при-
нимает в качестве значения экземпляр Animation) – это завершенная часть.
Таким образом, в нашем примере 75 % панели будут окрашены в желтый цвет,
а 25 % – в цвет по умолчанию, поскольку значение valueColor не указано.

Icon
Виджет Icon (иконка) позволяет отображать значки стиля Material. Чтобы ис-
пользовать его, достаточно вызвать конструктор:

Icon(Icons.radio)

142

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

Класс Icons содержит список доступных значков в стилистике Material, и их
довольно много. Тем не менее вы также можете добавлять и свои собственные
иконки, так как они реализуются с помощью шрифтов – вместо буквы на экра-
не рисуется заданная иконка. Вы можете добавить и свои шрифты, если необ-
ходимы другие значки (например, существует популярная среди веб-разра-
ботчиков коллекция значков Font Awesome).

Для этого нам нужно перейти в файл pubspec.yaml, который упоминался
в главе 1. Вкратце, этот файл содержит конфигурацию, которую Flutter исполь-
зует для создания и запуска вашего приложения. В нем перечислены зависимо-
сти вашего проекта, его название, какая версия Flutter требуется и многое дру-
гое. В зависимости от ваших потребностей вам, возможно, никогда не придет-
ся прикасаться к нему после создания проекта. По умолчанию файл pubspec.
yaml будет выглядеть примерно так:

name: flutter_playground
description: flutter playground

version: 1.0.0+1
environment:
	 sdk: ">=2.0.0-dev.68.0 <3.0.0"

dependencies:
	 flutter:
	 	 sdk: flutter
	 	 cupertino_icons: ^0.1.2

dev_dependencies:
	 flutter_test:
	 	 sdk: flutter

flutter:
	 uses-material-design: true

Это файл pubspec.yaml, созданный для приложения Flutter Playground, сге-
нерированного мной при написании этой главы (который представляет собой
базовый проект приложения Flutter). Обратите внимание, что я удалил пояс-
няющие комментарии, дающие вам подсказки о других возможностях, кото-
рые вы можете реализовать, включая добавление новых шрифтов для знач-
ков! Например, они объясняют, как вы можете добавить файл True Type Font
(TTF) в ваш проект. Чтобы добавить Font Awesome, вы можете сделать так:

flutter:
	 fonts:
	 	 – family: FontAwesome
	 fonts:
	 	 – asset: fonts/font-awesome-400.ttf

143

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

Как только вы это сделаете, то сможете создать экземпляр IconData, который
задает код значка (его вы можете найти на веб-сайте fontawesome.com) и семей-
ство шрифтов, к которому он принадлежит, например:

Icon(IconData(0xf556, fontFamily : "FontAwesome"))

Это несложно. Но есть еще более простой способ, по крайней мере для неко-
торых шрифтов, например Font Awesome, который считается самой популяр-
ной коллекцией иконок на основе шрифтов. Вы можете добавить готовый пла-
гин, который уже будет содержать нужный шрифт и коды значков. Плагин – это
то, что расширяет стандартные возможности Dart/Flutter. Это такой код Dart,
который вы можете импортировать в свой проект по мере необходимости.
Чтобы его использовать, вам просто нужно добавить одну строку в pubspec.
yaml в разделе dependencies (зависимости):

dependencies:
	 font_awesome_flutter: ^8.4.0

Это означает, что нам нужна версия плагина font_awesome_flutter 8.4.0 или
более новая. Информацию об этом плагине можно найти по адресу https://
pub.dartlang.org/packages, еще вы можете найти там множество других полез-
ных плагинов, которые добавляются так же. Это будет не последний плагин, ко-
торый мы увидим в данной книге.

Затем вам нужно сообщить Android Studio, что нужно скачать зависимости.
Для этого прямо над файлом есть специальные подсказки. Нажмите Packages
Get, и зависимости будут загружены. Эта зависимость включает в себя необхо-
димый файл TTF и дополнительный код для нашего использования.

Теперь можно импортировать пакет в любой файл, где он вам понадобится:

import "package:font_awesome_flutter/font_awesome_flutter.dart";

Преимущество этих «манипуляций» заключается в том, что вместо ручного
указания кода для иконки вы можете просто написать:

Icon(FontAwesomeIcons.angry)

Это делается так же легко, как и с помощью встроенных значков, но теперь
у вас есть гораздо больше иконок благодаря Font Awesome!

Мы будем рассматривать pubspec.yaml по мере необходимости, но это была
хорошая демонстрация его возможностей, доступных Flutter.

Image
Наряду с Icon стоит также выделить виджет Image (изображение), который, как
вы можете догадаться, используется для отображения какой-либо картинки. Он
предлагает несколько различных конструкторов, каждый для показа изображе-
ний из различных источников. Я же собираюсь рассказать только о двух наибо-

http://fontawesome.com
https://pub.dartlang.org/packages
https://pub.dartlang.org/packages

144

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

лее распространенных: Image.asset() для загрузки картинки из ресурсов само-
го приложения и Image.network() для загрузки его из сети.

Во-первых, Image.asset() позволяет загрузить изображение, которое вклю-
чено в ресурсы приложения:

Image.asset("img/ron.jpg")

Кажется простым, да? Но одна часть отсутствует: мы должны рассказать
Flutter о нашем изображении, которое называется asset. Для этого мы возвра-
щаемся в pubspec.yaml и добавляем новый раздел под заголовком Flutter:

assets:
– img/ron.jpg

Каждый ресурс, который вы хотите включить в список «активов» (assets),
должен быть объявлен в этом разделе. В противном случае Flutter SDK не бу-
дет знать о том, что его необходимо добавить в установочный пакет. Вы также
можете использовать сокращенную запись img/, чтобы включить все файлы из
каталога img. Но обратите внимание, что будут добавлены только файлы, нахо-
дящиеся непосредственно в img/, – ничего из подкаталогов img/ включено не
будет (или вам нужно будет добавить запись для каждого подкаталога).

Обратите внимание, что ресурсами (как часть assets) могут быть не только
изображения, но также и любые другие файлы, например текстовые в форма-
те JSON. Загружайте их, используя объект rootBundle, который доступен в коде
вашего приложения. Например, чтобы загрузить файл settings.json:

String settings =
	 await rootBundleloadString("textAssets/settings.json");

Немного дополнительной информации: когда сборка завершена, Flutter SDK
создает специальный архив, который поставляется вместе с вашим приложе-
нием, он называется asset bundle («комплект активов»). Вы можете использо-
вать находящиеся в нем ресурсы во время выполнения, как показано в приме-
ре settings.json (и очевидно, что Image.asset() делает это под капотом).

Примечание. Во Flutter есть и дополнительные возможности для внедрения ресурсов, например изо-
бражения разных размеров для разных разрешений экрана. Однако для целей книги нам достаточно ба-
зовой информации, поэтому если вы считаете, что вам нужно больше, вам придется изучить flutter.
io самостоятельно.

Загрузка изображения из сети еще проще, поскольку нет даже assets, кото-
рые нужно было бы объявлять:

Image.network(
	 "http://zammetti.com/booksarticles/img/darkness.png"
)

145

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

Да, это все! Если устройство подключено к интернету, изображение будет
загружено и показано точно так же, как если бы оно было размещено на смарт-
фоне вместе с приложением (хотя и немного медленнее, учитывая внутрен-
нюю задержку сети).

Chip
Chip – это небольшие визуальные элементы, которые обычно предназначены
для отображения мелких деталей и элементов, а также для представления раз-
личных сущностей, таких как пользователи, или быстрых действий, которые
пользователь может выполнить.

Типичное использование Chip – отображение информации о пользователе.
Для лучшего понимания обратите внимание на листинг 4-6 и рис. 4-6.

Листинг 4-6. Просто Chip

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

	 @override
	 Widget build(BuildContext inContext) {
		 return MaterialApp(home : Scaffold(
	 	 	 body : Center(child :
	 	 	 	 Chip(
	 	 	 	 	 avatar : CircleAvatar(
	 	 	 	 	 	 backgroundImage : AssetImage("img/ron.jpg")
),
	 	 	 	 	 backgroundColor : Colors.grey.shade300,
	 	 	 	 	 label : Text("Frank Zammetti")
)
)
));
	 }
}

146

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

Рисунок 4-6. Chip, просто Chip

Свойство avatar не является обязательным и обычно показывает либо изо-
бражение, либо инициалы пользователя. Оно принимает значение, которое
само по себе является виджетом, поэтому теоретически вы можете поместить
здесь все, что захотите. Я обычно использую виджет CircleAvatar, который мо-
жет показывать изображение или текст (обычно инициалы человека, когда Chip
представляет человека) либо содержать дочерние виджеты. Здесь я использо-
вал то же изображение, что и в предыдущем примере, чтобы показать малень-
кую картинку меня. Свойство backgroundColor, разумеется, отвечает за цвет
Chip, а свойство label – текст, отображаемый рядом с аватаркой.

Если вы добавите свойство onDeleted, то Chip будет содержать кнопку уда-
ления. Вам нужно будет самостоятельно реализовать процесс удаления, по-
скольку Chip предоставляет чисто визуальное оформление.

FloatingActionButton
Виджет FloatingActionButton очень распространен на устройствах Android,
в меньшей степени на устройствах iOS. Это круглая кнопка, которая распола-
гается поверх основного контента и предоставляет пользователю быстрый до-

147

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

ступ к основным функциям. Например, это может быть кнопка, которая вызы-
вает экран добавления события в приложении календаря.

FloatingActionButton редко создают вручную, хотя это возможно. Также «пло-
хим тоном» считается наличие более одной такой кнопки на экране, но опять же,
технически вы можете это сделать. Чаще всего вы будете указывать подобную
кнопку в качестве значения свойства floatingActionButton виджета Scaffold,
как показано в листинге 4-7.

Листинг 4-7. FloatingActionButton как часть Scaffold

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

	 @override
	 Widget build(BuildContext inContext) {
		 return MaterialApp(home : Scaffold(
	 	 	 floatingActionButton : FloatingActionButton(
	 	 	 	 backgroundColor : Colors.red,
	 	 	 	 foregroundColor : Colors.yellow,
	 	 	 	 child : Icon(Icons.add),
	 	 	 	 onPressed : () { print("Ouch! Stop it!"); }
),
	 	 	 body : Center(child : Text("Click it!"))
));
	 }
}

Как правило, дочерним элементом FloatingActionButton будет Icon, как на
рис. 4-7.

148

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

Рисунок 4-7. FloatingActionButton делает свою, эм, плавающую штуку

Свойство backgroundColor окрашивает саму кнопку в любой цвет, который
вам нравится, а цвет foregroundColor окрашивает сам значок или текст на кноп-
ке. Свойство onPressed необязательно, но если оно не указано, кнопка отключа-
ется и не реагирует на прикосновения. Это не очень хорошо, так что вам нужно
определить функцию для реализации любой функциональности кнопки.

Вы также можете настроить тень с помощью свойства elevation и даже сде-
лать кнопку квадратной, установив в качестве значения свойства shape (фор-
ма) потомка класса RoundedRectangleBorder.

PopupMenuButton
Виджет PopupMenuButton реализует общую парадигму «трехточечного» меню
для отображения всплывающего диалога с набором опций. Этот виджет можно
разместить где угодно, и он будет отображаться в виде трех вертикальных то-
чек. У него есть свойство onSelected, которое вызывает предоставляемую вами
функцию. Затем вы можете реализовать любое необходимое поведение. Вот
пример:

Листинг 4-8. PopupMenuButton и его меню

import "package:flutter/material.dart";

void main() => runApp(MyApp());

149

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II
class MyApp extends StatelessWidget {

	 @override
	 Widget build(BuildContext inContext) {
		 return MaterialApp(home : Scaffold(
	 	 	 body : Center(child :
				 PopupMenuButton(
	 	 	 	 	 onSelected : (String result) { print(result); },
	 	 	 	 	 itemBuilder : (BuildContext context) =>
	 	 	 	 	 	 <PopupMenuEntry<String>>[
							 PopupMenuItem(
	 	 	 	 	 	 	 	 value : "copy", child : Text("Copy")
),
							 PopupMenuItem(
	 	 	 	 	 	 	 	 value : "cut", child : Text("Cut")
),
							 PopupMenuItem(
	 	 	 	 	 	 	 	 value : "paste", child : Text("Paste")
)
]
)
)
));
	 }
}

Вы наверняка знаете, как это выглядит, и без скриншота! Виджет PopupMenu
Button использует ранее описанный шаблон builder для создания списка вид-
жетов PopupMenultem. Эти виджеты могут иметь любой дочерний элемент, ко-
торый вы считаете подходящим, но чаще всего это просто Text.

Для начала вы устанавливаете value у каждого элемента, а затем ваша функ-
ция onSelected передает это значение и реализует необходимое поведение
(в нашем случае будет происходить вывод в консоль).

Другие поддерживаемые свойства включают возможность выбора элемента
по умолчанию (свойство initialValue), возможность реагировать на отмену
без выбора элемента (предоставляет реализацию onCanceled), а также вы мо-
жете настраивать свойства elevation (тень) и padding (отступ).

Базовые библиотеки
В дополнение к большому разнообразию виджетов Flutter также предлагает
доступ к набору вспомогательных API, упакованных в библиотеки. Условно их
можно разделить на три категории: базовые библиотеки Flutter, библиотеки
Dart и другие вспомогательные библиотеки. Мы рассмотрим каждую группу,
но последние две объединим.

150

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

Обратите внимание, что, как и в случае с виджетами, это будет краткий, но
очень полезный обзор. Существует больше API-интерфейсов, чем показано
в текущем разделе. Также для многих из рассмотренных API не будет примеров
кода или подробных сведений, просто базовое «вот что-то, что может вас заин-
тересовать», как и раньше, я постараюсь указать на детали, которые будут ин-
тересны большинству разработчиков. Я думаю, вы должны потратить свое вре-
мя, чтобы увидеть все, что вам доступно на сайте flutter.io. Часто вам нужно
будет обращаться именно к онлайн-документации, чтобы получить исчерпы-
вающую информацию по конкретным возможностям фреймворка. А еще там
есть примеры кода, много примеров. После же прочтения текущего раздела вы
узнаете, что вам будет доступно и как потом найти подробную информацию.
Это и есть первоначальная цель раздела!

Основные библиотеки фреймворка Flutter
Базовые библиотеки Flutter предоставляют основную функциональность
фреймворка. Многие из них используются внутри виджетов, так что вы можете
не обращаться к библиотекам напрямую.

Обратите внимание, что для использования библиотек вы сначала должны
их импортировать, синтаксис импорта: package:flutter/<library-name>.dart.

animation
Библиотека animation предоставляет множество функций для реализации раз-
личных анимаций в приложениях Flutter. Вот несколько интересных приме-
ров:

•	 Animation – этот класс содержит основную информацию об анимациях;

•	 AnimationController – этот класс позволяет управлять анимациями – их
запуском, остановкой, сбросом и повтором;

•	 Curve – этот класс определяет, с помощью какой временной функции бу-
дет происходить анимация. Например, замедляться в начале и ускоряться
в конце. Существует множество подклассов Curve, включая Cubic, ElasticIn
OutCurve, Interval и Sawtooth, которые определяют ускорение и замедле-
ние анимаций;

•	 Tween – как и Curve, этот класс содержит данные, определяющие «двой-
ные» (tween) анимации – переход из одного заданного состояния в новое.
Как и Curve, Tween включает много подклассов для типовых анимаций, та-
ких как ColorTween (анимация изменения цвета между парой значений),
TextStyleTween (анимация между двумя стилями текста, например пере-
ход от обычного текста к полужирному) и RectTween (анимация изменения
размера прямоугольного виджета).

http://flutter.io

151

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

foundation
Эта библиотека содержит базовые классы, функции и многое другое, являющие
ся своего рода фундаментом (foundation) для других компонентов. Все осталь-
ные слои Flutter будут использовать эту библиотеку. Примеры классов, входя-
щих в foundation:

•	 Key – мы встречали его раньше в подклассах GlobalKey и LocalKey;

•	 kReleaseMode – константа, которая, если равна true, компилирует прило-
жение в режиме release (выпуск);

•	 required – константа, используемая для пометки параметра (в методе
или функции) как обязательного. Да, вы можете пользоваться этим в ва-
ших приложениях!

•	 debugPrintStack() – функция, которая выводит текущий стек вызовов
в консоль;

•	 debugWordWrap() – функция, которая позволяет переносить длинные тек-
сты с учетом заданных ограничений;

•	 TargetPlatform – перечисление (enumeration), которое содержит значе-
ния, соответствующие различным поддерживаемым платформам (на мо-
мент написания книги это были android, fuscia и iOS).

gestures
Библиотека gestures (жесты) содержит код для распознавания различных поль-
зовательских жестов, распространенных на смартфонах и планшетах, таких как
двойное касание, свайпы и операции перетаскивания. Здесь вы найдете такие
вещи, как:

•	 DoubleTapGestureRecognizer – класс, который обрабатывает двойное ка-
сание;

•	 PanGestureRecognizer – класс, который распознает движения перетаски-
вания в горизонтальном и вертикальном направлениях;

•	 ScaleGestureRecognizer – класс для распознавания жестов, обычно исполь-
зуемых для увеличения и уменьшения масштаба.

painting
Библиотека painting (рисование) включает в себя множество классов, которые
реализуют механизмы отрисовки, являющиеся частью движка Flutter. Эта биб
лиотека предоставляет такие классы и методы для рисования, как, например,
изменение масштаба изображений, добавление границы или теней вокруг кон-
тейнеров. С некоторыми механизмами вы уже знакомы из предыдущих разде-
лов и примеров:

152

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

•	 Alignment – класс, определяющий точку внутри прямоугольника;

•	 AssetImage – класс, который извлекает изображение из AssetBundle;

•	 Border – класс, определяющий границу контейнера;

•	 Gradient – класс для отображения градиента цвета в 2D;

•	 TextDecoration – класс, используемый для оформления текста;

•	 debugDisableShadows – свойство, которое можно установить в значение true,
чтобы превратить все тени в сплошные цветные блоки – это очень удобно
для отладки;

•	 BorderStyle – перечисление со значениями, определяющими стиль рисо-
вания линий для границ (none, solid или список значений);

•	 TextAlign – перечисление со значениями, определяющими выравнива-
ние текста (center, end, justify, left или start).

services
Эта библиотека содержит сервисные (service) классы и методы для работы с воз-
можностями операционной системы. Вот некоторые из них:

•	 AssetBundle – класс, который состоит из набора ресурсов, используемых
приложением (мы кратко говорили об этом ранее). Такие файлы, как изо-
бражения или тексты, могут быть помещены в AssetBundle;

•	 ByteData – класс для работы с массивом фиксированной длины, содер-
жащим информацию в виде набора байтов. Он также обеспечивает про-
извольный доступ к числам (целые, с плавающей запятой), представлен-
ным этими байтами;

•	 Clipboard – класс, содержащий методы для работы с системным буфером об-
мена (методы getData() и setData()). Они используют класс ClipboardData
для хранения данных, помещаемых или извлекаемых из буфера обмена;

•	 HapticFeedback – класс, который обеспечивает доступ к движку тактиль-
ной обратной связи (например, вибрация при нажатии экранной кноп-
ки). Здесь можно найти такие методы, как heavyImpact(), mediumImpact()
и lightImpact() для сильной, средней и легкой вибрации соответственно;

•	 SystemSound – класс, который предоставляет метод play() для воспроиз-
ведения одного из коротких звуков системной библиотеки, указанных
в SystemSoundType;

•	 DeviceOrientation – перечисление со значениями landscapeLeft и portrait
Down, которые можно использовать для определения и изменения ориен-
тации устройства.

153

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

widgets
Существует также отдельная библиотека виджетов (widgets), и если вы думае-
те, что она содержит все виджеты Flutter, то вы в значительной степени правы!
Нет особого смысла сейчас останавливаться на этой библиотеке, так как вы
уже видели большую часть ее содержимого и продолжите с ним знакомиться
при написании кода в последующих главах. Но если вас когда-нибудь заинте-
ресует, где живут виджеты, то ответ находится в этой библиотеке, и вы можете
перейти к описанию виджетов через документацию данной библиотеки (хотя,
поскольку есть отдельная документация для виджетов в открытом виде, нет
особого смысла следовать по этому пути – но вы можете).

Библиотеки Dart
Библиотеки Dart предоставляются самим Dart. Чтобы импортировать их, ис-
пользуйте форму импорта dart:<library-name>.dart.

core
Технически есть библиотека под названием core (ядро), которая содержит
встроенные типы, коллекции и другие базовые механизмы, которые нужны
каждой программе Dart. Таким образом, в отличие от других библиотек Dart,
вам не нужно специально импортировать ее. Это происходит автоматически
при написании программы Dart! Так что я собираюсь кое-что пропустить, пото-
му что многое вы либо уже видели, либо еще увидите, так что двигаемся дальше.

ui
Учитывая, что Google работает и с Flutter, и с Dart, иногда можно встретить, так
сказать, перекрестное опыление, и библиотека ui (user interface, пользователь-
ский интерфейс) – один из таких примеров. Она содержит встроенные типы
и основные примитивы для приложений Flutter. Однако библиотека ui предо-
ставляет сервисы более низкого уровня, используемые Flutter для начальной за-
грузки приложений: классы для управления подсистемами ввода, графики, тек-
ста, компоновки и отображения на экране. Вы вряд ли будете использовать её
очень часто, прямо в коде приложения. Я думаю, что лучше увидеть ее возмож-
ности в правильном контексте, поэтому не буду вдаваться в подробности сей-
час.

async
Эта библиотека обеспечивает поддержку асинхронного (asynchronous или async)
программирования. Хотя классов в ней немного больше, я думаю, будет спра-
ведливо сказать, что эти два – настоящие звезды:

•	 Future – класс для представления результатов асинхронных операций,
которые будут завершены позже. Вы обнаружите, что многие методы во

154

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

Flutter и Dart возвращают Future. У Future есть метод then(), это функция,
которая будет выполняться, когда Future завершится и вернет свое значе-
ние. В будущем вы увидите много упоминаний этого класса;

•	 Stream – класс, обеспечивающий асинхронный доступ к потоку данных. Он
содержит метод listen(), который будет выполняться каждый раз, когда
в Stream будет происходить обновление данных.

Будет справедливо сказать, что информации об этой библиотеке достаточ-
но, поскольку, за редким исключением, это почти все, что вам когда-либо по-
надобится!

collection
Библиотека core уже содержит механизмы, связанные с коллекциями (collec
tion) данных, но отдельная библиотека collection дополняет их такими ве-
щами, как:

•	 DoubleLinkedOueue – класс Queue (еще один класс в этой библиотеке!), ос-
нованный на реализации двойного связанного списка;

•	 HashSet – неупорядоченный класс реализации Set на основе хеш-табли-
цы;

•	 SplayTreeMap – класс Map, в котором хранятся объекты, которые можно
упорядочивать относительно друг друга;

•	 UnmodifiableListView – нужен для отображения неизменяемого списка
(list) данных.

convert
В этой библиотеке вы найдете утилиты для преобразования (convert) данных
между различными представлениями, включая распространенные форматы
JSON и UTF-8. Вот примеры классов, которые вы будете чаще всего использо-
вать:

•	 JsonCodec – класс, который кодирует и декодирует строки и объекты JSON.
Методы json.encode() и json.decode() – ваши основные точки входа (об-
ратите внимание, что json – это экземпляр JsonCodec, который автомати-
чески доступен после импорта библиотеки convert);

•	 Utf8Codec – класс, в котором вы найдете автоматически созданный экземп
ляр с именем uft8. Он также содержит методы encode() и decode(), ко-
торые можно использовать для преобразования между строками Unicode
и их соответствующими байтовыми значениями;

•	 AsciiCodec – класс, который с помощью своего автоматического экземп
ляра ascii позволяет кодировать строки в виде байтов ASCII с помощью
метода encode() и декодировать байты ASCII в строки с помощью decode();

155

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

•	 Base64Codec – класс, используемый для кодирования и декодирования
объектов в base64, опять же с помощью методов encode() и decode(), и до-
ступного экземпляра base64 (вы уже видите закономерность?!).

Обратите внимание, что в дополнение к экземплярам json и base64, посколь-
ку кодирование/декодирование JSON и base64 очень распространено, вы также
найдете функции верхнего уровня base64Encode(), base64Decode(), jsonEncode()
и jsonDecode().

io
Библиотека io (input-output, ввод-вывод) предоставляет различные механиз-
мы для работы с файлами, сокетами, сетью и другими функциями ввода/выво-
да. Вероятно, наиболее важные компоненты – это:

•	 File – класс, представляющий файл в файловой системе. Среди множес
тва доступных операций вы можете вызвать copy(), create(), openRead(),
openWrite(), rename() и length();

•	 Directory – класс, представляющий каталог в файловой системе. Среди
множества доступных операций стоит выделить create(), list(), rename()
и delete();

•	 HttpClient – класс, который можно использовать для получения контента
с удаленного сервера по протоколу HTTP. Вместе с ним существует класс
Cookie для работы с HTTP-файлами cookie, HttpClientBasicCredentials
для поддержки BASIC Auth, HttpHeaders для работы с HTTP-заголовками
и даже HttpServer, если ваше приложение работает в качестве HTTP-сер-
вера!

•	 Socket – класс для выполнения низкоуровневой связи через сокет TCP;

•	 exit() – функция верхнего уровня для выхода из процесса Dart VM с за-
данным кодом ошибки. Вряд ли вы захотите использовать это в мобиль-
ном приложении, но если вы пишете стандартную программу Dart, то вам
может понадобиться данный метод.

В библиотеке io определенно гораздо больше классов, связанных с HTTP-ком-
муникациями, но выше описано то, что вы будете использовать чаще всего.

math
Во всех языках программирования есть математические функции (я уверен,
что вы можете найти хотя бы один язык, в котором их нет, но это просто стран-
но!), и Dart не исключение благодаря библиотеке math. Здесь вы найдете мате-
матические константы и функции, включая генерацию случайных чисел.

•	 Random – класс для генерации случайных чисел, включая криптографиче-
ски безопасные случайные числа с помощью метода secure().

156

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

•	 pi – почтенная константа, которую вы знаете и любите. Я люблю!

•	 cos() – функция для получения косинуса значения, сначала требуя пре-
образования радиан в double. Большинство других тригонометрических
функций, которые вы знаете и любите (или ненавидите, в зависимости от
того, как вы учились!), также присутствуют здесь: acos(), asin(), atan(),
sin() и т. д.

•	 max() – возвращает большее из двух чисел.

•	 min() – возвращает меньшее из двух чисел.

•	 sqrt() – возвращает квадратный корень числа.

Вспомогательные библиотеки
Наконец, у нас есть еще несколько вспомогательных библиотек. Конечно, их
немного больше, чем описано ниже, но для наших примеров будет достаточ-
но и трех.

crypto
Если вам нужна криптография, то библиотека crypto – это именно то, что вам
нужно! Например, если вам нужно получить хеш (hash), то вы можете сделать
это различными способами:

•	 MD5 – класс для генерации хешей MD5. Вам даже не нужно создавать его
экземпляр, потому что библиотека сама предоставляет вам объект md5.
Думаю, что пока вы не должны использовать MD5, за исключением слу-
чаев обратной совместимости.

•	 Shal – лучший класс для хеширования, по сравнению с MD5, в комплекте
с собственным экземпляром shal.

•	 Sha256 – Shal недостаточно хорош для вас? Хорошо, хорошо, вы можете
использовать Sha256 вместо него! Экземпляр sha256 готов и ждет вас.

collection
Подождите-ка, мы уже видели библиотеку collection, не так ли? Действитель-
но! Я думаю, Google решил, что вы еще не получили свою коллекцию, так что
есть еще одна! В ней вы найдете еще больше коллекций, таких как:

•	 CanonocalizedMap – класс для работы с отображением (map) «ключ–значе-
ние», ключи которого преобразуются в канонические значения указан-
ного типа. Это может пригодиться, когда вы хотите, чтобы в коллекции
были ключи без учета регистра или null;

157

ГЛАВА 4  СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II

•	 DelegatingSet – класс, который делегирует все операции над заданным
множеством (set) значений. Удобно, когда вы хотите скрыть методы из-
менения объекта Set;

•	 UnionSet – класс, который позволяет объединять несколько множеств (set)
в одно;

•	 binarySearch() – функция двоичного поиска по списку;

•	 compareNatural() – функция для сравнения двух строк в соответствии
с естественным порядком сортировки;

•	 mergeMaps() – функция, которая объединяет два экземпляра Map и возвра-
щает новый объединенный Map;

•	 shuffle() – функция, которая переставляет элементы списка случайным
образом.

convert
И, как и в случае с collection, если вы думали, что у вас достаточно способов
конвертировать одни данные в другие, то Google явно не согласен, потому что
есть еще одна библиотека convert! В ней есть несколько интересных возмож-
ностей:

•	 HexCodec – класс для всех ваших массивов шестнадцатеричных строк! Эта
библиотека предоставляет вам экземпляр для использования и содержит
типичные методы encode() и decode();

•	 PercentCodec – это немного странно названный класс, потому что под percent
(процент) он подразумевает преобразование строки в формат URL-адреса,
например замену пробелов на %20. Как и в случае с HexCodec, вы обнаружи-
те, что экземпляр percent уже готов к использованию.

Итого
В этой главе, как и в предыдущей, мы прокатились на самолете на высоте не-
скольких километров и полюбовались пейзажем Flutter! В процессе работы вы
получили представление о многих (о большинстве!) виджетах, с которыми по-
ставляется Flutter. Вы также познакомились с новыми API, которые, как и пре-
дыдущие две главы, создают необходимую основу для написания приложений
Flutter!

И в следующей главе мы займемся именно этим! Первое созданное прило-
жение будет не слишком сложным с технической точки зрения, но оно послу-
жит отличным первым шагом в мир Flutter.

Давайте уже перейдем к кодированию, хорошо?

158

ГЛАВА 5

FLUTTERBOOK. ЧАСТЬ I

Итак, друг мой, пришло время немного повеселиться! Мы пробежались по Flut
ter, и у вас хорошая база знаний, так что пришло время использовать их и начать
создавать приложения! В следующих пяти главах мы создадим три приложения,
начиная с FlutterBook.

В процессе вы получите реальный опыт работы с Flutter, именно то, что вам
нужно для достижения следующего уровня освоения Flutter.

Итак, давайте вернемся к приложению, начав с разговора о том, что же мы
собираемся сделать!

Что мы делаем?
Термин PIM стал популярным во времена устройств Palm Pilot, хотя существо-
вал и до этого. PIM расшифровывается как Personal Information Manager (пер-
сональный информационный менеджер) и, по сути, представляет собой при-
чудливое название приложения (или устройства, в случае с Palm Pilot), кото-
рое хранит необходимую пользователю информацию в структурированном
виде. До эпохи электроники у вас мог быть небольшой блокнот с разделами
для различной информации, PIM – это примерно то же самое. Для большин-
ства людей существует четыре основных вида данных PIM: встречи, контакты,
заметки и задачи. Могут быть и другие, и даже между этими четырьмя могут
быть «накладки», но именно четыре раздела, как правило, считаются основ-
ными, и именно их будет содержать наш FlutterBook.

В этом приложении будут представлены четыре «сущности», которые я буду
использовать для общего обозначения встреч, контактов, заметок и задач.
Приложение позволит пользователю создавать, сохранять, просматривать, ре-

159

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I

дактировать и удалять элементы каждого типа. Когда мы создадим приложе-
ние, мы разобьем его на модули, чтобы позже вы могли добавить другие моду-
ли для работы с иными типами данных. Например, закладки или, может быть,
рецепты, если вы повар. Вы сможете добавить их без особых затруднений, по-
тому что мы разработаем код, который будет модульным и легко расширяе-
мым.

Хорошо, конечно, говорить об этом, но, может, стоит увидеть? Именно по
этому я покажу вам рис. 5-1.

Рисунок 5-1. FlutterBook, экран списка контактов и встреч

Как видите, в верхней части находятся вкладки, по которым пользователь
может щелкнуть, чтобы перемещаться между четырьмя типами данных (меж-
ду ними можно также перемещаться с помощью свайпов, правда, пролисты-
вание немного проблематично из-за функциональности, представленной на
экранах, но об этом мы поговорим позже).

У каждой вкладки будет два экрана для работы: экран списка и экран вво-
да. Здесь вы можете видеть экраны со списками, хотя для встреч слева термин
«список» немного ошибочен, потому что на самом деле вы видите гигантский
календарь, с которым пользователь может взаимодействовать. Однако для кон-
тактов это действительно список.

Для заметок и задач используется аналогичный шаблон, как на рис. 5-2.

160

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I

Рисунок 5-2. FlutterBook, экраны вкладок Notes и Tasks

Каждый экран со списком немного отличается от других, так как отличают-
ся типы объектов: встречи (appointments) должны быть в календаре, в то время
как контакты (contacts) должны показывать аватарки, заметки (notes) выгля-
дят (примерно) как карточки (Cards), а список задач (tasks) позволяет пользо-
вателю отмечать выполненные пункты. Все это разнообразие возможностей
предоставляет Flutter!

Экраны ввода, которые рассмотрим для каждого типа вкладок, дадут вам
представление о том, как всё это выглядит.

Примечание. В этой главе и фактически во всех остальных главах данной книги я удалил коммента-
рии, операторы print() и некоторые пробелы, так что код в репозитории с примерами будет выгля-
деть немного иначе. Но не бойтесь, фактически исполняемый код идентичен примерам в книге.

Старт проекта
Для создания FlutterBook я просто использовал мастера новых проектов, предо
ставленного Android Studio, так и начались все примеры в этой книге. Это дает
нам необходимую структуру и полностью работающее приложение. Далее мы
начинаем добавлять и редактировать элементы по мере необходимости, начи-
ная с настройки проекта.

161

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I

Конфигурации и библиотеки
Файл pubspec.yaml, показанный в листинге 5-1, содержит большую часть необ-
ходимых настроек, но поскольку этот проект потребует от нас использования
плагинов (plugins, сторонние загружаемые библиотеки), нам нужно их доба-
вить. Вы можете увидеть это в разделе dependencies (зависимости):

Листинг 5-1. Файл pubspec.yaml
name: flutter_book
description: flutter_book
version: 1.0.0+1
environment:
	 sdk: ">=2.1.0 <3.0.0"
dependencies:
	 flutter:
	 	 sdk: flutter
	 scoped_model:1.0.1
	 sqflite: 1.1.2
	 path_provider: 0.5.0+1
	 flutter_slidable: 0.4.9
	 intl: 0.15.7
	 image_picker: 0.4.12+1
	 flutter_calendar_carousel:1.3.15+3
	 cupertino_icons: ^0.1.2

dev_dependencies:
	 flutter_test:
	 	 sdk: flutter

flutter:
	 uses-material-design: true

Внимание! Помните, что файлы YAML чувствительны к отступам! Например, если одна из этих зави-
симостей имеет неправильный отступ (здесь «правильно» – два пробела от его родительского элемен-
та), вы столкнетесь с проблемами. Обратите внимание, что потомком flutter является sdk, но scoped_
model – потомок зависимостей, а не flutter, поэтому scoped_model должен быть в двух пробелах
справа от dependencies, а не в двух пробелах справа от flutter. Это типичная ошибка (просто спросите
моего замечательного технического рецензента!), особенно если вы новичок в структуре YAML.

Здесь довольно много плагинов, и вы, конечно, познакомитесь не со всеми,
но я дам вам общий обзор:

•	 scoped_model – предоставляет очень хороший способ управления состоя-
нием во всем приложении;

•	 sqflite – поскольку хранение данных – это требование приложения, мы
должны выбрать, как это сделать, и я решил использовать популярную базу

162

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I

данных SQLite, к которой этот плагин предоставляет нам доступ (и нет, в на-
звании нет опечатки!);

•	 path_provider – для контактов нам нужно будет сохранить изображение
аватара, если оно есть, и SQLite не лучшее место для этого. Вместо него
мы будем использовать файловую систему. Каждое приложение получа-
ет свой собственный каталог документов, в котором мы можем хранить
произвольные файлы, и плагин path_provider помогает нам в этом;

•	 flutter_slidable – нужен при удалении контактов, заметок и задач, те-
перь пользователь может свайпнуть эти виджеты на экране списка;

•	 intl – нам понадобятся функции форматирования даты и времени, по-
скольку некоторые из наших объектов работают с датами и временем;

•	 image_picker – этот плагин обеспечивает инфраструктуру, которая пона-
добится приложению, чтобы позволить пользователю добавлять аватар-
ки для контактов из галереи или с камеры устройства;

•	 flutter_calendar_carousel – этот виджет предоставляет календарь для
экрана списка встреч.

Все остальное в файле pubspec.yaml к настоящему моменту должно показать-
ся вам знакомым, и, помимо перечисленных зависимостей, здесь есть те стро-
ки, которые мастер проектов создал для нас.

Структура UI
Базовая структура UI (пользовательского интерфейса) приложения показана
на рис. 5-3.

MaterialApp + DefaultT abController + Scaffold

TabBar

Appointments

IndexedStack IndexedStack IndexedStack IndexedStack

List Entry List Entry List Entry List Entry

Contacts Notes Tasks

Date Details Image Source

Рисунок 5-3. Базовая структура UI

163

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I

Хотя это не показывает все до мельчайших деталей, схема дает нам картину
объектов верхнего уровня.

Сверху – основной виджет MaterialApp, под которым находится DefaultTab
Controller, а под ним – Scaffold. Под ними – TabBar. Под TabBar расположено
четыре основных экрана, по одному для каждой из четырех вкладок. У каждого
из экрана по два «подэкрана», экраны списка и ввода – это дочерние элементы
виджета IndexedStack, который позволяет отображать любой из двух экранов,
просто изменяя поле index (порядок экрана внутри IndexedStack). Под экраном
списка встреч мы видим BottomSheet, который показывает детали для выбран-
ной даты, а под экраном ввода контактов отображается диалоговое окно, в кото-
ром пользователь может выбрать источник изображения (камеру или галерею).

Элементы списка и экраны ввода для каждого типа, конечно, сложнее, но
мы рассмотрим их позже. Давайте сначала поговорим об основной структуре
приложения с точки зрения кода.

Структура кода приложения
Что касается структуры каталогов приложения, она на 100 % стандартна, здесь
нет ничего нового. Весь код приложения находится в каталоге lib, как всегда,
хотя на этот раз, учитывая количество файлов и желание сделать его хотя бы
несколько модульным, каждый тип сущности получает свой собственный ка-
талог. Таким образом, каталог lib/contacts содержит файлы, связанные с кон-
тактами, lib/notes-файлы, связанные с заметками, и т. д.

В каждом из них вы найдете один и тот же базовый набор файлов, и во всех
последующих случаях xxx – это имя объекта Appointments, Contacts, Notes или
Tasks:

•	 xxx.dart – основная точка входа на каждый из этих экранов;

•	 xxxList.dart – экран списка;

•	 xxxEntry.dart – экран ввода;

•	 xxxModel.dart – эти файлы содержат классы для представления каждого
типа данных, а также объект model, как того требует scoped_model (его мы
обсудим позже);

•	 xxxDBWorker.dart – эти файлы содержат код, который работает с SQLite.
Он обеспечивает уровень абстракции над базой данных, так что вы мо-
жете изменить механизм хранения данных, не изменяя код приложения,
а просто изменив эти файлы.

Отправная точка
Пришло время начать смотреть на код! Как обычно, все начинается в файле
main.dart в корне проекта:

164

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I
import "dart:io";
import "package:flutter/material.dart";
import "package:path_provider/path_provider.dart";
import "appointments/Appointments.dart";
import "contacts/Contacts.dart";
import "notes/Notes.dart";
import "tasks/Tasks.dart";
import "utils.dart" as utils;

void main() {
	 startMeUp() async {
	 	 Directory docsDir =
	 	 	 await getApplicationDocumentsDirectory();
	 	 utils.docsDir = docsDir;
	 	 runApp(FlutterBook());
	 }
	 startMeUp();
}

Давайте на этом остановимся и обсудим представленный фрагмент (я обыч-
но разбиваю листинг, чтобы представить его в более удобоваримой форме
и дать вам понять, что происходит).

Во-первых, у нас есть import. Вы уже знаете, что material.dart – это код клас-
сов Material Flutter. Нам нужна библиотека io и плагин path_provider для полу-
чения каталога документов приложения (мы скоро к этому вернемся). Осталь-
ное – классы приложения. Четыре файла экранов импортируются, а затем добав-
ляется файл utils.dart. Мы рассмотрим его в следующем разделе, но вкратце:
он содержит функции и переменные, которые имеют глобальное значение для
всего кода и поэтому находятся в этом файле.

Далее следует обычная функция main(), с которой начинается запуск приложе-
ния. Тут есть маленький нюанс: нам нужно получить каталог документов прило-
жения. Импорт path_provider.dart предоставляет нам функцию getApplication
DocumentsDirectory(), которая возвращает объект Directory, предоставляемый
импортированной библиотекой Dart:io. В дополнение к этой функции дан-
ный плагин также предоставляет метод getExternalStorageDirectory(), кото-
рый доступен только на Android (и только на некоторых устройствах), поэто-
му обычно перед его использованием следует проверить тип ОС. Этот метод
возвращает путь к корневой папке хранилища на внешнем устройстве (обычно
на SD-карте), где приложение может считывать и записывать данные. Наконец,
есть функция getTemporaryDirectory(). Она возвращает путь к временному ка-
талогу приложения (где вы обычно храните временные данные, в отличие от
getApplicationDocuments Directory(), который обеспечивает долговременное
хранение.

Однако есть проблема: мы должны убедиться, что никакой другой код не
выполняется до тех пор, пока наш асинхронный код не завершится, потому
что в противном случае мы будем получать исключения (exceptions) из-за от-

165

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I

сутствия доступа к файлу базы данных. Как вы увидите позже, каждая из четы-
рех баз данных, по одной для каждой вкладки, представляет собой отдельный
файл SQLite, хранящийся в каталоге документов приложения. И если новый
код вызывается до определения docDir, то во время загрузки экранов и созда-
ния основного виджета у нас будут проблемы. Итак, для этого я создаю функ-
цию внутри main() (да, вы можете сделать это в Dart!) и гарантирую, что дан-
ная функция асинхронна, потому что мы будем ждать вызова getApplication
DocumentsDirectory(). Как только она возвращает Directory, этот объект сохра-
няется в utils.docsDir (так что нам нужно получить ссылку на этот каталог
только один раз), а затем вызывает обычный runApp(), передавая ему новый
экземпляр класса FlutterBook.

Примечание. Это не обязательно лучший способ, так как пользовательский интерфейс не будет соз-
дан до тех пор, пока getApplicationDocumentsDirectory() не завершится. Обычно это не
очень хорошо с точки зрения пользовательского интерфейса, но, учитывая, что это не займет слишком
много времени, я думаю, это самый простой способ получить нужный результат.

Затем создается основной виджет, в который входит класс FlutterBook, как
вы можете видеть ниже:

class FlutterBook extends StatelessWidget {

	 Widget build(BuildContext inContext) {
		 return MaterialApp(
	 	 	 home : DefaultTabController(
	 	 	 	 length : 4,
				 child : Scaffold(
					 appBar : AppBar(
	 	 	 	 	 	 title : Text("FlutterBook"),
						 bottom : TabBar(
	 	 	 	 	 	 	 tabs : [
	 	 	 	 	 	 	 	 Tab(icon : Icon(Icons.date_range),
	 	 	 	 	 	 	 	 	 text : "Appointments"),
	 	 	 	 	 	 	 	 Tab(icon : Icon(Icons.contacts),
	 	 	 	 	 	 	 	 	 text : "Contacts"),
	 	 	 	 	 	 	 	 Tab(icon : Icon(Icons.note),
	 	 	 	 	 	 	 	 	 text : "Notes"),
	 	 	 	 	 	 	 	 Tab(icon : Icon(Icons.assignment_turned_in),
	 	 	 	 	 	 	 	 	 text : "Tasks")
]
)
),
	 	 	 	 	 body : TabBarView(
	 	 	 	 	 	 children : [
	 	 	 	 	 	 	 Appointments(), Contacts(), Notes(), Tasks()

166

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I
]
)
)
)
);
	 }
}

Во-первых, у нас есть MaterialApp, который я упоминал ранее, с DefauItTab
Controller в качестве главного экрана. DefaultTabController – это тип Tab
Controller, отвечающий за координацию выбора вкладок в TabBar, который, как
вы можете видеть, является нижним дочерним элементом AppBar под Scaffold.
Controller заботится о переключении между дочерними элементами, которые
определяются свойством tabs у TabBar. Каждая запись во вкладках – это объект
Tab, который может иметь значок и надпись, поэтому я решил показать оба слу-
чая. С такой конфигурацией вам не нужно ничего делать, чтобы переключаться
между экранами; эти виджеты позаботятся обо всем за вас.

Наконец, тело Scaffold должно быть TabBarView, чтобы его можно было пра-
вильно отображать с помощью TabBar и правильно управлять им с помощью
DefaultTabController. Дочерние элементы нашего TabBarView – четыре экра-
на, по одному для каждой вкладки (и, очевидно, именно в этом и заключается
основная часть приложения; мы же вскоре приступим к реализации, но у нас
есть несколько других тем, на которых нужно остановиться подробнее, нач-
нем с utils.dart).

Глобальные утилиты
Файл utils.dart содержит глобальные данные, о которых я говорил ранее, по-
этому давайте посмотрим на них:

import "dart:io";
import "package:flutter/material.dart";
import "package:path_provider/path_provider.dart";
import "package:intl/intl.dart";
import "BaseModel.dart";

Directory docsDir;

Как вы видели ранее, docDir – это каталог документов приложения, который
был использован в main().

