Th
Pra ematic
Oogrammers

Distributed

Services with Go

Your Guide to Reliable, Scalable,
and Maintainable Systems

Travis Jeffery

edited by Dawn Schanafelt and Katharine Dvorak

Early Praise for Distributed Services with Go

Having built most of the technologies in this book without the benefit of this book,
I can wholeheartedly recommend Distributed Services with Go. Travis delivers
years of practical experience distilled into a clear and concise guide that takes
the reader step by step from foundational knowledge to production deployment.
This book earns my most hearty endorsement.
>» Brian Ketelsen

Principal Developer Advocate, Microsoft; and Organizer, GopherCon

In this practical, engaging book, Travis Jeffery shines a light on the path to
building distributed systems. Read it, learn from it, and get coding!
>» Jay Kreps

CEO, Confluent, Inc., and Co-Creator of Apache Kafka

Travis Jeffery distills the traditionally academic topic of distributed systems down
to a series of practical steps to get you up and running. The book focuses on the
real-world concepts used every day by practicing software engineers. It’s a great
read for intermediate developers getting into distributed systems or for senior
engineers looking to expand their understanding.
>» Ben Johnson

Author of BoltDB

For any aspiring Gopher, Travis provides a gentle introduction to complex topics
in distributed systems and provides a hands-on approach to applying the concepts.
» Armon Dadgar

HashiCorp Co-Founder

A must-have for Gophers building systems at scale.
» William Rudenmalm
Lead Developer, CREANDUM

This book is a great resource for Go developers looking to build and maintain
distributed systems. It pairs an incremental development process with extensive
code examples to teach you how to write your own distributed service, understand
how it works under the hood, and how to deploy your service so others may start
using it.
» Nishant Roy

Tech Lead

Distributed Services with Go

Your Guide to Reliable, Scalable, and Maintainable Systems

Travis Jeffery

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin

COO: Janet Furlow

Managing Editor: Tammy Coron

Development Editor: Dawn Schanafelt and Katharine Dvorak
Copy Editor: L. Sakhi MacMillan

Indexing: Potomac Indexing, LLC

Layout: Gilson Graphics

Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-760-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Acknowledgments B b

Introduction Xi

Part | — Get Started

Let’s Go

How JSON over HTTP Services Fits into Distributed Systems

13
14
16
17
19
20
21

23
23
25
26
51

Part Il — Network
Serve Requests with gRPC

Part lll — Distribute

Server-to-Server Service Discovery

Contents ® vi

55
55
56
58
60
60
68
68
73

75
76
78
86
88
98

99
99
103
109

113
113
114
116
123
134
138

141
141
144
163
169

11.

Discover Servers and Load Balance from the Client .

Part IV — Deploy

Deploy Applications with Kubernetes Locally

Contents ® vii

171
171
172
174
177
183
188
189

193
193
194
195
196
201
202
213
217

219
220
222
228
228

229

Acknowledgments

I write this, having finished the book, two and a half years after I began.
Writing this book was the hardest thing I've done. I've built a few startups
and several open source projects—this was much harder. I set out to write a
good book people would enjoy and find useful. I'm critical of myself and my
work and wouldn’t put out anything I didn’'t deem worthy. It took me a long
time to write because I didn’t want to compromise. I'm happy with this book
and proud of myself.

I thank my editors, Dawn Schanafelt and Katharine Dvorak, for their patience
and for helping me to improve my writing and motivating me in hard times.

Thank you to my publisher, The Pragmatic Bookshelf, for the guidance I
received in writing my first book and for all of the work out of view.

I thank my book’s reviewers and beta readers for giving me their impressions
of the book and contributing suggestions and errata to help me improve the
book. Thank you to Clinton Begin, Armon Dadgar, Ben Johnson, Brian
Ketelsen, Jay Kreps, Nishant Roy, William Rudenmalm, and Tyler Treat.

Thank you to the free and open source software communities for putting out
code to study, change, and run. Special thanks to the people at Hashicorp
for open-sourcing their Raft and Serf packages I use in this book and their
services like Consul, whose source I studied and learned from a lot. Thank
you to the Emacs and Linux contributors—the text editor and operating system
I wrote this book with. Thank you to the Go team for creating a simple, stable,
useful language.

Thank you to my parents, Dave and Tricia Jeffery, for buying my first com-
puter and programming books and encouraging me with a strong work ethic.

Thank you to my high school English teacher, Graziano Galati, for giving me
the right reading at the right time in my life.

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Acknowledgments ® x

Thank you to J. R. R. Tolkien for authoring The Lord of the Rings. I read it
while writing this book, and the rapport with Frodo and Samwise aided me
on the journey.

I thank my cat, Callie Jeffery. I adopted her a quarter of the way through
writing the book, and her useful contributions to the discussion helped speed
up my writing pace.

Thank you to Emily Davidson for her love and support and for fueling me
with broccoli soup, ginger kombucha, and matcha tea.

Thank you, dear reader, for independently furthering your skills and knowl-
edge and having the ambition to put your dent in the universe.

—Travis Jeffery

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Introduction

Go has become the most popular language for building distributed services,
as shown by projects like Docker, Eted, Vault, CockroachDB, Prometheus,
and Kubernetes. Despite the number of prominent projects such as these,
however, there’s no resource that teaches you why or how you can extend
these projects or build your own.

Where do you begin if you want to build a distributed service?

When I began learning how to build distributed services, I found the existing
resources to be of two extremes:

¢ Concrete code—distributed services are large, complex projects, and the
prominent ones have had teams working on them for years. The layout
of these projects, their technical debt, and their spaghetti code bury the
ideas you're interested in, which means you have to dig them out. At best,
learning from code is inefficient. Plus there’s the risk that you may
uncover outdated and irrelevant techniques that you're better off avoiding
in your own projects.

e Abstract papers and books—papers and books like Designing Data-
Intensive Applications by Martin Kleppmann' describe how the data
structures and algorithms behind distributed services work but cover
them as discrete ideas, which means you're left on your own to connect
them before you can apply them in a project.

These two extremes leave a chasm for you to cross. I wanted a resource that
held my hand and taught me how to build a distributed service—a resource
that explained the big ideas behind distributed services and then showed me
how to make something of them.

I wrote this book to be that resource. Read this book, and you’ll be able to
build your own distributed services and contribute to existing ones.

1. https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063

https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Introduction * xii

Who This Book Is For

This book is for intermediate to advanced developers who want to learn how
to build distributed services. I've geared the book toward Go programmers,
and prior Go experience will help, but you don’t have to be an expert. This
book shows you how to build distributed services, and the concepts are the
same regardless of what language you use. So if you're writing distributed
services in Go, you can take full advantage of this book; if not, you can apply
the ideas I present here in any language.

0 This book’s code is compatible with Go 1.13+.

What's in This Book

We will design, develop, and deploy a distributed service to explore what Go
can do. We'll develop and deploy the service in layers: from the bare essentials
of storage handling, to the networking of a client and server, to distributing
server instances, deployment, and testing. I divided this book into four parts
that parallel those layers. (Don’t worry if you aren’t familiar with the technolo-
gies I mention next—I explain them in the relevant chapters.)

Part | — Get Started

We'll begin with the basic elements: building our project’s storage layer and
defining its data structures.

In Chapter 1, Let's Go, on page 3, we'll kick off our project by building a

simple JSON over HTTP commit log service.

In Chapter 2, Structure Data with Protocol Buffers, on page 13, we’ll set up

our protobufs, generate our data structures, and set up automation to
quickly generate our code as we make changes.

In Chapter 3, Write a Log Package, on page 23, we’ll build a commit log library

that’ll serve as the heart of our service, storing and looking up data.

Part Il — Network

This part is where we’ll make our service work over a network.

In Chapter 4, Serve Requests with gRPC, on page 55, we’'ll set up gRPC, define

our server and client APIs in protobuf, and build our client and server.

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Online Resources ® xiii

In Chapter 5, Secure Your Services, on page 75, we'll make our connections

secure by authenticating our server with SSL/TLS to encrypt data exchanged
between client and server and by authenticating requests with access tokens.

In Chapter 6, Observe Your Systems, on page 99, we’ll make our service

observable by adding logs, metrics, and tracing.

Part lll — Distribute

In this part we’ll make our service distributed—highly available, resilient, and
scalable.

In Chapter 7, Server-to-Server Service Discovery, on page 113, we’ll build dis-

covery into our service to make server instances aware of each other.

In Chapter 8, Coordinate Your Services with Consensus, on page 141, we'll

add consensus to coordinate the efforts of our servers and turn them into a
cluster.

In Chapter 9, Discover Servers and Load Balance from the Client, on page

the servers with client-side load balancing.

Part IV — Deploy

Here’s where we’ll deploy our service and make it live.

In Chapter 10, Deploy Applications with Kubernetes Locally, on page 193, well

set up Kubernetes locally and run a cluster on your local machine. And we’ll
prepare to deploy to the cloud.

In Chapter 11, Deploy Applications with Kubernetes to the Cloud, on page

and deploy our service to the cloud so that people on the Internet can use it.

If you plan on building the project as you read (which is a great idea), read
the parts in order so that your code works. It’s also fine to skip around in the
book as well; the ideas we’ll explore in each chapter have value on their own.

Online Resources

The code we’ll develop is available on the Pragmatic Bookshelf website:
https://pragprog.com/book/tjgo. You'll also find an errata-submission form there for

you to ask questions, report any problems with the text, or make suggestions
for future versions of this book.

Let’'s get Going!

https://pragprog.com/book/tjgo
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Part I

Get Started

CHAPTER 1

Let's Go

Throughout my career I've written programs in C, Ruby, Python, JavaScript,
Java, Elixir, Erlang, Bash, and more. Each of these languages had a lot of
great things going for it but always at least a few things that bugged me a lot.
C didn’t have modules, Ruby wasn’t fast enough, JavaScript and its type
system made you question your sanity, and so on. This meant that each
language had a specific use case, like all the different knives a chef uses. For
example, a chef uses a cleaver to cut through big bones. Similarly, I'd use
Java when writing big, objective-oriented programs and wanted to make a
cup of tea between the time I started the program and it was ready to run. A
chef uses a paring knife when making small, delicate cuts, and I'd use Bash
when writing small, portable scripts. But I always wished I could find a lan-
guage that was useful in almost all situations and didn’t irritate me.

Finally, I came upon Go, a language that can:

¢ Compile and run your programs faster than an interpreted language like Ruby;

e Write highly concurrent programs;

¢ Run directly on the underlying hardware; and

e Use modern features like packages (while excluding a lot of features I
didn’t need, like classes).

Go had more things going for it. So there had to be something that bugged
me, right? But no, it was as if the designers of Go had taken all the stuff that
bothered me about other languages and stripped them out, leaving the lean,
mean programming language that is Go. Go gave me the same feeling that
made me first fall in love with programming: that if something was wrong it
was my fault, me getting in my way instead of the language burying me
under the weight of all its features. If Java is the cleaver and Bash the paring
knife, then Go is the katana. Samurai felt that katanas were extensions of

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 1. Let'sGo * 4

themselves, things they could spend a lifetime with while pursuing mastery
of their craft. That’s the way I feel about Go.

If you were to pick the software field where Go has had the biggest impact, it
would have to be distributed systems. The developers of projects like Docker,
Kubernetes, Etcd, and Prometheus all decided to use Go for good reason.
Google developed Go and its standard library as an answer to software prob-
lems at Google: multicore processors, networked systems, massive computa-
tion clusters—in other words, distributed systems, and at large scale in terms
of lines of code, programmers, and machines. Because you're a Go program-
mer, you likely use systems like these and want to know how they work, how
to debug them, and how to contribute to them, or you want to build similar
projects of your own. That’s the case for me: the companies I've worked for
used Docker and Kubernetes, and I've built my own projects like Jocko, an
implementation of Kafka (the distributed commit log) in Go.

So how do you start down the path of knowing how to do all that in Go?
Building a distributed service isn’t the easiest or smallest project in the world.
If you try to build all the pieces at once, all you'll end up with is a big, stinking
mess of a code base and a fried brain. You build the project piece by piece.
A good place to start is a commit log JSON over HTTP service. Even if you've
never written an HTTP server in Go before, I'll teach you how to make an
accessible application programming interface (API) that clients can call over
the network. You’'ll learn about commit log APIs and, because we're working
on one project throughout this book, you'll be set up to write the code we’ll
work on in the following chapters.

How JSON over HTTP Services Fits into Distributed
Systems

JSON over HTTP APIs are the most common APIs on the web, and for good
reason. They're simple to build since most languages have JSON support built
in. And they’re simple and accessible to use since JSON is human readable and
you can call HTTP APIs via the terminal with curl, by visiting the site with your
browser, or using any of the plethora of good HTTP clients. If you have an idea
for a web service that you want to hack up and have people try as soon as pos-
sible, then implementing it with JSON/HTTP is the way to go.

JSON/HTTP isn’t limited to small web services. Most tech companies that
provide a web service have at least one JSON/HTTP API acting as the public
API of their service either for front-end engineers at their company to use or
for engineers outside the company to build their own third-party applications

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Set Up the Project ¢ 5

on. For their internal web APIs, the company may take advantage of technolo-
gies like protobuf for features that JSSON/HTTP doesn't provide—like type
checking and versioning—but their public one will still be JSON/HTTP for
accessibility. This is the same architecture I've used at my current and previ-
ous companies. At Segment we had a JSON/HTTP-based architecture that
for years handled billions of API calls a month before we changed our internal
services to use protobuf/gRPC to improve efficiency. At Basecamp, all services
were JSON/HTTP-based and (as far as I know) still are to this day.

JSON/HTTP is a great choice for the APIs of infrastructure projects. Projects
like Elasticsearch (a popular open source, distributed search engine) and Eted
(a popular distributed key-value store used by many projects, including
Kubernetes) also use JSON/HTTP for their client-facing APIs, while employing
their own binary protocols for communication between nodes to improve perfor-
mance. JSON/HTTP is no toy—you can build all kinds of services with it.

Go has great APIs in its standard library for building HTTP servers and
working with JSON, making it perfect for building JSON/HTTP web services.
I've worked on JSON/HTTP services written in Ruby, Node.js, Java, Python,
and I've found Go to be the most pleasant by far. This is because of the
interaction between Go’s declarative tags and the great APIs in the JSON
encoding package (encoding/json) in the standard library that save you from
the fiddling marshaling code you have to write in other languages. So let’s
dive right in.

Set Up the Project

The first thing we need to do is create a directory for our project’s code. Since
we're using Go 1.13+, we'll take advantage of modules' so you don’t have to
put your code under your GOPATH. We'll call our project proglog, so open
your terminal to wherever you like to put your code and run the following
commands to set up your module:

$ mkdir proglog

$ cd proglog
$ go mod init github.com/travisjeffery/proglog

Replace travisjeffery with your own GitHub username or with github.com if
you use something like Bitbucket, but keep in mind as you're working through
this book that the code examples all have github.com/travisjeffery/proglog as the
import path, so if you're using your own import path, you must change the
code examples to use that import path.

1. https://github.com/golang/go/wiki/Modules

https://github.com/golang/go/wiki/Modules
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 1. Let'sGo * 6

Build a Commit Log Prototype

We'll explore commit logs in depth in Chapter 3, Write a Log Package, on page

know about commit logs is that they're a data structure for an append-only
sequence of records, ordered by time, and you can build a simple commit log
with a slice.

Create an internal/server directory tree in the root of your project and put the
following code under the server directory in a file called log.go:

LetsGo/internal/server/log.go
package server

import (
“fmt"
"sync"
)

type Log struct {
mu sync.Mutex
records []Record

}

func NewLog() *Log {
return &Log{}
}

func (c *Log) Append(record Record) (uint64, error) {
c.mu.Lock()
defer c.mu.Unlock()
record.0ffset = uint64(len(c.records))
c.records = append(c.records, record)
return record.Offset, nil

}

func (c *Log) Read(offset uint64) (Record, error) {
c.mu.Lock()
defer c.mu.Unlock()
if offset >= uint64(len(c.records)) {

return Record{}, ErrOffsetNotFound

}
return c.records[offset], nil

}

type Record struct {
Value []byte “json:'"value"®
Offset uint64 ‘json:"offset"®
}

var ErrOffsetNotFound = fmt.Errorf("offset not found")

http://media.pragprog.com/titles/tjgo/code/LetsGo/internal/server/log.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Build a JSON over HTTP Server ® 7

To append a record to the log, you just append to the slice. Each time we read
a record given an index, we use that index to look up the record in the slice.
If the offset given by the client doesn’t exist, we return an error saying that
the offset doesn’t exist. All really simple stuff, as it should be since we’re using
this log as a prototype and want to keep moving.

Ignore Chapter Namespaces in the File Paths

You may have noticed that code snippet’s file path said LetsGo/inter-

nal/server/log.go instead of internal/server/log.go and that subsequent

code snippets have similar per-chapter directory namespaces.
Q These namespaces were needed to structure the code for the book

build. When writing your code, pretend that these namespaces

don’t exist. So for the previous example, the internal directory

would go at the root of your project.

Build a JSON over HTTP Server

Now we’ll write our JSON/HTTP web server. A Go web server comprises one
function—a net/http HandlerFunc(ResponseWriter, *Request)—for each of your API's
endpoints. Our API has two endpoints: Produce for writing to the log and
Consume for reading from the log. When building a JSON/HTTP Go server,
each handler consists of three steps:

1. Unmarshal the request’s JSON body into a struct.
2. Run that endpoint’s logic with the request to obtain a result.
3. Marshal and write that result to the response.

If your handlers become much more complicated than this, then you should
move the code out, move request and response handling into HTTP middle-
ware, and move business logic further down the stack.

Let’s start by adding a function for users to create our HTTP server. Inside
your server directory, create a file called http.go that contains the following code:

LetsGo/internal/server/http.go
package server

import (
"encoding/json"
"net/http"

"github.com/gorilla/mux"
)

func NewHTTPServer(addr string) *http.Server {
httpsrv := newHTTPServer()
r := mux.NewRouter()

http://media.pragprog.com/titles/tjgo/code/LetsGo/internal/server/http.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 1. Let'sGo * 8

r.HandleFunc("/", httpsrv.handleProduce).Methods("POST")
r.HandleFunc("/", httpsrv.handleConsume).Methods("GET")
return &http.Server{

Addr: addr,

Handler: r,

}

NewHTTPServer(addr string) takes in an address for the server to run on and returns
an *http.Server. We create our server and use the popular gorilla/mux library
to write nice, RESTful routes that match incoming requests to their respective
handlers. An HTTP POST request to / matches the produce handler and
appends the record to the log, and an HTTP GET request to / matches the
consume handler and reads the record from the log. We wrap our server with
a *net/http.Server so the user just needs to call ListenAndServe() to listen for and
handle incoming requests.

Next, we’ll define our server and the request and response structs by adding
this snippet below NewHTTPServer():

LetsGo/internal/server/http.go
type httpServer struct {
Log *Log

}

func newHTTPServer() *httpServer {
return &httpServer{
Log: NewlLog(),
}

type ProduceRequest struct {
Record Record ‘json:"record"®

type ProduceResponse struct {
O0ffset uint64 ‘json:"offset"’

type ConsumeRequest struct {
O0ffset uint64 ‘json:"offset"®

type ConsumeResponse struct {
Record Record ‘json:"record"®

}

We now have a server referencing a log for the server to defer to in its handlers.
A produce request contains the record that the caller of our API wants
appended to the log, and a produce response tells the caller what offset the
log stored the records under. A consume request specifies which records the

http://media.pragprog.com/titles/tjgo/code/LetsGo/internal/server/http.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Build a JSON over HTTP Server ¢ 9

caller of our API wants to read and the consume response to send back those
records to the caller. Not bad for just 28 lines of code, huh?

Next, we need to implement the server’s handlers. Add the following code
below your types from the previous code snippet:
LetsGo/internal/server/http.go

func (s *httpServer) handleProduce(w http.ResponseWriter, r *http.Request) {
var req ProduceRequest

err := json.NewDecoder(r.Body).Decode(&req)

if err != nil {
http.Error(w, err.Error(), http.StatusBadRequest)
return

}

off, err := s.Log.Append(req.Record)

if err !'= nil {
http.Error(w, err.Error(), http.StatusInternalServerError)
return

}

res := ProduceResponse{Offset: off}

err = json.NewEncoder(w).Encode(res)

if err != nil {
http.Error(w, err.Error(), http.StatusInternalServerError)
return

}

}

The produce handler implements the three steps we discussed before:
unmarshaling the request into a struct, using that struct to produce to the
log and getting the offset that the log stored the record under, and marshaling
and writing the result to the response. Our consume handler looks almost
identical. Add the following snippet below your produce handler:
LetsGo/internal/server/http.go

func (s *httpServer) handleConsume(w http.ResponseWriter, r *http.Request) {
var req ConsumeRequest

err := json.NewDecoder(r.Body).Decode(&req)

if err !'= nil {
http.Error(w, err.Error(), http.StatusBadRequest)
return

b

record, err := s.Log.Read(req.0ffset)

if err == ErrOffsetNotFound {
http.Error(w, err.Error(), http.StatusNotFound)

return

}

if err != nil {
http.Error(w, err.Error(), http.StatusInternalServerError)
return

http://media.pragprog.com/titles/tjgo/code/LetsGo/internal/server/http.go
http://media.pragprog.com/titles/tjgo/code/LetsGo/internal/server/http.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 1. Let's Go ® 10

res := ConsumeResponse{Record: record}

err = json.NewEncoder(w).Encode(res)

if err !'= nil {
http.Error(w, err.Error(), http.StatusInternalServerError)
return

}

}

The consume handler is like the produce handler but calls Read(offset uint64) to
get the record stored in the log. This handler contains more error checking
so we can provide an accurate status code to the client if the server can’t
handle the request, like if the client requested a record that doesn’t exist.

That’s all the code needed for our server. Now let’s write some code to turn
your server library into a program we can execute.

Run Your Server

The last code you need to write is a main package with a main() function to
start your server. In the root directory of your project, create a cmd/server
directory tree, and in the server directory create a file named main.go with
this code:

LetsGo/cmd/server/main.go
package main

import (
n logll

"github.com/travisjeffery/proglog/internal/server"

)

func main() {
srv := server.NewHTTPServer(":8080")
log.Fatal(srv.ListenAndServe())

}

Our main() function just needs to create and start the server, passing in the
address to listen on (localhost:8080) and telling the server to listen for and handle
requests by calling ListenAndServe(). Wrapping our server with the *net/http.Server
in NewHTTPServer() saved us from writing a bunch of code here—and anywhere
else we’'d create an HTTP server.

It’s time to test our slick new service.

http://media.pragprog.com/titles/tjgo/code/LetsGo/cmd/server/main.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Test Your APl ® 11

Test Your API

You now have a functioning JSON/HTTP commit log service you can run and
test by hitting the endpoints with curl. Run the following snippet to start the
server:

$ go run main.go

Open another tab in your terminal and run the following commands to add
some records to your log:

$ curl -X POST localhost:8080 -d \

'{"record": {"value": "TGVOJ3MgR28gIzEK"}}"'
$ curl -X POST localhost:8080 -d \

'{"record": {"value": "TGVOJ3MgR28gIzIK"}}'
$ curl -X POST localhost:8080 -d \

'{"record": {"value": "TGVOJ3MgR28gIzMK"}}"'

Go’s encoding/json package encodes [lbyte as a base64-encoding string. The
record’s value is a [Jbyte, so that’s why our requests have the base64 encoded
forms of Let’s Go #1-3. You can read the records back by running the following
commands and verifying that you get the associated records back from the
server:

$ curl -X GET localhost:8080 -d '{"offset": 0}'

$ curl -X GET localhost:8080 -d '{"offset": 1}'
$ curl -X GET localhost:8080 -d '{"offset": 2}'

Congratulations—you have built a simple JSON/HTTP service and confirmed
it works!

What You Learned

In this chapter, we built a simple JSON/HTTP commit log service that accepts
and responds with JSON and stores the records in those requests to an in-
memory log. Next, we’ll use protocol buffers to manage our API types, generate
custom code, and prepare to write a service with gRPC—an open source, high-
performance remote procedure call framework that’s great for building dis-
tributed services.

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

CHAPTER 2

Structure Data with Protocol Buffers

When building distributed services, you're communicating between the services
over a network. To send data (such as your structs) over a network, you need
to encode the data in a format to transmit, and lots of programmers choose
JSON. When you're building public APIs or you're creating a project where
you don't control the clients, JSON makes sense because it’s accessible—both
for humans to read and computers to parse. But when you're building private
APIs or building projects where you do control the clients, you can make use
of a mechanism for structuring and transmitting data that—compared to
JSON—makes you more productive and helps you create services that are
faster, have more features, and have fewer bugs.

So what is this mechanism? Protocol buffers (also known as protobuf), which
is Google’s language and platform-neutral extensible mechanism for structur-
ing and serializing data. The advantages of using protobuf are that it:

e Guarantees type-safety;

¢ Prevents schema-violations;

¢ Enables fast serialization; and
e Offers backward compatibility.

Protobuf lets you define how you want your data structured, compile your
protobuf into code in potentially many languages, and then read and write
your structured data to and from different data streams. Protocol buffers are
good for communicating between two systems (such as microservices), which
is why Google used protobuf when building gRPC to develop a high-perfor-
mance remote procedure call (RPC) framework.

If you haven’t worked with protobuf before, you may have some of the same
concerns I had—that protobuf seems like a lot of extra work. I promise you
that, after working with it in this chapter and the rest of the book, you'll see

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 2. Structure Data with Protocol Buffers ¢ 14

that it’s really not so bad. It offers many advantages over JSON, and it'll end
up saving you a lot of work.

Here’s a quick example that shows what protocol buffers look like and how
they work. Imagine you work at Twitter and one of the object types you work
with are Tweets. Tweets, at the very least, comprise the author’s message. If
you defined this in protobuf, it would look like this:

StructureDataWithProtobuf/example.proto
syntax = "proto3";

package twitter;

message Tweet {
string message = 1;

}

You’d then compile this protobuf into code in the language of your choice.
For example, the protobuf compiler would take this protobuf and generate
the following Go code:

StructureDataWithProtobuf/example.pb.go
// Code generated by protoc-gen-go. DO NOT EDIT.
// source: example.proto

package twitter

type Tweet struct {
Message string ‘protobuf:"bytes,1,opt, name=message,proto3"
json:"message, omitempty" "’
// Note: Protobuf generates internal fields and methods
// I haven't included for brevity.
}

But why not just write that Go code yourself? Why use protobuf instead? I'm
glad you asked.

Why Use Protocol Buffers?

Protobuf offers all kinds of useful features:

Consistent schemas
With protobuf, you encode your semantics once and use them across your
services to ensure a consistent data model throughout your whole system.
My colleagues and I built the infrastructures at my last two companies
on microservices, and we had a repo called “structs” that housed our
protobuf and their compiled code, which all our services depended on.
By doing this, we ensured that we didn’t send multiple, inconsistent
schemas to prod. Thanks to Go’s type checking, we could update our
structs dependency, run the tests that touched our data models, and the

http://media.pragprog.com/titles/tjgo/code/StructureDataWithProtobuf/example.proto
http://media.pragprog.com/titles/tjgo/code/StructureDataWithProtobuf/example.pb.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Why Use Protocol Buffers? ¢ 15

compiler and tests would tell us whether our code was consistent with
our schema.

Versioning for free
One of Google’s motivations for creating protobuf was to eliminate the
need for version checks and prevent ugly code like this:

StructureDataWithProtobuf/example.go
if (version == 3) {

} else if (version > 4) {
if (version == 5) {

}
}

Think of a protobuf message like a Go struct because when you compile
a message it turns into a struct. With protobuf, you number your fields
on your messages to ensure you maintain backward compatibility as you
roll out new features and changes to your protobuf. So it's easy to add
new fields, and intermediate servers that need not use the data can simply
parse it and pass through it without needing to know about all the fields.
Likewise with removing fields: you can ensure that deprecated fields are
no longer used by marking them as reserved; the compiler will then
complain if anyone tries to use to the deprecated fields.

Less boilerplate
The protobuf libraries handle encoding and decoding for you, which means
you don’t have to handwrite that code yourself.

Extensibility
The protobuf compiler supports extensions that can compile your protobuf
into code using your own compilation logic. For example, you might want
several structs to have a common method. With protobuf, you can write
a plugin to generate that method automatically.

Language agnosticism
Protobuf is implemented in many languages: since Protobuf version 3.0,
there’s support for Go, C++, Java, JavaScript, Python, Ruby, C#, Objective
C, and PHP, and third-party support for other languages. And you don’t
have to do any extra work to communicate between services written in
different languages. This is great for companies with various teams that
want to use different languages, or when your team wants to migrate to
another language.

http://media.pragprog.com/titles/tjgo/code/StructureDataWithProtobuf/example.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 2. Structure Data with Protocol Buffers ¢ 16

Performance
Protobuf is highly performant, and has smaller payloads and serializes
up to six times faster than JSON.'

gRPC uses protocol buffers to define APIs and serialize messages; we'll use
gRPC to build our client and server.

Hopefully I've done a decent job of convincing you that protobuf is cool. But
the theory alone is boring! Let’s get you set up to create your own protobuf
and use it to build stuff.

Install the Protocol Buffer Compiler

The first thing we need to do to get you compiling protobuf is—you guessed
it—install the compiler. Go to the Protobuf release page on GitHub” and
download the relevant release for your computer. If youre on a Mac, for
instance, you’d download protoc-3.9.0-0sx-x86_64.zip. You can download and install
in your terminal like so:

$ wget https://github.com/protocolbuffers/protobuf/\
releases/download/v3.9.0/protoc-3.9.0-0sx-x86_64.zip
$ unzip protoc-3.9.0-0sx-x86 64.zip -d /usr/local/protobuf

Here’s what the layout and files in the extracted protobuf directory look like:

> tree /usr/local/protobuf
/usr/local/protobuf
—— bin

L— protoc
—— include

L— google

L— protobuf

—— any.proto
—— api.proto
—— compiler

L— plugin.proto
—— descriptor.proto
— duration.proto
— empty.proto
—— field mask.proto
—— source_context.proto
—— struct.proto
+— timestamp.proto
—— type.proto
—— wrappers.proto
— readme.txt

1. https://auth0.com/blog/beating-json-performance-with-protobuf

2. https://github.com/protocolbuffers/protobuf/releases

https://auth0.com/blog/beating-json-performance-with-protobuf
https://github.com/protocolbuffers/protobuf/releases
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Define Your Domain Types as Protocol Buffers ® 17

As you can see, a protobuf installation consists of two directories. The bin
directory contains the compiler binary named protoc, and the include directories
contains a bunch of protobuf files that are like protobuf’s standard library.
A mistake I've seen many people make when setting up their systems to work
with protobuf is that they install the compiler binary without the include
protobuf files. But without those files you can’t compile successfully, so just
extract the whole release using the commands I just showed you and you’ll
be just dandy.

Now that you've got the compiler binary installed, make sure your shell can
find and run it. Add the binary to your PATH env var using your shell’s con-
figuration file. If you're using ZSH for instance, run something like the follow-
ing to update your configuration:

$ echo 'export PATH="$PATH:/usr/local/protobuf/bin""' >> ~/.zshenv

At this point the protobuf compiler is installed on your machine. To test the
installation, run protoc --version. If you don’t see any errors, you're ready to
handle the rest of this chapter. If you do see errors, don’t worry: few installa-
tion problems are unique. Google will show you the way.

With the compiler installed, you're ready to write and compile some protobuf.
Let’s get to it!

Define Your Domain Types as Protocol Buffers

In the previous chapter, we defined our Record type in Go as this struct:

LetsGo/internal/server/log.go
type Record struct {
Value []byte ‘“json:"value"®
O0ffset uint64 ‘json:"offset"®
}

To turn that into a protobuf message we need to convert the Go code into
protobuf syntax.

The convention for Go projects is to put your protobuf in an api directory. So
run mkdir -p api/vl to create your directories, then create a file called log.proto in
the v1 directory and put this code in it:

StructureDataWithProtobuf/api/v1/log.proto
syntax = "proto3";

package log.v1;

option go package = "github.com/travisjeffery/api/log v1";

http://media.pragprog.com/titles/tjgo/code/LetsGo/internal/server/log.go
http://media.pragprog.com/titles/tjgo/code/StructureDataWithProtobuf/api/v1/log.proto
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 2. Structure Data with Protocol Buffers ¢ 18

message Record {
bytes value = 1;
uint64 offset =
}

2;

In this protobuf code, we specify that we're using proto3 syntax—the latest
version of protobuf syntax. Then we specify a package name for two reasons:
because this protobuf package name is used as the package name in the
generated Go code and because it prevents name clashes between protocol
message types that have the same name.

These protobuf messages are equivalent to the Go structs shown earlier.
You'll notice the two syntaxes are very similar: in Go you have struct, and
with protobuf you have a message—both with a list of fields. In Go you put
the name of the field on the left followed by its type, and with protobuf you
put the name of the field on right followed by its name (with an additional
field ID).

Following the package declarations in the protobuf code, we define our Record
type. Protocol buffer programmers use the repeated keyword to define a
slice of some type, so repeated Record records means the records field is a [|Record
in Go.

I mentioned earlier that one handy feature of protobuf is the ability to version
fields. Each field has a type, name, and unique field number. These field
numbers identify your fields in the marshaled binary format, and you shouldn’t
change them once your messages are in use in your projects. Consider fields
immutable: you can stop using old fields and add new fields, but you can’t
modify existing fields. You want to change fields like this when you make
small, iterative changes—Ilike when you add or remove features or data from
a message.

Besides field versions, you'll also want to group your messages by a major
version. The major version gives you control over your protobuf when you
overhaul projects to rearchitect your infrastructure or run multiple message
versions at the same time for a migration period. Bumping major versions
should be a rare occurrence because for most changes, field versioning is
sufficient. I've only had to bump the major version of my protobuf twice, and
if you look at Google’s API definitions® protobuf, they've only bumped their
major version a couple times. So changing major versions is uncommon, but
it’s nice to have the ability when you need it.

3. https://github.com/googleapis/googleapis

https://github.com/googleapis/googleapis
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Compile Protocol Buffers ® 19

At the beginning of this section, I had you put the log.proto file into an api/vl
directory. The vl represents these protobufs’ major version. If you were to
continue building this project and decided to break API compatibility, you
would create a v2 directory to package the new messages together and com-
municate to your users you've made incompatible API changes.

Now that we've created the protocol buffer messages, let’s compile your pro-
tobuf into Go code.

Compile Protocol Buffers

To compile protobuf into the code of some programming language, you need
the runtime for that language. The compiler itself doesn’t know how to compile
protobuf into every language—it needs a language-specific runtime to do so.

Go has two runtimes to compile protobuf into Go code. The Go team and the
protobuf team at Google developed the original runtime.” Then a team of folks
who wanted more features forked the original runtime and developed it into
gogoprotobuf, with more code-generation features and faster marshaling and
unmarshaling. Projects like Etcd, Mesos, Kubernetes, Docker, CockroachDB,
and NATS as well as companies like Dropbox and Sendgrid used gogoprotobuf.
I used gogoprotobuf for my projects to integrate with Kubernetes’ protocol
buffers and for gogoprotobuf’s features.

In March 2020, the Go team released a major revision of the Go API (APIv2)°
for protocol buffers with improved performance® and a reflection API that
enables adding features like those provided by gogoprotobuf. Projects’ that
used gogoprotobuf have begun switching to APIv2°® because of APIv2’s improved
performance, its new reflection API, its incompatibility with gogoprotobuf,
and the gogoprotobuf project needing new ownership.® I recommend using
APIv2, too.

To compile our protobuf into Go, we need to install the protobuf runtime by
running the following command:

$ go get google.golang.org/protobuf/...@v1.25.0

https://github.com/golang/protobuf

©P NG

https://github.com/golang/protobuf
https://github.com/alexshtin/proto-bench/blob/master/README.md
https://github.com/istio/istio/pull/24956
https://github.com/istio/api/pull/1607
https://github.com/envoyproxy/go-control-plane/pull/226
https://github.com/gogo/protobuf/issues/691
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 2. Structure Data with Protocol Buffers ¢ 20

You can now compile your protobuf by running the following command at
the root of your project:

$ protoc api/vl/*.proto |
--go out=. |
--go _opt=paths=source relative |
--proto _path=.

Look in the api/vl directory and you’ll see a new file called log.pb.go. Open it up
to see the Go code that the compiler generated from your protobuf code. Your
protobuf message has been turned into a Go struct, along with some methods
on the struct for marshaling to the protobuf binary wire format, and getters
for your fields.

Since you’ll compile your protobuf every time you change them, it’s worth
adding a Makefile file with a compile target that you can quickly run again
and again. We'll include a test target for testing our code too. So create a
Makefile file at the root of your repo with the following code:

StructureDataWithProtobuf/Makefile

compile:
protoc api/vl/*.proto \
--go_out=. \
--go_opt=paths=source relative \
--proto_path=.
test:

go test -race ./...

That’s all there is to compiling your protobuf code into Go code. Now let’s talk
about how to work with the generated code and extend the compiler to gener-
ate your own code.

Work with the Generated Code

Although the generated code in log.pb.go is a lot longer than your handwritten
code in log.go (because of the extra code needed to marshal to the protobuf
binary wire format), you’ll use the code as if you’d handwritten it. For example,
you'll create instances using the & operator (or new keyword) and access fields
using a dot.

The compiler generates various methods on the struct, but the only methods
you’'ll use directly are the getters. Use the struct’s fields when you can, but
you’ll find the getters useful when you have multiple messages with the same
getter(s) and you want to abstract those method(s) into an interface. For
example, imagine you're building a retail site like Amazon and have different
types of stuff you sell—books, games, and so on—each with a field for the

http://media.pragprog.com/titles/tjgo/code/StructureDataWithProtobuf/Makefile
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

What You Learned ® 21

item’s price, and you want to find the total of the items in the user’s cart.
You'd make a Pricer interface and a Total function that takes in a slice of
Pricer interfaces and returns their total cost. Here’s what the code would
look like:

type Book struct {
Price uint64

}
func(b *Book) GetPrice() uint64 { // ... }

type Game struct {
Price uint64

}
func(b *Game) GetPrice() uint64 { // ... }

type Pricer interface {
GetPrice() uint64
}

func Total(items []Pricer) uint64 { // ... }

Now imagine that you want to write a script to change the price of all your
inventory—books, games, and so on. You could do this with reflection, but
reflection should be your last resort since, as the Go proverb goes, reflection
is never clear.'® If we just had setters, we could use an interface like the fol-
lowing to set the price on the different kinds of items in your inventory:

type PriceAdjuster interface {

SetPrice(price uint64)

}

When the compiled code isn’t quite what you need, you can extend the com-
piler’s output with plugins. Though we don’t need to write a plugin for this
project, I've written some plugins that were incredibly useful to the projects
I worked on; it’s worth learning to write your own so you can recognize when
a plugin will save you a ton of manual labor.

What You Learned

In this chapter, we covered the protobuf fundamentals we’ll use throughout
our project. These concepts will be vital throughout our project, especially as
we build our gRPC client and server. Now let’s create the next vital piece of
our project: a commit log library.

10. https://bit.ly/2HcYojl

https://bit.ly/2HcYojl
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

CHAPTER 3

Write a Log Package

In this book we’re building a distributed service to learn how to create dis-
tributed services with Go (shocker). But how does building a log in this
chapter help us achieve that goal? I believe the log is the most important tool
in your toolkit when building distributed services. Logs—which are sometimes
also called write-ahead logs, transaction logs, or commit logs—are at the heart
of storage engines, message queues, version control, and replication and
consensus algorithms. As you build distributed services, you’'ll face problems
that you can solve with logs. By building a log yourself, you’ll learn how to:

¢ Solve problems using logs and discover how they can make hard problems
easier.

¢ Change existing log-based systems to fit your needs and build your own
log-based systems.

e Write and read data efficiently when building storage engines.
* Protect against data loss caused by system failures.

e Encode data to persist it to a disk or to build your own wire protocols and
send the data between applications.

And who knows—maybe you’ll be the one who builds the next big distributed
log service.

The Log Is a Powerful Tool

Folks who develop storage engines of filesystems and databases use logs to
improve the data integrity of their systems. The ext filesystems, for example,
log changes to a journal instead of directly changing the disk’s data file. Once
the filesystem has safely written the changes to the journal, it then applies
those changes to the data files. Logging to the journal is simple and fast, so

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 3. Write a Log Package * 24

there’s little chance of losing data. Even if your computer crashed before ext
had finished updating the disk files, then on the next boot, the filesystem
would process the data in the journal to complete its updates. Database
developers, like PostgreSQL, use the same technique to make their systems
durable: they record changes to a log, called a write-ahead log (WAL), and
later process the WAL to apply the changes to their database’s data files.

Database developers use the WAL for replication, too. Instead of writing the
logs to a disk, they write the logs over the network to its replicas. The replicas
apply the changes to their own data copies, and eventually they all end up
at the same state. Raft, a consensus algorithm, uses the same idea to get
distributed services to agree on a cluster-wide state. Each node in a Raft
cluster runs a state machine with a log as its input. The leader of the Raft
cluster appends changes to its followers’ logs. Since the state machines use
the logs as input and because the logs have the same records in the same
order, all the services end up with the same state.

Web front-end developers use logs to help manage state in their applications.
In Redux,' a popular JavaScript library commonly used with React, you log
changes as plain objects and handle those changes with pure functions that
apply the updates to your application’s state.

All these examples use logs to store, share, and process ordered data. This
is really cool because the same tool helps replicate databases, coordinate
distributed services, and manage state in front-end applications. You can
solve a lot of problems, especially in distributed services, by breaking down
the changes in your system until they're single, atomic operations that you
can store, share, and process with a log.

Databases often provide a way to restore their state to some time in the
past, often referred to as point-in-time recovery. You take a snapshot of
your database from the past and then replay the logs from the write-ahead
log until it’s at the point in time you want. You don’t need the snapshot if
you have every single log since the beginning to replay, but for databases
with long histories and a lot of changes, keeping every log isn’t feasible.
Redux uses the same idea to undo/redo actions: it logs the application’s
state after each action and undoing an action just requires Redux to move
the state shown in the Ul to the previously logged state. Distributed version
control systems like Git work similarly; your commit log history is a literal
commit log.

1. https://redux.js.org

https://redux.js.org
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

How Logs Work ¢ 25

As you can see, a complete log not only holds the latest state, but all states that
have existed, which allows you to build some cool features that you'd find
complicated to build otherwise. Logs are simple—and that’s why they’re good.

How Logs Work

A log is an append-only sequence of records. You append records to the end
of the log, and you typically read top to bottom, oldest to newest—similar to
running tail -f on a file. You can log any data. People have historically used
the term logs to refer to lines of text meant for humans to read, but that’s
changed as more people use log systems where their “logs” are binary-
encoded messages meant for other programs to read. When I talk about logs
and records in this book, I'm not talking about any particular type of data.
When you append a record to a log, the log assigns the record a unique and
sequential offset number that acts like the ID for that record. A log is like a
table that always orders the records by time and indexes each record by its
offset and time created.

Concrete implementations of logs have to deal with us not having disks with
infinite space, which means we can’t append to the same file forever. So we
split the log into a list of segments. When the log grows too big, we free up
disk space by deleting old segments whose data we've already processed or
archived. This cleaning up of old segments can run in a background process
while our service can still produce to the active (newest) segment and consume
from other segments with no, or at least fewer, conflicts where goroutines
access the same data.

There’s always one special segment among the list of segments, and that’s
the active segment. We call it the active segment because it’s the only segment
we actively write to. When we've filled the active segment, we create a new
segment and make it the active segment.

Each segment comprises a store file and an index file. The segment’s store
file is where we store the record data; we continually append records to this
file. The segment’s index file is where we index each record in the store file.
The index file speeds up reads because it maps record offsets to their position
in the store file. Reading a record given its offset is a two-step process: first
you get the entry from the index file for the record, which tells you the position
of the record in the store file, and then you read the record at that position
in the store file. Since the index file requires only two small fields—the offset
and stored position of the record—the index file is much smaller than the
store file that stores all your record data. Index files are small enough that

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 3. Write a Log Package * 26

we can memory-map” them and make operations on the file as fast as operat-
ing on in-memory data.

Now that you know how logs work, it’s time to build our own. Let's get
cracking to code it up.

Build a Log

We will build our log from the bottom up, starting with the store and index
files, then the segment, and finally the log. That way we can write and run
tests as we build each piece. Since the word log can refer to at least three
different things—a record, the file that stores records, and the abstract
data type that ties segments together—to make things less confusing,
throughout this chapter, I will consistently use the following terms to mean
these things:

* Record—the data stored in our log.

* Store—the file we store records in.

¢ Index—the file we store index entries in.

¢ Segment—the abstraction that ties a store and an index together.
e Log—the abstraction that ties all the segments together.

Code the Store

To get started, create a directory at internal/log for our log package, then create
a file called store.go in that directory that contains the following code:

WriteALogPackage/internal/log/store.go
package log

import (
"bufio"
"encoding/binary"
Ty
"sync"

)

var (

enc = binary.BigEndian

)

const (
lenWidth = 8
)

type store struct {
*0s.File

kipedia.org/wiki/Memory-mapped file

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/store.go
https://en.wikipedia.org/wiki/Memory-mapped_file
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Build a Log ® 27

mu sync.Mutex
buf *bufio.Writer
size uint64

}

func newStore(f *os.File) (*store, error) {
fi, err := os.Stat(f.Name())
if err !'= nil {
return nil, err

}
size := uint64(fi.Size())
return &store{
File: f,
size: size,
buf: bufio.NewWriter(f),
}, nil

}

The store struct is a simple wrapper around a file with two APIs to append
and read bytes to and from the file. The newStore(*os.File) function creates a
store for the given file. The function calls os.Stat(name string) to get the file’s
current size, in case we're re-creating the store from a file that has existing
data, which would happen if, for example, our service had restarted.

We refer to the enc variable and lenWidth constant repeatedly in the store, so
we place them up top where they're easy to find. enc defines the encoding that
we persist record sizes and index entries in and lenWidth defines the number
of bytes used to store the record’s length.

Next, write the following Append() method below newStore():

WriteALogPackage/internal/log/store.go
func (s *store) Append(p []byte) (n uint64, pos uint64, err error) {
s.mu.Lock()
defer s.mu.Unlock()
pos = s.size
if err := binary.Write(s.buf, enc, uint64(len(p))); err != nil {
return 0, 0, err

}
w, err := s.buf.Write(p)
if err != nil {

return 0, 0, err
}

w += lenWidth
s.size += uint64(w)
return uint64(w), pos, nil

}

Append([Ibyte) persists the given bytes to the store. We write the length of the
record so that, when we read the record, we know how many bytes to read.

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/store.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 3. Write a Log Package * 28

We write to the buffered writer instead of directly to the file to reduce the
number of system calls and improve performance. If a user wrote a lot of
small records, this would help a lot. Then we return the number of bytes
written, which similar Go APIs conventionally do, and the position where the
store holds the record in its file. The segment will use this position when it
creates an associated index entry for this record.

Below Append(), add the following Read() method:

WriteALogPackage/internal/log/store.go
func (s *store) Read(pos uint64) ([]byte, error) {
s.mu.Lock()
defer s.mu.Unlock()
if err := s.buf.Flush(); err != nil {
return nil, err

}

size := make([]byte, lenWidth)

if , err := s.File.ReadAt(size, int64(pos)); err != nil {
return nil, err

}

b := make([]byte, enc.Uint64(size))
if , err := s.File.ReadAt(b, int64(pos+lenWidth)); err != nil {
return nil, err

}

return b, nil

}

Read(pos uint64) returns the record stored at the given position. First it flushes
the writer buffer, in case we're about to try to read a record that the buffer
hasn’t flushed to disk yet. We find out how many bytes we have to read to
get the whole record, and then we fetch and return the record. The compiler
allocates byte slices that don’t escape the functions they're declared in on the
stack. A value escapes when it lives beyond the lifetime of the function call—if
you return the value, for example.

