The GO

Programming
Language

Alan A. A. Donovan

A
vvy
>
=
=
wn
@)
z
=
Tl
¥p)
=
iy
=
=,
A~
@)
Tl
i
W
%
O
7
>
I
Brian W. Kernighan 3
=
e,
-
=
Z
2]
W
rmi
e,
E
W

www.it-ebooks.info

http://www.it-ebooks.info/

The Go
Programming
Language

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

The Go

Programming
Language

Alan A. A. Donovan

Google Inc.

Brian W. Kernighan

Princeton University

vvAddison-Wesley

New York « Boston « Indianapolis « San Francisco
Toronto « Montreal « London « Munich e Paris « Madrid
Capetown « Sydney « Tokyo « Singapore « Mexico City

www.it-ebooks.info

http://www.it-ebooks.info/

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business, train-
ing goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.
Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2015950709

Copyright © 2016 Alan A. A. Donovan & Brian W. Kernighan

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, 200 Old Tappan Road, Old Tappan, New
Jersey 07675, or you may fax your request to (201) 236-3290.

Front cover: Millau Viaduct, Tarn valley, southern France. A paragon of simplicity in modern engi-
neering design, the viaduct replaced a convoluted path from capital to coast with a direct route over
the clouds. © Jean-Pierre Lescourret/Corbis.

Back cover: the original Go gopher. © 2009 Renée French. Used under Creative Commons Attribu-
tions 3.0 license.

Typeset by the authors in Minion Pro, Lato, and Consolas, using Go, groff, ghostscript, and a host of
other open-source Unix tools. Figures were created in Google Drawings.

ISBN-13: 978-0-13-419044-0

ISBN-10: 0-13-419044-0

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, October 2015

www.it-ebooks.info

http://www.it-ebooks.info/

For Leila and Meg

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Preface xi
The Origins of Go xii
The Go Project xiii
Organization of the Book XV
Where to Find More Information xvi
Acknowledgments xvii

1. Tutorial 1
1.1. Hello, World 1
1.2. Command-Line Arguments 4
1.3. Finding Duplicate Lines 8
1.4. Animated GIFs 13
1.5. Fetchinga URL 15
1.6. Fetching URLs Concurrently 17
1.7. A Web Server 19
1.8. Loose Ends 23

2. Program Structure 27
2.1. Names 27
2.2. Declarations 28
2.3. Variables 30
2.4. Assignments 36
2.5. Type Declarations 39
2.6. Packages and Files 41
2.7. Scope 45

vii

www.it-ebooks.info

http://www.it-ebooks.info/

viii

3. Basic Data Types

3.1
3.2.
3.3.
3.4.
3.5.
3.6.

Integers

Floating-Point Numbers
Complex Numbers
Booleans

Strings

Constants

4. Composite Types

4.1.
4.2.
4.3.
44.
4.5.
4.6.

Arrays

Slices

Maps

Structs

JSON

Text and HTML Templates

5. Functions

5.1.
5.2.
5.3.
54.
5.5.
5.6.
5.7.
5.8.
5.9.

Function Declarations
Recursion

Multiple Return Values
Errors

Function Values
Anonymous Functions
Variadic Functions
Deferred Function Calls
Panic

5.10. Recover

6. Methods

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.

Method Declarations

Methods with a Pointer Receiver
Composing Types by Struct Embedding
Method Values and Expressions
Example: Bit Vector Type
Encapsulation

7. Interfaces

7.1.
7.2.
7.3.
7.4.
7.5.

Interfaces as Contracts
Interface Types

Interface Satisfaction

Parsing Flags with flag.Value
Interface Values

www.it-ebooks.info

CONTENTS

51
51
56
61
63
64
75

81
81
84
93
99
107
113

119
119
121
124
127
132
135
142
143
148
151

155
155
158
161
164
165
168

171
171
174
175
179
181

http://www.it-ebooks.info/

CONTE

7.6.
7.7.
7.8.
7.9.
7.10.
7.11.
7.12.
7.13.
7.14.
7.15.

NTS

Sorting with sort.Interface

The http.Handler Interface

The error Interface

Example: Expression Evaluator
Type Assertions
Discriminating Errors with Type Assertions
Querying Behaviors with Interface Type Assertions
Type Switches
Example: Token-Based XML Decoding
A Few Words of Advice

8. Goroutines and Channels

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9.
8.10.

Goroutines
Example: Concurrent Clock Server
Example: Concurrent Echo Server
Channels
Looping in Parallel
Example: Concurrent Web Crawler
Multiplexing with select
Example: Concurrent Directory Traversal
Cancellation

Example: Chat Server

9. Concurrency with Shared Variables

9.1.
9.2.
9.3.
9.4.
9.5.
9.6.
9.7.
9.8.

Race Conditions

Mutual Exclusion: sync.Mutex

Read/Write Mutexes: sync.RWMutex
Memory Synchronization

Lazy Initialization: sync.0Once

The Race Detector

Example: Concurrent Non-Blocking Cache
Goroutines and Threads

10. Packages and the Go Tool

10.1.
10.2.
10.3.
10.4.
10.5.
10.6.
10.7.

Introduction

Import Paths

The Package Declaration
Import Declarations
Blank Imports

Packages and Naming
The Go Tool

www.it-ebooks.info

186
191
196
197
205
206
208
210
213
216

217
217
219
222
225
234
239
244
247
251
253

257
257
262
266
267
268
271
272
280

283
283
284
285
285
286
289
290

http://www.it-ebooks.info/

11. Testing
11.1. The go test Tool
11.2. Test Functions
11.3. Coverage
11.4. Benchmark Functions
11.5. Profiling
11.6. Example Functions

12. Reflection
12.1. Why Reflection?
12.2. reflect.Type and reflect.Value
12.3. Display, a Recursive Value Printer
12.4. Example: Encoding S-Expressions
12.5. Setting Variables with reflect.value
12.6. Example: Decoding S-Expressions
12.7. Accessing Struct Field Tags
12.8. Displaying the Methods of a Type
12.9. A Word of Caution

13. Low-Level Programming
13.1. unsafe.Sizeof, Alignof, and Offsetof
13.2. unsafe.Pointer
13.3. Example: Deep Equivalence
13.4. Calling C Code with cgo
13.5. Another Word of Caution

Index

www.it-ebooks.info

CONTENTS

301
302
302
318
321
323
326

329
329
330
333
338
341
344
348
351
352

353
354
356
358
361
366

367

http://www.it-ebooks.info/

Preface

“Go is an open source programming language that makes it easy to build simple, reliable,
and efficient software” (From the Go web site at golang.org)

Go was conceived in September 2007 by Robert Griesemer, Rob Pike, and Ken Thompson, all
at Google, and was announced in November 2009. The goals of the language and its accom-
panying tools were to be expressive, efficient in both compilation and execution, and effective
in writing reliable and robust programs.

Go bears a surface similarity to C and, like C, is a tool for professional programmers, achiev-
ing maximum effect with minimum means. But it is much more than an updated version of
C. It borrows and adapts good ideas from many other languages, while avoiding features that
have led to complexity and unreliable code. Its facilities for concurrency are new and efficient,
and its approach to data abstraction and object-oriented programming is unusually flexible. It
has automatic memory management or garbage collection.

Go is especially well suited for building infrastructure like networked servers, and tools and
systems for programmers, but it is truly a general-purpose language and finds use in domains
as diverse as graphics, mobile applications, and machine learning. It has become popular as a
replacement for untyped scripting languages because it balances expressiveness with safety:
Go programs typically run faster than programs written in dynamic languages and suffer far
fewer crashes due to unexpected type errors.

Go is an open-source project, so source code for its compiler, libraries, and tools is freely avail-
able to anyone. Contributions to the project come from an active worldwide community. Go
runs on Unix-like systems—Linux, FreeBSD, OpenBSD, Mac OS X—and on Plan 9 and
Microsoft Windows. Programs written in one of these environments generally work without
modification on the others.

Xi

www.it-ebooks.info

http://www.it-ebooks.info/

xii PREFACE

This book is meant to help you start using Go effectively right away and to use it well, taking
full advantage of Go’s language features and standard libraries to write clear, idiomatic, and
efficient programs.

The Origins of Go

Like biological species, successful languages beget offspring that incorporate the advantages of
their ancestors; interbreeding sometimes leads to surprising strengths; and, very occasionally,
a radical new feature arises without precedent. We can learn a lot about why a language is the
way it is and what environment it has been adapted for by looking at these influences.

The figure below shows the most important influences of earlier programming languages on
the design of Go.

ALGOL 60
(Backus et al., 1960)

|

Pascal
(Wirth, 1970)
C
(Ritchie, 1972)
CSpP
(Hoare, 1978) Modula-2
* (Wirth, 1980)
Squeak
(Cardelli & Pike, 1985) Oberon
* (Wirth & Gutknecht,
1986)
'\:;Y(\;Sqlgsg)k Object Oberon
+ (Mé&ssenbéck, Templ
& Griesemer, 1990)
Alef Oberon-2 /
. (Wirth & Méssenbéck,
(Winterbottom, 1992) 1991)

Go
(Griesemer, Pike & Thompson, 2009)

Go is sometimes described as a “C-like language,” or as “C for the 21st century” From C, Go
inherited its expression syntax, control-flow statements, basic data types, call-by-value param-
eter passing, pointers, and above all, C’s emphasis on programs that compile to efficient
machine code and cooperate naturally with the abstractions of current operating systems.

www.it-ebooks.info

http://www.it-ebooks.info/

THE ORIGINS OF GO xiii

But there are other ancestors in Go’s family tree. One major stream of influence comes from
languages by Niklaus Wirth, beginning with Pascal. Modula-2 inspired the package concept.
Oberon eliminated the distinction between module interface files and module implementation
files. Oberon-2 influenced the syntax for packages, imports, and declarations, and Object
Oberon provided the syntax for method declarations.

Another lineage among Gos ancestors, and one that makes Go distinctive among recent
programming languages, is a sequence of little-known research languages developed at Bell
Labs, all inspired by the concept of communicating sequential processes (CSP) from Tony
Hoare’s seminal 1978 paper on the foundations of concurrency. In CSP, a program is a parallel
composition of processes that have no shared state; the processes communicate and synchro-
nize using channels. But Hoare’s CSP was a formal language for describing the fundamental
concepts of concurrency, not a programming language for writing executable programs.

Rob Pike and others began to experiment with CSP implementations as actual languages. The
first was called Squeak (“A language for communicating with mice”), which provided a lan-
guage for handling mouse and keyboard events, with statically created channels. This was
followed by Newsqueak, which offered C-like statement and expression syntax and Pascal-like
type notation. It was a purely functional language with garbage collection, again aimed at
managing keyboard, mouse, and window events. Channels became first-class values, dynami-
cally created and storable in variables.

The Plan 9 operating system carried these ideas forward in a language called Alef. Alef tried
to make Newsqueak a viable system programming language, but its omission of garbage col-
lection made concurrency too painful.

Other constructions in Go show the influence of non-ancestral genes here and there; for
example iota is loosely from APL, and lexical scope with nested functions is from Scheme
(and most languages since). Here too we find novel mutations. Go’s innovative slices provide
dynamic arrays with efficient random access but also permit sophisticated sharing
arrangements reminiscent of linked lists. And the defer statement is new with Go.

The Go Project

All programming languages reflect the programming philosophy of their creators, which often
includes a significant component of reaction to the perceived shortcomings of earlier lan-
guages. The Go project was borne of frustration with several software systems at Google that
were suffering from an explosion of complexity. (This problem is by no means unique to
Google.)

As Rob Pike put it, “complexity is multiplicative”: fixing a problem by making one part of the
system more complex slowly but surely adds complexity to other parts. With constant pres-
sure to add features and options and configurations, and to ship code quickly, it's easy to
neglect simplicity, even though in the long run simplicity is the key to good software.

www.it-ebooks.info

http://www.it-ebooks.info/

xiv PREFACE

Simplicity requires more work at the beginning of a project to reduce an idea to its essence and
more discipline over the lifetime of a project to distinguish good changes from bad or perni-
cious ones. With sufficient effort, a good change can be accommodated without compromis-
ing what Fred Brooks called the “conceptual integrity” of the design but a bad change cannot,
and a pernicious change trades simplicity for its shallow cousin, convenience. Only through
simplicity of design can a system remain stable, secure, and coherent as it grows.

The Go project includes the language itself, its tools and standard libraries, and last but not
least, a cultural agenda of radical simplicity. As a recent high-level language, Go has the bene-
fit of hindsight, and the basics are done well: it has garbage collection, a package system, first-
class functions, lexical scope, a system call interface, and immutable strings in which text is
generally encoded in UTF-8. But it has comparatively few features and is unlikely to add
more. For instance, it has no implicit numeric conversions, no constructors or destructors, no
operator overloading, no default parameter values, no inheritance, no generics, no exceptions,
no macros, no function annotations, and no thread-local storage. The language is mature and
stable, and guarantees backwards compatibility: older Go programs can be compiled and run
with newer versions of compilers and standard libraries.

Go has enough of a type system to avoid most of the careless mistakes that plague program-
mers in dynamic languages, but it has a simpler type system than comparable typed languages.
This approach can sometimes lead to isolated pockets of “untyped” programming within a
broader framework of types, and Go programmers do not go to the lengths that C++ or
Haskell programmers do to express safety properties as type-based proofs. But in practice Go
gives programmers much of the safety and run-time performance benefits of a relatively
strong type system without the burden of a complex one.

Go encourages an awareness of contemporary computer system design, particularly the
importance of locality. Its built-in data types and most library data structures are crafted to
work naturally without explicit initialization or implicit constructors, so relatively few mem-
ory allocations and memory writes are hidden in the code. Go's aggregate types (structs and
arrays) hold their elements directly, requiring less storage and fewer allocations and pointer
indirections than languages that use indirect fields. And since the modern computer is a par-
allel machine, Go has concurrency features based on CSP, as mentioned earlier. The variable-
size stacks of Go’s lightweight threads or goroutines are initially small enough that creating one
goroutine is cheap and creating a million is practical.

Go's standard library, often described as coming with “batteries included,” provides clean
building blocks and APIs for I/O, text processing, graphics, cryptography, networking, and
distributed applications, with support for many standard file formats and protocols. The
libraries and tools make extensive use of convention to reduce the need for configuration and
explanation, thus simplifying program logic and making diverse Go programs more similar to
each other and thus easier to learn. Projects built using the go tool use only file and identifier
names and an occasional special comment to determine all the libraries, executables, tests,
benchmarks, examples, platform-specific variants, and documentation for a project; the Go
source itself contains the build specification.

www.it-ebooks.info

http://www.it-ebooks.info/

THE GO PROJECT XV

Organization of the Book

We assume that you have programmed in one or more other languages, whether compiled like
C, C++, and Java, or interpreted like Python, Ruby, and JavaScript, so we won't spell out every-
thing as if for a total beginner. Surface syntax will be familiar, as will variables and constants,
expressions, control flow, and functions.

Chapter 1 is a tutorial on the basic constructs of Go, introduced through a dozen programs for
everyday tasks like reading and writing files, formatting text, creating images, and communi-
cating with Internet clients and servers.

Chapter 2 describes the structural elements of a Go program—declarations, variables, new
types, packages and files, and scope. Chapter 3 discusses numbers, booleans, strings, and con-
stants, and explains how to process Unicode. Chapter 4 describes composite types, that is,
types built up from simpler ones using arrays, maps, structs, and slices, Go’s approach to
dynamic lists. Chapter 5 covers functions and discusses error handling, panic and recover,
and the defer statement.

Chapters 1 through 5 are thus the basics, things that are part of any mainstream imperative
language. Go’s syntax and style sometimes differ from other languages, but most program-
mers will pick them up quickly. The remaining chapters focus on topics where Go’s approach
is less conventional: methods, interfaces, concurrency, packages, testing, and reflection.

Go has an unusual approach to object-oriented programming. There are no class hierarchies,
or indeed any classes; complex object behaviors are created from simpler ones by composition,
not inheritance. Methods may be associated with any user-defined type, not just structures,
and the relationship between concrete types and abstract types (interfaces) is implicit, so a
concrete type may satisfy an interface that the type’s designer was unaware of. Methods are
covered in Chapter 6 and interfaces in Chapter 7.

Chapter 8 presents Go's approach to concurrency, which is based on the idea of communicat-
ing sequential processes (CSP), embodied by goroutines and channels. Chapter 9 explains the
more traditional aspects of concurrency based on shared variables.

Chapter 10 describes packages, the mechanism for organizing libraries. This chapter also
shows how to make effective use of the go tool, which provides for compilation, testing,
benchmarking, program formatting, documentation, and many other tasks, all within a single
command.

Chapter 11 deals with testing, where Go takes a notably lightweight approach, avoiding
abstraction-laden frameworks in favor of simple libraries and tools. The testing libraries
provide a foundation atop which more complex abstractions can be built if necessary.

Chapter 12 discusses reflection, the ability of a program to examine its own representation
during execution. Reflection is a powerful tool, though one to be used carefully; this chapter
explains finding the right balance by showing how it is used to implement some important Go
libraries. Chapter 13 explains the gory details of low-level programming that uses the unsafe
package to step around Go’s type system, and when that is appropriate.

www.it-ebooks.info

http://www.it-ebooks.info/

xvi PREFACE

Each chapter has a number of exercises that you can use to test your understanding of Go, and
to explore extensions and alternatives to the examples from the book.

All but the most trivial code examples in the book are available for download from the public
Git repository at gopl.io. Each example is identified by its package import path and may be
conveniently fetched, built, and installed using the go get command. You'll need to choose a
directory to be your Go workspace and set the GOPATH environment variable to point to it.
The go tool will create the directory if necessary. For example:

$ export GOPATH=$HOME/gobook # choose workspace directory
$ go get gopl.io/chl/helloworld # fetch, build, install

$ $GOPATH/bin/helloworld # run

Hello, it

To run the examples, you will need at least version 1.5 of Go.

$ go version
go version gol.5 linux/amdé64

Follow the instructions at https://golang.org/doc/install if the go tool on your com-
puter is older or missing.

Where to Find More Information

The best source for more information about Go is the official web site, https://golang.org,
which provides access to the documentation, including the Go Programming Language Specifi-
cation, standard packages, and the like. There are also tutorials on how to write Go and how
to write it well, and a wide variety of online text and video resources that will be valuable com-
plements to this book. The Go Blog at blog.golang.org publishes some of the best writing
on Go, with articles on the state of the language, plans for the future, reports on conferences,
and in-depth explanations of a wide variety of Go-related topics.

One of the most useful aspects of online access to Go (and a regrettable limitation of a paper
book) is the ability to run Go programs from the web pages that describe them. This func-
tionality is provided by the Go Playground at play.golang.org, and may be embedded
within other pages, such as the home page at golang.org or the documentation pages served
by the godoc tool.

The Playground makes it convenient to perform simple experiments to check one’s under-
standing of syntax, semantics, or library packages with short programs, and in many ways
takes the place of a read-eval-print loop (REPL) in other languages. Its persistent URLs are
great for sharing snippets of Go code with others, for reporting bugs or making suggestions.

Built atop the Playground, the Go Tour at tour.golang.org is a sequence of short interactive
lessons on the basic ideas and constructions of Go, an orderly walk through the language.

The primary shortcoming of the Playground and the Tour is that they allow only standard
libraries to be imported, and many library features—networking, for example—are restricted

www.it-ebooks.info

https://golang.org/doc/install
https://golang.org
http://www.it-ebooks.info/

WHERE TO FIND MORE INFORMATION Xvii

for practical or security reasons. They also require access to the Internet to compile and run
each program. So for more elaborate experiments, you will have to run Go programs on your
own computer. Fortunately the download process is straightforward, so it should not take
more than a few minutes to fetch the Go distribution from golang.org and start writing and
running Go programs of your own.

Since Go is an open-source project, you can read the code for any type or function in the stan-
dard library online at https://golang.org/pkg; the same code is part of the downloaded
distribution. Use this to figure out how something works, or to answer questions about
details, or merely to see how experts write really good Go.

Acknowledgments

Rob Pike and Russ Cox, core members of the Go team, read the manuscript several times with
great care; their comments on everything from word choice to overall structure and organiza-
tion have been invaluable. While preparing the Japanese translation, Yoshiki Shibata went far
beyond the call of duty; his meticulous eye spotted numerous inconsistencies in the English
text and errors in the code. We greatly appreciate thorough reviews and critical comments on
the entire manuscript from Brian Goetz, Corey Kosak, Arnold Robbins, Josh Bleecher Snyder,
and Peter Weinberger.

We are indebted to Sameer Ajmani, Ittai Balaban, David Crawshaw, Billy Donohue, Jonathan
Feinberg, Andrew Gerrand, Robert Griesemer, John Linderman, Minux Ma, Bryan Mills, Bala
Natarajan, Cosmos Nicolaou, Paul Staniforth, Nigel Tao, and Howard Trickey for many
helpful suggestions. We also thank David Brailsford and Raph Levien for typesetting advice.

Our editor Greg Doench at Addison-Wesley got the ball rolling originally and has been con-
tinuously helpful ever since. The AW production team—John Fuller, Dayna Isley, Julie Nahil,
Chuti Prasertsith, and Barbara Wood—has been outstanding; authors could not hope for bet-
ter support.

Alan Donovan wishes to thank: Sameer Ajmani, Chris Demetriou, Walt Drummond, and Reid
Tatge at Google for allowing him time to write; Stephen Donovan, for his advice and timely
encouragement; and above all, his wife Leila Kazemi, for her unhesitating enthusiasm and
unwavering support for this project, despite the long hours of distraction and absenteeism
from family life that it entailed.

Brian Kernighan is deeply grateful to friends and colleagues for their patience and forbearance
as he moved slowly along the path to understanding, and especially to his wife Meg, who has
been unfailingly supportive of book-writing and so much else.

New York
October 2015

www.it-ebooks.info

https://golang.org/pkg
http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

1

Tutorial

This chapter is a tour of the basic components of Go. We hope to provide enough information
and examples to get you off the ground and doing useful things as quickly as possible. The
examples here, and indeed in the whole book, are aimed at tasks that you might have to do in
the real world. In this chapter we'll try to give you a taste of the diversity of programs that one
might write in Go, ranging from simple file processing and a bit of graphics to concurrent
Internet clients and servers. We certainly won’t explain everything in the first chapter, but
studying such programs in a new language can be an effective way to get started.

When you're learning a new language, there’s a natural tendency to write code as you would
have written it in a language you already know. Be aware of this bias as you learn Go and try
to avoid it. We've tried to illustrate and explain how to write good Go, so use the code here as
a guide when you're writing your own.

1.1. Hello, World

We'll start with the now-traditional “hello, world” example, which appears at the beginning of
The C Programming Language, published in 1978. C is one of the most direct influences on
Go, and “hello, world” illustrates a number of central ideas.

gopl.io/chl/helloworld

package main
import "fmt"

func main() {
fmt.Println("Hello, #®R")
}

www.it-ebooks.info

http://www.it-ebooks.info/

2 CHAPTER 1. TUTORIAL

Go is a compiled language. The Go toolchain converts a source program and the things it
depends on into instructions in the native machine language of a computer. These tools are
accessed through a single command called go that has a number of subcommands. The sim-
plest of these subcommands is run, which compiles the source code from one or more source
files whose names end in .go, links it with libraries, then runs the resulting executable file.
(We will use $ as the command prompt throughout the book.)

$ go run helloworld.go
Not surprisingly, this prints
Hello, tt®
Go natively handles Unicode, so it can process text in all the world’s languages.

If the program is more than a one-shot experiment, it’s likely that you would want to compile
it once and save the compiled result for later use. That is done with go build:

$ go build helloworld.go

This creates an executable binary file called helloworld that can be run any time without fur-
ther processing:

$./helloworld
Hello, it5#

We have labeled each significant example as a reminder that you can obtain the code from the
book’s source code repository at gopl.io:

gopl.io/chi/helloworld

If you run go get gopl.io/chl/helloworld, it will fetch the source code and place it in the
corresponding directory. There’s more about this topic in Section 2.6 and Section 10.7.

Let’s now talk about the program itself. Go code is organized into packages, which are similar
to libraries or modules in other languages. A package consists of one or more . go source files
in a single directory that define what the package does. Each source file begins with a package
declaration, here package main, that states which package the file belongs to, followed by a list
of other packages that it imports, and then the declarations of the program that are stored in
that file.

The Go standard library has over 100 packages for common tasks like input and output,
sorting, and text manipulation. For instance, the fmt package contains functions for printing
formatted output and scanning input. Println is one of the basic output functions in fmt; it
prints one or more values, separated by spaces, with a newline character at the end so that the
values appear as a single line of output.

Package main is special. It defines a standalone executable program, not a library. Within
package main the function main is also special—it's where execution of the program begins.
Whatever main does is what the program does. Of course, main will normally call upon func-
tions in other packages to do much of the work, such as the function fmt.Println.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 1.1. HELLO, WORLD 3

We must tell the compiler what packages are needed by this source file; that’s the role of the
import declaration that follows the package declaration. The “hello, world” program uses
only one function from one other package, but most programs will import more packages.

You must import exactly the packages you need. A program will not compile if there are
missing imports or if there are unnecessary ones. This strict requirement prevents references
to unused packages from accumulating as programs evolve.

The import declarations must follow the package declaration. After that, a program consists
of the declarations of functions, variables, constants, and types (introduced by the keywords
func, var, const, and type); for the most part, the order of declarations does not matter. This
program is about as short as possible since it declares only one function, which in turn calls
only one other function. To save space, we will sometimes not show the package and import
declarations when presenting examples, but they are in the source file and must be there to
compile the code.

A function declaration consists of the keyword func, the name of the function, a parameter
list (empty for main), a result list (also empty here), and the body of the function—the state-
ments that define what it does—enclosed in braces. We'll take a closer look at functions in
Chapter 5.

Go does not require semicolons at the ends of statements or declarations, except where two or
more appear on the same line. In effect, newlines following certain tokens are converted into
semicolons, so where newlines are placed matters to proper parsing of Go code. For instance,
the opening brace { of the function must be on the same line as the end of the func declara-
tion, not on a line by itself, and in the expression x + y, a newline is permitted after but not
before the + operator.

Go takes a strong stance on code formatting. The gofmt tool rewrites code into the standard
format, and the go tool’s fmt subcommand applies gofmt to all the files in the specified pack-
age, or the ones in the current directory by default. All Go source files in the book have been
run through gofmt, and you should get into the habit of doing the same for your own code.
Declaring a standard format by fiat eliminates a lot of pointless debate about trivia and, more
importantly, enables a variety of automated source code transformations that would be
infeasible if arbitrary formatting were allowed.

Many text editors can be configured to run gofmt each time you save a file, so that your source
code is always properly formatted. A related tool, goimports, additionally manages the inser-
tion and removal of import declarations as needed. It is not part of the standard distribution
but you can obtain it with this command:

$ go get golang.org/x/tools/cmd/goimports

For most users, the usual way to download and build packages, run their tests, show their doc-
umentation, and so on, is with the go tool, which we’ll look at in Section 10.7.

www.it-ebooks.info

http://www.it-ebooks.info/

4 CHAPTER 1. TUTORIAL

1.2. Command-Line Arguments

Most programs process some input to produce some output; that’s pretty much the definition
of computing. But how does a program get input data on which to operate? Some programs
generate their own data, but more often, input comes from an external source: a file, a network
connection, the output of another program, a user at a keyboard, command-line arguments,
or the like. The next few examples will discuss some of these alternatives, starting with com-
mand-line arguments.

The os package provides functions and other values for dealing with the operating system in a
platform-independent fashion. Command-line arguments are available to a program in a
variable named Args that is part of the os package; thus its name anywhere outside the os
package is os.Args.

The variable os . Args is a slice of strings. Slices are a fundamental notion in Go, and we'll talk
a lot more about them soon. For now, think of a slice as a dynamically sized sequence s of
array elements where individual elements can be accessed as s[i] and a contiguous subse-
quence as s[m:n]. The number of elements is given by len(s). As in most other program-
ming languages, all indexing in Go uses half-open intervals that include the first index but
exclude the last, because it simplifies logic. For example, the slice s[m:n], where 0 <m<n <
len(s), contains n-m elements.

The first element of os.Args, os.Args[@], is the name of the command itself; the other ele-
ments are the arguments that were presented to the program when it started execution. A
slice expression of the form s[m:n] yields a slice that refers to elements m through n-1, so the
elements we need for our next example are those in the slice os.Args[1:1en(os.Args)]. Ifm
or n is omitted, it defaults to 0 or len(s) respectively, so we can abbreviate the desired slice as
os.Args[1:].

Here’s an implementation of the Unix echo command, which prints its command-line argu-
ments on a single line. It imports two packages, which are given as a parenthesized list rather
than as individual import declarations. Either form is legal, but conventionally the list form is
used. The order of imports doesn't matter; the gofmt tool sorts the package names into
alphabetical order. (When there are several versions of an example, we will often number
them so you can be sure of which one we're talking about.)

gopl.io/chl/echol

// Echol prints its command-line arguments.
package main

import (
"fmt"
"ogh
)

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 1.2. COMMAND-LINE ARGUMENTS 5

func main() {
var s, sep string

for i :=1; i < len(os.Args); i++ {
S += sep + o0s.Args[i]
sep = " "

}

fmt.Println(s)
}

Comments begin with //. All text from a // to the end of the line is commentary for
programmers and is ignored by the compiler. By convention, we describe each package in a
comment immediately preceding its package declaration; for a main package, this comment is
one or more complete sentences that describe the program as a whole.

The var declaration declares two variables s and sep, of type string. A variable can be ini-
tialized as part of its declaration. If it is not explicitly initialized, it is implicitly initialized to
the zero value for its type, which is @ for numeric types and the empty string "" for strings.
Thus in this example, the declaration implicitly initializes s and sep to empty strings. We'll
have more to say about variables and declarations in Chapter 2.

For numbers, Go provides the usual arithmetic and logical operators. When applied to
strings, however, the + operator concatenates the values, so the expression

sep + os.Args[i]

represents the concatenation of the strings sep and os.Args[i]. The statement we used in
the program,

S += sep + os.Args[i]

is an assignment statement that concatenates the old value of s with sep and os.Args[i] and
assigns it back to s; it is equivalent to

S = s + sep + 0s.Args[i]

The operator += is an assignment operator. Each arithmetic and logical operator like + or * has
a corresponding assignment operator.

The echo program could have printed its output in a loop one piece at a time, but this version
instead builds up a string by repeatedly appending new text to the end. The string s starts life
empty, that is, with value "", and each trip through the loop adds some text to it; after the first
iteration, a space is also inserted so that when the loop is finished, there is one space between
each argument. This is a quadratic process that could be costly if the number of arguments is
large, but for echo, that’s unlikely. We'll show a number of improved versions of echo in this
chapter and the next that will deal with any real inefficiency.

The loop index variable i is declared in the first part of the for loop. The := symbol is part of
a short variable declaration, a statement that declares one or more variables and gives them
appropriate types based on the initializer values; there’s more about this in the next chapter.

The increment statement i++ adds 1 to i; it's equivalent to i += 1 which is in turn equivalent
to i =1+ 1. There’s a corresponding decrement statement i-- that subtracts 1. These are

www.it-ebooks.info

http://www.it-ebooks.info/

6 CHAPTER 1. TUTORIAL

statements, not expressions as they are in most languages in the C family, so j = i++ is illegal,
and they are postfix only, so - -1 is not legal either.

The for loop is the only loop statement in Go. It has a number of forms, one of which is
illustrated here:

for initialization; condition; post {
// zero or more statements

}

Parentheses are never used around the three components of a for loop. The braces are
mandatory, however, and the opening brace must be on the same line as the post statement.

The optional initialization statement is executed before the loop starts. If it is present, it
must be a simple statement, that is, a short variable declaration, an increment or assignment
statement, or a function call. The condition is a boolean expression that is evaluated at the
beginning of each iteration of the loop; if it evaluates to true, the statements controlled by the
loop are executed. The post statement is executed after the body of the loop, then the condi-
tion is evaluated again. The loop ends when the condition becomes false.

Any of these parts may be omitted. If there is no initialization and no post, the semi-
colons may also be omitted:

// a traditional "while" loop
for condition {

/...
}

If the condition is omitted entirely in any of these forms, for example in

// a traditional infinite loop
for {

/...
}

the loop is infinite, though loops of this form may be terminated in some other way, like a
break or return statement.

Another form of the for loop iterates over a range of values from a data type like a string or a
slice. To illustrate, here’s a second version of echo:

gopl.io/chl/echo2

// Echo2 prints its command-line arguments.
package main

import (
"fmt"
"ogh
)

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 1.2. COMMAND-LINE ARGUMENTS 7

func main() {
s, sep := "", ""
for _, arg := range os.Args[1:] {
S += sep + arg
sep = " "

}
fmt.Println(s)

}

In each iteration of the loop, range produces a pair of values: the index and the value of the
element at that index. In this example, we don’t need the index, but the syntax of a range loop
requires that if we deal with the element, we must deal with the index too. One idea would be
to assign the index to an obviously temporary variable like temp and ignore its value, but Go
does not permit unused local variables, so this would result in a compilation error.

The solution is to use the blank identifier, whose name is _ (that is, an underscore). The blank
identifier may be used whenever syntax requires a variable name but program logic does not,
for instance to discard an unwanted loop index when we require only the element value. Most
Go programmers would likely use range and _ to write the echo program as above, since the
indexing over os.Args is implicit, not explicit, and thus easier to get right.

This version of the program uses a short variable declaration to declare and initialize s and
sep, but we could equally well have declared the variables separately. There are several ways
to declare a string variable; these are all equivalent:

s :=
var s string

var s =
var s string =

Why should you prefer one form to another? The first form, a short variable declaration, is
the most compact, but it may be used only within a function, not for package-level variables.
The second form relies on default initialization to the zero value for strings, which is "". The
third form is rarely used except when declaring multiple variables. The fourth form is explicit
about the variable’s type, which is redundant when it is the same as that of the initial value but
necessary in other cases where they are not of the same type. In practice, you should generally
use one of the first two forms, with explicit initialization to say that the initial value is
important and implicit initialization to say that the initial value doesn’t matter.

As noted above, each time around the loop, the string s gets completely new contents. The +=
statement makes a new string by concatenating the old string, a space character, and the next
argument, then assigns the new string to s. The old contents of s are no longer in use, so they
will be garbage-collected in due course.

If the amount of data involved is large, this could be costly. A simpler and more efficient
solution would be to use the Join function from the strings package:

www.it-ebooks.info

http://www.it-ebooks.info/

8 CHAPTER 1. TUTORIAL

gopl.io/chl/echo3

func main() {
fmt.Println(strings.Join(os.Args[1:], " "))
}

Finally, if we don’t care about format but just want to see the values, perhaps for debugging, we
can let Println format the results for us:

fmt.Println(os.Args[1:])

The output of this statement is like what we would get from strings.Join, but with sur-
rounding brackets. Any slice may be printed this way.

Exercise 1.1: Modify the echo program to also print os.Args[@], the name of the command
that invoked it.

Exercise 1.2: Modify the echo program to print the index and value of each of its arguments,
one per line.

Exercise 1.3: Experiment to measure the difference in running time between our potentially
inefficient versions and the one that uses strings.Join. (Section 1.6 illustrates part of the
time package, and Section 11.4 shows how to write benchmark tests for systematic per-
formance evaluation.)

1.3. Finding Duplicate Lines

Programs for file copying, printing, searching, sorting, counting, and the like all have a similar
structure: a loop over the input, some computation on each element, and generation of output
on the fly or at the end. We'll show three variants of a program called dups; it is partly inspired
by the Unix uniq command, which looks for adjacent duplicate lines. The structures and
packages used are models that can be easily adapted.

The first version of dup prints each line that appears more than once in the standard input,
preceded by its count. This program introduces the if statement, the map data type, and the
bufio package.

gopl.io/chl/dupl

// Dupl prints the text of each line that appears more than
// once in the standard input, preceded by its count.
package main

import (
"bufio"
"fmt"
"ogh

)

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 1.3. FINDING DUPLICATE LINES 9

func main() {
counts := make(map[string]int)
input := bufio.NewScanner(os.Stdin)
for input.Scan() {
counts[input.Text()]++

}
// NOTE: ignoring potential errors from input.Err()
for line, n := range counts {
ifn>1{
fmt.Printf("%d\t%s\n", n, line)
}
}

}

As with for, parentheses are never used around the condition in an if statement, but braces
are required for the body. There can be an optional else part that is executed if the condition
is false.

A map holds a set of key/value pairs and provides constant-time operations to store, retrieve,
or test for an item in the set. The key may be of any type whose values can compared with ==,
strings being the most common example; the value may be of any type at all. In this example,
the keys are strings and the values are ints. The built-in function make creates a new empty
map; it has other uses too. Maps are discussed at length in Section 4.3.

Each time dup reads a line of input, the line is used as a key into the map and the cor-
responding value is incremented. The statement counts[input.Text()]++ is equivalent to
these two statements:

line := input.Text()
counts[line] = counts[line] + 1

It’s not a problem if the map doesn't yet contain that key. The first time a new line is seen, the
expression counts[line] on the right-hand side evaluates to the zero value for its type, which
is @ for int.

To print the results, we use another range-based for loop, this time over the counts map. As
before, each iteration produces two results, a key and the value of the map element for that
key. The order of map iteration is not specified, but in practice it is random, varying from one
run to another. This design is intentional, since it prevents programs from relying on any par-
ticular ordering where none is guaranteed.

Onward to the bufio package, which helps make input and output efficient and convenient.
One of its most useful features is a type called Scanner that reads input and breaks it into lines
or words; it’s often the easiest way to process input that comes naturally in lines.

The program uses a short variable declaration to create a new variable input that refers to a
bufio.Scanner:

input := bufio.NewScanner(os.Stdin)

www.it-ebooks.info

http://www.it-ebooks.info/

10 CHAPTER 1. TUTORIAL

The scanner reads from the program’s standard input. Each call to input.Scan() reads the
next line and removes the newline character from the end; the result can be retrieved by call-
ing input.Text(). The Scan function returns true if there is a line and false when there is
no more input.

The function fmt.Printf, like printf in C and other languages, produces formatted output
from a list of expressions. Its first argument is a format string that specifies how subsequent
arguments should be formatted. The format of each argument is determined by a conversion
character, a letter following a percent sign. For example, %d formats an integer operand using
decimal notation, and %s expands to the value of a string operand.

Printf has over a dozen such conversions, which Go programmers call verbs. This table is far
from a complete specification but illustrates many of the features that are available:

%d decimal integer

%x, %0, %b integer in hexadecimal, octal, binary
%f, %g, % floating-point number: 3.141593 3.141592653589793 3.141593e+00

%t boolean: true or false

%c rune (Unicode code point)

%s string

%q quoted string "abc" or rune 'c*
%V any value in a natural format

%T type of any value

%% literal percent sign (no operand)

The format string in dup1 also contains a tab \t and a newline \n. String literals may contain
such escape sequences for representing otherwise invisible characters. Printf does not write a
newline by default. By convention, formatting functions whose names end in f, such as
log.Printf and fmt.Errorf, use the formatting rules of fmt.Printf, whereas those whose
names end in 1n follow Println, formatting their arguments as if by %v, followed by a
newline.

Many programs read either from their standard input, as above, or from a sequence of named
files. The next version of dup can read from the standard input or handle a list of file names,
using os.Open to open each one:

gopl.io/chl/dup2

// Dup2 prints the count and text of lines that appear more than once
// in the input. It reads from stdin or from a list of named files.
package main

import (
"bufio"
"fmt"
"ogh

)

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 1.3. FINDING DUPLICATE LINES 11

func main() {
counts := make(map[string]int)
files := os.Args[1l:]
if len(files) == 0 {
countLines(os.Stdin, counts)
} else {
for _, arg :

range files {

f, err := o0s.Open(arg)
if err != nil {
fmt.Fprintf(os.Stderr, "dup2: %v\n", err)
continue
}
countLines(f, counts)
f.Close()
}
}
for line, n := range counts {
ifn>1{
fmt.Printf("%d\t%s\n", n, line)
}
}
}
func countLines(f *os.File, counts map[string]int) {
input := bufio.NewScanner(f)
for input.Scan() {
counts[input.Text()]++
}
// NOTE: ignoring potential errors from input.Err()
}

The function os.0Open returns two values. The first is an open file (*os.File) that is used in
subsequent reads by the Scanner.

The second result of os.Open is a value of the built-in error type. If err equals the special
built-in value nil, the file was opened successfully. The file is read, and when the end of the
input is reached, Close closes the file and releases any resources. On the other hand, if err is
not nil, something went wrong. In that case, the error value describes the problem. Our sim-
ple-minded error handling prints a message on the standard error stream using Fprintf and
the verb %v, which displays a value of any type in a default format, and dup then carries on
with the next file; the continue statement goes to the next iteration of the enclosing for loop.

In the interests of keeping code samples to a reasonable size, our early examples are intention-
ally somewhat cavalier about error handling. Clearly we must check for an error from
0s.0pen; however, we are ignoring the less likely possibility that an error could occur while
reading the file with input.Scan. We will note places where we've skipped error checking,
and we will go into the details of error handling in Section 5.4.

Notice that the call to countLines precedes its declaration. Functions and other package-level
entities may be declared in any order.

www.it-ebooks.info

http://www.it-ebooks.info/

12 CHAPTER 1. TUTORIAL

A map is a reference to the data structure created by make. When a map is passed to a func-
tion, the function receives a copy of the reference, so any changes the called function makes to
the underlying data structure will be visible through the caller’s map reference too. In our
example, the values inserted into the counts map by countLines are seen by main.

The versions of dup above operate in a “streaming” mode in which input is read and broken
into lines as needed, so in principle these programs can handle an arbitrary amount of input.
An alternative approach is to read the entire input into memory in one big gulp, split it into
lines all at once, then process the lines. The following version, dup3, operates in that fashion.
It introduces the function ReadFile (from the io/ioutil package), which reads the entire
contents of a named file, and strings.Split, which splits a string into a slice of substrings.
(Split is the opposite of strings.Join, which we saw earlier.)

We've simplified dup3 somewhat. First, it only reads named files, not the standard input, since
ReadFile requires a file name argument. Second, we moved the counting of the lines back
into main, since it is now needed in only one place.

gopl.io/chl/dup3
package main

import (
"fmt"
"io/ioutil"
"og"
"strings"

)

func main() {
counts := make(map[string]int)
for _, filename := range os.Args[1:] {
data, err := ioutil.ReadFile(filename)
if err != nil {
fmt.Fprintf(os.Stderr, "dup3: %v\n", err)
continue
}
for _, line := range strings.Split(string(data), "\n") {
counts[line]++
}
}
for line, n := range counts {
ifn>1{
fmt.Printf("%d\t%s\n", n, line)
}

}

ReadFile returns a byte slice that must be converted into a string so it can be split by
strings.Split. We will discuss strings and byte slices at length in Section 3.5.4.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 1.4. ANIMATED GIFS 13

Under the covers, bufio.Scanner, ioutil.ReadFile, and ioutil.WriteFile use the Read
and Write methods of *os.File, but it’s rare that most programmers need to access those
lower-level routines directly. The higher-level functions like those from bufio and io/ioutil
are easier to use.

Exercise 1.4: Modify dup2 to print the names of all files in which each duplicated line occurs.

1.4. Animated GIFs

The next program demonstrates basic usage of Go's standard image packages, which we'll use
to create a sequence of bit-mapped images and then encode the sequence as a GIF animation.
The images, called Lissajous figures, were a staple visual effect in sci-fi films of the 1960s. They
are the parametric curves produced by harmonic oscillation in two dimensions, such as two
sine waves fed into the x and y inputs of an oscilloscope. Figure 1.1 shows some examples.

Figure 1.1. Four Lissajous figures.

There are several new constructs in this code, including const declarations, struct types, and
composite literals. Unlike most of our examples, this one also involves floating-point com-
putations. We'll discuss these topics only briefly here, pushing most details off to later chap-
ters, since the primary goal right now is to give you an idea of what Go looks like and the
kinds of things that can be done easily with the language and its libraries.

gopl.io/chl/lissajous

// Lissajous generates GIF animations of random Lissajous figures.
package main

import (
"image"
"image/color"
"image/gif"
"ig"
"math"
"math/rand"

os"

www.it-ebooks.info

http://www.it-ebooks.info/

14 CHAPTER 1. TUTORIAL

var palette = []color.Color{color.White, color.Black}

const (
whiteIndex = @ // first color in palette
blackIndex = 1 // next color in palette

)

func main() {
lissajous(os.Stdout)

}
func lissajous(out io.Writer) {
const (
cycles =5 // number of complete x oscillator revolutions
res = 0.001 // angular resolution
size = 100 // image canvas covers [-size..+size]
nframes = 64 // number of animation frames
delay =38 // delay between frames in 1@ms units
)
freq := rand.Float64() * 3.0 // relative frequency of y oscillator
anim := gif.GIF{LoopCount: nframes}
phase := 0.0 // phase difference
for i := 0; i < nframes; i++ {
rect := image.Rect(@, 0, 2*size+l, 2*size+1)
img := image.NewPaletted(rect, palette)
for t := 0.0; t < cycles*2*math.Pi; t += res {
X := math.Sin(t)
y := math.Sin(t*freq + phase)
img.SetColorIndex(size+int(x*size+0.5), size+int(y*size+0.5),
blackIndex)
}
phase += 0.1
anim.Delay = append(anim.Delay, delay)
anim.Image = append(anim.Image, img)
}
gif.EncodeAll(out, &anim) // NOTE: ignoring encoding errors
}

After importing a package whose path has multiple components, like image/color, we refer
to the package with a name that comes from the last component. Thus the variable
color.White belongs to the image/color package and gif.GIF belongs to image/gif.

A const declaration (§3.6) gives names to constants, that is, values that are fixed at compile
time, such as the numerical parameters for cycles, frames, and delay. Like var declarations,
const declarations may appear at package level (so the names are visible throughout the pack-
age) or within a function (so the names are visible only within that function). The value of a
constant must be a number, string, or boolean.

The expressions []Jcolor.Color{...} and gif.GIF{...} are composite literals (§4.2, $4.4.1),
a compact notation for instantiating any of Go’s composite types from a sequence of element
values. Here, the first one is a slice and the second one is a struct.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 1.5. FETCHING A URL 15

The type gif.GIF isa struct type (§4.4). A struct is a group of values called fields, often of dif-
ferent types, that are collected together in a single object that can be treated as a unit. The
variable anim is a struct of type gif.GIF. The struct literal creates a struct value whose Loop-
Count field is set to nframes; all other fields have the zero value for their type. The individual
fields of a struct can be accessed using dot notation, as in the final two assignments which
explicitly update the Delay and Image fields of anim.

The lissajous function has two nested loops. The outer loop runs for 64 iterations, each
producing a single frame of the animation. It creates a new 201x201 image with a palette of
two colors, white and black. All pixels are initially set to the palette’s zero value (the zeroth
color in the palette), which we set to white. Each pass through the inner loop generates a new
image by setting some pixels to black. The result is appended, using the built-in append func-
tion (§4.2.1), to a list of frames in anim, along with a specified delay of 80ms. Finally the
sequence of frames and delays is encoded into GIF format and written to the output stream
out. The type of out is io.Writer, which lets us write to a wide range of possible destina-
tions, as we'll show soon.

The inner loop runs the two oscillators. The x oscillator is just the sine function. The y oscil-
lator is also a sinusoid, but its frequency relative to the x oscillator is a random number
between 0 and 3, and its phase relative to the x oscillator is initially zero but increases with
each frame of the animation. The loop runs until the x oscillator has completed five full
cycles. At each step, it calls SetColorIndex to color the pixel corresponding to (x, y) black,
which is at position 1 in the palette.

The main function calls the 1issajous function, directing it to write to the standard output,
so this command produces an animated GIF with frames like those in Figure 1.1:

$ go build gopl.io/chl/lissajous
$./lissajous >out.gif

Exercise 1.5: Change the Lissajous program’s color palette to green on black, for added
authenticity. To create the web color #RRGGBB, use color.RGBA{@XRR, OXGG, OxBB, Oxff},
where each pair of hexadecimal digits represents the intensity of the red, green, or blue com-
ponent of the pixel.

Exercise 1.6: Modify the Lissajous program to produce images in multiple colors by adding
more values to palette and then displaying them by changing the third argument of Set-
ColorIndex in some interesting way.

1.5. Fetching a URL

For many applications, access to information from the Internet is as important as access to the
local file system. Go provides a collection of packages, grouped under net, that make it easy
to send and receive information through the Internet, make low-level network connections,
and set up servers, for which Go’s concurrency features (introduced in Chapter 8) are particu-
larly useful.

www.it-ebooks.info

http://www.it-ebooks.info/

16 CHAPTER 1. TUTORIAL

To illustrate the minimum necessary to retrieve information over HTTP, here’s a simple
program called fetch that fetches the content of each specified URL and prints it as uninter-
preted text; it’s inspired by the invaluable utility curl. Obviously one would usually do more
with such data, but this shows the basic idea. We will use this program frequently in the book.

gopl.io/chl/fetch

// Fetch prints the content found at a URL.
package main

import (
"fmt"
"io/ioutil"
"net/http"
"og"

)

func main() {
for _, url := range os.Args[1:] {
resp, err := http.Get(url)

if err != nil {
fmt.Fprintf(os.Stderr, "fetch: %v\n", err)
os.Exit(1)

}

b, err := ioutil.ReadAll(resp.Body)
resp.Body.Close()

if err != nil {
fmt.Fprintf(os.Stderr, "fetch: reading %s: %v\n", url, err)
os.Exit(1)

}

fmt.Printf("%s", b)

}

This program introduces functions from two packages, net/http and io/ioutil. The
http.Get function makes an HTTP request and, if there is no error, returns the result in the
response struct resp. The Body field of resp contains the server response as a readable
stream. Next, ioutil.ReadAll reads the entire response; the result is stored in b. The Body
stream is closed to avoid leaking resources, and Printf writes the response to the standard
output.

$ go build gopl.io/chl/fetch

$./fetch http://gopl.io

<html>

<head>

<title>The Go Programming Language</title>

If the HTTP request fails, fetch reports the failure instead:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 1.6. FETCHING URLS CONCURRENTLY 17

$./fetch http://bad.gopl.io
fetch: Get http://bad.gopl.io: dial tcp: lookup bad.gopl.io: no such host

In either error case, os.Exit (1) causes the process to exit with a status code of 1.

Exercise 1.7: The function call io.Copy(dst, src) reads from src and writes to dst. Use it
instead of ioutil.ReadAll to copy the response body to os.Stdout without requiring a
buffer large enough to hold the entire stream. Be sure to check the error result of io.Copy.

Exercise 1.8: Modify fetch to add the prefix http:// to each argument URL if it is missing.
You might want to use strings.HasPrefix.

Exercise 1.9: Modify fetch to also print the HTTP status code, found in resp.Status.

1.6. Fetching URLs Concurrently

One of the most interesting and novel aspects of Go is its support for concurrent program-
ming. This is a large topic, to which Chapter 8 and Chapter 9 are devoted, so for now we'll
give you just a taste of Go's main concurrency mechanisms, goroutines and channels.

The next program, fetchall, does the same fetch of a URLs contents as the previous example,
but it fetches many URLs, all concurrently, so that the process will take no longer than the
longest fetch rather than the sum of all the fetch times. This version of fetchall discards the
responses but reports the size and elapsed time for each one:

gopl.io/chl/fetchall

// Fetchall fetches URLs in parallel and reports their times and sizes.
package main

import (
"fmt"
"io"
"io/ioutil"
"net/http"
"os

"time"

)

func main() {
start := time.Now()
ch := make(chan string)
for _, url := range os.Args[1l:] {
go fetch(url, ch) // start a goroutine
}
for range os.Args[1:] {
fmt.Println(<-ch) // receive from channel ch

}
fmt.Printf("%.2fs elapsed\n", time.Since(start).Seconds())

www.it-ebooks.info

http://www.it-ebooks.info/

18 CHAPTER 1. TUTORIAL

func fetch(url string, ch chan<- string) {

start := time.Now()

resp, err := http.Get(url)

if err != nil {
ch <- fmt.Sprint(err) // send to channel ch
return

}

nbytes, err := io.Copy(ioutil.Discard, resp.Body)

resp.Body.Close() // don't leak resources

if err != nil {
ch <- fmt.Sprintf("while reading %s: %v", url, err)
return

}

secs := time.Since(start).Seconds()

ch <- fmt.Sprintf("%.2fs %7d %s", secs, nbytes, url)
}

Here’s an example:

$ go build gopl.io/chl/fetchall
$./fetchall https://golang.org http://gopl.io https://godoc.org

0.14s 6852 https://godoc.org
0.16s 7261 https://golang.org
0.48s 2475 http://gopl.io

0.48s elapsed

A goroutine is a concurrent function execution. A channel is a communication mechanism
that allows one goroutine to pass values of a specified type to another goroutine. The function
main runs in a goroutine and the go statement creates additional goroutines.

The main function creates a channel of strings using make. For each command-line argument,
the go statement in the first range loop starts a new goroutine that calls fetch asynchronously
to fetch the URL using http.Get. The io.Copy function reads the body of the response and
discards it by writing to the ioutil.Discard output stream. Copy returns the byte count,
along with any error that occurred. As each result arrives, fetch sends a summary line on the
channel ch. The second range loop in main receives and prints those lines.

When one goroutine attempts a send or receive on a channel, it blocks until another goroutine
attempts the corresponding receive or send operation, at which point the value is transferred
and both goroutines proceed. In this example, each fetch sends a value (ch <- expression) on
the channel ch, and main receives all of them (<-ch). Having main do all the printing ensures
that output from each goroutine is processed as a unit, with no danger of interleaving if two
goroutines finish at the same time.

Exercise 1.10: Find a web site that produces a large amount of data. Investigate caching by
running fetchall twice in succession to see whether the reported time changes much. Do
you get the same content each time? Modify fetchall to print its output to a file so it can be
examined.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 1.7. A WEB SERVER 19

Exercise 1.11: Try fetchall with longer argument lists, such as samples from the top million
web sites available at alexa.com. How does the program behave if a web site just doesn't
respond? (Section 8.9 describes mechanisms for coping in such cases.)

1.7. A Web Server

Go's libraries makes it easy to write a web server that responds to client requests like those
made by fetch. In this section, we'll show a minimal server that returns the path component
of the URL used to access the server. That is, if the request is for http://local-
host:8000/hello, the response will be URL.Path = "/hello".

gopl.io/chl/serverl

// Serverl is a minimal "echo" server.
package main

import (
"fmt"
"log"
"net/http"
)

func main() {
http.HandleFunc("/", handler) // each request calls handler
log.Fatal(http.ListenAndServe("localhost:8000", nil))

}

// handler echoes the Path component of the request URL r.

func handler(w http.ResponseWriter, r *http.Request) {
fmt.Fprintf(w, "URL.Path = %qg\n", r.URL.Path)

}

The program is only a handful of lines long because library functions do most of the work.
The main function connects a handler function to incoming URLs that begin with /, which is
all URLs, and starts a server listening for incoming requests on port 8000. A request is rep-
resented as a struct of type http.Request, which contains a number of related fields, one of
which is the URL of the incoming request. When a request arrives, it is given to the handler
function, which extracts the path component (/hello) from the request URL and sends it
back as the response, using fmt.Fprintf. Web servers will be explained in detail in
Section 7.7.

Let’s start the server in the background. On Mac OS X or Linux, add an ampersand (&) to the
command; on Microsoft Windows, you will need to run the command without the ampersand
in a separate command window.

$ go run src/gopl.io/chl/serverl/main.go &

We can then make client requests from the command line:

www.it-ebooks.info

http://localhost:8000/hello
http://localhost:8000/hello
http://www.it-ebooks.info/

20 CHAPTER 1.

$ go build gopl.io/chl/fetch

$./fetch http://localhost:8000
URL.Path = "/"

$./fetch http://localhost:8000/help
URL.Path = "/help"

Alternatively, we can access the server from a web browser, as shown in Figure 1.2.
localhost:8000 X
€« C f localhost:8000

URL.Path = "/"

Figure 1.2. A response from the echo server.

TUTORIAL

It’s easy to add features to the server. One useful addition is a specific URL that returns a
status of some sort. For example, this version does the same echo but also counts the number
of requests; a request to the URL /count returns the count so far, excluding /count requests

themselves:

gopl.io/chl/server2

// Server2 is a minimal "echo" and counter server.
package main

import (
"fmt"
"log"
"net/http”
"sync"

)

var mu sync.Mutex
var count int

func main() {
http.HandleFunc("/", handler)
http.HandleFunc("/count", counter)
log.Fatal(http.ListenAndServe("localhost:8000", nil))

}

// handler echoes the Path component of the requested URL.
func handler(w http.ResponseWriter, r *http.Request) {
mu.Lock()
count++
mu.Unlock()
fmt.Fprintf(w, "URL.Path = %g\n", r.URL.Path)

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 1.7. A WEB SERVER 21

// counter echoes the number of calls so far.

func counter(w http.ResponseWriter, r *http.Request) {
mu.Lock()
fmt.Fprintf(w, "Count %d\n", count)
mu.Unlock()

}

The server has two handlers, and the request URL determines which one is called: a request
for /count invokes counter and all others invoke handler. A handler pattern that ends with
a slash matches any URL that has the pattern as a prefix. Behind the scenes, the server runs
the handler for each incoming request in a separate goroutine so that it can serve multiple
requests simultaneously. However, if two concurrent requests try to update count at the same
time, it might not be incremented consistently; the program would have a serious bug called a
race condition (§9.1). To avoid this problem, we must ensure that at most one goroutine
accesses the variable at a time, which is the purpose of the mu.Lock() and mu.Unlock() calls
that bracket each access of count. We'll look more closely at concurrency with shared vari-
ables in Chapter 9.

As a richer example, the handler function can report on the headers and form data that it
receives, making the server useful for inspecting and debugging requests:

gopl.io/chl/server3

// handler echoes the HTTP request.
func handler(w http.ResponseWriter, r *http.Request) {
fmt.Fprintf(w, "%s %s %s\n", r.Method, r.URL, r.Proto)
for k, v := range r.Header {
fmt.Fprintf(w, "Header[%q] = %g\n", k, v)

}

fmt.Fprintf(w, "Host = %qg\n", r.Host)

fmt.Fprintf(w, "RemoteAddr = %g\n", r.RemoteAddr)

if err := r.ParseForm(); err != nil {
log.Print(err)

}
for k, v := range r.Form {

fmt.Fprintf(w, "Form[%q] = %q\n", k, v)
}

}

This uses the fields of the http.Request struct to produce output like this:

GET /?g=query HTTP/1.1

Header["Accept-Encoding"] ["gzip, deflate, sdch"]
Header["Accept-Language"] = ["en-US,en;q=0.8"]

Header["Connection"] = ["keep-alive"]

Header["Accept"] = ["text/html,application/xhtml+xml,application/xml;..."]
Header["User-Agent"] = ["Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_7_5)..."]
Host = "localhost:8000"

RemoteAddr = "127.0.0.1:59911"

Form["q"] = ["query"]

www.it-ebooks.info

http://www.it-ebooks.info/

22 CHAPTER 1. TUTORIAL

Notice how the call to ParseForm is nested within an if statement. Go allows a simple state-
ment such as a local variable declaration to precede the if condition, which is particularly
useful for error handling as in this example. We could have written it as

err := r.ParseForm()

if err = nil {
log.Print(err)

}

but combining the statements is shorter and reduces the scope of the variable err, which is
good practice. We'll define scope in Section 2.7.

In these programs, we've seen three very different types used as output streams. The fetch
program copied HTTP response data to os.Stdout, a file, as did the lissajous program.
The fetchall program threw the response away (while counting its length) by copying it to
the trivial sink ioutil.Discard. And the web server above used fmt.Fprintf to write to an
http.ResponselWriter representing the web browser.

Although these three types differ in the details of what they do, they all satisfy a common
interface, allowing any of them to be used wherever an output stream is needed. That inter-
face, called io.Writer, is discussed in Section 7.1.

Go’s interface mechanism is the topic of Chapter 7, but to give an idea of what it’s capable of,
let’s see how easy it is to combine the web server with the 1issajous function so that ani-
mated GIFs are written not to the standard output, but to the HTTP client. Just add these
lines to the web server:

handler := func(w http.ResponseWriter, r *http.Request) {
lissajous(w)

}
http.HandleFunc("/", handler)

or equivalently:

http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
lissajous(w)

}

The second argument to the HandleFunc function call immediately above is a function literal,
that is, an anonymous function defined at its point of use. We will explain it further in
Section 5.6.

Once you've made this change, visit http://localhost:8000 in your browser. Each time you
load the page, you’ll see a new animation like the one in Figure 1.3.

Exercise 1.12: Modify the Lissajous server to read parameter values from the URL. For exam-
ple, you might arrange it so that a URL like http://localhost:8000/?cycles=20 sets the
number of cycles to 20 instead of the default 5. Use the strconv.Atoi function to convert the
string parameter into an integer. You can see its documentation with go doc strconv.Atoi.

www.it-ebooks.info

http://localhost:8000
http://localhost:8000/?cycles=20
http://www.it-ebooks.info/

SECTION 1.8. LOOSE ENDS 23

lissajous (201x201) x

« C #f localhost:8000/

]
]
) 4

¢
!
| ”\‘, '/‘

O

MO

Figure 1.3. Animated Lissajous figures in a browser.

1.8. Loose Ends

There is a lot more to Go than we've covered in this quick introduction. Here are some topics
we've barely touched upon or omitted entirely, with just enough discussion that they will be
familiar when they make brief appearances before the full treatment.

Control flow: We covered the two fundamental control-flow statements, if and for, but not
the switch statement, which is a multi-way branch. Here’s a small example:

switch coinflip() {
case "heads":
heads++
case "tails":
tails++
default:
fmt.Println("landed on edge!")

}

The result of calling coinflip is compared to the value of each case. Cases are evaluated from
top to bottom, so the first matching one is executed. The optional default case matches if none
of the other cases does; it may be placed anywhere. Cases do not fall through from one to the
next as in C-like languages (though there is a rarely used fallthrough statement that over-
rides this behavior).

A switch does not need an operand; it can just list the cases, each of which is a boolean
expression:

www.it-ebooks.info

http://www.it-ebooks.info/

24 CHAPTER 1. TUTORIAL

func Signum(x int) int {
switch {
case x > O:
return +1
default:
return 0
case x < O:
return -1

}

This form is called a tagless switch; it’s equivalent to switch true.

Like the for and if statements, a switch may include an optional simple statement—a short
variable declaration, an increment or assignment statement, or a function call—that can be
used to set a value before it is tested.

The break and continue statements modify the flow of control. A break causes control to
resume at the next statement after the innermost for, switch, or select statement (which
we'll see later), and as we saw in Section 1.3, a continue causes the innermost for loop to
start its next iteration. Statements may be labeled so that break and continue can refer to
them, for instance to break out of several nested loops at once or to start the next iteration of
the outermost loop. There is even a goto statement, though it’s intended for machine-gener-
ated code, not regular use by programmers.

Named types: A type declaration makes it possible to give a name to an existing type. Since
struct types are often long, they are nearly always named. A familiar example is the definition
of a Point type for a 2-D graphics system:

type Point struct {
X, Y int
}

var p Point
Type declarations and named types are covered in Chapter 2.

Pointers: Go provides pointers, that is, values that contain the address of a variable. In some
languages, notably C, pointers are relatively unconstrained. In other languages, pointers are
disguised as “references,” and there’s not much that can be done with them except pass them
around. Go takes a position somewhere in the middle. Pointers are explicitly visible. The &
operator yields the address of a variable, and the * operator retrieves the variable that the
pointer refers to, but there is no pointer arithmetic. We'll explain pointers in Section 2.3.2.

Methods and interfaces: A method is a function associated with a named type; Go is unusual
in that methods may be attached to almost any named type. Methods are covered in Chap-
ter 6. Interfaces are abstract types that let us treat different concrete types in the same way
based on what methods they have, not how they are represented or implemented. Interfaces
are the subject of Chapter 7.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 1.8. LOOSE ENDS 25

Packages: Go comes with an extensive standard library of useful packages, and the Go com-
munity has created and shared many more. Programming is often more about using existing
packages than about writing original code of one’s own. Throughout the book, we will point
out a couple of dozen of the most important standard packages, but there are many more we
don’t have space to mention, and we cannot provide anything remotely like a complete refer-
ence for any package.

Before you embark on any new program, it’s a good idea to see if packages already exist that
might help you get your job done more easily. You can find an index of the standard library
packages at https://golang.org/pkg and the packages contributed by the community at
https://godoc.org. The go doc tool makes these documents easily accessible from the
command line:

$ go doc http.ListenAndServe
package http // import "net/http"

func ListenAndServe(addr string, handler Handler) error

ListenAndServe listens on the TCP network address addr and then
calls Serve with handler to handle requests on incoming connections.

Comments: We have already mentioned documentation comments at the beginning of a
program or package. It’s also good style to write a comment before the declaration of each
function to specify its behavior. These conventions are important, because they are used by
tools like go doc and godoc to locate and display documentation (§10.7.4).

For comments that span multiple lines or appear within an expression or statement, there is
also the /* ... */ notation familiar from other languages. Such comments are sometimes
used at the beginning of a file for a large block of explanatory text to avoid a // on every line.
Within a comment, // and /* have no special meaning, so comments do not nest.

www.it-ebooks.info

https://golang.org/pkg
https://godoc.org
http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

2

Program Structure

In Go, as in any other programming language, one builds large programs from a small set of
basic constructs. Variables store values. Simple expressions are combined into larger ones
with operations like addition and subtraction. Basic types are collected into aggregates like
arrays and structs. Expressions are used in statements whose execution order is determined
by control-flow statements like if and for. Statements are grouped into functions for
isolation and reuse. Functions are gathered into source files and packages.

We saw examples of most of these in the previous chapter. In this chapter, we'll go into more
detail about the basic structural elements of a Go program. The example programs are inten-
tionally simple, so we can focus on the language without getting sidetracked by complicated
algorithms or data structures.

2.1. Names

The names of Go functions, variables, constants, types, statement labels, and packages follow a
simple rule: a name begins with a letter (that is, anything that Unicode deems a letter) or an
underscore and may have any number of additional letters, digits, and underscores. Case mat-
ters: heapSort and Heapsort are different names.

Go has 25 keywords like if and switch that may be used only where the syntax permits; they
can’t be used as names.

break default func interface select
case defer go map struct
chan else goto package switch
const fallthrough if range type
continue for import return var

27

www.it-ebooks.info

http://www.it-ebooks.info/

28 CHAPTER 2. PROGRAM STRUCTURE

In addition, there are about three dozen predeclared names like int and true for built-in con-
stants, types, and functions:

Constants: true false iota nil

Types: int int8 int16 int32 int64
uint uint8 uintl6 uint32 uint64 uintptr
float32 float64 complex128 complex64
bool byte rune string error

Functions: make len cap new append copy close delete
complex real imag
panic recover

These names are not reserved, so you may use them in declarations. We'll see a handful of
places where redeclaring one of them makes sense, but beware of the potential for confusion.

If an entity is declared within a function, it is local to that function. If declared outside of a
function, however, it is visible in all files of the package to which it belongs. The case of the
first letter of a name determines its visibility across package boundaries. If the name begins
with an upper-case letter, it is exported, which means that it is visible and accessible outside of
its own package and may be referred to by other parts of the program, as with Printf in the
fmt package. Package names themselves are always in lower case.

There is no limit on name length, but convention and style in Go programs lean toward short
names, especially for local variables with small scopes; you are much more likely to see vari-
ables named i than theLoopIndex. Generally, the larger the scope of a name, the longer and
more meaningful it should be.

Stylistically, Go programmers use “camel case” when forming names by combining words; that
is, interior capital letters are preferred over interior underscores. Thus the standard libraries
have functions with names like QuoteRuneToASCII and parseRequestlLine but never
quote_rune_to_ASCII or parse_request_line. The letters of acronyms and initialisms like
ASCII and HTML are always rendered in the same case, so a function might be called html-
Escape, HTMLEscape, or escapeHTML, but not escapeHtml.

2.2. Declarations

A declaration names a program entity and specifies some or all of its properties. There are
four major kinds of declarations: var, const, type, and func. We'll talk about variables and
types in this chapter, constants in Chapter 3, and functions in Chapter 5.

A Go program is stored in one or more files whose names end in .go. Each file begins with a
package declaration that says what package the file is part of. The package declaration is
followed by any import declarations, and then a sequence of package-level declarations of
types, variables, constants, and functions, in any order. For example, this program declares a
constant, a function, and a couple of variables:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 2.2. DECLARATIONS 29

gopl.io/ch2/boiling

// Boiling prints the boiling point of water.
package main

import "fmt"
const boilingF = 212.0

func main() {
var f = boilingF
var ¢ = (f - 32) *5 /9
fmt.Printf("boiling point = %g°F or %g°C\n", f, c)
// Output:
// boiling point = 212°F or 100°C
}

The constant boilingF is a package-level declaration (as is main), whereas the variables f and
c are local to the function main. The name of each package-level entity is visible not only
throughout the source file that contains its declaration, but throughout all the files of the pack-
age. By contrast, local declarations are visible only within the function in which they are
declared and perhaps only within a small part of it.

A function declaration has a name, a list of parameters (the variables whose values are
provided by the function’s callers), an optional list of results, and the function body, which
contains the statements that define what the function does. The result list is omitted if the
function does not return anything. Execution of the function begins with the first statement
and continues until it encounters a return statement or reaches the end of a function that has
no results. Control and any results are then returned to the caller.

We've seen a fair number of functions already and there are lots more to come, including an
extensive discussion in Chapter 5, so this is only a sketch. The function fToC below encapsu-
lates the temperature conversion logic so that it is defined only once but may be used from
multiple places. Here main calls it twice, using the values of two different local constants:

gopl.io/ch2/ftoc

// Ftoc prints two Fahrenheit-to-Celsius conversions.
package main

import "fmt"

func main() {
const freezingF, boilingF = 32.0, 212.0
fmt.Printf("%g°F = %g°C\n", freezingF, fToC(freezingF)) // "32°F = @°C"
fmt.Printf("%g°F = %g°C\n", boilingF, fToC(boilingF)) // "212°F = 1@@°C"

}

func fToC(f float64) float64d {
return (f - 32) * 5/ 9
}

www.it-ebooks.info

http://www.it-ebooks.info/

30 CHAPTER 2. PROGRAM STRUCTURE

2.3. Variables

A var declaration creates a variable of a particular type, attaches a name to it, and sets its ini-
tial value. Each declaration has the general form

var name type = expression

Either the type or the = expression part may be omitted, but not both. If the type is omitted,
it is determined by the initializer expression. If the expression is omitted, the initial value is
the zero value for the type, which is @ for numbers, false for booleans, "" for strings, and nil
for interfaces and reference types (slice, pointer, map, channel, function). The zero value of an
aggregate type like an array or a struct has the zero value of all of its elements or fields.

The zero-value mechanism ensures that a variable always holds a well-defined value of its type;
in Go there is no such thing as an uninitialized variable. This simplifies code and often
ensures sensible behavior of boundary conditions without extra work. For example,

var s string
fmt.Println(s) // ""

prints an empty string, rather than causing some kind of error or unpredictable behavior. Go
programmers often go to some effort to make the zero value of a more complicated type
meaningful, so that variables begin life in a useful state.

It is possible to declare and optionally initialize a set of variables in a single declaration, with a
matching list of expressions. Omitting the type allows declaration of multiple variables of dif-
ferent types:

var i, j, k int // int, int, int
var b, f, s = true, 2.3, "four" // bool, float64, string

Initializers may be literal values or arbitrary expressions. Package-level variables are initial-
ized before main begins (§2.6.2), and local variables are initialized as their declarations are
encountered during function execution.