Далее мы находим в этом файле функцию selectDate():

Future selectDate(
	 BuildContext inContext, BaseModel inModel,
	 String inDateString
) async {

167

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I
	 DateTime initialDate = DateTime.now();
	 if (inDateString != null) {
	 	 List dateParts = inDateString.split(",");
	 	 initialDate = DateTime(
	 	 	 int.parse(dateParts[0]),
	 	 	 int.parse(dateParts[1]),
	 	 	 int.parse(dateParts[2])
);
	 }

	 DateTime picked = await showDatePicker(
	 	 context : inContext, initialDate : initialDate,
	 	 firstDate : DateTime(1900), lastDate : DateTime(2100)
);

	 if (picked != null) {
	 	 inModel.setChosenDate(
	 	 	 DateFormat.yMMMMd("en_US").format(picked.toLocal())
);
	 	 return "${picked.year},${picked.month},${picked.day}";
	 }
}

Сейчас эту функцию будет немного сложно объяснить полностью, потому
что она зависит от вещей, с которыми вы еще незнакомы, но вы можете вер-
нуться к ней позже, когда у вас будет нужная информация.

Во-первых, метод selectDate() используется для выбора даты на экранах
добавления встреч, контактов и задач (дата встречи, день рождения контакта
или срок выполнения задачи). Он должен быть универсальным и работать со
всеми тремя типами вкладок (и, возможно, с другими позже). Итак, то, что пе-
редается в метод selectDate(), – это контекст inContext экрана ввода, с кото-
рого он вызывается, наряду с объектом BaseModel и датой в строковой форме.
BaseModel – объект, для которого в конечном итоге будет выбрана нужная дата.
Переданная дата, которая является необязательной, будет иметь формат yyyy,
mm, dd, и это общий формат во всем коде. Причина в том, что при сохранении
даты в SQLite тип данных даты недоступен, поэтому имеет смысл сохранить ее
в виде строки. Я выбрал этот формат, потому что он облегчает создание объ-
екта DateTime, поскольку его конструктор принимает фрагменты информации
именно в таком порядке. Если дата передается, функция split() используется
для ее разделения на части, из которых создается DateTime, сначала год, затем
месяц, потом день, результат отображается в виде строки.

initialDate – это день, который будет заране выбран при отображении всплы-
вающего календаря, это применимо только при редактировании объекта (при
создании не будет указано initialDate, чтобы календарь выбрал текущий день).

Затем вызывается метод showDatePicker(), который вы видели в преды-
дущих двух главах. Он отображает всплывающий календарь и возвращает

168

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I

экземпляр DateTime. Обратите внимание, что диапазон выбираемых дат начи-
нается с 1900-го года, а заканчивается 2100-м. Логичнее было бы ограничить
его в зависимости от типа объекта (нет смысла создавать встречу для даты
в прошлом), и именно здесь вступают в игру firstDate и lastDate. Но, просто
чтобы уменьшить объем кода, вместо этого я выбрал диапазон, который, по
крайней мере, номинально работал бы для всех типов вкладок.

Когда showDatePicker() завершается, то мы узнаем, выбрал пользователь
дату или нет. Возвращенное значение будет null, если пользователь нажмет
кнопку Cancel. В противном случае для выбранной даты у нас будет объект
DateTime. Теперь, как я упоминал ранее, мы должны сохранить дату в экземпля-
ре BaseModel с помощью вызова функции setChosenDate(). Переданное значе-
ние должно быть в понятном формате, а так как у класса DateTime нет метода
toString(), то мы используем возможности intl.dart, предварительно его им-
портировав. В частности, функция DateFormat.yMMMMd.format() предоставляет
строку в форме «MONTH dd, yyyy», где MONTH – полное имя месяца (январь, фев-
раль, март и т. д.). Этот плагин содержит множество вариантов форматирова-
ния даты и времени, а также другие механизмы интернационализации и лока-
лизации приложений. Для получения дополнительной информации смотрите
документацию по intl.dart: https://pub.dartlang.org/packages/intl (я буду
редко описывать эти модули целиком, слишком много подробностей, поэтому
мы обсудим только код path_provider, который предлагает необходимые воз-
можности!).

Тем не менее мы еще не закончили! Код, вызвавший эту функцию, нуждает-
ся в получении даты. Формат, в котором дата была возвращена, остается преж-
ним: yyyy,mm,dd.

Как я уже сказал, функция setChosenDate() будет иметь больше смысла, ког-
да вы узнаете о моделях, а позже увидите ее использование – в следующей гла-
ве, поэтому давайте не будем на ней сейчас останавливаться, а лучше рассмот
рим применение моделей для управления состояниями виджетов.

Управление состоянием
Концепция State и управления состояниями определяют то, как ваши виджеты
создают и используют данные и как ваш код взаимодействует с ними – это тема,
которую чаще всего оставляют на усмотрение самих разработчиков. Flutter на
момент написания данной книги не говорил ничего определенного по тому,
как правильно работать с состояниями (ходят слухи, что вскоре у Flutter может
появиться канонически «правильный» подход к управлению состояниями, но
пока это только слухи).

Конечно, есть потомки виджета StatefulWidget, который умеет управлять
своим состоянием и который мы изучили в предыдущих главах (вы также уви-
дите его снова до конца книги). Это действительно управление состояниями.
Но на самом деле это только один тип состояний: локальные. Другими слова-

https://pub.dartlang.org/packages/intl

169

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I

ми, такие состояния локальны для отдельного виджета, и для управления ими
обычно достаточно потомков State и StatefulWidget.

Но есть другой тип состояния – состояние, которое вы можете считать «гло-
бальным». Другими словами, это состояние может быть необходимо вне видже-
та и, во многих случаях, вне времени его жизни. Например, дочерним виджетам
может быть необходимо состояние родительских виджетов. Или наоборот, ро-
дительский виджет (а может, и не прямой родительский класс) нуждается в до-
ступе к состоянию его дочернего элемента. Если все, с чем вам нужно работать, –
это виджеты с отслеживанием состояния, а парадигма setState() использует-
ся по умолчанию, то с подобными задачами может быть непросто справиться.

Как я уже сказал, Flutter не дает однозначного ответа. Существует множест
во решений для управления состояниями, доступных во Flutter, помимо set
State(), и это лишь некоторые из них: BLoC, Redux и scoped_model. Их, вероят-
но, еще дюжина, каждый со своими плюсами и минусами. Таким образом, ис-
пользуемый вами подход к управлению состоянием будет зависеть от многих
факторов, включая цели вашего проекта, конкретные взаимодействия между
состояниями, которые вам нужны, и, в конце концов, ваши личные предпочте-
ния относительно структурирования своего кода.

В проекте FlutterBook и фактически в оставшейся части этой книги я сосре-
доточусь на одном конкретном подходе из этого списка – scoped_model. Подход
scoped_model – возможно, самый простой вариант, потому что он делает код
проще, и мне это нравится! Чем проще, тем лучше! Вы, конечно, обязательно
должны изучить другие варианты и посмотреть, что подходит под вашу мен-
тальность и формат мышления. Если этим вариантом окажется scoped_model,
то отлично! Если нет, то нет проблем, мы все еще можем быть друзьями, и, по
крайней мере, прочитав эту книгу, вы будете хорошо понимать scoped_model,
чтобы проводить осмысленное сравнение с остальными.

Итак, что такое scoped_model? Ну, это всего лишь три простых класса, кото-
рые предоставляют (в сочетании с тремя простыми шагами с вашей стороны)
специальное хранилище данных для дерева виджетов.

Первый класс Model из библиотеки scoped_model требует, чтобы вы созда-
ли от него потомка и именно здесь разместили свою логику обработки дан-
ных и ваши переменные. Обратите внимание, что вам может не потребовать-
ся какая-либо реальная логика, и это совершенно нормально (хотя и немно-
го нетипично). Основная цель помещения кода в потомка Model заключается
в том, чтобы вы могли вызвать метод notifyListeners() базового класса (кото-
рый можно вызывать только из подкласса Model). Это секретный ингредиент!
Вызов этого метода информирует любой виджет, который был «подключен»
к классу модели, о том, что модель изменилась, и они должны, при необходи-
мости, перестроить себя.

Второй шаг – подключение scoped_model к дереву виджетов. Эта часть
очень проста: оберните виджет во второй класс, о котором вы должны знать,
ScopedModel. Например, если ваш самый верхний виджет – это Column, то вы
можете сделать следующее:

170

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I
return ScopedModel<your-model-class-here>(
	 child : Column(...)
)

На самом деле вам даже не нужно помещать самый верхний виджет в общее
дерево, хотя это и наиболее популярный вариант, чтобы любой виджет в дере-
ве мог иметь доступ к вашей модели. Но если доступ к модели требуется толь-
ко подмножеству виджетов, вы можете вместо этого выбрать родительский
виджет, даже если он не самый верхний, и обернуть его в ScopedModel. В лю-
бом случае вы должны сообщить ScopedModel тип через шаблонную нотацию
<your-model-class-here> (это потомок базового класса Model).

И наконец, для всех дочерних виджетов, на которые мы хотим повлиять
и чей родитель обернут в ScopedModel, нужно использовать класс ScopedModel
Descendent. Как и в ScopedModel, вам не нужно оборачивать каждый виджет от-
дельно; оборачивание одного покроет и все его дочерние элементы. Любые вид-
жеты, обернутые этим классом, будут перестраиваться при изменении модели
(конечно, при условии что алгоритм сравнения Flutter определит, что это необ-
ходимо). Синтаксис ScopedModelDescendent немного отличается от ScopedModel,
потому что требуется паттерн builder:

return ScopedModel<your-model-class-here>(
	 child :
	 	 ScopedModelDescendent<your-model-class-here>(
	 	 	 builder : (BuildContext inContext, Widget inChild,
	 	 	 	 <your-model-class-here> inModel) {
	 	 	 	 	 return Column(...);
)
);
)

Теперь если у вас есть виджет Text внутри Column, с помощью которого вы
хотите отобразить значение переменной из inModel, то вы можете сделать

Text(inModel.myVariable)

И вуаля, у вас есть готовое к использованию хранилище данных, которое
является состоянием вашего приложения. Оно обновит ваш пользовательский
интерфейс при изменении данных, без использования класса State (верно, вы
можете делать все это с виджетами StatelessWidget!) и более глобальным спо-
собом.

Последний фрагмент головоломки – это изменение состояния. Чтобы с этим
разобраться, давайте посмотрим на реальный класс модели, файл BaseModel.
dart из FlutterBook. Прежде чем мы начнем это исследование, позвольте мне
сказать, что каждый тип вкладки, с которой работает FlutterBook, имеет свой
собственный класс модели. Вам не нужно делать это таким образом – у вас ведь
может быть один класс модели, который сразу содержит данные для всех че-
тырех типов вкладок. Но я считаю, что логичнее их разделять. Дело в том, что

171

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I

наши модели данных имеют несколько общих характеристик, поэтому, вмес
то того чтобы дублировать код, я создал класс BaseModel, который наследу-
ется от Model. Классы моделей для отдельных типов вкладок наследуются от
BaseModel, а это означает, что они также происходят от класса scoped_model, как
нам и нужно.

import "package:scoped_model/scoped_model.dart";

Очевидно, что не получится использовать библиотеку scoped_model, если мы
ее не импортируем, поэтому начинаем именно с этого. Затем идет класс Base
Model:

class BaseModel extends Model {

Видите, он действительно наследуется от класса Model из библиотеки scoped_
model!

int stackIndex = 0;
List entityList = [];
var entityBeingEdited;
String chosenDate;

В этой модели мы постарались выделить все общие части наших вкладок. Пом-
ните, что каждый из четырех экранов во вкладках на самом деле содержит два
экрана (список объектов и редактирование), дочерних элемента IndexedStack?
Так вот, то, что именно сейчас отображается на экране, будет зависеть от зна-
чения переменной stackIndex. Кроме того, поскольку все четыре типа вкла-
док имеют списки с данными, здесь определено поле enityList. А свойство
entityBeingEdited будет ссылкой на объект, который пользователь выберет,
если захочет изменить существующий элемент списка. Таким способом данные
для вкладки передаются с экрана списка на экран ввода. Наконец, переменная
chosenDate будет хранить дату, выбранную пользователем при редактировании
записи. Вы увидите, зачем это необходимо, уже в ближайшее время, но пока да-
вайте продолжим с классом BaseModel.

void setChosenDate(String inDate) {
	 chosenDate = inDate;
	 notifyListeners();
}

Когда пользователь выбирает дату, он делает это через всплывающее окно,
но затем выбранная дата должна вернуться в модель. Вызов метода setChosen
Date() реализует данную логику. Как видите, последнее, что он делает, – это
вызывает notifyListeners(). Именно данный вызов обновляет экран, что-
бы показать выбранную дату. Без этого данные будут сохранены в модели,
но пользователь не узнает об этом, посмотрев на экран, потому что виджеты,
обернутые в ScopedModel (и ScopedModelDescendent), не будут перерисованы.

172

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I
void loadData(String inEntityType, dynamic inDatabase) async {
	 entityList = await inDatabase.getAll();
	 notifyListeners();
}

Метод loadData() будет вызываться всякий раз, когда объект добавляется
или удаляется из entityList (код, который вы увидите в ближайшее время). Это
использует класс xxxDBWorker, который знает, как контактировать с SQLite. Еще
раз, мы перейдем к этому в ближайшее время, но на данный момент просто об-
ратите внимание, что результат вызова метода getAll() заменяет entityList,
а затем notifyListeners() снова вызывается, чтобы список на вкладке перери-
совывал себя.

Наконец, у нас есть метод setStackIndex():

void setStackIndex(int inStackIndex) {
	 stackIndex = inStackIndex;
	 notifyListeners();
}

Он будет вызываться всякий раз, когда мы захотим перемещать пользова-
теля между экранами списка и ввода.

Я понимаю, что у вас еще нет полного контекста использования кода Base
Model, но скоро будет! На данный момент основные понятия scoped_model – вот
что важно, и надеюсь, они начинают обретать какой-то смысл. Кстати, сейчас
мы увидим, как все это работает, на примере вкладки Notes.

Начнем с простого: заметки
Я думаю, что из четырех типов вкладок код для заметок наиболее простой. По-
этому начнем с него.

Точка отсчета: Notes.dart
Как вы помните, каждая из четырех вкладок имеет главный экран, который
является основным ее содержимым. Файл Notes.dart реализует код для этого
экрана и начинается с импорта:

import "package:flutter/material.dart";
import "package:scoped_model/scoped_model.dart";
import "NotesDBWorker.dart";
import "NotesList.dart";
import "NotesEntry.dart";
import "NotesModel.dart" show NotesModel, notesModel;

Помимо обычных компонентов, таких как material.dart, у нас есть scoped_
model.dart. Вы увидите, что все дерево виджетов для этого экрана будет иметь

173

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I

доступ к модели заметок. Нам также нужно добавить файл NotesDBWorker.
dart, чтобы мы могли загрузить заметки. Затем нам нужен исходный код для
двух подэкранов: NotesList.dart и NotesEntry.dart. Наконец, нам нужна мо-
дель для заметок в NotesModel.dart. Продолжим рассматривать файл, описы-
вающий данный экран:

class Notes extends StatelessWidget {

Обратите внимание, что это виджет без сохранения состояния. Помните: ис-
пользование scoped_model означает, что вы имеете дело с состоянием, но это не
значит, что вы должны использовать только потомков StatefullWidget.

После идет конструктор:

Notes() {
	 notesModel.loadData("notes", NotesDBWorker.db);
}

Напомним, что у BaseModel есть метод loadData(), и он написан обобщенно,
поэтому будет работать с любым типом вкладок. Тем не менее единственная
причина, по которой метод может быть записан обобщенно, в том, что здесь
конструктор его вызывает и предоставляет информацию об объекте – а именно
тип объекта и ссылку на базу данных для этого типа объекта. После вызова кон-
структора Notes() свойство entityList будет содержать список заметок, загру-
женных из базы данных SQLite, и поэтому позже эти данные мы сможем отобра-
зить на экране. Технически, поскольку эта загрузка данных происходит асин-
хронно, экран списка отобразится до того, как данные будут загружены, однако
благодаря scoped_model и методу loadData(), вызывающему notifyListeners(),
экран получает уведомление и перерисует себя уже с данными.

Widget build(BuildContext inContext) {

	 return ScopedModel<NotesModel>(
	 	 model : notesModel,
	 	 child : ScopedModelDescendant<NotesModel>(
	 	 	 builder : (BuildContext inContext, Widget inChild,
	 	 	 	 NotesModel inModel
) {
	 	 	 	 return IndexedStack(
	 	 	 	 	 index : inModel.stackIndex,
	 	 	 	 	 children : [NotesList(), NotesEntry()]
);
			 }
)
);
}

Наконец, рассмотрим виджет, возвращаемый из метода build(). Он начи-
нается со ScopedModel и содержит ScopedModelDescendent. IndexedStack ис-

174

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I

пользуется для хранения двух экранов. Примечательно, что значение индекса
IndexedStack – это ссылка на поле stackIndex в экземпляре NotesModel.

Управление экранами в IndexedStack реализовано очень просто: установите
значение stackIndex равным 0, и будет показан NotesList, а если задать 1 – ото-
бразится NotesEntry.

Модель: NotesModel.dart
Класс модели для вкладки с заметками находится в NotesModel.dart. NotesModel –
это не просто класс модели, но также класс, описывающий заметку.

Прежде всего мы начнем с импорта:

import "../BaseModel.dart";

Наш класс будет наследоваться от BaseModel, который, в свою очередь, на-
следуется от Model из scoped_model, поэтому нам нужен этот импорт.

Далее у нас идет определение класса с данными:

class Note {

	 int id;
	 String title;
	 String content;
	 String color;

	 String toString() {
	 	 return "{ id=$id, title=$title, "
	 	 "content=$content, color=$color }";
	 }
}

Экземпляры этого класса – заметки (note). Каждая заметка содержит уни-
кальный идентификатор, заголовок, описание и цвет, используемый для за-
дания фона на экране списка. Хотя это и не требуется, я также добавил метод
toString(), который переопределяет реализацию по умолчанию, предостав-
ляемую классом Object. Реализация по умолчанию не совсем удобна, посколь-
ку она просто говорит, к какому типу относится объект. Переопределенная же
версия показывает информацию о заметке, что очень удобно при отладке.

Далее идет сам класс модели:

class NotesModel extends BaseModel {

	 String color;

	 void setColor(String inColor) {
	 	 color = inColor;
	 	 notifyListeners();
	 }
}

175

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I

Большая часть того, что нужно этому классу, обеспечивается BaseModel, по-
этому нам необходимо реализовать только задание цвета. Немного забежим
вперед: это необходимо потому, что, когда пользователь выбирает цвет, изме-
нение значений в экземпляре Note не отразится на модели, и экран не узнает
об изменении. Поэтому нам нужно где-то это описать.

Есть еще одна важная строка в этом файле:

NotesModel notesModel = NotesModel();

У нас есть определение класса, но пока нет ни одного его экземпляра. Его
мы и создадим новой строкой. Этот код выполнится только один раз, незави-
симо от того, сколько раз или откуда он импортирован, а это гарантирует, что
у нас всегда будет только один экземпляр NotesModel, и это именно то, что нам
нужно!

Слой базы данных: NotesDBWorker.dart
Следующий файл для просмотра – NotesDBWorker.dart, который содержит весь
код для работы с SQLite. Разберем импорты:

import "package:path/path.dart";
import "package:sqflite/sqflite.dart";
import "../utils.dart" as utils;
import "NotesModel.dart";

Пожалуй, тут не много удивительного. Модуль path.dart содержит функ-
ции для работы с путями в файловой системе кросс-платформенным спосо-
бом. Большинство этих операций типичны, но мы чуть подробнее поговорим
об одной из них, которая появится позднее.

Далее идет сам класс NotesDBWorker:

class NotesDBWorker {

	 NotesDBWorker._();
	 static final NotesDBWorker db = NotesDBWorker._();

Первый шаг – убедиться, что существует только один экземпляр этого клас-
са, поэтому мы собираемся реализовать паттерн singleton. Начинаем с созда-
ния закрытого конструктора, как видно в первой строке. Во второй строке вы-
зывается конструктор, а экземпляр класса БД хранится статически и не может
быть изменен.

Далее нам нужен экземпляр класса Database – ключевого класса при работе
с SQLite через плагин sqflite:

Database _db;

Future get database async {
	 if (_db == null) {
	 	 _db = await init();

176

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I
	 }
	 return _db;
}

Когда вызывается метод get для получения базы данных, мы проверяем,
есть ли что-то в _db. Если есть, то вернем текущее значение, если нет, то вызо-
вем метод init(). Это гарантирует, что в одном экземпляре NotesDBWorker бу-
дет только один объект Database, именно этого мы и хотели для сохранения
целостности данных.

К слову, о методе init():

Future<Database> init() async {
	 String path = join(utils.docsDir.path, "notes.db");
	 Database db = await openDatabase(
	 	 path, version : 1, onOpen : (db) { },
	 	 onCreate : (Database inDB, int inVersion) async {
	 	 	 await inDB.execute(
	 	 	 	 "CREATE TABLE IF NOT EXISTS notes ("
	 	 	 	 	 "id INTEGER PRIMARY KEY,"
	 	 	 	 	 "title TEXT,"
	 	 	 	 	 "content TEXT,"
	 	 	 	 	 "color TEXT"
	 	 	 	 ")"
);
		 }
);
	 return db;
}

Ключевая задача – убедиться, что база данных существует. Она будет хра-
ниться в виде файла в каталоге документов приложения, поэтому нам нужен
путь к нему. Здесь используется одна функция из библиотеки path – функция
join(), которая объединяет путь к каталогу документов с именем файла notes.
db. Как только мы это сделаем, нужно создать объект Database из сформиро-
ванного пути при помощи метода openDatabase(). Мы передаем этому методу
путь, версию базы данных, а также callback-функцию, вызываемую при откры-
тии базы данных. Далее с помощью метода execute() мы выполняем SQL-за-
прос для создания таблицы notes, если такая еще создана. После этого возвра-
щается экземпляр базы данных, который сохраним в _db. Теперь мы готовы
выполнять операции с базой данных!

Но прежде чем мы перейдем к этим операциям, нам нужно создать две
вспомогательные функции. Проблема в том, что SQLite и sqflite ничего не
знают о нашем классе Note, так как все, с чем они могут работать, – это отобра-
жения данных, реализуемые классом Map. Итак, нам нужно предоставить неко-
торые функции, которые могут преобразовать объект из Map в Note и наоборот.
Здесь нет ничего сложного:

177

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I
Note noteFromMap(Map inMap) {

	 Note note = Note();
	 note.id = inMap["id"];
	 note.title = inMap["title"];
	 note.content = inMap["content"];
	 note.color = inMap["color"];
	 return note;
}

Map<String, dynamic> noteToMap(Note inNote) {
	 Map<String, dynamic> map = Map<String, dynamic>();
	 map["id"] = inNote.id;
	 map["title"] = inNote.title;
	 map ["content"] = inNote.content;
	 map["content"] = inNote.content;
	 return map;
}

Я даже могу поспорить, для вас все совершенно очевидно, так что давайте
перейдем к более захватывающим вещам: создание заметки в базе данных!

Примечание. Именно поэтому я и хотел, чтобы у меня не было одного DBWorker для всех вкладок.
Помимо фактического отличия операторов SQL, с которыми я мог бы справиться с помощью оператора
switch, в настоящее время у Dart нет ничего похожего на рефлексию в языке Java. Скорее всего, это по
явится в будущем, но на момент написания книги не было возможностей использовать динамическое пре-
образование данных, поэтому пришлось использовать ручное присваивание. Мне нравится Dart, но иногда
я скучаю по JavaScript! [Уже есть такая библиотека https://pub.dev/packages/reflectable. –
Прим. перев.]

Future create(Note inNote) async {

	 Database db = await database;
	 var val = await db.rawOuery(
	 	 "SELECT MAX(id) + 1 AS id FROM notes"
);
	 int id = val.first["id"];
	 if (id == null) { id = 1; }
	 return await db.rawInsert(
	 	 "INSERT INTO notes (id, title, content, color) "
	 	 "VALUES (?, ?, ?, ?)",
	 	 [id, inNote.title, inNote.content, inNote.color]
);
}

Создание заметки состоит из трех этапов. Во-первых, нам нужно получить
ссылку на объект базы данных. Во-вторых, нам нужно придумать уникальный

https://pub.dev/packages/reflectable

178

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I

идентификатор для заметки. Чтобы сделать это, мы запрашиваем существую-
щие заметки и просто увеличиваем наибольший найденный идентификатор.
Однако если это первая заметка, то мы получим null и явно столкнемся с по-
добной ситуацией (на практике null для идентификатора работает, но мне ка-
жется, что это «грязно», поэтому дополнительная проверка гарантирует, что
мы всегда имеем дело с действительным числовым идентификатором).

Третий шаг – вызов метода rawInsert() с простым SQL-запросом, который
выполняет вставку значений. Эти значения взяты из объекта Note, переданно-
го как inNote. Как вы можете видеть, мы возвращаем объект Future, который,
в свою очередь, возвращается методом rawInsert(), поэтому функция create()
является асинхронной. На этом все готово!

Примечание. Если вы посмотрите API для объекта Database, то увидите, что, помимо метода
rawInsert(), есть также метод insert() и аналогичное разделение для других операций. Зачем ис-
пользовать одно вместо другого? По правде говоря, у меня нет веских аргументов в пользу одного из под-
ходов! Метод insert() является более абстрактным и избавляет вас от необходимости писать SQL-за-
просы самостоятельно, в отличие от rawInsert(). Лично я предпочитаю работать с SQL, но если вы пред-
почитаете решения более высокого уровня, то можете использовать insert() вместо rawInsert(), и нет
никаких веских причин для того, чтобы предпочесть последний, помимо желания писать SQL.

Далее нам нужна возможность получить указанную заметку. Хоть сейчас это
и неочевидно, мы просто реализуем операции CRUD, то есть Create (создать),
Read (прочитать), Update (обновить) и Delete (удалить).

Future<Note> get(int inID) async {
	 Database db = await database;
	 var rec = await db.query(
	 	 "notes", where : "id = ?", whereArgs : [inID]
);
	 return noteFromMap(rec.first);
}

Вызывающая сторона передает идентификатор заметки, которую хочет по-
лучить, а сам запрос происходит с помощью метода query(). Этот метод при-
нимает имя таблицы для запроса и условие where (есть несколько форм, кото-
рые данный метод может принять, это только одна из них) плюс значения для
него. Здесь нам просто нужно запросить поле id. Результатом этого вызова бу-
дет объект Map, поэтому нам нужна функция noteFromMap() для возврата объ-
екта Note.

Ниже представлен метод getAll(), который позволяет извлечь все заметки
за один вызов:

Future<List> getAll() async {
	 Database db = await database;
	 var recs = await db.query("notes");
	 var list = recs.isNotEmpty ?

179

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I
	 recs.map((m) => noteFromMap(m)).toList() : [];
	 return list;
}

Здесь методу query() просто нужно имя таблицы, и он извлечет из нее все
записи. Если у нас нет записей, то возвращается пустой список, но если мы их
получили, то вызовется функция map() с методом noteFromMap() внутри. Это
преобразует каждый элемент списка из Map в Note. Наконец, преобразуем ре-
зультат в новый список методом toList().

Обновление заметки происходит следующим образом:

Future update(Note inNote) async {

	 Database db = await database;
	 return await db.update("notes", noteToMap(inNote),
	 	 where : "id = ?", whereArgs : [inNote.id]
);
}

Не слишком сложно, не так ли? Метод update() принимает имя таблицы, объ-
ект Map с новыми значениями (которые мы получаем, вызывая noteToMap()),
и условие where для идентификации записи по id. Этот метод знает, как взять
Map и преобразовать его содержимое к форме, которая подходит для записи
данных в базу.

Последний метод, который нужно рассмотреть, – это delete():

Future delete(int inID) async {

	 Database db = await database;
	 return await db.delete(
	 	 "notes", where : "id = ?", whereArgs : [inID]
);
}

Это все, что нужно! Надеюсь, что объяснения не нужны. Итак, давайте перей
дем к коду экранов, начиная со списка.

Экран списка: NotesList.dart
Экран списка заметок начинается с импорта:

import "package:flutter/material.dart";
import "package:scoped_model/scoped_model.dart";
import "package:flutter_slidable/flutter_slidable.dart";
import "NotesDBWorker.dart";
import "NotesModel.dart" show Note, NotesModel, notesModel;

class NotesList extends StatelessWidget {

180

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I

Из новенького здесь импорт flutter_slidable.dart; в остальном это обыч-
ные импорты и совершенно обычное начало класса. Давайте пропустим описа-
ние библиотек, пока не встретим их, а вместо этого посмотрим на метод build():

Widget build(BuildContext inContext) {

	 return ScopedModel<NotesModel>(
	 	 model : notesModel,
	 	 child : ScopedModelDescendant<NotesModel>(
	 	 	 builder : (BuildContext inContext, Widget inChild,
	 	 	 	 NotesModel inModel
) {
				 return Scaffold(

У нас есть ScopedModel, который ссылается на экземпляр notesModel. Он со-
держит ScopedModelDescendent в качестве child, так что все дочерние элементы
в этом классе могут получить доступ к модели. Далее идет функция builder(),
и мы начинаем создавать виджет на базе Scaffold, как это часто бывает с экра-
ном приложений Flutter.

floatingActionButton : FloatingActionButton(

	 child : Icon(Icons.add, color : Colors.white),
	 onPressed : () {
	 	 notesModel.entityBeingEdited = Note();
	 	 notesModel.setColor(null);
	 	 notesModel.setStackIndex(1);
	 }
)

Scaffold имеет кнопку floatingActionButton, которая позволяет пользова-
телю создавать новые заметки. Она находится в правом нижнем углу, поверх
содержимого экрана. При нажатии на нее выполняется функция onPressed,
этим мы инициализируем процедуру ввода, которую начнем с создания но-
вого экземпляра Note и сохранения его в модели как entityBeingEdited. Этот
объект мы сохраним в базе данных, как только это потребуется.

Пользователь может выбрать на экране ввода цвет заметки. Вспомните, как
мы говорили о том, что экран будет перерисовывать себя при изменении мо-
дели. И это будет происходить вне зависимости от того, изменял пользователь
цвет или нет. Однако передать цвет в новом объекте Note недостаточно, по-
скольку scoped_model не будет видеть изменений в этом объекте (scoped_model
не может наблюдать за свойствами вложенных объектов), поэтому, как вы ви-
дели ранее, NoteModel имеет свое свойство color. Изначально мы хотим, чтобы
цвет не был выбран, поэтому вызываем метод setColor() с аргументом null, ко-
торый устанавливает для модели свойство color и вызывает notifyListeners(),
так что экран обновляется (на самом деле это не имеет значения, поскольку на
этом этапе экран ввода не отображается).

181

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I

Наконец, мы перемещаем пользователя на экран ввода, вызывая setStack
Index() и передавая ему значение, равное единице. После этого определяется
свойство body виджета Scaffold, и именно здесь мы начинаем рисовать спи-
сок заметок:

body : ListView.builder(
	 itemCount : notesModel.entityList.length,
	 itemBuilder : (BuildContext inBuildContext, int inIndex) {
	 	 Note note = notesModel.entityList[inIndex];
	 	 Color color = Colors.white;
	 	 switch (note.color) {
	 	 	 case "red" : color = Colors.red; break;
	 	 	 case "green" : color = Colors.green; break;
	 	 	 case "blue" : color = Colors.blue; break;
	 	 	 case "yellow" : color = Colors.yellow; ;
	 	 	 case "grey" : color = Colors.grey; break;
	 	 	 case "purple" : color = Colors.purple; break;
		 }

Мы используем виджет ListView, потому что нам нужен прокручиваемый
список элементов. Это требует использования конструктора builder(), ко-
торый принимает число элементов в списке через itemCount (а это свойство
length у entityList), а затем функцию itemBuilder, которая создает виджеты
для всех элементов в списке. Для каждого из них мы получаем объект Note по
его индексу, и первое, что нам нужно сделать, – это разобраться с цветом. По
умолчанию мы предполагаем, что цвет не был указан и заметка будет белой.
Для всех остальных вариантов устанавливаем правильный цвет из коллекции
Colors (обратите внимание, что значения этих констант являются объектами,
а не простыми строками или числами, поэтому я не сохраняю эти значения
в базе напрямую).

После определения цвета может быть возвращен виджет Container:

return Container(
	 padding : EdgeInsets.fromLTRB(20, 20, 20, 0),
	 child : Slidable(
	 	 delegate : SlidableDrawerDelegate(),
	 	 actionExtentRatio : .25,
	 	 secondaryActions : [
			 IconSlideAction(
	 	 	 	 caption : "Delete",
	 	 	 	 color : Colors.red,
	 	 	 	 icon : Icons.delete,
	 	 	 	 onTap : () => _deleteNote(inContext, note)
)
]

182

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I

Мы делаем небольшие отступы слева, сверху и справа. Это удерживает за-
метки вдали от краев экрана, что эстетически более приятно и обеспечивает
некоторое пространство между элементами списка.

Далее мы переходим к Slidable, который видели в разделе import. Этот вид-
жет – просто тип контейнера, который поддерживает смещение. Во многих мо-
бильных приложениях, когда есть список элементов, вы можете перемещать
(«свайпать») их влево/вправо, чтобы открыть кнопки для дополнительных функ-
ций. Именно такую задачу и решает виджет Slidable. Вам достаточно предоста-
вить ему объект delegate, который управляет анимацией слайда (в нашем при-
мере это просто экземпляр класса SlidableDrawerDelegate()). Вы также должны
указать, как далеко виджет может быть перемещен, и здесь .25 означает 25 % ши-
рины экрана. Затем вы должны указать свойства actions и/или secondaryActions.
Свойство actions указывает, какие функции будут отображаться после переме-
щения элемента вправо, тогда как secondaryActions – это то, какие функции бу-
дут отображаться, когда элемент перемещается влево. В примере есть только
одно действие для удаления, и чаще всего вы видите кнопки для удаления спра-
ва (хотя нет правила, согласно которому это должно быть именно так), так что
secondaryActions – это все, что я использовал.

Каждый из объектов в списке secondaryActions, которых у вас может быть
сколько угодно, – это объекты класса IconSlideAction, также предоставляемо-
го плагином Slidable. Эти объекты позволяют вам определить, какой заголо-
вок, значок и цвет будут у action, а также что делать с элементами. Скоро мы
рассмотрим метод _deleteNote(), но сначала нужно еще немного настроить
конфигурацию виджета:

child : Card(
	 elevation : 8, color : color,
	 child : ListTile(
	 	 title : Text("${note.title}"),
	 	 subtitle : Text("${note.content}"),
	 	 onTap : () async {
	 	 	 notesModel.entityBeingEdited =
	 	 	 	 await NotesDBWorker.db.get(note.id);
	 	 	 notesModel.setColor(notesModel.entityBeingEdited.color);
	 	 	 notesModel.setStackIndex(1);
		 }
)
)

Внутри Container и Slidable каждая заметка представлена Card, которая,
как вы помните, отображает рамку с тенью (в соответствии с рекомендация-
ми Google Material Design). Такие виджеты выглядят как стикеры, так что я по-
думал, что это хороший выбор. Я немного увеличу значение elevation, что-
бы сделать тени у ячеек более выраженными, а также задам выбранный ранее
цвет с помощью color. Дочерний элемент Card – это виджет ListTile, который
использует общий способ компоновки с полями title и subtitle, необходи-

183

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I

мыми для отображения информации об отдельном элементе списка. Заметка
будет вертикально развернута так, чтобы показать весь контент. ListTile – это
очень распространенный виджет, который обычно используется в качестве до-
чернего элемента ListView, но он не обязательно должен быть его прямым по-
томком (он даже не должен быть его косвенным потомком). В следующей гла-
ве вы будете чаще встречать этот виджет и увидите другие его возможности.

Теперь, когда заметка выбрана, мы хотим, чтобы пользователь мог ее от-
редактировать. Это выглядит почти так же, как создание новой заметки с од-
ним важным исключением: заметка извлекается из базы данных. На самом
деле в этом нет необходимости, так как у нас уже есть эти данные в свойстве
entityList нашей модели. Тем не менее я подумал, что в демонстрационных
целях лучше сделать именно так.

Наконец, у нас есть метод _deleteNote(), который мы пропустили ранее:

Future _deleteNote(BuildContext inContext, Note inNote) {

	 return showDialog(
	 	 context : inContext,
	 	 barrierDismissible : false,
	 	 builder : (BuildContext inAlertContext) {
	 	 	 return AlertDialog(
	 	 	 	 title : Text("Delete Note"),
	 	 	 	 content : Text(
	 	 	 	 	 "Are you sure you want to delete ${inNote.title}?"
),
	 	 	 	 actions : [
	 	 	 	 	 FlatButton(child : Text("Cancel"),
	 	 	 	 	 	 onPressed: () {
	 	 	 	 	 	 	 Navigator.of(inAlertContext).pop();
						 }
),
	 	 	 	 	 FlatButton(child : Text("Delete"),
	 	 	 	 	 	 onPressed : () async {
	 	 	 	 	 	 	 await NotesDBWorker.db.delete(inNote.id);
	 	 	 	 	 	 	 Navigator.of(inAlertContext).pop();
	 	 	 	 	 	 	 Scaffold.of(inContext).showSnackBar(
								 SnackBar(
	 	 	 	 	 	 	 	 	 backgroundColor : Colors.red,
	 	 	 	 	 	 	 	 	 duration : Duration(seconds : 2),
	 	 	 	 	 	 	 	 	 content : Text("Note deleted")
)
);
	 	 	 	 	 	 	 notesModel.loadData("notes", NotesDBWorker.db);
						 }
)

184

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I
]
);
		 }
);
}

При удалении каких-либо данных хорошей практикой является уточнение
намерений пользователя, и обычно это делается с помощью отображения диа-
лога с вопросом. В нашем случае необходимо вызвать showDialog() и передать
в него соответствующий BuildContext.

Затем внутри функции builder(), которая требуется для showDialog(), мы соз-
даем AlertDialog, содержимое которого запрашивает подтверждение и показы-
вает заголовок заметки. Потом для actions мы реализуем кнопки (FlatButton)
отмены (Cancel), которая просто вызывает pop() для закрытия диалога, и уда-
ления (Delete). При тапе на последнюю мы вызываем метод delete() клас-
са NotesDBWorker, передавая ему идентификатор заметки. Затем мы закрываем
диалоговое окно и используем метод Scaffold showSnackBar(), чтобы показать
сообщение о том, что заметка была удалена. Оно будет отображаться в тече-
ние двух секунд в соответствии со значением duration. Наконец, необходимо
вызвать метод loadData() в notesModel, чтобы список был обновлен. Напом-
ню, что loadData() перезагрузит все заметки из базы данных, а затем вызовет
notifyListeners(), что запустит перерисовку экрана.

Экран ввода: NotesEntry.dart
Теперь мы подошли к заключительной части реализации заметок, экрану вво-
да. Как вы видите на рис. 5-4, это довольно простой экран.

Рисунок 5-4. Экран редактирования заметки

185

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I

На экране вы видите поле Title (заголовок) и поле Content (содержимое), ко-
торое я еще не ввел (на скриншоте вы видите сообщение об ошибке для Content,
ведь я пытался сохранить заметку, не вводя ничего). Еще здесь есть кнопки от-
мены (Cancel) и сохранения (Save), первая возвращает пользователя на экран
списка, а вторая сохраняет новую заметку (и, как я надеюсь, вы уже поняли, за-
пускает перерисовку экрана списка, чтобы показать новую заметку).

Как всегда, начинаем с импорта:

import "package:flutter/material.dart";
import "package:scoped_model/scoped_model.dart";
import "NotesDBWorker.dart";
import "NotesModel.dart" show NotesModel, notesModel;

class NotesEntry extends StatelessWidget {

Здесь нет ничего нового, подобное вы уже видели раньше. Имейте в виду,
что это все еще виджет без состояния, несмотря на то что приходится иметь
дело с каким-то состоянием.

Видим что-то новенькое:

final TextEditingController _titleEditingController =
	 TextEditingController();
final TextEditingController _contentEditingController =
	 TextEditingController();

Виджет TextFormField – то, с помощью чего будет вводиться заголовок и содер-
жимое. Он должен иметь связанный с ним TextEditingController, чтобы были
доступны такие возможности, как значение по умолчанию и различные события,
которые могут происходить, когда пользователь печатает. Так как нам понадо-
бится доступ к этим возможностям, мы создадим TextEditingController и под-
ключим его к полям TextFormField (если использовать просто TextFormFields
без контроллеров, то мы не сможем сделать ничего подобного, без использова-
ния грязных трюков!).

Поскольку у нас есть понятие обязательных для заполнения полей, у нас бу-
дет form, а form требует key:

final GlobalKey<FormState> _formKey = GlobalKey<FormState>();

Нас не очень волнует, что это за ключ, только то, что он у нас есть, поэтому
создается простой GlobalKey.

Далее у нас есть работа, которую нужно выполнить при создании класса,
с этим нам поможет constructor:

NotesEntry() {
	 _titleEditingController.addListener((){
	 	 notesModel.entityBeingEdited.title =
	 	 	 _titleEditingController.text;
	 });

186

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I
	 _contentEditingController.addListener((){
	 	 notesModel.entityBeingEdited.content =
	 	 	 _contentEditingController.text;
	 });
}

Видите! Нам действительно нужен был доступ к этим двум контроллерам!
Хитрость в том, что каждый раз, когда изменяется значение TextFormField, к ко-
торому подключен контроллер, соответствующее значение в entityBeingEdited
необходимо обновить. Для этого вызываем addListener() с функцией, кото-
рая выполнит эту задачу. Без этого все, что пользователь вводит на экран, не
отразилось бы на модели.

Теперь снова просыпается метод build():

Widget build(BuildContext inContext) {
	 _titleEditingController.text =
	 	 notesModel.entityBeingEdited.title;
	 _contentEditingController.text =
	 	 notesModel.entityBeingEdited.content;

Поскольку этот экран можно эффективно использовать в двух режимах, до-
бавляя и редактируя заметку, нам нужно убедиться, что предыдущие значе-
ния заголовка и содержимого отображаются на экране при редактировании.
Когда экран находится в режиме добавления, он будет просто устанавливать
значения null, поскольку это значение по умолчанию для String, которое ис-
пользуется для полей title и content класса Note. TextFormField все корректно
обработает, делая поля пустыми; в противном случае будет показано текущее
значение при редактировании заметки.

Теперь мы начинаем создавать виджет верхнего уровня, который возвра-
щает build():

return ScopedModel(
	 model : notesModel,
	 child : ScopedModelDescendant<NotesModel>(
	 	 builder : (BuildContext inContext, Widget inChild,
	 	 	 NotesModel inModel
) {
	 return Scaffold(

Пока что ничего нового: все выглядит, как и создание виджета на экране
списка. Но после этого у нас идет что-то необычное:

bottomNavigationBar : Padding(
	 padding :
	 	 EdgeInsets.symmetric(vertical : 0, horizontal : 10),
	 child : Row(
	 	 children : [

187

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I
	 	 	 FlatButton(
	 	 	 	 child : Text("Cancel"),
	 	 	 	 onPressed : () {
	 	 	 	 	 FocusScope.of(inContext).requestFocus(FocusNode());
	 	 	 	 	 inModel.setStackIndex(0);
				 }
),
	 	 	 Spacer(),
	 	 	 FlatButton(
	 	 	 	 child : Text("Save"),
	 	 	 	 onPressed : () { _save(inContext, notesModel); }
)
]
)
)

BottomNavigationBar виджета Scaffold, который позволяет размещать неко-
торое статическое содержимое внизу экрана. Оно не будет прокручиваться, даже
если то, что находится над ним, требует прокрутки. Cancel перемещает пользо-
вателя назад к экрану списка с помощью вызова setStackIndex(). Но сначала
нам нужно скрыть программную клавиатуру, если она открыта. В противном
случае она будет скрывать ListView на экране списка заметок. Класс FocusScope
устанавливает область видимости, в которой виджеты могут получать фокус.
Flutter отслеживает через дерево виджетов элемент, который сейчас действи-
тельно находится в фокусе пользователя. Когда вы получаете FocusScope данно-
го контекста через static-метод of(), вы можете вызвать метод requestFocus()
для передачи фокуса в определенное место.

Вторая кнопка – Save, и это просто вызов метода _save(), к которому мы
вернемся после просмотра кода виджета. К слову, о нем:

body : Form(
	 key : _formKey,
	 child : ListView(
	 	 children : [
			 ListTile(
	 	 	 	 leading : Icon(Icons.title),
	 	 	 	 title : TextFormField(
	 	 	 	 	 decoration : InputDecoration(hintText : "Title"),
	 	 	 	 	 controller : _titleEditingController,
	 	 	 	 	 validator : (String inValue) {
	 	 	 	 	 	 if (inValue.length == 0) {
							 return "Please enter a title";
						 }
						 return null;
					 }

188

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I
)
)

В предыдущих двух главах вы видели, что можно иметь виджет Form и собы-
тия проверки для полей ввода. Именно это нам здесь и нужно, и тот _formKey,
который был создан ранее, используется и здесь. Дочерние элементы – это вид-
жеты ListTile, и здесь вы можете увидеть еще одну вещь, которую предостав-
ляет виджет: поле leading. Им может быть некоторый контент в левой части
ListTile, например значок, показанный здесь. Виджет ListTile также поддер-
живает свойство trailing, чтобы делать то же самое с правой стороны, но нам
это не нужно.

Поле title у ListTile – это первый TextFormField. Может показаться стран-
ным, что свойство с именем title – это не просто текстовая строка, но в этом
и прелесть Flutter: это (обычно) не имеет значения! Вы можете поместить туда
все, что захотите, при условии что это виджет (будет ли он хорошо выглядеть
или работать так, как вы ожидаете, – это другой вопрос). У TextFormField есть
свойство decoration, значением которого является объект InputDecoration.
У данного объекта много свойств, включая labelText (текст, описывающий
поле), enabled (для визуального включения или отключения поля), suffixIcon
(значок, который появляется после редактируемой части текстового поля или
после suffix или suffixText в контейнере для decoration). Еще у него есть свой-
ство hintText. Установка этого значения приводит к отображению слова «Title»
в виде слегка затемненного текста всякий раз, когда поле для ввода оказывается
пустым. Другими словами, hintText выполняет ту же функцию, что и текстовая
метка. Как видите, свойство контроллера ссылается на TextEditingController,
созданный ранее для этого поля. Также здесь задан validator, который прове-
ряет текущее значение, чтобы убедиться, что оно было введено. К тому же ва-
лидатор возвращает строку ошибки, и если такая ошибка есть, то отобразит-
ся подсказка красного цвета под проверяемым полем. Обратите внимание, что
подсказка отобразится после того, как будет вызван соответствующий метод
валидации. Наша проверка отобразится после вызова метода _save(), к кото-
рому мы скоро перейдем.

