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A Beginning 

This book has been created as resource for people interested in the Go language within the 

context of computer science. The approach taken is to provide computer science and 

programming concepts, principles, definitions and explanations, and then to relate the language 

capabilities to each concept or principle. The content is assigned into separate chapters 

arranged alphabetically, thus this is a cyclopedia. 

  

This book is written to provide support for a range of people, from beginning programmers who 

are being introduced to concepts of programming and computer science, up to experienced 

programmers who wish to compare and contrast Go with languages they already know. 

  

This book very useful for people to whom English is a second language, and who need clear 

explanations of technical vocabulary that is not always well defined from other sources. 

  

In some cases, the Go language uses a rather different approach when providing solutions to a 

problem domain. Examples include using composition instead of inheritance, ad hoc 

polymorphism rather than parametric polymorphism, encapsulation via packages and variable 

capitalization, and the built-in support for concurrency. 

  

Many design patterns exist to compensate for weaknesses in certain programming languages. 

Where the Go language does not have those weaknesses, Go does not need to implement 

those patterns. Many Go patterns relate to concurrency. 

  

Some concepts relate to one another in conceptual clusters. For example: concurrency, 

parallelism, goroutines, and channels form a cluster; as do composition, ad hoc polymorphism, 

embedding, method sets, and interfaces; while literals, code points, runes, and UTF-8 form 

another cluster. Reference words are provided within this document to tie concepts with other 

concepts in a natural cluster. These words map to section titles and are in blue text. 

  

Code examples are deliberately brief. They are provided only to illustrate a presented concept. 

All code examples have been tested and are compliant with go version 1.11.1. There are a few 

additional code examples provided in Appendix II. These illustrate interesting programming 

features of the language that did not warrant a separate topic. All code examples can be 

executed directly in the Go playground. This is currently located at “play.golang.org” or 

“play.golang.com”. 

 

To best use the code examples, download Kindle for the PC. You may then copy/paste any and 

all code examples into the Go playground. You will see they all work properly. Be aware that the 

playground acts as a single core processor, so while concurrency is available there is no 

parallelism. Where this impacts the code execution, it is called out in the relevant section. 
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Abstraction 

The word abstraction is derived from the Late Latin word “abstractiōn” which means separation, 

and this word descends from earlier Latin words “abs” and “trahere” which meant “to draw away 

from”. In the context of computer science abstraction means filtering out, or hiding, or taking 

away information that is unnecessary to solve a given problem. Abstraction is applied both to 

data, and to the control of data. 

  

Data abstraction applies limitation to data - it defines how data is represented and how data is 

manipulated. From this principle comes the concept of abstract data typing. Every abstract data 

type specifies data sizing, and an interface which specifies the set of methods or operations 

used on that type. The term “abstract data type” is normally simplified to “data type”. See Types. 

 

For example, the concept of an “integer” is represented in programming languages as a data 

type. The data type “integer” is implemented in Go with limitations related to size. Go handles 

these limitations by making distinctions between signed integers: int, int8, int16, int32, and int64; 

and unsigned integers: uint, uint8, uint16, uint32, and uint64. These are all different data types; 

int8 means 8 bits or 1 byte, int16 means 16 bits or two bytes, and so on. Specifying “var x int32” 

is a declaration of a variable x as a data type int32. 

  

The reason size is an important component of data typing is that executable programs run on 

physical machines (even if the program runs in a virtual environment, that virtual environment 

ultimately runs on physical hardware). This means that all data within a program during runtime 

must reside in memory or is temporarily resident in physical hardware registers. The compiler 

must know how to map data entities to the proper sizes so that correct memory allocations are 

performed when the program is translated down to assembly and then machine code. More 

information is provided on this topic in the section on Data Structures. 

  

Control abstraction hides the details of the actual processing required to perform operations 

(actions). The phrase “control instructions” refers to the sequence of instruction statements (flow 

of control) within a computer that execute a task. A control flow statement is something like “if 

<something is true> { <do something> } else { <do something else> }”. For example: “if x > 5 { x 

= y + 1 } else { x = z }”. 

  

The details of how the comparison is made, how the determination of whether it is true or false 

that x is greater than 5, and how the assignment operation is performed, is hidden from the 

programmer.  What is really happening under the covers is that compiled source code becomes 

assembly language which becomes machine code which becomes binary bits (1’s and 0’s) 

which are actually electrical charges within the AND and OR gates and data registers of a 

computer. The details of “how it works” are abstracted (hidden). As is evident, abstraction 

occurs in multiple levels. 
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The control abstraction defines the operations that may be performed upon data. To take a 

simple example, for integers only the following mathematical control operations are permissible: 

multiplication, division, addition, subtraction, and remainder. 

  

There are levels of abstraction above programming language abstraction, these are generally 

referred to as “patterns”. A pattern is a general solution for a class of problems, and these are 

usually classified by level of scope. An architectural pattern applies to computing systems and 

subsystems, for example: the “Extract, Transform, and Load (ETL)” pattern, or the “Model, View, 

Controller” pattern. A design pattern (or solution pattern) is applied below the architectural level, 

and suggests a solution to a problem that will be resolved at the program level. Examples might 

be Mediator, Pipeline, Producer Consumer, etc. See the section on Patterns. 

  

Patterns that break down big problems into smaller problems often depend upon other patterns 

and language abstraction. For the Pipeline pattern as an example, in Go this is dependent upon 

the solution patterns concurrency and parallelism, and the language capabilities of goroutines 

and channels (control abstraction and data abstraction). See Concurrency and Parallelism, 

Goroutines and Channels. At each layer the abstraction describes what is to occur, but not how 

it will occur, the how is hidden. 

  

Go was designed to minimize the abstractions built into the language itself. It is quite capable of 

implementing higher level abstractions, but the language designers chose not to implement 

certain abstractions into the programming language itself. For example: enumeration, 

parametric polymorphism, generic types, assertions, exceptions, type inheritance, method 

overloading, and implicit numeric conversions are not built into the language. 

  

Go is not considered to be a strong language at the level of programmatic abstraction, and this 

is deliberate. Rather than building abstraction complexity into the language to solve problems, 

the Go approach has been to create a language with a lower level of control and data 

abstraction that can effectively support patterns above the language to solve problems. 

  

One capability that Go uses for abstraction all the time is interfaces. There are several topics 

that relate to interfaces, but the “Abstraction: Code Example” provides an illustration. The key 

thing about interfaces is that interfaces are an abstract type because they are described by their 

behavior (via their methods), and the types that satisfy the interface may implement the 

methods. Because the methods of an interface contain no code, they are abstract. See Method 

Set and Interface. 

  

In the following code example three new data types are defined based on the language types 

struct and float32. The new data types are Square, Rectangle, and Circle. For each new data 

type a single method is declared, each method calculates the area of a variable of the assigned 

type. Each method has the same name: Area(). Finally an interface is declared with one 

method, also called Area(). Therefore each of the three new data types also satisfies the 

interface, and the interface can be applied to all three data types. 
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The interface does not reveal how it does what it does, nor does it reveal the underlying 

representation of the values upon which it operates. This demonstrates interface abstraction. In 

practice, the usage of this approach is to enclose the data types, the methods, and the interface 

in a package, and only expose the interface and the data types. When a program imports the 

package, it may declare variables to be of the specified data types, and call the interface to 

manipulate the variables, but the importing program will have no insight into how the interface 

manipulates the variables. This is illustrated more fully in the topics of Encapsulation and 

Dependency Management. 

  

See the following simple code for an illustration of abstraction via an interface. This code may 

be executed in the Go Playground, currently located at play.golang.org. 

Abstraction: Code Example 

 

// Demonstrate example of interface abstraction 

package main 

 

// Package included to permit printing 

import "fmt" 

  

// Declare a new datatype 

type Square struct { 

side float32 

} 

  

// Declare a new datatype 

type Rectangle struct { 

length, width float32 

} 

  

// Declare a new datatype 

type Circle struct { 

radius float32 

} 

  

// A method for type Square 

func (s Square) Area() float32 { 

return s.side * s.side 

} 

  

// A method for type Rectangle 

func (r Rectangle) Area() float32 { 

return r.length * r.width 

} 
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// A method for type Circle 

func (c Circle) Area() float32 { 

return 3.14 * (c.radius * c.radius) 

} 

  

// Define interface abstractly, hiding how it operates on variables 

type Areas interface { 

Area() float32 

} 

  

// Demonstrate interface abstraction - identical call, different results 

func main() { 

 // Declare and assign value or values  to variables 

s := Square{side: 4.5} 

r := Rectangle{length: 5.2, width: 3.5} 

c := Circle{radius: 3.25}  

  

fmt.Println("Square sides are: ", s) 

fmt.Println("Rectangle sides respectively: ", r) 

fmt.Println("Circle radius is: ", c) 

  

// Define a variable of type interface 

var a Areas 

  

// Assign to the interface a variable of type Square 

a = s 

// Call the interface 

fmt.Println("Area of Square: ", a.Area()) 

  

// Assign to the interface a variable of type Rectangle 

a = r 

// Identical call to the interface 

fmt.Println("Area of Rectangle: ", a.Area()) 

  

// Assign to the interface a variable of type Circle 

a = c 

// Identical call to the interface 

fmt.Println("Area of Circle: ", a.Area()) 

} 

/* 

Prints the following: 

Square sides are each:  {4.5} 

Rectangle sides respectively :  {5.2 3.5} 

Circle radius is:  {3.25} 

Area of Square:  20.25 

Area of Rectangle:  18.199999 

Area of Circle:  33.166252 

*/ 
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Algorithm 

An algorithm may be defined as a set of rules specified in a well-defined formal language that 

provides a solution to a problem via a finite number of steps. The word is derived from a 

combination of the Medieval Latin word “algorismus” (which originated from Arabic) and the 

Greek word “arithmos” (which means number). 

  

To solve a problem, an approach is to break the problem into smaller pieces (sub-problems). 

Where any of the smaller pieces is not small enough, functionally decompose it into even 

smaller pieces. Within computer science, this act of decomposition is also called factoring. This 

word derives from the Latin “factor” which means “to make”. 

  

Once the problem is sufficiently decomposed into separate smaller problems, the solution is 

built up by applying algorithms (the finite sequence of steps) to each sub-problem. Each 

subproblem is assigned its own algorithm, and if any problem requires more than one algorithm 

then it is further decomposed into subproblems until each subproblem only has one algorithm 

assigned to solve that problem. 

  

Go is a well-defined procedural language used to apply algorithms to solve problems. With a 

problem decomposed into pieces, individual areas of functionality are assigned to solve each 

piece of the problem. Each functional area (usually implemented as functions or methods) 

should be designed to implement a single algorithm in code. Where those Go functions can 

operate independently of one another, they can become goroutines. See Functions, Goroutines, 

and Method Set. 

  

Consider a simple problem of data manipulation. This breaks down into input (get the 

information), process (manipulate data), and output (write out the information somewhere). 

Taking the input subproblem - is it from a file, a database, or provided via a calling requestor 

(network based input)? Assume it is a file. Then this breaks down into sub-subproblems: finding 

the file (where is the file), opening the file (requires access permissions), and reading data from 

the file (is the data in lines, records, a continuous string of data, or binary, and so on). 

  

So, to limit the scope, assume the subproblem relates to file access. Typical things that must be 

handled are: file name, access permissions, file creation, file reading and writing, and error 

handling. For a simple example of file creation, assigning permissions, writing, reading, and 

error handling operations, see the following code example: 

Algorithm: Code Example 

// Demonstrate the algorithmic concept in the context of file input/output 

package main 

  

import ( 
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"fmt"     // Need for printing 

"io/ioutil"    // Need to be able to do file read/write operations 

"log"     // Need for logging of errors 

) 

  

func main() { 

 // Specify a filename and path 

f := "/tmp/myfile.txt" 

  

// Create file, assign permission, and write to it 

err := ioutil.WriteFile(f, []byte("foobar barfoo\n"), 0644) 

if err != nil { // err is == nil when call is successful 

      // Fatal is like Print() followed by a call to os.Exit(1) 

log.Fatal(err) 

} 

  

 // Read from file, place contents in variable v 

v, err := ioutil.ReadFile(f)  

if err != nil { // err is == nil when call is successful, which it will be 

log.Fatal(err) 

} 

  

// Print file name, print file contents, v is type []byte, requires string conversion 

fmt.Println("File name is: ", f) 

fmt.Println("File data is: ", string(v)) 

  

// Specify file that does not exist 

f = "/tmp/nosuchfile.txt" 

v, err = ioutil.ReadFile(f) // Read from file (this will fail!) 

if err != nil { // err will be != nil since no such file to read 

log.Fatal(err) // Since file does not exist, error condition occurs 

} 

} 

/* 

Prints something like the following: 

File name is:  /tmp/myfile.txt 

File data is: foobar barfoo 

<date time stamp> open /tmp/nosuchfile.txt: No such file or directory 

*/ 
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Channels 

Channel means the the course through which something is directed. It is derived from the 

Middle English word “chanel” which derived from the Latin “canālis” meaning “waterpipe”. In 

computing pipes permit communication between processes, between threads, or between 

lightweight threads (a thread may have many lightweight threads). In the context of Go a 

channel is a pipe that enables communications between concurrent goroutines. 

  

A channel is created via calling “make(chan type)”, for example, “make(chan int)” or “make(chan 

int, 10)”. A channel may be either unbuffered or buffered. The difference is that unbuffered 

channels enforce synchronous communication via the channel between two or more goroutines, 

while buffered channels permit asynchronous communication between goroutines. To create an 

synchronous channel, do not give it a size; to make it asynchronous, give it a size. The size 

specifies how many values of the designated type the channel will hold. 

  

When a goroutine sends data to a unbuffered channel, it then blocks until another goroutine 

does a receive from that channel; however if the goroutine sends data into a buffered channel it 

does not block unless the channel is full. For example, a channel defined like “ch1 := 

make(chan int, 10)” can hold 10 integer values, if a sender tries to place an 11th value into this 

channel when it already has 10 values, then the sender will block. 

  

When a goroutine performs a receive on either a synchronous or asynchronous channel, it will 

block until the channel receives a sent value, unless performing the channel read within a select 

statement. This reading within a select statement is performed when a goroutine does not want 

to block when receiving on a channel. Typically this situation occurs where the goroutine has 

other work to do other than channel processing, or where it might be monitoring multiple 

channels. For an example of this type of channel operation, see: Multiplexing. 

  

While it is safe to attempt to read from a closed channel, attempting to write to a closed channel 

will cause a panic condition. One implication is that it is safer for a goroutine that writes to a 

channel to be responsible for closing the channel, and that there be only one writer to a 

channel. But if it is necessary for multiple writers to have write access to a channel, then a 

mutual exclusion lock can be used to control write access to the channel. See Mutex. 

  

Channels may either be declared as global variables, or by the calling function (such as within 

the main goroutine). The recommended practice is that the channels are passed as arguments 

to the goroutines which will use them.  

 

Channels may be specified to be bidirectional or unidirectional. Channels may be declared to be 

unidirectional for a goroutine by specifying this in the format of the channel parameter in the 

goroutines argument list during the function declaration.  

  

The following code example demonstrates the use of synchronous and asynchronous channels, 

passing channels as parameters to goroutines that will use the channels, and specifying passed 



A Cyclopedia of Go 
 

15 | P a g e  
 

channels as being read only, write only, or both. The select statement used here in the 

goroutines shows the use of one case to check an input channel but if nothing is there, to go to 

a second case and simulate doing some non-channel related work. 

  

The Goroutines section illustrates another example using channels, also see Concurrency and 

Parallelism. 

Channels: Code Example 

// Demonstrate basic functionality of channels 

package main 

  

import ( 

"fmt" 

"time" 

) 

  

// This goroutine receives a read only buffered asynchronous channel 

func mygo1(ch <-chan string) { 

fmt.Println("mygo1 started ") 

for { 

select { 

case s := <-ch: 

fmt.Printf("mygo1 received message %s\n", s) 

// Simulate work after receiving channel notification 

time.Sleep(1000 * time.Millisecond) 

case <-time.After(2000 * time.Millisecond): 

fmt.Println("mygo1 timed out waiting for message!") 

// Would do other non channel related work here 

} 

} 

} 

  

// This goroutine receives a read and write buffered asynchronous channel 

func mygo2(ch chan string) { 

fmt.Println("mygo2 started ") 

for { 

select { 

case s := <-ch: 

fmt.Printf("mygo2 received message %s\n", s) 

// Simulate work after receiving channel notification 

time.Sleep(1000 * time.Millisecond) 

case <-time.After(1000 * time.Millisecond): 

fmt.Println("mygo2 timed out waiting for message!") 

// Would do other non channel related work here 

} 

} 

} 
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// ch1 is a read/write buffered asynchronous channel, ch2 is a write only unbuffered synchronous channel 

func mygo3(ch1 chan string, ch2 chan<- string) { 

fmt.Println("mygo3 started ") 

for { 

select { 

case s := <-ch1: 

fmt.Printf("mygo3 received message %s\n", s) 

// Simulate work after receiving channel notification 

ch2 <- "mygo3 exits after processing only one message" 

return // Exit goroutine here 

case <-time.After(3000 * time.Millisecond): 

fmt.Println("mygo3 timed out waiting for message!") 

// Would do other non channel related work here 

} 

} 

} 

  

func main() { 

ch1 := make(chan string, 3) // Create buffered asynchronous channel 

ch2 := make(chan string)    // Create unbuffered synchronous channel 

go mygo1(ch1) 

go mygo2(ch1) 

go mygo3(ch1, ch2) 

 

// Give goroutines time to start 

time.Sleep(1000 * time.Millisecond) 

ch1 <- "Message One" 

ch1 <- "Message Two" 

ch1 <- "Message Three" 

 

// Wait a bit for goroutines to run 

time.Sleep(2000 * time.Millisecond) 

ch1 <- "Message Four" 

ch1 <- "Message Five" 

ch1 <- "Message Six" 

s := <-ch2 // Read response from mygo3 

fmt.Println(s) 

 

// Pause to show goroutines waiting for messages 

time.Sleep(6000 * time.Millisecond) 

fmt.Println("Exiting now") 

} 

/* 

Prints something like: 

mygo1 started 

mygo2 started 

mygo3 started 

mygo2 timed out waiting for message! 
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mygo2 received message Message Three 

mygo1 received message Message One 

mygo3 received message Message Two 

mygo2 timed out waiting for message! 

mygo3 exits after processing only one message 

mygo2 received message Message Five 

mygo1 received message Message Four 

mygo2 received message Message Six 

mygo2 timed out waiting for message! 

mygo1 timed out waiting for message! 

mygo2 timed out waiting for message! 

mygo2 timed out waiting for message! 

mygo1 timed out waiting for message! 

mygo2 timed out waiting for message! 

Exiting now 

*/ 
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Code Points 

Code points are the numerical values that make up a code space for character encoding, where 

the code space contains one or more character sets. Within the context of the Go language, the 

code space is specified as the UTF-8 character coding set. See UTF-8. 

  

Each code point is considered to reference a single “character”. The UTF-8 code points may be 

between one and four 8-bit bytes (called octets). The entire ASCII character set is represented 

by 128 single byte code points. The characters of all known languages, all mathematical 

symbols, and all ideograms, can be represented by the code points within the UTF-8 code 

space. 

  

Go source code is composed of characters that map to UTF-8. This means that the Go source 

code may contain any known character and may represent new characters as they are invented 

and assigned into the UTF-8 code space. 

  

Within Go documentation, the UTF-8 code points are often referred to as “runes”. The term rune 

and the term UTF-8 code point are synonymous in meaning (except when rune means data 

type, see below). 

  

This matters because a string of characters, which is a sequence of bytes, may contain non-

ASCII characters. There is not a one to one relationship between a byte and a character within 

a string. A given string character may exist in the code within one byte, or two bytes, or three 

bytes, or even four bytes. Therefore, a UTF-8 code point varies in size. 

  

While runes and UTF-8 code points mean the same thing, the Go language specification rune 

type is int32, which is four bytes. So, while a “rune” refers to a symbol representation which may 

vary from one to four bytes in the UTF-8 encoding space, the rune alias within the Go language 

refers to a type of int32. The purpose of the rune type within the Go language is so that any 

UTF-8 code point may be stored, without knowing in advance the actual size of the code point. 

Because UTF-8 code points may be at most four bytes, the int32 type is used for this purpose. 

  

Glyphs are composed of runes and so may be indirectly represented via the code space 

because the code points of the characters which make up the glyph are in the code space. The 

term glyph comes from Greek and is derived from glýphein which means “to hollow out” or “to 

engrave”. 

  

Go has a package called “strings”, which implements functions to manipulate UTF-8 encoded 

strings. For example, the strings package function ContainsRune() determines if a single given 

Unicode code point (rune) exists in a string. The strings package function ContainsAny() 

determines if any Unicode code points in one string also exist in a second string, either as a 

sequence or as individual characters. 
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The following example code shows how ASCII and non-ASCII characters are represented within 

string literals, including an ideographic symbol. The “strings” package is imported to show how 

code point information can be inspected. See Runes for information regarding how runes relate 

to characters and glyphs. Note: while Go handles all of the UTF-8 characters, the ebook format 

does not, so the following example uses an ideogram that the ebook can handle: the ♞. 

Code Points: Code Example 

// Show code points containing characters and ideograms 

package main 

  

import ( 

"fmt" 

"strings" 

) 

  

func main() { 

// ContainsRune finds whether a string contains a particular Unicode code point 

// Specification: func ContainsRune(s string, r rune) bool 

fmt.Println("Is 'v' inside \"aardvark\":", strings.ContainsRune("aardvark", 'v')) 

fmt.Println("Is 'v' inside \"buffalo\":", strings.ContainsRune("buffalo", 'v')) 

fmt.Println("Is '♞' inside \"a♞b\":", strings.ContainsRune("a♞b", '♞')) 

  

// ContainsAny reports whether any Unicode code points in string chars are within string s 

// Specification: func ContainsAny(s, chars string) bool 

fmt.Println("Is string \"♞\" inside \"a♞b\":", strings.ContainsAny("a♞b", "♞")) 

fmt.Println("Are both \"b & r\" inside \"foobar\":", strings.ContainsAny("foobar", "b & r")) 

fmt.Println("Is \"oba\" inside \"foobar\":", strings.ContainsAny("foobar", "oba")) 

fmt.Println("Is string \"♞\" inside \"foobar\":", strings.ContainsAny("foobar", "♞")) 

fmt.Println("Is \"\" inside \"foobar\":", strings.ContainsAny("foobar", "")) 

fmt.Println("Is \"\" inside \"\":", strings.ContainsAny("", "")) 

} 

/* 

The above code produces the following results: 

Is 'v' inside "aardvark": true 

Is 'v' inside "buffalo": false 

Is '♞' inside "a♞b": true 

Is string "♞" inside "a♞b": true 

Are both "b & r" inside "foobar": true 

Is "oba" inside "foobar": true 

Is string "♞" inside "foobar": false 

Is "" inside "foobar": false 

Is "" inside "": false 

*/ 
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Composition 

Composition means the act of combining different elements into a whole, and the term is 

originally from Latin (compositiō) via Middle English (composicioun). In computer science 

composition is the principle that entities can achieve polymorphism by incorporating other 

entities that contain the desired functionality. This approach focuses on behavior (what an entity 

can do) rather than content (what an entity has or owns). See Polymorphism. 

  

Since the Go design approach to composition is focused on what a type can do, rather than on 

what a type is, it avoids the hierarchical approach of inheritance. Go does not implement either 

classes or inheritance, but by combining types with interfaces, Go enables similar functionality 

without the overhead or the complexity. 

  

Go demonstrates different forms of composition: functional composition and type composition, 

where type composition includes both data type composition and interface type composition 

  

Type composition is implemented within the language via the technique of embedding. 

Composition and embedding are not the same thing. Composition is a design principle. 

Embedding is a programmatic language technique implementing the principle. 

  

Data type composition is implemented when a data type embeds another data type. That 

other data type may or may not have embedded interface methods. The way this is done in Go 

is a two step process. 

1. Create within a data type (often a struct) what is called an embedded or anonymous 

field, where this is a field that has a type but no name, and the data type has been 

previously declared 

2. If the data type that is embedded has implemented an interface, then the data type that 

has embedded another data type can also access the interface method or methods, and 

these methods are referred to as “promoted” within the context of the embedding type. 

  

Rather than include the data type composition code example here, instead see Embedding. 

  

Interface composition is the second aspect of type composition. This is also type composition 

because interfaces are types, they are types that contains zero or more methods. Assuming the 

interface has methods, a data type (often a struct but not always) may do a method declaration 

on an interface to access the methods, this is called embedding an interface. A type is 

considered to “satisfy” an interface if it incorporates all the methods of an interface. Also, one 

interface may embed one or more other interfaces. 

  

The interface composition code example is provided in the interface topic, see Interface. 

  

Functional composition means that results from function calls can be returned to other 

functions. For example, function a() may be passed as a parameter to function b(), as b(a()). 
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This may be extended to c(b(a())), and so on. Go supports this form of composition. Further 

examination of function composition is shown as follows: 

Composition: Code Example 

// Demonstrate function composition 

package main 

  

import ( 

"fmt" 

) 

  

func a(x, y int) (int, int) { 

fmt.Printf("Function a() received %d %d.\n", x, y) 

x = x + x 

y = y + y 

fmt.Printf("Function a() returning %d %d.\n", x, y) 

return x, y 

} 

  

func b(x, y int) (int, int) { 

fmt.Printf("Function b() received %d %d.\n", x, y) 

x = x + y 

y = x * y 

fmt.Printf("Function b() returning %d %d.\n", x, y) 

return x, y 

} 

  

func c(x, y int) (int, int) { 

fmt.Printf("Function c() received %d %d.\n", x, y) 

x = y / 2 

y = y * x 

fmt.Printf("Function c() returning %d %d.\n", x, y) 

return x, y 

} 

  

// Demonstrating functional composition 

func main() { 

x, y := c(b(a(1, 2))) 

fmt.Printf("Received: %d %d.\n", x, y) 

} 

/* 

Prints the following: 

Function a() received 1 2. 

Function a() returning 2 4. 

Function b() received 2 4. 

Function b() returning 6 24 

Function c() received 6 24. 
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Function c() returning 12 288. 

Received: 12 288 

*/ 
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Concurrency 

Concurrency comes from the Medieval Latin word “concurrentia” meaning “to run together”, and 

in the context of computer science it means that a program may call multiple functions and not 

wait for any of those functions to return. In Go this kind of function is called a goroutine. Rather 

than sequential logic (flow of control) where a series of sequential function calls are all pushed 

onto the same stack; with concurrent logic multiple stacks are in operation. See Stack. 

  

Concurrency does not mean parallelism. Programs with concurrency can run on a single 

processing core, while parallelism requires multiple cores. See Parallelism. 

  

If 100% of program execution is done in the processor (no input/output), then concurrency may 

be unnecessary. The concurrent program will run just slightly slower than in purely sequential 

logic due to the context switching required to load the separate stacks into and out of the 

processor core. For example: Assume there is a main goroutine that takes 1 second, a myf1 

goroutine that takes 10 seconds of processor time, and a myf2 goroutine that takes 10 seconds 

of processing time. Total time is 1 + 10 + 10 = 21 seconds, plus some context switching. 

  

However, if program execution is not 100% processor bound, then performance improvements 

are possible even if the program only has access to a single processor core. Assume there is a 

main goroutine that takes 1 second, a myf1 goroutine that interleaves 5 seconds of processing 

time with 5 seconds of I/O time, and a myf2 goroutine that interleaves 5 seconds of processing 

time with 5 seconds of I/O time. Assume the interleaving segments are each 1 second. Then the 

total program processing time can be reduced to 12 seconds (1 second for main, and 11 

seconds for myf1 and myf2), plus some context switching time. See the following image: 

  

 
  

Program performance is not the only reason to use concurrency. If a program has several 

distinct actions for which it is responsible, encapsulating each separate responsibility into a 

separate concurrent area of functionality implements the Single Responsibility Principle. So for 

example when communicating with a database: 

1. One area of responsibility is handling the database interface (connection, connection 

pooling, query language communication, disconnection) 

2. Another area of responsibility would be formatting of data sent to and received from the 

database into and out of internal data structures 

3. A third area of responsibility is accepting requests from entities needing to communicate 

with the database, and responding to those entities with data from the database 
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Go permits you to handle these separately by encapsulating each separate responsibility into 

goroutines. See Goroutines. 

  

The following code example implements a simple client and server scenario. The main 

goroutine launches a server goroutine and two client goroutines. Whenever the server receives 

a connection request from a client, it launches a connection handler and passes the connection 

established with the client to the connection handler, which then handles communication. 