A set of variables can also be initialized by calling a function that returns multiple values:

var f, err = os.Open(name) // os.Open returns a file and an error

2.3.1. Short Variable Declarations

Within a function, an alternate form called a short variable declaration may be used to declare
and initialize local variables. It takes the form name := expression, and the type of name is
determined by the type of expression. Here are three of the many short variable declarations
in the 1lissajous function (§1.4):

anim := gif.GIF{LoopCount: nframes}
freq := rand.Float64() * 3.0
t 1= 0.0

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 2.3. VARIABLES 31

Because of their brevity and flexibility, short variable declarations are used to declare and ini-
tialize the majority of local variables. A var declaration tends to be reserved for local variables
that need an explicit type that differs from that of the initializer expression, or for when the
variable will be assigned a value later and its initial value is unimportant.

i := 100 // an int
var boiling float64 = 100 // a float64d

var names []string
var err error
var p Point

As with var declarations, multiple variables may be declared and initialized in the same short
variable declaration,

i, j =0, 1

but declarations with multiple initializer expressions should be used only when they help read-
ability, such as for short and natural groupings like the initialization part of a for loop.

Keep in mind that := is a declaration, whereas = is an assignment. A multi-variable declara-
tion should not be confused with a tuple assignment (§2.4.1), in which each variable on the
left-hand side is assigned the corresponding value from the right-hand side:

i, j = Jj, i // swap values of i and j

Like ordinary var declarations, short variable declarations may be used for calls to functions
like os . Open that return two or more values:
f, err := os.Open(name)
if err != nil {
return err

}
// ...use f...
f.Close()

One subtle but important point: a short variable declaration does not necessarily declare all the
variables on its left-hand side. If some of them were already declared in the same lexical block
(§2.7), then the short variable declaration acts like an assignment to those variables.

In the code below, the first statement declares both in and err. The second declares out but
only assigns a value to the existing err variable.

in, err := o0s.Open(infile)
/...
out, err := os.Create(outfile)

A short variable declaration must declare at least one new variable, however, so this code will
not compile:

f, err := os.Open(infile)
/...
f, err := os.Create(outfile) // compile error: no new variables

www.it-ebooks.info

http://www.it-ebooks.info/

32 CHAPTER 2. PROGRAM STRUCTURE

The fix is to use an ordinary assignment for the second statement.

A short variable declaration acts like an assignment only to variables that were already
declared in the same lexical block; declarations in an outer block are ignored. We'll see exam-
ples of this at the end of the chapter.

2.3.2. Pointers

A variable is a piece of storage containing a value. Variables created by declarations are iden-
tified by a name, such as x, but many variables are identified only by expressions like x[1] or
x.f. All these expressions read the value of a variable, except when they appear on the left-
hand side of an assignment, in which case a new value is assigned to the variable.

A pointer value is the address of a variable. A pointer is thus the location at which a value is
stored. Not every value has an address, but every variable does. With a pointer, we can read
or update the value of a variable indirectly, without using or even knowing the name of the
variable, if indeed it has a name.

If a variable is declared var x int, the expression &x (“address of x”) yields a pointer to an
integer variable, that is, a value of type *int, which is pronounced “pointer to int” If this
value is called p, we say “p points to x,” or equivalently “p contains the address of x”” The vari-
able to which p points is written *p. The expression *p yields the value of that variable, an
int, but since *p denotes a variable, it may also appear on the left-hand side of an assignment,
in which case the assignment updates the variable.

x =1

p := &x // p, of type *int, points to x
fmt.Println(*p) // "1"

*p =2 // equivalent to x = 2

fmt.Println(x) // "2"

Each component of a variable of aggregate type—a field of a struct or an element of an array—
is also a variable and thus has an address too.

Variables are sometimes described as addressable values. Expressions that denote variables are
the only expressions to which the address-of operator & may be applied.

The zero value for a pointer of any type is nil. The test p != nil is true if p points to a vari-
able. Pointers are comparable; two pointers are equal if and only if they point to the same
variable or both are nil.

var x, y int
fmt.Println(&x == &x, &x == &y, & == nil) // "true false false"

It is perfectly safe for a function to return the address of a local variable. For instance, in the
code below, the local variable v created by this particular call to f will remain in existence even
after the call has returned, and the pointer p will still refer to it:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 2.3. VARIABLES 33

var p = f()
func f() *int {
v :=1

return &v

}

Each call of f returns a distinct value:
fmt.Println(f() == f()) // "false"

Because a pointer contains the address of a variable, passing a pointer argument to a function
makes it possible for the function to update the variable that was indirectly passed. For exam-
ple, this function increments the variable that its argument points to and returns the new
value of the variable so it may be used in an expression:

func incr(p *int) int {
*p++ // increments what p points to; does not change p

return *p
}
v i=1
incr(&v) // side effect: v is now 2

fmt.Println(incr(&v)) // "3" (and v is 3)

Each time we take the address of a variable or copy a pointer, we create new aliases or ways to
identify the same variable. For example, *p is an alias for v. Pointer aliasing is useful because
it allows us to access a variable without using its name, but this is a double-edged sword: to
find all the statements that access a variable, we have to know all its aliases. It's not just point-
ers that create aliases; aliasing also occurs when we copy values of other reference types like
slices, maps, and channels, and even structs, arrays, and interfaces that contain these types.

Pointers are key to the flag package, which uses a program’s command-line arguments to set
the values of certain variables distributed throughout the program. To illustrate, this variation
on the earlier echo command takes two optional flags: -n causes echo to omit the trailing
newline that would normally be printed, and -s sep causes it to separate the output argu-
ments by the contents of the string sep instead of the default single space. Since this is our
fourth version, the package is called gopl.io/ch2/echo4.

gopl.io/ch2/echo4

// Echo4 prints its command-line arguments.
package main

import (
"flag"
"t
"strings"
)

var n = flag.Bool("n", false, "omit trailing newline")
var sep = flag.String("s", " ", "separator")

www.it-ebooks.info

http://www.it-ebooks.info/

34 CHAPTER 2. PROGRAM STRUCTURE

func main() {
flag.Parse()
fmt.Print(strings.Join(flag.Args(), *sep))
if I*n {
fmt.Println()
}
}

The function flag.Bool creates a new flag variable of type bool. It takes three arguments: the
name of the flag ("n"), the variable’s default value (false), and a message that will be printed
if the user provides an invalid argument, an invalid flag, or -h or -help. Similarly,
flag.String takes a name, a default value, and a message, and creates a string variable. The
variables sep and n are pointers to the flag variables, which must be accessed indirectly as
*sep and *n.

When the program is run, it must call flag.Parse before the flags are used, to update the flag
variables from their default values. The non-flag arguments are available from flag.Args()
as a slice of strings. If flag.Parse encounters an error, it prints a usage message and calls
0s.Exit(2) to terminate the program.

Let’s run some test cases on echo:

$ go build gopl.io/ch2/echo4
$./echo4 a bc def

a bc def

$./echo4 -s / a bc def
a/bc/def

$./echo4 -n a bc def
a bc def$

$./echo4 -help
Usage of ./echo4:
-n omit trailing newline
-s string
separator (default " ")

2.3.3. The new Function

Another way to create a variable is to use the built-in function new. The expression new(T)
creates an unnamed variable of type T, initializes it to the zero value of T, and returns its
address, which is a value of type *T.

p := new(int) // p, of type *int, points to an unnamed int variable
fmt.Println(*p) // "0"
*p = 2 // sets the unnamed int to 2

fmt.Println(*p) // "2"

A variable created with new is no different from an ordinary local variable whose address is
taken, except that there’s no need to invent (and declare) a dummy name, and we can use
new(T) in an expression. Thus new is only a syntactic convenience, not a fundamental notion:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 2.3. VARIABLES 35

the two newInt functions below have identical behaviors.

func newInt() *int { func newInt() *int {
return new(int) var dummy int
} return &dummy
}
Each call to new returns a distinct variable with a unique address:
p := new(int)
:= new(int)

-Fmt Println(p == q) // "false"

There is one exception to this rule: two variables whose type carries no information and is
therefore of size zero, such as struct{} or [@]int, may, depending on the implementation,
have the same address.

The new function is relatively rarely used because the most common unnamed variables are of
struct types, for which the struct literal syntax (§4.4.1) is more flexible.

Since new is a predeclared function, not a keyword, it’s possible to redefine the name for
something else within a function, for example:

func delta(old, new int) int { return new - old }

Of course, within delta, the built-in new function is unavailable.

2.3.4. Lifetime of Variables

The lifetime of a variable is the interval of time during which it exists as the program executes.
The lifetime of a package-level variable is the entire execution of the program. By contrast,
local variables have dynamic lifetimes: a new instance is created each time the declaration
statement is executed, and the variable lives on until it becomes unreachable, at which point its
storage may be recycled. Function parameters and results are local variables too; they are cre-
ated each time their enclosing function is called.

For example, in this excerpt from the Lissajous program of Section 1.4,

for t := 0.0; t < cycles*2*math.Pi; t += res {
x := math.Sin(t)
y := math.Sin(t*freq + phase)
1mg SetColorIndex(size+int(x*size+0.5), size+int(y*size+0.5),
blackIndex)

}

the variable t is created each time the for loop begins, and new variables x and y are created
on each iteration of the loop.

How does the garbage collector know that a variable’s storage can be reclaimed? The full story
is much more detailed than we need here, but the basic idea is that every package-level vari-
able, and every local variable of each currently active function, can potentially be the start or

www.it-ebooks.info

http://www.it-ebooks.info/

36 CHAPTER 2. PROGRAM STRUCTURE

root of a path to the variable in question, following pointers and other kinds of references that
ultimately lead to the variable. If no such path exists, the variable has become unreachable, so
it can no longer affect the rest of the computation.

Because the lifetime of a variable is determined only by whether or not it is reachable, a local
variable may outlive a single iteration of the enclosing loop. It may continue to exist even after
its enclosing function has returned.

A compiler may choose to allocate local variables on the heap or on the stack but, perhaps sur-
prisingly, this choice is not determined by whether var or new was used to declare the variable.

var global *int

func f() { func g() {
var x int y := new(int)
x =1 *y =1
global = &x }

}

Here, x must be heap-allocated because it is still reachable from the variable global after f
has returned, despite being declared as a local variable; we say x escapes from f. Conversely,
when g returns, the variable *y becomes unreachable and can be recycled. Since *y does not
escape from g, it’s safe for the compiler to allocate *y on the stack, even though it was allo-
cated with new. In any case, the notion of escaping is not something that you need to worry
about in order to write correct code, though it’s good to keep in mind during performance
optimization, since each variable that escapes requires an extra memory allocation.

Garbage collection is a tremendous help in writing correct programs, but it does not relieve
you of the burden of thinking about memory. You don't need to explicitly allocate and free
memory, but to write efficient programs you still need to be aware of the lifetime of variables.
For example, keeping unnecessary pointers to short-lived objects within long-lived objects,
especially global variables, will prevent the garbage collector from reclaiming the short-lived
objects.

2.4. Assignments

The value held by a variable is updated by an assignment statement, which in its simplest form
has a variable on the left of the = sign and an expression on the right.

x =1 // named variable
*p = true // indirect variable
person.name = "bob" // struct field

count[x] = count[x] * scale // array or slice or map element

Each of the arithmetic and bitwise binary operators has a corresponding assignment operator
allowing, for example, the last statement to be rewritten as

count[x] *= scale

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 2.4. ASSIGNMENTS 37

which saves us from having to repeat (and re-evaluate) the expression for the variable.

Numeric variables can also be incremented and decremented by ++ and - - statements:

v :=1
V++ // same as v = v + 1; v becomes 2
v-- // same as v = v - 1; v becomes 1 again

2.4.1. Tuple Assignment

Another form of assignment, known as tuple assignment, allows several variables to be
assigned at once. All of the right-hand side expressions are evaluated before any of the vari-
ables are updated, making this form most useful when some of the variables appear on both
sides of the assignment, as happens, for example, when swapping the values of two variables:

X,y =Y, X
a[il], a[j] = a[]l, a[i]
or when computing the greatest common divisor (GCD) of two integers:
func gcd(x, y int) int {
for y =0 {
X, ¥ =Y, Xky
}

return x

}

or when computing the n-th Fibonacci number iteratively:
func fib(n int) int {
X, y :=0, 1
for i :=0; i < n; i++ {
X, Y=Y, Xty
}

return x

}
Tuple assignment can also make a sequence of trivial assignments more compact,
i, j, k=2, 3,5

though as a matter of style, avoid the tuple form if the expressions are complex; a sequence of
separate statements is easier to read.

Certain expressions, such as a call to a function with multiple results, produce several values.
When such a call is used in an assignment statement, the left-hand side must have as many
variables as the function has results.

f, err = os.Open("foo.txt") // function call returns two values

Often, functions use these additional results to indicate some kind of error, either by returning
an error as in the call to os.Open, or a bool, usually called ok. As we'll see in later chapters,

www.it-ebooks.info

http://www.it-ebooks.info/

38 CHAPTER 2. PROGRAM STRUCTURE

there are three operators that sometimes behave this way too. If a map lookup (§4.3), type
assertion (§7.10), or channel receive (§8.4.2) appears in an assignment in which two results are
expected, each produces an additional boolean result:

v, ok = m[key] // map lookup
v, ok = x.(T) // type assertion
v, ok = <-ch // channel receive

As with variable declarations, we can assign unwanted values to the blank identifier:

_, err = io.Copy(dst, src) // discard byte count
_, ok = x.(T) // check type but discard result

2.4.2. Assignability

Assignment statements are an explicit form of assignment, but there are many places in a
program where an assignment occurs implicitly: a function call implicitly assigns the argument
values to the corresponding parameter variables; a return statement implicitly assigns the
return operands to the corresponding result variables; and a literal expression for a composite
type (§4.2) such as this slice:

medals := []string{"gold", "silver", "bronze"}

implicitly assigns each element, as if it had been written like this:

medals[@] = "gold"
medals[1] = "silver"
medals[2] = "bronze"

The elements of maps and channels, though not ordinary variables, are also subject to similar
implicit assignments.

An assignment, explicit or implicit, is always legal if the left-hand side (the variable) and the
right-hand side (the value) have the same type. More generally, the assignment is legal only if
the value is assignable to the type of the variable.

The rule for assignability has cases for various types, so we'll explain the relevant case as we
introduce each new type. For the types we've discussed so far, the rules are simple: the types
must exactly match, and nil may be assigned to any variable of interface or reference type.
Constants (§3.6) have more flexible rules for assignability that avoid the need for most explicit
conversions.

Whether two values may be compared with == and != is related to assignability: in any com-
parison, the first operand must be assignable to the type of the second operand, or vice versa.
As with assignability, we'll explain the relevant cases for comparability when we present each
new type.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 2.5. TYPE DECLARATIONS 39

2.5. Type Declarations

The type of a variable or expression defines the characteristics of the values it may take on,
such as their size (number of bits or number of elements, perhaps), how they are represented
internally, the intrinsic operations that can be performed on them, and the methods associ-
ated with them.

In any program there are variables that share the same representation but signify very differ-
ent concepts. For instance, an int could be used to represent a loop index, a timestamp, a file
descriptor, or a month; a float64 could represent a velocity in meters per second or a temper-
ature in one of several scales; and a string could represent a password or the name of a color.

A type declaration defines a new named type that has the same underlying type as an existing
type. The named type provides a way to separate different and perhaps incompatible uses of
the underlying type so that they can’t be mixed unintentionally.

type name underlying-type

Type declarations most often appear at package level, where the named type is visible through-
out the package, and if the name is exported (it starts with an upper-case letter), it’s accessible
from other packages as well.

To illustrate type declarations, let’s turn the different temperature scales into different types:

gopl.io/ch2/tempconve

// Package tempconv performs Celsius and Fahrenheit temperature computations.
package tempconv

import "fmt"

type Celsius float64
type Fahrenheit floaté64

const (
AbsoluteZeroC Celsius = -273.15
FreezingC Celsius = ©
BoilingC Celsius = 100

)

func CToF(c Celsius) Fahrenheit { return Fahrenheit(c*9/5 + 32) }
func FToC(f Fahrenheit) Celsius { return Celsius((f - 32) * 5 / 9) }

This package defines two types, Celsius and Fahrenheit, for the two units of temperature.
Even though both have the same underlying type, float64, they are not the same type, so they
cannot be compared or combined in arithmetic expressions. Distinguishing the types makes it
possible to avoid errors like inadvertently combining temperatures in the two different scales;
an explicit type conversion like Celsius(t) or Fahrenheit(t) is required to convert from a
float64. Celsius(t) and Fahrenheit(t) are conversions, not function calls. They don't
change the value or representation in any way, but they make the change of meaning explicit.
On the other hand, the functions CToF and FToC convert between the two scales; they do
return different values.

www.it-ebooks.info

http://www.it-ebooks.info/

40 CHAPTER 2. PROGRAM STRUCTURE

For every type T, there is a corresponding conversion operation T(x) that converts the value x
to type T. A conversion from one type to another is allowed if both have the same underlying
type, or if both are unnamed pointer types that point to variables of the same underlying type;
these conversions change the type but not the representation of the value. If x is assignable to
T, a conversion is permitted but is usually redundant,

Conversions are also allowed between numeric types, and between string and some slice types,
as we will see in the next chapter. These conversions may change the representation of the
value. For instance, converting a floating-point number to an integer discards any fractional
part, and converting a string to a []byte slice allocates a copy of the string data. In any case, a
conversion never fails at run time.

The underlying type of a named type determines its structure and representation, and also the
set of intrinsic operations it supports, which are the same as if the underlying type had been
used directly. That means that arithmetic operators work the same for Celsius and Fahren-
heit as they do for float64, as you might expect.

fmt.Printf("%g\n", BoilingC-FreezingC) // "100" °C

boilingF := CToF(BoilingC)

fmt.Printf("%g\n", boilingF-CToF(FreezingC)) // "180" °F

fmt.Printf("%g\n", boilingF-FreezingC) // compile error: type mismatch

Comparison operators like == and < can also be used to compare a value of a named type to
another of the same type, or to a value of the underlying type. But two values of different
named types cannot be compared directly:

var c¢ Celsius
var f Fahrenheit

fmt.Println(c == 0) // "true"
fmt.Println(f >= 0) // "true"
fmt.Println(c == f) // compile error: type mismatch

fmt.Println(c == Celsius(f)) // "true"!

Note the last case carefully. In spite of its name, the type conversion Celsius(f) does not
change the value of its argument, just its type. The test is true because ¢ and f are both zero.

A named type may provide notational convenience if it helps avoid writing out complex types
over and over again. The advantage is small when the underlying type is simple like float64,
but big for complicated types, as we will see when we discuss structs.

Named types also make it possible to define new behaviors for values of the type. These
behaviors are expressed as a set of functions associated with the type, called the type’s methods.
We'll look at methods in detail in Chapter 6 but will give a taste of the mechanism here.

The declaration below, in which the Celsius parameter c appears before the function name,
associates with the Celsius type a method named String that returns c’s numeric value
followed by °C:

func (c Celsius) String() string { return fmt.Sprintf("%g°C", c) }

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 2.6. PACKAGES AND FILES 41

Many types declare a String method of this form because it controls how values of the type
appear when printed as a string by the fmt package, as we will see in Section 7.1.

c := FToC(212.0)

fmt.Println(c.String()) // "1lee°C"

fmt.Printf("%v\n", c) // "1@0°C"; no need to call String explicitly
fmt.Printf("%s\n", c) // "1ee°c"

fmt.Println(c) // "1lee°c"

fmt.Printf("%g\n", c) // "100"; does not call String
fmt.Println(float64(c)) // "100"; does not call String

2.6. Packages and Files

Packages in Go serve the same purposes as libraries or modules in other languages, supporting
modularity, encapsulation, separate compilation, and reuse. The source code for a package
resides in one or more . go files, usually in a directory whose name ends with the import path;
for instance, the files of the gopl.io/chl/helloworld package are stored in directory
$GOPATH/src/gopl.io/chl/helloworld.

Each package serves as a separate name space for its declarations. Within the image package,
for example, the identifier Decode refers to a different function than does the same identifier
in the unicode/utf16 package. To refer to a function from outside its package, we must
qualify the identifier to make explicit whether we mean image.Decode or utf16.Decode.

Packages also let us hide information by controlling which names are visible outside the pack-
age, or exported. In Go, a simple rule governs which identifiers are exported and which are
not: exported identifiers start with an upper-case letter.

To illustrate the basics, suppose that our temperature conversion software has become popular
and we want to make it available to the Go community as a new package. How do we do that?

Let’s create a package called gopl.io/ch2/tempconv, a variation on the previous example.
(Here we've made an exception to our usual rule of numbering examples in sequence, so that
the package path can be more realistic.) The package itself is stored in two files to show how
declarations in separate files of a package are accessed; in real life, a tiny package like this
would need only one file.

We have put the declarations of the types, their constants, and their methods in tempconv. go:

gopl.io/ch2/tempconv

// Package tempconv performs Celsius and Fahrenheit conversions.
package tempconv

import "fmt"

type Celsius float64
type Fahrenheit float64

www.it-ebooks.info

http://www.it-ebooks.info/

42 CHAPTER 2. PROGRAM STRUCTURE

const (
AbsoluteZeroC Celsius = -273.15
FreezingC Celsius = ©
BoilingC Celsius = 100

)

func (c Celsius) String() string { return fmt.Sprintf("%g°C", c) }
func (f Fahrenheit) String() string { return fmt.Sprintf("%g°F", f) }

and the conversion functions in conv. go:
package tempconv

// CToF converts a Celsius temperature to Fahrenheit.
func CToF(c Celsius) Fahrenheit { return Fahrenheit(c*9/5 + 32) }

// FToC converts a Fahrenheit temperature to Celsius.
func FToC(f Fahrenheit) Celsius { return Celsius((f - 32) * 5/ 9) }

Each file starts with a package declaration that defines the package name. When the package
is imported, its members are referred to as tempconv.CToF and so on. Package-level names
like the types and constants declared in one file of a package are visible to all the other files of
the package, as if the source code were all in a single file. Note that tempconv.go imports fmt,
but conv. go does not, because it does not use anything from fmt.

Because the package-level const names begin with upper-case letters, they too are accessible
with qualified names like tempconv.AbsoluteZeroC:

fmt.Printf("Brrrr! %v\n", tempconv.AbsoluteZeroC) // "Brrrr! -273.15°C"

To convert a Celsius temperature to Fahrenheit in a package that imports gopl.io/ch2/temp-
conv, we can write the following code:

fmt.Println(tempconv.CToF(tempconv.BoilingC)) // "212°F"

The doc comment (§10.7.4) immediately preceding the package declaration documents the
package as a whole. Conventionally, it should start with a summary sentence in the style
illustrated. Only one file in each package should have a package doc comment. Extensive doc
comments are often placed in a file of their own, conventionally called doc. go.

Exercise 2.1: Add types, constants, and functions to tempconv for processing temperatures in
the Kelvin scale, where zero Kelvin is —273.15°C and a difference of 1K has the same magni-
tude as 1°C.

2.6.1. Imports

Within a Go program, every package is identified by a unique string called its import path.
These are the strings that appear in an import declaration like "gopl.io/ch2/tempconv".
The language specification doesn’t define where these strings come from or what they mean;
it’s up to the tools to interpret them. When using the go tool (Chapter 10), an import path
denotes a directory containing one or more Go source files that together make up the package.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 2.6. PACKAGES AND FILES 43

In addition to its import path, each package has a package name, which is the short (and not
necessarily unique) name that appears in its package declaration. By convention, a package’s
name matches the last segment of its import path, making it easy to predict that the package
name of gopl.io/ch2/tempconyv is tempconv.

To use gopl.io/ch2/tempconv, we must import it:

gopl.io/ch2/cf

// Cf converts its numeric argument to Celsius and Fahrenheit.
package main

import (
"fmt"
"os
"strconv"

"gopl.io/ch2/tempconv"
)

func main() {
for _, arg := range os.Args[1:] {

t, err := strconv.ParseFloat(arg, 64)

if err != nil {
fmt.Fprintf(os.Stderr, "cf: %v\n", err)
os.Exit(1)

}

f := tempconv.Fahrenheit(t)

¢ := tempconv.Celsius(t)

fmt.Printf("%s = %s, %s = %s\n",
f, tempconv.FToC(f), c, tempconv.CToF(c))

}

The import declaration binds a short name to the imported package that may be used to refer
to its contents throughout the file. The import above lets us refer to names within
gopl.io/ch2/tempconv by using a qualified identifier like tempconv.CToF. By default, the
short name is the package name—tempconv in this case—but an import declaration may
specify an alternative name to avoid a conflict (§10.3).

The cf program converts a single numeric command-line argument to its value in both
Celsius and Fahrenheit:

$ go build gopl.io/ch2/cf

$./cf 32

32°F = @°C, 32°C = 89.6°F

$./cf 212

212°F = 100°C, 212°C = 413.6°F
$./cf -40

-40°F = -40°C, -40°C = -40°F

It is an error to import a package and then not refer to it. This check helps eliminate depen-
dencies that become unnecessary as the code evolves, although it can be a nuisance during

www.it-ebooks.info

http://www.it-ebooks.info/

44 CHAPTER 2. PROGRAM STRUCTURE

debugging, since commenting out a line of code like log.Print("got here!") may remove
the sole reference to the package name log, causing the compiler to emit an error. In this sit-
uation, you need to comment out or delete the unnecessary import.

Better still, use the golang.org/x/tools/cmd/goimports tool, which automatically inserts
and removes packages from the import declaration as necessary; most editors can be config-
ured to run goimports each time you save a file. Like the gofmt tool, it also pretty-prints Go
source files in the canonical format.

Exercise 2.2: Write a general-purpose unit-conversion program analogous to cf that reads
numbers from its command-line arguments or from the standard input if there are no argu-
ments, and converts each number into units like temperature in Celsius and Fahrenheit,
length in feet and meters, weight in pounds and kilograms, and the like.

2.6.2. Package Initialization

Package initialization begins by initializing package-level variables in the order in which they
are declared, except that dependencies are resolved first:

var a = b + ¢ // a initialized third, to 3
var b = f() // b initialized second, to 2, by calling f
var ¢ =1 // c initialized first, to 1

func () int { return c + 1 }

If the package has multiple .go files, they are initialized in the order in which the files are
given to the compiler; the go tool sorts . go files by name before invoking the compiler.

Each variable declared at package level starts life with the value of its initializer expression, if
any, but for some variables, like tables of data, an initializer expression may not be the simplest
way to set its initial value. In that case, the init function mechanism may be simpler. Any
file may contain any number of functions whose declaration is just

func init() { /* ... */ }

Such init functions can't be called or referenced, but otherwise they are normal functions.
Within each file, init functions are automatically executed when the program starts, in the
order in which they are declared.

One package is initialized at a time, in the order of imports in the program, dependencies first,
so a package p importing g can be sure that q is fully initialized before p’s initialization begins.
Initialization proceeds from the bottom up; the main package is the last to be initialized. In
this manner, all packages are fully initialized before the application’s main function begins.

The package below defines a function PopCount that returns the number of set bits, that is,
bits whose value is 1, in a uint64 value, which is called its population count. It uses an init
function to precompute a table of results, pc, for each possible 8-bit value so that the PopCount
function needn’t take 64 steps but can just return the sum of eight table lookups. (This is defi-
nitely not the fastest algorithm for counting bits, but it’s convenient for illustrating init

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 2.7. SCOPE 45

functions, and for showing how to precompute a table of values, which is often a useful
programming technique.)

gopl.io/ch2/popcount

package popcount

// pc[i] is the population count of i.
var pc [256]byte

func init() {
for i := range pc {
pc[i] = pc[i/2] + byte(i&1)
}
}

// PopCount returns the population count (number of set bits) of x.
func PopCount(x uint64) int {
return int(pc[byte(x>>(0*8))] +
pc[byte(x>>(1*8))] +
pc[byte(x>>(2*8))]
pc[byte(x>>(3*8))]
pc[byte(x>>(4*8))]
pc[byte(x>>(5*8))]
pc[byte(x>>(6*8))]
pcbyte(x>>(7*8))1)

+ + + + +

}

Note that the range loop in init uses only the index; the value is unnecessary and thus need
not be included. The loop could also have been written as

for i, _ := range pc {
WEell see other uses of init functions in the next section and in Section 10.5.

Exercise 2.3: Rewrite PopCount to use a loop instead of a single expression. Compare the per-
formance of the two versions. (Section 11.4 shows how to compare the performance of differ-
ent implementations systematically.)

Exercise 2.4: Write a version of PopCount that counts bits by shifting its argument through 64
bit positions, testing the rightmost bit each time. Compare its performance to the table-
lookup version.

Exercise 2.5: The expression x&(x-1) clears the rightmost non-zero bit of x. Write a version
of PopCount that counts bits by using this fact, and assess its performance.

2.7. Scope

A declaration associates a name with a program entity, such as a function or a variable. The
scope of a declaration is the part of the source code where a use of the declared name refers to
that declaration.

www.it-ebooks.info

http://www.it-ebooks.info/

46 CHAPTER 2. PROGRAM STRUCTURE

Don’t confuse scope with lifetime. The scope of a declaration is a region of the program text;
it is a compile-time property. The lifetime of a variable is the range of time during execution
when the variable can be referred to by other parts of the program; it is a run-time property.

A syntactic block is a sequence of statements enclosed in braces like those that surround the
body of a function or loop. A name declared inside a syntactic block is not visible outside that
block. The block encloses its declarations and determines their scope. We can generalize this
notion of blocks to include other groupings of declarations that are not explicitly surrounded
by braces in the source code; we'll call them all lexical blocks. There is a lexical block for the
entire source code, called the universe block; for each package; for each file; for each for, if,
and switch statement; for each case in a switch or select statement; and, of course, for each
explicit syntactic block.

A declaration’s lexical block determines its scope, which may be large or small. The declara-
tions of built-in types, functions, and constants like int, len, and true are in the universe
block and can be referred to throughout the entire program. Declarations outside any func-
tion, that is, at package level, can be referred to from any file in the same package. Imported
packages, such as fmt in the tempconv example, are declared at the file level, so they can be
referred to from the same file, but not from another file in the same package without another
import. Many declarations, like that of the variable ¢ in the tempconv.CToF function, are
local, so they can be referred to only from within the same function or perhaps just a part of it.

The scope of a control-flow label, as used by break, continue, and goto statements, is the
entire enclosing function.

A program may contain multiple declarations of the same name so long as each declaration is
in a different lexical block. For example, you can declare a local variable with the same name
as a package-level variable. Or, as shown in Section 2.3.3, you can declare a function parame-
ter called new, even though a function of this name is predeclared in the universe block. Don't
overdo it, though; the larger the scope of the redeclaration, the more likely you are to surprise
the reader.

When the compiler encounters a reference to a name, it looks for a declaration, starting with
the innermost enclosing lexical block and working up to the universe block. If the compiler
finds no declaration, it reports an “undeclared name” error. If a name is declared in both an
outer block and an inner block, the inner declaration will be found first. In that case, the
inner declaration is said to shadow or hide the outer one, making it inaccessible:

func f() {}

var g = "g"
func main() {
f o= "f"
fmt.Println(f) // "f"; local var f shadows package-level func f
fmt.Println(g) // "g", package-level var
fmt.Println(h) // compile error: undefined: h

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 2.7. SCOPE 47

Within a function, lexical blocks may be nested to arbitrary depth, so one local declaration can
shadow another. Most blocks are created by control-flow constructs like if statements and
for loops. The program below has three different variables called x because each declaration
appears in a different lexical block. (This example illustrates scope rules, not good style!)

func main() {

x := "hello!"
for i :=0; i < len(x); i++ {
x 1= x[1i]
if x 1= "1
X 1= x+ 'A" - 'a'
fmt.Printf("%c", x) // "HELLO" (one letter per iteration)
}
b
}
The expressions x[1] and x + 'A* - 'a" each refer to a declaration of x from an outer block;

we'll explain that in a moment. (Note that the latter expression is not equivalent to uni-
code.ToUpper.)

As mentioned above, not all lexical blocks correspond to explicit brace-delimited sequences of
statements; some are merely implied. The for loop above creates two lexical blocks: the
explicit block for the loop body, and an implicit block that additionally encloses the variables
declared by the initialization clause, such as i. The scope of a variable declared in the implicit
block is the condition, post-statement (i++), and body of the for statement.

The example below also has three variables named x, each declared in a different block—one
in the function body, one in the for statement’s block, and one in the loop body—but only two
of the blocks are explicit:

func main() {
x := "hello"
for _, x := range x {
X :=x+ 'A' - 'a'
fmt.Printf("%c", x) // "HELLO" (one letter per iteration)

}

Like for loops, if statements and switch statements also create implicit blocks in addition to
their body blocks. The code in the following if-else chain shows the scope of x and y:

if x 1= f(); x ==0 {
fmt.Println(x)

} else if y := g(x); x ==y {
fmt.Println(x, y)

} else {
fmt.Println(x, y)

}

fmt.Println(x, y) // compile error: x and y are not visible here

www.it-ebooks.info

http://www.it-ebooks.info/

48 CHAPTER 2. PROGRAM STRUCTURE

The second if statement is nested within the first, so variables declared within the first state-
ment’s initializer are visible within the second. Similar rules apply to each case of a switch
statement: there is a block for the condition and a block for each case body.

At the package level, the order in which declarations appear has no effect on their scope, so a
declaration may refer to itself or to another that follows it, letting us declare recursive or
mutually recursive types and functions. The compiler will report an error if a constant or vari-
able declaration refers to itself, however.

In this program:

if f, err := os.Open(fname); err != nil { // compile error: unused: f
return err

¥

f.ReadByte() // compile error: undefined f

f.Close() // compile error: undefined f

the scope of f is just the if statement, so f is not accessible to the statements that follow,
resulting in compiler errors. Depending on the compiler, you may get an additional error
reporting that the local variable f was never used.

Thus it is often necessary to declare f before the condition so that it is accessible after:

f, err := 0s.0pen(fname)
if err = nil {
return err
}
f.ReadByte()
f.Close()

You may be tempted to avoid declaring f and err in the outer block by moving the calls to
ReadByte and Close inside an else block:

if f, err := os.Open(fname); err != nil {
return err
} else {

// f and err are visible here too
f.ReadByte()
f.Close()

}

but normal practice in Go is to deal with the error in the if block and then return, so that the
successful execution path is not indented.

Short variable declarations demand an awareness of scope. Consider the program below,
which starts by obtaining its current working directory and saving it in a package-level vari-
able. This could be done by calling os.Getwd in function main, but it might be better to sepa-
rate this concern from the primary logic, especially if failing to get the directory is a fatal error.
The function log.Fatalf prints a message and calls os.Exit(1).

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 2.7. SCOPE 49

var cwd string

func init() {
cwd, err := os.Getwd() // compile error: unused: cwd
if err != nil {
log.Fatalf("os.Getwd failed: %v", err)
}
}

Since neither cwd nor err is already declared in the init function’s block, the := statement
declares both of them as local variables. The inner declaration of cwd makes the outer one
inaccessible, so the statement does not update the package-level cwd variable as intended.

Current Go compilers detect that the local cwd variable is never used and report this as an
error, but they are not strictly required to perform this check. Furthermore, a minor change,
such as the addition of a logging statement that refers to the local cwd would defeat the check.

var cwd string

func init() {
cwd, err := os.Getwd() // NOTE: wrong!
if err != nil {
log.Fatalf("os.Getwd failed: %v", err)

}
log.Printf("Working directory = %s", cwd)

}

The global cwd variable remains uninitialized, and the apparently normal log output
obfuscates the bug.

There are a number of ways to deal with this potential problem. The most direct is to avoid : =
by declaring err in a separate var declaration:

var cwd string

func init() {
var err error
cwd, err = os.Getwd()
if err != nil {
log.Fatalf("os.Getwd failed: %v", err)
}
}

We've now seen how packages, files, declarations, and statements express the structure of
programs. In the next two chapters, well look at the structure of data.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

3
Basic Data Types

It’s all bits at the bottom, of course, but computers operate fundamentally on fixed-size num-
bers called words, which are interpreted as integers, floating-point numbers, bit sets, or mem-
ory addresses, then combined into larger aggregates that represent packets, pixels, portfolios,
poetry, and everything else. Go offers a variety of ways to organize data, with a spectrum of
data types that at one end match the features of the hardware and at the other end provide
what programmers need to conveniently represent complicated data structures.

Go’s types fall into four categories: basic types, aggregate types, reference types, and interface
types. Basic types, the topic of this chapter, include numbers, strings, and booleans. Aggregate
types—arrays (§4.1) and structs (§4.4)—form more complicated data types by combining val-
ues of several simpler ones. Reference types are a diverse group that includes pointers (§2.3.2),
slices (§4.2), maps (§4.3), functions (Chapter 5), and channels (Chapter 8), but what they have
in common is that they all refer to program variables or state indirectly, so that the effect of an
operation applied to one reference is observed by all copies of that reference. Finally, we'll talk
about interface types in Chapter 7.

3.1. Integers

Go’s numeric data types include several sizes of integers, floating-point numbers, and complex
numbers. Each numeric type determines the size and signedness of its values. Let’s begin with
integers.

Go provides both signed and unsigned integer arithmetic. There are four distinct sizes of
signed integers—8, 16, 32, and 64 bits—represented by the types int8, int16, int32, and
int64, and corresponding unsigned versions uint8, uint16, uint32, and uinté4.

51

www.it-ebooks.info

http://www.it-ebooks.info/

52 CHAPTER 3. BASIC DATA TYPES

There are also two types called just int and uint that are the natural or most efficient size for
signed and unsigned integers on a particular platform; int is by far the most widely used
numeric type. Both these types have the same size, either 32 or 64 bits, but one must not make
assumptions about which; different compilers may make different choices even on identical
hardware.

The type rune is an synonym for int32 and conventionally indicates that a value is a Unicode
code point. The two names may be used interchangeably. Similarly, the type byte is an syn-
onym for uint8, and emphasizes that the value is a piece of raw data rather than a small
numeric quantity.

Finally, there is an unsigned integer type uintptr, whose width is not specified but is suffi-
cient to hold all the bits of a pointer value. The uintptr type is used only for low-level
programming, such as at the boundary of a Go program with a C library or an operating sys-
tem. We'll see examples of this when we deal with the unsafe package in Chapter 13.

Regardless of their size, int, uint, and uintptr are different types from their explicitly sized
siblings. Thus int is not the same type as int32, even if the natural size of integers is 32 bits,
and an explicit conversion is required to use an int value where an int32 is needed, and vice
versa.

Signed numbers are represented in 2’s-complement form, in which the high-order bit is
reserved for the sign of the number and the range of values of an n-bit number is from -2
to 2""!-1. Unsigned integers use the full range of bits for non-negative values and thus have
the range 0 to 2”-1. For instance, the range of int8 is —128 to 127, whereas the range of
uint8is 0 to 255.

Go’s binary operators for arithmetic, logic, and comparison are listed here in order of decreas-
ing precedence:

/ % << >> & &”

— 0 I + *
— 1

There are only five levels of precedence for binary operators. Operators at the same level as-
sociate to the left, so parentheses may be required for clarity, or to make the operators evaluate
in the intended order in an expression like mask & (1 << 28).

Each operator in the first two lines of the table above, for instance +, has a corresponding
assignment operator like += that may be used to abbreviate an assignment statement.

The integer arithmetic operators +, -, *, and / may be applied to integer, floating-point, and
complex numbers, but the remainder operator % applies only to integers. The behavior of % for
negative numbers varies across programming languages. In Go, the sign of the remainder is
always the same as the sign of the dividend, so -5%3 and -5%-3 are both -2. The behavior of /
depends on whether its operands are integers, so 5.0/4.0 is 1.25, but 5/4 is 1 because integer
division truncates the result toward zero.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 3.1. INTEGERS 53

If the result of an arithmetic operation, whether signed or unsigned, has more bits than can be
represented in the result type, it is said to overflow. The high-order bits that do not fit are
silently discarded. If the original number is a signed type, the result could be negative if the
leftmost bit is a 1, as in the int8 example here:

var u uint8 = 255
fmt.Println(u, u+1, u*u) // "255 @ 1"

var i int8 = 127
fmt.Println(i, i+1, i*i) // "127 -128 1"

Two integers of the same type may be compared using the binary comparison operators
below; the type of a comparison expression is a boolean.

== equal to

= not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

In fact, all values of basic type—booleans, numbers, and strings—are comparable, meaning
that two values of the same type may be compared using the == and != operators. Further-
more, integers, floating-point numbers, and strings are ordered by the comparison operators.
The values of many other types are not comparable, and no other types are ordered. As we
encounter each type, we'll present the rules governing the comparability of its values.

There are also unary addition and subtraction operators:
+ unary positive (no effect)
- unary negation

For integers, +x is a shorthand for @+x and -x is a shorthand for 8-x; for floating-point and
complex numbers, +x is just x and -x is the negation of x.

Go also provides the following bitwise binary operators, the first four of which treat their op-
erands as bit patterns with no concept of arithmetic carry or sign:

& bitwise AND

| bitwise OR

A bitwise XOR

& bit clear (AND NOT)
<< left shift

>> right shift

The operator ~ is bitwise exclusive OR (XOR) when used as a binary operator, but when used
as a unary prefix operator it is bitwise negation or complement; that is, it returns a value with
each bit in its operand inverted. The &" operator is bit clear (AND NOT): in the expression
z = x &y, each bit of z is 0 if the corresponding bit of y is 1; otherwise it equals the cor-
responding bit of x.

www.it-ebooks.info

http://www.it-ebooks.info/

54 CHAPTER 3. BASIC DATA TYPES

The code below shows how bitwise operations can be used to interpret a uint8 value as a
compact and efficient set of 8 independent bits. It uses Printf’s %b verb to print a number’s
binary digits; 88 modifies %b (an adverb!) to pad the result with zeros to exactly 8 digits.

var x uint8 = 1<<1 | 1<<5
var y uint8 = 1<<1 | 1<<2

fmt.Printf("%e8b\n", x) // "ee1ee010", the set {1, 5}
fmt.Printf("%08b\n", y) // "eeeee11e", the set {1, 2}

fmt.Printf("%08b\n", x&y) // "00000010", the intersection {1}
fmt.Printf("%08b\n", x|y) // "00100110", the union {1, 2, 5}
fmt.Printf("%08b\n", x*y) // "00100100", the symmetric difference {2, 5}
fmt.Printf("%08b\n", x&\y) // "00100000", the difference {5}
for i := uint(@); i < 8; i++ {

if x&(1<<i) != @ { // membership test

fmt.Println(i) // "1", "5"

}

}

fmt.Printf("%08b\n", x<<1) // "01000100", the set {2, 6}
fmt.Printf("%08b\n", x>>1) // "00010001", the set {0, 4}

(Section 6.5 shows an implementation of integer sets that can be much bigger than a byte.)

In the shift operations x<<n and x>>n, the n operand determines the number of bit positions
to shift and must be unsigned; the x operand may be unsigned or signed. Arithmetically, a left
shift x<<n is equivalent to multiplication by 2" and a right shift x>>n is equivalent to the floor
of division by 2".

Left shifts fill the vacated bits with zeros, as do right shifts of unsigned numbers, but right
shifts of signed numbers fill the vacated bits with copies of the sign bit. For this reason, it is
important to use unsigned arithmetic when you're treating an integer as a bit pattern.

Although Go provides unsigned numbers and arithmetic, we tend to use the signed int form
even for quantities that can’t be negative, such as the length of an array, though uint might
seem a more obvious choice. Indeed, the built-in len function returns a signed int, as in this
loop which announces prize medals in reverse order:

medals := []string{"gold", "silver", "bronze"}

for i := len(medals) - 1; i >= 0; i-- {

fmt.Println(medals[i]) // "bronze", "silver", "gold"
}

The alternative would be calamitous. If len returned an unsigned number, then i too would
be a uint, and the condition i >= @ would always be true by definition. After the third itera-
tion, in which i == 0, the i-- statement would cause i to become not —1, but the maximum
uint value (for example, 264-1), and the evaluation of medals[i] would fail at run time, or
panic (§5.9), by attempting to access an element outside the bounds of the slice.

For this reason, unsigned numbers tend to be used only when their bitwise operators or
peculiar arithmetic operators are required, as when implementing bit sets, parsing binary file

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 3.1. INTEGERS 55

formats, or for hashing and cryptography. They are typically not used for merely non-negative
quantities.

In general, an explicit conversion is required to convert a value from one type to another, and
binary operators for arithmetic and logic (except shifts) must have operands of the same type.
Although this occasionally results in longer expressions, it also eliminates a whole class of
problems and makes programs easier to understand.

As an example familiar from other contexts, consider this sequence:

var apples int32 =1
var oranges intl6 = 2
var compote int = apples + oranges // compile error

Attempting to compile these three declarations produces an error message:

invalid operation: apples + oranges (mismatched types int32 and int16)

This type mismatch can be fixed in several ways, most directly by converting everything to a
common type:

var compote = int(apples) + int(oranges)

As described in Section 2.5, for every type T, the conversion operation T(x) converts the value
x to type T if the conversion is allowed. Many integer-to-integer conversions do not entail any
change in value; they just tell the compiler how to interpret a value. But a conversion that nar-
rows a big integer into a smaller one, or a conversion from integer to floating-point or vice
versa, may change the value or lose precision:

f := 3.141 // a float64

i = int(f)
fmt.Println(f, i) // "3.141 3"
f =1.99

fmt.Println(int(f)) // "1"

Float to integer conversion discards any fractional part, truncating toward zero. You should
avoid conversions in which the operand is out of range for the target type, because the behav-
ior depends on the implementation:

f
i

lel0@ // a float64
int(f) // result is implementation-dependent

Integer literals of any size and type can be written as ordinary decimal numbers, or as octal
numbers if they begin with 0, as in 8666, or as hexadecimal if they begin with @x or @X, as in
oxdeadbeef. Hex digits may be upper or lower case. Nowadays octal numbers seem to be
used for exactly one purpose—file permissions on POSIX systems—but hexadecimal numbers
are widely used to emphasize the bit pattern of a number over its numeric value.

When printing numbers using the fmt package, we can control the radix and format with the
%d, %0, and %x verbs, as shown in this example:

www.it-ebooks.info

http://www.it-ebooks.info/

56 CHAPTER 3. BASIC DATA TYPES

0 := 0666

fmt.Printf("%d %[1]o %#[1]o\n", o) // "438 666 0666"
X := int64(0xdeadbeef)

fmt.Printf("%d %[1]x %#[1]x %#[1]X\n", Xx)

// Output:

// 3735928559 deadbeef ©xdeadbeef OXDEADBEEF

Note the use of two fmt tricks. Usually a Printf format string containing multiple % verbs
would require the same number of extra operands, but the [1] “adverbs” after % tell Printf to
use the first operand over and over again. Second, the # adverb for %o or %x or %X tells Printf
to emit a @ or @x or X prefix respectively.

Rune literals are written as a character within single quotes. The simplest example is an ASCII
character like 'a*, but it’s possible to write any Unicode code point either directly or with
numeric escapes, as we will see shortly.

Runes are printed with %c, or with %q if quoting is desired:

ascii := 'a
unicode := 'H'
newline := "\n'

fmt.Printf("%d %[1]c %[1]g\n", ascii) // "97 a 'a'"
fmt.Printf("%d %[1]c %[1]q\n", unicode) // "22269
fmt.Printf("%d %[1]q\n", newline) // "1@ '\n'"

3.2. Floating-Point Numbers

Go provides two sizes of floating-point numbers, float32 and float64. Their arithmetic
properties are governed by the IEEE 754 standard implemented by all modern CPUs.

Values of these numeric types range from tiny to huge. The limits of floating-point values can
be found in the math package. The constant math.MaxFloat32, the largest float32, is about
3.4e38, and math.MaxFloaté4 is about 1.8e308. The smallest positive values are near
1.4e-45 and 4.9e-324, respectively.

A float32 provides approximately six decimal digits of precision, whereas a float64
provides about 15 digits; float64 should be preferred for most purposes because float32
computations accumulate error rapidly unless one is quite careful, and the smallest positive
integer that cannot be exactly represented as a float32 is not large:

var f float32 = 16777216 // 1 << 24
fmt.Println(f == f+1) // "true"!

Floating-point numbers can be written literally using decimals, like this:

const e = 2.71828 // (approximately)

Digits may be omitted before the decimal point (.707) or after it (1.). Very small or very
large numbers are better written in scientific notation, with the letter e or E preceding the dec-
imal exponent:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 3.2. FLOATING-POINT NUMBERS 57

const Avogadro 6.02214129e23
const Planck = 6.62606957e-34

Floating-point values are conveniently printed with Printf’s %g verb, which chooses the most
compact representation that has adequate precision, but for tables of data, the %e (exponent)
or %f (no exponent) forms may be more appropriate. All three verbs allow field width and
numeric precision to be controlled.

for x := 0; x < 8; x++ {
fmt.Printf("x = %d ex = %8.3f\n", x, math.Exp(float64(x)))
}

The code above prints the powers of e with three decimal digits of precision, aligned in an
eight-character field:

X =0 ex = 1.000
x =1 ex = 2.718
X = 2 eX = 7.389
X = 3 ex = 20.086
X =4 e* = 54,598
X =5 e = 148.413
X =6 e = 403.429
X =7 e* = 1096.633

In addition to a large collection of the usual mathematical functions, the math package has
functions for creating and detecting the special values defined by IEEE 754: the positive and
negative infinities, which represent numbers of excessive magnitude and the result of division
by zero; and NaN (“not a number”), the result of such mathematically dubious operations as
0/0 or Sqrt(-1).

var z float64
fmt.Println(z, -z, 1/z, -1/z, z/z) // "@ -0 +Inf -Inf NaN"

The function math.IsNaN tests whether its argument is a not-a-number value, and math.NaN
returns such a value. It’s tempting to use NaN as a sentinel value in a numeric computation,
but testing whether a specific computational result is equal to NaN is fraught with peril
because any comparison with NaN always yields false:

nan := math.NaN()
fmt.Println(nan == nan, nan < nan, nan > nan) // "false false false"

If a function that returns a floating-point result might fail, it’s better to report the failure sepa-
rately, like this:

func compute() (value float64, ok bool) {
/]l ...
if failed {
return 0, false

}

return result, true

www.it-ebooks.info

http://www.it-ebooks.info/

58 CHAPTER 3. BASIC DATA TYPES

The next program illustrates floating-point graphics computation. It plots a function of two
variables z = f(x, y) as a wire mesh 3-D surface, using Scalable Vector Graphics (SVG), a
standard XML notation for line drawings. Figure 3.1 shows an example of its output for the

function sin(r)/r, where r is sqrt(x*x+y*y).

0’:‘:2330 %
BRI
ORI AXKLLIID
QIR
3082559 /l“%“.‘.“‘o‘o’o,o,

"

7
ERERERIR] I \ RSRRSERSES
RN ' ‘ ORISR
R I \\g.:.,o.:.g.:o.g.;:.;.:;.;;:;;,,
R N WK
I R ety 200020020 0. 2000 0 0y 09 00, 020253
SRR \Pesesois e to et 0 0 e 000054005
R SO SERIEKKS Ko SSL IR
R R SRR SRR BRI
SRR R \“‘\“\“"‘”I \”“" U yl0yaezs oot oo gl tags s
S] Ot s
e ':‘sssixxxttt\“tt\‘&‘.'/flll "“ \\\{\i':i"Z"lZ;Z;%z: -
RRRONSS 2N NS
<& NN R " M \\ iz, 2%
CSSSS N 2 ¢ 2o N7
S RS ,;,;;;;::sg§§§§\\§§§\“\\\\'/ IIII ' ‘ \\\\ \"I"’llll’%l’}ﬁff?::2§§§\ NN
NN "3’?""“‘“‘***%‘\\\\\“s'// §i"5£'ln////%¢;é”"'ssssss\ NN\
\ AR K NN NN
N\ NN IIII \\\\ A SNSRI NS
N\ NS AN
10055535 NN\~ ’/ . WA QSNSRI NS/
32 st/) 02005 \\\\oas SR NN S
~222;;;;;;;;;'7:0;?::3z§**ef%2%’"0MW\\\\&&* Sk
S A\
i A SN
RS RAISKSRR
825 AR GRS
5 0 O A Nt e R U e et
a0 0 O O R R e e
R K KRR
0000, 0 0 O NN s
KKK KM KREKEXIEIESS
32 BRI HX XX SEKEKREREKIKSS
NI
QRIS RE
RRARRIRRIRRIIERE TIIRISS
L5RELRRARRR SRR o
":":'0:':’::‘:‘:’z'::::::’0‘0’0‘0’0’0%“’0%:::’:‘:‘:':
R R I RRI KIS
RS
I KIISEIIKILLIIEEKS
%82 055

Figure 3.1. A surface plot of the function sin(r)/r.

gopl.io/ch3/surface
// Surface computes an SVG rendering of a 3-D surface function.
package main

import (
"fmt"
"math"

)

const (
width, height = 600, 320 // canvas size in pixels
cells = 100 // number of grid cells
xyrange = 30.0 // axis ranges (-xyrange..+xyrange)
xyscale = width / 2 / xyrange // pixels per x or y unit
zscale = height * 0.4 // pixels per z unit
angle = math.Pi / 6 // angle of x, y axes (=30°)

)
var sin3@, cos30 = math.Sin(angle), math.Cos(angle) // sin(30°), cos(30°)

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 3.2. FLOATING-POINT NUMBERS 59

func main() {
fmt.Printf("<svg xmlns="http://www.w3.0rg/2000/svg’ "+
"style="'stroke: grey; fill: white; stroke-width: 0.7' "+
"width="%d' height="%d'>", width, height)

for i :=0; i < cells; i++ {
for j 1= 0; j < cells; j++ {
ax, ay := corner(i+l, j)
bx, by := corner(i, j)
cX, cy := corner(i, j+1)
dx, dy := corner(i+l, j+1)

fmt.Printf("<polygon points="'%g,%g %g,%g %g,%g %g,%g"'/>\n",
ax, ay, bX: by: CcX, ¢y, dX, dy)
}

}
fmt.Println("</svg>")

}

func corner(i, j int) (floaté64, float64) {
// Find point (x,y) at corner of cell (i,j).
x := xyrange * (float64(i)/cells - 0.5)
y := Xxyrange * (float64(j)/cells - 0.5)
// Compute surface height z.
z = f(x, y)
// Project (x,y,z) isometrically onto 2-D SVG canvas (sX,sy).
sx := width/2 + (x-y)*cos30*xyscale
sy := height/2 + (x+y)*sin3@*xyscale - z*zscale
return sx, sy

}

func f(x, y float64) floate4 {
r := math.Hypot(x, y) // distance from (0,90)
return math.Sin(r) / r

}

Notice that the function corner returns two values, the coordinates of the corner of the cell.

The explanation of how the program works requires only basic geometry, but it’s fine to skip
over it, since the point is to illustrate floating-point computation. The essence of the program
is mapping between three different coordinate systems, shown in Figure 3.2. The firstis a 2-D
grid of 100x100 cells identified by integer coordinates (i, j), starting at (0, 0) in the far back
corner. We plot from the back to the front so that background polygons may be obscured by
foreground ones.

The second coordinate system is a mesh of 3-D floating-point coordinates (x, y, z), where x
and y are linear functions of i and j, translated so that the origin is in the center, and scaled by
the constant xyrange. The height z is the value of the surface function f (x,).

The third coordinate system is the 2-D image canvas, with (0, 0) in the top left corner. Points
in this plane are denoted (sx, sy). We use an isometric projection to map each 3-D point

www.it-ebooks.info

http://www.it-ebooks.info/

60 CHAPTER 3. BASIC DATA TYPES

+z (0,0 SX
C A
x -y

+y +X & o

2-D grid cells 3-D function space 2-D isometric projection

Figure 3.2. Three different coordinate systems.

(%, ¥, z) onto the 2-D canvas. A point appears farther to the right on the canvas the greater its
x value or the smaller its y value. And a point appears farther down the canvas the greater its x
value or y value, and the smaller its z value. The vertical and horizontal scale factors for x and
y are derived from the sine and cosine of a 30° angle. The scale factor for z, 0.4, is an arbitrary
parameter.

For each cell in the 2-D grid, the main function computes the coordinates on the image canvas
of the four corners of the polygon ABCD, where B corresponds to (i, j) and A, C, and D are its
neighbors, then prints an SVG instruction to draw it.

Exercise 3.1: If the function f returns a non-finite float64 value, the SVG file will contain
invalid <polygon> elements (although many SVG renderers handle this gracefully). Modify
the program to skip invalid polygons.

Exercise 3.2: Experiment with visualizations of other functions from the math package. Can
you produce an egg box, moguls, or a saddle?

Exercise 3.3: Color each polygon based on its height, so that the peaks are colored red
(#ffo000) and the valleys blue (#0000ff).

Exercise 3.4: Following the approach of the Lissajous example in Section 1.7, construct a web
server that computes surfaces and writes SVG data to the client. The server must set the Con-
tent-Type header like this:

w.Header().Set("Content-Type", "image/svg+xml")
(This step was not required in the Lissajous example because the server uses standard
heuristics to recognize common formats like PNG from the first 512 bytes of the response and

generates the proper header.) Allow the client to specify values like height, width, and color as
HTTP request parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 3.3. COMPLEX NUMBERS 61

3.3. Complex Numbers

Go provides two sizes of complex numbers, complex64 and complex128, whose components
are float32 and float64 respectively. The built-in function complex creates a complex num-
ber from its real and imaginary components, and the built-in real and imag functions extract
those components:

var x complex128 = complex(1, 2) // 1+2i
var y complex128 = complex(3, 4) // 3+4i

fmt.Println(x*y) // "(-5+10i)"
fmt.Println(real(x*y)) // "-5"
fmt.Println(imag(x*y)) // "1e"

If a floating-point literal or decimal integer literal is immediately followed by i, such as
3.141592i or 2i, it becomes an imaginary literal, denoting a complex number with a zero real
component:

fmt.Println(1i * 1i) // "(-1+0i)", iz = -1

Under the rules for constant arithmetic, complex constants can be added to other constants
(integer or floating point, real or imaginary), allowing us to write complex numbers naturally,
like 1+21, or equivalently, 2i+1. The declarations of x and y above can be simplified:

X =1+ 2i
y =3+ 4i
Complex numbers may be compared for equality with == and !=. Two complex numbers are

equal if their real parts are equal and their imaginary parts are equal.

The math/cmplx package provides library functions for working with complex numbers, such
as the complex square root and exponentiation functions.

fmt.Println(cmplx.Sqrt(-1)) // "(0+1i)"
The following program uses complex128 arithmetic to generate a Mandelbrot set.

gopl.io/ch3/mandelbrot

// Mandelbrot emits a PNG image of the Mandelbrot fractal.
package main

import (
"image"
"image/color"
"image/png"
"math/cmplx"
"os

www.it-ebooks.info

http://www.it-ebooks.info/

62 CHAPTER 3. BASIC DATA TYPES

func main() {
const (
xmin, ymin, xmax, ymax
width, height

-2, -2, +2, +2
1024, 1024

)

img := image.NewRGBA(image.Rect(@, 0, width, height))
for py := 0; py < height; py++ {
y := float64(py)/height*(ymax-ymin) + ymin
for px := 0; px < width; px++ {
x := float64(px)/width*(xmax-xmin) + xmin
z := complex(x, y)
// Image point (px, py) represents complex value z.
img.Set(px, py, mandelbrot(z))
}

}
png.Encode(os.Stdout, img) // NOTE: ignoring errors

}

func mandelbrot(z complex128) color.Color {
const iterations = 200
const contrast = 15

var v complex128
for n := uint8(@®); n < iterations; n++ {
v = v¥v + 2z
if cmplx.Abs(v) > 2 {
return color.Gray{255 - contrast*n}

}
}

return color.Black

}

The two nested loops iterate over each point in a 1024x1024 grayscale raster image represent-
ing the —2 to +2 portion of the complex plane. The program tests whether repeatedly squar-
ing and adding the number that point represents eventually “escapes” the circle of radius 2. If
so, the point is shaded by the number of iterations it took to escape. If not, the value belongs
to the Mandelbrot set, and the point remains black. Finally, the program writes to its standard
output the PNG-encoded image of the iconic fractal, shown in Figure 3.3.

Exercise 3.5: Implement a full-color Mandelbrot set using the function image.NewRGBA and
the type color.RGBA or color.YCbCr.

Exercise 3.6: Supersampling is a technique to reduce the effect of pixelation by computing the
color value at several points within each pixel and taking the average. The simplest method is
to divide each pixel into four “subpixels” Implement it.

Exercise 3.7: Another simple fractal uses Newton’s method to find complex solutions to a
function such as z*~1 = 0. Shade each starting point by the number of iterations required to
get close to one of the four roots. Color each point by the root it approaches.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 3.4. BOOLEANS 63

Figure 3.3. The Mandelbrot set.

Exercise 3.8: Rendering fractals at high zoom levels demands great arithmetic precision.
Implement the same fractal using four different representations of numbers: complex64, com-
plex128, big.Float, and big.Rat. (The latter two types are found in the math/big package.
Float uses arbitrary but bounded-precision floating-point; Rat uses unbounded-precision
rational numbers.) How do they compare in performance and memory usage? At what zoom
levels do rendering artifacts become visible?

Exercise 3.9: Write a web server that renders fractals and writes the image data to the client.
Allow the client to specify the x, y, and zoom values as parameters to the HTTP request.

3.4. Booleans

A value of type bool, or boolean, has only two possible values, true and false. The condi-
tions in if and for statements are booleans, and comparison operators like == and < produce
a boolean result. The unary operator ! is logical negation, so !true is false, or, one might
say, (!true==false)==true, although as a matter of style, we always simplify redundant
boolean expressions like x==true to x.

Boolean values can be combined with the && (AND) and | | (OR) operators, which have short-
circuit behavior: if the answer is already determined by the value of the left operand, the right
operand is not evaluated, making it safe to write expressions like this:

s !="" && s[0] == 'x'
where s[0] would panic if applied to an empty string.

Since && has higher precedence than || (mnemonic: & is boolean multiplication, || is
boolean addition), no parentheses are required for conditions of this form:

www.it-ebooks.info

http://www.it-ebooks.info/

64 CHAPTER 3. BASIC DATA TYPES

if 'a' <= c & c <= 'z' ||
'A' <= c && c <= 'Z" ||
'9' <= c && c <= '9' {
// ...ASCII letter or digit...

}

There is no implicit conversion from a boolean value to a numeric value like 0 or 1, or vice
versa. It’s necessary to use an explicit if, as in

It might be worth writing a conversion function if this operation were needed often:

// btoi returns 1 if b is true and @ if false.
func btoi(b bool) int {
if b {
return 1

}

return @

}

The inverse operation is so simple that it doesn't warrant a function, but for symmetry here it
is:

// itob reports whether i is non-zero.

func itob(i int) bool { return i != 90 }

3.5. Strings

A string is an immutable sequence of bytes. Strings may contain arbitrary data, including
bytes with value 0, but usually they contain human-readable text. Text strings are convention-
ally interpreted as UTF-8-encoded sequences of Unicode code points (runes), which well
explore in detail very soon.

The built-in len function returns the number of bytes (not runes) in a string, and the index
operation s[i] retrieves the i-th byte of string s, where 0 < i < len(s).

s := "hello, world"
fmt.Println(len(s)) // "12"
fmt.Println(s[@], s[7]) // "104 119" ('h' and 'w')

Attempting to access a byte outside this range results in a panic:
c := s[len(s)] // panic: index out of range

The i-th byte of a string is not necessarily the i-th character of a string, because the UTF-8
encoding of a non-ASCII code point requires two or more bytes. Working with characters is
discussed shortly.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 3.5. STRINGS 65

The substring operation s[i:j] yields a new string consisting of the bytes of the original string
starting at index i and continuing up to, but not including, the byte at index j. The result
contains j-i bytes.

fmt.Println(s[@:5]) // "hello"
Again, a panic results if either index is out of bounds or if j is less than i.
Either or both of the i and j operands may be omitted, in which case the default values of @
(the start of the string) and len(s) (its end) are assumed, respectively.

fmt.Println(s[:5]) // "hello"
fmt.Println(s[7:]) // "world"
fmt.Println(s[:]) // "hello, world"

The + operator makes a new string by concatenating two strings:
fmt.Println("goodbye" + s[5:]) // "goodbye, world"

Strings may be compared with comparison operators like == and <; the comparison is done
byte by byte, so the result is the natural lexicographic ordering.

String values are immutable: the byte sequence contained in a string value can never be
changed, though of course we can assign a new value to a string variable. To append one
string to another, for instance, we can write

s := "left foot"
t :=5s
s += ", right foot"

This does not modify the string that s originally held but causes s to hold the new string
formed by the += statement; meanwhile, t still contains the old string.

fmt.Println(s) // "left foot, right foot"
fmt.Println(t) // "left foot"

Since strings are immutable, constructions that try to modify a string’s data in place are not
allowed:

s[@] = 'L" // compile error: cannot assign to s[@]

Immutability means that it is safe for two copies of a string to share the same underlying
memory, making it cheap to copy strings of any length. Similarly, a string s and a substring
like s[7:] may safely share the same data, so the substring operation is also cheap. No new
memory is allocated in either case. Figure 3.4 illustrates the arrangement of a string and two
of its substrings sharing the same underlying byte array.

3.5.1. String Literals

A string value can be written as a string literal, a sequence of bytes enclosed in double quotes:

"Hello, tt&R"

www.it-ebooks.info

http://www.it-ebooks.info/

66 CHAPTER 3. BASIC DATA TYPES

h e 1 1 o) 5 w o r 1 d
S 7 world
data: hello data: e
len: 12 data: len: 5 s := "hello, world"
hello := s[:5]
len: 5 world := s[7:]

Figure 3.4. The string "hello, world" and two substrings.

Because Go source files are always encoded in UTF-8 and Go text strings are conventionally
interpreted as UTF-8, we can include Unicode code points in string literals.

Within a double-quoted string literal, escape sequences that begin with a backslash \ can be
used to insert arbitrary byte values into the string. One set of escapes handles ASCII control
codes like newline, carriage return, and tab:

\a “alert” or bell

\b backspace

\f form feed

\h newline

\r carriage return

\t tab

\v vertical tab

\' single quote (only in the rune literal "\ ")
\" double quote (only within “. .. " literals)

\\ backslash

Arbitrary bytes can also be included in literal strings using hexadecimal or octal escapes. A
hexadecimal escape is written \xhh, with exactly two hexadecimal digits h (in upper or lower
case). An octal escape is written \ooo with exactly three octal digits o (0 through 7) not
exceeding \377. Both denote a single byte with the specified value. Later, we'll see how to
encode Unicode code points numerically in string literals.

A raw string literal is written ~ ...~ , using backquotes instead of double quotes. Within a raw
string literal, no escape sequences are processed; the contents are taken literally, including
backslashes and newlines, so a raw string literal may spread over several lines in the program
source. The only processing is that carriage returns are deleted so that the value of the string

is the same on all platforms, including those that conventionally put carriage returns in text
files.

Raw string literals are a convenient way to write regular expressions, which tend to have lots of
backslashes. They are also useful for HTML templates, JSON literals, command usage mes-
sages, and the like, which often extend over multiple lines.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 3.5. STRINGS 67

const GoUsage = "Go is a tool for managing Go source code.

Usage:
go command [arguments]

3.5.2. Unicode

Long ago, life was simple and there was, at least in a parochial view, only one character set to
deal with: ASCII, the American Standard Code for Information Interchange. ASCII, or more
precisely US-ASCII, uses 7 bits to represent 128 “characters”: the upper- and lower-case letters
of English, digits, and a variety of punctuation and device-control characters. For much of the
early days of computing, this was adequate, but it left a very large fraction of the world’s
population unable to use their own writing systems in computers. With the growth of the
Internet, data in myriad languages has become much more common. How can this rich vari-
ety be dealt with at all and, if possible, efficiently?

The answer is Unicode (unicode.org), which collects all of the characters in all of the world’s
writing systems, plus accents and other diacritical marks, control codes like tab and carriage
return, and plenty of esoterica, and assigns each one a standard number called a Unicode code
point or, in Go terminology, a rune.

Unicode version 8 defines code points for over 120,000 characters in well over 100 languages
and scripts. How are these represented in computer programs and data? The natural data
type to hold a single rune is int32, and that’s what Go uses; it has the synonym rune for
precisely this purpose.

We could represent a sequence of runes as a sequence of int32 values. In this representation,
which is called UTF-32 or UCS-4, the encoding of each Unicode code point has the same size,
32 bits. This is simple and uniform, but it uses much more space than necessary since most
computer-readable text is in ASCII, which requires only 8 bits or 1 byte per character. All the
characters in widespread use still number fewer than 65,536, which would fit in 16 bits. Can
we do better?

3.5.3. UTF-8

UTEF-8 is a variable-length encoding of Unicode code points as bytes. UTF-8 was invented by
Ken Thompson and Rob Pike, two of the creators of Go, and is now a Unicode standard. It
uses between 1 and 4 bytes to represent each rune, but only 1 byte for ASCII characters, and
only 2 or 3 bytes for most runes in common use. The high-order bits of the first byte of the
encoding for a rune indicate how many bytes follow. A high-order @ indicates 7-bit ASCII,
where each rune takes only 1 byte, so it is identical to conventional ASCII. A high-order 110
indicates that the rune takes 2 bytes; the second byte begins with 1. Larger runes have analo-
gous encodings.

www.it-ebooks.info

http://www.it-ebooks.info/

68 CHAPTER 3. BASIC DATA TYPES

OXXXXXX runes 0—127 (ASCII)
L1IXXXXX LOXXXXXX 128-2047 (values <128 unused)
110XXXX 1OXXXXXX LOXXXXXX 2048-65535 (values <2048 unused)

1110xxX 1OXXXXXX 1OXXXXXX 1OXXXXXX 65536—0x10ffff (other values unused)

A variable-length encoding precludes direct indexing to access the n-th character of a string,
but UTF-8 has many desirable properties to compensate. The encoding is compact, compati-
ble with ASCII, and self-synchronizing: it’s possible to find the beginning of a character by
backing up no more than three bytes. It’s also a prefix code, so it can be decoded from left to
right without any ambiguity or lookahead. No rune’s encoding is a substring of any other, or
even of a sequence of others, so you can search for a rune by just searching for its bytes,
without worrying about the preceding context. The lexicographic byte order equals the Uni-
code code point order, so sorting UTF-8 works naturally. There are no embedded NUL (zero)
bytes, which is convenient for programming languages that use NUL to terminate strings.

Go source files are always encoded in UTF-8, and UTF-8 is the preferred encoding for text
strings manipulated by Go programs. The unicode package provides functions for working
with individual runes (such as distinguishing letters from numbers, or converting an upper-
case letter to a lower-case one), and the unicode/utf8 package provides functions for encod-
ing and decoding runes as bytes using UTF-8.

Many Unicode characters are hard to type on a keyboard or to distinguish visually from sim-
ilar-looking ones; some are even invisible. Unicode escapes in Go string literals allow us to
specify them by their numeric code point value. There are two forms, \uhhhh for a 16-bit
value and \Uhhhhhhhh for a 32-bit value, where each h is a hexadecimal digit; the need for the
32-bit form arises very infrequently. Each denotes the UTF-8 encoding of the specified code
point. Thus, for example, the following string literals all represent the same six-byte string:

e
"\xe4\xb8\x96\xe7\x95\x8c"
"\udel6\u754c”
"\U0000o4e16\U0000754c"

The three escape sequences above provide alternative notations for the first string, but the val-
ues they denote are identical.