Однако до этого у нас есть еще один TextFormField для поля content:

ListTile(
	 leading : Icon(Icons.content_paste),
	 title : TextFormField(
	 	 keyboardType : TextInputType.multiline,
	 	 maxLines : 8,
	 	 decoration : InputDecoration(hintText : "Content"),
	 	 controller : _contentEditingController,
	 	 validator : (String inValue) {
	 	 	 if (inValue.length == 0) {
				 return "Please enter content";
			 }

189

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I
			 return null;
		 }
)
)

Это почти то же самое, что и в поле заголовка, за исключением одного:
maxLines. Он определяет то, сколько строк текста можно ввести в поле, и меня-
ет высоту виджета соответственно. Здесь будет достаточно места для восьми
строк текста. Если вы знаете HTML, это фактически заставляет TextFormField
работать как <textarea>.

Теперь перейдем к части, отвечающей за те цветовые блоки, которые поль-
зователь может использовать для выбора цвета заметки:

ListTile(
	 leading : Icon(Icons.color_lens),
	 title : Row(
	 	 children : [

Мы начнем с другого свойства ListTile, с leading, показывающего значок
цветовой палитры. На этот раз title представляет собой Row, так что все блоки
могут быть расположены рядом друг с другом.

Из-за повторяющегося кода я собираюсь показать только один блок. Другие
блоки идентичны этому коду, за исключением ссылок на цвета.

GestureDetector(
	 child : Container(
		 decoration : ShapeDecoration(
	 	 	 shape : Border.all(width : 18, color : Colors.red) +
	 	 	 Border.all(width : 6,
	 	 	 	 color : notesModel.color == "red" ?
	 	 	 	 Colors.red : Theme.of(inContext).canvasColor
)
)
),
	 onTap : () {
	 	 notesModel.entityBeingEdited. color = "red";
	 	 notesModel.setColor("red");
	 }
),
Spacer(),

и так для каждого цвета…

Каждый блок содержит виджет GestureDetector, который дает нам элемент,
реагирующий на различные сенсорные события. Здесь мы заботимся только о со-
бытиях тапа, поэтому предусмотрена функция onTap(). Внутри GestureDetector
находится Container, а у него есть поле decoration, которое определяет прямо-

190

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I

угольник с рамкой (Border) со всех сторон. Рамке задается граница шириной 18
пикселей, поскольку контента нет, это приводит к заполнению рамки, поэтому
границы в некотором смысле «схлопываются» в сплошную рамку. Затем добав-
ляется еще одна граница, снова используя конструктор all(), чтобы поместить
рамку шириной в 6 пикселей вокруг этого поля. Если значение свойства color
в модели красного цвета, то цвет границы становится красным. В противном
случае она имеет тот же цвет, что и фон, который мы можем получить, запросив
тему, связанную с BuildContext. CanvasColor – это фон, на котором все нарисо-
вано, поэтому нам нужен именно этот элемент Theme. Смысл в том, чтобы кон-
тейнер становился толще благодаря внешней границе только тогда, когда она
выбрана.

При нажатии на прямоугольник с цветом происходит установка color
в объекте entityBeingEdited, а еще он устанавливается как атрибут color мо-
дели с помощью вызова setColor(). Этот вызов также приводит к вызову
notifyListeners(), что в итоге приводит к тому, что граница теперь отобража-
ется в цвете блока – так достигается эффект большего размера.

Последний фрагмент кода, который мы рассмотрим в этой главе, – это ме-
тод _save():

void _save(BuildContext inContext, NotesModel inModel) async {
	 if (!_formKey.currentState.validate()) { return; }
	 if (inModel.entityBeingEdited.id == null) {
	 	 await NotesDBWorker.db.create(
	 	 	 notesModel.entityBeingEdited
);
	 } else {
	 	 await NotesDBWorker.db.update(
	 	 	 notesModel.entityBeingEdited
);
	 }

notesModel.loadData("notes", NotesDBWorker.db);

inModel.setStackIndex(0);
	 Scaffold.of(inContext).showSnackBar(
		 SnackBar(
	 	 	 backgroundColor : Colors.green,
	 	 	 	 duration : Duration(seconds : 2),
	 	 	 content : Text("Note saved")
)
);
}

Очевидно, что этот метод сохраняет заметки в базе данных. Во-первых,
форма проверяется, и если она не прошла валидацию, метод завершается до
срочно.

191

ГЛАВА 5  FLUTTERBOOK. ЧАСТЬ I

Поскольку у нас нет флага для определения того, создаем мы новую заметку
или изменяем существующую, то мы можем проверить ее на наличие иденти-
фикатора (id). Если у заметки не обнаружен идентификатор (id == null), зна-
чит, мы ее создаем, иначе редактируем. Итак, если мы редактируем нашу за-
метку, то необходимо вызвать update(), а если создаем, то create(). В любом
случае, в NotesDBWorker передаем entityBeingEdited.

Далее у нас есть несколько заключительных задач. Во-первых, необходимо
вызвать loadData(), чтобы экран списка был обновлен, а затем вернуть поль-
зователя обратно на экран списка с помощью вызова setStackIndex(). Нако-
нец, в течение двух секунд мы отображаем SnackBar, чтобы указать, что замет-
ка была сохранена.

С заметками покончено!

Внимание. При работе с Flutter меня часто напрягала работа (или отсутствие) механизма hot reload
(перерисовка приложения при внесении изменений). Хотя горячая перезагрузка, несомненно, – это
огромное преимущество для повышения производительности разработчика, она может вызывать проб
лемы, если вы забыли, что при горячей перезагрузке изменения не сохраняются в вашем приложении.
Это означает, что если ваше приложение работает в эмуляторе, и вы вносите изменение, а затем оно само
перезагружается с помощью hot reload, то увидите это изменение в эмуляторе, как и ожидалось, но
если затем закрыть приложение и перезапустить его, изменений не будет. Изменение будет присутство-
вать только до перезапуска приложения и в действительности не применяется, пока вы не выполните
полную сборку (build) и развертывание приложения (deploy). Бывало, что я забывал об этом и бился
головой о стол, когда что-то начинало внезапно работать, по какой-то непонятной мне причине, а потом
переставало. Я призываю вас запомнить это.

Что в итоге
Ура, мы сделали это! Но FlutterBook еще не закончен! В вашем первом опыте
создания настоящего приложения Flutter вы познакомились с общей архитек-
турой приложения, конфигурацией проекта, включая добавление плагинов,
переход между частями приложения, управление состоянием, хранение дан-
ных с помощью SQLite, и множеством виджетов! Конечно, это еще не закон-
ченное приложение, но начало положено.

В следующей главе мы завершим FlutterBook, добавив код для трех других
объектов: встреч, контактов и задач. В конце концов, у вас будет полноценное,
пригодное для использования приложение!

192

ГЛАВА 6

FLUTTERBOOK. ЧАСТЬ II

В предыдущей главе мы начали писать код FlutterBook, в частности заметки.
В этой главе мы закончим с этим приложением, рассмотрев задачи, встречи
и контакты.

Это может показаться объемным, но это не так: если вы сравните код для че-
тырех вкладок, то увидите, что он на 90 % идентичен. Для каждой работает одна
и та же структура: файл основного кода (например, Notes.dart), а затем экран
списка и экран ввода, каждый из которых имеет свои собственные исходные
файлы. Код в каждом из них будет в основном таким же (или чрезвычайно по-
хожим), что и у вкладки Notes. Все четыре экрана списка несколько отличаются,
так что мы рассмотрим их более подробно, а вот экраны ввода очень похожи, за
исключением нескольких моментов.

Итак, я собираюсь показать вам отличия этого кода от кода в предыдущей
главе. Таким образом, мы рассмотрим только фрагменты исходных кодов. Суть
в том, что если я об этом ничего не скажу, вы подумаете, что нет никаких от-
личий от кода заметок из предыдущей главы (кроме таких мелочей, как имена
переменных, полей и т. п.).

Сделаем это: задачи
Первая вкладка, которую мы рассмотрим в этой главе, – это Tasks (задачи). За-
дачи – это просто: для их описания требуется только строка текста и, возмож-
но, срок выполнения. Как вы видели на скриншоте предыдущей главы, список
позволяет пользователю отмечать выполненные задачи. Поэтому код доволь-
но простой, возможно, даже проще, чем код заметок.

TasksModel.dart
Во-первых, каждая вкладка имеет модель и экран. У задач есть класс Task, и един-
ственным отличием между классом Note и Task являются поля в классе:

int id;
String description;
String dueDate;
String completed = "false";

Экземпляр этого класса будет храниться в базе данных, поэтому нам необ-
ходимо уникальное поле id. Кроме того, у нас есть описание задачи, дата (ко-
торая будет необязательной) и флаг, чтобы указать, выполнена задача или
нет. Вы можете подумать, что тип поля completed должен быть bool, и в целом

193

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II

я с вами согласен! Но поскольку данная сущность хранится в таблице SQLite,
а SQLite не предлагает нам поддержку типа bool, то completed должен хранить-
ся в виде строки. Конечно, можно выполнять преобразования из логического
типа в строку у нас в коде, но нам не нужны такие трудности, к тому же вы сами
сможете сделать это, если захотите, опираясь на предыдущий опыт.

После этого идет описание модели:

class TasksModel extends BaseModel { }

Думаете, я ошибся и что-то забыл? Нет! TasksModel действительно пуст! Ви-
дите ли, на экране ввода нет полей, которые были бы связаны только с задача-
ми. Поэтому в модели не должно быть ничего. Напомню, что BaseModel предо
ставляет общий код, который должен быть у всех четырех моделей, но задачам
не нужно ничего, кроме этого, следовательно, это просто пустой класс (за ис-
ключением того, что уже есть в BaseModel!).

TasksDBWorker.dart
Как и заметки, вкладка Tasks должна иметь свой класс для работы с базой дан-
ных (DBWorker), но есть только одно существенное отличие от класса Notes (опять
же, помимо базовых вещей, таких как имена переменных и методов и т. д.), и это
SQL:

CREATE TABLE IF NOT EXISTS tasks (
	 id INTEGER PRIMARY KEY, description TEXT,
	 dueDate TEXT, completed TEXT
)

Tasks.dart
Отправная точка для экрана задачи, подобно TasksDBWorker.dart, почти иден-
тична Notes.dart, который вы видели в предыдущей главе, структура экрана
с IndexedStack и все остальное повторяется, поэтому давайте перейдем к коду,
в котором есть реальные различия.

TasksList.dart
Как упоминалось ранее, каждый из четырех списков немного отличается друг
от друга, хотя вы обнаружите, что большой процент кода идентичен. Основное
отличие задач в том, что они могут быть завершены. Давайте рассмотрим вид-
жет, возвращаемый функцией build(), который снова является ScopedModel:

body : ListView.builder(
	 padding : EdgeInsets.fromLTRB(0, 10, 0, 0),
	 itemCount : tasksModel.entityList.length,
	 itemBuilder : (BuildContext inBuildContext, int inIndex) {

194

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II
	 	 Task task = tasksModel.entityList[inIndex];
	 	 String sDueDate;
	 	 if (task.dueDate != null) {
	 	 	 List dateParts = task.dueDate.split(",");
	 	 	 DateTime dueDate = DateTime(int.parse(dateParts[0]),
	 	 	 	 int.parse(dateParts[1]), int.parse(dateParts[2]));
	 	 	 sDueDate = DateFormat.yMMMMd(
				 "en_US"
).format(dueDate.toLocal());
		 }

Дата выполнения, если она есть, использует метод split() для разделения
на три отдельные части (помните из предыдущей главы, что она хранится как
«год,месяц,день»), и эти части передаются в конструктор DateTime, чтобы полу-
чить объект DateTime с указанным сроком выполнения. Затем мы используем
одну из функций форматирования, которые предлагает класс DateFormat. Этот
служебный класс из пакета intl предоставляет множество функций для форма-
тирования даты и времени, а также решения других проблем интернационали-
зации. Сложности работы с этими функциями немного выходят за рамки нашей
книги. Но суть в том, что вызов функции yMMMMD(), а затем передача возвраща-
емого значения в функцию format() и вызов toLocal() у dueDate возвращают
нам дату в удобном для отображения формате.

Затем мы можем начать создавать пользовательский интерфейс, который,
как и в заметках, использует Slidable в качестве основы:

return Slidable(delegate : SlidableDrawerDelegate(),
	 actionExtentRatio : .25, child : ListTile(
	 	 leading : Checkbox(
	 	 	 value : task.completed == "true" ? true : false,
	 	 onChanged : (inValue) async {
	 	 	 task.completed = inValue.toString();
	 	 	 await TasksDBWorker.db.update(task);
	 	 	 tasksModel.loadData("tasks", TasksDBWorker.db);
		 }
),

На этот раз свойству leading передадим Checkbox, который пользователь мо-
жет изменить по завершении задачи. Значение берется из ссылки на задачу. По-
скольку completed – это строка, а не логическое значение, оно не может быть зна-
чением свойства value напрямую, поэтому получим логический тип, используя
тернарную запись. После мы должны прикрепить обработчик события onChanged,
когда Checkbox станет отмечен (или не отмечен). Это легко: возьмите логичес
кое значение, переданное в функцию onChanged, и установите его в качестве
значения task.completed, вызвав для него метод toString(). Затем попросите
TasksDBWorker обновить задачу и, наконец, попросите TasksModel обновить спи-
сок с помощью вызова метода loadData(), который предоставляет BaseModel.

195

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II

У нас есть еще одна часть для Slidable:

title : Text(
	 "${task.description}",
	 style : task.completed == "true" ?
	 	 TextStyle(color :
	 	 	 Theme.of(inContext).disabledColor,
	 	 	 decoration : TextDecoration.lineThrough
) :
	 	 TextStyle(color :
	 	 	 Theme.of(inContext).textTheme.title.color
)
),
	 subtitle : task.dueDate == null ? null :
	 	 Text(sDueDate,
	 	 	 style : task.completed == "true" ?
	 	 	 	 TextStyle(color :
	 	 	 	 	 Theme.of(inContext).disabledColor,
	 	 	 	 	 decoration : TextDecoration.lineThrough) :
	 	 	 	 	 TextStyle(color :
	 	 	 	 	 	 Theme.of(inContext).textTheme.title.color)
),
	 	 	 	 	 onTap : () async {
	 	 	 	 	 	 if (task.completed == "true") { return; }
	 	 	 	 	 	 	 tasksModel.entityBeingEdited =
	 	 	 	 	 	 	 	 await TasksDBWorker.db.get(task.id);
	 	 	 	 	 	 if (tasksModel.entityBeingEdited.dueDate == null) {
	 	 	 	 	 	 	 tasksModel.setChosenDate(null);
						 } else {
	 	 	 	 	 	 	 tasksModel.setChosenDate(sDueDate);
						 }
	 	 	 	 	 	 tasksModel.setStackIndex(1);
					 }
),
	 	 	 	 secondaryActions : [
					 IconSlideAction(
	 	 	 	 	 	 caption : "Delete",
	 	 	 	 	 	 color : Colors.red,
	 	 	 	 	 	 icon : Icons.delete,
	 	 	 	 	 	 onTap : () => _deleteTask(inContext, task)
)
]
);
		 }
)

196

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II

Все это должно показаться вам довольно знакомым, но вы должны понять,
что мы не можем редактировать выполненную задачу. Чтобы добавить такое
ограничение, необходима проверка. Поэтому добавим task.completed в обра-
ботчик события onTap().

Как и в случае с заметками, здесь есть метод deleteTask(), который вызван
через secondActions объекта Slidable.

TasksEntry.dart
Экран ввода (рис. 6.1) содержит только два поля, одно из которых необходимо
обязательно заполнить:

Рисунок 6-1. Экран ввода задач

Единственный код, на котором нам нужно сосредоточиться, – это поле даты
выполнения:

ListTile(leading : Icon(Icons.today),
	 title : Text("Due Date"), subtitle : Text(
	 	 tasksModel.chosenDate == null ? "" : tasksModel.chosenDate
),
	 trailing : IconButton(
	 	 icon : Icon(Icons.edit), color : Colors.blue,
	 	 onPressed : () async {
	 	 	 String chosenDate = await utils.selectDate(

197

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II
	 	 	 	 inContext, tasksModel,
	 	 	 	 tasksModel.entityBeingEdited.dueDate);
	 	 	 if (chosenDate != null) {
	 	 	 	 tasksModel.entityBeingEdited.dueDate = chosenDate;
			 }
		 }
)
)

Здесь мы видим использование функции utils.selectDate(), которую мы
кратко рассмотрели в предыдущей главе. Она возвращает строку в формате
«год, месяц, день», в котором она сохраняется в базе данных. Конечно, если
возвращается null, тогда дата не была выбрана, а значит, нам не нужно запи-
сывать значение в поле dueDate.

Назначим свидание: Appointments (встречи)
Далее следует вкладка Appointments (встречи), с ее помощью мы рассмотрим
некоторые, отличные от изученных ранее возможности, включая удобный пла-
гин для экрана со списком. Но сначала рассмотрим модель.

AppointmentsModel.dart
У нас есть класс для описания встречи, который называется Appointment. Он
содержит следующие поля:

int id;
String title;
String description;
String apptDate;
String apptTime;

С полями идентификатора (id), а также заголовка (title) и описания (des
cription) все понятно. Как и у задачи, у встречи есть дата, которая называется
apptDate, а также здесь есть время – apptTime. Оба этих поля являются строка-
ми для удобства хранения в базе данных. Для преобразования типов нам не-
обходим код, который мы скоро разберем.

После определения класса нам нужно добавить метод, который нужен для
работы со временем на экране:

class AppointmentsModel extends BaseModel {
	 String apptTime;
	 void setApptTime(String inApptTime) {
	 	 apptTime = inApptTime;
	 	 notifyListeners();
	 }
}

198

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II

Как и с задачами, поле chosenDate и метод setChosenDate() в BaseModel бу-
дут использоваться для задания даты. Поскольку время есть только у встреч,
нам нужны apptTime и setApptTime() в AppointmentsModel, код метода setAppt
Time() аналогичен коду setChosenDate().

AppointmentsDBWorker.dart
У встреч тоже есть свой класс для работы с базой данных (DBWorker). Он почти
идентичен двум предыдущим, за исключением определения таблицы, кото-
рое выглядит следующим образом:

CREATE TABLE IF NOT EXISTS appointments (
	 id INTEGER PRIMARY KEY, title TEXT,
	 description TEXT, apptDate TEXT, apptTime TEXT
)

Appointments.dart
Как и в случае с задачами, определение главного экрана для встреч такое же,
как и для заметок, поэтому сразу перейдем к экрану списка, в котором есть на
что посмотреть.

AppointementsList.dart
Во-первых, здесь появляются новые import:

import
	 "package:flutter_calendar_carousel/"
	 "flutter_calendar_carousel.dart";
import "package:flutter_calendar_carousel/classes/event.dart";
import "package:flutter_calendar_carousel/classes/event_list.dart";

Calendar Carousel – это плагин, предоставляющий приложению виджет про-
смотра календаря (calendar). У него есть много опций, таких как различные ре-
жимы для отображения дат, обработчики касаний при нажатии на определен-
ную дату и т. д.

Flutter не предлагает ничего подобного из коробки, отсюда и необходи-
мость в плагине.

Итак, давайте создадим виджет и посмотрим, как он используется:

class AppointmentsList extends StatelessWidget {

Widget build(BuildContext inContext) {
	 EventList<Event> _markedDateMap = EventList();
		 for (
	 	 	 int i = 0; i < appointmentsModel.entityList.length; i++
) {

199

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II
	 	 	 Appointment appointment =
	 	 	 	 appointmentsModel.entityList[i];
	 	 	 List dateParts = appointment.apptDate.split(",");
	 	 	 DateTime apptDate = DateTime(
	 	 	 	 int.parse(dateParts[0]), int.parse(dateParts[1]),
	 	 	 	 int.parse(dateParts[2]));
	 	 	 	 _markedDateMap.add(apptDate, Event(date : apptDate,
	 	 	 	 	 icon : Container(decoration : BoxDecoration(
	 	 	 	 	 	 color : Colors.blue))
));
			 }

Calendar Carousel предоставляет способ отображения дат, поддерживающих
назначенные на них события. Для этого у него есть свойство markedDatesMap, кото-
рое принимает Map, содержащий в качестве ключей объекты DateTime, а в качестве
значения объекты Event, которые описывают событие. Создадим отображение
(map), перебирая appointmentsModel.entityList, который представляет собой мас-
сив встреч, полученных из базы данных. Для каждой встречи мы приведем свой-
ство apptDate в такой вид, который можно передать конструктору DateTime и по-
лучить его экземпляр. Потом мы создаем Event и добавляем его в _markedDateMap.
Объекту Event можно задать дату и свойство icon. Для отображения даты на экра-
не я использую виджет Container вместе с BoxDecoration, без дополнительных
свойств. В результате поле применяет минимум возможного пространства и вы-
глядит как квадрат размером всего несколько пикселей, рис. 6-2.

Рисунок 6-2. Экран списка встреч с индикатором даты

200

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II

На 8-е и 13-е назначены встречи, поэтому мы видим точки. Обратите вни-
мание, что если 13-го числа будет несколько событий, точек будет столько же.
Идеально!

Теперь мы можем перейти к виджету, описанному методом build():

return ScopedModel<AppointmentsModel>(
	 model : appointmentsModel,
	 child : ScopedModelDescendant<AppointmentsModel>(
	 	 builder : (inContext, inChild, inModel) {
			 return Scaffold(
	 	 	 	 floatingActionButton : FloatingActionButton(
	 	 	 	 	 child : Icon(Icons.add, color : Colors.white),
	 	 	 	 	 onPressed : () async {
	 	 	 	 	 	 appointmentsModel.entityBeingEdited =
	 	 	 	 	 	 	 Appointment();
	 	 	 	 	 	 DateTime now = DateTime.now();
	 	 	 	 	 	 appointmentsModel.entityBeingEdited.apptDate =
	 	 	 	 	 	 	 "${now.year},${now.month},${now.day}";
	 	 	 	 	 	 appointmentsModel.setChosenDate(
	 	 	 	 	 	 	 DateFormat.yMMMMd("en_US").format(
	 	 	 	 	 	 	 	 now.toLocal()));
	 	 	 	 	 	 appointmentsModel.setApptTime(null);
	 	 	 	 	 	 appointmentsModel.setStackIndex(1);
					 }
),

Подобный код должен быть вам знаком, так что не будем на нем останавли-
ваться. Вместо этого давайте посмотрим, что будет дальше:

body : Column(
	 children : [
	 	 Expanded(
	 	 	 child : Container(
	 	 	 	 margin : EdgeInsets.symmetric(horizontal : 10),
	 	 	 	 child : CalendarCarousel<Event>(
	 	 	 	 	 thisMonthDayBorderColor : Colors.grey,
	 	 	 	 	 daysHaveCircularBorder : false,
	 	 	 	 	 markedDatesMap : _markedDateMap,
	 	 	 	 	 onDayPressed : (DateTime inDate, List<Event> inEvents) {
	 	 	 	 	 	 	 _showAppointments(inDate, inContext);
					 }
)
)
)
]
)

201

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II

Наша цель – заставить Calendar Carousel растягиваться, чтобы заполнить
экран. В этом поможет виджет Expanded: он растягивает свой дочерний элемент,
чтобы заполнить все доступное пространство внутри Row, Column или Flex. Об-
ратите внимание, что родительский виджет должен иметь такую возможность.
На данный момент подобная возможность присутствует только у трех представ-
ленных выше виджетов. Я выбрал Column, так как в данном случае различий нет.
Вместо того чтобы использовать виджет CalendarCarousel в качестве дочернего
элемента Expanded, я использую Container, чтобы можно было установить во-
круг него отступ. Я подумал, что лучше не растягивать его до самого края экрана
и избежать столкновения с TabBar или FAB.

Определение CalendarCarousel в нашем случае – это достаточно простая за-
дача. Я задаю каждой дате серую рамку, а также гарантирую, что они квадрат-
ные, установив daysHaveCircularBorder в false.

Затем идет markedDatesMap, о котором мы говорили ранее, он указывает на
заполненный ранее _markedDateMap. А далее мы описываем обработчик со-
бытия нажатия на какую-либо дату. При нажатии я хочу показать имеющие-
ся события для выбранной даты в BottomSheet. Для этого используется метод
_showAppointments():

void _showAppointments(
	 DateTime inDate, BuildContext inContext) async {

	 showModalBottomSheet(context : inContext,
	 	 builder : (BuildContext inContext) {
	 	 	 return ScopedModel<AppointmentsModel>(
	 	 	 	 model : appointmentsModel,
	 	 	 	 child : ScopedModelDescendant<AppointmentsModel>(

Этот код принимает дату, на которую кликает пользователь, и BuildContext вы-
звавшего виджета. Обратите внимание на то, что хотя функция onDayPressed прини-
мает список событий, нам необходимо использовать данные из entityList в model,
так как Event не содержит нужных нам данных. Вот почему виджет, возвращаемый
функцией builder для showModalBottomSheet(), начинается со ScopedModel и ссылает-
ся на нашу AppointmentsModel.

Функция builder будет следующей:

builder : (BuildContext inContext, Widget inChild,
	 AppointmentsModel inModel) {
		 return Scaffold(
	 	 	 body : Container(child : Padding(
	 	 	 padding : EdgeInsets.all(10), child : GestureDetector(

Пока ничего нового, верно? Я снова почувствовал, что здесь просто необхо-
дим отступ (padding), поэтому body начинается с контейнера с таким отступом.

Поскольку то, что показано в BottomSheet, со скриншота из предыдущей гла-
вы, представляет собой список встреч с вертикальной прокруткой, я исполь-
зую Column:

202

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II
child : Column(
	 children : [
	 	 Text(DateFormat.yMMMMd("en_US").format(inDate.toLocal()),
	 	 	 textAlign : TextAlign.center,
	 	 	 style : TextStyle(color :
	 	 	 	 Theme.of(inContext).accentColor, fontSize : 24)
),
	 	 	 Divider(),

Первый дочерний элемент – это просто красиво отформатированный Text,
центрированный на BottomSheet с помощью свойства textAlign, а его значение –
выбранная дата. Обратите внимание на способ получения цвета текста: функция
Theme.of() всегда доступна и дает вам ссылку на тему, активную в данный мо-
мент для приложения. Получив эту ссылку, у вас будет доступ к ее содержимому,
например значению accentColor, в нашем случае он синий. Также здесь указан
fontSize. Ниже я добавил виджет Divider, чтобы отделить дату от списка встреч.

Затем следует еще один Expanded, так что список встреч заполнит оставшее
ся пространство внутри макета Column. Затем мы создаем контейнер для каж-
дого элемента из нашего списка. Для правильного отображения встреч нам
нужно отфильтровать весь список по требуемой нам дате:

Expanded(

	 child : ListView.builder(
	 	 itemCount : appointmentsModel.entityList.length,
	 	 itemBuilder : (BuildContext inBuildContext, int inIndex) {
	 	 	 Appointment appointment =
	 	 	 	 appointmentsModel.entityList[inIndex];
	 	 	 if (appointment.apptDate !=
	 	 	 	 "${inDate.year},${inDate.month},${inDate.day}") {
	 	 	 	 return Container(height : 0);
			 }
	 	 	 String apptTime = "";
	 	 	 if (appointment.apptTime != null) {
	 	 	 	 List timeParts = appointment.apptTime.split(",");
	 	 	 	 TimeOfDay at = TimeOfDay(
	 	 	 	 	 hour : int.parse(timeParts[0]),
	 	 	 	 	 minute : int.parse(timeParts[1]));
	 	 	 	 apptTime = " (${at.format(inContext)})";
			 }

Для любой встречи, которая не относится к выбранной дате, мы возвраща-
ем Container с нулевой высотой. Это необходимо, потому что возврат null из
функции itemBuilder приведет к исключению (exception).

Время приводится к такому формату, который мы можем передать свойствам
из TimeOfDay. Метод format() возвращает нам отформатированное время с уче-
том текущего региона.

203

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II

Каждая встреча должна поддерживать редактирование и удаление, для это-
го используем виджет Slidable:

return Slidable(delegate : SlidableDrawerDelegate(),
	 actionExtentRatio : .25, child : Container(
	 	 margin : EdgeInsets.only(bottom : 8),
	 	 color : Colors.grey.shade300,
		 child : ListTile(
	 	 	 title : Text("${appointment.title}$apptTime"),
	 	 	 subtitle : appointment.description == null ?
	 	 	 	 null : Text("${appointment.description}"),
	 	 	 onTap : () async {
	 	 	 	 _editAppointment(inContext, appointment);
			 }
)
),

Если у встречи есть описание, оно отображается как подзаголовок. В против-
ном случае значение равно null, и ничего не отобразится. Метод _editAppointment
мы скоро рассмотрим, но сначала завершим определение виджета с помощью
свойства secondActions объекта Slidable:

secondaryActions : [
	 IconSlideAction(caption : "Delete", color : Colors.red,
	 	 icon : Icons.delete,
	 	 onTap : () => _deleteAppointment(inBuildContext, appointment)
)
]

Этот код не отличается от кода для заметок или задач, так же как и код ме-
тода _deleteAppointment(), поэтому мы пропустим его. Однако у нас все еще
есть метод _editAppointment():

void _editAppointment(BuildContext inContext, Appointment
	 inAppointment) async {

	 appointmentsModel.entityBeingEdited =
	 	 await AppointmentsDBWorker.db.get(inAppointment.id);
	 if (appointmentsModel.entityBeingEdited.apptDate == null) {
	 	 appointmentsModel.setChosenDate(null);
	 } else {
	 	 List dateParts =
	 	 	 appointmentsModel.entityBeingEdited.apptDate.split(",");
	 	 DateTime apptDate = DateTime(
	 	 	 int.parse(dateParts[0]), int.parse(dateParts[1]),
	 	 	 int.parse(dateParts[2]));
	 	 	 appointmentsModel.setChosenDate(

204

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II
	 	 	 	 DateFormat.yMMMMd("en_US").format(apptDate.toLocal()));
	 }
	 if (appointmentsModel.entityBeingEdited.apptTime == null) {
	 	 appointmentsModel.setApptTime(null);
	 } else {
	 	 List timeParts =
	 	 	 appointmentsModel.entityBeingEdited.apptTime.split(",");
	 	 TimeOfDay apptTime = TimeOfDay(
	 	 	 hour : int.parse(timeParts[0]),
	 	 	 minute : int.parse(timeParts[1]));
	 	 	 appointmentsModel.setApptTime(apptTime.format(inContext));
	 }
	 appointmentsModel.setStackIndex(1);
	 Navigator.pop(inContext);
}

Он почти идентичен методу редактирования заметок, но здесь мы долж-
ны добавить обработку времени. Поскольку дата и время необязательны, мы
должны обрабатывать их только в том случае, если они не пустые. И если они не
пустые, мы должны привести их к формату, поддерживаемому setChosenDate()
и setApptTime(), и передать их в соответствующие методы.

AppointmentsEntry.dart
Последняя часть раздела Appointments – это экран ввода, который показан на
рис. 6-3.

Рисунок 6-3. Экран редактирования встречи

205

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II

Это достаточно простой экран. Он имеет только одно обязательное поле title,
многострочное описание (description) и два поля для выбора даты и времени.
Технически поле Date тоже обязательное, потому что встреча без даты не имеет
смысла. Поэтому по умолчанию устанавливается текущая дата. Следовательно,
у встречи всегда будет дата, и пользователь может изменить ее, если текущая не
подходит.

Что касается кода, то здесь нет ничего нового, кроме части для получения
времени встречи, которая очень похожа на часть с датой, но мы все равно по-
смотрим на код:

	 	 	 ListTile(leading : Icon(Icons.alarm),
	 	 	 	 title : Text("Time"),
	 	 	 	 subtitle : Text(appointmentsModel.apptTime == null ?
	 	 	 	 	 "" : appointmentsModel.apptTime),
				 trailing : IconButton(
	 	 	 	 	 icon : Icon(Icons.edit), color : Colors.blue,
	 	 	 	 	 onPressed : () => _selectTime(inContext)
)
)
]
)
)

Это совершенно обычное определение поля, за исключением вызова _select
Time в обработчике onPressed, который выглядит следующим образом:

Future _selectTime(BuildContext inContext) async {

	 TimeOfDay initialTime = TimeOfDay.now();
	 if (appointmentsModel.entityBeingEdited.apptTime != null) {
	 	 List timeParts =
	 	 	 appointmentsModel.entityBeingEdited.apptTime.split(",");
	 	 initialTime = TimeOfDay(hour : int.parse(timeParts[0]),
	 	 	 minute : int.parse(timeParts[1])
);
	 }
	 TimeOfDay picked = await showTimePicker(
	 	 context : inContext, initialTime : initialTime);
	 	 if (picked != null) {
	 	 	 appointmentsModel.entityBeingEdited.apptTime =
	 	 	 	 "${picked.hour},${picked.minute}";
	 	 	 appointmentsModel.setApptTime(picked.format(inContext));
		 }
}

Итак, если пользователь редактирует существующую встречу, то мы должны
установить initialTime в TimePicker, который мы вызываем с помощью show

206

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II

TimePicker(). Следовательно, мы должны взять его в entityBeingEdited. За-
тем, когда пользователь выберет время, свойство apptTime обновится в entity
BeingEdited, и, наконец, следует вызов setApptTime(), необходимый для пере-
рисовки экрана.

Как с вами связаться: контакты
Последняя вкладка, которую мы рассмотрим, – это Contacts (контакты), я оста-
вил ее напоследок, по моему мнению, она сложнее всех.

ContactsModel.dart
Как и в случае с тремя другими вкладками, мы начнем с модели и класса Con
tact. Я просто покажу вам поля в классе, поскольку в общем-то он похож на
предыдущие:

int id;
String name;
String phone;
String email;
String birthday;

Вообще, у контактов может быть много информации, но мы остановимся на
ключевых. Это поля имени (name), телефона (phone) и адреса электронной поч
ты (email). В этот список я добавил день рождения (birthday), чтобы иметь еще
один пример работы с DatePicker.

Совет: я рекомендую доработать все приложения в этой книге в качестве учебных упражнений, и до-
бавление контактам дополнительной информации идеально для этого подойдет.

Что касается модели:

class ContactsModel extends BaseModel {
	 void triggerRebuild() {
	 	 notifyListeners();
	 }
}

Метод triggerRebuild() нам действительно необходим, посколь-
ку notifyListeners() должен вызываться из модели. Напомню, что метод
notifyListeners() вызывает перерисовку экрана. Мы будем его использовать
при редактировании контакта. Например, при задании или изменении аватара.

207

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II

ContactsDBWorker.dart
Код базы данных для контактов снова идентичен предыдущим, за исключени-
ем создания таблицы:

CREATE TABLE IF NOT EXISTS contacts (
	 id INTEGER PRIMARY KEY,
	 name TEXT, email TEXT, phone TEXT, birthday TEXT
)

Contacts.dart
Базовый макет экрана контактов не имеет ничего нового, поэтому идем дальше.

ContactsList.dart
Экран списка контактов – это просто ListView. Единственное отличие от уже
готовых экранов в том, что здесь есть изображение аватара для каждого кон-
такта.

Итак, начинаем:

return ScopedModel<ContactsModel>(
	 model : contactsModel,
	 child : ScopedModelDescendant<ContactsModel>(
	 	 builder : (BuildContext inContext, Widget inChild,
	 	 	 ContactsModel inModel) {
			 return Scaffold(
	 	 	 	 floatingActionButton : FloatingActionButton(
	 	 	 	 	 child : Icon(Icons.add, color : Colors.white),
	 	 	 	 	 onPressed : () async {
	 	 	 	 	 	 File avatarFile =
	 	 	 	 	 	 	 File(join(utils.docsDir.path, "avatar"));
	 	 	 	 	 	 if (avatarFile.existsSync()) {
	 	 	 	 	 	 	 avatarFile.deleteSync();
						 }
	 	 	 	 	 	 contactsModel.entityBeingEdited = Contact();
	 	 	 	 	 	 contactsModel.setChosenDate(null);
	 	 	 	 	 	 contactsModel.setStackIndex(1);
					 }
)

Все начинается со ScopedModel. Свойство model ссылается на contactsModel,
а затем идет объявление ScopedModelDescendant. Далее идет функция builder,
возвращающая Scaffold, который нам нужен, чтобы мы могли использовать
FAB для создания нового контакта.

208

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II

Теперь обработчик событий onPressed от FAB – это место, где мы начинаем
видеть кое-что новое и захватывающее. Вы увидите, что при создании контак-
та можно добавить к нему изображение аватара. Оно будет храниться в ката-
логе документов приложения, а не в базе данных из-за того, что я хочу вам по-
казать, как работать с файлами. Но при редактировании контакта, нового или
существующего, может присутствовать временный файл изображения, если
пользователь ранее редактировал контакт. Итак, чтобы начать с создания но-
вого контакта, мы должны убедиться, что временного файла нет. Класс File
представляет собой класс Dart из пакета io, и его конструктор принимает в ка-
честве аргумента путь к файлу. Вы видели utils.docsDir, полученный в пре-
дыдущей главе, и его свойство path – путь к каталогу документов. Таким обра-
зом, передавая это методу join() (функция из библиотеки Path, которая знает,
как объединить части в полный путь до файла с учетом конкретной плат-
формы), мы получаем правильный путь вместе с именем аватара. Класс File
предоставляет несколько методов, один из которых – existSync(). Этот метод
возвращает true, если файл существует, false, если нет, и метод выполняется
синхронно, что нам и нужно. В противном случае нам придется ждать его (или
же ждать, пока Future не будет решено). Существует также асинхронная версия
exists(). Если файл уже существует, то вызывается метод deleteSync(), чтобы
избавиться от него (также доступен асинхронный метод delete()). После это-
го создается новый контакт, и пользователь, как обычно, переходит на экран
ввода.

Далее у нас есть ListView, который содержит контакты:

body : ListView.builder(

	 itemCount : contactsModel.entityList.length,
	 itemBuilder : (BuildContext inBuildContext, int inIndex) {
	 	 Contact contact = contactsModel.entityList[inIndex];
	 	 File avatarFile =
	 	 	 File(join(utils.docsDir.path, contact.id.toString()));
	 	 bool avatarFileExists = avatarFile.existsSync();

Каждый контакт по очереди извлекается из модели, и создается ссылка на
файл аватара, если он задан. Файл использует идентификатор контакта в ка-
честве имени файла, поэтому их легко связать. На этот раз результат вызова
existSync() сохраняется в avatarFileExists по причине, которую вы можете
увидеть в следующем фрагменте кода:

return Column(children : [
	 Slidable(

	 	 delegate : SlidableDrawerDelegate(),
	 	 actionExtentRatio : .25, child : ListTile(
	 	 	 leading : CircleAvatar(
	 	 	 	 backgroundColor : Colors.indigoAccent,
	 	 	 	 foregroundColor : Colors.white,

209

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II
	 	 	 	 backgroundImage : avatarFileExists ?
	 	 	 	 	 FileImage(avatarFile) : null,
	 	 	 	 child : avatarFileExists ? null :
	 	 	 	 	 Text(contact.name.substring(0, 1).toUpperCase())
),
	 	 title : Text("${contact.name}"),
	 	 subtitle : contact.phone == null ?
	 	 	 null : Text("${contact.phone}"),

Каждый дочерний элемент ListView представляет собой макет Column и будет
содержать два элемента: Slidable, который содержит сам контакт, и Divider,
поэтому Column необходим. Slidable похож на все остальные, которые вы ви-
дели, за исключением leading. Здесь это CircleAvatar – виджет, который по-
казывает изображение и обрезает его в круглую форму. Обычно он использу-
ется для отображения аватаров людей в списке, поэтому очень удобно его ис-
пользовать. Единственная хитрость в том, что backgroundImage должен быть
либо действительной ссылкой FileImage, либо null. Вот тут и появляется флаг
avatarFileExists. Когда он true, avatarFile, который запоминает экземпляр
File, оборачивается в виджет FileImage – виджет для отображения изображения
на основе ссылки на файл в файловой системе. Если он false, backgroundImage
будет null.

Нам также нужен этот флаг, ведь если у контакта нет изображения аватара,
мы хотим отображать первую букву его имени – это типичный шаблон в кон-
тактах. Таким образом, дочерний элемент CircleAvatar будет null, если изо-
бражение есть, или текстовым виджетом, если его нет. В последнем случае ме-
тод substring() класса String, поле contact.name, используется для получения
этой первой буквы, а метод toUpperCase() применяется для преобразования его
в верхний регистр.

Остальную конфигурацию для Slidable вы уже знаете, поэтому давайте по-
смотрим на обработчик onTap и запуск редактирования контакта:

onTap : () async {

	 File avatarFile =
	 	 File(join(utils.docsDir.path, "avatar"));
	 if (avatarFile.existsSync()) {avatarFile.deleteSync(); }
	 contactsModel.entityBeingEdited =
	 	 await ContactsDBWorker.db.get(contact.id);
	 if (contactsModel.entityBeingEdited.birthday == null) {
	 	 contactsModel.setChosenDate(null);
	 } else {
	 	 List dateParts =
	 	 	 contactsModel.entityBeingEdited.birthday.split(",");
	 	 DateTime birthday = DateTime(
	 	 	 int.parse(dateParts[0]), int.parse(dateParts[1]),
	 	 	 int.parse(dateParts[2]));

210

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II
	 	 contactsModel.setChosenDate(
	 	 	 DateFormat.yMMMMd("en_US").format(birthday.toLocal())
);
	 }
	 contactsModel.setStackIndex(1);
}

Этот обработчик также не слишком отличается от предыдущих, но здесь мы
снова имеем дело с временным изображением аватара, поэтому оно удаляется,
если уже существует. Дата birthday также должна быть проверена и установ-
лена в модели для отображения на экране редактирования, затем осуществ
ляется обычная навигация по экрану с помощью вызова setStackIndex().

Для завершения настройки Slidable и ListView необходимо рассмотреть
secondaryActions:

	 secondaryActions : [
	 	 IconSlideAction(caption : "Delete", color : Colors.red,
	 	 	 icon : Icons.delete,
			 onTap : () => _deleteContact(inContext, contact))
]
),
Divider()

Здесь вы также можете увидеть Divider, который завершит функцию item
Builder().

Теперь посмотрим, как удалить контакт:

Future _deleteContact(BuildContext inContext,
	 Contact inContact) async {

	 return showDialog(context : inContext,
	 	 barrierDismissible : false,
	 	 builder : (BuildContext inAlertContext) {
	 	 	 return AlertDialog(title : Text("Delete Contact"),
	 	 	 	 content : Text(
	 	 	 	 	 "Are you sure you want to delete ${inContact.name}?"
),
	 	 	 	 actions : [
	 	 	 	 	 FlatButton(child : Text("Cancel"),
	 	 	 	 	 	 onPressed: () {
	 	 	 	 	 	 	 Navigator.of(inAlertContext).pop();
						 }
),
	 FlatButton(child : Text("Delete"),
	 	 onPressed : () async {
	 	 	 File avatarFile = File(
	 	 	 	 join(utils.docsDir.path, inContact.id.toString()));

211

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II
	 	 	 if (avatarFile.existsSync()) {
	 	 	 	 avatarFile.deleteSync();
			 }
	 	 	 await ContactsDBWorker.db.delete(inContact.id);
	 	 	 Navigator.of(inAlertContext).pop();
	 	 	 Scaffold.of(inContext).showSnackBar(
	 	 	 	 SnackBar(backgroundColor : Colors.red,
	 	 	 	 	 duration : Duration(seconds : 2),
	 	 	 	 	 content : Text("Contact deleted")));
	 	 	 contactsModel.loadData("contacts", ContactsDBWorker.db);
	 }
)

Мы видим типичный код функции удаления из других вкладок, но у нас оста-
лись файлы аватарок. Удаление контакта из базы данных недостаточно; мы
должны также удалить его файл аватара, если он есть, поэтому мы снова полу-
чаем на него ссылку и, если он существует, вызываем deleteSync(), чтобы изба-
виться от него. После этого мы просто удаляем контакт из базы данных, пока-
зываем SnackBar, и все готово!

ContactsEntry.dart
У нас есть еще один фрагмент FlutterBook, и это экран редактирования кон-
тактов, который вы можете видеть на рис. 6-4.

Рисунок 6-4. Экран ввода для контактов

212

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II

Это достаточно простой экран: три виджета TextFormField, только один из
которых (name) необходим, а затем поле birthday со значком редактирования
для отображения DatePicker. Это достаточно просто, но я все равно хочу пока-
зать код, потому что функциональность работы с изображениями аватара реа-
лизуется в нескольких местах, и именно здесь код существенно отличается от
кода экранов ввода/редактирования для остальных трех вкладок.

return ScopedModel(model : contactsModel,
	 child : ScopedModelDescendant<ContactsModel>(
	 	 builder : (BuildContext inContext, Widget inChild,
	 	 	 ContactsModel inModel) {
	 	 	 File avatarFile =
	 	 	 	 File(join(utils.docsDir.path, "avatar"));
	 	 	 if (avatarFile.existsSync() == false) {
	 	 	 	 if (inModel.entityBeingEdited != null &&
	 	 	 	 	 inModel.entityBeingEdited.id != null
) {
	 	 	 	 	 avatarFile = File(join(utils.docsDir.path,
	 	 	 	 	 	 inModel.entityBeingEdited.id.toString()
));
				 }
			 }

Первое, с чем мы имеем дело, – это то, что экран может отображаться при
создании нового контакта или при редактировании существующего. В случае
создания не будет изображения аватара, но при редактировании может быть:
помните, что build() будет вызываться при изменении модели, что и проис-
ходит, когда пользователь выбирает аватар. Итак, поскольку мы находимся
внутри метода build(), мы должны увидеть, существует ли временное изобра-
жение аватара. Если его нет, мы проверяем entityBeingEdited. Если у него за-
дан id, что говорит о редактировании существующего контакта, то мы пыта-
емся получить ссылку на его фактический файл аватара (в отличие от времен-
ного файла с именем avatar).