Concurrency: Code Example 

// Demonstrates concurrency with a server handling multiple clients 

package main 

  

import ( 

"fmt" 

"io" 

"log" 

"net" 

"os" 

"time" 

) 

  

// Client goroutine 

func simulateClient1() { 

 // Connect to a server 

conn, err := net.Dial("tcp", "127.0.0.1:8000") 

if err != nil { 

log.Fatal(err) 

} 

  

// Ensure server disconnect when done 

defer conn.Close() 

  

// Communicate with the server 

for i := 1; i < 6; i++ { // Loop 5 times 

conn.Write([]byte(fmt.Sprintf("Client 1 sent message #%d\n", i))) 

time.Sleep(1000 * time.Millisecond) 

} 

  

conn.Write([]byte("Client 1 exiting\n")) 

} 

  

// Client goroutine 

func simulateClient2() { 

// Connect to a server 

conn, err := net.Dial("tcp", "127.0.0.1:8000") 

if err != nil { 

log.Fatal(err) 
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} 

  

// Ensure server disconnect when done 

defer conn.Close() 

  

 // Communicate with the server 

for i := 1; i < 4; i++ { // Loop 3 times 

conn.Write([]byte(fmt.Sprintf("Client 2 sent message #%d\n", i))) 

time.Sleep(1000 * time.Millisecond) 

} 

  

conn.Write([]byte("Client 2 exiting\n")) 

} 

  

// Handle the client connection for the server 

func connHandler(conn net.Conn) { 

 // Defer, but guarantee, to close the client connection 

defer conn.Close() 

  

// Copy from conn to os.Stdout until EOF or error 

n, err := io.Copy(os.Stdout, conn) 

if err != nil { 

log.Fatal(err) 

} 

fmt.Println("Number of bytes received from client:", n) 

fmt.Println("Server connection handler exiting") 

} 

  

// Server goroutine 

func simulateServer() { 

 // Create a server connection 

svrconn, err := net.Listen("tcp", "127.0.0.1:8000") 

if err != nil { 

log.Fatal(err) 

} 

  

// Defer, but guarantee, to close the server connection 

defer svrconn.Close() 

for { 

// Accept connection from client request 

conn, err := svrconn.Accept() 

if err != nil { 

log.Fatal(err) 

} 

  

// Let connection handler deal with client 

go connHandler(conn) 

} 
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} 

  

func main() { 

go simulateServer()         // Launch a server simulator 

go simulateClient1() // Launch a server client simulator 

go simulateClient2() // Launch a server client simulator 

// Give goroutines time to run 

time.Sleep(10 * (1000 * time.Millisecond)) 

fmt.Println("Main exiting") 

} 

/* 

Prints something like: 

Client 2 sent message #1 

Client 1 sent message #1 

Client 1 sent message #2 

Client 2 sent message #2 

Client 2 sent message #3 

Client 1 sent message #3 

Client 2 exiting 

Number of bytes received from client: 92 

Server connection handler exiting 

Client 1 sent message #4 

Client 1 sent message #5 

Client 1 exiting 

Number of bytes received from client: 142 

Server connection handler exiting 

Main exiting 

*/ 

  

  



A Cyclopedia of Go 
 

27 | P a g e  
 

Condition Variable 

There are occasions when a goroutine might want to check on an external condition before 

performing an action. This is a situation where a program may use a condition variable. Rather 

than polling to check the state of the condition, it is more efficient if the goroutine goes to sleep 

in a wait state, to be awoken when the condition changes. 

  

The general use case is when there are many workers available to perform a task or tasks, 

however sometimes no tasks are available for processing. In this case the workers need to wait. 

When tasks become available, the workers need to be informed. There are a couple of 

approaches to doing this in Go. 

  

One way is to use channels, where the worker goroutines either block on a read on separate 

individual synchronous channels (one for each worker); or collectively block on a common 

buffered asynchronous channel. Channels provide the flexibility to avoid blocking on a read by 

using select. Channels also provide the ability to wait with a timeout by using a call to 

“time.After(duration)” which returns a channel containing a timestamp after the duration has 

elapsed; when used in combination with the select statement listening to another channel then 

the goroutine can wait for time = duration and then move on. 

  

The other way is to use a common condition variable. Go provides the capability via the sync 

package which supports condition variables (as well as mutual exclusion locking, map functions, 

wait groups, and the pool capability for sharing data structures between goroutines). The four 

condition variable functions are: create a new condition variable via NewCond(), Wait() for a 

condition variable signal, Signal() a single goroutine waiting on a condition variable, and 

Broadcast() a signal to all goroutines waiting on a condition variable. 

  

The condition variable is of type Cond, which is a struct containing a single field of type Locker. 

Now type Locker is an interface type with two methods: Lock() and Unlock(). So the condition 

variable has mutual exclusion locking. See Mutex. 

  

Here is the major difference between using condition variables rather than channels when 

notifying goroutines of a state change. With a condition variable the goroutines will block 

indefinitely until notified. When using channels, the goroutines have the option of waiting for a 

while and then breaking from the wait state so they do some processing, then going back to 

check on the channel for notification. See Channels: Code Example for an example. 

  

The following code example shows two goroutines that block in a wait state on a condition 

variable inside a for loop. When the main goroutine sends a broadcast signal on that condition 

variable, the two goroutines wake up and commence processing. After processing, they loop 

back to wait again. This continues until the program exits. 

  

Condition Variable: Code Example 
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// Illustrate condition variable usage 

package main 

  

import ( 

"fmt" 

"sync" 

"time" 

) 

  

// Condition variable and send only channel 

func mygo1(c *sync.Cond, ch chan<- string) { 

 // Lock() to prevent panic of Wait() unlocking an unlocked mutex 

c.L.Lock() 

for { 

// Wait atomically unlocks c.L, suspends goroutine until signal received 

c.Wait() // After signal received, Wait locks c.L before returning 

  

// Signal received, done waiting 

fmt.Println("mygo1 received signal") 

  

// Simulate doing work 

time.Sleep(2000 * time.Millisecond) 

  

// Just have this here to let main know mygo1 is done 

ch <- "mygo1 did some work" 

} // Loop forever until program ends 

} 

  

// Condition variable and send only channel 

func mygo2(c *sync.Cond, ch chan<- string) { 

 // L is of type Locker which is interface with 2 methods Lock() and Unlock() 

c.L.Lock() 

for { 

// Wait atomically unlocks c.L, suspends goroutine until signal received 

c.Wait()  // After signal received, Wait locks c.L before returning 

  

// Signal received, done waiting 

fmt.Println("mygo2 received signal") 

  

// Simulate doing work 

time.Sleep(1000 * time.Millisecond) 

  

// Just have this here to let main know mygo2 is done 

ch <- "mygo2 did some work" 

} // Loop forever until program ends 

} 

  

func main() { 
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 // Only need channel to know goroutines have done work 

ch := make(chan string) // Unbuffered synchronous channel 

  

// NewCond returns a new Cond with Locker L. 

c := sync.NewCond(&sync.Mutex{}) 

  

// Pass condition variable pointer and write only channel 

go mygo1(c, ch) 

go mygo2(c, ch) 

  

// Let goroutines get into their wait loops 

time.Sleep(100 * time.Millisecond) 

  

// Send the signal to wake up all Wait in goroutines  

c.Broadcast() 

  

// Collect goroutine exit messages      

fmt.Println(<-ch) 

fmt.Println(<-ch) 

  

// Let goroutines get into their wait loops 

time.Sleep(3000 * time.Millisecond) 

  

// Send the signal to wake up all Wait in goroutine 

c.Broadcast() 

  

// Collect goroutine exit messages   

fmt.Println(<-ch) 

fmt.Println(<-ch) 

fmt.Println("Exiting...") 

} 

  

/* 

Prints something like: 

mygo2 received signal 

mygo1 received signal 

mygo2 did some work 

mygo1 did some work 

mygo1 received signal 

mygo2 received signal 

mygo1 did some work 

mygo2 did some work 

Exiting... 

*/ 

 

  



A Cyclopedia of Go 
 

30 | P a g e  
 

Constants 

Constant refers to something that is unvarying, not changeable. The word comes from Late 

Middle English and is derived from the Latin word “constāre” which means “to stand firm”. 

  

Constants can only be declared as basic types: string literals, numbers, or booleans. 

  

String literals can be assigned to both constants and variables. String literals are untyped string 

constants and are referred to as “immutable” in the Go language specification. See the 

Immutability topic. 

  

Constants are expressions which are known at compile time. Constants cannot be assigned 

values that cannot be determined at compile time. Unlike variables, the compiler will not warn 

of, and but will permit, constants that are unused in a package. 

  

Once constants are assigned a value, the value of the constant may never be changed. 

  

Pointers may not be assigned to the address of a constant, the compiler forbids this. 

  

Go does not have an enumerated type in the language. But a set of constants can be created 

as a sequence of enumerated values, where the “constant generator” called iota can be used to 

initialize the set of constants. 

  

See the following for valid and invalid (commented out to compile) code: 

Constants: Code Example 

// Illustrate the use of constants 

package main 

  

import ( 

"fmt" 

"math" 

) 

  

const a = "hello" // Valid operation 

const b = 50   // Valid operation 

var c = 100 // Valid operation: also scope is for whole package, does not need to be used 

  

type yearInCollege int 

  

const ( 

_      yearInCollege = iota // 0 - assign to the “blank identifier” ‘_’ so 0 value is ignored 

freshman                       // 1 

sophomore                  // 2 

junior                         // 3 
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senior                         // 4 

) // All constants in the constant generator are of type yearInCollege 

  

type student struct { 

firstname string 

lastname  string 

year   yearInCollege 

} 

  

func main() { 

// a = "world" // Invalid operation: cannot assign new value to constant a 

// b = 25 // Invalid operation: cannot assign new value to constant b 

// const w = math.Sqrt(9)  // Invalid operation: constant value not determined until run time 

  

const x = 1      // Valid operation: integer constant x is assigned an integer, never used 

y := "foo"        // Valid operation: y is both declared and assigned a string constant value 

y = "bar"         // Valid operation: variable y is reassigned to a different string literal 

var z = math.Sqrt(9) // Valid operation: variable assignment can be made at run time 

s := student{"Big", "Dog", senior} // The struct is initialized with 2 strings and a constant 

  

fmt.Println(y, z, s)  // Variables must be used, constants do not have to be used 

  

i := 5 

j := 10 

p := &i // Valid operation: pointer can be assigned to address of variable 

fmt.Println(*p) 

p = &j // Valid operation: pointer can be assigned to another address of variable 

fmt.Println(*p) 

//p = &x // Invalid operation: pointer cannot be assigned to address of a constant 

//fmt.Println(*p) 

} 

/* 

Prints the following: 

bar 3 {Big Dog 4} 

5 

10 

*/ 
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Data Structures 

A structure is an object composed of one or more parts assembled in a particular way, and is 

considered as a whole. The word originates from the Latin “structūra”, which means “to fit 

together”. 

  

A data structure is a particular way of organizing data in computer memory. Each data structure 

is based either on a defined data type, or an aggregation of data types. The data types may be 

defined by the language or specified in a program. When specified in a program, the specified 

types may be based on the language defined types, or an aggregation of language defined and 

program specified types, or an aggregation of program specified types. 

  

Data structures have limitations on the operations that can be performed upon them, and the 

functions and methods that may be applied to them. The operation limitations are inherent to the 

language defined types, and the function and method limitations are based on the signatures of 

those functions or methods. 

  

All data structure elements exist within contiguous memory. But data structures composed of 

multiple elements may exist non-contiguously in the computer memory. For example, an 

individual struct is an aggregate data structure that exists within contiguous memory, but a 

linked list of structs is non-contiguous in the computer memory. 

  

A pointer is a data structure that “points” to another data structure. The pointer data structure 

contains one element within it, this is the address location of another data structure within 

computer memory. At this time on a 32-bit machine, the size of the pointer itself will be 4 bytes; 

whereas on a 64 bit machine, the size of the pointer itself will be 8 bytes. The reason is that it 

must potentially reference a much larger memory space. 

 

Following will be some graphic illustrations to show how data structures impact memory. At the 

end of this section will be four code examples showing how to derive the the information related 

to memory usage of various data structures. 

  

Suppose it is specified that: “x := [5]int16{1, 4, 9, 16, 25}” and that “y := &x”. On a 32 bit 

machine, this will result in array x consuming 10 bytes (as type int16 consumes only 2 bytes). 

Referencing the memory addresses and values would reveal something like the following: 
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Address Meaning Value Bytes 

0x10410020 Address of array x [1 2 3 4 5] 10 

0x10410020 Address of x[0] 1 2 

0x10410022 Address of x[1] 4 2 

0x10410024 Address of x[2] 9 2 

0x10410026 Address of x[3] 16 2 

0x10410028 Address of x[4] 25 2 

0x1040c128 Address of pointer y 0x10410020 4 

 

  

In the preceding table it is evident that the 20 bytes allocated for the array are contiguous, as 

seen by the trailing hexadecimal values in the address: 20, 22, 24, 26, 28. The address 

reference for the first cell in the array is the same as the address of the array itself. Finally, the 

pointer assigned to point to the array has the address of the array as its value. See Data 

Structures: Code Example - Array and Array Pointer. 

  

Another example will be to look at a linked list of structs that will also be loaded with the same 

five values. Examining the memory address will show that this data structure, while holding 

similar integer information, is scattered throughout the memory and is not contiguous. 

  

Referencing the memory addresses and values of the linked list nodes would reveal something 

like the following: 
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Address Meaning Value Bytes 

0x10444260 Address of node 1 20 

0x10444280 Address of node 4 20 

0x104442a0 Address of node 9 20 

0x104442c0 Address of node 16 20 

0x104442e0 Address of node 25 20 

0x1040c130 Address of pointer p 0x10444260 4 

 

  

In the preceding table it is evident that the 20 bytes allocated for each linked list element node 

are not contiguous, as seen by the trailing hexadecimal values in the address: 260, 280, 2a0, 

2c0, 2e0. (The addresses are hexadecimal, so the distance between each address is 32 bytes, 

not 20 bytes.) Finally, the pointer assigned to point to the first node in the linked list has the 

address of the first node as its value, and again the pointer is 4 bytes in size. See Data 

Structures: Code Example - Linked List. 

  

Interestingly, by using the package provided doubly linked list functionality, it does not matter if 

the assigned values are cast to type int16 or int64 before assignment, the node remains the 

same size. This is because if “unsafe.Sizeof(e.Value)” is performed, it will be revealed that the 

value is assigned into an 8 byte space. Because each node contains the value, a next pointer, a 

prev pointer, and a pointer to the list itself, that will be 8 + 4 + 4 + 4 bytes adding to 20 bytes. 

See the “container/list” package and follow the link to the “list.go” source code. 

  

The struct data type is contiguous in memory (including internal padding), and structs may 

embed other structs. Are the embedded structs actually part of the embedding structs memory 

sequence, or is something else going on? To understand struct sizing in memory, there is both 

alignment and padding happening. 

  

Two different structs with the same field types may have a different size due to the order of the 

fields in the struct. Suppose the following are declared: “var a struct {a string; b bool; c bool}”, 

“var b struct {a bool; b string; c bool}”, and “var c struct{a bool; b bool; c string}”. While all of 

these structs have the same sized fields, because they are in a different order in each struct, the 

structs are not all the same size. This is shown in the following graphic. 
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var a struct {a string; b bool; c bool} size in memory is 12 bytes (32 bit system) 

b0 b1 b2 b3 b4 b5 b6 b7 string 0x1040a0b0 

b8        bool 0x1040a0b8 

 b9       bool 0x1040a0b9 

  ba bb     padding 0x1040a0ba 

          

var b struct {a bool; b string; c bool}  size in memory is 16 bytes (32 bit system) 

c0        bool 0x1040a0c0 

 c1 c2 c3     padding 0x1040a0c1 

c4 c5 c5 c7 c8 c9 ca cb string 0x1040a0c4 

cc        bool 0x1040a0cc 

 cd ce cf     padding 0x1040a0cd 

 

 

         

var c struct{a bool; b bool; c string} size in memory is 12 bytes (32 bit system) 

d0        bool 0x1040a0d0 

 d1       bool 0x1040a0d1 

  d2 d3     padding 0x1040a0d2 

d4 d5 d6 d7 d8 d9 da db string 0x1040a0d4 
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Padding is different on 32-bit systems than on 64-bit systems. On 32-bit systems, the padding is 

to the nearest four bytes, whereas on a 64-bit system, padding to the nearest eight bytes. So, 

on a 64-bit system, the sizes of the 3 structs would be 24, 32, and 24 bytes respectively. The 

default size on a 64-bit system of a string data type is 16 bytes, not 8 bytes. However, a bool is 

1 byte regardless of whether it is a 32-bit or 64-bit system. The code that produces the 

displayed results is included in the data structures code examples section that follows. See Data 

Structures: Code Example - Struct Field Ordering. 

  

It is interesting to see what happens when a struct embeds a struct. The embedded struct is 

contiguous within the embedding struct. In the following example, the embedded struct has one 

field, which is a function type. As will be shown, function types consume 4 bytes in a 32 bit 

system. Note that the assigned string literal is not part of the struct itself, the string field merely 

points to the string literal. It is not possible to determine the address of a string literal, since it is 

a constant. Total size is 4 + 1 +1 + 2 + 8 = 16 bytes. See Data Structures: Code Example - 

Struct Embedding Struct. 

  

 type a struct {  f func(name string) string } 

var b struct{a; b bool; c bool; d string} 

e := b{b: true, c: true, d: "A great big very fat rabbit"} 

e.a = a{f: func(name string) string {return "Foo " + name}} 

b0 b1 b2 b3     func 0x1040a0b0 

b4        bool 0x1040a0b4 

 b5       bool 0x1040a0b5 

  b6 b7     padding 0x1040a0b6 

b8 b9 ba bb bc bd be bf string 0x1040a0b8 

 

  

Following are the four code examples demonstrating the memory usage of these data 

structures. 
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Data Structures: Code Example - Array and Array Pointer 

//Illustrate the impact on memory of an array and an array pointer 

package main 

  

import ( 

"fmt" 

"unsafe" 

) 

  

// Show array contiguous addresses, pointer value is first array address 

func a() { 

x := [5]int16{1, 4, 9, 16, 25} 

y := &x 

            fmt.Printf("Address of array x: %p\n", &x) 

            fmt.Printf("Value of array x: %v\n", x) 

            for i, _ := range x { 

fmt.Printf("Address of x[i]: %p; Value of array x[i]: %v\n", &x[i], x[i]) 

fmt.Println("Size of array cell:", unsafe.Sizeof(x[i])) // 2 bytes because int16 

    } 

            fmt.Printf("Address of pointer y: %p\n", &y) 

            fmt.Printf("Pointer to array has address: %p\n", y) 

            fmt.Printf("Pointer value is address: %v\n", y) 

fmt.Println("Size of pointer:", unsafe.Sizeof(y)) // 4 bytes pointer on 32 bit system 

} 

  

func main() { 

a() // Demonstrate array memory addresses and values 

} 

  

/* Prints something like the following: 

Address of array x: 0x10410020 

Value of array x: [1 4 9 16 25] 

Address of x[i]: 0x10410020; Value of array x[i]: 1 

Size of array cell: 2 

Address of x[i]: 0x10410022; Value of array x[i]: 4 

Size of array cell: 2 

Address of x[i]: 0x10410024; Value of array x[i]: 9 

Size of array cell: 2 

Address of x[i]: 0x10410026; Value of array x[i]: 16 

Size of array cell: 2 

Address of x[i]: 0x10410028; Value of array x[i]: 25 

Size of array cell: 2 

Address of pointer y: 0x1040c128 

Pointer to array has address: 0x10410020 

Pointer value is address: &[1 4 9 16 25] 

Size of pointer: 4 

*/ 
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Data Structures: Code Example - Linked List 

// Illustrate the impact on memory of a linked list 

package main 

  

import ( 

"container/list" 

"fmt" 

"unsafe" 

) 

  

// Show linked list has non-contiguous addresses, pointer value is address of first element 

func ll() { 

// Create a new list and put some numbers in it 

l := list.New() 

fmt.Println("New list created, length:", l.Len()) 

fmt.Println("Loading the list with 5 squares") 

// Load the list 

for i := 1; i < 6; i++ { 

l.PushBack(int16(i * i)) // Load with value of type int16 

} 

// Iterate through list and print its contents. 

for e := l.Front(); e != nil; e = e.Next() { 

fmt.Printf("Address of element: %p Value of element: %d\n", e, e.Value) 

fmt.Println("Size of list element:", unsafe.Sizeof(*e)) 

} 

fmt.Println("List length now:", l.Len()) 

p := l.Front() 

fmt.Printf("Pointer to list first element has address %p\n", &p) 

fmt.Printf("Pointer value is address %p\n", p) 

fmt.Println("Size of pointer:", unsafe.Sizeof(p)) // 4 bytes pointer on 32 bit system 

} 

  

func main() { 

ll() // Demonstrate linked list memory addresses and values 

} 

  

/* Prints something like the following: 

New list created, length: 0 

Loading the list with 5 squares 

Address of element: 0x10444260 Value of element: 1 

Size of list element: 20 

Address of element: 0x10444280 Value of element: 4 

Size of list element: 20 

Address of element: 0x104442a0 Value of element: 9 

Size of list element: 20 

Address of element: 0x104442c0 Value of element: 16 

Size of list element: 20 

Address of element: 0x104442e0 Value of element: 25 
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Size of list element: 20 

List length now: 5 

Pointer to list first element has address 0x1040c130 

Pointer value is address 0x10444260 

Size of pointer: 4 

*/ 

  

Data Structures: Code Example - Struct Field Ordering 

//Illustrate the memory impact of struct field ordering 

package main 

  

import ( 

"fmt" 

"unsafe" 

) 

  

func a() { 

var a struct { 

a string 

b bool 

c bool 

} 

fmt.Println("Size of struct a:", unsafe.Sizeof(a)) 

fmt.Printf("Address of struct a: %p\n", &a) 

fmt.Printf("Address of struct a.a: %p\n", &a.a) 

fmt.Printf("Address of struct a.b: %p\n", &a.b) 

fmt.Printf("Address of struct a.c: %p\n", &a.c) 

fmt.Println("Size is 12, on a 64 bit system would be padded to 24") 

} 

  

func b() { 

var b struct { 

a bool 

b string 

c bool 

} 

fmt.Println("Size of struct b:", unsafe.Sizeof(b)) 

fmt.Printf("Address of struct b: %p\n", &b) 

fmt.Printf("Address of struct b.a: %p\n", &b.a) 

fmt.Printf("Address of struct b.b: %p\n", &b.b) 

fmt.Printf("Address of struct b.c: %p\n", &b.c) 

} 

  

func c() { 

var c struct { 

a bool 

b bool 
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c string 

} 

fmt.Println("Size of struct c:", unsafe.Sizeof(c)) 

fmt.Printf("Address of struct c: %p\n", &c) 

fmt.Printf("Address of struct c.a: %p\n", &c.a) 

fmt.Printf("Address of struct c.b: %p\n", &c.b) 

fmt.Printf("Address of struct c.c: %p\n", &c.c) 

} 

  

func main() { 

a() 

b() 

c() 

} 

/* Prints something like the following: 

Size of struct a: 12 

Address of struct a: 0x1040a0b0 

Address of struct a.a: 0x1040a0b0 

Address of struct a.b: 0x1040a0b8 

Address of struct a.c: 0x1040a0b9 

Size is 12, on a 64 bit system would be padded to 24 

Size of struct b: 16 

Address of struct b: 0x1040a0c0 

Address of struct b.a: 0x1040a0c0 

Address of struct b.b: 0x1040a0c4 

Address of struct b.c: 0x1040a0cc 

Size of struct c: 12 

Address of struct c: 0x1040a0d0 

Address of struct c.a: 0x1040a0d0 

Address of struct c.b: 0x1040a0d1 

Address of struct c.c: 0x1040a0d4 

*/ 

  

Data Structures: Code Example - Struct Embedding Struct 

//Illustrating the effect on memory of a struct embedding another struct 

package main 

  

import ( 

"fmt" 

"unsafe" 

) 

  

func main() { 

type a struct { 

  f func(name string) string 

} 

type b struct { 
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   a 

   b bool 

   c bool 

   d string 

} 

e := b{b: true, c: true, d: "A great big very fat rabbit"} 

fmt.Printf("Address of struct e: %p\n", &e) 

fmt.Println("Size of struct e:", unsafe.Sizeof(e)) 

fmt.Printf("Address of struct e.a: %p\n", &e.a) 

fmt.Printf("Address of struct e.b: %p\n", &e.b) 

fmt.Printf("Address of struct e.c: %p\n", &e.c) 

fmt.Printf("Address of struct e.d: %p\n", &e.d) 

fmt.Println("Struct e.d has assigned string:", e.d) 

e.a = a{f: func(name string) string {return "Foo " + name}} 

fmt.Println("Struct e.a function call produces:", e.a.f("Bar")) 

} 

/* 

Prints something like the following: 

Address of struct e: 0x1040a0b0 

Size of struct e: 16 

Address of struct e.a: 0x1040a0b0 

Address of struct e.b: 0x1040a0b4 

Address of struct e.c: 0x1040a0b5 

Address of struct e.d: 0x1040a0b8 

Struct e.d has assigned string: A great big very fat rabbit 

Struct e.a function call produces: Foo Bar 

*/ 
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Deadlock 

A deadlock is a condition where progress is prevented, a stalemate, or impasse. It is derived 

from two words: Old English “dēad” meaning inanimate or inactive, and Old English “loc” 

meaning barrier or fastening. 

  

For programming languages this refers to a situation where two or more processing threads are 

halted due to waiting for the other threads to complete an action. Most generally the cause is 

resource contention over access to shared resources that require use of locks to control access 

but can also be caused when threads are waiting a message to be received before performing 

an action and the message is never received. 

  

The “Coffman Conditions” assert that there are four conditions required for a deadlock: 

resources are not shareable at time of access, acquired resources must be released by current 

owner to be accessed, each waiting thread has already acquired at least one resource from the 

set of required resources, and each thread is part of the set of waiting threads where the other 

threads already hold resources from the resource set. 

  

For example, suppose there are two resources, and two processing threads. Both resources 

must be accessed to complete an action, and access is controlled by locking. Normal 

processing is for a thread to lock both resources, perform the action, and release both locks. A 

deadlock can occur when one thread acquires a lock on one of the resources, but the other 

thread acquires a lock on the other resource. At this point neither thread can proceed. 

  

However, this definition is too restrictive. Another situation is where a thread has successfully 

locked access to a resource but then never releases the lock. In this case any other threads 

trying to access the resource are deadlocked. 

  

In the context of Go, deadlock can also occur without explicit locking. For example, if the main 

goroutine is waiting on a read on a channel, but no other goroutines will write to the channel, 

then a deadlock is detected, and the program is terminated. This is true only for the main 

goroutine. 

  

To prevent deadlocks due to resource contention between goroutines, the goroutines can use 

mutual exclusion locks. The mutual exclusion locks are used to ensure only one goroutine can 

access a resource at a time. 

  

A read on an empty channel will block (potentially forever), so use the dual argument form of the 

channel read operation to prevent this situation if this is not desirable. 

  

Deadlock can also occur when using wait groups. This situation happens if goroutines do not 

decrement the wait group when they exit. Assume the main goroutine has launched a large 

number of goroutines and waits for them to complete. Each goroutine launched must be 

associated by adding 1 to the wait group, and when each goroutine terminates the wait group 
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must be decremented by 1. When the wait group number is at zero, the main goroutine will 

cease to wait. But if every goroutine launched does not decrement the wait group upon exit, the 

main goroutine will hang. The runtime observes this condition and halts and exits the program. 

  

To guarantee locks are unlocked and wait groups are decremented, use the defer keyword. It 

ensures that when the method completes, it will unlock the lock or decrement the wait group. 

This will happen whether the goroutine function completes normally, or whether it panics. In 

proper programming practice, within the goroutine make the call to defer immediately after 

acquiring a lock or after the wait group is incremented. Because defer guarantees that the the 

resource will be unlocked or the wait group decremented even if the function panics, this will 

prevent deadlock. 

  

For more examples of locks and wait groups, see Mutex (Mutual Exclusion). 

  

To prevent deadlocks when using locks and wait groups, see this simple example: 

Deadlock: Code Example 

//Illustrate deadlock prevention via the use of mutual exclusion locks 

package main 

  

import ( 

"fmt" 

"sync" 

"time" 

) 

  

type exclusiveAccess struct { 

sync.Mutex // This is known as an embedded lock 

s1 string 

w int 

x int 

y int 

z int 

} 

  

func (m *exclusiveAccess) withLockGo1(val string) { 

m.Lock() 

defer m.Unlock() // Can cause deadlock if this line is commented out 

m.s1 = val 

i := m.w 

m.w = i + 1 

} 

  

func (m *exclusiveAccess) withLockGo2(val string) { 

m.Lock() 

defer m.Unlock() // Can cause deadlock if this line is commented out 

m.s1 = val 
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i := m.w 

m.w = i + 1 

} 

  

func (m *exclusiveAccess) noLockGo3() { 

i := m.x 

time.Sleep(1 * time.Second) 

m.x = i + 1 

} 

  

func (m *exclusiveAccess) noLockGo4() { 

i := m.x 

time.Sleep(1 * time.Second) 

m.x = i + 1 

} 

  

func (m *exclusiveAccess) waitGroupGo5(val int, wg *sync.WaitGroup) { 

wg.Add(1) 

defer wg.Done() // Can cause deadlock if this line is commented out 

m.Lock() 

defer m.Unlock() // Can cause deadlock if this line is commented out 

m.y = m.y + val  // With locking prevents race condition 

} 

  

func (m *exclusiveAccess) waitGroupGo6(val int, wg *sync.WaitGroup) { 

wg.Add(1) 

defer wg.Done() // Can cause deadlock if this line is commented out 

i := m.z 

time.Sleep(1 * time.Second) 

m.z = i + val // No locking so race condition occurs 

} 

  

func main() { 

var wg sync.WaitGroup   // Enable wait grouping 

var m exclusiveAccess   // Enable mutual exclusion 

  

go m.withLockGo1("foo") // Locking 

go m.withLockGo2("bar") // Locking 

  

go m.noLockGo3() // No locks 

go m.noLockGo4() // No locks 

  

for i := 1; i < 21; i++ { 

go m.waitGroupGo5(i, &wg) // Locking and wait group 

} 

for i := 1; i < 21; i++ { 

go m.waitGroupGo6(i, &wg) // No locking and wait group 

} 
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time.Sleep(3 * time.Second) // Pause to give goroutines time to run 

wg.Wait() 

fmt.Println("m.w contains: ", m.w) // Will contain 2 

fmt.Println("m.x contains: ", m.x) // Will contain 1 due to race condition 

fmt.Println("m.y contains: ", m.y)   // Final value 210 with locking, otherwise indeterminate 

fmt.Println("m.z contains: ", m.z)   // Indeterminate result usually way less than 210 

fmt.Println("m.s1 contains: ", m.s1) // Will contain either foo or bar 

fmt.Println("Completed") 

} 

  

/* 

Prints the following if m.Unlock() or wg.Done() are commented out in any goroutine: 

fatal error: all goroutines are asleep - deadlock! 