Unicode escapes may also be used in rune literals. These three literals are equivalent:
"' '\udele' '\U000O4el6’

A rune whose value is less than 256 may be written with a single hexadecimal escape, such as
"\x41' for 'A’, but for higher values, a \u or \U escape must be used. Consequently,
"\xe4\xb8\x96" is not a legal rune literal, even though those three bytes are a valid UTF-8
encoding of a single code point.

Thanks to the nice properties of UTF-8, many string operations don’t require decoding. We
can test whether one string contains another as a prefix:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 3.5. STRINGS 69

func HasPrefix(s, prefix string) bool {
return len(s) >= len(prefix) && s[:len(prefix)] == prefix
}

or as a suffix:

func HasSuffix(s, suffix string) bool {
return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
}

or as a substring:

func Contains(s, substr string) bool {
for i :=0; i < len(s); i++ {
if HasPrefix(s[i:], substr) {
return true

}
}

return false

}

using the same logic for UTF-8-encoded text as for raw bytes. This is not true for other
encodings. (The functions above are drawn from the strings package, though its implemen-
tation of Contains uses a hashing technique to search more efficiently.)

On the other hand, if we really care about the individual Unicode characters, we have to use
other mechanisms. Consider the string from our very first example, which includes two East
Asian characters. Figure 3.5 illustrates its representation in memory. The string contains 13
bytes, but interpreted as UTF-8, it encodes only nine code points or runes:

import "unicode/utf8"

s := "Hello, w#®"
fmt.Println(len(s)) // "13"
fmt.Println(utf8.RuneCountInString(s)) // "9"

To process those characters, we need a UTF-8 decoder. The unicode/utf8 package provides
one that we can use like this:

for i :=0; i < len(s); {
r, size := utf8.DecodeRuneInString(s[i:])
fmt.Printf("%d\t%c\n", i, r)
i += size

}

Each call to DecodeRuneInString returns r, the rune itself, and size, the number of bytes
occupied by the UTF-8 encoding of r. The size is used to update the byte index i of the next
rune in the string. But this is clumsy, and we need loops of this kind all the time. Fortunately,
Go’s range loop, when applied to a string, performs UTF-8 decoding implicitly. The output of
the loop below is also shown in Figure 3.5; notice how the index jumps by more than 1 for
each non-ASCII rune.

www.it-ebooks.info

http://www.it-ebooks.info/

70 CHAPTER 3. BASIC DATA TYPES

UTF-8 encoding

i r r
7] 'H' 72
"Hello, tHFE" 1 'e' 101
data: e— 2 1, 18
3 'l 108
len: 13 4 'o' 111
5, 44
for i, r := range "Hello, tHR" { 6 '. 32
fmt.Printf("%d\t%q\t%d\n", i, r, r) 7 ' 19990
10 'H' 30028

}

Figure 3.5. A range loop decodes a UTF-8-encoded string.

for i, r := range "Hello, tt®R" {
fmt.Printf("%d\t%q\t%d\n", i, r, r)

}
We could use a simple range loop to count the number of runes in a string, like this:
n:=0
for _, _ = range s {
n++
}
As with the other forms of range loop, we can omit the variables we don’t need:
n:=0
for range s {
n++
}

Or we can just call utf8.RuneCountInString(s).

We mentioned earlier that it is mostly a matter of convention in Go that text strings are inter-
preted as UTF-8-encoded sequences of Unicode code points, but for correct use of range
loops on strings, it’s more than a convention, it’s a necessity. What happens if we range over a
string containing arbitrary binary data or, for that matter, UTF-8 data containing errors?

Each time a UTF-8 decoder, whether explicit in a call to utf8.DecodeRuneInString or
implicit in a range loop, consumes an unexpected input byte, it generates a special Unicode
replacement character, ' \UFFFD', which is usually printed as a white question mark inside a
black hexagonal or diamond-like shape 8. When a program encounters this rune value, it’s
often a sign that some upstream part of the system that generated the string data has been

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 3.5. STRINGS 71

careless in its treatment of text encodings.

UTF-8 is exceptionally convenient as an interchange format but within a program runes may
be more convenient because they are of uniform size and are thus easily indexed in arrays and
slices.

A [Irune conversion applied to a UTF-8-encoded string returns the sequence of Unicode
code points that the string encodes:

// "program” in Japanese katakana

s = "JOoousn"
fmt.Printf("% x\n", s) // "e3 83 97 e3 83 ad e3 82 bo e3 83 a9 e3 83 av"
r := []Jrune(s)

fmt.Printf("%x\n", r) // "[30d7 30ed 30b0O 30e9 30e0]"
(The verb % x in the first Printf inserts a space between each pair of hex digits.)
If a slice of runes is converted to a string, it produces the concatenation of the UTF-8 encod-
ings of each rune:

fmt.Println(string(r)) // "JOUSL"
Converting an integer value to a string interprets the integer as a rune value, and yields the
UTEF-8 representation of that rune:

fmt.Println(string(65)) // "A", not "65"
fmt.Println(string(@x4eac)) // "&="

If the rune is invalid, the replacement character is substituted:
fmt.Println(string(1234567)) // "&"

3.5.4. Strings and Byte Slices

Four standard packages are particularly important for manipulating strings: bytes, strings,
strconv, and unicode. The strings package provides many functions for searching, replac-
ing, comparing, trimming, splitting, and joining strings.

The bytes package has similar functions for manipulating slices of bytes, of type []byte,
which share some properties with strings. Because strings are immutable, building up strings
incrementally can involve a lot of allocation and copying. In such cases, it’s more efficient to
use the bytes.Buffer type, which we'll show in a moment.

The strconv package provides functions for converting boolean, integer, and floating-point
values to and from their string representations, and functions for quoting and unquoting
strings.

The unicode package provides functions like IsDigit, IsLetter, IsUpper, and IsLower for
classifying runes. Each function takes a single rune argument and returns a boolean. Conver-
sion functions like ToUpper and ToLower convert a rune into the given case if it is a letter. All
these functions use the Unicode standard categories for letters, digits, and so on. The strings

www.it-ebooks.info

http://www.it-ebooks.info/

72 CHAPTER 3. BASIC DATA TYPES

package has similar functions, also called ToUpper and ToLower, that return a new string with
the specified transformation applied to each character of the original string.

The basename function below was inspired by the Unix shell utility of the same name. In our
version, basename(s) removes any prefix of s that looks like a file system path with com-
ponents separated by slashes, and it removes any suffix that looks like a file type:

fmt.Println(basename("a/b/c.go")) // "c"
fmt.Println(basename("c.d.go")) // "c.d"
fmt.Println(basename("abc")) // "abc"

The first version of basename does all the work without the help of libraries:

gopl.io/ch3/basenamel

// basename removes directory components and a .suffix.
// e.g., a =>a, a.go => a, a/b/c.go => ¢, a/b.c.go => b.c
func basename(s string) string {
// Discard last '/' and everything before.
for i := len(s) - 1; i >=0; i-- {
if s[i] == "/" {
s = s[i+1:]
break
}
}

// Preserve everything before last
for i := len(s) - 1; i >=0; i-- {

if s[i] == "." {
s = s[:i]
break
b
}
return s

}
A simpler version uses the strings.LastIndex library function:

gopl.io/ch3/basename2

func basename(s string) string {
slash := strings.LastIndex(s, "/") // -1 if "/" not found
s = s[slash+1:]
if dot := strings.LastIndex(s, "."); dot >= 0 {
s = s[:dot]
}

return s

}

The path and path/filepath packages provide a more general set of functions for manip-
ulating hierarchical names. The path package works with slash-delimited paths on any plat-
form. It shouldn't be used for file names, but it is appropriate for other domains, like the path
component of a URL. By contrast, path/filepath manipulates file names using the rules for
the host platform, such as /foo/bar for POSIX or c: \foo\bar on Microsoft Windows.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 3.5. STRINGS 73

Let’s continue with another substring example. The task is to take a string representation of an
integer, such as "12345", and insert commas every three places, as in "12,345". This version
only works for integers; handling floating-point numbers is left as a exercise.

gopl.io/ch3/comma

// comma inserts commas in a non-negative decimal integer string.
func comma(s string) string {

n := len(s)
if n <=3 {

return s
b

return comma(s[:n-3]) + "," + s[n-3:]

}

The argument to comma is a string. If its length is less than or equal to 3, no comma is neces-
sary. Otherwise, comma calls itself recursively with a substring consisting of all but the last
three characters, and appends a comma and the last three characters to the result of the recur-
sive call.

A string contains an array of bytes that, once created, is immutable. By contrast, the elements
of a byte slice can be freely modified.

Strings can be converted to byte slices and back again:

s := "abc"
b := []byte(s)
s2 := string(b)

Conceptually, the []byte(s) conversion allocates a new byte array holding a copy of the bytes
of s, and yields a slice that references the entirety of that array. An optimizing compiler may
be able to avoid the allocation and copying in some cases, but in general copying is required to
ensure that the bytes of s remain unchanged even if those of b are subsequently modified. The
conversion from byte slice back to string with string(b) also makes a copy, to ensure
immutability of the resulting string s2.

To avoid conversions and unnecessary memory allocation, many of the utility functions in the
bytes package directly parallel their counterparts in the strings package. For example, here
are half a dozen functions from strings:

func Contains(s, substr string) bool
func Count(s, sep string) int

func Fields(s string) []string

func HasPrefix(s, prefix string) bool
func Index(s, sep string) int

func Join(a []string, sep string) string

and the corresponding ones from bytes:

www.it-ebooks.info

http://www.it-ebooks.info/

74 CHAPTER 3. BASIC DATA TYPES

func Contains(b, subslice []byte) bool
func Count(s, sep []byte) int

func Fields(s []byte) [][]byte

func HasPrefix(s, prefix []byte) bool
func Index(s, sep []byte) int

func Join(s [][]byte, sep []byte) []byte

The only difference is that strings have been replaced by byte slices.

The bytes package provides the Buffer type for efficient manipulation of byte slices. A
Buffer starts out empty but grows as data of types like string, byte, and []byte are written
to it. As the example below shows, a bytes.Buffer variable requires no initialization because
its zero value is usable:

gopl.io/ch3/printints

// intsToString is like fmt.Sprintf(values) but adds commas.
func intsToString(values []int) string {
var buf bytes.Buffer
buf.WriteByte('[")
for i, v := range values {
ifi>e{
buf.WriteString(", ")

}
fmt.Fprintf(&buf, "%d", v)

}

buf.WriteByte(']")

return buf.String()
}

func main() {
fmt.Println(intsToString([]int{1, 2, 3})) // "[1, 2, 3]"
}

When appending the UTF-8 encoding of an arbitrary rune to a bytes.Buffer, it’s best to use
bytes.Buffer’s WriteRune method, but WriteByte is fine for ASCII characters such as '[*
and ']".

The bytes.Buffer type is extremely versatile, and when we discuss interfaces in Chapter 7,
we'll see how it may be used as a replacement for a file whenever an I/O function requires a
sink for bytes (1o.Writer) as Fprintf does above, or a source of bytes (1o.Reader).

Exercise 3.10: Write a non-recursive version of comma, using bytes.Buffer instead of string
concatenation.

Exercise 3.11: Enhance comma so that it deals correctly with floating-point numbers and an
optional sign.

Exercise 3.12: Write a function that reports whether two strings are anagrams of each other,
that is, they contain the same letters in a different order.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 3.6. CONSTANTS 75

3.5.5. Conversions between Strings and Numbers

In addition to conversions between strings, runes, and bytes, it’s often necessary to convert
between numeric values and their string representations. This is done with functions from the
strconv package.

To convert an integer to a string, one option is to use fmt.Sprintf; another is to use the func-
tion strconv.Itoa (“integer to ASCII”):

X := 123
y := fmt.Sprintf("%d", x)
fmt.Println(y, strconv.Itoa(x)) // "123 123"

FormatInt and FormatUint can be used to format numbers in a different base:
fmt.Println(strconv.FormatInt(int64(x), 2)) // "1111011"
The fmt.Printf verbs %b, %d, %u, and %x are often more convenient than Format functions,
especially if we want to include additional information besides the number:
s := fmt.Sprintf("x=%b", x) // "x=1111011"
To parse a string representing an integer, use the strconv functions Atoi or Parselnt, or
ParseUint for unsigned integers:

X, err := strconv.Atoi("123") // x is an int
y, err := strconv.ParseInt("123", 10, 64) // base 10, up to 64 bits

The third argument of ParseInt gives the size of the integer type that the result must fit into;
for example, 16 implies int16, and the special value of 0 implies int. In any case, the type of
the result y is always int64, which you can then convert to a smaller type.

Sometimes fmt.Scanf is useful for parsing input that consists of orderly mixtures of strings
and numbers all on a single line, but it can be inflexible, especially when handling incomplete
or irregular input.

3.6. Constants

Constants are expressions whose value is known to the compiler and whose evaluation is guar-
anteed to occur at compile time, not at run time. The underlying type of every constant is a
basic type: boolean, string, or number.

A const declaration defines named values that look syntactically like variables but whose
value is constant, which prevents accidental (or nefarious) changes during program execution.
For instance, a constant is more appropriate than a variable for a mathematical constant like
pi, since its value won’t change:

const pi = 3.14159 // approximately; math.Pi is a better approximation

As with variables, a sequence of constants can appear in one declaration; this would be
appropriate for a group of related values:

www.it-ebooks.info

http://www.it-ebooks.info/

76 CHAPTER 3. BASIC DATA TYPES

const (
e = 2.71828182845904523536028747135266249775724709369995957496696763
pi = 3.14159265358979323846264338327950288419716939937510582097494459

)

Many computations on constants can be completely evaluated at compile time, reducing the
work necessary at run time and enabling other compiler optimizations. Errors ordinarily
detected at run time can be reported at compile time when their operands are constants, such
as integer division by zero, string indexing out of bounds, and any floating-point operation
that would result in a non-finite value.

The results of all arithmetic, logical, and comparison operations applied to constant operands
are themselves constants, as are the results of conversions and calls to certain built-in func-
tions such as len, cap, real, imag, complex, and unsafe.Sizeof (§13.1).

Since their values are known to the compiler, constant expressions may appear in types, specif-
ically as the length of an array type:

const IPv4lLen = 4

// parseIPv4 parses an IPv4 address (d.d.d.d).
func parseIPv4(s string) IP {

var p [IPv4Len]byte

/] ...
}

A constant declaration may specify a type as well as a value, but in the absence of an explicit
type, the type is inferred from the expression on the right-hand side. In the following,
time.Duration is a named type whose underlying type is int64, and time.Minute is a con-
stant of that type. Both of the constants declared below thus have the type time.Duration as
well, as revealed by %T:

const noDelay time.Duration = @

const timeout = 5 * time.Minute

fmt.Printf("%T %[1]v\n", noDelay) // "time.Duration 0"
fmt.Printf("%T %[1]v\n", timeout) // "time.Duration 5m@s
fmt.Printf("%T %[1]v\n", time.Minute) // "time.Duration 1m@s"

When a sequence of constants is declared as a group, the right-hand side expression may be
omitted for all but the first of the group, implying that the previous expression and its type
should be used again. For example:

const (
a=1
b
c =2
d

)

fmt.Println(a, b, ¢, d) // "1 1 2 2"

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 3.6. CONSTANTS 77

This is not very useful if the implicitly copied right-hand side expression always evaluates to
the same thing. But what if it could vary? This brings us to iota.

3.6.1. The Constant Generator iota

A const declaration may use the constant generator iota, which is used to create a sequence
of related values without spelling out each one explicitly. In a const declaration, the value of
iota begins at zero and increments by one for each item in the sequence.

Here’s an example from the time package, which defines named constants of type Weekday for
the days of the week, starting with zero for Sunday. Types of this kind are often called enu-
merations, or enums for short.

type Weekday int

const (
Sunday Weekday = iota
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
)

This declares Sunday to be 0, Monday to be 1, and so on.

We can use iota in more complex expressions too, as in this example from the net package
where each of the lowest 5 bits of an unsigned integer is given a distinct name and boolean
interpretation:

type Flags uint

const (
FlagUp Flags = 1 << iota // is up
FlagBroadcast // supports broadcast access capability
FlaglLoopback // is a loopback interface
FlagPointToPoint // belongs to a point-to-point link
FlagMulticast // supports multicast access capability
)

As iota increments, each constant is assigned the value of 1 << iota, which evaluates to suc-
cessive powers of two, each corresponding to a single bit. We can use these constants within
functions that test, set, or clear one or more of these bits:

gopl.io/ch3/netflag

func IsUp(v Flags) bool { return v&FlagUp == FlagUp }

func TurnDown(v *Flags) { *v &= FlagUp }

func SetBroadcast(v *Flags) { *v |= FlagBroadcast }

func IsCast(v Flags) bool { return v&(FlagBroadcast|FlagMulticast) != @ }

www.it-ebooks.info

http://www.it-ebooks.info/

78 CHAPTER 3. BASIC DATA TYPES

func main() {
var v Flags = FlagMulticast | FlagUp
fmt.Printf("%b %t\n", v, IsUp(v)) // "1le001 true"
TurnDown (&v)
fmt.Printf("%b %t\n", v, IsUp(v)) // "10000 false"
SetBroadcast(&v)
fmt.Printf("%b %t\n", v, IsUp(v)) // "10010 false"
fmt.Printf("%b %t\n", v, IsCast(v)) // "10010 true"

}
As a more complex example of iota, this declaration names the powers of 1024:

const (
_ =1 << (10 * iota)
KiB // 1024
MiB // 1048576
GiB // 1073741824
TiB // 1099511627776 (exceeds 1 << 32)
PiB // 1125899906842624
EiB // 1152921504606846976
ZiB // 1180591620717411303424 (exceeds 1 << 64)
YiB // 1208925819614629174706176

)

The iota mechanism has its limits. For example, it’s not possible to generate the more famil-
iar powers of 1000 (KB, MB, and so on) because there is no exponentiation operator.

Exercise 3.13: Write const declarations for KB, MB, up through YB as compactly as you can.

3.6.2. Untyped Constants

Constants in Go are a bit unusual. Although a constant can have any of the basic data types
like int or float64, including named basic types like time.Duration, many constants are
not committed to a particular type. The compiler represents these uncommitted constants
with much greater numeric precision than values of basic types, and arithmetic on them is
more precise than machine arithmetic; you may assume at least 256 bits of precision. There
are six flavors of these uncommitted constants, called untyped boolean, untyped integer,
untyped rune, untyped floating-point, untyped complex, and untyped string.

By deferring this commitment, untyped constants not only retain their higher precision until
later, but they can participate in many more expressions than committed constants without
requiring conversions. For example, the values ZiB and YiB in the example above are too big
to store in any integer variable, but they are legitimate constants that may be used in expres-
sions like this one:

fmt.Println(YiB/ZiB) // "1024"

As another example, the floating-point constant math.Pi may be used wherever any floating-
point or complex value is needed:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 3.6. CONSTANTS 79

var x float32 = math.Pi
var y float64 = math.Pi
var z complex128 = math.Pi

If math.Pi had been committed to a specific type such as float64, the result would not be as
precise, and type conversions would be required to use it when a float32 or complex128
value is wanted:

const Pi64 float64 = math.Pi

var x float32 = float32(Pi64)
var y float64 = Pi64
var z complex128 = complex128(Pi64)

For literals, syntax determines flavor. The literals 0, 0.0, 01, and '\u@eee' all denote con-
stants of the same value but different flavors: untyped integer, untyped floating-point, untyped
complex, and untyped rune, respectively. Similarly, true and false are untyped booleans and
string literals are untyped strings.

Recall that / may represent integer or floating-point division depending on its operands.
Consequently, the choice of literal may affect the result of a constant division expression:

var f float64 = 212

fmt.Println((f - 32) * 5 / 9) // "1ee"; (f - 32) * 5 is a float64
fmt.Println(5 / 9 * (f - 32)) // "e"; 5/9 is an untyped integer, ©
fmt.Println(5.0 / 9.0 * (f - 32)) // "100"; 5.0/9.0 is an untyped float

Only constants can be untyped. When an untyped constant is assigned to a variable, as in the
first statement below, or appears on the right-hand side of a variable declaration with an
explicit type, as in the other three statements, the constant is implicitly converted to the type
of that variable if possible.

var f floaté4 = 3 + @i // untyped complex -> float64

f =2 // untyped integer -> float64
f = 1lel23 // untyped floating-point -> float64
f="a' // untyped rune -> float64

The statements above are thus equivalent to these:

var f float64 = float64(3 + 0i)
f = float64(2)

f = float64(1el23)

f = float64('a')

Whether implicit or explicit, converting a constant from one type to another requires that the
target type can represent the original value. Rounding is allowed for real and complex float-
ing-point numbers:

www.it-ebooks.info

http://www.it-ebooks.info/

80 CHAPTER 3. BASIC DATA TYPES

const (

deadbeef = Oxdeadbeef // untyped int with value 3735928559

a = uint32(deadbeef) // uint32 with value 3735928559
= float32(deadbeef) // float32 with value 3735928576 (rounded up)
= float64(deadbeef) // float64 with value 3735928559 (exact)
int32(deadbeef) // compile error: constant overflows int32
= float64(1e309) // compile error: constant overflows float64
= uint(-1) // compile error: constant underflows uint

-~ Q N o
1}

)

In a variable declaration without an explicit type (including short variable declarations), the
flavor of the untyped constant implicitly determines the default type of the variable, as in these
examples:

i:=0 // untyped integer; implicit int(@)

r := '\@00' // untyped rune; implicit rune('\000')
f := 0.0 // untyped floating-point; implicit float64(0.0)
c := 01 // untyped complex; implicit complex128(0i)

Note the asymmetry: untyped integers are converted to int, whose size is not guaranteed, but
untyped floating-point and complex numbers are converted to the explicitly sized types
float64 and complex128. The language has no unsized float and complex types analogous
to unsized int, because it is very difficult to write correct numerical algorithms without
knowing the size of one’s floating-point data types.

To give the variable a different type, we must explicitly convert the untyped constant to the
desired type or state the desired type in the variable declaration, as in these examples:
var i = int8(0)

var i int8 = 0

These defaults are particularly important when converting an untyped constant to an interface
value (see Chapter 7) since they determine its dynamic type.

fmt.Printf("%T\n", 0) // "int"
fmt.Printf("%T\n", 0.0) // "floate4"
fmt.Printf("%T\n", 0i) // "complex128"

fmt.Printf("%T\n", '\000') // "int32" (rune)

We've now covered the basic data types of Go. The next step is to show how they can be com-
bined into larger groupings like arrays and structs, and then into data structures for solving
real programming problems; that is the topic of Chapter 4.

www.it-ebooks.info

http://www.it-ebooks.info/

4
Composite Types

In Chapter 3 we discussed the basic types that serve as building blocks for data structures in a
Go program; they are the atoms of our universe. In this chapter, we'll take a look at composite
types, the molecules created by combining the basic types in various ways. We'll talk about
four such types—arrays, slices, maps, and structs—and at the end of the chapter, we'll show
how structured data using these types can be encoded as and parsed from JSON data and used
to generate HTML from templates.

Arrays and structs are aggregate types; their values are concatenations of other values in mem-
ory. Arrays are homogeneous—their elements all have the same type—whereas structs are
heterogeneous. Both arrays and structs are fixed size. In contrast, slices and maps are
dynamic data structures that grow as values are added.

4.1. Arrays

An array is a fixed-length sequence of zero or more elements of a particular type. Because of
their fixed length, arrays are rarely used directly in Go. Slices, which can grow and shrink, are
much more versatile, but to understand slices we must understand arrays first.

Individual array elements are accessed with the conventional subscript notation, where
subscripts run from zero to one less than the array length. The built-in function len returns
the number of elements in the array.

var a [3]int // array of 3 integers
fmt.Println(a[@]) // print the first element
fmt.Println(a[len(a)-1]) // print the last element, a[2]

81

www.it-ebooks.info

http://www.it-ebooks.info/

82 CHAPTER 4. COMPOSITE TYPES

// Print the indices and elements.
for i, v := range a {
fmt.Printf("%d %d\n", i, v)

}

// Print the elements only.

for _, v 1= range a {
fmt.Printf("%d\n", v)

}

By default, the elements of a new array variable are initially set to the zero value for the ele-
ment type, which is @ for numbers. We can use an array literal to initialize an array with a list
of values:

var q [3]int [3]int{1, 2, 3}
var r [3]int [31int{1, 2}
fmt.Println(r[2]) // "O"

In an array literal, if an ellipsis “...” appears in place of the length, the array length is deter-
mined by the number of initializers. The definition of q can be simplified to

q :=[...]int{1, 2, 3}
fmt.Printf("%T\n", q) // "[3]int"

The size of an array is part of its type, so [3]int and [4]int are different types. The size
must be a constant expression, that is, an expression whose value can be computed as the
program is being compiled.

q := [3]int{1, 2, 3}

q = [4]int{1, 2, 3, 4} // compile error: cannot assign [4]int to [3]int

As we'll see, the literal syntax is similar for arrays, slices, maps, and structs. The specific form
above is a list of values in order, but it is also possible to specify a list of index and value pairs,
like this:

type Currency int

const (
USD Currency = iota
EUR
GBP
RMB
)

symbol := [...]string{usD: "$", EUR: "€", GBP: "£", RMB: "¥"}
fmt.Println(RMB, symbol[RMB]) // "3 ¥"

In this form, indices can appear in any order and some may be omitted; as before, unspecified
values take on the zero value for the element type. For instance,

ro:=[...]int{99: -1}

defines an array r with 100 elements, all zero except for the last, which has value —1.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 4.1. ARRAYS 83

If an array’s element type is comparable then the array type is comparable too, so we may
directly compare two arrays of that type using the == operator, which reports whether all cor-
responding elements are equal. The != operator is its negation.

a := [2]int{1, 2}
b := [...]int{1, 2}
c := [2]int{1, 3}

fmt.Println(a == b, a == ¢, b == c¢) // "true false false"
d := [3]int{1, 2}
fmt.Println(a == d) // compile error: cannot compare [2]int == [3]int

As a more plausible example, the function Sum256 in the crypto/sha256 package produces
the SHA256 cryptographic hash or digest of a message stored in an arbitrary byte slice. The
digest has 256 bits, so its type is [32]byte. If two digests are the same, it is extremely likely
that the two messages are the same; if the digests differ, the two messages are different. This
program prints and compares the SHA256 digests of “x" and "X":

gopl.io/ch4/sha256
import "crypto/sha256"

func main() {
cl := sha256.Sum256([]byte("x"))
c2 := sha256.Sum256([]byte("X"))
fmt.Printf("%x\n%x\n%t\n%T\n", cl, c2, cl == c2, cl)
// Output:
// 2d711642b726b04401627ca9fbac32f5c¢8530fb1903cc4db02258717921a4881
// 4b68ab3847feda7d6c62clfbcbeebfa35eab7351ed5e78f4ddadea5df64b8015
// false
// [32]uints
}

The two inputs differ by only a single bit, but approximately half the bits are different in the
digests. Notice the Printf verbs: %x to print all the elements of an array or slice of bytes in
hexadecimal, %t to show a boolean, and %T to display the type of a value.

When a function is called, a copy of each argument value is assigned to the corresponding
parameter variable, so the function receives a copy, not the original. Passing large arrays in
this way can be inefficient, and any changes that the function makes to array elements affect
only the copy, not the original. In this regard, Go treats arrays like any other type, but this
behavior is different from languages that implicitly pass arrays by reference.

Of course, we can explicitly pass a pointer to an array so that any modifications the function
makes to array elements will be visible to the caller. This function zeroes the contents of a
[32]byte array:
func zero(ptr *[32]byte) {
for i := range ptr {
ptr[i] = @
}

www.it-ebooks.info

http://www.it-ebooks.info/

84 CHAPTER 4. COMPOSITE TYPES

The array literal [32]byte{} yields an array of 32 bytes. Each element of the array has the
zero value for byte, which is zero. We can use that fact to write a different version of zero:

func zero(ptr *[32]byte) {

*ptr = [32]byte{}

}
Using a pointer to an array is efficient and allows the called function to mutate the caller’s
variable, but arrays are still inherently inflexible because of their fixed size. The zero function
will not accept a pointer to a [16]byte variable, for example, nor is there any way to add or
remove array elements. For these reasons, other than special cases like SHA256s fixed-size
hash, arrays are seldom used as function parameters; instead, we use slices.

Exercise 4.1: Write a function that counts the number of bits that are different in two SHA256
hashes. (See PopCount from Section 2.6.2.)

Exercise 4.2: Write a program that prints the SHA256 hash of its standard input by default but
supports a command-line flag to print the SHA384 or SHA512 hash instead.

4.2. Slices

Slices represent variable-length sequences whose elements all have the same type. A slice type
is written []T, where the elements have type T; it looks like an array type without a size.

Arrays and slices are intimately connected. A slice is a lightweight data structure that gives
access to a subsequence (or perhaps all) of the elements of an array, which is known as the
slice’s underlying array. A slice has three components: a pointer, a length, and a capacity. The
pointer points to the first element of the array that is reachable through the slice, which is not
necessarily the array’s first element. The length is the number of slice elements; it can’t exceed
the capacity, which is usually the number of elements between the start of the slice and the end
of the underlying array. The built-in functions 1en and cap return those values.

Multiple slices can share the same underlying array and may refer to overlapping parts of that
array. Figure 4.1 shows an array of strings for the months of the year, and two overlapping
slices of it. The array is declared as

months := [...]string{1: "January", /* ... */, 12: "December"}

so January is months[1] and December is months[12]. Ordinarily, the array element at index
0 would contain the first value, but because months are always numbered from 1, we can leave
it out of the declaration and it will be initialized to an empty string.

The slice operator s[i:j], where 0 < i < j < cap(s), creates a new slice that refers to elements
i through j-1 of the sequence s, which may be an array variable, a pointer to an array, or
another slice. The resulting slice has j-i elements. If i is omitted, it’s 0, and if j is omitted, it’s
len(s). Thus the slice months[1:13] refers to the whole range of valid months, as does the
slice months[1:]; the slice months[:] refers to the whole array. Let’s define overlapping slices
for the second quarter and the northern summer:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 4.2. SLICES

months
0 “n
Q2 = months[4:7] N N summer = months[6:9]
1 | “January
data: @
len: 3 “February”
cap: 9
“March”
: “April”
I m “« ”
;L5 |"May
. (]
Do :
i 6 | “June” :
: ----- ‘-I‘? :
: 7 | “July” s
: — :
o 8 | “August” :
A :
v 9 |“September” ~
Q.
©
“ » v
10 | “October .
11 | “November”
12 | “December”

Figure 4.1. Two overlapping slices of an array of months.

Q2 := months[4:7]

summer := months[6:9]

fmt.Println(Q2) // ["April" "May" "June"]
fmt.Println(summer) // ["June" "July" "August"]

June is included in each and is the sole output of this (inefficient) test for common elements:

for _, s := range summer {
for _, q := range Q2 {
if s == q {

fmt.Printf("%s appears in both\n", s)
}

www.it-ebooks.info

85

http://www.it-ebooks.info/

86 CHAPTER 4. COMPOSITE TYPES

Slicing beyond cap(s) causes a panic, but slicing beyond len(s) extends the slice, so the
result may be longer than the original:

fmt.Println(summer[:20]) // panic: out of range

endlessSummer := summer[:5] // extend a slice (within capacity)
fmt.Println(endlessSummer) // "[June July August September October]"

As an aside, note the similarity of the substring operation on strings to the slice operator on
[]byte slices. Both are written x[m:n], and both return a subsequence of the original bytes,
sharing the underlying representation so that both operations take constant time. The expres-
sion x[m:n] yields a string if x is a string, or a []byte if x is a []byte.

Since a slice contains a pointer to an element of an array, passing a slice to a function permits
the function to modify the underlying array elements. In other words, copying a slice creates
an alias (§2.3.2) for the underlying array. The function reverse reverses the elements of an
[1int slice in place, and it may be applied to slices of any length.
gopl.io/ch4/rev
// reverse reverses a slice of ints in place.
func reverse(s []int) {
for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 {
s[i], s[J] = s[3], s[il]
}
}

Here we reverse the whole array a:

a :=[...]int{e, 1, 2, 3, 4, 5}
reverse(al:])
fmt.Println(a) // "[5 4 321 0]"

A simple way to rotate a slice left by n elements is to apply the reverse function three times,
first to the leading # elements, then to the remaining elements, and finally to the whole slice.
(To rotate to the right, make the third call first.)

s := []int{e, 1, 2, 3, 4, 5}

// Rotate s left by two positions.

reverse(s[:2])

reverse(s[2:])

reverse(s)

fmt.Println(s) // "[2 3 450 1]"

Notice how the expression that initializes the slice s differs from that for the array a. A slice
literal looks like an array literal, a sequence of values separated by commas and surrounded by
braces, but the size is not given. This implicitly creates an array variable of the right size and
yields a slice that points to it. As with array literals, slice literals may specify the values in
order, or give their indices explicitly, or use a mix of the two styles.

Unlike arrays, slices are not comparable, so we cannot use == to test whether two slices contain
the same elements. The standard library provides the highly optimized bytes.Equal function
for comparing two slices of bytes ([]byte), but for other types of slice, we must do the

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 4.2. SLICES 87

comparison ourselves:

func equal(x, y []string) bool {
if len(x) != len(y) {
return false

}
for i := range x {
if x[i] 1= y[i] {
return false
}
}

return true

}

Given how natural this “deep” equality test is, and that it is no more costly at run time than the
== operator for arrays of strings, it may be puzzling that slice comparisons do not also work
this way. There are two reasons why deep equivalence is problematic. First, unlike array ele-
ments, the elements of a slice are indirect, making it possible for a slice to contain itself.
Although there are ways to deal with such cases, none is simple, efficient, and most
importantly, obvious.

Second, because slice elements are indirect, a fixed slice value may contain different elements
at different times as the contents of the underlying array are modified. Because a hash table
such as Gos map type makes only shallow copies of its keys, it requires that equality for each
key remain the same throughout the lifetime of the hash table. Deep equivalence would thus
make slices unsuitable for use as map keys. For reference types like pointers and channels, the
== operator tests reference identity, that is, whether the two entities refer to the same thing. An
analogous “shallow” equality test for slices could be useful, and it would solve the problem
with maps, but the inconsistent treatment of slices and arrays by the == operator would be
confusing. The safest choice is to disallow slice comparisons altogether.

The only legal slice comparison is against nil, as in
if summer == nil { /* ... */ }

The zero value of a slice type is nil. A nil slice has no underlying array. The nil slice has
length and capacity zero, but there are also non-nil slices of length and capacity zero, such as
[1int{} or make([]int, 3)[3:]. As with any type that can have nil values, the nil value of a
particular slice type can be written using a conversion expression such as [Jint(nil).

var s []int // len(s) == 0, s == nil
s = nil // len(s) == 0, s == nil
s = []int(nil) // len(s) == @, s == nil
s = []int{} // len(s) == 0, s != nil

So, if you need to test whether a slice is empty, use len(s) == 0, not s == nil. Other than
comparing equal to nil, a nil slice behaves like any other zero-length slice; reverse(nil) is
perfectly safe, for example. Unless clearly documented to the contrary, Go functions should
treat all zero-length slices the same way, whether nil or non-nil.

www.it-ebooks.info

http://www.it-ebooks.info/

88 CHAPTER 4. COMPOSITE TYPES

The built-in function make creates a slice of a specified element type, length, and capacity. The
capacity argument may be omitted, in which case the capacity equals the length.

make([]T, len)
make([]T, len, cap) // same as make([]T, cap)[:len]

Under the hood, make creates an unnamed array variable and returns a slice of it; the array is
accessible only through the returned slice. In the first form, the slice is a view of the entire
array. In the second, the slice is a view of only the array’s first len elements, but its capacity
includes the entire array. The additional elements are set aside for future growth.

4.2.1. The append Function

The built-in append function appends items to slices:

var runes []rune
for _, r := range "Hello, #®" {
runes = append(runes, r)

}
'Fmt.Pr‘int'F("%q\n", r‘unes) // n[uHu 'e' '1'" '1' 'o' u,u ot |ﬁu]u

The loop uses append to build the slice of nine runes encoded by the string literal, although
this specific problem is more conveniently solved by using the built-in conversion
[Irune("Hello, t#&").

The append function is crucial to understanding how slices work, so let’s take a look at what is
going on. Here’s a version called appendInt that is specialized for []int slices:

gopl.io/ch4/append

func appendInt(x []int, y int) []int {

var z []int

zlen := len(x) + 1

if zlen <= cap(x) {
// There is room to grow. Extend the slice.
z = x[:zlen]

} else {
// There is insufficient space. Allocate a new array.
// Grow by doubling, for amortized linear complexity.
zcap := zlen
if zcap < 2*len(x) {

zcap = 2 * len(x)

}

z = make([]int, zlen, zcap)

copy(z, x) // a built-in function; see text
}
z[len(x)] =y
return z

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 4.2. SLICES 89

Each call to appendInt must check whether the slice has sufficient capacity to hold the new
elements in the existing array. If so, it extends the slice by defining a larger slice (still within
the original array), copies the element y into the new space, and returns the slice. The input x
and the result z share the same underlying array.

If there is insufficient space for growth, appendInt must allocate a new array big enough to
hold the result, copy the values from x into it, then append the new element y. The result z
now refers to a different underlying array than the array that x refers to.

It would be straightforward to copy the elements with explicit loops, but it’s easier to use the
built-in function copy, which copies elements from one slice to another of the same type. Its
first argument is the destination and its second is the source, resembling the order of operands
in an assignment like dst = src. The slices may refer to the same underlying array; they may
even overlap. Although we don't use it here, copy returns the number of elements actually
copied, which is the smaller of the two slice lengths, so there is no danger of running off the
end or overwriting something out of range.

For efficiency, the new array is usually somewhat larger than the minimum needed to hold x
and y. Expanding the array by doubling its size at each expansion avoids an excessive number
of allocations and ensures that appending a single element takes constant time on average.
This program demonstrates the effect:

func main() {
var x, y [lint
for i :=0; i < 10; i++ {
y = appendInt(x, i)
fmt.Printf("%d cap=%d\t%v\n", i, cap(y), vy)

X =Yy
}
}
Each change in capacity indicates an allocation and a copy:

0 cap=1 [0]
1 cap=2 [0 1]
2 cap=4 [0 1 2]
3 cap=4 [0 12 3]
4 cap=8 [0 12 3 4]
5 cap=8 [612345]
6 cap=8 [012345 6]
7 cap=8 [01234567]
8 cap=16 [0 1234567 8]
9 cap=16 [@1 234567 89]

Let’s take a closer look at the i=3 iteration. The slice x contains the three elements [0 1 2] but
has capacity 4, so there is a single element of slack at the end, and appendInt of the element 3
may proceed without reallocating. The resulting slice y has length and capacity 4, and has the
same underlying array as the original slice x, as Figure 4.2 shows.

www.it-ebooks.info

http://www.it-ebooks.info/

90 CHAPTER 4. COMPOSITE TYPES

data:

len:

cap:

Y| data: y = appendInt(x, 3)

len: 4

cap: 4

Figure 4.2. Appending with room to grow.

On the next iteration, i=4, there is no slack at all, so appendInt allocates a new array of size 8,
copies the four elements [0 1 2 3] of x, and appends 4, the value of i. The resulting slice y
has a length of 5 but a capacity of 8; the slack of 3 will save the next three iterations from the
need to reallocate. The slices y and x are views of different arrays. This operation is depicted
in Figure 4.3.

data: @
:-q-len=cap=4
len: 4 . .

cap: 4 o|l1]21]S3:3

y = appendInt(x, 4)

Y| data: r/_w
5

len:

cap:

Figure 4.3. Appending without room to grow.

The built-in append function may use a more sophisticated growth strategy than appendInt’s
simplistic one. Usually we don’t know whether a given call to append will cause a reallocation,
so we can’t assume that the original slice refers to the same array as the resulting slice, nor that
it refers to a different one. Similarly, we must not assume that operations on elements of the
old slice will (or will not) be reflected in the new slice. As a result, it's usual to assign the result
of a call to append to the same slice variable whose value we passed to append:

runes = append(runes, r)

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 4.2. SLICES 91

Updating the slice variable is required not just when calling append, but for any function that
may change the length or capacity of a slice or make it refer to a different underlying array. To
use slices correctly, it's important to bear in mind that although the elements of the underlying
array are indirect, the slice’s pointer, length, and capacity are not. To update them requires an
assignment like the one above. In this respect, slices are not “pure” reference types but resem-
ble an aggregate type such as this struct:

type IntSlice struct {
ptr *int
len, cap int

}

Our appendInt function adds a single element to a slice, but the built-in append lets us add
more than one new element, or even a whole slice of them.

var x []int

x = append(x, 1)

x = append(x, 2, 3)

x = append(x, 4, 5, 6)

x = append(x, x...) // append the slice x
fmt.Println(x) // "[123456123456]"

With the small modification shown below, we can match the behavior of the built-in append.
The ellipsis “...” in the declaration of appendInt makes the function variadic: it accepts any
number of final arguments. The corresponding ellipsis in the call above to append shows how
to supply a list of arguments from a slice. Well explain this mechanism in detail in
Section 5.7.

func appendInt(x []int, y ...int) []int {
var z []int
zlen := len(x) + len(y)

// ...expand z to at least zlen...
copy(z[len(x):1, y)
return z

}

The logic to expand z’s underlying array remains unchanged and is not shown.

4.2.2. In-Place Slice Techniques

Let’s see more examples of functions that, like rotate and reverse, modify the elements of a
slice in place. Given a list of strings, the nonempty function returns the non-empty ones:

gopl.io/ch4/nonempty

// Nonempty is an example of an in-place slice algorithm.
package main

import "fmt"

www.it-ebooks.info

http://www.it-ebooks.info/

92 CHAPTER 4. COMPOSITE TYPES

// nonempty returns a slice holding only the non-empty strings.
// The underlying array is modified during the call.
func nonempty(strings []string) []string {

i:=0
for _, s := range strings {
if s 1= "" {
strings[i] = s
i++
}
}

return strings[:i]

}

The subtle part is that the input slice and the output slice share the same underlying array.
This avoids the need to allocate another array, though of course the contents of data are partly
overwritten, as evidenced by the second print statement:

data := []string{"one", "", "three"}
fmt.Printf("%q\n", nonempty(data)) // ~["one" "three"]"
fmt.Printf("%q\n", data) // " ["one" "three" "three"]"

Thus we would usually write: data = nonempty(data).
The nonempty function can also be written using append:

func nonempty2(strings []string) []string {
out := strings[:0] // zero-length slice of original
for _, s := range strings {
if s 1= "" {
out = append(out, s)
}
}

return out

}

Whichever variant we use, reusing an array in this way requires that at most one output value
is produced for each input value, which is true of many algorithms that filter out elements of a
sequence or combine adjacent ones. Such intricate slice usage is the exception, not the rule,
but it can be clear, efficient, and useful on occasion.

A slice can be used to implement a stack. Given an initially empty slice stack, we can push a
new value onto the end of the slice with append:

stack = append(stack, v) // push v

The top of the stack is the last element:
top := stack[len(stack)-1] // top of stack

and shrinking the stack by popping that element is
stack = stack[:len(stack)-1] // pop

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 4.3. MAPS 93

To remove an element from the middle of a slice, preserving the order of the remaining ele-
ments, use copy to slide the higher-numbered elements down by one to fill the gap:
func remove(slice []Jint, i int) []int {
copy(slice[i:], slice[i+1:])
return slice[:len(slice)-1]
}
func main() {
s := []lint{5, 6, 7, 8, 9}
fmt.Println(remove(s, 2)) // "[5 6 8 9]"
}

And if we don’t need to preserve the order, we can just move the last element into the gap:
func remove(slice []int, i int) []int {
slice[i] = slice[len(slice)-1]
return slice[:len(slice)-1]
}
func main() {
s := []int{5, 6, 7, 8, 9}
fmt.Println(remove(s, 2)) // "[5 6 9 8]
}

Exercise 4.3: Rewrite reverse to use an array pointer instead of a slice.
Exercise 4.4: Write a version of rotate that operates in a single pass.
Exercise 4.5: Write an in-place function to eliminate adjacent duplicates in a []string slice.

Exercise 4.6: Write an in-place function that squashes each run of adjacent Unicode spaces
(see unicode.IsSpace) in a UTF-8-encoded []byte slice into a single ASCII space.

Exercise 4.7: Modify reverse to reverse the characters of a []byte slice that represents a
UTF-8-encoded string, in place. Can you do it without allocating new memory?

4.3. Maps

The hash table is one of the most ingenious and versatile of all data structures. It is an
unordered collection of key/value pairs in which all the keys are distinct, and the value associ-
ated with a given key can be retrieved, updated, or removed using a constant number of key
comparisons on the average, no matter how large the hash table.

In Go, a map is a reference to a hash table, and a map type is written map[K]V, where K and Vv
are the types of its keys and values. All of the keys in a given map are of the same type, and all
of the values are of the same type, but the keys need not be of the same type as the values. The
key type K must be comparable using ==, so that the map can test whether a given key is equal
to one already within it. Though floating-point numbers are comparable, it's a bad idea to
compare floats for equality and, as we mentioned in Chapter 3, especially bad if NaN is a pos-
sible value. There are no restrictions on the value type V.

www.it-ebooks.info

http://www.it-ebooks.info/

94 CHAPTER 4. COMPOSITE TYPES

The built-in function make can be used to create a map:
ages := make(map[stringlint) // mapping from strings to ints
We can also use a map literal to create a new map populated with some initial key/value pairs:
ages := map[stringlint{
"alice": 31,

"charlie": 34,

}

This is equivalent to

ages := make(map[string]lint)
ages["alice"] = 31
ages["charlie"] = 34

so an alternative expression for a new empty map is map[string]int{}.
Map elements are accessed through the usual subscript notation:

ages["alice"] = 32
fmt.Println(ages["alice"]) // "32"

and removed with the built-in function delete:
delete(ages, "alice") // remove element ages["alice"]

All of these operations are safe even if the element isn’t in the map; a map lookup using a key
that isn't present returns the zero value for its type, so, for instance, the following works even
when "bob" is not yet a key in the map because the value of ages["bob"] will be @.

ages["bob"] = ages["bob"] + 1 // happy birthday!

The shorthand assignment forms x += y and x++ also work for map elements, so we can re-
write the statement above as

ages["bob"] += 1
or even more concisely as
ages["bob"]++
But a map element is not a variable, and we cannot take its address:
_ = &ages["bob"] // compile error: cannot take address of map element

One reason that we can’t take the address of a map element is that growing a map might cause
rehashing of existing elements into new storage locations, thus potentially invalidating the
address.

To enumerate all the key/value pairs in the map, we use a range-based for loop similar to
those we saw for slices. Successive iterations of the loop cause the name and age variables to
be set to the next key/value pair:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 4.3. MAPS 95

for name, age := range ages {
fmt.Printf("%s\t%d\n", name, age)
}

The order of map iteration is unspecified, and different implementations might use a different
hash function, leading to a different ordering. In practice, the order is random, varying from
one execution to the next. This is intentional; making the sequence vary helps force programs
to be robust across implementations. To enumerate the key/value pairs in order, we must sort
the keys explicitly, for instance, using the Strings function from the sort package if the keys
are strings. This is a common pattern:

import "sort"

var names []string
for name := range ages {
names = append(names, name)

}

sort.Strings(names)

for _, name := range names {
fmt.Printf("%s\t%d\n", name, ages[name])

}

Since we know the final size of names from the outset, it is more efficient to allocate an array of
the required size up front. The statement below creates a slice that is initially empty but has
sufficient capacity to hold all the keys of the ages map:

names := make([]string, ©, len(ages))

In the first range loop above, we require only the keys of the ages map, so we omit the second
loop variable. In the second loop, we require only the elements of the names slice, so we use
the blank identifier _ to ignore the first variable, the index.

The zero value for a map type is nil, that is, a reference to no hash table at all.

var ages map[string]int
fmt.Println(ages == nil) // "true"
fmt.Println(len(ages) == @) // "true"

Most operations on maps, including lookup, delete, len, and range loops, are safe to per-
form on a nil map reference, since it behaves like an empty map. But storing to a nil map
causes a panic:

ages["carol"] = 21 // panic: assignment to entry in nil map
You must allocate the map before you can store into it.

Accessing a map element by subscripting always yields a value. If the key is present in the
map, you get the corresponding value; if not, you get the zero value for the element type, as we
saw with ages["bob"]. For many purposes thats fine, but sometimes you need to know
whether the element was really there or not. For example, if the element type is numeric, you
might have to distinguish between a nonexistent element and an element that happens to have
the value zero, using a test like this:

www.it-ebooks.info

http://www.it-ebooks.info/

96 CHAPTER 4. COMPOSITE TYPES

age, ok := ages["bob"]
if lok { /* "bob" is not a key in this map; age == 0. */ }

You’ll often see these two statements combined, like this:
if age, ok := ages["bob"]; l!ok { /* ... */ }

Subscripting a map in this context yields two values; the second is a boolean that reports
whether the element was present. The boolean variable is often called ok, especially if it is
immediately used in an if condition.

As with slices, maps cannot be compared to each other; the only legal comparison is with nil.
To test whether two maps contain the same keys and the same associated values, we must
write a loop:

func equal(x, y map[stringlint) bool {
if len(x) != len(y) {
return false

}
for k, xv := range x {
if yv, ok := y[k]; 'ok || yv != xv {
return false
}
}

return true

}

Observe how we use !ok to distinguish the “missing” and “present but zero” cases. Had we
naively written xv != y[k], the call below would incorrectly report its arguments as equal:

// True if equal is written incorrectly.
equal(map[string]int{"A": @}, map[stringlint{"B": 42})

Go does not provide a set type, but since the keys of a map are distinct, a map can serve this
purpose. To illustrate, the program dedup reads a sequence of lines and prints only the first
occurrence of each distinct line. (If's a variant of the dup program that we showed in
Section 1.3.) The dedup program uses a map whose keys represent the set of lines that have
already appeared to ensure that subsequent occurrences are not printed.

gopl.io/ch4/dedup

func main() {
seen := make(map[string]bool) // a set of strings
input := bufio.NewScanner(os.Stdin)
for input.Scan() {
line := input.Text()
if lseen[line] {
seen[line] = true
fmt.Println(line)

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 4.3. MAPS 97

if err := input.Err(); err != nil {
fmt.Fprintf(os.Stderr, "dedup: %v\n", err)
os.Exit(1)

}

}

Go programmers often describe a map used in this fashion as a “set of strings” without further
ado, but beware, not all map[string]bool values are simple sets; some may contain both true
and false values.

Sometimes we need a map or set whose keys are slices, but because a map’s keys must be com-
parable, this cannot be expressed directly. However, it can be done in two steps. First we
define a helper function k that maps each key to a string, with the property that k(x) == k(y)
if and only if we consider x and y equivalent. Then we create a map whose keys are strings,
applying the helper function to each key before we access the map.

The example below uses a map to record the number of times Add has been called with a given
list of strings. It uses fmt.Sprintf to convert a slice of strings into a single string that is a
suitable map key, quoting each slice element with %q to record string boundaries faithfully:

var m = make(map[stringlint)
func k(list []string) string { return fmt.Sprintf("%q", list) }

func Add(list []string) { m[k(list)]++ }
func Count(list []string) int { return m[k(list)] }

The same approach can be used for any non-comparable key type, not just slices. It’s even
useful for comparable key types when you want a definition of equality other than ==, such as
case-insensitive comparisons for strings. And the type of k(x) needn’t be a string; any com-
parable type with the desired equivalence property will do, such as integers, arrays, or structs.

Here’s another example of maps in action, a program that counts the occurrences of each dis-
tinct Unicode code point in its input. Since there are a large number of possible characters,
only a small fraction of which would appear in any particular document, a map is a natural
way to keep track of just the ones that have been seen and their corresponding counts.

gopl.io/ch4/charcount

// Charcount computes counts of Unicode characters.
package main

import (
"bufio"
"t

io
"os"
"unicode"

"unicode/utf8"

www.it-ebooks.info

http://www.it-ebooks.info/

98 CHAPTER 4. COMPOSITE TYPES

func main() {

counts := make(map[rune]int) // counts of Unicode characters
var utflen [utf8.UTFMax + 1]int // count of lengths of UTF-8 encodings
invalid := @ // count of invalid UTF-8 characters
in := bufio.NewReader(os.Stdin)
for {
r, n, err := in.ReadRune() // returns rune, nbytes, error
if err == io.EOF {
break
}
if err != nil {
fmt.Fprintf(os.Stderr, "charcount: %v\n", err)
os.Exit(1)
}
if r == unicode.ReplacementChar & & n == 1 {
invalid++
continue
}
counts[r]++
utflen[n]++
}
fmt.Printf("rune\tcount\n")
for ¢, n := range counts {
fmt.Printf("%q\t%d\n", c, n)
}
fmt.Print("\nlen\tcount\n")
for i, n := range utflen {
ifi>e{
fmt.Printf("%d\t%d\n", i, n)
}
}

if invalid > 0 {
fmt.Printf("\n%d invalid UTF-8 characters\n", invalid)
}
}

The ReadRune method performs UTF-8 decoding and returns three values: the decoded rune,
the length in bytes of its UTF-8 encoding, and an error value. The only error we expect is end-
of-file. If the input was not a legal UTF-8 encoding of a rune, the returned rune is uni-
code.ReplacementChar and the length is 1.

The charcount program also prints a count of the lengths of the UTF-8 encodings of the
runes that appeared in the input. A map is not the best data structure for that; since encoding
lengths range only from 1 to utf8.UTFMax (which has the value 4), an array is more compact.

As an experiment, we ran charcount on this book itself at one point. Although it’s mostly in
English, of course, it does have a fair number of non-ASCII characters. Here are the top ten:

°© 27 t## 15 ® 14 é 13 * 10 =< 5 x 5 EH 4 % 4 0O 3

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 4.4. STRUCTS 99

and here is the distribution of the lengths of all the UTF-8 encodings:

len count
1 765391
2 60

3 70

4 0

The value type of a map can itself be a composite type, such as a map or slice. In the following
code, the key type of graph is string and the value type is map[string]bool, representing a
set of strings. Conceptually, graph maps a string to a set of related strings, its successors in a
directed graph.

gopl.io/ch4/graph
var graph = make(map[string]map[string]bool)
func addEdge(from, to string) {
edges := graph[from]
if edges == nil {
edges = make(map[string]bool)
graph[from] = edges
}
edges[to] = true
}

func hastkdge(from, to string) bool {
return graph[from][to]
}

The addEdge function shows the idiomatic way to populate a map lazily, that is, to initialize
each value as its key appears for the first time. The hasEdge function shows how the zero
value of a missing map entry is often put to work: even if neither from nor to is present,
graph[from][to] will always give a meaningful result.

Exercise 4.8: Modify charcount to count letters, digits, and so on in their Unicode categories,
using functions like unicode.IsLetter.

Exercise 4.9: Write a program wordfreq to report the frequency of each word in an input text
file. Call input.Split(bufio.ScanWords) before the first call to Scan to break the input into
words instead of lines.

4.4. Structs

A struct is an aggregate data type that groups together zero or more named values of arbitrary
types as a single entity. Each value is called a field. The classic example of a struct from data
processing is the employee record, whose fields are a unique ID, the employee’s name, address,
date of birth, position, salary, manager, and the like. All of these fields are collected into a sin-
gle entity that can be copied as a unit, passed to functions and returned by them, stored in
arrays, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

100 CHAPTER 4. COMPOSITE TYPES

These two statements declare a struct type called Employee and a variable called dilbert that
is an instance of an Employee:

type Employee struct {

ID int

Name string
Address string
DoB time.Time

Position string
Salary int
ManagerID int

}
var dilbert Employee

The individual fields of dilbert are accessed using dot notation like dilbert.Name and
dilbert.DoB. Because dilbert is a variable, its fields are variables too, so we may assign to a
field:

dilbert.Salary -= 5000 // demoted, for writing too few lines of code

or take its address and access it through a pointer:

position := &dilbert.Position
*position = "Senior " + *position // promoted, for outsourcing to Elbonia

The dot notation also works with a pointer to a struct:

var employeeOfTheMonth *Employee = &dilbert
employeeOfTheMonth.Position += " (proactive team player)"

The last statement is equivalent to

(*employeeOfTheMonth).Position += " (proactive team player)"

Given an employee’s unique ID, the function EmployeeByID returns a pointer to an Employee
struct. We can use the dot notation to access its fields:

func EmployeeByID(id int) *Employee { /* ... */ }

fmt.Println(EmployeeByID(dilbert.ManagerID).Position) // "Pointy-haired boss'

id := dilbert.ID
EmployeeByID(id).Salary = @ // fired for... no real reason

The last statement updates the Employee struct that is pointed to by the result of the call to
EmployeeByID. If the result type of EmployeeByID were changed to Employee instead of
*Employee, the assignment statement would not compile since its left-hand side would not
identify a variable.

Fields are usually written one per line, with the field’s name preceding its type, but consecutive
fields of the same type may be combined, as with Name and Address here:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 4.4. STRUCTS 101

type Employee struct {

ID int

Name, Address string
DoB time.Time
Position string
Salary int
ManagerID int

}

Field order is significant to type identity. Had we also combined the declaration of the Posi-
tion field (also a string), or interchanged Name and Address, we would be defining a different
struct type. Typically we only combine the declarations of related fields.

The name of a struct field is exported if it begins with a capital letter; this is Go's main access
control mechanism. A struct type may contain a mixture of exported and unexported fields.

Struct types tend to be verbose because they often involve a line for each field. Although we
could write out the whole type each time it is needed, the repetition would get tiresome.
Instead, struct types usually appear within the declaration of a named type like Employee.

A named struct type S can't declare a field of the same type S: an aggregate value cannot con-
tain itself. (An analogous restriction applies to arrays.) But S may declare a field of the
pointer type *S, which lets us create recursive data structures like linked lists and trees. This is
illustrated in the code below, which uses a binary tree to implement an insertion sort:

gopl.io/ch4/treesort

type tree struct {
value int
left, right *tree
}

// Sort sorts values in place.
func Sort(values []int) {

var root *tree

for _, v := range values {

root = add(root, v)

}

appendValues(values[:0], root)
}

// appendValues appends the elements of t to values in order
// and returns the resulting slice.
func appendValues(values []int, t *tree) []int {

if t 1= nil {

values = appendValues(values, t.left)
values = append(values, t.value)
values = appendValues(values, t.right)

}

return values

www.it-ebooks.info

http://www.it-ebooks.info/

102 CHAPTER 4. COMPOSITE TYPES

func add(t *tree, value int) *tree {
if t == nil {
// Equivalent to return &tree{value: value}.
t = new(tree)
t.value = value
return t

}
if value < t.value {
t.left = add(t.left, value)
} else {
t.right = add(t.right, value)

}

return t

}

The zero value for a struct is composed of the zero values of each of its fields. It is usually
desirable that the zero value be a natural or sensible default. For example, in bytes.Buffer,
the initial value of the struct is a ready-to-use empty buffer, and the zero value of sync.Mutex,
which we'll see in Chapter 9, is a ready-to-use unlocked mutex. Sometimes this sensible initial
behavior happens for free, but sometimes the type designer has to work at it.

The struct type with no fields is called the empty struct, written struct{}. It has size zero and
carries no information but may be useful nonetheless. Some Go programmers use it instead
of bool as the value type of a map that represents a set, to emphasize that only the keys are sig-
nificant, but the space saving is marginal and the syntax more cumbersome, so we generally
avoid it.

seen := make(map[string]struct{}) // set of strings

/] ...
if _, ok := seen[s]; 'ok {
seen[s] = struct{}{}
// ...first time seeing s...
}

4.4.1. Struct Literals

A value of a struct type can be written using a struct literal that specifies values for its fields.
type Point struct{ X, Y int }
p := Point{1, 2}

There are two forms of struct literal. The first form, shown above, requires that a value be
specified for every field, in the right order. It burdens the writer (and reader) with remember-
ing exactly what the fields are, and it makes the code fragile should the set of fields later grow
or be reordered. Accordingly, this form tends to be used only within the package that defines
the struct type, or with smaller struct types for which there is an obvious field ordering con-
vention, like image.Point{x, y} or color.RGBA{red, green, blue, alpha}.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 4.4. STRUCTS 103

More often, the second form is used, in which a struct value is initialized by listing some or all
of the field names and their corresponding values, as in this statement from the Lissajous
program of Section 1.4:

anim := gif.GIF{LoopCount: nframes}

If a field is omitted in this kind of literal, it is set to the zero value for its type. Because names
are provided, the order of fields doesn’t matter.

The two forms cannot be mixed in the same literal. Nor can you use the (order-based) first
form of literal to sneak around the rule that unexported identifiers may not be referred to
from another package.

package p

type T struct{ a, b int } // a and b are not exported

package q

import "p"

var _ = p.T{a: 1, b: 2} // compile error: can't reference a, b
var _ = p.T{1, 2} // compile error: can't reference a, b

Although the last line above doesn’t mention the unexported field identifiers, it’s really using
them implicitly, so it’s not allowed.

Struct values can be passed as arguments to functions and returned from them. For instance,
this function scales a Point by a specified factor:

func Scale(p Point, factor int) Point {
return Point{p.X * factor, p.Y * factor}

}
fmt.Println(Scale(Point{1, 2}, 5)) // "{5 1e}"

For efficiency, larger struct types are usually passed to or returned from functions indirectly
using a pointer,

func Bonus(e *Employee, percent int) int {
return e.Salary * percent / 100

}

and this is required if the function must modify its argument, since in a call-by-value language
like Go, the called function receives only a copy of an argument, not a reference to the original
argument.

func AwardAnnualRaise(e *Employee) {
e.Salary = e.Salary * 105 / 100
}

Because structs are so commonly dealt with through pointers, it's possible to use this
shorthand notation to create and initialize a struct variable and obtain its address:

pp := &Point{1, 2}

It is exactly equivalent to

www.it-ebooks.info

http://www.it-ebooks.info/

104 CHAPTER 4. COMPOSITE TYPES

new(Point)
Point{1, 2}

pp :
*pp

but &Point{1, 2} can be used directly within an expression, such as a function call.

4.4.2. Comparing Structs

If all the fields of a struct are comparable, the struct itself is comparable, so two expressions of
that type may be compared using == or !=. The == operation compares the corresponding
fields of the two structs in order, so the two printed expressions below are equivalent:

type Point struct{ X, Y int }

p := Point{1, 2}
q := Point{2, 1}
fmt.Println(p.X == q.X & p.Y == q.Y) // "false"
fmt.Println(p == q) // "false"

Comparable struct types, like other comparable types, may be used as the key type of a map.

type address struct {
hostname string
port int

}

hits := make(map[address]int)
hits[address{"golang.org", 443}]++

4.4.3. Struct Embedding and Anonymous Fields

In this section, we'll see how Go's unusual struct embedding mechanism lets us use one named
struct type as an anonymous field of another struct type, providing a convenient syntactic
shortcut so that a simple dot expression like x. f can stand for a chain of fields like x.d.e. f.

Consider a 2-D drawing program that provides a library of shapes, such as rectangles, ellipses,
stars, and wheels. Here are two of the types it might define:

type Circle struct {
X, Y, Radius int
}

type Wheel struct {
X, Y, Radius, Spokes int
}

A Circle has fields for the X and Y coordinates of its center, and a Radius. A Wheel has all the
features of a Circle, plus Spokes, the number of inscribed radial spokes. Let’s create a wheel:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 4.4. STRUCTS 105

var w Wheel

w.X = 8
w.Y = 8
w.Radius = 5
w.Spokes = 20

As the set of shapes grows, were bound to notice similarities and repetition among them, so it
may be convenient to factor out their common parts:

type Point struct {
X, Y int
}

type Circle struct {
Center Point
Radius int

}

type Wheel struct {
Circle Circle
Spokes int

}

The application may be clearer for it, but this change makes accessing the fields of a Wheel
more verbose:

var w Wheel
w.Circle.Center.
w.Circle.Center.
w.Circle.Radius
w.Spokes = 20

< X
1}
(o]

Go lets us declare a field with a type but no name; such fields are called anonymous fields. The
type of the field must be a named type or a pointer to a named type. Below, Circle and Wheel
have one anonymous field each. We say that a Point is embedded within Circle, and a
Circle is embedded within Wheel.

type Circle struct {

Point
Radius int
}
type Wheel struct {
Circle
Spokes int
}

Thanks to embedding, we can refer to the names at the leaves of the implicit tree without
giving the intervening names:

www.it-ebooks.info

http://www.it-ebooks.info/

106 CHAPTER 4. COMPOSITE TYPES

var w Wheel

w.X = 8 // equivalent to w.Circle.Point.X = 8
w.Y = 8 // equivalent to w.Circle.Point.Y = 8
w.Radius = 5 // equivalent to w.Circle.Radius =5

w.Spokes = 20

The explicit forms shown in the comments above are still valid, however, showing that
“anonymous field” is something of a misnomer. The fields Circle and Point do have
names—that of the named type—but those names are optional in dot expressions. We may
omit any or all of the anonymous fields when selecting their subfields.

Unfortunately, there’s no corresponding shorthand for the struct literal syntax, so neither of
these will compile:

W
W

Wheel{8, 8, 5, 20} // compile error: unknown fields
Wheel{X: 8, Y: 8, Radius: 5, Spokes: 20} // compile error: unknown fields

The struct literal must follow the shape of the type declaration, so we must use one of the two
forms below, which are equivalent to each other:
gopl.io/ch4/embed
w = Wheel{Circle{Point{8, 8}, 5}, 20}
w = Wheel{

Circle: Circle{
Point: Point{X: 8, Y: 8},

Radius: 5,

3

Spokes: 20, // NOTE: trailing comma necessary here (and at Radius)
}
fmt.Printf("%#v\n", w)
// Output:
// Wheel{Circle:Circle{Point:Point{X:8, Y:8}, Radius:5}, Spokes:20}
w.X = 42
fmt.Printf("%#v\n", w)
// Output:

// Wheel{Circle:Circle{Point:Point{X:42, Y:8}, Radius:5}, Spokes:20}

Notice how the # adverb causes Printf’s %v verb to display values in a form similar to Go syn-
tax. For struct values, this form includes the name of each field.

Because “anonymous” fields do have implicit names, you can’t have two anonymous fields of
the same type since their names would conflict. And because the name of the field is implic-
itly determined by its type, so too is the visibility of the field. In the examples above, the Point
and Circle anonymous fields are exported. Had they been unexported (point and circle),
we could still use the shorthand form

w.X = 8 // equivalent to w.circle.point.X = 8

but the explicit long form shown in the comment would be forbidden outside the declaring
package because circle and point would be inaccessible.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 4.5. JSON 107

What we've seen so far of struct embedding is just a sprinkling of syntactic sugar on the dot
notation used to select struct fields. Later, we'll see that anonymous fields need not be struct
types; any named type or pointer to a named type will do. But why would you want to embed
a type that has no subfields?

The answer has to do with methods. The shorthand notation used for selecting the fields of an
embedded type works for selecting its methods as well. In effect, the outer struct type gains
not just the fields of the embedded type but its methods too. This mechanism is the main way
that complex object behaviors are composed from simpler ones. Composition is central to
object-oriented programming in Go, and we'll explore it further in Section 6.3.

4.5. JSON

JavaScript Object Notation (JSON) is a standard notation for sending and receiving structured
information. JSON is not the only such notation. XML (§7.14), ASN.1, and Google’s Protocol
Buffers serve similar purposes and each has its niche, but because of its simplicity, readability,
and universal support, JSON is the most widely used.

Go has excellent support for encoding and decoding these formats, provided by the standard
library packages encoding/json, encoding/xml, encoding/asn1, and so on, and these pack-
ages all have similar APIs. This section gives a brief overview of the most important parts of
the encoding/json package.

JSON is an encoding of JavaScript values—strings, numbers, booleans, arrays, and objects—as
Unicode text. It’s an efficient yet readable representation for the basic data types of Chapter 3
and the composite types of this chapter—arrays, slices, structs, and maps.

The basic JSON types are numbers (in decimal or scientific notation), booleans (true or
false), and strings, which are sequences of Unicode code points enclosed in double quotes,
with backslash escapes using a similar notation to Go, though JSON’s \Uhhhh numeric escapes
denote UTF-16 codes, not runes.

These basic types may be combined recursively using JSON arrays and objects. A JSON array
is an ordered sequence of values, written as a comma-separated list enclosed in square brack-
ets; JSON arrays are used to encode Go arrays and slices. A JSON object is a mapping from
strings to values, written as a sequence of name:value pairs separated by commas and sur-
rounded by braces; JSON objects are used to encode Go maps (with string keys) and structs.
For example:

boolean true
number -273.15
string "She said \"Hello, tH&E\""
array ["gold", "silver", "bronze"]
object {"year": 1980,

"event": "archery",

"medals": ["gold", "silver", "bronze"]}

www.it-ebooks.info

http://www.it-ebooks.info/

108 CHAPTER 4. COMPOSITE TYPES

Consider an application that gathers movie reviews and offers recommendations. Its Movie
data type and a typical list of values are declared below. (The string literals after the Year and
Color field declarations are field tags; we'll explain them in a moment.)

gopl.io/ch4/movie

type Movie struct {
Title string
Year int “json:"released""
Color bool "json:"color,omitempty""
Actors []string

var movies = []Movie{
{Title: "Casablanca", Year: 1942, Color: false,
Actors: []string{"Humphrey Bogart", "Ingrid Bergman"}},
{Title: "Cool Hand Luke", Year: 1967, Color: true,
Actors: []string{"Paul Newman"}},
{Title: "Bullitt", Year: 1968, Color: true,
Actors: []string{"Steve McQueen", "Jacqueline Bisset"}},
/...
}

Data structures like this are an excellent fit for JSON, and its easy to convert in both
directions. Converting a Go data structure like movies to JSON is called marshaling. Mar-
shaling is done by json.Marshal:

data, err := json.Marshal(movies)
if err != nil {
log.Fatalf("JSON marshaling failed: %s", err)

}
fmt.Printf("%s\n", data)

Marshal produces a byte slice containing a very long string with no extraneous white space;
we've folded the lines so it fits:

[{"Title":"Casablanca", "released":1942,"Actors":["Humphrey Bogart","Ingr
id Bergman"]},{"Title":"Cool Hand Luke","released":1967,"color":true, "Ac
tors":["Paul Newman"]},{"Title":"Bullitt","released":1968,"color":true,"

Actors":["Steve McQueen","Jacqueline Bisset"]}]

This compact representation contains all the information but it's hard to read. For human
consumption, a variant called json.MarshalIndent produces neatly indented output. Two
additional arguments define a prefix for each line of output and a string for each level of
indentation:

data, err := json.Marshallndent(movies, "", " ")
if err = nil {
log.Fatalf("JSON marshaling failed: %s", err)

}
fmt.Printf("%s\n", data)

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 4.5. JSON 109

The code above prints

[

"Title": "Casablanca",
"released": 1942,
"Actors": [
"Humphrey Bogart",
"Ingrid Bergman"

"Title": "Cool Hand Luke",
"released": 1967,
"color": true,
"Actors": [

"Paul Newman"

]

"Title": "Bullitt",
"released": 1968,
"color": true,
"Actors": [
"Steve McQueen",
"Jacqueline Bisset"

]

Marshaling uses the Go struct field names as the field names for the JSON objects (through
reflection, as we'll see in Section 12.6). Only exported fields are marshaled, which is why we
chose capitalized names for all the Go field names.