Put this ReadAt() method under Read():

WriteALogPackage/internal/log/store.go
func (s *store) ReadAt(p []byte, off int64) (int, error) {
s.mu.Lock()
defer s.mu.Unlock()
if err := s.buf.Flush(); err !'= nil {
return 0, err
}
return s.File.ReadAt(p, off)
}

ReadAt(p [lbyte, off int64) reads len(p) bytes into p beginning at the off offset in the
store’s file. It implements io.ReaderAt on the store type.

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/store.go
http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/store.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Last, add this Close() method after ReadAt():

WriteALogPackage/internal/log/store.go
func (s *store) Close() error {

s.mu.Lock()

defer s.mu.Unlock()

err := s.buf.Flush()

if err != nil {

return err
}
return s.File.Close()

}

Close() persists any buffered data before closing the file.

Build aLog ® 29

Let’s test that our store works. Create a store_test.go file in the log directory with

the following code:

WriteALogPackage/internal/log/store_test.go
package log

import (
"io/ioutil"
gt
"testing"

"github.com/stretchr/testify/require"

var (
write
width

[Ibyte("hello world")
uint64(len(write)) + lenWidth

)

func TestStoreAppendRead(t *testing.T) {
f, err := ioutil.TempFile("", "store append read test")
require.NoError(t, err)
defer os.Remove(f.Name())

s, err := newStore(f)
require.NoError(t, err)

testAppend(t, s)
testRead(t, s)
testReadAt(t, s)

s, err = newStore(f)
require.NoError(t, err)
testRead(t, s)

}

In this test, we create a store with a temporary file and call two test helpers
to test appending and reading from the store. Then we create the store again

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/store.go
http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/store_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 3. Write a Log Package * 30

and test reading from it again to verify that our service will recover its state
after a restart.

After the TestStoreAppendRead() function, add these test helpers:

WriteALogPackage/internal/log/store_test.go
func testAppend(t *testing.T, s *store) {
t.Helper()
for i := uint64(1); i < 4; i++ {
n, pos, err := s.Append(write)
require.NoError(t, err)
require.Equal(t, pos+n, width*i)

}
}
func testRead(t *testing.T, s *store) {
t.Helper()
var pos uinté64
for i := uint64(1); i < 4; i++ {
read, err := s.Read(pos)
require.NoError(t, err)
require.Equal(t, write, read)
pos += width
}
}
func testReadAt(t *testing.T, s *store) {
t.Helper()
for i, off := uint64(1), int64(0); i < 4; i++ {
b := make([]lbyte, lenWidth)
n, err := s.ReadAt(b, off)
require.NoError(t, err)
require.Equal(t, lenWidth, n)
off += int64(n)
size := enc.Uint64(b)
b = make([]byte, size)
n, err = s.ReadAt(b, off)
require.NoError(t, err)
require.Equal(t, write, b)
require.Equal(t, int(size), n)
off += int64(n)
b
}

Below testReadAt(), add this snippet to test the Close() method:

WriteALogPackage/internal/log/store_test.go
func TestStoreClose(t *testing.T) {
f, err := ioutil.TempFile("", "store close test")
require.NoError(t, err)
defer os.Remove(f.Name())
s, err := newStore(f)

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/store_test.go
http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/store_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Build a Log * 31

require.NoError(t, err)
., _, err = s.Append(write)
require.NoError(t, err)

f, beforeSize, err := openFile(f.Name())
require.NoError(t, err)

err = s.Close()
require.NoError(t, err)

_, afterSize, err := openFile(f.Name())
require.NoError(t, err)
require.True(t, afterSize > beforeSize)

}
func openFile(name string) (file *os.File, size int64, err error) {
f, err := 0s.0penFile(
name,
0s.0 RDWR|os.0 CREATE|os.0 APPEND,
0644,
)
if err != nil {
return nil, 0, err
b
fi, err := f.Stat()
if err !'= nil {
return nil, 0, err
b
return f, fi.Size(), nil
}

Assuming these tests pass, you know that your log can append and read
persisted records.

Write the Index

Next let’s code the index. Create an index.go file inside internal/log that contains
the following code:

WriteALogPackage/internal/log/index.go
package log

import (
Ilioll
Ty
"github.com/tysontate/gommap"
)
var (
offWidth uint64 = 4
posWidth uint64 = 8

entWidth offWidth + posWidth

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/index.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 3. Write a Log Package ® 32

type index struct {
file *os.File
mmap gommap.MMap
size uint64

}

We use the *Width constants throughout the index, so like with the store’s
variables and constants, we put the constants at the top of the file to make
them easy to find. The *Width constants define the number of bytes that make
up each index entry.

Our index entries contain two fields: the record’s offset and its position in the
store file. We store offsets as uint32s and positions as uint64s, so they take
up 4 and 8 bytes of space, respectively. We use the entWidth to jump straight
to the position of an entry given its offset since the position in the file is offset
* entWidth.

index defines our index file, which comprises a persisted file and a memory-
mapped file. The size tells us the size of the index and where to write the next
entry appended to the index.

Now add the following newlndex() function below the index:

WriteALogPackage/internal/log/index.go
func newIndex(f *os.File, ¢ Config) (*index, error) {
idx := &index{

file: f,
}
fi, err := os.Stat(f.Name())
if err != nil {
return nil, err
}

idx.size = uint64(fi.Size())
if err = os.Truncate(
f.Name(), int64(c.Segment.MaxIndexBytes),
); err !'= nil {
return nil, err
}
if idx.mmap, err = gommap.Map(
idx.file.Fd(),
gommap .PROT_READ |gommap.PROT_WRITE,
gommap .MAP_SHARED,
); err !'=nil {
return nil, err
}

return idx, nil

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/index.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Build aLog ® 33

newlndex(*os.File) creates an index for the given file. We create the index and
save the current size of the file so we can track the amount of data in the
index file as we add index entries. We grow the file to the max index size before
memory-mapping the file and then return the created index to the caller.

Next, add the following Close() method below newlIndex():

WriteALogPackage/internal/log/index.go
func (i *index) Close() error {

if err := i.mmap.Sync(gommap.MS SYNC); err != nil {
return err

}

if err := i.file.Sync(); err != nil {
return err

}

if err := i.file.Truncate(int64(i.size)); err != nil {
return err

}

return i.file.Close()

}

Close() makes sure the memory-mapped file has synced its data to the persisted
file and that the persisted file has flushed its contents to stable storage. Then
it truncates the persisted file to the amount of data that’s actually in it and
closes the file.

Now that we’ve seen the code for both opening and closing an index, we can
discuss what this growing and truncating the file business is all about.

When we start our service, the service needs to know the offset to set on the
next record appended to the log. The service learns the next record’s offset
by looking at the last entry of the index, a simple process of reading the last
12 bytes of the file. However, we mess up this process when we grow the files
so we can memory-map them. (The reason we resize them now is that, once
they’re memory-mapped, we can’t resize them, so it’'s now or never.) We grow
the files by appending empty space at the end of them, so the last entry is no
longer at the end of the file—instead, there’s some unknown amount of space
between this entry and the file’s end. This space prevents the service from
restarting properly. That’'s why we shut down the service by truncating the
index files to remove the empty space and put the last entry at the end of the
file once again. This graceful shutdown returns the service to a state where
it can restart properly and efficiently.

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/index.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 3. Write a Log Package * 34

Handling Ungraceful Shutdowns
A graceful shutdown occurs when a service finishes its ongoing
tasks, performs its processes to ensure there’s no data loss, and
prepares for a restart. If your service crashes or its hardware fails,
you’ll experience an ungraceful shutdown. An example of an
ungraceful shutdown for the service we're building would be if it
A lost power before it finished truncating its index files. You handle
ungraceful shutdowns by performing a sanity check when your
service restarts to find corrupted data. If you have corrupted data,
you can rebuild the data or replicate the data from an uncorrupted
source. The log we're building doesn’t handle ungraceful shut-
downs because I wanted to keep the code simple.

And now back to our regularly scheduled programming.

Add the following Read() method below newlIndex():

WriteALogPackage/internal/log/index.go
func (i *index) Read(in int64) (out uint32, pos uint64, err error) {
if i.size == 0 {
return 0, 0, i0.EOF

}
if in == -1 {
out = uint32((i.size / entWidth) - 1)
} else {
out = uint32(in)
}

pos = uint64(out) * entWidth
if i.size < pos+entWidth {
return 0, 0, io.EOF
}
out = enc.Uint32(i.mmap[pos : pos+offWidth])
pos = enc.Uint64(i.mmap[pos+offWidth : pos+entWidth])
return out, pos, nil

}

Read(int64) takes in an offset and returns the associated record’s position in
the store. The given offset is relative to the segment’s base offset; 0 is always
the offset of the index’s first entry, 1 is the second entry, and so on. We use
relative offsets to reduce the size of the indexes by storing offsets as uint32s.
If we used absolute offsets, we’d have to store the offsets as uint64s and
require four more bytes for each entry. Four bytes doesn’t sound like much,
until you multiply it by the number of records people often use distributed
logs for, which with a company like LinkedIn is trillions of records every day.
Even relatively small companies can make billions of records per day.

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/index.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Build aLog ® 35

Now add the following Write() method below Read():

WriteALogPackage/internal/log/index.go
func (i *index) Write(off uint32, pos uint64) error {
if uint64(len(i.mmap)) < i.size+entWidth {
return io.EOF
}
enc.PutUint32(i.mmap[i.size:i.size+offWidth], off)
enc.PutUint64(i.mmap[i.size+offWidth:i.size+entWidth], pos)
i.size += uint64(entWidth)
return nil

}

Write(off uint32, pos uint32) appends the given offset and position to the index.
First, we validate that we have space to write the entry. If there’s space, we
then encode the offset and position and write them to the memory-mapped
file. Then we increment the position where the next write will go.

Add this Name() method to return the index’s file path:

WriteALogPackage/internal/log/index.go
func (i *index) Name() string {
return i.file.Name()

}

Let’s test our index. Create an index_test.go file in internal/log starting with the
following code:

WriteALogPackage/internal/log/index_test.go
package log
import (

nigh

"io/ioutil"

"os"

"testing"

"github.com/stretchr/testify/require"
)

func TestIndex(t *testing.T) {
f, err := ioutil.TempFile(os.TempDir(), "index test")
require.NoError(t, err)
defer os.Remove(f.Name())

c := Config{}
c.Segment.MaxIndexBytes = 1024
idx, err := newlIndex(f, c)

require.NoError(t, err)

., _, err = idx.Read(-1)
require.Error(t, err)

require.Equal(t, f.Name(), idx.Name())

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/index.go
http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/index.go
http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/index_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 3. Write a Log Package * 36

entries := []struct {
Off uint32
Pos uint64

H

{0ff: 0, Pos: 0},
{0ff: 1, Pos: 10},
}

This code sets up the test. We create an index file and make it big enough to
contain our test entries via the Truncate() call. We have to grow the file before
we use it because we memory-map the file to a slice of bytes and if we didn’t
increase the size of the file before we wrote to it, we’d get an out-of-bounds
error.

Finally, add the following code beneath the previous snippet to finish the test:

WriteALogPackage/internal/log/index_test.go
for , want := range entries {
err = idx.Write(want.0ff, want.Pos)
require.NoError(t, err)

_, pos, err := idx.Read(int64(want.0ff))
require.NoError(t, err)
require.Equal(t, want.Pos, pos)

}

// index and scanner should error when reading past existing entries
., _, err = idx.Read(int64(len(entries)))

require.Equal(t, io.EOF, err)

= idx.Close()

// index should build its state from the existing file
f, = os.0penFile(f.Name(), os.0 RDWR, 0600)

idx, err = newIndex(f, c)

require.NoError(t, err)

off, pos, err := idx.Read(-1)

require.NoError(t, err)

require.Equal(t, uint32(1), off)

require.Equal(t, entries[1].Pos, pos)

}

We iterate over each entry and write it to the index. We check that we can
read the same entry back via the Read() method. Then we verify that the index
and scanner error when we try to read beyond the number of entries stored
in the index. And we check that the index builds its state from the existing
file, for when our service restarts with existing data.

We need to configure the max size of a segment’s store and index. Let’s add
a config struct to centralize the log’s configuration, making it easy to configure

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/index_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Build a Log ® 37

the log and use the configs throughout the code. Create an internal/log/config.go
file with the following code:

WriteALogPackage/internal/log/config.go
package log

type Config struct {
Segment struct {
MaxStoreBytes uint64
MaxIndexBytes uint64
InitialOffset uint64

}

That wraps up the code for store and index types, which make up the lowest
level of our log. Now let’s code the segment.

Create the Segment

The segment wraps the index and store types to coordinate operations across
the two. For example, when the log appends a record to the active segment,
the segment needs to write the data to its store and add a new entry in the
index. Similarly for reads, the segment needs to look up the entry from the
index and then fetch the data from the store.

To get started, create a file called segment.go in internal/log that starts with the
following code:

WriteALogPackage/internal/log/segment.go
package log

import (
"fmt"
"os
"path"

api "github.com/travisjeffery/proglog/api/v1"
"google.golang.org/protobuf/proto"
)

type segment struct {

store *store
index *index
baseOffset, nextOffset uint64
config Config

}

Our segment needs to call its store and index files, so we keep pointers to
those in the first two fields. We need the next and base offsets to know what
offset to append new records under and to calculate the relative offsets for
the index entries. And we put the config on the segment so we can compare

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/config.go
http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/segment.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 3. Write a Log Package * 38

the store file and index sizes to the configured limits, which lets us know
when the segment is maxed out.

Below the previous snippet, add the following newSegment() function:

WriteALogPackage/internal/log/segment.go
func newSegment(dir string, baseOffset uint64, c Config) (*segment, error) {

s := &segment{
baseOffset: baseOffset,
config: c,

}

var err error

storeFile, err := o0s.0OpenFile(

path.Join(dir, fmt.Sprintf("%d%s", baseOffset, ".store")),
0s.0 RDWR|0s.0 CREATE|0s.0 APPEND,

0644,

)

if err != nil {
return nil, err

}

if s.store, err = newStore(storeFile); err !'= nil {
return nil, err

}

indexFile, err := os.0OpenFile(
path.Join(dir, fmt.Sprintf("%d%s", baseOffset, ".index")),
0s.0 RDWR|0s.0 CREATE,
0644,

)

if err != nil {
return nil, err

}

if s.index, err = newIndex(indexFile, c); err '= nil {
return nil, err

}

if off, , err := s.index.Read(-1); err !'= nil {
s.nextOffset = baseOffset

} else {
s.nextOffset = baseOffset + uint64(off) + 1

}

return s, nil

}

The log calls newSegment() when it needs to add a new segment, such as when
the current active segment hits its max size. We open the store and index
files and pass the 0s.0_CREATE file mode flag as an argument to o0s.OpenfFile() to
create the files if they don’t exist yet. When we create the store file, we pass
the 0s.0_APPEND flag to make the operating system append to the file when
writing. Then we create our index and store with these files. Finally, we set
the segment’s next offset to prepare for the next appended record. If the index

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/segment.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Build a Log ® 39

is empty, then the next record appended to the segment would be the first
record and its offset would be the segment’s base offset. If the index has at
least one entry, then that means the offset of the next record written should
take the offset at the end of the segment, which we get by adding 1 to the
base offset and relative offset. Our segment is ready to write to and read from
the log—once we've written those methods!

Next, below newSegment() put the following Append() method:

WriteALogPackage/internal/log/segment.go
func (s *segment) Append(record *api.Record) (offset uint64, err error) {

cur := s.nextOffset
record.0ffset = cur
p, err := proto.Marshal(record)
if err != nil {

return 0, err
}
_, pos, err := s.store.Append(p)
if err != nil {

return 0, err
}

if err = s.index.Write(
// index offsets are relative to base offset
uint32(s.next0ffset-uint64(s.base0ffset)),
pos,

); err !'= nil {
return 0, err

}

s.nextOffset++

return cur, nil

}

Append() writes the record to the segment and returns the newly appended
record’s offset. The log returns the offset to the API response. The segment
appends a record in a two-step process: it appends the data to the store and
then adds an index entry. Since index offsets are relative to the base offset,
we subtract the segment’s next offset from its base offset (which are both
absolute offsets) to get the entry’s relative offset in the segment. We then
increment the next offset to prep for a future append call.

Now add the following Read() method below Append():

WriteALogPackage/internal/log/segment.go
func (s *segment) Read(off uint64) (*api.Record, error) {
_, pos, err := s.index.Read(int64(off - s.baseOffset))
if err !'= nil {
return nil, err
}

p, err := s.store.Read(pos)

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/segment.go
http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/segment.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 3. Write a Log Package ® 40

if err !'= nil {

return nil, err
}
record := &api.Record{}

err = proto.Unmarshal(p, record)
return record, err

}

Read(off uint64) returns the record for the given offset. Similar to writes, to read
a record the segment must first translate the absolute index into a relative
offset and get the associated index entry. Once it has the index entry, the
segment can go straight to the record’s position in the store and read the
proper amount of data.

Next, put the following IsMaxed() method below Read():

WriteALogPackage/internal/log/segment.go
func (s *segment) IsMaxed() bool {
return s.store.size >= s.config.Segment.MaxStoreBytes ||
s.index.size >= s.config.Segment.MaxIndexBytes

}

IsMaxed() returns whether the segment has reached its max size, either by
writing too much to the store or the index. If you wrote a small number of
long logs, then you’d hit the segment bytes limit; if you wrote a lot of small
logs, then you’d hit the index bytes limit. The log uses this method to know
it needs to create a new segment.

Write this Remove() method below IsMaxed():

WriteALogPackage/internal/log/segment.go
func (s *segment) Remove() error {

if err := s.Close(); err != nil {
return err

}

if err := os.Remove(s.index.Name()); err != nil {
return err

}

if err := os.Remove(s.store.Name()); err != nil {
return err

}

return nil

}
Remove() closes the segment and removes the index and store files.

And put this Close() method below Remove():

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/segment.go
http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/segment.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Build a Log * 41

WriteALogPackage/internal/log/segment.go
func (s *segment) Close() error {

if err := s.index.Close(); err !'= nil {
return err

}

if err := s.store.Close(); err != nil {
return err

}

return nil

}
Finally, add this last function at the end of the file:

WriteALogPackage/internal/log/segment.go
func nearestMultiple(j, k uint64) uint64 {
if j >= 0 {
return (j / k) * k
}
return ((j - k+ 1) / k) * k

}

nearestMultiple(j uint64, k uint64) returns the nearest and lesser multiple of k in j,
for example nearestMultiple(9, 4) == 8. We take the lesser multiple to make sure
we stay under the user’s disk capacity.

That’s all the segment code, so now let’s test it. Create a segment_test.go file
inside internal/log with the following test code:

WriteALogPackage/internal/log/segment_test.go
package log
import (

n i o n

"io/ioutil"

oS

"testing"

"github.com/stretchr/testify/require"
api "github.com/travisjeffery/proglog/api/v1"
)

func TestSegment(t *testing.T) {
dir, := ioutil.TempDir("", "segment-test")
defer os.RemoveAll(dir)

want := &api.Record{Value: []byte("hello world")}

c := Config{}
c.Segment.MaxStoreBytes
c.Segment.MaxIndexBytes

1024
entWidth * 3

s, err := newSegment(dir, 16, c)
require.NoError(t, err)

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/segment.go
http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/segment.go
http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/segment_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

}

Chapter 3. Write a Log Package ® 42

require.Equal(t, uint64(16), s.nextOffset, s.nextOffset)
require.False(t, s.IsMaxed())

for i := uint64(0); i < 3; i++ {
off, err := s.Append(want)
require.NoError(t, err)
require.Equal(t, 16+i, off)

got, err := s.Read(off)
require.NoError(t, err)
require.Equal(t, want.Value, got.Value)

_, err = s.Append(want)
require.Equal(t, io.EOF, err)

// maxed index
require.True(t, s.IsMaxed())

c.Segment.MaxStoreBytes = uint64(len(want.Value) * 3)
c.Segment.MaxIndexBytes = 1024

s, err = newSegment(dir, 16, c)
require.NoError(t, err)

// maxed store

require.True(t, s.IsMaxed())

err = s.Remove()
require.NoError(t, err)

s, err = newSegment(dir, 16, c)
require.NoError(t, err)
require.False(t, s.IsMaxed())

We test that we can append a record to a segment, read back the same record,
and eventually hit the configured max size for both the store and index.
Calling newSegment() twice with the same base offset and dir also checks that

the function loads a segment’s state from the persisted index and log files.

Now that we know that our segment works, we're ready to create the log.

Code the Log

All right, one last piece to go and that’s the log, which manages the list of seg-
ments. Create a log.go file inside internal/log that starts with the following code:

WriteALogPackage/internal/log/log.go
package log

import (

“fmt"

nio"
"io/ioutil"
"

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/log.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Build a Log ® 43

"path"
"sort"
"strconv
"strings
"sync"

api "github.com/travisjeffery/proglog/api/v1"
)

type Log struct {
mu sync.RWMutex

Dir string
Config Config

activeSegment *segment
segments [1*segment

}

The log consists of a list of segments and a pointer to the active segment to
append writes to. The directory is where we store the segments.

Below the Log struct, write the following NewLog() function:

WriteALogPackage/internal/log/log.go
func NewLog(dir string, c¢ Config) (*Log, error) {
if c.Segment.MaxStoreBytes == 0 {
c.Segment.MaxStoreBytes = 1024
}
if c.Segment.MaxIndexBytes == 0 {
c.Segment.MaxIndexBytes = 1024

}

1 := &Log{
Dir: dir,
Config: c,

}

return 1, 1l.setup()

}

In NewLog(dir string, ¢ Config), we first set defaults for the configs the caller didn’t
specify, create a log instance, and set up that instance.

Next, add this setup() method below NewLog():

WriteALogPackage/internal/log/log.go
func (1 *Log) setup() error {
files, err := ioutil.ReadDir(l.Dir)
if err !'= nil {
return err
}
var baseOffsets [Juint64
for , file := range files {
of fStr := strings.TrimSuffix(

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/log.go
http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/log.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 3. Write a Log Package * 44

file.Name(),
path.Ext(file.Name()),
)
off, := strconv.ParseUint(offStr, 10, 0)
baseOffsets = append(baseOffsets, off)
}
sort.Slice(baseOffsets, func(i, j int) bool {
return baseOffsets[i] < baseOffsets[j]

b
for i := 0; i < len(baseOffsets); i++ {
if err = l.newSegment(baseOffsets[i]); err != nil {
return err
}
// baseOffset contains dup for index and store so we skip
// the dup
i++
}
if l.segments == nil {
if err = l.newSegment(
1.Config.Segment.InitialOffset,
); err !'=nil {
return err
}
}
return nil

}

When a log starts, it’s responsible for setting itself up for the segments that
already exist on disk or, if the log is new and has no existing segments, for
bootstrapping the initial segment. We fetch the list of the segments on disk,
parse and sort the base offsets (because we want our slice of segments to be
in order from oldest to newest), and then create the segments with the
newSegment() helper method, which creates a segment for the base offset you
pass in.

Now add the following Append() function below setup():

WriteALogPackage/internal/log/log.go
func (1 *Log) Append(record *api.Record) (uint64, error) {
1.mu.Lock()
defer 1.mu.Unlock()
off, err := l.activeSegment.Append(record)
if err != nil {
return 0, err
}
if l.activeSegment.IsMaxed() {
err = l.newSegment(off + 1)
}

return off, err

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/log.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Build a Log ® 45

Append(*api.Record) appends a record to the log. We append the record to the
active segment. Afterward, if the segment is at its max size (per the max size
configs), then we make a new active segment. Note that we’re wrapping this
func (and subsequent funcs) with a mutex to coordinate access to this section
of the code. We use a RWMutex to grant access to reads when there isn’'t a
write holding the lock. If you felt so inclined, you could optimize this further
and make the locks per segment rather than across the whole log. (I haven’t
done that here because I want to keep this code simple.)

Below Append(), add this Read() method:

WriteALogPackage/internal/log/log.go
func (1 *Log) Read(off uint64) (*api.Record, error) {
1.mu.RLock()
defer 1.mu.RUnlock()
var s *segment
for , segment := range l.segments {
if segment.baseOffset <= off && off < segment.nextOffset {
s = segment
break
}
}
if s == nil || s.nextOffset <= off {
return nil, fmt.Errorf("offset out of range: %d", off)

}

return s.Read(off)

}

Read(offset uint64) reads the record stored at the given offset. In Read(offset uint64),
we first find the segment that contains the given record. Since the segments
are in order from oldest to newest and the segment’s base offset is the
smallest offset in the segment, we iterate over the segments until we find the
first segment whose base offset is less than or equal to the offset we're looking
for. Once we know the segment that contains the record, we get the index
entry from the segment’s index, and we read the data out of the segment’s
store file and return the data to the caller.

Below Read(), add this snippet to define the Close(), Remove(), and Reset() methods:

WriteALogPackage/internal/log/log.go
func (1 *Log) Close() error {

1.mu.Lock()
defer 1l.mu.Unlock()
for , segment := range l.segments {
if err := segment.Close(); err != nil {
return err
}

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/log.go
http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/log.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 3. Write a Log Package ® 46

return nil
}
func (1 *Log) Remove() error {
if err := 1.Close(); err != nil {
return err
}
return os.RemoveAll(1.Dir)
}
func (1 *Log) Reset() error {
if err := 1.Remove(); err != nil {
return err
}
return 1.setup()
}

This snippet implements a few related methods:

e Close() iterates over the segments and closes them.
* Remove() closes the log and then removes its data.
¢ Reset() removes the log and then creates a new log to replace it.

After the previous snippet, add this snippet to implement the LowestOffset() and
HighestOffset() methods:

WriteALogPackage/internal/log/log.go

func (1 *Log) LowestOffset() (uint64, error) {
1.mu.RLock()
defer 1.mu.RUnlock()
return 1.segments[0].baseOffset, nil

func (1 *Log) HighestOffset() (uint64, error) {
1.mu.RLock()
defer 1.mu.RUnlock()
off := l.segments[len(l.segments)-1].next0Offset
if off == 0 {
return 0, nil

}

return off - 1, nil

}
These methods tell us the offset range stored in the log. In Chapter 8, Coordi-

a replicated, coordinated cluster, we’ll need this information to know what
nodes have the oldest and newest data and what nodes are falling behind
and need to replicate.

Below HighestOffset(), add this Truncate() method:

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/log.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Build a Log ® 47

WriteALogPackage/internal/log/log.go

func (1 *Log) Truncate(lowest uint64) error {
1.mu.Lock()
defer 1.mu.Unlock()
var segments []*segment

for , s := range l.segments {
if s.nextOffset <= lowest+1 {
if err := s.Remove(); err != nil {
return err
}
continue
}
segments = append(segments, s)
}
1.segments = segments
return nil

}

Truncate(lowest uint64) removes all segments whose highest offset is lower than
lowest. Because we don’t have disks with infinite space, we’ll periodically call
Truncate() to remove old segments whose data we (hopefully) have processed
by then and don’t need anymore.

After Truncate(), add this snippet:

WriteALogPackage/internal/log/log.go

func (1 *Log) Reader() io.Reader {
1.mu.RLock()
defer 1.mu.RUnlock()

readers := make([]io.Reader, len(l.segments))
for i, segment := range l.segments {
readers[i] = &originReader{segment.store, 0}
}
return io.MultiReader(readers...)
}
type originReader struct {
*store
off int64
}

func (o *originReader) Read(p []lbyte) (int, error) {
n, err := o.ReadAt(p, o.off)
o.off += int64(n)
return n, err

}

Reader() returns an io.Reader to read the whole log. We'll need this capability
when we implement coordinate consensus and need to support snapshots
and restoring a log. Reader() uses an io.MultiReader() call to concatenate the seg-
ments’ stores. The segment stores are wrapped by the originReader type for two

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/log.go
http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/log.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 3. Write a Log Package * 48

reasons. The first reason is to satisfy the io.Reader interface so we can pass it
into the io.MultiReader() call. The second is to ensure that we begin reading from
the origin of the store and read its entire file.

We've got one last method to add to our log, and that’s the function to create
new segments. Copy the following newSegment() method below Read():

WriteALogPackage/internal/log/log.go
func (1 *Log) newSegment(off uint64) error {

s, err := newSegment(l.Dir, off, 1.Config)
if err !'= nil {

return err
}

1.segments = append(l.segments, s)
1l.activeSegment = s
return nil

}

newSegment(off int64) creates a new segment, appends that segment to the log’s
slice of segments, and makes the new segment the active segment so that
subsequent append calls write to it.

You know the deal: it’s time to test our log. Create a log_test.go inside internal/log
that starts with the following code:

WriteALogPackage/internal/log/log_test.go
package log

import (
"io/ioutil"
"os
"testing"

"github.com/stretchr/testify/require"
api "github.com/travisjeffery/proglog/api/v1"
"google.golang.org/protobuf/proto"

)

func TestLog(t *testing.T) {
for scenario, fn := range map[string]func(
t *testing.T, log *Log,

o
"append and read a record succeeds": testAppendRead,
"offset out of range error": testOutOfRangeErr,
"init with existing segments": testInitExisting,
"reader": testReader,
"truncate": testTruncate,

A

t.Run(scenario, func(t *testing.T) {
dir, err := ioutil.TempDir("", "store-test")
require.NoError(t, err)
defer os.RemoveAll(dir)

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/log.go
http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/log_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Build a Log ® 49

c := Config{}
c.Segment.MaxStoreBytes = 32
log, err := NewLog(dir, c)

require.NoError(t, err)

fn(t, log)

}

TestLog(*testing.T) defines a table of tests to, well, test the log. I used a table to
write the log tests so we don’t have to repeat the code that creates a new log
for every test case.

Now, let’s define the test cases. Put the following test cases below the TestLog()
function:

WriteALogPackage/internal/log/log_test.go

func testAppendRead(t *testing.T, log *Log) {
append := &api.Record{

Value: []lbyte("hello world"),

b
off, err := log.Append(append)
require.NoError(t, err)
require.Equal(t, uint64(0), off)

read, err := log.Read(off)
require.NoError(t, err)
require.Equal(t, append.Value, read.Value)

}

testAppendRead(*testing.T, *log.Log) tests that we can successfully append to and
read from the log. When we append a record to the log, the log returns the
offset it associated that record with. So, when we ask the log for the record
at that offset, we expect to get the same record that we appended.

WriteALogPackage/internal/log/log_test.go

func testOutOfRangeErr(t *testing.T, log *Log) {
read, err := log.Read(1l)
require.Nil(t, read)
require.Error(t, err)

}

testOutOfRangeErr(*testing.T, *log.Log) tests that the log returns an error when we
try to read an offset that’s outside of the range of offsets the log has stored.

WriteALogPackage/internal/log/log_test.go
func testInitExisting(t *testing.T, o *Log) {
append := &api.Record{
Value: []byte("hello world"),
}

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/log_test.go
http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/log_test.go
http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/log_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 3. Write a Log Package ¢ 50

for i :=0; i < 3; i++ {
_, err := o.Append(append)
require.NoError(t, err)

}

require.NoError(t, o.Close())

off, err := o.LowestOffset()
require.NoError(t, err)
require.Equal(t, uint64(0), off)
off, err = o.HighestOffset()
require.NoError(t, err)
require.Equal(t, uint64(2), off)

n, err := NewLog(o.Dir, o.Config)
require.NoError(t, err)

off, err = n.LowestOffset()

require.NoError(t, err)

require.Equal(t, uint64(0), off)

off, err = n.HighestOffset()

require.NoError(t, err)

require.Equal(t, uint64(2), off)
}

testInitExisting(*testing.T, *log.Log) tests that when we create a log, the log bootstraps
itself from the data stored by prior log instances. We append three records
to the original log before closing it. Then we create a new log configured with
the same directory as the old log. Finally, we confirm that the new log set
itself up from the data stored by the original log.

WriteALogPackage/internal/log/log_test.go

func testReader(t *testing.T, log *Log) {
append := &api.Record{

Value: []byte("hello world"),

}
off, err := log.Append(append)
require.NoError(t, err)
require.Equal(t, uint64(0), off)

reader := log.Reader()
b, err := ioutil.ReadAll(reader)
require.NoError(t, err)

read := &api.Record{}

err = proto.Unmarshal(b[lenWidth:], read)
require.NoError(t, err)

require.Equal(t, append.Value, read.Value)

}

testReader(*testing.T, *log.Log) tests that we can read the full, raw log as it’s stored
on disk so that we can snapshot and restore the logs in Finite-State Machine,
on page 151.

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/log_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

What You Learned ® 51

WriteALogPackage/internal/log/log_test.go
func testTruncate(t *testing.T, log *Log) {
append := &api.Record{
Value: []byte("hello world"),

}

for i :=0; i < 3; i++ {
_, err := log.Append(append)
require.NoError(t, err)

}

err := log.Truncate(1)

require.NoError(t, err)

_, err = log.Read(0)
require.Error(t, err)

}

testTruncate(*testing.T, *log.Log) tests that we can truncate the log and remove old
segments that we don’t need any more.

That wraps up our log code! We just wrote a log that’s not that watered down
from the log that drives Kafka, and we didn’t even have to work too hard.

What You Learned

You now know what logs are, why they’re important, and how they're used
in various applications including distributed services. And then you learned
how to build one! This log serves as the foundation of our distributed log.
Now we can build a service on our library and make the library’s functionality
accessible to people on other computers.

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/log_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Part II

Network

CHAPTER4

Serve Requests with gRPC

We've set up our project and protocol buffers and written our log library.
Currently, our library can only be used on a single computer by a single
person at a time. Plus that person has to learn our library’s API, run our code,
and store the log on their disk—none of which most people will do, which
limits our user base. We can solve these problems and appeal to a larger
audience by turning our library into a web service. Compared to a program
that runs on a single computer, networked services provide three major
advantages:

* You can run them across multiple computers for availability and scalability.
e They allow multiple people to interact with the same data.
e They provide accessible interfaces that are easy for people to use.

Some situations where you’ll want to write services to reap these advantages
include providing a public API for your front end to hit, building internal
infrastructure tools, and making a service to build your own business on
(people rarely pay to use libraries).

In this chapter, we’ll build on our library and make a service that allows multiple
people to interact with the same data and runs across multiple computers. We
won't add support for clusters right now; we’ll do that in Chapter 8, Coordinate

requests across distributed services is Google’s gRPC.

What Is gRPC?

When I was building distributed services in the past, the two common prob-
lems that drove me batty were maintaining compatibility and maintaining
performance between clients and the server.

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 4. Serve Requests with gRPC ¢ 56

I wanted to ensure that clients and the server were always compatible—that
the client was sending requests that the server understood, and vice versa
with the server’s responses. When I made breaking changes to the server, I
wanted to ensure that old clients continued to work, and I accomplished this
by versioning my API.

For maintaining good performance, your main priorities are optimizing your
database queries and optimizing the algorithms you've used to implement
your business logic. Once you've optimized those though, performance will
often come down to how fast your service unmarshals requests and marshals
responses, and down to reducing the overhead each time clients and the
server communicate—like using a single, long-lasting connection rather than
a new connection for each request.

So I was happy when Google released gRPC, an open source, high-performance
RPC (remote procedure call) framework. gRPC has been a great help in solving
these problems when building distributed systems, and I think youll find
that it simplifies your work. How does gRPC help you build services?

Goals When Building a Service

Here are the most important goals to aim for when you’re building a networked
service—and some info about how gRPC helps you achieve them:

Simplicity
Networked communication is technical and complex. When building our
service, we want to focus on the problem it solves rather than the technical
minutiae of request-response serialization, and so on. You want to work
with APIs that abstract these details away. However, when you need to
work at lower levels of abstraction, then you need those levels to be
accessible.

On the spectrum of low- to high-level frameworks, in terms of the abstrac-
tions you're working with, gRPC is mid-to-high level. It's above a framework
like Express since gRPC decides how to serialize and structure your end-
points and provides features like bidirectional streaming, but below a
framework like Rails since Rails handles everything from handling requests
to storing your data and structuring your application. gRPC is extendable
via middleware, and its active community' has written middleware® to

https://github.com/grpc-ecosystem
om/grpc-ecosystem/go-grpc-middleware

N =

https://github.com/grpc-ecosystem
https://github.com/grpc-ecosystem/go-grpc-middleware
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Goals When Building a Service ¢ 57

solve a lot of the problems you’'ll face when building services—for example,
logging, authentication, rate limiting, and tracing.

Maintainability
Writing the first version of a service is a brief period of the total time you’'ll
spend working on the service. Once your service is live and people depend
on it, you must maintain backward compatibility. With request-response
type APIs, the simplest way to maintain backward compatibility is to
version and run multiple instances of your API.

With gRPC, you can easily write and run separate versions of your services
when you have major API changes, while still taking advantage of proto-
bufs field versioning for small changes. Having all your requests and
responses type checked helps prevent accidentally introducing back-
ward-incompatible changes as you and your peers build your service.

Security
When you expose a service on a network, you expose the service to who-
ever is on that network—potentially the whole Internet. It’s important
that you control who has access to your service and what they can do.

gRPC supports Secure Sockets Layer/Transport Layer Security (SSL/TLS) to
encrypt all data exchanged between the client and server and lets you attach
credentials to requests so you know which user is making each request. We’ll
discuss security in the next chapter.

Ease of use
The whole point of writing a service is to have people use it and solve
some problem of theirs. The easier your service is to use, the more popular
it will be. You go a long way toward making your service easy to use by
telling your users when they’re doing something wrong, such as calling
your API with a bad request.

With gRPC, everything from your service methods to your requests and
responses and their bodies are all defined in types. The compiler copies the
comments from your protobuf to your code to help users when the type defi-
nitions aren’t good enough. Your users will know whether they’re using the
API correctly thanks to their code being type checked. Having every-
thing—requests, responses, models, and serialization—type checked is a big
help to people learning how to use your service. gRPC also lets users look up
the API's details with godoc. Many frameworks don't offer either of these handy
features.

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 4. Serve Requests with gRPC ¢ 58

Performance
You want your service to be as fast as possible while using as few
resources as possible. For example, if you can run your application on
an nl-standard-1 (~8$35 per month) instance on Google Cloud Platform
rather than on an nl-standard-2 (~$71 per month) instance, that cuts
your costs in half.

gRPC is built on solid foundations with protobuf and HTTP/2 because protobuf
performs very well at serialization and HTTP/2 provides a means for long-
lasting connections, which gRPC takes advantage of. So your service runs
efficiently and doesn’t cause unnecessarily high server bills.

Scalability
Scalability can refer to scaling up with load balancing to balance the load
across multiple computers and to scaling up the number of people
developing a project. gRPC helps make both types of scaling easier.

You can use different kinds of load balancing with gRPC® based on your needs,
including thick client-side load balancing, proxy load balancing, look-aside
load balancing, or service mesh.

For scaling up the number of people working on your project, gRPC lets you
compile your service into clients and servers in the languages that gRPC
supports. This allows people to use their own languages to build services that
communicate with each other.

We now know what we want out of building our service, so let’s create a gRPC
service that fulfills our goals.

Define a gRPC Service

A gRPC service is essentially a group of related RPC endpoints—exactly how
they’re related is up to you. A common example is a RESTful grouping where
the relation is that the endpoints operate on the same resource, but the
grouping could be looser than that. In general, it’s just a group of endpoints
needed to solve some problem. In our case, the goal is to enable people to
write to and read from their log.

Creating a gRPC service involves defining it in protobuf and then compiling your
protocol buffers into code comprising the client and server stubs that you then
implement. To get started, open log.proto, the file where we defined our Record
message, and add the following service definition above those messages:

3. https://grpc.io/blog/grpc-load-balancing

https://grpc.io/blog/grpc-load-balancing
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Define a gRPC Service ® 59

ServeRequestsWithgRPC/api/v1/log.proto
service Log {

}

rpc Produce(ProduceRequest) returns (ProduceResponse) {}

rpc Consume(ConsumeRequest) returns (ConsumeResponse) {}

rpc ConsumeStream(ConsumeRequest) returns (stream ConsumeResponse) {}

rpc ProduceStream(stream ProduceRequest) returns (stream ProduceResponse) {}

The service keyword says that this is a service for the compiler to generate,
and each RPC line is an endpoint in that service, specifying the type of request
and response the endpoint accepts. The requests and responses are messages
that the compiler turns into Go structs, like the ones we saw in the previous

chapter.

We have two streaming endpoints:

¢ ConsumeStream—a server-side streaming RPC where the client sends a

request to the server and gets back a stream to read a sequence of messages.

ProduceStream—a bidirectional streaming RPC where both the client and
server send a sequence of messages using a read-write stream. The two
streams operate independently, so the clients and servers can read and
write in whatever order they like. For example, the server could wait to
receive all of the client’s requests before sending back its response. You'd
order your calls this way if your server needed to process the requests in
batches or aggregate a response over multiple requests. Alternatively, the
server could send back a response for each request in lockstep. You'd
order your calls this way if each request required its own corresponding
response.

Below your service definition, add the following code to define our requests
and responses:

ServeRequestsWithgRPC/api/v1/log.proto
message ProduceRequest {

}

Record record = 1;

message ProduceResponse {

}

uint64 offset = 1;

message ConsumeRequest {

}

uint64 offset = 1;

message ConsumeResponse {

}

Record record = 2;

http://media.pragprog.com/titles/tjgo/code/ServeRequestsWithgRPC/api/v1/log.proto
http://media.pragprog.com/titles/tjgo/code/ServeRequestsWithgRPC/api/v1/log.proto
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 4. Serve Requests with gRPC ¢ 60

The request includes the record to produce to the log, and the response sends
back the record’s offset, which is essentially the record’s identifier. Similarly
with consuming: the user specifies the offset of the logs they want to consume,
and the server responds back with the specified record.

To generate the client- and server-side code with our Log service definition,
we need to tell the protobuf compiler to use the gRPC plugin.

Compile with the gRPC Plugin

This task takes just a second. Install the gRPC package by running this
command:

$ go get google.golang.org/grpc@vl.32.0
$ go get google.golang.org/grpc/cmd/protoc-gen-go-grpc@vl.0.0

Then open up your Makefile and update your compile target to match the fol-
lowing to enable the gRPC plugin and compile our gRPC service:

ServeRequestsWithgRPC/Makefile
compile:
protoc api/vl/*.proto \

--go_out=. \
--go-grpc_out=. \
--go_opt=paths=source relative \
--go-grpc_opt=paths=source relative \
--proto path=.

Run $ make compile, and then open up the log_grpc.pb.go file in the api/vl directory
and check out the generated code. You'll see a working gRPC log client, and
the compiler left the log service API for us to implement.

Implement a gRPC Server

Because the compiler generated a server stub, the job left for us is to write
it. To implement a server, you need to build a struct whose methods match
the service definition in your protobuf.

Create an internal/server directory tree in the root of your project by running
mkdir -p internal/server. Internal packages are magical packages in Go that can
only be imported by nearby code. For example, you can import code in
/a/b/c/internal/d/e/f by code rooted by /a/b/c, but not code rooted by /a/b/g. In this
directory, we’ll implement our server in a file called servergo and a package
named server. The first order of business is to define our server type and a
factory function to create an instance of the server.

Here’s the code we need to add to our server.go file:

http://media.pragprog.com/titles/tjgo/code/ServeRequestsWithgRPC/Makefile
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Implement a gRPC Server ® 61

ServeRequestsWithgRPC/internal/server/server.go
package server

import (
"context"

api "github.com/travisjeffery/proglog/api/v1"
"google.golang.org/grpc"
)

type Config struct {
CommitLog CommitLog

}
var _ api.LogServer = (*grpcServer)(nil)

type grpcServer struct {
api.UnimplementedLogServer
*Config

}

func newgrpcServer(config *Config) (srv *grpcServer, err error) {
srv = &grpcServer{
Config: config,
b
return srv, nil

}

To implement the API you saw in log_grpc.pb.go, we need to implement the Con-
sume() and Produce() handlers. Our gRPC layer is thin because it defers to our
log library, so to implement these methods, you call down to the library and
handle any errors. Add the following code below your newgrpcServer function:

ServeRequestsWithgRPC/internal/server/server.go
func (s *grpcServer) Produce(ctx context.Context, req *api.ProduceRequest) (
*api.ProduceResponse, error) {
offset, err := s.CommitLog.Append(req.Record)
if err !'= nil {
return nil, err
}

return &api.ProduceResponse{0ffset: offset}, nil

func (s *grpcServer) Consume(ctx context.Context, req *api.ConsumeRequest) (
*api.ConsumeResponse, error) {
record, err := s.CommitLog.Read(req.0ffset)
if err != nil {
return nil, err
}

return &api.ConsumeResponse{Record: record}, nil

http://media.pragprog.com/titles/tjgo/code/ServeRequestsWithgRPC/internal/server/server.go
http://media.pragprog.com/titles/tjgo/code/ServeRequestsWithgRPC/internal/server/server.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 4. Serve Requests with gRPC ¢ 62

With this snippet, we’ve implemented the Produce(context.Context, *api.ProduceRequest)
and Consume(context.Context, *api.ConsumeRequest) methods on our server. These
methods handle the requests made by clients to produce and consume to the
server’s log. Now let’s add the streaming APIs. Put the following code below
the previous snippet:

ServeRequestsWithgRPC/internal/server/server.go

func (s *grpcServer) ProduceStream(
stream api.Log ProduceStreamServer,

) error {
for {
req, err := stream.Recv()
if err != nil {
return err
}
res, err := s.Produce(stream.Context(), req)
if err !'= nil {
return err
}
if err = stream.Send(res); err != nil {
return err
}
}
}

func (s *grpcServer) ConsumeStream(
req *api.ConsumeRequest,
stream api.Log ConsumeStreamServer,
) error {
for {
select {
case <-stream.Context().Done():
return nil
default:
res, err := s.Consume(stream.Context(), req)
switch err. (type) {
case nil:
case api.ErrOffsetOutOfRange:
continue
default:
return err
}
if err = stream.Send(res); err != nil {
return err

}
req.0ffset++

http://media.pragprog.com/titles/tjgo/code/ServeRequestsWithgRPC/internal/server/server.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Implement a gRPC Server ® 63

ProduceStream(api.Log_ProduceStreamServer) implements a bidirectional streaming
RPC so the client can stream data into the server’s log and the server can tell
the client whether each request succeeded. ConsumeStream(*api.ConsumeRequest,
api.Log_ConsumeStreamServer) implements a server-side streaming RPC so the
client can tell the server where in the log to read records, and then the server
will stream every record that follows—even records that aren’t in the log yet!
When the server reaches the end of the log, the server will wait until someone
appends a record to the log and then continue streaming records to the client.

The code that makes up our gRPC service is short and simple, which is a sign
that we have a clean separation between our networking code and log code.
However, one reason our service’s code is so short is because we have the
most basic error handling ever: we just send the client whatever error our
library returned.

If a client tried to consume a message but the request failed, the developer
would want to know why. Could the server not find the message? Did the
server fail unexpectedly? The server communicates this info with a status
code. Also, end users need to know when the application fails, so the server
should send back a human-readable version of the error for the client to show
to the user.

Let’s explore how to improve our service’s error handling, shall we?

Error Handling in gRPC

Yet another nice feature of gRPC is how it handles errors. In the previous
code, we return errors just like you'd see in code from the Go standard library.
Even though this code is handling calls between people on different computers,
you wouldn’t know it—thanks to gRPC, which abstracts away the networking
details. By default your errors will only have a string description, but you
may want to include more information such as a status code or some other
arbitrary data.

Go’s gRPC implementation has an awesome status package® that you can
use to build errors with status codes or whatever other data you want to
include in your errors. To create an error with a status code, you create the
error with the Error function from the status package and pass the relevant
code from the codes package® that matches the type of error you have. Any
status code you attach on the error here must be a code defined in the codes
package—they’re meant to be consistent across the languages gRPC supports.

4. https://godoc.org/google.golang.org/grpc/status

https://godoc.org/google.golang.org/grpc/status
https://godoc.org/google.golang.org/grpc/codes
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 4. Serve Requests with gRPC ¢ 64

For example, if you couldn’t find a record for some ID, then you'd use the
NotFound code like this:

err := status.Error(codes.NotFound, "id was not found")
return nil, err

On the client side, you'd parse out the code from the error with the FromError
function from the status package. Your goal is to have as few non-status
errors as possible so you know why the errors happen and can handle them
gracefully. The non-status errors that are OK are unforeseen, internal server
errors. Here’s how to use the FromError function to parse out a status from a
gRPC error:

st, ok := status.FromError(err)
if lok {
// Error was not a status error

}
// Use st.Message() and st.Code()

When you want more than a status code (say you're trying to debug an error
and want more details like logs or traces), then you can use the status pack-
age’s WithDetails function, which allows you to attach any protobuf message
you want to the error.