Otherwise prints: 

m.w contains: 2 

m.x contains: 1 

m.y contains: 210 

m.z contains: Some number usually way less than 210 because race condition 

m.s1 contains: foo or bar (depends on whether withLockGo1 or withLockGo2 grabbed the lock first) 

*/ 
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Declarations 

To declare means to explain, announce, make clear; it comes from Middle English “declaren” 

which came from Latin “dēclārāre”. In computer science a declaration is a construct of a 

programming language that specifies the properties of an identifier. Here are the aspects of Go 

declarations: 

● For every program file, the file is declared into a package where it belongs. 

● If a declared name within a program file is capitalized, it is accessible outside of the 

package in which it resides. The is known as exporting the capitalized entity. 

● If a name is declared outside the scope of a function within a file, then it is visible and 

accessible within all files inside a package. 

● There are four major kinds of declarations: variables, constants, types, and functions. 

  

Variables - declarations consist of variable name, type, and the expression setting of an initial 

value. The type may be omitted if the expression is provided, and the expression may be 

omitted if the type is present. Full form: “var name type = expression”. A short form declaration 

may exist only inside function scope as “name := expression”. The Go language does permit 

variable shadowing, which is when a variable occurs with the same name in an inner block 

scope as exists in an outer block scope. When this happens, the inner block has priority. 

Changes to a variable within an inner block have no effect on the same named variable existing 

in an outer block. This will be illustrated in the example code following this section. 

  

Constants - all constants are basic types which are numbers, booleans, strings, or runes; the 

declaration is of the form “const name = expression”. As with variables, multiple constants may 

be initialized in the same declaration as “const (name1 = expression1, name 2 = expression2)”. 

Note: shadowing also works on constants. 

  

Types - declarations are used to create new types called “named types”, the new types are 

based on existing types, and the format is: “type name underlying-type”. Type declarations may 

differentiate uses of an underlying type or specify complex types. Warning: if a new type is 

declared from an existing type, the new type does not inherit the methods of the existing type. 

  

Functions - declarations consist of the name of the function, the input parameter names and 

types, a list of return value names and types, and the body of the function. When functions are 

methods, then the declaration also contains the “receiver” of the type that the method is 

associated with (since all methods must be associated with a type). 

  

See: Embedding, Functions, Method Set, Package, and Types. 

Declarations: Code Example 

//Illustrating the usage of declarations 

package main 

  

import ( 
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"fmt" 

) 

  

/*  

  Package level declarations require the first character be a Unicode capital letter 

  and be declared outside of any function. Visibility is outside the package, 

   that means any file importing the package can see and access the named values 

*/ 

  

// Declaration of package level constant 

const A = 10 

  

// Declaration of package level variables 

var B = 20 

var Child struct { // Declare anonymous structure 

firstname, lastname string 

age                 int 

} 

  

// Declaration of package level types 

type Person struct { // Declaration binds type name (Person) to a type (struct) 

firstname, lastname string 

age                 int 

} 

type Man Person // Declare type Man to be of type Person 

type Woman struct{ Person } // Declare named Woman type struct, embed type Person inside type 

Woman 

type Planet string // All variables of this type used for planet names only 

  

// Declaration of package level method 

func (p *Person) Load(fn, ln string, a int) { 

p.firstname = fn 

p.lastname = ln 

p.age = a 

} 

 

/*  

  File level declarations require first character be a lowercase letter 

  and be declared outside of any function. Visibility is inside the package only, 

  any file in the package has access to the named values 

*/ 

  

// Declaration of file level constant 

const a = 10 

const ( 

b = 20 

c = 30 

) 
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// Declaration of file level variables 

var d = 40 

var ( 

e, f = 50, 60 

) 

  

// Declaration of file level type 

type distance float64 // All variables of this type used for distance calculations only 

  

// Declaration of file level method 

func (p *Person) loadNamesOnly(fn, ln string) { 

p.firstname = fn 

p.lastname = ln 

} 

  

func main() { // Declaration of function main is only visible inside this file 

fmt.Println("const a and var d: ", a, d) 

var d = 100   // Declaration overrides file level variable - variable shadowing 

const a = 100 // Variable shadowing technique also applies to constants 

fmt.Println("Variable shadowing const a and var d: ", a, d) 

  

var p Person // Declare p to be of type Person 

var m Man // Declare m to be of type Man 

var w Woman  // Declare w to be of type Woman 

fmt.Println("See default values of p, m, and w: ", p, m, w) 

  

p.Load("Jack", "Strong", 25) // Assign values to p via package level method 

fmt.Println("Person has: ", p) 

p.loadNamesOnly("Bill", "Smith") // Assign values to p via file level method 

fmt.Println("Person now has: ", p) 

//m.load("Joe", "Baker", 32) // Error: declaring type T2 to be T1 does not get T1's methods! 

m = Man{"Joe", "Baker", 32} 

fmt.Println("Man has: ", m) 

w.Load("Susan", "Smith", 27) // Can call methods of embedded Person field 

fmt.Println("Woman has: ", w) 

} 

/* 

Prints the following: 

const a and var d: 10 40 

Variable shadowing const a and var d:  100 100 

See default values of p, m, and w:  {  0} {  0} {{  0}} 

Person has:  {Jack Strong 25} 

Person now has:  {Bill Smith 25} 

Man has:  {Joe Baker 32} 

Woman has:  {{Susan Smith 27}} 

*/ 
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Dependency Management 

Dependency management is a term used both for project management (where it refers to 

dependencies between tasks or activities) and for software management (where it refers to 

dependencies between software modules and between programs and their environments). Two 

terms for measuring dependency between software modules are cohesion and coupling, which 

are measures of how strongly or how weakly separate modules of functionality are connected 

with one another. The goal is high cohesion and loose coupling. Where functionality is strongly 

related it should be placed into a single package for high cohesion, and where functionality is 

weakly related or not at all related, then it should go into separate packages for loose coupling. 

  

The interaction between packages should be implemented via interfaces. See Interface. 

  

In the context of Go, dependency management issues usually relate to package imports. The 

most basic issue with imports occurs when one package is dependent on another package, and 

the second package changes in a non-backwards compatible way such that when the first 

package imports the second package the program is broken. 

  

A variation of this problem is known as the diamond dependency problem, and the problem 

can be illustrated thusly: Package W imports package X and package Y, each of which imports 

package Z. See illustration: 

 

 
  

When package Z is compatible with both packages X and Y, there is no problem. But suppose 

package Z is modified in a non-backwards compatible way, and suppose package X requires 

the previous version of package Z, while package Y requires the current version of package Z. 

Now both versions of package Z are needed to resolve the problem. 

  

(Another form of the diamond dependency problem occurs in languages that permit multiple 

inheritance for classes. Go does not support inheritance so that problem is avoided.) 

  

Another import issue is called cyclic import dependency. It might occur like this. Suppose 

package W imports package X. No problems for W or X. Now suppose package X imports 

package Y. Still no problems for either W, X, or Y. But suppose package Y is updated and now 

imports package W. Any change to package W better not be made public because if it is, 

anytime any of the 3 packages are built they will encounter the error "import cycle not allowed". 
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There is a general set of solutions to the import dependency problems. They are: 

1. Don’t build multiple projects in the same workspace 

2. Perform vendoring on all packages sourced externally (vendoring means making a copy 

of an external package, and then referencing the copy) 

3. Rewrite imports after vendoring 

  

A reason not to build multiple projects in the same workspace is that separation more easily 

permits each project to depend upon different versions of vendored packages. This is also 

referred to as “GOPATH rewriting”. Each project has their own GOPATH, and this is very easy 

to support when each project has its own workspace. Each project code set is completely 

isolated from any and all other project codesets. 

  

External (vendor) packages are acquired by the “get” or “install” commands, and management 

of such packages depends upon the following conventions: 

1. The import path depends upon the URL of the package, of the form “<vendor domain 

name>/<vendor path to package>/<vendor package name>”. 

2. Storage of the downloaded package in the local file system follows the form of the URL 

3. Each directory under “/src” contains a single package 

4. Each package is built using only information provided within its source code 

  

After download, run testing to ensure the package does not break the program. If testing is 

successful, the package must be loaded into a source code control system for a project. Then 

use the package from the local source, rather than importing it from the external source. This 

eliminates the problem of a vendor package which is updated in a non-backwards compatible 

fashion from breaking a project’s codebase. If a newly downloaded package breaks the 

program, overwrite it by pulling the good version from the source code control system. This 

overall process is known as “vendoring”. 

  

After a package is vendored, rewrite the import statement in packages that depend upon the 

vendored code to refer to the local version rather than the external version. This way the 

external version will never be accidentally imported for the codebase of the project. 

  

Finally, when using open source 3rd party packages, it can sometimes make sense to simply 

extract the part of the functionality that is needed. This means not importing a huge library if 

only a small portion is needed. Copy the part that is needed into an internally managed 

package. Make sure you are conforming to the open source license when you follow this path. 

 

There is no code example provided for this section, since the Go Playground does not support 

multiple packages. However, there are many examples of this feature on the Internet. 
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Embedding 

In computer science the word “embedding” means to tightly enclose something within 

something else, mathematically it means to completely insert one set into another set. In the 

context of Go, embedding supports type composition via both data type embedding and 

interface embedding. 

 

Consider that a struct is a sequence of zero or more fields, holding n named values of any type 

T. A struct may support data type embedding, as fields may be embedded within a struct, where 

an embedded field is an anonymous field that is a declared type. Since inheritance is not 

supported, when a struct B embeds a struct type A, B is not to be considered a subtype of A. 

  

When one type is embedded into another type, the methods of the embedded type are available 

to the embedding type. When the methods are invoked, the receiver of the method is the 

embedded type, not the embedding type, but the embedding type has access. This is different 

than when a struct B is declared to be of type A, in this situation B does not have access to the 

methods of A. 

  

For interfaces, embedding occurs in a very similar manner to data type embedding using 

structs. The embedding interface contains a field which is the anonymous type of the embedded 

interface. The method or methods of the embedded interface are accessible to the embedding 

interface; but when invoked the receiver of the method or methods is the embedded interface. 

  

In the following code example the structure type “person” is embedded in the structure 

“student”. The method “show()” is a promoted method because it can be called by “student” 

even though it is a method owned by type “person”. Also, the fields in the embedded data type 

are directly accessible to the embedding type. They are considered promoted fields because 

they are accessed as if they were declared in structure “student” rather than in structure 

“person”. 

  

The following code also shows the use of embedded interfaces. The interface Show embeds the 

interface shower. A call to the embedding interface Show demonstrates access to the 

embedded interface shower (which in turn maps to the method show()). See also Composition, 

Interface, Method Sets, and Polymorphism for other code examples of embedding. 

Embedding: Code Example 

//Illustrating the principles of the concept of embedding 

package main 

  

import ( 

"fmt" 

) 

  

type yearInCollege int 
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const ( 

_      yearInCollege = iota // 0 

freshman  // 1 

sophomore // 2 

junior          // 3 

senior       // 4 

) 

  

type person struct { // This is a named structure which creates a datatype person 

name string // Named explicitly 

age int       // Named explicitly 

} 

  

var student struct { // This structure is anonymous and is not a datatype 

person // Embedded anonymous field named implicitly by its type 

year   yearInCollege // Named explicitly, year is a constant 

} 

  

func (p person) show() string { // A person method 

return fmt.Sprintf("Name: %s, Age: %d", p.name, p.age) 

} 

  

type shower interface { // Interface satisfied by data type person’s method 

show() string 

} 

  

type Show interface { // Interface embedding another interface 

shower 

} 

  

func main() { 

s := student // Variable s declared and initialized 

s.person = person{name: "Jack Frost", age: 19}  //  Assigning values to embedded type’s fields 

s.year = sophomore  // s.year assigned a constant value 

fmt.Printf("Name: %s, Age: %d, Student year: %d\n", s.name, s.age, s.year) 

fmt.Printf("%s, Student year: %d\n", s.show(), s.year) // Accessing embedded type’s method 

var S Show   // Declare S to be interface type Show 

S = s    // Assign student to interface S 

fmt.Println("Call to embedding interface reveals: ", S)  // Demonstrate embedding interface 

} 

/* 

Prints the following: 

Name: Jack Frost, Age: 19, Student year: 2 

Name: Jack Frost, Age: 19, Student year: 2 

Call to embedding interface reveals:  {{Jack Frost 19} 2} 

*/ 
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Encapsulation 

The word means to make or put into a capsule (which derives from Latin “capsula” which means 

box). In the context of computer science, it means a technique for the hiding of information. This 

is usually implemented a couple of different ways: the language enforces bundling methods with 

data, or the language restricts access to some components of an entity (in an object-oriented 

language, the entity is an object). 

  

At a higher pattern level (above the programming language) encapsulation is common. For 

example, a RESTful service exposes its interface, and hides its implementation; as does a 

relational database which expose its query language interface but hides its internal structure. 

  

In Go encapsulation is done at the package level. To hide variables, type methods, functions, or 

interfaces, declare them in lowercase. So, for example create a struct as a type, create methods 

that work on the fields of the type, and only expose certain capitalized methods outside of the 

package to manipulate the struct. 

  

Go uses capitalization to enable encapsulation for variables, names of methods of types, 

function names, and the fields of structs. If the first letter of a variable is capitalized (Unicode 

uppercase letter) and outside of any explicit “{ }” scope binding (at the package block level), it is 

visible outside of its package. 

  

Capitalizing the variable, function, type methods, or interface is known as exporting. See 

Declarations. Note that a non-capitalized struct in a package can have a capitalized field which 

is accessible. See an example of this in Package. 

  

The general method for accessing package entities is via the interface. For example, suppose 

there is a package that exports an interface called GenerateSound. This interface has a 

method, called makeSound(). Suppose further there are two struct types called Animal and 

Machine, that both have their own makeSound() methods. Animal might be composed into Dog 

and Cat, while Machine may be composed into Car and Truck. Via the GenerateSound interface 

Dog, Cat, Car and Truck may all be requested to sound off: “bark”, “meow”, “beep”, and “honk” 

respectively. One exported (exposed) interface will handle all package entities that need to 

make sounds. See also Composition, Embedding, Interface, and Method Set. 

Encapsulation: Code Example 

// Illustrating basic encapsulation via use of an interface 

package main 

  

import ( 

"fmt" 

) 

 

// Capitalized, visible outside of package 

type Animal struct{ name string } 
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type Machine struct{ name string } 

type Dog Animal 

type Cat Animal 

type Bulldozer Machine 

type Jet Machine 

 

// Methods lower case, not visible outside package 

func (*Animal) makeSound() { fmt.Println("I am an Animal") } 

func (*Machine) makeSound()   { fmt.Println("I am a Machine") } 

func (*Dog) makeSound()    { fmt.Println("I am a Dog") } 

func (*Cat) makeSound()    { fmt.Println("I am a Cat") } 

func (*Bulldozer) makeSound() { fmt.Println("I am a Bulldozer") } 

func (*Jet) makeSound()    { fmt.Println("I am a Jet") } 

 

//Interface capitalized, visible outside package 

type GenerateSound interface { // Interface 

makeSound() 

} 

func main() { 

var a Animal 

var m Machine 

 var d Dog 

 var c Cat 

 var b Bulldozer 

 var j Jet 

 var GS GenerateSound 

  

GS = &a 

 GS.makeSound() 

 GS = &m 

 GS.makeSound() 

 GS = &d 

 GS.makeSound() 

 GS = &c 

 GS.makeSound() 

 GS = &b 

 GS.makeSound() 

 GS = &j 

 GS.makeSound() 

} 

/* 

I am an Animal 

I am a Machine 

I am a Dog 

I am a Cat 

I am a Bulldozer 

I am a Jet 

*/ 
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Enumeration 

The word is derived from Latin “ēnumerātus” which means number, enumerate with the “-ate” 

suffix means to make numbers (in a list); in computer science enumeration means creating an 

ordered listing of all items within a set of items. 

  

An enumerated type in a programming language is a type containing a specific set of named 

values, and a variable that is declared to be a particular enumerated type may only be assigned 

values from the specific set designated for that enumerated type. 

  

Go does not support the enumerated type in the language. Rather it permits the creation of a 

set of constants as a sequence of enumerated values. Suppose a variable can be declared to 

be of type “planet”, and then can be assigned any of the values mercury, venus, earth, mars, 

jupiter, saturn, uranus, neptune, pluto; as these are all constants of type planet. They have 

sequential and unique values due to the use of the iota generator. A typical use for this 

technique is to use the variable in a control flow switch statement where each case checks the 

variable against a constant, a case match means code can be executed. 

 

Note that because the enumerated type is not supported, usage of enumeration permits the use 

of values beyond the range specified by the iota generator. 

  

See the following: 

Enumeration: Code Example 

//Illustration of the use of a sequence of enumerated values 

package main 

import ( 

 "fmt" 

) 

type planet int 

const ( // Use of iota constant generator for enumeration 

 _    planet = iota // 0 (the _ means no assignment but iota does still increment) 

  mercury            // 1 (all constants in list will be of type planet, mercury == 1) 

  venus              // 2 

  earth              // 3 

mars               // 4 

jupiter            // 5 

saturn             // 6 

uranus             // 7 

  neptune            // 8 

  pluto              // 9 

) 

 

func porder(p planet) { 
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  switch p { 

  case mercury: 

    fmt.Println("Planet Mercury order counting out from the Sun: ", p) 

  case venus: 

    fmt.Println("Planet Venus order counting out from the Sun: ", p) 

  case earth: 

    fmt.Println("Planet Earth order counting out from the Sun: ", p) 

  case mars: 

    fmt.Println("Planet Mars order counting out from the Sun: ", p) 

  case jupiter: 

    fmt.Println("Planet Jupiter order counting out from the Sun: ", p) 

  case saturn: 

    fmt.Println("Planet Saturn order counting out from the Sun: ", p) 

  case uranus: 

    fmt.Println("Planet Uranus order counting out from the Sun: ", p) 

  case neptune: 

    fmt.Println("Planet Neptune order counting out from the Sun: ", p) 

  case pluto: 

    fmt.Println("Planet Pluto (yes I'm a planet) order counting out from the Sun: ", p) 

  default: 

    fmt.Println("No such known planet") 

 } 

} 

 

func main() { 

  var p planet // Variable p may be assigned any of the 9 same type constants 

  p = earth 

  porder(p) 

p = pluto 

  porder(p) 

 p = 11 // Because type planet is type int, this permissible 

 porder(p) 

} 

/* 

Prints the following: 

Planet Earth order counting out from the Sun:  3 
Planet Pluto (yes I'm a planet) order counting out from the Sun:  9 

No such known planet 

*/ 
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Environmental Variables 

All programs run in an environmental context that depends on the operating system. 

Environmental variables apply to the programs that run within that environment. Some of the 

information of interest to a program that may be provided by environmental variables include: 

1. Directory path information, there are usually multiples of these. 

2. Current directory location. 

3. User profile information (all programs run “as a user”). 

4. Setting the number of cores available to the program via GOMAXPROGS. 

5. The name of the host server upon which the program runs. 

6. Port names and numbers that are available for specific purposes. 

  

Go has a package called “os” that has been designed and built to be platform independent, e.g. 

it should work from the perspective of the program the same way regardless of the operating 

system. In practice the package currently works for Linux, UNIX, Mac OS X, and Windows 

environments (with some limitations regarding operating system versions). It provides a number 

of functions that permit a program to interact with the operating system. 

  

An example of a typical use of environmental variables is for a program to use these to 

determine where to access input files and where to write output files. This approach permits 

flexibility when the same program runs in different environments with different paths. 

  

There are those who hold that it is more secure to use a configuration file that a program can 

access to load in this kind of information. In this approach either the path to the configuration file 

must be provided to the program as an argument when the program is executed, or the program 

must acquire the path to the configuration file from an environmental variable (the path to the 

configuration file or any other file should not be hard coded within a program). 

  

Code example shows setting, unsetting, getting, and clearing all environmental variables. The 

call to “os.Environ()” lists all environmental variables. 

Environmental Variables: Code Example 

//Illustrating the usage of environmental variables 

package main 

 

import ( 

 "fmt" 

 "os" 

“strings” 

) 

 

func main() { 

os.Setenv("FOO", "1") // Set an environmental variable 

os.Setenv("BAR", "foobar") // Set an environmental variable 

for _, e := range os.Environ() { //List all environmental variables. 
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pair := strings.Split(e, "=") 

fmt.Println(pair[0], pair[1]) 

} 

os.Unsetenv("BAR") // Unset environmental variable 

fmt.Println("BAR:", os.Getenv("BAR")) 

  val, bool := os.LookupEnv("FOO") // Return value, if exists also return true, otherwise false 

fmt.Println("Environmental variable FOO val contains:", val) 

fmt.Println("Environmental variable FOO bool contains:", bool) 

fmt.Println("Clearing all environmental variables") 

os.Clearenv()                // Clear all environmental variables 

val, bool = os.LookupEnv("FOO") // Return value, if exists also return true, otherwise false 

fmt.Println("Environmental variable FOO val contains:", val) 

fmt.Println("Environmental variable FOO bool contains:", bool) 

} 

/* 

Prints the following: 

FOO 1 

BAR foobar 

Unsetting environmental variable BAR 

BAR: 

Environmental variable FOO val contains: 1 

Environmental variable FOO bool contains: true 

Clearing all environmental variables 

Environmental variable FOO val contains: 

Environmental variable FOO bool contains: false 

*/ 
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Escape Analysis 

The Go compiler performs escape analysis to determine whether variable memory space will be 

allocated in the heap area of memory or the stack area of memory. The determination is based 

on whether any given variable’s memory allocation may escape the lexical scope of the context 

of its declaration. See Heap, Stack, and Lexical Scope. 

  

Wherever a function returns a reference to a variable that is declared within the lexical scope of 

the function, the memory space for that variable may be allocated on the heap. This is because 

if a function returns a pointer to a value where the address space of that value was allocated 

within the function, the calling program may manipulate the value pointed to by the pointer, and 

the address space of that value must be valid after the declaring function is popped off the 

stack. 

  

However, the compiler might perform an optimization known as “inline expansion”. In this 

situation the compiler inserts the entire contents of the called function in the code location where 

the function would otherwise be called. When this occurs, the variable remains on the stack 

because no actual function call occurs. At the time of this writing the Go compiler can perform 

inline expansion on functions within the same package but will not perform inline expansion 

when calling functions imported from another package. 

  

Wherever the compiler cannot determine whether a variable may be accessible outside of the 

scope of the function, the memory space for that variable is allocated on the heap. 

  

Where a function declares a variable locally within its scope and does not return a reference to 

that locally declared variable, then the compiler determines that the variable does not escape 

from the lexical scope of that function. In this case the variable is allocated to the stack. 

  

Note that saying “returns a reference” does not mean “pass by reference”. There is no passing 

by reference in the Go language, either coming into a function as arguments, or as values 

returned from the function. Everything passed is “pass by value”, e.g., copies of values for both 

input to a function and as output from a function. But a copy of a pointer will point to the same 

underlying value that the original pointer references, therefore if a function returns a pointer that 

points to a variable declared within the function, the variable pointed goes on the heap (unless 

inline expansion has occurred). 

  

The passing of copies has an important implication. For example, suppose function f() calls 

function g(). Suppose f() passes variable x to g(x), and g(x) returns the address of x, like “return 

&x”. Now g(x) declares x as an input parameter (as a copy of original x, being whatever type x in 

f() is, and holding whatever value x in f() has). Therefore, the pointer copy to x returned 

references the address of the copy of x. Unless this is inline expanded, that copy of x inside g(x) 

goes on the heap, even though it was an input parameter and not a variable with a variable 

declaration inside of g(x). 
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The reason why the heap or stack determination is important has to do with program speed. 

Stack variable access is often an order of magnitude faster than heap variable access. 

  

Heap memory is subject to memory fragmentation. Garbage collection (GC) does its best to 

clean up the heap periodically, but between GC cycles the heap memory becomes fragmented. 

This also slows down the program when it has to access noncontiguous memory areas within 

the heap. Finally, GC itself consumes processor time and periodically locks the program out 

from accessing the heap while GC is running. See Garbage Collection. 

  

To gain insight into the decisions of the compiler’s escape analysis, use the “-gcflags” switch 

with the “-m” option when executing “go build”. (Adding the “-l” flag prevents inlining.) 

Understanding the compiler’s escape analysis decisions can aid in code optimization. 

Escape Analysis: Code Example - Pass By Value 

//Illustrating pass by value 

package main 

 

import ( 

"fmt" 

) 

 

func f() (int, *int) { 

var x int 

x = 100 

fmt.Println("x and the address of x in f(): ", x, &x) 

fmt.Println("f() receives address of g() copy of x: ", g(x)) 

return x, &x 

} 

 

func g(x int) *int { 

fmt.Println("g() receives receives a copy of x from f(): ", x, &x) 

return &x 

} 

 

func main() { 

v1, v2 := f() 

fmt.Printf("main() received output from f1(): %v %v\n", v1, v2) 

} 

/* 

The function g() receives a copy of x from f(), it is stored in a separate location 

The function f() returns its own copy of x and address of x to main() 

Prints something like the following: 

x and the address of x in f():  100 0x416020 

g() receives receives a copy of x from f():  100 0x416028 

f() receives address of g() copy of x:  0x416028 

main() received output from f1(): 100 0x416020 

*/ 
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First Class Citizen 

In a programming language, first class citizens are things that may be explicitly manipulated by 

a program at runtime. A first class entity must have three specific characteristics: 

1. It must be able to pass lexical analysis, that is, it must have a valid syntactic value when 

the compiler applies the process of tokenization to the source code. 

2. It must be able to have operators within the program applied to it. Keywords such as for, 

else, if, range, etc. are not first class entities. 

3. It must be referenceable. That means that it must be accessible as an entity at runtime. 

  

Variables, constants, and functions are all first class entities in Go. All may be manipulated by a 

program at runtime, all may have operators applied to them, and all are subject to lexical 

analysis if they are syntactically valid. They all may be pushed onto, and pulled from, the stack. 

First class citizens operations are: assignment to variables, passing to functions and methods, 

and returnable from functions and methods. 

  

Because goroutines are functions, goroutines are also first class citizens. 

  

Not all languages treat functions as first class entities. But in Go, functions may: 

• Be given a name (binding an identifier to a value) 

• Be assigned to variables 

• Be members of data structures, such as structs, arrays, or members of linked lists 

• Be passed to other functions 

• Be returned from other functions 

  

See the following example: 

First Class Citizens: Code Example 

// Illustrating usage of first class citizens (entities) 

package main 

  

import ( 

            "fmt" 

) 

  

func myf1() int { // Declare a function which returns integer value 2 

            return 2 

} 

  

func myf2() int { // Declare a function which returns a function 

            return myf1() 

} 
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func myf3(i int) (x int) { // Declare a function which returns a named value 

            x = i * i 

            return // Because x is named value, don’t have to do ‘return x’ 

} 

  

func main() { 

i := myf1() // i is first class citizen - operator applied, referenceable 

            fmt.Println(i) // Can be passed to function 

            fmt.Println(myf2()) // Function passed a function which returns a function 

            j := myf3(i)  // j is first class citizen, assigned function return value 

            fmt.Println(myf3(j)) // Function with parameter passed to function as parameter 

            fmt.Println(i + myf3(j)) // Operation can be applied to return value 

} 

  

/* 

Prints the following: 

2 

2 

16 

18 

*/ 
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Functions 

The word function derives from the Middle French “fonction” which comes from the Latin 

“functionem” meaning to perform or to execute. The type of a function specifies the set of all 

functions with the same signature, the signature describes all the function parameter and result 

types. Function facts: 

• All parameters to a function are passed by value, e.g. they are copies 

• All named result values are initialized to their type zero values on function entry 

• All changes made to parameter values are contained within the function scope 

• A function may update a value referenced by a pointer parameter value 

• Functions can return multiple values 

• Variadic functions can be called with varying numbers of the last parameter 

• Named return values can be returned without being specified in a return statement 

• A function declaration omits the body if it is external to the Go code (e.g. assembly) 

• Functions may be passed to functions as parameters, and returned as values 

• Functions may be assigned to pointers 

  

A method is a function with a receiver; the method declaration binds the method (function) name 

to the method associated with the receiver’s type. See Method Set. 

  

An anonymous function is a function literal, which can be invoked directly or assigned to a 

variable. Function literals are known as closures and they may refer to and then enclose 

variables from the surrounding function (the function that the function literal is inside of). See 

Literals. 

  

The following example code shows various aspects of functions. These include the use of 

anonymous functions (see the assignments to variables j and k), and named functions myf1(), 

myf2(), and myf3(). It shows that function myf1() actually returns a function, that function myf2() 

is recursive, and that function myf3() is used as a goroutine. Finally it demonstrates the use of 

function composition (passing functions as parameters to functions, see assignments to g and 

h). See Composition, Channels, and Goroutines. 