You may have noticed that the name of the Year field changed to released in the output, and
Color changed to color. That’s because of the field tags. A field tag is a string of metadata
associated at compile time with the field of a struct:

Year int “json:"released"’
Color bool "json:"color,omitempty""

A field tag may be any literal string, but it is conventionally interpreted as a space-separated
list of key:"value" pairs; since they contain double quotation marks, field tags are usually
written with raw string literals. The json key controls the behavior of the encoding/json
package, and other encoding/. .. packages follow this convention. The first part of the json
field tag specifies an alternative JSON name for the Go field. Field tags are often used to
specify an idiomatic JSON name like total_count for a Go field named TotalCount. The tag
for Color has an additional option, omitempty, which indicates that no JSON output should
be produced if the field has the zero value for its type (false, here) or is otherwise empty.
Sure enough, the JSON output for Casablanca, a black-and-white movie, has no color field.

www.it-ebooks.info

http://www.it-ebooks.info/

110 CHAPTER 4. COMPOSITE TYPES

The inverse operation to marshaling, decoding JSON and populating a Go data structure, is
called unmarshaling, and it is done by json.Unmarshal. The code below unmarshals the
JSON movie data into a slice of structs whose only field is Title. By defining suitable Go data
structures in this way, we can select which parts of the JSON input to decode and which to dis-
card. When Unmarshal returns, it has filled in the slice with the Title information; other
names in the JSON are ignored.

var titles []struct{ Title string }

if err := json.Unmarshal(data, &titles); err != nil {
log.Fatalf("JSON unmarshaling failed: %s", err)

}
fmt.Println(titles) // "[{Casablanca} {Cool Hand Luke} {Bullitt}]"

Many web services provide a JSON interface—make a request with HT TP and back comes the
desired information in JSON format. To illustrate, let’s query the GitHub issue tracker using
its web-service interface. First we'll define the necessary types and constants:

gopl.io/ch4/github

// Package github provides a Go API for the GitHub issue tracker.
// See https://developer.github.com/v3/search/#search-issues.
package github

import "time"

const IssuesURL = "https://api.github.com/search/issues™

type IssuesSearchResult struct {
TotalCount int “json:"total_count

Items []*Issue
}
type Issue struct {
Number int
HTMLURL string “json:"html_url""
Title string
State string
User *User
CreatedAt time.Time "~ json:"created_at""
Body string // in Markdown format
}

type User struct {

Login string

HTMLURL string “json:"html_url""
}

As before, the names of all the struct fields must be capitalized even if their JSON names are
not. However, the matching process that associates JSON names with Go struct names during
unmarshaling is case-insensitive, so it's only necessary to use a field tag when there’s an under-
score in the JSON name but not in the Go name. Again, we are being selective about which
fields to decode; the GitHub search response contains considerably more information than we
show here.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 4.5. JSON 111

The SearchIssues function makes an HTTP request and decodes the result as JSON. Since
the query terms presented by a user could contain characters like ? and & that have special
meaning in a URL, we use url.QueryEscape to ensure that they are taken literally.

gopl.io/ch4/github

package github

import (
"encoding/json"
"fmt"
"net/http”
"net/url”
"strings"

)

// SearchIssues queries the GitHub issue tracker.
func SearchIssues(terms []string) (*IssuesSearchResult, error) {

q := url.QueryEscape(strings.Join(terms, " "))
resp, err := http.Get(IssuesURL + "?g=" + q)
if err != nil {

return nil, err

}

// We must close resp.Body on all execution paths.
// (Chapter 5 presents 'defer', which makes this simpler.)
if resp.StatusCode != http.StatusOK {
resp.Body.Close()
return nil, fmt.Errorf("search query failed: %s", resp.Status)

}

var result IssuesSearchResult

if err := json.NewDecoder(resp.Body).Decode(&result); err != nil {
resp.Body.Close()
return nil, err

}

resp.Body.Close()
return &result, nil

}

The earlier examples used json.Unmarshal to decode the entire contents of a byte slice as a
single JSON entity. For variety, this example uses the streaming decoder, json.Decoder,
which allows several JSON entities to be decoded in sequence from the same stream, although
we don’t need that feature here. As you might expect, there is a corresponding streaming
encoder called json.Encoder.

The call to Decode populates the variable result. There are various ways we can format its
value nicely. The simplest, demonstrated by the issues command below, is as a text table
with fixed-width columns, but in the next section we'll see a more sophisticated approach
based on templates.

www.it-ebooks.info

http://www.it-ebooks.info/

112 CHAPTER 4. COMPOSITE TYPES

gopl.io/ch4/issues

// Issues prints a table of GitHub issues matching the search terms.
package main

import (
PP
"log"

os

"gopl.io/ch4/github"

)
func main() {
result, err := github.SearchIssues(os.Args[1:])
if err != nil {
log.Fatal(err)
}
fmt.Printf("%d issues:\n", result.TotalCount)
for _, item := range result.Items {
fmt.Printf("#%-5d %9.9s %.55s\n",
item.Number, item.User.Login, item.Title)
}
}

The command-line arguments specify the search terms. The command below queries the Go
project’s issue tracker for the list of open bugs related to JSON decoding:

$ go build gopl.io/ch4/issues

$./issues repo:golang/go is:open json decoder

13 issues:

#5680 eaigner encoding/json: set key converter on en/decoder

#6050 gopherbot encoding/json: provide tokenizer

#8658 gopherbot encoding/json: use bufio

#8462 kortschak encoding/json: UnmarshalText confuses json.Unmarshal
#5901 rsc encoding/json: allow override type marshaling

#9812 klauspost encoding/json: string tag not symmetric

#7872 extempora encoding/json: Encoder internally buffers full output
#9650 cespare encoding/json: Decoding gives errPhase when unmarshalin
#6716 gopherbot encoding/json: include field name in unmarshal error me
#6901 lukescott encoding/json, encoding/xml: option to treat unknown fi
#6384 joeshaw encoding/json: encode precise floating point integers u
#6647 btracey x/tools/cmd/godoc: display type kind of each named type
#4237 gjemiller encoding/base64: URLEncoding padding is optional

The GitHub web-service interface at https://developer.github.com/v3/ has many more
features than we have space for here.

Exercise 4.10: Modify issues to report the results in age categories, say less than a month old,
less than a year old, and more than a year old.

Exercise 4.11: Build a tool that lets users create, read, update, and delete GitHub issues from
the command line, invoking their preferred text editor when substantial text input is required.

www.it-ebooks.info

https://developer.github.com/v3/
http://www.it-ebooks.info/

SECTION 4.6. TEXT AND HTML TEMPLATES 113

Exercise 4.12: The popular web comic xkcd has a JSON interface. For example, a request to
https://xkcd.com/571/info.0.json produces a detailed description of comic 571, one of
many favorites. Download each URL (once!) and build an offline index. Write a tool xkcd
that, using this index, prints the URL and transcript of each comic that matches a search term
provided on the command line.

Exercise 4.13: The JSON-based web service of the Open Movie Database lets you search
https://omdbapi.com/ for a movie by name and download its poster image. Write a tool
poster that downloads the poster image for the movie named on the command line.

4.6. Text and HTML Templates

The previous example does only the simplest possible formatting, for which Printf is entirely
adequate. But sometimes formatting must be more elaborate, and it’s desirable to separate the
format from the code more completely. This can be done with the text/template and
html/template packages, which provide a mechanism for substituting the values of variables
into a text or HTML template.

A template is a string or file containing one or more portions enclosed in double braces,
{{...}}, called actions. Most of the string is printed literally, but the actions trigger other
behaviors. Each action contains an expression in the template language, a simple but powerful
notation for printing values, selecting struct fields, calling functions and methods, expressing
control flow such as if-else statements and range loops, and instantiating other templates.
A simple template string is shown below:

gopl.io/ch4/issuesreport

const templ = “{{.TotalCount}} issues:

{{range .Items}}-------m-mmm e
Number: {{.Number}}

User: {{.User.Login}}

Title: {{.Title | printf "%.64s"}}

Age: {{.CreatedAt | daysAgo}} days

{{end}}"

This template first prints the number of matching issues, then prints the number, user, title,
and age in days of each one. Within an action, there is a notion of the current value, referred
to as “dot” and written as “.”, a period. The dot initially refers to the template’s parameter,
which will be a github.IssuesSearchResult in this example. The {{.TotalCount}} action
expands to the value of the TotalCount field, printed in the usual way. The
{{range .Items}} and {{end}} actions create a loop, so the text between them is expanded

multiple times, with dot bound to successive elements of Items.

Within an action, the | notation makes the result of one operation the argument of another,
analogous to a Unix shell pipeline. In the case of Title, the second operation is the printf
function, which is a built-in synonym for fmt.Sprintf in all templates. For Age, the second
operation is the following function, daysAgo, which converts the CreatedAt field into an

www.it-ebooks.info

https://xkcd.com/571/info.0.json
https://omdbapi.com/
http://www.it-ebooks.info/

114 CHAPTER 4. COMPOSITE TYPES

elapsed time, using time.Since:

func daysAgo(t time.Time) int {
return int(time.Since(t).Hours() / 24)
}

Notice that the type of CreatedAt is time.Time, not string. In the same way that a type may
control its string formatting ($2.5) by defining certain methods, a type may also define meth-
ods to control its JSON marshaling and unmarshaling behavior. The JSON-marshaled value
of a time.Time is a string in a standard format.

Producing output with a template is a two-step process. First we must parse the template into
a suitable internal representation, and then execute it on specific inputs. Parsing need be done
only once. The code below creates and parses the template templ defined above. Note the
chaining of method calls: template.New creates and returns a template; Funcs adds daysAgo
to the set of functions accessible within this template, then returns that template; finally, Parse
is called on the result.

report, err := template.New("report").
Funcs(template.FuncMap{"daysAgo": daysAgo}).
Parse(templ)

if err != nil {

log.Fatal(err)
}

Because templates are usually fixed at compile time, failure to parse a template indicates a fatal
bug in the program. The template.Must helper function makes error handling more con-
venient: it accepts a template and an error, checks that the error is nil (and panics otherwise),
and then returns the template. We'll come back to this idea in Section 5.9.

Once the template has been created, augmented with daysAgo, parsed, and checked, we can
execute it using a github.IssuesSearchResult as the data source and os.Stdout as the des-
tination:

var report = template.Must(template.New("issuelist").
Funcs(template.FuncMap{"daysAgo": daysAgo}).
Parse(templ))

func main() {
result, err := github.SearchIssues(os.Args[1:])
if err != nil {
log.Fatal(err)
}
if err := report.Execute(os.Stdout, result); err !l= nil {
log.Fatal(err)
}
}

The program prints a plain text report like this:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 4.6. TEXT AND HTML TEMPLATES 115

$ go build gopl.io/ch4/issuesreport
$./issuesreport repo:golang/go is:open json decoder
13 issues:

Number: 5680

User: eaigner
Title: encoding/json: set key converter on en/decoder
Age: 750 days

Number: 6050

User: gopherbot

Title: encoding/json: provide tokenizer
Age: 695 days

Now let’s turn to the html/template package. It uses the same API and expression language
as text/template but adds features for automatic and context-appropriate escaping of strings
appearing within HTML, JavaScript, CSS, or URLs. These features can help avoid a perennial
security problem of HTML generation, an injection attack, in which an adversary crafts a
string value like the title of an issue to include malicious code that, when improperly escaped
by a template, gives them control over the page.

The template below prints the list of issues as an HTML table. Note the different import:

gopl.io/ch4/issueshtml

import "html/template™

var issuelist = template.Must(template.New("issuelist").Parse("
<h1>{{.TotalCount}} issues</h1>
<table>
<tr style='text-align: left'>
<th>#</th>
<th>State</th>
<th>User</th>
<th>Title</th>
</tr>
{{range .Items}}
<tr>
<td>{{.Number}}</td>
<td>{{.State}}</td>
<td>{{.User.Login}}</td>
<td>{{.Title}}</td>
</tr>
{{end}}
</table>
"))

The command below executes the new template on the results of a slightly different query:

www.it-ebooks.info

http://www.it-ebooks.info/

116 CHAPTER 4. COMPOSITE TYPES

$ go build gopl.io/ch4/issueshtml
$./issueshtml repo:golang/go commenter:gopherbot json encoder >issues.html

Figure 4.4 shows the appearance of the table in a web browser. The links connect to the
appropriate web pages at GitHub.

Issues.html x

> CnH file://fhome/gopher/issues.html

.
17 issues

State User Title

7872 open extemporalgenome encoding/json: Encoder internally buffers full output

5683 open gopherbot encoding/json: performance slower than expected

6901 open lukescott encoding/json, encoding/xml: option to treat unknown fields as an error
4474 closed gopherbot inglison; j i =

4747 closed gopherbot

7767 closed gopherbot

4606 closed gopherbot
8582 closed matt-duch
6339 closed gopherbot coding/json: Marshe i i

7337 closed gopherbot encoding/json: make json” tag user- set(abl

11508 closed josharian cmd/go: trace http viewer: "http: multiple response. WriteHeader calls”

1017 closed gopherbot json crash on {} input

8592 closed gopherbot encoding/json: No way to avoid HTMLEscape when Marshal()-ing

7846 closed gopherbot oding/ison: Slice i MakeSli s ;
2761 closed gopherbot Marshaler cannot work with omitempty in encoding/json

1133 closed gopherbot encoding/asn]: inconsistent APIs

7841 closed gopherbot reflect: reflect.unpackEface reflect/value.go:174 unexpected fault address 0x0

Figure 4.4. An HTML table of Go project issues relating to JSON encoding.

None of the issues in Figure 4.4 pose a challenge for HTML, but we can see the effect more
clearly with issues whose titles contain HTML metacharacters like & and <. We've selected two
such issues for this example:

$./issueshtml repo:golang/go 3133 10535 >issues2.html

Figure 4.5 shows the result of this query. Notice that the html/template package automati-
cally HTML-escaped the titles so that they appear literally. Had we used the text/template
package by mistake, the four-character string "&1t; " would have been rendered as a less-than
character '<', and the string "<1ink>" would have become a link element, changing the
structure of the HTML document and perhaps compromising its security.

We can suppress this auto-escaping behavior for fields that contain trusted HTML data by
using the named string type template.HTML instead of string. Similar named types exist for
trusted JavaScript, CSS, and URLs. The program below demonstrates the principle by using
two fields with the same value but different types: A is a string and B is a template.HTML.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 4.6. TEXT AND HTML TEMPLATES 117

Issues2.html *

file:///fhome/gopher/issues2.html

2 issues

State User Title
3133 closed ukai
0535 open dvyukov

Figure 4.5. HTML metacharacters in issue titles are correctly displayed.

gopl.io/ch4/autoescape

func main() {
const templ = “<p>A: {{.A}}</p><p>B: {{.B}}</p>"
t := template.Must(template.New("escape").Parse(templ))
var data struct {

A string // untrusted plain text
B template.HTML // trusted HTML

}

data.A = "Hellol"

data.B = "Hello!"

if err := t.Execute(os.Stdout, data); err != nil {
log.Fatal(err)

}

}

Figure 4.6 shows the template’s output as it appears in a browser. We can see that A was
subject to escaping but B was not.

autoescape.htm| X
C # file:///home/gopher/gobook/autoescape.htmi

A: Hellol

B: Hello!

Figure 4.6. String values are HTML-escaped but template.HTML values are not.

We have space here to show only the most basic features of the template system. As always, for
more information, consult the package documentation:

$ go doc text/template
$ go doc html/template

Exercise 4.14: Create a web server that queries GitHub once and then allows navigation of the
list of bug reports, milestones, and users.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

5

Functions

A function lets us wrap up a sequence of statements as a unit that can be called from elsewhere
in a program, perhaps multiple times. Functions make it possible to break a big job into
smaller pieces that might well be written by different people separated by both time and space.
A function hides its implementation details from its users. For all of these reasons, functions
are a critical part of any programming language.

We've seen many functions already. Now let’s take time for a more thorough discussion. The
running example of this chapter is a web crawler, that is, the component of a web search
engine responsible for fetching web pages, discovering the links within them, fetching the
pages identified by those links, and so on. A web crawler gives us ample opportunity to
explore recursion, anonymous functions, error handling, and aspects of functions that are
unique to Go.

5.1. Function Declarations

A function declaration has a name, a list of parameters, an optional list of results, and a body:

func name(parameter-1list) (result-list) {
body
}

The parameter list specifies the names and types of the function’s parameters, which are the
local variables whose values or arguments are supplied by the caller. The result list specifies
the types of the values that the function returns. If the function returns one unnamed result
or no results at all, parentheses are optional and usually omitted. Leaving off the result list
entirely declares a function that does not return any value and is called only for its effects. In
the hypot function,

119

www.it-ebooks.info

http://www.it-ebooks.info/

120 CHAPTER 5. FUNCTIONS

func hypot(x, y float64) float64 {
return math.Sgrt(x*x + y*y)

}
fmt.Println(hypot(3, 4)) // "5"

x and y are parameters in the declaration, 3 and 4 are arguments of the call, and the function
returns a float64 value.

Like parameters, results may be named. In that case, each name declares a local variable ini-
tialized to the zero value for its type.

A function that has a result list must end with a return statement unless execution clearly
cannot reach the end of the function, perhaps because the function ends with a call to panic
or an infinite for loop with no break.

As we saw with hypot, a sequence of parameters or results of the same type can be factored so
that the type itself is written only once. These two declarations are equivalent:

func f(i, j, k int, s, t string) {/* ... ¥/}
func f(i int, j int, k int, s string, t string) { /* ... */ }

Here are four ways to declare a function with two parameters and one result, all of type int.
The blank identifier can be used to emphasize that a parameter is unused.

func add(x int, y int) int { return x +y }

func sub(x, y int) (z int) {z=x-y; return }

func first(x int, _ int) int { return x }

func zero(int, int) int { return 0 }

fmt.Printf("%T\n", add) // "func(int, int) int"

fmt.Printf("%T\n", sub) // "func(int, int) int"

fmt.Printf("%T\n", first) // "func(int, int) int"

fmt.Printf("%T\n", zero) // "func(int, int) int"

The type of a function is sometimes called its signature. Two functions have the same type or
signature if they have the same sequence of parameter types and the same sequence of result
types. The names of parameters and results don’t affect the type, nor does whether or not they
were declared using the factored form.

Every function call must provide an argument for each parameter, in the order in which the
parameters were declared. Go has no concept of default parameter values, nor any way to
specify arguments by name, so the names of parameters and results don’t matter to the caller
except as documentation.

Parameters are local variables within the body of the function, with their initial values set to
the arguments supplied by the caller. Function parameters and named results are variables in
the same lexical block as the function’s outermost local variables.

Arguments are passed by value, so the function receives a copy of each argument; modifica-
tions to the copy do not affect the caller. However, if the argument contains some kind of ref-
erence, like a pointer, slice, map, function, or channel, then the caller may be affected by any
modifications the function makes to variables indirectly referred to by the argument.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 5.2. RECURSION 121

You may occasionally encounter a function declaration without a body, indicating that the
function is implemented in a language other than Go. Such a declaration defines the function
signature.

package math

func Sin(x float64) float64 // implemented in assembly language

5.2. Recursion

Functions may be recursive, that is, they may call themselves, either directly or indirectly.
Recursion is a powerful technique for many problems, and of course it’s essential for process-
ing recursive data structures. In Section 4.4, we used recursion over a tree to implement a
simple insertion sort. In this section, we'll use it again for processing HTML documents.

The example program below uses a non-standard package, golang.org/x/net/html, which
provides an HTML parser. The golang.org/x/... repositories hold packages designed and
maintained by the Go team for applications such as networking, internationalized text
processing, mobile platforms, image manipulation, cryptography, and developer tools. These
packages are not in the standard library because they’re still under development or because
they're rarely needed by the majority of Go programmers.

The parts of the golang.org/x/net/html API that we'll need are shown below. The function
html.Parse reads a sequence of bytes, parses them, and returns the root of the HTML doc-
ument tree, which is an html.Node. HTML has several kinds of nodes—text, comments, and
so on—but here we are concerned only with element nodes of the form <name key="value'>.

golang.org/x/net/html

package html

type Node struct {
Type NodeType
Data string
Attr [JAttribute
FirstChild, NextSibling *Node

}

type NodeType int32

const (
ErrorNode NodeType = iota
TextNode
DocumentNode
ElementNode
CommentNode
DoctypeNode

www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 5. FUNCTIONS

type Attribute struct {
Key, Val string

}

func Parse(r io.Reader) (*Node, error)

The main function parses the standard input as HTML, extracts the links using a recursive
visit function, and prints each discovered link:

gopl.io/ch5/findlinks1

// Findlinksl prints the links in an HTML document read from standard input.
package main

import (
PP
"os

"golang.org/x/net/html"

)
func main() {
doc, err := html.Parse(os.Stdin)
if err != nil {
fmt.Fprintf(os.Stderr, "findlinksl: %v\n", err)
os.Exit(1)
}
for _, link := range visit(nil, doc) {
fmt.Println(link)
}
}
The visit function traverses an HTML node tree, extracts the link from the href attribute of
each anchor element , appends the links to a slice of strings, and returns the

resulting slice:

// visit appends to links each link found in n and returns the result.
func visit(links []string, n *html.Node) []string {
if n.Type == html.ElementNode && n.Data == "a" {
for _, a := range n.Attr {
if a.Key == "href" {
links = append(links, a.val)
}
}
}
for ¢ := n.FirstChild; c != nil; c = c.NextSibling {
links = visit(links, c)
}

return links

}

To descend the tree for a node n, visit recursively calls itself for each of n’s children, which
are held in the FirstChild linked list.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 5.2. RECURSION 123

Let’s run findlinks on the Go home page, piping the output of fetch (§1.5) to the input of
findlinks. We've edited the output slightly for brevity.

$ go build gopl.io/chl/fetch

$ go build gopl.io/ch5/findlinks1

$./fetch https://golang.org | ./findlinksil
#

/doc/

/pkg/

/help/

/blog/

http://play.golang.org/

//tour.golang.org/

https://golang.org/dl/

//blog.golang.org/

/LICENSE

/doc/tos.html
http://www.google.com/intl/en/policies/privacy/

Notice the variety of forms of links that appear in the page. Later we'll see how to resolve
them relative to the base URL, https://golang.org, to make absolute URLs.

The next program uses recursion over the HTML node tree to print the structure of the tree in
outline. As it encounters each element, it pushes the element’s tag onto a stack, then prints the
stack.

gopl.io/ch5/outline

func main() {

doc, err := html.Parse(os.Stdin)

if err != nil {
fmt.Fprintf(os.Stderr, "outline: %v\n", err)
os.Exit(1)

}

outline(nil, doc)
}
func outline(stack []string, n *html.Node) {
if n.Type == html.ElementNode {
stack = append(stack, n.Data) // push tag
fmt.Println(stack)

}
for ¢ := n.FirstChild; c != nil; ¢ = c.NextSibling {
outline(stack, c)

}
}

Note one subtlety: although outline “pushes” an element on stack, there is no corresponding
pop. When outline calls itself recursively, the callee receives a copy of stack. Although the
callee may append elements to this slice, modifying its underlying array and perhaps even
allocating a new array, it doesn’t modify the initial elements that are visible to the caller, so
when the function returns, the caller’s stack is as it was before the call.

www.it-ebooks.info

http://www.google.com/intl/en/policies/privacy/
https://golang.org
http://www.it-ebooks.info/

124 CHAPTER 5. FUNCTIONS

Here’s the outline of https://golang.org, again edited for brevity:

$ go build gopl.io/ch5/outline
$./fetch https://golang.org | ./outline
[html]

[html head]

[html head meta]

[html head title]

[html head 1link]

[html body]

[html body div]

[html body div]

[html body div div]

[html body div div form]

[html body div div form div]
[html body div div form div a]

As you can see by experimenting with outline, most HTML documents can be processed
with only a few levels of recursion, but it's not hard to construct pathological web pages that
require extremely deep recursion.

Many programming language implementations use a fixed-size function call stack; sizes from
64KB to 2MB are typical. Fixed-size stacks impose a limit on the depth of recursion, so one
must be careful to avoid a stack overflow when traversing large data structures recursively;
fixed-size stacks may even pose a security risk. In contrast, typical Go implementations use
variable-size stacks that start small and grow as needed up to a limit on the order of a gigabyte.
This lets us use recursion safely and without worrying about overflow.

Exercise 5.1: Change the findlinks program to traverse the n.FirstChild linked list using
recursive calls to visit instead of a loop.

Exercise 5.2: Write a function to populate a mapping from element names—p, div, span, and
so on—to the number of elements with that name in an HTML document tree.

Exercise 5.3: Write a function to print the contents of all text nodes in an HTML document
tree. Do not descend into <script> or <style> elements, since their contents are not visible
in a web browser.

Exercise 5.4: Extend the visit function so that it extracts other kinds of links from the doc-
ument, such as images, scripts, and style sheets.

5.3. Multiple Return Values

A function can return more than one result. We've seen many examples of functions from
standard packages that return two values, the desired computational result and an error value
or boolean that indicates whether the computation worked. The next example shows how to
write one of our own.

www.it-ebooks.info

https://golang.org
http://www.it-ebooks.info/

SECTION 5.3. MULTIPLE RETURN VALUES 125

The program below is a variation of findlinks that makes the HTTP request itself so that we
no longer need to run fetch. Because the HTTP and parsing operations can fail, findLinks
declares two results: the list of discovered links and an error. Incidentally, the HTML parser
can usually recover from bad input and construct a document containing error nodes, so
Parse rarely fails; when it does, it’s typically due to underlying I/O errors.

gopl.io/ch5/findlinks2

func main() {
for _, url := range os.Args[1l:] {

links, err := findLinks(url)

if err != nil {
fmt.Fprintf(os.Stderr, "findlinks2: %v\n", err)
continue

}

for _, link := range links {
fmt.Println(link)

}

// findLinks performs an HTTP GET request for url, parses the
// response as HTML, and extracts and returns the links.
func findLinks(url string) ([]string, error) {
resp, err := http.Get(url)
if err != nil {
return nil, err

}
if resp.StatusCode != http.StatusOK {

resp.Body.Close()
return nil, fmt.Errorf("getting %s: %s", url, resp.Status)

}

doc, err := html.Parse(resp.Body)
resp.Body.Close()
if err != nil {
return nil, fmt.Errorf("parsing %s as HTML: %v", url, err)

}

return visit(nil, doc), nil

}

There are four return statements in findLinks, each of which returns a pair of values. The
first three returns cause the function to pass the underlying errors from the http and html
packages on to the caller. In the first case, the error is returned unchanged; in the second and
third, it is augmented with additional context information by fmt.Errorf (§7.8). If find-
Links is successful, the final return statement returns the slice of links, with no error.

We must ensure that resp.Body is closed so that network resources are properly released even
in case of error. Go’s garbage collector recycles unused memory, but do not assume it will
release unused operating system resources like open files and network connections. They
should be closed explicitly.

www.it-ebooks.info

http://www.it-ebooks.info/

126 CHAPTER 5. FUNCTIONS

The result of calling a multi-valued function is a tuple of values. The caller of such a function
must explicitly assign the values to variables if any of them are to be used:

links, err := findLinks(url)
To ignore one of the values, assign it to the blank identifier:

links, _ := findLinks(url) // errors ignored

The result of a multi-valued call may itself be returned from a (multi-valued) calling function,
as in this function that behaves like findLinks but logs its argument:

func findLinksLog(url string) ([]string, error) {
log.Printf("findLinks %s", url)
return findLinks(url)

}

A multi-valued call may appear as the sole argument when calling a function of multiple
parameters. Although rarely used in production code, this feature is sometimes convenient
during debugging since it lets us print all the results of a call using a single statement. The two
print statements below have the same effect.

log.Println(findLinks(url))

links, err := findLinks(url)
log.Println(links, err)

Well-chosen names can document the significance of a function’s results. Names are particu-
larly valuable when a function returns multiple results of the same type, like

func Size(rect image.Rectangle) (width, height int)
func Split(path string) (dir, file string)
func HourMinSec(t time.Time) (hour, minute, second int)

but it's not always necessary to name multiple results solely for documentation. For instance,
convention dictates that a final bool result indicates success; an error result often needs no
explanation.

In a function with named results, the operands of a return statement may be omitted. This is
called a bare return.

// CountWordsAndImages does an HTTP GET request for the HTML
// document url and returns the number of words and images in it.
func CountWordsAndImages(url string) (words, images int, err error) {
resp, err := http.Get(url)
if err != nil {
return

}

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 5.4. ERRORS 127

doc, err := html.Parse(resp.Body)
resp.Body.Close()

if err != nil {
err = fmt.Errorf("parsing HTML: %s", err)
return
}
words, images = countWordsAndImages(doc)
return
}
func countWordsAndImages(n *html.Node) (words, images int) { /* ... */ }

A bare return is a shorthand way to return each of the named result variables in order, so in
the function above, each return statement is equivalent to

return words, images, err

In functions like this one, with many return statements and several results, bare returns can
reduce code duplication, but they rarely make code easier to understand. For instance, it’s not
obvious at first glance that the two early returns are equivalent to return @, 0, err (because
the result variables words and images are initialized to their zero values) and that the final
return is equivalent to return words, images, nil. For this reason, bare returns are best
used sparingly.

Exercise 5.5: Implement countWordsAndImages. (See Exercise 4.9 for word-splitting.)

Exercise 5.6: Modify the corner function in gopl.io/ch3/surface (§3.2) to use named
results and a bare return statement.

5.4. Errors

Some functions always succeed at their task. For example, strings.Contains and str-
conv.FormatBool have well-defined results for all possible argument values and cannot fail—
barring catastrophic and unpredictable scenarios like running out of memory, where the
symptom is far from the cause and from which there’s little hope of recovery.

Other functions always succeed so long as their preconditions are met. For example, the
time.Date function always constructs a time.Time from its components—year, month, and
so on—unless the last argument (the time zone) is nil, in which case it panics. This panicisa
sure sign of a bug in the calling code and should never happen in a well-written program.

For many other functions, even in a well-written program, success is not assured because it
depends on factors beyond the programmer’s control. Any function that does I/O, for exam-
ple, must confront the possibility of error, and only a naive programmer believes a simple read
or write cannot fail. Indeed, it's when the most reliable operations fail unexpectedly that we
most need to know why.

Errors are thus an important part of a package’s API or an application’s user interface, and fail-
ure is just one of several expected behaviors. This is the approach Go takes to error handling.

www.it-ebooks.info

http://www.it-ebooks.info/

128 CHAPTER 5. FUNCTIONS

A function for which failure is an expected behavior returns an additional result, convention-
ally the last one. If the failure has only one possible cause, the result is a boolean, usually
called ok, as in this example of a cache lookup that always succeeds unless there was no entry
for that key:

value, ok := cache.Lookup(key)
if lok {

// ...cache[key] does not exist...
}

More often, and especially for I/O, the failure may have a variety of causes for which the caller
will need an explanation. In such cases, the type of the additional result is error.

The built-in type error is an interface type. We'll see more of what this means and its impli-
cations for error handling in Chapter 7. For now it’s enough to know that an error may be nil
or non-nil, that nil implies success and non-nil implies failure, and that a non-nil error has
an error message string which we can obtain by calling its Error method or print by calling
fmt.Println(err) or fmt.Printf("%v", err).

Usually when a function returns a non-nil error, its other results are undefined and should be
ignored. However, a few functions may return partial results in error cases. For example, if an
error occurs while reading from a file, a call to Read returns the number of bytes it was able to
read and an error value describing the problem. For correct behavior, some callers may need
to process the incomplete data before handling the error, so it is important that such functions
clearly document their results.

Go’s approach sets it apart from many other languages in which failures are reported using
exceptions, not ordinary values. Although Go does have an exception mechanism of sorts, as
we will see in Section 5.9, it is used only for reporting truly unexpected errors that indicate a
bug, not the routine errors that a robust program should be built to expect.

The reason for this design is that exceptions tend to entangle the description of an error with
the control flow required to handle it, often leading to an undesirable outcome: routine errors
are reported to the end user in the form of an incomprehensible stack trace, full of
information about the structure of the program but lacking intelligible context about what
went wrong.

By contrast, Go programs use ordinary control-flow mechanisms like if and return to
respond to errors. This style undeniably demands that more attention be paid to error-han-
dling logic, but that is precisely the point.

5.4.1. Error-Handling Strategies

When a function call returns an error, it's the caller’s responsibility to check it and take
appropriate action. Depending on the situation, there may be a number of possibilities. Let’s
take a look at five of them.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 5.4. ERRORS 129

First, and most common, is to propagate the error, so that a failure in a subroutine becomes a
failure of the calling routine. We saw examples of this in the findLinks function of
Section 5.3. If the call to http.Get fails, findLinks returns the HTTP error to the caller
without further ado:

resp, err := http.Get(url)
if err != nil {
return nil, err

}

In contrast, if the call to html.Parse fails, findLinks does not return the HTML parser’s
error directly because it lacks two crucial pieces of information: that the error occurred in the
parser, and the URL of the document that was being parsed. In this case, findLinks con-
structs a new error message that includes both pieces of information as well as the underlying
parse error:

doc, err := html.Parse(resp.Body)
resp.Body.Close()
if err = nil {

return nil, fmt.Errorf("parsing %s as HTML: %v", url, err)

}

The fmt.Errorf function formats an error message using fmt.Sprintf and returns a new
error value. We use it to build descriptive errors by successively prefixing additional context
information to the original error message. When the error is ultimately handled by the
program’s main function, it should provide a clear causal chain from the root problem to the
overall failure, reminiscent of a NASA accident investigation:

genesis: crashed: no parachute: G-switch failed: bad relay orientation

Because error messages are frequently chained together, message strings should not be capital-
ized and newlines should be avoided. The resulting errors may be long, but they will be self-
contained when found by tools like grep.

When designing error messages, be deliberate, so that each one is a meaningful description of
the problem with sufficient and relevant detail, and be consistent, so that errors returned by
the same function or by a group of functions in the same package are similar in form and can
be dealt with in the same way.

For example, the os package guarantees that every error returned by a file operation, such as
0s.0pen or the Read, Write, or Close methods of an open file, describes not just the nature of
the failure (permission denied, no such directory, and so on) but also the name of the file, so
the caller needn’t include this information in the error message it constructs.

In general, the call f(x) is responsible for reporting the attempted operation f and the argu-
ment value x as they relate to the context of the error. The caller is responsible for adding fur-
ther information that it has but the call f(x) does not, such as the URL in the call to
html.Parse above.

www.it-ebooks.info

http://www.it-ebooks.info/

130 CHAPTER 5. FUNCTIONS

Let’s move on to the second strategy for handling errors. For errors that represent transient or
unpredictable problems, it may make sense to retry the failed operation, possibly with a delay
between tries, and perhaps with a limit on the number of attempts or the time spent trying
before giving up entirely.

gopl.io/ch5/wait
// WaitForServer attempts to contact the server of a URL.
// It tries for one minute using exponential back-off.
// It reports an error if all attempts fail.
func WaitForServer(url string) error {
const timeout = 1 * time.Minute
deadline := time.Now().Add(timeout)

for tries := 0; time.Now().Before(deadline); tries++ {
_, err := http.Head(url)
if err == nil {

return nil // success

}

log.Printf("server not responding (%s); retrying...", err)
time.Sleep(time.Second << uint(tries)) // exponential back-off

}

return fmt.Errorf("server %s failed to respond after %s", url, timeout)

}

Third, if progress is impossible, the caller can print the error and stop the program gracefully,
but this course of action should generally be reserved for the main package of a program.
Library functions should usually propagate errors to the caller, unless the error is a sign of an
internal inconsistency—that is, a bug.

// (In function main.)

if err := WaitForServer(url); err != nil {
fmt.Fprintf(os.Stderr, "Site is down: %v\n", err)
os.Exit(1)

}

A more convenient way to achieve the same effect is to call log.Fatalf. As with all the log
functions, by default it prefixes the time and date to the error message.

if err := WaitForServer(url); err != nil {
log.Fatalf("Site is down: %v\n", err)

}
The default format is helpful in a long-running server, but less so for an interactive tool:
2006/01/02 15:04:05 Site is down: no such domain: bad.gopl.io

For a more attractive output, we can set the prefix used by the log package to the name of the
command, and suppress the display of the date and time:

log.SetPrefix("wait: ")
log.SetFlags(9)

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 5.4. ERRORS 131

Fourth, in some cases, it’s sufficient just to log the error and then continue, perhaps with
reduced functionality. Again there’s a choice between using the log package, which adds the
usual prefix:

if err := Ping(); err != nil {

log.Printf("ping failed: %v; networking disabled", err)
}

and printing directly to the standard error stream:

if err := Ping(); err != nil {
fmt.Fprintf(os.Stderr, "ping failed: %v; networking disabled\n", err)
}

(All 1og functions append a newline if one is not already present.)

And fifth and finally, in rare cases we can safely ignore an error entirely:

dir, err := ioutil.TempDir(
if err != nil {
return fmt.Errorf("failed to create temp dir: %v", err)

, "scratch")

}

// ...use temp dir...

os.RemoveAll(dir) // ignore errors; $TMPDIR is cleaned periodically

The call to os.RemoveAll may fail, but the program ignores it because the operating system
periodically cleans out the temporary directory. In this case, discarding the error was inten-
tional, but the program logic would be the same had we forgotten to deal with it. Get into the
habit of considering errors after every function call, and when you deliberately ignore one,
document your intention clearly.

Error handling in Go has a particular rhythm. After checking an error, failure is usually dealt
with before success. If failure causes the function to return, the logic for success is not
indented within an else block but follows at the outer level. Functions tend to exhibit a com-
mon structure, with a series of initial checks to reject errors, followed by the substance of the
function at the end, minimally indented.

5.4.2. End of File (EOF)

Usually, the variety of errors that a function may return is interesting to the end user but not
to the intervening program logic. On occasion, however, a program must take different
actions depending on the kind of error that has occurred. Consider an attempt to read n bytes
of data from a file. If n is chosen to be the length of the file, any error represents a failure. On
the other hand, if the caller repeatedly tries to read fixed-size chunks until the file is exhausted,
the caller must respond differently to an end-of-file condition than it does to all other errors.
For this reason, the io package guarantees that any read failure caused by an end-of-file condi-
tion is always reported by a distinguished error, io. EOF, which is defined as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

132 CHAPTER 5. FUNCTIONS

package io
import "errors"

// EOF is the error returned by Read when no more input is available.
var EOF = errors.New("EOF")

The caller can detect this condition using a simple comparison, as in the loop below, which
reads runes from the standard input. (The charcount program in Section 4.3 provides a more
complete example.)

in := bufio.NewReader(os.Stdin)
for {
r, _, err := in.ReadRune()
if err == i0.EOF {
break // finished reading

}
if err != nil {
return fmt.Errorf("read failed: %v", err)
}
// ...use r...

}

Since in an end-of-file condition there is no information to report besides the fact of it, io. EOF
has a fixed error message, "EOF". For other errors, we may need to report both the quality and
quantity of the error, so to speak, so a fixed error value will not do. In Section 7.11, well
present a more systematic way to distinguish certain error values from others.

5.5. Function Values

Functions are first-class values in Go: like other values, function values have types, and they
may be assigned to variables or passed to or returned from functions. A function value may
be called like any other function. For example:

func square(n int) int { return n * n }
func negative(n int) int { return -n }
func product(m, n int) int { return m * n }

f := square
fmt.Println(f(3)) // "9"

f = negative
fmt.Println(f(3)) // "-3"
fmt.Printf("%T\n", f) // "func(int) int"

f = product // compile error: can't assign f(int, int) int to f(int) int
The zero value of a function type is nil. Calling a nil function value causes a panic:

var f func(int) int
f(3) // panic: call of nil function

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 5.5. FUNCTION VALUES 133

Function values may be compared with nil:

var f func(int) int
if £ 1= nil {

£(3)
}

but they are not comparable, so they may not be compared against each other or used as keys
in a map.

Function values let us parameterize our functions over not just data, but behavior too. The
standard libraries contain many examples. For instance, strings.Map applies a function to
each character of a string, joining the results to make another string.

func addi(r rune) rune { return r + 1 }

fmt.Println(strings.Map(addl, "HAL-9000")) // "IBM.:111"
fmt.Println(strings.Map(add1l, "VMS")) // "WNT"

fmt.Println(strings.Map(addl, "Admix")) // "Benjy"

The findLinks function from Section 5.2 uses a helper function, visit, to visit all the nodes
in an HTML document and apply an action to each one. Using a function value, we can sepa-
rate the logic for tree traversal from the logic for the action to be applied to each node, letting
us reuse the traversal with different actions.

gopl.io/ch5/outline2

// forEachNode calls the functions pre(x) and post(x) for each node
// X in the tree rooted at n. Both functions are optional.
// pre is called before the children are visited (preorder) and
// post is called after (postorder).
func forEachNode(n *html.Node, pre, post func(n *html.Node)) {

if pre != nil {

pre(n)
}

for ¢ := n.FirstChild; c != nil; c = c.NextSibling {
forEachNode(c, pre, post)

}

if post != nil {
post(n)

}

}

The forEachNode function accepts two function arguments, one to call before a node’s chil-
dren are visited and one to call after. This arrangement gives the caller a great deal of flexi-
bility. For example, the functions startElement and endElement print the start and end tags
of an HTML element like . . .:

var depth int

www.it-ebooks.info

http://www.it-ebooks.info/

134 CHAPTER 5. FUNCTIONS

func startElement(n *html.Node) {
if n.Type == html.ElementNode {
fmt.Printf("%*s<%s>\n", depth*2, "", n.Data)
depth++

}

func endElement(n *html.Node) {
if n.Type == html.ElementNode {
depth--
fmt.Printf("%*s</%s>\n", depth*2, "", n.Data)

}

The functions also indent the output using another fmt.Printf trick. The * adverb in %*s
prints a string padded with a variable number of spaces. The width and the string are
provided by the arguments depth*2 and "".

If we call forEachNode on an HTML document, like this:

forEachNode(doc, startElement, endElement)

we get a more elaborate variation on the output of our earlier outline program:

$ go build gopl.io/ch5/outline2
$./outline2 http://gopl.io
<html>
<head>
<meta>
</meta>
<title>
</title>
<style>
</style>
</head>
<body>
<table>
<tbody>
<tr>
<td>
<a>

Exercise 5.7: Develop startElement and endElement into a general HTML pretty-printer.
Print comment nodes, text nodes, and the attributes of each element (). Use
short forms like instead of when an element has no children. Write a
test to ensure that the output can be parsed successfully. (See Chapter 11.)

Exercise 5.8: Modify forEachNode so that the pre and post functions return a boolean result
indicating whether to continue the traversal. Use it to write a function ElementByID with the

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 5.6. ANONYMOUS FUNCTIONS 135

following signature that finds the first HTML element with the specified id attribute. The
function should stop the traversal as soon as a match is found.

func ElementByID(doc *html.Node, id string) *html.Node

Exercise 5.9: Write a function expand(s string, f func(string) string) string that
replaces each substring “$foo” within s by the text returned by f("foo").

5.6. Anonymous Functions

Named functions can be declared only at the package level, but we can use a function literal to
denote a function value within any expression. A function literal is written like a function
declaration, but without a name following the func keyword. It is an expression, and its value
is called an anonymous function.

Function literals let us define a function at its point of use. As an example, the earlier call to
strings.Map can be rewritten as

strings.Map(func(r rune) rune { return r + 1 }, "HAL-9000")

More importantly, functions defined in this way have access to the entire lexical environment,
so the inner function can refer to variables from the enclosing function, as this example
shows:

gopl.io/ch5/squares

// squares returns a function that returns
// the next square number each time it is called.
func squares() func() int {

var x int
return func() int {
X++
return x * x
}
}
func main() {
f := squares()
fmt.Println(f()) // "1"
fmt.Println(f()) // "4"
fmt.Println(f()) // "9"
fmt.Println(f()) // "16"
}

The function squares returns another function, of type func() int. A call to squares cre-
ates a local variable x and returns an anonymous function that, each time it is called, incre-
ments x and returns its square. A second call to squares would create a second variable x and
return a new anonymous function which increments that variable.

The squares example demonstrates that function values are not just code but can have state.
The anonymous inner function can access and update the local variables of the enclosing

www.it-ebooks.info

http://www.it-ebooks.info/

136 CHAPTER 5. FUNCTIONS

function squares. These hidden variable references are why we classify functions as reference
types and why function values are not comparable. Function values like these are imple-
mented using a technique called closures, and Go programmers often use this term for func-
tion values.

Here again we see an example where the lifetime of a variable is not determined by its scope:
the variable x exists after squares has returned within main, even though x is hidden inside f.

As a somewhat academic example of anonymous functions, consider the problem of com-
puting a sequence of computer science courses that satisfies the prerequisite requirements of
each one. The prerequisites are given in the prereqgs table below, which is a mapping from
each course to the list of courses that must be completed before it.

gopl.io/ch5/toposort

// prereqs maps computer science courses to their prerequisites.
var prereqs = map[string][]string{

"algorithms": {"data structures"},

"calculus": {"linear algebra"},

"compilers": {
"data structures”,
"formal languages",
"computer organization”,

}J

"data structures": {"discrete math"},

"databases": {"data structures"},

"discrete math": {"intro to programming"},

"formal languages": {"discrete math"},

"networks": {"operating systems"},

"operating systems": {"data structures", "computer organization"},

"programming languages": {"data structures", "computer organization"},

}

This kind of problem is known as topological sorting. Conceptually, the prerequisite
information forms a directed graph with a node for each course and edges from each course to
the courses that it depends on. The graph is acyclic: there is no path from a course that leads
back to itself. We can compute a valid sequence using depth-first search through the graph
with the code below:

func main() {
for i, course := range topoSort(prereqgs) {
fmt.Printf("%d:\t%s\n", i+l, course)
}
}

func topoSort(m map[string][]string) []string {
var order []string
seen := make(map[string]bool)
var visitAll func(items []string)

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 5.6. ANONYMOUS FUNCTIONS 137

visitAll = func(items []string) {
for _, item := range items {
if lseen[item] {
seen[item] = true
visitAll(m[item])
order = append(order, item)

}

var keys []string
for key := range m {

keys = append(keys, key)
}
sort.Strings(keys)
visitAll(keys)
return order

}

When an anonymous function requires recursion, as in this example, we must first declare a
variable, and then assign the anonymous function to that variable. Had these two steps been
combined in the declaration, the function literal would not be within the scope of the variable
visitAll so it would have no way to call itself recursively:

visitAll := func(items []string) {
/...
visitAll(m[item]) // compile error: undefined: visitAll
/] ...

}

The output of the toposort program is shown below. It is deterministic, an often-desirable
property that doesn’t always come for free. Here, the values of the prereqs map are slices, not
more maps, so their iteration order is deterministic, and we sorted the keys of prereqs before
making the initial calls to visitAll.

1: intro to programming
2: discrete math

3: data structures

4: algorithms

5: linear algebra

6: calculus

7: formal languages

8: computer organization
9: compilers

10: databases

11: operating systems

12: networks

13: programming languages

Lets return to our findLinks example. We've moved the link-extraction function
links.Extract to its own package, since we'll use it again in Chapter 8. We replaced the

www.it-ebooks.info

http://www.it-ebooks.info/

138 CHAPTER 5. FUNCTIONS

visit function with an anonymous function that appends to the 1inks slice directly, and used
forEachNode to handle the traversal. Since Extract needs only the pre function, it passes
nil for the post argument.

gopl.io/ch5/1inks
// Package links provides a link-extraction function.
package links

import (
"t
"net/http"

"golang.org/x/net/html"
)

// Extract makes an HTTP GET request to the specified URL, parses
// the response as HTML, and returns the links in the HTML document.
func Extract(url string) ([]string, error) {
resp, err := http.Get(url)
if err != nil {
return nil, err
}
if resp.StatusCode != http.StatusOK {
resp.Body.Close()
return nil, fmt.Errorf("getting %s: %s", url, resp.Status)

}

doc, err := html.Parse(resp.Body)
resp.Body.Close()
if err != nil {
return nil, fmt.Errorf("parsing %s as HTML: %v", url, err)

}

var links []string
visitNode := func(n *html.Node) {

if n.Type == html.ElementNode && n.Data == "a" {
for _, a := range n.Attr {
if a.Key != "href" {
continue
}
link, err := resp.Request.URL.Parse(a.Val)
if err != nil {

continue // ignore bad URLs

}
links = append(links, link.String())

}
}

forEachNode(doc, visitNode, nil)
return links, nil

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 5.6. ANONYMOUS FUNCTIONS 139

Instead of appending the raw href attribute value to the 1inks slice, this version parses it as a
URL relative to the base URL of the document, resp.Request.URL. The resulting link is in
absolute form, suitable for use in a call to http.Get.

Crawling the web is, at its heart, a problem of graph traversal. The topoSort example showed
a depth-first traversal; for our web crawler, we'll use breadth-first traversal, at least initially. In
Chapter 8, we'll explore concurrent traversal.

The function below encapsulates the essence of a breadth-first traversal. The caller provides
an initial list worklist of items to visit and a function value f to call for each item. Each item
is identified by a string. The function f returns a list of new items to append to the worklist.
The breadthFirst function returns when all items have been visited. It maintains a set of
strings to ensure that no item is visited twice.

gopl.io/ch5/findlinks3

// breadthFirst calls f for each item in the worklist.
// Any items returned by f are added to the worklist.
// f is called at most once for each item.
func breadthFirst(f func(item string) []string, worklist []string) {
seen := make(map[string]bool)
for len(worklist) > @ {
items := worklist
worklist = nil
for _, item := range items {
if !seen[item] {
seen[item] = true
worklist = append(worklist, f(item)...)

}

>

As we explained in passing in Chapter 3, the argument “f(item)...” causes all the items in

the list returned by f to be appended to the worklist.

In our crawler, items are URLs. The crawl function we'll supply to breadthFirst prints the
URL, extracts its links, and returns them so that they too are visited.

func crawl(url string) []string {
fmt.Println(url)
list, err := links.Extract(url)
if err != nil {
log.Print(err)
}

return list

}

To start the crawler off, we'll use the command-line arguments as the initial URLs.

www.it-ebooks.info

http://www.it-ebooks.info/

140 CHAPTER 5. FUNCTIONS

func main() {
// Crawl the web breadth-first,
// starting from the command-line arguments.
breadthFirst(crawl, os.Args[1:])

}

Let’s crawl the web starting from https://golang.org. Here are some of the resulting links:

$ go build gopl.io/ch5/findlinks3
$./findlinks3 https://golang.org
https://golang.org/
https://golang.org/doc/
https://golang.org/pkg/
https://golang.org/project/
https://code.google.com/p/go-tour/
https://golang.org/doc/code.html
https://www.youtube.com/watch?v=XCsL89YtqCs
http://research.swtch.com/gotour
https://vimeo.com/53221560

The process ends when all reachable web pages have been crawled or the memory of the com-
puter is exhausted.

Exercise 5.10: Rewrite topoSort to use maps instead of slices and eliminate the initial sort.
Verify that the results, though nondeterministic, are valid topological orderings.

Exercise 5.11: The instructor of the linear algebra course decides that calculus is now a
prerequisite. Extend the topoSort function to report cycles.

Exercise 5.12: The startElement and endElement functions in gopl.io/ch5/outline2
(§5.5) share a global variable, depth. Turn them into anonymous functions that share a vari-
able local to the outline function.

Exercise 5.13: Modify crawl to make local copies of the pages it finds, creating directories as
necessary. Don’t make copies of pages that come from a different domain. For example, if the
original page comes from golang.org, save all files from there, but exclude ones from
vimeo.com.

Exercise 5.14: Use the breadthFirst function to explore a different structure. For example,
you could use the course dependencies from the topoSort example (a directed graph), the file
system hierarchy on your computer (a tree), or a list of bus or subway routes downloaded from
your city government’s web site (an undirected graph).

5.6.1. Caveat: Capturing Iteration Variables

In this section, we'll look at a pitfall of Go’s lexical scope rules that can cause surprising results.
We urge you to understand the problem before proceeding, because the trap can ensnare even
experienced programmers.

www.it-ebooks.info

https://golang.org
http://www.it-ebooks.info/

SECTION 5.6. ANONYMOUS FUNCTIONS 141

Consider a program that must create a set of directories and later remove them. We can use a
slice of function values to hold the clean-up operations. (For brevity, we have omitted all error
handling in this example.)

var rmdirs []func()
for _, d := range tempDirs() {
dir :=d // NOTE: necessary!
0s.MkdirAll(dir, ©755) // creates parent directories too
rmdirs = append(rmdirs, func() {
os.RemoveAll(dir)

1))

}

// ...do some work...

for _, rmdir := range rmdirs {
rmdir() // clean up

}

You may be wondering why we assigned the loop variable d to a new local variable dir within
the loop body, instead of just naming the loop variable dir as in this subtly incorrect variant:

var rmdirs []func()
for _, dir := range tempDirs() {
0s.MkdirAll(dir, ©755)
rmdirs = append(rmdirs, func() {
os.RemoveAll(dir) // NOTE: incorrect!
o)
}

The reason is a consequence of the scope rules for loop variables. In the program immediately
above, the for loop introduces a new lexical block in which the variable dir is declared. All
function values created by this loop “capture” and share the same variable—an addressable
storage location, not its value at that particular moment. The value of dir is updated in suc-
cessive iterations, so by the time the cleanup functions are called, the dir variable has been
updated several times by the now-completed for loop. Thus dir holds the value from the
final iteration, and consequently all calls to os.RemoveAll will attempt to remove the same
directory.

Frequently, the inner variable introduced to work around this problem—dir in our example—
is given the exact same name as the outer variable of which it is a copy, leading to odd-looking
but crucial variable declarations like this:

for _, dir := range tempDirs() {
dir := dir // declares inner dir, initialized to outer dir
/] ...

}

The risk is not unique to range-based for loops. The loop in the example below suffers from
the same problem due to unintended capture of the index variable i.

www.it-ebooks.info

http://www.it-ebooks.info/

142 CHAPTER 5. FUNCTIONS

var rmdirs []func()
dirs := tempDirs()
for i := 0; i < len(dirs); i++ {
0s.MkdirAll(dirs[i], @755) // OK
rmdirs = append(rmdirs, func() {
os.RemoveAll(dirs[i]) // NOTE: incorrect!

b
}

The problem of iteration variable capture is most often encountered when using the go state-
ment (Chapter 8) or with defer (which we will see in a moment) since both may delay the
execution of a function value until after the loop has finished. But the problem is not inherent
to go or defer.

5.7. Variadic Functions

A variadic function is one that can be called with varying numbers of arguments. The most
familiar examples are fmt.Printf and its variants. Printf requires one fixed argument at the
beginning, then accepts any number of subsequent arguments.

To declare a variadic function, the type of the final parameter is preceded by an ellipsis, “...”
which indicates that the function may be called with any number of arguments of this type.

gopl.io/ch5/sum

func sum(vals ...int) int {
total := 0
for _, val := range vals {

total += val
}

return total

}

The sum function above returns the sum of zero or more int arguments. Within the body of
the function, the type of vals is an []int slice. When sum is called, any number of values
may be provided for its vals parameter.

fmt.Println(sum()) // "e"
fmt.Println(sum(3)) // "3
fmt.Println(sum(1, 2, 3, 4)) // "1e"

Implicitly, the caller allocates an array, copies the arguments into it, and passes a slice of the
entire array to the function. The last call above thus behaves the same as the call below, which
shows how to invoke a variadic function when the arguments are already in a slice: place an
ellipsis after the final argument.

values := []int{1, 2, 3, 4}
fmt.Println(sum(values...)) // "10"

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 5.8. DEFERRED FUNCTION CALLS 143

Although the ...int parameter behaves like a slice within the function body, the type of a
variadic function is distinct from the type of a function with an ordinary slice parameter.

func f(...int) {}
func g([]int) {}

fmt.Printf("%T\n", f) // "func(...int)"
fmt.Printf("%T\n", g) // "func([]int)"

Variadic functions are often used for string formatting. The errorf function below con-
structs a formatted error message with a line number at the beginning. The suffix f is a widely
followed naming convention for variadic functions that accept a Printf-style format string.

func errorf(linenum int, format string, args ...interface{}) {
fmt.Fprintf(os.Stderr, "Line %d: ", linenum)
fmt.Fprintf(os.Stderr, format, args...)
fmt.Fprintln(os.Stderr)

}

linenum, name := 12, "count"
errorf(linenum, "undefined: %s", name) // "Line 12: undefined: count"

The interface{} type means that this function can accept any values at all for its final argu-
ments, as we'll explain in Chapter 7.

Exercise 5.15: Write variadic functions max and min, analogous to sum. What should these
functions do when called with no arguments? Write variants that require at least one argu-
ment.

Exercise 5.16: Write a variadic version of strings.Join.

Exercise 5.17: Write a variadic function ElementsByTagName that, given an HTML node tree
and zero or more names, returns all the elements that match one of those names. Here are two
example calls:

func ElementsByTagName(doc *html.Node, name ...string) []*html.Node

images := ElementsByTagName(doc, "img")
headings := ElementsByTagName(doc, "h1", "h2", "h3", "h4")

5.8. Deferred Function Calls

Our findLinks examples used the output of http.Get as the input to html.Parse. This
works well if the content of the requested URL is indeed HTML, but many pages contain
images, plain text, and other file formats. Feeding such files into an HTML parser could have
undesirable effects.

The program below fetches an HTML document and prints its title. The title function
inspects the Content-Type header of the server’s response and returns an error if the doc-
ument is not HTML.

www.it-ebooks.info

http://www.it-ebooks.info/

144

CHAPTER 5. FUNCTIONS

gopl.io/ch5/titlel

func title(url string) error {

}

resp, err := http.Get(url)
if err != nil {
return err

}

// Check Content-Type is HTML (e.g., "text/html; charset=utf-8").
ct := resp.Header.Get("Content-Type")
if ct !I= "text/html" && !strings.HasPrefix(ct, "text/html;") {
resp.Body.Close()
return fmt.Errorf("%s has type %s, not text/html", url, ct)

}

doc, err := html.Parse(resp.Body)
resp.Body.Close()
if err != nil {
return fmt.Errorf("parsing %s as HTML: %v", url, err)

}

visitNode := func(n *html.Node) {
if n.Type == html.ElementNode && n.Data == "title" &&
n.FirstChild != nil {
fmt.Println(n.FirstChild.Data)

}
¥

forEachNode(doc, visitNode, nil)
return nil

Here’s a typical session, slightly edited to fit:

$ go build gopl.io/ch5/titlel

$./titlel http://gopl.io

The Go Programming Language

$./titlel https://golang.org/doc/effective_go.html
Effective Go - The Go Programming Language

$./titlel https://golang.org/doc/gopher/frontpage.png
title: https://golang.org/doc/gopher/frontpage.png

has type image/png, not text/html

Observe the duplicated resp.Body.Close() call, which ensures that title closes the net-
work connection on all execution paths, including failures. As functions grow more complex
and have to handle more errors, such duplication of clean-up logic may become a main-
tenance problem. Let’s see how Go’s novel defer mechanism makes things simpler.

Syntactically, a defer statement is an ordinary function or method call prefixed by the
keyword defer. The function and argument expressions are evaluated when the statement is
executed, but the actual call is deferred until the function that contains the defer statement
has finished, whether normally, by executing a return statement or falling off the end, or
abnormally, by panicking. Any number of calls may be deferred; they are executed in the

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 5.8. DEFERRED FUNCTION CALLS 145

reverse of the order in which they were deferred.

A defer statement is often used with paired operations like open and close, connect and dis-
connect, or lock and unlock to ensure that resources are released in all cases, no matter how
complex the control flow. The right place for a defer statement that releases a resource is
immediately after the resource has been successfully acquired. In the title function below, a
single deferred call replaces both previous calls to resp.Body.Close():

gopl.io/ch5/title2

func title(url string) error {
resp, err := http.Get(url)
if err != nil {
return err

}
defer resp.Body.Close()

ct := resp.Header.Get("Content-Type")
if ct != "text/html" && !strings.HasPrefix(ct, "text/html;") {
return fmt.Errorf("%s has type %s, not text/html", url, ct)

}
doc, err := html.Parse(resp.Body)
if err != nil {
return fmt.Errorf("parsing %s as HTML: %v", url, err)
}

// ...print doc's title element...

return nil

}

The same pattern can be used for other resources beside network connections, for instance to
close an open file:

io/ioutil

package ioutil

func ReadFile(filename string) ([]byte, error) {
f, err := os.Open(filename)
if err != nil {
return nil, err
}
defer f.Close()
return ReadAll(f)

}
or to unlock a mutex (§9.2):

var mu sync.Mutex
var m = make(map[stringlint)

www.it-ebooks.info

http://www.it-ebooks.info/

146 CHAPTER 5. FUNCTIONS

func lookup(key string) int {
mu. Lock()
defer mu.Unlock()
return m[key]

}

The defer statement can also be used to pair “on entry” and “on exit” actions when debugging
a complex function. The bigSlowOperation function below calls trace immediately, which
does the “on entry” action then returns a function value that, when called, does the cor-
responding “on exit” action. By deferring a call to the returned function in this way, we can
instrument the entry point and all exit points of a function in a single statement and even pass
values, like the start time, between the two actions. But don't forget the final parentheses in
the defer statement, or the “on entry” action will happen on exit and the on-exit action won’t
happen at all!

gopl.io/ch5/trace
func bigSlowOperation() {
defer trace("bigSlowOperation")() // don't forget the extra parentheses
// ...lots of work...
time.Sleep(10 * time.Second) // simulate slow operation by sleeping

}
func trace(msg string) func() {

start := time.Now()

log.Printf("enter %s", msg)

return func() { log.Printf("exit %s (%s)", msg, time.Since(start)) }
}

Each time bigSlowOperation is called, it logs its entry and exit and the elapsed time between
them. (We used time.Sleep to simulate a slow operation.)

$ go build gopl.io/ch5/trace

$./trace

2015/11/18 09:53:26 enter bigSlowOperation

2015/11/18 ©9:53:36 exit bigSlowOperation (10.000589217s)

Deferred functions run affer return statements have updated the function’s result variables.
Because an anonymous function can access its enclosing function’s variables, including named
results, a deferred anonymous function can observe the function’s results.

Consider the function double:

func double(x int) int {
return x + X

}

By naming its result variable and adding a defer statement, we can make the function print its
arguments and results each time it is called.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 5.8. DEFERRED FUNCTION CALLS 147

func double(x int) (result int) {
defer func() { fmt.Printf("double(%d) = %d\n", x, result) }()
return x + X

}

_ = double(4)
// Output:
// "double(4) = 8"

This trick is overkill for a function as simple as double but may be useful in functions with
many return statements.

A deferred anonymous function can even change the values that the enclosing function
returns to its caller:

func triple(x int) (result int) {
defer func() { result += x }()
return double(x)

}
fmt.Println(triple(4)) // "12"
Because deferred functions aren’t executed until the very end of a function’s execution, a

defer statement in a loop deserves extra scrutiny. The code below could run out of file
descriptors since no file will be closed until all files have been processed:

for _, filename := range filenames {
f, err := os.Open(filename)
if err != nil {

return err

}
defer f.Close() // NOTE: risky; could run out of file descriptors

// ...process f...

}

One solution is to move the loop body, including the defer statement, into another function
that is called on each iteration.

for _, filename := range filenames {
if err := doFile(filename); err != nil {
return err
}
}
func doFile(filename string) error {
f, err := os.Open(filename)
if err != nil {
return err
}
defer f.Close()
// ...process f...
}

www.it-ebooks.info

http://www.it-ebooks.info/

148 CHAPTER 5. FUNCTIONS

The example below is an improved fetch program (§1.5) that writes the HT'TP response to a
local file instead of to the standard output. It derives the file name from the last component of
the URL path, which it obtains using the path.Base function.

gopl.io/ch5/fetch

// Fetch downloads the URL and returns the
// name and length of the local file.
func fetch(url string) (filename string, n int64, err error) {
resp, err := http.Get(url)
if err != nil {
return "", 0, err

}
defer resp.Body.Close()

local := path.Base(resp.Request.URL.Path)

if local == "/" {

local = "index.html"
}
f, err := os.Create(local)
if err != nil {

return "", 0, err

n, err = io.Copy(f, resp.Body)
// Close file, but prefer error from Copy, if any.
if closeErr := f.Close(); err == nil {

err = closeErr

}

return local, n, err

}

The deferred call to resp.Body.Close should be familiar by now. Its tempting to use a
second deferred call, to f.Close, to close the local file, but this would be subtly wrong because
os.Create opens a file for writing, creating it as needed. On many file systems, notably NFS,
write errors are not reported immediately but may be postponed until the file is closed. Fail-
ure to check the result of the close operation could cause serious data loss to go unnoticed.
However, if both io.Copy and f.Close fail, we should prefer to report the error from
io.Copy since it occurred first and is more likely to tell us the root cause.

Exercise 5.18: Without changing its behavior, rewrite the fetch function to use defer to close
the writable file.

5.9. Panic

Go's type system catches many mistakes at compile time, but others, like an out-of-bounds
array access or nil pointer dereference, require checks at run time. When the Go runtime
detects these mistakes, it panics.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 5.9. PANIC 149

During a typical panic, normal execution stops, all deferred function calls in that goroutine are
executed, and the program crashes with a log message. This log message includes the panic
value, which is usually an error message of some sort, and, for each goroutine, a stack trace
showing the stack of function calls that were active at the time of the panic. This log message
often has enough information to diagnose the root cause of the problem without running the
program again, so it should always be included in a bug report about a panicking program.

Not all panics come from the runtime. The built-in panic function may be called directly; it
accepts any value as an argument. A panic is often the best thing to do when some “impossi-
ble” situation happens, for instance, execution reaches a case that logically can’t happen:

switch s := suit(drawCard()); s {

case "Spades": // ...
case "Hearts": // ...
case "Diamonds": // ...
case "Clubs": /...
default:

panic(fmt.Sprintf("invalid suit %q", s)) // Joker?
}

It’s good practice to assert that the preconditions of a function hold, but this can easily be done
to excess. Unless you can provide a more informative error message or detect an error sooner,
there is no point asserting a condition that the runtime will check for you.

func Reset(x *Buffer) {
if x == nil {
panic("x is nil") // unnecessary!

}

X.elements = nil

}

Although Go’s panic mechanism resembles exceptions in other languages, the situations in
which panic is used are quite different. Since a panic causes the program to crash, it is gener-
ally used for grave errors, such as a logical inconsistency in the program; diligent program-
mers consider any crash to be proof of a bug in their code. In a robust program, “expected”
errors, the kind that arise from incorrect input, misconfiguration, or failing I/O, should be
handled gracefully; they are best dealt with using error values.

Consider the function regexp.Compile, which compiles a regular expression into an efficient
form for matching. It returns an error if called with an ill-formed pattern, but checking this
error is unnecessary and burdensome if the caller knows that a particular call cannot fail. In
such cases, it’s reasonable for the caller to handle an error by panicking, since it is believed to
be impossible.

Since most regular expressions are literals in the program source code, the regexp package
provides a wrapper function regexp.MustCompile that does this check:

package regexp

func Compile(expr string) (*Regexp, error) { /* ... */ }

www.it-ebooks.info

http://www.it-ebooks.info/

150 CHAPTER 5. FUNCTIONS

func MustCompile(expr string) *Regexp {
re, err := Compile(expr)
if err != nil {
panic(err)

return re
}

The wrapper function makes it convenient for clients to initialize a package-level variable with
a compiled regular expression, like this:

var httpSchemeRE = regexp.MustCompile(~https?:°) // "http:" or "https:"

Of course, MustCompile should not be called with untrusted input values. The Must prefix is a
common naming convention for functions of this kind, like template.Must in Section 4.6.

When a panic occurs, all deferred functions are run in reverse order, starting with those of the
topmost function on the stack and proceeding up to main, as the program below
demonstrates:

gopl.io/ch5/deferl

func main() {
f(3)

}

func f(x int) {
fmt.Printf("f(%d)\n", x+0/x) // panics if x ==
defer fmt.Printf("defer %d\n", x)
f(x - 1)

}

When run, the program prints the following to the standard output:

f(3)
f(2)
f(1)
defer 1
defer 2
defer 3

A panic occurs during the call to (@), causing the three deferred calls to fmt.Printf to run.
Then the runtime terminates the program, printing the panic message and a stack dump to
the standard error stream (simplified for clarity):

panic: runtime error: integer divide by zero
main.f(0)

src/gopl.io/ch5/deferl/defer.go:14
main.f(1)

src/gopl.io/ch5/deferl/defer.go:16
main.f(2)

src/gopl.io/ch5/deferl/defer.go:16

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 5.10. RECOVER 151

main.f(3)
src/gopl.io/ch5/deferl/defer.go:16

main.main()
src/gopl.io/ch5/deferl/defer.go:10

As we will see soon, it is possible for a function to recover from a panic so that it does not ter-
minate the program.

For diagnostic purposes, the runtime package lets the programmer dump the stack using the
same machinery. By deferring a call to printStack in main,

gopl.io/ch5/defer2

func main() {
defer printStack()
f(3)

}

func printStack() {
var buf [4096]byte
n := runtime.Stack(buf[:], false)
os.Stdout.Write(buf[:n])

}

the following additional text (again simplified for clarity) is printed to the standard output:

goroutine 1 [running]:
main.printStack()
src/gopl.io/ch5/defer2/defer.go:20
main.f(0)
src/gopl.io/ch5/defer2/defer.go:27
main.f(1)
src/gopl.io/ch5/defer2/defer.go:29
main.f(2)
src/gopl.io/ch5/defer2/defer.go:29
main.f(3)
src/gopl.io/ch5/defer2/defer.go:29
main.main()
src/gopl.io/ch5/defer2/defer.go:15

Readers familiar with exceptions in other languages may be surprised that runtime.Stack
can print information about functions that seem to have already been “unwound” Go’s panic
mechanism runs the deferred functions before it unwinds the stack.

5.10. Recover

Giving up is usually the right response to a panic, but not always. It might be possible to
recover in some way, or at least clean up the mess before quitting. For example, a web server
that encounters an unexpected problem could close the connection rather than leave the client
hanging, and during development, it might report the error to the client too.

www.it-ebooks.info

http://www.it-ebooks.info/

152 CHAPTER 5. FUNCTIONS

If the built-in recover function is called within a deferred function and the function contain-
ing the defer statement is panicking, recover ends the current state of panic and returns the
panic value. The function that was panicking does not continue where it left off but returns
normally. If recover is called at any other time, it has no effect and returns nil.

To illustrate, consider the development of a parser for a language. Even when it appears to be
working well, given the complexity of its job, bugs may still lurk in obscure corner cases. We
might prefer that, instead of crashing, the parser turns these panics into ordinary parse errors,
perhaps with an extra message exhorting the user to file a bug report.

func Parse(input string) (s *Syntax, err error) {
defer func() {
if p := recover(); p != nil {
err = fmt.Errorf("internal error: %v", p)

}
30O

// ...parser...

}

The deferred function in Parse recovers from a panic, using the panic value to construct an
error message; a fancier version might include the entire call stack using runtime.Stack. The
deferred function then assigns to the err result, which is returned to the caller.

Recovering indiscriminately from panics is a dubious practice because the state of a package’s
variables after a panic is rarely well defined or documented. Perhaps a critical update to a data
structure was incomplete, a file or network connection was opened but not closed, or a lock
was acquired but not released. Furthermore, by replacing a crash with, say, a line in a log file,
indiscriminate recovery may cause bugs to go unnoticed.

Recovering from a panic within the same package can help simplify the handling of complex
or unexpected errors, but as a general rule, you should not attempt to recover from another
package’s panic. Public APIs should report failures as errors. Similarly, you should not
recover from a panic that may pass through a function you do not maintain, such as a caller-
provided callback, since you cannot reason about its safety.