The errdetailspackage® provides some protobufs you'll likely find useful when
building your service, including messages to use to handle bad requests,
debug info, and localized messages.

Let’s use the LocalizedMessage from the errdetails package to change the previous
example to respond with an error message that’s safe to return to the user.
In the following code, we first create a new not-found status, then we create
the localized message specifying the message and locale used. Next we attach
the details to the status, and then finally convert and return the status as a
Go error:

st := status.New(codes.NotFound, "id was not found")
d := &errdetails.LocalizedMessage{
Locale: "en-US",
Message: fmt.Sprintf(
"We couldn't find a user with the email address: %s",
id,
),
}
var err error
st, err = st.WithDetails(d)

6. https://godoc.org/google.golang.org/genproto/googleapis/rpc/errdetails

https://godoc.org/google.golang.org/genproto/googleapis/rpc/errdetails
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Implement a gRPC Server ® 65

if err != nil {
// If this errored, it will always error
// here, so better panic so we can figure
// out why than have this silently passing.
panic(fmt.Sprintf("Unexpected error attaching metadata: %v", err))

}

return st.Err()

To extract these details on the client side, you need to convert the error back
into a status, pull out the details via its Details method, and then convert the
type of the details to match the type of the protobuf you set on the server,
which in our case is *errdetails.LocalizedMessage.

The code to do that looks like this:

st := status.Convert(err)
for , detail := range st.Details() {
switch t := detail. (type) {
case *errdetails.LocalizedMessage:
// send t.Message back to the user

}
}

Focusing back on our service, let’s add a custom error named ErrOffsetOutOfRange
that the server will send back to the client when the client tries to consume
an offset that’s outside of the log. Create an error.go file inside the api/v1 direc-
tory with the following code:

ServeRequestsWithgRPC/api/v1/error.go
package log vl

import (
n fm.t n

"google.golang.org/genproto/googleapis/rpc/errdetails"
"google.golang.org/grpc/status"
)

type ErrOffsetOutOfRange struct {
Offset uint64

}
func (e ErrOffsetOutOfRange) GRPCStatus() *status.Status {
st := status.New(
404,

fmt.Sprintf("offset out of range: %d", e.0ffset),

)

msg := fmt.Sprintf(
"The requested offset is outside the log's range: %d",
e.0ffset,

http://media.pragprog.com/titles/tjgo/code/ServeRequestsWithgRPC/api/v1/error.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 4. Serve Requests with gRPC ¢ 66

d := &errdetails.LocalizedMessage{
Locale: "en-US",
Message: msg,
}
std, err := st.WithDetails(d)
if err !'= nil {
return st

}

return std

}

func (e ErrOffsetOutOfRange) Error() string {
return e.GRPCStatus().Err().Error()
}

Next, let’s update your log to use this error. Find this section of the Read(offset
uint64) method of your log in internal/log/log.go:

WriteALogPackage/internal/log/log.go
if s == nil || s.nextOffset <= off {
return nil, fmt.Errorf("offset out of range: %d", off)

}
And then change that section to this:

ServeRequestsWithgRPC/internal/log/log.go
if s == nil || s.nextOffset <= off {

return nil, api.ErrOffsetOutOfRange{Offset: off}
}

Finally, we need to update the associated testOutOfRange(*testing.T, *log.Log) test
in internal/log/log_test.go to the following code:

ServeRequestsWithgRPC/internal/log/log_test.go
func testOutOfRangeErr(t *testing.T, log *Log) {
read, err := log.Read(1l)
require.Nil(t, read)
apiErr := err.(api.ErrOffsetOutO0fRange)
require.Equal(t, uint64(1l), apiErr.0ffset)
}

With our custom error, when the client tries to consume an offset that’s out-
side of the log, the log returns an error with plenty of useful information: a
localized message, a status code, and an error message. Because our error
is a struct type, we can type-switch the error returned by the Read(offset uint64)
method to know what happened. We already use this feature in our Con-
sumeStream(*api.ConsumeRequest, api.Log_ConsumeStreamServer) method to know whether
the server has read to the end of the log and just needs to wait until someone
produces another record to the client:

http://media.pragprog.com/titles/tjgo/code/WriteALogPackage/internal/log/log.go
http://media.pragprog.com/titles/tjgo/code/ServeRequestsWithgRPC/internal/log/log.go
http://media.pragprog.com/titles/tjgo/code/ServeRequestsWithgRPC/internal/log/log_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Implement a gRPC Server ® 67

ServeRequestsWithgRPC/internal/server/server.go
func (s *grpcServer) ConsumeStream(
req *api.ConsumeRequest,
stream api.Log ConsumeStreamServer,
) error {
for {
select {
case <-stream.Context().Done():
return nil
default:
res, err := s.Consume(stream.Context(), req)
switch err. (type) {
case nil:
case api.ErrOffsetOutOfRange:
continue
default:
return err

}
if err = stream.Send(res); err != nil {
return err

}
req.0ffset++

}

We've improved our service’s error handling to include status codes and a
human-readable, localized error message to help our users know why a failure
occurred. Next, let’s define the log field that’s on our service such that we can
pass in different log implementations and make the service easier to write
tests against.

Dependency Inversion with Interfaces

Our server depends on a log abstraction. For example, when running in a
production environment—where we need our service to persist our user’s
data—the service will depend on our library. But when running in a test
environment, where we don’t need to persist our test data, we could use a
naive, in-memory log. An in-memory log would also be good for testing because
it would make the tests run faster.

As you can see from these examples, it would be best if our service weren’t
tied to a specific log implementation. Instead, we want to pass in a log
implementation based on our needs at the time. We can make this possible
by having our service depend on a log interface rather than on a concrete
type. That way, the service can use any log implementation that satisfies the
log interface.

http://media.pragprog.com/titles/tjgo/code/ServeRequestsWithgRPC/internal/server/server.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 4. Serve Requests with gRPC ¢ 68

Add this code below your grpcServer methods in server.go:

ServeRequestsWithgRPC/internal/server/server.go

type CommitLog interface {
Append(*api.Record) (uint64, error)
Read(uint64) (*api.Record, error)

}

That’s all we need to do to allow our service to use any given log implementa-
tion that satisfies our CommitLog interface. Easy, huh?

Now, let’s write an exported API that enables our users to instantiate a new service.

Register Your Server

We implemented the server writing nothing gRPC-specific yet. There are just
three steps left to get our service working with gRPC, and happily we only
need to perform two of them: creating a gRPC server and registering our service
with it. The final step is giving the server a listener to accept incoming con-
nections from, but we’ll require our users to pass their own listener implemen-
tation, as they might like to when testing. Once these three steps are complete,
the gRPC server will listen on the network, handle requests, call our server,
and respond to the client with the result.

Above your grpcServer struct in server.go, add the following NewGRPCServer() function
to provide your users a way to instantiate your service, create a gRPC server,
and register your service to that server (this will give the user a server that
just needs a listener for it to accept incoming connections):

ServeRequestsWithgRPC/internal/server/server.go
func NewGRPCServer(config *Config) (*grpc.Server, error) {

gsrv := grpc.NewServer()
srv, err := newgrpcServer(config)
if err != nil {

return nil, err
}
api.RegisterLogServer(gsrv, srv)
return gsrv, nil

}

We're now done writing our service. Let’s create some tests to verify that it works.

Test a gRPC Server and Client

Now that we've finished our gRPC server, we need some tests to check that
our client and server work like we expect. We've already tested the details of
our log’s library implementation in the library, so the tests we’re writing here
are at a higher level and focus on ensuring that everything’s hooked up

http://media.pragprog.com/titles/tjgo/code/ServeRequestsWithgRPC/internal/server/server.go
http://media.pragprog.com/titles/tjgo/code/ServeRequestsWithgRPC/internal/server/server.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Test a gRPC Server and Client ® 69

properly between the gRPC and library bits and that our gRPC client and
server can communicate.

In the grpc directory, create a server test.go file, and add the following code that
will set up your test:

ServeRequestsWithgRPC/internal/server/server_test.go
package server

import (
"context"
"io/ioutil"
"net"
"testing"

"github.com/stretchr/testify/require"
api "github.com/travisjeffery/proglog/api/v1"
"github.com/travisjeffery/proglog/internal/log"
"google.golang.org/grpc"

)

func TestServer(t *testing.T) {
for scenario, fn := range map[string]func(
t *testing.T,
client api.LogClient,
config *Config,

"produce/consume a message to/from the log succeeeds":
testProduceConsume,

"produce/consume stream succeeds":
testProduceConsumeStream,

"consume past log boundary fails":
testConsumePastBoundary,

A

t.Run(scenario, func(t *testing.T) {
client, config, teardown := setupTest(t, nil)
defer teardown()
fn(t, client, config)

)

}

TestServer(*testing.T) defines our list of test cases and then runs a subtest for
each case. Add the following setupTest(*testing.T, func(*Config)) function below Test-
Server():

ServeRequestsWithgRPC/internal/server/server_test.go

func setupTest(t *testing.T, fn func(*Config)) (
client api.LogClient,
cfg *Config,
teardown func(),

http://media.pragprog.com/titles/tjgo/code/ServeRequestsWithgRPC/internal/server/server_test.go
http://media.pragprog.com/titles/tjgo/code/ServeRequestsWithgRPC/internal/server/server_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 4. Serve Requests with gRPC ¢ 70

t.Helper()

1, err := net.Listen("tcp", ":0")
require.NoError(t, err)

clientOptions := []grpc.DialOption{grpc.WithInsecure()}
cc, err := grpc.Dial(l.Addr().String(), clientOptions...)
require.NoError(t, err)

dir, err := ioutil.TempDir("server-test")

require.NoError(t, err)

clog, err := log.NewLog(dir, log.Config{})
require.NoError(t, err)

cfg = &Config{
CommitLog: clog,

}
if fn != nil {
fn(cfg)
}
server, err := NewGRPCServer(cfg)

require.NoError(t, err)

go func() {
server.Serve(l)

(0
client = api.NewLogClient(cc)

return client, cfg, func() {
server.Stop()
cc.Close()
1.Close()
clog.Remove()

}

setupTest(*testing.T, func(*Config)) is a helper function to set up each test case. Our
test setup begins by creating a listener on the local network address that our
server will run on. The 0 port is useful for when we don’t care what port we
use since 0 will automatically assign us a free port. We then make an insecure
connection to our listener and, with it, a client we’ll use to hit our server with.
Next we create our server and start serving requests in a goroutine because
the Serve method is a blocking call, and if we didn’t run it in a goroutine our
tests further down would never run.

Now we're ready to write some test cases. Add the following code below
setupTest():
ServeRequestsWithgRPC/internal/server/server_test.go

func testProduceConsume(t *testing.T, client api.LogClient, config *Config) {
ctx := context.Background()

http://media.pragprog.com/titles/tjgo/code/ServeRequestsWithgRPC/internal/server/server_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

}

Test a gRPC Server and Client ® 71

want := &api.Record{

Value: []byte("hello world"),
}
produce, err := client.Produce(

ctx,
&api.ProduceRequest{
Record: want,
}
)

require.NoError(t, err)

consume, err := client.Consume(ctx, &api.ConsumeRequest{
Offset: produce.Offset,

1)

require.NoError(t, err)

require.Equal(t, want.Value, consume.Record.Value)

require.Equal(t, want.0ffset, consume.Record.0ffset)

testProduceConsume(*testing.T, api.LogClient, *Config) tests that producing and consuming
works by using our client and server to produce a record to the log, consume
it back, and then check that the record we sent is the same one we got back.

Add the following test case below testProduceConsume():

ServeRequestsWithgRPC/internal/server/server_test.go
func testConsumePastBoundary(

t *testing.T,
client api.LogClient,
config *Config,

ctx := context.Background()

produce, err := client.Produce(ctx, &api.ProduceRequest{
Record: &api.Record{
Value: []byte("hello world"),

I

1)

require.NoError(t, err)

consume, err := client.Consume(ctx, &api.ConsumeRequest{
Offset: produce.Offset + 1,

1)

if consume != nil {
t.Fatal("consume not nil")

}

got := grpc.Code(err)
want := grpc.Code(api.ErrOffsetOutOfRange{}.GRPCStatus().Err())
if got != want {

t.Fatalf("got err: %v, want: %v", got, want)

}

http://media.pragprog.com/titles/tjgo/code/ServeRequestsWithgRPC/internal/server/server_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 4. Serve Requests with gRPC ¢ 72

testConsumePastBoundary(*testing.T, api.LogClient, *Config) tests that our server responds
with an api.ErrOffsetOutOfRange() error when a client tries to consume beyond the
log’s boundaries.

We have one more test case. Put the following snippet at the bottom of the file:

ServeRequestsWithgRPC/internal/server/server_test.go
func testProduceConsumeStream(

t *testing.T,

client api.LogClient,

config *Config,

) {
ctx := context.Background()
records := []*api.Record{{
Value: []byte("first message"),
Offset: O,
oA
Value: []byte("second message"),
Offset: 1,
1}
{
stream, err := client.ProduceStream(ctx)
require.NoError(t, err)
for offset, record := range records {
err = stream.Send(&api.ProduceRequest{
Record: record,
1)
require.NoError(t, err)
res, err := stream.Recv()
require.NoError(t, err)
if res.0ffset != uint64(offset) {
t.Fatalf(
"got offset: %d, want: %d",
res.0ffset,
offset,
)
}
}
}
{
stream, err := client.ConsumeStream(
ctx,

&api.ConsumeRequest{0ffset: 0},
)

require.NoError(t, err)

for i, record := range records {
res, err := stream.Recv()

http://media.pragprog.com/titles/tjgo/code/ServeRequestsWithgRPC/internal/server/server_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

What You Learned ® 73

require.NoError(t, err)

require.Equal(t, res.Record, &api.Record{
Value: record.Value,
Offset: uint64(i),

})

}

testProduceConsumeStream(*testing.T, api.LogClient, *Config) is the streaming counterpart
to testProduceConsume(), testing that we can produce and consume through
streams.

Run $ make test to test your code. In the test output, you'll see your TestServer
test passing.

Wahoo! You've written and tested your first gRPC service.

What You Learned

You now know how to define a gRPC service in protobuf, compile your gRPC
protobufs into code, build a gRPC server, and test that everything works end-
to-end across your client and server. You can build a gRPC server and client,
and you can use your log over the network.

Next we’ll improve the security of our service by encrypting the data sent
between the client and server with SSL/TLS, and authenticating requests so
we can know who’s making each request and whether they’re allowed to.

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

CHAPTER 5

Secure Your Services

When you build a project, your goal is to solve a problem. You may get so
focused on this goal that you ignore the other factors you should consider,
like security. Security is one of those things that’s super important but easy
to ignore.

Yes, creating a secure solution is more complicated than building a solution
without considering security. But if you want to build something that people
will actually use, it has to be secure. And it’s far easier to incorporate security
from the start than it is to retrofit security into a finished project. So you need
to keep security in mind from the very beginning. In this book, for example,
we don’t just want to build a tool to stream data—we want to build a tool that
streams data securely.

When you start your career as a software engineer, security can seem like a
thankless job. If you do it right, no one will know you did it at all, and building
it can be scary and even boring at times. Over the years, from building several
software-as-a-service startups, I've changed my tune—I now consider securing
my services as important as the problems they solve. Here’s why:

e Security saves you from being hacked. When you don’t follow security
best practices, breaches and leaks follow with amazing regularity and
severity, as we've seen in the news. Whenever I'm building a service, I
think about what it’d be like if the data I'm trying to protect was publicly
posted all over the planet. Picturing this gives me the motivation to make
sure that sort of thing doesn’t happen to me, and thankfully it hasn’t yet
(knock on wood).

e Security wins deals. In my experience, the most important factor in
whether a potential customer bought software I worked on came down to
whether the software fulfilled some security requirement.

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 5. Secure Your Services ® 76

e Security is painful to tack on. Taking an insecure service that lacks the
basic security features most people need and then trying to tack those
features on is a painful, tricky process. In contrast, it’s relatively easy to
build those features from the start.

Those high stakes get me fired up about building secure services. So let’s get
to it.

Secure Services in Three Steps

Security in distributed services can be broken down into three steps:

1. Encrypt data in-flight to protect against man-in-the-middle attacks;
2. Authenticate to identify clients; and
3. Authorize to determine the permissions of the identified clients.

Let’s talk about these phases in more detail, explore the security benefits they
provide, and write the code to build them into our service.

Encrypt In-Flight Data

Encryption of data in-flight prevents man-in-the-middle attacks (MITM).! An
example of a MITM attack is active eavesdropping, where the attacker makes
independent connections with the victims to make them think they're talking
directly with each other when in fact the conversation is controlled by the
attacker. This is bad because not only can the attacker learn confidential
information, but also the attacker can maliciously change the messages sent
between the victims. For example, say Bob was trying to send money to Alice
using PayPal, but Mallory changed the account the money was sent to from
Alice’s to her own.

Cryptography’s Conventional Names
Bob, Alice, and Mallory are placeholder names commonly used
Alice_and_Bob#Cast_of characters). Typically Alice and Bob want to
0 exchange a message, and Mallory is a malicious attacker. There’'s
a whole cast of characters, and they’re named with rhyming
mnemonics to their role (for example: Mallory the malicious
attacker, Eve the eavesdropper, Craig the password cracker).

The most widely used technology for preventing MITM attacks and encrypting
data in-flight is TLS, the successor to SSL. TLS used to be considered necessary

1. https://en.wikipedia.org/wiki/Man-in-the-middle_attack

https://en.wikipedia.org/wiki/Alice_and_Bob#Cast_of_characters
https://en.wikipedia.org/wiki/Alice_and_Bob#Cast_of_characters
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Secure Services in Three Steps ® 77

only for "serious" websites like online banks, but these days all sites should use
TLS.” Modern browsers highlight websites that don’t use TLS as unsafe and
recommend their users to not even use them.

The process by which a client and server communicate is kicked off by a TLS
handshake. During this handshake, the client and server:

1. Specify which version of TLS they’ll use;
2. Decide which cipher suites (the set of encryption algorithms) they’ll use;

3. Authenticate the identity of the server via the server’s private key and the
certificate authority’s digital signature; and

4. Generate session keys for symmetric encryption after the handshake is
complete.

Once this handshake process is complete, the client and server can commu-
nicate securely.

Fortunately we don’t have to worry about implementing these TLS handshake
steps, as TLS handles them for us behind the scenes. Our job is to obtain
certificates for our client and server to use and to tell gRPC to communicate
over TLS using the given the certs.

We'll build TLS support into our service to encrypt data in-flight and
authenticate the server.

Authenticate to Identify Clients

Once you've secured the communication between your client and server with
TLS, the next step to a secure service is authentication. Authentication is the
process of identifying who the client is (TLS has already handled authenticating
the server). For example, whenever you post a tweet, Twitter needs to verify
that the person trying to post the tweet to your account is really you.

Most web services use TLS for one-way authentication and only authenticate
the server. The authentication of the client is left to the application to work
out, usually by some combination of username-password credentials and
tokens. TLS mutual authentication, also commonly referred to as two-way
authentication, in which both the server and the client validate the other’s
communication, is more commonly used in machine-to-machine communica-
tion—like distributed systems! In this setup, both the server and the client
use a certificate to prove their identity.

2. https://doesmysiteneedhttps.com

https://doesmysiteneedhttps.com
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 5. Secure Your Services ® 78

Because mutual TLS authentication is so effective, relatively simple, and well
adopted (both in terms of how many people use it and the number of technolo-
gies that support it), many companies use it to secure the communications®
between their internal distributed services. Because so many people use
mutual TLS authentication, it's important for new services (like ours) to
support it. So we’ll build mutual TLS authentication into our service.

Authorize to Determine the Permissions of Clients

Authentication and authorization are so closely related that people often use
the word “auth” to refer to both. Authentication and authorization are almost
always done at the same time in terms of the request’s life-cycle and place in
the server’s code base. In fact, for many web services where resources have
a single owner, authentication and authorization are the same process. For
example, a Twitter account has one owner, so if a client authenticates as that
owner, then Twitter lets them do whatever they want with the account.

Differentiating between authentication and authorization is necessary when
you have a resource with shared access and varying levels of ownership. With
our log service for example, Alice might be the owner and have both read and
write access to the contents of the log, whereas Bob might be allowed to read
the contents but isn’'t able to write. In this type of situation, you need
authorization with granular access control.

In our service, we’ll build access control list-based authorization to control
whether a client is allowed to read from or write to (or both) the log.

Now that you have a general understanding of the three key aspects of
securing a distributed system, let’s implement them in our service.

Authenticate the Server with TLS

You've now seen how TLS works and why to use it, so we're ready to build
TLS support into our service to encrypt data in-flight and authenticate the
server. I'll also cover how to make obtaining and working with certificates
easier to manage.

Operate as Your Own CA with CFSSL

Before changing our server’s code, let’s get some certs. We could use a third-
party certificate authority (CA) to get the certs, but that could cost money
(depending on the CA) and is a hassle. For internal services (like ours), there’s

3. https://blog.cloudflare.com/how-to-build-your-own-public-key-infrastructure

https://blog.cloudflare.com/how-to-build-your-own-public-key-infrastructure
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Authenticate the Server with TLS ¢ 79

no need to go through a third-party authority. Trusted certificates don’t have
to come from Comodo or Let’s Encrypt or any other CA—they can come from
a CA you operate yourself. It’s free and easy with the right tools.

CloudFlare* wrote a toolkit called CFSSL for signing, verifying, and bundling
TLS certificates. CloudFlare uses CFSSL for their internal services’ TLS cer-
tificates, acting as their own certificate authority. CloudFlare open sourced
CFSSL so others, including us, can use it. Even major CA vendors like Let’s
Encrypt use CFSSL. Big thanks to CloudFlare because CFSSL is a seriously
useful toolkit.

CFSSL has two tools we’ll need:

e cfssl to sign, verify, and bundle TLS certificates and output the results as JSON.
e cfssljson to take that JSON output and split them into separate key, cer-
tificate, CSR, and bundle files.

Install the CloudFlare CLIs by running the following commands:

$ go get github.com/cloudflare/cfssl/cmd/cfssl@vl.4.1
$ go get github.com/cloudflare/cfssl/cmd/cfssljson@vl.4.1

To initialize our CA and generate certs, we need to pass various config files
to the cfssl commands we’ll run. We need separate config files to generate
our CA and server certs and we need a config file containing general config
info about our CA. So let’s create a directory in our project to contain these
config files by running $ mkdir test.

Put the following JSON into a file called ca-csr.json in your test directory:

SecureYourServices/test/ca-csr.json

{
"CN": "My Awesome CA",
"key": {
"algo": "rsa",
"size": 2048
}
"names": [
{
"c": "CA",
"L “ON",
"ST": "Toronto",
"0": "My Awesome Company",
"oU": "CA Services"
}
1
}

4. https://www.cloudflare.com

http://media.pragprog.com/titles/tjgo/code/SecureYourServices/test/ca-csr.json
https://www.cloudflare.com
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 5. Secure Your Services ® 80

cfssl will use this file to configure our CA’s certificate. CN stands for Common
Name, so we're saying our CA is called “My Awesome CA.” key specifies the
algorithm and size of key to sign the certificate with; names is a list of various
name information that’ll be added to the certificate. Each name object should
contain at least one “C,” “L,” “O,” “OU,” or “ST” value (or any combination of
these). They stand for:

e C—country

e L—locality or municipality (such as city)

e ST—state or province

¢ O—organization

e OU—organizational unit (such as the department responsible for owning
the key)

Create a test/ca-config.json that looks like this to define the CA’s policy:

SecureYourServices/test/ca-config.json

{
"signing": {
"profiles": {
"server": {
"expiry": "8760h",
"usages": [
"signing",
"key encipherment",
"server auth"
]
I
"client": {
"expiry": "8760h",
"usages": [
"signing",
"key encipherment",
"client auth"
]
}
}
}
}

Our CA needs to know what kind of certificates it will issue. The signing section
of this configuration file defines your CA’s signing policy. Our configuration
file says that the CA can generate client and server certificates that will expire
after a year and the certificates may be used for digital signatures, encrypting
keys, and auth.

Put the following JSON into a file called server-csr.json in your test directory:

http://media.pragprog.com/titles/tjgo/code/SecureYourServices/test/ca-config.json
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

SecureYourServices/test/server-csr.json

{

}

"CN": "127.0.0.1",

"hosts": [
"localhost",
"127.0.0.1"

1,

"key": {

"algo": "rsa",
"size": 2048
1
"names": [
{
"ChL CAM,
npvs vONT,

"ST": "Toronto",

"0": "My Awesome Company",
"OU": "Distributed Services"

Authenticate the Server with TLS * 81

cfssl will use these configs to configure our server’s certificate. The “hosts”
field is a list of the domain names that the certificate should be valid for.
Since we're running our service locally, we just need 127.0.0.1 and localhost.

Now let’s update our Makefile to call cfssl and cfssljson to actually generate the

certs. Make your project’s Makefile look like this:

SecureYourServices/Makefile
CONFIG_PATH=${HOME}/.proglog/

.PHONY: init
init:

mkdir -p ${CONFIG_PATH}

.PHONY: gencert
gencert:

cfssl gencert \

-initca test/ca-csr.json | cfssljson -bare ca

cfssl gencert \
-ca=ca.pem \

-ca-key=ca-key.pem \
-config=test/ca-config.json \
-profile=server \

test/server-csr.json | cfssljson -bare server

mv *.pem *.csr ${CONFIG PATH}

.PHONY: test
test:

go test -race ./...

http://media.pragprog.com/titles/tjgo/code/SecureYourServices/test/server-csr.json
http://media.pragprog.com/titles/tjgo/code/SecureYourServices/Makefile
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 5. Secure Your Services ® 82

.PHONY: compile
compile:
protoc api/vl/*.proto \

--go_out=. \
--go-grpc_out=. \
--go_opt=paths=source relative \
--go-grpc_opt=paths=source relative \
--proto _path=.

In this updated Makefile, we've added a CONFIG_PATH variable to specify where
we’d like to put our generated certs and an init target to create that directory.
With these configs in a static and known location on the filesystem, it’s easier
to look up and use the certs in our code. The gencert target calls cfssl to gen-
erate the certificate and private keys for our CA and server using the config
files we added earlier.

We'll reference these config files frequently in our tests, so let's make a
package containing their file paths as variables to make referencing them
easy. Create an internal/config directory with a files.go file containing this code:

SecureYourServices/internal/config/files.go
package config

import (
"ost
"path/filepath"

)

var (
CAFile = configFile("ca.pem")
ServerCertFile = configFile("server.pem")
ServerKeyFile = configFile("server-key.pem")

)

func configFile(filename string) string {
if dir := os.Getenv("CONFIG DIR"); dir != "" {
return filepath.Join(dir, filename)

}
homeDir, err := os.UserHomeDir()
if err != nil {
panic(err)
}

return filepath.Join(homeDir, ".proglog", filename)

}

These variables define the paths to the certs we generated and need to look
up and parse for our tests. I would use constants and the const keyword if Go
allowed using const with function calls.

http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/config/files.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Authenticate the Server with TLS * 83

We'll use the certificate and key files to build *tls.Configs, so let’s add a helper
function and struct for that. In the config directory, create a tls.go file beginning
with this code:

SecureYourServices/internal/config/tls.go
package config

import (
"crypto/tls"
"crypto/x509"
"fmt"
"io/ioutil"

)

func SetupTLSConfig(cfg TLSConfig) (*tls.Config, error) {
var err error
tlsConfig := &tls.Config{}
if cfg.CertFile != "" && cfg.KeyFile != "" {
tlsConfig.Certificates = make([]tls.Certificate, 1)
tlsConfig.Certificates[0], err = tls.LoadX509KeyPair(
cfg.CertFile,
cfg.KeyFile,
)

if err !'= nil {
return nil, err
}
}
if cfg.CAFile != "" {
b, err := ioutil.ReadFile(cfg.CAFile)
if err !'= nil {
return nil, err
}
ca := x509.NewCertPool()
ok := ca.AppendCertsFromPEM([]byte(b))
if lok {
return nil, fmt.Errorf(
"failed to parse root certificate: %q",
cfg.CAFile,
)
}
if cfg.Server {
tlsConfig.ClientCAs = ca
tlsConfig.ClientAuth = tls.RequireAndVerifyClientCert
} else {
tlsConfig.RootCAs = ca
}
tlsConfig.ServerName = cfg.ServerAddress
}

return tlsConfig, nil

http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/config/tls.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 5. Secure Your Services ® 84

Our tests use a few different *tls.Config configurations, and SetupTLSConfig() allows
us to get each type of *tls.Config with one function call. These are the different
configurations:

e Client *ls.Config is set up to verify the server’s certificate with the client’s
by setting the *tls.Config’s RootCAs.

e Client *ls.Config is set up to verify the server’s certificate and allow the
server to verify the client’s certificate by setting its RootCAs and its Certificates.

e Server *tls.Config is set up to verify the client’s certificate and allow the
client to verify the server’s certificate by setting its ClientCAs, Certificate, and
ClientAuth mode set to tls.RequireAndVerifyCert.

Below SetupTLSConfig(), put this struct:

SecureYourServices/internal/config/tls.go
type TLSConfig struct {

CertFile string
KeyFile string
CAFile string
ServerAddress string
Server bool

}

TLSConfig defines the parameters that SetupTLSConfig() uses to determine what
type of *tls.Config to return.

Back to our tests. Let’s test that the client uses our CA to verify the server’s
certificate. If the server’s certificate came from a different authority, the client
wouldn’t trust the server and wouldn’t make a connection. In setup_test.go, add
these imports:

SecureYourServices/internal/server/server_test.go
"github.com/travisjeffery/proglog/internal/config"
"google.golang.org/grpc/credentials"

Now replace the code in your existing setupTest() function with the following code:

SecureYourServices/internal/server/server_test.go
t.Helper()

1, err := net.Listen("tcp", "127.0.0.1:0")
require.NoError(t, err)

clientTLSConfig, err := config.SetupTLSConfig(config.TLSConfig{
CAFile: config.CAFile,
1)

require.NoError(t, err)

clientCreds := credentials.NewTLS(clientTLSConfig)
cc, err := grpc.Dial(

http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/config/tls.go
http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/server/server_test.go
http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/server/server_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Authenticate the Server with TLS * 85

1.Addr().String(),
grpc.WithTransportCredentials(clientCreds),
)

require.NoError(t, err)
client = api.NewlLogClient(cc)
In this code, we configure our client’s TLS credentials to use our CA as the

client’s Root CA (the CA it will use to verify the server). Then we tell the client
to use those credentials for its connection.

Next we need to hook up our server with its certificate and enable it to handle
TLS connections. Add the following code below the previous snippet:

SecureYourServices/internal/server/server_test.go
serverTLSConfig, err := config.SetupTLSConfig(config.TLSConfig{

CertFile: config.ServerCertFile,
KeyFile: config.ServerKeyFile,
CAFile: config.CAFile,
ServerAddress: 1.Addr().String(),

1)

require.NoError(t, err)

serverCreds := credentials.NewTLS(serverTLSConfig)

dir, err := ioutil.TempDir("", "server-test")

require.NoError(t, err)

clog, err := log.NewLog(dir, log.Config{})
require.NoError(t, err)

cfg = &Config{
CommitLog: clog,

}
if fn != nil {
fn(cfg)
}
server, err := NewGRPCServer(cfg, grpc.Creds(serverCreds))

require.NoError(t, err)

go func() {
server.Serve(l)

0

return client, cfg, func() {
server.Stop()
cc.Close()
1.Close()

}

In this code, we're parsing the server’s cert and key, which we then use to
configure the server’s TLS credentials. We then pass those credentials as a
gRPC server option to our NewGRPCServer() function so it can create our gRPC
server with that option. gRPC server options are how you enable features in

http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/server/server_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 5. Secure Your Services ® 86

gRPC servers. We're setting the credentials for the server connections in this
case, but there are plenty of other server options® to configure connection
timeouts, keep alive policies, and so on.

Finally, we need to update the NewGRPCServer() function in servergo to take in
the given gRPC server options and create the server with them. Change the
NewGRPCServer() function to this:

SecureYourServices/internal/server/server.go

func NewGRPCServer(config *Config, opts ...grpc.ServerOption) (
*grpc.Server,
error,

) {
gsrv := grpc.NewServer(opts...)
srv, err := newgrpcServer(config)
if err != nil {

return nil, err

b
api.RegisterLogServer(gsrv, srv)
return gsrv, nil

}

At this point you can run the tests with $ make test, and our tests should pass as
they did before the changes we've made in this chapter. The difference is that your
server is now authenticated and your connection is encrypted. You can verify this
by temporarily changing your test code back to using an insecure client connection
with the grpc.Withinsecure() dial option, and then running the tests again. This time
the tests will fail because the client and server won't be able to connect with each
other because the server is expecting the client to run over TLS.

Your server is authenticated so you know your client is communicating with
your actual server and not some middleman’s. Now we’ll use mutual TLS
authentication to verify that the client hitting your server really is your client.

Authenticate the Client with Mutual TLS Authentication

In the previous section, we used TLS to encrypt our connections and
authenticate the server. Now we’ll go one step further and implement mutual
TLS authentication (also known as two-way authentication) so the server will
use our CA to verify that the client is authentic.

The first thing we need is a cert for our client, which we can generate with
cfssl and cfssljson just like our CA and server’s certificates. Put the following
JSON in a file called client-csrjson in your test directory:

5. https://godoc.org/google.golang.org/grpc#ServerOption

http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/server/server.go
https://godoc.org/google.golang.org/grpc#ServerOption
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Yy

Authenticate the Client with Mutual TLS Authentication ® 87

SecureYourServices/test/client-csr.json

{
"CN": "client",
"hosts": [""],
"key": {
"algo": "rsa",
"size": 2048
+
"names": [
{
"c": "CA",
"L "ON",
"ST": "Toronto",
"0": "My Company",
"oU": "Distributed Services"
}
1
}

The CN field is the important config because that’s the client’s identity—their
username, in a sense. This is the identity we’ll store their permissions under
for authorization. (We’ll do this in the next section.)

Next, update the gencert target in your Makefile, to include the following snippet.
Place it right below where you generate the server cert:

SecureYourServices/Makefile
cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=test/ca-config.json \
-profile=client \
test/client-csr.json | cfssljson -bare client

Once that is done, generate the cert for your client by running $ make gencert.
Add configuration file variables for your client certificates in internal/config/files.go:

SecureYourServices/internal/config/files.go

var (
CAFile = configFile("ca.pem")
ServerCertFile = configFile("server.pem")
ServerKeyFile = configFile("server-key.pem")
ClientCertFile = configFile("client.pem")
ClientKeyFile = configFile("client-key.pem")

)

Next we need to update the server to verify that the certificate the client has sent
the server is signed by our CA. Update your server setup in server test.go like this:

http://media.pragprog.com/titles/tjgo/code/SecureYourServices/test/client-csr.json
http://media.pragprog.com/titles/tjgo/code/SecureYourServices/Makefile
http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/config/files.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

vy

Chapter 5. Secure Your Services ® 88

SecureYourServices/internal/server/server_test.go

clientTLSConfig, err := config.SetupTLSConfig(config.TLSConfigq{
CertFile: config.ClientCertFile,
KeyFile: config.ClientKeyFile,
CAFile: config.CAFile,

b

require.NoError(t, err)

clientCreds := credentials.NewTLS(clientTLSConfig)
cc, err := grpc.Dial(
1.Addr().String(),
grpc.WithTransportCredentials(clientCreds),
)

require.NoError(t, err)
client = api.NewlLogClient(cc)

serverTLSConfig, err := config.SetupTLSConfig(config.TLSConfig{

CertFile: config.ServerCertFile,
KeyFile: config.ServerKeyFile,
CAFile: config.CAFile,

ServerAddress: 1.Addr().String(),
Server: true,

1)

Now run your tests again. They'll still pass because you're using a valid cert
and your tests expect the client to be authentic. For a fun exercise, try generating
a cert from a different CA for your client to use and then watch your tests fail.
(Okay, maybe I'm the only one who considers this kind of thing fun.)

Your server and client now have mutual TLS authentication with both sides
verifying that your CA vouches for their authenticity, so you know it’s your
actual client communicating with your server without a middleman eavesdrop-
ping. Hooray for security!

Authorize with Access Control Lists

Authentication is usually half of what you need from your auth process. You
authenticate to know who’s behind the client so you can then complete the
auth process by authorizing whoever is behind the client for whatever action
they've attempted. As I mentioned earlier, authorization is the process of
verifying what someone has access to.

The simplest way to implement authorization is with an access control list
(ACL).° An ACL is a table of rules where each row says something like “Subject
A is permitted to do action B on object C.” For example: Alice is permitted to

6. https://en.wikipedia.org/wiki/Access_control_list

http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/server/server_test.go
https://en.wikipedia.org/wiki/Access_control_list
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Authorize with Access Control Lists ® 89

read Distributed Services with Go. In this example, Alice is the subject, to read
is the action, and Distributed Services with Go is the object.

One of the beautiful things about an ACL is that it's easy to build. Since it’s
just a table, something as simple as a map or a CSV file could back the
data—in more complex implementations, a key-value store or relational
database would store the data. So building an ACL library from scratch isn’t
difficult, but there’s a nice library called Casbin’ that supports enforcing
authorization based on various control models®*—including ACLs. Plus Casbin
is well adopted, tested, and extendable. Casbin is a useful tool to have in your
toolkit, so let’s learn how to use it and take advantage of it!

First, add Casbin as a dependency by running the following command at the
root of your project:

$ go get github.com/casbin/casbin@vl.9.1

We'll wrap Casbin with our own internal library. If we later use another authoriza-
tion tool, we won't have to change a bunch of code throughout our project, just the
code in our library. Create an auth directory inside your intemal directory by running;:

$ mkdir internal/auth

Then create a file called authorizer.go in that directory with your favorite text
editor and add the following code:

SecureYourServices/internal/auth/authorizer.go
package auth

import (
n fmt n

"github.com/casbin/casbin"

"google.golang.org/grpc/codes"

"google.golang.org/grpc/status"
)

func New(model, policy string) *Authorizer {
enforcer := casbin.NewEnforcer(model, policy)
return &Authorizer{
enforcer: enforcer,
}
}

type Authorizer struct {
enforcer *casbin.Enforcer

}

7. https://github.com/casbin/casbin

8. https://github.com/casbin/casbin#supported-models

http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/auth/authorizer.go
https://github.com/casbin/casbin
https://github.com/casbin/casbin#supported-models
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 5. Secure Your Services ® 90

func (a *Authorizer) Authorize(subject, object, action string) error {
if !a.enforcer.Enforce(subject, object, action) {
msg := fmt.Sprintf(
"%s not permitted to %s to %s",

subject,
action,
object,
)
st := status.New(codes.PermissionDenied, msg)
return st.Err()
b
return nil

}

In this code, we define an Authorizer type whose sole method, Authorize, defers
to Casbin’s Enforce function. This function returns whether the given subject
is permitted to run the given action on the given object based on the model
and policy you configure Casbin with. The New function’s model and policy
arguments are paths to the files where you've defined the model (which will
configure Casbin’s authorization mechanism—which for us will be ACL) and
the policy (which is a CSV file containing your ACL table).

Because we're testing authorization, we need multiple clients with different
permissions and hence multiple client certs. Having multiple clients with
different permissions lets us check whether the server permits or denies a
client’s request based on the rules defined in the ACL. So let’s change the
cert generation code in your Makefile to generate multiple client certs. To do
that, in the gencert target of your Makefile, replace the client cert section to look
like this:

SecureYourServices/Makefile
cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=test/ca-config.json \
-profile=client \
-cn="root" \
test/client-csr.json | cfssljson -bare root-client

cfssl gencert \
-ca=ca.pem \
-ca-key=ca-key.pem \
-config=test/ca-config.json \
-profile=client \
-cn="nobody" \
test/client-csr.json | cfssljson -bare nobody-client

Then run $ make gencert to generate the certs.

http://media.pragprog.com/titles/tjgo/code/SecureYourServices/Makefile
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Authorize with Access Control Lists ® 91

Now let’s update our server tests to test for authorization and check that the
tests fail (since our server doesn’'t have authorization support yet). Later,
when we implement authorization in our server, the tests will pass, and we’ll
know we've successfully implemented authorization in the server.

First, let’s update our client setup in our tests to build two clients we can use
for testing our authorization setup. Update your client setup code in server_test.go
to look like this:

SecureYourServices/internal/server/server_test.go
newClient := func(crtPath, keyPath string) (
*grpc.ClientConn,
api.LogClient,
[lgrpc.DialOption,

tlsConfig, err := config.SetupTLSConfig(config.TLSConfig{
CertFile: crtPath,
KeyFile: keyPath,
CAFile: config.CAFile,
Server: false,
1)
require.NoError(t, err)
tlsCreds := credentials.NewTLS(tlsConfig)
opts := []grpc.DialOption{grpc.WithTransportCredentials(tlsCreds)}
conn, err := grpc.Dial(l.Addr().String(), opts...)
require.NoError(t, err)
client := api.NewLogClient(conn)
return conn, client, opts

}

var rootConn *grpc.ClientConn

rootConn, rootClient, = newClient(
config.RootClientCertFile,
config.RootClientKeyFile,

)

var nobodyConn *grpc.ClientConn

nobodyConn, nobodyClient, = newClient(
config.NobodyClientCertFile,
config.NobodyClientKeyFile,

)

And update the teardown function to close the client connections:

SecureYourServices/internal/server/server_test.go
return rootClient, nobodyClient, cfg, func() {
server.Stop()
rootConn.Close()
nobodyConn.Close()
1.Close()

http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/server/server_test.go
http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/server/server_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

YYVYY

YYYVYYVYY

Chapter 5. Secure Your Services ® 92

We're creating two clients: a superuser’ client called root who'’s permitted to
produce and consume, and a nobody'® client who isn’t permitted to do any-
thing. Because the code for creating both clients is the same (aside from which
cert and key they're configured with), we've refactored the client creation code
into a newClient(crtPath, keyPath string) helper function. Our server now takes in an
Authorizer instance that the server will defer its authorization logic to. And we
pass both our root and nobody clients to the test functions so they can use
whatever client they need based on whether they're testing how the server
works with an authorized or unauthorized client. This last change also requires
us to make some changes to our existing tests, so let’s fix those.

Change your TestServer() function to the following so your test functions take
in the unauthorized client:

SecureYourServices/internal/server/server_test.go
func TestServer(t *testing.T) {
for scenario, fn := range map[string]func(
t *testing.T,
rootClient api.LogClient,
nobodyClient api.LogClient,
config *Config,

){
// ...
A
t.Run(scenario, func(t *testing.T) {
rootClient,
nobodyClient,
config,
teardown := setupTest(t, nil)
defer teardown()
fn(t, rootClient, nobodyClient, config)
1)
}

}

We need to update our existing tests to handle the second client, which we
do by changing the arguments of your test functions to the following:

t *testing.T, client, api.LogClient, cfg *Config

We also need to add more variables to specify the locations of our nobody
client’s cert and key, along with the configuration files for Casbin. So add
these variables to your var declaration in internal/config/files.go:

9. https://en.wikipedia.org/wiki/Superuser

10. https://en.wikipedia.org/wiki/Nobody (username)

http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/server/server_test.go
https://en.wikipedia.org/wiki/Superuser
https://en.wikipedia.org/wiki/Nobody_(username)
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

YYYVYYY

Authorize with Access Control Lists ® 93

SecureYourServices/internal/config/files.go

var (
CAFile = configFile("ca.pem")
ServerCertFile = configFile("server.pem")
ServerKeyFile = configFile("server-key.pem")
RootClientCertFile = configFile("root-client.pem")
RootClientKeyFile = configFile("root-client-key.pem")
NobodyClientCertFile = configFile("nobody-client.pem")
NobodyClientKeyFile = configFile("nobody-client-key.pem")
ACLModelFile = configFile("model. conf")
ACLPolicyFile = configFile("policy.csv")

)

Since the ACL policy is specific and used throughout our tests, we’ll put our
Casbin configuration in the test directory as well. Inside the test directory,
create a file called model.conf with the following configuration:

SecureYourServices/test/model.conf
Request definition
[request definition]

r = sub, obj, act

Policy definition
[policy definition]
p = sub, obj, act

Policy effect
[policy effect]
e = some(where (p.eft == allow))

Matchers
[matchers]
m = r.sub == p.sub & r.obj == p.obj && r.act == p.act

This configures Casbin to use ACL as its authorization mechanism.

Alongside the model.conf file, add a policy.csv file with this snippet:

SecureYourServices/test/policy.csv
p, root, *, produce
p, root, *, consume

This is your ACL table, with two entries saying that the root client has produce
and consume permissions on the * object (which we’re using as a wildcard,
meaning any object). All other clients, including nobody, will be denied.

Now we need to install the policy and model files into the CONFIG_PATH so our
tests can find them. Update your Makefile’s test target to the following:

http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/config/files.go
http://media.pragprog.com/titles/tjgo/code/SecureYourServices/test/model.conf
http://media.pragprog.com/titles/tjgo/code/SecureYourServices/test/policy.csv
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 5. Secure Your Services ® 94

SecureYourServices/Makefile
$(CONFIG_PATH)/model.conf:
cp test/model.conf $(CONFIG PATH)/model.conf

$(CONFIG_PATH)/policy.csv:
cp test/policy.csv $(CONFIG PATH)/policy.csv

.PHONY: test
test: $(CONFIG PATH)/policy.csv $(CONFIG PATH)/model.conf
go test -race ./...

Now your tests are in a runnable state again, so you can run $ make test to see
that they still pass! This is because the existing tests use the root client,
which is authorized to produce and consume, and our current tests assume
the client is authorized, and so they pass.

Let’s add a test to check that unauthorized clients are denied. In server _test.go,
import these packages:

SecureYourServices/internal/server/server_test.go
"google.golang.org/grpc/codes"
"google.golang.org/grpc/status"

Below the testProduceConsumeStream() test we added in the last chapter, add this
testUnauthorized() test:

SecureYourServices/internal/server/server_test.go
func testUnauthorized(
t *testing.T,

’

client api.LogClient,
config *Config,

ctx := context.Background()
produce, err := client.Produce(ctx,
&api.ProduceRequest{
Record: &api.Record{
Value: []byte("hello world"),

I
3
)
if produce != nil {
t.Fatalf("produce response should be nil")
}
gotCode, wantCode := status.Code(err), codes.PermissionDenied

if gotCode != wantCode {
t.Fatalf("got code: %d, want: %d", gotCode, wantCode)
}
consume, err := client.Consume(ctx, &api.ConsumeRequest{
Offset: O,
1)

http://media.pragprog.com/titles/tjgo/code/SecureYourServices/Makefile
http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/server/server_test.go
http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/server/server_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Authorize with Access Control Lists ® 95

if consume != nil {
t.Fatalf("consume response should be nil")
}
gotCode, wantCode = status.Code(err), codes.PermissionDenied
if gotCode != wantCode {
t.Fatalf("got code: %d, want: %d", gotCode, wantCode)
}
}

In this test, we use the nobody client, which isn’t permitted to do anything.
We try to use the client to produce and consume, just as we did in the suc-
cessful test case. Since our client isn’t authorized, we want our server to deny
the client, which we verify by checking the code on the returned error.

Update the test table in TestServer(*testing.T) to include our unauthorized test
by adding the highlighted line:

SecureYourServices/internal/server/server_test.go

"produce/consume a message to/from the log succeeeds": testProduceConsume,
"produce/consume stream succeeds": testProduceConsumeStream,
"consume past log boundary fails": testConsumePastBoundary,
"unauthorized fails": testUnauthorized,

If we run our tests with $ make test, they’ll fail because our server is still per-
mitting all clients to do anything, since we haven’t hooked up its authorization
yet. Let’s add authorization to the server now.