Позже мы сохраняем ссылку на файл. Это понадобится, когда мы начнем рен-
деринг полей, но сначала нам нужно решить несколько «предварительных» во-
просов:

return Scaffold(bottomNavigationBar : Padding(
	 padding :
	 	 EdgeInsets.symmetric(vertical : 0, horizontal : 10),
	 child : Row(
	 	 children : [
	 	 	 FlatButton(child : Text("Cancel"),
	 	 	 	 onPressed : () {
	 	 	 	 	 File avatarFile =
	 	 	 	 	 	 File(join(utils.docsDir.path, "avatar"));

213

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II
	 	 	 	 	 if (avatarFile.existsSync()) {
	 	 	 	 	 	 avatarFile.deleteSync();
					 }
	 	 	 	 	 FocusScope.of(inContext).requestFocus(FocusNode());
	 	 	 	 	 inModel.setStackIndex(0);
				 }
),
	 	 	 Spacer(),
	 	 	 FlatButton(child : Text("Save"),
	 	 	 	 onPressed : () { _save(inContext, inModel); })
]
)),

Это типичный запуск формы ввода, но в обработчике onPressed кнопки
Cancel мы работаем с возможным временным файлом аватара. Несмотря на
то что он был удален до отображения этого экрана, нам все равно лучше уда-
лить его сейчас, если он существует (если пользователь выбрал аватар, но за-
тем отменил его). Как только это будет сделано, программная клавиатура бу-
дет скрыта, как обсуждалось ранее, и пользователь вернется к экрану списка.
Кнопка Save просто вызывает _save(), как всегда, мы увидим это позже.

Но сначала давайте определим фактическую форму:

body : Form(key : _formKey, child : ListView(
	 children : [
	 	 ListTile(title : avatarFile.existsSync() ?
	 	 	 Image.file(avatarFile) :
	 	 	 Text("No avatar image for this contact"),
	 	 	 trailing : IconButton(icon : Icon(Icons.edit),
	 	 	 	 color : Colors.blue,
	 	 	 	 onPressed : () => _selectAvatar(inContext)
)
)

Теперь вы можете видеть, где эта ссылка на avatarFile вступает в игру: за-
головок ListTile будет либо изображением, либо текстовым виджетом, сооб-
щающим, что изображение аватара не было выбрано. Когда это изображение,
avatarFile передается в конструктор Image.file(), и аватар отображается. Обра-
тите внимание, что здесь я ничего не делал с масштабированием или обрезани-
ем. Он просто отобразит изображение любого размера (вы можете изменить это
в качестве упражнения!). Конечное свойство ListTile предоставляет IconButton
для пользователя, чтобы выбрать изображение аватара, и код для этого мы рас-
смотрим в ближайшее время, потому что в нем есть кое-что новое и интересное!
Во-первых, давайте продолжим описывать форму:

ListTile(leading : Icon(Icons.person),

214

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II
	 title : TextFormField(
	 	 decoration : InputDecoration(hintText : "Name"),
	 	 controller : _nameEditingController,
	 	 validator : (String inValue) {
	 	 	 if (inValue.length == 0) {
				 return "Please enter a name";
			 }
			 return null;
		 }
)
),
ListTile(leading : Icon(Icons.phone),
	 title : TextFormField(
	 	 keyboardType : TextInputType.phone,
	 	 decoration : InputDecoration(hintText : "Phone"),
	 	 controller : _phoneEditingController)
),
ListTile(leading : Icon(Icons.email),
	 title : TextFormField(
	 	 keyboardType : TextInputType.emailAddress,
	 	 decoration : InputDecoration(hintText : "Email"),
	 	 controller : _emailEditingController)
),
ListTile(leading : Icon(Icons.today),
	 title : Text("Birthday"),
	 subtitle : Text(contactsModel.chosenDate == null ?
	 	 "" : contactsModel.chosenDate),
	 trailing : IconButton(icon : Icon(Icons.edit),
	 	 color : Colors.blue,
	 	 onPressed : () async {
	 	 	 String chosenDate = await utils.selectDate(
	 	 	 	 inContext, contactsModel,
	 	 	 	 contactsModel.entityBeingEdited.birthday
);
	 	 	 if (chosenDate != null) {
	 	 	 	 contactsModel.entityBeingEdited.birthday = chosenDate;
			 }
		 }
)
)

Все это вы видели раньше, за исключением свойства keyboardType, которое
позволяет нам указывать клавиатуру с учетом типа вводимых данных. Как ви-
дите, ему доступны такие свойства, как phone, emailAddress, и их значения, ко-
торые, я думаю, говорят сами за себя!

215

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II

Теперь мы подошли к методу _selectAvatar(), который вызывается, когда
пользователь щелкает иконку IconButton рядом с виджетом изображения ава-
тара:

Future _selectAvatar(BuildContext inContext) {
	 return showDialog(context : inContext,
	 	 builder : (BuildContext inDialogContext) {
	 	 	 return AlertDialog(content : SingleChildScrollView(
	 	 	 	 child : ListBody(children : [
	 	 	 	 	 GestureDetector(child : Text("Take a picture"),
	 	 	 	 	 onTap : () async {
	 	 	 	 	 	 var cameraImage = await ImagePicker.pickImage(
							 source : ImageSource.camera
);
	 	 	 	 	 	 if (cameraImage != null) {
	 	 	 	 	 	 	 cameraImage.copySync(
	 	 	 	 	 	 	 	 join(utils.docsDir.path, "avatar")
);
	 	 	 	 	 	 	 contactsModel.triggerRebuild();
						 }
	 	 	 	 	 	 Navigator.of(inDialogContext).pop();
					 }
)

Задача состоит в том, чтобы показать диалоговое окно, в котором пользова-
тель выбирает источник изображения аватара: галерею или камеру. Итак, мы вы-
зываем showDialog(), а затем возвращаем AlertDialog из его функции builder.
Внутри AlertDialog мы начинаем с виджета SingleChildScrollView, который со-
держит один виджет с возможностью прокрутки. Зачем использовать это здесь?
Честно говоря, нет конкретной причины, кроме как показать вам дополнитель-
ный способ реализации. В этом случае прокрутка (scroll) не используется, но
что, если у вас есть еще несколько источников изображений, которые вы хотите
показать пользователю? Вместо того чтобы делать диалог огромного размера,
способного вместить все его содержимое, вы можете просто позволить ему про-
кручиваться.

Так или иначе, внутри SingleChildScrollView хранится виджет ListBody, кото-
рый последовательно размещает свои дочерние элементы вдоль заданной оси
и приводит их к размерам родительского элемента на другой оси. Поскольку
нам нужны элементы, по которым можно щелкнуть, я решил использовать здесь
виджеты GestureDetector, а не кнопки или что-то еще. Таким образом, теперь
у нас есть событие onTap, применимое к элементу, который является текстовым
виджетом и при нажатии запускает камеру. Класс ImagePicker предоставляет-
ся плагином image_picker, который предлагает функции для доступа к источ-
никам изображений; местоположение, из которого вы хотите получить изобра-
жение, указывается в свойстве source, передаваемом функцией ImagePicker.

216

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II

pickImage(). Далее, если значение cameraImage не равно null (оно будет равно
null, если фото не было сделано), то мы используем метод copySync(), который
нам доступен, так как нам возвращается экземпляр класса File, чтобы скопиро-
вать изображение и установить его на аватар.

Затем мы должны сказать модели, что она изменилась, хотя на самом
деле это не так! Мы должны сделать это, потому что нам нужен вызов мето-
да build(), чтобы изображение было показано (помните этот код?). Итак, вы-
зывается метод contactsModel.triggerRebuild(), который просто вызывает
notifyListeners(), и это заставляет изображение отображаться после перери-
совки экрана. Затем мы просто вызываем метод pop() для скрытия диалогово-
го окна, получая ссылку на BuildContext, и двигаемся дальше.

Другой элемент в диалоге предназначен для выбора изображения из гале-
реи, и это тот же код, только с другим источником, указанным в вызове pick
Image():

GestureDetector(child : Text("Select From Gallery"),
	 onTap : () async {
	 	 var galleryImage = await ImagePicker.pickImage(
	 	 	 source : ImageSource.gallery
);
	 	 if (galleryImage != null) {
	 	 	 galleryImage.copySync(
	 	 	 	 join(utils.docsDir.path, "avatar")
);
	 	 	 contactsModel.triggerRebuild();
		 }
	 	 Navigator.of(inDialogContext).pop();
	 }
)

Наконец, есть метод _save(), но для краткости я просто покажу вам парочку
строк, которые отличаются от иных методов _save():

id = await ContactsDBWorker.db.create(
	 contactsModel.entityBeingEdited
);

Другой код, с которым вы уже знакомы:

File avatarFile = File(join(utils.docsDir.path, "avatar"));
if (avatarFile.existsSync()) {
	 avatarFile.renameSync(
	 	 join(utils.docsDir.path, id.toString())
);
}

ГЛАВА 6  FLUTTERBOOK. ЧАСТЬ II

Единственное, что уникально для контактов, – это, конечно, изображе-
ние аватара, и мы должны это учитывать. Если есть временный файл avatar,
то мы используем функцию renameSync(), чтобы присвоить ему имя, соот-
ветствующее идентификатору контакта. Идентификатор возьмем из метода
ContactsDBWorker.db.create(). Конечно, при обновлении существующего кон-
такта мы уже знаем этот идентификатор, так что можем двигаться дальше.

Подведем итоги
В этой главе мы завершили наш обзор приложения FlutterBook. Вы видели, как
кодировались вкладки встреч, контактов и задач, включая такие моменты, как
получение изображений из галереи или камеры и выбор времени и даты. При
этом у нас есть полное приложение PIM, которое вы можете использовать в со-
ответствии с «практическим» названием этой книги!

В следующей главе мы начнем создавать второе из трех наших приложений,
и в процессе вы увидите некоторые новые возможности Flutter и даже вкуси-
те программирование с точки зрения сервера и взаимодействия с ним прило-
жения Flutter.

Звучит как отличное обучающее развлечение, не так ли? Этого я и добива-
юсь!

218

ГЛАВА 7

FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР

В последних двух главах мы создавали приложение, похожее на остров: все его
данные хранятся на устройстве, на котором они запущены. Это полезно для
многих видов приложений, но для остальных вам понадобится сервер для об-
мена какими-либо данными (или просто для того, чтобы сделать их доступны-
ми из других мест, кроме устройства, на котором работает приложение). На са-
мом деле это важная часть современной разработки приложений.

В этой и следующей главах мы создадим приложение, которое использует
сервер. Хотя данная книга явно не о создании серверов, но в этой главе мы бу-
дем заниматься именно этим. Можете расценивать это как бонус!

Во-первых, мы поговорим о проекте, который создаем, а затем о двух техно-
логиях, о которых вы, возможно, слышали: Node и WebSockets. Если вы с ними
уже знакомы, то можете пропустить эти два раздела и перейти прямо к разде-
лу создания приложений, но если нет, то продолжайте читать, чтобы получить
краткое представление о разработке серверных приложений, – но сначала да-
вайте поговорим о том, что мы будем строить!

Можем ли мы это построить? Да, мы можем! Но... что «это»?!
Приложение, которое мы создадим, будет названо FlutterChat, и на тот слу-
чай, если имя его не выдает, это будет чат! С FlutterChat вы сможете общать-
ся с другими пользователями в режиме реального времени, используя сервер.

Приложение предоставит пользователям возможность создавать комнаты,
где они смогут собираться и общаться друг с другом. Будет основной экран со
списком всех комнат, которые знает сервер, и мы также предоставим возмож-
ность перечислить всех пользователей, которых он знает.

Пользователям необходимо зарегистрироваться на сервере, указав имя поль-
зователя и пароль, и они смогут в любое время присоединиться к серверу с их
помощью.

Кроме того, мы предоставим возможность делать комнаты приватными.
К ним смогут присоединиться только приглашенные пользователи, поэтому,
конечно, мы предоставим механизм для их приглашения.

Наконец, пользователь, создающий комнату, будет иметь несколько избран-
ных «административных» привилегий: он будет единственным, кто сможет
закрыть комнату, а также сможет исключать недисциплинированных пользо-
вателей из нее.

219

ГЛАВА 7  FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР

Для этого приложения мы будем использовать встроенные функции нави-
гации Flutter, которые вы не видели во FlutterBook (помните, что в нем ис-
пользовался собственный механизм навигации). Что касается интерфейса, мы
будем использовать виджет Drawer, который будет позволять управлять нави-
гацией (предоставление пользователю возможности перемещаться между ос-
новными экранами независимо от того, в какой комнате он находится), спис
ком пользователей, а также просматривать экран About, который мы созда-
дим просто так!

Это несложное приложение, и если вы когда-либо использовали приложе-
ние чата, то вы уже знакомы с большинством основных концепций. Но это бу-
дет отличной демонстрацией возможностей, которые вы еще не использовали
в прошлом приложении, а также приличным маленьким приложением, кото-
рое вы могли бы, при желании, использовать.

И прежде чем мы перейдем к коду Flutter, давайте поговорим о некоторых
моментах разработки серверных приложений, начиная с Node.

Node
Райан Даль. У этого кота есть талант, говорю тебе!

Райан – создатель фантастического программного обеспечения под назва-
нием Node (или Node.js). Райан впервые представил его на европейском JSConf
в 2009 году, и это было переломным моментом, о чем свидетельствуют нескон-
чаемые аплодисменты на его презентации.

Node – это платформа для запуска в первую очередь (хотя и не только!) кода
на стороне сервера, обладающая высокой производительностью и способная
с легкостью обрабатывать множество запросов. Она основана на наиболее
популярном языке на планете – JavaScript. Он довольно легкий и понятный,
и это предоставляет огромные возможности разработчикам, во многом бла-
годаря своей асинхронной и управляемой событиями модели программиро-
вания. В Node почти все, что вы делаете, не блокируется, то есть код не будет
задерживать обработку других потоков запросов. Плюс Node использует попу-
лярный и хорошо настроенный движок JavaScript V8 от Google для выполне-
ния кода, который используется в браузере Chrome и обеспечивает очень вы-
сокую производительность.

Неудивительно, что так много крупных игроков и сайтов используют Node
в той или иной степени. Более того, это не мелкие компании. Мы говорим о на-
званиях, которые вы, несомненно, знаете, включая DuckDuckGo, eBay, LinkedIn,
Microsoft, Walmart и Yahoo.

Node – это первоклассная среда выполнения, в которой вы можете делать та-
кие вещи, как взаимодействие с локальной файловой системой, доступ к реля-
ционным базам данных, вызов удаленных систем и многое другое. Раньше вам
приходилось использовать «правильную» среду выполнения, такую как Java или
.Net, чтобы сделать все это, поскольку JavaScript не работал на серверах. С Node

220

ГЛАВА 7  FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР

это больше не так. Для ясности, Node сам по себе не является сервером, хотя он
чаще всего используется для создания серверных приложений. Это среда вы-
полнения JavaScript, в которой работают также многие несерверные приложе-
ния, включая инструменты разработчика, с которыми вы когда-либо сталкива-
лись, даже если вы не знали об участии в этом Node!

Скачивание, установка и запуск Node – тривиальные задачи, независимо от
выбора операционной системы. Не существует сложных установок со множест
вом зависимостей, а также нет большого набора конфигурационных файлов,
с которыми нужно разбираться перед запуском приложения Node. Это 5-ми-
нутная задача, в зависимости от скорости вашего интернет-соединения и ско-
рости печати. Запомните только один адрес: http://nodejs.org. Это ваш уни-
версальный источник для всего, связанного с Node, начиная с первой страницы
загрузки, как вы можете видеть на рис. 7-1.

Рисунок 7-1. У Node простой веб-сайт, который выполняет свою работу

Я бы предложил вам установить последнюю доступную версию, но в нашем
случае было бы лучше выбрать версию с долгосрочной поддержкой (LTS), по-

http://nodejs.org

221

ГЛАВА 7  FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР

тому что она, как правило, более стабильна. Однако это не должно (он скрестил
пальцы) иметь значение для целей нашей книги. Однако, для справки, я разра-
ботал весь код с использованием версии 10.15.3, поэтому если у вас возникнут
какие-либо проблемы, я бы предложил выбрать эту версию, вы можете загру-
зить ее по ссылке Other Downloads, а затем по ссылке Previous Releases (оттуда
вы сможете скачать любую понравившуюся вам предыдущую версию).

Например, Node для Windows предоставляет совершенно обычный и прос
той установщик, который проведет вас по необходимым (и чрезвычайно прос
тым) этапам. В MacOS X типичный мастер установки сделает то же самое.

После завершения установки вы будете готовы использовать Node. Установ-
щик должен был добавить каталог Node в вашу системную переменную path.
Итак, в качестве первого простого теста перейдите в командную строку, вве-
дите node и нажмите Enter. Вас приветствует приглашение >. Теперь Node при-
нимает ваши команды в интерактивном режиме. Для подтверждения введите
следующее:

console.log("test");

Нажмите Enter, и вы увидите нечто похожее на рис. 7-2 (исключая различия
между платформами).

Рисунок 7-2. Скажи привет моему маленькому другу Node

Взаимодействие с Node в режиме командной строки хорошее, но ограничен-
ное. Вам следует запустить сохраненный файл JavaScript с помощью Node. Как
и всегда, это довольно легко. Просто создайте текстовый файл с именем test.
js (это может быть что угодно) и введите в него приведенный ниже код (и со-
храните его):

var a = 5;
var b = 3;
var c = a	 * b;
console.log(a + " * " + b + " = " + c);

Чтобы запустить этот файл, вам нужно находиться в том же каталоге и ввес
ти node test.js. Затем нажмите Enter, и вы увидите то же самое, что и на
рис. 7-3.

222

ГЛАВА 7  FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР

Рисунок 7-3. Простой пример Node

Очевидно, что этот фрагмент очень прост, зато он демонстрирует, что Node
может прекрасно выполнять старый добрый JavaScript. Вы можете немного по-
экспериментировать и увидите, что Node запустит любой базовый JavaScript, ко-
торый вы захотите. Эта возможность, наряду с первоклассной средой выполне-
ния и доступом к средствам операционной системы, позволяет создавать слож-
ные инструменты, такие как React Native (точнее, его инструменты командной
строки).

В этом разделе нет исчерпывающей информации о Node. В Node намного
больше интересного, и если вы в этом новичок, я рекомендую вам ознакомить-
ся с сайтом nodejs.org. Однако для целей книги базовых знаний будет доста-
точно.

Примечание. Когда я начал писать эту главу, я рассмотрел другие варианты реализации серверных
приложений. Я думал о создании сервера RESTful с использованием Express поверх Node, где Express –
это библиотека, которую вы можете добавить, что делает создание серверов RESTful очень простым. Но
для современных требований чата это не подойдет. Затем я подумал об использовании Firebase – систе-
мы баз данных Google реального времени. Дело в том, что в интернете есть множество учебных пособий
по написанию приложений Flutter, которые подключаются к Firebase, и есть даже одно или два, которые
создают приложение для чата. Итак, я решил пойти другим путем и добавить такой контент, который, воз-
можно, отсутствовал в мире обучения Flutter-разработчиков.

Я думаю, что мой подход делает вещи проще и, безусловно, более самодо-
статочными. Я просто хотел как-то обосновать свой выбор, который, надеюсь,
придется вам по душе.

Сохранение линий связи открытыми: socket.io
Теперь, когда вы знаете что-то о Node, давайте поговорим о следующем ком-
поненте, который нам понадобится: WebSocket и socket.io. Но сначала немно-
го истории!

Примечание. Обзор будет в основном ориентирован на веб-технологии, но будьте уверены, что все,
о чем я говорю, применимо к разработке мобильных приложений (не важно, на базе Flutter или нет). Не

http://nodejs.org

223

ГЛАВА 7  FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР

беспокойтесь, если вы не знаете JavaScript, – у вас не будет никаких проблем с пониманием кода, пото-
му что я сделал его очень простым, и, честно говоря, он все равно немного похож на Dart, с несколькими
синтаксическими различиями. Конечно, после этого вы не станете опытным разработчиком JavaScript, но
даже если вы с ним незнакомы, у вас не возникнет проблем.

Всемирная паутина, она же веб, изначально была задумана как место, где
клиент (и, соответственно, мобильные приложения, использующие веб для свя-
зи с другими устройствами) должен был запрашивать информацию с сервера,
но это исключает множество интересных возможностей или, по крайней мере,
усложняет их.

Например, если у вас есть сервер, который предоставляет цены на акции для
отображения на информационной панели, клиент должен постоянно запра-
шивать обновление данных. Это типичный подход к клиент-серверному взаи-
модействию. Недостаток в первую очередь заключается в том, что он требует
постоянно совершать новые запросы от клиента к серверу, а также приведет
к тому, что актуальность цены будет зависеть от интервала между запросами,
который вы обычно не хотите делать слишком маленьким из-за боязни пере-
грузки сервера. Цены неактуальны, а это очень неудобно, если вы инвестор.

Через некоторое время появился AJAX. AJAX расшифровывается как Asyn
chronous Javascript And XML (асинхронный JavaScript и XML). Этот метод по-
зволяет веб-страницам отправлять запросы на сервер, не обновляя всю стра-
ницу целиком, как изначально работали веб-сайты. Это был переломный мо-
мент! Теперь страница может запрашивать данные, например цены на акции,
и обновлять только часть страницы, а не всю. Поверьте мне, я работал до и пос
ле появления AJAX, это было колоссально!

Наибольшее значение в концепции AJAX играет именно асинхронная часть
аббревиатуры, а не JavaScript/XML.

С появлением методов AJAX следующим эволюционным шагом было иссле-
дование способов двунаправленной связи, чтобы сервер мог предоставлять кли-
енту новые данные без специального запроса со стороны последнего. Для этого
были разработаны некоторые хитрые приемы, один из них – длительный за-
прос (long-polling), иногда называемый Comet. Длительный запрос – это такой
способ общения между клиентом и сервером, при котором команда о заверше-
нии текущего запроса не является обязательной. Таким образом данное соеди-
нение будет оставаться открытым, и сервер сможет беспрепятственно переда-
вать данные клиенту в любое время. Это называется «hanging-GET» («подвис-
ший GET») или «pending-POST» («ожидающий POST») в зависимости от метода
HTTP, используемого для создания соединения.

По многим причинам это может быть сложно реализовать, но главная слож-
ность заключается в том, что для поддержания соединения на сервере запус
кается отдельный поток (thread). Учитывая, что это HTTP-соединение, на-
кладные расходы несущественны, однако вскоре ваш сервер может «упасть на
колени», не справившись с количеством одновременно обслуживаемых соеди-
нений.

224

ГЛАВА 7  FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР

В последние годы был создан протокол WebSocket для обеспечения такого
рода постоянных соединений без проблем с длительными запросами или дру-
гими подходами, именно это нам и нужно для чата!

WebSocket – это стандарт Internet Engineering Task Force (IETF), который обес
печивает двунаправленную связь между клиентом и сервером. В этом помогает
специальный запрос-рукопожатие (handshake), когда устанавливается обычное
соединение HTTP. Для этого клиент отправляет запрос, который выглядит при-
мерно так:

GET ws://websocket.apress.com/ HTTP/1.1
Origin: http://apress.com
Connection: Upgrade
Host: websocket.apress.com
Upgrade: websocket

Вы заметили значение заголовка Upgrade (обновление)? Это волшебный ку-
сочек. Если сервер, поддерживающий WebSocket, увидит это, то он предоста-
вит следующий ответ:

HTTP/1.1 101 WebSocket
Date: Mon, 21 Dec 2017
Connection: Upgrade
Upgrade: WebSocket

Сервер «соглашается на upgrade» на языке WebSocket. Как только рукопожа-
тие завершается, HTTP-запрос прерывается, но основное TCP/IP-соединение,
на котором он находился, остается. Это постоянное соединение, с которым
клиент и сервер могут общаться в режиме реального времени, без необходи-
мости каждый раз его восстанавливать.

WebSocket также поддерживается в JavaScript API, который можно исполь-
зовать для установки соединений, а также отправки и получения сообщений
(сообщения – это то, что мы называем данными, которые передаются через со
единение WebSocket в любом направлении). Это полезно знать для реализации
сервера на Node, но недостаточно для использования WebSockets во FlutterChat,
которое реализуется на Dart.

К счастью, существует как готовая библиотека для Node, так и ее реализа-
ция на Dart, которая абстрагирует работу с WebSockets, предоставляя готовые
механизмы. Эта библиотека называется socket.io, и именно ее мы и будем ис-
пользовать в нашем проекте. Проще говоря, использование socket.io, поми-
мо импорта библиотеки, требует вызовов чуть большего количества функций:
одной для соединения двух устройств (зачастую клиента и сервера, но ни одно
из них на самом деле не обязано быть сервером), второй для отправки сообще-
ния с одного устройства на другое (включая отправку сообщения на все под-
ключенные устройства) и третьей для приема сообщений от других устройств.

Предположим, что клиентское приложение (которое считается веб-при-
ложением на основе JavaScript, использующим библиотеку socket.io) хранит

225

ГЛАВА 7  FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР

свои настройки на сервере. Затем, если пользователь хочет очистить их, он
может отправить (emit) сообщение clearPreferences на сервер вместе с объ-
ектом, который содержит идентификатор пользователя. Для этого ему пона-
добится экземпляр socket.io, который уже предположительно создан и на ко-
торый ссылается переменная io. Клиент будет использовать метод emit() для
отправки сообщения, например так:

io.emit("clearPreferences", { "userlD" : "user123" });

Чтобы это сделать, сервер должен ожидать нужное сообщение от клиента. Вы
должны зарегистрировать функцию callback с экземпляром socket.io для каж-
дого прослушиваемого сообщения, и тут в игру вступает метод on():

io.on("clearPreferences", function(inData) {
	 database.execute(
	 	 'delete from user_preferences where userID=${inData.userID}’
);
});

После этого при каждом получении сообщения clearPreferences выполня-
ется функция callback и запрос к базе данных, чтобы удалить все, что хочет
пользователь (не зацикливайтесь на вопросах использования базы данных, это
просто пример).

Теперь предположим, что вы переносите это веб-приложение на Flutter. Со
стороны Dart понятия те же, но синтаксис немного отличается. Он вместо emit()
для отправки сообщения использует метод с точным названием sendMessage():

io.sendMessage("clearPreferences", { "userlD" : "user123" });

Как видите, помимо другого названия метода, все то же самое. Регистра-
ция функции callback для сообщения почти такая же, но Dart использует метод
subscribe() вместо on():

io.subscribe("preferencesCleared", () {
	 // Сделай что-нибудь... или нет – выбор за тобой!
});

Если конкретнее, вы можете подписаться на сообщения как с клиента, так
и на сервере, ведь сервер тоже может отправлять сообщения клиенту. Я упо-
минаю это потому, что мы не будем писать сервер на Dart и Flutter, но концеп-
ция применима независимо от того, что грань между клиентом и сервером при
работе с WebSockets и socket.io туманна. Ничего, кроме логики, не делает одно
устройство клиентом, а другое – сервером. В этом сила данного механизма!

Как видите, будь то версия JavaScript или Dart, клиентская или серверная
части уравнения (socket.io API) невероятно проста и чрезвычайно эффектив-
на. Данная библиотека предлагает более продвинутые возможности, такие как
пространства имен и комнаты, которые позволяют вам разделять сообщения
на логические группы, и еще многое другое. Однако это все, что вам нужно

226

ГЛАВА 7  FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР

знать для FlutterChat. Есть один маленький нюанс, связанный с установлени-
ем соединения, но я объясню это в контексте серверного кода FlutterChat, ко-
торый мы рассмотрим прямо сейчас!

Код сервера FlutterChat
Чтобы начать работать с кодом сервера, мы должны создать приложение Node.
Это очень просто: создайте пустой каталог, а затем выполните в нем команду
(через консоль или командную строку):

npm init

«Что, черт возьми, такое NPM?! Ты не рассказывал об этом!» Я чувствую ваше
недовольство. Расслабьтесь, это легко объяснить!

Node Package Manager (NPM) – это менеджер пакетов Node и инструмент, ко-
торый поставляется с Node, и он... подождите, подождите... управляет пакета-
ми! Пакеты – это просто дополнительные библиотеки и модули, загруженные
из центрального репозитория, которые можно добавить в приложение на Node,
о котором знает NPM.

Тем не менее NPM также выполняет другие функции, одна из которых – ини-
циализация проекта.

Результатом выполнения предыдущей команды станет интерактивный про-
цесс, который задаст вам несколько простых вопросов о вашем приложении,
большинство из которых, откровенно говоря, не имеют для нас значения, по
этому вы можете либо принять значения по умолчанию, либо ввести почти
все, что угодно. Конечный результат – вот что имеет значение, им будут не-
сколько файлов, созданных в каталоге, самый важный из них – package.json.
Он описывает ваше приложение для NPM и в конечном счете для Node. Еще
он выполняет функцию, аналогичную функции файла pubspec.yaml в прило-
жении Flutter, позволяя указывать такие вещи, как зависимости. И именно это
нам и нужно сделать!

Здесь у нас есть выбор: мы можем отредактировать файл package.json или
добавить его. Затем вам нужно добавить зависимость socket.io следующим об-
разом:

"dependencies": {
	 "socket.io": "2.2.0"
}

После этого мы можем выполнить еще одну команду:

npm install

Это заставит NPM прочитать файл package.json, просмотреть необходимые
зависимости и установить их для нас из центрального репозитория. Кроме того,
мы можем пропустить редактирование файла вручную, просто выполнив эту
команду:

227

ГЛАВА 7  FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР
npm install socket.io –save

Это заставит NPM загрузить socket.io, «установить» его в наш проект (создать
каталог node_modules и поместить туда код socket.io) и автоматически добавить
зависимость в package.json.

Любой подход приведет к одному и тому же результату, но все зависит от
способа, который вы предпочитаете. Однако следует помнить об одном разли-
чии: второй подход приведет к тому, что ваш проект получит последнюю вер-
сию запрошенного модуля.

Если вы захотите указать версию, то начните с редактирования package.json
(есть способы указать версию из командной строки, но это немного сложнее).

Примечание. Если вы загрузили исходный код книги, что вам следовало бы сделать, перейди-
те в командную строку каталога flutter_chat_server и выполните npm install, прежде чем
сделать что-либо еще. Затем запустите сервер, выполнив команду npm start. Из-за свойства main
в package.json npm узнает, что server.js является главной точкой входа в приложение, и запус
тит Node, передав этот файл в качестве аргумента. Кроме того, вы можете сделать это вручную, выполнив
node server.js.

Два Bits of State и Object заходят в Bar...
Если мы максимально упростим серверный код, то данные не будут сохранять-
ся. Любые данные или состояния будут существовать в памяти только во время
работы сервера. Так что если сервер перезапустится, то все будет потеряно. Но
мы можем рассматривать это как фичу, а не как багу – это означает, что сервер,
возможно, более безопасен (поймите меня правильно, это приложение нико-
им образом не обеспечит такую же безопасность, как системы ФБР/ЦРУ/АНБ, –
это далеко не так).

С учетом вышесказанного мы начнем с создания файла server.js, в кото-
ром будет размещен весь код нашего сервера.

Вот первый фрагмент его кода:

const users = { };

Это отображение (map) пользователей. Оно будет основано на имени поль-
зователя и значении объекта, называемого объектом дескриптора пользовате-
ля (user descriptor object) и имеющего следующий вид:

{userName : "", password : ""}

Довольно просто, да?
У нас есть еще одно отображение для комнат:

const rooms = { };

Структура объектов дескриптора комнаты имеет название комнаты и сле-
дующую ​​форму:

228

ГЛАВА 7  FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР
{ roomName : "", description : "", maxPeople : 99,
	 private : true|false, creator : "",
	 users : [
	 	 <username> : { userName : "" }, ...
]
}

Каждая комната может иметь описание (description) темы разговора, еще мы
сможем задать максимальное количество пользователей, разрешенное в ком-
нате, с помощью свойства maxPeople. Свойство private делает комнату закры-
той (true) или нет (false), а creator – это имя пользователя, который ее создал.
Отображение users основано на имени пользователя и представляет собой спи-
сок пользователей, находящихся в данный момент в комнате.

Еще нам необходимо создать объект socket.io. Это делается одной строкой:

const io = require("socket.io")(
	 require("http").createServer(
	 	 function() {}
).listen(80)
);

Здесь я сделал код более понятным, по сравнению с длинной строкой из ком-
плекта загрузки.

Суть в том, что мы создаем HTTP-сервер для Node, импортировав модуль
http, что и делает код выше. Вместо того чтобы сохранять ссылку на объект, ко-
торый мне больше не нужен, я вызываю для него метод createServer(), пере-
давая в него пустую функцию. Как правило, без socket.io было бы гораздо слож-
нее провернуть такое, поэтому я рад, что есть такая возможность! Поскольку
socket.io возьмет на себя всю ответственность, то для выполнения контракта
вызова createServer() достаточно пустой функции. Значение, возвращаемое
вызовом createServer(), запускается с помощью listen() на 80-м порту для
входящих запросов, как это обычно делает маленький хороший HTTP-сервер!

Однако, поскольку мы используем для проекта библиотеку socket.io, нам
предстоит еще один шаг: взять возвращаемое значение из вызова listen(),
которое является полностью активным HTTP-сервером, и передать его в кон-
структор socket.io. Это позволяет socket.io взять на себя управление сервером и
реализовать на нем самую древнюю и темную черную магию, чтобы сделать его
подходящим сервером WebSocket.

Конечно, на текущем этапе сервер не будет ничего отвечать на запросы и под-
ключения, но все еще впереди!

Поймай меня, если сможешь: сообщения
Все начинается с сообщения серверу socket.io. Логика при перехвате сообще-
ния – это то, что может иметь следующую реализацию:

229

ГЛАВА 7  FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР
io.on("connection", io => {
	 console.log("Connection established with a client");
	 // Больше сведений (продолжение в следующей главе!)
});

Внутри функции, передаваемой в качестве второго аргумента в метод io.on(),
у нас есть вызов console.log(), так что мы увидим сообщение в консоли при
подключении клиента.

Нам предстоит написать еще много кода, обрабатывающего все наши сооб-
щения из мобильного приложения, этим мы и займемся далее. Теперь давай-
те рассмотрим первый фрагмент этих «сведений»: проверку пользователей.

Заходим в парадную дверь: проверка пользователей
Для всех обработчиков (handlers) сообщений, обсуждаемых здесь и далее,
я покажу вам диаграмму, которая детализирует данные, поступающие в обра-
ботчик (inData), а также данные, выходящие из него через callback или широ-
ковещательное сообщение (или оба). У некоторых обработчиков, в зависимо-
сти от происходящего в них, есть несколько вариантов выходных сообщений,
которые будут рассмотрены в качестве альтернативного пути. Ссылайтесь на
эти диаграммы при просмотре кода, чтобы получить целостное представле-
ние о потоках данных внутрь и наружу. Начнем с того, что на рис. 7-4 показана
схема для первого обсуждаемого обработчика.

Рисунок 7-4. Детали сообщения validate для проверки пользователя

 Первое, что происходит, когда пользователь запускает приложение Flutter
Chat на своем мобильном устройстве, – это то, что ему предлагается ввести имя
пользователя и пароль (если это в первый раз, в дальнейшем же нужные дан-
ные будут подставляться автоматически). Пользователи вводят свои учетные
данные, и затем приложение отправляет сообщение «validate» (подтвердить).

230

ГЛАВА 7  FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР

Сервер должен ответить на него, чтобы подтвердить, действителен ли пользо-
ватель:

io.on("validate", (inData, inCallback) => {

	 const user = users[inData.userName];
	 if (user) {
	 	 if (user.password === inData.password) {
	 	 	 inCallback({ status : "ok" });
		 } else {
	 	 	 inCallback({ status : "fail" });
		 }
	 } else {
	 	 users[inData.userName] = inData;
	 	 io.broadcast.emit("newUser", users);
	 	 inCallback({ status : "created" });
	 }
});

Как и в случае сообщения о соединении, мы вызываем io.on(), чтобы заре-
гистрировать обработчик для этого сообщения, в котором сначала пытаемся
найти пользователя в нашем списке. Данные, передаваемые в обработчик, по-
ступают в переменную inData, и конкретно для этого сообщения мы ожидаем,
что client отправит какой-либо объект в формате { userName: «», password :
«» }. Если пользователь найден, то нам просто нужно подтвердить, что пароль
совпадает.

Если это так, вызывается callback, который был передан через inCallback.
Может показаться странным, что сервер вызывает функцию, существующую
на клиенте, но в этом и заключается прелесть абстракции, которую нам пре-
доставляет библиотека socket.io! Так как это сообщение специфично для кон-
кретного пользователя, то нет необходимости отправлять обратное сообщение
с помощью метода emit. Именно поэтому подход с callback-функциями идеа-
лен. Вместо него мы могли бы отправить клиенту другое сообщение, на кото-
рое клиент ответил бы новым запросом, что имитировало бы механизм обрат-
ного вызова (callback), но потребовало больше кода и действий. Когда же тре-
буется реализовать подход типа «запрос–ответ», то использование клиентских
callback-функций гораздо более удобно.

Если пароль совпадает, мы отправляем обратно объект { status : «ok» }.
В противном случае мы отправляем обратно { status : «fail» }. Этот объект со
свойством status (статус), который вы видите, является общим для всех обра-
ботчиков сообщений, хоть он и полностью определяется самим приложением.
Я мог бы здесь возвращать простые строки, но мне нравится, что у всех моих
вызовов одинаковая базовая структура как на входе, так и на выходе, поэтому
я остановился на этой парадигме. Но помните socket.io все равно – вы може-
те отправлять и получать все, что угодно (при условии что это упорядоченная
(marshaled) информация).

231

ГЛАВА 7  FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР

Как вы увидите в следующей главе, эти объекты могут преобразовываться
в отображения (класс Map) языка Dart, именно это нам и нужно, так как позво-
ляет легко передавать произвольные данные туда и обратно.

Итак, если пользователь не найден, значит, он новый (или что сервер перезапус
тился, или что пользователь очистил данные для приложения на своем устрой-
стве). Во всех случаях мы добавляем пользователя в список подключенных. За-
тем мы делаем две вещи: вызываем io.broadcast.emit() и callback-функцию.
С вызовом callback вы уже знакомы, но что происходит с io.broadcast.emit()?

Смысл в том, чтобы все подключенные клиенты знали, что на сервере по
явился новый пользователь. Помните, что приложение должно уметь показы-
вать список пользователей на сервере. Данное широковещательное сообщение
содержит обновленный список пользователей (как видите, это второй аргу-
мент io.broadcast.emit()), который получит наше приложение. Как вы уви-
дите в следующей главе, это приведет к обновлению списка пользователей
в ScopedModel и, как следствие, перерисовке экрана с пользователями внутри
мобильного приложения.

Так что да, вы можете передавать сообщения и вызывать callback-функцию
из одного и того же обработчика (также вы можете отправлять столько сооб-
щений, сколько хотите, и технически можете вызывать callback-функцию не-
сколько раз, но зачем?).

Благодаря socket.io у нас получилось все достаточно просто. На самом деле
я думаю, что данный обработчик был сложнее остальных! Давайте посмотрим
на следующий!

Создание комнаты
Первая функция, которую сервер должен поддерживать после проверки поль-
зователей, – это создание комнат (см. рис. 7-5).

Рисунок 7-5. Структуры данных и шаги обработчика сообщения create

Код выглядит следующим образом:

io.on("create", (inData, inCallback) => {
	 if (rooms[inData.roomName]) {

232

ГЛАВА 7  FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР
	 	 inCallback({ status : "exists" });
	 } else {
	 	 inData.users = { };
	 	 rooms[inData.roomName] = inData;
	 	 io.broadcast.emit("created", rooms);
	 	 inCallback({ status : "created", rooms : rooms });
	 }
});

Быстрая проверка в коллекции rooms сообщает нам о существовании комна-
ты с указанным названием, и в случае успеха объект со статусом «exists» (су-
ществует) отправляется обратно, чтобы приложение могло уведомить об этом
пользователя. В противном случае пустой список пользователей добавляет-
ся ко входящему объекту inData, который затем прикрепляется к коллекции
комнат с указанием roomName в качестве ключа.

Затем, чтобы предупредить всех пользователей о существовании новой ком-
наты, отправляется сообщение «created» (создана). Полный список комнат
рассылается всем пользователям (я признаю, это не самый эффективный ме-
ханизм, но если у вас небольшое количество комнат, то это довольно простая
реализация – опять же, я не утверждаю, что это готовый к работе код, который
можно использовать для поддержки тысяч пользователей!).

Наконец, вызывается callback-функция, чтобы сообщить пользователю, соз-
дающему комнату, о том, что работа выполнена. Она также обновит список
комнат. Это важно, потому что при широковещательной отправке сообщения
оно не будет отправляться на тот сокет, который вызвал эту отправку. Други-
ми словами, пользователь, отправивший сообщение о создании комнаты, сам
не получит это уведомление. Поэтому вызов callback-функции клиента здесь
необходим, чтобы обойти данное ограничение.

Покажите мне все комнаты: просмотр списка комнат
Теперь, когда у нас есть способ создавать комнаты, было бы неплохо иметь воз-
можность отображать их список, не так ли? Я думаю, вы согласитесь! Для этого
у нас будет сообщение «listRooms» (см. рис. 7-6).

Рисунок 7-6. Структуры данных и шаги обработчика сообщения listRooms

Я надеюсь, что вы готовы к печати большого куска кода, потому что этот
пример просто огромен. Готовы? Вы действительно готовы к тому, насколько
огромным он будет? Хорошо, вот он:

233

ГЛАВА 7  FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР
io.on("listRooms", (inData, inCallback) => {
	 inCallback(rooms);
});

Да, это все! Все, что нам нужно сделать, – это вернуть коллекцию комнат
в callback-функцию клиента. Это сообщение «listRooms» необходимо только
в одном случае: когда пользователь впервые заходит на основной экран. Пом-
ните, что обработчик сообщений «create» транслирует полный список комнат
всем клиентам при каждом создании комнаты (и, как вы увидите позже, при
каждом закрытии комнаты). Таким образом у клиентов будет обновленный
список комнат каждый раз после подключения, но его не будет сразу после вхо-
да в систему. В этом случае отправляется «listRooms», однако, как вы увидите
в следующей главе, он также отправляется каждый раз, когда пользователь за-
ходит на основной экран, что немного излишне, но упрощает код.

Это все, что должен сделать обработчик сообщения «listRooms». Ах да, и по-
следнее замечание: inData здесь не нужен, но функция-обработчик всегда бу-
дет передавать данные, нужны вам они или нет. Так что inData есть в списке
аргументов анонимной функции только для удовлетворения требований API.

Не забывайте о людях: список пользователей
По аналогии с получением списка комнат мы должны иметь возможность по-
лучить и список пользователей.

Рисунок 7-7. Подробности обмена сообщениями для обработчика listUsers

Модель ввода/вывода такая же, как в списке комнат:

io.on("listUsers", (inData, inCallback) => {
	 inCallback(users);
});

И так же, как со списком комнат, у клиентов будет список пользователей
на сервере, а получать они его будут каждый раз, когда регистрируется новый
пользователь. Логика у списков пользователей и комнат будет различна. И это
различие заключается в том, что для комнат есть сценарии, при которых спи-
сок необходимо очищать, а для пользователей нет такого сценария. Это про-
исходит из-за того, что список пользователей загружается каждый раз при пе-
реходе на соответствующий экран.

234

ГЛАВА 7  FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР

Стук в дверь: вход в комнату
Теперь, когда мы можем создавать комнаты и отображать их список, нам не-
обходима возможность войти в заданную комнату, вот тут-то и вступает в дей-
ствие обработчик сообщения «join» (см. рис. 7-8).

Рисунок 7-8. �Подробности обмена сообщениями для обработчика сообщений
«join»

Этот требует немного логики, как вы можете видеть:

io.on("join", (inData, inCallback) => {
	 const room = rooms[inData.roomName];
	 if (Object.keys(room.users).length >= rooms.maxPeople) {
	 	 inCallback({ status : "full" });
	 } else {
	 	 room.users[inData.userName] = users[inData.userName];
	 	 io.broadcast.emit("joined", room);
	 	 inCallback({status : "joined", room : room });
	 }
});

Сначала мы получаем ссылку на объект дескриптора комнаты на основе за-
прошенного имени roomName. Затем выполняется проверка, чтобы убедиться,
что в комнате есть место (помните переменную maxPeople?), если места нет, то
возвращается объект со статусом «full». В этом случае приложение сообщит
пользователю о том, что он не может войти.

Если комната не заполнена, то пользователь добавится в список подключен-
ных к этой комнате. Таким образом комната знает, кто в ней находится.

Наконец, сообщение «joined» (присоединен) передается всем клиентам, и, как
и при создании комнаты, вызывается callback-функция, чтобы предоставить от-
правителю ту же информацию, которая является описанием комнаты. Затем
клиентское приложение переместит пользователя на экран комнаты и заполнит
список пользователей в ней, подробности вы увидите в следующей главе. Для
пользователей, которых нет в комнате, это сообщение будет игнорироваться, по-
скольку оно к ним не относится.

235

ГЛАВА 7  FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР

Не надо кричать: отправка сообщения в комнату
Возможность создавать, просматривать список и присоединяться к комнате
была бы бесполезной, если бы мы не могли публиковать пользовательские со-
общения, поэтому давайте позаботимся об этом позже через скучно названное
сообщение «post», как на рис. 7-9.

Рисунок 7-9. Подробности обмена данными для обработчика сообщения post

Обработчик этого события неожиданно прост:

io.on("post", (inData, inCallback) => {
	 io.broadcast.emit("posted", inData);
	 inCallback({ status : "ok" });
});

Все просто: нет необходимости сохранять сообщения на сервере, ведь доста-
точно его просто передать другим клиентам вместе с требуемыми данными.
Как и в случае с сообщением «join», все пользователи, которых нет в комнате,
будут игнорировать это сообщение, потому что оно не имеет к ним отноше-
ния. Наконец, хотя в этом и нет необходимости, callback-функция вызывается
с простым статусом «ok», просто для обеспечения согласованности всех наших
обработчиков.