Functions: Code Example 

//Illustrating various aspects of functions 

package main 

  

import ( 

            "fmt" 

) 

  

func myf1(i int) func() int { // A function that returns a function 

            return func() int { return 3 * i } // Anonymous function (function literal) returned 

} 
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func myf2(i int) int { // Recursive function 

            if i == 0 { 

                           return 1 

            } 

            return i * myf2(i-1) 

} 

  

func myf3(ch chan struct { // Function that will be called as goroutine 

            string 

            int 

}) { 

            defer close(ch) // Ensure will close channel no matter what 

            for i := 1; i < 4; i++ { 

                           ch <- struct {   // Write to buffered channel 

                                          string // Will be assigned function result 

                                          int   // Will be assigned result of operation 

                           }{fmt.Sprintf("String %d", i), i * 2} 

            } 

} 

  

func main() { 

var i int 

var j func() int       // Declare variable j to be of type function that returns int 

var k func(k int) int // Declare k to be of type function that takes an int and returns int 

i = 2 

j = func() int { return 2 }            // Declaring anonymous function, assigning to variable 

k = func(i int) int { return 2 * i } // Declaring anonymous function, assigning to variable 

  

fmt.Println(j())      // Will print 2 

fmt.Println(k(i))   // Will print 4 

f := myf1(i)         // Assigning result of named function to variable 

fmt.Println(f())    // Will print 6 

g := myf1(k(i))     // Pass result of call to function k() to function myf1() 

fmt.Println(g())  // Will print 12 

h := myf2(g()) // Assigning named result of named recursive function to variable 

            fmt.Println(h) // Prints 479001600 

  

ch := make(chan struct { // Create buffered channel 

                           string 

                           int 

            }, 2) 

go myf3(ch)         // Goroutines are functions, pass the channel 

for k := range ch { // Loop with range clause iterates on buffered channel until closed 

                           fmt.Println(k.string, k.int) // fmt.Println() is a variadic function 

            } 

} 

 

/* 

Prints the following: 
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2 

4 

6 

12 

479001600 

String 1 2 

String 2 4 

String 3 6 

*/ 
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Garbage Collection 

In computer science, garbage collection (GC) refers to an automated method for releasing 

memory storage that contains out of date or invalid data. The resulting released memory is then 

available for use by the program. Because GC competes with the program code for accessing 

the memory space, there are times the GC has to halt program code, impacting performance 

  

Go implements garbage collection via the runtime library linked into every Go program. The GC 

(version available as of the date of this document) is a concurrent, mark and sweep, tri-color 

collector. The Go GC is optimized for low latency. Latency is the time between a stimulus and 

an action, e.g. request and response, so in this context lowering latency means reducing the 

time that program threads are blocked from processing due to the running of the GC. The lower 

the latency, the less time threads are in a blocked state. 

  

Tri-color means the heap is considered as a graph of connected data objects. At the beginning 

of each GC cycle all heap data objects are set to “white”. Next, each object referenced either 

globally or via stack pointers are set to “grey”. Then one by one, each “grey” object is set to 

“black” and checked to see if it points to any other objects. If the object pointed to is “white” it in 

turn is now set to “grey”. At the end of the process, all objects are either “white” which means 

they are not referenceable, or “black” which means they are. All “white” objects can now be 

removed from memory, and the memory can be released for program access. See Heap. 

  

Mark and sweep is really a scan, mark, and sweep. The scan phase scans the globals and the 

stack (or the multiple stacks if using goroutines) to collect the pointers to heap memory. The 

scan phase is “stop the world” (STW) where all program threads are halted but it is very fast. 

The mark phase identifies unreachable data objects and “marks” them for deletion. This phase 

runs concurrently with the program code, so the program is minimally affected by this GC 

phase. At the termination of the mark phase stack space is reclaimed and mark finalization 

occurs. Finally the sweep phase removes data objects and frees memory space. 

  

Because the Go GC is implemented for low latency, it means the “stop the world” phase is very 

short. Since the GC runs concurrently with the program, most of the GC operation has minimal 

impact on threads. Running the GC in a multi-core environment means even less competition 

for core processing time. See Parallelism and Concurrency. 

  

The environmental variable GOGC controls the conditions under which GC activates. GC can 

actually be turned off by setting GOGC=off. Under rare conditions this may be desirable. The 

default value is GOGC=100, the number can be decreased or increased to affect GC timing. 

  

The Go language is designed to let programmers optimize placing data storage on the stack 

rather than the heap. By avoiding heap storage, the GC processing time is reduced. Rather than 

trying to tune GC, a better approach is to tune the code by using the stack instead of the heap. 
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Generics 

Generics in computer programming is a complex concept. Strictly speaking it is the plural form 

of the word generic, which means the condition of being applied to all members of a class of 

members. It is derived from the Latin term “gener” which is the stem of the Latin word “genus” 

and the Greek word “génos”, which means a kind, group, or a class, of entities. In the context of 

programming, the term is applicable to the situation where a function or an interface is expected 

to handle multiple different types as the same input parameter or parameters. 

  

This is known as parametric polymorphism and may also be referred to as parameterized 

types. The programming languages that support parameterized polymorphism implement 

generics quite differently from one another. Go does not implement generics within the 

language because it does not do parameterized polymorphism. However, the programmer can 

instead handle generics via ad hoc polymorphism using empty interfaces, so technically 

rather than receiving multiple types of parameters the function or interface is always receiving 

the same type of parameters, which are of type interface. 

  

The basic approach to generics is this: abstract the type from a procedure to enable the creation 

of a generic procedure that can handle multiple data types. For example, suppose there is a 

procedure that can “add” any two data types to each other: “add (a,b) {return a + b}”. 

  

This means there will have to be a language convention to tell the generic procedure what the 

data types of the input parameters are. Because the function might be asked to add a complex 

number to a string, the language must be able to communicate to the function the data types of 

the parameters. The function will then be coded to handle the various scenarios. So int + int 

returns int, int + float returns float, int + string converts int to string, does concatenation, and 

returns string; and so on. This results in a single generic function that will vary in its operational 

actions based on the input data types (under the covers), while at a higher level the generic 

function is conceptually doing the same thing (in this example, “adding” two entities together). 

  

Generics can be handled by using type assertion or the reflect package, or both. When using 

type assertion, the interface parameters are asserted to be of the desired type, which is needed 

so that addition or concatenation operations may be performed on them. See Type Assertion. 

  

Reflection is used to determine the underlying actual type of the values that were passed into 

the function or interface as parameters of type interface. The reflect package provides many 

functions, two of which enable determining a variable’s value and its type. Those two functions 

are reflect.ValueOf() and reflect.TypeOf(). They require that the variable passed into these 

functions is received as a parameter specified as “interface{}”. Whether the type passed in is a 

variable, a function, or an interface, it is received by these two functions as a parameter with 

type empty interface. See Reflection. 

  

The following code example shows a function that can take two parameters, each of which may 

be any type of int, float64, or string. Via the use of reflection and type assertion the function can 
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handle them all, effectively implementing the concept of “add (a,b) {return a + b}”. Since ints and 

floats cannot be added without type conversion, that is performed where required. And when 

adding an int or a float to a string, the number is converted to a string and the two strings are 

then concatenated. Finally, the function handles types which are not ints, floats, or string by 

using case default. 

Generics: Code Example 

// Illustrate the concept of generics using reflection and type assertion 

package main 

  

import ( 

            "fmt" 

            "reflect" 

) 

  

// Add any two values if they are ints, floats, or strings in any combination, return an interface 

// For simplification only float64 is handled 

func myAdd(myUnknown1 interface{}, myUnknown2 interface{}) interface{} { 

            var w int 

            var x float64 

            var y string 

  

            // do reflection for type determination because parameters passed in as empty interfaces 

            switch { 

            // Case is both arguments are ints 

            case reflect.TypeOf(myUnknown1) == reflect.TypeOf(w) && reflect.TypeOf(myUnknown2) == 

reflect.TypeOf(w): 

fmt.Printf("first argument is an int %v, second is an int %v\n", myUnknown1, 

myUnknown2) 

return myUnknown1.(int) + myUnknown2.(int) // Type assertion 

  

            // Case is both arguments are floats 

            case reflect.TypeOf(myUnknown1) == reflect.TypeOf(x) && reflect.TypeOf(myUnknown2) == 

reflect.TypeOf(x): 

fmt.Printf("first argument is a float %v, second is a float %v\n", myUnknown1, 

myUnknown2) 

return myUnknown1.(float64) + myUnknown2.(float64) // Type assertion 

  

            // Case is both arguments are strings 

            case reflect.TypeOf(myUnknown1) == reflect.TypeOf(y) && reflect.TypeOf(myUnknown2) == 

reflect.TypeOf(y): 

fmt.Printf("first argument is a string %v, second is a string %v\n", myUnknown1, 

myUnknown2) 

return myUnknown1.(string) + myUnknown2.(string) // Type assertion 

  

            // Case is first argument is an int, the second argument is a float 

            case reflect.TypeOf(myUnknown1) == reflect.TypeOf(w) && reflect.TypeOf(myUnknown2) == 

reflect.TypeOf(x): 



A Cyclopedia of Go 
 

69 | P a g e  
 

fmt.Printf("first argument is an int %v, second is a float %v\n", myUnknown1, 

myUnknown2) 

return float64(myUnknown1.(int)) + myUnknown2.(float64) // Type assertion and type 

cast 

  

            // Case is first argument is a float, the second argument is an int 

            case reflect.TypeOf(myUnknown1) == reflect.TypeOf(x) && reflect.TypeOf(myUnknown2) == 

reflect.TypeOf(w): 

fmt.Printf("first argument is a float %v, second is an int %v\n", myUnknown1, 

myUnknown2) 

return myUnknown1.(float64) + float64(myUnknown2.(int)) // Type assertion and type 

cast 

  

            // Case is first argument is a number, the second argument is a string 

            case (reflect.TypeOf(myUnknown1) == reflect.TypeOf(w) || reflect.TypeOf(myUnknown1) == 

reflect.TypeOf(x)) && reflect.TypeOf(myUnknown2) == reflect.TypeOf(y): 

fmt.Printf("first argument is a number %v, second is string %v\n", myUnknown1, 

myUnknown2) 

return fmt.Sprintf("%v", myUnknown1) + myUnknown2.(string) // Type assertion 

  

            // Case is first argument is a string, the second argument is a number 

            case reflect.TypeOf(myUnknown1) == reflect.TypeOf(y) && (reflect.TypeOf(myUnknown2) == 

reflect.TypeOf(w) || reflect.TypeOf(myUnknown2) == reflect.TypeOf(x)): 

fmt.Printf("first argument is string %v, second is number %v\n", myUnknown1, 

myUnknown2) 

return myUnknown1.(string) + fmt.Sprintf("%v", myUnknown2) // Type assertion 

  

            // Case is any situation where either input parameter is not an int, float64, or string 

            default: 

fmt.Printf("first argument is %v, second is %v\n", myUnknown1, myUnknown2) 

return "Can only handle ints, floats, and strings" 

            } 

} 

  

func main() { 

            var ( 

                           i1, i2, f1, f2, s1, s2, a1 = 2, 3, 3.14, 5.6432, "Foo", "Bar", [3]int{1, 2, 3} 

            ) 

            fmt.Println(myAdd(i1, i2)) 

            fmt.Println(myAdd(f1, f2)) 

            fmt.Println(myAdd(s1, s2)) 

            fmt.Println(myAdd(i1, f2)) 

            fmt.Println(myAdd(f1, i2)) 

            fmt.Println(myAdd(f1, s1)) 

            fmt.Println(myAdd(s1, f2)) 

            fmt.Println(myAdd(s1, a1)) 

} 

  

/* 
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Prints the following: 

first argument is an int 2, second is an int 3 

5 

first argument is a float 3.14, second is a float 5.6432 

8.7832 

first argument is a string Foo, second is a string Bar 

FooBar 

first argument is an int 2, second is a float 5.6432 

7.6432 

first argument is a float 3.14, second is an int 3 

6.14 

first argument is a number 3.14, second is string Foo 

3.14Foo 

first argument is string Foo, second is number 5.6432 

Foo5.6432 

first argument is Foo, second is [1 2 3] 

Can only handle ints, floats, and strings 

*/ 
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Goroutines 

Go natively supports the concept of concurrent lightweight “threads” known as goroutines which 

run within the process space allocated to a Go program. An operating system thread may 

support many goroutine lightweight threads. These goroutines may be activated like calling a 

function prefixed by the keyword go. Unlike where calling a function the caller waits for the 

function to return, calls to goroutines return immediately. The main function itself is a goroutine 

and is known as the main goroutine. All goroutines are concurrent. 

  

An example for the use of goroutines is a back-end service that may be required to handle 

many simultaneous connection requests. Each connection request will spawn a separate 

goroutine in the listener to handle that request. This functionality is covered by the “net” 

package. An example of the use of the “net” package may be found in the Concurrency: Code 

Example. 

  

Channels are used to facilitate communication between goroutines. Channels are created by a 

call to the make() function, and channels can be created as either buffered or unbuffered 

channels. The placing of data into a channel and removing data from a channel is done with the 

“<-” operator. Data flow is in the direction of the arrow. 

  

It is useful to know that goroutines cannot pass pointers to one another that refer to memory 

within any goroutines stack. So, for example, goroutine A can declare an integer value and push 

it through a channel to goroutine B (which is sent as a copy). But goroutine A cannot declare an 

integer value and push a pointer to that value through a channel to another goroutine. 

  

Calls to unbuffered channels block because these channels are synchronous. An example of 

communication via an unbuffered channel can be seen in the following code example. It 

demonstrates how one goroutine blocks after sending to the channel, and only unblocks after 

the other goroutine receives from the channel. 

  

The other mechanism for communication between goroutines is via the use of mutual exclusion 

locks provided by the “sync” package. This can be a good mechanism when several goroutines 

need access to non-concurrent data structures such as maps, arrays, and slices. 

  

In general, when using mutual exclusion locks the common practice is to permit multiple readers 

to access a given data structure, but writers have to queue up. The mutual exclusion locking 

system will only permit one writer at a time to have access to a data structure. 

  

The following example is very simple, and just shows the independent execution of the 

goroutines. More detailed code examples can be found under Concurrency, Condition Variable, 

Channels, and Mutex (Mutual Exclusion). 

Goroutines: Code Example 

//Illustration of Goroutines - very simple example 
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package main 

  

import ( 

            "fmt" 

) 

  

func mygo1(ch1 <-chan int) { // Receive a read only channel 

            <-ch1 // Block until receive value, discard it 

            fmt.Printf("Goroutine 2 received value, discarded, exiting.\n") 

} 

  

func main() { 

            var ch1 = make(chan int) // Unbuffered channel (synchronous) 

            go mygo1(ch1)                // Launch goroutine 

            fmt.Printf("Main goroutine sending to channel, blocking.\n") 

            ch1 <- 12345                      // Send to channel, block until received 

            close(ch1)                           // Close the channel 

            fmt.Printf("Main goroutine closed channel, exiting.\n") 

} 

/* 

Prints the following: 

Main goroutine sending to channel, blocking. 

Goroutine 2 received value, discarded, exiting. 

Main goroutine closed channel, exiting. 

*/ 
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Heap 

Heap refers to a collection or accumulation of items gathered in one place. The word comes 

from Old English “hēap”. In the context of computer science, it generally has two meanings. The 

first meaning relates to an area of memory reserved for a program that is not the stack. 

  

The second meaning relates to a data structure that is a type of storage tree where the key 

value of any parent node is greater than any child node of that parent, and this is true for every 

subtree within the storage tree (for a “max” tree, the inverse is a “min” tree). Go has a package 

that implements the heap data structure, it may be accessed by importing “container/heap”. This 

type of heap will not be considered here. 

  

Consider the first case, where the heap is dynamically reserved memory. In Go this allocation is 

performed for ordinary variable declarations when the compiler cannot determine whether a 

variable declared within a function will be referenced after the call to the function returns, or 

sometimes when the compiler determines that a function returns a reference to a variable 

declared within the function. This determination by the compiler is done when it performs 

escape analysis. If the compiler determines that a variable will only be referenced within a 

function, or will not be outside the function, then it is placed on the stack. See Escape Analysis, 

also Stack. 

  

The new() function is for dynamic memory allocation of data structures that are not maps, slices, 

or channels; while make() is used to dynamically allocate maps, slices, and channels. A call to 

make() or to new() allocates space on the heap or on the stack. Note: the Go language 

specification does not indicate whether values will be created on the heap or on the stack; in 

fact, it does not reference either term. This is deliberate. 

  

If it is desirable to know whether variables are placed on the heap or the stack, compile the 

program with the the gcflags argument -m. So: “go run -gcflags -m myprog.go”. To prevent 

inlining of functions, use the argument -l to verify whether an otherwise inlined function’s 

variable would be put on the heap or not. 

  

Performance efficiency is improved when values can be restricted to the stack. However 

sometimes escape analysis allocates values to the heap. To handle these values Go has 

functionality called “garbage collection”. Periodically it sweeps through the heap and frees 

memory held by objects that are no longer accessible to the program. See Garbage Collection. 

Heap: Code Example 

// Illustrate heap versus stack variables 

// If an address of a variable created in f() is returned by f(), it may or may not be on the heap 

// If the compiler can convert f() to an inline function, the variable will be on the stack 

package main 

  

import ( 
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            "fmt" 

            "math" 

) 

  

func f1(size float64) { 

var i int = int(size) 

buf := make([]byte, i) // buf on heap, because size of "i" is unknown when compiled 

fmt.Println(buf) 

} 

  

func f2() int { 

slice := make([]int, 10)  // On stack, because never escapes f2() scope 

for i, _ := range slice { // Inserts sequential values into slice locations 

slice[i] = i + 1 

} 

var i int 

for _, n := range slice { // Adds total by summing all slice values 

i += n 

} 

            return i // On stack because only a copy of value, not address of value, is returned 

} 

  

func f3() { // fptr in stack, not heap, because stays in f2() scope 

fptr := new(float32) 

*fptr = 3.15 

fmt.Println(*fptr) 

} 

  

func f4() *float32 { // Since f1() always returns *2, probably inlined 

var f float32 

f = 2.0 

return &f // If not inlined, then heap 

} 

  

func main() { 

var i float64 // On the stack 

i = 47.5 

size := math.Sqrt(i) // size has to be on the heap, compiler does not know value assigned 

fmt.Println(size) 

f1(size) // Nothing returned from this call 

fmt.Println(f2()) 

f3() // Nothing returned from this call 

fmt.Println(*f4()) // Probably inlined to stack since function always returns the value 2 

} 

  

/* 

Prints: 

6.892024376045111 

[0 0 0 0 0 0] 
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55 

3.15 

2 

*/ 
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Inheritance 

Object Oriented languages usually support the concept of class inheritance, where a subclass 

of a parent class inherits the data entities and methods of the parent class, and then can extend 

them. Go does not support classes and does not support type inheritance. Instead the language 

provides a different approach. 

  

The Go approach is as follows: 

1. Any data type may have methods if they are non-virtual, if it does implement an interface 

method it can be referred to as an “interface type” 

2. There is no “constructor” required, any data type declared (including complex types) will 

be initialized to default values if none are explicitly assigned 

3. An interface is “similar to” part of a class, but it only has virtual methods, without data 

entities; because the methods are virtual this permits ad hoc polymorphism 

4. A type “satisfies” an interface if it implements the methods of the interface; in this respect 

the type is also “similar to” part of a class in object-oriented programming languages 

5. A type may be “embedded” into another type, if the embedded type has implemented 

methods then the embedding type has access to those methods; the design principle 

implemented by embedding one type into another is called composition. See 

Composition. 

  

The interface methods are external to the data type, and the data type is external to the 

interface. They are separate entities. Complex types have fields and may have only non-virtual 

methods (all struct methods are determined at compile time). Interfaces are types without fields, 

and with only virtual methods (thus enabling ad hoc polymorphism). Interfaces may be empty, in 

which case they are declared without any methods. Any type may satisfy the empty interface. 

  

Combine the two together and the result is similar to (but not the same as) classes with 

inheritance, without the complexity and the overhead. There are some interesting advantages: 

  

• Interfaces may be declared without methods (which can be added later) 

• A data type can be declared without implementing methods, these can be added later 

• A data type can add methods from multiple interfaces 

• Different data types can implement the same interfaces 

  

Bottom line: Go does not support inheritance. Go does not have classes. Go does not have 

subtypes. Instead it implements the design principles of encapsulation, composition and 

polymorphism via packages, embedding and interfaces. See Composition, Encapsulation, and 

Polymorphism, also see Package, Embedding, and Interface. 
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Interface 

Interface means a common boundary between separate entities through which information may 

be shared. In Go an interface is a type. It is not a data type, it is an interface type. An interface 

is considered an abstract type because it is described by its behavior (via its methods), and the 

types that satisfy the interface may implement the methods. Because the methods of an 

interface contain no code, they are abstract. Go interfaces enable ad hoc polymorphism. 

  

The zero value of an interface is “nil”. If no methods satisfy the interface, a call to the interface 

will cause a panic because “nil” does not reference a valid address in memory. 

  

There is a special form of interface known as the empty interface, which has no methods. It 

looks like this: “interface{}”. A variable of type empty interface may have any value assigned to 

it. This technique is used when calling a function that must deal with unknown data types. In this 

situation the function should use double argument type assertion to validate the actual type. A 

code example for the empty interface is shown in Type Assertion. Also see Generics and 

Reflection. 

  

A data type may call more than one interface. If a type has two methods in its method set, one 

method might satisfy one interface, and the other method might satisfy the other interface. 

  

An interface may embed other interfaces. In this situation a variable of the type of the interface 

that has embedded other interfaces may call those other interfaces, if it is assigned to a variable 

that has methods that satisfy those other interfaces. So: 

1. Suppose there is a datatype (say a struct) that has two methods e.g. m1 and m2. 

2. Each method of that type satisfies an interface e.g. m1 satisfies i1 and m2 satisfies i2. 

3. Suppose an interface i3 embeds interfaces i1 and i2. 

4. Then a variable of interface type i3 may be assigned to the data type which has methods 

m1 and m2, and may call both methods named in interfaces i1 and i2. 

  

An example of an interface that embeds another interface may be seen in the topic on 

polymorphism. See Polymorphism. See also Method Set. 

  

The following example code shows two separate complex data types (Book and Magazine). 

Each has methods to load the data type, and to display the contents of the data type. The 

display methods are identically named with an interface method. As such, each data type has 

“satisfied” the interface and may make use of it. Therefore, the Book and Magazine values may 

be assigned to the interface variable which can call the interface to show the values. 

  

However notice the “show()” methods accept a receiver pointer. Therefore, the interface must 

also accept a receiver pointer. If a method accepts a type value, then the interface must receive 

a type value; if a method has a pointer receiver, then the interface must receive the address of 

the variable of the respective type. (A method with a pointer reference may be called either with 

a pointer to a value or with a value which has an address that is referenceable.) 
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Interface: Code Example 

//Illustration of the use of an interface 

package main 

  

import ( 

"fmt" 

) 

  

type Book struct{ author, title string } 

  

type Magazine struct { 

            title string 

            issue int 

} 

  

// Book method set 

func (b *Book) assign(n, t string) { 

            b.author = n 

            b.title = t 

} 

  

func (b *Book) show() { 

            fmt.Printf("Author: %s, Title: %s\n", b.author, b.title) 

} 

  

// Magazine method set 

func (m *Magazine) assign(t string, i int) { 

            m.title = t 

            m.issue = i 

} 

  

func (m *Magazine) show() { 

            fmt.Printf("Title: %s, Issue: %d\n", m.title, m.issue) 

} 

  

// Declare interface, and methods that satisfy the interface 

type shower interface {  // By convention single method interface “-er” 

            show()                 // Interface only has one method 

} 

  

func main() { 

            var b Book  // Declare instance of Book 

            var m Magazine // Declare instance of Magazine 

  

b.assign("Jack Rabbit", "Book of Rabbits") // Assign values to b via method 

m.assign("Rabbit Weekly", 26)  // Assign values to m via method 

  

fmt.Println("Call data type methods") 
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b.show()  // Show book values via method 

m.show() // Show magazine values via method 

  

var i shower  // Declare variable of interface type 

fmt.Println("Call interface") 

i = &b                 // Method has pointer receiver, interface does not 

i.show()             // Show book values via the interface 

i = &m               // Magazine also satisfies shower interface 

i.show()            // Show magazine values via the interface 

} 

  

/* 

Prints the following: 

Call datatype methods 

Author: Jack Rabbit, Title: Book of Rabbits 

Title: Rabbit Weekly, Issue: 26 

Call interface 

Author: Jack Rabbit, Title: Book of Rabbits 

Title: Rabbit Weekly, Issue: 26 

*/ 
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Immutability 

Immutable refers to something that is unchangeable, unable to be changed. The word comes 

from Late Middle English and is derived from the Latin word “immutabilis”. 

  

Currently the only data type in Go that is immutable is type string. Immutability here refers to the 

value held in a distinct memory location. The term “string constant” refers to the value. Strings 

(the immutable memory area) may be assigned to variables. So, the concept of strings really 

refers to two distinct entities: the area in memory with the string value (this is the immutable 

part), and the area in memory of the string variable that points to the area of memory holding 

the string value. Multiple string variables may point to the same memory area containing the 

immutable string. String variables themselves are not immutable because they may be 

reassigned to point to different strings (the immutable parts). Because a string value is 

immutable, it cannot be modified. 

  

See the code example following. First w is both declared and assigned a string value “foo”. 

Then the variable x is assigned to point to the same immutable string value. Usually the 

assignment operator += will add the right operand to the left operand and assign the answer to 

the left operand, but it does not do this for operations on strings. Since strings are immutable, 

the operation must first allocate a new area of memory, then create a new string “foo bar” in that 

new location, and then switch the string address location of w from the old memory area to point 

to the new memory area. The result is two areas of memory where one area holds the string 

“foo” (pointed to by x), and a second area holding the string “foo bar”, pointed to by w. The 

string variable w has also had its length changed from 3 to 7. 

  

Because strings are immutable, they are concurrency safe. Multiple goroutines may access the 

same string safely, as no goroutine may make changes to a given string value. 

Immutability: Code Example 

// Immutability - show the effects of string literal assignments and concatenation 

package main 

  

import ( 

            "fmt" 

) 

  

type StructWithString struct { 

            Val string 

} 

  

func (s StructWithString) setString(v string) string { 

            s.Val = v 

            return s.Val 

} 
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func main() { 

            w := "foo" // The w entity is variable, the "foo" entity is not variable and is immutable 

            fmt.Println("w is", w) 

            x := w // The x entity also now points to the immutable value "foo" 

            fmt.Println("x is", x) 

            w += " bar" // A new immutable string value is created: "foo bar" 

            fmt.Println("w is now", w) 

            fmt.Println("x is still", x) 

  

y := StructWithString{"whizbang"} // Create struct variable and load string field 

fmt.Println("y is", y) 

y.Val = "bangwhiz" // Assign new string to field variable, old string now inaccessible 

fmt.Println("y is now", y) 

y.setString("foobarwhizbang") // Variable y unchanged by function call because pass by value 

fmt.Println("y is still", y) 

z := y.setString("foobarwhizbang") // Function changes field value, assigned to z (y still same) 

fmt.Println("z is", z) 

} 

  

/* 

Prints the following: 

w is foo 

x is foo 

w is now foo bar 

x is still foo 

y is {whizbang} 

y is now {bangwhiz} 

y is still {bangwhiz} 

z is foobarwhizbang 

*/ 
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Lexical Scope 

Lexical means the vocabulary (words) of a language (lexicon means dictionary). It is derived 

from the Greek term “lexikos” which means “pertaining to words”. 

  

Scope means a range of view, an extent; it is derived from the Latin term “scopium” meaning to 

look at, to view carefully. In the programming context it refers to the range of words over which 

an operator (such as “+”) has control; and the region of the program where the binding of a 

name to an entity is valid. 

  

Lexical scope means that name resolution is dependent upon the location within the source 

code, and the context which is specified by where a variable or function is defined. 

  

Scope in Go is managed in blocks, and these can be either explicit or implicit. Explicit blocks are 

contained within curly braces e.g. “{ }”. An explicit block can be empty (there may be nothing 

between the braces). 

  

Implicit blocks are as follows: 

1. Universal - all the Go source code in a program 

2. Package - all the Go code in a package 

3. File - all the Go code in an individual file 

4. Logical - each “for”, “if”, “else”, and “switch” statement, and each clause in “switch” and 

“select” statements 

  

All predeclared identifiers belong to the universe block scope. These are the language defined 

types, the constants “true”, “false”, and “iota”, the zero value “nil”, and finally a number of 

predeclared functions such as “len()”, “make()”, “new()”, and “println()”. 

  

When a variable is passed to a function, what is passed is a copy of the variable. Within the 

function, the scope is applied to the copy. Any changes made to the copy will not be applied to 

the original variable. 

  

When passing a pointer to a function, the passed pointer is a copy of the original pointer, but the 

pointer copy points to the same memory address. If within the function the pointer is reassigned 

to point to some other variable, when the function call returns the original pointer still points to 

the original variable. However, the function can modify the value of the variable to which the 

passed in pointer points. This is because the variable pointed to by the pointer retains its scope, 

whatever that is (package, file, curly braces, or logical e.g. “for”, “if”, “else”, “switch”, or clause in 

a “switch” or “select”). 