Update your Config in server.go, update your imports to the following:

SecureYourServices/internal/server/server.go
import (
"context"

api "github.com/travisjeffery/proglog/api/v1"

grpc_middleware "github.com/grpc-ecosystem/go-grpc-middleware"
grpc_auth "github.com/grpc-ecosystem/go-grpc-middleware/auth"
"google.golang.org/grpc"
"google.golang.org/grpc/credentials"
"google.golang.org/grpc/codes"
"google.golang.org/grpc/peer"
"google.golang.org/grpc/status"

)

Now we’ll add a field for the authorizer and some constants we will use for
authorization:

SecureYourServices/internal/server/server.go
type Config struct {
CommitLog CommitLog
Authorizer Authorizer

http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/server/server_test.go
http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/server/server.go
http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/server/server.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

YYYYYYVYY

YYYYYYVYY

Chapter 5. Secure Your Services ® 96

const (
objectWildcard = "*"
produceAction = "produce"
consumeAction = "consume"

)

The constants match the values we in our ACL policy table, and we’ll reference
them a few times in this file so they make sense being constants. The Config's
Authorizer field is an interface we need to define; put the following snippet below
the CommitLog interface:

SecureYourServices/internal/server/server.go
type Authorizer interface {
Authorize(subject, object, action string) error

}

We depend on an interface for the Authorizer so that we can switch out the
authorization implementation—same as the CommitLog in Dependency

snippet, adding the highlighted lines:

SecureYourServices/internal/server/server.go
func (s *grpcServer) Produce(ctx context.Context, req *api.ProduceRequest) (
*api.ProduceResponse, error) {

if err := s.Authorizer.Authorize(
subject(ctx),
objectWildcard,
produceAction,

); err !'= nil {
return nil, err

}

offset, err := s.CommitLog.Append(req.Record)

if err !'= nil {
return nil, err

}

return &api.ProduceResponse{0ffset: offset}, nil

}
Make a similar change to your Consume() method, changing the method to this:

SecureYourServices/internal/server/server.go
func (s *grpcServer) Consume(ctx context.Context, req *api.ConsumeRequest) (
*api.ConsumeResponse, error) {

if err := s.Authorizer.Authorize(
subject(ctx),
objectWildcard,
consumeAction,

); err I=nil {

return nil, err

http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/server/server.go
http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/server/server.go
http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/server/server.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Authorize with Access Control Lists ® 97

record, err := s.CommitLog.Read(req.0ffset)
if err != nil {
return nil, err

}

return &api.ConsumeResponse{Record: record}, nil

}

We now have the server checking whether the client (identified by the cert’s
subject) is authorized to produce and consume, and if not, sending the per-
mission denied error back to the client. When producing, if the client is
authorized, then the method will continue and append the given record to
the log. And when consuming, if the client is authorized, then the method
will consume the record from the log. We take the subject out of the client’s
cert with two helper functions. Add the following code at the bottom of server.go:

SecureYourServices/internal/server/server.go
func authenticate(ctx context.Context) (context.Context, error) {
peer, ok := peer.FromContext(ctx)
if lok {
return ctx, status.New(
codes.Unknown,
"couldn't find peer info",

).Err()
}
if peer.AuthInfo == nil {

return context.WithValue(ctx, subjectContextKey{}, ""), nil
}

tlsInfo := peer.AuthInfo.(credentials.TLSInfo)
subject := tlsInfo.State.VerifiedChains[0][0].Subject.CommonName
ctx = context.WithValue(ctx, subjectContextKey{}, subject)

return ctx, nil

}

func subject(ctx context.Context) string {
return ctx.Value(subjectContextKey{}). (string)
}

type subjectContextKey struct{}

The authenticate(context.Context) function is an interceptor that reads the subject
out of the client’s cert and writes it to the RPC’s context. With interceptors,
you can intercept and modify the execution of each RPC call, allowing you to
break the request handling into smaller, reusable chunks. (Other frameworks
name the same concept middleware.) The subject(context.Context) function returns
the client’s cert’s subject so we can identify a client and check their access.

Update your NewGRPCServer(*Config, ...grpc.ServerOption) function to the following code:

http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/server/server.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 5. Secure Your Services ® 98

SecureYourServices/internal/server/server.go

func NewGRPCServer(config *Config, opts ...grpc.ServerOption) (
*grpc.Server,
error,

) {

opts = append(opts, grpc.StreamInterceptor(
grpc_middleware.ChainStreamServer(
grpc_auth.StreamServerInterceptor(authenticate),
)), grpc.UnaryInterceptor(grpc_middleware.ChainUnaryServer(
grpc_auth.UnaryServerInterceptor(authenticate),
)))

gsrv := grpc.NewServer(opts...)
srv, err := newgrpcServer(config)
if err != nil {

return nil, err

}
api.RegisterLogServer(gsrv, srv)
return gsrv, nil

}

We hook up our authenticate() interceptor to our gRPC server so that our server
identifies the subject of each RPC to kick off the authorization process.

Now update your test server’s configuration to pass in an authorizer. In set-
up_test.go’s setupTest, import your auth package, and update the server’s configu-
ration to the following:

SecureYourServices/internal/server/server_test.go
authorizer := auth.New(config.ACLModelFile, config.ACLPolicyFile)
cfg = &Config{

CommitLog: clog,

Authorizer: authorizer,

}

Our server now authorizes its requests! You can verify that everything works
by running the tests again: § make test. Last time we ran them they failed
because our server didn’t deny the nobody client who doesn’t have any per-
missions. This time the tests pass since our server will now only authorize
users who are permitted based on your ACL!

What You Learned

You've learned how to secure services in three parts: by encrypting connections
with TLS, through mutual TLS authentication to verify the identities of clients
and servers, and by using ACL-based authorization to permit client actions.
Next we’ll make our service observable by adding metrics, logs, and traces.

http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/server/server.go
http://media.pragprog.com/titles/tjgo/code/SecureYourServices/internal/server/server_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

CHAPTER 6

Observe Your Systems

Imagine waking up one day and noticing that the last hole in your belt doesn’t
fit. You head to your scale and you see that you've gained a significant amount
of weight overnight. You go on an emergency diet and fitness regimen. A
couple of weeks later, you check the scales and see you gained even more
weight somehow. What’s going on?

What you need is insight into what’s going on in your body. If our body had
built-in observability, we’d have metrics on our body, like hormone levels that
we could graph on a dashboard. If we could see a sudden imbalance in our
hormone levels, with all things being equal, we could surmise that a hormonal
imbalance must be the root cause. But without being able to see what had
changed, you’d make many changes in search of the problem, each with their
own effects.

We make our systems observable so we can we can ask questions that will
give us insight into the system and debug unexpected problems. The keyword
is unexpected—making our system observable means we can fix arbitrary
problems that haven’t happened before. In this chapter, we’ll make our service
observable so we understand what’s going on within it.

Three Types of Telemetry Data

Observability is a measure of how well we understand our system’s inter-
nals—its behavior and state—from its external outputs. We use metrics,
structured logs, and traces as the outputs to make our systems observable.
While there are three types of telemetry data, each with its own use case we’ll
talk about, it'll often derive from the same events. For example, each time a
web service handles a request, it may increment a “requests handled” metric,
emit a log for the request, and make a trace.

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 6. Observe Your Systems ® 100

Metrics

Metrics measure numeric data over time, such as how many requests failed
or how long each request took. Metrics like these help to define service-level
indicators (SLI), objectives (SLO), and agreements (SLA). You'll use metrics
to report the health of your system, trigger internal alerts, and graph on
dashboards to get an idea of how your system’s doing at a glance.

Because metrics are numerical data, you can gradually reduce resolution to
reduce the storage requirements and time to query. For example, if we ran a
book publishing company, we’d have metrics on each book purchase. To ship
a customer’s books, we’d need to know the customer’s order, but after we've
delivered the books and the return policy has passed, we don’t care about
the order anymore. When we're doing accounting or analysis on our business,
that’s too much detail. Eventually we’d only need quarterly earnings to do
our taxes, calculate year-over-year growth, and know if we can hire more
editors and authors to expand our business.

There are three kinds of metrics:

Counters
Counters track the number of times an event happened, such as the
number of requests that failed or the sum of some fact of your system
like the number of bytes processed.

You'll often take a counter and use it to get a rate: the number of times
an event happened in an interval. Who cares about the total requests
we've received other than to brag about it? What we care about is how
many requests we've handled in the past second or minute—if that
dropped significantly you'd want to check for latency in your system.
You'd want to know when your request error rate spikes so you can see
what's wrong and fix it.

Histograms
Histograms show you a distribution of your data. You’ll mainly use his-
tograms for measuring the percentiles of your request duration and sizes.

Gauges
Gauges track the current value of something. You can replace that value
entirely. Gauges are useful for saturation-type metrics, like a host’s disk
usage percentage or the number of load balancers compared to your cloud
provider’s limits.

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Three Types of Telemetry Data ® 101

You could measure just about anything, so what data should you measure?
What metrics will provide worthy signals on your system? These are Google’s
four golden signals' to measure:

¢ Latency—the time it takes your service to process requests. If your

latency spikes, you often need to scale your system vertically by changing
to an instance with more memory, CPUs, or IOPS, or scale your system
horizontally by adding more instances to your load balancer.

e Traffic—the amount of demand on your service. For a typical web service,

this could be requests processed per second. For an online video game
or video streaming service, it could be the number of concurrent users.
These metrics are good for bragging rights (hopefully), but more important,
they can help give you an idea of the scale at which you're working and
when you've scaled to the point you need a new design.

e Errors—your service’s request failure rate. Internal server errors are par-

ticularly important.

* Saturation—a measure of your service’s capacity. For example, if your

service persists data to disk, at your current ingress rate will you run out
of hard drive space soon? If you have an in-memory store, how much
memory is your service using compared to the memory available?

While most debugging stories begin with metrics—either through an alert or
someone noticing abnormalities on the dashboard—you’ll go to your logs and
traces to learn more details about the problem. Let’s take a look at those next.

Structured Logs

Logs describe events in your system. You should log any event that gives you
useful insight into your service. Logs should help us troubleshoot, audit, and
profile so we can learn what went wrong and why, who ran what actions, and
how long those actions took. For example, a gRPC service log could log this
per RPC call:

{

1

"request _id": "f47acl0b-58cc-0372-8567-0e02b2c3d479",

"level": "info",

"ts": 1600139560.3399575,

"caller": "zap/server interceptors.go:67",
"msg": "finished streaming call with code OK",

"peer.address": "127.0.0.1:54304",

https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/#xref_monitoring_golden-signals
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/#xref_monitoring_golden-signals
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 6. Observe Your Systems ® 102

"grpc.start_time": "2020-09-14T22:12:40-05:00",
"system": "grpc",
"span.kind": "server",
"grpc.service": "log.vl.Log",
"grpc.method": "ConsumeStream",
"peer.address": "127.0.0.1:54304",
"grpc.code": "OK",
"grpc.time ns": 197740
}

In this log we see when the caller called the method, the caller’s IP address,
the service and method they called, if the call succeeded, and how long the
request took. In distributed systems, the request ID is helpful for piecing
together a complete picture of a request that’s handled by multiple services.

This gRPC log is a JSON formatted, structured log. A structured log is a set
of name and value ordered pairs encoded in consistent schema and format
that’s easily read by programs. Structured logs enable us to separate log
capturing, transporting, persisting, and querying. For example, we could
capture and transport our logs as protocol buffers and then re-encode them
in the Parquet® format and persist them in your columnar database.

I recommend collecting your structured logs in an event streaming platform
like Kafka to enable arbitrary processing and transporting of your logs. For
example, you can connect Kafka with a database like BigQuery to query your
logs while connecting Kafka with an object store like GCS to maintain histor-
ical copies.

At play is a balance between logging too little and being without the informa-
tion needed to debug a problem, or logging too much and being overwhelmed
by too much information and missing what’s important. I suggest erring on
logging too much, and cut back on the logs that aren’t useful as you learn
more. That way you're less likely to be without information you need to trou-
bleshoot or audit a problem.

Traces

Traces capture request lifecycles and let you track requests as they flow
through your system. Tracing user interfaces like Jaegar,” Stackdriver,* and
Lightstep® give you a visual representation of where requests spend time in
your system. In distributed systems, this is especially useful as requests

https://parquet.apache.org

oLk N

https://parquet.apache.org
https://www.jaegertracing.io
https://cloud.google.com/products/operations
https://lightstep.com
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Make Your Service Observable ® 103

execute over multiple services. The following screenshot shows an example
of a trace of Jocko’s request handling in Jaegar.

() ocaost 2 o

v jocko: request 38 ViewOption
March 4,2016 828 PM asa
f |

Soico&Oporaon oms
| ocko

nnnnn

server: handle response jooko 004ms Siar Te: 009ms

You can tag your traces with details to know more about each request. A
common example is tagging each trace with a user ID so that if users experi-
ence a problem, you can easily find their requests.

Traces comprise one or more spans. Spans can have parent/child relationships
or be linked as siblings. Each span represents a part of the request’s execution.
How detailed you break up those parts is up to you. Go wide to begin: trace
requests across all your services end-to-end, with spans that begin and end
at the entry and exit points of your services. Then go deep in each service
and trace important method calls.

Now, let’s update our code to make your service observable.

Make Your Service Observable

Let’s make your service observable by adding metrics, structured logs, and
traces. When you deploy your services to production, you'll usually configure
your metrics, structured logs, and traces to go to external services like
Prometheus,’ Elasticsearch,” and Jaegar. To keep things simple, we'll just
log our observability pieces to files and see what the data looks like.

6. https://prometheus.io
7.

https://prometheus.io
https://www.elastic.co/elasticsearch
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

YYYYYYYYY

Chapter 6. Observe Your Systems ¢ 104

OpenTelemetry® is a Cloud Native Computing Foundation (CNCF) project that
provides robust and portable APIs and libraries that we can use for metrics
and distributed tracing in our service. (OpenCensus and OpenTracing merged
to form OpenTelemetry, which is backward-compatible with existing Open-
Census integrations.) OpenTelemetry’s Go gRPC integration supports traces
but not metrics, so we’ll use the OpenCensus libraries in our service since
OpenCensus’s gRPC integration supports them both. Unfortunately, neither
OpenTelemetry nor OpenCensus support logging yet. OpenTelemetry should
support logging at some point—a special interest group9 is planning Open-
Telemetry’s logging specification. In the meantime, we’ll use Uber’s Zap logging
library."°

Most Go networking APIs support middleware, so you can wrap request
handling with your own logic. This is where I recommend beginning making
your service observable by wrapping all requests with metrics, logs, and
traces. That's why we're using the OpenCensus and Zap integrations’ inter-
ceptors.

Run the following commands within your project to add the OpenCensus and
Zap dependencies:

$ go get go.uber.org/zap@vl.10.0
$ go get go.opencensus.io@v0.22.2

Then open internal/server/server.go and update your imports to include the high-
lighted imports in this snippet:

ObserveYourServices/internal/server/server.go
import (
"context"

grpc_middleware "github.com/grpc-ecosystem/go-grpc-middleware"
grpc_auth "github.com/grpc-ecosystem/go-grpc-middleware/auth"
api "github.com/travisjeffery/proglog/api/v1"

"time"

grpc_zap "github.com/grpc-ecosystem/go-grpc-middleware/logging/zap"
grpc_ctxtags "github.com/grpc-ecosystem/go-grpc-middleware/tags"
"go.opencensus.io/plugin/ocgrpc"

"go.opencensus.io/stats/view"

"go.opencensus.io/trace"

"go.uber.org/zap"

"go.uber.org/zap/zapcore"

8. https://opentelemetry.io

9. .H.t.t-b.;:-/./.g"ighntj-b..-Ef.J.r-ﬁ./.c;-r;éﬁ—teIemetry/community#logs—working—group

http://media.pragprog.com/titles/tjgo/code/ObserveYourServices/internal/server/server.go
https://opentelemetry.io
https://github.com/open-telemetry/community#logs-working-group
https://github.com/uber-go/zap
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Make Your Service Observable ® 105

"google.golang.org/grpc"
"google.golang.org/grpc/codes"
"google.golang.org/grpc/credentials"
"google.golang.org/grpc/peer"
"google.golang.org/grpc/status"

)

Now update NewGRPCServer() to configure Zap:

ObserveYourServices/internal/server/server.go
func NewGRPCServer(config *Config, grpcOpts ...grpc.ServerOption) (
*grpc.Server,
error,
) {
logger := zap.L().Named("server")
zapOpts := []grpc_zap.Option{
grpc_zap.WithDurationField(
func(duration time.Duration) zapcore.Field {
return zap.Int64(
"grpc.time ns",
duration.Nanoseconds(),

}I
),
}

We specify the logger's name to differentiate the server logs from other logs
in our service. Then we add a “grpc.time_ns” field to our structured logs to log
the duration of each request in nanoseconds.

After the previous snippet, add the following snippet to configure how Open-
Census collects metrics and traces:

ObserveYourServices/internal/server/server.go
trace.ApplyConfig(trace.Config{DefaultSampler: trace.AlwaysSample()})
err := view.Register(ocgrpc.DefaultServerViews...)
if err != nil {

return nil, err

}

We've configured OpenCensus to always sample the traces because we're
developing our service and we want all of our requests traced.

In production you may not want to trace every request because it could affect
performance, require too much data, or trace confidential data. If tracing too
much is the problem, you can use the probability sampler and sample a
percentage of the requests. However, one problem with using the probability
sampler is that you may miss important requests. We could try to reconcile
these trade-offs by writing our own sampler that always traces important

http://media.pragprog.com/titles/tjgo/code/ObserveYourServices/internal/server/server.go
http://media.pragprog.com/titles/tjgo/code/ObserveYourServices/internal/server/server.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

vy

vy

Chapter 6. Observe Your Systems ® 106

requests and samples a percentage of the rest of the requests. The code for
that would look like this:

halfSampler := trace.ProbabilitySampler(0.5)
trace.ApplyConfig(trace.Config{

DefaultSampler: func(p trace.SamplingParameters) trace.SamplingDecision {

if strings.Contains(p.Name, "Produce"){
return trace.SamplingDecision{Sample: true}

}
return halfSampler(p)

h
1)

The views specify what stats OpenCensus will collect. The default server views
track stats on:

¢ Received bytes per RPC
¢ Sent bytes per RPC

e Latency

e Completed RPCs

Now, change the grpcOpts after the previous snippet to include the lines high-
lighted here:

ObserveYourServices/internal/server/server.go
grpcOpts = append(grpcOpts,
grpc.StreamInterceptor(
grpc_middleware.ChainStreamServer(
grpc_ctxtags.StreamServerInterceptor(),
grpc_zap.StreamServerInterceptor(logger, zapOpts...),
grpc_auth.StreamServerInterceptor(authenticate),
)), grpc.UnaryInterceptor(grpc_middleware.ChainUnaryServer(
grpc_ctxtags.UnaryServerInterceptor(),
grpc_zap.UnaryServerInterceptor(logger, zapOpts...),
grpc_auth.UnaryServerInterceptor(authenticate),
),
grpc.StatsHandler(&ocgrpc.ServerHandler{}),
)

These lines configure gRPC to apply the Zap interceptors that log the gRPC
calls and attach OpenCensus as the server’s stat handler so that OpenCensus
can record stats on the server’s request handling.

Okay, now we just have to change our test setup to configure the metrics and
traces log files. Open internal/server/server_test.go and add these imports:

ObserveYourServices/internal/server/server_test.go
nosh

"time"

"flag"

http://media.pragprog.com/titles/tjgo/code/ObserveYourServices/internal/server/server.go
http://media.pragprog.com/titles/tjgo/code/ObserveYourServices/internal/server/server_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Make Your Service Observable ® 107

"go.opencensus.io/examples/exporter"
"go.uber.org/zap"

Below your imports, add this snippet that defines a debug flag to enable
observability output:

ObserveYourServices/internal/server/server_test.go
// imports...

var debug = flag.Bool("debug", false, "Enable observability for debugging.")

func TestMain(m *testing.M) {
flag.Parse()

if *debug {
logger, err := zap.NewDevelopment()
if err != nil {
panic(err)
}

zap.ReplaceGlobals(logger)
}
0os.Exit(m.Run())

}

When a test file implements TestMain(m *testing.M), Go will call TestMain(m) instead
of running the tests directly. TestMain() gives us a place for setup that applies
to all tests in that file, like enabling our debug output. Flag parsing has to
go in TestMain() instead of init(), otherwise Go can’t define the flag and your code
will error and exit.

In the setupTest() function, after the authorizer variable, add this snippet:

ObserveYourServices/internal/server/server_test.go

var telemetryExporter *exporter.LogExporter

if *debug {
metricsLogFile, err := ioutil.TempFile("", "metrics-*.log")
require.NoError(t, err)
t.Logf("metrics log file: %s

, metricsLogFile.Name())

tracesLogFile, err := ioutil.TempFile("", "traces-*.log")
require.NoError(t, err)
t.Logf("traces log file: %s", tracesLogFile.Name())

telemetryExporter, err = exporter.NewLogExporter(exporter.Options{
MetricsLogFile: metricsLogFile.Name(),
TracesLogFile: tracesLogFile.Name(),
ReportingInterval: time.Second,

1)

require.NoError(t, err)

err = telemetryExporter.Start()

require.NoError(t, err)

http://media.pragprog.com/titles/tjgo/code/ObserveYourServices/internal/server/server_test.go
http://media.pragprog.com/titles/tjgo/code/ObserveYourServices/internal/server/server_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

YYYVYY

Chapter 6. Observe Your Systems ® 108

This snippet sets up and starts the telemetry exporter to write to two files.
Each test gets its own separate trace and metrics files so we can see each
test’s requests.

At the bottom of setupTest(), update the teardown function to include these
highlighted lines:

ObserveYourServices/internal/server/server_test.go
return rootClient, nobodyClient, cfg, func() {
server.Stop()
rootConn.Close()
nobodyConn.Close()
1.Close()
if telemetryExporter != nil {
time.Sleep (1500 * time.Millisecond)
telemetryExporter.Stop()
telemetryExporter.Close()

}

We sleep for 1.5 seconds to give the telemetry exporter enough time to flush
its data to disk. Then we stop and close the exporter.

Run your server tests by navigating into the internal/server directory and execut-
ing this command:

$ go test -v -debug=true

In the test output, find these metrics and traces file logs, and open them to
see the exported metrics and trace data:

metrics log file: /tmp/metrics-{{random string}}.log
traces log file: /tmp/traces-{{random string}}.log

For example, here’s the completed RPC stat showing that the server handled
two successful produce calls:

Metric: name: grpc.io/server/completed rpcs, type: TypeCumulativeInt64, unit: ms
Labels: [
{grpc_server _method}={log.vl.Log/Produce true}
{grpc_server status}={0K true}]
Value : value=2

And here’s a trace for a produce call:

TracelD: 3e3343b74193e6a807cac515e82fb3b3
SpanID: 045493d1be3f7188
Span: log.vl.Log.Produce

Status: [0]
Elapsed: 1ms
SpanKind: Server

http://media.pragprog.com/titles/tjgo/code/ObserveYourServices/internal/server/server_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

What You Learned ® 109

Attributes:
- Client=false
- FailFast=false

MessageEvents:

Received
UncompressedByteSize: 15
CompressedByteSize: 0

Sent
UncompressedByteSize: 0
CompressedByteSize: 5

We can now observe what’s going on in our service!

What You Learned

In this chapter, you learned about observability and its role in making reliable
systems. You'll find tracing especially useful in distributed systems, as it
gives you a complete story of requests that take part over multiple services.
You also learned how to make your service observable. Next, we’ll make our
server support clustering to the service highly available and scalable.

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Part III

Distribute

CHAPTER 7

Server-to-Server Service Discovery

So far we've built a secure, stand-alone gRPC web service. Now let’s start our
journey toward making our stand-alone service into a distributed one by
incorporating service discovery so that our service automatically handles
when a node is added to or removed from our cluster.

If you're not familiar with service discovery, don’'t worry—you will be after
reading this chapter. Service discovery is one of the coolest things about dis-
tributed services: machines automatically discovering other machines! (When
Skynet becomes self aware and takes over, we can thank service discovery
for playing a part.) Here’s a quick overview of the many benefits of service
discovery.

Why Use Service Discovery?

Service discovery is the process of figuring out how to connect to a service.
A service discovery solution must keep an up-to-date list (also known as a
registry) of services, their locations, and their health. Downstream services
then query this registry to discover the location of upstream services and
connect to them—for example, a web service discovering and connecting to
its database. This way, even if the upstream services change (scale up or
down, or get replaced), downstream services can still connect to them.

In the pre-cloud days, you could set up “service discovery” with manually
managed and configured static addresses, which was workable since applica-
tions ran on static hardware. Today, service discovery plays a big part in
modern cloud applications where nodes change frequently.

Instead of using service discovery, some developers put load balancers in
front of their services so that the load balancers provide static IPs. But for
server-to-server communication, where you control the servers and you don’t

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 7. Server-to-Server Service Discovery ® 114

need a load balancer to act as a trust boundary' between clients and servers,
use service discovery instead. Load balancers add cost, increase latency,
introduce single points of failure, and need updates as services scale up and
down. If you manage tens or hundreds of microservices, then not using service
discovery means you also have to manage tens or hundreds of load balancers
and DNS records. For a distributed service like ours, using a load balancer
would force us to depend on a load-balancer service like nginx or the various
cloud load balancers like AWS’s ELB or Google Cloud’s Load Balancer. This
would increase our operational burden, infrastructure costs, and latency.

In our system, we have two service-discovery problems to solve:

e How will the servers in our cluster discover each other?
e How will the clients discover the servers?

In this chapter, we’ll work on implementing the discovery for the servers.

Then, after we implement consensus in Chapter 8, Coordinate Your Services

Now that you know what service discovery can do, we're ready to embed it
into our service.

Embed Service Discovery

When you have an application that needs to talk to a service, the tool you
use for service discovery needs to perform the following tasks:

e Manage a registry of services containing info such as their IPs and ports;
e Help services find other services using the registry;

e Health check service instances and remove them if they’re not well; and
* Deregister services when they go offline.

Historically, people who've built distributed services have depended on sepa-
rate, stand-alone services for service discovery (such as Consul, ZooKeeper,
and Etcd). In this architecture, users of your service run two clusters: one
for your service and one for your service discovery. The benefit of using a
service-discovery service is that you don’t have to build service discovery
yourself. The downside to using such a service, from your users’ standpoint,
is that they have to learn, launch, and operate an extra service’s cluster. So
using a stand-alone service for discovery removes the burden from your
shoulders and puts it on your users’. That means many users won’t use your

1. : kipedia.org/wiki/Trust_boundary

https://en.wikipedia.org/wiki/Trust_boundary
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Embed Service Discovery ® 115

service because the burden is too much for them, and users who do take it
on won'’t recommend your service to others as often or as highly.

So why did people who built distributed services use stand-alone service-
discovery services, and why did their users put up with the extra burden?
Because neither had much of a choice. The people building distributed services
didn’t have the libraries they needed to embed service discovery into their
services, and users didn’t have other options.

Fortunately, times have changed. Today, Gophers have Serf—a library that
provides decentralized cluster membership, failure detection, and orchestration
that you can use to easily embed service discovery into your distributed ser-
vices. Hashicorp, the company that created it, uses Serf to power its own
service-discovery product, Consul, so you're in good company.

Using Serf to embed service discovery into your services means that you don’t
have to implement service discovery yourself and your users don’t have to
run an extra cluster. It's a win-win.

When to Depend on a Stand-Alone Service-Discovery Solution
You may encounter cases where depending on a stand-alone ser-
vice for service discovery makes sense—for example, if you need
to integrate your service discovery with many platforms. You sink
a lot of effort into that kind of work, and that’s likely a poor use
72 of your time when you could just use a service like Consul that
_, provides those integrations. In any case, Serf is always a good
place to start. Once you've developed your service to solve the core
problem it’s targeting and your service is stable or close to it, then
you will have a good sense of whether you need to depend on a
service-discovery service.

Here are some other benefits of building our service with Serf:

e In the early days of building a service, Serf is faster to set up and build
our service against than having to set up a separate service.

¢ [t’s easier to move from Serf to a stand-alone service than to move from
a stand-alone service to Serf, so we still have both options open.

e Our service will be easier and more flexible to deploy, making our service
more accessible.

So for our service, we'll use Serf to build service discovery.

Now that we've seen the benefits of using Serf, let’s quickly discuss how Serf
does its thing.

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 7. Server-to-Server Service Discovery ® 116

Discover Services with Serf

Serf maintains cluster membership by using an efficient, lightweight gossip
protocol to communicate between the service’s nodes. Unlike service registry
projects like ZooKeeper and Consul, Serf doesn’'t have a central-registry
architectural style. Instead, each instance of your service in the cluster runs
as a Serf node. These nodes exchange messages with each other in the same
way a zombie apocalypse might occur: one infected zombie soon spreads to
infect everyone else. With Serf, instead of a spreading zombie virus, you're
spreading information about the nodes in your cluster. You listen to Serf for
messages about changes in the cluster and then handle them accordingly.

To implement service discovery with Serf we need to:
1. Create a Serf node on each server.

2. Configure each Serf node with an address to listen on and accept connec-
tions from other Serf nodes.

3. Configure each Serf node with addresses of other Serf nodes and join their
cluster.

4. Handle Serf’s cluster discovery events, such as when a node joins or fails
in the cluster.

Let’s get coding.

Serf is a lightweight tool that you can use for infinite use cases, but its API
can be verbose when you have a specific problem to solve. The specific job
we want our discovery layer to solve is to tell us when a server joined or left
the cluster and what its ID and address are with as little API as possible. So
let’s make a discovery package our server will use.

To get started, install the Serf package by running this command:

$ go get github.com/hashicorp/serf@v0.8.5

Then create an internal/discovery directory and inside it create a membership.go file,
beginning with this code:

ServerSideServiceDiscovery/internal/discovery/membership.go

package discovery

import (
"net"

"go.uber.org/zap"

"github.com/hashicorp/serf/serf"

http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/discovery/membership.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Line 1

20

type Membership struct {
Config
handler Handler
serf *serf.Serf
events chan serf.Event
logger *zap.Logger

}

func New(handler Handler, config Config)
c := &Membership{

Discover Services with Serf ® 117

(*Membership, error) {

Config: config,
handler: handler,
logger: zap.L().Named("membership"),
}
if err := c.setupSerf(); err != nil {
return nil, err
}
return c, nil

}

Membership is our type wrapping Serf to provide discovery and cluster member-
ship to our service. Users will call New() to create a Membership with the required

configuration and event handler.

Add this code below the New() function to define the configuration type and set up Serf:

ServerSideServiceDiscovery/internal/discovery/membership.go

type Config struct {

) {

NodeName string
BindAddr string
Tags map[string]string
StartJoinAddrs []string
}
func (m *Membership) setupSerf() (err error
addr, err := net.ResolveTCPAddr("tcp", m.BindAddr)
if err != nil {
return err
}
config := serf.DefaultConfig()

config.Init()
config.MemberlistConfig.BindAddr
config.MemberlistConfig.BindPort
m.events = make(chan serf.Event)
config.EventCh = m.events
config.Tags m.Tags
config.NodeName = m.Config.NodeName
m.serf, err = serf.Create(config)
if err != nil {

return err

}

addr.IP.String()
addr.Port

http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/discovery/membership.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 7. Server-to-Server Service Discovery ® 118

go m.eventHandler()
if m.StartJoinAddrs != nil {
~, err = m.serf.Join(m.StartJoinAddrs, true)

if err != nil {
return err
}
}
return nil

-}
Serf has a lot of configurable parameters, but the five parameters you'll typi-
cally use are:

¢ NodeName—the node name acts as the node’s unique identifier across the
Serf cluster. If you don’t set the node name, Serf uses the hostname.

¢ BindAddr and BindPort—Serf listens on this address and port for gossiping.

* Tags—Serf shares these tags to the other nodes in the cluster and should
use these tags for simple data that informs the cluster how to handle this
node. For example, Consul shares each node’s RPC address with Serf
tags, and once they know each other’s RPC address, they can make RPCs
to each other. Consul shares whether the node is a voter or non-voter,
which changes the node’s role in the Raft cluster. We'll talk about this
more in the next chapter when we use Raft to build consensus in our
cluster. In our code, similar to Consul, we’ll share each node’s user-con-
figured RPC address with a Serf tag so the nodes know which addresses
to send their RPCs.

¢ EventCh—the event channel is how you’ll receive Serf’s events when a node
joins or leaves the cluster. If you want a snapshot of the members at any
point in time, you can call Serf's Members() method.

e StartjoinAddrs—when you have an existing cluster and you create a new node
that you want to add to that cluster, you need to point your new node to
at least one of the nodes now in the cluster. After the new node connects
to one of those nodes in the existing cluster, it'll learn about the rest of
the nodes, and vice versa (the existing nodes learn about the new node).
The StartjoinAddrs field is how you configure new nodes to join an existing
cluster. You set the field to the addresses of nodes in the cluster, and
Serf’s gossip protocol takes care of the rest to join your node to the cluster.
In a production environment, specify at least three addresses to make
your cluster resilient to one or two node failures or a disrupted network.

setupSerf() creates and configures a Serf instance and starts the eventsHandler()
goroutine to handle Serf's events.

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Discover Services with Serf ® 119

Define the Handler interface by putting this snippet below setupSerf():

ServerSideServiceDiscovery/internal/discovery/membership.go
type Handler interface {
Join(name, addr string) error
Leave(name string) error

}

The Handler represents some component in our service that needs to know
when a server joins or leaves the cluster.

In this chapter we will build a component that replicates the data of servers
that join the cluster. In the next chapter, where we will build consensus
in our service, Raft needs to know when servers join the cluster to coordi-
nate with them.

Add this snippet below Handler() to define the eventHandler() method:

ServerSideServiceDiscovery/internal/discovery/membership.go
func (m *Membership) eventHandler() {
for e := range m.events {
switch e.EventType() {
case serf.EventMemberJoin:

for , member := range e.(serf.MemberEvent).Members {
if m.isLocal(member) {
continue
}
m.handleJoin(member)
}
case serf.EventMemberLeave, serf.EventMemberFailed:
for , member := range e.(serf.MemberEvent).Members {
if m.isLocal(member) {
return
}
m.handlelLeave(member)
}
}
}
}
func (m *Membership) handleJoin(member serf.Member) {
if err := m.handler.Join(
member.Name,
member.Tags["rpc_addr"],
); err !'= nil {
m.logError(err, "failed to join", member)
}
}
func (m *Membership) handleLeave(member serf.Member) {
if err := m.handler.Leave(

member.Name,

http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/discovery/membership.go
http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/discovery/membership.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 7. Server-to-Server Service Discovery ® 120

); err !'=nil {
m.logError(err, "failed to leave", member)
}
}

The eventHandler() runs in a loop reading events sent by Serf into the events
channel, handling each incoming event according to the event’s type. When
a node joins or leaves the cluster, Serf sends an event to all nodes, including
the node that joined or left the cluster. We check whether the node we got an
event for is the local server so the server doesn’t act on itself—we don’t want
the server to try and replicate itself, for example.

Notice that Serf may coalesce multiple members updates into one event. For
example, say ten nodes join around the same time; in that case, Serf will send
you one join event with ten members, so that’s why we iterate over the event’s
members.

Put this code below eventHandler() to implement the rest of Membership:

ServerSideServiceDiscovery/internal/discovery/membership.go
func (m *Membership) isLocal(member serf.Member) bool {
return m.serf.LocalMember().Name == member.Name

}

func (m *Membership) Members() []serf.Member {
return m.serf.Members()

}

func (m *Membership) Leave() error {
return m.serf.Leave()

}

func (m *Membership) logError(err error, msg string, member serf.Member) {
m.logger.Error(
msg,
zap.Error(err),
zap.String("name", member.Name),
zap.String("rpc_addr", member.Tags["rpc addr"]l),

}
These methods comprise the rest of Membership:

e islocal() returns whether the given Serf member is the local member by
checking the members’ names.

* Members() returns a point-in-time snapshot of the cluster’s Serf members.
¢ Leave() tells this member to leave the Serf cluster.

e logError() logs the given error and message.

http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/discovery/membership.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Discover Services with Serf ® 121

Let’s test our Membership code now. Create a membership test.go file in the inter-
nal/discovery directory, and begin the file with this code:

ServerSideServiceDiscovery/internal/discovery/membership_test.go
package discovery test

import (
"fmt"
"testing"
"time"

"github.com/hashicorp/serf/serf"

"github.com/stretchr/testify/require"

"github.com/travisjeffery/go-dynaport"
"github.com/travisjeffery/proglog/internal/discovery"

)
func TestMembership(t *testing.T) {

m, handler := setupMember(t, nil)
m, = setupMember(t, m)
m, _ = setupMember(t, m)

require.Eventually(t, func() bool {

return 2 == len(handler.joins) &&
3 == len(m[0].Members()) &&
0 == len(handler.leaves)

}, 3*time.Second, 250*time.Millisecond)
require.NoError(t, m[2].Leave())

require.Eventually(t, func() bool {
return 2 == len(handler.joins) &&
3 == len(m[0].Members()) &&
serf.StatusLeft == m[0].Members()[2].Status &&
1 == len(handler.leaves)
}, 3*time.Second, 250*time.Millisecond)

require.Equal(t, fmt.Sprintf("%d", 2), <-handler.leaves)
}

Our test sets up a cluster with multiple servers and checks that the Membership
returns all the servers that joined the membership and updates after a server
leaves the cluster. The handler’s joins and leaves channels tell us how many
times each event happened and for what servers. Each member has a status
to know how its doing;:

e Alive—the server is present and healthy.

e Leaving—the server is gracefully leaving the cluster.
* Left—the server has gracefully left the cluster.

e Failed—the server unexpectedly left the cluster.

http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/discovery/membership_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 7. Server-to-Server Service Discovery ® 122

TestMembership() relies on a helper method to set up a member each time you
call it. Define the helper setupMember() by adding the following code below
TestMembership():

ServerSideServiceDiscovery/internal/discovery/membership_test.go
func setupMember(t *testing.T, members []*Membership) (
[1*Membership, *handler,

) {
id := len(members)
ports := dynaport.Get(1)
addr := fmt.Sprintf("%s:%d", "127.0.0.1", ports[0O])
tags := map[string]lstring{
"rpc addr": addr,
}
c := Config{
NodeName: fmt.Sprintf("%sd", id),
BindAddr: addr,
Tags: tags,
}
h := &handler{}
if len(members) == 0 {
h.joins = make(chan map[string]string, 3)
h.leaves = make(chan string, 3)
} else {
c.StartJoinAddrs = []string{
members[0] .BindAddr,
}
}
m, err := New(h, c)
require.NoError(t, err)
members = append(members, m)
return members, h
}

setupMember() sets up a new member under a free port and with the member’s
length as the node name so the names are unique. The member’s length also
tells us whether this member is the cluster’s initial member or we have a
cluster to join.

Define the handler mock and finish the test code by putting this snippet below
setupMember():

ServerSideServiceDiscovery/internal/discovery/membership_test.go
type handler struct {

joins chan map[string]string

leaves chan string

}

func (h *handler) Join(id, addr string) error {
if h.joins != nil {

http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/discovery/membership_test.go
http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/discovery/membership_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Request Discovered Services and Replicate Logs ® 123

h.joins <- map[string]string{

"id": id,
"addr": addr,
}
}
return nil
}
func (h *handler) Leave(id string) error {
if h.leaves != nil {
h.leaves <- id
}
return nil
}

The handler mock tracks how many times our Membership calls the handler’s
Join() and Leave() methods, and with what IDs and addresses.

Run the Membership’s tests and verify they pass.

Now that we have our discovery and membership package, let’s integrate it
with our service and build something we couldn’t before—replication!

Request Discovered Services and Replicate Logs

Let’s build on our service discovery to add replication in our service so that
we store multiple copies of the log data when we have multiple servers in a
cluster. Replication makes our service more resilient to failures. For example,
if a node’s disk fails and we can’t recover its data, replication can save our
butts because it ensures that there’s a copy saved on another disk.

In the next chapter, we’ll coordinate the servers so our replication will have
a defined leader-follower relationship, but for now we simply want the servers
to replicate each other when they discover each other and not worry about
whether they should, like the scientists from Jurassic Park. Our goal for the
rest of this chapter is to build something simple that makes use of our service’s
discovery and sets us up for our coordinated replication in the next chapter.

Discovery alone isn’t useful—so what if a bunch of computers discover each
other and they just sit there doing nothing? Discovery is important because
the discovery events trigger other processes in our service like replication and
consensus. When servers discover other servers, we want to trigger the servers
to replicate. We need a component in our service that handles when a server
joins (or leaves) the cluster and begins (or ends) replicating from it.

Our replication will be pull-based, with the replication component consum-
ing from each discovered server and producing a copy to the local server.

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 7. Server-to-Server Service Discovery ® 124

In pull-based replication, the consumer periodically polls the data source to
check if it has new data to consume. In push-based replication, the data
source pushes the data to its replicas. (In the next chapter we’ll integrate Raft
to our service—and it’s push-based.)

Pull-based systems’ flexibility can be great for log and message systems where
the consumers and work loads can differ—for example, if you have a client
that stream processes its data and runs continuously and you have a client
that batch processes its data and runs every twenty-four hours. When repli-
cating between servers, we replicate the newest data with as low latency as
possible with homogeneous servers, so pull-based and push-based systems
behave about the same. But it'll be easier to write our own pull-based replica-
tion that will highlight why we need consensus.

To add replication to our cluster, we need a replication component that acts
as a membership handler handling when a server joins and leaves the cluster.
When a server joins the cluster, the component will connect to the server and
run a loop that consumes from the discovered server and produces to the
local server.

In the interal/log directory, create a new file named replicator.go to contain our
replication code, beginning with this snippet:

ServerSideServiceDiscovery/internal/log/replicator.go
package log

import (
"context"
"sync"

"go.uber.org/zap"
"google.golang.org/grpc"

api "github.com/travisjeffery/proglog/api/v1"
)
type Replicator struct {

DialOptions []grpc.DialOption
LocalServer api.LogClient

logger *zap.Logger

mu sync.Mutex

servers map[string]chan struct{}
closed bool

close chan struct{}

}

The replicator connects to other servers with the gRPC client, and we need
to configure the client so it can authenticate with the servers. The clientOptions

http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/log/replicator.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Request Discovered Services and Replicate Logs ® 125

field is how we pass in the options to configure the client. The servers field
is a map of server addresses to a channel, which the replicator uses to stop
replicating from a server when the server fails or leaves the cluster. The
replicator calls the produce function to save a copy of the messages it con-
sumes from the other servers.

Next, put the following Join() method below the replicator struct:

ServerSideServiceDiscovery/internal/log/replicator.go

func (r *Replicator) Join(name, addr string) error {
r.mu.Lock()
defer r.mu.Unlock()
r.init()

if r.closed {

return nil

}

if , ok := r.servers[name]; ok {
// already replicating so skip
return nil

b

r.servers[name] = make(chan struct{})

go r.replicate(addr, r.servers[name])

return nil

}

The Join(name, addr string) method adds the given server address to the list of
servers to replicate and kicks off the add goroutine to run the actual replication
logic.

Now put the replicate(addr string) method, containing the replication logic, below
the previous snippet:

ServerSideServiceDiscovery/internal/log/replicator.go
func (r *Replicator) replicate(addr string, leave chan struct{}) {

cc, err := grpc.Dial(addr, r.DialOptions...)
if err != nil {
r.logError(err, "failed to dial", addr)
return
}
defer cc.Close()
client := api.NewLogClient(cc)
ctx := context.Background()
stream, err := client.ConsumeStream(ctx,
&api.ConsumeRequest{
Offset: O,

b

http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/log/replicator.go
http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/log/replicator.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 7. Server-to-Server Service Discovery ® 126

if err !'= nil {
r.logError(err, "failed to consume", addr)
return
}
records := make(chan *api.Record)
go func() {
for {
recv, err := stream.Recv()
if err !'= nil {
r.logError(err, "failed to receive", addr)
return
}

records <- recv.Record

30

You saw most of this code before when we tested our stream consumer and
producer. Here we create a client and open up a stream to consume all logs
on the server.

Append the following snippet to finish implementing replicate():

ServerSideServiceDiscovery/internal/log/replicator.go

for {
select {
case <-r.close:
return
case <-leave:
return
case record := <-records:
_, err = r.LocalServer.Produce(ctx,
&api.ProduceRequest{
Record: record,
I
)
if err !'= nil {
r.logError(err, "failed to produce", addr)
return
}
}
}

}

The loop consumes the logs from the discovered server in a stream and then
produces to the local server to save a copy. We replicate messages from the
other server until that server fails or leaves the cluster and the replicator
closes the channel for that server, which breaks the loop and ends the replicate()
goroutine. The replicator closes the channel when Serf receives an event

http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/log/replicator.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Request Discovered Services and Replicate Logs ® 127

saying that the other server left the cluster, and then this server calls the
Leave() method that we’re about to add.

Write the Leave(name string) method beneath your replicate() method with the fol-
lowing code:

ServerSideServiceDiscovery/internal/log/replicator.go

func (r *Replicator) Leave(name string) error {
r.mu.Lock()
defer r.mu.Unlock()

r.init()

if , ok := r.servers[name]; !ok {
return nil

}

close(r.servers[name])
delete(r.servers, name)
return nil

}

This Leave(name string) method handles the server leaving the cluster by
removing the server from the list of servers to replicate and closes the server’s
associated channel. Closing the channel signals to the receiver in the replicate()
goroutine to stop replicating from that server.

Next, add the following init() helper below your Leave() method:

ServerSideServiceDiscovery/internal/log/replicator.go
func (r *Replicator) init() {
if r.logger == nil {
r.logger = zap.L().Named("replicator")

}
if r.servers == nil {
r.servers = make(map[string]chan struct{})

}
if r.close == nil {
r.close = make(chan struct{})

}

We use this init() helper to lazily initialize the server map. You should use lazy
initialization to give your structs a useful zero value® because having a useful
zero value reduces the API's size and complexity while maintaining the same
functionality. Without a useful zero value, we’d either have to export a repli-
cator constructor function for the user to call or export the servers field on
the replicator struct for the user to set—making more API for the user to learn
and then requiring them to write more code before they can use our struct.

2. https://dave.cheney.net/2013/01/19/what-is-the-zero-value-and-why-is-it-useful

http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/log/replicator.go
http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/log/replicator.go
https://dave.cheney.net/2013/01/19/what-is-the-zero-value-and-why-is-it-useful
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 7. Server-to-Server Service Discovery ® 128

Append the following snippet to implement the Close() method:

ServerSideServiceDiscovery/internal/log/replicator.go
func (r *Replicator) Close() error {
r.mu.Lock()
defer r.mu.Unlock()
r.init()

if r.closed {
return nil

}

r.closed = true
close(r.close)
return nil

}

Close() closes the replicator so it doesn’t replicate new servers that join the
cluster and it stops replicating existing servers by causing the replicate() gorou-
tines to return.

We have one last helper to add to handle errors. Add this logError(err error, msg,
addr string) method at the bottom of the file:

ServerSideServiceDiscovery/internal/log/replicator.go
func (r *Replicator) logError(err error, msg, addr string) {
r.logger.Error(
msg,
zap.String("addr", addr),
zap.Error(err),

}

With this method, we just log the errors because we have no other use for
them and to keep the code short and simple. If your users need access to
the errors, a technique you can use to expose these errors is to export an
error channel and send the errors into it for your users to receive and
handle.

That’s it for our replicator. In terms of components, we now have our repli-
cator, membership, log, and server. Each service instance must set up and
connect these components together to work. For simpler, short-running
programs, I'll make a run package that exports a Run() function that’s
responsible for running the program. Rob Pike’s Ivy project’ works this way.
For more complex, long-running services, I'll make an agent package that
exports an Agent type that manages the different components and processes

3. https://github.com/robpike/ivy

http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/log/replicator.go
http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/log/replicator.go
https://github.com/robpike/ivy
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Request Discovered Services and Replicate Logs ® 129

that make up the service. Hashicorp’s Consul® works this way. Let’s write an
Agent for our service and then test our log, server, membership, and replicator
end-to-end.