For example, the net/http package provides a web server that dispatches incoming requests
to user-provided handler functions. Rather than let a panic in one of these handlers kill the
process, the server calls recover, prints a stack trace, and continues serving. This is con-
venient in practice, but it does risk leaking resources or leaving the failed handler in an
unspecified state that could lead to other problems.

For all the above reasons, it’s safest to recover selectively if at all. In other words, recover only
from panics that were intended to be recovered from, which should be rare. This intention
can be encoded by using a distinct, unexported type for the panic value and testing whether
the value returned by recover has that type. (We'll see one way to do this in the next exam-
ple.) If so, we report the panic as an ordinary error; if not, we call panic with the same value
to resume the state of panic.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 5.10. RECOVER 153

The example below is a variation on the title program that reports an error if the HTML
document contains multiple <title> elements. If so, it aborts the recursion by calling panic
with a value of the special type bailout.

gopl.io/ch5/title3

// soleTitle returns the text of the first non-empty title element
// in doc, and an error if there was not exactly one.
func soleTitle(doc *html.Node) (title string, err error) {

type bailout struct{}

defer func() {
switch p := recover(); p {
case nil:
// no panic
case bailout{}:
// "expected" panic
err = fmt.Errorf("multiple title elements")
default:
panic(p) // unexpected panic; carry on panicking

}
3O

// Bail out of recursion if we find more than one non-empty title.
forEachNode(doc, func(n *html.Node) {

if n.Type == html.ElementNode && n.Data == "title" &&
n.FirstChild != nil {
if title != "" {
panic(bailout{}) // multiple title elements
}
title = n.FirstChild.Data
}
}, nil)
if title == "" {

return "", fmt.Errorf("no title element")

}

return title, nil

}

The deferred handler function calls recover, checks the panic value, and reports an ordinary
error if the value was bailout{}. All other non-nil values indicate an unexpected panic, in
which case the handler calls panic with that value, undoing the effect of recover and resum-
ing the original state of panic. (This example does somewhat violate our advice about not
using panics for “expected” errors, but it provides a compact illustration of the mechanics.)

From some conditions there is no recovery. Running out of memory, for example, causes the
Go runtime to terminate the program with a fatal error.

Exercise 5.19: Use panic and recover to write a function that contains no return statement
yet returns a non-zero value.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

6
Methods

Since the early 1990s, object-oriented programming (OOP) has been the dominant program-
ming paradigm in industry and education, and nearly all widely used languages developed
since then have included support for it. Go is no exception.

Although there is no universally accepted definition of object-oriented programming, for our
purposes, an object is simply a value or variable that has methods, and a method is a function
associated with a particular type. An object-oriented program is one that uses methods to
express the properties and operations of each data structure so that clients need not access the
object’s representation directly.

In earlier chapters, we have made regular use of methods from the standard library, like the
Seconds method of type time.Duration:

const day = 24 * time.Hour
fmt.Println(day.Seconds()) // "86400"

and we defined a method of our own in Section 2.5, a String method for the Celsius type:

func (c Celsius) String() string { return fmt.Sprintf("%g°C", c) }

In this chapter, the first of two on object-oriented programming, we'll show how to define and
use methods effectively. We'll also cover two key principles of object-oriented programming,
encapsulation and composition.

6.1. Method Declarations

A method is declared with a variant of the ordinary function declaration in which an extra
parameter appears before the function name. The parameter attaches the function to the type
of that parameter.

155

www.it-ebooks.info

http://www.it-ebooks.info/

156 CHAPTER 6. METHODS

Let’s write our first method in a simple package for plane geometry:

gopl.io/ch6/geometry

package geometry
import "math"
type Point struct{ X, Y float64 }

// traditional function
func Distance(p, q Point) float64 {
return math.Hypot(q.X-p.X, q.Y-p.Y)

}

// same thing, but as a method of the Point type

func (p Point) Distance(q Point) float64 {
return math.Hypot(q.X-p.X, q.Y-p.Y)

}

The extra parameter p is called the method’s receiver, a legacy from early object-oriented lan-
guages that described calling a method as “sending a message to an object”

In Go, we don't use a special name like this or self for the receiver; we choose receiver
names just as we would for any other parameter. Since the receiver name will be frequently
used, it’s a good idea to choose something short and to be consistent across methods. A com-
mon choice is the first letter of the type name, like p for Point.

In a method call, the receiver argument appears before the method name. This parallels the
declaration, in which the receiver parameter appears before the method name.

p := Point{1, 2}

q := Point{4, 6}

fmt.Println(Distance(p, q)) // "5", function call
fmt.Println(p.Distance(q)) // "5", method call

There’s no conflict between the two declarations of functions called Distance above. The first
declares a package-level function called geometry.Distance. The second declares a method
of the type Point, so its name is Point.Distance.

The expression p.Distance is called a selector, because it selects the appropriate Distance
method for the receiver p of type Point. Selectors are also used to select fields of struct types,
asin p.X. Since methods and fields inhabit the same name space, declaring a method X on the
struct type Point would be ambiguous and the compiler will reject it.

Since each type has its own name space for methods, we can use the name Distance for other
methods so long as they belong to different types. Let’s define a type Path that represents a
sequence of line segments and give it a Distance method too.

// A Path is a journey connecting the points with straight lines.
type Path []Point

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 6.1. METHOD DECLARATIONS 157

// Distance returns the distance traveled along the path.
func (path Path) Distance() float64 {
sum := 0.0
for i := range path {
ifi>e{
sum += path[i-1].Distance(path[i])
}
}

return sum

}

Path is a named slice type, not a struct type like Point, yet we can still define methods for it.
In allowing methods to be associated with any type, Go is unlike many other object-oriented
languages. It is often convenient to define additional behaviors for simple types such as num-
bers, strings, slices, maps, and sometimes even functions. Methods may be declared on any
named type defined in the same package, so long as its underlying type is neither a pointer nor
an interface.

The two Distance methods have different types. Theyre not related to each other at all,
though Path.Distance uses Point.Distance internally to compute the length of each seg-
ment that connects adjacent points.

Let’s call the new method to compute the perimeter of a right triangle:

perim := Path{
{1, 1},
{5, 1},
{5, 4},
{1) 1})

}
fmt.Println(perim.Distance()) // "12"

In the two calls above to methods named Distance, the compiler determines which function
to call based on both the method name and the type of the receiver. In the first, path[i-1]
has type Point so Point.Distance is called; in the second, perim has type Path, so
Path.Distance is called.

All methods of a given type must have unique names, but different types can use the same
name for a method, like the Distance methods for Point and Path; there’s no need to qualify
function names (for example, PathDistance) to disambiguate. Here we see the first benefit to
using methods over ordinary functions: method names can be shorter. The benefit is magni-
fied for calls originating outside the package, since they can use the shorter name and omit the
package name:

import "gopl.io/ch6/geometry”

perim := geometry.Path{{1, 1}, {5, 1}, {5, 4}, {1, 1}}
fmt.Println(geometry.PathDistance(perim)) // "12", standalone function
fmt.Println(perim.Distance()) // "12", method of geometry.Path

www.it-ebooks.info

http://www.it-ebooks.info/

158 CHAPTER 6. METHODS

6.2. Methods with a Pointer Receiver

Because calling a function makes a copy of each argument value, if a function needs to update
a variable, or if an argument is so large that we wish to avoid copying it, we must pass the
address of the variable using a pointer. The same goes for methods that need to update the
receiver variable: we attach them to the pointer type, such as *Point.

func (p *Point) ScaleBy(factor float64) {
p.X *= factor
p.Y *= factor

}

The name of this method is (*Point).ScaleBy. The parentheses are necessary; without
them, the expression would be parsed as * (Point.ScaleBy).

In a realistic program, convention dictates that if any method of Point has a pointer receiver,
then all methods of Point should have a pointer receiver, even ones that don't strictly need it.
We've broken this rule for Point so that we can show both kinds of method.

Named types (Point) and pointers to them (*Point) are the only types that may appear in a
receiver declaration. Furthermore, to avoid ambiguities, method declarations are not permit-
ted on named types that are themselves pointer types:

type P *int
func (P) f() { /* ... */ } // compile error: invalid receiver type

The (*Point).ScaleBy method can be called by providing a *Point receiver, like this:

r := &Point{1, 2}
r.ScaleBy(2)
fmt.Println(*r) // "{2, 4}"

or this:

p := Point{1, 2}

pptr := &p
pptr.ScaleBy(2)
fmt.Println(p) // "{2, 4}"

or this:

p := Point{1, 2}
(&p) .ScaleBy(2)
fmt.Println(p) // "{2, 4}"

But the last two cases are ungainly. Fortunately, the language helps us here. If the receiver p is
a variable of type Point but the method requires a *Point receiver, we can use this shorthand:

p.ScaleBy(2)

and the compiler will perform an implicit & on the variable. This works only for variables,
including struct fields like p.X and array or slice elements like perim[@]. We cannot call a
*Point method on a non-addressable Point receiver, because there’s no way to obtain the

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 6.2. METHODS WITH A POINTER RECEIVER 159

address of a temporary value.

Point{1, 2}.ScaleBy(2) // compile error: can't take address of Point literal

But we can call a Point method like Point.Distance with a *Point receiver, because there is
a way to obtain the value from the address: just load the value pointed to by the receiver. The
compiler inserts an implicit * operation for us. These two function calls are equivalent:

pptr.Distance(q)
(*pptr).Distance(q)

Let’s summarize these three cases again, since they are a frequent point of confusion. In every
valid method call expression, exactly one of these three statements is true.

Either the receiver argument has the same type as the receiver parameter, for example both
have type T or both have type *T:

Point{1, 2}.Distance(q) // Point
pptr.ScaleBy(2) // *Point

Or the receiver argument is a variable of type T and the receiver parameter has type *T. The
compiler implicitly takes the address of the variable:

p.ScaleBy(2) // implicit (&p)

Or the receiver argument has type *T and the receiver parameter has type T. The compiler
implicitly dereferences the receiver, in other words, loads the value:

pptr.Distance(q) // implicit (*pptr)

If all the methods of a named type T have a receiver type of T itself (not *T), it is safe to copy
instances of that type; calling any of its methods necessarily makes a copy. For example,
time.Duration values are liberally copied, including as arguments to functions. But if any
method has a pointer receiver, you should avoid copying instances of T because doing so may
violate internal invariants. For example, copying an instance of bytes.Buffer would cause
the original and the copy to alias (§2.3.2) the same underlying array of bytes. Subsequent
method calls would have unpredictable effects.

6.2.1. Nil Is a Valid Receiver Value

Just as some functions allow nil pointers as arguments, so do some methods for their receiver,
especially if nil is a meaningful zero value of the type, as with maps and slices. In this simple
linked list of integers, nil represents the empty list:

// An IntList is a linked list of integers.
// A nil *IntlList represents the empty list.
type IntList struct {

Value int

Tail *IntList

www.it-ebooks.info

http://www.it-ebooks.info/

160

// Sum returns the sum of the

CHAPTER 6. METHODS

list elements.

func (list *IntList) Sum() int {

if 1list == nil {
return 0

}

return list.Value + list.Tail.Sum()

}

When you define a type whose methods allow nil as a receiver value, it's worth pointing this
out explicitly in its documentation comment, as we did above.

Here’s part of the definition of the Values type from the net/url package:

net/url
package url

// Values maps a string key to a list of values.
type Values map[string][]string

// Get returns the first value associated with the given key,

// or "" if there are none.

func (v Values) Get(key string) string {
if vs := v[key]; len(vs) > 0 {

return vs[0]

}

return

}
// Add adds the value to key.

// It appends to any existing values associated with key.
func (v Values) Add(key, value string) {
v[key] = append(v[key], value)

}

It exposes its representation as a map but also provides methods to simplify access to the map,
whose values are slices of strings—it’s a multimap. Its clients can use its intrinsic operators
(make, slice literals, m[key], and so on), or its methods, or both, as they prefer:

gopl.io/ch6/urlvalues

m := url.Values{"lang": {"en"}} // direct construction

m.Add("item", "1")
m.Add("item", "2")
fmt.Println(m.Get("lang")) //

fmt.Println(m.Get("q")) //
fmt.Println(m.Get("item")) //

fmt.Println(m["item"]) //
m = nil

fmt.Println(m.Get("item")) //
m.Add("item", "3") //

"en"

"1t (first value)
"[1 2]" (direct map access)

panic: assignment to entry in nil map

In the final call to Get, the nil receiver behaves like an empty map. We could equivalently have
written it as Values(nil).Get("item")), but nil.Get("item") will not compile because

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 6.3. COMPOSING TYPES BY STRUCT EMBEDDING 161

the type of nil has not been determined. By contrast, the final call to Add panics as it tries to
update a nil map.

Because url.Values is a map type and a map refers to its key/value pairs indirectly, any
updates and deletions that url.values.Add makes to the map elements are visible to the
caller. However, as with ordinary functions, any changes a method makes to the reference
itself, like setting it to nil or making it refer to a different map data structure, will not be
reflected in the caller.

6.3. Composing Types by Struct Embedding

Consider the type ColoredPoint:

gopl.io/ch6/coloredpoint

import "image/color"
type Point struct{ X, Y float64 }

type ColoredPoint struct {
Point
Color color.RGBA

}

We could have defined ColoredPoint as a struct of three fields, but instead we embedded a
Point to provide the X and Y fields. As we saw in Section 4.4.3, embedding lets us take a syn-
tactic shortcut to defining a ColoredPoint that contains all the fields of Point, plus some
more. If we want, we can select the fields of ColoredPoint that were contributed by the
embedded Point without mentioning Point:

var cp ColoredPoint

cp.X =1
fmt.Println(cp.Point.X) // "1"
cp.Point.Y = 2
fmt.Println(cp.Y) // "2"

A similar mechanism applies to the methods of Point. We can call methods of the embedded
Point field using a receiver of type ColoredPoint, even though ColoredPoint has no
declared methods:

red := color.RGBA{255, @, ©, 255}

blue := color.RGBA{@, @, 255, 255}

var p = ColoredPoint{Point{1, 1}, red}
var q = ColoredPoint{Point{5, 4}, blue}
fmt.Println(p.Distance(q.Point)) // "5"
p.ScaleBy(2)

q.ScaleBy(2)
fmt.Println(p.Distance(q.Point)) // "10"

The methods of Point have been promoted to ColoredPoint. In this way, embedding allows
complex types with many methods to be built up by the composition of several fields, each

www.it-ebooks.info

http://www.it-ebooks.info/

162 CHAPTER 6. METHODS

providing a few methods.

Readers familiar with class-based object-oriented languages may be tempted to view Point as
a base class and ColoredPoint as a subclass or derived class, or to interpret the relationship
between these types as if a ColoredPoint “is a” Point. But that would be a mistake. Notice
the calls to Distance above. Distance has a parameter of type Point, and q is not a Point, so
although q does have an embedded field of that type, we must explicitly select it. Attempting
to pass q would be an error:

p.Distance(q) // compile error: cannot use q (ColoredPoint) as Point

A ColoredPoint is not a Point, but it “has a” Point, and it has two additional methods Dis-
tance and ScaleBy promoted from Point. If you prefer to think in terms of implementation,
the embedded field instructs the compiler to generate additional wrapper methods that dele-
gate to the declared methods, equivalent to these:

func (p ColoredPoint) Distance(q Point) float64 {
return p.Point.Distance(q)

}

func (p *ColoredPoint) ScaleBy(factor float64) {
p.Point.ScaleBy(factor)

}

When Point.Distance is called by the first of these wrapper methods, its receiver value is
p.Point, not p, and there is no way for the method to access the ColoredPoint in which the
Point is embedded.

The type of an anonymous field may be a pointer to a named type, in which case fields and
methods are promoted indirectly from the pointed-to object. Adding another level of indi-
rection lets us share common structures and vary the relationships between objects dynami-
cally. The declaration of ColoredPoint below embeds a *Point:

type ColoredPoint struct {
*Point
Color color.RGBA

}
p := ColoredPoint{&Point{1, 1}, red}
gq := ColoredPoint{&Point{5, 4}, blue}

fmt.Println(p.Distance(*q.Point)) // "5"

g.Point = p.Point // p and q now share the same Point
p.ScaleBy(2)

fmt.Println(*p.Point, *q.Point) // "{2 2} {2 2}"

A struct type may have more than one anonymous field. Had we declared ColoredPoint as

type ColoredPoint struct {
Point
color.RGBA

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 6.3. COMPOSING TYPES BY STRUCT EMBEDDING 163

then a value of this type would have all the methods of Point, all the methods of RGBA, and
any additional methods declared on ColoredPoint directly. When the compiler resolves a
selector such as p.ScaleBy to a method, it first looks for a directly declared method named
ScaleBy, then for methods promoted once from ColoredPoint’s embedded fields, then for
methods promoted twice from embedded fields within Point and RGBA, and so on. The com-
piler reports an error if the selector was ambiguous because two methods were promoted from
the same rank.

Methods can be declared only on named types (like Point) and pointers to them (*Point),
but thanks to embedding, it’s possible and sometimes useful for unnamed struct types to have
methods too.

Here’s a nice trick to illustrate. This example shows part of a simple cache implemented using
two package-level variables, a mutex (§9.2) and the map that it guards:

var (
mu sync.Mutex // guards mapping
mapping = make(map[string]string)
)

func Lookup(key string) string {
mu.Lock()
v := mapping[key]
mu.Unlock()
return v

}

The version below is functionally equivalent but groups together the two related variables in a
single package-level variable, cache:

var cache = struct {
sync.Mutex
mapping map[string]string
Ao

}

func Lookup(key string) string {
cache.Lock()
v := cache.mapping[key]
cache.Unlock()
return v

mapping: make(map[string]string),

}

The new variable gives more expressive names to the variables related to the cache, and
because the sync.Mutex field is embedded within it, its Lock and Unlock methods are
promoted to the unnamed struct type, allowing us to lock the cache with a self-explanatory
syntax.

www.it-ebooks.info

http://www.it-ebooks.info/

164 CHAPTER 6. METHODS

6.4. Method Values and Expressions

Usually we select and call a method in the same expression, as in p.Distance(), but it’s possi-
ble to separate these two operations. The selector p.Distance yields a method value, a func-
tion that binds a method (Point.Distance) to a specific receiver value p. This function can
then be invoked without a receiver value; it needs only the non-receiver arguments.

p := Point{1, 2}

q := Point{4, 6}

distanceFromP := p.Distance // method value
fmt.Println(distanceFromP(q)) // "5"

var origin Point // {e, o}

fmt.Println(distanceFromP(origin)) // "2.23606797749979", /5
scaleP := p.ScaleBy // method value

scaleP(2) // p becomes (2, 4)
scaleP(3) // then (6, 12)
scaleP(10) // then (60, 120)

Method values are useful when a package’s API calls for a function value, and the client’s
desired behavior for that function is to call a method on a specific receiver. For example, the
function time.AfterFunc calls a function value after a specified delay. This program uses it
to launch the rocket r after 10 seconds:

type Rocket struct { /* ... */ }
func (r *Rocket) Launch() { /* ... */ }
r := new(Rocket)

time.AfterFunc(1@ * time.Second, func() { r.Launch() })

The method value syntax is shorter:

time.AfterFunc(10 * time.Second, r.Launch)

Related to the method value is the method expression. When calling a method, as opposed to
an ordinary function, we must supply the receiver in a special way using the selector syntax. A
method expression, written T.f or (*T).f where T is a type, yields a function value with a reg-
ular first parameter taking the place of the receiver, so it can be called in the usual way.

p := Point{1, 2}

q := Point{4, 6}

distance := Point.Distance // method expression

fmt.Println(distance(p, q)) // "5"
fmt.Printf("%T\n", distance) // "func(Point, Point) floate64"

scale := (*Point).ScaleBy

scale(&p, 2)

fmt.Println(p) // "{2 4}"
fmt.Printf("%T\n", scale) // "func(*Point, float64)"

Method expressions can be helpful when you need a value to represent a choice among several
methods belonging to the same type so that you can call the chosen method with many

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 6.5. EXAMPLE: BIT VECTOR TYPE 165

different receivers. In the following example, the variable op represents either the addition or
the subtraction method of type Point, and Path.TranslateBy calls it for each point in the
Path:

type Point struct{ X, Y floaté64 }

func (p Point) Add(q Point) Point { return Point{p.X + q.X, p.Y + q.Y} }
func (p Point) Sub(q Point) Point { return Point{p.X - q.X, p.Y - q.Y} }

type Path []Point

func (path Path) TranslateBy(offset Point, add bool) {
var op func(p, q Point) Point

if add {

op = Point.Add
} else {

op = Point.Sub
}

for i := range path {
// Call either path[i].Add(offset) or path[i].Sub(offset).
path[i] = op(path[i], offset)

6.5. Example: Bit Vector Type

Sets in Go are usually implemented as a map[T]bool, where T is the element type. A set rep-
resented by a map is very flexible but, for certain problems, a specialized representation may
outperform it. For example, in domains such as dataflow analysis where set elements are small
non-negative integers, sets have many elements, and set operations like union and intersection
are common, a bit vector is ideal.

A bit vector uses a slice of unsigned integer values or “words,” each bit of which represents a
possible element of the set. The set contains i if the i-th bit is set. The following program
demonstrates a simple bit vector type with three methods:

gopl.io/ch6/intset

// An IntSet is a set of small non-negative integers.
// Its zero value represents the empty set.
type IntSet struct {
words [Juint64
}

// Has reports whether the set contains the non-negative value x.
func (s *IntSet) Has(x int) bool {

word, bit := x/64, uint(x%64)

return word < len(s.words) && s.words[word]&(1<<bit) != 0

www.it-ebooks.info

http://www.it-ebooks.info/

166 CHAPTER 6.

// Add adds the non-negative value x to the set.
func (s *IntSet) Add(x int) {
word, bit := x/64, uint(x%64)
for word >= len(s.words) {
s.words = append(s.words, 0)
}

s.words[word] |= 1 << bit

}

// UnionWith sets s to the union of s and t.
func (s *IntSet) UnionWith(t *IntSet) {
for i, tword := range t.words {
if i < len(s.words) {
s.words[i] |= tword
} else {
s.words = append(s.words, tword)

}
}

METHODS

Since each word has 64 bits, to locate the bit for x, we use the quotient x/64 as the word index
and the remainder x%64 as the bit index within that word. The UnionWith operation uses the
bitwise OR operator | to compute the union 64 elements at a time. (We'll revisit the choice of

64-bit words in Exercise 6.5.)

This implementation lacks many desirable features, some of which are posed as exercises
below, but one is hard to live without: way to print an IntSet as a string. Let’s give it a String

method as we did with Celsius in Section 2.5:

// String returns the set as a string of the form "{1 2 3}".
func (s *IntSet) String() string {

var buf bytes.Buffer

buf.WriteByte('{")

for i, word := range s.words {
if word == 0 {
continue
}

for j :=0; j < 64; j++ {
if word&(1<<uint(j)) != o
if buf.Len() > len("{"
buf.WriteByte(' ')

{
) A

}
fmt.Fprintf(&buf, "%d", 64*i+j)

}

}
buf.WriteByte('}")
return buf.String()

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 6.5. EXAMPLE: BIT VECTOR TYPE 167

Notice the similarity of the String method above with intsToString in Section 3.5.4;
bytes.Buffer is often used this way in String methods. The fmt package treats types with a
String method specially so that values of complicated types can display themselves in a user-
friendly manner. Instead of printing the raw representation of the value (a struct in this case),
fmt calls the String method. The mechanism relies on interfaces and type assertions, which
we'll explain in Chapter 7.

We can now demonstrate IntSet in action:

var x, y IntSet

x.Add(1)

x.Add(144)

x.Add(9)

fmt.Println(x.String()) // "{1 9 144}"
y.Add(9)

y.Add(42)

fmt.Println(y.String()) // "{9 42}"
x.UnionWith(&y)

fmt.Println(x.String()) // "{1 9 42 144}"

fmt.Println(x.Has(9), x.Has(123)) // "true false"

A word of caution: we declared String and Has as methods of the pointer type *IntSet not
out of necessity, but for consistency with the other two methods, which need a pointer receiver
because they assign to s.words. Consequently, an IntSet value does not have a String
method, occasionally leading to surprises like this:

fmt.Println(&x) // "{1 9 42 144}"
fmt.Println(x.String()) // "{1 9 42 144}"
fmt.Println(x) // "{[4398046511618 © 65536]}"

In the first case, we print an *IntSet pointer, which does have a String method. In the
second case, we call String() on an IntSet variable; the compiler inserts the implicit & oper-
ation, giving us a pointer, which has the String method. But in the third case, because the
IntSet value does not have a String method, fmt.Println prints the representation of the
struct instead. It's important not to forget the & operator. Making String a method of
IntSet, not *IntSet, might be a good idea, but this is a case-by-case judgment.

Exercise 6.1: Implement these additional methods:

func (*IntSet) Len() int // return the number of elements
func (*IntSet) Remove(x int) // remove x from the set
func (*IntSet) Clear() // remove all elements from the set

func (*IntSet) Copy() *IntSet // return a copy of the set

Exercise 6.2: Define a variadic (*IntSet).AddAll(...int) method that allows a list of val-
ues to be added, such as s.AddA11(1, 2, 3).

Exercise 6.3: (*IntSet).UnionWith computes the union of two sets using |, the word-paral-
lel bitwise OR operator. Implement methods for IntersectWith, DifferenceWith, and Sym-
metricDifference for the corresponding set operations. (The symmetric difference of two

www.it-ebooks.info

http://www.it-ebooks.info/

168 CHAPTER 6. METHODS

sets contains the elements present in one set or the other but not both.)

Exercise 6.4: Add a method Elems that returns a slice containing the elements of the set, suit-
able for iterating over with a range loop.

Exercise 6.5: The type of each word used by IntSet is uint64, but 64-bit arithmetic may be
inefficient on a 32-bit platform. Modify the program to use the uint type, which is the most
efficient unsigned integer type for the platform. Instead of dividing by 64, define a constant
holding the effective size of uint in bits, 32 or 64. You can use the perhaps too-clever expres-
sion 32 << (~uint(@) >> 63) for this purpose.

6.6. Encapsulation

A variable or method of an object is said to be encapsulated if it is inaccessible to clients of the
object. Encapsulation, sometimes called information hiding, is a key aspect of object-oriented
programming.

Go has only one mechanism to control the visibility of names: capitalized identifiers are
exported from the package in which they are defined, and uncapitalized names are not. The
same mechanism that limits access to members of a package also limits access to the fields of a
struct or the methods of a type. As a consequence, to encapsulate an object, we must make it a
struct.

That’s the reason the IntSet type from the previous section was declared as a struct type even
though it has only a single field:

type IntSet struct {
words [Juinté64

}

We could instead define IntSet as a slice type as follows, though of course wed have to replace
each occurrence of s.words by *s in its methods:

type IntSet [Juinté64

Although this version of IntSet would be essentially equivalent, it would allow clients from
other packages to read and modify the slice directly. Put another way, whereas the expression
*s could be used in any package, s.words may appear only in the package that defines
IntSet.

Another consequence of this name-based mechanism is that the unit of encapsulation is the
package, not the type as in many other languages. The fields of a struct type are visible to all
code within the same package. Whether the code appears in a function or a method makes no
difference.

Encapsulation provides three benefits. First, because clients cannot directly modify the
object’s variables, one need inspect fewer statements to understand the possible values of those
variables.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 6.6. ENCAPSULATION 169

Second, hiding implementation details prevents clients from depending on things that might
change, which gives the designer greater freedom to evolve the implementation without break-
ing API compatibility.

As an example, consider the bytes.Buffer type. It is frequently used to accumulate very
short strings, so it is a profitable optimization to reserve a little extra space in the object to
avoid memory allocation in this common case. Since Buffer is a struct type, this space takes
the form of an extra field of type [64]byte with an uncapitalized name. When this field was
added, because it was not exported, clients of Buffer outside the bytes package were unaware
of any change except improved performance. Buffer and its Grow method are shown below,
simplified for clarity:

type Buffer struct {

buf [Ibyte
initial [64]byte
A

}

// Grow expands the buffer's capacity, if necessary,
// to guarantee space for another n bytes. [...]
func (b *Buffer) Grow(n int) {
if b.buf == nil {
b.buf = b.initial[:0] // use preallocated space initially

}
if len(b.buf)+n > cap(b.buf) {

buf := make([]byte, b.Len(), 2*cap(b.buf) + n)
copy(buf, b.buf)
b.buf = buf

}

The third benefit of encapsulation, and in many cases the most important, is that it prevents
clients from setting an object’s variables arbitrarily. Because the object’s variables can be set
only by functions in the same package, the author of that package can ensure that all those
functions maintain the object’s internal invariants. For example, the Counter type below per-
mits clients to increment the counter or to reset it to zero, but not to set it to some arbitrary
value:

type Counter struct { n int }

func (c *Counter) N() int { return c.n }
func (c *Counter) Increment() { c.n++ }
func (c *Counter) Reset() {cn=207}

Functions that merely access or modify internal values of a type, such as the methods of the
Logger type from log package, below, are called getters and setters. However, when naming a
getter method, we usually omit the Get prefix. This preference for brevity extends to all meth-
ods, not just field accessors, and to other redundant prefixes as well, such as Fetch, Find, and
Lookup.

www.it-ebooks.info

http://www.it-ebooks.info/

170 CHAPTER 6. METHODS

package log
type Logger struct {

flags int
prefix string
/...

}

func (1 *Logger) Flags() int

func (1 *Logger) SetFlags(flag int)

func (1 *Logger) Prefix() string

func (1 *Logger) SetPrefix(prefix string)

Go style does not forbid exported fields. Of course, once exported, a field cannot be unex-
ported without an incompatible change to the API, so the initial choice should be deliberate
and should consider the complexity of the invariants that must be maintained, the likelihood
of future changes, and the quantity of client code that would be affected by a change.

Encapsulation is not always desirable. By revealing its representation as an int64 number of
nanoseconds, time.Duration lets us use all the usual arithmetic and comparison operations
with durations, and even to define constants of this type:

const day = 24 * time.Hour
fmt.Println(day.Seconds()) // "86400"

As another example, contrast IntSet with the geometry.Path type from the beginning of this
chapter. Path was defined as a slice type, allowing its clients to construct instances using the
slice literal syntax, to iterate over its points using a range loop, and so on, whereas these opera-
tions are denied to clients of IntSet.

Here’s the crucial difference: geometry.Path is intrinsically a sequence of points, no more and
no less, and we don’t foresee adding new fields to it, so it makes sense for the geometry pack-
age to reveal that Path is a slice. In contrast, an IntSet merely happens to be represented as a
[Juint64 slice. It could have been represented using [Juint, or something completely differ-
ent for sets that are sparse or very small, and it might perhaps benefit from additional features
like an extra field to record the number of elements in the set. For these reasons, it makes
sense for IntSet to be opaque.

In this chapter, we learned how to associate methods with named types, and how to call those
methods. Although methods are crucial to object-oriented programming, they’re only half the
picture. To complete it, we need interfaces, the subject of the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

7

Interfaces

Interface types express generalizations or abstractions about the behaviors of other types. By
generalizing, interfaces let us write functions that are more flexible and adaptable because they
are not tied to the details of one particular implementation.

Many object-oriented languages have some notion of interfaces, but what makes Go’s inter-
faces so distinctive is that they are satisfied implicitly. In other words, there’s no need to
declare all the interfaces that a given concrete type satisfies; simply possessing the necessary
methods is enough. This design lets you create new interfaces that are satisfied by existing
concrete types without changing the existing types, which is particularly useful for types
defined in packages that you don't control.

In this chapter, we'll start by looking at the basic mechanics of interface types and their values.
Along the way, we'll study several important interfaces from the standard library. Many Go
programs make as much use of standard interfaces as they do of their own ones. Finally, we'll
look at type assertions (§7.10) and type switches (§7.13) and see how they enable a different
kind of generality.

7.1. Interfaces as Contracts

All the types we've looked at so far have been concrete types. A concrete type specifies the
exact representation of its values and exposes the intrinsic operations of that representation,
such as arithmetic for numbers, or indexing, append, and range for slices. A concrete type
may also provide additional behaviors through its methods. When you have a value of a con-
crete type, you know exactly what it is and what you can do with it.

There is another kind of type in Go called an interface type. An interface is an abstract type. It
doesn't expose the representation or internal structure of its values, or the set of basic

171

www.it-ebooks.info

http://www.it-ebooks.info/

172 CHAPTER 7. INTERFACES

operations they support; it reveals only some of their methods. When you have a value of an
interface type, you know nothing about what it is; you know only what it can do, or more
precisely, what behaviors are provided by its methods.

Throughout the book, we've been using two similar functions for string formatting:
fmt.Printf, which writes the result to the standard output (a file), and fmt.Sprintf, which
returns the result as a string. It would be unfortunate if the hard part, formatting the result,
had to be duplicated because of these superficial differences in how the result is used. Thanks
to interfaces, it does not. Both of these functions are, in effect, wrappers around a third func-
tion, fmt. Fprintf, that is agnostic about what happens to the result it computes:

package fmt
func Fprintf(w io.Writer, format string, args ...interface{}) (int, error)

func Printf(format string, args ...interface{}) (int, error) {
return Fprintf(os.Stdout, format, args...)

}

func Sprintf(format string, args ...interface{}) string {
var buf bytes.Buffer
Fprintf(&buf, format, args...)
return buf.String()

}

The F prefix of Fprintf stands for file and indicates that the formatted output should be
written to the file provided as the first argument. In the Printf case, the argument, os.Std-
out, is an *os.File. In the Sprintf case, however, the argument is not a file, though it super-
ficially resembles one: &uf is a pointer to a memory buffer to which bytes can be written.

The first parameter of Fprintf is not a file either. It's an io.Writer, which is an interface type
with the following declaration:

package io

// Writer is the interface that wraps the basic Write method.

type Writer interface {
// Write writes len(p) bytes from p to the underlying data stream.
// It returns the number of bytes written from p (@ <= n <= len(p))
// and any error encountered that caused the write to stop early.
// Write must return a non-nil error if it returns n < len(p).
// Write must not modify the slice data, even temporarily.

// Implementations must not retain p.
Write(p []byte) (n int, err error)

}

The io.Writer interface defines the contract between Fprintf and its callers. On the one
hand, the contract requires that the caller provide a value of a concrete type like *os.File or
*bytes.Buffer that has a method called Write with the appropriate signature and behavior.
On the other hand, the contract guarantees that Fprintf will do its job given any value that
satisfies the io.Writer interface. Fprintf may not assume that it is writing to a file or to

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 7.1. INTERFACES AS CONTRACTS 173

memory, only that it can call Write.

Because fmt.Fprintf assumes nothing about the representation of the value and relies only
on the behaviors guaranteed by the io.Writer contract, we can safely pass a value of any con-
crete type that satisfies io.Writer as the first argument to fmt.Fprintf. This freedom to
substitute one type for another that satisfies the same interface is called substitutability, and is
a hallmark of object-oriented programming.

Lets test this out using a new type. The Write method of the *ByteCounter type below
merely counts the bytes written to it before discarding them. (The conversion is required to
make the types of len(p) and *c match in the += assignment statement.)

gopl.io/ch7/bytecounter

type ByteCounter int

func (c *ByteCounter) Write(p []byte) (int, error) {
*c += ByteCounter(len(p)) // convert int to ByteCounter
return len(p), nil

}

Since *ByteCounter satisfies the io.Writer contract, we can pass it to Fprintf, which does
its string formatting oblivious to this change; the ByteCounter correctly accumulates the
length of the result.

var c ByteCounter
c.Write([]byte("hello"))
fmt.Println(c) // "5", = len("hello")

c = 0 // reset the counter

var name = "Dolly"

fmt.Fprintf(&c, "hello, %s", name)
fmt.Println(c) // "12", = len("hello, Dolly")

Besides io.Writer, there is another interface of great importance to the fmt package.
Fprintf and Fprintln provide a way for types to control how their values are printed. In
Section 2.5, we defined a String method for the Celsius type so that temperatures would
print as "100°C", and in Section 6.5 we equipped *IntSet with a String method so that sets
would be rendered using traditional set notation like "{1 2 3}". Declaring a String method
makes a type satisfy one of the most widely used interfaces of all, fmt.Stringer:

package fmt

// The String method is used to print values passed

// as an operand to any format that accepts a string

// or to an unformatted printer such as Print.

type Stringer interface {
String() string

}
We'll explain how the fmt package discovers which values satisfy this interface in Section 7.10.

Exercise 7.1: Using the ideas from ByteCounter, implement counters for words and for lines.
You will find bufio.ScanWords useful.

www.it-ebooks.info

http://www.it-ebooks.info/

174 CHAPTER 7. INTERFACES

Exercise 7.2: Write a function CountingWriter with the signature below that, given an
io.Writer, returns a new Writer that wraps the original, and a pointer to an int64 variable
that at any moment contains the number of bytes written to the new Writer.

func CountingWriter(w io.Writer) (io.Writer, *int64)

Exercise 7.3: Write a String method for the *tree type in gopl.io/ch4/treesort (§4.4)
that reveals the sequence of values in the tree.

7.2. Interface Types

An interface type specifies a set of methods that a concrete type must possess to be considered
an instance of that interface.

The io.Writer type is one of the most widely used interfaces because it provides an abstrac-
tion of all the types to which bytes can be written, which includes files, memory buffers, net-
work connections, HTTP clients, archivers, hashers, and so on. The io package defines many
other useful interfaces. A Reader represents any type from which you can read bytes, and a
Closer is any value that you can close, such as a file or a network connection. (By now you've
probably noticed the naming convention for many of Go’s single-method interfaces.)

package io

type Reader interface {
Read(p []byte) (n int, err error)
}

type Closer interface {
Close() error

}

Looking farther, we find declarations of new interface types as combinations of existing ones.
Here are two examples:

type ReadWriter interface {

Reader
Writer
}
type ReadWriteCloser interface {
Reader
Writer
Closer
}

The syntax used above, which resembles struct embedding, lets us name another interface as a
shorthand for writing out all of its methods. This is called embedding an interface. We could
have written io.ReadWriter without embedding, albeit less succinctly, like this:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 7.3. INTERFACE SATISFACTION 175

type ReadWriter interface {
Read(p []byte) (n int, err error)
Write(p []byte) (n int, err error)

}
or even using a mixture of the two styles:

type ReadWriter interface {
Read(p []byte) (n int, err error)
Writer

}

All three declarations have the same effect. The order in which the methods appear is imma-
terial. All that matters is the set of methods.

Exercise 7.4: The strings.NewReader function returns a value that satisfies the io.Reader
interface (and others) by reading from its argument, a string. Implement a simple version of
NewReader yourself, and use it to make the HTML parser (§5.2) take input from a string.

Exercise 7.5: The LimitReader function in the io package accepts an io.Reader r and a
number of bytes n, and returns another Reader that reads from r but reports an end-of-file
condition after n bytes. Implement it.

func LimitReader(r io.Reader, n int64) io.Reader

7.3. Interface Satisfaction

A type satisfies an interface if it possesses all the methods the interface requires. For example,
an *os.File satisfies io.Reader, Writer, Closer, and ReadWriter. A *bytes.Buffer sat-
isfies Reader, Writer, and ReadWriter, but does not satisfy Closer because it does not have a
Close method. As a shorthand, Go programmers often say that a concrete type “is a” particu-
lar interface type, meaning that it satisfies the interface. For example, a *bytes.Buffer is an
io.Writer;an *os.Fileisan io.ReadWriter.

The assignability rule (§2.4.2) for interfaces is very simple: an expression may be assigned to
an interface only if its type satisfies the interface. So:

var w io.Writer

w = os.Stdout // OK: *os.File has Write method
w = new(bytes.Buffer) // OK: *bytes.Buffer has Write method
w = time.Second // compile error: time.Duration lacks Write method

var rwc io.ReadWriteCloser
rwc = os.Stdout // OK: *os.File has Read, Write, Close methods
rwc = new(bytes.Buffer) // compile error: *bytes.Buffer lacks Close method

This rule applies even when the right-hand side is itself an interface:

W = rwc // OK: io.ReadWriteCloser has Write method
rwec = w // compile error: io.Writer lacks Close method

www.it-ebooks.info

http://www.it-ebooks.info/

176 CHAPTER 7. INTERFACES

Because ReadWriter and ReadWriteCloser include all the methods of Writer, any type that
satisfies ReadWriter or ReadWriteCloser necessarily satisfies Writer.

Before we go further, we should explain one subtlety in what it means for a type to have a
method. Recall from Section 6.2 that for each named concrete type T, some of its methods
have a receiver of type T itself whereas others require a *T pointer. Recall also that it is legal to
call a *T method on an argument of type T so long as the argument is a variable; the compiler
implicitly takes its address. But this is mere syntactic sugar: a value of type T does not possess
all the methods that a *T pointer does, and as a result it might satisfy fewer interfaces.

An example will make this clear. The String method of the IntSet type from Section 6.5
requires a pointer receiver, so we cannot call that method on a non-addressable IntSet value:

type IntSet struct { /* ... */ }
func (*IntSet) String() string

var _ = IntSet{}.String() // compile error: String requires *IntSet receiver
but we can call it on an IntSet variable:

var s IntSet
var _ = s.String() // OK: s is a variable and &s has a String method

However, since only *IntSet has a String method, only *IntSet satisfies the fmt.Stringer
interface:

var _ fmt.Stringer = &s // OK
var _ fmt.Stringer = s // compile error: IntSet lacks String method

Section 12.8 includes a program that prints the methods of an arbitrary value, and the
godoc -analysis=type tool (§10.7.4) displays the methods of each type and the relationship
between interfaces and concrete types.

Like an envelope that wraps and conceals the letter it holds, an interface wraps and conceals
the concrete type and value that it holds. Only the methods revealed by the interface type may
be called, even if the concrete type has others:

os.Stdout.Write([]byte("hello")) // OK: *os.File has Write method
os.Stdout.Close() // OK: *os.File has Close method

var w io.Writer

w = o0s.Stdout

w.Write([]byte("hello")) // OK: io.Writer has Write method

w.Close() // compile error: io.Writer lacks Close method

An interface with more methods, such as io.ReadWriter, tells us more about the values it
contains, and places greater demands on the types that implement it, than does an interface
with fewer methods such as io.Reader. So what does the type interface{}, which has no
methods at all, tell us about the concrete types that satisty it?

That’s right: nothing. This may seem useless, but in fact the type interface{}, which is
called the empty interface type, is indispensable. Because the empty interface type places no
demands on the types that satisfy it, we can assign any value to the empty interface.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 7.3. INTERFACE SATISFACTION 177

var any interface{}

any = true

any = 12.34

any = "hello"

any = map[stringlint{"one": 1}
any = new(bytes.Buffer)

Although it wasn’t obvious, we've been using the empty interface type since the very first
example in this book, because it is what allows functions like fmt.Println, or errorf in
Section 5.7, to accept arguments of any type.

Of course, having created an interface{} value containing a boolean, float, string, map,
pointer, or any other type, we can do nothing directly to the value it holds since the interface
has no methods. We need a way to get the value back out again. We'll see how to do that
using a type assertion in Section 7.10.

Since interface satisfaction depends only on the methods of the two types involved, there is no
need to declare the relationship between a concrete type and the interfaces it satisfies. That
said, it is occasionally useful to document and assert the relationship when it is intended but
not otherwise enforced by the program. The declaration below asserts at compile time that a
value of type *bytes.Buffer satisfies io.Writer:

// *bytes.Buffer must satisfy io.Writer
var w io.Writer = new(bytes.Buffer)

We needn'’t allocate a new variable since any value of type *bytes.Buffer will do, even nil,
which we write as (*bytes.Buffer)(nil) using an explicit conversion. And since we never
intend to refer to w, we can replace it with the blank identifier. Together, these changes give us
this more frugal variant:

// *bytes.Buffer must satisfy io.Writer
var _ io.Writer = (*bytes.Buffer)(nil)

Non-empty interface types such as io.Writer are most often satisfied by a pointer type, par-
ticularly when one or more of the interface methods implies some kind of mutation to the
receiver, as the Write method does. A pointer to a struct is an especially common method-
bearing type.

But pointer types are by no means the only types that satisfy interfaces, and even interfaces
with mutator methods may be satisfied by one of Go’s other reference types. We've seen exam-
ples of slice types with methods (geometry.Path, §6.1) and map types with methods
(url.values, §6.2.1), and later we'll see a function type with methods (http.HandlerFunc,
§7.7). Even basic types may satisfy interfaces; as we saw in Section 7.4, time.Duration sat-
isfies fmt.Stringer.

A concrete type may satisfy many unrelated interfaces. Consider a program that organizes or
sells digitized cultural artifacts like music, films, and books. It might define the following set
of concrete types:

www.it-ebooks.info

http://www.it-ebooks.info/

178 CHAPTER 7. INTERFACES

Album
Book
Movie
Magazine
Podcast
TVEpisode
Track

We can express each abstraction of interest as an interface. Some properties are common to all
artifacts, such as a title, a creation date, and a list of creators (authors or artists).

type Artifact interface {
Title() string
Creators() []string
Created() time.Time

}

Other properties are restricted to certain types of artifacts. Properties of the printed word are
relevant only to books and magazines, whereas only movies and TV episodes have a screen
resolution.

type Text interface {
Pages() int
Words() int
PageSize() int

}

type Audio interface {
Stream() (io.ReadCloser, error)
RunningTime() time.Duration
Format() string // e.g., "MP3", "WAV"

}

type Video interface {
Stream() (io.ReadCloser, error)
RunningTime() time.Duration
Format() string // e.g., "MP4", "WMV"
Resolution() (x, y int)

}

These interfaces are but one useful way to group related concrete types together and express
the facets they share in common. We may discover other groupings later. For example, if we
find we need to handle Audio and Video items in the same way, we can define a Streamer
interface to represent their common aspects without changing any existing type declarations.
type Streamer interface {

Stream() (io.ReadCloser, error)

RunningTime() time.Duration

Format() string

}

Each grouping of concrete types based on their shared behaviors can be expressed as an inter-
face type. Unlike class-based languages, in which the set of interfaces satisfied by a class is

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 7.4. PARSING FLAGS WITH FLAG.VALUE 179

explicit, in Go we can define new abstractions or groupings of interest when we need them,
without modifying the declaration of the concrete type. This is particularly useful when the
concrete type comes from a package written by a different author. Of course, there do need to
be underlying commonalities in the concrete types.

7.4. Parsing Flags with flag.Value

In this section, we'll see how another standard interface, flag.Value, helps us define new
notations for command-line flags. Consider the program below, which sleeps for a specified
period of time.

gopl.io/ch7/sleep
var period = flag.Duration("period", 1*time.Second, "sleep period")

func main() {
flag.Parse()
fmt.Printf("Sleeping for %v...", *period)
time.Sleep(*period)
fmt.Println()
}

Before it goes to sleep it prints the time period. The fmt package calls the time.Duration’s
String method to print the period not as a number of nanoseconds, but in a user-friendly
notation:

$ go build gopl.io/ch7/sleep
$./sleep
Sleeping for 1s...

By default, the sleep period is one second, but it can be controlled through the -period com-
mand-line flag. The flag.Duration function creates a flag variable of type time.Duration
and allows the user to specify the duration in a variety of user-friendly formats, including the
same notation printed by the String method. This symmetry of design leads to a nice user
interface.

$./sleep -period 5@ms

Sleeping for 5@ms...

$./sleep -period 2m30s

Sleeping for 2m3@s...

$./sleep -period 1.5h

Sleeping for 1h3@mes...

$./sleep -period "1 day"

invalid value "1 day" for flag -period: time: invalid duration 1 day

Because duration-valued flags are so useful, this feature is built into the flag package, but it’s
easy to define new flag notations for our own data types. We need only define a type that sat-
isfies the flag.Value interface, whose declaration is below:

www.it-ebooks.info

http://www.it-ebooks.info/

180 CHAPTER 7. INTERFACES

package flag

// Value is the interface to the value stored in a flag.
type Value interface {

String() string

Set(string) error

}

The String method formats the flag’s value for use in command-line help messages; thus
every flag.Value is also a fmt.Stringer. The Set method parses its string argument and
updates the flag value. In effect, the Set method is the inverse of the String method, and it is
good practice for them to use the same notation.

Let’s define a celsiusFlag type that allows a temperature to be specified in Celsius, or in
Fahrenheit with an appropriate conversion. Notice that celsiusFlag embeds a Celsius
(§2.5), thereby getting a String method for free. To satisfy flag.Value, we need only declare
the Set method:

gopl.io/ch7/tempconv

// *celsiusFlag satisfies the flag.Value interface.
type celsiusFlag struct{ Celsius }

func (f *celsiusFlag) Set(s string) error {
var unit string
var value float64
fmt.Sscanf(s, "%f%s", &value, &unit) // no error check needed
switch unit {
case "C", "°C":
f.Celsius = Celsius(value)
return nil
case "F", "°F":
f.Celsius = FToC(Fahrenheit(value))
return nil

}

return fmt.Errorf("invalid temperature %q", s)

}

The call to fmt.Sscanf parses a floating-point number (value) and a string (unit) from the
input s. Although one must usually check Sscanf’s error result, in this case we don’t need to
because if there was a problem, no switch case will match.

The CelsiusFlag function below wraps it all up. To the caller, it returns a pointer to the Cel-
sius field embedded within the celsiusFlag variable f. The Celsius field is the variable
that will be updated by the Set method during flags processing. The call to Var adds the flag
to the application’s set of command-line flags, the global variable flag.CommandLine.
Programs with unusually complex command-line interfaces may have several variables of this
type. The call to Var assigns a *celsiusFlag argument to a flag.Value parameter, causing
the compiler to check that *celsiusFlag has the necessary methods.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 7.5. INTERFACE VALUES 181

// CelsiusFlag defines a Celsius flag with the specified name,
// default value, and usage, and returns the address of the flag variable.
// The flag argument must have a quantity and a unit, e.g., "1@eC".
func CelsiusFlag(name string, value Celsius, usage string) *Celsius {
f := celsiusFlag{value}
flag.CommandLine.Var(&f, name, usage)
return &f.Celsius

}
Now we can start using the new flag in our programs:

gopl.io/ch7/tempflag

var temp = tempconv.CelsiusFlag("temp", 20.0, "the temperature")

func main() {
flag.Parse()
fmt.Println(*temp)

Here’s a typical session:

$ go build gopl.io/ch7/tempflag
$./tempflag

20°C
$./tempflag -temp -18C
-18°C
$./tempflag -temp 212°F
100°C

$./tempflag -temp 273.15K
invalid value "273.15K" for flag -temp: invalid temperature "273.15K"
Usage of ./tempflag:
-temp value
the temperature (default 20°C)
$./tempflag -help
Usage of ./tempflag:
-temp value
the temperature (default 20°C)

Exercise 7.6: Add support for Kelvin temperatures to tempflag.

Exercise 7.7: Explain why the help message contains °C when the default value of 20.0 does
not.

7.5. Interface Values

Conceptually, a value of an interface type, or interface value, has two components, a concrete
type and a value of that type. These are called the interface’s dynamic type and dynamic value.

For a statically typed language like Go, types are a compile-time concept, so a type is not a
value. In our conceptual model, a set of values called type descriptors provide information

www.it-ebooks.info

http://www.it-ebooks.info/

182 CHAPTER 7. INTERFACES

about each type, such as its name and methods. In an interface value, the type component is
represented by the appropriate type descriptor.

In the four statements below, the variable w takes on three different values. (The initial and
final values are the same.)

var w io.Writer

w = os.Stdout

w = new(bytes.Buffer)
w = nil

Let’s take a closer look at the value and dynamic behavior of w after each statement. The first
statement declares w:

var w io.Writer

In Go, variables are always initialized to a well-defined value, and interfaces are no exception.
The zero value for an interface has both its type and value components set to nil (Figure 7.1).

type nil

value nil

Figure 7.1. A nil interface value.

An interface value is described as nil or non-nil based on its dynamic type, so this is a nil
interface value. You can test whether an interface value is nil using w == nil or w != nil.
Calling any method of a nil interface value causes a panic:

w.Write([]byte("hello")) // panic: nil pointer dereference

The second statement assigns a value of type *os.File to w:

w = os.Stdout

This assignment involves an implicit conversion from a concrete type to an interface type, and
is equivalent to the explicit conversion io.Writer(os.Stdout). A conversion of this kind,
whether explicit or implicit, captures the type and the value of its operand. The interface
value’s dynamic type is set to the type descriptor for the pointer type *os.File, and its
dynamic value holds a copy of os.Stdout, which is a pointer to the os.File variable rep-
resenting the standard output of the process (Figure 7.2).

type *0s.File os.File

value ./"v fd int =1 (stdout)

Figure 7.2. An interface value containing an *os.File pointer.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 7.5. INTERFACE VALUES 183

Calling the Write method on an interface value containing an *os.File pointer causes the
(*os.File).Write method to be called. The call prints "hello".

w.Write([]byte("hello")) // “hello"
In general, we cannot know at compile time what the dynamic type of an interface value will
be, so a call through an interface must use dynamic dispatch. Instead of a direct call, the com-
piler must generate code to obtain the address of the method named Write from the type
descriptor, then make an indirect call to that address. The receiver argument for the call is a

copy of the interface’s dynamic value, os.Stdout. The effect is as if we had made this call
directly:

os.Stdout.Write([]byte("hello")) // "hello"
The third statement assigns a value of type *bytes.Buffer to the interface value:
w = new(bytes.Buffer)

The dynamic type is now *bytes.Buffer and the dynamic value is a pointer to the newly
allocated buffer (Figure 7.3).

bytes.Buffer

type *bytes.Buffer

f data []byte
value -—

Figure 7.3. An interface value containing a *bytes.Buffer pointer.

A call to the Write method uses the same mechanism as before:

w.Write([]byte("hello")) // writes "hello" to the bytes.Buffer

This time, the type descriptor is *bytes.Buffer, so the (*bytes.Buffer).Write method is
called, with the address of the buffer as the value of the receiver parameter. The call appends
"hello" to the buffer.

Finally, the fourth statement assigns nil to the interface value:
w = nil
This resets both its components to nil, restoring w to the same state as when it was declared,

which was shown in Figure 7.1.

An interface value can hold arbitrarily large dynamic values. For example, the time.Time
type, which represents an instant in time, is a struct type with several unexported fields. If we
create an interface value from it,

var x interface{} = time.Now()

the result might look like Figure 7.4. Conceptually, the dynamic value always fits inside the
interface value, no matter how large its type. (This is only a conceptual model; a realistic
implementation is quite different.)

www.it-ebooks.info

http://www.it-ebooks.info/

184 CHAPTER 7. INTERFACES

type time.Time

value sec: 63567389742
nsec: 689632918
loc: “UTC”

Figure 7.4. An interface value holding a time.Time struct.

Interface values may be compared using == and !=. Two interface values are equal if both are
nil, or if their dynamic types are identical and their dynamic values are equal according to the
usual behavior of == for that type. Because interface values are comparable, they may be used
as the keys of a map or as the operand of a switch statement.

However, if two interface values are compared and have the same dynamic type, but that type
is not comparable (a slice, for instance), then the comparison fails with a panic:

var x interface{} = []int{1, 2, 3}
fmt.Println(x == x) // panic: comparing uncomparable type []int

In this respect, interface types are unusual. Other types are either safely comparable (like
basic types and pointers) or not comparable at all (like slices, maps, and functions), but when
comparing interface values or aggregate types that contain interface values, we must be aware
of the potential for a panic. A similar risk exists when using interfaces as map keys or switch
operands. Only compare interface values if you are certain that they contain dynamic values
of comparable types.

When handling errors, or during debugging, it is often helpful to report the dynamic type of
an interface value. For that, we use the fmt package’s %T verb:

var w io.Writer
fmt.Printf("%T\n", w) // "<nil>"

w = os.Stdout
fmt.Printf("%T\n", w) // "*os.File"

w = new(bytes.Buffer)
fmt.Printf("%T\n", w) // "*bytes.Buffer"

Internally, fmt uses reflection to obtain the name of the interface’s dynamic type. We'll look at
reflection in Chapter 12.

7.5.1. Caveat: An Interface Containing a Nil Pointer Is Non-Nil

A nil interface value, which contains no value at all, is not the same as an interface value con-
taining a pointer that happens to be nil. This subtle distinction creates a trap into which every
Go programmer has stumbled.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 7.5. INTERFACE VALUES 185

Consider the program below. With debug set to true, the main function collects the output of
the function f in a bytes.Buffer.

const debug = true

func main() {
var buf *bytes.Buffer
if debug {
buf = new(bytes.Buffer) // enable collection of output

}
f(buf) // NOTE: subtly incorrect!
if debug {
// ...use buf...
}

}

// If out is non-nil, output will be written to it.
func f(out io.Writer) {
// ...do something...
if out != nil {
out.Write([]byte("done!\n"))

}
}

We might expect that changing debug to false would disable the collection of the output, but
in fact it causes the program to panic during the out.Write call:
if out != nil {
out.Write([]byte("done!\n")) // panic: nil pointer dereference

}

When main calls f, it assigns a nil pointer of type *bytes.Buffer to the out parameter, so the
dynamic value of out is nil. However, its dynamic type is *bytes.Buffer, meaning that out
is a non-nil interface containing a nil pointer value (Figure 7.5), so the defensive check
out !=nilis still true.

type *bytes.Buffer

value nil

Figure 7.5. A non-nil interface containing a nil pointer.

As before, the dynamic dispatch mechanism determines that (*bytes.Buffer).Write must
be called but this time with a receiver value that is nil. For some types, such as *os.File, nil
is a valid receiver (§6.2.1), but *bytes.Buffer is not among them. The method is called, but
it panics as it tries to access the buffer.

The problem is that although a nil *bytes.Buffer pointer has the methods needed to satisfy
the interface, it doesn’t satisfy the behavioral requirements of the interface. In particular, the

www.it-ebooks.info

http://www.it-ebooks.info/

186 CHAPTER 7. INTERFACES

call violates the implicit precondition of (*bytes.Buffer).Write that its receiver is not nil,
so assigning the nil pointer to the interface was a mistake. The solution is to change the type
of buf in main to io.Writer, thereby avoiding the assignment of the dysfunctional value to
the interface in the first place:

var buf io.Writer
if debug {
buf = new(bytes.Buffer) // enable collection of output

}
f(buf) // OK

Now that we've covered the mechanics of interface values, let’s take a look at some more
important interfaces from Go’s standard library. In the next three sections, we'll see how inter-
faces are used for sorting, web serving, and error handling.

7.6. Sorting with sort.Interface

Like string formatting, sorting is a frequently used operation in many programs. Although a
minimal Quicksort can be written in about 15 lines, a robust implementation is much longer,
and it is not the kind of code we should wish to write anew or copy each time we need it.

Fortunately, the sort package provides in-place sorting of any sequence according to any
ordering function. Its design is rather unusual. In many languages, the sorting algorithm is
associated with the sequence data type, while the ordering function is associated with the type
of the elements. By contrast, Go's sort.Sort function assumes nothing about the represen-
tation of either the sequence or its elements. Instead, it uses an interface, sort.Interface, to
specify the contract between the generic sort algorithm and each sequence type that may be
sorted. An implementation of this interface determines both the concrete representation of
the sequence, which is often a slice, and the desired ordering of its elements.

An in-place sort algorithm needs three things—the length of the sequence, a means of com-
paring two elements, and a way to swap two elements—so they are the three methods of
sort.Interface:

package sort

type Interface interface {
Len() int
Less(i, j int) bool // i, j are indices of sequence elements
Swap(i, j int)

}

To sort any sequence, we need to define a type that implements these three methods, then
apply sort.Sort to an instance of that type. As perhaps the simplest example, consider
sorting a slice of strings. The new type StringSlice and its Len, Less, and Swap methods are
shown below.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 7.6. SORTING WITH SORT.INTERFACE 187

type StringSlice []string

func (p StringSlice) Len() int { return len(p) }
func (p StringSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p StringSlice) Swap(i, j int) { p[il, p[3] = p[31, p[i] }

Now we can sort a slice of strings, names, by converting the slice to a StringSlice like this:

sort.Sort(StringSlice(names))

The conversion yields a slice value with the same length, capacity, and underlying array as
names but with a type that has the three methods required for sorting.

Sorting a slice of strings is so common that the sort package provides the StringSlice type,
as well as a function called Strings so that the call above can be simplified to
sort.Strings(names).

The technique here is easily adapted to other sort orders, for instance, to ignore capitalization
or special characters. (The Go program that sorts index terms and page numbers for this
book does this, with extra logic for Roman numerals.) For more complicated sorting, we use
the same idea, but with more complicated data structures or more complicated implemen-
tations of the sort. Interface methods.

Our running example for sorting will be a music playlist, displayed as a table. Each track is a
single row, and each column is an attribute of that track, like artist, title, and running time.
Imagine that a graphical user interface presents the table, and that clicking the head of a col-
umn causes the playlist to be sorted by that attribute; clicking the same column head again
reverses the order. Let’s look at what might happen in response to each click.

The variable tracks below contains a playlist. (One of the authors apologizes for the other
author’s musical tastes.) Each element is indirect, a pointer to a Track. Although the code
below would work if we stored the Tracks directly, the sort function will swap many pairs of
elements, so it will run faster if each element is a pointer, which is a single machine word,
instead of an entire Track, which might be eight words or more.

gopl.io/ch7/sorting

type Track struct {
Title string
Artist string
Album string
Year int
Length time.Duration

var tracks = []*Track{
{"Go", "Delilah", "From the Roots Up", 2012, length("3m38s")},
{"Go", "Moby", "Moby", 1992, length("3m37s")},
{"Go Ahead", "Alicia Keys", "As I Am", 2007, length("4m36s")},
{"Ready 2 Go", "Martin Solveig", "Smash", 2011, length("4m24s")},

www.it-ebooks.info

http://www.it-ebooks.info/

188 CHAPTER 7. INTERFACES

func length(s string) time.Duration {

d, err := time.ParseDuration(s)
if err != nil {

panic(s)
return d

}

The printTracks function prints the playlist as a table. A graphical display would be nicer,
but this little routine uses the text/tabwriter package to produce a table whose columns are
neatly aligned and padded as shown below. Observe that *tabwriter.Writer satisfies
io.Writer. It collects each piece of data written to it; its Flush method formats the entire ta-
ble and writes it to os . Stdout.

func printTracks(tracks []*Track) {
const format = "%v\t%v\tihv\tkv\t%v\t\n"
tw := new(tabwriter.Writer).Init(os.Stdout, o0, 8, 2, ' ', @)
fmt.Fprintf(tw, format, "Title", "Artist", "Album", "Year", "Length")
fmt.Fprintf(tw, format, "----- My M- My Meeee- B e et ")
for _, t := range tracks {
fmt.Fprintf(tw, format, t.Title, t.Artist, t.Album, t.Year, t.Length)
}
tw.Flush() // calculate column widths and print table
}

To sort the playlist by the Artist field, we define a new slice type with the necessary Len,
Less, and Swap methods, analogous to what we did for StringSlice.

type byArtist []*Track

func (x byArtist) Len() int { return len(x) }
func (x byArtist) Less(i, j int) bool { return x[i].Artist < x[j].Artist }
func (x byArtist) Swap(i, j int) { x[i1, x[3j] = x[3j1, x[1i] }

To call the generic sort routine, we must first convert tracks to the new type, byArtist, that
defines the order:

sort.Sort(byArtist(tracks))

After sorting the slice by artist, the output from printTracks is

Title Artist Album Year Length
Go Ahead Alicia Keys As I Am 2007 4m36s
Go Delilah From the Roots Up 2012 3m38s
Ready 2 Go Martin Solveig Smash 2011 4m24s
Go Moby Moby 1992 3m37s

If the user requests “sort by artist” a second time, we'll sort the tracks in reverse. We needn’t
define a new type byReverseArtist with an inverted Less method, however, since the sort
package provides a Reverse function that transforms any sort order to its inverse.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 7.6. SORTING WITH SORT.INTERFACE 189

sort.Sort(sort.Reverse(byArtist(tracks)))

After reverse-sorting the slice by artist, the output from printTracks is

Title Artist Album Year Length
Go Moby Moby 1992 3m37s
Ready 2 Go Martin Solveig Smash 2011 4m24s
Go Delilah From the Roots Up 2012 3m38s
Go Ahead Alicia Keys As I Am 2007 4m36s

The sort.Reverse function deserves a closer look since it uses composition (§6.3), which is
an important idea. The sort package defines an unexported type reverse, which is a struct
that embeds a sort.Interface. The Less method for reverse calls the Less method of the
embedded sort.Interface value, but with the indices flipped, reversing the order of the sort
results.

package sort
type reverse struct{ Interface } // that is, sort.Interface
func (r reverse) Less(i, j int) bool { return r.Interface.Less(j, i) }

func Reverse(data Interface) Interface { return reverse{data} }

Len and Swap, the other two methods of reverse, are implicitly provided by the original
sort.Interface value because it is an embedded field. The exported function Reverse
returns an instance of the reverse type that contains the original sort.Interface value.

To sort by a different column, we must define a new type, such as byYear:

type byYear []*Track

func (x byYear) Len() int { return len(x) }
func (x byYear) Less(i, j int) bool { return x[i].Year < x[j].Year }
func (x byYear) Swap(i, j int) { x[1], x[3] = x[31, x[i] }

After sorting tracks by year using sort.Sort(byYear(tracks)), printTracks shows a
chronological listing:

Title Artist Album Year Length
Go Moby Moby 1992 3m37s
Go Ahead Alicia Keys As I Am 2007 4m36s
Ready 2 Go Martin Solveig Smash 2011 4m24s
Go Delilah From the Roots Up 2012 3m38s

For every slice element type and every ordering function we need, we declare a new imple-
mentation of sort.Interface. Asyou can see, the Len and Swap methods have identical def-
initions for all slice types. In the next example, the concrete type customSort combines a slice
with a function, letting us define a new sort order by writing only the comparison function.
Incidentally, the concrete types that implement sort.Interface are not always slices; cus-
tomSort is a struct type.

www.it-ebooks.info

http://www.it-ebooks.info/

190 CHAPTER 7. INTERFACES

type customSort struct {
t [1*Track
less func(x, y *Track) bool

}

func (x customSort) Len() int { return len(x.t) }

func (x customSort) Less(i, j int) bool { return x.less(x.t[i], x.t[j]) }
func (x customSort) Swap(i, j int) { x.t[1i], x.t[]j] = x.t[j], x.t[i] }

Lets define a multi-tier ordering function whose primary sort key is the Title, whose
secondary key is the Year, and whose tertiary key is the running time, Length. Here’s the call
to Sort using an anonymous ordering function:

sort.Sort(customSort{tracks, func(x, y *Track) bool {
if x.Title != y.Title {
return x.Title < y.Title

}

if x.Year != y.Year {
return x.Year < y.Year

}

if x.Length != y.Length {
return x.Length < y.Length
}

return false

i39)

And here’s the result. Notice that the tie between the two tracks titled “Go” is broken in favor
of the older one.

Title Artist Album Year Length
Go Moby Moby 1992 3m37s
Go Delilah From the Roots Up 2012 3m38s
Go Ahead Alicia Keys As I Am 2007 4m36s
Ready 2 Go Martin Solveig Smash 2011 4m24s

Although sorting a sequence of length n requires O(n log n) comparison operations, testing
whether a sequence is already sorted requires at most n—1 comparisons. The IsSorted func-
tion from the sort package checks this for us. Like sort.Sort, it abstracts both the sequence
and its ordering function using sort.Interface, but it never calls the Swap method: This
code demonstrates the IntsAreSorted and Ints functions and the IntSlice type:

values := []int{3, 1, 4, 1}
fmt.Println(sort.IntsAreSorted(values)) // "false"
sort.Ints(values)

fmt.Println(values) // "[1 13 4]"
fmt.Println(sort.IntsAreSorted(values)) // "true"
sort.Sort(sort.Reverse(sort.IntSlice(values)))
fmt.Println(values) // "[4311]"
fmt.Println(sort.IntsAreSorted(values)) // "false"

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 7.7. THE HTTP.HANDLER INTERFACE 191

For convenience, the sort package provides versions of its functions and types specialized for
[lint, []string, and []float64 using their natural orderings. For other types, such as
[1int64 or [Juint, were on our own, though the path is short.

Exercise 7.8: Many GUIs provide a table widget with a stateful multi-tier sort: the primary
sort key is the most recently clicked column head, the secondary sort key is the second-most
recently clicked column head, and so on. Define an implementation of sort.Interface for
use by such a table. Compare that approach with repeated sorting using sort.Stable.

Exercise 7.9: Use the html/template package (§4.6) to replace printTracks with a function
that displays the tracks as an HTML table. Use the solution to the previous exercise to arrange
that each click on a column head makes an HT'TP request to sort the table.

Exercise 7.10: The sort.Interface type can be adapted to other uses. Write a function
IsPalindrome(s sort.Interface) bool that reports whether the sequence s is a palin-
drome, in other words, reversing the sequence would not change it. Assume that the elements
at indices i and j are equal if I's.Less(i, j) && !s.Less(j, i).

7.7. The http.Handler Interface

In Chapter 1, we saw a glimpse of how to use the net/http package to implement web clients
(§1.5) and servers (§1.7). In this section, we'll look more closely at the server API, whose
foundation is the http.Handler interface:

net/http
package http

type Handler interface {
ServeHTTP(w ResponseWriter, r *Request)

}

func ListenAndServe(address string, h Handler) error

The ListenAndServe function requires a server address, such as "localhost:8000", and an
instance of the Handler interface to which all requests should be dispatched. It runs forever,
or until the server fails (or fails to start) with an error, always non-nil, which it returns.

Imagine an e-commerce site with a database mapping the items for sale to their prices in dol-
lars. The program below shows the simplest imaginable implementation. It models the inven-
tory as a map type, database, to which we've attached a ServeHTTP method so that it satisfies
the http.Handler interface. The handler ranges over the map and prints the items.

gopl.io/ch7/httpl

func main() {
db := database{"shoes": 50, "socks": 5}
log.Fatal(http.ListenAndServe("localhost:8000", db))

www.it-ebooks.info

http://www.it-ebooks.info/

192 CHAPTER 7. INTERFACES

type dollars float32
func (d dollars) String() string { return fmt.Sprintf("$%.2f", d) }
type database map[stringldollars

func (db database) ServeHTTP(w http.ResponseWriter, req *http.Request) {
for item, price := range db {
fmt.Fprintf(w, "%s: %s\n", item, price)
}
}

If we start the server,

$ go build gopl.io/ch7/httpl
$./httpl &

then connect to it with the fetch program from Section 1.5 (or a web browser if you prefer),
we get the following output:

$ go build gopl.io/chl/fetch

$./fetch http://localhost:8000
shoes: $50.00

socks: $5.00

So far, the server can only list its entire inventory and will do this for every request, regardless
of URL. A more realistic server defines multiple different URLs, each triggering a different
behavior. Let’s call the existing one /1ist and add another one called /price that reports the
price of a single item, specified as a request parameter like /price?item=socks.

gopl.io/ch7/http2

func (db database) ServeHTTP(w http.ResponseWriter, req *http.Request) {
switch req.URL.Path {
case "/list":
for item, price := range db {
fmt.Fprintf(w, "%s: %s\n", item, price)
}
case "/price":
item := req.URL.Query().Get("item")
price, ok := db[item]
if lok {
w.WriteHeader(http.StatusNotFound) // 404
fmt.Fprintf(w, "no such item: %qg\n", item)
return
}
fmt.Fprintf(w, "%s\n", price)
default:
w.WriteHeader(http.StatusNotFound) // 404
fmt.Fprintf(w, "no such page: %s\n", req.URL)

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 7.7. THE HTTP.HANDLER INTERFACE 193

Now the handler decides what logic to execute based on the path component of the URL,
req.URL.Path. If the handler doesn’t recognize the path, it reports an HITP error to the
client by calling w.WriteHeader (http.StatusNotFound); this must be done before writing
any text to w. (Incidentally, http.ResponseWriter is another interface. It augments
io.Writer with methods for sending HTTP response headers.) Equivalently, we could use
the http.Error utility function:

msg := fmt.Sprintf("no such page: %s\n", req.URL)
http.Error(w, msg, http.StatusNotFound) // 404

The case for /price calls the URLs Query method to parse the HTTP request parameters as a
map, or more precisely, a multimap of type url.values (§6.2.1) from the net/url package. It
then finds the first item parameter and looks up its price. If the item wasn’t found, it reports
an error.