Псс! Эй! Эй, ты! Иди сюда: приглашение пользователя в комнату
Когда вы находитесь в комнате, то можете приглашать других пользователей
присоединиться к вам. Для этого пользователь отправляет сообщение «invite».

Рисунок 7-10. Подробности обмена сообщениями для обработчика invite

Код очень похож на код обработчика для отправки сообщения:

io.on("invite", (inData, inCallback) => {
	 io.broadcast.emit("invited", inData);

236

ГЛАВА 7  FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР
	 inCallback({ status : "ok" });
});

К сожалению, возможность передать сообщение конкретному пользователю
отсутствует в нашей реализации, поэтому оно передается всем пользователям,
а реагирует на него только тот, чье имя указано в inData (вместе с комнатой,
в которую они приглашены, и тем, кто пригласил). Как и в случае с обработчи-
ком «post», callback-функция для «invite» вызывается просто для согласован-
ности.

С меня хватит: выход из комнаты
Пользователь может покинуть комнату в любое время – это ведь не тюрьма!
Рисунок 7-11 доказывает, что это так.

Рисунок 7-11. Детали сообщения для обработчика leave

Сообщение о выходе реализовано следующим образом:

io.on("leave", (inData, inCallback) => {
	 const room = rooms[inData.roomName];
	 delete room.users[inData.userName];
	 io.broadcast.emit("left", room);
	 inCallback({status : "ok" });
});

Выход из комнаты означает, что пользователь должен быть удален из коллек-
ции пользователей в конкретной комнате, поэтому сначала мы получаем ссылку
на объект room, а потом пользователь удаляется из коллекции users. После это-
го код должен отправить сообщение «left», чтобы предоставить всем клиентам
обновленный список пользователей в комнате, а затем вызвать callback-функ-
цию. Так делают, чтобы отправивший событие клиент мог завершить свой об-
работчик ухода из комнаты.

Вы не должны идти домой, но и здесь вы остаться не можете: закрытие комнаты
Наконец, мы подошли к первой из двух «административных» функций, кото-
рые могут применяться только человеком, создавшим комнату. Первая – за-
крытие комнаты, рис. 7-12.

237

ГЛАВА 7  FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР

Рисунок 7-12. Детали сообщения для обработчика close

Код, участвующий в этом процессе, короткий и приятный:

io.on("close", (inData, inCallback) => {
	 delete rooms[inData.roomName];
	 io.broadcast.emit("closed",
	 	 { roomName : inData.roomName, rooms : rooms }
);
	 inCallback(rooms);
});

Логика закрытия комнаты сложнее, чем просто ее удаление. Мы должны уда-
лить комнату из списка и оповестить пользователей о том, что она закрыта. Это
уведомление, в свою очередь, вызовет callback-функцию, которая выполнится
на клиенте. Пользователи, оказавшиеся в закрытой комнате, будут оттуда вы-
гружены и получат сообщение о закрытии комнаты.

Кое-кто ведет себя глупо: исключение пользователя из комнаты
Наконец, у нас есть еще одно «административное» сообщение – на этот раз для
удаления пользователей из комнаты, как показано на рис. 7-13.

Рисунок 7-13. Детали обработчика сообщения kick

Как видите, в этой функции задействовано немного больше кода:

io.on("kick", (inData, inCallback) => {
	 const room = rooms[inData.roomName];
	 const users = room.users;
	 delete users[inData.userName];
	 io.broadcast.emit("kicked", room);
	 inCallback({ status : "ok" });
});

Это требует извлечения объекта дескриптора комнаты из коллекции rooms,
затем коллекции users внутри нее, а потом удаления из нее пользователя.

ГЛАВА 7  FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР

После этого сообщение «kicked» передается всем пользователям вместе с об-
новленной информацией о комнате. Callback-функция вызывается, хотя этого
и не требуется.

И с этим окончательным обработчиком сообщений у нас есть полный сервер,
который реализует всю функциональность, необходимую для работы Flutter
Chat!

Итого
В этой главе мы построили серверную часть приложения FlutterChat. Здесь вы
познакомились с Node.js и socket.io, а также увидели сообщения, необходимые
для работы приложения. Теперь у нас есть сервер, готовый общаться с клиен-
тами.

В следующей главе мы рассмотрим клиентскую часть и само приложение
на основе Flutter. Вы увидите, как оно подключается к только что созданному
серверу, и сделаете FlutterChat полноценным и функционирующим.

239

ГЛАВА 8

FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

В предыдущей главе мы создали серверную часть FlutterChat, предоставляю-
щую API на основе WebSocket и socket.io для клиентского приложения.

Наконец-то пришло время сделать клиентскую часть. Теперь вспомните все,
чему уже научились, мы начинаем делать FlutterChat для смартфонов!

Model.dart
Хотя это может показаться странным, вместо того чтобы начинать с обычного
файла main.dart, мы начнем с Model.dart, который содержит код единствен-
ной scoped-модели, используемой в приложении (как вы уже видели при соз-
дании FlutterBook, библиотека scoped_model указана в зависимостях проекта
через файл pubspec.yaml). Файл Model.dart содержит класс FlutterChatModel,
который наследуется от Model и включает следующие свойства:

•	 BuildContext rootBuildContext – это ссылка на BuildContext корневого
(root) виджета приложения. Вскоре вы поймете, зачем это свойство может
вам понадобиться. Также обратите внимание, что оно не является состоя-
нием и может использоваться в нескольких местах. Для данного свойства
нет необходимости реализовывать свой setter-метод, так как нет необхо-
димости вызывать notifyListeners() при установке нового значения;

•	 Directory docsDir – каталог документов приложения. Смотрите коммен-
тарий о rootBuildContext и причинах его появления в модели, поскольку
они также относятся и к этому свойству – без специального setter-метода;

•	 String greeting = «» – это текст приветствия, который будет отображать-
ся на главном экране;

•	 String userName = «» – это, очевидно, имя пользователя!

•	 static final String DEFAULT_ROOM_NAME = «Not currently in a room» –
это текст, который будет отображаться в AppDrawer, когда пользователя
нет в комнате;

•	 String currentRoomName = DEFAULT_ROOM_NAME – это название комнаты,
в которой находится пользователь, или же строка, которая указывает, что
он еще туда не вошел;

•	 List currentRoomUserList = [] – список пользователей текущей комнаты;

240

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

•	 bool currentRoomEnabled = false – флаг, который отображает, находится
ли пользователь в данной комнате. И если он равен true, то мы отобража-
ем текущую комнату в списке комнат;

•	 List currentRoomMessages = [] – список сообщений в текущей комнате;

•	 List roomList = [] – список комнат на сервере;

•	 List userList = [] – список пользователей на сервере;

•	 bool creatorFunctionsEnabled = false – это флаг, который включает
функции администратора чата;

•	 Map roomInvites = { } – список приглашений, полученных пользователем.

Примечание. Дабы сократить текст, я не стал печатать импорты и исходные коды. Если здесь появятся
какие-либо новые и интересные импорты, то я упомяну их, но в остальном это только те модули, с кото-
рыми вы уже знакомы.

Это типичный класс модели, мы сталкивались с подобными во FlutterBook,
но здесь есть различные методы и свойства, например метод для приветствия:

void setGreeting(final String inGreeting) {
	 greeting = inGreeting;
	 notifyListeners();
}

В конце вызывается notifyListeners(), чтобы любой код, подписанный на
изменение данного поля, был оповещен.

Чтобы сэкономить немного места, мы пропустим рассмотрение setUser
Name(), setCurrentRoom(), setCreatorFunctionsEnabled() и setCurrentRoom
Enabled(), поскольку они очень похожи на setGreeting(), различие только
в том, что они ссылаются на разные свойства.

Вместо этого давайте перейдем к addMessage(), который немного отлича-
ется и будет вызываться, когда сервер сообщает клиенту о новом сообщении,
опубликованном в комнате:

void addMessage(final String inUserName,
	 final String inMessage) {
	 currentRoomMessages.add({ "userName" : inUserName,
	 	 "message" : inMessage });
	 notifyListeners();
}

Здесь, вместо того чтобы просто присвоить значение, нам необходимо вы-
звать метод currentRoomMessages.add(). Метод setRoomList() работает немно-
го по-другому:

void setRoomList(final Map inRoomList) {

241

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ
	 List rooms = [];
	 for (String roomName in inRoomList.keys) {
	 	 Map room = inRoomList[roomName];
	 	 rooms.add(room);
	 }
	 roomList = rooms;
	 notifyListeners();
}

Мы снова обновляем список, поэтому используем метод add(), но на этот
раз передаваемый параметр имеет тип Map. Далее нам нужно перебрать все
ключи в Map, а затем для каждого вытащить значение и добавить его в список
наших комнат.

После этого идут методы setUserList() и setCurrentRoomUserList(), они такие
же, как setRoomList(), так что мы их пропустим. Далее – метод addRoomInvite():

void addRoomInvite(final String inRoomName) {
	 roomInvites[inRoomName] = true;
}

Приглашение в комнату приводит к тому, что на экране некоторое время ото-
бражается SnackBar. После того как он исчезнет, мы узнаем, может ли пользо-
ватель войти в данную комнату, поэтому в коллекции roomInvites указывает-
ся имя комнаты и значение bool. Если это значение true, то у пользователя есть
приглашение в комнату, и он может войти. Затем нам понадобится возможность
отозвать приглашение при закрытии комнаты; в противном случае, если кто-то
создаст комнату с таким же именем, у пользователя появится некорректная воз-
можность зайти в нее, поэтому сделаем метод removeRoomInvite():

void removeRoomInvite(final String inRoomName) {
	 roomInvites.remove(inRoomName);
}

Когда пользователь выходит из комнаты, появляется возможность очистки,
например очистка списка сообщений для комнаты, для этого у нас есть метод
clearCurrentRoomMessages():

void clearCurrentRoomMessages() {
	 currentRoomMessages = [];
}

Наконец, создается экземпляр модели FlutterChatModel:

FlutterChatModel model = FlutterChatModel();

Это будет единственный экземпляр данного класса в приложении, поэтому
считаем, что с этой моделью мы разобрались!

242

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

Connector.dart
Далее мы рассмотрим файл Connector.dart. Его цель – создать единый модуль,
взаимодействующий с сервером и используемый остальными частями прило-
жения. Он избавит нас от дублирования кода и необходимости импортировать
зависимости в несколько мест (например, socket.io). Для данного файла нам
понадобятся два новых импорта:

import "package:flutter_socket_io/flutter_socket_io.dart";
import "package:flutter_socket_io/socket_io_manager.dart";

Они необходимы для использования socket.io. Здесь нас интересуют только
два класса: SocketIO из библиотеки flutter_socket_io.dart и SocketIOManager
из библиотеки socket_io_manager.dart. Но я немного забегаю вперед!

Этот код начинается достаточно просто:

String serverURL = "http://192.168.9.42";

Когда вы запустите приложение, вам нужно будет задать IP-адрес, на кото-
ром работает ваш сервер. Чтобы проверить ваши навыки, у меня есть пред-
ложение: попробуйте добавить поле для IP-адреса в диалог входа в систему,
который мы скоро рассмотрим. Таким образом IP-адрес, который мы захард-
кодили, можно будет изменить, что повысит удобство использования прило-
жения. Затем мы находим экземпляр класса SocketIO:

SocketIO _io;

Ну, технически это объявление, а не экземпляр! Скоро мы его построим. Но
сначала поговорим о двух служебных функциях. Каждый раз, когда мы дела-
ем запрос к серверу, приложение будет отображать на экране надпись «Please
wait...» («пожалуйста, подождите...»). Она заблокирует любые пользователь-
ские действия. Чаще всего операция будет настолько быстрой, что пользова-
тель увидит на экране только вспышку, и это нормально. Если операция зани-
мает больше времени, то появляется наша надпись. Для этого мы просто ис-
пользуем dialog:

void showPleaseWait() {
	 showDialog(context : model.rootBuildContext,
	 	 barrierDismissible : false,
	 	 builder : (BuildContext inDialogContext) {
	 	 	 return Dialog(
	 	 	 	 child : Container(width : 150, height : 150,
	 	 	 	 alignment : AlignmentDirectional.center,
				 decoration :
	 	 	 	 	 BoxDecoration(color : Colors.blue[200])

Вызывается уже знакомая функция showDialog(), и мы видим, где начинает
работать свойство модели rootBuildContext. Проблема в том, что этот индика-

243

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

тор должен перекрывать весь экран, все дерево виджетов, а не только его под-
множество. Так что стоит всегда задавать контекст для корневого виджета. Но,
как правило, в коде это доступно не отовсюду. Когда мы доберемся до файла
main.dart, то вы увидите, что мы получаем ссылку на buildContext корневого
виджета и сохраняем ее в модели, чтобы она была доступна везде, где может
понадобиться.

Очень важно установить свойство barrierDismissable в значении false, ина-
че пользователь сможет закрыть наш диалог «Please wait...». Затем мы прос
то отображаем обычный диалог. Его содержание сводится к некоторому тек-
сту с объяснениями того, что происходит, и вращающемуся CircularProgress
Indicator:

child : Column(
	 crossAxisAlignment : CrossAxisAlignment.center,
	 mainAxisAlignment : MainAxisAlignment.center,
	 children : [
	 	 Center(child : SizedBox(height : 50, width : 50,
	 	 	 child : CircularProgressIndicator(
	 	 	 	 value : null, strokeWidth : 10)
)),
	 	 Container(margin : EdgeInsets.only(top : 20),
	 	 	 child : Center(child :
	 	 	 	 Text("Please wait, contacting server...",
	 	 	 	 style : new TextStyle(color : Colors.white)
))
)
]
)

Размещение CircularProgressIndicator внутри SizedBox с определенной ши-
риной и высотой позволяет нам контролировать размер индикатора. Может по-
казаться странным установка свойства value в значение null и то, что мы его
никогда не обновляем, но при этом индикатор отображает анимацию для теку-
щей операции. Проще говоря: он всегда показывает вращающуюся анимацию!
Если бы операция была конечной, то вы могли бы постепенно обновлять свой-
ство value, чтобы дать реальное представление пользователю об общем про-
грессе, но здесь другая ситуация. Обратите внимание, я установил значение
strokeWidth, чтобы сделать индикатор толще обычного (на мой взгляд, так вы-
глядит лучше).

Еще нам нужен способ скрыть это диалоговое окно, когда мы дождемся от-
вета от сервера, для этого служит функция hidePleaseWait():

void hidePleaseWait() {
	 Navigator.of(model.rootBuildContext).pop();
}

244

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

Это стандартный способ скрыть диалог, отличие в том, что он снова должен
использовать rootBuildContext.

Далее следует функция connectToServer(), которая вызывается из диалого-
вого окна входа в систему, как только пользователь вводит свои учетные дан-
ные:

void connectToServer(final BuildContext inMainBuildContext,
	 final Function inCallback) {
	 	 _io = SocketIOManager().createSocketIO(
	 	 	 serverURL, "/", query : "",
	 	 	 socketStatusCallback : (inData) {
	 	 	 	 if (inData == "connect") {
	 	 	 	 	 _io.subscribe("newUser", newUser);
	 	 	 	 	 _io.subscribe("created", created);
	 	 	 	 	 _io.subscribe("closed", closed);
	 	 	 	 	 _io.subscribe("joined", joined);
	 	 	 	 	 _io.subscribe("left", left);
	 	 	 	 	 _io.subscribe("kicked", kicked);
	 	 	 	 	 _io.subscribe("invited", invited);
	 	 	 	 	 _io.subscribe("posted", posted);
	 	 	 	 	 inCallback();
				 }
			 }
);
	 	 _io.init();
	 	 _io.connect();
	 }

Вот где используется объект SocketIO с помощью вызова SocketIOManager.
createSocketIO() и передачи ему serverURL. Этот метод также имеет два до-
полнительных параметра. Первый параметр – это path, необходимый для
уточнения пути (например, serverURL/chat). По умолчанию туда передается
пустая строка или «/»; второй параметр, query, может использоваться для до-
бавления дополнительных параметров к запросу, частый пример – это token
для авторизации.

Свойство socketStatusCallback принимает функцию, запускаемую при из-
менении статуса WebSocket. Может приходить несколько статусов, но нам ва-
жен только один – connect. Он означает, что соединение с сервером установ-
лено. Только теперь мы можем определить обработчики для различных сооб-
щений, которые сервер отправляет клиентам. Они называются subscriptions
(подписки), поэтому вызывается метод subscribe(), в который передаются со-
общение и обработчик, вызываемый при получении данного сообщения.

Наконец, методы init() и connect() должны быть вызваны для инициали-
зации и подключения к серверу, и, если не возникло ошибок, мы сможем ис-
пользовать callback, определенный ранее. После этого наш клиент может от-

245

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

правлять сообщения на сервер и обрабатывать сообщения, принимаемые от
него.

Связанные с сервером функции сообщений
Сначала мы рассмотрим функции, которые отправляют сообщения на сервер,
и первая такая функция validate() вызывается из диалога входа в систему
и предназначена для проверки того, что ввел пользователь:

void validate(final String inUserName, final String
	 inPassword, final Function inCallback) {
	 	 showPleaseWait();
	 	 _io.sendMessage("validate",
	 	 	 "{ \"userName\" : \"$inUserName\", "
	 	 	 "\"password\" : \"$inPassword\" }",
	 	 	 (inData) {
	 	 	 	 Map<String, dynamic> response = jsonDecode(inData);
	 	 	 	 hidePleaseWait();
	 	 	 	 inCallback(response["status"]);
			 }
);
	 }

validate() принимает имя пользователя, его пароль и ссылку на callback-функ-
цию. Сначала вызывается функция showPleaseWait(), которую мы рассматрива-
ли ранее, чтобы заблокировать экран. Затем метод sendMessage() объекта _io,
который отправляет серверу сообщение «validate» и строку JSON, содержащую
имя пользователя и пароль. Функция callback использует jsonDecode(), чтобы
получить объект Map, в котором будут содержаться данные от сервера. Затем вы-
зывается hidePleaseWait() для снятия блокировки экрана, а следом – inCallback,
передавая ему свойство status из отображения.

В некоторых местах все отображение (map) будет передано в ​​callback, как,
например, в случае с функцией listRooms():

void listRooms(final Function inCallback) {
	 showPleaseWait();
	 _io.sendMessage("listRooms", "{}", (inData) {
	 	 Map<String, dynamic> response = jsonDecode(inData);
	 	 hidePleaseWait();
	 	 inCallback(response);
	 });
}

Обе эти функции и их базовая структура повторяются несколько раз в дру-
гих местах. Основная идея отображения диалога «Please wait..» – это ожидание
отправки нашего сообщения и ответа от сервера. Затем, когда мы его дожда-

246

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

лись, у нас выполнится callback-функция, которая скроет диалог и выполнит
действие в зависимости от ответа. Разница лишь в том, какое сообщение от-
правлено, какие аргументы оно принимает и что сервер отправляет обратно.
Таким образом, я собираюсь описать все эти функции здесь:

•	 create() – вызывается на главном экране для создания комнаты. Она пере-
дает имя комнаты, ее дескриптор, максимальное количество людей неза-
висимо от того, приватная комната или нет, имя администратора и callback,
в который передаются status и свойство rooms – полный и обновленный
список комнат на сервере;

•	 join() – вызывается, когда пользователь кликает на нужную комнату,
чтобы присоединиться (или войти) в нее. Эта функция передает имя поль-
зователя, имя комнаты и callback, которому передается свойство status
из ответа и дескриптора комнаты;

•	 left() – вызывается, когда пользователь покидает комнату, в которой он
находится. Передает имя пользователя, имя комнаты и callback (которо-
му ничего не передается);

•	 listUsers() – вызывается из AppDrawer для получения обновленного спис
ка пользователей на сервере. Эта функция принимает только ссылку на
callback, который получает список пользователей;

•	 invite() – вызывается, когда пользователь приглашает кого-то в комна-
ту. Передается имя приглашаемого пользователя, имя комнаты, в кото-
рую он приглашен, имя приглашающего пользователя и callback (которо-
му ничего не передается);

•	 post() – вызывается для отправки сообщения в текущую комнату. Пере-
дает имя пользователя, имя комнаты, публикуемое сообщение и callback,
который получает свойство status;

•	 close() – вызывается администратором, чтобы закрыть комнату. Переда-
ет имя комнаты и callback, которому ничего не передается;

•	 kick() – вызывается администратором для удаления пользователя из
комнаты. Передает имя пользователя, имя комнаты и callback, которому
ничего не передается.

Связанные с клиентом обработчики сообщений
Следующая группа функций, которые мы рассмотрим, касается сообщений, по-
ступающих с сервера.

Названия этих функций имитируют имя сообщения, отправляемого серве-
ром. Первая из них – newUser():

void newUser(inData) {
	 Map<String, dynamic> payload = jsonDecode(inData);

247

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ
	 model.setUserList(payload);
}

Она вызывается при создании нового пользователя. Сервер отправляет пол-
ный список пользователей, и эта функция просто задает его в модели.

Функция create() используется при создании новой комнаты. Она выгля-
дит так же, как newUser(), за исключением вызова model.setRoomList(), поэто-
му давайте пропустим ее и перейдем к closed():

void closed(inData) {
	 Map<String, dynamic> payload = jsonDecode(inData);
	 model.setRoomList(payload);
	 if (payload["roomName"] == model.currentRoomName) {
	 	 model.removeRoomInvite(payload["roomName"]);
	 	 model.setCurrentRoomUserList({});
	 	 model.setCurrentRoomName(
	 	 	 FlutterChatModel.DEFAULT_ROOM_NAME);
	 	 model.setCurrentRoomEnabled(false);
	 	 model.setGreeting(
	 	 	 "The room you were in was closed by its creator.");
	 	 Navigator.of(model.rootBuildContext
).pushNamedAndRemoveUntil("/", ModalRoute.withName("/"));
	 }
}

Здесь у нас чуть больше работы! Во-первых, в модели задается обновлен-
ный список комнат. Далее, если в закрытой комнате в данный момент нахо-
дится пользователь, то нам нужно выполнить очистку. Если в неё есть пригла-
шение, оно должно быть удалено, чтобы избежать приглашения пользовате-
ля в комнату с тем же именем, но созданную позже. Потом очищается список
пользователей в текущей комнате, а ее название заменяется на имя по умол-
чанию, которое также отображается в заголовке AppDrawer. Еще мы отключаем
ссылку Current Room внутри AppDrawer, а приветствие на домашнем экране со-
общает о том, что комната была закрыта. Так пользователь узнает, что прои-
зошло. Наконец, нам нужно перейти к домашнему экрану с помощью метода
pushNamedAndRemoveUntil(). Эта функция (одна из нескольких, которые можно
использовать для навигации) гарантирует, что мы всегда возвращаемся к до-
машнему экрану. Таким образом, наш Navigator всегда находится в известном
состоянии после этого перемещения.

Когда пользователь присоединяется к комнате, то сервер отправляет со-
общение «joined», поэтому у нас есть соответствующая функция-обработчик
joined():

void joined(inData) {
	 Map<String, dynamic> payload = jsonDecode(inData);
	 if (model.currentRoomName == payload["roomName"]) {
	 	 model.setCurrentRoomUserList(payload["users"]);

248

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ
	 }
}

Мы заботимся об этом сообщении только тогда, когда пользователь нахо-
дится в комнате, и если это так, то обновленный список пользователей сохра-
няется в модели. Похожим образом работает функция left(), которая выпол-
няется, когда пользователь покидает комнату.

Если администратор исключает пользователя из комнаты, то включается
обработчик сообщения kicked! Эта функция аналогична closed(), потому что
с точки зрения пользователя комната в некотором смысле закрылась – по край-
ней мере, для него! Единственным отличием является текст на главном экране,
который говорит, что его исключили. Давайте сэкономим время и не будем это
рассматривать. Лучше взгляните, что происходит, когда пользователя пригла-
шают в комнату:

void invited(inData) async {
	 Map<String, dynamic> payload = jsonDecode(inData);
	 String roomName = payload["roomName"];
	 String inviterName = payload["inviterName"];
	 model.addRoomInvite(roomName);
	 Scaffold.of(model.rootBuildContext).showSnackBar(
	 	 SnackBar(backgroundColor : Colors.amber,
	 	 	 duration : Duration(seconds : 60),
	 	 	 content : Text("You’ve been invited to the room "
	 	 	 	 "’$roomName’ by user ‘$inviterName’.\n\n"
	 	 	 	 "You can enter the room from the lobby."
),
	 	 	 action : SnackBarAction(label : "Ok", onPressed: () {})
)
);
}

Здесь мы должны извлечь некоторую информацию из ответа, а именно на-
звание комнаты и имя пользователя, который их пригласил. Затем добавляет-
ся приглашение в эту комнату, так что, когда они нажмут на нее на основном
экране, мы узнаем, как их впустить. Затем мы должны показать им SnackBar,
чтобы сообщить о приглашении. Мы оставим его на целую минуту, чтобы они
его не пропустили, иначе нет никаких признаков того, что приглашение при-
шло (эй, вот вам еще одно упражнение: добавьте какой-нибудь индикатор
в список комнат на главном экране!). Мы также покажем им кнопку Ok, чтобы
закрыть SnackBar, если они захотят.

Наконец, мы подошли к последней функции, которая обрабатывает сообще-
ния, отправленные в комнату:

void posted(inData) {
	 Map<String, dynamic> payload = jsonDecode(inData);

249

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ
	 if (model.currentRoomName == payload["roomName"]) {
	 	 model.addMessage(payload["userName"], payload["message"]);
	 }
}

Еще раз, новые сообщения отправляются всем пользователям, поэтому мы
должны игнорировать все сообщения, не относящиеся к текущей комнате. Од-
нако для пользователей, которые находятся внутри комнаты, вызов model.add
Message() добавит сообщение и уведомит их.

И теперь у нас есть полный API для связи с сервером, на базе которого мы
можем написать код нашего клиентского приложения. Первая часть этой го-
ловоломки находится в файле main.dart.

main.dart
Есть несколько задач, которые нужно выполнить в main() перед созданием
пользовательского интерфейса. Это может занять некоторое время, так что мы
сперва выполняем их:

void main() {

	 startMeUp() async {

	 	 Directory docsDir =
	 	 	 await getApplicationDocumentsDirectory();
	 	 model.docsDir = docsDir;

	 	 var credentialsFile =
	 	 	 File(join(model.docsDir.path, "credentials"));
	 	 var exists = await credentialsFile.exists();

		 var credentials;
	 	 if (exists) {
	 	 	 credentials = await credentialsFile.readAsString();
		 }

Опять же, есть функция startMeUp(), которая вызывается в самом конце
main(), поэтому мы можем выполнить внутри нее некоторую асинхронную зада-
чу. Первая такая задача – получить каталог документов приложения, как в пре-
дыдущем проекте. В нашем случае это будет файл для хранения имени и паро-
ля пользователя (учетные данные). Следующий шаг – попытаться прочитать этот
файл. Если он существует, то мы читаем его содержимое как строку. Мы разбе-
ремся с этим через минуту, но сначала создадим пользовательский интерфейс:

runApp(FlutterChat());

Прежде чем мы доберемся до класса FlutterChat, нам нужно разобраться
с учетными данными. Цель в том, чтобы при наличии файла с логином и паро-

250

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

лем мы могли сразу же проверить пользователя на сервере. Если такого файла
нет, то мы должны показать пользователю диалог входа в систему. Итак:

if (exists) {
	 List credParts = credentials.split("============");
	 LoginDialog().validateWithStoredCredentials(credParts[0],
	 	 credParts[1]);
} else {
	 await showDialog(context : model.rootBuildContext,
	 	 barrierDismissible : false,
	 	 builder : (BuildContext inDialogContext) {
	 	 	 return LoginDialog();
		 }
);
}

Содержимое файла представляет собой простую строку в виде xxx==========
==yyy, где xxx – это имя пользователя, а yyy – пароль. Вы спросите, почему их
разделяют 12 знаков равенства? Все просто: имя пользователя и пароль огра-
ничены десятью символами, мы увеличиваем их количество на 2, чтобы, если
пользователь вводит десять знаков равенства в имени пользователя, мы все
равно могли разделить нашу строку на части с помощью данной 12-символь-
ной подстроки. Да, я мог бы использовать один символ, возможно запятую,
и просто запретить этот символ в имени пользователя, но я хотел дать пользо-
вателям полную свободу!

Как видите, если файла учетных данных не существует, то открывается диа
логовое окно входа в систему. Мы рассмотрим это в следующем разделе. Как
упоминалось ранее, после этого вызывается startMeUp(), и именно здесь все
начинается.

Примечание. Существует пограничный сценарий, когда при регистрации пользователя перезапуска-
ется сервер, а другой пользователь регистрируется с таким же userName, то при попытке первого
пользователя выполнить повторную проверку произойдет сбой, поскольку пароли не совпадут. В этом
случае код в validateWithStoredCredentials() удалит файл учетных данных и предупредит
пользователя. При перезапуске приложения им будет предложено ввести новые учетные данные.

Теперь вернемся к классу FlutterChat:

class FlutterChat extends StatelessWidget {
	 @override
	 Widget build(final BuildContext context) {
		 return MaterialApp(
	 	 	 home : Scaffold(body : FlutterChatMain())
);
	 }
}

251

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

Он начинается с паттерна, с которым вы уже должны быть хорошо знакомы:
MaterialApp со Scaffold внутри. Body указывает на класс FlutterChatMain, с ко-
торого начинается наш пользовательский интерфейс:

class FlutterChatMain extends StatelessWidget {

	 @override
	 Widget build(final BuildContext inContext) {
	 	 model.rootBuildContext = inContext;

Как вы видели в файле Model.dart, rootBuildContext кешируется для исполь-
зования другим кодом, и поскольку он представлен только в методе build(),
нам необходимо сделать это внутри данного метода. Далее создается виджет:

return ScopedModel<FlutterChatModel>(model : model,
	 child : ScopedModelDescendant<FlutterChatModel>(
	 builder : (BuildContext inContext, Widget inChild,
	 	 FlutterChatModel inModel) {
	 	 	 return MaterialApp(initialRoute : "/",
				 routes : {
	 	 	 	 	 "/Lobby" : (screenContext) => Lobby(),
	 	 	 	 	 "/Room" : (screenContext) => Room(),
	 	 	 	 	 "/UserList" : (screenContext) => UserList(),
	 	 	 	 	 "/CreateRoom" : (screenContext) => CreateRoom()
	 	 	 	 },
	 	 	 	 home : Home()

Поскольку в этом приложении мы собираемся использовать встроенный во
Flutter модуль Navigator, а не подход «сделай сам», принятый во FlutterBook,
первая задача – определить маршруты (другими словами, экраны) приложения.
Их четыре: /Lobby (список комнат), /Room (внутри комнаты), /UserList (список
пользователей на сервере) и /CreateRoom (создание комнаты). Они называются
именованными маршрутами (named routes), потому что у них есть имена! Без
них вы все еще можете перемещаться между экранами, но вам придется вруч-
ную манипулировать стеком навигации, что приведет к большому количеству
дублирующегося кода. С использованием именованных маршрутов код стано-
вится намного чище, и вы уже видели это в Connector.dart.

Как вы можете догадаться, названия маршрутов могут представлять иерар-
хию и быть настолько сложными, насколько вам нравится. Итак, если у вас есть
страница pageA, которая содержит две «дочерние» страницы 1a и 2a, то вы мо-
жете назвать их /pageA, /pageA/1a и /pageA/2a. Здесь они находятся на одном
уровне, поэтому я постарался реализовать все максимально просто (можно
утверждать, что поскольку эти экраны запускаются с основного экрана, то они
должны называться /Lobby/Room и /Lobby/CreateRoom, справедливо, но в нашем
случае это ничего не упростит).

Значение initialRoute сообщает навигатору, какой экран отображать при
старте, и это соответствует свойству home. Обратите внимание, что использова-

252

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

ние свойства home и одновременное указание корневого (root) маршрута с име-
нем «/» – это ошибка. Но если вы удалите свойство home, то у вас останется толь-
ко «/». И тогда вам понадобится дополнительный код, чтобы вернуться к глав-
ному экрану, поэтому позвольте Flutter и Navigator сделать это за вас.

LoginDialog.dart
Если мы не сохраним данные пользователя, то отобразится диалоговое окно
входа в систему, в котором пользователь может авторизоваться либо зарегист
рироваться. Это стандартный диалог входа, как показано на рис. 8-1.

Рисунок 8-1. Диалог входа (авторизации)

Просто введите имя пользователя, пароль и нажмите кнопку Log In. Этот
код начинается довольно обыденно:

class LoginDialog extends StatelessWidget {

	 static final GlobalKey<FormState> _loginFormKey =
	 	 new GlobalKey<FormState>();

Мы будем иметь дело с формой, поэтому нам потребуется GlobalKey для не-
которой проверки. В конечном итоге мы будем заполнять две переменные:

253

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ
String _userName;
String _password;
Widget build(final BuildContext inContext) {
	 return ScopedModel<FlutterChatModel>(model : model,
	 	 child : ScopedModelDescendant<FlutterChatModel>(
	 	 builder : (BuildContext inContext, Widget inChild,
	 	 	 FlutterChatModel inModel) {
	 	 	 return AlertDialog(content : Container(height : 220,
	 	 	 	 child : Form(key : _loginFormKey,
	 	 	 	 	 child : Column(children : [
	 	 	 	 	 	 Text("Enter a username and password to "
	 	 	 	 	 	 	 "register with the server",
	 	 	 	 	 	 	 textAlign : TextAlign.center, fontSize : 18
	 	 	 	 	 	 	 style : TextStyle(color :
	 	 	 	 	 	 	 	 Theme.of(model.rootBuildContext).accentColor)
),
	 	 	 	 	 	 SizedBox(height : 20)

Поскольку здесь задействовано состояние, мы оборачиваем все в Scoped
Model. А затем внутри него используем ScopedModelDescendant. С таким под-
ходом мы познакомились ранее. Затем идет функция builder(), которая воз-
вращает AlertDialog. Содержимое этого диалога представляет собой Form, ко-
торая ссылается на _loginFormKey. Потом идет Column с элементами, первый
из которых – это заголовок. Он получает свой цвет из активной Theme вашего
MaterialApp. Обратите внимание на использование rootBuildContext, из которо-
го мы и берем активную Theme. Чтобы добавить немного пространства между
текстом заголовка и полями формы, мы используем SizedBox:

TextFormField(
	 validator : (String inValue) {
	 	 if (inValue.length == 0 || inValue.length > 10) {
			 return "Please enter a username no "
	 	 	 	 "more than 10 characters long";
			 }
			 return null;
	 },
	 onSaved : (String inValue) { _userName = inValue; },
	 decoration : InputDecoration(
	 	 hintText : "Username", labelText : "Username")
),
TextFormField(obscureText : true,
	 validator : (String inValue) {
	 	 if (inValue.length == 0) {
			 return "Please enter a password";
		 }

254

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ
		 return null;
	 },
	 onSaved : (String inValue) { _password = inValue; },
	 decoration : InputDecoration(
	 	 hintText : "Password", labelText : "Password")
)

Здесь не должно быть сюрпризов. Существует ограничение на количество
символов для имени пользователя (это важно, потому что мы используем токе-
ны в нашем main.dart), а также необходимо убедиться, что пользователь ввел
пароль (а не только имя пользователя).

Далее следует кнопка Log In, которая содержится в коллекции действий для
диалога:

actions : [
	 FlatButton(child : Text("Log In"),
	 	 onPressed : () {
	 	 	 if (_loginFormKey.currentState.validate()) {
	 	 	 	 _loginFormKey.currentState.save();
	 	 	 	 connector.connectToServer(() {
	 	 	 	 	 connector.validate(_userName, _password,
	 	 	 	 	 	 (inStatus) async {
	 	 	 	 	 	 if (inStatus == "ok") {
	 	 	 	 	 	 	 model.setUserName(_userName);
	 	 	 	 	 	 	 Navigator.of(model.rootBuildContext).pop();
	 	 	 	 	 	 model.setGreeting("Welcome back, $_userName!");

После нажатия кнопки и при условии, что данные формы пройдут провер-
ку, состояние формы сохранится. Это запустит выполнение обработчиков
onSaved для отдельных полей. В этих обработчиках мы заполним наши пере-
менные _userName и _password. Затем идет вызов Connector.connectToServer().
Как вы помните, он устанавливает соединение с сервером и настраивает все
обработчики сообщений. Этот метод передает функцию callback, вызываемую
после установки соединения. Этот callback, в свою очередь, вызовет функцию
connector.validate(). Она передает _userName и _password на сервер для про-
верки. Если возвращается статус «ok», то пользователь уже известен серверу,
и пароль был верным, поэтому мы можем продолжить, что означает сохране-
ние имени пользователя в модели, затем идет pop(), удаление диалога и на-
стройка приветствия на главном экране (которое мы рассмотрим далее). Если
статус не возвращается, то отображается SnackBar, указывающий, что имя поль-
зователя уже занято:

} else if (inStatus == "fail") {
	 Scaffold.of(model.rootBuildContext
).showSnackBar(SnackBar(backgroundColor : Colors.red,
	 	 duration : Duration(seconds : 2),

255

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ
	 	 content : Text("Sorry, that username is already taken")
));

Если имя пользователя новое для сервера, то приходит сообщение «created»:

} else if (inStatus == "created") {
	 var credentialsFile = File(join(
	 	 model.docsDir.path, "credentials"));
	 await credentialsFile.writeAsString(
	 	 "$_userName============$_password");
	 model.setUserName(_userName);
	 Navigator.of(model.rootBuildContext).pop();
	 model.setGreeting("Welcome to the server, $_userName!");
}

Здесь нам нужно куда-нибудь сохранить учетные данные, поэтому мы соз-
даем экземпляр класса File. Затем используем функцию join() для создания
пути к каталогу документов приложения. Путь к этому каталогу будет полу-
чен при запуске приложения. Далее применяем метод writeAsString(), кото-
рый запишет логин и пароль в файл учетных данных, используя странный раз-
делитель из знаков равенства! После этого мы выполняем ту же настройку, что
и в случае «ok», но с другим приветствием.

Вход для существующих пользователей

Теперь у нас есть диалоговое окно для входа в систему. Оно также содержит
код, который работает, когда приложение запускается и находит существую-
щий файл учетных данных. В этом случае к серверу все еще нужно обращаться,
но пользовательского интерфейса нет; это происходит автоматически, когда
в игру вступает функция validateWithStoredCredentials():

void validateWithStoredCredentials(final String inUserName,
	 final String inPassword) {

	 	 connector.connectToServer(model.rootBuildContext, () {
	 	 connector.validate(inUserName, inPassword, (inStatus) {
	 	 	 if (inStatus == "ok" || inStatus == "created") {
	 	 	 	 model.setUserName(inUserName);
	 	 	 	 model.setGreeting("Welcome back, $inUserName!");

Как и прежде, сначала вызывается connector.connectToServer(), а затем
connector.validate(), передавая ему имя пользователя и пароль, которые будут
получены из файла учетных данных. В этом случае логика немного проще, по-
тому что с точки зрения пользователя он уже регистрировался ранее, однако для
сервера это новый пользователь, за исключением ситуации, когда кто-то уже
успел зарегистрироваться с таким же именем. Это немного увеличит нагрузку
на сервер, но он всего лишь машина, и кого волнуют его чувства?! (конечно, если

256

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

мы не в эпизоде сериала ​​«Звездный путь: следующее поколение», где обсуждается
личность данных!). Однако мы заботимся о чувствах пользователей! Таким об-
разом, независимо от того, вернем ли мы сообщение «ok» или «created», мы опо-
вестим пользователя, что сервер его не забыл, даже если это не так!

А еще мы можем вернуть ошибку. Например, если логин был занят другим
человеком, то пароль наверняка не подойдет, и пользователь не сможет авто-
ризоваться. Но здесь мы знаем причину неправильного пароля: новый поль-
зователь взял тот же логин после перезапуска и успел авторизоваться первым.
Давайте обработаем эту ошибку:

} else if (inStatus == "fail") {
	 showDialog(context : model.rootBuildContext,
	 	 barrierDismissible : false,
	 	 builder : (final BuildContext inDialogContext) =>
	 	 AlertDialog(title : Text("Validation failed"),
	 	 	 content : Text("It appears that the server has "
	 	 	 	 "restarted and the username you last used "
	 	 	 	 "was subsequently taken by someone else. "
	 	 	 	 "\n\nPlease re-start FlutterChat and choose "
				 "a different username."
)

Поскольку это вообще «game over», то мы покажем AlertDialog и сделаем
так, что его нельзя будет отклонить без заданных нами действий. Для этого
нам нужно установить значение для barrierDismissable, равное false. Это га-
рантирует, что при нажатии за пределы диалогового окна оно не скроется, как
это происходит по умолчанию. Это сообщение объяснит ситуацию. Затем мы
напишем обработчик для кнопки Ok:

actions : [
	 FlatButton(child : Text("Ok"),
	 onPressed : () {
	 	 var credentialsFile = File(join(
	 	 	 model.docsDir.path, "credentials"));
	 	 credentialsFile.deleteSync();
	 	 exit(0);
	 })
]

Теперь мы знаем, что это имя пользователя нельзя использовать, поэтому
нам нужно удалить файл учетных данных, чтобы избежать повторения при сле-
дующем запуске. Наконец, вызывается функция exit(), то есть функция, кото-
рую Flutter предоставляет для завершения приложения. При следующем запус
ке пользователю будет предложено ввести имя пользователя и пароль.

Теперь давайте посмотрим, где же используются приветственные сообще-
ния – домашний экран.

257

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

Home.dart
Домашний экран в файле Home.dart – это первый экран, который видит поль-
зователь (а также то, к чему он возвращается при возникновении различных
событий, включая закрытие комнаты или удаление из нее). Как вы видите на
рис. 8-2, этот экран довольно прост.

Рисунок 8-2. Домашний экран

Его код тоже вполне понятен:

class Home extends StatelessWidget {
	 Widget build(final BuildContext inContext) {
	 	 return ScopedModel<FlutterChatModel>(model : model,
	 	 	 child : ScopedModelDescendant<FlutterChatModel>(
	 	 	 	 builder : (BuildContext inContext, Widget inChild,
	 	 	 	 	 FlutterChatModel inModel) {
	 	 	 	 	 return Scaffold(drawer : AppDrawer(),
	 	 	 	 	 	 appBar : AppBar(title : Text("FlutterChat")),
	 	 	 	 	 	 body : Center(child : Text(model.greeting))
);
				 }
)
);

258

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ
	 }
}

Да, вот так просто! В конечном итоге это всего лишь виджет Text внутри вид-
жета Center. Виджет Text получит значение из свойства model.greeting, чтобы
отобразить его содержимое пользователю. Все остальное ничем не примеча-
тельно!

AppDrawer.dart
Боковое меню (AppDrawer) реализуется в файле AppDrawer.dart – это один из
способов навигации пользователя по приложению. Его можно увидеть на
рис. 8-3.

Рисунок 8-3. AppDrawer

Сверху мы видим заголовок с красивым фоном, над которым стоит имя поль-
зователя и название комнаты, в этом случае название является заглушкой, ко-
торую вы видели в коде Model.dart.

Класс AppDrawer начинается знакомо:

class AppDrawer extends StatelessWidget {
	 Widget build(final BuildContext inContext) {
	 	 return ScopedModel<FlutterChatModel>(model : model,

259

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ
	 	 	 child : ScopedModelDescendant<FlutterChatModel>(
	 	 	 builder : (BuildContext inContext, Widget inChild,
	 	 	 	 FlutterChatModel inModel) {
	 	 	 	 	 return Drawer(child : Column(children : [
	 	 	 	 	 	 Container(decoration : BoxDecoration(image :
	 	 	 	 	 	 	 DecorationImage(fit : BoxFit.cover,
	 	 	 	 	 	 	 	 image : AssetImage("assets/drawback01.jpg")
))

В конечном итоге создается виджет Drawer, а внутри него макет Column. Пер-
вый элемент в этом макете – Container, который украшен DecorationImage. Как
следует из названия, это виджет для украшения изображения. AssetImage – это
изображение, созданное из файла drawback01.jpg в каталоге ресурсов. Исполь-
зование значения BoxFit.cover для свойства fit говорит Flutter о том, что раз-
мер изображения должен быть как можно меньше, но при этом заполнить пря-
моугольник с рамкой.

После этого идет дочерний элемент Container, где отображаются имя поль-
зователя и текущая комната:

child : Padding(
	 padding : EdgeInsets.fromLTRB(0, 30, 0, 15),
	 child : ListTile(
	 	 title : Padding(padding : EdgeInsets.fromLTRB(0,0,0,20),
	 	 	 child : Center(child : Text(model.userName,
	 	 	 	 style : TextStyle(color : Colors.white, fontSize : 24)
))
),
	 	 subtitle : Center(child : Text(model.currentRoomName,
	 	 	 style : TextStyle(color : Colors.white, fontSize : 16)
))

Во-первых, для обеспечения подходящего расстояния между этими значе-
ниями используется отступ (padding). Затем я использую ListTile, чтобы текст
с именем пользователя был крупнее названия комнаты, для чего применяют-
ся поля title и subtitle соответственно. Я также добавляю несколько отсту-
пов в названии, чтобы контролировать интервал между этими двумя текстами
и избежать их слишком большого скопления. Конечно, цвет должен отличать-
ся от черного, используемого по умолчанию, в противном случае текст будет
плохо виден на заднем фоне. Я также настрою fontSize, чтобы шрифт выгля-
дел так, как я хочу. Отображаемый текст поступает из соответствующих полей
модели, чтобы они автоматически обновлялись.

Затем у пользователя появляется возможность выбора из трех элементов на
основном экране:

Padding(padding : EdgeInsets.fromLTRB(0, 20, 0, 0),
	 child : ListTile(leading : Icon(Icons.list),

260

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ
	 	 title : Text("Lobby"),
	 	 onTap: () {
	 	 	 Navigator.of(inContext).pushNamedAndRemoveUntil(
	 	 	 	 "/Lobby", ModalRoute.withName("/"));
	 	 	 connector.listRooms((inRoomList) { model.setRoomList(inRoomList);
	 	 	 });
		 }
)
)

Это все еще ListTile с добавлением отступа, чтобы я мог красиво распреде-
лить элементы. Каждый элемент получит значок, отражающий его функцио-
нальность. Когда срабатывает обработчик onTap, появляется необходимость вы-
полнения двух задач. Во-первых, мы получаем ссылку на Navigator для inContext
и вызываем метод pushNamedAndRemoveUntil(), указывая имя маршрута для на-
вигации. Затем вызывается метод для получения обновленного списка комнат.
Теоретически в этом нет необходимости, поскольку сервер будет сообщать о до-
бавлении или закрытии комнаты, и список будет обновляться автоматически.
Но повторная загрузка не будет лишней, если вы хотите удостовериться, что
список действительно обновился. Наконец, обновленный список комнат запи-
сывается в модели и отображается пользователю.