  

The concept of using the same name for a variable within different blocks of scope is called 

“variable shadowing”. This means within each inner block of scope, a variable with the same 

name as a variable in an outer block of scope, is a different variable. 
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See the following code illustrating the concept of lexical scope, blocks, and variable shadowing: 

Lexical Scope: Code Example 

// Showing some aspects of lexical scope 

package main 

  

import ( 

            "fmt" // Scope of imported package name is file importing the package 

) 

  

const a = "A string literal" // Scope of constant is the package 

var b = 100               // Scope of variable is the package 

  

func f1(p *int, x int) (i int) { // Scope of function is the package 

            x++ // Scope is inside f1() 

            fmt.Println("Inside f1() variable x incremented to: ", x) 

            i = x 

            *p = 20 // Changing the value of variable pointed to by pointer p 

            fmt.Println("Inside f1() the variable p points to, is set to: ", *p) 

            return // Do not need to say "return i" because i is named variable 

} 

  

func main() { 

            x := 5  // Scope: main goroutine 

            y := 10 // Scope: main goroutine 

            z := 15 // Scope: main goroutine 

            fmt.Println("x, y, and z in main goroutine block ", x, y, z) 

            for x := 1; x < 3; x++ { // The variable x is shadowed in for block 

                           fmt.Println("x shadowed in for loop block, y and z still in main block ", x, y, z) 

            } 

            fmt.Println("x, y, and z in main goroutine block ", x, y, z) 

            if y := "[y is now a string]"; len(y) == 9 { 

                           fmt.Println("x and z still in main block, y shadowed in if block ", x, y, z) 

            } else { 

                           fmt.Println("x and z still in main block, y shadowed in else block ", x, y, z) 

            } 

            fmt.Println("x, y, and z in main goroutine block ", x, y, z) 

            { // Demonstrates scoping within curly brace 

                           x := 100 

                           y := 200 

                           fmt.Println("x and y in unnamed {} block ", x, y) 

            } 

            fmt.Println("x, y, and z in main goroutine block ", x, y, z) 

            p := &z 

            y = f1(p, x) 

            fmt.Println("Variable y set to return value from f1() ", y) 

            fmt.Println("x, y, and z in main goroutine block ", x, y, z) 

} 
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/* 

Prints the following: 

x, y, and z in main goroutine block  5 10 15 

x shadowed in for loop block, y and z still in main block  1 10 15 

x shadowed in for loop block, y and z still in main block  2 10 15 

x, y, and z in main goroutine block  5 10 15 

x and z still in main block, y shadowed in else block  5 [y is now a string] 15 

x, y, and z in main goroutine block  5 10 15 

x and y in unnamed {} block  100 200 

x, y, and z in main goroutine block  5 10 15 

Inside f1() variable x incremented to:  6 

Inside f1() the variable p points to, is set to:  20 

Variable y set to return value from f1()  6 

x, y, and z in main goroutine block  5 6 20 

*/ 
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Linked Lists and Slices 

A list is a series of names or items written in a sequence, the word is derived from Old High 

German “leiste”, and French “liste”. The original context was that “the lists” was a tournament 

field for competitive combat arts. To enter the tournament, a contestant had their name entered 

“in the lists”, where a list was the written series of names of contestants. In modern terminology, 

a list is any sequentially ordered written collection of related items. 

  

In programming a linked list is a sequentially linked collection of elements, but they do not have 

to be adjacent in memory. A single linked list can only be traversed in one direction, from the 

head to the tail. A doubly linked list may be traversed in both directions. A linked list may be 

formed into a ring, in this case the list tail is linked to the list head; this is similar to a ring buffer. 

However, ring buffers use contiguous memory, and linked lists do not. 

  

Because the items in the list are not in contiguous memory, it is easy to insert and remove items 

without having to deal with explicitly resizing the overall data structure. The items in the list are 

conventionally referred to as nodes, and the nodes are implemented as structs. The structs 

contain element information, as well as pointers to connect each struct to one another. The 

primary advantage is that memory does not need to be allocated in advance for the entire list, 

this is associated with the disadvantage that the linked list list nodes are scattered around in 

memory. Each node access requires following a pointer reference, as the structs are linked by 

pointers. 

  

An alternative to a linked list is a dynamic array, which is implemented in Go as a slice. Slices 

use an underlying array, or pointer to array, or a string, or another slice. Unlike an array which is 

permanently fixed in size at compile time, slices may be increased in size at runtime. 

  

Although slices are not limited to underlying array types, they are typically initially defined by 

being assigned to an array, or an existing slice assigned to an array. Slices can grow in size 

beyond the initial underlying array size by using the built in append() function, which appends 

zero or more values to an existing slice. When a slice does not have enough memory to add 

any more data, the append function allocates a new larger contiguous memory area and 

assigns the slice variable to the new memory area. 

  

A danger of dynamic arrays in general, and using the append() function with slices in particular, 

is that if there is insufficient contiguous memory available for allocation the program will panic 

with an out of memory condition, and the program will terminate. So, while it is faster to traverse 

a slice using the for statement with the range clause than it is to sequentially follow the pointer 

references in a linked list, the linked list will (almost certainly) not run into an out of memory 

condition that can crash the program. Also, a doubly linked list can be traversed in both 

directions, the for statement with the range clause will only traverse in one direction. 

  

If there are a truly large number of data elements, a data structure other than either a linked list 

or a slice is preferable. And when not dealing with a truly large number of data elements, slice 
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operations are faster than dealing with a linked list. Because slices can contain structs, it is 

generally preferable in Go to use slices and perform slicing than to use a linked list. 

  

The language does provide a package with built in doubly linked list capability, to use this 

capability import the “container/list” package. It has built in functionality for list creation, addition 

and deletion of list members, movement of list members, and list traversal. An example of this 

may also be found in Data Structures: Code Example - Linked List. 

  

The following code example will demonstrate operations using a simple linked list, and then 

demonstrate how similar functionality can be achieved using slice operations. 

Linked Lists and Slices: Code Example 

  

//Demonstrate linked list and slice similar functionality 

package main 

  

import ( 

            "container/list" 

            "fmt" 

) 

  

func ll() { 

            fmt.Println("Demonstrate basic linked list functionality") 

            // Create a new list and put some numbers in it 

            l := list.New() 

            fmt.Println("New list created, length:", l.Len()) 

            fmt.Println("Loading the list with 5 squares") 

            // Load the list 

            for i := 1; i < 6; i++ { 

                           l.PushBack(i * i) 

            } 

            // Iterate through list and print its contents. 

            for e := l.Front(); e != nil; e = e.Next() { 

                           fmt.Printf("%d ", e.Value) 

            } 

            fmt.Printf("\n") 

            fmt.Println("List length now:", l.Len()) 

            // Remove item from list 

            for e := l.Front(); e != nil; e = e.Next() { 

                           if e.Value == 9 { 

                                          fmt.Println("Removing", e.Value) 

                                          l.Remove(e) 

                                          break 

                           } 

            } 

            // Iterate through list and print its contents. 

            for e := l.Front(); e != nil; e = e.Next() { 
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                           fmt.Printf("%d ", e.Value) 

            } 

            fmt.Printf("\n") 

            // Move item to end of list 

            for e := l.Front(); e != nil; e = e.Next() { 

                           if e.Value == 4 { 

                                          fmt.Printf("Moving %d to end of list\n", e.Value) 

                                          l.MoveToBack(e) 

                                          break 

                           } 

            } 

            // Iterate through list and print its contents. 

            for e := l.Front(); e != nil; e = e.Next() { 

                           fmt.Printf("%d ", e.Value) 

            } 

            fmt.Printf("\n") 

            // Insert new item in front of the list 

            e1 := l.Front() 

            fmt.Println("Putting new value at front of the list") 

            l.InsertBefore(36, e1) 

            // Iterate through list and print its contents. 

            for e := l.Front(); e != nil; e = e.Next() { 

                           fmt.Printf("%v ", e.Value) 

            } 

            fmt.Printf("\n") 

            // Initialize (clear) the list 

            l.Init() 

            fmt.Println("Initialized (cleared) the list, length now:", l.Len()) 

} 

  

func s() { 

            fmt.Println("Demonstrate basic slice functionality") 

            // Create a new slice and put some numbers in it 

            s := make([]int, 0) 

            fmt.Println("New slice created, length:", len(s)) 

            fmt.Println("Loading the slice with 5 squares") 

            // Load the slice 

            for i := 1; i < 6; i++ { 

                           s = append(s, (i * i)) 

            } 

            // Print contents of slice 

            fmt.Println(s) 

            fmt.Println("Slice length now:", len(s)) 

            // Remove item from slice 

            for i, e := range s { 

                           if e == 9 { 

                                          fmt.Println("Removing", e) 

                                          s = append(s[:i], s[i+1:]...) 

                                          break 
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                           } 

            } 

            fmt.Println(s) 

            // Move item to end of list 

            for i, e := range s { 

                           if e == 4 { 

                                          fmt.Printf("Moving %d to end of slice\n", e) 

                                          s = append(s[:i], s[i+1:]...) // Remove the 4 

                                          s = append(s, e)           // Add 4 to end of slice 

                                          break 

                           } 

            } 

            fmt.Println(s) 

            fmt.Println("Putting new value at front of the slice") 

            s = append(s, 0) 

            copy(s[1:], s[0:]) 

            s[0] = 36 

            fmt.Println(s) 

            // Initialize (clear) the slice by setting it to nil 

            s = nil 

            fmt.Println("Initialized (cleared) the slice, length now:", len(s)) 

} 

  

func main() { 

            ll() // Demonstrate linked list functionality 

            fmt.Println("+++++++++++++++++++++++++++++++++++++") 

            s() // Demonstrate similar slice functionality 

} 

  

/* 

Prints the following: 

Demonstrate basic linked list functionality 

New list created, length: 0 

Loading the list with 5 squares 

1 4 9 16 25 

List length now: 5 

Removing 9 

1 4 16 25 

Moving 4 to end of list 

1 16 25 4 

Putting new value at front of the list 

36 1 16 25 4 

Initalized (cleared) the list, length now: 0 

+++++++++++++++++++++++++++++++++++++ 

Demonstrate basic slice functionality 

New slice created, length: 0 

Loading the slice with 5 squares 

[1 4 9 16 25] 

Slice length now: 5 
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Removing 9 

[1 4 16 25] 

Moving 4 to end of slice 

[1 16 25 4] 

Putting new value at front of the slice 

[36 1 16 25 4] 

Initialized (cleared) the slice, length now: 0 

*/ 
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Literals 

A literal is a term used in computer science to denote a fixed value in program source code. 

Literal means the exact, precise meaning of an entity, that entity can only be what it is and no 

other thing. The word comes from Middle English and is derived from the Latin word “litterālis” 

which means “of letters”. 

  

Variables and constants are not literals. Rather they contain or point to things that are literals. 

  

Literals are normally stored in UTF-8 encoding format as code points. For example, a string 

literal expressed in the text of the Go program code such as “abc 表 🙂” will be stored in UTF-8 

format when the program is compiled. Numbers are also literals, and the compiled code 

expresses them in UTF-8 format. 

  

Note: there is a rare exception to this situation. It is possible to deliberately escape the UTF-8 

encoding format for strings by using escape characters within the quoted text of the string to 

specify an alternative encoding format. In this case the string will store the escaped characters 

as a sequence of bytes not following the UTF-8 format. This situation will rarely be encountered, 

because input data can and should be converted to UTF-8 format upon input (when required), 

and string literals written within the program itself will normally be written containing characters 

“as they are” in whatever language those characters are expressed. See Runes. 

  

Function literals are also known as anonymous functions and inline functions. They are written 

like ordinary functions declarations, but without a function name following the “func” keyword. 

They are expressions, not declarations. They have a property known as closure, meaning they 

can access, update, and remember variables declared in the enclosing function. See Functions. 

  

Anything that is not a keyword, an identifier (variables and types), or an operation or punctuation 

mark, is a literal. Almost all literals consume storage space, even when they are empty. There is 

one exception, which is if a type is specified as the empty struct, and an empty struct literal of 

that type is assigned to a variable, the variable will consume no memory space. This applies to 

complex types as well, so for example if an array is declared to hold values of empty struct, the 

array will also consume no memory space. 

  

Struct literals have some special rules. These include: if no keys are listed, there must be a 

value provided for each field in the order of the fields, if a key is listed then all values must be 

preceded by keys, keys must be the field names of the struct, when keys are provided values 

are not required (values will default to the zero value for that field type), and finally the struct 

literal may be empty in which case all values will default to the zero values for the field types. 

  

The following code shows a function literal and multiple kinds of literals assigned to variables. It 

also demonstrates how a struct literal of type empty struct consumes zero storage. 
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Literals: Code Example 

// Literals - shows some examples 

package main 

  

import ( 

            "fmt" 

            "unsafe" 

) 

  

func myf1() int { 

            i := 1 // Following function literal acquires and encloses i 

            return func() int { return 2 * i }() // Anonymous function (function literal) 

} 

  

func main() { 

            type gender rune // Create rune type 

            const (       // Create rune constants, all constants are literals 

                           male   gender = 'M' 

                           female gender = 'F' 

            ) 

            type person struct { // Create struct type 

                           name string 

                           age  int8 

                           sex  gender 

            } 

            type empty struct{} // Create empty struct type 

            var p person   // Declare instance of struct type 

            p.name = "James" // Variable p is not a literal, but it has field values containing literals 

            p.age = 50 

            p.sex = male   // Assign values to struct fields 

            q := person{name: "Jack", age: 20, sex: male} // q is not a literal, but has struct literal values 

            r := person{"Jane", 30, female}  // Another way to create struct literal values 

            s := person{} // Demonstrates an struct literal with no values 

            a := empty{}  // Empty struct literal of type empty struct 

            fmt.Println("Individual field values are literals", p) 

            fmt.Println("Struct literal", q) 

            fmt.Println("Another struct literal", r) 

            fmt.Println("Struct literal with no values", s) 

            fmt.Println("Size of struct literal with no values", unsafe.Sizeof(s)) // Shows storage allocated 

            fmt.Println("Empty struct literal", a) 

            fmt.Println("Size of empty struct literal with no values", unsafe.Sizeof(a)) // Shows zero storage 

            fmt.Println("myf1 returns", myf1())// Call function containing a function literal 

            t := [2]string{"foo", "bar"}  // An array literal 

            fmt.Println("Array literal", t) 

            fmt.Println("Size of array literal", unsafe.Sizeof(t)) 

            b := [2]struct{}{} // An array literal of empty structs 

            fmt.Println("Array of empty structs literal", b) 

            fmt.Println("Size of array literal of empty structs", unsafe.Sizeof(b)) // Shows zero storage 
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            u := []string{"f", "o", "o", "b", "a", "r"}  // A slice literal 

            fmt.Println("Slice literal", u) 

            v := u[2:4] // A new slice referencing part of other slice 

            fmt.Println("New slice", v) 

            w := map[string]float32{"foo": 12.34, "bar": 56.78} // All map literals require key values 

            fmt.Println("Map literal", w) 

            x := 100 // Variable x is not a literal, but the value 100 is a literal 

            fmt.Println("Integer literal", x) 

            y := 3.1416 // Variable y is not a literal, but the value 3.1416 is a literal 

            fmt.Println("Float literal", y) 

            z := "foobar" // Variable z is not a literal, but the value "foobar" is a literal 

            fmt.Println("String literal", z) 

} 

  

/* 

Prints the following: 

Individual field values are literals {James 50 77} 

Struct literal {Jack 20 77} 

Another struct literal {Jane 30 70} 

Struct literal with no values { 0 0} 

Size of struct literal with no values 16 

Empty struct literal {} 

Size of empty struct literal with no values 0 

myf1 returns 2 

Array literal [foo bar] 

Size of array literal 16 

Array of empty structs literal [{} {}] 

Size of array literal of empty structs 0 

Slice literal [f o o b a r] 

New slice [o b] 

Map literal map[foo:12.34 bar:56.78] 

Integer literal 100 

Float literal 3.1416 

String literal foobar 

*/ 
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Logic 

The word logic means the ability to distinguish true from false reasoning and is derived from the 

Old French “logique”, which came from the Latin “logica” and Greek “logike”. Logical evaluation 

statements will return either true or false. Bivalent logic (the law of bivalence) asserts that every 

declarative statement expressing a proposition is either true or it is false. All of programming 

consists of statements of control flow, logical evaluation, or data operations. This applies 

throughout programming logic and is used in if/else, for, and switch/case statements. 

  

Formal logic may be propositional only, or also predicate logic, and predicate logic consists of 

several orders or levels. A proposition is a statement describing a proposed state, and the 

proposition may be true, or it may be false. Propositional logic deals only with whether 

propositions are true or false. Propositions may also contain connectors linking subjects, and 

there are five possible connectors in propositional logic. These are: conjunction (and), 

disjunction (or), negation (not), implication (if/then), and equivalence (is, ==). 

  

Here are some examples of propositional logic: 

• Fast Rabbit is fast (equivalence) 

• Slow Rabbit is not fast (equivalence, negation) 

• Fast Rabbit is fast and Slow Rabbit is slow (equivalence, conjunction) 

• If ((Fast Rabbit is fast and Slow Rabbit is slow) and (Fast Rabbit and Slow Rabbit run a 

race together)) then Fast Rabbit will win (implication, equivalence, conjunction) 

  

Propositional logic (also known as zeroth order logic) contains predicates but does not perform 

quantifying logic on the predicates. Quantifiers specify quantities, such as none, some, there 

exists at least one, and for all. The word predicate means to assert or declare and comes from 

the Latin word “praedicātus”. Since a predicate is an assertion, looking at the proposition “Fast 

Rabbit is fast” then “Fast Rabbit” is the subject and “is fast” is the predicate assertion. In the 

proposition that “Fast Rabbit lives in a rabbit hutch”, “Fast Rabbit” is the subject, and “lives in a 

rabbit hutch” is the predicate. And the proposition is either true, or it is false, depending on the 

values composing the predicate. 

  

Propositional logic does not permit variables, nor does it permit asserting the existence of an 

entity. So, while it is possible to form a proposition that “this car is blue” or “this car is not blue”, 

it is not possible to propose that “this car is x”, or to propose that “this x is blue”, where x is 

variable. It is also not possible to propose “there exists this car which belongs to a particular set 

of cars”. Therefore, zeroth order propositional logic is insufficient to support a programming 

language. Finally, propositional logic does not handle syllogistic arguments. For example, 

propositional logic cannot handle: (1) “All rabbits have fur”, and (2) “Fast Rabbit is a rabbit”, 

therefore (3) “Fast Rabbit has fur” because it cannot handle the “therefore” (as a logical 

consequence) logic. 
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First order logic handles existential quantification (there exists) and universal quantification (for 

all) applied to terms (entities) but does not permit quantification to be applied to properties of 

entities, relations between entities, and functions applied to entities. 

  

An example within the context of universal quantification is that when ranging over an array of 

integers [1, 2, 3, 4] and those values are sequentially assigned to x, it is a universally true 

statement that for all x, x^2 ≥ x. 

  

In the context of existential quantification, when ranging over an array of integers [1, 2, 3, 4] and 

those values are sequentially assigned to x, it is an existentially true statement that there exists 

an x where x^2= x, and that is 1^2= 1. 

  

In all cases in first order logic, the quantification can only be applied to an individual entity even 

though the quantification is done over a domain of such entities e.g. for all x within a domain of 

entities, or there exists an x within a domain of entities. It can express statements like “if (x == 

true) && (y == true) {z = 5} else {z = 10}” (where x and y are type Boolean, and z is type int). But 

it cannot express the logic of “the only difference between a and b is that a has property c”. That 

is because the quantification can only apply to individual entities and not to a group of entities. 

Plural quantification, e.g. quantifying over “a and b” cannot be done in first order logic. 

  

Also, in first order logic, first order functions can only operate on individual entities such as 

strings, integers, floats, etc. In first order logic, functions cannot operate on functions. 

  

Second order logic deals with quantifying functions and predicates, rather than just quantifying 

the individual entities. Second order logic can quantify over properties of entities, and to other 

relations and functions. Quantifiers also apply to entire collections of entities rather than only 

individual entities; and quantify over the sub-entities of entities (that is, where a separate entity 

is a property of another entity). 

  

Since second order logic can be applied to the properties of groups of entities, it is second order 

logic when it is asserted that two entities are equal only if all their attributes have the same 

properties. In first order logic, it cannot be asserted that “if a is an X, and b is an X, both a and b 

have a common property”. It also cannot be asserted in first order logic that “a == b if and only if 

they share all properties”. Both sentences require second order logic to process. 

  

Go as a language does support both first order and second order logic. In some cases, the 

support is inherent in the logic of the language itself (e.g. applied by the compiler), and in other 

cases the program code expresses the logic. 

  

As an example of where the language itself enables second order logic, consider static typing. If 

it is asserted that: a is a type T, that b is also the same type T, and that c is also the same type 

T; therefore, collectively a, b, and c all have the common properties of T. This is obviously true. 

Go is a statically typed language, and where entities are the same type, then they have 

common properties of that type. 
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This static typing which supports second order logic applies limitations to operations which are 

restricted to entities of given types. For example, while it is possible to assign the value of a 

variable of type int to another variable of type int, it is not possible to assign the value of a 

variable of type float32 to a variable of type int32 without a type conversion. The static type 

system which implicitly supports second order logic within the language comes with logical 

restrictions upon program code statements. 

  

Go supports the second order logic of quantifying over sub-entities of entities by permitting 

types to be values of higher types via the use of embedding. So, when a struct of type A 

embeds an anonymous struct of type B, this supports second order logic processing. The ability 

to pass functions to functions as parameters (functional composition) is a second order logic, as 

a second order function can operate on functions. An expression “f(g(h()))” is second order logic 

because it is applying functions to functions. 

  

Within the program code it is possible to compare the properties of data entities, and the values 

of those properties. It is possible to embed structs within structs, to embed functions within 

structs, and to pass functions as parameters to functions, and to return functions as return 

values from functions. Finally, it is possible to express functions as variables. This type of 

functionality enables Go to support second order logic. 

  

The language does not support logic above second level logic, that is, the levels collectively 

known as higher level logic. 

Logic: Code Example 

// First order and second order logic 

package main 

  

import ( 

            "fmt" 

            "reflect" 

) 

  

func fol() { // All first order logic inside this function 

            x := true 

            y := true 

            var z int 

            if x == true && y == true { 

                           fmt.Println("x and y are both true") 

            } else { 

                           fmt.Println("x and y are NOT both true") 

            } 

            y = false 

            if x == true && y == true { 

                           fmt.Println("x and y are both true") 

            } else { 
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                           fmt.Println("x and y are NOT both true") 

            } 

            fmt.Println("z is", z) 

            if reflect.TypeOf(x) == reflect.TypeOf(y) { 

                           fmt.Println("x and y are the same type") 

            } else { 

                           fmt.Println("x and y are NOT the same type") 

            } 

            if reflect.TypeOf(x) == reflect.TypeOf(z) { 

                           fmt.Println("x and z are the same type") 

            } else { 

                           fmt.Println("x and z are NOT the same type") 

            } 

} 

  

func sol1(i int) int { // First order logic 

            return i * 10 

} 

  

func sol2() int { // First order logic 

            return 5 

} 

  

type st struct { 

            fn func() string 

} 

  

func main() { 

fol()  // All first order logic inside this function 

fmt.Println(sol1(sol2())) // Second order logic here - function composition 

v := sol2   // Second order logic - assigning a function to a variable 

fmt.Println(v()) 

f := st{func() string { return "foo" }} // Second order logic - assigning a function to struct field 

fmt.Println(f.fn()) 

} 

  

/* 

Prints the following: 

x and y are both true 

x and y are NOT both true 

z is 0 

x and y are the same type 

x and z are NOT the same type 

50 

5 

foo 

*/ 
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Mapping 

Hashing is a method of mapping a collection of data of any size to a collection of data of 

specified size. Hashing depends upon the use of a hash table. A hash table is an associative 

array structure that permits the mapping of keys to associated values. The mapping is a 

representation of ordered pairs of data where none of the first elements of the pair ever appears 

more than once in the map. 

  

Collisions can occur when performing hashing on a hash table. This is when the key value is 

calculated from the data value, and two or more data values generate the same key. There are 

several ways to deal with this. One way is to simply overwrite the existing value. But when 

multiple values may be associated with a key, commonly the separate chaining approach is 

used. 

  

The separate chaining approach typically stores the associated values in a linked list of structs, 

or in a slice containing values. When the hashing calculation determines the key from the value, 

it checks the hash table, finds the key, and then proceeds down the list or through the slice 

looking for a match. If there is no match, the value is loaded into a new struct which is added to 

the linked list of structs, or the value is appended to the slice. If there is a match, then whatever 

functionality that should be performed when a match is found will be performed. 

  

The Go map data type implements an associative array structure, and the Go specification 

permits the specified size of the map to be changed at runtime. The key type has a restriction in 

that it must be a data type that comparable, that is, it must be subject to either of the following 

Boolean equality operators: “==” or “!=”. Maps are not comparable, so trying map1 == map2 or 

map1 != map2, these are errors and this will not compile. The value type may be any valid Go 

data type. 

  

Maps do have a length, which can be determined by the length function, e.g. len(map). While 

map capacity can be assigned during map initialization, the cap() function cannot be performed 

on a map, e.g. cap(map) will result in a compile time error. 

  

To add items to a map, assign a value to a new map key. To update, assign a value to an 

existing key. To remove items from a map use the delete(map,key) function by providing the 

map name and a key value. The delete(map,key) function has no return value.  To iterate over 

an entire map, use the range keyword. 

  

Maps are, under the covers, pointers to “runtime.hmap” structures. Written in the source code, 

they do not use the usual “*” pointer designation, but they are in fact pointers. So in the case of 

“m1 := map[string]int{"foo":5, "bar":8}”, m1 is actually a pointer of type hmap e.g. “*hmap”. 

  

Maps are not concurrency safe. Do not permit two or more goroutines to access the same map 

without using a mutex or some form of channel communication to coordinate access. See 

Goroutines, Mutex (Mutual Exclusion), and Channels. 
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Mapping: Code Example 

// Demonstrates basic mapping functionality 

package main 

  

import ( 

            "fmt" 

            "math/rand" 

            "reflect" 

) 

  

func main() { 

// Maps are specified in the form: map [key type] value type 

var m1 map[int]string   //Map of int keys to string values, m1 is nil 

m1 = make(map[int]string)  // Assign m1 to an initialized map, where m1 contains 0:"" 

m2 := make(map[string]int) // Allocates and initializes a map m3, where m3 contains "":0 

m3 := make(map[string]int, 5) // Allocates and initializes map m4 with capacity of 5 

  

fmt.Println("m1 contains:", m1) 

fmt.Println("m2 contains:", m2) 

fmt.Println("m3 contains:", m3) 

  

            var r = []rune("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ") 

            a := make([]rune, 5) 

            for i := 0; i < 5; i++ { 

                           s := func() string { 

                                          for i := range a { 

                                                         a[i] = r[rand.Intn(len(r))] 

                                          } 

                                          return string(a) 

                           }() 

                           m3[s] = rand.Intn(10000) // Load map m4 with pseudorandom string keys and values 

            } 

fmt.Println("m3 contains:", m3) 

  

m4 := map[string]int{"foo": 5, "bar": 8} // Initialize map m1 with two key-value pairs 

fmt.Println("m4 contains:", m4) 

  

m4["bob"] = 10 // Add new key-value pair to map 

fmt.Println("m4 contains:", m4) 

  

m4["bob"] = 12 // Update value associated with key "bob" from 10 to 12 

fmt.Println("m4 contains:", m4) 

  

i := m4["bob"] // Get the value (12) identified by key, assign to variable 

fmt.Println("Variable i assigned value from map m4 key bob:", i) 
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delete(m4, "foo") // Remove the key-value pair with key “foo” 

fmt.Println("deleted foo from map m4 using delete(map,key):", m4) 

  

m4["foo"] = 50 // Add new key-value pair to map 

fmt.Println("added new key-value pair to map m4, now contains:", m4) 

  

// Show a different way to delete from a map 

m := reflect.ValueOf(m4) 

// SetMapIndex() will delete the key from the map if val Value equals zero 

m.SetMapIndex(reflect.ValueOf("foo"), reflect.Value{}) // Delete foo from map with reflection 

fmt.Println("deleted foo from map m4 via reflection:", m4) 

  

            for key, value := range m4 { // Iterate with range 

                           fmt.Println("Iterating over map m4 with range - Key: ", key, "Value: ", value) 

            } 

            fmt.Println("Length of map m4:", len(m4)) 

  

            _, ok := m4["Foobar"] // Check for key not in the map 

            if !ok { 

                           fmt.Println("Key 'Foobar' not found in map m4") 

            } 

} 

  

/* 

Prints something like the following: 

m1 contains: map[] 

m2 contains: map[] 

m3 contains: map[] 

m3 contains: map[XVlBz:1318 baiCM:8511 AjWwh:1445 Hctcu:6258 xhxKQ:3015] 

m4 contains: map[foo:5 bar:8] 

m4 contains: map[bob:10 foo:5 bar:8] 

m4 contains: map[foo:5 bar:8 bob:12] 

Variable i assigned value from map m4 key bob: 12 

deleted foo from map m4 using delete(map,key): map[bar:8 bob:12] 

added new key-value pair to map m4, now contains: map[foo:50 bar:8 bob:12] 

deleted foo from map m4 via reflection: map[bar:8 bob:12] 

Iterating over map m4 with range - Key:  bar Value:  8 

Iterating over map m4 with range - Key:  bob Value:  12 

Length of map m4: 2 

Key 'Foobar' not found in map m4 

*/ 
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Marshalling and Unmarshalling 

The term marshalling is used refer to the action of transforming the in-memory representation of 

an entity into a data format used for communicating (transmitting) outside of the program. The 

word marshalling is derived from the Middle English term “marshal” and marshalling 

linguistically means “to set in proper order” or “set out in an orderly manner”. 