Here’s an example session with the new server:

$ go build gopl.io/ch7/http2

$ go build gopl.io/chl/fetch

$./http2 &

$./fetch http://localhost:8000/1ist

shoes: $50.00

socks: $5.00

$./fetch http://localhost:8000/price?item=socks
$5.00

$./fetch http://localhost:8000/price?item=shoes
$50.00

$./fetch http://localhost:8000/price?item=hat
no such item: "hat"

$./fetch http://localhost:8000/help

no such page: /help

Obviously we could keep adding cases to ServeHTTP, but in a realistic application, its con-
venient to define the logic for each case in a separate function or method. Furthermore,
related URLs may need similar logic; several image files may have URLs of the form
/images/*.png, for instance. For these reasons, net/http provides ServeMux, a request
multiplexer, to simplify the association between URLs and handlers. A ServeMux aggregates a
collection of http.Handlers into a single http.Handler. Again, we see that different types
satisfying the same interface are substitutable: the web server can dispatch requests to any
http.Handler, regardless of which concrete type is behind it.

For a more complex application, several ServeMuxes may be composed to handle more
intricate dispatching requirements. Go doesn’t have a canonical web framework analogous to
Ruby’s Rails or Python’s Django. This is not to say that such frameworks don’t exist, but the
building blocks in Go's standard library are flexible enough that frameworks are often
unnecessary. Furthermore, although frameworks are convenient in the early phases of a
project, their additional complexity can make longer-term maintenance harder.

www.it-ebooks.info

http://www.it-ebooks.info/

194 CHAPTER 7. INTERFACES

In the program below, we create a ServeMux and use it to associate the URLs with the cor-
responding handlers for the /1ist and /price operations, which have been split into separate
methods. We then use the ServeMux as the main handler in the call to ListenAndServe.

gopl.io/ch7/http3
func main() {
db := database{"shoes": 50, "socks": 5}
mux := http.NewServeMux()
mux.Handle("/1list", http.HandlerFunc(db.list))
mux.Handle("/price", http.HandlerFunc(db.price))
log.Fatal(http.ListenAndServe("localhost:8000", mux))

}
type database map[stringldollars

func (db database) list(w http.ResponseWriter, req *http.Request) {
for item, price := range db {
fmt.Fprintf(w, "%s: %s\n", item, price)
}
}

func (db database) price(w http.ResponseWriter, req *http.Request) {
item := req.URL.Query().Get("item")
price, ok := db[item]
if lok {
w.WriteHeader(http.StatusNotFound) // 404
fmt.Fprintf(w, "no such item: %g\n", item)
return

}
fmt.Fprintf(w, "%s\n", price)

}

Let’s focus on the two calls to mux.Handle that register the handlers. In the first one, db.1list
is a method value (§6.4), that is, a value of type

func(w http.ResponseWriter, req *http.Request)

that, when called, invokes the database.1list method with the receiver value db. So db.1list
is a function that implements handler-like behavior, but since it has no methods, it doesn't sat-
isfy the http.Handler interface and can’t be passed directly to mux.Handle.

The expression http.HandlerFunc(db.list) is a conversion, not a function call, since
http.HandlerFunc is a type. It has the following definition:

net/http
package http

type HandlerFunc func(w ResponseWriter, r *Request)

func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
f(w, r)
}

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 7.7. THE HTTP.HANDLER INTERFACE 195

HandlerFunc demonstrates some unusual features of Gos interface mechanism. It is a func-
tion type that has methods and satisfies an interface, http.Handler. The behavior of its
ServeHTTP method is to call the underlying function. HandlerFunc is thus an adapter that
lets a function value satisfy an interface, where the function and the interface’s sole method
have the same signature. In effect, this trick lets a single type such as database satisfy the
http.Handler interface several different ways: once through its 1ist method, once through
its price method, and so on.

Because registering a handler this way is so common, ServeMux has a convenience method
called HandleFunc that does it for us, so we can simplify the handler registration code to this:
gopl.io/ch7/http3a

mux.HandleFunc("/list", db.list)
mux.HandleFunc("/price", db.price)

It’s easy to see from the code above how one would construct a program in which there are
two different web servers, listening on different ports, defining different URLs, and dis-
patching to different handlers. We would just construct another ServeMux and make another
call to ListenAndServe, perhaps concurrently. But in most programs, one web server is
plenty. Also, it’s typical to define HTTP handlers across many files of an application, and it
would be a nuisance if they all had to be explicitly registered with the application’s ServeMux
instance.

So, for convenience, net/http provides a global ServeMux instance called DefaultServeMux
and package-level functions called http.Handle and http.HandleFunc. To use Default-
ServeMux as the server’s main handler, we needn’t pass it to ListenAndServe; nil will do.

The server’s main function can then be simplified to

gopl.io/ch7/http4

func main() {
db := database{"shoes": 50, "socks": 5}
http.HandleFunc("/1list", db.list)
http.HandleFunc("/price", db.price)
log.Fatal(http.ListenAndServe("localhost:8000", nil))
}

Finally, an important reminder: as we mentioned in Section 1.7, the web server invokes each
handler in a new goroutine, so handlers must take precautions such as locking when accessing
variables that other goroutines, including other requests to the same handler, may be access-
ing. We'll talk about concurrency in the next two chapters.

Exercise 7.11: Add additional handlers so that clients can create, read, update, and delete
database entries. For example, a request of the form /update?item=socks&price=6 will
update the price of an item in the inventory and report an error if the item does not exist or if
the price is invalid. (Warning: this change introduces concurrent variable updates.)

Exercise 7.12: Change the handler for /1ist to print its output as an HTML table, not text.
You may find the html/template package (§4.6) useful.

www.it-ebooks.info

http://www.it-ebooks.info/

196 CHAPTER 7. INTERFACES

7.8. The error Interface

Since the beginning of this book, we've been using and creating values of the mysterious
predeclared error type without explaining what it really is. In fact, it’s just an interface type
with a single method that returns an error message:

type error interface {
Error() string

}

The simplest way to create an error is by calling errors.New, which returns a new error for
a given error message. The entire errors package is only four lines long:

package errors

func New(text string) error { return &errorString{text} }
type errorString struct { text string }

func (e *errorString) Error() string { return e.text }

The underlying type of errorString is a struct, not a string, to protect its representation from
inadvertent (or premeditated) updates. And the reason that the pointer type *errorString,
not errorString alone, satisfies the error interface is so that every call to New allocates a dis-
tinct error instance that is equal to no other. We would not want a distinguished error such
as io0.EOF to compare equal to one that merely happened to have the same message.

fmt.Println(errors.New("EOF") == errors.New("EOF")) // "false"

Calls to errors.New are relatively infrequent because there’s a convenient wrapper function,
fmt . Errorf, that does string formatting too. We used it several times in Chapter 5.

package fmt
import "errors"

func Errorf(format string, args ...interface{}) error {
return errors.New(Sprintf(format, args...))

}

Although *errorsString may be the simplest type of error, it is far from the only one. For
example, the syscall package provides Go's low-level system call API. On many platforms, it
defines a numeric type Errno that satisfies error, and on Unix platforms, Errno’s Error
method does a lookup in a table of strings, as shown below:

package syscall

type Errno uintptr // operating system error code

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 7.9. EXAMPLE: EXPRESSION EVALUATOR 197

var errors = [...]string{

1: "operation not permitted”, // EPERM
2: "no such file or directory", // ENOENT
3: "no such process", // ESRCH
/...

}

func (e Errno) Error() string {
if @ <= int(e) && int(e) < len(errors) {
return errors[e]

}

return fmt.Sprintf("errno %d", e)

}

The following statement creates an interface value holding the Errno value 2, signifying the
POSIX ENOENT condition:

var err error = syscall.Errno(2)
fmt.Println(err.Error()) // "no such file or directory"
fmt.Println(err) // "no such file or directory"

The value of err is shown graphically in Figure 7.6.

err

type syscall.Errno

value 2

Figure 7.6. An interface value holding a syscall.Errno integer.

Errno is an efficient representation of system call errors drawn from a finite set, and it satisfies
the standard error interface. We'll see other types that satisfy this interface in Section 7.11.

7.9. Example: Expression Evaluator

In this section, we’ll build an evaluator for simple arithmetic expressions. We'll use an inter-
face, Expr, to represent any expression in this language. For now, this interface needs no
methods, but we’ll add some later.

// An Expr is an arithmetic expression.
type Expr interface{}

Our expression language consists of floating-point literals; the binary operators +, -, *, and /;
the unary operators -x and +x; function calls pow(x,y), sin(x), and sqrt(x); variables such
as x and pi; and of course parentheses and standard operator precedence. All values are of
type float64. Here are some example expressions:

www.it-ebooks.info

http://www.it-ebooks.info/

198 CHAPTER 7. INTERFACES

sqrt(A / pi)

pow(x, 3) + pow(y, 3)

(F-32)*5/09
The five concrete types below represent particular kinds of expression. A Var represents a ref-
erence to a variable. (W¢ll soon see why it is exported.) A literal represents a floating-
point constant. The unary and binary types represent operator expressions with one or two
operands, which can be any kind of Expr. A call represents a function call; we'll restrict its
£n field to pow, sin, or sqrt.

gopl.io/ch7/eval

// A Var identifies a variable, e.g., x.
type Var string

// A literal is a numeric constant, e.g., 3.141.
type literal float64

// A unary represents a unary operator expression, e.g., -X.

type unary struct {
op rune // one of
X Expr

+', -

}

// A binary represents a binary operator expression, e.g., X+y.
type binary struct {

op rune // one of '+', '-', "x',j ‘'/'

X, y Expr
}

// A call represents a function call expression, e.g., sin(x).
type call struct {
fn string // one of "pow", "sin",
args []Expr

"sqrt"

}

To evaluate an expression containing variables, we'll need an environment that maps variable
names to values:

type Env map[Var]float64

We'll also need each kind of expression to define an Eval method that returns the expression’s
value in a given environment. Since every expression must provide this method, we add it to
the Expr interface. The package exports only the types Expr, Env, and Var; clients can use the
evaluator without access to the other expression types.

type Expr interface {
// Eval returns the value of this Expr in the environment env.
Eval(env Env) float64

}

The concrete Eval methods are shown below. The method for Var performs an environment
lookup, which returns zero if the variable is not defined, and the method for literal simply
returns the literal value.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 7.9. EXAMPLE: EXPRESSION EVALUATOR 199

func (v Var) Eval(env Env) float64 {
return env[v]

}

func (1 literal) Eval(_ Env) float64 {
return float64(1l)

}

The Eval methods for unary and binary recursively evaluate their operands, then apply the
operation op to them. We don’t consider divisions by zero or infinity to be errors, since they
produce a result, albeit non-finite. Finally, the method for call evaluates the arguments to the
pow, sin, or sqrt function, then calls the corresponding function in the math package.

func (u unary) Eval(env Env) float64 {
switch u.op {
case '

+':
return +u.x.Eval(env)
case '-':
return -u.x.Eval(env)
}
panic(fmt.Sprintf("unsupported unary operator: %q", u.op))

}

func (b binary) Eval(env Env) float64 {
switch b.op {

case '+':

return b.x.Eval(env) + b.y.Eval(env)
case '-':

return b.x.Eval(env) - b.y.Eval(env)
case '*':

return b.x.Eval(env) * b.y.Eval(env)
case '/':

return b.x.Eval(env) / b.y.Eval(env)

}
panic(fmt.Sprintf("unsupported binary operator: %q", b.op))

}

func (c call) Eval(env Env) float64 {
switch c.fn {
case "pow":
return math.Pow(c.args[0@].Eval(env), c.args[1].Eval(env))
case "sin":
return math.Sin(c.args[@].Eval(env))
case "sqgrt":
return math.Sqrt(c.args[0].Eval(env))
}
panic(fmt.Sprintf("unsupported function call: %s", c.fn))

}

Several of these methods can fail. For example, a call expression could have an unknown
function or the wrong number of arguments. It’s also possible to construct a unary or binary
expression with an invalid operator such as ! or < (although the Parse function mentioned

www.it-ebooks.info

http://www.it-ebooks.info/

200 CHAPTER 7. INTERFACES

below will never do this). These errors cause Eval to panic. Other errors, like evaluating a
Var not present in the environment, merely cause Eval to return the wrong result. All of these
errors could be detected by inspecting the Expr before evaluating it. That will be the job of the
Check method, which we will show soon, but first let’s test Eval.

The TestEval function below is a test of the evaluator. It uses the testing package, which
we'll explain in Chapter 11, but for now it's enough to know that calling t.Errorf reports an
error. The function loops over a table of inputs that defines three expressions and different
environments for each one. The first expression computes the radius of a circle given its area
A, the second computes the sum of the cubes of two variables x and y, and the third converts a
Fahrenheit temperature F to Celsius.

func TestEval(t *testing.T) {
tests := []struct {
expr string
env Env
want string

H
{"sqrt(A / pi)", Env{"A": 87616, "pi": math.Pi}, "167"},
{"pow(x, 3) + pow(y, 3)", Env{"x": 12, "y": 1}, "1729"},
{"pow(x, 3) + pow(y, 3)", Env{"x": 9, "y": 10}, "1729"},
{"5 /9 * (F - 32)", Env{"F": -40}, "-40"},
{"5 /9 * (F - 32)", Env{"F": 32}, "0"},
{"5 / 9 * (F - 32)", Env{"F": 212}, "100"},
}
var prevExpr string
for _, test := range tests {
// Print expr only when it changes.
if test.expr != prevExpr {
fmt.Printf("\n%s\n", test.expr)
prevExpr = test.expr
}
expr, err := Parse(test.expr)
if err != nil {
t.Error(err) // parse error
continue
}
got := fmt.Sprintf("%.6g", expr.Eval(test.env))
fmt.Printf("\t%v => %s\n", test.env, got)
if got != test.want {
t.Errorf("%s.Eval() in %s = %q, want %g\n",
test.expr, test.env, got, test.want)
}
}

}

For each entry in the table, the test parses the expression, evaluates it in the environment, and
prints the result. We don't have space to show the Parse function here, but you’ll find it if you
download the package using go get.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 7.9. EXAMPLE: EXPRESSION EVALUATOR 201

The go test command (§11.1) runs a package’s tests:
$ go test -v gopl.io/ch7/eval

The -v flag lets us see the printed output of the test, which is normally suppressed for a suc-
cessful test like this one. Here is the output of the test’s fmt.Printf statements:

sqrt(A / pi)
map[A:87616 pi:3.141592653589793] => 167

pow(x, 3) + pow(y, 3)
map[x:12 y:1] => 1729
map[x:9 y:10] => 1729

5/ 9* (F - 32)
map[F:-40] => -40
map[F:32] => @
map[F:212] => 100

Fortunately the inputs so far have all been well formed, but our luck is unlikely to last. Even in
interpreted languages, it is common to check the syntax for static errors, that is, mistakes that
can be detected without running the program. By separating the static checks from the
dynamic ones, we can detect errors sooner and perform many checks only once instead of
each time an expression is evaluated.

Let’s add another method to the Expr interface. The Check method checks for static errors in
an expression syntax tree. We'll explain its vars parameter in a moment.

type Expr interface {
Eval(env Env) float64
// Check reports errors in this Expr and adds its Vars to the set.
Check(vars map[Var]bool) error

}

The concrete Check methods are shown below. Evaluation of 1iteral and Var cannot fail, so
the Check methods for these types return nil. The methods for unary and binary first check
that the operator is valid, then recursively check the operands. Similarly, the method for call
first checks that the function is known and has the right number of arguments, then recur-
sively checks each argument.

func (v Var) Check(vars map[Var]bool) error {
vars[v] = true
return nil

}

func (literal) Check(vars map[Var]bool) error {
return nil

}

www.it-ebooks.info

http://www.it-ebooks.info/

202 CHAPTER 7. INTERFACES

func (u unary) Check(vars map[Var]bool) error {
if Istrings.ContainsRune("+-", u.op) {
return fmt.Errorf("unexpected unary op %q", u.op)
}
return u.x.Check(vars)

}

func (b binary) Check(vars map[Var]bool) error {
if Istrings.ContainsRune("+-*/", b.op) {
return fmt.Errorf("unexpected binary op %q", b.op)

}
if err := b.x.Check(vars); err != nil {
return err
}
return b.y.Check(vars)
}
func (c call) Check(vars map[Var]bool) error {
arity, ok := numParams[c.fn]
if lok {
return fmt.Errorf("unknown function %q", c.fn)
}
if len(c.args) != arity {
return fmt.Errorf("call to %s has %d args, want %d",
c.fn, len(c.args), arity)
}
for _, arg := range c.args {
if err := arg.Check(vars); err != nil {
return err
}
}
return nil
}

var numParams = map[stringlint{"pow": 2, "sin": 1, "sqrt": 1}

We've listed a selection of flawed inputs and the errors they elicit, in two groups. The Parse
function (not shown) reports syntax errors and the Check function reports semantic errors.

X % 2 unexpected '%’

math.Pi unexpected '.'

Itrue unexpected '!'’

"hello" unexpected '"'

log(10) unknown function "log"

sqrt(1, 2) call to sqrt has 2 args, want 1

Check’s argument, a set of Vars, accumulates the set of variable names found within the
expression. Each of these variables must be present in the environment for evaluation to suc-
ceed. This set is logically the result of the call to Check, but because the method is recursive, it
is more convenient for Check to populate a set passed as a parameter. The client must provide
an empty set in the initial call.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 7.9. EXAMPLE: EXPRESSION EVALUATOR 203

In Section 3.2, we plotted a function f(x,y) that was fixed at compile time. Now that we can
parse, check, and evaluate expressions in strings, we can build a web application that receives
an expression at run time from the client and plots the surface of that function. We can use
the vars set to check that the expression is a function of only two variables, x and y—three,
actually, since we’ll provide r, the radius, as a convenience. And we'll use the Check method to
reject ill-formed expressions before evaluation begins so that we don't repeat those checks dur-
ing the 40,000 evaluations (100x100 cells, each with four corners) of the function that follow.

The parseAndCheck function combines these parsing and checking steps:

gopl.io/ch7/surface

import "gopl.io/ch7/eval”

func parseAndCheck(s string) (eval.Expr, error) {

}

if s == "" {
return nil, fmt.Errorf("empty expression")
}
expr, err := eval.Parse(s)
if err != nil {
return nil, err
}
vars := make(map[eval.Var]bool)
if err := expr.Check(vars); err != nil {
return nil, err
}
for v := range vars {
if v I= "x" && v I= "y" && v I= "r" {
return nil, fmt.Errorf("undefined variable: %s", v)
¥
}

return expr, nil

To make this a web application, all we need is the plot function below, which has the familiar
signature of an http.HandlerFunc:

func plot(w http.ResponseWriter, r *http.Request) {

r.ParseForm()

expr, err := parseAndCheck(r.Form.Get("expr"))

if err != nil {
http.Error(w, "bad expr: "+err.Error(), http.StatusBadRequest)
return

}

w.Header().Set("Content-Type", "image/svg+xml")
surface(w, func(x, y float64) floate4 {
r := math.Hypot(x, y) // distance from (90,90)
return expr.Eval(eval.Env{"x": x, "y": vy, "r": r})

b

www.it-ebooks.info

http://www.it-ebooks.info/

204 CHAPTER 7. INTERFACES

| localhost:8000/plot?expr=: %
& > C a0 localhost:8000/plot?expr=sin(-x)*pow(1.5, T

,,'.'{
i
\

Al .
“ml“lﬁ'\\u\\“\‘:m:“.
\“‘ “\m\\\\\\\“\;‘:‘
i

il

| localhost:8000/plot?expr=r X
<« C #] localhost:8000/plot?expr=pow(2,sin(y))"pow(2,sin(x))/12

B
00
il
y ;
"o:o:o:.‘“n
0

7
b
e
G
NN
s

i
7
o,

N
AN

G
S
RS

& C i | localhost:8000/plot?expr=sin(x'y/10)/10

i
5
A
Tt
YRR

iy
ot

Figure 7.7. The surfaces of three functions: (a) sin(-x)*pow(1.5,-r);
(b) pow(2,sin(y))*pow(2,sin(x))/12; (c) sin(x*y/10)/10.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 7.10. TYPE ASSERTIONS 205

The plot function parses and checks the expression specified in the HTTP request and uses it
to create an anonymous function of two variables. The anonymous function has the same sig-
nature as the fixed function f from the original surface-plotting program, but it evaluates the
user-supplied expression. The environment defines x, y, and the radius r. Finally, plot calls
surface, which is just the main function from gopl.io/ch3/surface, modified to take the
function to plot and the output io.Writer as parameters, instead of using the fixed function f
and os.Stdout. Figure 7.7 shows three surfaces produced by the program.

Exercise 7.13: Add a String method to Expr to pretty-print the syntax tree. Check that the
results, when parsed again, yield an equivalent tree.

Exercise 7.14: Define a new concrete type that satisfies the Expr interface and provides a new
operation such as computing the minimum value of its operands. Since the Parse function
does not create instances of this new type, to use it you will need to construct a syntax tree
directly (or extend the parser).

Exercise 7.15: Write a program that reads a single expression from the standard input,
prompts the user to provide values for any variables, then evaluates the expression in the
resulting environment. Handle all errors gracefully.

Exercise 7.16: Write a web-based calculator program.

7.10. Type Assertions

A type assertion is an operation applied to an interface value. Syntactically, it looks like x. (T),
where x is an expression of an interface type and T is a type, called the “asserted” type. A type
assertion checks that the dynamic type of its operand matches the asserted type.

There are two possibilities. First, if the asserted type T is a concrete type, then the type asser-
tion checks whether x’s dynamic type is identical to T. If this check succeeds, the result of the
type assertion is x’s dynamic value, whose type is of course T. In other words, a type assertion
to a concrete type extracts the concrete value from its operand. If the check fails, then the
operation panics. For example:

var w io.Writer

w = o0s.Stdout

f := w.(*os.File) // success: f == o0s.Stdout

c := w.(*bytes.Buffer) // panic: interface holds *os.File, not *bytes.Buffer

Second, if instead the asserted type T is an interface type, then the type assertion checks
whether x’s dynamic type satisfies T. If this check succeeds, the dynamic value is not extracted;
the result is still an interface value with the same type and value components, but the result
has the interface type T. In other words, a type assertion to an interface type changes the type
of the expression, making a different (and usually larger) set of methods accessible, but it
preserves the dynamic type and value components inside the interface value.

www.it-ebooks.info

http://www.it-ebooks.info/

206 CHAPTER 7. INTERFACES

After the first type assertion below, both w and rw hold os.Stdout so each has a dynamic type
of *os.File, but w, an io.Writer, exposes only the file’s Write method, whereas rw exposes
its Read method too.

var w io.Writer

w = os.Stdout
rw := W.(io.ReadWriter) // success: *os.File has both Read and Write

w = new(ByteCounter)
rw = w.(io.ReadWriter) // panic: *ByteCounter has no Read method

No matter what type was asserted, if the operand is a nil interface value, the type assertion
fails. A type assertion to a less restrictive interface type (one with fewer methods) is rarely
needed, as it behaves just like an assignment, except in the nil case.

W= rw // io.ReadWriter is assignable to io.Writer
w = rw.(io.Writer) // fails only if rw == nil

Often were not sure of the dynamic type of an interface value, and wed like to test whether it
is some particular type. If the type assertion appears in an assignment in which two results are
expected, such as the following declarations, the operation does not panic on failure but
instead returns an additional second result, a boolean indicating success:

var w io.Writer = os.Stdout

f, ok := w.(*os.File) // success: ok, f == os.Stdout
b, ok := w.(*bytes.Buffer) // failure: lok, b == nil

The second result is conventionally assigned to a variable named ok. If the operation failed,
ok is false, and the first result is equal to the zero value of the asserted type, which in this
example is a nil *bytes.Buffer.

The ok result is often immediately used to decide what to do next. The extended form of the
if statement makes this quite compact:
if f, ok := w.(*os.File); ok {
// ...use f...
}

When the operand of a type assertion is a variable, rather than invent another name for the
new local variable, you'll sometimes see the original name reused, shadowing the original, like
this:
if w, ok := w.(*os.File); ok {
// ...use w...

}

7.11. Discriminating Errors with Type Assertions

Consider the set of errors returned by file operations in the os package. I/O can fail for any
number of reasons, but three kinds of failure often must be handled differently: file already
exists (for create operations), file not found (for read operations), and permission denied. The

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 7.11. DISCRIMINATING ERRORS WITH TYPE ASSERTIONS 207

os package provides these three helper functions to classify the failure indicated by a given
error value:

package os

func IsExist(err error) bool
func IsNotExist(err error) bool
func IsPermission(err error) bool

A naive implementation of one of these predicates might check that the error message con-
tains a certain substring,

func IsNotExist(err error) bool {
// NOTE: not robust!
return strings.Contains(err.Error(), "file does not exist")

}

but because the logic for handling I/O errors can vary from one platform to another, this
approach is not robust and the same failure may be reported with a variety of different error
messages. Checking for substrings of error messages may be useful during testing to ensure
that functions fail in the expected manner, but it’s inadequate for production code.

A more reliable approach is to represent structured error values using a dedicated type. The
os package defines a type called PathError to describe failures involving an operation on a
file path, like Open or Delete, and a variant called LinkError to describe failures of opera-
tions involving two file paths, like Symlink and Rename. Here’s os.PathError:

package os

// PathError records an error and the operation and file path that caused it.
type PathError struct {

Op string
Path string
Err error

}

func (e *PathError) Error() string {
return e.Op + " " + e.Path +

+ e.Err.Error()

}

Most clients are oblivious to PathError and deal with all errors in a uniform way by calling
their Error methods. Although PathError’s Error method forms a message by simply con-
catenating the fields, PathError’s structure preserves the underlying components of the error.
Clients that need to distinguish one kind of failure from another can use a type assertion to
detect the specific type of the error; the specific type provides more detail than a simple string.

_, err := os.0Open("/no/such/file")

fmt.Println(err) // "open /no/such/file: No such file or directory"
fmt.Printf("%#v\n", err)

// Output:

// &os.PathError{Op:"open", Path:"/no/such/file", Err:0x2}

www.it-ebooks.info

http://www.it-ebooks.info/

208 CHAPTER 7. INTERFACES

That’s how the three helper functions work. For example, IsNotExist, shown below, reports
whether an error is equal to syscall.ENOENT (§7.8) or to the distinguished error
os.ErrNotExist (see i0.EOF in §5.4.2), or is a *PathError whose underlying error is one of
those two.

import (
"errors”
"syscall"
)

var ErrNotExist = errors.New("file does not exist")

// IsNotExist returns a boolean indicating whether the error is known to
// report that a file or directory does not exist. It is satisfied by
// ErrNotExist as well as some syscall errors.
func IsNotExist(err error) bool {
if pe, ok := err.(*PathError); ok {
err = pe.Err

}

return err == syscall.ENOENT || err == ErrNotExist
}
And here it is in action:
_, err := o0s.0pen("/no/such/file")

fmt.Println(os.IsNotExist(err)) // "true"

Of course, PathError’s structure is lost if the error message is combined into a larger string,
for instance by a call to fmt.Errorf. Error discrimination must usually be done immediately
after the failing operation, before an error is propagated to the caller.

7.12. Querying Behaviors with Interface Type Assertions

The logic below is similar to the part of the net/http web server responsible for writing
HTTP header fields such as "Content-type: text/html". The io.Writer w represents the
HTTP response; the bytes written to it are ultimately sent to someone’s web browser.

func writeHeader(w io.Writer, contentType string) error {
if _, err := w.Write([]byte("Content-Type: ")); err != nil {
return err

}

if _, err := w.Write([]byte(contentType)); err != nil {
return err

}

/] ...

}

Because the Write method requires a byte slice, and the value we wish to write is a string, a
[]byte(...) conversion is required. This conversion allocates memory and makes a copy,
but the copy is thrown away almost immediately after. Lets pretend that this is a core part of

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 7.12. QUERYING BEHAVIORS WITH INTERFACE TYPE ASSERTIONS 209

the web server and that our profiling has revealed that this memory allocation is slowing it
down. Can we avoid allocating memory here?

The io.Writer interface tells us only one fact about the concrete type that w holds: that bytes
may be written to it. If we look behind the curtains of the net/http package, we see that the
dynamic type that w holds in this program also has a WriteString method that allows strings
to be efficiently written to it, avoiding the need to allocate a temporary copy. (This may seem
like a shot in the dark, but a number of important types that satisfy io.Writer also have a
WriteString method, including *bytes.Buffer, *os.File and *bufio.Writer.)

We cannot assume that an arbitrary io.Writer w also has the WriteString method. But we
can define a new interface that has just this method and use a type assertion to test whether
the dynamic type of w satisfies this new interface.

// writeString writes s to w.
// If w has a WriteString method, it is invoked instead of w.Write.
func writeString(w io.Writer, s string) (n int, err error) {
type stringWriter interface {
WriteString(string) (n int, err error)

}
if sw, ok := w.(stringWriter); ok {

return sw.WriteString(s) // avoid a copy
}

return w.Write([]byte(s)) // allocate temporary copy
}

func writeHeader(w io.Writer, contentType string) error {
if _, err := writeString(w, "Content-Type: "); err != nil {
return err

}

if _, err := writeString(w, contentType); err != nil {
return err

}

/...

}

To avoid repeating ourselves, we've moved the check into the utility function writeString,
but it is so useful that the standard library provides it as io.WriteString. It is the recom-
mended way to write a string to an io.Writer.

What’s curious in this example is that there is no standard interface that defines the
WriteString method and specifies its required behavior. Furthermore, whether or not a con-
crete type satisfies the stringWriter interface is determined only by its methods, not by any
declared relationship between it and the interface type. What this means is that the technique
above relies on the assumption that if a type satisfies the interface below, then
WriteString(s) must have the same effect as Write([Jbyte(s)).

www.it-ebooks.info

http://www.it-ebooks.info/

210 CHAPTER 7. INTERFACES

interface {
io.Writer
WriteString(s string) (n int, err error)

}

Although io.WriteString documents its assumption, few functions that call it are likely to
document that they too make the same assumption. Defining a method of a particular type is
taken as an implicit assent for a certain behavioral contract. Newcomers to Go, especially
those from a background in strongly typed languages, may find this lack of explicit intention
unsettling, but it is rarely a problem in practice. With the exception of the empty interface
interface{}, interface types are seldom satisfied by unintended coincidence.

The writeString function above uses a type assertion to see whether a value of a general
interface type also satisfies a more specific interface type, and if so, it uses the behaviors of the
specific interface. This technique can be put to good use whether or not the queried interface
is standard like io.ReadWriter or user-defined like stringWriter.

It’s also how fmt.Fprintf distinguishes values that satisfy error or fmt.Stringer from all
other values. Within fmt.Fprintf, there is a step that converts a single operand to a string,
something like this:

package fmt

func formatOneValue(x interface{}) string {
if err, ok := x.(error); ok {
return err.Error()

}
if str, ok := x.(Stringer); ok {
return str.String()

}
// ...all other types...

}

If x satisfies either of the two interfaces, that determines the formatting of the value. If not, the
default case handles all other types more or less uniformly using reflection; we'll find out how
in Chapter 12.

Again, this makes the assumption that any type with a String method satisfies the behavioral
contract of fmt.Stringer, which is to return a string suitable for printing.

7.13. Type Switches

Interfaces are used in two distinct styles. In the first style, exemplified by io.Reader,
io.Writer, fmt.Stringer, sort.Interface, http.Handler, and error, an interface’s meth-
ods express the similarities of the concrete types that satisfy the interface but hide the rep-
resentation details and intrinsic operations of those concrete types. The emphasis is on the
methods, not on the concrete types.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 7.13. TYPE SWITCHES 211

The second style exploits the ability of an interface value to hold values of a variety of concrete
types and considers the interface to be the union of those types. Type assertions are used to
discriminate among these types dynamically and treat each case differently. In this style, the
emphasis is on the concrete types that satisfy the interface, not on the interface’s methods (if
indeed it has any), and there is no hiding of information. We'll describe interfaces used this
way as discriminated unions.

If youre familiar with object-oriented programming, you may recognize these two styles as
subtype polymorphism and ad hoc polymorphism, but you needn’t remember those terms. For
the remainder of this chapter, we'll present examples of the second style.

Go's API for querying an SQL database, like those of other languages, lets us cleanly separate
the fixed part of a query from the variable parts. An example client might look like this:

import "database/sql"

func listTracks(db sql.DB, artist string, minYear, maxYear int) {
result, err := db.Exec(
"SELECT * FROM tracks WHERE artist = ? AND ? <= year AND year <= ?",
artist, minYear, maxYear)
/] ...
}

The Exec method replaces each '?* in the query string with an SQL literal denoting the cor-
responding argument value, which may be a boolean, a number, a string, or nil. Construct-
ing queries this way helps avoid SQL injection attacks, in which an adversary takes control of
the query by exploiting improper quotation of input data. Within Exec, we might find a func-
tion like the one below, which converts each argument value to its literal SQL notation.

func sqlQuote(x interface{}) string {
if x == nil {
return "NULL"
} else if _, ok := x.(int); ok {
return fmt.Sprintf("%d", x)
} else if _, ok := x.(uint); ok {
return fmt.Sprintf("%d", x)
} else if b, ok := x.(bool); ok {
if b {
return "TRUE"
}
return "FALSE"
} else if s, ok := x.(string); ok {
return sqlQuoteString(s) // (not shown)
} else {
panic(fmt.Sprintf("unexpected type %T: %v", X, X))

}

A switch statement simplifies an if-else chain that performs a series of value equality tests.
An analogous type switch statement simplifies an if-else chain of type assertions.

www.it-ebooks.info

http://www.it-ebooks.info/

212 CHAPTER 7. INTERFACES

In its simplest form, a type switch looks like an ordinary switch statement in which the oper-
and is x. (type)—that’s literally the keyword type—and each case has one or more types. A
type switch enables a multi-way branch based on the interface value’s dynamic type. The nil
case matches if x == nil, and the default case matches if no other case does. A type switch
for sqlQuote would have these cases:

switch x.(type) {

case nil: // ...
case int, uint: // ...
case bool: /] ...
case string: /] ...
default: // ...
}

As with an ordinary switch statement (§1.8), cases are considered in order and, when a match
is found, the case’s body is executed. Case order becomes significant when one or more case
types are interfaces, since then there is a possibility of two cases matching. The position of the
default case relative to the others is immaterial. No fallthrough is allowed.

Notice that in the original function, the logic for the bool and string cases needs access to
the value extracted by the type assertion. Since this is typical, the type switch statement has an
extended form that binds the extracted value to a new variable within each case:

switch x := x.(type) { /* ... */ }

Here we've called the new variables x too; as with type assertions, reuse of variable names is
common. Like a switch statement, a type switch implicitly creates a lexical block, so the dec-
laration of the new variable called x does not conflict with a variable x in an outer block. Each
case also implicitly creates a separate lexical block.

Rewriting sqlQuote to use the extended form of type switch makes it significantly clearer:

func sqlQuote(x interface{}) string {
switch x := x.(type) {
case nil:
return "NULL"
case int, uint:
return fmt.Sprintf("%d", x) // x has type interface{} here.
case bool:
if x {
return "TRUE"
}
return "FALSE"
case string:
return sqlQuoteString(x) // (not shown)
default:
panic(fmt.Sprintf("unexpected type %T: %v", X, X))
}

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 7.14. EXAMPLE: TOKEN-BASED XML DECODING 213

In this version, within the block of each single-type case, the variable x has the same type as
the case. For instance, x has type bool within the bool case and string within the string
case. In all other cases, x has the (interface) type of the switch operand, which is inter-
face{} in this example. When the same action is required for multiple cases, like int and
uint, the type switch makes it easy to combine them.

Although sqlQuote accepts an argument of any type, the function runs to completion only if
the argument’s type matches one of the cases in the type switch; otherwise it panics with an
“unexpected type” message. Although the type of x is interface{}, we consider it a
discriminated union of int, uint, bool, string, and nil.

7.14. Example: Token-Based XML Decoding

Section 4.5 showed how to decode JSON documents into Go data structures with the Marshal
and Unmarshal functions from the encoding/json package. The encoding/xml package
provides a similar API. This approach is convenient when we want to construct a represen-
tation of the document tree, but that’s unnecessary for many programs. The encoding/xml
package also provides a lower-level token-based API for decoding XML. In the token-based
style, the parser consumes the input and produces a stream of tokens, primarily of four
kinds—StartElement, EndElement, CharData, and Comment—each being a concrete type in
the encoding/xml package. Each call to (*xml.Decoder).Token returns a token.

The relevant parts of the API are shown here:

encoding/xml

package xml

type Name struct {
Local string // e.g., "Title" or "id"
}

type Attr struct { // e.g., name="value"
Name Name
Value string

}

// A Token includes StartElement, EndElement, CharData,
// and Comment, plus a few esoteric types (not shown).
type Token interface{}
type StartElement struct { // e.g., <name>

Name Name

Attr []Attr

}

type EndElement struct { Name Name } // e.g., </name>

type CharData []byte // e.g., <p>CharData</p>
type Comment []byte // e.g., <!-- Comment -->
type Decoder struct{ /* ... */ }

www.it-ebooks.info

http://www.it-ebooks.info/

214 CHAPTER 7. INTERFACES

func NewDecoder(io.Reader) *Decoder
func (*Decoder) Token() (Token, error) // returns next Token in sequence

The Token interface, which has no methods, is also an example of a discriminated union. The
purpose of a traditional interface like io.Reader is to hide details of the concrete types that
satisfy it so that new implementations can be created; each concrete type is treated uniformly.
By contrast, the set of concrete types that satisfy a discriminated union is fixed by the design
and exposed, not hidden. Discriminated union types have few methods; functions that oper-
ate on them are expressed as a set of cases using a type switch, with different logic in each case.

The xmlselect program below extracts and prints the text found beneath certain elements in
an XML document tree. Using the API above, it can do its job in a single pass over the input
without ever materializing the tree.

gopl.io/ch7/xmlselect

// Xmlselect prints the text of selected elements of an XML document.
package main

import (
"encoding/xml"
"fmt"
"ig"
"os"
"strings"
)
func main() {
dec := xml.NewDecoder(os.Stdin)
var stack []string // stack of element names
for {
tok, err := dec.Token()
if err == io.EOF {
break
} else if err != nil {
fmt.Fprintf(os.Stderr, "xmlselect: %v\n", err)
os.Exit(1)
}

switch tok := tok.(type) {
case xml.StartElement:

stack = append(stack, tok.Name.Local) // push
case xml.EndElement:

stack = stack[:len(stack)-1] // pop
case xml.CharData:

if containsAll(stack, os.Args[1:]) {

fmt.Printf("%s: %s\n", strings.Join(stack, " "), tok)

}

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 7.14. EXAMPLE: TOKEN-BASED XML DECODING 215

// containsAll reports whether x contains the elements of y, in order.
func containsAll(x, y []string) bool {
for len(y) <= len(x) {
if len(y) == 0 {
return true

}

if x[e] == y[e] {
y = y[1:]

b

X

= x[1:]
}

return false

}

Each time the loop in main encounters a StartElement, it pushes the element’s name onto a
stack, and for each EndElement it pops the name from the stack. The API guarantees that the
sequence of StartElement and EndElement tokens will be properly matched, even in ill-
formed documents. Comments are ignored. When xmlselect encounters a CharData, it
prints the text only if the stack contains all the elements named by the command-line argu-
ments, in order.

The command below prints the text of any h2 elements appearing beneath two levels of div
elements. Its input is the XML specification, itself an XML document.

$ go build gopl.io/chl/fetch
$./fetch http://www.w3.0rg/TR/2006/REC-xm111-20060816 |
./xmlselect div div h2

html body div div h2: 1 Introduction
html body div div h2: 2 Documents
html body div div h2: 3 Logical Structures
html body div div h2: 4 Physical Structures
html body div div h2: 5 Conformance
html body div div h2: 6 Notation
html body div div h2: A References
B Definitions for Character Normalization

html body div div h2:

Exercise 7.17: Extend xmlselect so that elements may be selected not just by name, but by
their attributes too, in the manner of CSS, so that, for instance, an element like
<div id="page" class="wide"> could be selected by a matching id or class as well as its
name.

Exercise 7.18: Using the token-based decoder API, write a program that will read an arbitrary
XML document and construct a tree of generic nodes that represents it. Nodes are of two
kinds: CharData nodes represent text strings, and Element nodes represent named elements
and their attributes. Each element node has a slice of child nodes.

You may find the following declarations helpful.

import "encoding/xml"

www.it-ebooks.info

http://www.it-ebooks.info/

216 CHAPTER 7. INTERFACES

type Node interface{} // CharData or *Element
type CharData string

type Element struct {
Type xml.Name
Attr [Ixml.Attr
Children []Node

7.15. A Few Words of Advice

When designing a new package, novice Go programmers often start by creating a set of inter-
faces and only later define the concrete types that satisfy them. This approach results in many
interfaces, each of which has only a single implementation. Don’t do that. Such interfaces are
unnecessary abstractions; they also have a run-time cost. You can restrict which methods of a
type or fields of a struct are visible outside a package using the export mechanism (§6.6).
Interfaces are only needed when there are two or more concrete types that must be dealt with
in a uniform way.

We make an exception to this rule when an interface is satisfied by a single concrete type but
that type cannot live in the same package as the interface because of its dependencies. In that
case, an interface is a good way to decouple two packages.

Because interfaces are used in Go only when they are satisfied by two or more types, they
necessarily abstract away from the details of any particular implementation. The result is
smaller interfaces with fewer, simpler methods, often just one as with io.Writer or
fmt.Stringer. Small interfaces are easier to satisfy when new types come along. A good rule
of thumb for interface design is ask only for what you need.

This concludes our tour of methods and interfaces. Go has great support for the object-
oriented style of programming, but this does not mean you need to use it exclusively. Not
everything need be an object; standalone functions have their place, as do unencapsulated
data types. Observe that together, the examples in the first five chapters of this book call no
more than two dozen methods, like input.Scan, as opposed to ordinary function calls like
fmt.Printf.

www.it-ebooks.info

http://www.it-ebooks.info/

8

Goroutines and Channels

Concurrent programming, the expression of a program as a composition of several
autonomous activities, has never been more important than it is today. Web servers handle
requests for thousands of clients at once. Tablet and phone apps render animations in the user
interface while simultaneously performing computation and network requests in the back-
ground. Even traditional batch problems—read some data, compute, write some output—use
concurrency to hide the latency of I/O operations and to exploit a modern computer’s many
processors, which every year grow in number but not in speed.

Go enables two styles of concurrent programming. This chapter presents goroutines and
channels, which support communicating sequential processes or CSP, a model of concurrency
in which values are passed between independent activities (goroutines) but variables are for
the most part confined to a single activity. Chapter 9 covers some aspects of the more tradi-
tional model of shared memory multithreading, which will be familiar if you've used threads in
other mainstream languages. Chapter 9 also points out some important hazards and pitfalls of
concurrent programming that we won’t delve into in this chapter.

Even though Go’s support for concurrency is one of its great strengths, reasoning about con-
current programs is inherently harder than about sequential ones, and intuitions acquired
from sequential programming may at times lead us astray. If this is your first encounter with
concurrency, we recommend spending a little extra time thinking about the examples in these
two chapters.

8.1. Goroutines

In Go, each concurrently executing activity is called a goroutine. Consider a program that has
two functions, one that does some computation and one that writes some output, and assume
that neither function calls the other. A sequential program may call one function and then

217

www.it-ebooks.info

http://www.it-ebooks.info/

218 CHAPTER 8. GOROUTINES AND CHANNELS

call the other, but in a concurrent program with two or more goroutines, calls to both functions
can be active at the same time. We'll see such a program in a moment.

If you have used operating system threads or threads in other languages, then you can assume
for now that a goroutine is similar to a thread, and you’ll be able to write correct programs.
The differences between threads and goroutines are essentially quantitative, not qualitative,
and will be described in Section 9.8.

When a program starts, its only goroutine is the one that calls the main function, so we call it
the main goroutine. New goroutines are created by the go statement. Syntactically, a go state-
ment is an ordinary function or method call prefixed by the keyword go. A go statement
causes the function to be called in a newly created goroutine. The go statement itself com-
pletes immediately:

() // call f(); wait for it to return
go f() // create a new goroutine that calls f(); don't wait

In the example below, the main goroutine computes the 45th Fibonacci number. Since it uses
the terribly inefficient recursive algorithm, it runs for an appreciable time, during which wed
like to provide the user with a visual indication that the program is still running, by displaying
an animated textual “spinner.”

gopl.io/ch8/spinner

func main() {
go spinner(100 * time.Millisecond)
const n = 45
fibN := fib(n) // slow
fmt.Printf("\rFibonacci(%d) = %d\n", n, fibN)

}
func spinner(delay time.Duration) {
for {
for _, r := range “-\|/" {
fmt.Printf("\r%c", r)
time.Sleep(delay)
}
}
}
func fib(x int) int {
if x < 2 {
return x
}
return fib(x-1) + fib(x-2)
}

After several seconds of animation, the fib(45) call returns and the main function prints its
result:

Fibonacci(45) = 1134903170

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 8.2. EXAMPLE: CONCURRENT CLOCK SERVER 219

The main function then returns. When this happens, all goroutines are abruptly terminated
and the program exits. Other than by returning from main or exiting the program, there is no
programmatic way for one goroutine to stop another, but as we will see later, there are ways to
communicate with a goroutine to request that it stop itself.

Notice how the program is expressed as the composition of two autonomous activities, spin-
ning and Fibonacci computation. Each is written as a separate function but both make
progress concurrently.

8.2. Example: Concurrent Clock Server

Networking is a natural domain in which to use concurrency since servers typically handle
many connections from their clients at once, each client being essentially independent of the
others. In this section, we'll introduce the net package, which provides the components for
building networked client and server programs that communicate over TCP, UDP, or Unix
domain sockets. The net/http package we've been using since Chapter 1 is built on top of
functions from the net package.

Our first example is a sequential clock server that writes the current time to the client once per
second:

gopl.io/ch8/clockl

// Clockl is a TCP server that periodically writes the time.
package main

import (
"io"
"log"
"net"
"time"
)

func main() {
listener, err := net.Listen("tcp", "localhost:8000")
if err != nil {
log.Fatal(err)

}
for {
conn, err := listener.Accept()
if err != nil {
log.Print(err) // e.g., connection aborted
continue
}
handleConn(conn) // handle one connection at a time
}

www.it-ebooks.info

http://www.it-ebooks.info/

220 CHAPTER 8. GOROUTINES AND CHANNELS

func handleConn(c net.Conn) {
defer c.Close()

for {
_, err := io.WriteString(c, time.Now().Format("15:04:05\n"))
if err != nil {
return // e.g., client disconnected
}

time.Sleep(1 * time.Second)

}

The Listen function creates a net.Listener, an object that listens for incoming connections
on a network port, in this case TCP port localhost:8000. The listener’s Accept method
blocks until an incoming connection request is made, then returns a net.Conn object rep-
resenting the connection.

The handleConn function handles one complete client connection. In a loop, it writes the cur-
rent time, time.Now(), to the client. Since net.Conn satisfies the io.Writer interface, we can
write directly to it. The loop ends when the write fails, most likely because the client has dis-
connected, at which point handleConn closes its side of the connection using a deferred call to
Close and goes back to waiting for another connection request.

The time.Time.Format method provides a way to format date and time information by
example. Its argument is a template indicating how to format a reference time, specifically
Mon Jan 2 ©3:04:05PM 2006 UTC-0700. The reference time has eight components (day of the
week, month, day of the month, and so on). Any collection of them can appear in the Format
string in any order and in a number of formats; the selected components of the date and time
will be displayed in the selected formats. Here we are just using the hour, minute, and second
of the time. The time package defines templates for many standard time formats, such as
time.RFC1123. The same mechanism is used in reverse when parsing a time using
time.Parse.

To connect to the server, we'll need a client program such as nc (“netcat”), a standard utility
program for manipulating network connections:

$ go build gopl.io/ch8/clockl
$./clockl &

$ nc localhost 8000

13:58:54

13:58:55

13:58:56

13:58:57

~C

The client displays the time sent by the server each second until we interrupt the client with
Control-C, which on Unix systems is echoed as ~C by the shell. If nc or netcat is not installed
on your system, you can use telnet or this simple Go version of netcat that uses net.Dial
to connect to a TCP server:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 8.2. EXAMPLE: CONCURRENT CLOCK SERVER

gopl.io/ch8/netcatl

// Netcatl is a read-only TCP client.
package main

import (
nigh
"log"
"net"
"os"
)

func main() {
conn, err := net.Dial("tcp", "localhost:8000")
if err != nil {
log.Fatal(err)
}
defer conn.Close()
mustCopy(os.Stdout, conn)
}

func mustCopy(dst io.Writer, src io.Reader) {
if _, err := io.Copy(dst, src); err != nil {
log.Fatal(err)
}
}

221

This program reads data from the connection and writes it to the standard output until an
end-of-file condition or an error occurs. The mustCopy function is a utility used in several
examples in this section. Let’s run two clients at the same time on different terminals, one

shown to the left and one to the right:

$ go build gopl.io/ch8/netcatl

$./netcatl
13:58:54 $./netcatl
13:58:55
13:58:56
~C
13:58:57
13:58:58
13:58:59
~C

$ killall clock1l

The killall command is a Unix utility that kills all processes with the given name.

The second client must wait until the first client is finished because the server is sequential; it
deals with only one client at a time. Just one small change is needed to make the server con-
current: adding the go keyword to the call to handleConn causes each call to run in its own

goroutine.

www.it-ebooks.info

http://www.it-ebooks.info/

222 CHAPTER 8. GOROUTINES AND CHANNELS

gopl.io/ch8/clock2

for {
conn, err := listener.Accept()
if err != nil {
log.Print(err) // e.g., connection aborted
continue

}

go handleConn(conn) // handle connections concurrently

}

Now, multiple clients can receive the time at once:

$ go build gopl.io/ch8/clock2

$./clock2 &

$ go build gopl.io/ch8/netcatl

$./netcatl

14:02:54 $./netcatl
14:02:55 14:02:55
14:02:56 14:02:56
14:02:57 ~C

14:02:58

14:02:59 $./netcatl
14:03:00 14:03:00
14:03:01 14:03:01

~C 14:03:02

~C
$ killall clock2

Exercise 8.1: Modify clock2 to accept a port number, and write a program, clockwall, that
acts as a client of several clock servers at once, reading the times from each one and displaying
the results in a table, akin to the wall of clocks seen in some business offices. If you have
access to geographically distributed computers, run instances remotely; otherwise run local
instances on different ports with fake time zones.

$ Tz=US/Eastern ./clock2 -port 8010 &
$ TZ=Asia/Tokyo ./clock2 -port 8020 &
$ TZ=Europe/London ./clock2 -port 8030 &
$ clockwall NewYork=localhost:8010 London=localhost:8020 Tokyo=localhost:8030

Exercise 8.2: Implement a concurrent File Transfer Protocol (FTP) server. The server should
interpret commands from each client such as cd to change directory, 1s to list a directory, get
to send the contents of a file, and close to close the connection. You can use the standard ftp
command as the client, or write your own.

8.3. Example: Concurrent Echo Server

The clock server used one goroutine per connection. In this section, we’ll build an echo server
that uses multiple goroutines per connection. Most echo servers merely write whatever they

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 8.3. EXAMPLE: CONCURRENT ECHO SERVER 223

read, which can be done with this trivial version of handleConn:

func handleConn(c net.Conn) {
io.Copy(c, c) // NOTE: ignoring errors
c.Close()

}

A more interesting echo server might simulate the reverberations of a real echo, with the
response loud at first ("HELLO!"), then moderate ("Hello!") after a delay, then quiet
("hello!") before fading to nothing, as in this version of handleConn:

gopl.io/ch8/reverbl

func echo(c net.Conn, shout string, delay time.Duration) {
fmt.Fprintln(c, "\t", strings.ToUpper(shout))
time.Sleep(delay)
fmt.Fprintln(c, "\t", shout)
time.Sleep(delay)
fmt.Fprintln(c, "\t", strings.ToLower(shout))

}
func handleConn(c net.Conn) {
input := bufio.NewScanner(c)
for input.Scan() {
echo(c, input.Text(), 1*time.Second)
}
// NOTE: ignoring potential errors from input.Err()
c.Close()
}

We'll need to upgrade our client program so that it sends terminal input to the server while
also copying the server response to the output, which presents another opportunity to use
concurrency:

gopl.io/ch8/netcat2

func main() {
conn, err := net.Dial("tcp", "localhost:8000")
if err != nil {
log.Fatal(err)
}

defer conn.Close()
go mustCopy(os.Stdout, conn)
mustCopy(conn, os.Stdin)

}

While the main goroutine reads the standard input and sends it to the server, a second
goroutine reads and prints the servers response. When the main goroutine encounters the
end of the input, for example, after the user types Control-D (~D) at the terminal (or the
equivalent Control-Z on Microsoft Windows), the program stops, even if the other goroutine
still has work to do. (We'll see how to make the program wait for both sides to finish once
we've introduced channels in Section 8.4.1.)

www.it-ebooks.info

http://www.it-ebooks.info/

224 CHAPTER 8. GOROUTINES AND CHANNELS

In the session below, the client’s input is left-aligned and the server’s responses are indented.
The client shouts at the echo server three times:

$ go build gopl.io/ch8/reverbl
$./reverbl &
$ go build gopl.io/ch8/netcat2

$./netcat2

Hello?
HELLO?
Hello?
hello?

Is there anybody there?
IS THERE ANYBODY THERE?
Yooo-hooo!
Is there anybody there?
is there anybody there?
Y000-HO000!
Yooo-hooo!
yooo-hooo!
D
$ killall reverbl

Notice that the third shout from the client is not dealt with until the second shout has petered
out, which is not very realistic. A real echo would consist of the composition of the three inde-
pendent shouts. To simulate it, we'll need more goroutines. Again, all we need to do is add
the go keyword, this time to the call to echo:

gopl.io/ch8/reverb2

func handleConn(c net.Conn) {
input := bufio.NewScanner(c)
for input.Scan() {
go echo(c, input.Text(), 1*time.Second)

}
// NOTE: ignoring potential errors from input.Err()
c.Close()

The arguments to the function started by go are evaluated when the go statement itself is exe-
cuted; thus input.Text() is evaluated in the main goroutine.

Now the echoes are concurrent and overlap in time:

$ go build gopl.io/ch8/reverb2
$./reverb2 &
$./netcat2
Is there anybody there?
IS THERE ANYBODY THERE?

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 8.4. CHANNELS 225

Yooo-hooo!
Is there anybody there?
YO00-HO00!
is there anybody there?
Yooo-hooo!
yooo-hooo!
D
$ killall reverb2
All that was required to make the server use concurrency, not just to handle connections from
multiple clients but even within a single connection, was the insertion of two go keywords.

However in adding these keywords, we had to consider carefully that it is safe to call methods
of net.Conn concurrently, which is not true for most types. We'll discuss the crucial concept
of concurrency safety in the next chapter.

8.4. Channels

If goroutines are the activities of a concurrent Go program, channels are the connections
between them. A channel is a communication mechanism that lets one goroutine send values
to another goroutine. Each channel is a conduit for values of a particular type, called the
channel’s element type. The type of a channel whose elements have type int is written
chan int.

To create a channel, we use the built-in make function:

ch := make(chan int) // ch has type 'chan int'

As with maps, a channel is a reference to the data structure created by make. When we copy a
channel or pass one as an argument to a function, we are copying a reference, so caller and
callee refer to the same data structure. As with other reference types, the zero value of a chan-
nel is nil.

Two channels of the same type may be compared using ==. The comparison is true if both are
references to the same channel data structure. A channel may also be compared to nil.

A channel has two principal operations, send and receive, collectively known as
communications. A send statement transmits a value from one goroutine, through the chan-
nel, to another goroutine executing a corresponding receive expression. Both operations are
written using the <- operator. In a send statement, the <- separates the channel and value op-
erands. In a receive expression, <- precedes the channel operand. A receive expression whose
result is not used is a valid statement.

ch <- x // a send statement

x = <-ch // a receive expression in an assignment statement
<-ch // a receive statement; result is discarded

Channels support a third operation, close, which sets a flag indicating that no more values will
ever be sent on this channel; subsequent attempts to send will panic. Receive operations on a

www.it-ebooks.info

http://www.it-ebooks.info/

226 CHAPTER 8. GOROUTINES AND CHANNELS

closed channel yield the values that have been sent until no more values are left; any receive
operations thereafter complete immediately and yield the zero value of the channel’s element

type.
To close a channel, we call the built-in close function:

close(ch)

A channel created with a simple call to make is called an unbuffered channel, but make accepts
an optional second argument, an integer called the channel’s capacity. If the capacity is non-
zero, make creates a buffered channel.

ch = make(chan int) // unbuffered channel
ch = make(chan int, @) // unbuffered channel
ch = make(chan int, 3) // buffered channel with capacity 3

We'll look at unbuffered channels first and buffered channels in Section 8.4.4.

8.4.1. Unbuffered Channels

A send operation on an unbuffered channel blocks the sending goroutine until another
goroutine executes a corresponding receive on the same channel, at which point the value is
transmitted and both goroutines may continue. Conversely, if the receive operation was
attempted first, the receiving goroutine is blocked until another goroutine performs a send on
the same channel.

Communication over an unbuffered channel causes the sending and receiving goroutines to
synchronize. Because of this, unbuffered channels are sometimes called synchronous channels.
When a value is sent on an unbuffered channel, the receipt of the value happens before the
reawakening of the sending goroutine.

In discussions of concurrency, when we say x happens before y, we don’t mean merely that x
occurs earlier in time than y; we mean that it is guaranteed to do so and that all its prior
effects, such as updates to variables, are complete and that you may rely on them.

When x neither happens before y nor after y, we say that x is concurrent with y. This doesn't
mean that x and y are necessarily simultaneous, merely that we cannot assume anything about
their ordering. As we'll see in the next chapter, it’s necessary to order certain events during the
program’s execution to avoid the problems that arise when two goroutines access the same
variable concurrently.

The client program in Section 8.3 copies input to the server in its main goroutine, so the client
program terminates as soon as the input stream closes, even if the background goroutine is
still working. To make the program wait for the background goroutine to complete before
exiting, we use a channel to synchronize the two goroutines:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 8.4. CHANNELS 227

gopl.io/ch8/netcat3

func main() {
conn, err := net.Dial("tcp", "localhost:8000")
if err != nil {
log.Fatal(err)

}
done := make(chan struct{})
go func() {

io.Copy(os.Stdout, conn) // NOTE: ignoring errors
log.Println("done")
done <- struct{}{} // signal the main goroutine

Q)

mustCopy(conn, os.Stdin)
conn.Close()
<-done // wait for background goroutine to finish

}

When the user closes the standard input stream, mustCopy returns and the main goroutine
calls conn.Close(), closing both halves of the network connection. Closing the write half of
the connection causes the server to see an end-of-file condition. Closing the read half causes
the background goroutine’s call to io.Copy to return a “read from closed connection” error,
which is why we've removed the error logging; Exercise 8.3 suggests a better solution. (Notice
that the go statement calls a literal function, a common construction.)

Before it returns, the background goroutine logs a message, then sends a value on the done
channel. The main goroutine waits until it has received this value before returning. As a
result, the program always logs the "done" message before exiting.

Messages sent over channels have two important aspects. Each message has a value, but
sometimes the fact of communication and the moment at which it occurs are just as
important. We call messages events when we wish to stress this aspect. When the event car-
ries no additional information, that is, its sole purpose is synchronization, we’ll emphasize this
by using a channel whose element type is struct{}, though it's common to use a channel of
bool or int for the same purpose since done <- 1 is shorter than done <- struct{}{}.

Exercise 8.3: In netcat3, the interface value conn has the concrete type *net.TCPConn, which
represents a TCP connection. A TCP connection consists of two halves that may be closed
independently using its CloseRead and CloseWrite methods. Modify the main goroutine of
netcat3 to close only the write half of the connection so that the program will continue to
print the final echoes from the reverbl server even after the standard input has been closed.
(Doing this for the reverb2 server is harder; see Exercise 8.4.)

8.4.2. Pipelines

Channels can be used to connect goroutines together so that the output of one is the input to
another. This is called a pipeline. The program below consists of three goroutines connected
by two channels, as shown schematically in Figure 8.1.

www.it-ebooks.info

http://www.it-ebooks.info/

228 CHAPTER 8. GOROUTINES AND CHANNELS

0,1,2,3,.. 0,1,4,9,..

Counter Squarer Printer
naturals squares

Figure 8.1. A three-stage pipeline.

The first goroutine, counter, generates the integers 0, 1, 2, ..., and sends them over a channel to
the second goroutine, squarer, which receives each value, squares it, and sends the result over
another channel to the third goroutine, printer, which receives the squared values and prints
them. For clarity of this example, we have intentionally chosen very simple functions, though
of course they are too computationally trivial to warrant their own goroutines in a realistic
program.

gopl.io/ch8/pipelinel

func main() {

naturals := make(chan int)
squares := make(chan int)
// Counter
go func() {
for x 1= 0; ; x++ {
naturals <- x
}
1O
// Squarer
go func() {
for {
X := <-naturals
squares <- x * x
}
HO)
// Printer (in main goroutine)
for {

fmt.Println(<-squares)

}
}

As you might expect, the program prints the infinite series of squares 0, 1, 4, 9, and so on.
Pipelines like this may be found in long-running server programs where channels are used for
lifelong communication between goroutines containing infinite loops. But what if we want to
send only a finite number of values through the pipeline?

If the sender knows that no further values will ever be sent on a channel, it is useful to com-
municate this fact to the receiver goroutines so that they can stop waiting. This is accom-
plished by closing the channel using the built-in close function:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 8.4. CHANNELS 229

close(naturals)

After a channel has been closed, any further send operations on it will panic. After the closed
channel has been drained, that is, after the last sent element has been received, all subsequent
receive operations will proceed without blocking but will yield a zero value. Closing the natu-
rals channel above would cause the squarer’s loop to spin as it receives a never-ending stream
of zero values, and to send these zeros to the printer.

There is no way to test directly whether a channel has been closed, but there is a variant of the
receive operation that produces two results: the received channel element, plus a boolean
value, conventionally called ok, which is true for a successful receive and false for a receive
on a closed and drained channel. Using this feature, we can modify the squarer’s loop to stop
when the naturals channel is drained and close the squares channel in turn.

// Squarer
go func() {
for {
X, ok := <-naturals
if lok {
break // channel was closed and drained
b
squares <- X * x
}
close(squares)

10

Because the syntax above is clumsy and this pattern is common, the language lets us use a
range loop to iterate over channels too. This is a more convenient syntax for receiving all the
values sent on a channel and terminating the loop after the last one.

In the pipeline below, when the counter goroutine finishes its loop after 100 elements, it closes
the naturals channel, causing the squarer to finish its loop and close the squares channel.
(In a more complex program, it might make sense for the counter and squarer functions to
defer the calls to close at the outset.) Finally, the main goroutine finishes its loop and the
program exits.

gopl.io/ch8/pipeline2

func main() {

naturals := make(chan int)
squares := make(chan int)
// Counter
go func() {
for x 1= 0; x < 100; x++ {
naturals <- x
}
close(naturals)

10O

www.it-ebooks.info

http://www.it-ebooks.info/

230 CHAPTER 8. GOROUTINES AND CHANNELS

// Squarer
go func() {
for x := range naturals {
squares <- x * x
}
close(squares)
30
// Printer (in main goroutine)
for x := range squares {

fmt.Println(x)

}
}

You needn't close every channel when you've finished with it. It's only necessary to close a
channel when it is important to tell the receiving goroutines that all data have been sent. A
channel that the garbage collector determines to be unreachable will have its resources
reclaimed whether or not it is closed. (Don't confuse this with the close operation for open
files. It is important to call the Close method on every file when you've finished with it.)

Attempting to close an already-closed channel causes a panic, as does closing a nil channel.
Closing channels has another use as a broadcast mechanism, which we’ll cover in Section 8.9.

8.4.3. Unidirectional Channel Types

As programs grow, it is natural to break up large functions into smaller pieces. Our previous
example used three goroutines, communicating over two channels, which were local variables
of main. The program naturally divides into three functions:

func counter(out chan int)
func squarer(out, in chan int)
func printer(in chan int)

The squarer function, sitting in the middle of the pipeline, takes two parameters, the input
channel and the output channel. Both have the same type, but their intended uses are
opposite: in is only to be received from, and out is only to be sent to. The names in and out
convey this intention, but still, nothing prevents squarer from sending to in or receiving
from out.

This arrangement is typical. When a channel is supplied as a function parameter, it is nearly
always with the intent that it be used exclusively for sending or exclusively for receiving.

To document this intent and prevent misuse, the Go type system provides unidirectional chan-
nel types that expose only one or the other of the send and receive operations. The type
chan<- int, a send-only channel of int, allows sends but not receives. Conversely, the type
<-chan int, a receive-only channel of int, allows receives but not sends. (The position of the
<- arrow relative to the chan keyword is a mnemonic.) Violations of this discipline are
detected at compile time.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 8.4. CHANNELS 231

Since the close operation asserts that no more sends will occur on a channel, only the send-
ing goroutine is in a position to call it, and for this reason it is a compile-time error to attempt
to close a receive-only channel.

Here’s the squaring pipeline once more, this time with unidirectional channel types:

gopl.io/ch8/pipeline3

func counter(out chan<- int) {
for x := 0; x < 100; x++ {
out <- x

}

close(out)

}

func squarer(out chan<- int, in <-chan int) {
for v := range in {
out <- v * v

}

close(out)

}

func printer(in <-chan int) {
for v := range in {
fmt.Println(v)

}

func main() {
naturals := make(chan int)
squares := make(chan int)

go counter(naturals)
go squarer(squares, naturals)
printer(squares)

}

The call counter(naturals) implicitly converts naturals, a value of type chan int, to the
type of the parameter, chan<- int. The printer(squares) call does a similar implicit con-
version to <-chan int. Conversions from bidirectional to unidirectional channel types are
permitted in any assignment. There is no going back, however: once you have a value of a
unidirectional type such as chan<- int, there is no way to obtain from it a value of type
chan int that refers to the same channel data structure.

8.4.4. Buffered Channels

A buffered channel has a queue of elements. The queue’s maximum size is determined when it
is created, by the capacity argument to make. The statement below creates a buffered channel
capable of holding three string values. Figure 8.2 is a graphical representation of ch and the
channel to which it refers.

www.it-ebooks.info

http://www.it-ebooks.info/

232 CHAPTER 8. GOROUTINES AND CHANNELS

ch = make(chan string, 3)

ch

4

Figure 8.2. An empty buffered channel.

A send operation on a buffered channel inserts an element at the back of the queue, and a
receive operation removes an element from the front. If the channel is full, the send operation
blocks its goroutine until space is made available by another goroutine’s receive. Conversely, if
the channel is empty, a receive operation blocks until a value is sent by another goroutine.

We can send up to three values on this channel without the goroutine blocking:

ch <- "A"
ch <- "B"
ch <- "c"

At this point, the channel is full (Figure 8.3), and a fourth send statement would block.

ch

__—_///,—?'“A" “g” “c”
*—

Figure 8.3. A full buffered channel.

If we receive one value,

fmt.Println(<-ch) // "A"

the channel is neither full nor empty (Figure 8.4), so either a send operation or a receive oper-
ation could proceed without blocking. In this way, the channel’s buffer decouples the sending
and receiving goroutines.

ch

——’//’) “g” “«c
*—]

Figure 8.4. A partially full buffered channel.

In the unlikely event that a program needs to know the channel’s buffer capacity, it can be
obtained by calling the built-in cap function:

fmt.Println(cap(ch)) // "3"

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 8.4. CHANNELS 233

When applied to a channel, the built-in 1en function returns the number of elements cur-
rently buffered. Since in a concurrent program this information is likely to be stale as soon as
it is retrieved, its value is limited, but it could conceivably be useful during fault diagnosis or
performance optimization.

fmt.Println(len(ch)) // "2"
After two more receive operations the channel is empty again, and a fourth would block:

fmt.Println(<-ch) // "B"
fmt.Println(<-ch) // "C"

In this example, the send and receive operations were all performed by the same goroutine,
but in real programs they are usually executed by different goroutines. Novices are sometimes
tempted to use buffered channels within a single goroutine as a queue, lured by their pleas-
ingly simple syntax, but this is a mistake. Channels are deeply connected to goroutine
scheduling, and without another goroutine receiving from the channel, a sender—and perhaps
the whole program—risks becoming blocked forever. If all you need is a simple queue, make
one using a slice.

The example below shows an application of a buffered channel. It makes parallel requests to
three mirrors, that is, equivalent but geographically distributed servers. It sends their
responses over a buffered channel, then receives and returns only the first response, which is
the quickest one to arrive. Thus mirroredQuery returns a result even before the two slower
servers have responded. (Incidentally, it’s quite normal for several goroutines to send values to
the same channel concurrently, as in this example, or to receive from the same channel.)
func mirroredQuery() string {

responses := make(chan string, 3)

go func() { responses <- request("asia.gopl.io") }()

go func() { responses <- request("europe.gopl.io") }()

go func() { responses <- request("americas.gopl.io") }()

return <-responses // return the quickest response

}

func request(hostname string) (response string) { /* ... */ }

Had we used an unbuffered channel, the two slower goroutines would have gotten stuck trying
to send their responses on a channel from which no goroutine will ever receive. This sit-
uation, called a goroutine leak, would be a bug. Unlike garbage variables, leaked goroutines are
not automatically collected, so it is important to make sure that goroutines terminate them-
selves when no longer needed.

The choice between unbuffered and buffered channels, and the choice of a buffered channel’s
capacity, may both affect the correctness of a program. Unbuffered channels give stronger
synchronization guarantees because every send operation is synchronized with its cor-
responding receive; with buffered channels, these operations are decoupled. Also, when we
know an upper bound on the number of values that will be sent on a channel, it’s not unusual
to create a buffered channel of that size and perform all the sends before the first value is
received. Failure to allocate sufficient buffer capacity would cause the program to deadlock.

www.it-ebooks.info

http://www.it-ebooks.info/

234 CHAPTER 8. GOROUTINES AND CHANNELS

Channel buffering may also affect program performance. Imagine three cooks in a cake shop,
one baking, one icing, and one inscribing each cake before passing it on to the next cook in the
assembly line. In a kitchen with little space, each cook that has finished a cake must wait for
the next cook to become ready to accept it; this rendezvous is analogous to communication
over an unbuffered channel.

If there is space for one cake between each cook, a cook may place a finished cake there and
immediately start work on the next; this is analogous to a buffered channel with capacity 1. So
long as the cooks work at about the same rate on average, most of these handovers proceed
quickly, smoothing out transient differences in their respective rates. More space between
cooks—larger buffers—can smooth out bigger transient variations in their rates without
stalling the assembly line, such as happens when one cook takes a short break, then later
rushes to catch up.