Следующие два элемента, Current Room и User List, реализуются по аналогии
с только что просмотренным кодом, за исключением одного: при переходе в те-
кущую комнату не требуется никаких обращений к серверу или обновления мо-
дели, так что код просто осуществляет навигацию, и все. Ну и конечно же, эле-
мент User List вызывает методы connector.listUsers() и model.setUserList()
вместо методов комнаты, о чем вы, наверное, уже догадались! Итак, мы не бу-
дем рассматривать этот код, а просто перейдем к экрану Lobby.

Lobby.dart
Основной экран показан на рис. 8-4. Он содержится в файле Lobby.dart и пред-
ставляет собой простой ListView, который показывает комнаты на сервере.
Мы используем иконку замка, чтобы указать на закрытость/открытость ком-
наты. Также отображается название комнаты и ее описание.

261

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

Рисунок 8-4. Экран Lobby (список комнат)

Щелчок по одному из элементов списка либо открывает комнату, либо ука-
зывает пользователю, что комната закрыта и он не может в нее войти (при
условии что у него нет приглашения). Для создания новой комнаты также ис-
пользуют FAB. Это может сделать любой пользователь.

class Lobby extends StatelessWidget {
	 Widget build(final BuildContext inContext) {
	 	 return ScopedModel<FlutterChatModel>(model : model,
	 	 child : ScopedModelDescendant<FlutterChatModel>(
	 	 	 builder : (BuildContext inContext, Widget inChild,
	 	 	 FlutterChatModel inModel) {
	 	 	 	 return Scaffold(drawer : AppDrawer(),
	 	 	 	 	 appBar : AppBar(title : Text("Lobby")),
	 	 	 	 	 floatingActionButton : FloatingActionButton(
	 	 	 	 	 	 child : Icon(Icons.add, color : Colors.white),
	 	 	 	 	 	 onPressed : () {
	 	 	 	 	 	 	 Navigator.pushNamed(inContext, "/CreateRoom");
						 }
)

Код начинается с привычного паттерна, как и везде, где используется scoped_
model, так как без данных он не будет работать! То, что нас интересует, нахо-
дится в обработчике события onPressed для FAB. Здесь мы выбираем марш-
рут /CreateRoom, который покажет пользователю экран для создания комнаты.
Это описано в следующем разделе, поэтому пока продолжим:

262

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ
body : model.roomList.length == 0 ?
	 Center(child :
	 	 Text("There are no rooms yet. Why not add one?")) :
	 	 ListView.builder(itemCount : model.roomList.length,
	 	 itemBuilder : (BuildContext inBuildContext, int inIndex) {
	 	 	 Map room = model.roomList[inIndex];
	 	 	 String roomName = room["roomName"];
	 	 	 return Column(children : [

Существует вероятность того, что на сервере нет комнат, поэтому вместо
пустого экрана я решил вставить сообщение об этом в центре экрана. Если
комнаты есть, то мы добавим ListView. Описания для каждой комнаты мы
возьмем из model.roomList, а затем добавим нужные виджеты в Column. Таким
способом я хочу показать комнату в ListTile, а затем добавить Divider, для
этого я использую виджет со свойством children.

ListTile для комнаты выглядит следующим образом:

ListTile(leading : room["private"] ?
	 Image.asset("assets/private.png") :
	 Image.asset("assets/public.png"),
	 title : Text(roomName), subtitle : Text(room["description"])

Во-первых, это значок замка, который находится в leading. Значение private
в отображении (map) комнаты говорит нам, является ли она закрытой. Для опреде-
ления того, какое изображение должно отображаться, мы используем тернарный
оператор. Затем отображаются title и subtitle, что уже привычно для ListTile.

Благодаря обработчику onTap можно нажать на отдельную комнату.

onTap : () {
	 if (room["private"] &&
	 	 !model.roomInvites.containsKey(roomName) &&
	 	 room["creator"] != model.userName) {
			 Scaffold.of(
	 	 	 	 inBuildContext).showSnackBar(SnackBar(
	 	 	 	 	 backgroundColor : Colors.red,
	 	 	 	 	 duration : Duration(seconds : 2),
	 	 	 	 	 content : Text("Sorry, you can’t "
	 	 	 	 	 	 "enter a private room without an invite")
));

Сначала мы определяем, закрыта ли комната. Если это так, то мы проверяем
наличие приглашения у пользователя. Еще мы проверяем, является ли он ад-
министратором комнаты. Если комната закрыта, а у пользователя нет пригла-
шения, и он ее не создавал, то показываем ему SnackBar с сообщением о том,
что он не может войти в комнату без приглашения.

Теперь смотрим, что дальше – или комната открыта, или у пользователя есть
приглашение, или он создатель:

263

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ
} else {
	 connector.join(model.userName, roomName,
	 	 (inStatus, inRoomDescriptor) {
	 	 if (inStatus == "joined") {
	 	 	 model.setCurrentRoomName(inRoomDescriptor["roomName"]);
	 	 	 model.setCurrentRoomUserList(inRoomDescriptor["users"]);
	 	 	 model.setCurrentRoomEnabled(true);
	 	 	 model.clearCurrentRoomMessages();
	 	 	 if (inRoomDescriptor["creator"] == model.userName) {
	 	 	 	 model.setCreatorFunctionsEnabled(true);
			 } else {
	 	 	 	 model.setCreatorFunctionsEnabled(false);
			 }
	 	 	 Navigator.pushNamed(inContext, "/Room");

Вход в комнату влечет за собой немного работы по настройке. Во-первых,
сервер получает уведомление о входе пользователя в комнату благодаря ме-
тоду сonnector.join(), отправляющему сообщение «join». Если возвращает-
ся «joined», то пользователь входит в комнату. В этом случае записывается те-
кущее имя комнаты, а также список пользователей в комнате, которые вернул
сервер. Для начала мы должны установить новое название комнаты в боковом
меню (AppDrawer) и убедиться, что нет списка старых сообщений. Если наш поль-
зователь является администратором, то мы включаем соответствующие функ-
ции. Наконец, переходим по маршруту /Room для отображения экрана комнаты,
который будет рассмотрен в заключительном разделе этой главы.

Последний сценарий, с которым мы должны разобраться, – это когда сервер
отвечает, что комната заполнена, потому что в каждой комнате есть ограниче-
ние по количеству людей. Итак, мы находим другую логическую ветку:

} else if (inStatus == "full") {
	 Scaffold.of(inBuildContext).showSnackBar(SnackBar(
	 	 backgroundColor : Colors.red,
	 	 duration : Duration(seconds : 2),
	 	 content : Text("Sorry, that room is full")
));
}

Как и в случае отсутствия приглашения, SnackBar оповещает пользователя
о том, что комната заполнена. На этом мы заканчиваем с экраном Lobby! Те-
перь давайте разберемся с тем, что происходит при нажатии кнопки FAB, ко-
торая ведет нас в CreateRoom.dart.

264

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

CreateRoom.dart
Пришло время создать несколько комнат! Ох уж эта сила богов, сила творения,
заключенная во Flutter! Рисунок 8-5 демонстрирует эту магическую мощь.

Рисунок 8-5. Экран создания комнаты

Это достаточно простой экран, потому что создать комнату несложно. Тре-
буется только название комнаты. В описании нет необходимости, а макси-
мальное количество людей в комнате задано по умолчанию (хотя его можно
настроить с помощью Slider). Комнату также можно сделать закрытой, акти-
вировав для этого виджет Switch. Затем нажмите Save, и комната создана!

Так как в этот раз мы будем создавать виджет с состоянием, у нас будет два
класса: фактический класс виджета и соответствующий ему объект состояния.
Мы начнем с класса виджета:

class CreateRoom extends StatefulWidget {
	 CreateRoom({Key key}) : super(key : key);
	 @override
	 _CreateRoom createState() => _CreateRoom();
}

Просто шаблонный код, ничего нового. Поэтому мы перейдем к объекту
_CreateRoom, который наследуется от State:

class _CreateRoom extends State {

	 String _title;
	 String _description;
	 bool _private = false;

265

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ
	 double _maxPeople = 25;
	 final GlobalKey<FormState> _formKey= GlobalKey<FormState>();

Нам понадобится несколько переменных для полей формы и GlobalKey для
самой Form. Метод build() может начинаться так:

Widget build(final BuildContext inContext) {
	 return ScopedModel<FlutterChatModel>(model : model, child :
	 	 ScopedModelDescendant<FlutterChatModel>(
	 	 builder : (BuildContext inContext, Widget inChild,
	 	 	 FlutterChatModel inModel) {
	 	 	 	 return Scaffold(resizeToAvoidBottomPadding : false,
	 	 	 	 	 appBar : AppBar(title : Text("Create Room")),
	 	 	 	 	 drawer : AppDrawer(), bottomNavigationBar :
	 	 	 	 	 	 Padding(padding : EdgeInsets.symmetric(
	 	 	 	 	 	 	 vertical : 0, horizontal : 10
),
						 child :
	 	 	 	 	 	 	 SingleChildScrollView(child : Row(children : [

Как обычно, при работе с моделью мы используем ScopedModel со ScopedModel
Descendant внутри, а также функцию builder() для получения виджета, которо-
му нужен доступ к модели. Как и на экранах Home и Lobby, создается Scaffold,
и на этот раз мы передаем свойство resizeToAvoidBottomPadding и устанавли-
ваем его в false. Оно управляет изменением размера виджетов внутри Scaffold
при отображении экранной клавиатуры. Обычно вы хотите, чтобы оно было по
умолчанию установлено в true, дабы избежать исчезновения виджетов под кла-
виатурой. Однако в некоторых случаях виджеты сами скрываются при появле-
нии клавиатуры, что может быть нежелательным. В таком случае установка
свойства resizeToAvoidBottomPadding в false решит проблему. Но если виджеты
находятся в контейнере с прокруткой (scroll), то пользователь может их пролис
тывать. Помимо этого, мы задаем title для appBar и устанавливаем AppDrawer.
Еще у нас есть bottomNavigationBar с небольшим отступом вокруг, чтобы меж-
ду кнопками и краями экрана было пространство в несколько пикселей (только
для удобства). Затем определяются сами кнопки:

FlatButton(child : Text("Cancel"),
	 onPressed : () {
	 	 FocusScope.of(inContext).requestFocus(FocusNode());
	 	 Navigator.of(inContext).pop();
	 }
),
Spacer()

Сначала идет кнопка (Cancel), и все, что нужно сделать при нажатии, – это
скрыть клавиатуру, а затем убрать экран (помните, что это маршрут, то есть от-

266

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

дельный экран, а не диалог). Затем появляется Spacer, который сдвигает впра-
во вторую кнопку Save, которая выглядит следующим образом:

FlatButton(child : Text("Save"),

	 onPressed : () {
	 	 if (!_formKey.currentState.validate()) { return; }
	 	 _formKey.currentState.save();
	 	 int maxPeople = _maxPeople.truncate();
	 	 connector.create(_title, _description,
	 	 	 maxPeople, _private,
	 	 	 model.userName, (inStatus, inRoomList) {
	 	 	 if (inStatus == "created") {
	 	 	 	 model.setRoomList(inRoomList);
	 	 	 	 FocusScope.of(inContext).requestFocus(FocusNode());
	 	 	 	 Navigator.of(inContext).pop();
			 } else {
	 	 	 	 Scaffold.of(inContext).showSnackBar(SnackBar(
	 	 	 	 	 backgroundColor : Colors.red,
	 	 	 	 	 duration : Duration(seconds : 2),
	 	 	 	 	 content : Text("Sorry, that room already exists")
));
			 }
	 	 });

Сначала проверяются поля формы с помощью validate(), а затем сохраня-
ется ее состояние. Далее должно быть обрезано (truncate) значение _maxPeople.
Мы же хотим получить целочисленное значение типа int, а Slider возвраща-
ет нам число с плавающей запятой и дробной частью. Когда все это произой-
дет, мы сможем вызвать метод connector.create(), который сообщит серве-
ру о создании комнаты. Нужно обработать два возможных результата: либо
комната была создана, либо нет. Последнее происходит при условии, что та-
кое имя уже используется. Для этого мы проверяем аргумент inStatus, пере-
данный в callback-функцию. Если он равен «created», значит, сервер отправил
нам обновленный список комнат, и мы сохраняем его в модели. Затем клавиа
тура скрывается, и экран убирается из стека Navigator, возвращая пользова-
теля к экрану Lobby. Однако если комната не была создана, то отображается
SnackBar, который сообщает пользователю о том, что имя уже занято, и пред-
лагает выбрать новое.

Строим форму
Теперь нам просто нужно построить саму форму. Код тот же, что и в предыду-
щих примерах форм.

body : Form(key : _formKey, child : ListView(
	 children : [

267

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ
	 	 ListTile(leading : Icon(Icons.subject),
	 	 	 title : TextFormField(decoration :
	 	 	 	 InputDecoration(hintText : "Name"),
	 	 	 	 validator : (String inValue) {
	 	 	 	 	 if (inValue.length == 0 || inValue.length > 14) {
						 return "Please enter a name no more "
	 	 	 	 	 	 	 "than 14 characters long";
					 }
					 return null;
	 	 	 	 },
	 	 	 	 onSaved : (String inValue) {setState(() { _title = inValue; });
				 }
)
)

Каждое поле в форме содержится в ListTile, начиная с поля Name. validator
гарантирует, что длина ограничивается 14 символами (я выбрал такую длину,
чтобы не было переносов или обрезаний текста, как бывает с более длинным
именем).

Поле с описанием определено аналогично, за исключением того, что я не
применял к нему никаких ограничений:

ListTile(leading : Icon(Icons.description),
	 title : TextFormField(decoration :
	 	 InputDecoration(hintText : "Description"),
	 	 onSaved : (String inValue) {
	 	 	 setState(() { _description = inValue; });
		 }
)
)

Затем идет поле Max People, и здесь мы сталкиваемся с чем-то новым, вид-
жетом Slider:

ListTile(title : Row(children : [Text("Max\nPeople"),
	 Slider(min : 0, max : 99, value : _maxPeople,
	 	 onChanged : (double inValue) {
	 	 	 setState(() { _maxPeople = inValue; });
		 }
)
]),
trailing : Text(_maxPeople.toStringAsFixed(0))
)

Это достаточно простой виджет, требующий минимального (min) и макси-
мального (max) значений для определения его конечных точек, и в этом случае
свойство value связывается со свойством _maxPeople. Для этого поля нет провер-

268

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

ки, но всякий раз, когда значение изменяется, нам нужно задавать его в State.
Наконец, возникает проблема: когда пользователь перемещает Slider, значе-
ние, которое он выбирает, не отображается, и на нем нет никаких вспомога-
тельных отметок. Чтобы исправить это, я поставил виджет Text в поле trailinge
и задал для отображения значение _maxPeople. Конечно, для отображения Text
требуется текст, а _maxPeople – это число. К счастью, double использует несколь-
ко методов преобразования его в строку, один из них – toStringAsFixed() (есть
также toStringAsExponential() и toStringAsPrecision()). Он делает именно то,
что нам нужно: преобразует double в строку и позволяет установить значение
с точностью до десятых. Конечно, мне не нужны числа после запятой, поэтому
я передаю этому методу значение 0.

Остается только одно поле, которое делает комнату приватной:

ListTile(title : Row(children : [Text("Private"),
	 Switch(value : _private,
	 	 onChanged : (inValue) {
	 	 	 setState(() { _private = inValue; });
		 }
)
]))

Впервые вы видите использование виджета Switch (переключатель). Это
удобно, поскольку это бинарный выбор: комната либо публичная, либо приват-
ная. Checkbox бы тоже сработал, но я решил познакомить вас с работой Switch!

UserList.dart
Экран списка пользователей, как показано на рис. 8-6, является следующим
интересующим нас фрагментом кода и содержится в файле UserList.dart.

269

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

Рисунок 8-6. Экран списка пользователей

Сам экран очень прост: это всего лишь GridView с элементом для каждого
зарегистрированного пользователя. Каждый элемент пользовательской сетки
размещается в виджете Card и использует базовый значок просто для удоб-
ства (можно позволить пользователям выбирать значок аватара, как для кон-
тактов во FlutterBook, еще одно прекрасное самостоятельное упражнение, не
так ли?!).

Код начинается следующим образом:

class UserList extends StatelessWidget {
	 Widget build(final BuildContext inContext) {
	 	 return ScopedModel<FlutterChatModel>(model : model,
	 	 	 child : ScopedModelDescendant<FlutterChatModel>(
	 	 	 builder : (BuildContext inContext, Widget inChild,
	 	 	 	 FlutterChatModel inModel) {
	 	 	 	 return Scaffold(drawer : AppDrawer(),
	 	 	 	 	 appBar : AppBar(title : Text("User List")),
	 	 	 	 	 body : GridView.builder(
	 	 	 	 	 	 itemCount : model.userList.length,
	 	 	 	 	 	 gridDelegate :
	 	 	 	 	 	 	 SliverGridDelegateWithFixedCrossAxisCount(
	 	 	 	 	 	 	 	 crossAxisCount : 3
)

270

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

Он начинается так же, как и любой другой класс, который вы видели. Нам
нужны данные из модели, так что все, как обычно, соответствует иерар-
хии ScopedModel/ScopedModelDescendant/builder(). Мы строим экран, поэто-
му возвращаемым корневым виджетом является Scaffold, на который ссыла-
ется AppDrawer, чтобы мы не потеряли его на этом экране. Затем начинается
body. Как я уже сказал, это GridView, поэтому мы используем конструктор это-
го класса builder() и передаем ему length коллекции model.userList в качест
ве значения свойства itemCount. Далее предоставляется gridDelegate типа
SliverGridDelegate WithFixedCrossAxisCount (Flutter не знает коротких имен
классов!). Здесь мы с помощью свойства crossAxisCount указываем, что хотим
отобразить три элемента в строке.

Затем начинаем строить наши элементы с помощью функции itemBuilder:

itemBuilder : (BuildContext inContext, int inIndex) {
	 Map user = model.userList[inIndex];
	 return Padding(padding : EdgeInsets.fromLTRB(10,10,10,10),
	 	 child : Card(child : Padding(padding :
	 	 	 EdgeInsets.fromLTRB(10, 10, 10, 10),
	 	 	 child : GridTile(
	 	 	 	 child : Center(child : Padding(
	 	 	 	 	 padding : EdgeInsets.fromLTRB(0, 0, 0, 20),
	 	 	 	 	 child : Image.asset("assets/user.png")
)),
	 	 	 	 footer : Text(user["userName"],
	 	 	 	 textAlign : TextAlign.center)
)
)
));
}

Для каждого элемента мы получаем дескриптор пользователя из отображе-
ния userList в нашей модели.

Затем строится виджет Card, обернутый в Padding, с пространством вокруг
него (чтобы элементы в GridView не наезжали друг на друга). Дочерний элемент
Card – это наш добрый сосед GridTile, типичный дочерний элемент GridView.
Дочерним элементом GridTile является виджет Image (отображает изображе-
ние «user.png» из ресурсов приложения), обернутый в Padding, дабы контроли-
ровать пространство вокруг него (в данном случае только ради отступа снизу,
чтобы отделить его от имени пользователя), и это все обернуто в Center, чтобы
центрировать его на Card. Наконец, нижний элемент Card – это виджет, исполь-
зуемый для отображения имени пользователя.

Вот так просто можно сделать список пользователей! Это легко, если не до-
бавлять ничего другого, но именно это мы сделаем на следующем экране.

271

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

Room.dart
Наконец, мы подошли к коду экрана Room, наиболее существенному фрагмен-
ту, на который стоит обратить внимание. Здесь вы также познакомитесь с па-
рочкой новых концепций Flutter! Сначала взгляните на рис. 8-7, чтобы знать,
как он выглядит.

Рисунок 8-7. Экран комнаты

В верхней части вы видите виджет ExpansionPanelList. Он предоставляет
список дочерних элементов, которые могут быть развернуты и свернуты по
желанию пользователя.

Мы будем использовать его для отображения списка пользователей в ком-
нате. Он должен быть расширяющимся и сворачивающимся, потому что под
ним находится основная цель экрана Room – список сообщений. В самом низу
находится область, в которую пользователь может ввести сообщение и отпра-
вить его в чат. Для этого используется кнопка IconButton, которая представля-
ет собой просто значок. В правом верхнем углу находится трехточечное меню,
или меню переполнения (overflow), как его иногда называют. Там вы найде-
те следующие функции: выход из комнаты, приглашение пользователя в ком-
нату, удаление пользователя и закрытие комнаты (последние две предназна-
чены только для администратора). Функция приглашения приведет к диалогу
выбора пользователя, но мы дойдем до всего этого чуть позже.

А сначала давайте посмотрим, как все это начинается (кроме блока imports,
конечно):

272

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ
class Room extends StatefulWidget {
	 Room({Key key}) : super(key : key);
	 @override
	 _Room createState() => _Room();
}

class _Room extends State {
	 bool _expanded = false;
	 String _postMessage;
	 final ScrollController _controller = ScrollController();
	 final TextEditingController _postEditingController =
	 	 TextEditingController();

Это виджет с состоянием, и нам понадобится некоторое локальное состоя-
ние для сворачивания и разворачивания ExpansionPanelList. Конечно, я мог
бы поместить его в scoped_model, но, как правило, если изменения касаются
одного виджета, то имеет смысл сделать его виджетом с состоянием. Однако,
как я уже говорил, Flutter не накладывает никаких ограничений.

Существует пара переменных уровня класса, которые определяют, будет ли
список пользователей расширен (когда поле _expanded имеет значение true) или
свернут (когда оно равно false). У нас также есть переменная _postMessage, кото-
рая будет содержать сообщение, отправляемое пользователем. Кроме того, у нас
есть ScrollController, на который ссылается переменная _controller. Вы часто
будете иметь дело с этим объектом, поскольку большинство компонентов про-
крутки (scroll) содержат его по умолчанию. Тем не менее в этом приложении в нем
есть конкретная потребность, о которой я расскажу позже, когда мы рассмотрим
код списка сообщений. После этого, наконец, идет TextEditingController, кото-
рый, как вы знаете, используется при работе с виджетами TextField, именно его
мы используем для ввода сообщений пользователем.

Меню
Далее идет метод build():

Widget build(final BuildContext inContext) {
	 return ScopedModel<FlutterChatModel>(model : model,
	 	 child : ScopedModelDescendant<FlutterChatModel>(
	 	 builder : (BuildContext inContext, Widget inChild,
	 	 	 FlutterChatModel inModel) {
	 	 	 return Scaffold(resizeToAvoidBottomPadding : false,
	 	 	 	 appBar : AppBar(title : Text(model.currentRoomName),
	 	 	 	 	 actions : [
						 PopupMenuButton(
	 	 	 	 	 	 	 onSelected : (inValue) {
	 	 	 	 	 	 	 	 if (inValue == "invite") {
	 	 	 	 	 	 	 _inviteOrKick(inContext, "invite");

273

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

К этому моменту первые несколько строк должны вам уже надоесть, пока вы
не увидите новую строку PopupMenuButton. PopupMenuButton – это виджет, кото-
рый предоставляет всплывающее меню, посмотрите на рис. 8-8.

Рисунок 8-8. Меню функций комнаты

Хотя мы еще не добавили пункты меню – этот код скоро появится, – мы
уже начали с кода, который будет выполняться при выборе в меню элемента,
функции обработчика onSelected. Эта функция получает строковое значение,
связанное с элементом меню, который был нажат, поэтому мы запускаем опе-
ратор if для верного исполнения действий. В случае с пунком «invite» мы вы-
зываем метод _inviteOrKick(), который рассмотрим позже (эта функция об-
рабатывает как приглашение пользователя, так и его удаление из комнаты).

Затем следует ветка для пункта «leave»:

} else if (inValue == "leave") {
	 connector.leave(model.userName, model.currentRoomName, () {
	 	 model.removeRoomInvite(model.currentRoomName);
	 	 model.setCurrentRoomUserList({});
	 	 model.setCurrentRoomName(
	 	 	 FlutterChatModel.DEFAULT_ROOM_NAME
);
	 	 model.setCurrentRoomEnabled(false);
	 	 Navigator.of(inContext).pushNamedAndRemoveUntil("/",
	 	 	 ModalRoute.withName("/")

274

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ
);
});

Выход из комнаты требует от нас выполнения некоторых типовых задач по
очистке, начиная с удаления любых существующих приглашений в комнату.
Кто-то может возразить, что если вы уйдете, то все равно сможете войти в ком-
нату, в которую вас пригласили, но я считаю, что «эй, вы ушли – скатертью до-
рожка!». Список пользователей в комнате также должен быть очищен, а стро-
ка с названием комнаты должна отобразить текст по умолчанию. Связанный
с AppDrawer элемент Current Room тоже должен быть недоступен, и наконец-та-
ки мы возвращаем пользователя обратно на домашний экран.

Администратор может вообще закрыть комнату:

} else if (inValue == "close") {
	 connector.close(model.currentRoomName, () {
	 	 Navigator.of(inContext).pushNamedAndRemoveUntil("/",
	 	 ModalRoute.withName("/"));
});

Здесь нет никакой работы, кроме как сообщить серверу, что комната закры-
та, а затем перейти на домашний экран.

Также добавим ветку для удаления пользователя из комнаты:

} else if (inValue == "kick") {
	 _inviteOrKick(inContext, "kick");
}

Это то же самое, что и код приглашения, поэтому давайте чуть позже по-
смотрим, что стоит за этой функцией. А сначала вернемся и создадим пункты
меню с помощью функции itemBuilder:

itemBuilder : (BuildContext inPMBContext) {
	 return <PopupMenuEntry<String>>[
	 	 PopupMenuItem(value:"leave",child:Text("Leave Room")),
	 	 PopupMenuItem(value:"invite",child:Text("Invite A User")),
	 	 PopupMenuDivider(),
	 	 PopupMenuItem(value : "close", child : Text("Close Room"),
	 	 	 enabled : model.creatorFunctionsEnabled),
	 	 PopupMenuItem(value : "kick", child : Text("Kick User"),
	 	 	 enabled : model.creatorFunctionsEnabled)
];
}

Мы должны вернуть массив виджетов PopupMenuEntry, и каждый PopupMenu
Entry в этом массиве имеет свойство value (значения, которые вы должны рас-
познать!) и дочерний (child) виджет Text для фактического текста, который будет
отображаться. Для пунктов Close Room (Закрыть комнату) и Kick User (Исключить
пользователя) свойства enabled ссылаются на свойство creatorFunctionsEnabled

275

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

нашей модели (просто чтобы показать, что вы действительно можете без проб
лем использовать вместе локальное и глобальное состояния), чтобы определить,
включены эти элементы или нет.

Содержимое главного экрана
После того как меню построено, мы продолжаем:

drawer : AppDrawer(),

body : Padding(padding : EdgeInsets.fromLTRB(6, 14, 6, 6),
	 child : Column(
	 	 children : [
	 	 	 ExpansionPanelList(
	 	 	 	 expansionCallback : (inIndex, inExpanded) =>
	 	 	 	 	 setState(() { _expanded = !_expanded; }),
	 	 	 	 children : [
	 	 	 	 	 ExpansionPanel(isExpanded : _expanded,
	 	 	 	 	 	 headerBuilder : (BuildContext context,
	 	 	 	 	 	 	 bool isExpanded) => Text(" Users In Room"),
	 	 	 	 	 	 	 body : Padding(padding:EdgeInsets.fromLTRB(0,0,0,10),
	 	 	 	 	 	 	 child : Builder(builder : (inBuilderContext) {
	 	 	 	 	 	 	 	 List<Widget> userList = [];
	 	 	 	 	 	 	 	 for (var user in model.currentRoomUserList) {
	 	 	 	 	 	 	 	 	 userList.add(Text(user["userName"]));
								 }
	 	 	 	 	 	 	 	 return Column(children : userList);
	 	 	 	 	 	 	 })
)
)
]
)

Итак, после drawer появляется кое-что новенькое. Во-первых, Padding на-
ходится сверху, так что я могу контролировать расстояние между всеми эле-
ментами на экране. Я сдвигаю все на 14 пикселей ниже, чтобы убрать тень под
строкой состояния (status bar), и на несколько пикселей влево, вправо и вниз
только потому, что так на мой взгляд виджет body выглядит лучше, так как не
примыкает к краям экрана.

Затем идет макет Column и его первый дочерний элемент ExpansionPanelList,
в котором отображается список пользователей. Первое, что нам нужно сде-
лать, – это подключить обработчик expensionCallback, который запускался бы
каждый раз, когда пользователь разворачивает или сворачивает панель. Инте-
ресно, что по умолчанию ничего не произойдет, кроме отображения маленькой
стрелочки, если вы сами не напишите нужный код. Как только вы это сделаете,
то заметите флаг _expended, который нам нужен в первом дочернем элементе

276

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

ExpansionPanelList – ExpansionPanel со списком пользователей. Флаг _expanded
становится значением свойства isExpanded. В функции headerBuilder мы созда-
ем заголовок (header) у ExpansionPanel. Это простой виджет Text с двумя пробе-
лами в начале, так как по умолчанию данный виджет будет автоматически при-
жиматься к левому краю панели, но, как вы догадываетесь, мне это не нравит-
ся! Вместо того чтобы обернуть все в Padding, который наверняка сработал бы,
я просто добавляю два пробела к строке, и все будет в порядке.

В дополнение к заголовку у ExpansionPanel обычно всегда есть body, и оно
также требует выравнивания. Для этого я использую Padding, чтобы обеспе-
чить некоторое пространство под списком пользователей, по тем же при-
чинам, что и в заголовке: без него последний пользователь в списке будет
отображаться некорректно.

Теперь child-элемент Padding становится интереснее. Вы видели уже мно-
го различных функций builder, но я никогда не говорил о том, что вы може-
те почти всегда использовать универсальную функцию Builder(). Иногда она
необходима, чтобы использовать данные, к которым нет прямого доступа (ко-
нечно, можно использовать общую модель, но можно и без нее). В этом приме-
ре на самом деле не было необходимости в Builder(), но я решил, что это бу-
дет отличное место для демонстрации. Опять же, Flutter дает вам множество
вариантов решения задач.

Внутри функции Builder() находится простой цикл для прохода по списку
пользователей в комнате, где каждый пользователь отображается как виджет
с текстом, а сам список отображается в Column.

Далее следует список сообщений, которому кое-что предшествует:

Container(height : 10),
	 Expanded(child : ListView.builder(controller : _controller,
	 	 itemCount : model.currentRoomMessages.length,
	 	 itemBuilder : (inContext, inIndex) {
	 	 	 Map message = model.currentRoomMessages[inIndex];
	 	 	 return ListTile(subtitle : Text(message["userName"]),
	 	 	 	 title : Text(message["message"])
);
		 }
))

Container – это еще один способ добавить пространства в макет. Я задал его
без содержимого, но с определенной высотой, и добавил некоторое расстояние
между списком пользователей и списком сообщений, все это без специально-
го виджета Padding. Далее идет ListView для сообщений, надеюсь, что вам уже
стало ясно, как он работает, и вы представляете себе его реализацию, так как
видели виджеты ListView уже несколько раз. Для каждого элемента в списке
создается ListTile с title, содержащим текст сообщения, и subtitle, именем
пользователя, опубликовавшего это сообщение.

277

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

Затем появляется виджет Divider и область ввода сообщения для пользова-
теля:

Divider(),
Row(children : [
	 Flexible(
	 	 child : TextField(controller : _postEditingController,
	 	 onChanged : (String inText) =>
	 	 	 setState(() { _postMessage = inText; }),
	 	 decoration : new InputDecoration.collapsed(
	 	 	 hintText : "Enter message"),
)),
	 Container(margin : new EdgeInsets.fromLTRB(2, 0, 2, 0),
	 	 child : IconButton(icon : Icon(Icons.send),
	 	 	 color : Colors.blue,
	 	 	 onPressed : () {
	 	 	 	 connector.post(model.userName,
	 	 	 	 	 model.currentRoomName, _postMessage, (inStatus) {
	 	 	 	 	 if (inStatus == "ok") {
	 	 	 	 	 	 model.addMessage(model.userName, _postMessage);
						 _controller.jumpTo(
	 	 	 	 	 	 	 _controller.position.maxScrollExtent);
					 }
	 	 	 });
		 }
)
)

Во-первых, область ввода – это TextField и IconButton, стоящие рядом друг
с другом, поэтому использование Row имеет смысл. Но я не хочу устанавли-
вать точную ширину для каждого из виджетов, так как я не знаю размеров
экрана. И, как всегда, во Flutter есть подходящий виджет: Flexible. Он позво-
ляет вам контролировать то, как компоненты внутри виджета Flex, Row или
Column растягиваются и заполняют доступное пространство. Здесь цель прос
та: позволить TextField заполнить столько места, сколько доступно, учиты-
вая размеры соседней кнопки (IconButton). Поэтому я помещаю TextField во
Flexible, а затем Flexible в Row в качестве первого дочернего элемента. Вто-
рой дочерний элемент Row – это Container, содержащий IconButton. IconButton
находится внутри Padding, так что у меня будет отступ в несколько пикселей
слева и справа от IconButton. Затем создается IconButton. Flutter предлагает
хорошую иконку для отправки сообщения, которая вполне нам подойдет.

Когда кнопка нажата, вызывается метод connector.post() с передачей име-
ни пользователя, имени комнаты и сообщением, которое они ввели. Предпо-
лагая, что мы получаем ответ ok, сообщение добавляется в список сообщений
комнаты, и, наконец, используется ScrollController, который я упомянул ра-

278

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

нее. Смысл в том, что поскольку сообщение появится в нижней части ListView,
его может быть не видно, если общее количество сообщений выходит за гра-
ницы экрана. Таким образом, _controller предоставляет метод jumpTo(), ко-
торому мы передаем _controller.position.maxScrollExtent, для того чтобы
реализовать прокрутку списка к новому сообщению.

Приглашение или исключение пользователей
Последнее, на что нужно обратить внимание, – это на приглашение пользова-
теля в комнату или его удаление. При нажатии любого из этих пунктов меню
появляется диалоговое окно, подобное показанному на рис. 8-9, с надписью
«kicked» (выгнать) или «invite» (пригласить), в зависимости от ситуации.

Рисунок 8-9. Диалог приглашения пользователя

Итак, код начинается так:

_inviteOrKick(final BuildContext inContext,
	 final String inInviteOrKick) {
	 	 connector.listUsers((inUserList) {
	 	 	 model.setUserList(inUserList);

Первое, что мы хотим сделать, – это получить от сервера обновленный спи-
сок пользователей. Как и в некоторых других ситуациях, это может быть из-
лишним, но лучше это сделать. Обратите внимание, что при удалении это

279

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

и правда лишнее, так как в коде уже есть обновление списка пользователей
в комнате. Пока что наш код не разветвляется для обработки разных значений
аргумента inInviteOrKick, поэтому обращение к серверу происходит в любом
случае. Это немного неэффективно, но при условии, что наш сервер работает
нормально, не придавайте этому особого значения.

Как только приходит ответ, мы можем показать диалог:

showDialog(context : inContext,
	 builder : (BuildContext inDialogContext) {
	 	 return ScopedModel<FlutterChatModel>(model : model,
	 	 	 child : ScopedModelDescendant<FlutterChatModel>(
	 	 	 	 builder : (BuildContext inContext, Widget inChild,
	 	 	 	 	 FlutterChatModel inModel) {
	 	 	 	 	 return AlertDialog(
	 	 	 	 	 	 title : Text("Select user to $inInviteOrKick"
)

Все начинается достаточно просто, и с помощью такого кода вы можете лег-
ко задавать название диалогового окна.

Далее мы начинаем конструировать содержимое диалога:

content : Container(width : double.maxFinite,
	 height : double.maxFinite / 2,
	 child : ListView.builder(
	 	 itemCount : inInviteOrKick == "invite" ?
	 	 	 model.userList.length : model.currentRoomUserList,
	 	 	 itemBuilder:(BuildContext inBuildContext, int inIndex) {
			 Map user;
	 	 	 if (inInviteOrKick == "invite") {
	 	 	 	 user = model.userList[inIndex];
			 } else {
	 	 	 	 user = model.currentRoomUserList[inIndex];
			 }
	 	 	 if (user["userName"] == model.userName) { return Container(); }

Я хочу, чтобы диалоговое окно заполняло экран, поэтому использую неболь-
шую хитрость, задав ширине (width) значение, равное double.maxFinite, а вы-
соте (height) – double.maxFinite/2. Это фактически заставляет Flutter изменять
размер окна до максимального размера, который будет занимать большую
часть экрана.

Далее создается виджет ListView, содержащий список пользователей. Из ка-
кого списка мы бы ни получали данные, будь то model.userList для пригла-
шения пользователя или model.currentRoomUserList для его исключения, нам
необходимо задать его длину (length). Далее, когда мы нажимаем на текущего
пользователя, его нужно удалить, но мы не можем вернуть null, так как полу-
чим exception. Поэтому вернем пустой Container.

280

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

Если это не текущий пользователь, то Container возвращается с актуальным
содержимым:

return Container(decoration : BoxDecoration(
	 borderRadius : BorderRadius.all(Radius.circular(15.0)),
	 border : Border(
	 	 bottom : BorderSide(), top : BorderSide(),
	 	 left : BorderSide(), right : BorderSide()
)

Сначала я применяю BoxDecoration, чтобы закруглить углы свойством border
Radius. Так что вы можете закруглить любой или вообще все углы. Конечно,
без углов это выглядит немного странно, поэтому я задаю границу с помощью
свойства Border. Значения по умолчанию выглядят достаточно хорошо, поэто-
му используем их.

В момент написания книги я чувствовал себя немного психоделично, поэто-
му хотел красивых цветов! К счастью, свойство gradient класса BoxDecoration
позволяет мне это сделать:

gradient : LinearGradient(
	 begin : Alignment.topLeft, end : Alignment.bottomRight,
	 stops : [.1, .2, .3, .4, .5, .6, .7, .8, .9],
	 colors : [
	 	 Color.fromRGBO(250, 250, 0, .75),
	 	 Color.fromRGBO(250, 220, 0, .75),
	 	 Color.fromRGBO(250, 190, 0, .75),
	 	 Color.fromRGBO(250, 160, 0, .75),
	 	 Color.fromRGBO(250, 130, 0, .75),
	 	 Color.fromRGBO(250, 110, 0, .75),
	 	 Color.fromRGBO(250, 80, 0, .75),
	 	 Color.fromRGBO(250, 50, 0, .75),
	 	 Color.fromRGBO(250, 0, 0, .75)
]
)),
margin : EdgeInsets.only(top : 10.0),
child : ListTile(title : Text(user["userName"])

Есть несколько вариантов Gradient, например LinearGradient – это класс,
который создает горизонтальный или вертикальный линейный градиент,
а также есть RadialGradient и SweepGradient (которые вы можете изучить са-
мостоятельно). Для этого вам нужно задать начало и конец градиента. Затем
необходимо определить промежуточные точки «остановки» (stops) вдоль гра-
диента, которые задают распределение цветов. Значения stops переходят от
нуля к единице, и вы можете разделить их по своему усмотрению. Здесь я хочу,
чтобы каждый цвет занимал равное пространство, поэтому делаю остановки
каждую десятую часть. Далее определяются сами цвета (colors). Есть несколько

281

ГЛАВА 8  FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ

способов определить их с помощью Flutter, и вы уже видели коллекцию Colors,
но здесь я хотел быть более точным, поэтому использовал значения RGB (Red-
Green-Blue, красный – зеленый – синий). Технически это RGBO, где O – непро-
зрачность (opacity), которая установлена ​​на 0.75, что делает все цвета непро-
зрачными на 75 % (или прозрачными на 25 %, если так проще). Таким образом,
полупрозрачный цвет немного сливается с фоном. Это чуть притупляет цвета,
так как задний фон является белым. Дальше я добавляю отступ, чтобы меж-
ду первым указанным пользователем и текстом заголовка было пространство,
а затем для каждого пользователя создается ListTile.

Наконец, нам нужно реализовать то, что происходит, когда пользователь
нажимает на элемент списка:

onTap : () {
	 if (inInviteOrKick == "invite") {
	 	 connector.invite(user["userName"],
	 	 	 model.currentRoomName, model.userName, () {
	 	 	 	 Navigator.of(inContext).pop();
	 	 });
	 } else {
	 	 connector.kick(user["userName"],model.currentRoomName,() {
	 	 	 Navigator.of(inContext).pop();
	 	 });
	 }
}

Это легко: если мы приглашаем пользователя, то вызываем connect.invite()
и передаем ему имя выбранного пользователя, имя текущей комнаты и имя
приглашающего пользователя, чтобы его можно было отобразить приглашен-
ному человеку. Или если мы выгоняем его, то вызывается метод connector.
kick(), в который передается userName выбранного пользователя и название
комнаты, из которой его выгнали. И в обоих случаях диалог закрывается.

Итого
В этой главе мы рассмотрели FlutterChat, создав клиентское приложение
на основе Flutter. В нем вы увидели новые возможности фреймворка (или то,
что мы раньше не использовали в реальном приложении), такие как видже-
ты StatefulWidget, PopupMenuButton, ExpansionPanel, реальное использование
GridView, компоненты Slider и Switch и, конечно же, создание соединений с по-
мощью socket.io и WebSocket. В качестве бонуса вы немного поигрались с Node
и написали сервер!

В следующей главе мы поработаем над последним из трех наших приложе-
ний, оно откроет вам совершенно новое направление и даст несколько иной
взгляд на Flutter – мы создадим игру!

282

ГЛАВА 9

FLUTTERHERO: ИГРА FLUTTER

«Одна работа, никакого безделья, бедняга Джек не знает веселья» (англ. «All
work and no play makes Jack a dull boy», цитата из фильма «Сияние» 1980 года).
К счастью, вам удастся избежать судьбы Джека.

В этой книге вы смотрели на Flutter сквозь призму написания полезного кода
и приложений. Но это не все, что вы можете с ним сделать. Вы можете приду-
мать что-нибудь более легкомысленное, веселое, скажем, написать игру!

Игры считаются отличными проектами для любого разработчика, потому
что они затрагивают очень много различных дисциплин в программирова-
нии, от графики и звука до искусственного интеллекта, структур данных, ал-
горитмической эффективности и т. д. Как ведущего архитектора разработчики
иногда спрашивают меня, как бы им отточить свои навыки. У меня всегда один
ответ: написать игру! Я не верю, что какой-либо другой проект предоставля-
ет такой же уровень неординарности, креативности и возможности обучения.

А самое главное – игры весело писать!
В этой главе вы будете использовать Flutter, чтобы написать игру. Преиму-

щество данной книги состоит в том, что вы встретите несколько новых кон-
цепций Flutter. В конце концов, вы будете учиться и, надеюсь, веселиться!

Итак, давайте выясним, какую игру мы придумаем и создадим. Что нужно
каждой великой игре? История!

История такова
Жители Горгоны 6 представляют собой космическое противоречие: техноло-
гически развитая цивилизация, но отстающая интеллектуально!

Они могут строить быстрые, гладкие, но очень хрупкие космические кораб-
ли! Достаточно просто столкнуться с рыбой-космонавтом (и, будучи мирной
расой, горгонианцы не разрабатывают никакого оружия).

283

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

Да, я сказал рыба-космонавт! Но я отвлекся.
Для горгонианцев это настоящая проблема, потому что их звездная система

поражена паразитами: она кишит космическими зубастиками и разного рода
опасностями! У них есть гигантская космическая рыба с третьей луны Валь-
тракса, разумные существа-машины с протопланеты 10101110, космические
пришельцы (но у кого в Солнечной системе их нет?) и астероиды, летающие
вокруг. Всё это блокирует работу космических путей сообщения и прогулоч-
ных круизов (при всей хрупкости их кораблей, круизы можно считать еще од-
ним противоречием горгонианцев, учитывая множество разрушенных кусоч-
ков кораблей вокруг).

К счастью, есть решение этих проблем: на окраине Солнечной системы на-
ходится массивный кристалл неизвестного происхождения, который излуча-
ет особый тип энергии, уничтожающий космических вредителей, по крайней
мере на некоторое время. Горгонианцы придумали, как собирать эту энергию.
Таким образом, они посылают космические грузовые корабли (и, будучи гор-
гонианскими кораблями, они выглядят круто!), чтобы собирать энергию и воз-
вращать ее на родину.

Ваша работа как одного из смельчаков – может быть, даже героев-пилотов
«флота хрустальных кораблей» – пробраться сквозь космических паразитов,
чтобы извлечь энергию из кристалла и затем вернуть ее домой. Когда вы со-
берете достаточно энергии, паразиты будут уничтожены, и вы станете героем
Горгоны!

По крайней мере, на некоторое время.
Конечно, вы получите за это несколько очков – давайте назовем их косми-

ческими кредитами, – с помощью которых вы сможете сохранить свою при-
вычку лизать галлюциногенных ящериц-горгонианцев.

Именно так, друзья, вы и продумываете простую игру, которую можно коди-
ровать с помощью Flutter. Я сразу скажу, что если вы ожидаете геймплея уров-
ня Apex Legends, Halo или Red Dead Redemption, вы будете сильно разочарова-
ны. Не ждите от игры класса ААА. Вряд ли вы захотите играть в нее постоян-
но, но, я надеюсь, вы ее полюбите! И она станет хорошим опытом, к которому
я вас веду.

Итак, с историей мы разобрались, давайте приступим к работе, потому что
паразиты сами себя не уничтожат (однако они могут быть такими же глупы-
ми, как горгонианцы).

Базовая компоновка
Итак, как выглядит эта игра? Что ж, если вы когда-нибудь играли в старую
8-битную игру, скажем, с лягушкой, которая прыгает по дощечкам различного
типа, чтобы добраться до цели на другой стороне, то наша игра будет вам по-
нятна. Рисунок 9-1 показывает, как она выглядит.