  

The Go language depends upon several packages to implement marshalling and unmarshalling. 

The base level package is the encoding package, which provides interfaces used by several 

other packages. These interfaces enable binary marshalling and unmarshalling, and UTF-8 

textual marshalling and unmarshalling. 

  

Of the several packages that use the encoding package interfaces, two of the more commonly 

used are json and xml. But there are others of interest, for example the csv package provides 

the ability to read from and write to files containing comma separated variable format. 

  

When using JSON there are several limitations that must be considered. Firstly, for JSON to be 

able to marshal values, those values must be exportable, and for a variable to be visible outside 

of the package that contains it, the first character must be capitalized so that it may be exported. 

Certain types may not be encoded, such as functions and channels. Pointers will be encoded as 

the values which they reference, and when encoding map data types, the key types must be 

strings. JSON marshalling encoding converts the provided data into a []byte slice. 

  

JSON unmarshalling accepts a []byte slice and a pointer to a data structure, and will decode 

from the []byte slice into that data structure. Assuming the data structure is a struct type, the 

unmarshalling compares the string keys from the []byte slice to the struct field names. When 

they match, the associated data is loaded into the field; where there is no match, no data is 

copied into the field. This is useful when only a subset of the marshalled data is needed. 

  

XML marshalling offers a couple of choices, one that does straight marshalling and one that 

does indented marshalling, where each element is placed on a new line preceded by a provided 

indentation. XML marshalling will work on structs, arrays, and slices, and does not work on 

channels, maps, and functions. For structs, the first field should be named XMLName, and 

should be of type Name. A []byte slice is returned from a call to either marshal function. 

  

XML unmarshalling accepts a []byte slice and a pointer to a data structure, and decodes from 

the []byte slice into a struct, string, or a slice. Given a struct, the field names must begin with an 

uppercase character to be exported so that data can be assigned into the fields. Any missing 

values or attributes will be unmarshalled as zero values. 

  

For both JSON and XML there are many available functions, and the package documentation 

must be consulted to understand all the available features and functionality. The following code 

examples are deliberately simple, but they demonstrate the marshalling and unmarshalling 

features of the JSON and XML packages. 
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Marshalling and Unmarshalling: Code Example - JSON 

// Demonstrate JSON marshalling and unmarshalling 

package main 

  

import ( 

            "encoding/json" 

            "fmt" 

            "os" 

) 

  

func main() { 

            type Book struct { 

                           Title      string 

                           Author     string 

                           YearPublished int 

            } 

  

            type BookTitle struct { 

                           Title string 

                           stuff string 

            } 

  

            mybook := Book{ 

                           "A Short Cyclopedia of Go", 

                           "John Tullis", 

                           2019, 

            } 

  

            fmt.Printf("Initial struct data: %+v\n", mybook) 

  

            // Signature: func Marshal(v interface{}) ([]byte, error) 

            bookdata, err1 := json.Marshal(mybook) 

            if err1 != nil { 

                           fmt.Printf("JSON marshalling failed: %s", err1) 

                           os.Exit(1) 

            } 

            fmt.Printf("Marshalled data in []byte slice: %s\n", bookdata) 

  

            var getbook Book 

            // Signature: func Unmarshal(data []byte, v interface{}) error 

            err1 = json.Unmarshal(bookdata, &getbook) 

            if err1 != nil { 

                           fmt.Printf("JSON marshalling failed: %s", err1) 

                           os.Exit(1) 

            } 

            fmt.Printf("Unmarshalled into new struct: %+v\n", getbook) 

  

            var booktitle BookTitle 
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            // Now unmarshal into different struct with only one matching field 

            err1 = json.Unmarshal(bookdata, &booktitle) 

            if err1 != nil { 

                           fmt.Printf("JSON marshalling failed: %s", err1) 

                           os.Exit(1) 

            } 

            fmt.Printf("Unmarshalled into different new struct: %+v\n", booktitle) 

} 

/* 

Prints the following: 

Initial struct data: {Title:A Short Cyclopedia of Go Author:John Tullis YearPublished:2019} 

Marshalled data in []byte slice: {"Title":"A Short Cyclopedia of Go","Author":"John 

Tullis","YearPublished":2019} 

Unmarshalled into new struct: {Title:A Short Cyclopedia of Go Author:John Tullis YearPublished:2019} 

Unmarshalled into different new struct: {Title:A Short Cyclopedia of Go stuff:} 

*/ 

  

Marshalling and Unmarshalling: Code Example - XML 

// Demonstrate XML marshalling and unmarshalling 

package main 

  

import ( 

            "encoding/xml" 

            "fmt" 

) 

  

type Animal struct { 

            XMLName xml.Name 

            E1   string `xml:"ELEM1"` 

            E2   string `xml:"ELEM2"` 

            E3   string `xml:"ELEM3"` 

} 

  

func main() { 

            // Signature: func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) 

            fmt.Println("Marshalling dog data with indentation") 

            buf, err := xml.MarshalIndent(Animal{ 

                           XMLName: xml.Name{Local: "Dog"}, 

                           E1:   "bark", 

                           E2:   "bark", 

                           E3:   "more barks", 

            }, "", "  ") 

            if err != nil { 

                           fmt.Println("error:", err) 

            } else { 

                           fmt.Printf("%s\n", buf) 

            } 
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            var newdog Animal 

            fmt.Println("New struct newdog contains:", newdog) 

            fmt.Println("Unmarshalling dog data") 

            // Signature: func Unmarshal(data []byte, v interface{}) error 

            err = xml.Unmarshal(buf, &newdog) 

            if err != nil { 

                           fmt.Println("error:", err) 

            } else { 

                           //fmt.Printf("%s\n", buf) 

                           fmt.Println(newdog) 

            } 

             

            // Do it again 

            fmt.Println("Marshalling cat data without indentation") 

            // Signature: func Marshal(v interface{}) ([]byte, error) 

            buf, err = xml.Marshal(Animal{ 

                           XMLName: xml.Name{Local: "Cat"}, 

                           E1:   "meow", 

                           E2:   "hiss", 

            }) 

            if err != nil { 

                           fmt.Println("error:", err) 

            } else { 

                           fmt.Printf("%s\n", buf) 

            } 

             

            var newcat Animal 

            fmt.Println("New struct newcat contains:", newcat) 

            fmt.Println("Unmarshalling cat data") 

            err = xml.Unmarshal(buf, &newcat) 

            if err != nil { 

                           fmt.Println("error:", err) 

            } else { 

                           //fmt.Printf("%s\n", buf) 

                           fmt.Println(newcat) 

            } 

} 

/* 

Prints the following: 

Marshalling dog data with indentation 

<Dog> 

<ELEM1>bark</ELEM1> 

<ELEM2>bark</ELEM2> 

<ELEM3>more barks</ELEM3> 

</Dog> 

New struct newdog contains: {{ }   } 

Unmarshalling dog data 

{{ Dog} bark bark more barks} 
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Marshalling cat data 

<Cat><ELEM1>meow</ELEM1><ELEM2>hiss</ELEM2><ELEM3></ELEM3></Cat> 

New struct newcat contains: {{ }   } 

Unmarshalling cat data 

{{ Cat} meow hiss } 

*/ 
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Method Set 

A method set must be associated with a type, and there are two kinds of method sets. First, the 

method set of a data type is the set of all methods declared with the receiver of that type. 

Second, the method set of an interface type is its interface. Each method in a method set must 

have a unique (non-blank) name. A method set may contain only one method. For interfaces, 

see Interface. 

  

Method receivers can either be specified as a type, or a pointer to a type. If the method is not 

intending to mutate its receiver, should the method be defined as receiving a type pointer? 

  

There are five reasons why the answer should be yes: 

1. If a method intends to mutate its receiver, its receiver must be a receiver type pointer. 

2. The method sets for T and *T are different. The method set for a receiver T is only the 

methods that also receive T; but the method set for a receiver *T contains both the 

methods that receive *T and the methods that receive T. 

3. The Go FAQ asserts that if one method for a receiver T must have a receiver type T 

pointer, then for consistency all the methods for T should receive a type pointer. 

4. Passing a pointer to an instantiated type into a method has lower overhead than passing 

the instantiated type value itself, this is especially true if the type instance is large. 

5. If the receiver is a struct containing a mutual exclusion lock, then the receiver must be a 

pointer to the instantiated type to avoid unsafe or unexpected behavior. 

  

In practice, preferentially using the *T receiver provides multiple benefits. See the following code 

example for a data type with two methods, the pair of methods compose the method set. There 

is also an interface that matches one of the methods. 

  

Method Set: Code Example 

// Show the method sets for struct and interface types 

package main 

  

import ( 

            "fmt" 

) 

  

type Displayer interface { // By convention single method interface “-er” 

            display() 

} 

  

type Book struct { // Book declared to be type struct 

            title   string 

            author  string 

            pubdate int 

} 
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func (b *Book) load(t, a string, p int) { // Book method to load struct 

            b.title = t 

            b.author = a 

            b.pubdate = p 

} 

  

func (b *Book) display() { // Book method to display contents 

            fmt.Printf("Title: %s, Author: %s, Publication Date: %d\n", b.title, b.author, b.pubdate) 

} 

  

func main() { 

            var b Book  // Declare instance of Book 

            var d Displayer   // Declare variable of interface type Displayer 

            b.load("The Fast Rabbits", "Jack Rabbit", 2019) // Assign values to b via method 

            b.display()  // Show book b values via method 

            d = &b  // Method has pointer receiver, interface does not 

            d.display() // Show book b values via interface 

} 

  

/* 

Prints the following: 

Title: The Fast Rabbits, Author: Jack Rabbit, Publication Date: 2017 

Title: The Fast Rabbits, Author: Jack Rabbit, Publication Date: 2017 

*/ 
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Multiplexing 

Multiplex is derived from Latin “multus” meaning much or many, and “plex” (meaning parts) 

which came from “plectere” meaning to plait or braid (those parts). In programming it refers to 

interleaving several activities or combining several streams into one stream. 

  

Go implements this concept via the select statement. The general case is where one goroutine 

(which may be the main goroutine) is receiving input from several other goroutines or sending 

output to several other goroutines. Often the select statement is enclosed within a loop, this is 

done when the goal is to process multiple channels instead of only handling the first channel 

that provides input to the select (or the first of which is selected to which a message is sent). 

  

The select will evaluate all the channels. If no channel operation may be executed, then the 

default case (if provided) will be processed. If no default case is provided, the select will block 

until one or more channel operations are possible. When one or more channel operations may 

be performed, then by a pseudo-random selection, one will be chosen. 

  

For receive operations the select case statement may use one argument or two arguments. If 

using one argument, that argument is the variable into which the incoming message is 

assigned. Here a default case must be provided, because every closed channel returns a nil, 

and if all channels are nil, without a default the select will block forever. 

  

With two arguments provided for a channel receive operation the purpose of the second 

argument is to determine if a channel is closed or not. In this case the select will not block but 

will return a nil. Provide logic to handle the situation when a nil is returned (channel is closed). 

  

There are several possible use cases. One might be where the receiver will listen for multiple 

senders, but whichever sender transmits to the receiver first is the one that gets processed and 

the others are ignored. 

  

Another use case is where the receiver will listen for multiple senders and will handle all of 

them. In this situation the select statement must be placed inside a loop. Assume each 

transmitting goroutine will run until completion, and once each goroutine is finished, it will close 

the transmission channel. The receiving goroutine will listen selectively on all channels. 

Whenever a channel closes, the receiving goroutine knows that there will be no more incoming 

data coming from that channel, so sets a flag to indicate that channel is done. 

  

Once all channels are marked as closed, the receiving goroutine can finalize processing and 

exit. See the following code as an example of the main goroutine working with two other 

goroutines using channels. Note the main goroutine passes the channels to the other two 

goroutines, this practice is recommended rather than using global variable channels. 

Multiplexing: Code Example 

// Demonstrating the concept of multiplexing 
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package main 

  

import ( 

            "fmt" 

            "time" 

) 

var chn1 chan string 

var chn2 chan string 

var ch1closed bool 

var ch2closed bool 

 

func init() { // Demonstrating use of init() function - notice not called in main 

chn1 = make(chan string) // Create an unbuffered (synchronous) channel 

chn2 = make(chan string) // Create 2nd unbuffered (synchronous) channel 

ch1closed = false       // Initialize channel 1 status variable 

ch2closed = false       // Initialize channel 2 status variable 

} 

  

func mygo1(ch1 chan<- string) { // Function with writable only channel param 

            for i := 0; i < 3; i++ { 

                           ch1 <- "foo" 

            } // Send "foo", block until received, loop 

            close(ch1) // Close channel 1 and exit goroutine 

} 

  

func mygo2(ch2 chan<- string) { // Function with writable only channel param 

            for i := 0; i < 5; i++ { 

                           ch2 <- "bar" 

            } // Send "bar", block until received, loop 

            close(ch2) // Close channel 2 and exit goroutine 

} 

  

func main() { 

go mygo1(chn1)         // Start goroutine, pass channel 1 as param 

go mygo2(chn2)         // Start goroutine, pass channel 2 as param 

  

            for i := 0; i < 30; i++ { // Loop limited number of times 

                           fmt.Println("Loop iteration: ", i+1) 

                           time.Sleep(time.Millisecond * 1000) // Pause to give goroutines time to run 

                           select {                         // Selectively listen to both channels 

                           case msg1, ok := <-chn1: // Listen for transmission from channel 1 

                                          if ok { 

                                                         fmt.Println("Received", msg1) // Channel is open, message received 

                                          } else { 

                                                         if ch1closed != true { // If ch1closed == true then skip this 

fmt.Println("Setting ch1closed = true") 

ch1closed = true // Set flag to indicate channel 1 is now closed 

                                                         } 

                                          } 
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                           case msg2, ok := <-chn2: // Listen for transmission from channel 2 

                                          if ok { 

                                                         fmt.Println("Received", msg2) // Channel is open, message received 

                                          } else { 

                                                         if ch2closed != true { // If ch2closed == true then skip this 

fmt.Println("Setting ch2closed = true") 

ch2closed = true // Set flag to indicate channel 2 is now closed 

                                                         } 

                                          } 

                           } // End select 

                           if (ch1closed == true) && (ch2closed == true) { 

                                          fmt.Println("Exiting loop") 

                                          break // Break if out of loop both channels closed 

                           } 

            } // End of for loop 

            fmt.Println("Program exits") 

} 

/* 

Prints something like: 

Loop iteration:  1 

Received bar 

Loop iteration:  2 

Received foo 

Loop iteration:  3 

Received bar 

Loop iteration:  4 

Received foo 

Loop iteration:  5 

Received foo 

Loop iteration:  6 

Received bar 

Loop iteration:  7 

Received bar 

Loop iteration:  8 

Setting ch1closed = true 

Loop iteration:  9 

Received bar 

Loop iteration:  10 

Loop iteration:  11 

Setting ch2closed = true 

Exiting loop 

Program exits 

*/ 
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Mutex (Mutual Exclusion) 

The concept of mutual exclusion is that it may be necessary to prevent two or more events 

happening simultaneously. Usually it is acceptable for multiple data read actions to occur 

together, but not actions that update data. When two or more processing threads have access 

to the same data with the intent of updating the data, a race condition may occur. 

  

A race condition occurs when sequences of actions by individual processing threads on a data 

item results in unexpected or indeterminate state change. Two common problem examples are: 

“read then update”, and “check then act”. 

1. Suppose there is code to read a data value, increment it, and store back the 

incremented value. But when two threads are both running, the result might be: read, 

read, increment, increment, store, store. The stored value should be incremented twice, 

but it is only incremented once because both store actions overwrite the data value with 

the same changed value. So, if the data value is 1, both threads read in 1, both threads 

increment 1 to 2, and then both threads store value 2. But the desired behavior is read 

increment store, read increment store, e.g. 1 incremented to 2, then 2 incremented to 3. 

2. For check then act, suppose there is an inventory system that must be checked before 

permitting an order to allocate the item. In the case where there is 1 item remaining in 

inventory, for two order threads the desired result is that one order gets allocated the 

item and decrements the inventory to 0, and the other order is informed the item is out of 

stock. But in the race condition: check, check, allocate, allocate, decrement, decrement 

both orders get allocated the item and inventory is decremented to -1 (or the 2nd 

decrement throws an error). The problem of course is only 1 order can be filled. 

  

The solution to prevent the race condition is to enforce mutual exclusion. To do this properly 

means only one thread of control may access a critical area at a time, and deadlocks must be 

avoided. Go enforces the first constraint via the use of mutual exclusion locks, or mutex. This is 

provided by the sync package. This package provides a mutex type and two methods: 

  

type Mutex struct { // contains unexported fields } 

func (m *Mutex) Lock() { // locks the struct instance m } 

func (m *Mutex) Unlock() { // unlocks the struct instance m } 

  

The way this works in practice is that if there are two or more goroutines, the first one to lock the 

mutex gets access to the critical area, and the other goroutines will block until the first one 

unlocks the mutex. This approach prevents the race condition. This approach can also be done 

using a synchronous channel, but in good coding practice channels should be used for 

communications between goroutines, while mutexes should be used to prevent race conditions. 

  

To prevent deadlock on an exclusive access resource, see Deadlock. 
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Mutex: Code Example 

//Illustrating usage of mutex for inventory access 

package main 

 

import ( 

"fmt" 

"sync" 

"time" 

) 

 

var ( 

mutex sync.Mutex 

store int 

) 

 

func init() { 

store = 0 

} 

 

func loadInventory(quantity int, done chan bool) { 

mutex.Lock() 

fmt.Printf("Incrementing inventory containing %d by %d\n", store, quantity) 

store += quantity 

mutex.Unlock() 

done <- true 

} 

 

func decrementInventory(quantity int, done chan bool) { 

mutex.Lock() 

if store <= 0 { //Check otherwise decrementInventory might run first and result in a negative 3 

   mutex.Unlock() 

   time.Sleep(1000 * time.Millisecond) 

   decrementInventory(3, done) 

} else { 

   fmt.Printf("Withdrawing %d from inventory containing store: %d\n", quantity, store) 

   store -= quantity 

   mutex.Unlock() 

   done <- true 

} 

} 

 

func main() { 

done := make(chan bool) 

go loadInventory(10, done) 

go decrementInventory(3, done) 

<-done 

<-done 

fmt.Printf("Current inventory %d\n", store) 
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} 

/* 

Will produce the following: 

Incrementing inventory containing 0 by 10 

Withdrawing 3 from inventory containing store: 10 

Current inventory 7 

*/ 
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Package 

A package is a container that contains either a single part, or a group of related parts; the term 

comes from the Dutch word “pakkage” which means baggage. Within Go code functionality a 

package contains a collection of interrelated functionality. 

  

Packages are organized by directory sub-folders under the Go “/src” folder. All files within the 

same sub-folder should belong to the same package. For any package to access code from 

other packages, those packages must be imported. Packages have a path and a name, by 

convention, the package name should be the same as the last element of the path. The Go 

compiler searches for packages via the GOROOT and GOPATH environmental variables. 

  

Within a package, all fields are visible. But if the package is imported by another package, only 

the fields beginning with capital letters are visible. Capital letter means Unicode uppercase 

letters which are in category “Lu”. There are currently 1702 characters in this category. 

  

The following example shows a number of interesting things: 

1.     Three packages, main, demo, and fmt; package main imports packages fmt and demo 

2.     All files in a package must have their package name as the first line of the file 

3.     Package demo declares a struct type (“myval”) lowercase, so it is not exported 

4.     However the struct has a capitalized field which may be visible outside of demo 

5.     The function “Newval()” in package demo is exported because it is capitalized 

6.     Therefore function “main()” can call “demo.Newval()” and assign results to “i” 

7.     When variable “i” is assigned the address of struct myval, it can see variable “Val” 

  

package main                        // Package main is in its own file in its own directory 

import ( 

      “fmt”                                 // Compiler finds this standard package from GOROOT 

      “demo”                             // Compiler finds this custom package from GOPATH 

) 

main{ 

   i := demo.Newval(100)       // Variable i is declared and assigned pointer to myval struct 

   fmt.Println(i.Val)                  // Prints 100 since Newval() assigned 100 to struct field Val 

} 

package demo                        // Package demo is in its own file in a separate directory 

type myval struct {                  // Type myval is not exported because myval not capitalized 

       Val int                              // But capitalized field is visible externally of package demo 

} 

func Newval(j int) *myval {     // Function name capitalized so visible outside of package demo 

       return &myval{j}              // Declare struct, assign 100 to Val field, return struct address 

} 
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Methods can be attached to any type; however, they can only be attached to types in the same 

package. This enforces encapsulation. See Encapsulation and Method Set. 

 

  



A Cyclopedia of Go 
 

115 | P a g e  
 

Parallelism 

Suppose a program emulates a person walking around a lake. The program has functions for 

talking, walking, and tying shoes. All three of these functions are concurrent. In a single core 

system, only one of these functions may be executed at a time. Context switching may allow 

switching between these functions rapidly, but only one may be done at a time.  

 

Parallelism requires access to multiple cores and concurrency. Unlike concurrency alone, with 

parallelism program code may be executed in multiple cores simultaneously. For reasons to use 

concurrency other than enabling parallelism, see Concurrency. 

  

In a multicore system that permits parallelism, both walking and talking can occur in parallel. 

However, the shoe tying function will block until a shoe comes untied. When a shoe comes 

untied, shoe tying unblocks but walking blocks. Walking cannot resume until the shoe tying 

function completes. So, in this thought experiment, parallelism permits walking and talking in 

parallel, or talking and tying in parallel, but not walking and tying in parallel. All three functions 

may be concurrent, but they are not all able to take advantage of parallelism simultaneously. 

  

By default, in Go the number of logical processors allocated to a program is set via the 

GOMAXPROGS environmental variable. This variable may be set to change core utilization by 

importing the “runtime” package and setting the variable. However ever since Go version 1.5 

this is set to the maximum number of available cores. See Environmental Variables. 

 

No code example is provided for parallelism as it is not possible to demonstrate this with the Go 

playground, and even on a multicore system demonstrating the actual usage of multiple cores 

simultaneously requires observational monitoring outside of the code itself. Go supports both 

concurrency, and parallelism. 
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Patterns 

A pattern may be considered as a solution to a general problem within a given context. It may 

be defined as a model to be imitated or a guide to be followed, the word coming from the Latin 

“patrōnus”. Patterns arise when it is realized that specific solutions to a set of concrete problems 

that exist within a common context can be abstracted. Patterns are abstractions. 

  

For example, in the physical world a problem might be replacing a flat tire on a vehicle. So, the 

problem is known (flat tire), the context is known (vehicle might be car, truck, tractor, etc.), and 

the solution involves a sequence of steps using tools (jack up the vehicle, unbolt wheel from 

axle, remove wheel with flat tire, put new wheel with full tire onto axle, bolt wheel to axle, jack 

down the vehicle). The abstracted pattern is the “Replace Flat Tire” pattern. 

  

The pattern is general and conceptual, while the specifics of a given concrete problem will be 

more varied. It might be raining, the vehicle is on a slope and not a flat surface, there is no 

replacement wheel in the vehicle, and one must be acquired, and so on. The pattern will not 

provide all the detailed information required to resolve a concrete situation. 

  

Within computer science there are two separate but overlapping areas of patterns: computer 

architecture patterns and software design patterns. While in most cases it is obvious into which 

area a given pattern exists, sometimes a pattern may be applicable to both areas. 

  

Architectural patterns are generally reusable solutions to common problems within the domain 

of computing architecture. Architecture includes hardware (processing and network) as well as 

virtual machines, containers, and infrastructure software servers (web, application, database). 

Computing architecture is then the entire environment (including tooling) that supports software 

programs. Examples of architectural patterns include “Data Warehouse”, “Enterprise Service 

Bus”, “Extract, Transform, Load”, and “Model View Controller”. 

  

Software design patterns are generally reusable solutions to common problems within the 

domain of software design. This includes all the software (excluding infrastructure software) that 

is used to execute solutions to computing problems. 

  

An observation regarding many extant software design patterns is that they appear to have 

been created to overcome limitations within object-oriented languages. Limitations exist in the 

ways that the various languages implement support for the concept of objects, and how the 

objects relate to solving real world problems. These kinds of software design patterns are not 

applicable to Go as they are simply not needed. 

  

Patterns applicable to Go leverage features of the language to solve problems, rather than 

being patterns that exist to overcome deficiencies in the language. The implementation of these 

patterns leverages how the language supports concepts such as composition, concurrency, 

embedding, and interfaces. The following are typical patterns used with Go. 
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• Adapter: permits entities of different types to communicate when their interfaces are 

incompatible. The way the adapter pattern works is that calls can be made to the 

adapter via its interface (the target), and the adapter then calls the interface of the 

adaptee. Go does not handle this the way a language that has classes and inheritance 

would handle it, but instead uses embedding, where one struct (the adapter) will embed 

another struct inside it as an anonymous field. As such, the embedding (outer) struct has 

access to the methods of the embedded (inner) struct. So, when a call is made to an 

interface that maps to a method of the adapter type, that method then handles the call to 

a method of the embedded adaptee type. See Embedding. 

• Composite: provides access to a tree structured collection of entities, the interface of the 

collection is the same as the interface to any individual entity. Whether the entities are 

parent nodes or child (leaf) nodes in the tree, they have the same interface. In Go this 

may be implemented such that the entities are structs, and the interface will provide 

basic actions like add, remove, and display. See Interface. 

• Decorator: permits extending functionality of an existing entity without altering its 

structure. Similarly, to the way Go implements the adapter pattern, the approach is to 

have one struct embed another struct. The embedding struct provides additional 

methods beyond the methods of the embedded struct. Calling the interface of the 

embedding struct provides access to both the additional methods of the embedding 

struct and the original methods of the embedded struct. 

• Entity Constructor: a function that that returns an entity. Unlike object-oriented 

programming where a call to a constructor returns an object (which contains data 

entities, control flow logic, and methods), in Go an entity constructor returns only a data 

entity. A constructor can be useful in providing the following kinds of data entities: 

o A condition variable that enables communication between goroutines 

o A mutual exclusion lock that enables coordination of access between goroutines 

o A channel that enables communication between goroutines 

o A specific struct that will be communicated between goroutines 

In each of these examples, the constructor is used to create data entities that are used 

by goroutines. See Channels, Condition Variable, and Mutex (Mutual Exclusion). 

• Iterator: provides the capability to traverse a container and access the contents of the 

container without having to know the data structures within the container. Go easily 

implements this within the language. For example, suppose there is an array containing 

a diverse collection of types, each of which has an identically named method; and an 

interface is provided which all these types satisfy. Then simply performing a range 

command on the array as a for loop condition, and calling the interface within the loop, 

will permit iterating across the container and accessing the contents without having to 

know the type of any entity within the container. See Polymorphism. 

• Mediator: entities communicate with each other through a common mediator. In Go the 

mediator is an interface. See Interface. 

• Messaging request-response: a two-way communication pattern between goroutines. 

This may be implemented with either synchronous or asynchronous channels. See 

Channels. 
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• Messaging publish-subscribe: a one-way communication pattern between goroutines. 

This may be implemented with either synchronous or asynchronous channels. 

• Monitor: allows goroutines to have both mutual exclusion and block waiting, and the 

ability to signal other goroutines. The language enables this with goroutines, channels, 

and the sync package which provides synchronization primitives such as mutual 

exclusion (mutex) via locks, and the condition variable (which permits broadcasting to all 

goroutines waiting for an event). See Condition Variable and Mutex (Mutual Exclusion). 

• Observer: a goroutine (the subject) has dependent goroutines (the observers) who wish 

to be notified when a change of state (an event) occurs. This notification may be 

provided either with channels or a condition variable. The key difference between the 

Observer pattern and the Messaging publish-subscribe pattern is that the former is 

communicating information about an event, while the latter is communicating data which 

is to be used for some purpose. See Goroutines. 

• Pipes and Filters: also called the pipeline pattern. A pipeline is a pattern that refers to a 

flow of data through a sequence of tasks that operate on the data.  In the Go context the 

pipeline pattern depends upon goroutines and channels. See Concurrency, Channels, 

Goroutines, and Parallelism. 

• Proactor: uses proactive event dispatching for goroutines to execute asynchronous 

operations. This is a client-server model where the server must respond to concurrent 

client requests, and where a separate dedicated handler is spawned to handle each 

connected client. See Concurrency: Code Example. 

• Producer Consumer: implemented with goroutines and channels. May be a fan in pattern 

which is many producers and one consumer, or a fan out pattern which is one producer 

and many consumers, or a many to many pattern. See Goroutines and Channels. 

• Scheduler: a pattern to optimize how work is done by multiple goroutines assigned to 

various resources. See Goroutines, Multiplexing, and Periodicity. 

• Singleton: this is where a single entity exists, but where that entity is accessed by 

multiple concurrent goroutines. Access is controlled via the use of condition variables, 

mutual exclusion, and wait groups. See Condition Variable and Mutex (Mutual 

Exclusion). 

  

There are other patterns of course: Fan-In which directs multiple tasks to a single task 

processor, Fan-Out where a single task assigner hands tasks to multiple workers, Circuit 

Breaker which halts task assignments when load is too high to handle (or backlog is too large), 

Facade where one API shields multiple other APIs, and so on. However, upon investigation it 

becomes clear that Go has far fewer design patterns than most object oriented languages. 
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Periodicity 

Periodicity means something that recurs at regular intervals, with the attribute of being periodic. 