On the other hand, if an earlier stage of the assembly line is consistently faster than the follow-
ing stage, the buffer between them will spend most of its time full. Conversely, if the later
stage is faster, the buffer will usually be empty. A buffer provides no benefit in this case.

The assembly line metaphor is a useful one for channels and goroutines. For example, if the
second stage is more elaborate, a single cook may not be able to keep up with the supply from
the first cook or meet the demand from the third. To solve the problem, we could hire another
cook to help the second, performing the same task but working independently. This is analo-
gous to creating another goroutine communicating over the same channels.

We don’t have space to show it here, but the gopl.io/ch8/cake package simulates this cake
shop, with several parameters you can vary. It includes benchmarks (§11.4) for a few of the
scenarios described above.

8.5. Looping in Parallel

In this section, we'll explore some common concurrency patterns for executing all the itera-
tions of a loop in parallel. We'll consider the problem of producing thumbnail-size images
from a set of full-size ones. The gopl.io/ch8/thumbnail package provides an ImageFile
function that can scale a single image. We won't show its implementation but it can be
downloaded from gopl.io.

gopl.io/ch8/thumbnail

package thumbnail

// ImageFile reads an image from infile and writes

// a thumbnail-size version of it in the same directory.

// It returns the generated file name, e.g., "foo.thumb.jpg".
func ImageFile(infile string) (string, error)

The program below loops over a list of image file names and produces a thumbnail for each
one:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 8.5. LOOPING IN PARALLEL 235

gopl.io/ch8/thumbnail

// makeThumbnails makes thumbnails of the specified files.
func makeThumbnails(filenames []string) {
for _, f := range filenames {
if _, err := thumbnail.ImageFile(f); err != nil {
log.Println(err)
}

}

Obviously the order in which we process the files doesn’t matter, since each scaling operation
is independent of all the others. Problems like this that consist entirely of subproblems that
are completely independent of each other are described as embarrassingly parallel. Embarrass-
ingly parallel problems are the easiest kind to implement concurrently and enjoy performance
that scales linearly with the amount of parallelism.

Let’s execute all these operations in parallel, thereby hiding the latency of the file I/O and
using multiple CPUs for the image-scaling computations. Our first attempt at a concurrent
version just adds a go keyword. We'll ignore errors for now and address them later.

// NOTE: incorrect!
func makeThumbnails2(filenames []string) {
for _, f := range filenames {
go thumbnail.ImageFile(f) // NOTE: ignoring errors
}
}

This version runs really fast—too fast, in fact, since it takes less time than the original, even
when the slice of file names contains only a single element. If there’s no parallelism, how can
the concurrent version possibly run faster? The answer is that makeThumbnails returns
before it has finished doing what it was supposed to do. It starts all the goroutines, one per file
name, but doesn’t wait for them to finish.

There is no direct way to wait until a goroutine has finished, but we can change the inner
goroutine to report its completion to the outer goroutine by sending an event on a shared
channel. Since we know that there are exactly len(filenames) inner goroutines, the outer
goroutine need only count that many events before it returns:

// makeThumbnails3 makes thumbnails of the specified files in parallel.
func makeThumbnails3(filenames []string) {
ch := make(chan struct{})
for _, f := range filenames {
go func(f string) {
thumbnail.ImageFile(f) // NOTE: ignoring errors
ch <- struct{}{}
HEH)

www.it-ebooks.info

http://www.it-ebooks.info/

236 CHAPTER 8. GOROUTINES AND CHANNELS

// Wait for goroutines to complete.
for range filenames {
<-ch
}
}

Notice that we passed the value of f as an explicit argument to the literal function instead of
using the declaration of f from the enclosing for loop:

for _, f := range filenames {
go func() {
thumbnail.ImageFile(f) // NOTE: incorrect!
/...
10
}

Recall the problem of loop variable capture inside an anonymous function, described in
Section 5.6.1. Above, the single variable f is shared by all the anonymous function values and
updated by successive loop iterations. By the time the new goroutines start executing the lit-
eral function, the for loop may have updated f and started another iteration or (more likely)
finished entirely, so when these goroutines read the value of f, they all observe it to have the
value of the final element of the slice. By adding an explicit parameter, we ensure that we use
the value of f that is current when the go statement is executed.

What if we want to return values from each worker goroutine to the main one? If the call to
thumbnail.ImageFile fails to create a file, it returns an error. The next version of
makeThumbnails returns the first error it receives from any of the scaling operations:

// makeThumbnails4 makes thumbnails for the specified files in parallel.
// It returns an error if any step failed.
func makeThumbnails4(filenames []string) error {

errors := make(chan error)

for _, f := range filenames {
go func(f string) {
_, err := thumbnail.ImageFile(f)
errors <- err

)
}
for range filenames {
if err := <-errors; err != nil {
return err // NOTE: incorrect: goroutine leak!
}
}
return nil

}

This function has a subtle bug. When it encounters the first non-nil error, it returns the error
to the caller, leaving no goroutine draining the errors channel. Each remaining worker
goroutine will block forever when it tries to send a value on that channel, and will never

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 8.5. LOOPING IN PARALLEL 237

terminate. This situation, a goroutine leak (§8.4.4), may cause the whole program to get stuck
or to run out of memory.

The simplest solution is to use a buffered channel with sufficient capacity that no worker
goroutine will block when it sends a message. (An alternative solution is to create another
goroutine to drain the channel while the main goroutine returns the first error without delay.)

The next version of makeThumbnails uses a buffered channel to return the names of the gen-
erated image files along with any errors.

// makeThumbnails5 makes thumbnails for the specified files in parallel.
// It returns the generated file names in an arbitrary order,
// or an error if any step failed.
func makeThumbnails5(filenames []string) (thumbfiles []string, err error) {
type item struct {
thumbfile string

err error
}
ch := make(chan item, len(filenames))
for _, f := range filenames {
go func(f string) {
var it item
it.thumbfile, it.err = thumbnail.ImageFile(f)
ch <- it
e
}
for range filenames {
it := <-ch
if it.err != nil {

return nil, it.err

}
thumbfiles = append(thumbfiles, it.thumbfile)

}

return thumbfiles, nil

}

Our final version of makeThumbnails, below, returns the total number of bytes occupied by
the new files. Unlike the previous versions, however, it receives the file names not as a slice but
over a channel of strings, so we cannot predict the number of loop iterations.

To know when the last goroutine has finished (which may not be the last one to start), we need
to increment a counter before each goroutine starts and decrement it as each goroutine fin-
ishes. This demands a special kind of counter, one that can be safely manipulated from
multiple goroutines and that provides a way to wait until it becomes zero. This counter type is
known as sync.WaitGroup, and the code below shows how to use it:

www.it-ebooks.info

http://www.it-ebooks.info/

238 CHAPTER 8. GOROUTINES AND CHANNELS

// makeThumbnails6 makes thumbnails for each file received from the channel.
// It returns the number of bytes occupied by the files it creates.
func makeThumbnails6(filenames <-chan string) int64 {
sizes := make(chan inte4)
var wg sync.WaitGroup // number of working goroutines
for f := range filenames {
wg.Add(1)
// worker
go func(f string) {
defer wg.Done()
thumb, err := thumbnail.ImageFile(f)

if err != nil {
log.Println(err)
return
}
info, _ := os.Stat(thumb) // OK to ignore error
sizes <- info.Size()
F(F)
}
// closer
go func() {
wg.Wait()
close(sizes)
30
var total int64
for size := range sizes {
total += size
}

return total

}

Note the asymmetry in the Add and Done methods. Add, which increments the counter, must
be called before the worker goroutine starts, not within it; otherwise we would not be sure that
the Add happens before the “closer” goroutine calls Wait. Also, Add takes a parameter, but Done
does not; it’s equivalent to Add(-1). We use defer to ensure that the counter is decremented
even in the error case. The structure of the code above is a common and idiomatic pattern for
looping in parallel when we don’t know the number of iterations.

The sizes channel carries each file size back to the main goroutine, which receives them
using a range loop and computes the sum. Observe how we create a closer goroutine that
waits for the workers to finish before closing the sizes channel. These two operations, wait
and close, must be concurrent with the loop over sizes. Consider the alternatives: if the wait
operation were placed in the main goroutine before the loop, it would never end, and if placed
after the loop, it would be unreachable since with nothing closing the channel, the loop would
never terminate.

Figure 8.5 illustrates the sequence of events in the makeThumbnailsé function. The vertical
lines represent goroutines. The thin segments indicate sleep, the thick segments activity. The

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 8.6. EXAMPLE: CONCURRENT WEB CRAWLER 239

workers

end
/ Done

P

5]

o send 1
- Done
(0] <

ob

c

T

—

< |
Done
M

Qo2

Figure 8.5. The sequence of events in makeThumbnailseé.

diagonal arrows indicate events that synchronize one goroutine with another. Time flows
down. Notice how the main goroutine spends most of its time in the range loop asleep, wait-
ing for a worker to send a value or the closer to close the channel.

Exercise 8.4: Modify the reverb2 server to use a sync.WaitGroup per connection to count
the number of active echo goroutines. When it falls to zero, close the write half of the TCP
connection as described in Exercise 8.3. Verify that your modified netcat3 client from that
exercise waits for the final echoes of multiple concurrent shouts, even after the standard input
has been closed.

Exercise 8.5: Take an existing CPU-bound sequential program, such as the Mandelbrot
program of Section 3.3 or the 3-D surface computation of Section 3.2, and execute its main
loop in parallel using channels for communication. How much faster does it run on a
multiprocessor machine? What is the optimal number of goroutines to use?

8.6. Example: Concurrent Web Crawler

In Section 5.6, we made a simple web crawler that explored the link graph of the web in
breadth-first order. In this section, we’ll make it concurrent so that independent calls to crawl
can exploit the I/O parallelism available in the web. The crawl function remains exactly as it
was in gopl.io/ch5/findlinks3:

www.it-ebooks.info

http://www.it-ebooks.info/

240 CHAPTER 8. GOROUTINES AND CHANNELS

gopl.io/ch8/crawll

func crawl(url string) []string {
fmt.Println(url)
list, err := links.Extract(url)
if err != nil {
log.Print(err)
}

return list

}

The main function resembles breadthFirst (§5.6). As before, a worklist records the queue of
items that need processing, each item being a list of URLs to crawl, but this time, instead of
representing the queue using a slice, we use a channel. Each call to crawl occurs in its own
goroutine and sends the links it discovers back to the worklist.

func main() {
worklist := make(chan []string)

// Start with the command-line arguments.
go func() { worklist <- os.Args[1:] }()

// Crawl the web concurrently.

seen := make(map[string]bool)
for list := range worklist {
for _, link := range list {

if !seen[link] {
seen[link] = true
go func(link string) {
worklist <- crawl(link)
}(1link)

}

Notice that the crawl goroutine takes link as an explicit parameter to avoid the problem of
loop variable capture we first saw in Section 5.6.1. Also notice that the initial send of the com-
mand-line arguments to the worklist must run in its own goroutine to avoid deadlock, a stuck
situation in which both the main goroutine and a crawler goroutine attempt to send to each
other while neither is receiving. An alternative solution would be to use a buffered channel.

The crawler is now highly concurrent and prints a storm of URLs, but it has two problems.
The first problem manifests itself as error messages in the log after a few seconds of operation:

$ go build gopl.io/ch8/crawll
$./crawll http://gopl.io/
http://gopl.io/
https://golang.org/help/

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 8.6. EXAMPLE: CONCURRENT WEB CRAWLER 241

https://golang.org/doc/
https://golang.org/blog/

2015/07/15 18:22:12 Get ...: dial tcp: lookup blog.golang.org: no such host
2015/07/15 18:22:12 Get ...: dial tcp 23.21.222.120:443: socket:
too many open files

The initial error message is a surprising report of a DNS lookup failure for a reliable domain.
The subsequent error message reveals the cause: the program created so many network con-
nections at once that it exceeded the per-process limit on the number of open files, causing
operations such as DNS lookups and calls to net.Dial to start failing.

The program is too parallel. Unbounded parallelism is rarely a good idea since there is always
a limiting factor in the system, such as the number of CPU cores for compute-bound
workloads, the number of spindles and heads for local disk I/O operations, the bandwidth of
the network for streaming downloads, or the serving capacity of a web service. The solution is
to limit the number of parallel uses of the resource to match the level of parallelism that is
available. A simple way to do that in our example is to ensure that no more than »n calls to
links.Extract are active at once, where n is comfortably less than the file descriptor
limit—20, say. This is analogous to the way a doorman at a crowded nightclub admits a guest
only when some other guest leaves.

We can limit parallelism using a buffered channel of capacity # to model a concurrency primi-
tive called a counting semaphore. Conceptually, each of the #n vacant slots in the channel buffer
represents a token entitling the holder to proceed. Sending a value into the channel acquires a
token, and receiving a value from the channel releases a token, creating a new vacant slot.
This ensures that at most # sends can occur without an intervening receive. (Although it
might be more intuitive to treat filled slots in the channel buffer as tokens, using vacant slots
avoids the need to fill the channel buffer after creating it.) Since the channel element type is
not important, we'll use struct{}, which has size zero.

Let’s rewrite the crawl function so that the call to links.Extract is bracketed by operations
to acquire and release a token, thus ensuring that at most 20 calls to it are active at one time.
It's good practice to keep the semaphore operations as close as possible to the I/O operation
they regulate.

gopl.io/ch8/crawl2

// tokens is a counting semaphore used to
// enforce a limit of 20 concurrent requests.
var tokens = make(chan struct{}, 20)

func crawl(url string) []string {
fmt.Println(url)
tokens <- struct{}{} // acquire a token
list, err := links.Extract(url)
<-tokens // release the token

www.it-ebooks.info

http://www.it-ebooks.info/

242 CHAPTER 8. GOROUTINES AND CHANNELS

if err != nil {
log.Print(err)
}

return list

}

The second problem is that the program never terminates, even when it has discovered all the
links reachable from the initial URLs. (Of course, youre unlikely to notice this problem unless
you choose the initial URLs carefully or implement the depth-limiting feature of Exercise 8.6.)
For the program to terminate, we need to break out of the main loop when the worklist is
empty and no crawl goroutines are active.

func main() {
worklist := make(chan []string)
var n int // number of pending sends to worklist

// Start with the command-line arguments.
n++
go func() { worklist <- os.Args[1:] }()

// Crawl the web concurrently.
seen := make(map[string]bool)
for ; n > 0; n-- {
list := <-worklist
for _, link := range list {
if !seen[link] {
seen[link] = true
n++
go func(link string) {
worklist <- crawl(link)
}(1link)

}

In this version, the counter n keeps track of the number of sends to the worklist that are yet to
occur. Each time we know that an item needs to be sent to the worklist, we increment n, once
before we send the initial command-line arguments, and again each time we start a crawler
goroutine. The main loop terminates when n falls to zero, since there is no more work to be
done.

Now the concurrent crawler runs about 20 times faster than the breadth-first crawler from
Section 5.6, without errors, and terminates correctly if it should complete its task.

The program below shows an alternative solution to the problem of excessive concurrency.
This version uses the original crawl function that has no counting semaphore, but calls it
from one of 20 long-lived crawler goroutines, thus ensuring that at most 20 HTTP requests are
active concurrently.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 8.6. EXAMPLE: CONCURRENT WEB CRAWLER 243

gopl.io/ch8/crawl3

func main() {
worklist := make(chan []string) // lists of URLs, may have duplicates
unseenLinks := make(chan string) // de-duplicated URLs

// Add command-line arguments to worklist.
go func() { worklist <- os.Args[1:] }()

// Create 20 crawler goroutines to fetch each unseen link.

for i :=0; i < 20; i++ {
go func() {
for link := range unseenLinks {

foundLinks := crawl(link)
go func() { worklist <- foundLinks }()
}
HO)
}

// The main goroutine de-duplicates worklist items
// and sends the unseen ones to the crawlers.

seen := make(map[string]bool)
for list := range worklist {
for _, link := range list {

if lseen[link] {
seen[link] = true
unseenLinks <- link

}

The crawler goroutines are all fed by the same channel, unseenLinks. The main goroutine is
responsible for de-duplicating items it receives from the worklist, and then sending each
unseen one over the unseenLinks channel to a crawler goroutine.

The seen map is confined within the main goroutine; that is, it can be accessed only by that
goroutine. Like other forms of information hiding, confinement helps us reason about the
correctness of a program. For example, local variables cannot be mentioned by name from
outside the function in which they are declared; variables that do not escape (§2.3.4) from a
function cannot be accessed from outside that function; and encapsulated fields of an object
cannot be accessed except by the methods of that object. In all cases, information hiding helps
to limit unintended interactions between parts of the program.

Links found by crawl are sent to the worklist from a dedicated goroutine to avoid deadlock.
To save space, we have not addressed the problem of termination in this example.

Exercise 8.6: Add depth-limiting to the concurrent crawler. That is, if the user sets -depth=3,
then only URLSs reachable by at most three links will be fetched.

Exercise 8.7: Write a concurrent program that creates a local mirror of a web site, fetching
each reachable page and writing it to a directory on the local disk. Only pages within the

www.it-ebooks.info

http://www.it-ebooks.info/

244 CHAPTER 8. GOROUTINES AND CHANNELS

original domain (for instance, golang.org) should be fetched. URLs within mirrored pages
should be altered as needed so that they refer to the mirrored page, not the original.

8.7. Multiplexing with select

The program below does the countdown for a rocket launch. The time.Tick function returns
a channel on which it sends events periodically, acting like a metronome. The value of each
event is a timestamp, but it is rarely as interesting as the fact of its delivery.

gopl.io/ch8/countdownl

func main() {
fmt.Println("Commencing countdown.™)
tick := time.Tick(1 * time.Second)

for countdown := 10; countdown > @; countdown-- {
fmt.Println(countdown)
<-tick

}

launch()

}

Now let’s add the ability to abort the launch sequence by pressing the return key during the
countdown. First, we start a goroutine that tries to read a single byte from the standard input
and, if it succeeds, sends a value on a channel called abort.

gopl.io/ch8/countdown2

abort := make(chan struct{})

go func() {
0s.Stdin.Read(make([]byte, 1)) // read a single byte

abort <- struct{}{}

Q)

Now each iteration of the countdown loop needs to wait for an event to arrive on one of the
two channels: the ticker channel if everything is fine (“nominal” in NASA jargon) or an abort
event if there was an “anomaly” We can't just receive from each channel because whichever
operation we try first will block until completion. We need to multiplex these operations, and
to do that, we need a select statement.

select {
case <-chil:
/] ...
case x := <-ch2:
// ...use X...
case ch3 <- y:
/] ...
default:
/...
}

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 8.7. MULTIPLEXING WITH SELECT 245

The general form of a select statement is shown above. Like a switch statement, it has a num-
ber of cases and an optional default. Each case specifies a communication (a send or receive
operation on some channel) and an associated block of statements. A receive expression may
appear on its own, as in the first case, or within a short variable declaration, as in the second
case; the second form lets you refer to the received value.

A select waits until a communication for some case is ready to proceed. It then performs
that communication and executes the case’s associated statements; the other communications
do not happen. A select with no cases, select{}, waits forever.

Let’s return to our rocket launch program. The time.After function immediately returns a
channel, and starts a new goroutine that sends a single value on that channel after the speci-
fied time. The select statement below waits until the first of two events arrives, either an abort
event or the event indicating that 10 seconds have elapsed. If 10 seconds go by with no abort,
the launch proceeds.

func main() {
// ...create abort channel...

fmt.Println("Commencing countdown. Press return to abort.")
select {
case <-time.After(10 * time.Second):
// Do nothing.
case <-abort:
fmt.Println("Launch aborted!")
return

}
launch()

}

The example below is more subtle. The channel ch, whose buffer size is 1, is alternately empty
then full, so only one of the cases can proceed, either the send when i is even, or the receive
when i is odd. It always prints © 2 4 6 8.

ch := make(chan int, 1)
for i :=0; i < 10; i++ {
select {
case x := <-ch:

‘Fmt.Pr‘intln(x) // uau uzu u4u -|6n n8n
case ch <- 1i:

}
}

If multiple cases are ready, select picks one at random, which ensures that every channel has
an equal chance of being selected. Increasing the buffer size of the previous example makes its
output nondeterministic, because when the buffer is neither full nor empty, the select state-
ment figuratively tosses a coin.

Let’s make our launch program print the countdown. The select statement below causes each
iteration of the loop to wait up to 1 second for an abort, but no longer.

www.it-ebooks.info

http://www.it-ebooks.info/

246 CHAPTER 8. GOROUTINES AND CHANNELS

gopl.io/ch8/countdown3

func main() {
// ...create abort channel...

fmt.Println("Commencing countdown. Press return to abort.™)
tick := time.Tick(1 * time.Second)
for countdown := 10; countdown > @; countdown-- {
fmt.Println(countdown)
select {
case <-tick:
// Do nothing.
case <-abort:
fmt.Println("Launch aborted!")
return

}

}
launch()

}

The time.Tick function behaves as if it creates a goroutine that calls time.Sleep in a loop,
sending an event each time it wakes up. When the countdown function above returns, it stops
receiving events from tick, but the ticker goroutine is still there, trying in vain to send on a
channel from which no goroutine is receiving—a goroutine leak ($8.4.4).

The Tick function is convenient, but it's appropriate only when the ticks will be needed
throughout the lifetime of the application. Otherwise, we should use this pattern:

ticker := time.NewTicker(1l * time.Second)
<-ticker.C // receive from the ticker's channel

ticker.Stop() // cause the ticker's goroutine to terminate

Sometimes we want to try to send or receive on a channel but avoid blocking if the channel is
not ready—a non-blocking communication. A select statement can do that too. A select
may have a default, which specifies what to do when none of the other communications can
proceed immediately.

The select statement below receives a value from the abort channel if there is one to receive;
otherwise it does nothing. This is a non-blocking receive operation; doing it repeatedly is
called polling a channel.

select {

case <-abort:
fmt.Printf("Launch aborted!\n")
return

default:
// do nothing

}

The zero value for a channel is nil. Perhaps surprisingly, nil channels are sometimes useful.
Because send and receive operations on a nil channel block forever, a case in a select statement

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 8.8. EXAMPLE: CONCURRENT DIRECTORY TRAVERSAL 247

whose channel is nil is never selected. This lets us use nil to enable or disable cases that cor-
respond to features like handling timeouts or cancellation, responding to other input events,
or emitting output. We'll see an example in the next section.

Exercise 8.8: Using a select statement, add a timeout to the echo server from Section 8.3 so
that it disconnects any client that shouts nothing within 10 seconds.

8.8. Example: Concurrent Directory Traversal

In this section, we'll build a program that reports the disk usage of one or more directories
specified on the command line, like the Unix du command. Most of its work is done by the
walkDir function below, which enumerates the entries of the directory dir using the dirents
helper function.

gopl.io/ch8/dul
// walkDir recursively walks the file tree rooted at dir
// and sends the size of each found file on fileSizes.
func walkDir(dir string, fileSizes chan<- int64) {
for _, entry := range dirents(dir) {
if entry.IsDir() {
subdir := filepath.Join(dir, entry.Name())
walkDir(subdir, fileSizes)
} else {
fileSizes <- entry.Size()

}
}

// dirents returns the entries of directory dir.
func dirents(dir string) [Jos.FileInfo {
entries, err := ioutil.ReadDir(dir)
if err != nil {
fmt.Fprintf(os.Stderr, "dul: %v\n", err)
return nil

}

return entries

}

The ioutil.ReadDir function returns a slice of os.FileInfo—the same information that a
call to os.Stat returns for a single file. For each subdirectory, walkDir recursively calls itself,
and for each file, walkDir sends a message on the fileSizes channel. The message is the size
of the file in bytes.

The main function, shown below, uses two goroutines. The background goroutine calls
walkDir for each directory specified on the command line and finally closes the fileSizes
channel. The main goroutine computes the sum of the file sizes it receives from the channel
and finally prints the total.

www.it-ebooks.info

http://www.it-ebooks.info/

248 CHAPTER 8. GOROUTINES AND CHANNELS

// The dul command computes the disk usage of the files in a directory.
package main

import (
"flag"
"fmt"
"io/ioutil"
"os"
"path/filepath"

)

func main() {
// Determine the initial directories.
flag.Parse()
roots := flag.Args()
if len(roots) == 0 {
roots = []string{"."}
}

// Traverse the file tree.
fileSizes := make(chan inte64)
go func() {
for _, root := range roots {
walkDir(root, fileSizes)

}

close(fileSizes)

Q)

// Print the results.

var nfiles, nbytes int64

for size := range fileSizes {
nfiles++
nbytes += size

}
printDiskUsage(nfiles, nbytes)

}
func printDiskUsage(nfiles, nbytes int64) {

fmt.Printf("%d files %.1f GB\n", nfiles, float64(nbytes)/1le9)
}

This program pauses for a long while before printing its result:

$ go build gopl.io/ch8/dul
$./dul $HOME /usr /bin /etc
213201 files 62.7 GB

The program would be nicer if it kept us informed of its progress. However, simply moving
the printDiskUsage call into the loop would cause it to print thousands of lines of output.

The variant of du below prints the totals periodically, but only if the -v flag is specified since
not all users will want to see progress messages. The background goroutine that loops over
roots remains unchanged. The main goroutine now uses a ticker to generate events every

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 8.8. EXAMPLE: CONCURRENT DIRECTORY TRAVERSAL 249

500ms, and a select statement to wait for either a file size message, in which case it updates the
totals, or a tick event, in which case it prints the current totals. If the -v flag is not specified,
the tick channel remains nil, and its case in the select is effectively disabled.

gopl.io/ch8/du2

var verbose = flag.Bool("v", false, "show verbose progress messages")

func main() {
// ...start background goroutine...

// Print the results periodically.
var tick <-chan time.Time
if *verbose {
tick = time.Tick(500 * time.Millisecond)

}
var nfiles, nbytes int64
loop:
for {
select {
case size, ok := <-fileSizes:
if lok {
break loop // fileSizes was closed
}
nfiles++
nbytes += size
case <-tick:
printDiskUsage(nfiles, nbytes)
}
}

printDiskUsage(nfiles, nbytes) // final totals
}

Since the program no longer uses a range loop, the first select case must explicitly test
whether the fileSizes channel has been closed, using the two-result form of receive opera-
tion. If the channel has been closed, the program breaks out of the loop. The labeled break
statement breaks out of both the select and the for loop; an unlabeled break would break
out of only the select, causing the loop to begin the next iteration.

The program now gives us a leisurely stream of updates:

$ go build gopl.io/ch8/du2

$./du2 -v $HOME /usr /bin /etc
28608 files 8.3 GB

54147 files 10.3 GB

93591 files 15.1 GB

127169 files 52.9 GB

175931 files 62.2 GB

213201 files 62.7 GB

However, it still takes too long to finish. There’s no reason why all the calls to walkDir can’t be
done concurrently, thereby exploiting parallelism in the disk system. The third version of du,

www.it-ebooks.info

http://www.it-ebooks.info/

250 CHAPTER 8. GOROUTINES AND CHANNELS

below, creates a new goroutine for each call to walkDir. It uses a sync.WaitGroup (§8.5) to
count the number of calls to walkDir that are still active, and a closer goroutine to close the
fileSizes channel when the counter drops to zero.

gopl.io/ch8/du3

func main() {
// ...determine roots...

// Traverse each root of the file tree in parallel.
fileSizes := make(chan int64)
var n sync.WaitGroup
for _, root := range roots {
n.Add(1)
go walkDir(root, &n, fileSizes)
}
go func() {
n.Wait()
close(fileSizes)
10O
// ...select loop...

func walkDir(dir string, n *sync.WaitGroup, fileSizes chan<- int64) {
defer n.Done()
for _, entry := range dirents(dir) {
if entry.IsDir() {
n.Add(1)
subdir := filepath.Join(dir, entry.Name())
go walkDir(subdir, n, fileSizes)
} else {
fileSizes <- entry.Size()

}
}

Since this program creates many thousands of goroutines at its peak, we have to change
dirents to use a counting semaphore to prevent it from opening too many files at once, just
as we did for the web crawler in Section 8.6:

// sema is a counting semaphore for limiting concurrency in dirents.
var sema = make(chan struct{}, 20)

// dirents returns the entries of directory dir.
func dirents(dir string) [Jos.FileInfo {

sema <- struct{}{} // acquire token
defer func() { <-sema }() // release token
/! ...

This version runs several times faster than the previous one, though there is a lot of variability
from system to system.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 8.9. CANCELLATION 251

Exercise 8.9: Write a version of du that computes and periodically displays separate totals for
each of the root directories.

8.9. Cancellation

Sometimes we need to instruct a goroutine to stop what it is doing, for example, in a web
server performing a computation on behalf of a client that has disconnected.

There is no way for one goroutine to terminate another directly, since that would leave all its
shared variables in undefined states. In the rocket launch program (§8.7) we sent a single
value on a channel named abort, which the countdown goroutine interpreted as a request to
stop itself. But what if we need to cancel two goroutines, or an arbitrary number?

One possibility might be to send as many events on the abort channel as there are goroutines
to cancel. If some of the goroutines have already terminated themselves, however, our count
will be too large, and our sends will get stuck. On the other hand, if those goroutines have
spawned other goroutines, our count will be too small, and some goroutines will remain
unaware of the cancellation. In general, it’s hard to know how many goroutines are working
on our behalf at any given moment. Moreover, when a goroutine receives a value from the
abort channel, it consumes that value so that other goroutines won't see it. For cancellation,
what we need is a reliable mechanism to broadcast an event over a channel so that many
goroutines can see it as it occurs and can later see that it has occurred.

Recall that after a channel has been closed and drained of all sent values, subsequent receive
operations proceed immediately, yielding zero values. We can exploit this to create a broad-
cast mechanism: don’t send a value on the channel, close it.

We can add cancellation to the du program from the previous section with a few simple
changes. First, we create a cancellation channel on which no values are ever sent, but whose
closure indicates that it is time for the program to stop what it is doing. We also define a
utility function, cancelled, that checks or polls the cancellation state at the instant it is called.

gopl.io/ch8/du4
var done = make(chan struct{})

func cancelled() bool {
select {
case <-done:
return true
default:
return false

}

Next, we create a goroutine that will read from the standard input, which is typically con-
nected to the terminal. As soon as any input is read (for instance, the user presses the return
key), this goroutine broadcasts the cancellation by closing the done channel.

www.it-ebooks.info

http://www.it-ebooks.info/

252 CHAPTER 8. GOROUTINES AND CHANNELS

// Cancel traversal when input is detected.

go func() {
0s.Stdin.Read(make([]byte, 1)) // read a single byte
close(done)

10O

Now we need to make our goroutines respond to the cancellation. In the main goroutine, we
add a third case to the select statement that tries to receive from the done channel. The func-
tion returns if this case is ever selected, but before it returns it must first drain the fileSizes
channel, discarding all values until the channel is closed. It does this to ensure that any active
calls to walkDir can run to completion without getting stuck sending to fileSizes.

for {

select {

case <-done:
// Drain fileSizes to allow existing goroutines to finish.
for range fileSizes {

// Do nothing.

}
return

case size, ok := <-fileSizes:

/...

}

The walkDir goroutine polls the cancellation status when it begins, and returns without doing
anything if the status is set. This turns all goroutines created after cancellation into no-ops:

func walkDir(dir string, n *sync.WaitGroup, fileSizes chan<- int64) {
defer n.Done()
if cancelled() {

return

}

for _, entry := range dirents(dir) {
/] ...

}

}

It might be profitable to poll the cancellation status again within walkDir’s loop, to avoid cre-
ating goroutines after the cancellation event. Cancellation involves a trade-off; a quicker
response often requires more intrusive changes to program logic. Ensuring that no expensive
operations ever occur after the cancellation event may require updating many places in your
code, but often most of the benefit can be obtained by checking for cancellation in a few
important places.

A little profiling of this program revealed that the bottleneck was the acquisition of a sema-
phore token in dirents. The select below makes this operation cancellable and reduces the
typical cancellation latency of the program from hundreds of milliseconds to tens:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 8.10. EXAMPLE: CHAT SERVER 253

func dirents(dir string) [Jos.FileInfo {
select {
case sema <- struct{}{}: // acquire token
case <-done:
return nil // cancelled

¥

defer func() { <-sema }() // release token

// ...read directory...

}

Now, when cancellation occurs, all the background goroutines quickly stop and the main func-
tion returns. Of course, when main returns, a program exits, so it can be hard to tell a main
function that cleans up after itself from one that does not. There’s a handy trick we can use
during testing: if instead of returning from main in the event of cancellation, we execute a call
to panic, then the runtime will dump the stack of every goroutine in the program. If the main
goroutine is the only one left, then it has cleaned up after itself. But if other goroutines
remain, they may not have been properly cancelled, or perhaps they have been cancelled but
the cancellation takes time; a little investigation may be worthwhile. The panic dump often
contains sufficient information to distinguish these cases.

Exercise 8.10: HTTP requests may be cancelled by closing the optional Cancel channel in the
http.Request struct. Modify the web crawler of Section 8.6 to support cancellation.

Hint: the http.Get convenience function does not give you an opportunity to customize a
Request. Instead, create the request using http.NewRequest, set its Cancel field, then per-
form the request by calling http.DefaultClient.Do(req).

Exercise 8.11: Following the approach of mirroredQuery in Section 8.4.4, implement a vari-
ant of fetch that requests several URLs concurrently. As soon as the first response arrives,
cancel the other requests.

8.10. Example: Chat Server

We'll finish this chapter with a chat server that lets several users broadcast textual messages to
each other. There are four kinds of goroutine in this program. There is one instance apiece of
the main and broadcaster goroutines, and for each client connection there is one handle-
Conn and one clientWriter goroutine. The broadcaster is a good illustration of how select
is used, since it has to respond to three different kinds of messages.

The job of the main goroutine, shown below; is to listen for and accept incoming network con-
nections from clients. For each one, it creates a new handleConn goroutine, just as in the con-
current echo server we saw at the start of this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

254 CHAPTER 8. GOROUTINES AND CHANNELS

gopl.io/ch8/chat

func main() {
listener, err := net.Listen("tcp", "localhost:8000")
if err != nil {
log.Fatal(err)

}
go broadcaster()
for {
conn, err := listener.Accept()
if err != nil {
log.Print(err)
continue
}
go handleConn(conn)
}

}

Next is the broadcaster. Its local variable clients records the current set of connected clients.
The only information recorded about each client is the identity of its outgoing message chan-
nel, about which more later.

type client chan<- string // an outgoing message channel

var (
entering = make(chan client)
leaving = make(chan client)
messages = make(chan string) // all incoming client messages

)

func broadcaster() {
clients := make(map[client]bool) // all connected clients
for {
select {
case msg := <-messages:
// Broadcast incoming message to all
// clients' outgoing message channels.
for cli := range clients {
cli <- msg

}

case cli := <-entering:
clients[cli] = true

case cli := <-leaving:
delete(clients, cli)
close(cli)

}

The broadcaster listens on the global entering and leaving channels for announcements of
arriving and departing clients. When it receives one of these events, it updates the clients

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 8.10. EXAMPLE: CHAT SERVER 255

set, and if the event was a departure, it closes the client’s outgoing message channel. The
broadcaster also listens for events on the global messages channel, to which each client sends
all its incoming messages. When the broadcaster receives one of these events, it broadcasts the
message to every connected client.

Now let’s look at the per-client goroutines. The handleConn function creates a new outgoing
message channel for its client and announces the arrival of this client to the broadcaster over
the entering channel. Then it reads every line of text from the client, sending each line to the
broadcaster over the global incoming message channel, prefixing each message with the iden-
tity of its sender. Once there is nothing more to read from the client, handleConn announces
the departure of the client over the leaving channel and closes the connection.

func handleConn(conn net.Conn) {
ch := make(chan string) // outgoing client messages
go clientWriter(conn, ch)

who := conn.RemoteAddr().String()
ch <- "You are " + who

messages <- who + " has arrived"
entering <- ch

input := bufio.NewScanner(conn)
for input.Scan() {
messages <- who +

+ input.Text()
}

// NOTE: ignoring potential errors from input.Err()

leaving <- ch
messages <- who + " has left"
conn.Close()

}

func clientWriter(conn net.Conn, ch <-chan string) {
for msg := range ch {
fmt.Fprintln(conn, msg) // NOTE: ignoring network errors

}
}

In addition, handleConn creates a clientWriter goroutine for each client that receives mes-
sages broadcast to the client’s outgoing message channel and writes them to the client’s net-
work connection. The client writer’s loop terminates when the broadcaster closes the channel
after receiving a leaving notification.

The display below shows the server in action with two clients in separate windows on the
same computer, using netcat to chat:

$ go build gopl.io/ch8/chat
$ go build gopl.io/ch8/netcat3

www.it-ebooks.info

http://www.it-ebooks.info/

256 CHAPTER 8. GOROUTINES AND CHANNELS

$./chat &

$./netcat3

You are 127.0.0.1:64208 $./netcat3
127.0.0.1:64211 has arrived You are 127.0.0.1:64211
Hi!

127.0.0.1:64208: Hi! 127.0.0.1:64208: Hi!

Hi yourself.
127.0.0.1:64211: Hi yourself. 127.0.0.1:64211: Hi yourself.
~C

127.0.0.1:64208 has left
$./netcat3
You are 127.0.0.1:64216 127.0.0.1:64216 has arrived

Welcome.
127.0.0.1:64211: Welcome. 127.0.0.1:64211: Welcome.

~C

127.0.0.1:64211 has left

While hosting a chat session for # clients, this program runs 2x1+2 concurrently communicat-
ing goroutines, yet it needs no explicit locking operations (§9.2). The clients map is con-
fined to a single goroutine, the broadcaster, so it cannot be accessed concurrently. The only
variables that are shared by multiple goroutines are channels and instances of net . Conn, both
of which are concurrency safe. We'll talk more about confinement, concurrency safety, and the
implications of sharing variables across goroutines in the next chapter.

Exercise 8.12: Make the broadcaster announce the current set of clients to each new arrival.
This requires that the clients set and the entering and leaving channels record the client
name too.

Exercise 8.13: Make the chat server disconnect idle clients, such as those that have sent no
messages in the last five minutes. Hint: calling conn.Close() in another goroutine unblocks
active Read calls such as the one done by input.Scan().

Exercise 8.14: Change the chat server’s network protocol so that each client provides its name
on entering. Use that name instead of the network address when prefixing each message with
its sender’s identity.

Exercise 8.15: Failure of any client program to read data in a timely manner ultimately causes
all clients to get stuck. Modify the broadcaster to skip a message rather than wait if a client
writer is not ready to accept it. Alternatively, add buffering to each client’s outgoing message
channel so that most messages are not dropped; the broadcaster should use a non-blocking
send to this channel.

www.it-ebooks.info

http://www.it-ebooks.info/

9

Concurrency with
Shared Variables

In the previous chapter, we presented several programs that use goroutines and channels to
express concurrency in a direct and natural way. However, in doing so, we glossed over a
number of important and subtle issues that programmers must bear in mind when writing
concurrent code.

In this chapter, we'll take a closer look at the mechanics of concurrency. In particular, well
point out some of the problems associated with sharing variables among multiple goroutines,
the analytical techniques for recognizing those problems, and the patterns for solving them.
Finally, we'll explain some of the technical differences between goroutines and operating sys-
tem threads.

9.1. Race Conditions

In a sequential program, that is, a program with only one goroutine, the steps of the program
happen in the familiar execution order determined by the program logic. For instance, in a
sequence of statements, the first one happens before the second one, and so on. In a program
with two or more goroutines, the steps within each goroutine happen in the familiar order, but
in general we don’t know whether an event x in one goroutine happens before an event y in
another goroutine, or happens after it, or is simultaneous with it. When we cannot confidently
say that one event happens before the other, then the events x and y are concurrent.

Consider a function that works correctly in a sequential program. That function is concur-
rency-safe if it continues to work correctly even when called concurrently, that is, from two or
more goroutines with no additional synchronization. We can generalize this notion to a set of

257

www.it-ebooks.info

http://www.it-ebooks.info/

258 CHAPTER 9. CONCURRENCY WITH SHARED VARIABLES

collaborating functions, such as the methods and operations of a particular type. A type is
concurrency-safe if all its accessible methods and operations are concurrency-safe.

We can make a program concurrency-safe without making every concrete type in that
program concurrency-safe. Indeed, concurrency-safe types are the exception rather than the
rule, so you should access a variable concurrently only if the documentation for its type says
that this is safe. We avoid concurrent access to most variables either by confining them to a
single goroutine or by maintaining a higher-level invariant of mutual exclusion. We'll explain
these terms in this chapter.

In contrast, exported package-level functions are generally expected to be concurrency-safe.
Since package-level variables cannot be confined to a single goroutine, functions that modify
them must enforce mutual exclusion.

There are many reasons a function might not work when called concurrently, including dead-
lock, livelock, and resource starvation. We don’'t have space to discuss all of them, so we'll
focus on the most important one, the race condition.

A race condition is a situation in which the program does not give the correct result for some
interleavings of the operations of multiple goroutines. Race conditions are pernicious because
they may remain latent in a program and appear infrequently, perhaps only under heavy load
or when using certain compilers, platforms, or architectures. This makes them hard to
reproduce and diagnose.

It is traditional to explain the seriousness of race conditions through the metaphor of financial
loss, so we'll consider a simple bank account program.

// Package bank implements a bank with only one account.
package bank

var balance int
func Deposit(amount int) { balance = balance + amount }

func Balance() int { return balance }

(We could have written the body of the Deposit function as balance += amount, which is
equivalent, but the longer form will simplify the explanation.)

For a program this trivial, we can see at a glance that any sequence of calls to Deposit and
Balance will give the right answer, that is, Balance will report the sum of all amounts
previously deposited. However, if we call these functions not in a sequence but concurrently,
Balance is no longer guaranteed to give the right answer. Consider the following two
goroutines, which represent two transactions on a joint bank account:

// Alice:
go func() {
bank.Deposit(200) // Al
fmt.Println("=", bank.Balance()) // A2
O

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 9.1. RACE CONDITIONS 259

// Bob:
go bank.Deposit(100) // B

Alice deposits $200, then checks her balance, while Bob deposits $100. Since the steps A1 and
A2 occur concurrently with B, we cannot predict the order in which they happen. Intuitively, it
might seem that there are only three possible orderings, which we'll call “Alice first” “Bob
first,” and “Alice/Bob/Alice” The following table shows the value of the balance variable after
each step. The quoted strings represent the printed balance slips.

Alice first Bob first Alice/Bob/Alice
0 (%] (%]

Al 200 B 100 Al 200
A2 "= 200" Al 300 B 300

B 300 A2 "= 300" A2 "= 300"

In all cases the final balance is $300. The only variation is whether Alice’s balance slip includes
Bob’s transaction or not, but the customers are satisfied either way.

But this intuition is wrong. There is a fourth possible outcome, in which Bob’s deposit occurs
in the middle of Alice’s deposit, after the balance has been read (balance + amount) but before
it has been updated (balance = ...), causing Bob’s transaction to disappear. This is because
Alice’s deposit operation A1l is really a sequence of two operations, a read and a write; call them
Alr and Alw. Here’s the problematic interleaving:

Data race
0
Alr 0 ... = balance + amount
B 100
Alw 200 balance = ...
A2 "= 200"

After Alr, the expression balance + amount evaluates to 200, so this is the value written dur-
ing Alw, despite the intervening deposit. The final balance is only $200. The bank is $100
richer at Bob’s expense.

This program contains a particular kind of race condition called a data race. A data race
occurs whenever two goroutines access the same variable concurrently and at least one of the
accesses is a write.

Things get even messier if the data race involves a variable of a type that is larger than a single
machine word, such as an interface, a string, or a slice. This code updates x concurrently to
two slices of different lengths:

var x []int

go func() { x = make([]int, 10) }()

go func() { x = make([]int, 1000000) }()

x[999999] = 1 // NOTE: undefined behavior; memory corruption possible!

The value of x in the final statement is not defined; it could be nil, or a slice of length 10, or a
slice of length 1,000,000. But recall that there are three parts to a slice: the pointer, the length,
and the capacity. If the pointer comes from the first call to make and the length comes from

www.it-ebooks.info

http://www.it-ebooks.info/

260 CHAPTER 9. CONCURRENCY WITH SHARED VARIABLES

the second, x would be a chimera, a slice whose nominal length is 1,000,000 but whose under-
lying array has only 10 elements. In this eventuality, storing to element 999,999 would clobber
an arbitrary faraway memory location, with consequences that are impossible to predict and
hard to debug and localize. This semantic minefield is called undefined behavior and is well
known to C programmers; fortunately it is rarely as troublesome in Go as in C.

Even the notion that a concurrent program is an interleaving of several sequential programs is
a false intuition. As we'll see in Section 9.4, data races may have even stranger outcomes.
Many programmers—even some very clever ones—will occasionally offer justifications for
known data races in their programs: “the cost of mutual exclusion is too high,” “this logic is
only for logging,” “I don’t mind if I drop some messages,” and so on. The absence of problems
on a given compiler and platform may give them false confidence. A good rule of thumb is
that there is no such thing as a benign data race. So how do we avoid data races in our

programs?

We'll repeat the definition, since it is so important: A data race occurs whenever two
goroutines access the same variable concurrently and at least one of the accesses is a write. It
follows from this definition that there are three ways to avoid a data race.

The first way is not to write the variable. Consider the map below, which is lazily populated as
each key is requested for the first time. If Icon is called sequentially, the program works fine,
but if Icon is called concurrently, there is a data race accessing the map.

var icons = make(map[string]image.Image)
func loadIcon(name string) image.Image

// NOTE: not concurrency-safe!
func Icon(name string) image.Image {
icon, ok := icons[name]
if lok {
icon = loadIcon(name)
icons[name] = icon
}

return icon

}

If instead we initialize the map with all necessary entries before creating additional goroutines
and never modify it again, then any number of goroutines may safely call Icon concurrently
since each only reads the map.

var icons = map[string]image.Image{

"spades.png": loadIcon("spades.png"),
"hearts.png": loadIcon("hearts.png"),
"diamonds.png": loadIcon("diamonds.png"),
"clubs.png": loadIcon("clubs.png"),

}

// Concurrency-safe.
func Icon(name string) image.Image { return icons[name] }

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 9.1. RACE CONDITIONS 261

In the example above, the icons variable is assigned during package initialization, which
happens before the program’s main function starts running. Once initialized, icons is never
modified. Data structures that are never modified or are immutable are inherently concur-
rency-safe and need no synchronization. But obviously we can't use this approach if updates
are essential, as with a bank account.

The second way to avoid a data race is to avoid accessing the variable from multiple
goroutines. This is the approach taken by many of the programs in the previous chapter. For
example, the main goroutine in the concurrent web crawler (§8.6) is the sole goroutine that
accesses the seen map, and the broadcaster goroutine in the chat server (§8.10) is the only
goroutine that accesses the clients map. These variables are confined to a single goroutine.

Since other goroutines cannot access the variable directly, they must use a channel to send the
confining goroutine a request to query or update the variable. This is what is meant by the Go
mantra “Do not communicate by sharing memory; instead, share memory by communicat-
ing” A goroutine that brokers access to a confined variable using channel requests is called a
monitor goroutine for that variable. For example, the broadcaster goroutine monitors access
to the clients map.

Here’s the bank example rewritten with the balance variable confined to a monitor goroutine
called teller:

gopl.io/ch9/bank1

// Package bank provides a concurrency-safe bank with one account.
package bank

var deposits = make(chan int) // send amount to deposit
var balances = make(chan int) // receive balance

func Deposit(amount int) { deposits <- amount }
func Balance() int { return <-balances }

func teller() {
var balance int // balance is confined to teller goroutine
for {
select {
case amount := <-deposits:
balance += amount
case balances <- balance:

}

}

func init() {
go teller() // start the monitor goroutine

}

Even when a variable cannot be confined to a single goroutine for its entire lifetime, confine-
ment may still be a solution to the problem of concurrent access. For example, it's common to
share a variable between goroutines in a pipeline by passing its address from one stage to the
next over a channel. If each stage of the pipeline refrains from accessing the variable after

www.it-ebooks.info

http://www.it-ebooks.info/

262 CHAPTER 9. CONCURRENCY WITH SHARED VARIABLES

sending it to the next stage, then all accesses to the variable are sequential. In effect, the vari-
able is confined to one stage of the pipeline, then confined to the next, and so on. This disci-
pline is sometimes called serial confinement.

In the example below, Cakes are serially confined, first to the baker goroutine, then to the
icer goroutine:

type Cake struct{ state string }

func baker(cooked chan<- *Cake) {

for {
cake := new(Cake)
cake.state = "cooked"
cooked <- cake // baker never touches this cake again
}
}
func icer(iced chan<- *Cake, cooked <-chan *Cake) {
for cake := range cooked {
cake.state = "iced"
iced <- cake // icer never touches this cake again
}
}

The third way to avoid a data race is to allow many goroutines to access the variable, but only
one at a time. This approach is known as mutual exclusion and is the subject of the next
section.

Exercise 9.1: Add a function Withdraw(amount int) bool to the gopl.io/ch9/bankl
program. The result should indicate whether the transaction succeeded or failed due to insuf-
ficient funds. The message sent to the monitor goroutine must contain both the amount to
withdraw and a new channel over which the monitor goroutine can send the boolean result
back to Withdraw.

9.2. Mutual Exclusion: sync.Mutex

In Section 8.6, we used a buffered channel as a counting semaphore to ensure that no more
than 20 goroutines made simultaneous HTTP requests. With the same idea, we can use a
channel of capacity 1 to ensure that at most one goroutine accesses a shared variable at a time.
A semaphore that counts only to 1 is called a binary semaphore.

gopl.io/ch9/bank2

var (
sema = make(chan struct{}, 1) // a binary semaphore guarding balance
balance int

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 9.2. MUTUAL EXCLUSION: SYNC.MUTEX 263

func Deposit(amount int) {
sema <- struct{}{} // acquire token
balance = balance + amount
<-sema // release token

}

func Balance() int {
sema <- struct{}{} // acquire token
b := balance
<-sema // release token
return b

}

This pattern of mutual exclusion is so useful that it is supported directly by the Mutex type
from the sync package. Its Lock method acquires the token (called a lock) and its Unlock
method releases it:
gopl.io/ch9/bank3
import "sync"

var (
mu sync.Mutex // guards balance
balance int
)
func Deposit(amount int) {
mu. Lock()
balance = balance + amount
mu.Unlock()
}
func Balance() int {
mu.Lock()
b := balance
mu.Unlock()
return b
}

Each time a goroutine accesses the variables of the bank (just balance here), it must call the
mutex’s Lock method to acquire an exclusive lock. If some other goroutine has acquired the
lock, this operation will block until the other goroutine calls Unlock and the lock becomes
available again. The mutex guards the shared variables. By convention, the variables guarded
by a mutex are declared immediately after the declaration of the mutex itself. If you deviate
from this, be sure to document it.

The region of code between Lock and Unlock in which a goroutine is free to read and modify
the shared variables is called a critical section. The lock holder’s call to Unlock happens before
any other goroutine can acquire the lock for itself. It is essential that the goroutine release the
lock once it is finished, on all paths through the function, including error paths.

The bank program above exemplifies a common concurrency pattern. A set of exported func-
tions encapsulates one or more variables so that the only way to access the variables is through

www.it-ebooks.info

http://www.it-ebooks.info/

264 CHAPTER 9. CONCURRENCY WITH SHARED VARIABLES

these functions (or methods, for the variables of an object). Each function acquires a mutex
lock at the beginning and releases it at the end, thereby ensuring that the shared variables are
not accessed concurrently. This arrangement of functions, mutex lock, and variables is called
a monitor. (This older use of the word “monitor” inspired the term “monitor goroutine” Both
uses share the meaning of a broker that ensures variables are accessed sequentially.)

Since the critical sections in the Deposit and Balance functions are so short—a single line, no
branching—calling Unlock at the end is straightforward. In more complex critical sections,
especially those in which errors must be dealt with by returning early, it can be hard to tell that
calls to Lock and Unlock are strictly paired on all paths. Go’s defer statement comes to the
rescue: by deferring a call to Unlock, the critical section implicitly extends to the end of the
current function, freeing us from having to remember to insert Unlock calls in one or more
places far from the call to Lock.

func Balance() int {
mu.Lock()
defer mu.Unlock()
return balance

}

In the example above, the Unlock executes after the return statement has read the value of
balance, so the Balance function is concurrency-safe. As a bonus, we no longer need the
local variable b.

Furthermore, a deferred Unlock will run even if the critical section panics, which may be
important in programs that make use of recover (§5.10). A defer is marginally more expen-
sive than an explicit call to Unlock, but not enough to justify less clear code. As always with
concurrent programs, favor clarity and resist premature optimization. Where possible, use
defer and let critical sections extend to the end of a function.

Consider the Withdraw function below. On success, it reduces the balance by the specified
amount and returns true. But if the account holds insufficient funds for the transaction,
Withdraw restores the balance and returns false.

// NOTE: not atomic!
func Withdraw(amount int) bool {
Deposit(-amount)
if Balance() < 0 {
Deposit(amount)
return false // insufficient funds

}

return true

}

This function eventually gives the correct result, but it has a nasty side effect. When an exces-
sive withdrawal is attempted, the balance transiently dips below zero. This may cause a con-
current withdrawal for a modest sum to be spuriously rejected. So if Bob tries to buy a sports
car, Alice can't pay for her morning coffee. The problem is that Withdraw is not atomic: it
consists of a sequence of three separate operations, each of which acquires and then releases

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 9.2. MUTUAL EXCLUSION: SYNC.MUTEX 265

the mutex lock, but nothing locks the whole sequence.

Ideally, Withdraw should acquire the mutex lock once around the whole operation. However,
this attempt won’t work:

// NOTE: incorrect!
func Withdraw(amount int) bool {
mu. Lock()
defer mu.Unlock()
Deposit(-amount)
if Balance() < 0 {
Deposit(amount)
return false // insufficient funds

}

return true

}

Deposit tries to acquire the mutex lock a second time by calling mu.Lock(), but because
mutex locks are not re-entrant—it’s not possible to lock a mutex that’s already locked—this
leads to a deadlock where nothing can proceed, and Withdraw blocks forever.

There is a good reason Gos mutexes are not re-entrant. The purpose of a mutex is to ensure
that certain invariants of the shared variables are maintained at critical points during program
execution. One of the invariants is “no goroutine is accessing the shared variables,” but there
may be additional invariants specific to the data structures that the mutex guards. When a
goroutine acquires a mutex lock, it may assume that the invariants hold. While it holds the
lock, it may update the shared variables so that the invariants are temporarily violated.
However, when it releases the lock, it must guarantee that order has been restored and the
invariants hold once again. Although a re-entrant mutex would ensure that no other
goroutines are accessing the shared variables, it cannot protect the additional invariants of
those variables.

A common solution is to divide a function such as Deposit into two: an unexported function,
deposit, that assumes the lock is already held and does the real work, and an exported func-
tion Deposit that acquires the lock before calling deposit. We can then express Withdraw in
terms of deposit like this:

func Withdraw(amount int) bool {
mu.Lock()
defer mu.Unlock()
deposit(-amount)
if balance < 0 {
deposit(amount)
return false // insufficient funds

}

return true

www.it-ebooks.info

http://www.it-ebooks.info/

266 CHAPTER 9. CONCURRENCY WITH SHARED VARIABLES

func Deposit(amount int) {
mu. Lock()
defer mu.Unlock()
deposit(amount)

}

func Balance() int {
mu.Lock()
defer mu.Unlock()
return balance

}

// This function requires that the lock be held.
func deposit(amount int) { balance += amount }

Of course, the deposit function shown here is so trivial that a realistic Withdraw function
wouldn't bother calling it, but nonetheless it illustrates the principle.

Encapsulation (§6.6), by reducing unexpected interactions in a program, helps us maintain
data structure invariants. For the same reason, encapsulation also helps us maintain concur-
rency invariants. When you use a mutex, make sure that both it and the variables it guards are
not exported, whether they are package-level variables or the fields of a struct.

9.3. Read/Write Mutexes: sync.RWMutex

In a fit of anxiety after seeing his $100 deposit vanish without a trace, Bob writes a program to
check his bank balance hundreds of times a second. He runs it at home, at work, and on his
phone. The bank notices that the increased traffic is delaying deposits and withdrawals,
because all the Balance requests run sequentially, holding the lock exclusively and temporar-
ily preventing other goroutines from running.

Since the Balance function only needs to read the state of the variable, it would in fact be safe
for multiple Balance calls to run concurrently, so long as no Deposit or Withdraw call is run-
ning. In this scenario we need a special kind of lock that allows read-only operations to
proceed in parallel with each other, but write operations to have fully exclusive access. This
lock is called a multiple readers, single writer lock, and in Go it’s provided by sync.RwWMutex:

var mu sync.RWMutex
var balance int

func Balance() int {
mu.RLock() // readers lock
defer mu.RUnlock()
return balance

}

The Balance function now calls the RLock and RUnlock methods to acquire and release a
readers or shared lock. The Deposit function, which is unchanged, calls the mu.Lock and
mu.Unlock methods to acquire and release a writer or exclusive lock.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 9.4. MEMORY SYNCHRONIZATION 267

After this change, most of Bobs Balance requests run in parallel with each other and finish
more quickly. The lock is available for more of the time, and Deposit requests can proceed in
a timely manner.

RLock can be used only if there are no writes to shared variables in the critical section. In gen-
eral, we should not assume that logically read-only functions or methods don't also update
some variables. For example, a method that appears to be a simple accessor might also incre-
ment an internal usage counter, or update a cache so that repeat calls are faster. If in doubt,
use an exclusive Lock.

It’s only profitable to use an RWMutex when most of the goroutines that acquire the lock are
readers, and the lock is under contention, that is, goroutines routinely have to wait to acquire
it. An RWMutex requires more complex internal bookkeeping, making it slower than a regular
mutex for uncontended locks.

9.4. Memory Synchronization

You may wonder why the Balance method needs mutual exclusion, either channel-based or
mutex-based. After all, unlike Deposit, it consists only of a single operation, so there is no
danger of another goroutine executing “in the middle” of it. There are two reasons we need a
mutex. The first is that it's equally important that Balance not execute in the middle of some
other operation like Withdraw. The second (and more subtle) reason is that synchronization
is about more than just the order of execution of multiple goroutines; synchronization also
affects memory.

In a modern computer there may be dozens of processors, each with its own local cache of the
main memory. For efficiency, writes to memory are buffered within each processor and
flushed out to main memory only when necessary. They may even be committed to main
memory in a different order than they were written by the writing goroutine. Synchronization
primitives like channel communications and mutex operations cause the processor to flush
out and commit all its accumulated writes so that the effects of goroutine execution up to that
point are guaranteed to be visible to goroutines running on other processors.

Consider the possible outputs of the following snippet of code:

var x, y int

go func() {
Xx =1 // Al
fmt.Print("y:", y, " ") // A2
10
go func() {
y =1 // Bl
fmt.Print("x:", x, " ") // B2
10

Since these two goroutines are concurrent and access shared variables without mutual
exclusion, there is a data race, so we should not be surprised that the program is not

www.it-ebooks.info

http://www.it-ebooks.info/

268 CHAPTER 9. CONCURRENCY WITH SHARED VARIABLES

deterministic. We might expect it to print any one of these four results, which correspond to
intuitive interleavings of the labeled statements of the program:

< X x <
PR o®
X < < X

The fourth line could be explained by the sequence A1,B1,A2,B2 or by B1,A1,A2,B2, for
example. However, these two outcomes might come as a surprise:

X:0 y:0

y:0 x:0
but depending on the compiler, CPU, and many other factors, they can happen too. What
possible interleaving of the four statements could explain them?

Within a single goroutine, the effects of each statement are guaranteed to occur in the order of
execution; goroutines are sequentially consistent. But in the absence of explicit synchroniza-
tion using a channel or mutex, there is no guarantee that events are seen in the same order by
all goroutines. Although goroutine A must observe the effect of the write x = 1 before it reads
the value of y, it does not necessarily observe the write to y done by goroutine B, so A may
print a stale value of y.

It is tempting to try to understand concurrency as if it corresponds to some interleaving of the
statements of each goroutine, but as the example above shows, this is not how a modern com-
piler or CPU works. Because the assignment and the Print refer to different variables, a com-
piler may conclude that the order of the two statements cannot affect the result, and swap
them. If the two goroutines execute on different CPUs, each with its own cache, writes by one
goroutine are not visible to the other goroutine’s Print until the caches are synchronized with
main memory.

All these concurrency problems can be avoided by the consistent use of simple, established
patterns. Where possible, confine variables to a single goroutine; for all other variables, use
mutual exclusion.

9.5. Lazy Initialization: sync.Once

It is good practice to defer an expensive initialization step until the moment it is needed. Ini-
tializing a variable up front increases the start-up latency of a program and is unnecessary if
execution doesn’t always reach the part of the program that uses that variable. Let’s return to
the icons variable we saw earlier in the chapter:

var icons map[string]image.Image

This version of Icon uses lazy initialization:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 9.5. LAZY INITIALIZATION: SYNC.ONCE 269

func loadIcons() {
icons = map[string]image.Image{

"spades.png": loadIcon("spades.png"),
"hearts.png": loadIcon("hearts.png"),
"diamonds.png": loadIcon("diamonds.png"),
"clubs.png": loadIcon("clubs.png"),

}

// NOTE: not concurrency-safe!
func Icon(name string) image.Image {
if icons == nil {
loadIcons() // one-time initialization

}

return icons[name]

}

For a variable accessed by only a single goroutine, we can use the pattern above, but this pat-
tern is not safe if Icon is called concurrently. Like the bank’s original Deposit function, Icon
consists of multiple steps: it tests whether icons is nil, then it loads the icons, then it updates
icons to a non-nil value. Intuition might suggest that the worst possible outcome of the race
condition above is that the loadIcons function is called several times. While the first
goroutine is busy loading the icons, another goroutine entering Icon would find the variable
still equal to nil, and would also call loadIcons.

But this intuition is also wrong. (We hope that by now you are developing a new intuition
about concurrency, that intuitions about concurrency are not to be trusted!) Recall the dis-
cussion of memory from Section 9.4. In the absence of explicit synchronization, the compiler
and CPU are free to reorder accesses to memory in any number of ways, so long as the behav-
ior of each goroutine is sequentially consistent. One possible reordering of the statements of
loadIcons is shown below. It stores the empty map in the icons variable before populating it:

func loadIcons() {
icons = make(map[string]image.Image)
icons["spades.png"] = loadIcon("spades.png")
icons["hearts.png"] = loadIcon("hearts.png")
icons["diamonds.png"] = loadIcon("diamonds.png")
icons["clubs.png"] = loadIcon("clubs.png")

}

Consequently, a goroutine finding icons to be non-nil may not assume that the initialization
of the variable is complete.

The simplest correct way to ensure that all goroutines observe the effects of loadIcons is to
synchronize them using a mutex:

var mu sync.Mutex // guards icons
var icons map[string]image.Image

www.it-ebooks.info

http://www.it-ebooks.info/

270 CHAPTER 9. CONCURRENCY WITH SHARED VARIABLES

// Concurrency-safe.
func Icon(name string) image.Image {
mu.Lock()
defer mu.Unlock()
if icons == nil {
loadIcons()
}

return icons[name]

}

However, the cost of enforcing mutually exclusive access to icons is that two goroutines can-
not access the variable concurrently, even once the variable has been safely initialized and will
never be modified again. This suggests a multiple-readers lock:

var mu sync.RWMutex // guards icons
var icons map[string]image.Image

// Concurrency-safe.
func Icon(name string) image.Image {

mu.RLock()
if icons != nil {
icon := icons[name]

mu.RUnlock()
return icon

}
mu.RUnlock()

// acquire an exclusive lock

mu. Lock()

if icons == nil { // NOTE: must recheck for nil
loadIcons()

}

icon := icons[name]
mu.Unlock()

return icon

}

There are now two critical sections. The goroutine first acquires a reader lock, consults the
map, then releases the lock. If an entry was found (the common case), it is returned. If no
entry was found, the goroutine acquires a writer lock. There is no way to upgrade a shared
lock to an exclusive one without first releasing the shared lock, so we must recheck the icons
variable in case another goroutine already initialized it in the interim.

The pattern above gives us greater concurrency but is complex and thus error-prone.
Fortunately, the sync package provides a specialized solution to the problem of one-time ini-
tialization: sync.0Once. Conceptually, a Once consists of a mutex and a boolean variable that
records whether initialization has taken place; the mutex guards both the boolean and the
client’s data structures. The sole method, Do, accepts the initialization function as its argu-
ment. Let’s use Once to simplify the Icon function:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 9.6. THE RACE DETECTOR 271

var loadIconsOnce sync.Once
var icons map[string]image.Image

// Concurrency-safe.

func Icon(name string) image.Image {
loadIconsOnce.Do(loadIcons)
return icons[name]

}

Each call to Do(loadIcons) locks the mutex and checks the boolean variable. In the first call,
in which the variable is false, Do calls loadIcons and sets the variable to true. Subsequent
calls do nothing, but the mutex synchronization ensures that the effects of loadIcons on
memory (specifically, icons) become visible to all goroutines. Using sync.Once in this way,
we can avoid sharing variables with other goroutines until they have been properly con-
structed.

Exercise 9.2: Rewrite the PopCount example from Section 2.6.2 so that it initializes the lookup
table using sync.Once the first time it is needed. (Realistically, the cost of synchronization
would be prohibitive for a small and highly optimized function like PopCount.)

9.6. The Race Detector

Even with the greatest of care, it’s all too easy to make concurrency mistakes. Fortunately, the
Go runtime and toolchain are equipped with a sophisticated and easy-to-use dynamic analysis
tool, the race detector.

Just add the -race flag to your go build, go run, or go test command. This causes the com-
piler to build a modified version of your application or test with additional instrumentation
that effectively records all accesses to shared variables that occurred during execution, along
with the identity of the goroutine that read or wrote the variable. In addition, the modified
program records all synchronization events, such as go statements, channel operations, and
calls to (*sync.Mutex).Lock, (*sync.WaitGroup).Wait, and so on. (The complete set of
synchronization events is specified by the The Go Memory Model document that accompanies
the language specification.)

The race detector studies this stream of events, looking for cases in which one goroutine reads
or writes a shared variable that was most recently written by a different goroutine without an
intervening synchronization operation. This indicates a concurrent access to the shared vari-
able, and thus a data race. The tool prints a report that includes the identity of the variable,
and the stacks of active function calls in the reading goroutine and the writing goroutine. This
is usually sufficient to pinpoint the problem. Section 9.7 contains an example of the race
detector in action.

The race detector reports all data races that were actually executed. However, it can only
detect race conditions that occur during a run; it cannot prove that none will ever occur. For
best results, make sure that your tests exercise your packages using concurrency.

www.it-ebooks.info

http://www.it-ebooks.info/

272 CHAPTER 9. CONCURRENCY WITH SHARED VARIABLES

Due to extra bookkeeping, a program built with race detection needs more time and memory
to run, but the overhead is tolerable even for many production jobs. For infrequently occur-
ring race conditions, letting the race detector do its job can save hours or days of debugging.

9.7. Example: Concurrent Non-Blocking Cache

In this section, we'll build a concurrent non-blocking cache, an abstraction that solves a
problem that arises often in real-world concurrent programs but is not well addressed by
existing libraries. This is the problem of memoizing a function, that is, caching the result of a
function so that it need be computed only once. Our solution will be concurrency-safe and
will avoid the contention associated with designs based on a single lock for the whole cache.

WEe'll use the httpGetBody function below as an example of the type of function we might
want to memoize. It makes an HTTP GET request and reads the request body. Calls to this
function are relatively expensive, so wed like to avoid repeating them unnecessarily.

func httpGetBody(url string) (interface{}, error) {
resp, err := http.Get(url)
if err != nil {
return nil, err

}
defer resp.Body.Close()

return ioutil.ReadAll(resp.Body)
}

The final line hides a minor subtlety. ReadAll returns two results, a []byte and an error, but
since these are assignable to the declared result types of httpGetBody—interface{} and
error, respectively—we can return the result of the call without further ado. We chose this
return type for httpGetBody so that it conforms to the type of functions that our cache is
designed to memoize.

Here’s the first draft of the cache:

gopl.io/ch9/memol

// Package memo provides a concurrency-unsafe
// memoization of a function of type Func.
package memo

// A Memo caches the results of calling a Func.
type Memo struct {

f Func

cache map[string]result

}

// Func is the type of the function to memoize.
type Func func(key string) (interface{}, error)

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 9.7. EXAMPLE: CONCURRENT NON-BLOCKING CACHE 273

type result struct {
value interface{}
err error

}

func New(f Func) *Memo {
return &emo{f: f, cache: make(map[string]result)}

}

// NOTE: not concurrency-safe!
func (memo *Memo) Get(key string) (interface{}, error) {
res, ok := memo.cache[key]
if lok {
res.value, res.err = memo.f(key)
memo.cache[key] = res
}

return res.value, res.err

}

A Memo instance holds the function f to memoize, of type Func, and the cache, which is a
mapping from strings to results. Each result is simply the pair of results returned by a call
to f—a value and an error. We'll show several variations of Memo as the design progresses, but
all will share these basic aspects.

An example of how to use Memo appears below. For each element in a stream of incoming
URLs, we call Get, logging the latency of the call and the amount of data it returns:

m := memo.New(httpGetBody)
for url := range incomingURLs() {
start := time.Now()
value, err := m.Get(url)
if err != nil {
log.Print(err)
}
fmt.Printf("%s, %s, %d bytes\n",
url, time.Since(start), len(value.([]byte)))
}

We can use the testing package (the topic of Chapter 11) to systematically investigate the
effect of memoization. From the test output below, we see that the URL stream contains
duplicates, and that although the first call to (*Memo).Get for each URL takes hundreds of
milliseconds, the second request returns the same amount of data in under a millisecond.

$ go test -v gopl.io/ch9/memol

=== RUN Test

https://golang.org, 175.026418ms, 7537 bytes
https://godoc.org, 172.686825ms, 6878 bytes
https://play.golang.org, 115.762377ms, 5767 bytes
http://gopl.io, 749.887242ms, 2856 bytes

www.it-ebooks.info

http://www.it-ebooks.info/

274

CHAPTER 9. CONCURRENCY WITH SHARED VARIABLES

https://golang.org, 721ns, 7537 bytes
https://godoc.org, 152ns, 6878 bytes
https://play.golang.org, 205ns, 5767 bytes
http://gopl.io, 326ns, 2856 bytes

--- PASS: Test (1.21s)

PASS

ok gopl.io/ch9/memol 1.257s

This test executes all calls to Get sequentially.

Since HTTP requests are a great opportunity for parallelism, let’s change the test so that it
makes all requests concurrently. The test uses a sync.WaitGroup to wait until the last request
is complete before returning.

m := memo.New(httpGetBody)
var n sync.WaitGroup

for url := range incomingURLs() {
n.Add(1)
go func(url string) {
start := time.Now()
value, err := m.Get(url)
if err != nil {

log.Print(err)
}
fmt.Printf("%s, %s, %d bytes\n",
url, time.Since(start), len(value.([]byte)))
n.Done()
}(url)

}
n.Wait()

The test runs much faster, but unfortunately it is unlikely to work correctly all the time. We
may notice unexpected cache misses, or cache hits that return incorrect values, or even
crashes.