284

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

Рисунок 9-1. Может, мне стоило назвать игру Space Frogger?

Ваш корабль располагается в нижней части экрана, недалеко от вашего дома.
Чтобы управлять им, поместите палец в любом месте экрана, оно станет точ-
кой привязки, или нулевой позицией виртуального джойстика. Теперь просто
двигайте пальцем в любом из восьми направлений компаса, и ваш корабль бу-
дет двигаться за вами. Ваша цель – пройти через полосы паразитов (астероиды,
инопланетяне, разумные машины и космические рыбы). Когда вы достигнете
вершины, то дотронетесь до кристалла, и полоса энергии сверху заполнится.
Затем вы возвращаетесь через паразитов, касаетесь вашего дома, энергия пе-
редается, и в этот момент все паразиты взрываются, а вы получаете несколь-
ко очков. Затем паразиты возвращаются, и все повторяется снова. Конечно, вы
взорветесь, если коснетесь чего-либо, кроме кристалла или вашего дома.

Как я уже сказал, это несложная игра, и она сделана с помощью Flutter, так
что миссия выполнима.

Структура каталога и исходные файлы компонентов
Начнем с обсуждения структуры каталогов и, что более важно, некоторых фай-
лов, которые в нем содержатся. Все это показано на рис. 9-2. Это совершен-
но стандартная структура приложения Flutter, которую вы узнали и, я наде-
юсь, полюбили. В каталоге ресурсов вы найдете кучу изображений и несколько
аудиофайлов. Названия файлов должны выражать их суть, но цифры требуют
некоторого объяснения.

285

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

Рисунок 9-2. �Структура каталога приложения и составляющие файлы
источника/ресурса

Как вы скоро увидите, каждое из изображений представляет собой часть
объекта в игре, который будет использоваться общим классом GameObject. На-
пример, есть GameObject для корабля игрока, который использует изображения
player-0.png и player-l.png, и GameObject для кристалла. Этот общий класс
включает логику для анимации объектов. Анимация в этом контексте похожа
на старый трюк, как в детстве, когда вы берете блокнот, рисуете серию «кад
ров», возможно, фигуру прыгающей палки; а затем быстро переворачиваете
страницы, чтобы анимировать рисунок. В нашем примере каждый кадр ани-

286

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

мации обозначается номером в имени файла. Итак, для кристалла есть четыре
кадра анимации (так сказать, в вашем блокноте четыре страницы): crystal-0.
png, crystal-l.png, crystal-2.png и crystal-3.png, а класс GameObject знает,
как «переворачивать страницы».

Примечание. Планета не анимирована, поэтому для нее есть только один кадр, однако этот объект так-
же обернут в GameObject. Для этого, как вы увидите позже, необходимо использовать ту же схему име-
нования и назвать изображение planet-0.png, чтобы GameObject мог корректно работать с ним.

MP3-файлы озвучивают различные события, и, надеюсь, их названия объяс-
нят вам их предназначение, но если нет, то дальнейшее использование помо-
жет вам разобраться.

Кроме того, у вас есть небольшие полезные файлы исходных кодов в папке
lib, дополняющие main.dart, и мы дойдем до каждого из них позже, хотя, как
и в случае с ресурсами, их названия подскажут вам их предназначение.

Но прежде всего давайте немного поговорим о pubspec.yaml.

Конфигурация: pubspec.yaml
Файл pubspec.yaml примерно на 99 % такой же, как и все остальные, которые
вы видели ранее, за исключением одного нового элемента:

name: flutter_hero
description: FlutterHero
version: 1.0.0+1
environment:
	 sdk: ">=2.1.0 <3.0.0"
dependencies:
	 flutter:
	 	 sdk: flutter
	 cupertino_icons: ^0.1.2
	 audioplayers: 0.11.0
dev_dependencies:
	 flutter_test:
	 	 sdk: flutter
flutter:
	 uses-material-design: true
	 assets:
	 	 – assets/

В этой игре, как и в большинстве других, есть звуковое сопровождение! На
момент написания этой книги Flutter не имел подходящего для нашей игры
API работы с аудио, который бы позволял воспроизводить произвольные звуко-
вые файлы по мере необходимости, а иногда и одновременно. Поэтому мы ис-
пользуем плагин. К счастью, есть несколько вариантов, но самый популярный –

287

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

это плагин audioplayers (https://pub.dartlang.org/packages/audioplayers).
Audioplayers – версия более раннего плагина с именем audioplayer, которая
расширяет функциональность старого. Этот плагин позволяет нам воспроизво-
дить аудиофайлы, хранящиеся удаленно в интернете, локально на устройстве
пользователя, или, что очень важно для нас, в качестве ресурсов нашего про-
екта. С помощью этого плагина вы можете воспроизводить файлы, управлять
их воспроизведением (пауза, остановка, выбор определенного момента аудио),
зацикливать звук и отслеживать события во время воспроизведения, чтобы вы
могли, например, показать индикатор прогресса.

В приложении FlutterHero мы не собираемся работать со всем набором этих
функций! Нам просто нужно уметь воспроизводить звуки во время опреде-
ленных событий. Мы рассмотрим API для этого плагина, когда увидим первое
использование звука – он довольно элементарен.

Помимо плагина audioplayers, в конфигурации также указан каталог ресур-
сов (assets), который содержит все те файлы, которые вы видели ранее, как изо-
бражения, так и аудио. Я хотел разделить их на assets/images и assets/audio,
но, чтобы audioplayers мог их найти, потребовалось бы больше работы. Поэто-
му, учитывая небольшое количество необходимых ресурсов, я просто скинул
все в единый каталог.

Класс GameObject
Теперь переходим к коду! Обычно я начинаю с main.dart, но здесь я расскажу
вам о классе GameObject. Возможно, вы не сразу все поймете, но это изменится,
когда вы увидите, как используется этот класс и его подклассы.

GameObject включает два дочерних подкласса, как показано на рис. 9-3.

Рисунок 9-3. Иерархия классов: GameObject и его дочерние элементы

https://pub.dartlang.org/packages/audioplayers

288

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

Основная идея – это простое объектно-ориентированное программирова-
ние: класс GameObject содержит данные и функциональность, общие для всех
объектов в игре, а затем подклассы расширяют его при необходимости. На-
пример, каждому игровому объекту (игрок, кристалл, паразит и планета) нуж-
ны такие данные, как:

•	 ширина и высота экрана;

•	 базовое имя файла для их изображений (например, «planet-*.png» или
«crystal- *.png», где * будут номерами кадров);

•	 ширина и высота объекта;

•	 X и Y объекта на экране;

•	 общее количество кадров в цикле анимации; сколько игровых фреймов
пропустить при анимации (я знаю, это немного сбивает с толку, но не вол-
нуйтесь, это ненадолго!); текущий кадр анимации; счетчик для определе-
ния того, когда пора переходить к следующему кадру; функция, которая
будет вызываться после завершения цикла анимации; и, конечно же, все
кадры;

•	 необходимость показать или скрыть объект.

Каждый игровой объект включает следующие общие функции:

•	 конструктор для его настройки;

•	 метод для его анимации;

•	 способ нарисовать его на экране.

Но у подкласса Enemy, который будет представлять рыбу, роботов, иноплане-
тян и астероиды, есть дополнительные поля:

•	 скорость перемещения по экрану;

•	 направление движения (влево или вправо).

Класс Player, очевидно, представляет корабль игрока, и у него тоже есть
специфические поля, помимо поставляемых GameObject:

•	 скорость движения;

•	 направление: влево или вправо (горизонтальное движение), вверх или
вниз (вертикальное движение);

•	 количество энергии кристалла на борту;

•	 на сколько градусов (в радианах) он повернут (позволяет нам использо-
вать только одно изображение и менять его ориентацию и направление
движения), а также некоторые таблицы данных, которые избавляют нас
от необходимости повторять математические операции, что, в свою оче-

289

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

редь, повышает производительность (никогда не забывайте о производи-
тельности в играх!);

•	 метод, используемый при изменении ориентации судна (в зависимости
от направления движения), чтобы его можно было корректно вращать.

Итак, теперь, когда у вас есть общее представление об этих классах, давайте
перейдем к коду GameObject:

class GameObject {
	 double screenWidth = 0.0;
	 double screenHeight =0.0;

Он начинается как обычный класс, не имеющий предка. Наши первые два
свойства данных: ширина (width) и высота (height) экрана. Как вы увидите позже,
Flutter предоставляет API для получения этой информации, которая извлекается
во время запуска приложения и передается любому экземпляру GameObject при
создании. Это позволяет избежать необходимости вызывать API снова и снова,
а так как эта информация необходима различным игровым объектам, то мы со-
храним ее.

String baseFilename = "";

baseFilename – это часть имени графического файла, которая не изменяется.
Проще говоря, это название объекта, будь то рыба (fish), игрок (player), планета
(planet) или что-то еще.

int width = 0;
int height = 0;

Ширина и высота объекта тоже необходимы. Мы могли бы найти эту инфор
мацию с помощью механизмов Flutter для работы с картинками, но проще
предоставить размеры в коде, тогда она никогда не изменится.

double x = 0.0;
double y = 0.0;

Горизонтальное (x) и вертикальное (y) расположения тоже понадобятся каж
дому игровому объекту на экране.

int numFrames = 0;
int frameSkip = 0;
int currentFrame = 0;
int frameCount = 0;
List frames = [];
Function animationCallback;

Все эти шесть свойств связаны с анимацией. Свойство numFrames – это общее
количество кадров. Свойство frameSkip определяет, сколько итераций (или ти-
ков, ticks) основного игрового цикла должно пройти до показа следующего

290

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

кадра анимации. Свойство currentFrame указывает, какой кадр анимации ото-
бражается в данный момент. Свойство frameCount увеличивается с каждым ти-
ком основного игрового цикла, а когда оно достигает значения frameSkip, зна-
чение currentFrame увеличивается. Свойство frames (кадры) представляет со-
бой список изображений для игрового объекта, по одному на кадр анимации.
Наконец, свойство animationCallback – это ссылка на функцию, которая будет
вызываться каждый раз, когда заканчивается цикл анимации. Скоро вы пойме-
те, почему это необходимо, а пока давайте продолжим.

bool visible = true;

Паразит и игрок должны быть скрыты в определенное время, а свойство
visible (видимый) определяет, когда игровой объект виден или нет.

Переходим к конструктору:

GameObject(double inScreenWidth, double inScreenHeight,
	 String inBaseFilename, int inWidth, int inHeight,
	 int inNumFrames, int inFrameSkip,
	 Function inAnimationCallback) {
	 screenWidth = inScreenWidth;
	 screenHeight = inScreenHeight;
	 baseFilename = inBaseFilename;
	 width = inWidth;
	 height = inHeight;
	 numFrames = inNumFrames;
	 frameSkip = inFrameSkip;
	 animationCallback = inAnimationCallback;
	 for (int i = 0; i < inNumFrames; i++) {
	 	 frames.add(Image.asset("assets/$baseFilename-$i.png"));
	 }
}

Довольно просто, да? Все входящие аргументы сохраняются в соответствую-
щих свойствах, а затем нам нужно загрузить кадры анимации. Здесь вы можете
увидеть, как каждый виджет Image, созданный с помощью конструктора asset(),
использует baseFilename для генерации имени. Мы делаем так ради производи-
тельности: однократная загрузка изображений – хорошая идея. Flutter доста-
точно умен, чтобы кешировать картинки, если мы загружаем их дважды, но, ду-
маю, лучше спроектировать наше приложение так, чтобы они загружались при
создании GameObject, а не во время анимации.

К слову о коде анимации:

void animate() {
	 frameCount = frameCount + 1;
	 if (frameCount > frameSkip) {
	 	 frameCount = 0;
	 	 currentFrame = currentFrame + 1;

291

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER
	 	 if (currentFrame == numFrames) {
	 	 	 currentFrame = 0;
	 	 	 if (animationCallback != null) { animationCallback(); }
		 }
	 }
}

Все, что здесь делается, – это вызов анимации на каждый тик, в нашем случае
таких тиков 60. Когда значение текущего кадра достигает значения frameSkip,
мы увеличиваем его до следующего кадра. Когда кадры кончаются, мы перехо-
дим обратно к первому кадру и вызываем animationCallback, если он указан.

Помимо анимирования, GameObject также должен знать, как отрисовать себя
на экране. Поскольку все во Flutter является виджетом, как вы уже хорошо знае
те, смысл в том, чтобы получить с помощью метода build() правильный вид-
жет для включения его в общее дерево. В этом нам поможет метод draw():

Widget draw() {
	 return visible ?
	 	 Positioned(left : x, top : y, child : frames[currentFrame])
	 	 	 : Positioned(child : Container());
}

Не хочу забегать вперед, но мы будем использовать виджет Stack в качестве
родительского для всех наших игровых объектов. Это связано с тем, что в Stack
вы можете использовать виджеты Positioned, которые можно полностью раз-
местить внутри Stack. Если Stack покрывает весь экран, то фактически мы по-
лучим канву (canvas, холст для рисования), идеально подходящую для разра-
ботки игр, поскольку сможем контролировать точное расположение объектов
на экране вплоть до уровня пикселей. Именно это мы и собираемся сделать, по-
этому метод draw() должен вернуть виджет Positioned, который содержит вид-
жет Image, связанный с текущим кадром анимации объекта. Кроме того, объект
может быть скрыт. Ваш способ сделать это может показаться Flutter немного
странным. Это не hidden = true или что-то в этом роде, как во многих других
платформах, здесь нет возможности спрятать элемент, не удаляя его из дере-
ва виджетов. Поэтому мы и удалим его! Однако, как вы скоро увидите, возврат
null не сработает, потому что это сломает дерево виджетов. Так что вместо null
мы вернем пустой Container. Это сработает, хоть это и немного странно.

Расширение GameObject: класс Enemy
С базовыми знаниями GameObject мы можем рассмотреть подклассы, начнем
с Enemy. Главное, что отличает Enemy от обычного GameObject, – это то, что Enemy
может двигаться.

class Enemy extends GameObject {

292

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER
int speed = 0;
int moveDirection = 0;

Перемещения противника (enemy) очень просты: он движется либо вле-
во, либо вправо с заданной скоростью (speed), где скорость означает, на сколь-
ко пикселей он перемещается за тик основного игрового цикла. Значение move
Direction будет 0 для левого или 1 для правого.

Итак, у нас есть конструктор:

Enemy(double inScreenWidth, double inScreenHeight,
	 String inBaseFilename, int inWidth, int inHeight,
	 int inNumFrames, int inFrameSkip, int inMoveDirection,
	 int inSpeed) :
	 	 super(inScreenWidth, inScreenHeight, inBaseFilename,
	 	 inWidth, inHeight, inNumFrames, inFrameSkip, null) {
	 speed = inSpeed;
	 moveDirection = inMoveDirection;
}

Поскольку этот класс расширяет GameObject, то он поддерживает все те же
свойства, поэтому их необходимо задать. Здесь в игру вступает вызов super().
Как видите, сигнатура конструктора Enemy включает в себя все, что делает кон-
структор GameObject, плюс элементы, специфичные для Enemy. Сначала вызов
super() задает свойства, общие для GameObject, затем код внутри конструктора
Enemy устанавливает дополнительные свойства, специфичные для Enemy.

Со всеми этими данными мы можем реализовать метод move():

void move() {
	 if (moveDirection == 1) {
	 	 x = x + speed;
	 	 if (x > screenWidth + width) { x = -width.toDouble(); }
	 } else {
	 	 x = x – speed;
	 	 if (x < -width) { x = screenWidth + width.toDouble(); }
	 }
}

Теперь вы понимаете, почему нужны ширина и высота экрана. Именно так
мы узнаем обо всех перемещениях врага. Еще они помогают нам задать его но-
вое местоположение. Итак, в нашей концепции вражеская рыба движется пря-
мо по экрану. Когда она находится за правым краем экрана, значение «x» уста-
навливается в отрицательное значение, что помещает его в левую часть экрана.
Затем она продолжает двигаться как прежде. При перемещении влево проис-
ходит то же самое, но в обратном направлении. Это все, что нужно для переме-
щения врагов.

293

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

Расширение GameObject: класс Player
Другой класс, который происходит из GameObject, предназначен для игрока:

class Player extends GameObject {
	 int speed = 0;
	 int moveHorizontal = 0;
	 int moveVertical = 0;

Как и враг, игрок может двигаться, поэтому нам нужно знать, как быстро
он двигается (speed) и в каком направлении (moveHorizontal и moveVertical).
В отличие от вражеских паразитов, игрок может двигаться вверх, вниз, влево
и вправо, а также влево вверх, влево вниз, вправо вверх и вправо вниз. Следова-
тельно, нам нужно использовать две переменные для отслеживания направле-
ния движения. Но игрок также может не двигаться, поэтому у каждого направ-
ления есть три возможных значения вместо двух, как для врагов: 0 для обо-
их означает при отсутствии движения, в то время как для moveHorizontal «–1»
означает влево, а «1» – вправо; moveVertical «–1» означает вверх, а «1» – вниз.

double energy = 0.0;

Игрок также может в любой момент времени получить часть энергии крис
талла с борта. Поэтому нам нужна переменная, чтобы отслеживать и это.

Map anglesToRadiansConversionTable = {
	 "angle45" : 0.7853981633974483,
	 "angle90" : 1.5707963267948966,
	 "angle135" : 2.3387411976724017,
	 "angle180" : 3.141592653589793,
	 "angle225" : 3.9269908169872414,
	 "angle270" : 4.71238898038469,
	 "angle315" : 5.497787143782138
};
double radians = 0.0;

В разработке игр вы почти всегда ищете маленькие хитрости для оптими-
зации, экономии памяти или циклов. В этом случае есть два трюка с кораблем
игрока. Во-первых, корабль всегда должен быть направлен в сторону движения.
Таким образом, нам понадобилось бы восемь разных изображений: по одному
для каждого при движении вверх, вниз, влево, вправо, вверх влево, вверх впра-
во, вниз влево и вниз вправо. Но поскольку корабль анимирован и при усло-
вии что каждое направление использует по два кадра, мы бы использовали 16
разных изображений! Выглядит неэффективно. Поэтому будет только два изо-
бражения, по одному на каждый кадр. Чтобы обеспечить восемь различных на-
правлений, они будут вращаться в реальном времени до нужной ориентации.
Flutter предоставляет несколько способов поворота изображения, и вскоре мы
узнаем, как на самом деле лучше это сделать. Но прежде обсудим второй трюк,

294

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

который поможет нам оптимизировать приложение. Чтобы повернуть корабль,
нам нужно сообщить Flutter, на сколько его повернуть. Это значение указыва-
ется в радианах. Но мы-то хотим повернуть его на несколько градусов! Мы мог-
ли бы каждый раз переводить градусы в радианы, но постараемся этого избе-
жать. Самый простой способ заключается в предварительном расчете радиана
для каждого угла в градусах, на который мы хотим повернуть, и сохранении
этих значений на карте для удобства поиска. Для этого мы используем свойство
anglesToRadiansConversionTable. Поскольку нам нужно отследить фактическое
количество радиан, на которые объект поворачивается, мы используем свой-
ство radians. Вы скоро увидите в использовании каждое из них.

Структура будет следующей:

Player(double inScreenWidth, double nScreenHeight,
	 String inBaseFilename, int inWidth, int inHeight,
	 int inNumFrames, int inFrameSkip, int inSpeed,
) : super(inScreenWidth, inScreenHeight, inBaseFilename,
	 inWidth, inHeight, inNumFrames, inFrameSkip, null) {
	 speed = inSpeed;
}

Так как Player наследуется от GameObject, сначала мы вызываем конструк-
тор GameObject, а затем устанавливаем скорость, единственное отличитель-
ное значение Player, которое необходимо задать во время создания. Обратите
внимание на null в качестве последнего аргумента конструктора GameObject –
это callback-функция анимации, которая не нужна игроку, поэтому передает-
ся null.

Теперь GameObject предоставляет метод draw(), но для игрока сам процесс
рисования немного отличается, поэтому нам нужно переопределить этот ме-
тод:

@override
Widget draw() {
	 return visible ?
	 Positioned(left : x, top : y, child : Transform.rotate(
	 	 angle : radians, child : frames[currentFrame]))
	 : Positioned(child : Container());
}

Разница здесь только во вращении. Для этого мы оборачиваем виджет Image
в виджет Transform, который Flutter предоставляет для применения преобра-
зования к дочернему элементу. Хотя использование самого Transform требу-
ет от вас предоставления матрицы преобразования, которая может быть ма-
тематически сложной в зависимости от того, чего вы пытаетесь достичь, этот
класс предоставляет несколько конструкторов для наиболее распространен-
ных преобразований. К ним относятся Transform.scale() для масштабирова-
ния дочернего элемента (увеличения или уменьшения его размера), Transform.

295

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

translate() для его смещения и Transform.rotate() для поворота дочернего
элемента вокруг своей оси. Как видите, этот конструктор требует угла пово-
рота в радианах, поэтому здесь вы можете увидеть, как используется свойство
radians. Установка значения происходит в методе orientationChanged(), с ко-
торым вы познакомитесь позже, и вызывается из кода, который обрабатывает
пользовательский ввод:

void orientationChanged() {
	 radians = 0.0;
	 if (moveHorizontal == 1 && moveVertical == -1) {
	 	 radians = anglesToRadiansConversionTable["angle45"];
	 } else if (moveHorizontal == 1 && moveVertical == 0) {
	 	 radians = anglesToRadiansConversionTable["angle90"];
	 } else if (moveHorizontal == 1 && moveVertical == 1) {
	 	 radians = anglesToRadiansConversionTable["angle135"];
	 } else if (moveHorizontal == 0 && moveVertical == 1) {
	 	 radians = anglesToRadiansConversionTable["angle180"];
	 } else if (moveHorizontal == -1 && moveVertical == 1) {
	 	 radians = anglesToRadiansConversionTable["angle225"];
	 } else if (moveHorizontal == -1 && moveVertical == 0) {
	 	 radians = anglesToRadiansConversionTable["angle270"];
	 } else if (moveHorizontal == -1 && moveVertical == -1) {
	 radians = anglesToRadiansConversionTable["angle315"];
	 }
}

Проверка выполняется для каждого из четырех основных направлений, плюс
четыре комбинации, чтобы определить, в каком направлении движется игрок.
Затем выполняется поиск в anglesToRadiansConversionTable, и получившиеся
радианы сохраняются в свойстве radians. Хоть это и не хитроумный код, но он
отлично справляется со своей задачей и избегает дорогостоящей математиче-
ской операции.

Совет. На практике это не будет таким уж дорогостоящим, но в играх всегда лучше думать об оптимиза-
ции во время написания кода. Это справедливо для всех видов программирования, но в особенности для
игр, где каждая итерация выполняется в основном игровом цикле, о чем мы вскоре поговорим. Конечно,
вы должны избегать слишком дорогостоящих операций и думать об оптимизации заблаговременно. Но
на практике подобная таблица довольно распространена.

Последний метод для перемещения игрока:

void move() {
	 if (x > 0 && moveHorizontal == -1) { x = x – speed; }
	 if (x < (screenWidth – width) && moveHorizontal == 1) {
	 	 x = x + speed;
	 }

296

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER
	 if (y > 40 && moveVertical == -1) { y = y – speed; }
	 if (y < (screenHeight – height – 10) && moveVertical == 1) {
	 	 y = y + speed;
	 }
}

Это код будет вызываться один раз за тик основного игрового цикла. Мы за-
даем горизонтальное направление движения, а затем вертикальное. Напом-
ню, что существует восемь возможных направлений движения игрока. Поми-
мо четырех очевидных, существует еще столько же промежуточных, которые
нам также необходимо обработать. Когда сработает один из операторов if,
имеющих дело с «x», и один из операторов, имеющих дело с «y», это даст ком-
бинацию вертикального и горизонтального движений. Конечно, мы должны
убедиться, что игрок не может попасть за пределы экрана, этим занимается
проверка границ в каждом из операторов if. Она учитывает как сторону игро-
ка, так и пространство для счета и индикатор энергии.

Место, где все начинается: main.dart
Как всегда, наше приложение запускается в исходном файле main.dart:

import "package:flutter/material.dart";
import "package:flutter/services.dart";
import "InputController.dart" as InputController;
import "GameCore.dart";

void main() => runApp(FlutterHero());

class FlutterHero extends StatelessWidget {
	 @override
	 Widget build(BuildContext context) {
	 	 SystemChrome.setEnabledSystemUIOverlays(
	 	 	 [SystemUiOverlay.bottom]
);
		 return MaterialApp(
	 	 	 title : "FlutterHero", home : GameScreen()
);
	 }
}

class GameScreen extends StatefulWidget {
	 @override
	 GameScreenState createState() => new GameScreenState();
}

Модуль services.dart – это что-то новенькое. Он предоставляет нам доступ
к возможностям смартфона для таких задач, как взаимодействие с буфером об-

297

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

мена, тактильной обратной связи (вибрация устройства), воспроизведение си-
стемных звуков, выделение текста, и это лишь некоторые из них. Также он по-
зволяет нам контролировать «хромированную рамку» (chrome) нашего приложе-
ния, а именно строку состояния системы сверху (status bar) и кнопки навигации
(navigation bar) на Android. Если вы перейдете к классу верхнего уровня FlutterHero,
в методе build() вы увидите вызов SystemChrome.setEnabledSystemUIOverlays().
Это предоставляется сервисным модулем, и этот метод позволяет нам передать
ему массив хромированных идентификаторов для включения. Здесь я специаль-
но включаю элемент SystemUiOverlay.bottom, который представляет собой про-
граммные кнопки навигации в Android. Так как это все, что находится в массиве,
строка состояния в верхней части будет скрыта, предоставляя нашей игре (почти)
полноэкранный режим.

Конечно, перед этим вы могли заметить, что мы создаем в GameScreen вид-
жет с состоянием (stateful), который является домашним экраном, определен-
ным в MaterialApp класса FlutterHero.

Как и следовало ожидать (учитывая, что GameScreen – это виджет с состояни-
ем), он будет связан с классом состояния GameScreenState:

class GameScreenState extends State with
	 TickerProviderStateMixin {
	 @override
	 Widget build(BuildContext inContext) {
	 	 if (gameLoopController == null) {
	 	 	 firstTimeInitialization(inContext, this);
		 }

Мы не собираемся использовать scoped_model в этом приложении, а прос
то возьмем базовые возможности State, предоставленные Flutter. Но, поми-
мо State, в этом классе есть еще кое-что новое: TickerProviderStateMixin. Мы
рассмотрим все это в следующем разделе, но я заранее скажу, что оно связано
с основным игровым циклом, который будет выполняться по 60 раз в секунду
на протяжении всей игры.

Метод build() начинается с проверки gameLoopController, который являет-
ся частью файла GameCore.dart. Я пока пропущу его описание, но если gameLoop
Controller равен null, то производится вызов firstTimeInitialization(), c пе-
редачей ему в качестве параметров BuildContext, а также ссылки на сам класс
GameScreenState. Эту функцию мы тоже рассмотрим позже, но по названию мож-
но догадаться, что она выполняет задачи, которые происходят при первом за-
пуске метода build() (мы встретим build() в коде игры еще не раз). Проблема
в том, что есть задачи, которые необходимо выполнить для настройки игры. Они
возникают только при наличии BuildContext. Так что эти задачи должны выпол-
няться в методе build(). Однако они должны произойти только один раз, поэто-
му и выполняется проверка gameLoopController.

Но, как я уже сказал, мы рассмотрим все это в следующем разделе!
Продолжая изучать метод build(), давайте построим наше дерево виджетов:

298

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER
List<Widget> stackChildren = [
	 Positioned(left : 0, top : 0,
	 	 child : Container(width : screenWidth, height : screenHeight,
	 	 decoration : BoxDecoration(image : DecorationImage(
	 	 	 image : AssetImage("assets/background.png"),
	 	 	 fit : BoxFit.cover
))
)
),

Интересно, что во всех предыдущих методах build(), которые вы видели,
вы почти сразу могли заметить оператор return для возврата виджета, и все
дочерние виджеты были определены как «встроенные» в него. А здесь мы сна-
чала создаем список (list). Ситуация такова, что существует дополнительная
логика, которая должна выполняться при создании дерева виджетов (напри-
мер, применение циклов и прочее), которая не может быть выполнена при
создании одного монолитного дерева виджетов, как мы обычно это делаем.

Поскольку виджетом, который мы хотим получить, является Stack, и он
принимает List в качестве значения children, то мы можем реализовать всю
логику генерации за пределами конструктора этого виджета – сначала мы соз-
даем список виджетов, а затем просто передаем ссылку на него в конструктор
Stack. Именно это здесь и происходит.

Первый элемент в списке – это Positioned внутри Container, который исполь-
зует BoxDecoration для фонового изображения. Значение fit, равное BoxFit.
cover, гарантирует заполнение (cover) экрана независимо от его фактических
размеров. Ширина и высота Container – это значения переменных screenWidth
и screenHeight соответственно. Как вы скоро узнаете, эти значения запраши-
ваются у операционной системы во время первичной инициализации, так что
где бы эта информация ни потребовалась, она будет доступна без повторных
запросов.

Positioned(left : 4, top : 2,
	 child : Text(‘Score: ${score.toString().padLeft(4, "0")}’,
	 	 style : TextStyle(color : Colors.white,
	 	 	 fontSize : 18, fontWeight : FontWeight.w900)
)
),

Следующий Positioned содержит Text, это наш игровой счет (score). Как ви-
дите, этот виджет расположен в точке с координатами left (соответствует x)
и top (соответствует y), равными 4 и 2. В этом весь смысл использования Stack:
мы можем расположить наши элементы как захотим. Stack автоматически бу-
дет заполнять свой родительский элемент, в данном случае экран, поэтому мы
можем отобразить его во весь экран. Удобно для игры, как думаете?!

Следом идет еще один Positioned, на этот раз с LinearProgressIndicator для
индикатора энергии:

299

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER
Positioned(left : 120, top : 2, width : screenWidth - 124, height : 22,
	 child : LinearProgressIndicator(
	 	 value : player.energy,
	 	 backgroundColor : Colors.white,
	 	 valueColor : AlwaysStoppedAnimation(Colors.red)
)
),
crystal.draw()
];

Настройка свойства valueColor здесь важна, потому что по умолчанию ин-
дикатор прогресса в Flutter отображается с анимацией выполнения. Он будет
вращаться, если он циклический, или заполняться, если линейный. Но нам это
не нужно. Нам нужен индикатор, который постепенно заполняется при кон-
такте корабля с кристаллом и постепенно опустошается при контакте с плане-
той, чтобы указывать на поступление или отток энергии на корабль и обратно.
Все под контролем нашего кода, а не Flutter (эй, Flutter, это моя игра, делаю,
что хочу!). Таким образом, чтобы указать на то, какой цвет должен заполнять
индикатор, достаточно задать только один цвет, для этого мы используем эк-
земпляр виджета AlwaysStoppedAnimation. Это специальный виджет, с которым
работают классы индикаторов прогресса и который обеспечивает необходи-
мое нам поведение! Конечно, цвет заполненной части – это важная информа-
ция, поэтому она передается в конструктор AlwaysStoppedAnimation. Обратите
внимание на то, что ширина Positioned, в котором находится LinearProgress
Indicator, устанавливается динамически, используя ширину экрана минус
пространство, занимаемое полем score (текущий счет).

Кристалл также добавляется здесь. Он является последним элементом
в списке.

Затем мы добавляем наших вражеских паразитов:

for (int i = 0; i < 3; i++) {
	 stackChildren.add(fish[i].draw());
	 stackChildren.add(robots[i].draw());
	 stackChildren.add(aliens[i].draw());
	 stackChildren.add(asteroids[i].draw());
}

Далее добавляются планета и игрок:

stackChildren.add(planet.draw());
stackChildren.add(player.draw());

Благодаря Stack в игре присутствует ось z. Это означает, что элементы, до-
бавленные в список позже, появятся поверх добавленных ранее. Поэтому мы
должны убедиться, что добавляем их в правильном порядке. Так что игрок дол-
жен быть добавлен после планеты, а планета не должна перекрывать корабль,
когда игрок летит рядом с ней. Корабль должен отображаться поверх планеты.

300

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

Следовательно, он должен быть выше по шкале z и поэтому должен быть до-
бавлен после планеты.

Теперь, хотя они будут отображаться только в определенное время, мы до-
бавляем взрывы:

for (int i = 0; i < explosions.length; i++) {
	 stackChildren.add(explosions[i].draw());
}

Напомню, что если какой-либо игровой объект не виден в данный момент,
метод draw() вернет пустой Container. Именно так обстоит дело со взрывами.
Таким образом, большую часть времени этот цикл может рисовать кучу пус
тых виджетов Container, но это нормально, это просто способ управления ви-
димостью во Flutter.

И вот теперь, наконец, создается виджет Scaffold в операторе return:

return Scaffold(body : GestureDetector(
	 onPanStart : InputController.onPanStart,
	 onPanUpdate : InputController.onPanUpdate,
	 onPanEnd : InputController.onPanEnd,
	 child : Stack(children : stackChildren)
));

Тело Scaffold не возвращает Stack напрямую, как вы могли ожидать. Нам
нужно будет разработать для игрока метод управления, чтобы контролировать
свой корабль, и мы это сделаем с помощью механизма управления жестами.
Итак, нам нужен компонент для распознавания событий от сенсорного экрана,
и виджет GestureDetector предназначен именно для этого.

Он распознает всевозможные жесты, нажатия и тому подобное, и одним из
таких жестов является Pan. Это когда пользователь нажимает на экран и затем
перемещает палец в разные стороны, не отрывая его. Если вы разрабатывали
веб-сайт, на котором пользователи большую часть времени используют мышь,
вам знакомы такие события, как mouseDown, mouseMove и MouseUp. В мобильных
приложениях их нет, хотя фактически именно это нам и нужно. Три события
Pan концептуально имитируют их (допустим, что палец игрока – это указатель
мыши): onPanStart для mouseDown, onPanUpdate для mouseMove и onPanEnd для
mouseUp. Код, который обрабатывает эти события, реализуется с помощью клас-
са InputController, но мы вернемся к нему позже. Так как дочерним элементом
GestureDetector является Stack, это означает, что жесты будут обрабатывать-
ся в любом месте экрана, потому что Stack занимает весь экран (он автомати-
чески заполняет свой родительский элемент, как и GestureDetector). Наконец,
как уже упоминалось ранее, поле children у Stack ссылается на созданный ра-
нее список.

Помните, что все, о чем мы только что говорили, находится внутри метода
build() виджета верхнего уровня. Это значит, что каждый раз, когда изменя-
ется состояние, build() будет вызываться снова, а экран – перерисовываться.

301

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

Это ключ к тому, чтобы все это работало как игра. Далее мы обсудим основной
игровой цикл, который я упоминал несколько раз, а также основную логику, из
которой состоит игра.

Основной игровой цикл и основная игровая логика
Основная логика игры содержится в файле GameCore.dart и начинается, как
всегда, с импорта:

Начнем
import "dart:math";
import "package:flutter/material.dart";
import "package:audioplayers/audio_cache.dart";
import "InputController.dart" as InputController;
import "GameObject.dart";
import "Enemy.dart";
import "Player.dart";

Пакет math необходим, потому что нам нужно сгенерировать несколько слу-
чайных чисел, а он включает в себя эту функциональность. Модуль audio_cache.
dart – это часть плагина аудиоплееров, а также интерфейс, который мы будем
использовать для загрузки и воспроизведения звуковых файлов. Остальное –
различные модули самого FlutterHero.

Еще у нас есть целая куча переменных:

•	 State state – это ссылка на класс State;

•	 Random random = new Random() – класс Random, который позволяет нам... вы
догадались... генерировать случайные числа! Я создаю его один раз, пото-
му что, хотя он и понадобится нам несколько раз, нет смысла иметь более
одного экземпляра;

•	 int score = 0 – текущий счет игры;

•	 double screenWidth – ширина экрана;

•	 double screenHeight – высота экрана;

•	 AnimationController gameLoopController – мы поговорим об этом через
мгновение!

•	 Animation gameLoopAnimation – идет вместе с gameLoopController;

•	 GameObject сrystal – единственный игровой объект кристалла;

•	 List fish – список рыб, вражеских объектов-вредителей;

•	 List robots – список роботов, вражеских объектов-вредителей;

302

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

•	 List aliens – список инопланетян, вражеских объектов-вредителей;

•	 List asteroids – список астероидов, вражеских объектов-вредителей;

•	 Player player – единственный объект игрока;

•	 GameObject planet – единственный игровой объект планеты;

•	 List explosions = [] – список взрывов, которые также являются GameObject
(если на экране нет взрывов, список будет пуст);

•	 AudioCache audioCache – кеш звуков, которые можно воспроизвести (поз-
же расскажу подробнее).

С переменными мы разобрались, теперь перейдем к коду.

Первичная инициализация
Первый фрагмент кода – это функция firstTimeInitialization(), которую вы
видели в методе build() основного виджета, помните? Этот вызов будет сделан
тогда и только тогда, когда значение переменной gameLoopController было null.
Ну, и наконец:

void firstTimeInitialization(BuildContext inContext, dynamic inState) {
	 state = inState;

Код в этом модуле будет нуждаться в доступе к объекту GameScreenState, так
как он содержит состояние для основного виджета. Так что ссылка на объект
передается, а затем сохраняется в переменной state.

Теперь разберемся со звуком:

audioCache = new AudioCache();
audioCache.loadAll(["delivery.mp3", "explosion.mp3",
	 "fill.mp3", "thrust.mp3"]);

Плагин audioplayers использует различные способы работы со звуком, и класс
AudioCache – один из них. Его используют для предварительной загрузки звуков
и, что очень важно для игр, своевременного воспроизведения. Это необходимо,
чтобы иметь возможность воспроизводить звуки, которые добавлены в наше
приложение. Итак, странно это или нет, мы создаем экземпляр класса и затем
вызываем метод loadAll(), передавая ему список имен звуковых файлов для за-
грузки. Теперь мы готовы воспроизводить эти звуки в любое время.

Затем нам нужно получить размеры экрана:

screenWidth = MediaQuery.of(inContext).size.width;
screenHeight = MediaQuery.of(inContext).size.height;

Класс MediaQuery предоставляется библиотекой material.dart и позволя-
ет нам получать информацию о нужном мультимедиаобъекте, например экра-
не. Вызов метода of() для входящего BuildContext возвращает нам объект

303

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

MediaQueryData, который мы можем разобрать, чтобы получить ширину и вы-
соту экрана.

Пришло время создать игровой объект!

crystal = GameObject(screenWidth, screenHeight, "crystal", 32, 30, 4, 6, null);
planet = GameObject(screenWidth, screenHeight, "planet",
	 64, 64, 1, 0, null);
player = Player(screenWidth, screenHeight, "player", 40, 34, 2, 6, 2);
fish = [
	 Enemy(screenWidth,screenHeight, "fish", 48, 48, 2, 6, 1, 4),
	 Enemy(screenWidth,screenHeight, "fish", 48, 48, 2, 6, 1, 4),
	 Enemy(screenWidth,screenHeight, "fish", 48, 48, 2, 6, 1, 4)
];

Кристалл и планета – это старые добрые экземпляры GameObject, в то время
как игрок и вражеские паразиты – экземпляры Player и Enemy соответствен-
но. Роботы, инопланетяне и астероиды созданы так же, как рыбы, поэтому
нет смысла это объяснять. Обратите внимание, что они должны быть созданы
именно здесь, потому что нам нужно, чтобы screenWidth и screenHeight уже
были определены.

Коротко об анимациях во Flutter
Flutter предоставляет богатую поддержку анимаций, но в конечном итоге всё
сводится к нескольким ключевым классам, даже если вы не используете их на-
прямую (например, виджеты, которые создают свою собственную анимацию,
скрыто используют эти классы). Сначала вам нужен объект Ticker, затем объ-
ект Animation и, наконец, AnimationController.

Ticker – это объект, который посылает сигнал с регулярным интервалом,
обычно 60 раз в секунду. Каждый раз, когда этот объект «тикает», выполняют-
ся заданные callback-функции для реализации связанных с анимацией процес-
сов.

Объект Animation связан с генерацией числа на каждом тике. Это число –
часть последовательности между двумя определенными значениями в задан-
ный промежуток времени. Оно может изменяться линейно или с помощью
сложных кривых.

AnimationController – это объект, который управляет анимацией. Он может
запускать, останавливать и ставить на паузу анимацию. Он также может отме-
нять анимацию (и помните, что «анимация» не означает ничего, кроме гене-
рации следующего значения в последовательности – ни одно из них на самом
деле не знает о том, что находится на экране).

AnimationController связывается с Ticker, который чаще всего связан с объ-
ектом State. Таким образом, после каждого «тика» Ticker отправляется сиг-
нал в AnimationController. Потом он отправляет сигнал объекту Animation, ко-
торый генерирует новое значение. Затем ваш код подключается к событиям

304

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

жизненного цикла Animation и делает все необходимое для отрисовки аними-
рованных элементов на экране. В конечном счете ваш код (или код виджета
Flutter, который вы используете) отвечает за фактическое размещение объек-
та на экране и его перемещение (или другие изменения, поэтому помните, что
анимация является общей концепцией и применима не только к перемеще-
нию элемента, мы также можем анимировать изменение размера или другие
свойства, имеющие числовое значение).

Итак, представьте, что у вас есть Ticker, срабатывающий 60 раз в секунду.
А еще представьте, что Animation выплевывает линейный набор чисел от 0 до
500 под управлением AnimationController. Наконец, представьте, что вы под-
ключаетесь к жизненному циклу Animation, так что каждый раз, когда гене-
рируется число, вы обновляете местоположение Х одного из наших врагов на
экране. Это приведет к повторному запуску метода build(), и вы увидите, что
объект начал перемещаться. Другими словами, у вас есть анимация!

Это основная концепция, поэтому теперь давайте посмотрим на реальный
код, который применяет эту теорию на практике:

gameLoopController = AnimationController(vsync : inState,
	 duration : Duration(milliseconds : 1000));
gameLoopAnimation = Tween(begin : 0, end : 17).animate(
	 CurvedAnimation(parent : gameLoopController, curve : Curves.linear)
);
gameLoopAnimation.addStatusListener((inStatus) {
	 if (inStatus == AnimationStatus.completed) {
	 	 gameLoopController.reset();
	 	 gameLoopController.forward();
	 }
});
gameLoopAnimation.addListener(gameLoop);

Во-первых, создается экземпляр AnimationController, который с помощью
свойства vsync связывается с Ticker, в нашем случае это объект inState класса
GameScreenState. Если вы посмотрите на код из предыдущих разделов, то уви-
дите, что GameScreenState также наследуется от TickerProviderStateMixin. Это
превращает inState в Ticker! Мы также сообщаем AnimationController о том,
как долго хотим анимировать значения с помощью свойства duration, и в на-
шем случае это одна секунда (1000 миллисекунд).

Далее мы должны создать объект Animation и связать его с AnimationControl
ler. Есть несколько подклассов, которые мы могли бы использовать. Я выбрал,
пожалуй, самый простой: Tween. Он позволит нам задать последовательность от
начального до конечного значения, которые здесь составляют от 0 до 17.

Почему именно эти значения? Смысл в том, чтобы создать так называемый
«основной игровой цикл» (main game loop). Это хитрый способ сообщить о том,
что мы хотим, чтобы какая-либо функция выполнялась один раз при смене
кадра. Но сколько времени занимает такая итерация? Что ж, здесь мы делим

305

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

общее время на количество тиков. Это означает, что 1000 делится на 60. Полу-
чается 16.666667. Округлите до 17 – вот он, наш диапазон. Короче говоря, мы
хотим, чтобы функция основного игрового цикла выполнялась один раз в 17
миллисекунд, то есть она будет выполняться 60 раз в секунду (примерно). Вот
что делает анимация gameLoopAnimation: она выдает числа от 0 до 17 в течение
1 секунды, один раз в 17 миллисекунд.

Теперь, когда все настроено, как надо, мы должны подключиться к gameLoop
Animation, чтобы выполнять свою работу. Происходит это в двух местах. Во-пер-
вых, вы должны заметить, что через одну секунду эта анимация будет завер-
шена. Последовательность значений будет исчерпана. Нам, очевидно, нужно,
чтобы анимация повторялась снова и снова. Поэтому мы задаем функцию-слу-
шатель (listener), которая выполняется каждый раз, когда меняется статус на-
шего объекта Animation. Эта функция будет вызываться два раза – когда анима-
ция начинается и заканчивается. Нас интересует только окончание анимации
(когда inStatus имеет значение completed) – в этом случае мы вызываем мето-
ды reset() и forward() нашего AnimationController. Первый метод сбрасывает
значение в начальное, а второй запускает анимацию снова.

А еще мы должны знать о том, когда генерируется новое число в последо-
вательности, чтобы мы могли вызвать функцию gameLoop, которая реализует
основной игровой цикл. Метод addListener() в экземпляре Animation делает
именно это.

Когда основной игровой цикл подключен и готов к работе, нам просто нуж-
но сбросить все переменные состояния игры:

resetGame(true);

Мы собираемся разобрать его позже, так что давайте пока это пропустим.
Дальше идет:

InputController.init(player);

Объект InputController отвечает за обработку пользовательского ввода, но
и о нем я расскажу немного позже. Но взгляните, в этой функции есть еще одна
строка:

gameLoopController.forward();

Здесь запускается игровой цикл, а значит, наша игра запущена. Ура! Наши
объекты научились двигаться по экрану!

Сброс состояния игры
В начале игры, во время взрыва игрока или же когда энергия доставляется на пла-
нету, игру необходимо перезапустить. С этим нам поможет функция resetGame():

void resetGame(bool inResetEnemies) {
	 player.energy = 0.0;
	 player.x = (screenWidth / 2) – (player.width / 2);

306

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER
	 player.y = screenHeight – player.height – 24;
	 player.moveHorizontal = 0;
	 player.moveVertical = 0;
	 player.orientationChanged();

Сначала мы избавляем корабль от энергии, центрируем его по горизонта-
ли и смещаем к нижней границе экрана. Затем мы должны сбросить значения
moveHorizontal и moveVertical, которые определяют направление движения,
и сообщить об этом остальному коду с помощью вызова orientationChanged().

crystal.y = 34.0;
randomlyPositionObject(crystal);

Следом за игроком и кристалл возвращается в стартовую позицию. Обрати-
те внимание, что после первого вызова функции resetGame() нет смысла уста-
навливать свойство «y» нашего кристала, поскольку оно не меняется, но по-
вторная установка не принесет вреда. Свойство «x» устанавливается функци-
ей randomlyPositionObject(), которую мы рассмотрим позже, но по названию
понятно, что она делает!