The term comes from the French word “périodicité”, derived from Latin “periodicus” and Greek 

“periodikós”. In the context of computer programming it relates to activity that is scheduled and 

recurring. Commonly this is used for polling, and for heartbeat keepalive functionality. 

  

In the situation of polling or keepalive signals, this maps to a request-response scenario, where 

a goroutine or application regularly checks for the existence of something, or the status (state) 

of something. For heartbeat transmissions this maps to a publish-subscribe scenario, where a 

goroutine or application periodically transmits a notification that it is still alive and functional. 

  

Polling or keepalive are active approaches, which differs from the wait state approach that might 

use channels or condition variables to wait until new data arrives or a state change occurs. It is 

generally used when an application or goroutine has other activities to perform and so just 

checks periodically on whether new data has arrived, or a state has changed (keepalive is 

checking on the state or status of something else). This is also the case for sending a heartbeat, 

where an application or goroutine is busy but periodically transmits to something else to 

communicate it is still functioning. 

  

To support this type of functionality Go has several data types and functions in the time 

package. Most useful here are Timers and Tickers. 

  

The ticker feature consists of a data type Ticker which is a struct containing a channel. The 

NewTicker(duration) function returns a pointer to a struct of type Ticker. Once created, every 

time period equal to the duration passed to the ticker creation results in a time duration 

message written to the channel. The ticker can be stopped by a call to ticker.Stop(). Once it is 

stopped it cannot be restarted. While the stop function prevents any more time ticks from being 

sent to the ticker channel, it does not close the channel. Therefore, if a range statement is being 

used on the ticker channel, it will hang on the channel read once the channel is empty of ticks. 

  

The timer feature differs from the ticker in that it executes only once. However, it can emulate a 

ticker if it is placed into a loop. Like the ticker, the data type Timer is a struct containing a 

channel. The function NewTimer(duration) returns a pointer to a struct of type Timer, and after a 

time period equal to the duration passed to the timer creation the current time will be sent to the 

Timer channel. There is a timer.Stop() function that will attempt to cancel the timer, and there is 

a timer.Reset(duration) function that will attempt to reset the timer to a new duration. Finally, 

there is the timer.AfterFunc(duration, f()) function, which after the provided duration passes, will 

execute the function you provide as a goroutine. 

  

In both cases periodicity is done by waiting on a channel for a time period equal to duration. If 

using the range statement a mechanism must be provided to prevent permanently hanging on a 

channel read when a ticker.Stop() or timer.Stop() is issued. One way to do that is to instead 
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execute the channel check via a select statement within a for loop, with another channel 

provided to indicate the timer or ticker is no longer active. 

  

In general, a ticker is better used for periodicity, but in some cases contriving to use a timer 

within a loop may be better. This is because timer has the two additional functions, with Reset() 

being able to change the time duration interval, and AfterFunc() permitting the specification of a 

given function to be executed. 

  

The following code example shows several features of timers and tickers. A ticker is used for 

three goroutines: one anonymous function, function myf1(), and function myf2(). Both the 

anonymous function and function myf1() use a counter, whereas function myf2() uses select 

and a second done channel, to know when they are done processing. If a ticker is stopped 

before a counter is fully decremented, or when not using select with a second channel to know 

when processing is done, then the range statement on the ticker will hang. This is because 

when applied to a channel, range only returns if it has a value, or when the channel is closed. 

But the ticker.Stop() call does not close the ticker channel, it just stops the ticker. 

  

In the following example code, the anonymous goroutine counter counts down completely 

before the ticker is stopped, so it completes. The myf2() goroutine detects the done channel is 

closed, so it completes. But myf1() keeps looping because its counter is not fully decremented, 

so when the ticker is stopped, it hangs on the range statement. 

Periodicity: Code Example 

//Illustrating periodicity 

package main 

  

import ( 

            "fmt" 

            "time" 

) 

  

func myf1(ticker *time.Ticker) { 

            counter := 5          // Needs a counter to exit 

            for _ = range ticker.C { // Will hang on channel read if ticker stopped 

                           fmt.Println("myf1() goroutine tick") 

                           counter--      // Decrement the counter 

                           if counter == 0 { // Will loop 5 times or until ticker stopped 

                                          fmt.Println("myf1() goroutine done with ticker") 

                                          return 

                           } 

            } 

} 

  

func myf2(ticker *time.Ticker, done chan bool) { 

            for { // No counter required, use done channel to enable exit 

                           select { 
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                           case <-ticker.C: 

                                          fmt.Println("myf2() goroutine tick") 

                           case <-done: 

fmt.Println("myf2() goroutine done") // 2nd channel indicates time to exit 

return 

                           } 

            } 

} 

  

func main() { 

            ticker := time.NewTicker(time.Millisecond * 500) 

            done := make(chan bool, 1) 

            go myf1(ticker) 

            go myf2(ticker, done) 

            go func() { 

                           counter := 3          // Needs a counter to know when to exit 

                           for _ = range ticker.C { // Hang on channel read after the stop 

                                          fmt.Println("Anonymous goroutine tick") 

                                          counter--      // Decrement the counter 

                                          if counter == 0 { // Will loop 3 times or until ticker stopped 

fmt.Println("Anonymous goroutine done with ticker") 

return 

                                          } 

                           } 

            }() 

timer1 := time.NewTimer(time.Millisecond * 3500) // Set timer to let goroutines run 

<-timer1.C   // Ignore result, don't care 

fmt.Println("Timer 1 expired") 

ticker.Stop() // Stop the ticker, this does not close the channel! 

fmt.Println("Ticker stopped - this will hang myf1()") 

time.Sleep(time.Millisecond * 2000) // Let goroutines run using Sleep not timer for fun 

            close(done)  // Closing this channel tells myf2() to exit 

            if timer1.Stop() == true {  // Safety measure - drain if not done before reset 

fmt.Println("Won't see this, timer1 has run down already") 

<-timer1.C // But if it hadn't, and Stop() stops it, drain here 

            } 

            timer1.Reset(time.Millisecond * 2000) // Reset timer to let goroutines run 

            <-timer1.C   // Ignore result, don't care 

            fmt.Println("Exiting program, notice goroutine myf1() is hanging") 

} 

  

/* 

Should print something like: 

Anonymous goroutine tick 

myf1() goroutine tick 

myf2() goroutine tick 

Anonymous goroutine tick 

myf1() goroutine tick 

myf2() goroutine tick 
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Timer 1 expired 

Ticker stopped - this will hang myf1() 

Anonymous goroutine tick 

Anonymous goroutine done with ticker 

myf2() goroutine done 

Exiting program, notice goroutine myf1() is hanging 

*/ 
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Polymorphism 

Go implements polymorphism by presenting the same interface to different data types that will 

make use of the interface. The word is derived from Greek: “poly” meaning many, and “morph” 

meaning shape (English has changed morph to mean “change shape”). Go implements 

polymorphism via the use of interfaces, this approach is known as ad hoc polymorphism. This 

type of polymorphism matches the definition used by Bjarne Stroustrup (creator of C++) which is 

“providing a single interface to entities of different types”. Go does not support parametric 

polymorphism (generic functions and generic types). See Interface. 

  

Two or more data types may generate a different response for calls to a given interface method. 

For example, suppose there was an array of media types (books, magazines, newspapers, 

periodicals, etc.). Cycling through the array, accessing the common interface would produce 

different results based on the media type encountered in the current array cell. 

  

Furthermore, interfaces may embed other interfaces, this behavior is another aspect of interface 

polymorphism. For example: 

• Suppose an interface is declared with the name “mediaTyper” 

• Suppose the interface has the method “mediaType()” 

• Suppose an array was defined to contain items of “mediaTyper” (the interface type) 

• Suppose multiple aggregate data types are assigned into the array 

• Suppose each type in the array has implemented a “mediaType()” method, therefore 

each data type in the array has satisfied the interface 

• Suppose the interface is called for each item in the array 

• Then each media type could respond differently to the call (e.g. “I’m a book”, “I’m a 

magazine”, “I’m a newspaper”, etc.) 

• Suppose further that another interface embeds the first interface (e.g. 

embeddedMediaTyper embeds mediaTyper. 

• Suppose an array was defined to contain items of embeddedMediaTyper. Then by 

calling the embedding interface, the method of the embedded interface is accessible. 

  

The following code will first produce: “I am a Media Type, and I’m a Book”, then “I am a Media 

Type, and I’m a Magazine”, and finally “I am a Media Type, and I’m a Newspaper”; and then 

when calling the embedding interface: “I am an embedded Media Type, and I’m a Book”, then “I 

am an embedded Media Type, and I’m a Magazine”, and finally “I am an embedded Media 

Type, and I’m a Newspaper” 

Polymorphism: Code Example 

//Illustrating ad hoc polymorphism 

package main 

  

import ( 

            "fmt" 

) 
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type mediaTyper interface { 

            mediaType() string 

} 

  

type embeddedMediaTyper interface { 

            mediaTyper 

} // Interface embedding another interface 

  

type Book struct{} 

type Magazine struct{} 

type Newspaper struct{} 

  

func (b Book) mediaType() string   { return "I'm a Book." } 

func (m Magazine) mediaType() string  { return "I'm a Magazine." } 

func (n Newspaper) mediaType() string { return "I'm a Newspaper." } 

  

func main() { 

            b := new(Book) 

            m := new(Magazine) 

            n := new(Newspaper) 

            mtArr := [...]mediaTyper{b, m, n} 

            emtArr := [...]embeddedMediaTyper{b, m, n} 

 fmt.Println("Method calls, not polymorphic") 

            for i := range mtArr { 

fmt.Printf("I am a Media Type, and %s\n", mtArr[i].mediaType()) 

            } 

 fmt.Println("Ad hoc polymorphism demonstrated by interface calls" 

            for i := range emtArr { 

fmt.Printf("I am an embedded Media Type, and %s\n", emtArr[i].mediaType()) 

            } 

} 

  

/* 

Prints the following output: 

Method calls, not polymorphic 
I am a Media Type, and I'm a Book. 

I am a Media Type, and I'm a Magazine. 

I am a Media Type, and I'm a Newspaper.  
Ad hoc polymorphism demonstrated by interface calls 
I am an embedded Media Type, and I'm a Book. 

I am an embedded Media Type, and I'm a Magazine. 

I am an embedded Media Type, and I'm a Newspaper. 

*/ 
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Race Condition 

A race condition in software program code occurs when concurrent code makes assumptions 

regarding the timing of external events, and the events occur in an unexpected order. One 

situation is when multiple routines check a value state, and then perform an action, and then 

change the value state. Another situation is when multiple routines copy a common variable, 

increment the copy, and write the copy back to the common variable. 

  

Without proper coordination, the result is that an action may be performed too many times, or 

data becomes overwritten, and the results are unexpected or incorrect. In Go this may occur 

when goroutines access a common data structure without ensuring proper locking before and 

after accessing that data structure. 

  

As the playground is a deterministic environment, race condition results will not occur in the 

playground even if the code permits race conditions. For this reason, the example code must be 

compiled an executed in a local environment. In the playground the result is always x = 1000, 

because the playground is preventing the race condition. 

  

Race Condition: Code Example 

// Race condition demonstrated 

// Copy code into a text file, name it race.go; compile with “go build race.go”; execute with “.\race.exe” 

package main 

  

import ( 

            "fmt" 

            "sync" 

) 

  

func main() { 

            var w sync.WaitGroup 

            x := 0 

            for i := 0; i < 1000; i++ { // Launch 1000 goroutines 

                           w.Add(1) // Alternatively could do w.Add(1000) before the loop 

                           go func() { 

defer w.Done() 

x = x + 1 

                           }() 

            } 

            w.Wait() 

            fmt.Println("Final value of x", x) 

} 

/* 

Will produce varying output such as the following when repeatedly executed: 

Final value of x 974 

Final value of x 986 
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Final value of x 959 

Etcetera 

If this code is executed in the Go playground, result will always be: 

Final value of x 1000 

*/ 
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Recursion and Memoization. 

Recursion occurs when the steps of a procedural algorithm involve the procedure calling itself. 

Recursion must have a base case where the procedure does not call itself, as recursion should 

not recur infinitely. The word comes from the Latin word “recursiÅ” meaning the act of running 

back or returning. 

  

Mathematics depends upon the principle of recursion in several situations. For example, the set 

of natural numbers can be defined recursively as follows: zero is in the set of natural numbers, if 

n is in the set of natural numbers then n + 1 is itself a natural number. By this axiom all of the 

natural numbers are therefore specified e.g. 0, 1, 2, 3, … out to infinity. 

  

There are many common code examples using recursion, such as calculating prime numbers, 

calculating the Fibonacci numbers, the tower of Hanoi, and so on. These are useful for teaching 

the concept but are not very useful in the world of reality. Recursion is more expensive in terms 

of computing resources than iteration, but the code can be much simpler. 

  

In general, the most common applicability for using programmatic recursion is when the problem 

space consists of trees or lists. This is because trees contain trees and lists contain lists. Thus, 

a common algorithm specified in a function that processes the tree or the list can call itself 

recursively to process through the tree or list. 

  

In the real world there are problems where recursion is useful. An example of this is the concept 

of a bill of materials, or BOM. In manufacturing an item is often composed of many assemblies, 

which are themselves composed of sub-assemblies, which ultimately are composed of parts. 

These parts may be purchased from suppliers or manufactured locally from materials. The parts 

are composed of materials, and the materials themselves may be specified as purchased or 

manufactured on site. An example of a material might be insulated copper wire. Note that a 

BOM is essentially a tree that contains lists at the leaf nodes, but the BOM data is usually stored 

in tabular (list) format in a database. 

 

Now the BOM may be recursively analyzed to determine time and to determine cost for 

manufacturing any item. The code for such a recursion will be much simpler to create and to 

understand than iterative code. 

  

Memoization is derived from the late Middle English word “memorandum”, which refers to a 

short note to be remembered, and further back from the Latin “memorandus” meaning 

something to be noted. In modern American English this is shortened to memo. Therefore, in 

programming memoization means that the results of a function call are to be remembered. 

  

Memoization is useful for function calls that are expensive to call and where the function always 

returns the same value, given the same input. The concept of memoization is that the results of 

expensive operations are stored in a cache, and the cache can be checked before calling the 

expensive function. The cache check takes very little time and is an inexpensive operation. 
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If the function has previously calculated the response for a given input, the result will be found in 

the cache; if it is not found, the function is called which will perform the operation. Either the 

function will update the cache before returning the value, or the caller may do so after receiving 

the result. A map containing key value pairs is a good data structure for such a cache, where 

the key maps to a provided input parameter, and the value is the calculated response. 

  

The following code example shows three recursive functions, performing calculations for prime 

numbers, for the Fibonacci sequence, and for determining factorials. The first two functions 

called are purely recursive, but the factorial function enables memoization via storing the 

calculated results in a map cache. It is good practice to pass the map as a parameter. 

  

The caller can check the map cache first before calling the function, if the value is found in the 

map there is no need to call the factorial calculation function. The function is called in two 

separate loops. In the first pass the function is called every time, it updates the map, and returns 

the values. In the second pass some of the values are found in the cache and so the function is 

not called in those cases. 

Recursion: Code Example 

// Demonstrate recursion and memoization for primes, Fibonacci sequence, and factorials 

package main 

  

import ( 

            "fmt" 

) 

  

func fact(n int, m map[int]int) int { 

            var x int 

            if n >= 1 { 

                           x = (n * fact(n-1, m)) 

                           m[n] = x // Enable memoization 

                           return x 

            } else { 

                           m[n] = 1 // Enable memoization 

                           return 1 

            } 

} 

  

func fib(n int) int { 

            if n <= 1 { 

                           return n 

            } 

            return fib(n-1) + fib(n-2) 

} 

  

func prime(x, y int) bool { 
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            if x < 2 { 

                           return false 

            } 

            if y == 1 { 

                           return true 

            } else { 

                           if x%y == 0 { 

                                          return false 

                           } else { 

                                          return prime(x, y-1) 

                           } 

            } 

} 

  

func main() { 

            fmt.Println("Calculate primes range 0 to 100") 

            for i := 0; i < 101; i++ { 

                           x := prime(i, i-1) 

                           if x == true { 

                                          fmt.Printf("%d ", i) 

                           } 

            } 

            fmt.Println("") 

            fmt.Println("Calculate Fibonacci numbers range 0 to 19") 

            for i := 0; i < 20; i++ { 

                           x := fib(i) 

                           fmt.Printf("%d ", x) 

            } 

            fmt.Println("") 

            m := make(map[int]int) 

fmt.Println("Map before looping on calling factorial function:", m) 

fmt.Println("The first time looping on factorial function it must calculate factorials") 

            for i := 0; i < 10; i++ { 

                           x := fact(i, m) 

                           fmt.Printf("%d! is %d, ", i, x) 

            } 

fmt.Println("") 

fmt.Println("Factorial function cached calculated factorials:", m) 

var f bool 

f = false 

fmt.Println("Second time looping some values already calculated, some are not") 

for i := 6; i < 13; i++ { // Second time looping see what is memoized and what needs calculation 

                           for key, value := range m { // Demonstrate memoization 

                                          if key == i { // Previously calculated the factorial 

fmt.Printf("Memoized factorial %d! is %d\n", i, value) 

f = true 

                                          } 

                           } 

                           if f == false { // Call factorial function if value not memoized in cache 
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x := fact(i, m) 

fmt.Printf("Calculated factorial %d! is %d\n", i, x) 

                           } 

                           f = false // Reset flag 

            } 

            fmt.Println("Map now:", m) 

} 

  

/* 

Prints the following: 

Calculate primes range 0 to 100 

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 

Calculate Fibonacci numbers range 0 to 19 

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 

Map before looping on calling factorial function: map[] 

The first time looping on factorial function it must calculate factorials 

0! is 1, 1! is 1, 2! is 2, 3! is 6, 4! is 24, 5! is 120, 6! is 720, 7! is 5040, 8! is 40320, 9! is 362880, 

Factorial function cached calculated factorials: map[7:5040 8:40320 0:1 1:1 2:2 3:6 4:24 5:120 6:720 

9:362880] 

Second time looping some values already calculated, some are not 

Memoized factorial 6! is 720 

Memoized factorial 7! is 5040 

Memoized factorial 8! is 40320 

Memoized factorial 9! is 362880 

Calculated factorial 10! is 3628800 

Calculated factorial 11! is 39916800 

Calculated factorial 12! is 479001600 

Map now: map[9:362880 10:3628800 5:120 6:720 2:2 3:6 4:24 7:5040 8:40320 11:39916800 0:1 1:1 

12:479001600] 

*/ 
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Reflection 

Reflection is the ability of a program to examine and modify its own behavior and structure at 

runtime. It comes from one of the meanings of the word reflection where it refers to 

consideration or examination; it is derived from Latin via Middle English as “reflexiōn”. 

  

Go uses the principle of reflection to permit the examination of variables and types, and to call 

their methods, without knowing the type at compile time. Reflection contains type introspection, 

which is the ability to examine the properties and type of an entity at runtime. 

  

Go has a package named reflect. Importing this package permits implementing reflection for a 

program. The way the reflection is performed in the language is via the use of interfaces. 

  

There are two important points to know when using interfaces for reflection. The first is that 

every entity satisfies the empty interface e.g. “interface {}”. Because that interface has no 

methods, by definition every entity satisfies it even when that entity has no methods. 

  

The second point is that every variable that is of type interface has three values: the address of 

the variable in memory, the value assigned to the variable, and the type of the assigned value. 

Another way to think of this is that it has two value entities: the address of the variable, and a 

value pair containing the assigned value and the assigned value type. 

  

The reflect package provides two functions that enable determining a variable’s value and its 

type, those functions are reflect.ValueOf() and reflect.TypeOf(). Of interest here is that the 

variable passed into these functions is received as a parameter specified as “i interface{}”. So 

no matter what the type passed in, be that a variable, function, or interface, it is received by 

these two functions as a parameter with type empty interface. 

  

Reflection is rarely needed and should generally be avoided. However, a possible use case for 

reflection is when you provide a package and provide an interface in the package that needs to 

handle unknown data types being passed to the interface. Go uses it for some packages like fmt 

and io that need to handle variables of multiple data types and values, including user defined 

types. This is how Go handles generics, with ad hoc rather than parameterized polymorphism. 

  

The following example code illustrates a basic use of some reflect package functions: 

Reflection: Code Example 

//Illustrating the use of reflection 

package main 

  

import ( 

            "fmt" 

            "reflect" 

) 
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// Demonstrate the use of reflection with reflect.TypeOf and reflect.ValueOf 

// TypeOf returns the type of the value in the interface{} 

// TypeOf signature is: func TypeOf(i interface{}) Type 

// ValueOf returns a new value equal to the value in the interface{} 

// ValueOf signature is: func ValueOf(i interface{}) Value 

func main() { 

            var i float32 = 3.14 

            j := struct { 

                           firstname string 

                           lastname  string 

            }{firstname: "Happy", lastname: "Rabbit"} 

            type I interface{} // The empty interface 

            var k I 

            var m [3]int = [3]int{1, 2, 3} 

  

fmt.Println("type:", reflect.TypeOf(i))   // Get float 32variable type 

fmt.Println("value:", reflect.ValueOf(i)) // Get float32 variable value 

fmt.Println("type:", reflect.TypeOf(j))   // Get struct variable type 

fmt.Println("value:", reflect.ValueOf(j)) // Get struct variable type 

  

            // Go into struct and get field level information from struct 

            for z := 0; z < reflect.TypeOf(&j).Elem().NumField(); z++ { // Loop twice since 2  struct fields 

fieldval := reflect.ValueOf(&j).Elem().Field(z)         // Get field value 

fieldtype := reflect.ValueOf(&j).Elem().Type().Field(z) // Get field name 

fmt.Printf("Struct field name: %s, struct field Value: %s\n", fieldtype.Name, fieldval) 

            } 

fmt.Println("type:", reflect.TypeOf(k))   // Get interface type - will be empty 

fmt.Println("value:", reflect.ValueOf(k)) // Get interface value - will be invalid 

k = j                                  // Assign struct to interface 

fmt.Println("type:", reflect.TypeOf(k))   // Now get interface type again, looks like struct 

fmt.Println("value:", reflect.ValueOf(k)) // Get interface value again, looks like struct  

fmt.Println("type:", reflect.TypeOf(m))  // Get array variable type 

fmt.Println("value", reflect.ValueOf(m)) // Get array variable value 

} 

/* 

Prints the following: 

type: float32 

value: 3.14 

type: struct { firstname string; lastname string } 

value: {Happy Rabbit} 

Struct field name: firstname, struct field Value: Happy 

Struct field name: lastname, struct field Value: Rabbit 

type: <nil> 

value: <invalid reflect.Value> 

type: struct { firstname string; lastname string } 

value: {Happy Rabbit} 

type: [3]int 

value [1 2 3] 
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*/ 
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Runes 

The term rune can sometimes be confusing because it has two separate meanings. The word 

itself is derived from the Old Norse or Old English word “rūn” which means “script character”. 

  

Rune may mean either a UTF-8 code point, or a data type, depending upon context. In the 

context of UTF-8, the word rune and the term UTF-8 code point are identical in meaning. Runes 

(UTF-8 code points) range from one byte to four bytes in length. Therefore, in this context a 

rune may be between one to four bytes in length, and the rune is the encoded character. 

  

However, in the context of program code the rune is a data type. The size is int32, because 

since any UTF-8 code point may be at most four bytes, the int32 type is used for this purpose. 

Therefore, the word rune within a program is an alias for type int32, and type rune == int32. 

  

Within program source code, the term rune always means data type int32. In conversations or in 

documentation, it may mean either. See also Code Points. 

  

The purpose of the rune type is to hold UTF-8 code points. It is commonly used when it is 

known that non-ASCII characters may need to be processed by a program, but of course it can 

also hold ASCII characters as well. 

  

Rune literals are all integer values (all UTF-8 code points are integer values). But rune literals 

are expressed in the source code as a single character within single quotes. The compiler will 

convert them to the underlying UTF-8 format.  Any character may be mapped to the underlying 

UTF-8 code point. 

  

There is a difference between a character and a glyph. Glyphs are the physical representation 

of two or more characters. While any character may be expressed as a single rune, glyphs are 

composed of more than one character, and therefore may require more than one rune. For 

example, the glyph “☸️” requires two runes to be expressed. It is also the case that a glyph 

might be composed of other glyphs. String literals may contain both characters and glyphs. 

  

When printing out a rune, the verb conversion is ‘%c’. When printing out a rune literal within 

single quotes, for example ‘A’ or ‘表’, the verb conversion is ‘%q’. See also UTF-8. 

  

The following code shows how runes within a string literal have different lengths, and how 

glyphs which appear to be a single character may require two or more runes. For example, the 

character 🉐 is a single rune which consumes four bytes; while the ideogram ☸️ is actually a 

glyph that requires two runes and six bytes. 

Runes: Code Example 

// Illustrate runes and glyphs by shoring counts and lengths of runes for characters and glyphs 

package main 
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import ( 

"fmt" 

"unicode/utf8" 

) 

  

func main() { 

// Count the number of runes in a string 

// Specification: func RuneCountInString(s string) (n int) 

fmt.Println("What are the number of runes in \"a\":", utf8.RuneCountInString("a")) 

fmt.Println("What are the number of runes in \"界\":", utf8.RuneCountInString("界")) 

fmt.Println("What are the number of runes in \"ᚠ\":", utf8.RuneCountInString("ᚠ")) 

fmt.Println("What are the number of runes in \"🉐\":", utf8.RuneCountInString("🉐")) 

fmt.Println("What are the number of runes in \"☸️\":", utf8.RuneCountInString("☸️")) 

  

// Determine the length of a string in bytes 

fmt.Println("What is the length of the string \"a\" in bytes:", len("a")) 

fmt.Println("What is the length of the string \"界\" in bytes:", len("界")) 

fmt.Println("What is the length of the string \"ᚠ\" in bytes:", len("ᚠ")) 

fmt.Println("What is the length of the string \"🉐\" in bytes:", len("🉐")) 

fmt.Println("What is the length of the string \"☸️\" in bytes:", len("☸️")) 

} 

/* 

This will print out the following: 

What are the number of runes in "a": 1 

What are the number of runes in "界": 1 

What are the number of runes in "ᚠ": 1 

What are the number of runes in "🉐": 1 

What are the number of runes in "☸️": 2 

What is the length of the string "a" in bytes: 1 

What is the length of the string "界" in bytes: 3 

What is the length of the string "ᚠ" in bytes: 3 

What is the length of the string "🉐" in bytes: 4 

What is the length of the string "☸️" in bytes: 6 

*/ 
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Stack 

A stack is an orderly pile, and the word derives from Middle English “stak”. In the context of 

computer science, it is a simple data structure that contains “elements” of various types; it has 

two operations: a push which places elements onto the stack, and pop which removes elements 

from the stack. 

  

In Go each goroutine has its own stack. In a simple program that uses only sequential 

processing, there is only one goroutine - the main goroutine. Additional goroutines are each 

given their own small stack to start with - a few kilobytes for each goroutine. See Goroutines. 

  

As any goroutine runs, a function call results in the called function code and its local (non-heap) 

variables being pushed onto the stack for that goroutine. If that first called function calls another 

function, then that newly called function code and its local variables are pushed onto the stack 

“on top of” the calling function. When a function completes, it (and its local variables) are 

popped from the stack, and flow of control returns to the calling function on the stack. 

  

A view of the stack over time may be seen in the following image, which illustrates main() calling 

myf1(), which calls myf2(); myf2() returns flow of control to myf1(), which returns to main(). 

 

 
  

Any variable that might be referenced outside of its lexical scope cannot be placed onto the 

stack, because it may have been popped off the stack by the time the program code accesses 

the referenced location. If this were to happen, the program would crash. Therefore, variables of 

this type are placed on the heap. See Heap. 

 

The following illustration shows 3 separate stacks, as the main() goroutine, the myf1() goroutine, 

and the myf2() goroutine all run concurrently The difference is that in the above example, myf1() 

and myf2() are functions, whereas in the below example, go myf1() and go myf2() are 

goroutines. See Concurrency. 
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Templates 

A template is a pattern or gauge used to shape something, the etymology of the term is not 

absolutely sure but appears to come via the French “templet” which was derived from Latin 

“templum” which means a plank or rafter to hold something; concatenated with “plate” (from 

Middle English meaning something flat) for printing meaning to make a stereotype. 

  

In the context of programming languages template has come to mean a document with a 

customized structure that can contain entered data. For Go there are two packages which 

support templates, text/template and html/template. Templates are executed by the program 

code by rendering the customized structure “as is”, while applying actions to data structures or 

control structures identified within the delimiters “{{“ and “}}”. 

  

Textual templates tend to be used in standard document generation systems, such as for 

contracts or form letters. These assemble boilerplate text that should be unchanged, while 

variable text may be selected by a user from a list or may be entered free form by the user. The 

resulting document is then assembled from the combination of the boilerplate text and the user 

selected or generated text. 

  

HTML templates are generally used for creating pre-populated web pages with a mix of 

standard and customized information. For example, if a user is logged into a site, a page that 

displays the logged in user’s name would be a combination of boilerplate text but containing a 

variable that holds the user’s name to customize the page. 

  

Both the text template and HTML template use the text/template interface, but the HTML 

template adds functionality to protect against code injection. Whenever the output recipient is 

expecting HTML, the html/template package should be imported and used. 