Create an internal/agent directory with a file named agent.go inside that begins
with this code:

ServerSideServiceDiscovery/internal/agent/agent.go
package agent

import (
"crypto/tls"
"fmt"
"net"
"sync"

"go.uber.org/zap"

"google.golang.org/grpc"
"google.golang.org/grpc/credentials"

api "github.com/travisjeffery/proglog/api/v1"
"github.com/travisjeffery/proglog/internal/auth"
"github.com/travisjeffery/proglog/internal/discovery"
"github.com/travisjeffery/proglog/internal/log"
"github.com/travisjeffery/proglog/internal/server"

)

type Agent struct {

Config
log *1log.Log
server *grpc.Server

membership *discovery.Membership
replicator *log.Replicator

shutdown bool
shutdowns chan struct{}
shutdownLock sync.Mutex

}

An Agent runs on every service instance, setting up and connecting all the
different components. The struct references each component (log, server,
membership, replicator) that the Agent manages.

After the Agent, add its Config struct:

ServerSideServiceDiscovery/internal/agent/agent.go
type Config struct {
ServerTLSConfig *tls.Config
PeerTLSConfig *tls.Config

4. https://github.com/hashicorp/consul

http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/agent/agent.go
http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/agent/agent.go
https://github.com/hashicorp/consul
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 7. Server-to-Server Service Discovery ® 130

DataDir string
BindAddr string
RPCPort int

NodeName string

StartJoinAddrs []string
ACLModelFile string
ACLPolicyFile string

}
func (c Config) RPCAddr() (string, error) {

host, _, err := net.SplitHostPort(c.BindAddr)

if err !'= nil {

return "", err

}

return fmt.Sprintf("%s:%d", host, c.RPCPort), nil
}

The Agent sets up the components so its Config comprises the components’
parameters to pass them through to the components.

Below Config, place this Agent creator function:

ServerSideServiceDiscovery/internal/agent/agent.go
func New(config Config) (*Agent, error) {

a := &Agent{
Config: config,
shutdowns: make(chan struct{}),
}
setup := []func() error{
a.setuplLogger,
a.setuplLog,
a.setupServer,
a.setupMembership,
}
for , fn := range setup {
if err := fn(); err !'= nil {
return nil, err
}
}

return a, nil

}

New(Config) creates an Agent and runs a set of methods to set up and run the
agent’s components. After we run New(), we expect to have a running, function-
ing service. We've seen most of these setup codes before when testing our
components, so we'll cover them quickly.

http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/agent/agent.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Request Discovered Services and Replicate Logs ¢ 131

First, set up the logger with this setupLogger() method. Put setupLogger() under New():

ServerSideServiceDiscovery/internal/agent/agent.go
func (a *Agent) setuplLogger() error {
logger, err := zap.NewDevelopment()
if err != nil {
return err
b
zap.ReplaceGlobals(logger)
return nil

}

Then, we set up the log with this setupLog() method. Put setupLog() under the
previous snippet:

ServerSideServiceDiscovery/internal/agent/agent.go
func (a *Agent) setuplLog() error {
var err error
a.log, err = log.NewlLog(
a.Config.DataDir,
log.Config{},
)
return err

}
Now we set up the server with setupServer(). Add setupServer() after setuplLog():

ServerSideServiceDiscovery/internal/agent/agent.go
func (a *Agent) setupServer() error {
authorizer := auth.New(
a.Config.ACLModelFile,
a.Config.ACLPolicyFile,
)
serverConfig := &server.Config{
CommitLog: a.log,
Authorizer: authorizer,
}
var opts []grpc.ServerOption
if a.Config.ServerTLSConfig != nil {
creds := credentials.NewTLS(a.Config.ServerTLSConfig)
opts = append(opts, grpc.Creds(creds))
}
var err error
a.server, err = server.NewGRPCServer(serverConfig, opts...)

if err !'= nil {
return err
}
rpcAddr, err := a.RPCAddr()
if err != nil {
return err

}

http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/agent/agent.go
http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/agent/agent.go
http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/agent/agent.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 7. Server-to-Server Service Discovery ® 132

1n, err := net.Listen("tcp", rpcAddr)

if err !'= nil {
return err
}
go func() {
if err := a.server.Serve(ln); err !'= nil {
= a.Shutdown()
}

0

return err

}

Then we set up the membership with setupMembership(). Place setupMembership()
after setupServer():

ServerSideServiceDiscovery/internal/agent/agent.go
func (a *Agent) setupMembership() error {
rpcAddr, err := a.Config.RPCAddr()
if err !'= nil {
return err
}
var opts []grpc.DialOption
if a.Config.PeerTLSConfig != nil {
opts = append(opts, grpc.WithTransportCredentials(
credentials.NewTLS(a.Config.PeerTLSConfig),
),
)

}
conn, err := grpc.Dial(rpcAddr, opts...)
if err !'= nil {
return err
}
client := api.NewLogClient(conn)

a.replicator = &log.Replicator{
DialOptions: opts,
LocalServer: client,
}
a.membership, err = discovery.New(a.replicator, discovery.Config{
NodeName: a.Config.NodeName,
BindAddr: a.Config.BindAddr,
Tags: map[string]string{
"rpc_addr": rpcAddr,

+

StartJoinAddrs: a.Config.StartJoinAddrs,
b
return err

}

setupMembership() sets up a Replicator with the gRPC dial options needed to connect
to other servers and a client so the replicator can connect to other servers,

http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/agent/agent.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Request Discovered Services and Replicate Logs ® 133

consume their data, and produce a copy of the data to the local server. Then
we create a Membership passing in the replicator and its handler to notify the
replicator when servers join and leave the cluster.

That’s all of the agent’s setup code. If we call New() now, we’d have a running
agent. At some point we’ll want to shut down the agent, so put this Shutdown()
method at the bottom of the file:

ServerSideServiceDiscovery/internal/agent/agent.go
func (a *Agent) Shutdown() error {
a.shutdownLock.Lock()
defer a.shutdownLock.Unlock()
if a.shutdown {
return nil
}
a.shutdown = true
close(a.shutdowns)

shutdown := []func() error{
a.membership.Leave,
a.replicator.Close,
func() error {
a.server.GracefulStop()

return nil
}I
a.log.Close,
}
for , fn := range shutdown {
if err := fn(); err !'= nil {
return err
}
}
return nil

}

This ensures that the agent will shut down once even if people call Shutdown()
multiple times. Then we shut down the agent and its components by:

e Leaving the membership so that other servers will see that this server
has left the cluster and so that this server doesn’t receive discovery events
anymore;

* Closing the replicator so it doesn’t continue to replicate;

e Gracefully stopping the server, which stops the server from accepting new
connections and blocks until all the pending RPCs have finished; and

¢ Closing the log.

http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/agent/agent.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 7. Server-to-Server Service Discovery ® 134

We've implemented Serf into our service, so we can now run multiple instances
of our service that discover and then replicate each other’s data. Let’s write
a test to check that our service discovery and replication works and to prevent
us from introducing a regression when we build consensus in Chapter 8,
Coordinate Your Services with Consensus, on page 141.

Test Discovery and the Service End-to-End

Let’s test that our service discovery and replication works in an end-to-end
test. We'll set up a cluster with three nodes. We’ll produce a record to one
server and verify that we can consume the message from the other servers
that have (hopefully) replicated for us.

In internal/agent, create an agent_test.go file, beginning with this snippet:

ServerSideServiceDiscovery/internal/agent/agent_test.go
package agent test

import (
"context"
"crypto/tls"
"fmt"
"io/ioutil"
"os
"testing"
"time"

"github.com/stretchr/testify/require"
"github.com/travisjeffery/go-dynaport"
"google.golang.org/grpc"
"google.golang.org/grpc/credentials"

api "github.com/travisjeffery/proglog/api/v1"

"github.com/travisjeffery/proglog/internal/agent"

"github.com/travisjeffery/proglog/internal/config"
)

What can I say? Our end-to-end test has a lot going on and requires a lot of
imports to make it happen.

Now we can write the test beginning with this code:

ServerSideServiceDiscovery/internal/agent/agent_test.go
func TestAgent(t *testing.T) {
serverTLSConfig, err := config.SetupTLSConfig(config.TLSConfig{

CertFile: config.ServerCertFile,
KeyFile: config.ServerKeyFile,
CAFile: config.CAFile,

Server: true,

ServerAddress: "127.0.0.1",

http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/agent/agent_test.go
http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/agent/agent_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Test Discovery and the Service End-to-End ® 135

require.NoError(t, err)

peerTLSConfig, err := config.SetupTLSConfig(config.TLSConfig{

CertFile: config.RootClientCertFile,
KeyFile: config.RootClientKeyFile,
CAFile: config.CAFile,

Server: false,

ServerAddress: "127.0.0.1",
1)

require.NoError(t, err)

This snippet defines the certificate configurations used in our test to test our
security. The serverTLSConfig defines the configuration of the certificate that’s
served to clients. And the peerTLSConfig defines the configuration of the certificate
that’s served between servers so they can connect with and replicate each
other.

Now set up the cluster by placing this code after the previous snippet:

ServerSideServiceDiscovery/internal/agent/agent_test.go

var agents []*agent.Agent

for i :=0; i < 3; i++ {
ports := dynaport.Get(2)
bindAddr := fmt.Sprintf("%s:%d", "127.0.0.1", ports[0])
rpcPort := ports[1]

dataDir, err := ioutil.TempDir("", "agent-test-log")
require.NoError(t, err)

var startJoinAddrs []string

if i 1=0 {
startJoinAddrs = append(
startJoinAddrs,
agents[0].Config.BindAddr,
)
)
agent, err := agent.New(agent.Config{
NodeName: fmt.Sprintf("%sd", 1),
StartJoinAddrs: startJoinAddrs,
BindAddr: bindAddr,
RPCPort: rpcPort,
DataDir: dataDir,
ACLModelFile: config.ACLModelFile,

ACLPolicyFile: config.ACLPolicyFile,
ServerTLSConfig: serverTLSConfig,
PeerTLSConfig: peerTLSConfig,

1)

require.NoError(t, err)

agents = append(agents, agent)
}
defer func() {

http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/agent/agent_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 7. Server-to-Server Service Discovery ® 136

for , agent := range agents {
err := agent.Shutdown()
require.NoError(t, err)
require.NoError(t,
0s.RemoveAll(agent.Config.DataDir),
)
}
10
time.Sleep(3 * time.Second)

This code sets up a three-node cluster. The second and third nodes join the
first node’s cluster.

Because we now have two addresses to configure in our service (the RPC
address and the Serf address), and because we run our tests on a single host,
we need two ports. We used the 0 port trick in Test a gRPC Server and Client,

but now we just want the port—with no listener—so we use the dynaport library
to allocate the two ports we need: one for our gRPC log connections and one
for our Serf service discovery connections.

We defer a function call that runs after the test to verify that the agents suc-
cessfully shut down and to delete the test data. We make the test sleep for a
few seconds to give the nodes time to discover each other.

Now that we have a cluster, we can test it works. Put this code after the pre-
vious snippet:

ServerSideServiceDiscovery/internal/agent/agent_test.go
leaderClient := client(t, agents[0], peerTLSConfig)
produceResponse, err := leaderClient.Produce(
context.Background(),
&api.ProduceRequestq{
Record: &api.Record{
Value: []byte("foo"),
I
+
)
require.NoError(t, err)
consumeResponse, err := leaderClient.Consume(
context.Background(),
&api.ConsumeRequestq{
Offset: produceResponse.Offset,
+
)
require.NoError(t, err)
require.Equal(t, consumeResponse.Record.Value, []byte("foo"))

5. https://golang.org/pkg/net/#Listen

http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/agent/agent_test.go
https://golang.org/pkg/net/#Listen
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Test Discovery and the Service End-to-End ® 137

This code is the same as our testProduceConsume() test case in Test a gRPC

from a single node. Now we need to check that another node replicated the
record. We do that by adding this code to the test, below the previous
snippet:

ServerSideServiceDiscovery/internal/agent/agent_test.go
// wait until replication has finished
time.Sleep(3 * time.Second)

followerClient := client(t, agents[1l], peerTLSConfig)
consumeResponse, err = followerClient.Consume(
context.Background(),
&api.ConsumeRequest{
Offset: produceResponse.0ffset,
I
)
require.NoError(t, err)
require.Equal(t, consumeResponse.Record.Value, []byte("foo0"))

}

Because our replication works asynchronously across servers, the logs pro-
duced to one server won’'t be immediately available on the replica servers.
This process causes latency between when the message is produced to the
first server and when it’s replicated to the second. The stupid, simple® way
to fix this (especially since we're black-box testing’) is to add a big enough
delay in the test for the replicator to have replicated the message, but as small
a delay as possible to keep our tests fast. Then we check that we can consume
the replicated message.

Too Much Sleep Will Make Your Tests Too Slow

If we had enough test cases that needed a delay like this, eventu-
ally our tests would be slow and annoying to run, in which case
we’d want to use a different technique. For example, you could
retry your test’s assertion in a loop with a small delay between
iterations and timeout after a few seconds. Or you could have your
< server expose an event channel that included when the server

produced a message. Then you'd wait to receive an event on that

channel in your test so your test blocked and then continued the

instant the second server replicated the message.

7

http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/agent/agent_test.go
https://en.wikipedia.org/wiki/KISS_principle
https://en.wikipedia.org/wiki/Black-box_testing
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 7. Server-to-Server Service Discovery ® 138

Lastly, we need to add our client() helper that sets up a client for the service:

ServerSideServiceDiscovery/internal/agent/agent_test.go

func client(
t *testing.T,
agent *agent.Agent,
tlsConfig *tls.Config,

) api.LogClient {
tlsCreds := credentials.NewTLS(tlsConfig)
opts := []grpc.DialOption{grpc.WithTransportCredentials(tlsCreds)}
rpcAddr, err := agent.Config.RPCAddr()
require.NoError(t, err)
conn, err := grpc.Dial(fmt.Sprintf(

o cn
S,

rpcAddr,
), opts...)
require.NoError(t, err)
client := api.NewLogClient(conn)
return client

}

Now, run your tests with $ make test. If all is well, your tests pass and you've
officially made a distributed service that can replicate data. Congrats!

What You Learned

Now when our servers discover other servers, they replicate each other’s data.
That’s a problem with our replication implementation: when one server dis-
covers another, they replicate each other in a cycle! You can verify it by adding
this code at the bottom of your test:

consumeResponse, err = leaderClient.Consume(
context.Background(),
&api.ConsumeRequest{
Offset: produceResponse.0ffset + 1,
I
)
require.Nil(t, consumeResponse)
require.Error(t, err)
got := grpc.Code(err)
want := grpc.Code(api.ErrOffsetOutOfRange{}.GRPCStatus().Err())
require.Equal(t, got, want)

We only produced one record to our service, and yet we're able to consume
multiple records from the original server because it's replicated data from
another server that replicated its data from the original server. No, Leo, we
do not need to go deeper.

http://media.pragprog.com/titles/tjgo/code/ServerSideServiceDiscovery/internal/agent/agent_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

What You Learned ® 139

I mentioned that in the next chapter we’ll work on coordinating the servers
so that they’d have a defined leader-follower relationship so that only the
followers would replicate the leader. We also want to control the number of
replicas. Typically in a production deployment, three replicas is ideal: you
could lose two and still not lose data, and with only three you won’t be storing
more data than necessary.

So let’s work on building consensus with Raft and coordinating the nodes in
our cluster.

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

CHAPTER 8

Coordinate Your Services with Consensus

Distributed services are like commercial kitchens. Imagine a small restaurant
opens up with one stove and one cook. Patrons discover the restaurant and
tell their friends, and business is booming. But the kitchen struggles with
the mob of customers and sometimes the stove breaks, forcing the restaurant
to close for the night and lose business. So the restaurant hires two more
cooks and buys two more stoves. The cooks keep up with orders now but they
make mistakes: they mix up appetizers and entrees; they mix up tables; they
make double of one order while forgetting to make another. They lack coordi-
nation. So the kitchen hires a chef to oversee and coordinate the kitchen.
When an order comes in, the chef divides the order and assigns the appetizers,
entrees, and deserts to the cooks who prepare the food timely and correctly.
The patrons love the fast, quality service, and the kitchen becomes world-
renowned.

In this chapter, we look at the chef of distributed services: consensus. Con-
sensus algorithms are tools used to get distributed services to agree on shared
state even in the face of failures. In Request Discovered Services and Replicate

servers replicate each other in a cycle, making infinite copies of the same
data. We need to put the servers in leader and follower relationships where
the followers replicate the leader’s data. We’ll do just that in this chapter
using Raft for leader election and replication.

What Is Raft and How Does It Work?

Raft is a distributed consensus algorithm designed to be easily understood
and implemented. It’s the consensus algorithm behind services like Etcd—the
distributed key-value store that backs Kubernetes, Consul, and soon Kafka,

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 8. Coordinate Your Services with Consensus ® 142

whose team is migrating from ZooKeeper to Raft.' Because Raft is easy to
understand and implement, developers have written many quality Raft libraries
used in many projects and it’s become the most widely deployed consensus
algorithm today.

Let’s talk about Raft’s leader election first and then talk about its replication,
and thatll transition into coding replication in our service.

Leader Election

A Raft cluster has one leader and the rest of the servers are followers. The
leader maintains power by sending heartbeat requests to its followers, effec-
tively saying: “I'm still here and I'm still the boss.” If the follower times out
waiting for a heartbeat request from the leader, then the follower becomes a
candidate and begins an election to decide the next leader. The candidate
votes for itself and then requests votes from the followers. “The boss is gone!
I'm the new boss, right?” If the candidate receives a majority of the votes, it
becomes the leader, and it sends heartbeat requests to the followers to
establish authority: “Hey y’all, new boss here.”

Followers can become candidates simultaneously if they time out at the same
time waiting for the leader’s heartbeats. They’ll hold their own elections and
the elections might not result in a new leader because of vote splitting. So
they’ll hold another election. Candidates will hold elections until there’s a
winner that becomes the new leader.

Every Raft server has a term: a monotonically increasing integer that tells
other servers how authoritative and current this server is. The servers’ terms
act as a logical clock: a way to capture chronological and causal relationships
in distributed systems, where real-time clocks are untrustworthy and unim-
portant. Each time a candidate begins an election, it increments its term. If
the candidate wins the election and becomes the leader, the followers update
their terms to match and the terms don’t change until the next election.
Servers vote once per term for the first candidate that requests votes, as long
as the candidate’s term is greater than the voters’. These conditions help
prevent vote splits and ensure the voters elect an up-to-date leader.

Depending on your use case, you might use Raft just for leader election.
Imagine you've built a job system with a database of jobs to run and a program
that queries the database every second to check if there’s a job to run and,
if so, runs the job. You want this system to be highly available and resilient

1. https://cwiki.apache.org/confluence/display/KAFKA/KIP-500:+Replace+ZooKeeper+with+a+Self-Managed+Meta-

https://cwiki.apache.org/confluence/display/KAFKA/KIP-500:+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500:+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

What Is Raft and How Does It Work? ¢ 143

to failures, so you run multiple instances of the job runner. But you don’t
want all of the runners running simultaneously and duplicating the work.
So you use Raft to elect a leader; only the leader runs the jobs, and if the
leader fails, Raft elects a new leader that runs the jobs. Most use cases rely
on Raft for both its leader election and replication to get consensus on state.

Raft’s leader election can be useful by itself, but usually the point is to elect
a leader that’s responsible for replicating a log to its followers and doing
something with the log data. Raft breaks consensus into two parts: leader
election and log replication. Let’s talk about how Raft’s replication works.

Log Replication

The leader accepts client requests, each of which represents some command
to run across the cluster. (In a key-value service for example, you'd have a
command to assign a key’s value.) For each request, the leader appends the
command to its log and then requests its followers to append the command
to their logs. After a majority of followers have replicated the command—when
the leader considers the command committed—the leader executes the com-
mand with a finite-state machine and responds to the client with the result.
The leader tracks the highest committed offset and sends this in the requests
to its followers. When a follower receives a request, it executes all commands
up to the highest committed offset with its finite-state machine. All Raft servers
run the same finite-state machine that defines how to handle each command.

Replication saves us from losing data when servers fail. There’s a cost-benefit
to replication. Like any insurance, replication costs (in complexity, in network
bandwidth, in data storage), but the benefit of having replicated data to
handle when a server fails makes it worth paying for the time the servers
work. A Raft leader replicates to most of its followers, assuring that we won’t
lose data unless a majority of the followers fail.

The recommended number of servers in a Raft cluster is three and five. A
Raft cluster of three servers will tolerate a single server failure while a cluster
of five will tolerate two server failures. I recommend odd number cluster sizes
because Raft will handle (N-1)/2 failures, where N is the size of your cluster.
If you had a cluster with four servers, it would handle losing one server, the
same as a cluster with three servers—so you’d pay for an extra server that
didn’t increase your fault tolerance. For larger clusters, CockRoachDB wrote
a layer on top of Raft called MultiRaft® that divides the database’s data into

2. https://lwww.cockroachlabs.com/blog/scaling-raft

https://www.cockroachlabs.com/blog/scaling-raft
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 8. Coordinate Your Services with Consensus ® 144

ranges, each with its own consensus group. To keep our project simple, we’ll
have a single Raft cluster.

Our service’s use case is unique because replicating a log is our end goal.
Raft’s algorithm replicates a log, and we could defer all log management to
Raft’s internals. This would make our service efficient and easy to code, but
wouldn’t teach you how to use Raft to build distributed services that aren’t
distributed logs.

In other services, you'll use Raft as a means to replicate a log of commands
and then execute those commands with state machines. If you were building
a distributed SQL database, you'd replicate and execute the insert and update
SQL commands; if you were building a key-value store, you'd replicate and
execute set commands. Because other services you build will replicate a log
as a means rather than an end, we’ll build our service the way you would
other types of service, by replicating the transformation commands—which
in our service are append commands. Technically we’ll replicate two logs: the
log containing Raft’'s commands and the log that results from the finite-state
machines applying those commands. This service may not be as optimized
as it could be, but what you’ll learn will be more useful for when you build
other services.

Implement Raft in Our Service

We have a log that can write and read records on one computer. We want a
distributed log that’s replicated on multiple computers, so let’'s implement
Raft in our service to get that.

Install Raft by running this command:

$ go get github.com/hashicorp/raft@vl.l.1

$ # use etcd's fork of Ben Johnson's Bolt key/value store,
$ # which includes fixes for Go 1.14+

$ go mod edit -replace github.com/hashicorp/raft-boltdb=|
github.com/travisjeffery/raft-boltdb@vl.0.0

In the internal/log directory, create a distributed.go file, beginning with this snippet:

CoordinateWithConsensus/internal/log/distributed.go
package log

import (
"bytes"
"crypto/tls"
“fmt"
IIiOII

"net"

"0s

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Implement Raft in Our Service ® 145

"path/filepath"
Iltimell

raftboltdb "github.com/hashicorp/raft-boltdb"
"google.golang.org/protobuf/proto"
"github.com/hashicorp/raft"

api "github.com/travisjeffery/proglog/api/v1"
)

type DistributedLog struct {
config Config
log *Log
raft *raft.Raft

}
func NewDistributedLog(dataDir string, config Config) (
*DistributedLog,
error,
) {
1 := &DistributedlLog{
config: config,
}
if err := l.setuplLog(dataDir); err !'= nil {
return nil, err
}
if err := l.setupRaft(dataDir); err != nil {
return nil, err
}
return 1, nil
}

This code defines our distributed log type and a function to create the log.
The function defers the logic to the setup methods we’ll write shortly. The log
package will contain the single-server, non-replicated log we wrote earlier,
and the distributed, replicated log built with Raft.

Write this setupLog() method under NewDistributedLog():

CoordinateWithConsensus/internal/log/distributed.go
func (1 *DistributedLog) setupLog(dataDir string) error {
logDir := filepath.Join(databDir, "log")
if err := 0s.MkdirAll(logDir, 0755); err != nil {
return err
}
var err error
1.log, err = NewLog(logDir, 1.config)
return err

}

setupLog(dataDir string) creates the log for this server, where this server will store
the user’s records.

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 8. Coordinate Your Services with Consensus ® 146

Set Up Raft

A Raft instance comprises:
¢ A finite-state machine that applies the commands you give Raft;
¢ A log store where Raft stores those commands;

¢ A stable store where Raft stores the cluster’s configuration—the servers
in the cluster, their addresses, and so on;

¢ A snapshot store where Raft stores compact snapshots of its data; and
¢ A transport that Raft uses to connect with the server’s peers.

We must set these up to create a Raft instance. Below setuplog(), add this
setupRaft() method:

CoordinateWithConsensus/internal/log/distributed.go
func (1 *DistributedlLog) setupRaft(dataDir string) error {
fsm := &fsm{log: 1l.log}

logDir := filepath.Join(databDir, "raft", "log")
if err := os.MkdirAll(logDir, 0755); err != nil {
return err

}
logConfig := l.config
logConfig.Segment.InitialOffset = 1
logStore, err := newLogStore(logDir, logConfig)
if err !'= nil {

return err

b
setupRaft(dataDir string) configures and creates the server’s Raft instance.

We begin by creating our finite-state machine (FSM) that we’ll implement
later in this file.

Then we create Raft’s log store, and we use our own log we wrote in Code the

Raft. Raft needs a specific log interface satisfied, so we’ll wrap our log to
provide those APIs (we’ll write that wrapper shortly):

CoordinateWithConsensus/internal/log/distributed.go
stableStore, err := raftboltdb.NewBoltStore(
filepath.Join(dataDir, "raft", "stable"),
)
if err != nil {
return err

}

retain := 1

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Implement Raft in Our Service ® 147

snapshotStore, err := raft.NewFileSnapshotStore(
filepath.Join(databir, "raft"),
retain,
os.Stderr,

)

if err != nil {
return err

}

maxPool := 5

timeout := 10 * time.Second

transport := raft.NewNetworkTransport(
1.config.Raft.StreamLayer,
maxPool,
timeout,
os.Stderr,

)

The stable store is a key-value store where Raft stores important metadata,
like the server’s current term or the candidate the server voted for. Bolt® is
an embedded and persisted key-value database for Go we've used as our
stable store.

Then we set up Raft’s snapshot store. Raft snapshots to recover and restore
data efficiently, when necessary, like if your server’s EC2 instance failed and
an autoscaling group brought up another instance for the Raft server. Rather
than streaming all the data from the Raft leader, the new server would restore
from the snapshot (which you could store in S3 or a similar storage service)
and then get the latest changes from the leader. This is more efficient and
less taxing on the leader. You want to snapshot frequently to minimize the
difference between the data in the snapshots and on the leader. The retain
variable specifies that we’ll keep one snapshot.

We create our transport that wraps a stream layer—a low-level stream
abstraction (we'll write our own stream layer implementation in Stream Layer,
on page 156):

CoordinateWithConsensus/internal/log/distributed.go
config := raft.DefaultConfig()
config.LocalID = 1l.config.Raft.LocalID
if l.config.Raft.HeartbeatTimeout != 0 {
config.HeartbeatTimeout = 1.config.Raft.HeartbeatTimeout
}
if l.config.Raft.ElectionTimeout != 0 {
config.ElectionTimeout = l.config.Raft.ElectionTimeout

}

3. https://github.com/boltdb/bolt

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
https://github.com/boltdb/bolt
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

if l.config.Raft.Leade

Chapter 8. Coordinate Your Services with Consensus ® 148

rLeaseTimeout !'= 0 {

config.LeaderLeaseTimeout = 1.config.Raft.LeaderLeaseTimeout

}

if l.config.Raft.CommitTimeout != 0 {
config.CommitTimeout = l.config.Raft.CommitTimeout

}

The config’s LocallD field is the unique ID for this server, and it’s the only config

field we must set; the
config should be fine.

rest are optional, and in normal operation the default

To make our tests faster, we support overriding a handful of timeout configs

to speed up Raft. For

example, when we shut down the leader, we want the

election to finish within a second, whereas in production you’d need a longer
timeout to handle networking latency.

Add the following code to create the Raft instance and bootstrap the cluster:

CoordinateWithConsensus/internal/log/distributed.go

l.raft, err =

raft.NewRaft(

config,
fsm,
logStore,
stableStore,
snapshotStore,
transport,
)
if err !'= nil {
return err
}
hasState, err := raft.HasExistingState(
logStore,
stableStore,
snapshotStore,
)
if err !'= nil {
return err
}
if l.config.Raft.Bootstrap && !hasState {
config := raft.Configuration{
Servers: []raft.Server{{
ID: config.LocallD,
Address: transport.LocalAddr(),
I3
b
err = l.raft.BootstrapCluster(config).Error()
}
return err

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Yvy

YYYVYY

Implement Raft in Our Service ® 149

To support configuring Raft, add these highlighted lines to your log’s Config
struct in internal/log/config.go:

CoordinateWithConsensus/internal/log/config.go
package log

import (
"github.com/hashicorp/raft"
)

type Config struct {
Raft struct {
raft.Config
StreamLayer *StreamLayer
Bootstrap bool
}

Segment struct {
MaxStoreBytes uint64
MaxIndexBytes uint64
InitialOffset uint64

}

Generally you’ll bootstrap a server configured with itself as the only voter,
wait until it becomes the leader, and then tell the leader to add more servers
to the cluster. The subsequently added servers don’t bootstrap. That concludes
our Raft setup. Let’s continue building our DistributedLog.

Log API

We've written the code to set up a DistributedLog; next we’ll write its public APIs
that append records to and read records from the log and wrap Raft. The Dis-
tributedLog will have the same API as the Log type to make them interchangeable.

Add this Append() method below setupRaft():

CoordinateWithConsensus/internal/log/distributed.go
func (1 *DistributedLog) Append(record *api.Record) (uint64, error) {
res, err := lL.apply(
AppendRequestType,
&api.ProduceRequest{Record: record},
)
if err !'= nil {
return 0, err
}
return res. (*api.ProduceResponse).0ffset, nil

}
Append(record *api.Record) appends the record to the log. Unlike in Code the Store,

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/config.go
http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 8. Coordinate Your Services with Consensus ¢ 150

Raft to apply a command (we've reused for the ProduceRequest for the command)
that tells the FSM to append the record to the log. Raft runs the process
described in Log Replication, on page 143, to replicate the command to a

majority of the Raft servers and ultimately append the record to a majority
of Raft servers.

Put this apply() method below Apply():

CoordinateWithConsensus/internal/log/distributed.go
func (1 *DistributedLog) apply(reqType RequestType, req proto.Message) (

interface{},
error,
) {
var buf bytes.Buffer
_, err := buf.Write([]byte{byte(reqType)})
if err != nil {
return nil, err
}
b, err := proto.Marshal(req)
if err != nil {
return nil, err
}
_, err = buf.Write(b)
if err != nil {
return nil, err
}
timeout := 10 * time.Second
future := l.raft.Apply(buf.Bytes(), timeout)
if future.Error() != nil {
return nil, future.Error()
}
res := future.Response()
if err, ok := res.(error); ok {
return nil, err
}
return res, nil
}

apply(reqType RequestType, req proto.Marshaler) wraps Raft’s API to apply requests and
return their responses. Even though we have only one request type, the
append request type, I've written things that easily support multiple request
types to show how you would set up your own services when you have different
requests. In apply(), we marshal the request type and request into bytes that
Raft uses as the record’s data it replicates. The l.raft.Apply(buf.Bytes(), timeout) call
has a lot going on behind the scenes, running the steps described in Log

leader’s log.

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Implement Raft in Our Service ® 151

The future.Error() API returns an error when something went wrong with Raft’s
replication. For example, it took too long for Raft to process the command or
the server had to shutdown—the future.Error() API doesn’t return your service’s
errors. The future.Response() API returns what your FSM’s Apply() method returned
and, opposed to Go’s convention of using Go’s multiple return values to sep-
arate errors, you must return a single value for Raft. In our apply() method we
check whether the value is an error with a type assertion.

Put this Read() method below apply():

CoordinateWithConsensus/internal/log/distributed.go

func (1 *DistributedlLog) Read(offset uint64) (*api.Record, error) {
return 1.log.Read(offset)

}

Read(offset uint64) reads the record for the offset from the server’'s log. When
you're okay with relaxed consistency, read operations need not go through
Raft. When you need strong consistency, where reads must be up-to-date
with writes, then you must go through Raft, but then reads are less efficient
and take longer.

Finite-State Machine

Raft defers the running of your business logic to the FSM. After the previous
snippet, define your fsm type with this code:

CoordinateWithConsensus/internal/log/distributed.go
var _ raft.FSM = (*fsm) (nil)

type fsm struct {
log *Log
}

The FSM must access the data it manages. In our service, that’s a log, and
the FSM appends records to the log. If you were writing a key-value service,
then your FSM would update the store of your data: an int, a map, Postgres
—whatever store you've used.

Your FSM must implement three methods:
* Apply(record *raft.Log)—Ralft invokes this method after committing a log entry.

¢ Snapshot()—Raft periodically calls this method to snapshot its state. For
most services, you’'ll be able to build a compacted log—for example, if we
were building a key-value store and we had a bunch of commands saying
“set foo to bar,” “set foo to baz,” “set foo to qux,” and so on, we would only
set the latest command to restore the current state. Because we're repli-
cating a log itself, we need the full log to restore it.

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 8. Coordinate Your Services with Consensus ® 152

* Restore(io.ReadCloser)—Raft calls this to restore an FSM from a snapshot—for
instance, if an EC2 instance failed and a new instance took its place.

Put this code below the fsm type to implement Apply():

CoordinateWithConsensus/internal/log/distributed.go
type RequestType uint8

const (
AppendRequestType RequestType = 0
)

func (1 *fsm) Apply(record *raft.Log) interface{} {
buf := record.Data
reqType := RequestType(buf[0])
switch reqType {
case AppendRequestType:
return 1.applyAppend(buf[1l:])
}

return nil

func (1 *fsm) applyAppend(b []byte) interface{} {
var req api.ProduceRequest

err := proto.Unmarshal(b, &req)
if err !'= nil {
return err
b
offset, err := 1.log.Append(req.Record)
if err != nil {
return err
b

return &api.ProduceResponse{0Offset: offset}

}

As I mentioned earlier, even though our service has only one command to
replicate, I want to develop things to support multiple commands and show
you how to do it for your own projects. So in this snippet, we make our own
request type and define our append request type. When we send a request to
Raft for it to apply, and when we read the request in the FSM’s Apply() method
to apply it, these request types identify the request and tell us how to handle
it. In Apply(), we switch on the request type and call the corresponding method
containing the logic to run the command. In applyAppend([]byte), we unmarshal
the request and then append the record to the local log and return the
response for Raft to send back to where we called raft.Apply() in Distributed-
Log.Append().

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Implement Raft in Our Service ® 153

Below applyAppend(), put this snippet to support snapshots:

CoordinateWithConsensus/internal/log/distributed.go

func (f *fsm) Snapshot() (raft.FSMSnapshot, error) {
r := f.log.Reader()
return &snapshot{reader: r}, nil

}
var _ raft.FSMSnapshot = (*snapshot)(nil)

type snapshot struct {
reader io.Reader

}
func (s *snapshot) Persist(sink raft.SnapshotSink) error {
if , err := io.Copy(sink, s.reader); err != nil {
= sink.Cancel()
return err
}
return sink.Close()
}

func (s *snapshot) Release() {}

Snapshot() returns an FSMSnapshot that represents a point-in-time snapshot of
the FSM’s state. In our case that state is our FSM’s log, so call Reader() to
return an io.Reader that will read all the log’s data.

These snapshots serve two purposes: they allow Raft to compact its log so it
doesn’t store logs whose commands Raft has applied already. And they allow
Raft to bootstrap new servers more efficiently than if the leader had to replicate
its entire log again and again.

Raft calls Snapshot() according to your configured Snapshotinterval (how often Raft
checks if it should snapshot—default is two minutes) and SnapshotThreshold
(how many logs since the last snapshot before making a new snapshot—default
is 8192).

Raft calls Persist() on the FSMSnapshot we created to write its state to some sink
that, depending on the snapshot store you configured Raft with, could be in-
memory, a file, an S3 bucket—something to store the bytes in. We're using
the file snapshot store so that when the snapshot completes, we’ll have a file
containing all the Raft’s log data. A shared state store such as S3 would put
the burden of writing and reading the snapshot on S3 rather than the leader
and allow new servers to restore snapshots without streaming from the
leader. Raft calls Release() when it’s finished with the snapshot.

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 8. Coordinate Your Services with Consensus ® 154

Put this Restore() method below Release():

CoordinateWithConsensus/internal/log/distributed.go
func (f *fsm) Restore(r io.ReadCloser) error {
b := make([]byte, lenWidth)
var buf bytes.Buffer
for i := 0; ; i++ {
_, err := io.ReadFull(r, b)
if err == i0.EOF {

break

} else if err !'= nil {
return err

}

size := int64(enc.Uint64(b))

if , err = io.CopyN(&buf, r, size); err != nil {
return err

}

record := &api.Record{}

if err = proto.Unmarshal(buf.Bytes(), record); err != nil {
return err

}

if i == 0 {
f.log.Config.Segment.InitialOffset = record.Offset
if err := f.log.Reset(); err != nil {

return err

}

}

if , err = f.log.Append(record); err != nil {
return err

}

buf.Reset()

}
return nil

}

Raft calls Restore() to restore an FSM from a snapshot. For example, if we lost
a server and scaled up a new one, we'd want to restore its FSM. The FSM
must discard existing state to make sure its state will match the leader’s
replicated state.

In our Restore() implementation, we reset the log and configure its initial offset
to the first record’s offset we read from the snapshot so the log’s offsets match.
Then we read the records in the snapshot and append them to our new log.

That’s it for our FSM code.
Next, put this snippet below the FSM to define Raft’s log store:

CoordinateWithConsensus/internal/log/distributed.go
var _ raft.LogStore = (*logStore) (nil)

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Implement Raft in Our Service ® 155

type logStore struct {

*Log
}
func newLogStore(dir string, c Config) (*logStore, error) {
log, err := NewLog(dir, c)
if err !'= nil {
return nil, err
}
return &logStore{log}, nil
}

Raft calls your FSM’s Apply() method with *raft.Log’s read from its managed log
store. Raft replicates a log and then calls your state machine with the log’s
records. We're using our own log as Raft’s log store, but we need to wrap our
log to satisfy the LogStore interface Raft requires. In this snippet, we've defined
our log store and a function to create it.

Below newlogStore() add this snippet:

CoordinateWithConsensus/internal/log/distributed.go

func (1 *logStore) FirstIndex() (uint64, error) {
return 1.LowestOffset()

}

func (1 *logStore) LastIndex() (uint64, error) {
off, err := l.HighestOffset()
return off, err

}
func (1 *logStore) GetlLog(index uint64, out *raft.Log) error {
in, err := 1.Read(index)
if err !'= nil {
return err
}
out.Data = in.Value
out.Index = in.0ffset
out.Type = raft.LogType(in.Type)
out.Term = in.Term
return nil
}

Raft uses these APIs to get records and information about the log. We support
the functionality on our log already and just needed to wrap our existing
methods. What we call offsets, Raft calls indexes.

Put the following snippet below GetlLog():

CoordinateWithConsensus/internal/log/distributed.go

func (1 *logStore) StoreLog(record *raft.Log) error {
return 1.StoreLogs([]*raft.Log{record})

}

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 8. Coordinate Your Services with Consensus ® 156

func (1 *logStore) StoreLogs(records []*raft.Log) error {
for , record := range records {
if , err := 1.Append(&api.Record{
Value: record.Data,
Term: record.Term,
Type: uint32(record.Type),
}); err !=nil {
return err
}
}
return nil

}

Raft uses these APIs to append records to its log. Again, we just translate the
call to our log’s API and our record type. These changes require adding some
fields to our Record type.

Change your Record message in api/vl/log.proto to the following:

CoordinateWithConsensus/api/v1/log.proto
message Record {
bytes value =
uint64 offset

uint64 term
uint32 type
}

2;

1;
3;
4;
Then compile your protobuf by running $ make compile.

The last method on the logStore is a method to delete old records. Below
StoreLogs(), put this DeleteRange() method:

CoordinateWithConsensus/internal/log/distributed.go
func (1 *logStore) DeleteRange(min, max uint64) error {
return 1.Truncate(max)

}

DeleteRange(min, max uint64) removes the records between the offsets—it’'s to
remove records that are old or stored in a snapshot.

Stream Layer

Raft uses a stream layer in the transport to provide a low-level stream
abstraction to connect with Raft servers. Our stream layer must satisfy Raft’s
StreamLayer interface:

type StreamLayer interface {

net.Listener

// Dial is used to create a new outgoing connection

Dial(address ServerAddress, timeout time.Duration) (net.Conn, error)

}

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/api/v1/log.proto
http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Implement Raft in Our Service ® 157

Add this snippet at the bottom of distributed.go to begin your StreamLayer:

CoordinateWithConsensus/internal/log/distributed.go
var _ raft.StreamLayer = (*StreamLayer) (nil)

type StreamLayer struct {
1n net.Listener
serverTLSConfig *tls.Config
peerTLSConfig *tls.Config
}

func NewStreamLayer (
1n net.Listener,
serverTLSConfig,
peerTLSConfig *tls.Config,
) *StreamLayer {
return &StreamlLayer{
in: 1n,
serverTLSConfig: serverTLSConfig,
peerTLSConfig: peerTLSConfig,

}

This snippet defines the StreamLayer type and checks that it satisfies the raft.Stream-
Layer interface. We want to enable encrypted communication between servers with
TLS, so we need to take in the TLS configs used to accept incoming connections
(the serverTLSConfig) and create outgoing connections (the peerTLSConfig).

Below NewStreamLayer(), add this Dial() method and RaftRPC constant:

CoordinateWithConsensus/internal/log/distributed.go
const RaftRPC =1

func (s *StreamLayer) Dial(
addr raft.ServerAddress,
timeout time.Duration,
) (net.Conn, error) {
dialer := &net.Dialer{Timeout: timeout}
var conn, err = dialer.Dial("tcp", string(addr))
if err !'= nil {
return nil, err
}
// identify to mux this is a raft rpc
_, err = conn.Write([]byte{byte(RaftRPC)})
if err !'= nil {
return nil, err
}
if s.peerTLSConfig '= nil {
conn = tls.Client(conn, s.peerTLSConfig)
}

return conn, err

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 8. Coordinate Your Services with Consensus ® 158

Dial(addr raft.ServerAddress, timeout time.Duration) makes outgoing connections to
other servers in the Raft cluster. When we connect to a server, we write the
RaftRPC byte to identify the connection type so we can multiplex Raft on the
same port as our Log gRPC requests. (We'll take a look at multiplexing
shortly.) If we configure the stream layer with a peer TLS config, we make a
TLS client-side connection.

The rest of the methods on the stream layer implement the net.Listener
interface. Below Dial() add this snippet:

CoordinateWithConsensus/internal/log/distributed.go
func (s *StreamLayer) Accept() (net.Conn, error) {
conn, err := s.ln.Accept()
if err != nil {
return nil, err
}
b := make([]byte, 1)
_, err = conn.Read(b)
if err != nil {
return nil, err
}
if bytes.Compare([]byte{byte(RaftRPC)}, b) != 0 {
return nil, fmt.Errorf("not a raft rpc")

}
if s.serverTLSConfig != nil {

return tls.Server(conn, s.serverTLSConfig), nil
}

return conn, nil

func (s *StreamLayer) Close() error {
return s.ln.Close()

func (s *StreamLayer) Addr() net.Addr {
return s.ln.Addr()
}

Accept() is the mirror of Dial(). We accept the incoming connection and read the
byte that identifies the connection and then create a server-side TLS connec-
tion. Close() closes the listener. Addr() returns the listener’s address.

Discovery Integration

The next step to implement Raft in our service is to integrate our Serf-driven
discovery layer with Raft to make the corresponding change in our Raft
cluster when the Serf membership changes. Each time you add a server to
the cluster, Serf will publish an event saying a member joined, and our discov-
ery.Membership will call its handler’s Join(id, addr string) method. When a server

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Implement Raft in Our Service ® 159

leaves the cluster, Serf will publish an event saying a member left, and our
discovery.Membership will call its handler’s Leave(id string) method. Our distributed
log will act as our Membership’s handler, so we need to implement those Join()
and Leave() methods to update Raft.

Add this snippet below DistributedLog.Read(offset uint64) method:

CoordinateWithConsensus/internal/log/distributed.go
func (1 *DistributedlLog) Join(id, addr string) error {
configFuture := l.raft.GetConfiguration()
if err := configFuture.Error(); err != nil {
return err
}
serverID := raft.ServerID(id)
serverAddr := raft.ServerAddress(addr)
for , srv := range configFuture.Configuration().Servers {
if srv.ID == serverID || srv.Address == serverAddr {
if srv.ID == serverID && srv.Address == serverAddr {
// server has already joined
return nil
}
// remove the existing server
removeFuture := 1l.raft.RemoveServer(serverID, 0, 0)
if err := removeFuture.Error(); err != nil {
return err

}
}
addFuture := l.raft.AddVoter(serverID, serverAddr, 0, 0)
if err := addFuture.Error(); err !'= nil {

return err

}

return nil

func (1 *DistributedlLog) Leave(id string) error {
removeFuture := l.raft.RemoveServer(raft.ServerID(id), 0, 0)
return removeFuture.Error()

}

Join(id, addr string) adds the server to the Raft cluster. We add every server as a
voter, but Raft supports adding servers as non-voters with the AddNonVoter()
APIL. You'd find non-voter servers useful if you wanted to replicate state to
many servers to serve read only eventually consistent state. Each time you
add more voter servers, you increase the probability that replications and
elections will take longer because the leader has more servers it needs to
communicate with to reach a majority.

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 8. Coordinate Your Services with Consensus ® 160

Leave(id string) removes the server from the cluster. Removing the leader will
trigger a new election.

Raft will error and return ErrNotLeader when you try to change the cluster on
non-leader nodes. In our service discovery code we log all handler errors as
critical, but if the node is a non-leader, then we should expect these errors
and not log them. In internal/discovery/membership.go, import github.com/hashicorp/raft
and update your logError() method to this:

CoordinateWithConsensus/internal/discovery/membership.go
func (m *Membership) logError(err error, msg string, member serf.Member) {

log := m.logger.Error

if err == raft.ErrNotLeader {
log = m.logger.Debug

}

log(

msg,

zap.Error(err),

zap.String("name", member.Name),

zap.String("rpc _addr", member.Tags["rpc addr"]),

}

logError() will log the non-leader errors at the debug level now, and logs like
these would be good candidates for removal.

Go back to internal/log/distributed.go and add this WaitForLeader() method below
Leave():

CoordinateWithConsensus/internal/log/distributed.go
func (1 *DistributedlLog) WaitForLeader(timeout time.Duration) error {
timeoutc := time.After(timeout)
ticker := time.NewTicker(time.Second)
defer ticker.Stop()
for {
select {
case <-timeoutc:
return fmt.Errorf("timed out")
case <-ticker.C:
if 1 := l.raft.Leader(); 1 !="" {
return nil

}

WaitForLeader(timeout time.Duration) blocks until the cluster has elected a leader or
times out. It's useful when writing tests because, as we've discussed, most
operations must run on the leader.

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/discovery/membership.go
http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Implement Raft in Our Service ® 161

Put our last method on the DistributedLog under WaitForLeader():

CoordinateWithConsensus/internal/log/distributed.go
func (1 *DistributedLog) Close() error {
f := 1l.raft.Shutdown()
if err := f.Error(); err != nil {
return err
}
return 1.log.Close()
}

Close() shuts down the Raft instance and closes the local log. And that wraps
up the method on our DistributedLlog. Now we’ll build out the pieces that the
distributed log and Raft depend on, beginning with the FSM.