Планета задается практически так же:

planet.y = screenHeight – planet.height – 10;
randomlyPositionObject(planet);

Свойство «y» должно учитывать высоту планеты, чтобы она не свисала с ниж-
ней части экрана (10 пикселей – это произвольное значение, но я выбрал его
так, чтобы начальная позиция корабля была примерно по центру вертикальной
оси планеты).

Следом идут противники (возможно):

if (inResetEnemies) {
	 List xValsFish = [70.0, 192.0, 312.0];
	 List xValsRobots = [64.0, 192.0, 320.0];
	 List xValsAliens = [44.0, 192.0, 340.0];
	 List xValsAsteroids = [24.0, 192.0, 360.0];
	 for (int i = 0; i < 3; i++) {
	 	 fish[i].x = xValsFish[i];
	 	 robots[i].x = xValsRobots[i];
	 	 aliens[i].x = xValsAliens[i];
	 	 asteroids[i].x = xValsAsteroids[i];
	 	 fish[i].y = 110.0;
	 	 robots[i].y = fish[i].y + 120;
	 	 aliens[i].y = robots[i].y + 130;
	 	 asteroids[i].y = aliens[i].y + 140;
	 	 fish[i].visible = true;
	 	 robots[i].visible = true;
	 	 aliens[i].visible = true;

307

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER
	 	 asteroids[i].visible = true;
	 }
}

Когда метод resetGame() впервые вызывается из firstTimeInitialization(),
ему передается значение true в качестве значения аргумента inResetEnemies.
Это приводит к выполнению показанного блока кода. Когда игрок взрывается,
передается false, чтобы пропустить эту настройку, так как нет смысла сбрасы-
вать позиции вражеских объектов, а когда энергия доставляется на планету –
снова передается true.

Логика сброса здесь проста: у нас есть четыре списка (по одному для каждо-
го типа врагов), которые содержат значения «x» для каждого врага. Вместо того
чтобы вычислять их динамически, я решил, что будет проще использовать «ма-
гические числа». Важно отметить, что это позволило легко ввести нужный раз-
брос значений без большого количества кода: расстояние между врагами изме-
няется, чтобы избежать «пустых коридоров», которые игрок смог бы слишком
легко пройти. Также я меняю значения «y» так, чтобы ряды врагов становились
плотнее при приближении к кристаллу. Мы еще должны убедиться, что все вра-
ги отображаются на экране (значение их свойства visible равно true), потому
что после передачи энергии на планету они взрываются и исчезают. Поэтому
их нужно будет показать заново.

Осталось только две небольшие задачи:

explosions = []; player.visible = true;

Позже вы увидите, как обрабатываются взрывы, а пока достаточно знать, что
список explosions необходимо очистить. Также нам необходимо сделать игро-
ка видимым, на случай если он успел взорваться. Это воскресит его и позволит
повторить попытку.

Основной игровой цикл
Наконец, мы подошли к основной функции игрового цикла, которая вызыва-
ется 60 раз в секунду, каждые 17 миллисекунд, как это указано при настройке
анимации:

void gameLoop() {
crystal.animate();

Первое, что нужно сделать, – это запросить анимацию кристалла. Как вы ви-
дели в коде GameObject, это запускает циклическую смену изображений (кад
ров), что добавляет нашему кристаллу немного цветных переливов.

Далее мы должны оживить и переместить врагов-паразитов:

for (int i = 0; i < 3; i++) {
	 fish[i].move();
	 fish[i].animate();

308

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER
	 robots[i].move();
	 robots[i].animate();
	 aliens[i].move();
	 aliens[i].animate();
	 asteroids[i].move();
	 asteroids[i].animate();
}

Паразиты, по три каждого типа, оживают и начинают двигаться. Сохране-
ние логики этих функций в классах GameObject и Enemy теперь должно иметь
для вас смысл: это избавляет нас от необходимости писать лишний код. Затем
пора двигаться и оживать игроку:

player.move();
player.animate();

Обратите внимание, что точный порядок всех этих вызовов не имеет особо-
го значения. Вызов player.animate() перед player.move(), или анимирование
игрока раньше паразита, – это не имеет принципиальной разницы.

Теперь мы перейдем к нашим взрывам:

for (int i = 0; i < explosions.length; i++) {
	 explosions[i].animate();
}

В это время на экране может не быть взрывов, или он может быть один (если
игрок ударил врага), или их может быть двенадцать (если энергию только что
доставили на планету, после чего все паразиты взрываются). Итак, это простой
цикл, где каждая итерация дает возможность анимировать отдельный взрыв
в списке.

Пока что все было очень просто, мы обновляли местоположение и внешний
вид наших игровых объектов. Но, конечно, это еще не все: у нас также должна
быть логика, чтобы сделать игру настоящей. Наша логика будет следующей:

if (collision(crystal)) {
	 transferEnergy(true);
} else if (collision(planet)) {
	 transferEnergy(false);
} else {
	 if (player.energy > 0 && player.energy < 1) {
	 	 player.energy = 0;
	 }
}

Первая часть этого кода проверяет, столкнулся ли игрок с кристаллом или
планетой. Функция collision() реализует эту проверку, но мы рассмотрим ее
позже. А пока запомните, что она просто возвращает true, если игрок и ука-
занный объект столкнулись, иначе – false.

309

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

Если мы коснулись кристалла, то нам нужно передать энергию на корабль
(или на планету с корабля), для этого есть функция transferEnergy(), которую
мы скоро рассмотрим. Передача true говорит о том, что столкновение произо
шло с кристаллом, а false означает планету, вы можете увидеть это на ветке
else if.

Следующая ветвь else позволяет избежать «читерства»: если у игрока есть
энергия, но корабль не успел заполниться ею на 100 %, то вся энергия теряется.
Так игрок не сможет собрать лишь часть энергии и при этом получить за нее
полный кредит после доставки на планету. Это было бы ужасно для экономики
солнечной системы Горгоны (а также, скорее всего, привело бы к войнам меж-
ду капитанами, правда, из-за хрупкости кораблей эти войны были очень ко-
роткими, но что-то я отвлекся), поэтому мы должны это предотвратить прямо
здесь и сейчас! Поскольку подобная ситуация может возникнуть только в том
случае, если игрок не контактирует ни с кристаллом, ни с планетой, ветвь else
для этой логики отлично подходит.

Далее нам нужно проверить наличие столкновений с паразитами:

for (int i = 0; i < 3; i++) {
	 if (collision(fish[i]) || collision(robots[i]) ||
	 	 collision(aliens[i]) || collision(asteroids[i])) {
	 	 	 audioCache.play("explosion.mp3");
	 	 	 player.visible = false;
	 	 	 GameObject explosion = GameObject(screenWidth,
	 	 	 	 screenHeight, "explosion", 50, 50, 5, 4,
	 	 	 	 () { resetGame(false);}
);
	 	 	 explosion.x = player.x;
	 	 	 explosion.y = player.y;
	 	 	 explosions.add(explosion);
	 	 	 score = score – 50;
	 	 	 if (score < 0) { score = 0; }
		 }
	 }

Очевидно, что нам требуется проверять каждого врага в отдельности, от-
сюда и потребность в циклах. Чтобы избежать вложенных циклов, я проверяю
сразу все виды врагов на каждой итерации. Если происходит какое-либо столк
новение, мы сначала воспроизводим звук взрыва. audioCache, который мы со-
здали ранее, обеспечивает корректное воспроизведение аудио с помощью ме-
тода play(). Все, что вам нужно сделать, – это передать ему имя файла для про-
игрывания (без префикса «assets/», поскольку audioplayers предполагают, что
именно там находятся файлы). Легкотня! Далее игрок должен быть скрыт, по-
тому что на его месте появится взрыв. Так что следующий наш шаг – создание
экземпляра GameObject для взрыва. Он будет там, где находится игрок (оши-
бочка, находился!), и тогда GameObject добавляется в список взрывов (который

310

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

означает, что он будет анимирован, начиная со следующего кадра). Результат –
взрывающийся корабль! Несколько очков вычитаются из баланса игрока за
проигрыш (счет не должен быть отрицательным), и мы закончили.

Остается только одна задача, одна строка кода, но очень важная:

state.setState((){});

Без этого ничего не происходит! Без обновления состояния (переменная state)
игрового поля Flutter не узнает, что что-то изменилось, так что build() не запус
тится снова и экран не обновится. Как думаете, это важный шаг?!

Теперь давайте рассмотрим функцию collision() и разберемся, что же она
собой представляет.

Проверка на наличие столкновений
Большинство видеоигр должны уметь обнаруживать столкновение двух объ-
ектов. Так что и нам нужно знать о моменте, когда корабль ударит по любо-
му из паразитов. Существует несколько способов сделать это, каждый со свои-
ми плюсами и минусами. Среди них есть один простой способ под названием
«ограничительные рамки» (bounding boxes). Этот подход проверяет границы
двух прямоугольников, и если они пересекаются, то происходит столкновение.

Как показано в примере на рис. 9-4, каждый игровой объект имеет ква-
дратную/прямоугольную область вокруг него, называемую ограничительной
рамкой. Эта рамка определяет границы области, занимаемой объектом. Об-
ратите внимание, что на рисунке верхний левый угол ограничительной рам-
ки объекта 2 находится внутри ограничительной рамки объекта 1. Это и есть
область столкновения (collision area). Вы можете обнаружить такую область,
выполнив ряд простых проверок, сравнивающих границы каждого объекта.
Если какое-либо из условий неверно, то столкновения не произошло. Напри-
мер, если низ объекта 1 находится выше верха объекта 2, то столкновения не
было. Фактически, поскольку вы имеете дело с квадратным или прямоуголь-
ным объектом, у вас есть только четыре условия для проверки, любое из кото-
рых, будучи ложным, исключает возможность столкновения.

311

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

Рисунок 9-4. Основная концепция работы ограничительных рамок

Однако этот алгоритм не дает идеальных результатов. Например, вы иног
да будете видеть, как корабль «ударяет» объект, в то время как он внешне его
даже не касается. В других случаях объекты могут немного соприкоснуться,
но это не будет зарегистрировано как столкновение. Вращение корабля также
имеет значение, поскольку простой алгоритм не сможет обработать изменен-
ную геометрию объекта, так как он не будет квадратным (и идеально выров-
ненным по вертикали или горизонтали). Это можно исправить более сложной
версией алгоритма или с помощью проверок на уровне отдельных пикселей.
Тем не менее подход ограничительных рамок, показанный здесь, дает «доста-
точно хорошие» результаты – в игру можно играть даже с такой погрешностью.

Теперь мы можем рассмотреть функцию collision(), на которую ссылались
в предыдущем разделе:

bool collision(GameObject inObject) {
	 if (!player.visible || !inObject.visible) { return false; }
	 num left1 = player.x;
	 num right1 = left1 + player.width;
	 num top1 = player.y;
	 num bottom1 = top1 + player.height;
	 num left2 = inObject.x;
	 num right2 = left2 + inObject.width;
	 num top2 = inObject.y;
	 num bottom2 = top2 + inObject.height;
	 if (bottom1 < top2) { return false; }

если:
Объект1 X/Y = 10/10,
Объект2 X/Y = 10/10,
Ширина и высота обоих = 40
тогда:
Лево1 = Объект1 X = 10,
Лево2 = Объект2 X = 40,
Верх1 = Объект1 Y = 10,
Верх2 = Объект2 Y = 40,
Право1 = Объект1 X + Ширина= 50,
Право2 = Объект2 X + Ширина = 80,
Них1 = Объект1 Y + Высота = 50,
Низ2 = Объект2 Y + Выста = 80…

Рамка Объекта 1

Область
Столкно-

вения

Рамка Объекта 2

…тогда:
Низ1(50) < Верх2(40) = false,
Верх1(10) > Низ1(50) = false,
Право1(50) < Лево2(40) = false,
Лево1(40) > Право2(50) = false,
следовательно:
столкновение произошло.

312

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER
	 if (top1 > bottom2) { return false; }
	 if (right1 < left2) { return false; }
	 return left1 <= right2;
}

Если игрок или объект, который мы проверяем на столкновение, не отобра-
жается, то нет необходимости проверять дальше, ведь игровые объекты скры-
ваются только при взрыве. После этого мы рассчитываем сравниваемые зна-
чения, то есть координаты верхней (top), нижней (bottom), левой (left) и пра-
вой (right) границ игрока и заданного объекта. Это всего лишь четыре простые
проверки, которые сообщат вам, произошло ли столкновение.

Размещение объекта в случайной точке
После того как игрок заберет всю энергию из кристалла, или перенесет ее на
планету, или игра перезагрузится, кристалл и планета располагаются случай-
ным образом с помощью вызова метода randomlyPositionObject():

void randomlyPositionObject(GameObject inObject) {
	 inObject.x = (random.nextInt(
	 	 screenWidth.toInt() – inObject.width)).toDouble();
	 if (collision(inObject)) {
	 	 randomlyPositionObject(inObject);
	 }
}

Как видим, мы используем метод nextInt() объекта random, созданного при
запуске приложения. Требуемое значение должно быть в диапазоне от нуля до
ширины экрана минус ширина объекта, чтобы объект всегда был на экране и не
задевал его края. Только горизонтальное положение объекта является случай-
ным, поэтому результирующее случайное значение устанавливается в его свой-
ство «x». Другой объект не может находиться в том же месте, что и игрок, по
этому мы вызываем collision() для проверки этого условия, и если происхо-
дит столкновение, то randomlyPositionObject() вызывается рекурсивно, пока
не будет выбрана позиция без столкновения.

Передача энергии
Когда корабль «сталкивается» с кристаллом или планетой, энергия должна пе-
редаваться. Для этого вызывается функция transferEnergy():

void transferEnergy(bool inTouchingCrystal) {
	 if (inTouchingCrystal && player.energy < 1) {

Если игрок прикасается к кристаллу, то мы должны убедиться, что корабль
еще не заполнен. Значение energy варьируется от 0 до 1, поскольку это соот-
ветствует диапазону значений виджета LinearProgressIndicator.

313

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

Когда происходит первый контакт, нам нужно воспроизвести соответству-
ющий звук:

if (player.energy == 0) { audioCache.play("fill.mp3"); }

При первом касании кристалла энергия, конечно, будет равна нулю, поэто-
му это условие выполняется.

В дальнейшем энергия увеличивается на одну сотую каждую итерацию игро-
вого цикла, пока игрок получает энергию. Также значение energy ограничива-
ется сверху единицей:

player.energy = player.energy + .01;
if (player.energy >= 1) {
	 player.energy = 1;
	 randomlyPositionObject(crystal);
}

Кроме того, когда корабль заполнен, кристалл перемещается в случайную
позицию и перестает собирать энергию.

Ветка else if, для контакта с планетой, будет следующей:

} else if (player.energy > 0) {

Конечно, это работает только при наличии энергии на корабле, поэтому мы
проверяем ее.

Затем, как и при контакте с кристаллом, мы хотим воспроизвести другой
звук при контакте с планетой, поэтому:

if (player.energy >= 1) {
	 audioCache.play("delivery.mp3");
}

И, как и в случае с кристаллом, энергия на корабле регулируется:

player.energy = player.energy – .01;

Конечно, при изменении значения energy специальный индикатор должен
отобразить эти изменения.

Еще есть немного логики, которую мы должны реализовать при передаче
энергии на планету:

if (player.energy <= 0) {
	 player.energy = 0;
	 audioCache.play("explosion.mp3");
	 score = score + 100;
	 for (int i = 0; i < 3; i++) {
	 	 Function callback;
	 	 if (i == 0) {
	 	 	 callback = () { resetGame(true); };
		 }

314

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER
	 	 fish[i].visible = false;
	 	 GameObject explosion = GameObject(screenWidth,
	 	 	 screenHeight, "explosion", 50, 50, 5, 4, callback);
	 	 explosion.x = fish[i].x;
	 	 explosion.y = fish[i].y;
	 	 explosions.add(explosion);
	 	 robots[i].visible = false;
	 }
}

Здесь мы гарантируем, что энергия не может быть меньше нуля, воспроиз-
водим звук взрыва и увеличиваем счет игрока. Это все потому, что пришло вре-
мя взрывать паразитов! Цикл выполняется, паразиты скрываются, и на их мес
те появляется взрыв. Обратите внимание, что callback-функция, которую вы
видели ранее при просмотре класса GameObject, подключена только к первому
объекту взрыва. Это позволяет перезапустить игру после завершения анима-
ции.

Примечание. Код, который вы видите здесь для рыб, повторяется для роботов, инопланетян и астерои
дов, поэтому я сэкономил немного места, не показывая их здесь.

Результат выполнения этого кода показан на рис. 9-5 – красивое массовое
убийство паразитов!

Рисунок 9-5. Бум! Вы все проиграли!

Но они возвращаются, так что победа нашего героя была недолгой. :(

315

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

Все под контролем: InputController.dart
Последний фрагмент кода, который мы рассмотрим, – это класс InputControl
ler, и вы уже видели подключение его к событиям GestureDetector. Данный
контроллер реализует все элементы управления движением игрока и начина-
ется следующим образом:

import "packageflutter/material.dart";
import "Player.dart";

double touchAnchorX;
double touchAnchorY;
int moveSensitivity = 20;

После очевидного импорта у нас есть три переменные. Способ работы схе-
мы управления заключается в том, что игрок помещает палец в любом месте
на экране, и оно становится «якорной точкой» (anchor point). Представьте себе
игровой джойстик. Центральное положение и есть якорная точка. Теперь, ког-
да игрок перемещает палец, новая позиция относительно этой якорной точки
представляет движение в определенном направлении. Если его палец, скажем,
на 20 пикселей выше якорной точки, то он хочет переместить корабль вверх.
Если пользователь убирает палец и затем нажимает в другое место, у нас появ-
ляется новая якорная точка. В каком-то смысле это «виртуальный джойстик»
в любом удобном месте экрана. Итак, нам нужны две переменные, чтобы за-
писать координаты X и Y якорной точки. Нам также нужно знать, на сколько
пикселей требуется сместить палец, чтобы началось перемещение корабля –
это так называемая «чувствительность» джойстика. После некоторых экспери-
ментов я остановился на 20.

Нам, очевидно, также нужна ссылка на игрока:

Player player;

И эта ссылка сохраняется при вызове метода init() из метода firstTime
Initialization():

void init(Player inPlayer) { player = inPlayer; }

Надеюсь, вы помните, что сначала нам нужно обработать три события Gesture
Detector: onPanStart (когда игрок опускает палец вниз), onPanUpdate (когда он
двигает пальцем) и onPanEnd (когда он поднимает палец).

Сначала запускается событие onPanStart:

void onPanStart(DragStartDetails inDetails) {
	 touchAnchorX = inDetails.globalPosition.dx;
	 touchAnchorY = inDetails.globalPosition.dy;
	 player.moveHorizontal = 0;
	 player.moveVertical = 0;
}

316

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

Задача проста: сохранить новую якорную точку и убедиться, что игрок не
двигается. Объект DragStartDetails, переданный в этот метод, содержит не-
сколько фрагментов информации. Наиболее важными для нас являются global
Position.dx и globalPosition.dy для горизонтальной (x) и вертикальной (y) по-
зиций перетаскивания.

Далее идет функция onPanUpdate(), где выполняется большая часть работы
этого класса:

void onPanUpdate(DragUpdateDetails inDetails) {
	 if (inDetails.globalPosition.dx < touchAnchorX – moveSensitivity) {
	 	 player.moveHorizontal = -1;
	 	 player.orientationChanged();
	 } else if (inDetails.globalPosition.dx >
	 	 touchAnchorX + moveSensitivity) {
	 	 player.moveHorizontal = 1;
	 	 player.orientationChanged();
	 } else {
	 	 player.moveHorizontal = 0;
	 	 player.orientationChanged();
	 }
	 if (inDetails.globalPosition.dy < touchAnchorY – moveSensitivity) {
	 	 player.moveVertical = -1;
	 	 player.orientationChanged();
	 } else if (inDetails.globalPosition.dy >
	 	 touchAnchorY + moveSensitivity) {
	 	 player.moveVertical = 1;
	 	 player.orientationChanged();
	 } else {
	 	 player.moveVertical = 0;
	 	 player.orientationChanged();
	 }
}

Это может выглядеть сложно, но это не так: все, что здесь делается, – это
простое сравнение координат для определения того, в какую сторону игрок на-
правляет свой корабль. Затем вызывается метод, который изменяет ориента-
цию (направление движения) корабля. Для начала мы проверяем изменение
координат по оси «x», а затем повторяем эту же логику для оси «y». В результа-
те этих манипуляций мы получаем полноценный виртуальный джойстик, ко-
торый управляет направлением движения корабля.

Наконец, нам просто нужно обработать событие onPanEnd:

void onPanEnd(dynamic inDetails) {
	 player.moveHorizontal = 0;
	 player.moveVertical = 0;
}

ГЛАВА 9  FLUTTERHERO: ИГРА FLUTTER

Все, что нам нужно здесь сделать, – это остановить любое активное движе-
ние.

Поздравляю! У нас есть полностью готовая игра, написанная на Flutter!

Что дальше?
Вот и все! Вы сделали это! Три готовых Flutter-приложения, а последнее – игра!
В этой главе вы узнали о таких вещах, как виджет Positioned, генерация слу-
чайных чисел, обработка жестов, AnimationController, Tween, анимации и про-
игрывание звуков. Вы также узнали (если, конечно, не встречались с этим рань-
ше), как проектировать игры.

Я искренне надеюсь, что вам понравилась книга «Flutter на практике» и вы
многому научились. У меня никогда не было цели сделать из вас эксперта по
Flutter – это слишком обширная тема для одной книги! Но если я выполнил
свою задачу хотя бы частично, то у вас теперь есть прочная основа, на которой
можно дальше развивать свои знания. Я также предоставил вам необходимые
строительные блоки для создания собственных приложений на основе Flutter.

Итак, погрузитесь в дальнейшее изучение, не сидите сложа руки, идите
и создавайте великие мобильные приложения с помощью Flutter и, в некото-
рой степени, я надеюсь, с помощью данной книги!

319

УКАЗАТЕЛЬ

A
addListener(), метод,  305
addRoomInvite(), метод,  241
AlertDialog, виджет,  118, 119
Align, виджет,  87
AlwaysStoppedAnimation, виджет,  299
Android Studio,  31, 32

выпадающий список устройств,  36
значок горячей перезагрузки,  40
.idea, каталог,  43

AnimatedContainer, виджет,  127, 128
AnimatedCrossFade, виджет,  128, 129
Animation, объект,  303, 304
animationCallback, свойство,  290
AnimationController,  303, 304
API,  149, 150
Appointments, объект,  197

модель,  197
список встреч,  199

с индикатором даты,  199
экран ввода,  204
build(), метод,  200
Calendar Carousel,  198, 199, 201
DateTime, конструктор,  199
decoration,  199
_deleteAppointment(), метод,  203
Divider, виджет,  202
_editAppointment, метод,  203
import,  198
_showAppointments(), метод,  201
showModalBottomSheet(),

функция,  201
Slidable, виджет,  194
Theme.of(), функция,  202
TimeOfDay, конструктор,  202

AppointmentsDBWorker.dart,  198
AppointmentsModel.dart,  197

Assertions,  73

Asynchronous Javascript And XML
(AJAX),  223

AudioCache, класс,  302, 309
audio_cache.dart, модуль,  301

B
BottomSheet, виджет,  120, 122
BoxConstraints, класс,  89
break, ключевое слово,  58

C
Calendar Carousel, плагин,  198, 199,

201
Center, виджет,  24, 84, 88
Chip,  145, 146
CircularProgressIndicator,  141, 243
clearCurrentRoomMessages(),

метод,  241
collection, библиотека,  154, 156
collision(), функция,  308, 311
Column, виджет,  84, 85
Comet, технология,  223
connector.create(), метод,  266
Connector.dart,  242

связанные с клиентом
обработчики сообщений,  246

связанные с сервером функции
сообщений,  245

CircularProgress Indicator,  243
connectToServer(),  244
hidePleaseWait(),  243
showDialog(),  242
socket.io,  242

connector.post(), метод,  277
connector.post(), функция,  277
ConstrainedBox, виджет,  89
Contacts,  206

экран редактирования

320

﻿  УКАЗАТЕЛЬ

контактов,  211
avatarFile,  213
build(), метод,  212
GestureDetector, виджет,  215
ImagePicker, класс,  215
keyboardType, свойство,  214
onPressed, обработчик,  213
renameSync(), функция,  217
_save(), метод,  216
TextFormField, виджет,  212

экран списка контактов,  207
CircleAvatar, виджет,  209
delete(), метод,  208
deleteSync(), функция,  211
itemBuilder(), функция,  210
join(), метод,  208
onPressed, обработчик,  208
onTap, обработчик,  209, 210
path, свойство,  208
ScopedModel,  207
substring(), метод,  209

Contacts.dart,  207
ContactsDBWorker.dart,  207
ContactsModel.dart,  206

Container, виджет,  88
contains(), метод,  54, 55
containsAll(), метод,  54, 55
convert, библиотека,  157
Corona SDK,  19
crypto, библиотека,  156
CupertinoApp, виджет,  85
CupertinoPageScaffold,  86
currentFrame, свойство,  290

D
Dart,  21, 22, 28

и Python,  22
ключевые моменты,  22
преимущества,  21
спецификация,  23

DartPad,  46, 72
DecoratedBox, виджет,  125, 126
dictionary,  54
Drag и Drop,  131

E
Expanded, виджет,  87, 201

F
fakeMethod(),  56
firstTimeInitialization(), функция,  297,

302, 307
FittedBox,  89
FloatingActionButton, виджет,  146

backgroundColor, свойство,  148
onPressed, свойство,  148
Scaffold, виджет,  147
shape, свойство,  148

Floating Action Button, FAB,  37, 207,
263

Flutter,  19
минусы,  27

дерево виджетов,  28
размер приложения,  29
реактивное

программирование,  29
только для мобильных

устройств,  27
Google,  28

преимущества,  27
виджеты,  28
горячая перезагрузка,  27
инструменты,  29
кросс-платформенность,  28
специфические для платформы

виджеты,  29
Dart,  28

FlutterBook,  158
асинхронная функция,  165
конфигурации и библиотеки,  161

flutter_calendar_carousel,
виджет,  162

flutter_slidable,  162
image_picker,  162
intl,  162
path_provider,  162
pubspec.yaml, файл,  161
scoped_model,  161
sqflite,  161

321

﻿  УКАЗАТЕЛЬ

структура кода приложения,  163
экран списка контактов

и встреч,  159
экраны вкладок Notes и Tasks,  160
DefaultTabController,  166
FlutterBook, класс,  165
getApplication

DocumentsDirectory(),
функция,  164

getTemporaryDirectory(),
функция,  164

main(), функция,  164
main.dart, файл,  163

FlutterChat,  218
административные

привилегии,  218
пользователи,  218
Drawer, виджет,  219
main.dart,  239

именованные маршруты,  251
build(), метод,  251
LoginDialog,  250
startMeUp(),  249

FlutterPad,  47
Flutter SDK,  30

командная строка,  30
flutter doctor,  30

forEach(), метод,  55, 72
Form, виджет,  103

элементы,  103
currentWidget,  106
Decoration, свойство,  107
GlobalKey, класс,  106
key, свойство,  106
LoginData, класс,  106
_MyApp State, класс,  106
TextFormField,  107
validator, свойство,  107

frameCount, свойство,  290
frameSkip, свойство,  290, 291

G
gameLoop(), функция,  307

анимация,  307

взрывы,  308
столкновения,  309
audioCache,  309
collision(), функция,  308
else, ветвление,  309
Enemy, класс,  308
GameObject, класс,  308

GameObject, класс,  287
анимация,  290
иерархия классов,  287
конструктор,  290
подклассы,  287
свойства,  290
API,  289
baseFilename,  289
draw(), метод,  291
Enemy, класс,  291
GameObject, класс,  308

GlobalKey,  106
greetAgain(), метод,  71

H
hash,  54
hashCode(),  56
hidePleaseWait(), функция,  243

I
Icon, виджет,  141

font_awesome_flutter, плагин,  143
Icons, класс,  142
Playground, приложение,  142

if, оператор,  59
Image, виджет,  143
InputController, класс,  300, 305

виртуальный джойстик,  315
DragStartDetails, объект,  316
DragUpdateDetails,  316
firstTime Initialization(), метод,  315
Gesture Detector, событие,  315
onPanEnd, событие,  316
onPanStart, событие,  315
onPanUpdate(), функция,  316

Internet Engineering Task Force
(IETF),  224

322

﻿  УКАЗАТЕЛЬ

is, ключевое слово,  57
isEmpty(), метод,  55
isNotEmpty(), метод,  55

L
LinearProgressIndicator,  141
loadAll(), метод,  302
LoginDialog.dart,  252

вход пользователей,  255
AppDrawer.dart,  258
build(), метод,  253
GlobalKey,  252
Home.dart,  257
Lobby.dart,  260

M
main.dart,  296

взрывы,  300
события мыши,  300
build(), метод,  297, 298
GameScreenState, класс,  297
GestureDetector, виджет,  300
LinearProgressIndicator,  298
Positioned, обертка,  298
services.dart, модуль,  296
Stack,  298, 300
SystemUiOverlay.bottom,

элемент,  297
TickerProviderStateMixin,  297

Map, класс,  54
MaterialApp, виджет,  85, 163
material.dart, библиотека,  85
math, пакет,  301
MediaQuery, класс,  302
metadata,  79
Model.dart,  239

свойства,  239
типичный класс модели,  240
addMessage(),  240
clearCurrentRoomMessages(),

метод,  241
removeRoomInvite(), метод,  241
setRoomList(), метод,  240

N
Navigator, виджет,  94

BottomNavigationBar, виджет,  95
MaterialPageRoute, виджет,  95
pop(), метод,  95
push(), метод,  95
Stepper, виджет,  100
TabBar,  98
TabBarView,  98
TabController, виджет,  99

nextInt(), метод,  312
Node,  219

веб-сайт,  220
взаимодействие,  221
определение,  219
пример,  222
установка и запуск,  220

Node Package Manager (NPM),  226
Notes, FlutterBook,  227

слой базы данных,  175
execute(), метод,  176
init(), метод,  176
join(), метод,  176
noteFromMap(), функция,  179
NotesDBWorker, класс,  175
path.dart, модуль,  175
query(), метод,  178
rawInsert(), метод,  178
sqflite, плагин,  175
update(), метод,  179

экран ввода
build(), метод,  180
decoration,  189
FocusScope, класс,  187
GlobalKey,  185
_save(), метод,  190
Scaffold, виджет,  187
SnackBar, сообщение,  191
TextFormField,  185, 188
trailing, свойство,  188
update(), метод,  191

экран списка,  179
build(),  180
_deleteNote(), метод,  183

323

﻿  УКАЗАТЕЛЬ

ListTile, метод,  182
ListView, виджет,  181
Scaffold,  180
secondaryActions, список,  182
showSnackBar(), метод,  184
SlidableDrawerDelegate(),  182

Model, класс,  174
Notes.dart, файл,  172

numFrames, свойство,  289

O
obj.fakeMethod(),  56
onSelected, обработчик,  273
Opacity, виджет,  125

P
Padding, виджет,  88
Palm OS,  18
Personal Information Manager,  158
Player, класс,  293

конструктор,  294
направление,  295
anglesToRadiansConversion

Table,  294
draw(), метод,  294
orientationChanged(), метод,  295

PopupMenuButton, виджет,  148
Positioned, виджет,  291
pubspec.yaml,  286
pushNamedAndRemoveUntil(),

метод,  260

R
randomlyPositionObject(),

функция,  306, 312
remove(), метод,  55
removeRoomInvite(), метод,  241
resetGame(), функция,  305
RESTful, серверы,  222
Room.dart,  271

диалог приглашения
пользователя,  278

AlertDialog, конструктор,  279
BoxDecoration, класс,  280

build(), метод,  251
cодержимое главного экрана,  275
connect.invite(),  281
connector.kick(),  281
ExpansionPanelList, виджет,  271
itemBuilder, функция,  274
leave string,  273
onSelected, обработчик,  273
PopupMenuEntry, виджет,  274

RotatedBox,  89
Row, виджет,  84

S
sayName(), метод,  63
Scaffold, виджет,  86, 87, 98, 147, 187
scale(), метод,  88
Set, класс,  54
setRoomList(), метод,  240
setUserList(), метод,  241
showDatePicker(), функция,  112, 168
SimpleDialog, виджет,  116
SizedBox, виджет,  90, 243
Skia, библиотека,  20
SnackBar, виджет,  119
someLongRunning Function(),  74
Stack, виджет,  291
StatefulWidget, класс,  39, 98, 111
Switch, оператор,  58

T
Tasks, задачи,  192

модель,  192
экран ввода,  196, 204
экран списка,  192

build(), функция,  193
Checkbox,  194
DateTime, коструктор,  194
deleteTask(), метод,  196
loadData(), метод,  194
onTap(), обработчик

событий,  196
Slidable,  194

DBWorker,  193
Tasks.dart,  193

324

﻿  УКАЗАТЕЛЬ

Text, виджет,  87, 89
ThemeData, виджет,  86, 124
Ticker, объект,  303
tokens, маркеры,  52
Tooltip, виджет,  115
toString(), метод,  56
transferEnergy(), функция,  312
Transform, виджет,  88, 126, 294

U
UI, структура,  162
UltimateHero, класс,  66
UserList.dart,  268
utils, утилиты,  166

BaseModel,  167
path_provider,  168
setChosenDate(), функция,  168
showDatePicker(), функция,  167
split(), функция,  167
utils.dart, файл,  166

V
valueColor, свойство,  141, 299
variables, переменные,  49

константы и конечные
значения,  50

объявление и инициализация,  49
visible, свойство,  290
void, ключевое слово,  59

W
WebSocket и socket.io,  222

в JavaScript API,  224
протокол,  224
AJAX,  223
clearPreferences, сообщение,  225
Comet,  223
emit(), метод,  225
hanging-GET,  223
on(), метод,  225
subscribe(), метод,  225
upgrade,  224

WidgetsApp, виджет,  85

А
анимации и переходы,  127

Animated, виджет,  131
Animated Container, виджет,  127,

128
AnimatedCrossFade, виджет,  128,

129
AnimatedDefaultTextStyle,  129, 130
AnimatedOpacity, виджет,  130, 131
AnimatedPosition, виджет,  130
Stack, виджет,  131
Transition, виджет,  131

асинхронное программирование,  74

Б
библиотеки,  75
библиотеки фреймворка Flutter,  150

animation,  150
foundation,  151
gestures,  151
painting,  151
services,  152
widgets,  153

библиотеки Dart,  153
async,  153
collection,  154
convert,  154
core,  153
io,  155
math,  155
ui,  153

В
виджеты,  23, 28

иерархия,  24
пользовательский интерфейс,  	

24, 26
build(),  24
StatefulWidget,  25
StatelessWidget,  25

виджеты ввода,  103
Выбор даты и времени,  112
Checkbox,  108
Dismissible,  114

325

﻿  УКАЗАТЕЛЬ

Form,  103
Radio,  111
Slider,  111
Switch,  110

виджеты компоновки,  83
основы,  84
Card,  90
Divider,  90
Drawer,  92
MyApp, класс,  85

виджеты стиля,  123
DecoratedBox,  125, 126
Opacity,  125
Theme и ThemeData,  124
Transform,  126

Г
генераторы,  78
горячая перезагрузка,  40

в Android Studio,  41

Д
дженерики,  80

З
задачи,  192

класс для работы с базой
данных,  193

экран ввода,  196
экран списка,  192

И
игра,  282

анимация объектов,  285
история,  282
каталог ресурсов,  284, 287
компоновка,  283
main.dart, файл,  286

игровая логика,  301
первичная инициализация,  302
передача энергии,  312

else if, ветвление,  313
explosion,  314
GameObject, класс,  314

LinearProgressIndicator,
виджет,  312

переменные,  301
сброс состояния игры,  305
Animation, объект,  303
AnimationController,  304
collision(), функция,  310, 312
curve, свойство,  304
randomlyPositionObject(),  312

К
клиентская часть,  239

CreateRoom.dart,  264
класс виджета,  264
построение формы,  266, 267
build(), метод,  251
connector.create(),  266
UserList.dart,  268

ключевое слово as,  57
код сервера,  226

объект дескриптора
пользователя,  227

объекты дескриптора
комнаты,  227

сообщения,  228
вход в комнату,  234
выход из комнаты,  236
закрытие комнаты,  236
исключение пользователя из

комнаты,  237
отправка сообщения,  235
приглашение пользователя в

комнату,  235
проверка пользователей,  229
просмотр списка комнат,  232
создание комнаты,  231
список пользователей,  233
сonnection,  229

createServer(), метод,  228
NPM,  226
socket.io,  228

комментарии документации,  48
конструкции,  57

326

﻿  УКАЗАТЕЛЬ

Л
логические значения,  53

М
многострочный комментарий,  48

О
обработка исключений,  76, 77
объектно-ориентированное

программирование,  288
однострочные комментарии,  48
ООП в Dart,  62

абстрактные классы,  68, 69
видимость,  70
интерфейсы,  68
ключевое слово this,  65
конструкторы,  64
методы,  63
методы Getter и Setter,  67
операторы,  70
подклассы,  66
экземпляры класса,  63

операторы,  60

П
перечисления,  56
пользовательские операторы,  62
приложение,  39

структура,  42
android, каталог,  43
.gitignore,  44
*.iml,  44
ios, каталог,  43
lib, каталог,  43
.metadata,  44
.packages,  44
pubspec.lock и pubspec.yaml,  44
readme,  44
res, каталог,  43
test, каталог,  43

build(), метод,  39
Center, виджет,  39
Column, виджет,  39
FAB,  37

main(), метод,  39
MaterialApp, виджет,  39
MyHomePage, класс,  39
runApp(), метод,  39
Scaffold,  39

проекты,  33
Application,  33
Module,  33
Package,  33
Plugin,  33

просмотр данных,  132
DataTable, виджет,  134
GridView, виджет,  136
ListTile, виджет,  138
ListView, виджет,  138
PageView, виджет,  140
Table, виджет,  133

Р
разработка мобильных

приложений,  18
интернет,  19
платформы,  18
SDK,  19

С
связанные с клиентом обработчики

сообщений,  246
связанные с сервером функции

сообщений,  245
строковые значения,  51

Т
типы данных,  51

классы List и Map,  53
логические значения,  53
числовые значения,  52

У
управление логикой потока

команд,  57
оператор if,  59
циклы,  57
switch,  58

﻿  УКАЗАТЕЛЬ

управление состоянием,  168
BaseModel, класс,  171
loadData(), метод,  172
notifyListeners(), метод,  169
scoped_model,  169
ScopedModelDescendent,  170
setStackIndex(), метод,  172
setState(), парадигма,  169

Ф
функции,  71

параметры,  71
forEach(), метод,  72
greet(), функция,  71
main(), функция,  71
nestedFunction(),  73

Ц
циклы,  57, 58
циклы do и while,  58

Книги издательства «ДМК Пресс» можно заказать в торгово-издательском	
холдинге «Планета Альянс» наложенным платежом, выслав открытку 	

или письмо по почтовому адресу: 115487, г. Москва,
2-й Нагатинский пр-д, д. 6А.

При оформлении заказа следует указать адрес (полностью), по которому	
должны быть высланы книги; фамилию, имя и отчество получателя.	

Желательно также указать свой телефон и электронный адрес.
Эти книги вы можете заказать и в интернет-магазине: www.a-planeta.ru.

Оптовые закупки: тел. +7 (499) 782-38-89
Электронный адрес: books@alians-kniga.ru.

Фрэнк Заметти

Flutter на практике
Прокачиваем навыки мобильной разработки
с помощью открытого фреймворка от Google

Главный редактор Мовчан Д. А.

dmkpress@gmail.com

Перевод Тищенко А.С.

Науч. редактор Черников В. Н.

Корректоры Синяева Г. И.

Верстка Орлов И. Ю.

Дизайн обложки Мовчан А. Г.

Формат 70×90 1/16. Гарнитура «PT Serif». 	
Печать цифровая. Усл. печ. л. 23,99.

Тираж 200 экз.
Веб-сайт издательства: www.dmkpress.com

	Flutter на практике_обложка
	Practical Flutter final.pdf
	Об авторе
	О техническом рецензенте (обозревателе)
	О переводе
	Благодарности
	Введение
	ГЛАВА 1
	FLUTTER: ПЛАВНОЕ ПОГРУЖЕНИЕ
	Медитации над бездной
	Что за (глупое) название?
	Dart: язык богов?
	Виджеты окружают!
	Ближе к делу: плюсы и минусы Flutter
	Хватит болтать, начинаем практику с Flutter!
	Flutter SDK
	Android Studio

	Типичное приложение «Hello, World!»
	Горячая перезагрузка: вот что я люблю!
	Базовая структура приложения Flutter
	Еще парочка моментов «под прикрытием»
	Итого

	ГЛАВА 2
	МГНОВЕННОЕ РУКОВОДСТВО ПО DART
	Вещи, которые вы должны знать
	Все о комментариях – без лишних комментариев
	Все меняется: переменные
	Ну он и тип... типы данных
	Перечисления – если одного значения мало!
	А ты его точно знаешь? Ключевые слова «as» и «is»
	Плыть по течению: управление логикой потока команд
	Больше, чем ничто: void
	Операторы
	Коротко про ООП в Dart
	Кое-что о функциях
	Что такое Assertions
	Вне времени: асинхронность
	Тсс, тихо! Библиотеки (и видимость)
	Для тебя я сделаю исключение: обработка исключений
	У меня есть сила: генераторы
	Мета-Dart: метаданные
	Пообобщаемся? Дженерики, или обобщения

	Подведем итоги

	ГЛАВА 3
	СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ I
	Набор виджетов
	Layout (компоновка)
	Навигация
	Ввод данных
	Диалоговые и всплывающие окна

	Подведем итоги главы

	ГЛАВА 4
	СКАЖИ ПРИВЕТ МОЕМУ МАЛЕНЬКОМУ ДРУГУ FLUTTER. ЧАСТЬ II
	Виджеты стиля
	Theme и ThemeData
	Opacity
	DecoratedBox
	Transform

	Анимации и переходы
	AnimatedContainer
	AnimatedCrossFade
	AnimatedDefaultTextStyle
	Несколько других: AnimatedOpacity, AnimatedPosition,
PositionTransition, SlideTransition, AnimatedSize, ScaleTransition, SizeTransition и RotationTransition

	Drag и Drop
	Просмотр данных
	Table
	DataTable
	GridView
	ListView и ListTile

	Остальные виджеты
	CircularProgressIndicator (CupertinoActivityIndicator)
и LinearProgressIndicator
	Icon
	Image
	Chip
	FloatingActionButton
	PopupMenuButton

	Базовые библиотеки
	Основные библиотеки фреймворка Flutter
	Библиотеки Dart
	Вспомогательные библиотеки

	Итого

	ГЛАВА 5
	FLUTTERBOOK. ЧАСТЬ I
	Что мы делаем?
	Старт проекта
	Конфигурации и библиотеки
	Структура UI
	Структура кода приложения
	Отправная точка
	Глобальные утилиты
	Управление состоянием
	Начнем с простого: заметки
	Точка отсчета: Notes.dart
	Модель: NotesModel.dart
	Слой базы данных: NotesDBWorker.dart
	Экран списка: NotesList.dart
	Экран ввода: NotesEntry.dart

	Что в итоге

	ГЛАВА 6
	FLUTTERBOOK. ЧАСТЬ II
	Сделаем это: задачи
	TasksModel.dart
	TasksDBWorker.dart
	Tasks.dart
	TasksList.dart
	TasksEntry.dart

	Назначим свидание: Appointments (встречи)
	AppointmentsModel.dart
	AppointmentsDBWorker.dart
	Appointments.dart
	AppointementsList.dart
	AppointmentsEntry.dart

	Как с вами связаться: контакты
	ContactsModel.dart
	ContactsDBWorker.dart
	Contacts.dart
	ContactsList.dart
	ContactsEntry.dart

	Подведем итоги

	ГЛАВА 7
	FLUTTERCHAT. ЧАСТЬ I: СЕРВЕР
	Можем ли мы это построить? Да, мы можем! Но... что «это»?!
	Node
	Сохранение линий связи открытыми: socket.io
	Код сервера FlutterChat
	Два Bits of State и Object заходят в Bar...
	Поймай меня, если сможешь: сообщения
	Заходим в парадную дверь: проверка пользователей

	Итого

	ГЛАВА 8
	FLUTTERCHAT. ЧАСТЬ II: КЛИЕНТ
	Model.dart
	Connector.dart
	Связанные с сервером функции сообщений
	Связанные с клиентом обработчики сообщений

	main.dart
	LoginDialog.dart
	Вход для существующих пользователей

	Home.dart
	AppDrawer.dart
	Lobby.dart
	CreateRoom.dart
	Строим форму

	UserList.dart
	Room.dart
	Меню
	Содержимое главного экрана
	Приглашение или исключение пользователей

	Итого

	ГЛАВА 9
	FLUTTERHERO: ИГРА FLUTTER
	История такова
	Базовая компоновка
	Структура каталога и исходные файлы компонентов
	Конфигурация: pubspec.yaml
	Класс GameObject
	Расширение GameObject: класс Enemy
	Расширение GameObject: класс Player
	Место, где все начинается: main.dart
	Основной игровой цикл и основная игровая логика
	Начнем
	Первичная инициализация
	Коротко об анимациях во Flutter
	Сброс состояния игры
	Основной игровой цикл
	Проверка на наличие столкновений
	Размещение объекта в случайной точке
	Передача энергии

	Все под контролем: InputController.dart
	Что дальше?

	Указатель