  

For data structures any field names must be exportable, which means the first letter must be a 

capitalized UTF-8 character. In general practice the data structures are struct types where the 

type is capitalized, and the fields within the struct are also capitalized. If a struct type contains 

both capitalized (exported) fields as well as non-capitalized fields, and if the non-capitalized field 

is referenced within the “{{“ “}}” action an error will be generated when the template is executed. 

  

The following code example demonstrates use of a text template. It shows the correct usage of 

templates, and deliberately shows the error that results when using a non-capitalized field. 

Templates: Code Example - Text Template 

// Illustrate basic use of text template 

package main 

  

import ( 

            "fmt" 

            "os" 
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            "text/template" 

) 

  

type Rabbit struct { 

            Firstname   string 

            Lastname string 

            nonExported string // Not capitalized so not exported 

            Speed    string 

} 

  

// Slow rabbit template processing 

func sr() { 

p := Rabbit{Firstname: "Fat", Lastname: "Rabbit", nonExported: "Slow runner"} 

t := template.New("Template Illustration") 

t, _ = t.Parse("Welcome {{.Firstname}} {{.Lastname}}!\nYou are a {{.nonExported}}.\n") 

err := t.Execute(os.Stdout, p) 

if err != nil { 

fmt.Println("There was an error:", err) 

            } 

} 

  

// Fast rabbit template processing 

func fr() { 

p := Rabbit{Firstname: "Sleek", Lastname: "Rabbit", Speed: "Fast runner"} 

t := template.New("Template Illustration") 

t, _ = t.Parse("Welcome {{.Firstname}} {{.Lastname}}!\nYou are a {{.Speed}}.\n") 

err := t.Execute(os.Stdout, p) 

if err != nil { 

fmt.Println("There was an error:", err) 

            } 

} 

  

func main() { 

sr() 

fr() 

} 

  

/* 

Prints something like: 

Welcome Fat Rabbit! 

You are a There was an error: template: Template Illustration:2:12: executing "Template Illustration" at 

<.nonExported>: nonExported is an unexported field of struct type main.Rabbit 

Welcome Sleek Rabbit! 

You are a Fast runner. 

*/ 
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Types 

A type is a category of terms that have a common set of characteristics, these characteristics 

define identity for the type and the behavior of the type. The word derives from Latin “typus” 

meaning a figure or image, or from Greek “typos” meaning an impression or mark. In the context 

of computer science, the concept of types is based on type theory; and the implementation of 

types in each programming language is called a type system. 

  

Go is a statically typed language with four types: basic, reference, aggregate, and interface. The 

types are not limited to data types, because both functions and interfaces are also types. Type 

conversion is permitted if it is explicit, no implicit type conversions are permitted. Perform type 

assertion and use the type switch to identify an unknown data type. See Type Assertion. 

  

Basic - these are numbers (integers, floating points, and complex), Booleans, and strings: 

• Integers are represented by the types: int, int8, int16, int32, and int64; and unsigned 

integers: uint, uint8, uint16, uint32, and uint64. Type byte is alias for uint8; rune is alias 

for int32 and is used to denote support for UTF-8 in the code. See Runes and UTF-8. 

• Booleans have only two values: true and false. 

• Strings are an immutable sequence of bytes. See Immutability. 

• Floating point numbers are of two types: float32 and float64. 

• Complex numbers are of two types: complex64 (composed of a pair of float32) and 

complex128 (composed of a pair of float64). Complex numbers are composed of a real 

number (left side of decimal point) and an imaginary number (right side of decimal point). 

  

Reference - these have their own address and a value, the value contains the address of 

another data value, reference types are pointers, slices, maps, channels, and functions: 

• Pointer - a reference to a variable, consisting of its own address, and the address of the 

referenced variable; the type is pointer to variable type T, specified as “* T”. 

• Slice - a reference to a variable length sequence of memory containing data elements all 

being the same identical type T, specified as “[] T”. 

• Map - a reference to a hash table containing an unordered collection of key/value pairs; 

the map type is “map[K]V” where K and V are the types of keys and values; type K is 

restricted to types that can use the operator “==”. See Mapping. 

• Channel - a reference to a conduit of values of identical type T, specified as “chan T”; 

channels are used for communication between goroutines. See Channels. 

• Function - a function type is specified by its signature - its name, the ordered list of 

parameter types, and the list of return types. Two functions with the same signature 

have the same type. Methods are special kind of function where a “receiver type” is 

written between the func keyword and the name of the method. A given method may 

only be called by a variable of the specified receiver type. Unlike regular functions, 

multiple methods may have the same name if they differ in receiver type. See Functions. 

  

Aggregate - a concatenation of element values in memory 

• Array - a fixed length sequence of n (n may be zero) elements of the same type; “[n]T”. 
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• Struct - implements the concept of a record which contains groups of n (n may be zero) 

ordered named values (called “fields”) of any type T; “struct{}” is an empty struct (0 

fields), otherwise: “struct{<name> T, <name> T, …, <name> T}”. 

  

Interface - permits generalizing the behavior of other entities by specifying a method set e.g. 

“<name of interface> interface{m1(); m2(), ,.., mn()}”; the method set may be empty, if so the 

interface is considered to be the empty interface and is specified as “interface{}”. A type 

“satisfies” an interface if it implements the methods of the interface. Any type satisfies the empty 

interface. See Abstraction, Method Set and Interface. 

  

The following code example shows the usage of some Go types. See the references above to 

other sections for many more code examples showing the various types. 

Types: Code Example 

//Illustration of the usage of various types 

package main 

  

import ( 

            "fmt" 

) 

  

type Distance float64  // All variables of this type used for distance calculations only 

type Temperature float32 // All variables of this type used for temperature calculations only 

type Person struct { 

            firstname string 

            lastname  string 

            age    int 

} // Aggregate named type struct 

  

func (p *Person) load(fn, ln string, a int) { 

            p.firstname = fn 

            p.lastname = ln 

            p.age = a 

} // This function type is its signature: the ordered list of parameter types and return list types 

  

func (p *Person) show() { 

            fmt.Printf("First Name: %s, Last Name: %s, Age: %d\n", p.firstname, p.lastname, p.age) 

} 

  

type shower interface { 

            show() // Interface type here only has one method 

} // By convention single method interface "-er" 

  

func main() { 

var d Distance     // Declare d to be of type Distance 

var f, c Temperature  // Declare f and c to be of type Temperature 

x := 3.123 + 0.6i  // Declared and assigned type complex128 value 
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d = 1.5 

//f = d  // Runtime error: cannot use d (type Distance) as type Temperature in assignment 

f = Temperature(d) // Explicitly cast type Distance to type Temperature 

c = f  // Both c and f are the same type Temperature 

fmt.Println(d, f, c, x)  // Prints: 1.5 1.5 1.5 (3.123+0.6i) 

var p Person // Declare p to be of datatype Person 

p.load("Jack", "Rabbit", 6) 

p.show() // Call method, prints: First Name: Jack, Last Name: Rabbit, Age: 6 

var i shower // Declare i to be of interface type shower 

i = &p // Assign Person variable address to Shower interface variable 

i.show()  // Call interface, prints: First Name: Jack, Last Name: Rabbit, Age: 6 

} 

  

/* 

Prints the following: 

1.5 1.5 1.5 (3.123+0.6i) 

First Name: Jack, Last Name: Rabbit, Age: 6 

First Name: Jack, Last Name: Rabbit, Age: 6 

*/ 
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Type Assertion 

The Go language supports a concept known as type assertion, which operates on an instance 

of an interface type and any other type. The notation is “i.(T)” where i is an instance of an 

interface type, and T is any other type. The purpose of type assertion is to determine whether 

type T supports type i. 

  

1. If type T is an interface type, then determine if type i implements the interface T. 

2. If type T is not an interface type, then the type assertion determines whether type i is 

identical to type T. 

  

When the type assertion is done in an assignment statement, there are two possible outcomes. 

First, if type T matches the value in type i, then the value is returned. Second, if type T does not 

match the value in i, then there is a runtime panic. This form is: “x := i.(T)” 

  

To avoid this situation, a two-argument assignment form may be used. In this case a panic does 

not occur. Instead either the value is assigned to the first argument and the Boolean value “true” 

is assigned to the second argument; or the zero type for type T is assigned to the first argument 

and the Boolean value “false” is assigned to the second argument. So: “x, ok := i.(T)” 

  

Another method of performing the type assertion is to use a type switch. In a type switch, the 

keyword switch is used in front of the type assertion like so: “switch i.(T)”. Here the type 

assertion returns the type, not the value of the type. The case statements should be defined to 

match the actual type returned from the type assertion. Depending on the type returned from the 

assertion, then operations within the given case may be performed. 

  

The usefulness of this capability is to enable using the empty interface when passing a value to 

a function where the value may be any of several types. For the receiving function to know how 

to properly operate on the passed in value, it needs to determine the datatype of the value. 

While usually the datatype of a function input parameter is specified in the function declaration, 

if it is desirable to permit a function to handle a given input parameter that may be of any 

datatype, use a combination of the empty interface with a type switch and a type assertion.   

Type Assertion: Code Example 

// Type Assertion functionality illustrated 

package main 

  

import ( 

            "fmt" 

) 

// Function demonstrates: type switch, empty interface, type assertion 

func typeDetermine(v interface{}) string { 

            switch v.(type) { 

            case int: 

                           return "int" // If integer type, return “int” 
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            case string: 

                           return "string" // If string type, return string 

            default: 

                           return "other type" // If any other type, return “other type” 

            } 

} 

  

func main() { 

            var value interface{} // Declare value to be empty interface 

            value = "foo bar"  // Assign string to empty interface type 

// x := value.(int); fmt.Printf("%q\n", x) // Don’t do this, type assertion fails! 

// Runtime error prints: panic: interface conversion: interface {} is string, not int 

            str, ok := value.(string) // Type assertion form: x, ok := v.(T) 

            if ok { 

                           fmt.Printf("value is: %q\n", str) // Prints value is: "foo bar" 

            } else { 

                           fmt.Printf("value is not a string\n") 

            } 

            str = typeDetermine(value) // Call to determine value type 

fmt.Printf("value: %v, type: %q\n", value, str) //value: foo bar, type: "string" 

value = 1000  // Assign integer to empty interface type 

str = typeDetermine(value) // Call to determine value type 

fmt.Printf("value: %v, type: %q\n", value, str) // value: 1000, type: "int" 

value = 12.345 // Assign float to empty interface type 

str = typeDetermine(value)  // Call to determine value type 

fmt.Printf("value: %v, type: %q\n", value, str) // value: 12.345, type: "other type" 

var a [3]int 

value = a 

            switch val := value.(type) { // Another example of type switch usage, falls to default 

            case int: 

                           fmt.Printf("value is an int, holds: %v.\n", val) 

            case float64: 

                           fmt.Printf("value is a float64, holds: %v.\n", val) 

            default: 

                           fmt.Printf("value is some other type, holds: %v.\n", val) 

            } 

} 

 /* 

Prints the following: 

value is: "foo bar" 

value: foo bar, type: "string" 

value: 1000, type: "int" 

value: 12.345, type: "other type" 

value is some other type, holds: [0 0 0]. 

*/ 
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UTF-8 

UTF-8 is an acronym for Unicode Transformation Format - 8 bit. It is a form of character 

encoding that can specify 1,112,064 separate characters (valid code points) within Unicode 

using from one to four 8-bit bytes. Every UTF-8 code point (rune) is unique. There are no 

duplicate numerical sequences within the UTF-8 code space. See Code Points. 

  

It is backwards compatible with ASCII, and the first 128 bytes of the UTF-8 address space are 

the ASCII character set. Each ASCII character is encoded within a single 8-bit octet. 

  

In most cases when dealing with the English language and basic mathematics, all characters 

within the source code will be ASCII characters. However, the Go language treats the source 

code as UTF-8. This means all known characters can be represented in the Go source code - 

all human languages, all mathematical characters, all diacritical marks, and even many 

pictographic symbols (emojis and ideograms). Most of the Unicode space is empty and is being 

populated with new symbols as they are discovered or created. 

  

Glyphs require two or more characters (runes) to express. Many glyphs are not yet represented 

in the UTF-8 code space. For example, there is an area requested in the Unicode space for 

Mayan glyphs (from U+15500 to U+159FF), however no detailed proposal has yet been 

submitted, which means these glyphs are not yet in UTF-8. They will almost certainly be 

allocated as graphic runes. The following image set shows three public domain images of the 

many known Mayan glyphs. 

 
Egyptian hieroglyphs have been assigned the range of U+13000 to U+1342F which can contain 

1,072 code points. 1,039 Egyptian hieroglyphs have been assigned. For example, the following 

hieroglyph exists at U+13000 (integer value 77824). 

 
To be able to copy a hieroglyph into code, the full range of Egyptian hieroglyphs may be found 

here: https://unicode-table.com/en/#egyptian-hieroglyphs. The above Egyptian hieroglyph code 

space location, and other information, can be shown by the following example code, although 

the hieroglyph itself within the code looks very small, and will look like ‘𓀀’. 

UTF-8: Code Example 

// Show some UTF-8 codespace information about an Egyptian hieroglyph 

https://unicode-table.com/en/#egyptian-hieroglyphs
https://unicode-table.com/en/#egyptian-hieroglyphs
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package main 

  

import ( 

"fmt" 

"unicode" 

"unicode/utf8" 

) 

  

func main() { 

const h = '𓀀' 

fmt.Printf("%+q\n", h) 

if unicode.IsGraphic(h) { 

fmt.Println("This is a graphic rune") 

} 

fmt.Println("Length of hieroglyph is:", utf8.RuneLen(h)) 

fmt.Println("The rune is displayed as:", string(h)) 

} 

/* 

Prints the following: 

'\U00013000' 

This is a graphic rune 

Length of hieroglyph is: 4 

The rune is displayed as: 𓀀 

*/ 
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Appendix I: Some Comments 

This section contains some advice for good programming practices with the language and 

points out what might be unexpected language features. 

  

As a general good programming practice, put nothing in your main package except for 

initializations, creation of variables needed for goroutines, calls to launch and manage 

goroutines, control actions on those goroutines, and closure and stoppage calls on shared 

variables. 

 

All struct data types, methods with signatures dependent on those struct data types, and 

interfaces satisfied by those methods, should go into either a single package or in functionally 

specific packages containing those struct data types, struct methods, and interfaces. Access to 

structs based on the struct data types should be through interfaces satisfied by the structs. 

There are several reasons for this, but a key reason is to prevent circular dependencies 

between packages. Otherwise package A may need interfaces from package B, and conversely, 

so they want to import each other. Instead put the structs, struct methods, and interfaces in 

package C, then have both A and B import C, and no more circular dependency. 

  

Restrict all accesses to structs except via interfaces. An easy way to do this is to not capitalize 

structs or the struct methods, only the interfaces. This ensures encapsulation of the data and 

enforces control over how the data may be manipulated. 

  

Usually if a function (or method, or goroutine) can generate an error, it should return an error. 

Because functions can return multiple parameters, an error parameter can be returned in 

addition to the result. When importing the error package, return nil as the error value when there 

is no error. 

  

The underscore character ‘_’ is quite useful in several situations.  When using the iota 

generator, it is used to skip the numerical sequence, for example, to ensure the sequence starts 

with 1 instead of 0. It may serve as an operand on the left-hand side of an assignment in cases 

where the value is to be ignored. It may precede a package name in an import declaration if the 

goal is to benefit from package initializations only, while not importing any of the package 

contents. It can also be used to test whether a type satisfies an interface without actually using 

the interface (in those cases where type checking happens at runtime and not compile time). 

  

I hope you have enjoyed this book. I hope you have found the concept of laying out computer 

science conceptual areas, and then describing them in the context of the Go language. 

 

Best regards to all, 

John Tullis 
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Appendix II: Additional Code Examples 

Demonstrate use of error values from user developed functions 

//Illustrate use of error values 

package main 

  

import ( 

"errors" 

"fmt" 

) 

  

func mySqrt(f float64) (float64, error) { 

if f < 0 { 

return 0, errors.New("math: square root of negative number") 

} else { 

return (f * f), nil // Return nil if no problem 

} 

} 

  

func main() { 

var f float64 

f = 2.5 

  

if ret, err := mySqrt(f); err == nil { // Multi-valued return 

fmt.Printf("Square root of %v is %v\n", f, ret) 

} else { 

fmt.Printf("Received error on %v: %s\n", f, err) 

} 

  

f = -2.5 

if ret, err := mySqrt(f); err == nil { // Multi-valued return 

fmt.Printf("Square root of %v is %v\n", f, ret) 

} else { 

fmt.Printf("Received error on %v: %s\n", f, err) 

} 

} 

/* 

Printed results: 

Square root of 2.5 is 6.25 

Received error on -2.5: math: square root of negative number 

*/ 
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Simple way to load a map with keys and values 

//Illustrate map loading, detecting an existing key, and ranging over a map 

package main 

 

import ( 

            "fmt" 

) 

  

func main() { 

            mymap := map[string]struct{}{} // Declare a map 

            i := "Dog" 

            j := "Cat" 

            k := "Buffalo" 

             

            // If no key in a map, assign something 

            if _, ok := mymap[i]; !ok { // Ignore value, just want to know if there is a key 

                           mymap[i] = struct{}{} // No key, so assign key and value 

            } 

            if _, ok := mymap[j]; !ok { // Ignore value, just want to know if there is a key 

                           mymap[j] = struct{}{} // No key, so assign key and value 

            } 

            if _, ok := mymap[k]; !ok { // Ignore value, just want to know if there is a key 

                           mymap[k] = struct{}{} // No key, so assign key and value 

            } 

            if _, ok := mymap[k]; !ok { // Ignore value, just want to know if there is a key 

                           mymap[k] = struct{}{} // No key, so assign key and value 

            } else { 

                           fmt.Println("Key already exists", mymap[k]) 

            } 

             

            for fn, val := range mymap { // Iteration order over the map is indeterminate! 

                           fmt.Println("KV Pair: ", fn, val) 

            } 

} 

  

/* 

Prints the following: 

Key already exists {} 

KV Pair:  Dog {} 

KV Pair:  Cat {} 

KV Pair:  Buffalo {} 

*/ 

  



A Cyclopedia of Go 
 

149 | P a g e  
 

Demonstrates one way to convert a struct to a map 

//Illustrate converting a struct to a map via use of JSON marshalling/unmarshalling 

package main 

  

import ( 

            "encoding/json" 

            "fmt" 

) 

  

type MyD struct { // All field names must be capitalized for JSON! 

            Firstname string 

            Lastname  string 

            Weight int 

            Age    int 

} 

  

// Convert a struct into a map 

func main() { 

            rabbit := &MyD{ // Declare a rabbit 

                           Firstname: "Fast", 

                           Lastname:  "Rabbit", 

                           Age:    25, 

            } // Weight value will be null value for type int 

  

var myI map[string]interface{}   // Declare a map 

bytes, _ := json.Marshal(rabbit) // Pass in rabbit as interface{}, return contents as []byte 

json.Unmarshal(bytes, &myI)   // Pass in bytes as[]byte, unmarshal into myI as interface{} 

             

// iterate through map 

            for fieldname, val := range myI { // Iteration order over the map is indeterminate! 

                           fmt.Println("KV Pair: ", fieldname, val) 

            } 

} 

/* 

Printed results like (remember order is indeterminate in maps): 

KV Pair:  Weight 0 

KV Pair:  Age 25 

KV Pair:  Firstname Fast 

KV Pair:  Lastname Rabbit 

*/ 
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Demonstrates why closing parentheses are needed for anonymous functions 

//Illustrate anonymous function usage 

package main 

  

import ( 

            "fmt" 

) 

  

func main() { 

            i, err := func() (int, error) { 

fmt.Println("Foo") 

 return fmt.Println("Bar") // Returns number of bytes written, and error value 

            }() // The parentheses are required to actually call the function 

             

            fmt.Printf("%v %v\n", i, err) 

             

            x := func() (int, error) { 

  fmt.Println("Fast") 

  return fmt.Println("Rabbit") // Returns number of bytes written, and error value 

 } // No parentheses needed here, not actually calling the function 

 

 i, err = x() // See the parentheses here also, needed to call the function 

fmt.Printf("%v %v\n", i, err) 

} 

 

/* 

Prints the following: 

Foo 

Bar 

4 <nil> 

Foo 

Bar 

*/  
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Demonstrate a struct with a function field 

//Illustrate usage of a struct with a function field 

package main 

  

import ( 

            "fmt" 

) 

  

type s struct { 

            f func(name string) string 

} 

  

func main() { 

            x := s{f: func(name string) string { 

                           return "Foo " + name 

            }} 

            fmt.Println(x.f("Bar")) 

} 

  

/* 

Prints the following: 

Foo Bar 

*/ 
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Demonstrating the use of maps where the values are structs 

//Illustrate map containing structs 

package main 

  

import ( 

            "fmt" 

) 

  

type s struct { 

            a string 

            b int 

} 

  

func main() { 

            m := make(map[string]*s) 

            m["Foo"] = &s{} 

            m["Foo"].a = "abc" 

            m["Foo"].b = 1 

            m["Bar"] = &s{} 

            m["Bar"].a = "xyz" 

            m["Bar"].b = 2 

            fmt.Println("map m entry at key Foo is:", m["Foo"]) 

            fmt.Println("map m entry at key Bar is:", m["Bar"]) 

} 

  

/* 

Prints the following: 

map m entry at key Foo is: &{abc 1} 

map m entry at key Bar is: &{xyz 2} 

*/ 
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Demonstrate generation of pseudorandom map keys and values 

//Illustrate usage of pseudorandom map keys and values 

package main 

  

import ( 

            "fmt" 

            "math/rand" 

) 

  

func main() { 

            var r = []rune("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ") 

            a := make([]rune, 5) 

            m := make(map[string]int, 5) 

            for i := 0; i < 5; i++ { 

                           s := func() string { 

                                          for i := range a { 

                                                         a[i] = r[rand.Intn(len(r))] 

                                          } 

                                          return string(a) 

}() 

m[s] = rand.Intn(10000) // Load map m with pseudorandom string keys and values 

            } 

            fmt.Println(m) 

} 

  

/* 

Prints something like the following: 

map[XVlBz:1318 baiCM:8511 AjWwh:1445 Hctcu:6258 xhxKQ:3015] 

*/ 
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Demonstrate tree creation, loading, traversal 

//Illustrate usage of a tree with recursive data insertion and tree traversal 

package main 

  

import ( 

            "fmt" 

            "math/rand" 

) 

  

// This will be the root of the tree 

type Tree struct { 

            root *node 

} 

  

// Tree will contain nodes 

type node struct { 

            data  int 

            left  *node 

            right *node 

} 

  

func (t *Tree) Insert(data int) { 

            if t.root == nil { 

                           t.root = &node{data: data} 

            } else { 

                           t.root.insert(data) 

            } 

} 

  

// Move through tree recursively inserting data 

func (n *node) insert(data int) { 

            if data <= n.data { 

                           if n.left == nil { 

                                          n.left = &node{data: data} 

                           } else { 

                                          n.left.insert(data) 

                           } 

            } else { 

                           if n.right == nil { 

                                          n.right = &node{data: data} 

                           } else { 

                                          n.right.insert(data) 

                           } 

            } 

} 

// Walk through the tree recursively showing data 

func walk(n *node) { 

            if n == nil { 

                           return 
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            } 

            walk(n.left) 

            fmt.Println("Node has value:", n.data) 

            walk(n.right) 

} 

  

func main() { 

            var t Tree 

            var n *node 

            fmt.Println("Load the tree") 

            for i := 0; i < 10; i++ { 

                           v := rand.Intn(75) * rand.Intn(75) 

                           fmt.Println("Loading:", v) // Show loaded value 

                           t.Insert(v) 

            } 

            //Prepare to walk the tree 

            n = t.root 

            fmt.Println("Traverse the tree") 

            walk(n) 

} 

/* 

Prints something like: 

Load the tree 

Loading: 672 

Loading: 2773 

Loading: 558 

Loading: 1625 

Loading: 0 

Loading: 2684 

Loading: 168 

Loading: 2072 

Loading: 720 

Loading: 3472 

Traverse the tree 

Node has value: 0 

Node has value: 168 

Node has value: 558 

Node has value: 672 

Node has value: 720 

Node has value: 1625 

Node has value: 2072 

Node has value: 2684 

Node has value: 2773 

Node has value: 3472 

*/ 
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Sorting a list of planet names not using built in sort function 

//Illustrating custom sort function 

package main 

  

import ( 

            "fmt" 

) 

  

var listOfPlanets []string = []string{ //Unsorted 

            "Jupiter", 

            "Mars", 

            "Mercury", 

            "Pluto", 

            "Neptune", 

            "Earth", 

            "Venus", 

            "Saturn", 

            "Uranus", 

} 

  

func printPlanetsList(slice []string) { 

            for i := 0; i < len(slice); i++ { 

                           fmt.Println(slice[i]) 

            } 

} 

  

func main() { 

            fmt.Println("Unsorted planets list") 

            printPlanetsList(listOfPlanets) 

            fmt.Println() 

            listlength := len(listOfPlanets) 

  

            for i := 0; i < listlength; i++ { //Sort the planets 

                           for j := 0; j < listlength-1; j++ { 

                                          if listOfPlanets[j] > listOfPlanets[j+1] { 

                                                         temp := listOfPlanets[j] 

                                                         listOfPlanets[j] = listOfPlanets[j+1] 

                                                         listOfPlanets[j+1] = temp 

                                          } 

                           } 

            }  

            fmt.Println("Planets sorted alphabetically by name") 

            printPlanetsList(listOfPlanets) 

} 

/* 

Prints the following: 

Unsorted planets list 

Jupiter 

Mars 
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Mercury 

Pluto 

Neptune 

Earth 

Venus 

Saturn 

Uranus 

  

Planets sorted alphabetically by name 

Earth 

Jupiter 

Mars 

Mercury 

Neptune 

Pluto 

Saturn 

Uranus 

Venus 

*/ 
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Client Server Two Way Communication 

// Illustrates two way communication between a server and multiple clients 

package main 

 

import ( 

"fmt" 

"log" 

"net" 

"time" 

) 

 

// Client goroutine 

func simulateClient1() { 

// Connect to a server 

conn, err := net.Dial("tcp", "127.0.0.1:8000") 

if err != nil { 

log.Fatal(err) 

} 

// Ensure server disconnect when done 

defer conn.Close() 

 

// Communicate with the server 

serverResponse := make([]byte, 128) 

for i := 1; i < 6; i++ { // Loop 5 times 

conn.Write([]byte(fmt.Sprintf("Client 1 sent message #%d", i))) 

_, err := conn.Read(serverResponse) 

if err != nil { 

log.Fatal(err) 

} 

fmt.Println("Server response: ", string(serverResponse)) 

time.Sleep(1000 * time.Millisecond) 

} 

fmt.Println("Client 1 exiting") 

} 

 

func simulateClient2() { 

// Connect to a server 

conn, err := net.Dial("tcp", "127.0.0.1:8000") 

if err != nil { 

log.Fatal(err) 

} 

// Ensure server disconnect when done 

defer conn.Close() 

 

// Communicate with the server 

serverResponse := make([]byte, 128) 

for i := 1; i < 4; i++ { // Loop 3 times 

conn.Write([]byte(fmt.Sprintf("Client 1 sent message #%d", i))) 

_, err := conn.Read(serverResponse) 
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if err != nil { 

log.Fatal(err) 

} 

fmt.Println("Server response: ", string(serverResponse)) 

time.Sleep(1000 * time.Millisecond) 

} 

fmt.Println("Client 1 exiting") 

} 

 

// Handle the client connection for the server 

func connHandler(conn net.Conn) { 

// Defer, but guarantee, to close the client connection 

defer conn.Close() 

  

i := 0 

result := make([]byte, 128) 

for { 

n, _ := conn.Read(result) 

if n == 0 { // No more incoming messages 

    break 

} else { 

fmt.Println("Client request: ", string(result)) 

i++ 

conn.Write([]byte(fmt.Sprintf("Sending server receipt #%d", i))) 

} 

} 

fmt.Println("Server connection handler exiting") 

} 

 

// Server goroutine 

func simulateServer() { 

// Create a server connection 

svrconn, err := net.Listen("tcp", "127.0.0.1:8000") 

if err != nil { 

log.Fatal(err) 

} 

// Defer, but guarantee, to close the server connection 

defer svrconn.Close() 

 

for { 

// Accept connection from client request 

conn, err := svrconn.Accept() 

if err != nil { 

log.Fatal(err) 

} 

// Let connection handler deal with client 

go connHandler(conn) 

} 

} 
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func main() { 

go simulateServer()  // Launch a server simulator 

go simulateClient1() // Launch a server client simulator 

go simulateClient2() // Launch a server client simulator 

 

// Give goroutines time to run 

time.Sleep(10 * (1000 * time.Millisecond)) 

fmt.Println("Main exiting") 

} 

/* 

Prints something like: 

Client request:  Client 1 sent message #1 

Server response:  Sending server receipt #1 

Client request:  Client 2 sent message #1 

Server response:  Sending server receipt #1 

Client request:  Client 2 sent message #2 

Server response:  Sending server receipt #2 

Client request:  Client 1 sent message #2 

Server response:  Sending server receipt #2 

Client request:  Client 1 sent message #3 

Server response:  Sending server receipt #3 

Client request:  Client 2 sent message #3 

Server response:  Sending server receipt #3 

Client request:  Client 2 exiting 

Server connection handler exiting 

Client request:  Client 1 sent message #4 

Server response:  Sending server receipt #4 

Client request:  Client 1 sent message #5 

Server response:  Sending server receipt #5 

Client request:  Client 1 exiting 

Server connection handler exiting 

Main exiting 

*/ 
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