Test the Distributed Log

Now let’s test our distributed log. In the interal/log directory create a distribut-
ed_test.go file, beginning with this code:

CoordinateWithConsensus/internal/log/distributed_test.go
package log test

import (
"fmt"
"io/ioutil"
"net"
nost
"reflect"
"testing"
"time"

"github.com/hashicorp/raft"

"github.com/stretchr/testify/require"

"github.com/travisjeffery/go-dynaport"

api "github.com/travisjeffery/proglog/api/v1"

"github.com/travisjeffery/proglog/internal/log"
)

func TestMultipleNodes(t *testing.T) {
var logs []*log.DistributedLog
nodeCount := 3
ports := dynaport.Get(nodeCount)

for i := 0; i < nodeCount; i++ {
dataDir, err := ioutil.TempDir("", "distributed-log-test")
require.NoError(t, err)
defer func(dir string) {
= 0s.RemoveAll(dir)
}(dataDir)

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 8. Coordinate Your Services with Consensus ® 162

1n, err := net.Listen(

"tep",

fmt.Sprintf("127.0.0.1:%d", ports[i]),
)

require.NoError(t, err)

config := log.Config{}

config.Raft.StreamLayer = log.NewStreamLayer(ln, nil, nil)
config.Raft.LocalID = raft.ServerID(fmt.Sprintf("%d", 1))
config.Raft.HeartbeatTimeout = 50 * time.Millisecond
config.Raft.ElectionTimeout = 50 * time.Millisecond
config.Raft.LeaderLeaseTimeout = 50 * time.Millisecond
config.Raft.CommitTimeout = 5 * time.Millisecond

To begin TestMultipleServers(*testing.T), we set up a three-server cluster. We
shorten the default Raft timeout configs so that Raft elects the leader quickly.

Below the previous code, add this snippet:

CoordinateWithConsensus/internal/log/distributed_test.go
if 1 == 0 {
config.Raft.Bootstrap = true
}

1, err := log.NewDistributedLog(dataDir, config)
require.NoError(t, err)

if i 1=0 {
err = logs[0].Join(
fmt.Sprintf("%d", i), Un.Addr().String(),
)
require.NoError(t, err)
} else {
err = L.WaitForLeader(3 * time.Second)
require.NoError(t, err)

}

logs = append(logs, 1)
}

The first server bootstraps the cluster, becomes the leader, and adds the other
two servers to the cluster. The leader then must join other servers to its cluster.

Below the previous snippet, add this code:

CoordinateWithConsensus/internal/log/distributed_test.go
records := []*api.Record{
{value: []lbyte("first")},
{Value: []byte("second")},
}
for , record := range records {
off, err := logs[0].Append(record)
require.NoError(t, err)

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed_test.go
http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Multiplex to Run Multiple Services on One Port ® 163

require.Eventually(t, func() bool {

for j := 0; j < nodeCount; j++ {
got, err := logs[j].Read(off)
if err != nil {

return false

}
record.0ffset = off
if !reflect.DeepEqual(got.Value, record.Value) {
return false

}

}

return true

}, 500*time.Millisecond, 50*time.Millisecond)

}

We test our replication by appending some records to our leader server and
check that Raft replicated the records to its followers. The Raft followers will
apply the append message after a short latency, so we use testify’s Eventually()
method to give Raft enough time to finish replicating.

Now, finish the test by adding the following snippet:

CoordinateWithConsensus/internal/log/distributed_test.go
err := logs[0].Leave("1")
require.NoError(t, err)

time.Sleep(50 * time.Millisecond)

off, err := logs[0].Append(&api.Record{
Value: [lbyte("third"),
1)

require.NoError(t, err)
time.Sleep(50 * time.Millisecond)

record, err := logs[1l].Read(off)
require.IsType(t, api.ErrOffsetOutOfRange{}, err)
require.Nil(t, record)

record, err = logs[2].Read(off)
require.NoError(t, err)
require.Equal(t, []lbyte("third"), record.Value)
require.Equal(t, off, record.Offset)

}

This code checks that the leader stops replicating to a server that’s left the
cluster, while continuing to replicate to the existing servers.

Multiplex to Run Multiple Services on One Port

Multiplexing allows you to serve different services on the same port. This makes
your service easier to use: there’s less documentation, less configuration, and

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 8. Coordinate Your Services with Consensus ® 164

fewer connections to manage. And you can serve multiple services even
when a firewall constrains you to one port. There’s a slight perf hit on
each new connection because the multiplexer reads the first bytes to
identify the connection, but for long-lived connections that performance
hit is negligible. And you must be careful you don’t accidentally expose
a service.

Many distributed services that use Raft multiplex Raft with other services,
like an RPC service. Running gRPC with mutual TLS makes multiplexing
tricky because we want to multiplex the connection after the TLS handshake.
Before the handshake, we can’t differentiate the connections; we just know
they’re both TLS connections. We need to handshake and see the decrypted
packets to know more. After the handshake, we can read the connection’s
packets to determine whether the connection is a gRPC or Raft connection.
The issue with multiplexing mutual TLS gRPC connections is that gRPC needs
information taken during the handshake to authenticate clients later on. So
we have to multiplex before the handshake and need to make a way to iden-
tify Raft from gRPC connections.

We identify the Raft connections from the gRPC connections by making the
Raft connections write a byte to identify them by. We write the number 1 as
the first byte of our Raft connections to separate them from the gRPC connec-
tions. If we had other services, we could differentiate them from gRPC by
passing a custom dialer to the gRPC client to send the number 2 as the first
byte. The TLS standards® don’t assign multiplexing schemes to the values
0-19, saying that they “require coordination,” like we've done. It’s better to
handle internal services specially because you control the clients and can
make them write whatever you need to identify them.

Let’s update our agent to multiplex its Raft and gRPC connections and create
a distributed log.

Update your imports in internal/agent/agent.go to the following:

CoordinateWithConsensus/internal/agent/agent.go
import (

"bytes"

"crypto/tls"

"fmt"

" i O n

"net"

"sync"

"time"

4. https://tools.ietf.org/html/rfc7983

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/agent/agent.go
https://tools.ietf.org/html/rfc7983
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Multiplex to Run Multiple Services on One Port ® 165

"go.uber.org/zap"
"github.com/hashicorp/raft"
"github.com/soheilhy/cmux"
"google.golang.org/grpc"
"google.golang.org/grpc/credentials"

"github.com/travisjeffery/proglog/internal/auth"
"github.com/travisjeffery/proglog/internal/discovery"
"github.com/travisjeffery/proglog/internal/log"
"github.com/travisjeffery/proglog/internal/server"

)
And then update your Agent type to this definition:

CoordinateWithConsensus/internal/agent/agent.go
type Agent struct {
Config Config

mux cmux . CMux
log *1log.DistributedlLog
server *grpc.Server

membership *discovery.Membership

shutdown bool
shutdowns chan struct{}
shutdownLock sync.Mutex

}

Here we've added the mux cmux.CMux field, changed the log to a DistributedLog,
and removed the replicator.

Add this field to your Config struct to enable bootstrapping the Raft cluster:

CoordinateWithConsensus/internal/agent/agent.go
Bootstrap bool

In the New() function, add the highlighted code to set up the mux (short for
multiplexer):

CoordinateWithConsensus/internal/agent/agent.go
setup := []func() error {
.setuplLogger,

.setupMux,

.setuplLog,

.setupServer,
.setupMembership,

[V VI I < R o)

}

Then put setupMux() after the New() function:

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/agent/agent.go
http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/agent/agent.go
http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/agent/agent.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 8. Coordinate Your Services with Consensus ® 166

CoordinateWithConsensus/internal/agent/agent.go
func (a *Agent) setupMux() error {
rpcAddr := fmt.Sprintf(
"r%d",
a.Config.RPCPort,
)
1n, err := net.Listen("tcp", rpcAddr)

if err != nil {
return err

}

a.mux = cmux.New(1ln)

return nil

}

setupMux() creates a listener on our RPC address that’ll accept both Raft and
gRPC connections and then creates the mux with the listener. The mux will
accept connections on that listener and match connections based on your
configured rules.

Let’s update setuplog() to configure the rule to match Raft and create the dis-
tributed log. Replace your existing setuplLog() method and put this snippet in
its place:

CoordinateWithConsensus/internal/agent/agent.go
func (a *Agent) setuplLog() error {

raftLn := a.mux.Match(func(reader io.Reader) bool {
b := make([]lbyte, 1)
if , err := reader.Read(b); err != nil {

return false

}
return bytes.Compare(b, []byte{byte(log.RaftRPC)}) == 0

1)

In this snippet, we configure the mux that matches Raft connections. We
identify Raft connections by reading one byte and checking that the byte
matches the byte we set up our outgoing Raft connections to write in Stream

Layer, on page 156:

CoordinateWithConsensus/internal/log/distributed.go
// identify to mux this is a raft rpc
_, err = conn.Write([]byte{byte(RaftRPC)})
if err != nil {
return nil, err

}

If the mux matches this rule, it will pass the connection to the raftLn listener
for Raft to handle the connection. Add the rest of setuplog() after the previous
snippet:

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/agent/agent.go
http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/agent/agent.go
http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/log/distributed.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

vy

Multiplex to Run Multiple Services on One Port ® 167

CoordinateWithConsensus/internal/agent/agent.go

}

logConfig := log.Config{}
logConfig.Raft.StreamLayer = log.NewStreamLayer(
raftln,
a.Config.ServerTLSConfig,
a.Config.PeerTLSConfig,
)
logConfig.Raft.LocalID = raft.ServerID(a.Config.NodeName)
logConfig.Raft.Bootstrap = a.Config.Bootstrap
var err error
a.log, err = log.NewDistributedLog(
a.Config.DataDir,
logConfig,
)
if err !'= nil {
return err
}
if a.Config.Bootstrap {
err = a.log.WaitForLeader(3 * time.Second)
}

return err

We configure the distributed log’s Raft to use our multiplexed listener and
then configure and create the distributed log.

Update your gRPC server to use the mux’s listener by updating setupServer() to
the following:

CoordinateWithConsensus/internal/agent/agent.go
func (a *Agent) setupServer() error {

authorizer := auth.New(
a.Config.ACLModelFile,
a.Config.ACLPolicyFile,
)
serverConfig := &server.Config{
CommitLog: a.log,
Authorizer: authorizer,
}
var opts [lgrpc.ServerOption
if a.Config.ServerTLSConfig != nil {
creds := credentials.NewTLS(a.Config.ServerTLSConfig)
opts = append(opts, grpc.Creds(creds))
}
var err error
a.server, err = server.NewGRPCServer(serverConfig, opts...)

if err !'= nil {
return err
}
grpcLn := a.mux.Match(cmux.Any())

go func() {

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/agent/agent.go
http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/agent/agent.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

YYYVYY

Chapter 8. Coordinate Your Services with Consensus ® 168

if err := a.server.Serve(grpcLn); err != nil {
_ = a.Shutdown()
}
0
return err

}

Because we've multiplexed two connection types (Raft and gRPC) and we
added a matcher for the Raft connections, we know all other connections
must be gRPC connections. We use cmux.Any() because it matches any connec-
tions. Then we tell our gRPC server to serve on the multiplexed listener.

Replace your setupMembership() method with the following:

CoordinateWithConsensus/internal/agent/agent.go
func (a *Agent) setupMembership() error {
rpcAddr, err := a.Config.RPCAddr()
if err !'= nil {
return err
}
a.membership, err = discovery.New(a.log, discovery.Config{
NodeName: a.Config.NodeName,
BindAddr: a.Config.BindAddr,
Tags: map[string]string{
"rpc_addr": rpcAddr,

}l

StartJoinAddrs: a.Config.StartJoinAddrs,
1)
return err

}

Our DistributedLog handles coordinated replication, thanks to Raft, so we don’t
need the Replicator anymore. Now we need the Membership to tell the DistributedLog
when servers join or leave the cluster. Delete the a.replicator.Close line in Shutdown()
and delete the internal/log/replicator.go file too. All that’s left is to tell our mux to
serve connections. Above the return statement in New(), add this line:

CoordinateWithConsensus/internal/agent/agent.go
go a.serve()

And then put serve() at the bottom of the file:

CoordinateWithConsensus/internal/agent/agent.go
func (a *Agent) serve() error {

if err := a.mux.Serve(); err !'= nil {
~ = a.Shutdown()
return err

}

return nil

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/agent/agent.go
http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/agent/agent.go
http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/agent/agent.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

What You Learned ® 169

Now let’s update our agent tests for Raft and test our replication and coordi-
nation. In What You Learned, on page 138, I showed you a test snippet that'd

fail our test because our servers replicated each other in a cycle instead of
adhering to a leader-follower relationship. That snippet will pass now!

In internal/agent/agent_test.go, add the following line to the agent’s config:

CoordinateWithConsensus/internal/agent/agent_test.go
Bootstrap: i == 0,

This line is all we need to bootstrap the Raft cluster.

At the bottom of the test, add this snippet:

CoordinateWithConsensus/internal/agent/agent_test.go
consumeResponse, err = leaderClient.Consume(
context.Background(),
&api.ConsumeRequest{
Offset: produceResponse.Offset + 1,

}
)
require.Nil(t, consumeResponse)
require.Error(t, err)
got := grpc.Code(err)
want := grpc.Code(api.ErrOffsetOutOfRange{}.GRPCStatus().Err())
require.Equal(t, got, want)

Now we check that Raft has replicated the record we produced to the leader
by consuming the record from a follower and that the replication stops
there—the leader doesn’t replicate from the followers.

Run your tests with $ make test. Your distributed service now uses Raft for
consensus and replication!

What You Learned

In this chapter, you learned how to coordinate distributed services with Raft
by adding leader election and replication to our service. We also looked at
how to multiplex connections and run multiple services on one port. Next,
we'll talk about client-side discovery, so clients can discover and call our
SEervers.

http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/agent/agent_test.go
http://media.pragprog.com/titles/tjgo/code/CoordinateWithConsensus/internal/agent/agent_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

CHAPTER 9

Discover Servers and Load Balance from
the Client

We've gone through the belly of a whale and built a distributed service with
discovery and consensus—a real distributed service! So far we've focused on
the servers and haven’t changed the clients beyond what gRPC gives us for
free. In this chapter, we’ll work on three client features that will improve our
service’s availability, scalability, and user experience. We’'ll enable our client
to automatically:

¢ Discover servers in the cluster,
¢ Direct append calls to leaders and consume calls to followers, and
e Balance consume calls across followers.

After we've made these improvements, we’ll be ready to deploy!

Three Load-Balancing Strategies

Three strategies can be used for solving the discovery and load balancing
problem:

e Server proxying—your client sends its requests to a load balancer that
knows the servers (either by querying a service registry or by being the
service registry) and proxies the requests to your back-end services.

¢ External load balancing—your client queries an external load-balancing
service that knows the servers and tells the client which server to send
the RPC.

¢ Client-side balancing—your client queries a service registry to learn about
the servers, picks the server to send its RPC, and sends its RPC directly
to the server.

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 9. Discover Servers and Load Balance from the Client ® 172

Using a server proxy is the most commonly used discovery and load-balancing
pattern. Most servers don’t trust their clients enough to give them control
over how load balancing works because these decisions might affect the ser-
vice’s availability (for example, allowing a client to target a single server and
call it until it’s unavailable). You can put a proxy between clients and servers
to act as a trust boundary. The proxy lets you control how your system ingests
requests, as all the networking behind the proxy is in your network, trusted,
and under your control. The server proxy knows about the servers it proxies
to by maintaining or calling a service registry. People often use AWS’s Elastic
Load Balancer (ELB) to load balance external traffic from the internet. The
ELB is an example of a service-side discovery router—incoming requests hit
the ELB, and the ELB proxies that request to one instance registered with
the ELB.

For complex and very accurate load balancing, you can run an external load
balancer. The external load balancer knows all the servers and potentially all
the clients, so it has all the data to decide the best server for the client to call.
You pay for external load balancers with operational burden. I've never
needed an external load balancer.

Alternatively, you can use client-side load balancing when you trust the
clients. Client-side load balancing reduces latency and increases efficiency
because requests go directly to their destination—there are no intermediates.
This load balancing pattern is resilient because there isn’t a single point of
failure. However, you need to work on your network and security to give clients
direct access to your servers.

We'll build client-side discovery and load balancing into our service because
we control both the client and server and we designed our service for low-
latency, high-throughput applications.

Load Balance on the Client in gRPC

Though the ideas we’ll talk about in this chapter can apply to any client and
server, because our service is a gRPC service, we'll use those terms. gRPC
separates server discovery, load balancing, and client requests and response
handling—often the only code you’ll write is the latter. In gRPC, resolvers
discover servers and pickers load balance by picking what server will handle
the current request. gRPC also has balancers that manage subconnections
but defer the load balancing to the pickers. gRPC provides an API (base.NewBal-
ancerBuilderV2) to create a base balancer, but you probably won’t have to write
your own balancer.

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Load Balance on the Client in gRPC ¢ 173

When you call grpc.Dial, gRPC takes the address and passes it on to the resolver,
and the resolver discovers the servers. gRPC’s default resolver is the DNS
resolver. If the address you give to gRPC has multiple DNS records associated
with it, gRPC will balance the requests across each of those records’ servers.
You can write your own resolvers and use resolvers written by the community.
For example, Kuberesolver' resolves the servers by fetching the endpoints
from Kubernetes’ API.

gRPC uses round-robin load balancing by default. The round-robin algorithm
works by sending the first call to the first server, the second call to the second
server, and so on. After the last server, it goes back to the first server again.
So, we send each server the same number of calls. Round-robin works well
when each request requires the same work by the server—stateless services
that defer the work to a separate service like a database, for example. You
can always begin with round-robin load balancing and optimize later.

The issue with round-robin load balancing, however, is that it doesn’t consider
what you know about each request, client, and server. For example:

¢ If your server is a replicated distributed service with a single writer and
multiple readers, you’ll want to read from replicas so the writer can focus
on the writes. This requires knowing whether the request is a read or a
write and whether the server is a primary or a replica.

e If your service is a globally distributed service, you’ll want your clients to
prioritize networking with local servers, which means you must know the
location of the clients and the servers.

¢ If your system is latency sensitive, you can track metrics on how many
in-flight or queued requests a server has or some other combination of
latency metrics and have the client request the server with the smallest
number.

Now you've seen how client-side discovery and load balancing work in gRPC,
and when you might want to go beyond round-robin to load balance more effi-
ciently, what can you do with this knowledge when building your own services?

The service we're building is a single-writer, multiple-reader distributed ser-
vice—the leader server is the only server that can append to the log. Currently
our clients connect to a single server, so if we want to call a leader and a fol-
lower, we have to create multiple clients. And if we want to balance consume
calls across the followers, we have to manage it in our client code.

1. https://github.com/sercand/kuberesolver

https://github.com/sercand/kuberesolver
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 9. Discover Servers and Load Balance from the Client ® 174

We can solve some problems by writing our own resolver and picker: the
resolver discovers the servers and what server is the leader, and the picker
manages directing produce calls to the leader and balancing consume calls
across the followers. The resolver and picker will make your service easier to
use, and we’ll be able to delete some of our test code too. Hopefully that
sounds sweet to you—it does to me—so let’s get started.

Make Servers Discoverable

Our resolver will need a way to discover the cluster’s servers. It needs to know
each server’s address and whether or not it is the leader. In Implement Raft

cluster’s server and what server is the leader. We can expose this information
to the resolver with an endpoint on our gRPC service.

Using an RPC for discovery will be easy because we built Serf and Raft into
our service already. Kafka clients discover the cluster’s brokers by requesting
a metadata endpoint. Kafka’s metadata endpoint responds with data that’s
stored and coordinated with ZooKeeper, though the Kafka developers plan to
remove the dependency on ZooKeeper and build Raft into Kafka to coordinate
this data, similar to our service. This will be a big change in how this data
works in Kafka, specifically with how it manages what servers are in the
cluster and how it elects leaders; however, little to nothing will have to change
with how the clients discover the servers, thus showing the benefit of using
a service endpoint for client-side discovery.

Open the api/vl/log.proto file and update the Log service to include the GetServers()
endpoint like so:

ClientSideServiceDiscovery/api/v1/log.proto
service Log {
rpc Produce(ProduceRequest) returns (ProduceResponse) {}
rpc Consume(ConsumeRequest) returns (ConsumeResponse) {}
rpc ConsumeStream(ConsumeRequest) returns (stream ConsumeResponse) {}
rpc ProduceStream(stream ProduceRequest) returns (stream ProduceResponse)
{}
rpc GetServers(GetServersRequest) returns (GetServersResponse) {}

}
This is the endpoint resolvers will call to get the cluster’s servers.

Now, add this snippet to the end of the file to define the endpoint’s request
and response:

ClientSideServiceDiscovery/api/v1/log.proto
message GetServersRequest {}

http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/api/v1/log.proto
http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/api/v1/log.proto
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Line 1

Make Servers Discoverable ® 175

message GetServersResponse {
repeated Server servers = 1;
}
message Server {
string id = 1;
string rpc_addr = 2;
bool is leader = 3;

}

The endpoint response includes the server addresses clients should connect to
and what server is the leader. This information will tell the picker what server to
send the server produce calls and what servers to send consume calls.

We'll implement the endpoint on our server, but before we do, we need an
API on our DistributedLog that exposes Raft’s server data. Open internal/log/distribut-
ed.go and put this GetServers() method below DistributedLog.Close:

ClientSideServiceDiscovery/internal/log/distributed.go
func (1 *DistributedLog) GetServers() ([]*api.Server, error) {

future := l.raft.GetConfiguration()
if err := future.Error(); err '= nil {
return nil, err
}
var servers []*api.Server
for , server := range future.Configuration().Servers {
servers = append(servers, &api.Server{
Id: string(server.ID),
RpcAddr: string(server.Address),
IsLeader: l.raft.Leader() == server.Address,
1)
}

return servers, nil

}

Raft’s configuration comprises the servers in the cluster and includes each
server’s ID, address, and suffrage—whether the server votes in Raft elections
(we don’t need the suffrage in our project). Raft can tell us the address of the
cluster’s leader, too. GetServers() converts the data from Raft’s raft.Server type
into our *api.Server type for our API to respond with.

Let’s update the DistributedLog tests to check that GetServers() returns the servers
in the cluster as we expect. Open internal/log/distributed_test.go and add the new
code in this snippet that surrounds the old lines 8 and 9:

ClientSideServiceDiscovery/internal/log/distributed_test.go
servers, err := logs[0].GetServers()
require.NoError(t, err)

require.Equal(t, 3, len(servers))
require.True(t, servers[0].IsLeader)

http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/internal/log/distributed.go
http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/internal/log/distributed_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

5

Chapter 9. Discover Servers and Load Balance from the Client ® 176

require.False(t, servers[l].IsLeader)
require.False(t, servers[2].IsLeader)

err = logs[0].Leave("1")
require.NoError(t, err)

time.Sleep(50 * time.Millisecond)

servers, err = logs[0].GetServers()
require.NoError(t, err)
require.Equal(t, 2, len(servers))
require.True(t, servers[0].IslLeader)
require.False(t, servers[l].IsLeader)

The assertions before line 8 test that GetServers() returns all three servers in
the cluster and sets the leader server as the leader. After line 9, we expect
the cluster to have two servers because these assertions run after we've made
one server leave the cluster.

That'’s it for the Distributedlog changes and tests. Next we’ll implement the
endpoint on the server that calls DistributedLog.GetServers().

Open internal/server/server.go and update the Config to:

ClientSideServiceDiscovery/internal/server/server.go
type Config struct {
CommitLog CommitLog
Authorizer Authorizer
GetServerer GetServerer

}
And put this snippet below the ConsumeStream() method:

ClientSideServiceDiscovery/internal/server/server.go
func (s *grpcServer) GetServers(

ctx context.Context, req *api.GetServersRequest,
) (

*api.GetServersResponse, error) {

servers, err := s.GetServerer.GetServers()

if err !'= nil {

return nil, err
}

return &api.GetServersResponse{Servers: servers}, nil

}

type GetServerer interface {
GetServers() ([]*api.Server, error)

}

These two snippets enable us to inject different structs that can get servers.
We don’t want to add the GetServers() method to our CommitLog interface because

http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/internal/server/server.go
http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/internal/server/server.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Resolve the Servers ® 177

a non-distributed log like our Log type doesn’'t know about servers. So we
made a new interface whose sole method GetServers() matches DistributedLog.Get-
Servers. When we update the end-to-end tests in the agent package, we’ll set
our DistributedLog on the config as both the CommitLog and the GetServerer—which
our new server endpoint wraps with error handling.

In agent.go, update your setupServer() method to configure the server to get the
cluster’s servers from the DistributedLog:

ClientSideServiceDiscovery/internal/agent/agent.go

serverConfig := &server.Config{
CommitlLog: a.log,
Authorizer: authorizer,
GetServerer: a.log,

}

Now we have a server endpoint that clients can call to get the cluster’s servers.
We're now ready to build our resolver.

Resolve the Servers

The gRPC resolver we’ll write in this section will call the GetServers() endpoint
we made and pass its information to gRPC so that the picker knows what
servers it can route requests to.

To start, create a new package for our resolver and picker code by running $
mkdir internal/loadbalance.

gRPC uses the builder pattern for resolvers and pickers, so each has a
builder interface and an implementation interface. Because the builder
interfaces have one simple method—ABuild()—we’ll implement both interfaces
with one type. Create a file named resolver.go in internal/loadbalance that begins
with this code:

ClientSideServiceDiscovery/internal/loadbalance/resolver.go
package loadbalance

import (
"context"
"fmt"
"sync"

"go.uber.org/zap"
"google.golang.org/grpc"
"google.golang.org/grpc/attributes"
"google.golang.org/grpc/resolver"
"google.golang.org/grpc/serviceconfig"

api "github.com/travisjeffery/proglog/api/v1"

http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/internal/agent/agent.go
http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/internal/loadbalance/resolver.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 9. Discover Servers and Load Balance from the Client ® 178

type Resolver struct {
mu sync.Mutex
clientConn resolver.ClientConn
resolverConn *grpc.ClientConn
serviceConfig *serviceconfig.ParseResult
logger *zap.Logger

}

Resolver is the type we’ll implement into gRPC’s resolver.Builder and resolver.Resolver
interfaces. The clientConn connection is the user’s client connection and gRPC
passes it to the resolver for the resolver to update with the servers it discovers.
The resolverConn is the resolver’s own client connection to the server so it can
call GetServers() and get the servers.

Add this snippet below the Resolver type to implement gRPC’s resolver.Builder
interface:

ClientSideServiceDiscovery/internal/loadbalance/resolver.go
var _ resolver.Builder = (*Resolver)(nil)

func (r *Resolver) Build(
target resolver.Target,
cc resolver.ClientConn,
opts resolver.BuildOptions,
) (resolver.Resolver, error) {
r.logger = zap.L().Named("resolver")
r.clientConn = cc
var dialOpts []grpc.DialOption
if opts.DialCreds != nil {
dialOpts = append(
dialOpts,
grpc.WithTransportCredentials(opts.DialCreds),

}
r.serviceConfig = r.clientConn.ParseServiceConfig(
fmt.Sprintf({"loadBalancingConfig":[{"%s":{}}]} , Name),
)
var err error
r.resolverConn, err = grpc.Dial(target.Endpoint, dialOpts...)
if err !'= nil {
return nil, err
}
r.ResolveNow(resolver.ResolveNowOptions{})
return r, nil

}
const Name = "proglog"

func (r *Resolver) Scheme() string {
return Name

}

http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/internal/loadbalance/resolver.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

func init() {
resolver.Register(&Resolver{})

}

resolver.Builder comprises two methods—aBuild() and Scheme():

Resolve the Servers ® 179

¢ Build() receives the data needed to build a resolver that can discover the
servers (like the target address) and the client connection the resolver will

update with the servers it discovers. Build() sets up a client connection to

our server so the resolver can call the GetServers() API.

¢ Scheme() returns the resolver’s scheme identifier. When you call grpc.Dial,
gRPC parses out the scheme from the target address you gave it and tries
to find a resolver that matches, defaulting to its DNS resolver. For our

resolver, you'll format the target address like this: proglog://your-service-

address.

We register this resolver with gRPC in init() so gRPC knows about this resolver
when it’s looking for resolvers that match the target’s scheme.

Put this snippet below init() to implement gRPC’s resolver.Resolver interface:

ClientSideServiceDiscovery/internal/loadbalance/resolver.go
var _ resolver.Resolver = (*Resolver)(nil)

func (r *Resolver) ResolveNow(resolver.ResolveNowOptions) {
r.mu.Lock()
defer r.mu.Unlock()
client := api.NewLogClient(r.resolverConn)
// get cluster and then set on cc attributes
ctx := context.Background()

res, err := client.GetServers(ctx, &api.GetServersRequest{})

if err != nil {
r.logger.Error(
"failed to resolve server",
zap.Error(err),

)

return
}
var addrs []resolver.Address
for , server := range res.Servers {

addrs = append(addrs, resolver.Address{
Addr: server.RpcAddr,
Attributes: attributes.New(
"is leader",
server.IslLeader,

http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/internal/loadbalance/resolver.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 9. Discover Servers and Load Balance from the Client ® 180

r.clientConn.UpdateState(resolver.State{
Addresses: addrs,
ServiceConfig: r.serviceConfig,

1)
}
func (r *Resolver) Close() {
if err := r.resolverConn.Close(); err '= nil {
r.logger.Error(
"failed to close conn",
zap.Error(err),
)
}
}

resolver.Resolver comprises two methods—ResolveNow() and Close(). gRPC calls
ResolveNow() to resolve the target, discover the servers, and update the client
connection with the servers. How your resolver will discover the servers
depends on your resolver and the service you're working with. For example,
a resolver built for Kubernetes could call Kubernetes’ API to get the list of
endpoints. We create a gRPC client for our service and call the GetServers() API
to get the cluster’s servers.

Services can specify how clients should balance their calls to the service by
updating the state with a service config. We update the state with a service
config that specifies to use the “proglog” load balancer we’ll write in Route
and Balance Requests with Pickers, on page 183.

You update the state with a slice of resolver.Address to inform the load balancer
what servers it can choose from. A resolver.Address has three fields:

¢ Addr (required)—the address of the server to connect to.

e Attributes (optional but useful)—a map containing any data that’s useful
for the load balancer. We'll tell the picker what server is the leader and
what servers are followers with this field.

¢ ServerName (optional and you likely don’t need to set)—the name used as
the transport certificate authority for the address, instead of the hostname
taken from the Dial target string.

After we've discovered the servers, we update the client connection by calling
UpdateState() with the resolver.Address’s. We set up the addresses with the data in
the api.Server’'s. gRPC may call ResolveNow() concurrently, so we use a mutex to
protect access across goroutines.

Close() closes the resolver. In our resolver, we close the connection to our
server created in Build().

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Line 1

20

25

30

35

Resolve the Servers ® 181

That’s it for our resolver’s code. Let’s test it.

Create a test file named resolver_test.go in internal/loadbalance that begins with this
snippet:

ClientSideServiceDiscovery/internal/loadbalance/resolver_test.go
package loadbalance test

import (
"net"
"testing"

"github.com/stretchr/testify/require"
"google.golang.org/grpc"
"google.golang.org/grpc/attributes"
"google.golang.org/grpc/credentials"
"google.golang.org/grpc/resolver"
"google.golang.org/grpc/serviceconfig"

api "github.com/travisjeffery/proglog/api/v1"
"github.com/travisjeffery/proglog/internal/loadbalance"
"github.com/travisjeffery/proglog/internal/config"
"github.com/travisjeffery/proglog/internal/server"

)

func TestResolver(t *testing.T) {
1, err := net.Listen("tcp", "127.0.0.1:0")
require.NoError(t, err)

tlsConfig, err := config.SetupTLSConfig(config.TLSConfig{

CertFile: config.ServerCertFile,
KeyFile: config.ServerKeyFile,
CAFile: config.CAFile,
Server: true,
ServerAddress: "127.0.0.1",
1
require.NoError(t, err)
serverCreds := credentials.NewTLS(tlsConfig)
srv, err := server.NewGRPCServer(&server.Config{

GetServerer: &getServers{},
}, grpc.Creds(serverCreds))
require.NoError(t, err)

go srv.Serve(l)

This code sets up a server for our test resolver to try and discover some servers
from. We pass in a mock GetServerers on line 35 so we can set what servers the
resolver should find.

http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/internal/loadbalance/resolver_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 9. Discover Servers and Load Balance from the Client ® 182

Put this snippet below the previous snippet to continue writing the test:

ClientSideServiceDiscovery/internal/loadbalance/resolver_test.go

conn := &clientConn{}

tlsConfig, err = config.SetupTLSConfig(config.TLSConfig{
CertFile: config.RootClientCertFile,
KeyFile: config.RootClientKeyFile,
CAFile: config.CAFile,
Server: false,

ServerAddress: "127.0.0.1",
1)
require.NoError(t, err)
clientCreds := credentials.NewTLS(tlsConfig)
opts := resolver.BuildOptions{
DialCreds: clientCreds,
}
r := &loadbalance.Resolver{}
_, err = r.Build(
resolver.Target{
Endpoint: 1.Addr().String(),
I
conn,
opts,
)
require.NoError(t, err)

This code creates and builds the test resolver and configures its target end-
point to point to the server we set up in the previous snippet. The resolver
will call GetServers() to resolve the servers and update the client connection
with the servers’ addresses.

Add this snippet below the previous snippet to finish writing the test:

ClientSideServiceDiscovery/internal/loadbalance/resolver_test.go

wantState := resolver.State{

Addresses: []resolver.Address{{

Addr: "localhost:96001",

Attributes: attributes.New("is leader", true),
oA

Addr: "localhost:9002",

Attributes: attributes.New("is leader", false),
1t

}

require.Equal(t, wantState, conn.state)

conn.state.Addresses = nil
r.ResolveNow(resolver.ResolveNowOptions{})
require.Equal(t, wantState, conn.state)

http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/internal/loadbalance/resolver_test.go
http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/internal/loadbalance/resolver_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Route and Balance Requests with Pickers ® 183

We check that the resolver updated the client connection with the servers
and data we expected. We wanted the resolver to find two servers and mark
the 9001 server as the leader.

Our test depended on some mock types. Add this code at the bottom of the file:

ClientSideServiceDiscovery/internal/loadbalance/resolver_test.go
type getServers struct{}

func (s *getServers) GetServers() ([]*api.Server, error) {
return []*api.Server{{
Id: "leader",
RpcAddr: "localhost:9001",
IslLeader: true,
oA
Id: "follower",
RpcAddr: "localhost:9002",
}}, nil

type clientConn struct {
resolver.ClientConn
state resolver.State

func (c *clientConn) UpdateState(state resolver.State) {
c.state = state

}

func (c *clientConn) ReportError(err error) {}

func (c *clientConn) NewAddress(addrs []resolver.Address) {}
func (c *clientConn) NewServiceConfig(config string) {}

func (c *clientConn) ParseServiceConfig(
config string,

) *serviceconfig.ParseResult {
return nil

}

getServers implements GetServerers, whose job is to return a known server set
for the resolver to find. clientConn implements resolver.ClientConn, and its job is to
keep a reference to the state the resolver updated it with so that we can verify
that the resolver updates the client connection with the correct data.

Run the resolver tests to verify that they pass. And now, we're on to the picker.

Route and Balance Requests with Pickers

In the gRPC architecture, pickers handle the RPC balancing logic. They're
called pickers because they pick a server from the servers discovered by the
resolver to handle each RPC. Pickers can route RPCs based on information

http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/internal/loadbalance/resolver_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 9. Discover Servers and Load Balance from the Client ® 184

about the RPC, client, and server, so their utility goes beyond balancing to
any kind of request-routing logic.

To implement the picker builder, create a file named picker.go in internal/loadbalance
that begins with this code:

ClientSideServiceDiscovery/internal/loadbalance/picker.go
package loadbalance

import (
"strings"
"sync"
"sync/atomic"

"google.golang.org/grpc/balancer"
"google.golang.org/grpc/balancer/base"
)

var _ base.PickerBuilder = (*Picker)(nil)

type Picker struct {
mu sync.RWMutex
leader balancer.SubConn
followers []balancer.SubConn
current uint64

}
func (p *Picker) Build(buildInfo base.PickerBuildInfo) balancer.Picker {
p.mu.Lock()
defer p.mu.Unlock()
var followers []balancer.SubConn
for sc, scInfo := range buildInfo.ReadySCs {
islLeader := scInfo.
Address.
Attributes.
Value("is leader"). (bool)
if islLeader {
p.leader = sc
continue
}
followers = append(followers, sc)
}
p.followers = followers
return p
}

Pickers use the builder pattern just like resolvers. gRPC passes a map of
subconnections with information about those subconnections to Build() to set
up the picker—behind the scenes, gRPC connected to the addresses that our
resolver discovered. Our picker will route consume RPCs to follower servers
and produce RPCs to the leader server. The address attributes help us differ-
entiate the servers.

http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/internal/loadbalance/picker.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Route and Balance Requests with Pickers ® 185

To implement the picker, add this snippet below Build():

ClientSideServiceDiscovery/internal/loadbalance/picker.go
var _ balancer.Picker = (*Picker)(nil)

func (p *Picker) Pick(info balancer.PickInfo) (

balancer.PickResult, error) {

p.mu.RLock()

defer p.mu.RUnlock()

var result balancer.PickResult

if strings.Contains(info.FullMethodName, "Produce") ||
len(p.followers) == 0 {
result.SubConn = p.leader

} else if strings.Contains(info.FullMethodName, "Consume") {
result.SubConn = p.nextFollower()

}

if result.SubConn == nil {
return result, balancer.ErrNoSubConnAvailable

}

return result, nil

func (p *Picker) nextFollower() balancer.SubConn {
cur := atomic.AddUint64(&p.current, uint64(1))
len := uint64(len(p.followers))
idx := int(cur % len)
return p.followers[idx]

}

Pickers have one method: Pick(balancer.Pickinfo). gRPC gives Pick() a balancer.Pickinfo
containing the RPC’s name and context to help the picker know what subcon-
nection to pick. If you have header metadata, you can read it from the context.
Pick() returns a balancer.PickResult with the subconnection to handle the call.
Optionally, you can set a Done callback on the result that gRPC calls when
the RPC completes. The callback tells you the RPC’s error, trailer metadata,
and whether there were bytes sent and received to and from the server.

We look at the RPC’s method name to know whether the call is an append or
consume call, and if we should pick a leader subconnection or a follower
subconnection. We balance the consume calls across the followers with the
round-robin algorithm. Put this snippet at the end of the file to register the
picker with gRPC and finish the picker’s code:

ClientSideServiceDiscovery/internal/loadbalance/picker.go
func init() {
balancer.Register(
base.NewBalancerBuilder(Name, &Picker{}, base.Config{}),
)

http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/internal/loadbalance/picker.go
http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/internal/loadbalance/picker.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 9. Discover Servers and Load Balance from the Client ® 186

Though pickers handle routing the calls, which we’d traditionally consider
handling the balancing, gRPC has a balancer type that takes input from gRPC,
manages subconnections, and collects and aggregates connectivity states.
gRPC provides a base balancer; you probably don’t need to write your own.

Time to test our picker. Create a test file named picker test.go in internal/loadbalance
that begins with this snippet:

ClientSideServiceDiscovery/internal/loadbalance/picker_test.go
package loadbalance test

import (
"testing"

"google.golang.org/grpc/attributes"
"google.golang.org/grpc/balancer"
"google.golang.org/grpc/balancer/base"
"google.golang.org/grpc/resolver"

"github.com/stretchr/testify/require"

"github.com/travisjeffery/proglog/internal/loadbalance"
)

func TestPickerNoSubConnAvailable(t *testing.T) {
picker := &loadbalance.Picker{}
for _, method := range []string{
"/log.vX.Log/Produce",
"/log.vX.Log/Consume",

A
info := balancer.PickInfo{
FullMethodName: method,
}
result, err := picker.Pick(info)
require.Equal(t, balancer.ErrNoSubConnAvailable, err)
require.Nil(t, result.SubConn)
}

}

TestPickerNoSubConnAvailable() tests that a picker initially returns balancer.ErrNoSub-
ConnAvailable before the resolver has discovered servers and updated the picker’s
state with available subconnections. balancer.ErrNoSubConnAvailable instructs gRPC
to block the client’s RPCs until the picker has an available subconnection to
handle them.

Next add this snippet below TestPickerNoSubConnAvailable() to test pickers with
subconnections to pick from:

ClientSideServiceDiscovery/internal/loadbalance/picker_test.go
func TestPickerProducesTolLeader(t *testing.T) {
picker, subConns := setupTest()

info := balancer.PickInfo{

http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/internal/loadbalance/picker_test.go
http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/internal/loadbalance/picker_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Route and Balance Requests with Pickers ® 187

FullMethodName: "/log.vX.Log/Produce",

}
for i :=0; i <5; i++ {
gotPick, err := picker.Pick(info)
require.NoError(t, err)
require.Equal(t, subConns[0], gotPick.SubConn)
}
}
func TestPickerConsumesFromFollowers(t *testing.T) {
picker, subConns := setupTest()
info := balancer.PickInfo{
FullMethodName: "/log.vX.Log/Consume",
}
for i :=0; i <5; i++ {
pick, err := picker.Pick(info)
require.NoError(t, err)
require.Equal(t, subConns[i%2+1], pick.SubConn)
}
}

TestPickerProducesToLeader() tests that the picker picks the leader subconnection
for append calls. TestPickerConsumesFromFollowers() tests that the picker picks the
followers subconnections in a round-robin for consume calls.

Put this final snippet at the end of the file to define the tests’ helpers:

ClientSideServiceDiscovery/internal/loadbalance/picker_test.go
func setupTest() (*loadbalance.Picker, []*subConn) {
var subConns []*subConn
buildInfo := base.PickerBuildInfo{
ReadySCs: make(map[balancer.SubConn]base.SubConnInfo),
}
for i :=0; 1 < 3; i++ {
sc := &subConn{}
addr := resolver.Address{
Attributes: attributes.New("is leader", i == 0),
}
// 0th sub conn is the leader
sc.UpdateAddresses([]resolver.Address{addr})
buildInfo.ReadySCs[sc] = base.SubConnInfo{Address: addr}
subConns = append(subConns, sc)
}
picker := &loadbalance.Picker{}
picker.Build(buildInfo)
return picker, subConns

}

// subConn implements balancer.SubConn.
type subConn struct {
addrs []resolver.Address

}

http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/internal/loadbalance/picker_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

YYYVYY

Chapter 9. Discover Servers and Load Balance from the Client ®* 188

func (s *subConn) UpdateAddresses(addrs []resolver.Address) {
s.addrs = addrs

}

func (s *subConn) Connect() {}

setupTest() builds the test picker with some mock subconnections. We create
the picker with build information that contains addresses with the same
attributes as our resolver sets.

Run the picker’s tests to verify they pass. Now we're ready to put everything
together.

Test Discovery and Balancing End-to-End

We're ready to update our agent’s tests to test everything end-to-end: the
client configuring the resolver and picker, the resolver discovering the servers,
and the picker picking subconnections per RPC.

Open your agent tests in internal/agent/agent_test.go and add this import:

ClientSideServiceDiscovery/internal/agent/agent_test.go
"github.com/travisjeffery/proglog/internal/loadbalance"

Then update the client() function to use your resolver and picker:

ClientSideServiceDiscovery/internal/agent/agent_test.go
func client(
t *testing.T,
agent *agent.Agent,
tlsConfig *tls.Config,
) api.LogClient {
tlsCreds := credentials.NewTLS(tlsConfig)
opts := []grpc.DialOption{
grpc.WithTransportCredentials(tlsCreds),
}
rpcAddr, err := agent.Config.RPCAddr()
require.NoError(t, err)
conn, err := grpc.Dial(fmt.Sprintf(
"%s:///%s",
loadbalance.Name,

rpcAddr,
), opts...)
require.NoError(t, err)
client := api.NewLogClient(conn)

return client

}

The highlighted lines specify our scheme in the URL so gRPC knows to use
our resolver.

http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/internal/agent/agent_test.go
http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/internal/agent/agent_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Line 1

What You Learned ® 189

Run the agent’s tests by running $ go run .Jinternal/agent, and you’ll see that the
leader client consume call fails now. Why? Before, each client connected to
one server. So the leader client connected to the leader. When we produced
records, they were immediately available for consuming with the leader client
because it consumed from the leader server—we didn’t have to wait for the
leader to replicate the record. Now, each client connects to every server and
produces to the leader and consumes from the followers, so we must wait for
the leader to replicate the record to the followers.

Update your test to wait for the servers to replicate the record before consum-
ing with the leader client. Move time.Sleep that appears before line 14 to appear
before line 4:

ClientSideServiceDiscovery/internal/agent/agent_test.go
// wait until replication has finished

- time.Sleep(3 * time.Second)

20

consumeResponse, err := leaderClient.Consume(
context.Background(),
&api.ConsumeRequestq{
Offset: produceResponse.Offset,
I
)
require.NoError(t, err)
require.Equal(t, consumeResponse.Record.Value, []byte("foo"))

followerClient := client(t, agents[l], peerTLSConfig)
consumeResponse, err = followerClient.Consume(
context.Background(),
&api.ConsumeRequestq{
Offset: produceResponse.Offset,
+
)
require.NoError(t, err)
require.Equal(t, consumeResponse.Record.Value, []byte("foo0"))

Run your tests again with $ make test and watch them pass!

What You Learned

Now you know how gRPC resolves services and balances calls across them
and how you can build your own resolvers and pickers. You can write your
own resolver so that your clients dynamically discover servers. And you saw
how pickers are useful for more than just load balancing—you can build your
own routing logic with them.

In the next part of the book, we’ll look at how to deploy our service and make
it live.

http://media.pragprog.com/titles/tjgo/code/ClientSideServiceDiscovery/internal/agent/agent_test.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Part IV

Deploy

cHAPTER 10

Deploy Applications with Kubernetes
Locally

After Frodo and Sam had trekked from the Shire to Mount Doom, was their
task finished? No—the whole journey would've been for nothing if they hadn’t
thrown that ring into the fire. Likewise, building a service means something
only after you've deployed it. Therefore, in this chapter, we’ll deploy a cluster
of our service. We'll:

e Create an agent command-line interface (CLI) so we have an executable
to run our service.

e Get set up with Kubernetes and Helm so that we can orchestrate our
service on both our local machine and later on a cloud platform.

* Run a cluster of your service on your machine.

Ready? Let’s get started.

What Is Kubernetes?

While entire books are devoted to answering this question, even they can’t cover
everything Kubernetes can do. For our purposes in this book, I will touch upon
the information you need to know to have a working knowledge of Kubernetes,
enough to continue our journey and deploy and operate our service. Why Kuber-
netes? Kubernetes is ubiquitous, it’s available on all cloud platforms, and it’s as
close to a standard as we have for deploying distributed services.

Kubernetes' is an open source orchestration system for automating deployment,
scaling, and operating services running in containers. You tell Kubernetes what

1. https://kubernetes.io

https://kubernetes.io
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 10. Deploy Applications with Kubernetes Locally ® 194

to do by using its REST API to create, update, and delete resources that
Kubernetes knows how to handle. Kubernetes is a declarative system in that
you describe the end-goal state you want and Kubernetes runs the changes to
take your system from its current state to your end-goal state.

The Kubernetes resource that people most commonly see are pods, the
smallest deployable unit in Kubernetes. Think of containers as processes and
pods as hosts—all containers running in a pod share the same network
namespace, the same IP address, and the same interprocess communication
(IPC) namespace, and they can share the same volumes. These are logical
hosts because a physical host (what Kubernetes calls a node) may run multiple
pods. The other resources you'll work with either configure pods (ConfigMaps,
Secrets) or manage a pod set (Deployments, StatefulSets, DaemonSets). You
can extend Kubernetes by creating your own custom resources and controllers.

Controllers are control loops that watch the state of your resources and make
changes where needed. Kubernetes itself is made up of many controllers. For
example, the Deployment controller watches your Deployment resources; if you
increase the replicas on a Deployment, the controller will schedule more pods.

To interact with Kubernetes, you'll need its command-line tool, kubectl, which
we’ll look at next.

Install kubectl

The Kubernetes command-line tool, kubectl,” is used to run commands against
Kubernetes clusters. You'll use kubectl to inspect and manage your service’s
cluster resources and view logs. Try to use kubectl for one-off operations. For
operations you run again and again, like deploying or upgrading a service,
you’ll use the Helm package manager or an operator, which we’ll take a look
at later in this chapter.

To install kubectl, run the following:

$ curl -LO |
https://storage.googleapis.com/kubernetes-release/release/|\
v1.18.0/bin/$(uname)/amd64/kubectl

$ chmod +x ./kubectl

$ mv ./kubectl /usr/local/bin/kubectl

We need a Kubernetes cluster and its API for kubectl to call and do anything.
In the next section, we’ll use the Kind tool to run a local Kubernetes cluster
in Docker.

2. https://kubernetes.io/docs/reference/kubectl/overview

https://kubernetes.io/docs/reference/kubectl/overview
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Use Kind for Local Development and Continuous Integration ® 195

Use Kind for Local Development and Continuous
Integration

Kind® (an acronym for Kubernetes IN Docker) is a tool developed by the
Kubernetes team to run local Kubernetes clusters using Docker containers
as nodes. It's the easiest way to run your own Kubernetes cluster, and it’s
great for local development, testing, and continuous integration.

To install Kind, run the following;:

$ curl -Lo ./kind https://kind.sigs.k8s.io/dl/v0.8.1/kind-$(uname)-amd64
$ chmod +x ./kind
$ mv ./kind /usr/local/bin/kind

To use Kind, you'll need to install Docker.* See Docker’s dedicated install
instructions for your operation system.

With Docker running, you can create a Kind cluster by running;:
$ kind create cluster

You can then verify that Kind created your cluster and configured kubectl to
use it by running the following:

$ kubectl cluster-info

> Kubernetes master is running at https://127.0.0.1:46023

KubeDNS is running at \
https://127.0.0.1:46023/api/v1/namespaces/kube-system/services/kube-dns:dns/proxy

To further debug and diagnose cluster problems, use kubectl cluster-info dump.

Kind runs one Docker container representing one Kubernetes node in the
cluster. By default, Kind runs a single node cluster with everything needed
for a functioning Kubernetes cluster. You can see the Node container by
running this:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED ...
033de99ble53 kindest/node:v1.18.2 "/usr/local/bin/entr.." 2 minutes...

We have a running Kubernetes cluster now—let’s run our service on it! To
run our service in Kubernetes, we’ll need a Docker image, and our Docker
image will need an executable entry point. Let’s write an agent CLI that serves
as our service’s executable.

3. https://kind.sigs.k8s.io

4. https://docs.docker.com/install

https://kind.sigs.k8s.io
https://docs.docker.com/install
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

YYYVYY

Chapter 10. Deploy Applications with Kubernetes Locally ® 196

Write an Agent Command-Line Interface

Our agent CLI will provide just enough features to use as a Docker image’s entry
point and run our service, parse flags, and then configure and run the agent.

I use the Cobra® library to handle commands and flags because it works well
for creating both simple CLIs and complex applications. It’s used in the Go
community by projects such as Kubernetes, Docker, Helm, Etcd, Hugo, and
more. And Cobra integrates with a library called Viper,® which is a complete
configuration solution for Go applications.

The first step is to create a cmd/proglog/main.go file, beginning with this code:

DeployLocally/cmd/proglog/main.go
package main

import (
"log"
"os
"os/signal"
"path"
"syscall"

"github.com/spfl3/cobra"

"github.com/spfl3/viper"

"github.com/travisjeffery/proglog/internal/agent"

"github.com/travisjeffery/proglog/internal/config"
)

func main() {

cli := &cli{}

cmd := &cobra.Command{
Use: "proglog",
PreRunE: cli.setupConfig,
RunE: cli.run,

}

if err := setupFlags(cmd); err != nil {
log.Fatal(err)

}

if err := cmd.Execute(); err != nil {
log.Fatal(err)

}

}

The highlighted code defines our sole command. Our CLI is about as simple
as it gets. In more complex applications, this command would act as the root

5. https://github.com/spfl3/cobra

6. https://github.com/spfl3/viper

http://media.pragprog.com/titles/tjgo/code/DeployLocally/cmd/proglog/main.go
https://github.com/spf13/cobra
https://github.com/spf13/viper
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Write an Agent Command-Line Interface ® 197

command tying together your subcommands. Cobra calls the RunE function
you set on your command when the command runs. Put or call the command’s
primary logic in that function. Cobra enables you to run hook functions to
run before and after RunE.

Cobra provides persistent flags and hooks for applications with many subcom-
mands (so we're not using them in our program)—persistent flags and hooks
apply to the current command and all its children. A common use case for a
persistent flag is in API-wrapping CLIs. In these CLIs, every subcommand
will need a flag for the API's endpoint address. In this situation, you’d use an
--api-addr persistent flag that you declare once on the root command for all the
subcommands to inherit.

To define our cli and cfg types, add the following code:

DeployLocally/cmd/proglog/main.go
type cli struct {

cfg cfg
}

type cfg struct {
agent.Config
ServerTLSConfig config.TLSConfig
PeerTLSConfig config.TLSConfig
}

I typically create a cli struct in which I can put logic and data that’s common
to all the commands. I created a separate cfg struct from the agent.Config struct
to handle the field types that we can’t parse without error handling: the
*net.TCPAddr and the *tls.Config.

Now, let’s set up our CLI’s flags.

Expose Flags
Below the previous snippet, add this code to declare our CLI's flags:

DeployLocally/cmd/proglog/main.go
func setupFlags(cmd *cobra.Command) error {
hostname, err := os.Hostname()
if err != nil {
log.Fatal(err)
}

cmd.Flags().String("config-file", "", "Path to config file.")

dataDir := path.Join(os.TempDir(), "proglog")
cmd.Flags().String("data-dir",

dataDir,

"Directory to store log and Raft data.")

http://media.pragprog.com/titles/tjgo/code/DeployLocally/cmd/proglog/main.go
http://media.pragprog.com/titles/tjgo/code/DeployLocally/cmd/proglog/main.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 10. Deploy Applications with Kubernetes Locally ® 198

cmd.Flags().String("node-name", hostname, "Unique server ID.")

cmd.Flags().String("bind-addr",

"127.0.0.1:8401",

"Address to bind Serf on.")
cmd.Flags().Int("rpc-port",

8400,

"Port for RPC clients (and Raft) connections.")
cmd.Flags().StringSlice("start-join-addrs",

nitl,

"Serf addresses to join.")
cmd.Flags().Bool("bootstrap", false, "Bootstrap the cluster.")

cmd.Flags().String("acl-model-file", "", "Path to ACL model.")
cmd.Flags().String("acl-policy-file", "", "Path to ACL policy.")
cmd.Flags().String("server-tls-cert-file", "", "Path to server tls cert.")

cmd.Flags().String("server-tls-key-file",
cmd.Flags().String("server-tls-ca-file",

nn
’

, "Path to server tls key.")

"Path to server certificate authority.")

cmd.Flags().String("peer-tls-cert-file", "", "Path to peer tls cert.")
cmd.Flags().String("peer-tls-key-file", "", "Path to peer tls key.")
cmd.Flags().String("peer-tls-ca-file",

nn
’

"Path to peer certificate authority.")

return viper.BindPFlags(cmd.Flags())
}

These flags allow people calling your CLI to configure the agent and learn the
default configuration.

With the pflag.FlagSet.{{type}}Var() methods, we can set our configuration’s values
directly. However, the problem with setting the configurations directly is that
not all types have supporting APIs out of the box. Our BindAddr configuration
is an example, which is a *net.TCPAddr that we need to parse from a string. You
can define custom flag values’ when you have enough flags of the same type,
or just use an intermediate value otherwise.

But what if we want to configure our service with more than flags, such as
with a file? We'll look at how to read in the configuration from a file, too, for
dynamic configurations.

Manage Your Configuration

Viper provides a centralized config registry system where multiple configuration
sources can set the configuration but you can read the result in one place.

7. https://golang.org/pkg/flag/#Value

https://golang.org/pkg/flag/#Value
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Write an Agent Command-Line Interface ® 199

You could allow users to set the configuration with flags, a file, or by loading
dynamic configs from a service like Consul—Viper supports all of these.

With a configuration file, you can support dynamic config changes to a running
service. The service watches the config file for changes and updates accord-
ingly. For example, you may run your service at INFO-level logs by default
but need DEBUG-level logs when you're debugging an issue with the running
service. A configuration file also enables other processes to set up the config-
uration for the service. We'll see an example of that with our service where
we have an init container that sets up the configuration for the service’s
container.

I've given usable defaults for the configurations we have to set: the data
directory, bind address, the RPC port, and the node name. Try to set usable
default flag values instead of requiring users to set them.

After declaring the flags, the next step is to execute the root command to
parse the process’s arguments and search through the command tree to find
the correct command to run. We just have the one command, so we're not
making Cobra work hard.

Add this snippet to set up the config:

DeployLocally/cmd/proglog/main.go
func (c *cli) setupConfig(cmd *cobra.Command, args []string) error {
var err error

configFile, err := cmd.Flags().GetString("config-file")
if err !'= nil {
return err

}
viper.SetConfigFile(configFile)

if err = viper.ReadInConfig(); err != nil {
// it's ok if config file doesn't exist
if , ok := err.(viper.ConfigFileNotFoundError); 'ok {
return err

}

-

.cfg.DataDir = viper.GetString("data-dir")

.cfg.NodeName = viper.GetString("node-name")

.cfg.BindAddr = viper.GetString("bind-addr")

.cfg.RPCPort = viper.GetInt("rpc-port")

.cfg.StartJoinAddrs = viper.GetStringSlice("start-join-addrs")
.cfg.Bootstrap = viper.GetBool("bootstrap")

.cfg.ACLModelFile = viper.GetString("acl-mode-file")

.cfg.ACLPolicyFile = viper.GetString("acl-policy-file")
.cfg.ServerTLSConfig.CertFile = viper.GetString("server-tls-cert-file")
.cfg.ServerTLSConfig.KeyFile = viper.GetString("server-tls-key-file")

0O o0 o0 o0 o0 00000

http://media.pragprog.com/titles/tjgo/code/DeployLocally/cmd/proglog/main.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

}

Chapter 10. Deploy Applications with Kubernetes Locally ¢ 200

.cfg.ServerTLSConfig.CAFile = viper.GetString("server-tls-ca-file")
.cfg.PeerTLSConfig.CertFile = viper.GetString("peer-tls-cert-file")
.cfg.PeerTLSConfig.KeyFile = viper.GetString("peer-tls-key-file")
.cfg.PeerTLSConfig.CAFile = viper.GetString("peer-tls-ca-file")

O o0 o0 o0

if c.cfg.ServerTLSConfig.CertFile != "" &&
c.cfg.ServerTLSConfig.KeyFile != "" {
c.cfg.ServerTLSConfig.Server = true
c.cfg.Config.ServerTLSConfig, err = config.SetupTLSConfig(
c.cfg.ServerTLSConfig,
)

if err != nil {
return err
}
}
if c.cfg.PeerTLSConfig.CertFile != "" &&
c.cfg.PeerTLSConfig.KeyFile != "" {
c.cfg.Config.PeerTLSConfig, err = config.SetupTLSConfig(
c.cfg.PeerTLSConfig,
)
if err != nil {
return err
}
}
return nil

setupConfig(cmd *cobra.Command, args [Istring) reads the configuration and prepares
the agent’s configuration. Cobra calls setupConfig() before running the command’s
RunE function.

Finish writing the program by including this run() method:

DeployLocally/cmd/proglog/main.go
func (c *cli) run(cmd *cobra.Command, args []lstring) error {

}

var err error

agent, err := agent.New(c.cfg.Config)
if err != nil {
return err
}
sigc := make(chan os.Signal, 1)
signal.Notify(sigc, syscall.SIGINT, syscall.SIGTERM)
<-sigc

return agent.Shutdown()

run(cmd *cobra.Command, args [Istring) runs our executable’s logic by:

e Creating the agent;
e Handling signals from the operating system; and

http://media.pragprog.com/titles/tjgo/code/DeployLocally/cmd/proglog/main.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Build Your Docker Image ® 201

¢ Shutting down the agent gracefully when the operating system terminates
the program.

Okay, we have our executable that we can use as our Docker image’s entry
point, so let’s write our Dockerfile and build the image.

Build Your Docker Image

Create a Dockerfile with this code:

DeployLocally/Dockerfile

FROM golang:1.14-alpine AS build

WORKDIR /go/src/proglog

COPY .

RUN CGO ENABLED=0 go build -o /go/bin/proglog ./cmd/proglog

FROM scratch
COPY --from=build /go/bin/proglog /bin/proglog
ENTRYPOINT ["/bin/proglog"]

Our Dockerfile uses multistage builds: one stage builds our service and one
stage runs it. This makes our Dockerfile easy to read and maintain while keeping
our build efficient and the image small.

The build stage uses the golang:1.14-alpine image because we need the Go
compiler, our dependencies, and perhaps various system libraries. These
take up disk space, and we don’t need them after we have compiled our
binary. In the second stage, we use the scratch empty image—the smallest
Docker image. We copy our binary into this image, and this is the image
we deploy.

You must statically compile your binaries for them to run in the scratch image
because it doesn’t contain the system libraries needed to run dynamically
linked binaries. That's why we disable Cgo—the compiler links it dynamically.
Using the scratch image helps with thinking of the containers as being
immutable. Instead of exec’'ing into a container and mutating the image by
installing tools or changing the filesystem, you run a short-lived container
that has the tool you need.

The next step is to add a target to your Makefile to build the Docker image by
adding this snippet to the bottom of the file:

DeployLocally/Makefile
TAG ?= 0.0.1

build-docker:
docker build -t github.com/travisjeffery/proglog:$(TAG) .

http://media.pragprog.com/titles/tjgo/code/DeployLocally/Dockerfile
http://media.pragprog.com/titles/tjgo/code/DeployLocally/Makefile
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 10. Deploy Applications with Kubernetes Locally ¢ 202

Then build the image and load it into your Kind cluster by running;:

$ make build-docker
$ kind load docker-image github.com/travisjeffery/proglog:0.0.1

Now that we have our Docker image, let’s look at how we can configure and
run a cluster of our service in Kubernetes with Helm.

Configure and Deploy Your Service with Helm

Helm® is the package manager for Kubernetes that enables you to distribute
and install services in Kubernetes. Helm packages are called charts. A chart
defines all resources needed to run a service in a Kubernetes cluster—for
example, its deployments, services, persistent volume claims, and so on.
Charts on Kubernetes are like Debian packages on Debian or Homebrew for-
mulas on macOS. As a service developer, youll want to build and share a
Helm chart for your service to make it easier for people to run your service.
(And if you're dogfooding your own service, you'll get the same benefit.)

A release is a instance of running a chart. Each time you install a chart into
Kubernetes, Helm creates a release. In the Debian package and Homebrew
formula examples, releases are like processes.

And finally, repositories are where you share charts to and install charts from;
they’re like Debian sources and Homebrew taps.

To install Helm, run this command:

$ curl https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3 |
| bash

Before we write our own Helm chart, let’s take Helm for a spin and install an
existing chart. Bitnami® maintains a repository of charts for popular applica-
tions. Let’s add a Bitnami repository and install the Nginx chart, which is a
web and proxy server:

$ helm repo add bitnami https://charts.bitnami.com/bitnami
$ helm install my-nginx bitnami/nginx

We can see the releases by running $ helm list:

$ helm list
NAME NAMESPACE REVISION UPDATED STATUS. ..
my-nginx default 1 2020... deployed...

Let’s request Nginx to confirm that it’s really running:

8. https://helm.sh

9. https://bitnami.com/kubernetes

https://helm.sh
https://bitnami.com/kubernetes
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Configure and Deploy Your Service with Helm ¢ 203

$ POD_ NAME=$(kubectl get pod \
--selector=app.kubernetes.io/name=nginx \
--template '{{index .items 0 "metadata" "
$ SERVICE IP=$(kubectl get svc \
--namespace default my-nginx --template "{{ .spec.clusterIP }}")
$ kubectl exec $POD NAME curl $SERVICE IP

name" }}')

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 612 100 612 0 0 597k O --1--1-- --i--i-- --i--1-- 507K
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;

margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;

}
</style>
</head>
<body>
<hl>Welcome to nginx!</h1l>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

We could use the same technique for deploying Nginx in a production envi-
ronment, aside from setting some configuration parameters to fit our use
case. Helm made it easy to install and configure an Nginx cluster, and we
can manage other services the same way.

Uninstall the Nginx release by running the following;:

$ helm uninstall my-nginx
release "my-nginx" uninstalled

Now, let’s build our own chart.

Build Your Own Helm Chart

In this section, we’ll build a Helm chart for our service and use it to install a
cluster in our Kind cluster.

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 10. Deploy Applications with Kubernetes Locally ® 204

Create your Helm chart by running these commands:

$ mkdir deploy && cd deploy
$ helm create proglog

Helm created a new chart in a new proglog directory that’s bootstrapped with
an example that shows you what a Helm chart looks like—to write your own
or to tweak for your own services. The proglog directory contains these directo-
ries and files:

L— proglog
—— charts
—— Chart.yaml
—— templates
— deployment.yaml
— _helpers.tpl
ingress.yaml
ﬁ NOTES. txt
— serviceaccount.yaml
— service.yaml
L tests
L test-connection.yaml
-— values.yaml

4 directories, 9 files

The Chart.yaml file describes your chart. You can access the data in this file in
your templates. The charts directory may contain subcharts, though I've never
needed subcharts.

The values.yaml contains your chart’s default values. Users can override these
values when they install or upgrade your chart (for example, the port your
service listens on, your service’s resource requirements, log level, and so on).

The templates directory contains template files that you render with your values
to generate valid Kubernetes manifest files. Kubernetes applies the rendered
manifest files to install the resources needed for your service. You write your
Helm templates using the Go template language.

You can render the templates locally without applying the resources in your
Kubernetes cluster by running $ helm template. This is useful when you're
developing your templates or if you want to apply your changes in a two-step
plan-then-apply process because you can see the rendered resources that
Kubernetes will apply.

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Configure and Deploy Your Service with Helm ® 205

To check out the resources Helm would create with the example chart, run
this command:

$ helm template proglog

You'll see the following:

Source: proglog/templates/serviceaccount.yaml
apiVersion: vl
kind: ServiceAccount
metadata:
name: RELEASE-NAME-proglog
labels:

helm.sh/chart: proglog-0.1.0
app.kubernetes.io/name: proglog
app.kubernetes.io/instance: RELEASE-NAME
app.kubernetes.io/version: "1.16.0"
app.kubernetes.io/managed-by: Helm

Source: proglog/templates/service.yaml
Lrest»

We don’t need the example templates, so remove them by running this command:
$ rm proglog/templates/**/*.yaml proglog/templates/NOTES. txt

Generally, Helm charts include a template file for each resource type. Our
service will require two resource types: a StatefulSet and a Service, so we'll
have a statefulset.yaml file and a service.yaml file. Let’s begin with the StatefulSet.

StatefulSets in Kubernetes

You use StatefulSets to manage stateful applications in Kubernetes, like our
service that persists a log. You need a StatefulSet for any service that requires
one or more of the following:

e Stable, unique network identifiers—each node in our service requires
unique node names as identifiers.

e Stable, persistent storage—our service expects the data its written to
persist across restarts.

¢ Ordered, graceful deployment and scaling—our service needs initial node
to bootstrap the cluster and join subsequent nodes to its cluster.

¢ Ordered, automated rolling updates—we always want our cluster to have
a leader, and when we roll the leader we want to give the cluster enough
time to elect a new leader before rolling the next node.

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 10. Deploy Applications with Kubernetes Locally ® 206

And by “stable,” I mean persisted across scheduling changes like restarts and
scaling.

If your service isn’'t stateful and doesn’t require these features, then you
should use a Deployment instead of a StatefulSet. One example is an API
service that persists to a relational database, like Postgres. You'd run the API
service with a Deployment because it’s stateless, and you’d run Postgres with
a StatefulSet.

Create a deploy/proglog/templates/statefulset.yaml file with this code:

DeployLocally/deploy/proglog/templates/statefulset.yaml
apiVersion: apps/vl
kind: StatefulSet
metadata:
name: {{ include "proglog.fullname" . }}
namespace: {{ .Release.Namespace }}

labels: {{ include "proglog.labels" . | nindent 4 }}
spec:
selector:
matchLabels: {{ include "proglog.selectorLabels" . | nindent 6 }}
serviceName: {{ include "proglog.fullname" . }}
replicas: {{ .Values.replicas }}
template:
metadata:
name: {{ include "proglog.fullname" . }}
labels: {{ include "proglog.labels" . | nindent 8 }}
spec:

initContainers...
containers. ..
volumeClaimTemplates:
- metadata:
name: datadir
spec:
accessModes: ["ReadWriteOnce" 1]
resources:
requests:
storage: {{ .Values.storage }}

I have omitted the spec’s initContainers and containers fields to make the snippet
smaller (we will fill those in next). The only thing of note here is that our
StatefulSet has a datadir PersistentVolumeClaim—the claim requests storage
for our cluster. Based on our configuration, Kubernetes could fulfill the
claim with a local disk, a disk provided by your cloud platform, and so
on. Kubernetes takes care of obtaining and binding the storage to your
containers.

http://media.pragprog.com/titles/tjgo/code/DeployLocally/deploy/proglog/templates/statefulset.yaml
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Configure and Deploy Your Service with Helm ¢ 207

Now, replace initContainers... in the previous snippet with this code:

DeployLocally/deploy/proglog/templates/statefulset.yaml
initContainers:
- name: {{ include "proglog.fullname" . }}-config-init
image: busybox
imagePullPolicy: IfNotPresent
command:
- /bin/sh
- -C
- -
ID=$(echo $HOSTNAME | rev | cut -d- -fl | rev)
cat > /var/run/proglog/config.yaml <<EOD
data-dir: /var/run/proglog/data
rpc-port: {{.Values.rpcPort}}
Make sure the following three key-values are on one line each in
your code. I split them across multiple lines to fit them in
for the book.
bind-addr: \
"$HOSTNAME.proglog.{{.Release.Namespace}}.\svc.cluster.local:\
{{.values.serfPort}}"
bootstrap: $([$ID = 0] & echo true || echo false)
$([$ID != 0] && echo 'start-join-addrs: \
"proglog-0.proglog.{{.Release.Namespace}}.svc.cluster.local:\
{{.values.serfPort}}"")
EOD
volumeMounts:
- name: datadir
mountPath: /var/run/proglog

Init containers run to completion before the StatefulSet’s app containers
listed in the containers field. Our config init container sets up our service’s
configuration file. We configure the first server to bootstrap the Raft cluster.
And we configure the subsequent servers to join the cluster. We mount the
datadir volume into the container so we can write to the same configuration
file our app container will read from later.

Replace containers... in the previous snippet with this:

DeployLocally/deploy/proglog/templates/statefulset.yaml

containers:

- name: {{ include "proglog.fullname" . }}
image: "{{ .Values.image.repository }}:{{ .Values.image.tag }}"
ports:

- containerPort: {{ .Values.rpcPort }}
name: rpc
- containerPort: {{ .Values.serfPort }}
name: serf
args:
- --config-file=/var/run/proglog/config.yaml

http://media.pragprog.com/titles/tjgo/code/DeployLocally/deploy/proglog/templates/statefulset.yaml
http://media.pragprog.com/titles/tjgo/code/DeployLocally/deploy/proglog/templates/statefulset.yaml
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 10. Deploy Applications with Kubernetes Locally ¢ 208

probes. ..
volumeMounts:
- name: datadir
mountPath: /var/run/proglog

These containers define our StatefulSet’s app containers; we need one for our
service. We mount the volume to the container for reading the configuration
file and persisting the log. We use a flag to tell our service where to find its
configuration file.

Container Probes and gRPC Health Check

Kubernetes uses probes to know whether it needs to act on a container to
improve your service’s reliability. With a service, usually the probe requests
a health check endpoint that responds with the health of the service.

There are three types of probes:

e Liveness probes signal that the container is alive, otherwise Kubernetes
will restart the container. Kubernetes calls the liveness probe throughout
the container’s lifetime.

* Readiness probes check that the container is ready to accept traffic, oth-
erwise Kubernetes will remove the pod from the service load balancers.
Kubernetes calls the readiness probe throughout the container’s lifetime.

e Startup probes signal when the container application has started and
Kubernetes can begin probing for liveness and readiness. Distributed
services often need to go through service discovery and join in consensus
with the cluster before they're initialized. If we had a liveness probe that
failed before our service finished initializing, our service would continually
restart. After startup, Kubernetes doesn’t call this probe again.

These probes should help improve your service’s reliability, but they can
cause incidents if they're not carefully implemented (like the example of the
liveness probe that restarts the container before it’s finished initializing). The
systems dedicated to improving the reliability of the service can cause more
incidents than the service by itself.

You have three ways of running probes:

e Making an HTTP request against a server;

¢ Opening a TCP socket against a server; and

* Running a command in the container (for example, Postgres has a com-
mand called pg_isready that connects to a Postgres server).

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Configure and Deploy Your Service with Helm ¢ 209

The first two are lightweight because they don’t require any extra binaries in
your image. However, a command can be more precise and necessary if you
use your own protocol.

gRPC services conventionally use a grpc_health_probe command that expects
your server to satisfy the gRPC health checking protocol.'® Our server needs
to export a service defined as:

syntax = "proto3";
package grpc.health.vl;

message HealthCheckRequest {
string service = 1;

}

message HealthCheckResponse {
enum ServingStatus {

UNKNOWN = 0;
SERVING = 1;
NOT SERVING = 2;
}
ServingStatus status = 1;

}

service Health {
rpc Check(HealthCheckRequest) returns (HealthCheckResponse);

rpc Watch(HealthCheckRequest) returns (stream HealthCheckResponse);
}

Let’s update our server to export the health check service.
Open internal/server/server.go and add the highlighted imports:

DeployLocally/internal/server/server.go
import (

"context"

"time"

api "github.com/travisjeffery/proglog/api/v1"

grpc_middleware "github.com/grpc-ecosystem/go-grpc-middleware"
grpc_auth "github.com/grpc-ecosystem/go-grpc-middleware/auth"
grpc_zap "github.com/grpc-ecosystem/go-grpc-middleware/logging/zap"
grpc_ctxtags "github.com/grpc-ecosystem/go-grpc-middleware/tags"

"go.opencensus.io/plugin/ocgrpc"
"go.opencensus.io/stats/view"
"go.opencensus.io/trace"

10. https://github.com/grpc/grpc/blob/master/doc/health-checking.md

http://media.pragprog.com/titles/tjgo/code/DeployLocally/internal/server/server.go
https://github.com/grpc/grpc/blob/master/doc/health-checking.md
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

vy

Chapter 10. Deploy Applications with Kubernetes Locally ¢ 210

"go.uber.org/zap"
"go.uber.org/zap/zapcore"

"google.golang.org/grpc"
"google.golang.org/grpc/codes"
"google.golang.org/grpc/credentials"
"google.golang.org/grpc/peer"
"google.golang.org/grpc/status"

"google.golang.org/grpc/health"
healthpb "google.golang.org/grpc/health/grpc_health v1"
)

Then, update the NewGRPCServer() function to include the highlighted lines in
this snippet:

DeployLocally/internal/server/server.go
func NewGRPCServer(config *Config, grpcOpts ...grpc.ServerOption) (
*grpc.Server,
error,
) {
logger := zap.L().Named("server")
zapOpts := []grpc_zap.Option{
grpc_zap.WithDurationField(
func(duration time.Duration) zapcore.Field {
return zap.Int64(
"grpc.time ns",
duration.Nanoseconds(),

}l
),
3

trace.ApplyConfig(trace.Config{
DefaultSampler: trace.AlwaysSample(),

H
err := view.Register(ocgrpc.DefaultServerViews...)
if err != nil {
return nil, err
}

grpcOpts = append(grpcOpts,
grpc.StreamInterceptor(
grpc_middleware.ChainStreamServer(
grpc_ctxtags.StreamServerInterceptor(),
grpc_zap.StreamServerInterceptor(
logger, zapOpts...,
),
grpc_auth.StreamServerInterceptor(
authenticate,
),
)), grpc.UnaryInterceptor(
grpc_middleware.ChainUnaryServer(

http://media.pragprog.com/titles/tjgo/code/DeployLocally/internal/server/server.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Configure and Deploy Your Service with Helm ® 211

grpc_ctxtags.UnaryServerInterceptor(),
grpc_zap.UnaryServerInterceptor(
logger, zapOpts...,
)I
grpc_auth.UnaryServerInterceptor(
authenticate,
),
),
grpc.StatsHandler(&ocgrpc.ServerHandler{}),
)
gsrv := grpc.NewServer(grpcOpts...)

> hsrv := health.NewServer()
> hsrv.SetServingStatus("", healthpb.HealthCheckResponse SERVING)
> healthpb.RegisterHealthServer(gsrv, hsrv)

srv, err := newgrpcServer(config)

if err != nil {

return nil, err
}
api.RegisterLogServer(gsrv, srv)
return gsrv, nil

}

These lines create a service that supports the health check protocol. We set
its serving status as serving so that the probe knows the service is alive and
ready to accept connections. Then we register the service with our server so
that gRPC can call this service’s endpoints.

Replace probes... in deploy/proglog/templates/statefulset.yaml with this snippet to tell
Kubernetes how to probe our service:

DeployLocally/deploy/proglog/templates/statefulset.yaml
readinessProbe:
exec:
command: ["/bin/grpc_health probe", "-addr=:{{ .Values.rpcPort }}"1]
initialDelaySeconds: 10
livenessProbe:
exec:
command: ["/bin/grpc _health probe", "-addr=:{{ .Values.rpcPort }}"]
initialDelaySeconds: 10

Then add these highlighted lines to your Dockerfile to install the grpc_health_probe
executable in your image:

DeployLocally/Dockerfile

FROM golang:1.14-alpine AS build

WORKDIR /go/src/proglog

COPY .

RUN CGO ENABLED=0 go build -o /go/bin/proglog ./cmd/proglog
» RUN GRPC HEALTH PROBE VERSION=v0.3.2 && |

http://media.pragprog.com/titles/tjgo/code/DeployLocally/deploy/proglog/templates/statefulset.yaml
http://media.pragprog.com/titles/tjgo/code/DeployLocally/Dockerfile
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

YYVYY

\

Chapter 10. Deploy Applications with Kubernetes Locally ® 212

wget -q0/go/bin/grpc_health probe |
https://github.com/grpc-ecosystem/grpc-health-probe/releases/download/\
${GRPC_HEALTH PROBE VERSION}/grpc health probe-linux-amd64 && |\

chmod +x /go/bin/grpc_health probe

FROM scratch

COPY --from=build /go/bin/proglog /bin/proglog

COPY --from=build /go/bin/grpc health probe /bin/grpc health probe
ENTRYPOINT ["/bin/proglog"]

The last resource we need to define in our Helm chart is the Service.

Kubernetes Services

A Service in Kubernetes exposes an application as a network service. You
define a Service with policies that specify what Pods the Service applies to
and how to access the Pods.

Four types of services specify how the Service exposes the Pods:

e ClusterIP exposes the Service on a load-balanced cluster-internal IP so
the Service is reachable within the Kubernetes cluster only. This is the
default Service type.

e NodePort exposes the Service on each Node’s IP on a static port—even if
the Node doesn’t have a Pod on it, Kubernetes sets up the routing so if
you request a Node at the service’s port, it'll direct the request to the
proper place. You can request NodePort services outside the Kubernetes
cluster.

e LoadBalancer exposes the Service externally using a cloud provider’s load
balancer. A LoadBalancer Service automatically creates ClusterIP and
NodelP services behind the scenes and manages the routes to these ser-
vices.

e ExternalName is a special Service that serves as a way to alias a DNS
name.

I don’t recommend using NodePort services (aside from the ones LoadBalancer
services create for you). You have to know your nodes’ IPs to use the services,
you must secure all your Nodes, and you have to deal with port conflicts.
Instead, I recommend using a LoadBalancer or a ClusterIP service if you're
able to run a Pod that can access your internal network.

Create a deploy/proglog/templates/service.yam| for your service template with the
following code:

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Advertise Raft on the Fully Qualified Domain Name ® 213

DeployLocally/deploy/proglog/templates/service.yaml
apiVersion: vl
kind: Service
metadata:
name: {{ include "proglog.fullname" . }}
namespace: {{ .Release.Namespace }}
labels: {{ include "proglog.labels" . | nindent 4 }}
spec:
clusterIP: None
publishNotReadyAddresses: true
ports:
- name: rpc
port: {{ .Values.rpcPort }}
targetPort: {{ .Values.rpcPort }}
- name: serf-tcp
protocol: "TCP"
port: {{ .Values.serfPort }}
targetPort: {{ .Values.serfPort }}
- name: serf-udp
protocol: "UDP"
port: {{ .Values.serfPort }}
targetPort: {{ .Values.serfPort }}
selector: {{ include "proglog.selectorLabels" . | nindent 4 }}

This snippet defines our “headless” Service. A headless Service doesn’t load
balance to a single IP. You use a headless Service when your distributed
service has its own means for service discovery. By defining selectors on our
Service, Kubernetes’ endpoint controller changes the DNS configuration to
return records that point to the Pods backing the Service. So, each pod will
get its own DNS record similar to proglog-{{id}}.proglog.{{namespace} }.svc.cluster.local,
and the servers will use these records to discover each other.

Advertise Raft on the Fully Qualified Domain Name

Currently, we configure Raft’'s address as the transport’s local address, and
the server will advertise its address as ::8400. We want to use the fully qualified
domain name instead so the node will properly advertise itself to its cluster
and to its clients.

In internal/log/config.go, change your Config to this:

DeployLocally/internal/log/config.go
type Config struct {
Raft struct {
raft.Config
BindAddr string
StreamLayer *StreamLayer
Bootstrap bool

http://media.pragprog.com/titles/tjgo/code/DeployLocally/deploy/proglog/templates/service.yaml
http://media.pragprog.com/titles/tjgo/code/DeployLocally/internal/log/config.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 10. Deploy Applications with Kubernetes Locally ® 214

Segment struct {
MaxStoreBytes uint64
MaxIndexBytes uint64
InitialOffset uint64

}
Change your DistributedLog’s bootstrap code to use the configured bind address:

DeployLocally/internal/log/distributed.go
if l.config.Raft.Bootstrap && 'hasState {

config := raft.Configuration{
Servers: []raft.Server{{
ID: config.LocallD,

Address: raft.ServerAddress(l.config.Raft.BindAddr),
I3
}
err = lL.raft.BootstrapCluster(config).Error()

}
And in distributed_test.go, update your log configuration to set the address:

DeployLocally/internal/log/distributed_test.go

config := log.Config{}

config.Raft.StreamLayer = log.NewStreamLayer(ln, nil, nil)
config.Raft.LocalID = raft.ServerID(fmt.Sprintf("%d", 1i))
config.Raft.HeartbeatTimeout = 50 * time.Millisecond
config.Raft.ElectionTimeout = 50 * time.Millisecond
config.Raft.LeaderLeaseTimeout = 50 * time.Millisecond
config.Raft.CommitTimeout = 5 * time.Millisecond
config.Raft.BindAddr = 1n.Addr().String()

Run your log tests to verify they pass.

Finally, in agent.go, update setupMux() and setupLog() to configure the mux and
Raft instance:
DeployLocally/internal/agent/agent.go

func (a *Agent) setupMux() error {
addr, err := net.ResolveTCPAddr("tcp", a.Config.BindAddr)

if err != nil {
return err

}

rpcAddr := fmt.Sprintf(
"%s:%d",

addr.IP.String(),
a.Config.RPCPort,
)
1n, err := net.Listen("tcp", rpcAddr)
if err != nil {
return err

}

http://media.pragprog.com/titles/tjgo/code/DeployLocally/internal/log/distributed.go
http://media.pragprog.com/titles/tjgo/code/DeployLocally/internal/log/distributed_test.go
http://media.pragprog.com/titles/tjgo/code/DeployLocally/internal/agent/agent.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

YYYVYY

Advertise Raft on the Fully Qualified Domain Name ® 215

a.mux = cmux.New(1ln)
return nil

func (a *Agent) setuplLog() error {
// ...
logConfig := log.Config{}
logConfig.Raft.StreamLayer = log.NewStreamLayer(
raftln,
a.Config.ServerTLSConfig,
a.Config.PeerTLSConfig,
)
rpcAddr, err := a.Config.RPCAddr()
if err != nil {
return err
}
logConfig.Raft.BindAddr = rpcAddr
logConfig.Raft.LocalID = raft.ServerID(a.Config.NodeName)
logConfig.Raft.Bootstrap = a.Config.Bootstrap
/...
}

Now we're ready to deploy the service in our Kubernetes cluster.

Install Your Helm Chart

We've finished writing our Helm chart and we can install it in our Kind cluster
to run a cluster of our service.

You can see what Helm renders by running:
$ helm template proglog deploy/proglog

You'll see that the repository is still set to the default: nginx. Open up
deploy/proglog/values.yaml and replace the entire contents to look like this:

DeployLocally/deploy/proglog/values.yaml
Default values for proglog.

image:
repository: github.com/travisjeffery/proglog
tag: 0.0.1

pullPolicy: IfNotPresent
serfPort: 8401
rpcPort: 8400
replicas: 3
storage: 1Gi

The point of the values.yml is to set good defaults and show what parameters
users can set if they must.

http://media.pragprog.com/titles/tjgo/code/DeployLocally/deploy/proglog/values.yaml
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 10. Deploy Applications with Kubernetes Locally ® 216

Now, install the Chart by running this command:
$ helm install proglog deploy/proglog

Wait a few seconds and you’ll see Kubernetes set up three pods. You can list
them by running $ kubectl get pods. When all three pods are ready, we can try
requesting the API.

We can tell Kubernetes to forward a pod or a Service’s port to a port on your
computer so you can request a service running inside Kubernetes without a
load balancer:

$ kubectl port-forward pod/proglog-0 8400 8400

Now we can request our service from a program running outside Kubernetes
at :8400.

Let’s write a simple executable to get the list of servers. Create a file named
cmd/getservers/main.go that looks like this:

DeployLocally/cmd/getservers/main.go
package main

import (
"context"
"flag"
"fmt"
n log n

api "github.com/travisjeffery/proglog/api/v1"
"google.golang.org/grpc"
)

func main() {

addr := flag.String("addr", ":8400", "service address")
flag.Parse()
conn, err := grpc.Dial(*addr, grpc.WithInsecure())
if err != nil {
log.Fatal(err)
}
client := api.NewLogClient(conn)
ctx := context.Background()
res, err := client.GetServers(ctx, &api.GetServersRequest{})
if err != nil {
log.Fatal(err)
}
fmt.Println("servers:")
for , server := range res.Servers {
fmt.Printf("\t- %vin", server)
}

http://media.pragprog.com/titles/tjgo/code/DeployLocally/cmd/getservers/main.go
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

What You Learned ® 217

Then, run the command to request our service to get and print the list of
Servers:

$ go run cmd/getservers/main.go

You should see the following output:

servers:

- id:"proglog-0" rpc_addr:"proglog-0.proglog.default.svc.cluster.local:8400"
- id:"proglog-1" rpc _addr:"proglog-1l.proglog.default.svc.cluster.local:8400"
- id:"proglog-2" rpc_addr:"proglog-2.proglog.default.svc.cluster.local:8400"

This means all three servers in our cluster have successfully joined the cluster
and are coordinating with each other!

What You Learned

In this chapter, you learned the fundamentals of Kubernetes and how to use
Kind to set up a Kubernetes cluster that you can run on your machine or on
a CI. You also learned how to create a Helm chart and how to install your
Helm chart into Kubernetes to run a cluster of your service. You learned quite
a lot! In the next chapter, we’ll build on this knowledge and deploy your service
on a cloud platform.

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

CHAPTER 11

Deploy Applications with Kubernetes to
the Cloud

In the previous chapter, we put the work into making our service deployable,
but we only deployed it locally. In this chapter, we’ll deploy our service to the
cloud and put it on the Internet. Kubernetes abstracts the resources needed
for your applications—containers, networking, volumes, and so on—similar
to how Go abstracts the operating system and processor architecture so you
can run the same program on each. As such, the changes you need to make
to take your local Kubernetes cluster to the cloud can be little to nothing.

Three major cloud platforms dominate the landscape: Google Cloud Platform
(GCP),' Amazon Web Services (AWS),? and Microsoft Azure.® All three platforms
provide similar feature sets and their own Kubernetes services. With Kuber-
netes making up the differences between the platforms, we can deploy to any
one, easily move between providers (and bargain with the providers for better
prices), or run across them all at the same time. In this chapter, we’ll deploy
our service to the Google Cloud Platform.

GCP provides a free tier of products, with limitations, along with $300 credit
to spend during your twelve-month free trial. What matters to us for purposes
of our work in this book is that the free tier includes one Kubernetes cluster
and 5 GB of storage—good enough to deploy our service to the cloud. Though
Google won’t charge you for the free trial, you need a credit card to sign up,
and during the trial, Google displays a banner showing how many credits
and how much time you have left so you know your status. Once your trial

1. https://cloud.google.com

2. https://aws.amazon.com

3. https://azure.microsoft.com/en-us

https://cloud.google.com
https://aws.amazon.com
https://azure.microsoft.com/en-us
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 11. Deploy Applications with Kubernetes to the Cloud ® 220

is over and/or you decide to purchase the service and use more of the plat-
form, Google requires you to enable automatic billing,.

Create a Google Kubernetes Engine Cluster

Let’'s start by getting you set up with Google Cloud by creating an account
and Google Kubernetes Engine (GKE) cluster and configuring your computer’s
Docker and kubectl to work with the cloud services. GKE is GCP’s managed
Kubernetes service, enabling you to create a Kubernetes cluster with a single-
click. GKE clusters are managed by Google’s Site Reliability Engineers, who
ensure that your cluster is available and up-to-date so that you can focus on
your applications instead of Kubernetes.

Sign Up with Google Cloud

Open the GCP sign-up form* and log in to your existing Google account or
make a new account. Follow the form instructions, filling in the form with
your details until you've started your free trial. Then continue to the next
step to create a Kubernetes cluster.

Create a Kubernetes Cluster

Navigate to the Kubernetes Engine service® and click Create cluster to open
the cluster creation form shown in the screenshot that follows. In the form,
change the name field from its default cluster-1 to proglog. Keep the location
type as its default (Zonal). In the master version section, select the Release
channel radio and select the current Regular channel, which is 1.16.11-gke.5
as I write this. Then click the Create button at the bottom of the page. The
page will refresh and show a spinner that indicates GCP is provisioning the
cluster. You'll see a green check mark when the cluster is ready, as shown
onpage221.

Install and Authenticate gcloud

Google Cloud provides a cloud software development kit (SDK) with various
tools and libraries for working with Google’s services. The SDK includes the
gcloud CLI, which we need to interact with the Google Cloud APIs and config-
ure Docker. Install the latest Cloud SDK by following the installation
instructions for your OS from the Google Cloud Developer Tools page.’

4. https://console.cloud.google.com/freetrial/signup/tos?pli=1

5. https://console.cloud.google.com/kubernetes

6. https://cloud.google.com/sdk/docs/downloads-versioned-archives

https://console.cloud.google.com/freetrial/signup/tos?pli=1
https://console.cloud.google.com/kubernetes
https://cloud.google.com/sdk/docs/downloads-versioned-archives
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Create a Google Kubernetes Engine Cluster ® 221

@ CreateaKubernetes cluster— X + - o x

< C 0 @ https://console.cloud.google.com/kubernetes/add?project=haus&sup... ~“ ® = T

& haus v

Google Cloud Platform

Create a Kubernetes cluster ADD NODE POOL @ REMOVE NODE POOL

® Cluster basics Cluster basics

NODE POOLS The new cluster will be created with the

name, version, and in the location you
specify here. After the cluster is created,
name and location can't be changed.

Cluster set-up guides

e default-pool

% My first cluster

*$" Anaffordable cluster to
experiment with

CLUSTER

® Automation
To experiment with an

(]
® Networking affordable cluster, try My
first cluster in the Cluster
N . de
® Security set-up guides
® Metadata ::;;Tog °
® Features
Location type
@® Zzonal
O Regional
Zone
us-central1-c v @

[Specify default node locations @

Current default: us-central1-c

Master version

Choose Release Channel to get automatic
GKE upgrades as new versions are ready.
Choose a static version to upgrade
manually in the future. Learn more.

@ Release channel

O static version

Release channel
Regular channel - 1.16.11-gke.5 .. v

These versions have passed internal
validation and are considered
production-quality, but don't have
enough historical data to guarantee
their stability. Known issues generally
have known workarounds. Release
notes

CREATE CANCEL Equivalent REST or command line

After you've installed the gcloud CLI, authenticate the CLI for your account
by running this command:

$ gcloud auth login

Now that you've authenticated the CLI, you can run gcloud commands against
resources in your account. Get your project’s ID, and configure gcloud to use
the project by default by running the following:

$ PROJECT ID=$(gcloud projects list | tail -n 1 | cut -d' ' -f1)

$ gcloud config set project $PROJECT ID

We'll refer this PROJECT ID environment variable several times, so if you make
a new terminal session, make sure you set the variable again.

report erratum - discuss

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 11. Deploy Applications with Kubernetes to the Cloud ¢ 222

Push Our Service’s Image to Google’s Container Registry

We need to make our service’s image pullable by our GKE cluster’s nodes by
pushing its image to Google’s Container Registry. Run the following to push
the image to the registry:

$ gcloud auth configure-docker

$ docker tag github.com/travisjeffery/proglog:0.0.1 \
gcr.io/$PROJECT ID/proglog:0.0.1

$ docker push gcr.io/$PROJECT ID/proglog:0.0.1

The first line configures Docker to use Google’s Container Registry and use
gcloud as the credential helper for those registries. You can open your Docker
configuration file (at ~/.docker/config.json by default) to see the configuration
changes. The second line creates a new tag for the gcrio registry name. The
gcrio registry hosts images in the United States (though that may change).
You'll also find us.gcr.io, eu.gcrio, and asia.gcrio if you need your images in specific
regions. The third line pushes the image to the registry.

Configure kubectl
The last bit of setup allows kubectl and Helm to call our GKE cluster:

$ gcloud container clusters get-credentials proglog --zone us-centrall-c
Fetching cluster endpoint and auth data.
kubeconfig entry generated for proglog.

This command updates your kubeconfig file (at ~/.kube/config by default) with the
credentials and configuration to point kubectl at your cluster in GKE. Helm
uses the kubeconfig file, too.

Okay, we've set up our Google Cloud project, created a GKE cluster, and
configured our clients to manage the cluster. We could deploy our service as-
is to GKE, but Kubernetes won’t make our service available on the Internet
with our current deployment setup.

Let’s fix that.

Create Custom Controllers with Metacontroller

We could deploy our service with no changes and our service would function
the same as it did in our local Kind cluster. But we want to extend our
deployment setup to expose our service on the Internet. Because our service
load balances client-side, each pod needs its own static IP, so we need a load
balancer service for each pod. It'd be nice for Kubernetes to automatically
create the load balancers as the pods scale up and delete them as the pods
scale down, but Kubernetes doesn’t support this out of the box.

http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Create Custom Controllers with Metacontroller ¢ 223

Enter Metacontroller.

Metacontroller’ is a Kubernetes add-on that makes it easy to write and deploy
custom controllers with simple scripts. Metacontroller lets us hook into
Kubernetes’ changes so that we can compose with our own changes. Metacon-
troller handles all the interactions with Kubernetes’ API, including running
a level-triggered reconciliation loop on your behalf. You just receive JSON
describing Kubernetes’ observed state and return JSON describing your
desired state. You can build features in Kubernetes that would require writing
an Operator® (a popular pattern for extending Kubernetes), with less code
and effort than an Operator requires.

Install Metacontroller

To install Metacontroller, we need to apply a couple YAML files that define
Metacontroller’s APIs and RBAC authorization that enable the APIs to manage
the Kubernetes cluster’s resources. You can use two Metacontroller APIs:

¢ CompositeController, which is used to manage child resources based on
some parent resource. The Deployment and StatefulSet controllers fit this
pattern.

¢ DecoratorController, which is used to add behavior to a resource. This is the
controller pattern we need and will build for our service-per-pod feature.

Next, we use Helm to install Metacontroller. From the root of your project,
run the following commands to define the Metacontroller Helm chart:

$ cd deploy

$ helm create metacontroller

$ rm metacontroller/templates/**/* yaml \
metacontroller/templates/NOTES. txt \
metacontroller/values.yaml

$ MC URL=https://raw.githubusercontent.com\

/GoogleCloudPlatform/metacontroller/master/manifests/

$ curl -L $MC URL/metacontroller-rbac.yaml > \
metacontroller/templates/metacontroller-rbac.yaml

$ curl -L $MC URL/metacontroller.yaml > \
metacontroller/templates/metacontroller.yaml

Then install the Metacontroller chart by running these:

$ kubectl create namespace metacontroller
$ helm install metacontroller metacontroller

7. https://metacontroller.app

8. https://coreos.com/blog/introducing-operators.html

https://metacontroller.app
https://coreos.com/blog/introducing-operators.html
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 11. Deploy Applications with Kubernetes to the Cloud ® 224

Now we can update our proglog chart to support our service-per-pod feature
and then deploy our service to the cloud.

Add Service-per-Pod Load Balancer Hooks

We'll create a DecoratorController that adds a load balancer service for each
pod in our service’s StatefulSet.

Create a deploy/proglog/templates/service-per-pod.yaml| file with the following code to
define our DecoratorController and Metacontroller configuration:

DeployToCloud/deploy/proglog/templates/service-per-pod.yaml
{{ if .Values.service.lb }}
apiVersion: metacontroller.k8s.1io/vlalphal
kind: DecoratorController
metadata:
name: service-per-pod
spec:
resources:
- apiVersion: apps/vl
resource: statefulsets
annotationSelector:
matchExpressions:
- {key: service-per-pod-label, operator: Exists}
- {key: service-per-pod-ports, operator: Exists}
attachments:
- apiVersion: vi1
resource: services
hooks:
sync:
webhook:
url: "http://service-per-pod.metacontroller/create-service-per-pod"
finalize:
webhook:
url: "http://service-per-pod.metacontroller/delete-service-per-pod"

Our DecoratorController decorates every StatefulSet with the service-per-pod-
label and service-per-pod-ports annotations. The hooks field defines which hooks
the controller will call. The sync hook should create and maintain the resources
you desire for your StatefulSet. The finalize adds a finalizer to the StatefulSet
that prevents Kubernetes from deleting the StatefulSet until the hook has
had its chance to run and clean up its resources. Currently Metacontroller
supports running webhooks, so we need an internal service and deployment
to run the webhooks.

Put this snippet after the previous snippet to define the webhook service and
its configuration:

http://media.pragprog.com/titles/tjgo/code/DeployToCloud/deploy/proglog/templates/service-per-pod.yaml
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Create Custom Controllers with Metacontroller ¢ 225

DeployToCloud/deploy/proglog/templates/service-per-pod.yaml
apiVersion: vl
kind: ConfigMap
metadata:
namespace: metacontroller
name: service-per-pod-hooks
data:
{{ (.Files.Glob "hooks/*").AsConfig | indent 2 }}
apiVersion: apps/vl
kind: Deployment
metadata:
name: service-per-pod
namespace: metacontroller
spec:
replicas: 1
selector:
matchLabels:
app: service-per-pod
template:
metadata:
labels:
app: service-per-pod
spec:
containers:
- name: hooks
image: metacontroller/jsonnetd:0.1
imagePullPolicy: Always
workingDir: /hooks
volumeMounts:
- name: hooks
mountPath: /hooks
volumes:
- name: hooks
configMap:
name: service-per-pod-hooks
apiVersion: vl
kind: Service
metadata:
name: service-per-pod
namespace: metacontroller
spec:
selector:
app: service-per-pod
ports:
- port: 80
targetPort: 8080
{{ end }}

report erratum - discuss

http://media.pragprog.com/titles/tjgo/code/DeployToCloud/deploy/proglog/templates/service-per-pod.yaml
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 11. Deploy Applications with Kubernetes to the Cloud ® 226

This code snippet defines our webhook, Deployment and Service, with a
ConfigMap that mounts our hook code files. Our controller calls the http://service-
per-pod.metacontroller/create-service-per-pod endpoint when the StatefulSet changes,
and calls the http://service-per-pod.metacontroller/delete-service-per-pod endpoint when
the StatefulSet is deleted. The paths of the endpoints match the names of
our hook filenames.

Create a hooks directory to put the hook code in:
$ mkdir deploy/proglog/hooks

Add the hook to create the services by adding this create-service-per-pod.jsonnet
file in the hooks directory:

DeployToCloud/deploy/proglog/hooks/create-service-per-pod.jsonnet

function(request) {
local statefulset = request.object,
local labelKey = statefulset.metadata.annotations["service-per-pod-label"],
local ports = statefulset.metadata.annotations["service-per-pod-ports"],

attachments: [
{
apiVersion: "v1",
kind: "Service",
metadata: {
name: statefulset.metadata.name + "-" + index,
labels: {app: "service-per-pod"}
+
spec: {
type: "LoadBalancer",
selector: {
[labelKey]: statefulset.metadata.name +
b
ports: [
{
local parts = std.split(portnums, ":"),
port: std.parselnt(parts[0]),
targetPort: std.parselnt(parts[1]),
}
for portnums in std.split(ports, ",")
1
}

+ index

}

for index in std.range(0, statefulset.spec.replicas - 1)
1

http://media.pragprog.com/titles/tjgo/code/DeployToCloud/deploy/proglog/hooks/create-service-per-pod.jsonnet
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Create Custom Controllers with Metacontroller ® 227

We've implemented our hook in Jsonnet,’ a data templating language that
simply extends JSON with variables, conditionals, arithmetic, functions,
imports, and errors. Kubernetes passes the StatefulSet we've decorated into
the function. Our implementation iterates over each replica in the StatefulSet
and builds a list of service attachments. We can attach arbitrary resources
that are only connected to the target resource through owner references,
meaning Kubernetes will delete them if the StatefulSet is deleted.

Next, add the hook to delete the service:

DeployToCloud/deploy/proglog/hooks/delete-service-per-pod.jsonnet
function(request) {

attachments: [1],

finalized: std.length(request.attachments['Service.vl']) ==

}

If the StatefulSet doesn’t match our decorator selector or the StatefulSet is
deleted, then we delete any attachments we've made. If we observe that all
the services are gone, we mark the StatefulSet as finalized so Kubernetes can
delete it.

Last, we must update our StatefulSet and set the annotations that signal
Kubernetes to decorate this StatefulSet and create a service for each pod.
Change the StatefulSet’s metadata defined in statefulset.yaml to include these
annotations:

DeployToCloud/deploy/proglog/templates/statefulset.yaml
apiVersion: apps/vl
kind: StatefulSet
metadata:
name: {{ include "proglog.fullname" . }}
namespace: {{ .Release.Namespace }}

labels: {{ include "proglog.labels" . | nindent 4 }}
{{ if .Values.service.lb }}
annotations:

service-per-pod-label: "statefulset.kubernetes.io/pod-name"
service-per-pod-ports: "{{.Values.rpcPort}}:{{.Values.rpcPort}}"
{{ end }}
spec:
...

And that’s all of our Metacontroller changes. Our service should create a load
balancer service for each pod now. Let’s deploy our service to our GKE cluster
and try it!

9. https://jsonnet.org

http://media.pragprog.com/titles/tjgo/code/DeployToCloud/deploy/proglog/hooks/delete-service-per-pod.jsonnet
http://media.pragprog.com/titles/tjgo/code/DeployToCloud/deploy/proglog/templates/statefulset.yaml
https://jsonnet.org
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

Chapter 11. Deploy Applications with Kubernetes to the Cloud ® 228

Deploy to the Internet

This is the moment we've been building up to over the course of the book:
deploying our distributed service to the cloud. Run the following command:

$ helm install proglog proglog \
--set image.repository=gcr.io/$PROJECT ID/proglog \
--set service.lb=true

This command installs our proglog chart to our GKE cluster. We've set the
image repository to configure the StatefulSet to pull the image from the Google
Container Registry. And we've enabled the service-per-pod controller. You
can watch as the services come up by passing the -w flag:

$ kubectl get services -w

When all three load balancers are up, we can verify that our client connects
to our service running in the cloud and that our service nodes discovered
each other:

$ ADDR=$(kubectl get service \

-1 app=service-per-pod \

-0 go-template=\

"{{range .items}}\

{{(index .status.loadBalancer.ingress 0).ip}}{{"\n"}}\

{{end}}'\

| head -n 1)
$ go run cmd/getservers/main.go -addr=$ADDR:8400
servers:
- id:"proglog-0" rpc _addr:"proglog-0.proglog.default.svc.cluster.local:8400"
- id:"proglog-1" rpc _addr:"proglog-1.proglog.default.svc.cluster.local:8400"
- id:"proglog-2" rpc_addr:"proglog-2.proglog.default.svc.cluster.local:8400"

What You Learned

Congratulations! You deployed your service to the cloud. Now any person on
the Internet can use your service. You set up a Google Cloud account, a
project, and a GKE cluster. You also learned how to write a simple controller
to extend the behavior of Kubernetes resources with Metacontroller.

We've now reached the end of the book, and you've accomplished a lot. You've
made a distributed service from scratch. You've learned distributed computing
ideas like service discovery, consensus, and load balancing. You're ready to
make your own distributed services and contribute to existing projects.'®

Go leave your mark on this growing field!

10. https://github.com/avelino/awesome-go#distributed-systems

https://github.com/avelino/awesome-go#distributed-systems
http://pragprog.com/titles/tjgo/errata/add
http://forums.pragprog.com/forums/tjgo

SYMBOLS
& operator, 20

* wildcard, 93
. (dot), 20

DIGITS
1.14-alpine image, 201

A
Accept(), 158

access control, 78, 88-98,
223

access control lists, 88-98
ACL tables, 85, 93

active segment, 25, 37
Addr field, 180

Addr(), 158

addresses

dynamic configuration
with Viper, 199

listeners, 158

service discovery with
custom pickers, 184

service discovery with
custom resolvers, 174,
179-180

agents

about, 129

CLI agent for deploying
with Kubernetes, 193,
196-202

client-side load balanc-
ing, custom, 188

creating, 130

multiplexing Raft, 164-
169

replication, 129-139

Amazon Web Services (AWS)
deploying to, 219
Elastic Load Balancer

(ELB), 172

Any(), 168

api directory, 17

APIv2 (Go), 19

appending
building index, 31-37
building log code, 44-51
building segment, 37-40
building store, 26-31
in prototype for proglog

project, 7-11
replication with consen-

sus, 149, 152, 155,

163
testing index, 35
testing log code, 49-51
testing segments, 41
testing store, 29-31
understanding, 25, 33

Apply(), finite-state machines,
151-153, 155

asia.gcrio registry, 222

Attributes field, 180

authentication
about, 76
vs. authorization, 78, 88
defined, 77
gcloud CLI, 221
mutual, 77, 86
with TLS, 76-88

authorization
about, 76, 78
with access control, 78,
88-98, 223
ACL tables, 85, 93

Index

vs. authentication, 78, 88
Metacontroller, 223
testing, 91-98
AWS (Amazon Web Services)
deploying to, 219
Elastic Load Balancer
(ELB), 172

Azure, 219

B

backward compatibility
gRPC advantages, 57
with protobufs, 13, 15

base balancers, 172, 186
base offsets, 37, 39, 44-45
Basecamp, 5

bin directory, 17

BindAddr, 118, 198

BindPort, 118

Bitnami, 202

Bolt, 147

bootstrapping
clusters, 149, 162, 205,
207
logs, 44, 50
segments, 44
servers, 149, 153, 162,
205, 207
Build(), 177-179, 184

bumping major versions, 18

C

C (country), certificate author-
ity configuration, 80

candidates, consensus with
Raft, 142

capacity, metrics, 101

Casbin, 89, 92
certificates
certificate authority (CA)
with CFSSL, 78-86
generating, 82, 87
generating multiple, 90
replication testing, 135
Root CA, 85
server names, 180
with TLS, 77-88
CFSSL, certificate authority
(CA) with, 78-86
cfssl tool, 79-82
cfssljson tool, 79-82
Cgo, disabling, 201
channels
closing, 126-134
replication, 124-134
service discovery with
Serf, 118, 120, 124,
126-128
Chart.yaml file, 204

charts
building Helm charts,
203-213
defined, 202
deploying locally with
Helm, 202-217
installing Helm charts,
215-217
Metacontroller, 223
Nginx, 202
subcharts, 204
client-side load balancing
custom pickers, 175,
177, 183-189
custom resolvers, 173-
183
defined, 171
on gPRC, 172-174
testing, 175, 181-183,
186-189
clients, see also client-side
load balancing
authentication with TLS,
76-77, 86
authorization, 78, 88-98
defining gPRC service, 59
generating in gPRC, 60
generating multiple certifi-
cates, 90
handling in gPRC, 63-68
nobody, 92, 95
replication, 124-134
root, 92, 94
service discovery and,
114, 171

superuser, 92
testing gPRC, 68-73

closing
agents, 133, 136
channels, 126-134
consensus with Raft,
158, 161, 168
indexes, 33
listeners, 158
logs, 45, 133
multiplexing Raft, 168
observability, 108
replication, 126-134
resolvers, 180
segments, 40, 46
store, 29-30
cloud
custom controllers, 222-
227
deploying to with Kuber-
netes, 219-228
CloudFlare, 79
ClusterlIP Service, 212

clusters

bootstrapping, 149, 162,
205, 207

checking local member-
ship, 120

configuring for agents,
132

creating Google Kuber-
netes Engine (GKE),
220

deploying locally with
Kubernetes, setup,
194-195

deploying locally, CLI
agent for, 196-202

deploying locally, with
Helm, 202-217

deploying to cloud, cus-
tom controllers, 222-
227

multiplexing Raft, 168

number of servers in a
Raft cluster, 143

removing servers from
Raft cluster, 160

replication with consen-
sus, implementing,
144-161

replication with consen-
sus, testing, 161-163,
169

replication with consen-
sus, understanding,
141-144

resiliency, 118

Index ¢ 230

service discovery and
replication, testing,
134-139

service discovery with
Serf, integrating with
consensus, 158-161

service discovery with
Serf, replication, 123-
134

service discovery with
Serf, setup, 116-123

snapshotting with Serf,
120

status, 121

clusters, Kubernetes
debugging, 195
running in Docker, 195,
202, 215

CN (Common Name), certifi-
cates, 80, 87

Cobra, 196
CockRoachDB, 143
code
for this book, xiii
working with generated,
20
codes package, 63

commit logs, see also config-
uring; consensus; load bal-
ancing; proglog project;
replication; service discov-
ery
about, 6, 23, 25
advantages of, 23-25
building index, 31-37
building segments, 37-42
building store, 26-31
closing, 45, 133
coding log, 42-51
interface, 67
observability, 103-109
prototype for proglog
project, 6-11
removing, 45
resetting, 45, 50
restoring, 47, 50
setup, 43, 131
testing log code, 48-51

Common Name (CN), certifi-
cates, 80, 87
compilers
performance, 19
protobuf, 16, 19, 58, 60
CompositeController, 223
configuring
agents, 129

authorization with Cas-
bin, 92

certificate authority (CA)
with CFSSL, 79-86

certificates for replication
testing, 135

client-side load balanc-
ing, custom, 175-177,
180

defaults, 43

deploying locally with
Kubernetes, 197-201,
207

deploying to cloud, 220~
222, 224

dynamic configuration
with Viper, 196, 198-
201

gcloud CLI, 221

index, 36

Metacontroller, 224

multiplexing Raft, 166-
169

observability, 105

Raft, 146-149, 153, 175-
177

replication, 124

segments, 37

service discovery with
Serf, 116-118

store, 36

TLS for consensus with
Raft, 157

Zap, 105

consensus

about, 24

adding servers as non-
voters, 159

API for, 149-151

errors, 151, 160

leader election, 142

performance, 148, 151,
163

with Raft, implementing,
144-161

with Raft, integrating
with discovery, 158-
161

with Raft, setup, 144-149

with Raft, testing, 161-
163, 169

with Raft, understanding,
141-144

reading whole log and, 47

testing, 161-163, 169

timeouts, 148, 160, 162,
189

consistency, Raft and, 151

const, 82
Consul, 115, 118, 129, 141

consumers, see also gRPC
client-side load balanc-
ing, custom, 176, 187
configuring for authoriza-
tion, 96-98
error messages, 66
prototype for proglog
project, 7-11
replication, 123-139
containers
about, 193
Google Container Reg-
istry, 222
health checks with
probes, 208-212
initContainers, 206
StatefulSets and, 206
controllers
deploying locally, 194
deploying to cloud, cus-
tom, 222-227
counters, 100

country (C), certificate author-
ity configuration, 80

credentials, security with gR-
PC, 57

cryptography conventions, 76

D
debugging

flags, 107

Kubernetes clusters, 195
DecoratorController, 223-227
DeleteRange(), 156

deleting
indexes and stores, 40
logs, 45
records with Raft, 156
segments, 25
StatefulSets, 227
test data, 136
deploying
CLI agent for, 193
with custom controllers,
222-227
with Kubernetes, CLI
agent for, 196-202
with Kubernetes, Helm,
202-217
with Kubernetes, setup,
194-195
with Kubernetes, to
cloud, 219-228

Index ® 231

Deployments (Kubernetes),
206

Designing Data-Intensive Ap-
plications, xi

Details(), 65

dial options, 86, 132

Dial(), 157, 173

directories
conventions, 17, 19
Helm charts, 204
hooks, 226
protobufs, 17
segments, 43

discovery, see service discov-
ery
distributed services, see al-
so configuring; consensus;
gRPC; load balancing;
replication; service discov-
ery
advantages of, 4, 55
goals, 56-58
Docker
1.14-alpine image, 201
adding probes to, 211
building image, 201
deploying to cloud, 220,
222
deploying with Kuber-
netes CLI agent, 196-
202
Dockerfile, creating, 201
running Kubernetes
clusters in with Kind,
195, 202, 215
scratch (empty) image, 201
domain types, defining as
protobufs, 17-19
Done, 185
dot (), 20

dynamic configuration, 196,
198-201

E

Elastic Load Balancer (ELB),
172
Elasticsearch, 5, 103
ELB (Elastic Load Balancer),
172
elections
about, 142
adding servers as non-
voters, 159
client-side load balanc-
ing, custom, 175

node tags, 118
timeouts for, 148, 160,
162, 189
enc, 27
encoding, 11, 27
encryption
about, 76
consensus with Raft,
157, 164-169
with TLS, 57, 76-86,
157, 164-169
Enforce (Casbin), 90
entWidth, 32
environment variables
PATH, 17
PROJECT_ID, 221
errdetails package, 64
Error(), 151
errors
client-side load balanc-
ing, custom, 186
commit log prototype, 7,
10
consensus, 151, 160
default description, 63
detailed description, 64
handling in gPRC, 63—
68, 72
metrics, 101
replication, 128, 151
service discovery, 120
status codes, 63-65
testing range errors, 49
Etcd, 5, 141
eu.gcrio registry, 222
event channels
closing, 126-134
replication, 124-134
service discovery with
Serf, 118, 120
EventCh, 118
Eventually(), 163
ext files and logs, 23
extensibility and protobufs,
15
external load balancing, 171
ExternalName Service, 212

F

fields
accessing with . (dot), 20
field versioning, 18, 57
Go syntax, 18
protobuf syntax, 18

file paths, returning index, 35

files
creating, 38
re-creating store from, 27
size, 27
finalize, 224
finite-state machines
calling, 155
creating, 146
defining type, 151
methods, 151
Raft setup, 146-149, 153
replication with consen-
sus, 143, 151-154
flags
custom flag values, 198
deploying with Kuber-
netes CLI agent, 196—
202
flag parsing, 107
persistent flags with Co-
bra, 197
flushing
closing indexes, 33
writer buffer, 28
followers, in replication with
consensus, 142
FSM, see finite-state ma-
chines

G
gauges, 100

geloud CLI, 220

GCP (Google Cloud Platform)
deploying to, 219-228
sign up, 220

gcrio registry, 222

gencert, 82, 87, 90

GET, JSON/HTTP servers, 8

getters, 20

GKE (Google Kubernetes En-
gine)
custom controllers, 222-
227
deploying to cloud with,
220-228

about, xi

advantages, 3, 5

API version, 19

conventions, 17, 19

converting into protobuf
syntax, 17

encoding, 11, 27

runtimes, 19

syntax, 18

version, xii

Index ® 232

godoc, 57
gogoprotobuf compiler, 19

Google, see also gRPC
Cloud Developer Tools,
220
Container Registry, 222
metric recommendations,
101
protobufs use, 13
Google Cloud Platform (GCP)
deploying to, 219-228
sign up, 220
Google Kubernetes Engine
(GKE)
custom controllers, 222-
227
deploying to cloud with,
220-228
gorilla/mux library, 8
goroutines, testing gRPC in,
70
gRPC
about, 55
advantages, 56-58
client-side load balanc-
ing, 172-174
client-side load balanc-
ing, custom pickers,
172, 177, 183-189
client-side load balanc-
ing, custom resolvers,
173-183
dial options, 86, 132
error handling, 63-68, 72
health checks with
probes, 208-212
installing, 60
with interceptors, 97
log interface, 67
multiplexing Raft, 164—
169
protobufs advantages, 13
resources on, 57-58
server, creating, 68
server, implementing, 60—
63
server, observability,
103-109
server, options, 86
server, registering, 68
server, testing, 68-73
service, defining, 58-60
testing, 68-73
grpc_health_probe, 209

H

handlers

prototype for proglog
project, 7-11

service discovery integra-
tion with consensus,
158-161

service discovery with
Serf, 119-120

handshake, TLS, 77
Hashicorp, 115, 128

headless Services (Kuber-
netes), 213

health checks, 208-212
heartbeat, leader, 142

Helm

about, 194, 202

building charts, 203-213

deploying to cloud with,
222-228

deploying with, 202-217

installing Metacontroller,
223

installing charts, 215-
217

HighestOffset(), 46
histograms, 100

hooks
Cobra, 197
deploying to cloud with
Metacontroller, 224
hosts field, certificate authority
configuration, 81

HTTP
gRPC advantages, 58
HTTP/2, 58
JSON/HTTP, role in dis-
tributed systems, 4
probes, 208

I
import paths, 5
include directory, 17

indexes
about, 7, 25
appending records in
prototype, 7-11
building, 31-37
building log code, 45
closing, 33
configuring, 36
creating, 32
defined, 26
memory-mapping, 26,
32-33
performance, 25

removing, 40
returning file path, 35
size, 32, 34, 36, 40, 42
testing, 35
truncating, 33-34, 36
init()
replication, 127
service discovery with
custom pickers, 185
service discovery with
custom resolvers, 179
initContainers, 206
initialization, lazy, 127
installing
Casbin, 89
CLIs for CFSSL, 79
gcloud CLI, 220
gRPC package, 60
Helm, 202
Helm charts, 215-217
Kind, 195
kubectl, 194
Metacontroller, 223
protobuf compiler, 16, 19
Raft, 144
Serf, 116
instances, creating, 20
interceptors, 97
interface, log, 67
internal packages, 60
isLocal(), 120

Ivy, 128

J

Jaegar, 102
Jocko, 4
Join, 158
JSON
certificate authority (CA)
with CFSSL, 79-82
JSON/HTTP, role in dis-
tributed systems, 4
JSON/HTTP, setup, 5-11
Jsonnet, 227
uses, 13

Jsonnet, 227

K

Kafka
consensus with Raft, 141
Jocko, 4
service discovery, 174
structured logs, 102

key field, certificate authority

configuration, 80

Index ® 233

keys
authentication with TLS,
77
certificate authority con-
figuration, 80
generating for certificates,
82

Kind, 195, 202, 215
Kleppmann, Martin, xi
kubectl, 194, 220, 222
Kuberesolver, 173

Kubernetes

about, 193

consensus with Raft, 141

deploying locally with CLI
agent, 196-202

deploying locally with
Helm, 202-217

deploying to cloud, 219-
228

deploying to cloud, cus-
tom controllers, 222—
227

with gogoprotobuf compil-
er, 19

Google Kubernetes En-
gine (GKE), creating,
220

health checks with
probes, 208-212

JSON/HTTP use, 5

Kuberesolver, 173

manifest files, 204

running services inside
containers without load
balancers, 216

Services, 205, 212

setup, 194-195

StatefulSets, 205-208,
223-227

L

L (locality), certificate author-
ity configuration, 80
languages
gRPC advantages, 58
protobufs advantages, 15
protobufs compiler, 19
status codes, 63
latency
load balancing and, 172-
173
metrics, 101
Raft elections, 148, 189
replication, 137

lazy initialization, 127

leaders, election in replication
with consensus, 142

Leave, 120, 158
lenWidth, 27
Lightstep, 102
Listen, 136

listeners

consensus with Raft, 158

JSON/HTTP server,
building, 7-11

multiplexing Raft, 166—
169

service discovery ports,
136

testing setup, 70

liveness probes, 208

load balancing
about, 171
base balancers, 172, 186
client-side, defined, 171
client-side, on gPRC,
172-174
custom controllers for
deploying to cloud,
222-227
external, 171
gRPC advantages, 58
Kubernetes LoadBalancer
Service, 212
pickers, custom, 175,
177, 183-189
readiness probes, 208
resolvers, custom, 173-
183
round-robin, 173, 185
scaling and, 114
with server proxies, 171
vs. service discovery, 113
strategies, 171
testing, 175, 181-183,
186-189
types of, 58
LoadBalancer Service, 212
LocallD, 148

locality (L), certificate author-
ity configuration, 80
LocalizedMessage, 64
locks, 45
logError(), 120, 160
logs, see also commit logs;
proglog project
advantages of, 23-25,
101
bootstrapping, 44, 50
compacting, 153
ext files, 23

structured logs, 99, 101,
103-109
as term, 25-26

LowestOffset(), 46

M
maintainability, gRPC advan-
tages, 57
Makefile, creating, 20
man-in-the-middle attacks
(MITM), 76
Members(), 120
membership, see clusters
memory
in-memory log interface,
67
memory-mapping index
files, 26, 32-33
metrics, 101
storing offsets, 34
Metacontroller, 222-227
metadata
pickers, 185
Raft, 147
metrics, 99-101, 103-109
Microsoft Azure, 219
middleware, 97
MITM (man-in-the-middle at-
tacks), 76
model.con file, 93
modules, 5
multiplexing, Raft, 158, 163—
169
MultiRaft, 143
MultiReader(), 47
mutex, wrapping log code in,
45

mutual authentication, 77,
86

N
names
certificates, 80, 87
cryptography conven-
tions, 76
nodes, 118, 122
servers, 180
specifying package names
in protobufs, 18
names field, certificate authori-
ty configuration, 80

nearestMultiple, 41
networking, see gRPC
new keyword, 20

Index ® 234

next offsets, 37

Nginx chart, 202
nobody client, 92, 95
NodeName, 118
NodePort Service, 212

nodes, see also replication;
service discovery
cluster resiliency, 118
dynamic configuration
with Viper, 199

elections, 118
Kubernetes, 194-195
names, 118, 122
pointing to clusters, 118
tags, 118

(@)

O (organization), certificate
authority configuration, 80
observability, 99-109
defined, 99
importance of, 99
metrics, 99-101, 103-109
output, 108
probability samplers, 105
proglog project, 103-109
structured logs, 99, 101
testing, 106-109
traces, 99, 102-109
offsets
about, 7
appending records in
prototype, 7-11
base, 37, 39, 44-45
building index, 32-33
building log code, 44-45
building segments, 37-40
building store, 28
custom gPRC errors, 65—
68, 72
next, 37
performance, 25
ranges, 46
reading and, 34, 45
relative, 39
replication with consen-
sus, 143
storing, 34
testing errors, 49
OpenCensus, 104-106
OpenTelemetry, 104
OpenTracing, 104
Operators, 223

organization (O), certificate
authority configuration, 80

organization unit (OU), certifi-
cate authority configura-
tion, 80

originReader, 47

OU (organizational unit), cer-
tificate authority configura-
tion, 80

output, observability, 108

P

packages
internal, 60
specifying package names
in protobufs, 18
Parquet, 102
PATH environment variable, 17
peerTLSConfig, 135, 157
performance
compilers, 19
consensus with Raft,
148, 151, 163
gRPC advantages, 58
multiplexing Raft, 163
protobufs, 13, 16, 19
reading logs, 25
test performance, 137
writing logs, 27
PersistentVolumeClaim, 206
persisting, snapshots, 153
pg_isready, 208
Pick(), 185
pickers
client-side load balancing
on gPRC, 172, 183
client-side load balanc-
ing, custom, 175, 177,
183-189
registering, 185
Pike, Rob, 128
plugins, 21
pods
about, 194
forwarding, 216
listing, 216
service-per-pod load bal-
ancers, 222-227
Services and, 212
point-in-time recovery, 24
policy.csv, 93
ports
assigning, 70, 136
consensus with Raft, 158
dynamic configuration
with Viper, 199

exposing with Kubernetes
NodePort Service, 212

forwarding, 216

multiplexing Raft, 163-
169

service discovery, 118,
136

POST, JSON/HTTP servers,
8

Postgres, 208
probability samplers, 105

probes
health checks with, 208—
212
liveness, 208
readiness, 208
startup, 208

producers, see also gRPC
configuring for authoriza-
tion, 96-98
prototype for proglog
project, 7-11
replication, 126-134, 137
proglog project, see also con-
figuring; testing
authentication with TLS,
76-88
building, 26-51
building index, 31-37
building segments, 37-42
building store, 26-31
client-side load balanc-
ing, pickers, 183-189
client-side load balanc-
ing, resolvers, 173-183
closing logs, 45
coding log, 42-51
deploying with Kuber-
netes, CLI agent for,
196-202
deploying with Kuber-
netes, Helm, 202-217
deploying with Kuber-
netes, setup, 194-195
deploying with Kuber-
netes, to cloud, 219-
228
error handling with gR-
PC, 63-68
JSON/HTTP setup, 5-11
observability, 103-109
protobufs setup, 16-21
prototype for, 6-11
removing logs, 45
replication, 123-134
replication with consen-
sus, API, 149-151

Index ¢ 235

replication with consen-
sus, implementing,
144-161

replication with consen-
sus, testing, 161-163,
169

resetting logs, 45, 50

running in Kubernetes
cluster, 195

service discovery and
replication, testing,
134-139

service discovery with
Serf, replication, 123~
134

service discovery with
Serf, setup, 116-123

service discovery with
Serf, testing, 121-123,
134-139

setup code, 43

PROJECT_ID environment vari-
able, 221

Prometheus, 103

protobufs
advantages, 5, 13-16
comments, 57
compiler, 16, 19, 58, 60
defining domain types,
17-19
defining gPRC service,
58-60
detailed error description,
64
directory structure, 16
performance, 13, 16, 19
proglog project setup, 16—
21
syntax, 17
versioning with, 15, 18,
57
protocol buffers, see proto-
bufs

pull-based replication,
see replication

R
Raft
about, 24
adding servers as non-
voters, 159
advantages of, 142
configuring, 146-149,
153, 175-177
implementing, 144-161
integrating with discov-
ery, 158-161
leader election, 142

log API, 149-151

metadata, 147

multiplexing, 158, 163—
169

node tags, 118

number of servers in a
Raft cluster, 143

performance, 148, 151,
163

removing servers from a
cluster, 160

restoring with, 152, 154

separating Raft connec-
tions from gRPC, 164,
166

Serf setup and, 118-119

service discovery with
custom resolvers, 174—
175

setup, 144-149

snapshotting with, 146-
149, 151-153

testing, 161-163, 169

understanding, 141-144

rate metrics, 100
readiness probes, 208

reading
about, 25
building index, 34, 36
building log code, 45, 47—
51
building segment, 39, 42
building store, 28
concatenating stores, 47
consensus and, 47
performance, 25
replication with consen-
sus, 151, 153
testing log code, 49-51
testing store, 29-31
records, see also appending
about, 6
defined, 26
deleting with Raft, 156
recovery, point-in-time, 24
redo/undo, 24
Redux, 24
reflection, 19, 21
registries
config registry system
with Viper, 198-201
defined, 113
Google Container Reg-
istry, 222
relative offsets, 39
releases, Helm, 202

releasing, snapshots, 153

reliability, health checks with
probes, 208-212
replication
about, 24
advantages of, 123, 143
closing, 133
with consensus, API,
149-151
with consensus, imple-
menting, 144-161
with consensus, integrat-
ing with discovery,
158-161
with consensus, testing,
161-163, 169
with consensus, under-
standing, 141-144
errors, 128, 151
lazy initialization, 127
number of replicas, 139,
143
pull-based, 123-134
push-based, 123
with Serf, 123-134
with Serf, testing, 134-
139
repositories, deploying with
Helm, 202
requests, see also gRPC
JSON/HTTP server,
building, 7-11
observability, 100-109
resetting, logs, 45, 50
resiliency, clusters, 118
ResolveNow(), 180

resolvers
client-side load balancing
on gPRC, 172
client-side load balanc-
ing, custom, 173-183
closing, 180
default to DNS resolver,
173
registering, 179
Response(), 151
restoring
finite-state machines,
152, 154
logs, 47, 50
testing, 50
Root CA, 85
root client, 92, 94

round-robin load balancing,
173, 185

Index ® 236

RPC (remote procedure call),
see gRPC

runtime compiler, protobufs,
19

RWmutex, wrapping log code
in, 45

S

S (state), certificate authority
configuration, 80

saturation, metrics, 101

scaling
defined, 58
gRPC advantages, 58
load balancers and, 58,
114
metrics for, 101
service discovery and,
114
StatefulSets and, 205
schema-violations, preventing
with protobufs, 13-15

Scheme(), 179
scratch image, 201

Secure Sockets Layer,
see SSL

security
authentication, 76-88,
221
authorization, 76, 78, 88—
98, 223
encryption, 76-86
gRPC advantages, 57
importance of, 75
man-in-the-middle at-
tacks, 76
name conventions, 76
Segment, 5
segments, see also indexes;
stores
active, 25, 37
bootstrapping, 44
building, 37-42
building log code, 44-51
building store, 28
closing, 40, 46
configuring, 37
defined, 26
deleting, 25
directory for, 43
removing indexes and
stores, 40
size, 38, 40, 42, 45
testing, 41
truncating, 46, 51
understanding, 25

Serf
advantages of, 115
integrating with consen-
sus, 158-161
replication with, 123-134
setup, 116-123
snapshotting, 118, 120
testing service discovery
and replication, 134-
139
testing setup, 121-123
serialization with protobufs,
13

server proxies, 171
serverTLSConfig, 135, 157
ServerName field, 180

servers, see also consensus;
replication; service discov-
ery
adding as non-voters,
159
authentication with TLS,
78-88
bootstrapping, 149, 153,
162, 205, 207
building JSON/HTTP, 7-
11
creating gPRC, 68
handling in gPRC, 63-68
implementing gPRC, 60—
63
names, 180
number of servers in a
Raft cluster, 143
observability, 103-109
registering gPRC, 68
removing from Raft clus-
ter, 160
running JSON/HTTP, 10
server options, gRPC, 86
status of in Serf, 121
terms in Raft, 142
testing gPRC, 68-73

service discovery

advantages of, 113

advantages of embedded,
114-115

client-side load balancing
and, 172, 174-183

clients and, 114, 171

defined, 113

errors, 120

integrating with consen-
sus, 158-161

vs. load balancers, 113

replication with, 123-134

with Serf, replication,
123-134

with Serf, setup, 116-123
with Serf, testing, 134-
139
stand-alone, 114-115
startup probes, 208
task overview, 114
testing, 134-139
testing, custom client-
side load balancing,
181-183, 186-189
testing, setup, 121-123
service keyword, 59
service-per-pod-label, 224
service-per-pod-ports, 224
Services (Kubernetes), 205,
212
shutdown
agents, 133, 136
CLI agent for deploying,
201
indexes and, 33
multiplexing Raft, 168
replication and, 133
test data, 136
ungraceful, 34
size
file, 27
index, 32, 34, 36, 40, 42
segments, 38, 40, 42, 45
store, 36, 40, 42
sleep, tests, 136-137

snapshot store, Raft setup,
146-149, 153
snapshotting
deleting records, 156
finite-state machines,
frequency of, 147
finite-state machines,
implementation, 151-
153
finite-state machines,
setup, 146-149, 153
reading whole log and,
47, 50
with Serf, 118, 120
testing, 50
SSL, gRPC advantages, 57,
see also TLS

stable stores, Raft setup,
146-149

Stackdriver, 102
StartjoinAddrs, 118
startup probes, 208
Stat, 27

state, updating with service
config, 180

Index ® 237

state (S), certificate authority
configuration, 80

StatefulSets, 205-208, 223-
227

status codes, error handling,
63-65
status package, 63-65
storage, binding in Kuber-
netes, 206
stores
building, 26-31
building segments, 37-40
closing, 29-30
concatenating, 47
configuring, 36
defined, 26
offsets, 34
Raft setup, 146-149, 153
re-creating from a file
with existing data, 27
removing, 40
size, 36, 40, 42
testing, 29-31
understanding, 25
streams, see also gRPC
client-side load balanc-
ing, custom, 176, 187
consensus with Raft,
147, 156-158
error messages, 66
replication, 126-134
structured logs, 99, 101, 103-
109

subcharts, 204
superuser clients, 92

sync, 224
T
Tag, 118

tags, Serf nodes, 118
TCP, probes, 208
telemetry exporter, 108
templates, Helm charts, 204
terms, in consensus with
Raft, 142
testing
authorization, 91-98
certificate authority con-
figuration, 80, 84-86,
88
client-side load balanc-
ing, custom, 175, 181-
183, 186-189
commit log prototype, 11
consensus, 161-163, 169

defining test cases, 49
gRPC, 68-73
helpers, 30, 70, 122
index, 35
log code, 48-51
log interface, 67
multiplexing Raft, 169
observability, 106-109
performance of tests, 137
range errors, 49
restoring, 50
segments, 41
service discovery, 134-
139
service discovery with
Serf, setup, 121-123
service discovery with
load balancing, 175,
188
setup, 70, 188
shutting down and delet-
ing test data, 136
sleep and, 136-137
store, 29-31
timeouts, consensus with
Raft, 148, 160, 162, 189
TLS
authentication with, 76—
88
certificates for replication
testing, 135
consensus with Raft,
157, 164-169
gRPC advantages, 57
handshake, 77

multiplexing Raft, 164—
169
mutual authentication,
77, 86
standards, 164
version, 77
traces, 102-109
traffic, metrics, 101
transport
Raft implementation,
156-158
Raft setup, 146-149
Transport Layer Security,
see TLS
truncating
indexes, 33-34, 36
segments, 46, 51
trust boundaries, 114, 172
two-way authentication, 77,
86
type checking
gRPC advantages, 57
with protobufs, 13, 15

u

uint32, 34
undo/redo, 24
UpdateState, 180

updating, StatefulSets and,
205

us.gcr.io registry, 222

Index ¢ 238

\Y4
values.yaml file, 204, 215

versioning
about, 56
bumping major versions,
18
field versioning, 18, 57
gRPC advantages, 57
with protobufs, 15, 18,
57
versions
Go, xii
Go API, 19
TLS, 77

Viper, 196, 198-201

w

-w flag, 228

webhooks, 224

*Width constants, 32

wildcard, * for, 93

WithInsecure() dial option, 86

write-ahead logs, see commit

logs

writing
building index, 35
building segment, 39
building store, 27
performance, 27
writer buffer, 27-28

Z
Zap, 104-106
ZooKeeper, 174

Thank you!

How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to

on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,
Andy Hunt, Publisher

: AVE 30%!
Pragmatic S 30%

ookshelf Use coupon code
BUYANOTHER2021

=\
——

https://pragprog.com

Explore Software Defined Radio

Do you want to be able to receive satellite images using
nothing but your computer, an old TV antenna, and a
$20 USB stick? Now you can. At last, the technology
exists to turn your computer into a super radio receiv-
er, capable of tuning in to FM, shortwave, amateur
“ham,” and even satellite frequencies, around the world
and above it. Listen to police, fire, and aircraft signals,
both in the clear and encoded. And with the book’s
advanced antenna design, there’s no limit to the signals
you can receive.

Wolfram Donat
(78 pages) ISBN: 9781680507591. $19.95
https://pragprog.com/book/wdradio

Genetic Algorithms in Elixir

From finance to artificial intelligence, genetic algo-
rithms are a powerful tool with a wide array of applica-
tions. But you don’t need an exotic new language or
framework to get started; you can learn about genetic
algorithms in a language you're already familiar with.
Join us for an in-depth look at the algorithms, tech-
niques, and methods that go into writing a genetic al-
gorithm. From introductory problems to real-world
applications, you’ll learn the underlying principles of
problem solving using genetic algorithms.

Sean Moriarity
(242 pages) ISBN: 9781680507942. $39.95
https://pragprog.com/book/smgaelixir

Plmatic

fogrammers

Explore Software
Defined Radio

Use SDR to Receive Satellite
Images and Space Signals

Genetic Algorithms
Solve Problems Using Evolution
> @7\
O g
4 z
7 S
O
Ve A
¥ X
{
v 9

L
\J ,/
N Sean Moriarity

edited by Tammy Coron

https://pragprog.com/book/wdradio
https://pragprog.com/book/smgaelixir

Design and Build Great Web APIs

APIs are transforming the business world at an increas-
ing pace. Gain the essential skills needed to quickly
design, build, and deploy quality web APIs that are
robust, reliable, and resilient. Go from initial design
through prototyping and implementation to deployment
of mission-critical APIs for your organization. Test,
secure, and deploy your API with confidence and avoid
the “release into production” panic. Tackle just about
any API challenge with more than a dozen open-source
utilities and common programming patterns you can
apply right away.

Mike Amundsen
(330 pages) ISBN: 9781680506808. $45.95
https://pragprog.com/book/maapis

Quantum Computing

You've heard that quantum computing is going to
change the world. Now you can check it out for your-
self. Learn how quantum computing works, and write
programs that run on the IBM Q quantum computer,
one of the world’s first functioning quantum computers.
Develop your intuition to apply quantum concepts for
challenging computational tasks. Write programs to
trigger quantum effects and speed up finding the right
solution for your problem. Get your hands on the fu-
ture of computing today.

Nihal Mehta, Ph.D.
(580 pages) ISBN: 9781680507201. $45.95
https://pragprog.com/book/nmquantum

The
Pragmatic
grammers

Design and Build
Great Web APIs

Robust, Reliable, and Resilient

e
Pragmatic
P mers

Quantum Computing

Program Next-Gen Computers for
Hard, Real-World Applications

https://pragprog.com/book/maapis
https://pragprog.com/book/nmquantum

A Common-Sense Guide to Data Structures and Algorithms,
Second Edition

If you thought that data structures and algorithms
were all just theory, you're missing out on what they

Second Edition

A Common-Sense Guide to

can do for your code. Learn to use Big O Notation to Data Structures
make your code run faster by orders of magnitude. and Algorithms

Choose from data structures such as hash tables, Level Up Your Core
Programming Skills

trees, and graphs to increase your code’s efficiency
exponentially. With simple language and clear dia-
grams, this book makes this complex topic accessible,
no matter your background. This new edition features
practice exercises in every chapter, and new chapters
on topics such as dynamic programming and heaps
and tries. Get the hands-on info you need to master
data structures and algorithms for your day-to-day
work.

Jay Wengrow
(506 pages) ISBN: 9781680507225. $45.95
https://pragprog.com/book/jwdsal2

Build Location-Based Projects for i0S

Coding is awesome. So is being outside. With location-
based iOS apps, you c.an combine tl}e two for an en- Build Location-Based
hanced outdoor experience. Use Swift to create your Projects for iOS

own apps that use GPS data, read sensor data from GPS, Sensors, and Maps

your iPhone, draw on maps, automate with geofences,
and store augmented reality world maps. You’'ll have
a great time without even noticing that you're learning.
And even better, each of the projects is designed to be
extended and eventually submitted to the App Store.
Explore, share, and have fun.

Dominik Hauser

Dominik Hauser

(154 pages) ISBN: 9781680507812. $26.95 eded by Adaobi ObeTuton

https://pragprog.com/book/dhios

https://pragprog.com/book/jwdsal2
https://pragprog.com/book/dhios

i0S Unit Testing by Example

Fearlessly change the design of your iOS code with
solid unit tests. Use Xcode’s built-in test framework
XCTest and Swift to get rapid feedback on all your code
— including legacy code. Learn the tricks and tech-
niques of testing all iOS code, especially view con-
trollers (UIViewControllers), which are critical to iOS
apps. Learn to isolate and replace dependencies in
legacy code written without tests. Practice safe refac-
toring that makes these tests possible, and watch all
your changes get verified quickly and automatically.
Make even the boldest code changes with complete
confidence.

Jon Reid
(300 pages) ISBN: 9781680506815. $47.95
https://pragprog.com/book/jrlegios

iOS Unit Testing
by Example

XCTest Tips and
Techniques Using Swift

Jon Reid

edited by Michael Swatne

Become an Effective Software Engineering Manager

Software startups make global headlines every day. As
technology companies succeed and grow, so do their
engineering departments. In your career, you’ll may
suddenly get the opportunity to lead teams: to become
a manager. But this is often uncharted territory. How
do you decide whether this career move is right for
you? And if you do, what do you need to learn to suc-
ceed? Where do you start? How do you know that
you're doing it right? What does “it” even mean? And
isn’t management a dirty word? This book will share
the secrets you need to know to manage engineers
successfully.

James Stanier
(396 pages) ISBN: 9781680507249. $45.95
https://pragprog.com/book/jsengman

Th

i
natic
mmers

Become an
Effective Software
Engineering Manager

How to Be the Leader Your
Development Team Needs

https://pragprog.com/book/jrlegios
https://pragprog.com/book/jsengman

The Pragmatic Bookshelf

The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online

This Book’s Home Page
https://pragprog.com/book/tjgo
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date

https://pragprog.com

Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book

If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.

Contact Us

Online Orders: https://pragprog.com/catalog
Customer Service: support@pragprog.com
International Rights: translations@pragprog.com
Academic Use: academic@pragprog.com
Write for Us: http://write-for-us.pragprog.com
Or Call: +1 800-699-7764

https://pragprog.com/book/tjgo
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Introduction
	Who This Book Is For
	What’s in This Book
	Online Resources

	Part I—Get Started
	1. Let's Go
	How JSON over HTTP Services Fits into Distributed Systems
	Set Up the Project
	Build a Commit Log Prototype
	Build a JSON over HTTP Server
	Run Your Server
	Test Your API
	What You Learned

	2. Structure Data with Protocol Buffers
	Why Use Protocol Buffers?
	Install the Protocol Buffer Compiler
	Define Your Domain Types as Protocol Buffers
	Compile Protocol Buffers
	Work with the Generated Code
	What You Learned

	3. Write a Log Package
	The Log Is a Powerful Tool
	How Logs Work
	Build a Log
	What You Learned

	Part II—Network
	4. Serve Requests with gRPC
	What Is gRPC?
	Goals When Building a Service
	Define a gRPC Service
	Compile with the gRPC Plugin
	Implement a gRPC Server
	Register Your Server
	Test a gRPC Server and Client
	What You Learned

	5. Secure Your Services
	Secure Services in Three Steps
	Authenticate the Server with TLS
	Authenticate the Client with Mutual TLS Authentication
	Authorize with Access Control Lists
	What You Learned

	6. Observe Your Systems
	Three Types of Telemetry Data
	Make Your Service Observable
	What You Learned

	Part III—Distribute
	7. Server-to-Server Service Discovery
	Why Use Service Discovery?
	Embed Service Discovery
	Discover Services with Serf
	Request Discovered Services and Replicate Logs
	Test Discovery and the Service End-to-End
	What You Learned

	8. Coordinate Your Services with Consensus
	What Is Raft and How Does It Work?
	Implement Raft in Our Service
	Multiplex to Run Multiple Services on One Port
	What You Learned

	9. Discover Servers and Load Balance from the Client
	Three Load-Balancing Strategies
	Load Balance on the Client in gRPC
	Make Servers Discoverable
	Resolve the Servers
	Route and Balance Requests with Pickers
	Test Discovery and Balancing End-to-End
	What You Learned

	Part IV—Deploy
	10. Deploy Applications with Kubernetes Locally
	What Is Kubernetes?
	Install kubectl
	Use Kind for Local Development and Continuous Integration
	Write an Agent Command-Line Interface
	Build Your Docker Image
	Configure and Deploy Your Service with Helm
	Advertise Raft on the Fully Qualified Domain Name
	What You Learned

	11. Deploy Applications with Kubernetes to the Cloud
	Create a Google Kubernetes Engine Cluster
	Create Custom Controllers with Metacontroller
	Deploy to the Internet
	What You Learned

	Index
	– SYMBOLS –
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– Z –