Worse, it is likely to work correctly some of the time, so we may not even notice that it has a
problem. But if we run it with the -race flag, the race detector (§9.6) often prints a report
such as this one:

$ go test -run=TestConcurrent -race -v gopl.io/ch9/memol
=== RUN TestConcurrent

WARNING: DATA RACE
Write by goroutine 36:
runtime.mapassignl()
~/go/src/runtime/hashmap.go:411 +0x0
gopl.io/ch9/memol. (*Memo).Get()
~/gobook2/src/gopl.io/ch9/memol/memo.go:32 +0x205

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 9.7. EXAMPLE: CONCURRENT NON-BLOCKING CACHE 275

Previous write by goroutine 35:
runtime.mapassignl()
~/go/src/runtime/hashmap.go:411 +0x0
gopl.io/ch9/memol. (*Memo).Get()
~/gobook2/src/gopl.io/ch9/memol/memo.go:32 +0x205

Found 1 data race(s)
FAIL gopl.io/ch9/memol 2.393s

The reference to memo.go:32 tells us that two goroutines have updated the cache map
without any intervening synchronization. Get is not concurrency-safe: it has a data race.

28 func (memo *Memo) Get(key string) (interface{}, error) {

29 res, ok := memo.cache[key]

30 if lok {

31 res.value, res.err = memo.f(key)
32 memo.cache[key] = res

33 }

34 return res.value, res.err

35 }

The simplest way to make the cache concurrency-safe is to use monitor-based synchroniza-
tion. All we need to do is add a mutex to the Memo, acquire the mutex lock at the start of Get,
and release it before Get returns, so that the two cache operations occur within the critical
section:

gopl.io/ch9/memo2

type Memo struct {
f Func
mu sync.Mutex // guards cache
cache map[string]result

}

// Get is concurrency-safe.
func (memo *Memo) Get(key string) (value interface{}, err error) {
memo.mu.Lock()
res, ok := memo.cache[key]
if lok {
res.value, res.err = memo.f(key)
memo.cache[key] = res

}
memo.mu.Unlock()
return res.value, res.err

}

Now the race detector is silent, even when running the tests concurrently. Unfortunately this
change to Memo reverses our earlier performance gains. By holding the lock for the duration of
each call to f, Get serializes all the I/O operations we intended to parallelize. What we need is
a non-blocking cache, one that does not serialize calls to the function it memoizes.

www.it-ebooks.info

http://www.it-ebooks.info/

276 CHAPTER 9. CONCURRENCY WITH SHARED VARIABLES

In the next implementation of Get, below, the calling goroutine acquires the lock twice: once
for the lookup, and then a second time for the update if the lookup returned nothing. In
between, other goroutines are free to use the cache.

gopl.io/ch9/memo3

func (memo *Memo) Get(key string) (value interface{}, err error) {
memo.mu.Lock()

res, ok := memo.cache[key]
memo.mu.Unlock()
if lok {

res.value, res.err = memo.f(key)

// Between the two critical sections, several goroutines
// may race to compute f(key) and update the map.
memo.mu.Lock()

memo.cache[key] = res

memo.mu.Unlock()

}

return res.value, res.err

}

The performance improves again, but now we notice that some URLs are being fetched twice.
This happens when two or more goroutines call Get for the same URL at about the same time.
Both consult the cache, find no value there, and then call the slow function f. Then both of
them update the map with the result they obtained. One of the results is overwritten by the
other.

Ideally wed like to avoid this redundant work. This feature is sometimes called duplicate
suppression. In the version of Memo below, each map element is a pointer to an entry struct.
Each entry contains the memoized result of a call to the function f, as before, but it addition-
ally contains a channel called ready. Just after the entry’s result has been set, this channel
will be closed, to broadcast (§8.9) to any other goroutines that it is now safe for them to read
the result from the entry.

gopl.io/ch9/memo4
type entry struct {

res result
ready chan struct{} // closed when res is ready

}

func New(f Func) *Memo {
return &emo{f: f, cache: make(map[string]*entry)}

}

type Memo struct {
f Func
mu sync.Mutex // guards cache
cache map[string]*entry

}

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 9.7. EXAMPLE: CONCURRENT NON-BLOCKING CACHE 277

func (memo *Memo) Get(key string) (value interface{}, err error) {
memo.mu.Lock()
e := memo.cache[key]
if e == nil {
// This is the first request for this key.
// This goroutine becomes responsible for computing
// the value and broadcasting the ready condition.
e = &entry{ready: make(chan struct{})}
memo.cache[key] = e
memo . mu.Unlock()

e.res.value, e.res.err = memo.f(key)

close(e.ready) // broadcast ready condition
} else {

// This is a repeat request for this key.

memo.mu.Unlock()

<-e.ready // wait for ready condition

}

return e.res .value, e.res.err

}

A call to Get now involves acquiring the mutex lock that guards the cache map, looking in the
map for a pointer to an existing entry, allocating and inserting a new entry if none was
found, then releasing the lock. If there was an existing entry, its value is not necessarily ready
yet—another goroutine could still be calling the slow function f—so the calling goroutine
must wait for the entry’s “ready” condition before it reads the entry’s result. It does this by
reading a value from the ready channel, since this operation blocks until the channel is closed.

If there was no existing entry, then by inserting a new “not ready” entry into the map, the
current goroutine becomes responsible for invoking the slow function, updating the entry,
and broadcasting the readiness of the new entry to any other goroutines that might (by then)
be waiting for it.

Notice that the variables e.res.value and e.res.err in the entry are shared among
multiple goroutines. The goroutine that creates the entry sets their values, and other
goroutines read their values once the “ready” condition has been broadcast. Despite being
accessed by multiple goroutines, no mutex lock is necessary. The closing of the ready channel
happens before any other goroutine receives the broadcast event, so the write to those variables
in the first goroutine happens before they are read by subsequent goroutines. There is no data
race.

Our concurrent, duplicate-suppressing, non-blocking cache is complete.

The implementation of Memo above uses a mutex to guard a map variable that is shared by
each goroutine that calls Get. It’s interesting to contrast this design with an alternative one in
which the map variable is confined to a monitor goroutine to which callers of Get must send a
message.

www.it-ebooks.info

http://www.it-ebooks.info/

278 CHAPTER 9. CONCURRENCY WITH SHARED VARIABLES

The declarations of Func, result, and entry remain as before:

// Func is the type of the function to memoize.
type Func func(key string) (interface{}, error)

// A result is the result of calling a Func.
type result struct {

value interface{}

err error

}

type entry struct {
res result
ready chan struct{} // closed when res is ready

}

However, the Memo type now consists of a channel, requests, through which the caller of Get
communicates with the monitor goroutine. The element type of the channel is a request.
Using this structure, the caller of Get sends the monitor goroutine both the key, that is, the
argument to the memoized function, and another channel, response, over which the result
should be sent back when it becomes available. This channel will carry only a single value.

gopl.io/ch9/memo5

// A request is a message requesting that the Func be applied to key.
type request struct {

key string

response chan<- result // the client wants a single result

}

type Memo struct{ requests chan request }

// New returns a memoization of f. Clients must subsequently call Close.
func New(f Func) *Memo {

memo := &emo{requests: make(chan request)}

go memo.server(f)

return memo

}
func (memo *Memo) Get(key string) (interface{}, error) {
response := make(chan result)
memo.requests <- request{key, response}
res := <-response
return res.value, res.err
}

func (memo *Memo) Close() { close(memo.requests) }

The Get method, above, creates a response channel, puts it in the request, sends it to the moni-
tor goroutine, then immediately receives from it.

The cache variable is confined to the monitor goroutine (*Memo) . server, shown below. The
monitor reads requests in a loop until the request channel is closed by the Close method. For
each request, it consults the cache, creating and inserting a new entry if none was found.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 9.7. EXAMPLE: CONCURRENT NON-BLOCKING CACHE 279

func (memo *Memo) server(f Func) {

cache := make(map[string]*entry)
for req := range memo.requests {
e := cache[req.key]
if e == nil {

// This is the first request for this key.
e = &entry{ready: make(chan struct{})}
cache[req.key] = e
go e.call(f, req.key) // call f(key)

}

go e.deliver(req.response)

}

func (e *entry) call(f Func, key string) {
// Evaluate the function.
e.res.value, e.res.err = f(key)
// Broadcast the ready condition.
close(e.ready)

}

func (e *entry) deliver(response chan<- result) {
// Wait for the ready condition.
<-e.ready
// Send the result to the client.
response <- e.res

}

In a similar manner to the mutex-based version, the first request for a given key becomes
responsible for calling the function f on that key, storing the result in the entry, and broad-
casting the readiness of the entry by closing the ready channel. This is done by
(*entry).call.

A subsequent request for the same key finds the existing entry in the map, waits for the result
to become ready, and sends the result through the response channel to the client goroutine
that called Get. This is done by (*entry).deliver. The call and deliver methods must be
called in their own goroutines to ensure that the monitor goroutine does not stop processing
new requests.

This example shows that it’s possible to build many concurrent structures using either of the
two approaches—shared variables and locks, or communicating sequential processes—
without excessive complexity.

It's not always obvious which approach is preferable in a given situation, but its worth
knowing how they correspond. Sometimes switching from one approach to the other can
make your code simpler.

Exercise 9.3: Extend the Func type and the (*Memo) .Get method so that callers may provide
an optional done channel through which they can cancel the operation (§8.9). The results of a
cancelled Func call should not be cached.

www.it-ebooks.info

http://www.it-ebooks.info/

280 CHAPTER 9. CONCURRENCY WITH SHARED VARIABLES

9.8. Goroutines and Threads

In the previous chapter we said that the difference between goroutines and operating system
(OS) threads could be ignored until later. Although the differences between them are essen-
tially quantitative, a big enough quantitative difference becomes a qualitative one, and so it is
with goroutines and threads. The time has now come to distinguish them.

9.8.1. Growable Stacks

Each OS thread has a fixed-size block of memory (often as large as 2MB) for its stack, the work
area where it saves the local variables of function calls that are in progress or temporarily
suspended while another function is called. This fixed-size stack is simultaneously too much
and too little. A 2MB stack would be a huge waste of memory for a little goroutine, such as
one that merely waits for a WaitGroup then closes a channel. It's not uncommon for a Go
program to create hundreds of thousands of goroutines at one time, which would be impossi-
ble with stacks this large. Yet despite their size, fixed-size stacks are not always big enough for
the most complex and deeply recursive of functions. Changing the fixed size can improve
space efficiency and allow more threads to be created, or it can enable more deeply recursive
functions, but it cannot do both.

In contrast, a goroutine starts life with a small stack, typically 2KB. A goroutine’s stack, like
the stack of an OS thread, holds the local variables of active and suspended function calls, but
unlike an OS thread, a goroutine€’s stack is not fixed; it grows and shrinks as needed. The size
limit for a goroutine stack may be as much as 1GB, orders of magnitude larger than a typical
fixed-size thread stack, though of course few goroutines use that much.

Exercise 9.4: Construct a pipeline that connects an arbitrary number of goroutines with chan-
nels. What is the maximum number of pipeline stages you can create without running out of
memory? How long does a value take to transit the entire pipeline?

9.8.2. Goroutine Scheduling

OS threads are scheduled by the OS kernel. Every few milliseconds, a hardware timer inter-
rupts the processor, which causes a kernel function called the scheduler to be invoked. This
function suspends the currently executing thread and saves its registers in memory, looks over
the list of threads and decides which one should run next, restores that thread’s registers from
memory, then resumes the execution of that thread. Because OS threads are scheduled by the
kernel, passing control from one thread to another requires a full context switch, that is, saving
the state of one user thread to memory, restoring the state of another, and updating the
scheduler’s data structures. This operation is slow, due to its poor locality and the number of
memory accesses required, and has historically only gotten worse as the number of CPU cycles
required to access memory has increased.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 9.8. GOROUTINES AND THREADS 281

The Go runtime contains its own scheduler that uses a technique known as m:n scheduling,
because it multiplexes (or schedules) m goroutines on n OS threads. The job of the Go
scheduler is analogous to that of the kernel scheduler, but it is concerned only with the
goroutines of a single Go program.

Unlike the operating system’s thread scheduler, the Go scheduler is not invoked periodically
by a hardware timer, but implicitly by certain Go language constructs. For example, when a
goroutine calls time.Sleep or blocks in a channel or mutex operation, the scheduler puts it to
sleep and runs another goroutine until it is time to wake the first one up. Because it doesn’t
need a switch to kernel context, rescheduling a goroutine is much cheaper than rescheduling a
thread.

Exercise 9.5: Write a program with two goroutines that send messages back and forth over
two unbuffered channels in ping-pong fashion. How many communications per second can
the program sustain?

9.8.3. GOMAXPROCS

The Go scheduler uses a parameter called GOMAXPROCS to determine how many OS threads
may be actively executing Go code simultaneously. Its default value is the number of CPUs on
the machine, so on a machine with 8 CPUs, the scheduler will schedule Go code on up to 8 OS
threads at once. (GOMAXPROCS is the # in m:n scheduling.) Goroutines that are sleeping or
blocked in a communication do not need a thread at all. Goroutines that are blocked in I/O or
other system calls or are calling non-Go functions, do need an OS thread, but GOMAXPROCS
need not account for them.

You can explicitly control this parameter using the GOMAXPROCS environment variable or the
runtime.GOMAXPROCS function. We can see the effect of GOMAXPROCS on this little program,
which prints an endless stream of zeros and ones:

for {
go fmt.Print(0)
fmt.Print(1)

}

$ GOMAXPROCS=1 go run hacker-cliché.go
111111111111111111110000000000000000000011111. ..

$ GOMAXPROCS=2 go run hacker-cliché.go
010101010101010101011001100101011010010100110. ..

In the first run, at most one goroutine was executed at a time. Initially, it was the main
goroutine, which prints ones. After a period of time, the Go scheduler put it to sleep and woke
up the goroutine that prints zeros, giving it a turn to run on the OS thread. In the second run,
there were two OS threads available, so both goroutines ran simultaneously, printing digits at
about the same rate. We must stress that many factors are involved in goroutine scheduling,
and the runtime is constantly evolving, so your results may differ from the ones above.

www.it-ebooks.info

http://www.it-ebooks.info/

282 CHAPTER 9. CONCURRENCY WITH SHARED VARIABLES

Exercise 9.6: Measure how the performance of a compute-bound parallel program (see Exer-
cise 8.5) varies with GOMAXPROCS. What is the optimal value on your computer? How many
CPUs does your computer have?

9.8.4. Goroutines Have No Identity

In most operating systems and programming languages that support multithreading, the cur-
rent thread has a distinct identity that can be easily obtained as an ordinary value, typically an
integer or pointer. This makes it easy to build an abstraction called thread-local storage, which
is essentially a global map keyed by thread identity, so that each thread can store and retrieve
values independent of other threads.

Goroutines have no notion of identity that is accessible to the programmer. This is by design,
since thread-local storage tends to be abused. For example, in a web server implemented in a
language with thread-local storage, it's common for many functions to find information about
the HTTP request on whose behalf they are currently working by looking in that storage.
However, just as with programs that rely excessively on global variables, this can lead to an
unhealthy “action at a distance” in which the behavior of a function is not determined by its
arguments alone, but by the identity of the thread in which it runs. Consequently, if the iden-
tity of the thread should change—some worker threads are enlisted to help, say—the function
misbehaves mysteriously.

Go encourages a simpler style of programming in which parameters that affect the behavior of
a function are explicit. Not only does this make programs easier to read, but it lets us freely
assign subtasks of a given function to many different goroutines without worrying about their
identity.

You've now learned about all the language features you need for writing Go programs. In the
next two chapters, we'll step back to look at some of the practices and tools that support
programming in the large: how to structure a project as a set of packages, and how to obtain,
build, test, benchmark, profile, document, and share those packages.

www.it-ebooks.info

http://www.it-ebooks.info/

10
Packages and the Go Tool

A modest-size program today might contain 10,000 functions. Yet its author need think about
only a few of them and design even fewer, because the vast majority were written by others
and made available for reuse through packages.

Go comes with over 100 standard packages that provide the foundations for most applications.
The Go community, a thriving ecosystem of package design, sharing, reuse, and improvement,
has published many more, and you can find a searchable index of them at http://godoc.org.
In this chapter, we'll show how to use existing packages and create new ones.

Go also comes with the go tool, a sophisticated but simple-to-use command for managing
workspaces of Go packages. Since the beginning of the book, we've been showing how to use
the go tool to download, build, and run example programs. In this chapter, we'll look at the
tool’s underlying concepts and tour more of its capabilities, which include printing documen-
tation and querying metadata about the packages in the workspace. In the next chapter we'll
explore its testing features.

10.1. Introduction

The purpose of any package system is to make the design and maintenance of large programs
practical by grouping related features together into units that can be easily understood and
changed, independent of the other packages of the program. This modularity allows packages
to be shared and reused by different projects, distributed within an organization, or made
available to the wider world.

Each package defines a distinct name space that encloses its identifiers. Each name is associ-
ated with a particular package, letting us choose short, clear names for the types, functions,
and so on that we use most often, without creating conflicts with other parts of the program.

283

www.it-ebooks.info

http://www.it-ebooks.info/

284 CHAPTER 10. PACKAGES AND THE GO TOOL

Packages also provide encapsulation by controlling which names are visible or exported
outside the package. Restricting the visibility of package members hides the helper functions
and types behind the package’s AP, allowing the package maintainer to change the implemen-
tation with confidence that no code outside the package will be affected. Restricting visibility
also hides variables so that clients can access and update them only through exported func-
tions that preserve internal invariants or enforce mutual exclusion in a concurrent program.

When we change a file, we must recompile the file’s package and potentially all the packages
that depend on it. Go compilation is notably faster than most other compiled languages, even
when building from scratch. There are three main reasons for the compiler’s speed. First, all
imports must be explicitly listed at the beginning of each source file, so the compiler does not
have to read and process an entire file to determine its dependencies. Second, the dependen-
cies of a package form a directed acyclic graph, and because there are no cycles, packages can
be compiled separately and perhaps in parallel. Finally, the object file for a compiled Go pack-
age records export information not just for the package itself, but for its dependencies too.
When compiling a package, the compiler must read one object file for each import but need
not look beyond these files.

10.2. Import Paths

Each package is identified by a unique string called its import path. Import paths are the
strings that appear in import declarations.
import (
"fmt"

"math/rand"
"encoding/json"

"golang.org/x/net/html”

"github.com/go-sql-driver/mysql”
)

As we mentioned in Section 2.6.1, the Go language specification doesn’t define the meaning of
these strings or how to determine a package’s import path, but leaves these issues to the tools.
In this chapter, we'll take a detailed look at how the go tool interprets them, since that’s what
the majority of Go programmers use for building, testing, and so on. Other tools do exist,
though. For example, Go programmers using Google’s internal multi-language build system
follow different rules for naming and locating packages, specifying tests, and so on, that more
closely match the conventions of that system.

For packages you intend to share or publish, import paths should be globally unique. To avoid
conflicts, the import paths of all packages other than those from the standard library should
start with the Internet domain name of the organization that owns or hosts the package; this
also makes it possible to find packages. For example, the declaration above imports an HTML
parser maintained by the Go team and a popular third-party MySQL database driver.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 10.4. IMPORT DECLARATIONS 285

10.3. The Package Declaration

A package declaration is required at the start of every Go source file. Its main purpose is to
determine the default identifier for that package (called the package name) when it is imported
by another package.

For example, every file of the math/rand package starts with package rand, so when you
import this package, you can access its members as rand.Int, rand.Float64, and so on.

package main

import (
"t
"math/rand"
)

func main() {
fmt.Println(rand.Int())

}

Conventionally, the package name is the last segment of the import path, and as a result, two
packages may have the same name even though their import paths necessarily differ. For
example, the packages whose import paths are math/rand and crypto/rand both have the
name rand. We'll see how to use both in the same program in a moment.

There are three major exceptions to the “last segment” convention. The first is that a package
defining a command (an executable Go program) always has the name main, regardless of the
package’s import path. This is a signal to go build (§10.7.3) that it must invoke the linker to
make an executable file.

The second exception is that some files in the directory may have the suffix _test on their
package name if the file name ends with _test.go. Such a directory may define two packages:
the usual one, plus another one called an external test package. The _test suffix signals to
go test that it must build both packages, and it indicates which files belong to each package.
External test packages are used to avoid cycles in the import graph arising from dependencies
of the test; they are covered in more detail in Section 11.2.4.

The third exception is that some tools for dependency management append version number
suffixes to package import paths, such as "gopkg.in/yaml.v2". The package name excludes
the suffix, so in this case it would be just yaml.

10.4. Import Declarations

A Go source file may contain zero or more import declarations immediately after the package
declaration and before the first non-import declaration. Each import declaration may specify
the import path of a single package, or multiple packages in a parenthesized list. The two
forms below are equivalent but the second form is more common.

www.it-ebooks.info

http://www.it-ebooks.info/

286 CHAPTER 10. PACKAGES AND THE GO TOOL

import "fmt"

import "os

import (
"t

0os

)

Imported packages may be grouped by introducing blank lines; such groupings usually indi-
cate different domains. The order is not significant, but by convention the lines of each group
are sorted alphabetically. (Both gofmt and goimports will group and sort for you.)
import (
"fmt"
"html/template”

os
"golang.org/x/net/html"

"golang.org/x/net/ipv4"
)

If we need to import two packages whose names are the same, like math/rand and
crypto/rand, into a third package, the import declaration must specify an alternative name
for at least one of them to avoid a conflict. This is called a renaming import.
import (
"crypto/rand”
mrand "math/rand" // alternative name mrand avoids conflict

)

The alternative name affects only the importing file. Other files, even ones in the same pack-
age, may import the package using its default name, or a different name.

A renaming import may be useful even when there is no conflict. If the name of the imported
package is unwieldy, as is sometimes the case for automatically generated code, an abbreviated
name may be more convenient. The same short name should be used consistently to avoid
confusion. Choosing an alternative name can help avoid conflicts with common local variable
names. For example, in a file with many local variables named path, we might import the
standard "path" package as pathpkg.

Each import declaration establishes a dependency from the current package to the imported
package. The go build tool reports an error if these dependencies form a cycle.

10.5. Blank Imports

It is an error to import a package into a file but not refer to the name it defines within that file.
However, on occasion we must import a package merely for the side effects of doing so: evalu-
ation of the initializer expressions of its package-level variables and execution of its init func-
tions (§2.6.2). To suppress the “unused import” error we would otherwise encounter, we must
use a renaming import in which the alternative name is _, the blank identifier. As usual, the

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 10.5. BLANKIMPORTS 287

blank identifier can never be referenced.
import _ "image/png" // register PNG decoder

This is known as a blank import. It is most often used to implement a compile-time
mechanism whereby the main program can enable optional features by blank-importing addi-
tional packages. First we'll see how to use it, then we'll see how it works.

The standard library’s image package exports a Decode function that reads bytes from an
io.Reader, figures out which image format was used to encode the data, invokes the
appropriate decoder, then returns the resulting image.Image. Using image.Decode, it’s easy
to build a simple image converter that reads an image in one format and writes it out in
another:

gopl.io/ch10/jpeg

// The jpeg command reads a PNG image from the standard input
// and writes it as a JPEG image to the standard output.
package main

import (
"fmt"
"image"
"image/jpeg"
_ "image/png" // register PNG decoder

10
os

)

func main() {
if err := toJPEG(os.Stdin, os.Stdout); err != nil {
fmt.Fprintf(os.Stderr, "jpeg: %v\n", err)

os.Exit(1)
}
}
func toJPEG(in io.Reader, out io.Writer) error {
img, kind, err := image.Decode(in)
if err != nil {
return err
}
fmt.Fprintln(os.Stderr, "Input format =", kind)
return jpeg.Encode(out, img, &jpeg.Options{Quality: 95})
}

If we feed the output of gopl.io/ch3/mandelbrot (§3.3) to the converter program, it detects
the PNG input format and writes a JPEG version of Figure 3.3.

$ go build gopl.io/ch3/mandelbrot

$ go build gopl.io/chl@/jpeg

$./mandelbrot | ./jpeg >mandelbrot.jpg
Input format = png

www.it-ebooks.info

http://www.it-ebooks.info/

288 CHAPTER 10. PACKAGES AND THE GO TOOL

Notice the blank import of image/png. Without that line, the program compiles and links as
usual but can no longer recognize or decode input in PNG format:

$ go build gopl.io/chle/jpeg

$./mandelbrot | ./jpeg >mandelbrot.jpg

jpeg: image: unknown format

Here’s how it works. The standard library provides decoders for GIF, PNG, and JPEG, and
users may provide others, but to keep executables small, decoders are not included in an appli-
cation unless explicitly requested. The image.Decode function consults a table of supported
formats. Each entry in the table specifies four things: the name of the format; a string that is a
prefix of all images encoded this way, used to detect the encoding; a function Decode that
decodes an encoded image; and another function DecodeConfig that decodes only the image
metadata, such as its size and color space. An entry is added to the table by calling
image.RegisterFormat, typically from within the package initializer of the supporting pack-
age for each format, like this one in image/png:

package png // image/png
func Decode(r io.Reader) (image.Image, error)

func DecodeConfig(r io.Reader) (image.Config, error)

func init() {
const pngHeader = "\x89PNG\r\n\xla\n"
image.RegisterFormat("png", pngHeader, Decode, DecodeConfig)

}

The effect is that an application need only blank-import the package for the format it needs to
make the image .Decode function able to decode it.

The database/sql package uses a similar mechanism to let users install just the database
drivers they need. For example:

import (
"database/mysql”
_ "github.com/1lib/pq" // enable support for Postgres
_ "github.com/go-sql-driver/mysql" // enable support for MySQL

)

db, err = sql.Open("postgres", dbname) // OK

db, err = sql.Open("mysql", dbname) // OK

db, err = sql.Open("sqlite3", dbname) // returns error:
unknown driver "sqlite3"

Exercise 10.1: Extend the jpeg program so that it converts any supported input format to any
output format, using image.Decode to detect the input format and a flag to select the output
format.

Exercise 10.2: Define a generic archive file-reading function capable of reading ZIP files
(archive/zip) and POSIX tar files (archive/tar). Use a registration mechanism similar to
the one described above so that support for each file format can be plugged in using blank
imports.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 10.6. PACKAGES AND NAMING 289

10.6. Packages and Naming

In this section, we'll offer some advice on how to follow Go's distinctive conventions for nam-
ing packages and their members.

When creating a package, keep its name short, but not so short as to be cryptic. The most
frequently used packages in the standard library are named bufio, bytes, flag, fmt, http, io,
json, os, sort, sync, and time.

Be descriptive and unambiguous where possible. For example, don’'t name a utility package
util when a name such as imageutil or ioutil is specific yet still concise. Avoid choosing
package names that are commonly used for related local variables, or you may compel the
package’s clients to use renaming imports, as with the path package.

Package names usually take the singular form. The standard packages bytes, errors, and
strings use the plural to avoid hiding the corresponding predeclared types and, in the case of
go/types, to avoid conflict with a keyword.

Avoid package names that already have other connotations. For example, we originally used
the name temp for the temperature conversion package in Section 2.5, but that didn’t last long.
It was a terrible idea because “temp” is an almost universal synonym for “temporary” We went
through a brief period with the name temperature, but that was too long and didn’t say what
the package did. In the end, it became tempconv, which is shorter and parallel with strconv.

Now let’s turn to the naming of package members. Since each reference to a member of
another package uses a qualified identifier such as fmt.Println, the burden of describing the
package member is borne equally by the package name and the member name. We need not
mention the concept of formatting in Println because the package name fmt does that
already. When designing a package, consider how the two parts of a qualified identifier work
together, not the member name alone. Here are some characteristic examples:

bytes.Equal flag.Int http.Get json.Marshal

We can identify some common naming patterns. The strings package provides a number of
independent functions for manipulating strings:

package strings

func Index(needle, haystack string) int

type Replacer struct{ /* ... */ }
func NewReplacer(oldnew ...string) *Replacer
type Reader struct{ /* ... */ }

func NewReader(s string) *Reader

The word string does not appear in any of their names. Clients refer to them as
strings.Index, strings.Replacer, and so on.

Other packages that we might describe as single-type packages, such as html/template and
math/rand, expose one principal data type plus its methods, and often a New function to cre-
ate instances.

www.it-ebooks.info

http://www.it-ebooks.info/

290 CHAPTER 10. PACKAGES AND THE GO TOOL

package rand // "math/rand"

type Rand struct{ /* ... */ }
func New(source Source) *Rand

This can lead to repetition, as in template.Template or rand.Rand, which is why the names
of these kinds of packages are often especially short.

At the other extreme, there are packages like net/http that have a lot of names without a lot
of structure, because they perform a complicated task. Despite having over twenty types and
many more functions, the package’s most important members have the simplest names: Get,
Post, Handle, Error, Client, Server.

10.7. The Go Tool

The rest of this chapter concerns the go tool, which is used for downloading, querying,
formatting, building, testing, and installing packages of Go code.

The go tool combines the features of a diverse set of tools into one command set. It is a pack-
age manager (analogous to apt or rpm) that answers queries about its inventory of packages,
computes their dependencies, and downloads them from remote version-control systems. It is
a build system that computes file dependencies and invokes compilers, assemblers, and link-
ers, although it is intentionally less complete than the standard Unix make. And it is a test
driver, as we will see in Chapter 11.

Its command-line interface uses the “Swiss army knife” style, with over a dozen subcom-
mands, some of which we have already seen, like get, run, build, and fmt. You can run
go help to see the index of its built-in documentation, but for reference, we've listed the most
commonly used commands below:

$ go
build compile packages and dependencies
clean remove object files
doc show documentation for package or symbol
env print Go environment information
fmt run gofmt on package sources
get download and install packages and dependencies
install compile and install packages and dependencies
list list packages
run compile and run Go program
test test packages
version print Go version
vet run go tool vet on packages

Use "go help [command]" for more information about a command.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 10.7. THE GO TOOL 291

To keep the need for configuration to a minimum, the go tool relies heavily on conventions.
For example, given the name of a Go source file, the tool can find its enclosing package,
because each directory contains a single package and the import path of a package cor-
responds to the directory hierarchy in the workspace. Given the import path of a package, the
tool can find the corresponding directory in which it stores object files. It can also find the
URL of the server that hosts the source code repository.

10.7.1. Workspace Organization

The only configuration most users ever need is the GOPATH environment variable, which speci-
fies the root of the workspace. When switching to a different workspace, users update the
value of GOPATH. For instance, we set GOPATH to $HOME /gobook while working on this book:

$ export GOPATH=$HOME/gobook
$ go get gopl.io/...

After you download all the programs for this book using the command above, your workspace
will contain a hierarchy like this one:

GOPATH/
src/
gopl.io/
.git/
chi/
helloworld/
main.go
dup/
main.go

golang.org/x/net/

.git/
html/
parse.go
node.go
bin/
helloworld
dup
pkg/

darwin_amdé4/

GOPATH has three subdirectories. The src subdirectory holds source code. Each package
resides in a directory whose name relative to $GOPATH/src is the package’s import path, such
as gopl.io/ch1l/helloworld. Observe that a single GOPATH workspace contains multiple ver-
sion-control repositories beneath src, such as gopl.io or golang.org. The pkg subdirectory
is where the build tools store compiled packages, and the bin subdirectory holds executable
programs like helloworld.

www.it-ebooks.info

http://www.it-ebooks.info/

292 CHAPTER 10. PACKAGES AND THE GO TOOL

A second environment variable, GOROOT, specifies the root directory of the Go distribution,
which provides all the packages of the standard library. The directory structure beneath
GOROOT resembles that of GOPATH, so, for example, the source files of the fmt package reside in
the $GOROOT/src/fmt directory. Users never need to set GOROOT since, by default, the go tool
will use the location where it was installed.

The go env command prints the effective values of the environment variables relevant to the
toolchain, including the default values for the missing ones. GOOS specifies the target operat-
ing system (for example, android, linux, darwin, or windows) and GOARCH specifies the target
processor architecture, such as amd64, 386, or arm. Although GOPATH is the only variable you
must set, the others occasionally appear in our explanations.

$ go env
GOPATH="/home/gopher/gobook"
GOROOT="/usr/local/go"
GOARCH="amd64"

GOOS="darwin"

10.7.2. Downloading Packages

When using the go tool, a package’s import path indicates not only where to find it in the local
workspace, but where to find it on the Internet so that go get can retrieve and update it.

The go get command can download a single package or an entire subtree or repository using
the ... notation, as in the previous section. The tool also computes and downloads all the
dependencies of the initial packages, which is why the golang.org/x/net/html package
appeared in the workspace in the previous example.

Once go get has downloaded the packages, it builds them and then installs the libraries and
commands. W¢ll look at the details in the next section, but an example will show how
straightforward the process is. The first command below gets the golint tool, which checks
for common style problems in Go source code. The second command runs golint on
gopl.io/ch2/popcount from Section 2.6.2. It helpfully reports that we have forgotten to
write a doc comment for the package:

$ go get github.com/golang/lint/golint

$ $GOPATH/bin/golint gopl.io/ch2/popcount

src/gopl.io/ch2/popcount/main.go:1:1:

package comment should be of the form "Package popcount ...

The go get command has support for popular code-hosting sites like GitHub, Bitbucket, and
Launchpad and can make the appropriate requests to their version-control systems. For less
well-known sites, you may have to indicate which version-control protocol to use in the
import path, such as Git or Mercurial. Run go help importpath for the details.

The directories that go get creates are true clients of the remote repository, not just copies of
the files, so you can use version-control commands to see a diff of local edits you’ve made or to

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 10.7. THE GO TOOL 293

update to a different revision. For example, the golang.org/x/net directory is a Git client:

$ cd $GOPATH/src/golang.org/x/net

$ git remote -v

origin https://go.googlesource.com/net (fetch)
origin https://go.googlesource.com/net (push)

Notice that the apparent domain name in the package’s import path, golang.org, differs from
the actual domain name of the Git server, go.googlesource.com. This is a feature of the go
tool that lets packages use a custom domain name in their import path while being hosted by a
generic service such as googlesource.com or github.com. HTML pages beneath
https://golang.org/x/net/html include the metadata shown below, which redirects the go
tool to the Git repository at the actual hosting site:

$ go build gopl.io/chl/fetch

$./fetch https://golang.org/x/net/html | grep go-import

<meta name="go-import"

content="golang.org/x/net git https://go.googlesource.com/net">

If you specify the -u flag, go get will ensure that all packages it visits, including dependencies,
are updated to their latest version before being built and installed. Without that flag, packages
that already exist locally will not be updated.

The go get -u command generally retrieves the latest version of each package, which is con-
venient when youre getting started but may be inappropriate for deployed projects, where
precise control of dependencies is critical for release hygiene. The usual solution to this
problem is to vendor the code, that is, to make a persistent local copy of all the necessary
dependencies, and to update this copy carefully and deliberately. Prior to Go 1.5, this required
changing those packages’ import paths, so our copy of golang.org/x/net/html would
become gopl.io/vendor/golang.org/x/net/html. More recent versions of the go tool
support vendoring directly, though we don't have space to show the details here. See Vendor
Directories in the output of the go help gopath command.

Exercise 10.3: Using fetch http://gopl.io/chl/helloworld?go-get=1, find out which
service hosts the code samples for this book. (HTTP requests from go get include the go-get
parameter so that servers can distinguish them from ordinary browser requests.)

10.7.3. Building Packages

The go build command compiles each argument package. If the package is a library, the
result is discarded; this merely checks that the package is free of compile errors. If the package
is named main, go build invokes the linker to create an executable in the current directory;
the name of the executable is taken from the last segment of the package’s import path.

Since each directory contains one package, each executable program, or command in Unix ter-
minology, requires its own directory. These directories are sometimes children of a directory
named cmd, such as the golang.org/x/tools/cmd/godoc command which serves Go pack-
age documentation through a web interface (§10.7.4).

www.it-ebooks.info

http://www.it-ebooks.info/

294 CHAPTER 10. PACKAGES AND THE GO TOOL

Packages may be specified by their import paths, as we saw above, or by a relative directory
name, which must start with a . or .. segment even if this would not ordinarily be required.
If no argument is provided, the current directory is assumed. Thus the following commands
build the same package, though each writes the executable to the directory in which go build
is run:

$ cd $GOPATH/src/gopl.io/chl/helloworld
$ go build

and:

$ cd anywhere
$ go build gopl.io/chl/helloworld

and:

$ cd $GOPATH
$ go build ./src/gopl.io/ch1/helloworld

but not:

$ cd $GOPATH
$ go build src/gopl.io/chl/helloworld
Error: cannot find package "src/gopl.io/chl/helloworld".

Packages may also be specified as a list of file names, though this tends to be used only for
small programs and one-off experiments. If the package name is main, the executable name
comes from the basename of the first . go file.

$ cat quoteargs.go
package main

import (
"fmt"
"ogh
)

func main() {
fmt.Printf("%g\n", os.Args[1:])

}

$ go build quoteargs.go

$./quoteargs one "two three" four\ five
"one" "two three" "four five"]

Particularly for throwaway programs like this one, we want to run the executable as soon as
we've built it. The go run command combines these two steps:

$ go run quoteargs.go one "two three" four\ five
["one" "two three" "four five"]

The first argument that doesn’t end in . go is assumed to be the beginning of the list of argu-
ments to the Go executable.

By default, the go build command builds the requested package and all its dependencies, then
throws away all the compiled code except the final executable, if any. Both the dependency

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 10.7. THE GO TOOL 295

analysis and the compilation are surprisingly fast, but as projects grow to dozens of packages
and hundreds of thousands of lines of code, the time to recompile dependencies can become
noticeable, potentially several seconds, even when those dependencies haven’t changed at all.

The go install command is very similar to go build, except that it saves the compiled code
for each package and command instead of throwing it away. Compiled packages are saved
beneath the $GOPATH/pkg directory corresponding to the src directory in which the source
resides, and command executables are saved in the $GOPATH/bin directory. (Many users put
$GOPATH/bin on their executable search path.) Thereafter, go build and go install do not
run the compiler for those packages and commands if they have not changed, making subse-
quent builds much faster. For convenience, go build -i installs the packages that are depen-
dencies of the build target.

Since compiled packages vary by platform and architecture, go install saves them beneath a
subdirectory whose name incorporates the values of the GOOS and GOARCH environment vari-
ables. For example, on a Mac the golang.org/x/net/html package is compiled and installed
in the file golang.org/x/net/html.a under $GOPATH/pkg/darwin_amdé64.

It is straightforward to cross-compile a Go program, that is, to build an executable intended for
a different operating system or CPU. Just set the GOOS or GOARCH variables during the build.
The cross program prints the operating system and architecture for which it was built:

gopl.io/ch10/cross

func main() {
fmt.Println(runtime.GOOS, runtime.GOARCH)
}

The following commands produce 64-bit and 32-bit executables respectively:

$ go build gopl.io/chl@/cross

$./cross

darwin amd64

$ GOARCH=386 go build gopl.io/chl@/cross
$./cross

darwin 386

Some packages may need to compile different versions of the code for certain platforms or
processors, to deal with low-level portability issues or to provide optimized versions of
important routines, for instance. If a file name includes an operating system or processor
architecture name like net_linux.go or asm_amd64.s, then the go tool will compile the file
only when building for that target. Special comments called build tags give more fine-grained
control. For example, if a file contains this comment:

// +4build linux darwin

before the package declaration (and its doc comment), go build will compile it only when
building for Linux or Mac OS X, and this comment says never to compile the file:

// +build ignore

www.it-ebooks.info

http://www.it-ebooks.info/

296 CHAPTER 10. PACKAGES AND THE GO TOOL

For more details, see the Build Constraints section of the go/build package’s documentation:

$ go doc go/build

10.7.4. Documenting Packages

Go style strongly encourages good documentation of package APIs. Each declaration of an
exported package member and the package declaration itself should be immediately preceded
by a comment explaining its purpose and usage.

Go doc comments are always complete sentences, and the first sentence is usually a summary
that starts with the name being declared. Function parameters and other identifiers are men-
tioned without quotation or markup. For example, here’s the doc comment for fmt.Fprintf:

// Fprintf formats according to a format specifier and writes to w.
// It returns the number of bytes written and any write error encountered.
func Fprintf(w io.Writer, format string, a ...interface{}) (int, error)

The details of Fprintf’s formatting are explained in a doc comment associated with the fmt
package itself. A comment immediately preceding a package declaration is considered the
doc comment for the package as a whole. There must be only one, though it may appear in
any file. Longer package comments may warrant a file of their own; fmt’s is over 300 lines.
This file is usually called doc. go.

Good documentation need not be extensive, and documentation is no substitute for simplicity.
Indeed, Go’s conventions favor brevity and simplicity in documentation as in all things, since
documentation, like code, requires maintenance too. Many declarations can be explained in
one well-worded sentence, and if the behavior is truly obvious, no comment is needed.

Throughout the book, as space permits, we've preceded many declarations by doc comments,
but you will find better examples as you browse the standard library. Two tools can help you
do that.

The go doc tool prints the declaration and doc comment of the entity specified on the com-
mand line, which may be a package:

$ go doc time
package time // import "time"

Package time provides functionality for measuring and displaying time.

const Nanosecond Duration =1 ...
func After(d Duration) <-chan Time
func Sleep(d Duration)

func Since(t Time) Duration

func Now() Time

type Duration int64

type Time struct { ... }

...many more. ..

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 10.7. THE GO TOOL 297

or a package member:

$ go doc time.Since
func Since(t Time) Duration

Since returns the time elapsed since t.
It is shorthand for time.Now().Sub(t).

or a method:

$ go doc time.Duration.Seconds
func (d Duration) Seconds() float64

Seconds returns the duration as a floating-point number of seconds.

The tool does not need complete import paths or correct identifier case. This command prints
the documentation of (*json.Decoder) .Decode from the encoding/json package:

$ go doc json.decode
func (dec *Decoder) Decode(v interface{}) error

Decode reads the next JSON-encoded value from its input and stores
it in the value pointed to by v.

The second tool, confusingly named godoc, serves cross-linked HTML pages that provide the
same information as go doc and much more. The godoc server at https://golang.org/pkg
covers the standard library. Figure 10.1 shows the documentation for the time package, and
in Section 11.6 we'll see godoc’s interactive display of example programs. The godoc server at
https://godoc.org has a searchable index of thousands of open-source packages.

You can also run an instance of godoc in your workspace if you want to browse your own
packages. Visit http://localhost:8000/pkg in your browser while running this command:

$ godoc -http :8000

Its -analysis=type and -analysis=pointer flags augment the documentation and the
source code with the results of advanced static analysis.

10.7.5. Internal Packages

The package is the most important mechanism for encapsulation in Go programs. Unex-
ported identifiers are visible only within the same package, and exported identifiers are visible
to the world.

Sometimes, though, a middle ground would be helpful, a way to define identifiers that are visi-
ble to a small set of trusted packages, but not to everyone. For example, when were breaking
up a large package into more manageable parts, we may not want to reveal the interfaces
between those parts to other packages. Or we may want to share utility functions across
several packages of a project without exposing them more widely. Or perhaps we just want to
experiment with a new package without prematurely committing to its AP, by putting it “on
probation” with a limited set of clients.

www.it-ebooks.info

http://www.it-ebooks.info/

298 CHAPTER 10. PACKAGES AND THE GO TOOL

[57 time - The Go Programmin..

n

« Cn golang.org/pkg/time/
e GoPrgamming Lonuece (I) () E)

Package time
import "time"
Overview

Index
Examples

Overview «

Package time provides functionality for measuring and displaying time.

The calendrical calculations always assume a Gregorian calendar.
Index »

Constants
func After{d Duration) <-chan Time
func Sleep(d Duration)
func Tick(d Duration) <-chan Time
type Duration
func ParseDuration(s string) (Duration, error)
func Since(t Time) Duration
func (d Duration) Hours() float64
func (d Duration) Minutes() float64
func (d Duration) Nanoseconds() int64

Figure 10.1. The time package in godoc.

To address these needs, the go build tool treats a package specially if its import path contains
a path segment named internal. Such packages are called internal packages. An internal
package may be imported only by another package that is inside the tree rooted at the parent
of the internal directory. For example, given the packages below, net/http/inter-
nal/chunked can be imported from net/http/httputil or net/http, but not from
net/url. However, net/url may import net/http/httputil.

net/http
net/http/internal/chunked
net/http/httputil

net/url

10.7.6. Querying Packages

The go list tool reports information about available packages. In its simplest form, go list
tests whether a package is present in the workspace and prints its import path if so:

$ go list github.com/go-sql-driver/mysql
github.com/go-sql-driver/mysql

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 10.7. THE GO TOOL

An argument to go 1list may contain the “..

<

>

299

.” wildcard, which matches any substring of a

package’s import path. We can use it to enumerate all the packages within a Go workspace:

$ go list ...
archive/tar
archive/zip
bufio

bytes
cmd/addr2line
cmd/api
...many more...

or within a specific subtree:

list gopl.io/ch3/...
io/ch3/basenamel
io/ch3/basename2
io/ch3/comma
io/ch3/mandelbrot
io/ch3/netflag
io/ch3/printints
io/ch3/surface

$ go
gopl.
gopl.
gopl.
gopl.
gopl.
gopl.
gopl.

or related to a particular topic:

$ go list ...xml...
encoding/xml

gopl.io/ch7/xmlselect

The go 1ist command obtains the complete metadata for each package, not just the import
path, and makes this information available to users or other tools in a variety of formats. The
-json flag causes go 1ist to print the entire record of each package in JSON format:

$ go list -json hash
{

"Dir": "/home/gopher/go/src/hash",

"ImportPath": "hash",
"Name": "hash",

"Doc":

"Package hash provides interfaces for hash functions.",

"Target": "/home/gopher/go/pkg/darwin_amd64/hash.a",

"Goroot": true,
"Standard": true,
"Root": "/home/gopher/go",

"GoFiles": [
"hash.go"
1
"Imports": [
"io"

IB

www.it-ebooks.info

http://www.it-ebooks.info/

300 CHAPTER 10. PACKAGES AND THE GO TOOL

"Deps": [
"errors",
"io",
"runtime",
"sync",
"sync/atomic",
"unsafe"

}

The -f flag lets users customize the output format using the template language of package
text/template (§4.6). This command prints the transitive dependencies of the strconv
package, separated by spaces:

$ go list -f '{{join .Deps " "}}' strconv
errors math runtime unicode/utf8 unsafe

and this command prints the direct imports of each package in the compress subtree of the
standard library:

$ go list -f '{{.ImportPath}} -> {{join .Imports " "}}' compress/...
compress/bzip2 -> bufio io sort

compress/flate -> bufio fmt io math sort strconv

compress/gzip -> bufio compress/flate errors fmt hash hash/crc32 io time
compress/lzw -> bufio errors fmt io

compress/z1lib -> bufio compress/flate errors fmt hash hash/adler32 io

The go list command is useful for both one-off interactive queries and for build and test
automation scripts. We'll use it again in Section 11.2.4. For more information, including the
set of available fields and their meaning, see the output of go help list.

In this chapter, we've explained all the important subcommands of the go tool—except one. In
the next chapter, we'll see how the go test command is used for testing Go programs.

Exercise 10.4: Construct a tool that reports the set of all packages in the workspace that tran-
sitively depend on the packages specified by the arguments. Hint: you will need to run
go list twice, once for the initial packages and once for all packages. You may want to parse
its JSON output using the encoding/json package (§4.5).

www.it-ebooks.info

http://www.it-ebooks.info/

11
Testing

Maurice Wilkes, the developer of EDSAC, the first stored-program computer, had a startling
insight while climbing the stairs of his laboratory in 1949. In Memoirs of a Computer Pioneer,
he recalled, “The realization came over me with full force that a good part of the remainder of
my life was going to be spent in finding errors in my own programs.” Surely every program-
mer of a stored-program computer since then can sympathize with Wilkes, though perhaps
not without some bemusement at his naiveté about the difficulties of software construction.

Programs today are far larger and more complex than in Wilkes’s time, of course, and a great
deal of effort has been spent on techniques to make this complexity manageable. Two
techniques in particular stand out for their effectiveness. The first is routine peer review of
programs before they are deployed. The second, the subject of this chapter, is testing.

Testing, by which we implicitly mean automated testing, is the practice of writing small
programs that check that the code under test (the production code) behaves as expected for
certain inputs, which are usually either carefully chosen to exercise certain features or ran-
domized to ensure broad coverage.

The field of software testing is enormous. The task of testing occupies all programmers some
of the time and some programmers all of the time. The literature on testing includes
thousands of printed books and millions of words of blog posts. In every mainstream
programming language, there are dozens of software packages intended for test construction,
some with a great deal of theory, and the field seems to attract more than a few prophets with
cult-like followings. It is almost enough to convince programmers that to write effective tests
they must acquire a whole new set of skills.

Go’s approach to testing can seem rather low-tech in comparison. It relies on one command,
go test, and a set of conventions for writing test functions that go test can run. The com-
paratively lightweight mechanism is effective for pure testing, and it extends naturally to
benchmarks and systematic examples for documentation.

301

www.it-ebooks.info

http://www.it-ebooks.info/

302 CHAPTER 11. TESTING

In practice, writing test code is not much different from writing the original program itself.
We write short functions that focus on one part of the task. We have to be careful of boundary
conditions, think about data structures, and reason about what results a computation should
produce from suitable inputs. But this is the same process as writing ordinary Go code; it
needn’t require new notations, conventions, and tools.

11.1. The go test Tool

The go test subcommand is a test driver for Go packages that are organized according to cer-
tain conventions. In a package directory, files whose names end with _test.go are not part of
the package ordinarily built by go build but are a part of it when built by go test.

Within *_test.go files, three kinds of functions are treated specially: tests, benchmarks, and
examples. A test function, which is a function whose name begins with Test, exercises some
program logic for correct behavior; go test calls the test function and reports the result,
which is either PASS or FAIL. A benchmark function has a name beginning with Benchmark
and measures the performance of some operation; go test reports the mean execution time
of the operation. And an example function, whose name starts with Example, provides
machine-checked documentation. We will cover tests in detail in Section 11.2, benchmarks in
Section 11.4, and examples in Section 11.6.

The go test tool scans the *_test.go files for these special functions, generates a temporary
main package that calls them all in the proper way, builds and runs it, reports the results, and
then cleans up.

11.2. Test Functions

Each test file must import the testing package. Test functions have the following signature:

func TestName(t *testing.T) {
/...
}

Test function names must begin with Test; the optional suffix Name must begin with a capital
letter:

func TestSin(t *testing.T) { /* ... */ }
func TestCos(t *testing.T) { /* ... */ }
func TestLog(t *testing.T) { /* ... */ }

The t parameter provides methods for reporting test failures and logging additional
information. Let’s define an example package gopl.io/ch11/wordl, containing a single func-
tion IsPalindrome that reports whether a string reads the same forward and backward. (This
implementation tests every byte twice if the string is a palindrome; we’ll come back to that
shortly.)

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 11.2. TEST FUNCTIONS 303

gopl.io/chl1/wordl

// Package word provides utilities for word games.
package word

// IsPalindrome reports whether s reads the same forward and backward.
// (Our first attempt.)
func IsPalindrome(s string) bool {
for i := range s {
if s[i] != s[len(s)-1-i] {
return false

}
}

return true

}

In the same directory, the file word_test.go contains two test functions named TestPalin-
drome and TestNonPalindrome. Each checks that IsPalindrome gives the right answer for a
single input and reports failures using t.Error:

package word
import "testing"

func TestPalindrome(t *testing.T) {
if !IsPalindrome("detartrated") {
t.Error(" IsPalindrome("detartrated") = false’)

}
if !IsPalindrome("kayak") {

t.Error(IsPalindrome("kayak") = false’)
}
}

func TestNonPalindrome(t *testing.T) {
if IsPalindrome("palindrome") {
t.Error(" IsPalindrome("palindrome") = true’)

}
}

A go test (or go build) command with no package arguments operates on the package in
the current directory. We can build and run the tests with the following command.

$ cd $GOPATH/src/gopl.io/ch1l/wordl
$ go test
ok gopl.io/chll/wordl ©.008s

Satisfied, we ship the program, but no sooner have the launch party guests departed than the
bug reports start to arrive. A French user named Noelle Eve Elleon complains that IsPalin-
drome doesn’t recognize “été” Another, from Central America, is disappointed that it rejects
“A man, a plan, a canal: Panama” These specific and small bug reports naturally lend them-
selves to new test cases.

www.it-ebooks.info

http://www.it-ebooks.info/

304 CHAPTER 11. TESTING

func TestFrenchPalindrome(t *testing.T) {
if !IsPalindrome("été") {
t.Error("IsPalindrome("été") = false’)

}
}
func TestCanalPalindrome(t *testing.T) {
input := "A man, a plan, a canal: Panama"
if !IsPalindrome(input) {
t.Errorf (" IsPalindrome(%q) = false’, input)
}
}

To avoid writing the long input string twice, we use Errorf, which provides formatting like
Printf.

When the two new tests have been added, the go test command fails with informative error
messages.

$ go test
--- FAIL: TestFrenchPalindrome (©.00s)
word_test.go:28: IsPalindrome("été") = false
--- FAIL: TestCanalPalindrome (0.00s)
word_test.go:35: IsPalindrome("A man, a plan, a canal: Panama") = false
FAIL
FAIL gopl.io/chll/wordl ©.014s

It’s good practice to write the test first and observe that it triggers the same failure described by
the user’s bug report. Only then can we be confident that whatever fix we come up with
addresses the right problem.

As a bonus, running go test is usually quicker than manually going through the steps
described in the bug report, allowing us to iterate more rapidly. If the test suite contains many
slow tests, we may make even faster progress if we're selective about which ones we run.

The -v flag prints the name and execution time of each test in the package:

$ go test -v
=== RUN TestPalindrome
- PASS: TestPalindrome (0.00s)

RUN TestNonPalindrome

--- PASS: TestNonPalindrome (0.00s)

RUN TestFrenchPalindrome

--- FAIL: TestFrenchPalindrome (©.00s)
word_test.go:28: IsPalindrome("été") = false

=== RUN TestCanalPalindrome

--- FAIL: TestCanalPalindrome (0.00s)
word_test.go:35: IsPalindrome("A man, a plan, a canal: Panama") = false

FATIL

exit status 1

FAIL gopl.io/chll/wordl ©.017s

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 11.2. TEST FUNCTIONS 305

and the -run flag, whose argument is a regular expression, causes go test to run only those
tests whose function name matches the pattern:

$ go test -v -run="French|Canal"
=== RUN TestFrenchPalindrome
--- FAIL: TestFrenchPalindrome (0.00s)
word_test.go:28: IsPalindrome("été") = false
=== RUN TestCanalPalindrome
--- FAIL: TestCanalPalindrome (0.00s)
word_test.go:35: IsPalindrome("A man, a plan, a canal: Panama") = false
FAIL
exit status 1
FAIL gopl.io/chll/wordl ©.014s

Of course, once we've gotten the selected tests to pass, we should invoke go test with no flags
to run the entire test suite one last time before we commit the change.

Now our task is to fix the bugs. A quick investigation reveals the cause of the first bug to be
IsPalindrome’s use of byte sequences, not rune sequences, so that non-ASCII characters such
as the é in "été" confuse it. The second bug arises from not ignoring spaces, punctuation,

and letter case.

Chastened, we rewrite the function more carefully:

gopl.io/chl1/word2

// Package word provides utilities for word games.
package word

import "unicode"

// IsPalindrome reports whether s reads the same forward and backward.
// Letter case is ignored, as are non-letters.
func IsPalindrome(s string) bool {
var letters []rune
for _, r := range s {
if unicode.IsLetter(r) {
letters = append(letters, unicode.ToLower(r))

b
}
for i := range letters {
if letters[i] !'= letters[len(letters)-1-i] {
return false
b
}

return true

}

We also write a more comprehensive set of test cases that combines all the previous ones and a
number of new ones into a table.

www.it-ebooks.info

http://www.it-ebooks.info/

306 CHAPTER 11. TESTING

func TestIsPalindrome(t *testing.T) {
var tests = []struct {
input string
want bool

H
{"", true},
{"a", true},
{"aa", true},
"ab", false},
{"kayak", true},
{"detartrated", true},
{"A man, a plan, a canal: Panama", true},
{"Evil I did dwell; lewd did I live.", true},
{"Able was I ere I saw Elba", true},
{"été", true},
{"Et se resservir, ivresse reste.", true},
{"palindrome", false}, // non-palindrome
{"desserts", false}, // semi-palindrome
}
for _, test := range tests {
if got := IsPalindrome(test.input); got != test.want {
t.Errorf("IsPalindrome(%q) = %v", test.input, got)
¥
}

}

Our new tests pass:

$ go test gopl.io/chil/word2
ok gopl.io/chll/word2 0.015s

This style of table-driven testing is very common in Go. It is straightforward to add new table
entries as needed, and since the assertion logic is not duplicated, we can invest more effort in
producing a good error message.

The output of a failing test does not include the entire stack trace at the moment of the call to
t.Errorf. Nor does t.Errorf cause a panic or stop the execution of the test, unlike assertion
failures in many test frameworks for other languages. Tests are independent of each other. If
an early entry in the table causes the test to fail, later table entries will still be checked, and
thus we may learn about multiple failures during a single run.

When we really must stop a test function, perhaps because some initialization code failed or to
prevent a failure already reported from causing a confusing cascade of others, we use t.Fatal
or t.Fatalf. These must be called from the same goroutine as the Test function, not from
another one created during the test.

Test failure messages are usually of the form "f(x) =y, want z", where f(x) explains the
attempted operation and its input, y is the actual result, and z the expected result. Where con-
venient, as in our palindrome example, actual Go syntax is used for the f(x) part. Displaying
x is particularly important in a table-driven test, since a given assertion is executed many

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 11.2. TEST FUNCTIONS 307

times with different values. Avoid boilerplate and redundant information. When testing a
boolean function such as IsPalindrome, omit the want z part since it adds no information. If
X, ¥, or z is lengthy, print a concise summary of the relevant parts instead. The author of a test
should strive to help the programmer who must diagnose a test failure.

Exercise 11.1: Write tests for the charcount program in Section 4.3.

Exercise 11.2: Write a set of tests for IntSet (§6.5) that checks that its behavior after each
operation is equivalent to a set based on built-in maps. Save your implementation for
benchmarking in Exercise 11.7.

11.2.1. Randomized Testing

Table-driven tests are convenient for checking that a function works on inputs carefully
selected to exercise interesting cases in the logic. Another approach, randomized testing,
explores a broader range of inputs by constructing inputs at random.

How do we know what output to expect from our function, given a random input? There are
two strategies. The first is to write an alternative implementation of the function that uses a
less efficient but simpler and clearer algorithm, and check that both implementations give the
same result. The second is to create input values according to a pattern so that we know what
output to expect.

The example below uses the second approach: the randomPalindrome function generates
words that are known to be palindromes by construction.

import "math/rand"

// randomPalindrome returns a palindrome whose length and contents
// are derived from the pseudo-random number generator rng.
func randomPalindrome(rng *rand.Rand) string {
n := rng.Intn(25) // random length up to 24
runes := make([]rune, n)
for i :=0; i < (n+1)/2; i++ {
r := rune(rng.Intn(0x1000)) // random rune up to '\u@999'’
runes[i] = r
runes[n-1-i] = r
}

return string(runes)

}

func TestRandomPalindromes(t *testing.T) {
// Initialize a pseudo-random number generator.
seed := time.Now().UTC().UnixNano()
t.Logf("Random seed: %d", seed)
rng := rand.New(rand.NewSource(seed))

www.it-ebooks.info

http://www.it-ebooks.info/

308 CHAPTER 11. TESTING

for i :=0; i < 1000; i++ {
p := randomPalindrome(rng)
if !IsPalindrome(p) {
t.Errorf("IsPalindrome(%q) = false", p)

}
}

Since randomized tests are nondeterministic, it is critical that the log of the failing test record
sufficient information to reproduce the failure. In our example, the input p to IsPalindrome
tells us all we need to know, but for functions that accept more complex inputs, it may be sim-
pler to log the seed of the pseudo-random number generator (as we do above) than to dump
the entire input data structure. Armed with that seed value, we can easily modify the test to
replay the failure deterministically.

By using the current time as a source of randomness, the test will explore novel inputs each
time it is run, over the entire course of its lifetime. This is especially valuable if your project
uses an automated system to run all its tests periodically.

Exercise 11.3: TestRandomPalindromes only tests palindromes. Write a randomized test that
generates and verifies non-palindromes.

Exercise 11.4: Modify randomPalindrome to exercise IsPalindrome’s handling of punc-
tuation and spaces.

11.2.2. Testinga Command

The go test tool is useful for testing library packages, but with a little effort we can use it to
test commands as well. A package named main ordinarily produces an executable program,
but it can be imported as a library too.

Let’s write a test for the echo program of Section 2.3.2. We've split the program into two func-
tions: echo does the real work, while main parses and reads the flag values and reports any
errors returned by echo.

gopl.io/chli1/echo

// Echo prints its command-line arguments.
package main

import (
"flag"
"fmt"
"io"

os
"strings"

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 11.2. TEST FUNCTIONS 309

var (
n = flag.Bool("n", false, "omit trailing newline")
s = flag.String("s", " ", "separator")

)

var out io.Writer = os.Stdout // modified during testing

func main() {
flag.Parse()

if err := echo(!*n, *s, flag.Args()); err != nil {
fmt.Fprintf(os.Stderr, "echo: %v\n", err)
os.Exit(1)

}

}

func echo(newline bool, sep string, args []string) error {
fmt.Fprint(out, strings.Join(args, sep))
if newline {
fmt.Fprintln(out)
}

return nil

}

From the test, we will call echo with a variety of arguments and flag settings and check that it
prints the correct output in each case, so we've added parameters to echo to reduce its depen-
dence on global variables. That said, we've also introduced another global variable, out, the
io.Writer to which the result will be written. By having echo write through this variable, not
directly to os.Stdout, the tests can substitute a different Writer implementation that records
what was written for later inspection. Here’s the test, in file echo_test. go:

package main

import (
"bytes"
"fmt"
"testing"
)

func TestEcho(t *testing.T) {
var tests = []struct {
newline bool

sep string
args []string
want string
H
{true, "", [Istring{}, "\n"},
{false, "", [Istring(}, "'},
{true, "\t", []string{"one", "two", "three"}, "one\ttwo\tthree\n"},
{tr‘ue) "J"J []Str‘ing{"a") "b"J "c"}J "anJC\n"})
{false, ":", []string{"1", "2", "3"}, "1:2:3"},
}

www.it-ebooks.info

http://www.it-ebooks.info/

310 CHAPTER 11. TESTING

for _, test := range tests {
descr := fmt.Sprintf("echo(%v, %q, %q)",
test.newline, test.sep, test.args)

out = new(bytes.Buffer) // captured output

if err := echo(test.newline, test.sep, test.args); err != nil {
t.Errorf("%s failed: %v", descr, err)
continue

}

got := out.(*bytes.Buffer).String()
if got != test.want {

t.Errorf("%s = %q, want %q", descr, got, test.want)
b

}

Notice that the test code is in the same package as the production code. Although the package
name is main and it defines a main function, during testing this package acts as a library that
exposes the function TestEcho to the test driver; its main function is ignored.

By organizing the test as a table, we can easily add new test cases. Let’s see what happens when
the test fails, by adding this line to the table:

{true, ",", []string{"a", "b", "c"}, "a b c\n"}, // NOTE: wrong expectation!

go test prints

$ go test gopl.io/chll/echo
--- FAIL: TestEcho (0.00s)
echo_test.go:31: echo(true, ",", ["a" "b" "c"]) = "a,b,c", want "a b c\n"
FAIL
FAIL gopl.io/chll/echo ©.006s

The error message describes the attempted operation (using Go-like syntax), the actual behav-
ior, and the expected behavior, in that order. With an informative error message such as this,
you may have a pretty good idea about the root cause before you've even located the source
code of the test.

It's important that code being tested not call log.Fatal or os.Exit, since these will stop the
process in its tracks; calling these functions should be regarded as the exclusive right of main.
If something totally unexpected happens and a function panics, the test driver will recover,
though the test will of course be considered a failure. Expected errors such as those resulting
from bad user input, missing files, or improper configuration should be reported by returning
a non-nil error value. Fortunately (though unfortunate as an illustration), our echo example
is so simple that it will never return a non-nil error.

11.2.3. White-Box Testing

One way of categorizing tests is by the level of knowledge they require of the internal workings
of the package under test. A black-box test assumes nothing about the package other than

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 11.2. TEST FUNCTIONS 311

what is exposed by its API and specified by its documentation; the package’s internals are
opaque. In contrast, a white-box test has privileged access to the internal functions and data
structures of the package and can make observations and changes that an ordinary client can-
not. For example, a white-box test can check that the invariants of the package’s data types are
maintained after every operation. (The name white box is traditional, but clear box would be
more accurate.)

The two approaches are complementary. Black-box tests are usually more robust, needing
fewer updates as the software evolves. They also help the test author empathize with the client
of the package and can reveal flaws in the API design. In contrast, white-box tests can provide
more detailed coverage of the trickier parts of the implementation.

We've already seen examples of both kinds. TestIsPalindrome calls only the exported func-
tion IsPalindrome and is thus a black-box test. TestEcho calls the echo function and
updates the global variable out, both of which are unexported, making it a white-box test.

While developing TestEcho, we modified the echo function to use the package-level variable
out when writing its output, so that the test could replace the standard output with an alter-
native implementation that records the data for later inspection. Using the same technique,
we can replace other parts of the production code with easy-to-test “fake” implementations.
The advantage of fake implementations is that they can be simpler to configure, more
predictable, more reliable, and easier to observe. They can also avoid undesirable side effects
such as updating a production database or charging a credit card.

The code below shows the quota-checking logic in a web service that provides networked
storage to users. When users exceed 90% of their quota, the system sends them a warning
email.

gopl.io/chl1/storagel

package storage

import (
"fmt"
"log"
"net/smtp"
)

func bytesInUse(username string) inté4 { return © /* ... */ }

// Email sender configuration.
// NOTE: never put passwords in source code!

const sender = "notifications@example.com"

const password = "correcthorsebatterystaple"

const hostname = "smtp.example.com"

const template = “Warning: you are using %d bytes of storage,

%d%% of your quota.’

www.it-ebooks.info

http://www.it-ebooks.info/

312

CHAPTER 11. TESTING

func CheckQuota(username string) {

}

used := bytesInUse(username)
const quota = 1000000000 // 1GB
percent := 100 * used / quota
if percent < 90 {

return // OK

}

msg := fmt.Sprintf(template, used, percent)

auth := smtp.PlainAuth("", sender, password, hostname)

err := smtp.SendMail(hostname+":587", auth, sender,
[]string{username}, []byte(msg))

if err != nil {
log.Printf("smtp.SendMail(%s) failed: %s", username, err)

}

Wed like to test it, but we don’t want the test to send out real email. So we move the email
logic into its own function and store that function in an unexported package-level variable,
notifyUser.

gopl.io/chil/storage2

var notifyUser = func(username, msg string) {

}

auth := smtp.PlainAuth("", sender, password, hostname)

err := smtp.SendMail(hostname+":587", auth, sender,
[]string{username}, []byte(msg))

if err != nil {

log.Printf("smtp.SendEmail(%s) failed: %s", username, err)

}

func CheckQuota(username string) {

}

used := bytesInUse(username)
const quota = 1000000000 // 1GB
percent := 100 * used / quota
if percent < 90 {
return // OK
}
msg := fmt.Sprintf(template, used, percent)
notifyUser(username, msg)

We can now write a test that substitutes a simple fake notification mechanism instead of send-
ing real email. This one records the notified user and the contents of the message.

package storage

import (
"strings"
"testing"
)

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 11.2. TEST FUNCTIONS 313

func TestCheckQuotaNotifiesUser(t *testing.T) {
var notifiedUser, notifiedMsg string
notifyUser = func(user, msg string) {
notifiedUser, notifiedMsg = user, msg

}

// ...simulate a 980MB-used condition...

const user = "joe@example.org"

CheckQuota(user)

if notifiedUser == "" && notifiedMsg == "" {
t.Fatalf("notifyUser not called")

}

if notifiedUser != user {
t.Errorf("wrong user (%s) notified, want %s",
notifiedUser, user)

}

const wantSubstring = "98% of your quota"
if !strings.Contains(notifiedMsg, wantSubstring) {
t.Errorf("unexpected notification message <<%s>>, "+
"want substring %q", notifiedMsg, wantSubstring)

}

There’s one problem: after this test function has returned, CheckQuota no longer works as it
should because it’s still using the test’s fake implementation of notifyUsers. (There is always
a risk of this kind when updating global variables.) We must modify the test to restore the
previous value so that subsequent tests observe no effect, and we must do this on all execution
paths, including test failures and panics. This naturally suggests defer.

func TestCheckQuotaNotifiesUser(t *testing.T) {
// Save and restore original notifyUser.
saved := notifyUser
defer func() { notifyUser = saved }()

// Install the test's fake notifyUser.

var notifiedUser, notifiedMsg string

notifyUser = func(user, msg string) {
notifiedUser, notifiedMsg = user, msg

}
// ...rest of test...

}

This pattern can be used to temporarily save and restore all kinds of global variables, including
command-line flags, debugging options, and performance parameters; to install and remove
hooks that cause the production code to call some test code when something interesting hap-
pens; and to coax the production code into rare but important states, such as timeouts, errors,
and even specific interleavings of concurrent activities.

Using global variables in this way is safe only because go test does not normally run multiple
tests concurrently.

www.it-ebooks.info

http://www.it-ebooks.info/

314 CHAPTER 11. TESTING

11.2.4. External Test Packages

Consider the packages net/url, which provides a URL parser, and net/http, which provides
a web server and HTTP client library. As we might expect, the higher-level net/http depends
on the lower-level net/url. However, one of the tests in net/url is an example demonstrat-
ing the interaction between URLs and the HTTP client library. In other words, a test of the
lower-level package imports the higher-level package.

net/http

cycle!

net/url

Figure 11.1. A test of net/url depends on net/http.

Declaring this test function in the net/url package would create a cycle in the package
import graph, as depicted by the upwards arrow in Figure 11.1, but as we explained in
Section 10.1, the Go specification forbids import cycles.

We resolve the problem by declaring the test function in an external test package, that is, in a
file in the net/url directory whose package declaration reads package url_test. The extra
suffix _test is a signal to go test that it should build an additional package containing just
these files and run its tests. It may be helpful to think of this external test package as if it had
the import path net/url_test, but it cannot be imported under this or any other name.

Because external tests live in a separate package, they may import helper packages that also
depend on the package being tested; an in-package test cannot do this. In terms of the design
layers, the external test package is logically higher up than both of the packages it depends
upon, as shown in Figure 11.2.

net/url_test

net/http

net/url

Figure 11.2. External test packages break dependency cycles.

By avoiding import cycles, external test packages allow tests, especially integration tests (which
test the interaction of several components), to import other packages freely, exactly as an
application would.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 11.2. TEST FUNCTIONS 315

We can use the go 1ist tool to summarize which Go source files in a package directory are
production code, in-package tests, and external tests. We'll use the fmt package as an example.
GoFiles is the list of files that contain the production code; these are the files that go build
will include in your application:

$ go list -f={{.GoFiles}} fmt
[doc.go format.go print.go scan.go]

TestGoFiles is the list of files that also belong to the fmt package, but these files, whose
names all end in _test. go, are included only when building tests:

$ go list -f={{.TestGoFiles}} fmt
[export_test.go]

The package’s tests would usually reside in these files, though unusually fmt has none; we'll
explain the purpose of export_test.go in a moment.

XTestGoFiles is the list of files that constitute the external test package, fmt_test, so these
files must import the fmt package in order to use it. Again, they are included only during test-
ing:

$ go list -f={{.XTestGoFiles}} fmt
[fmt_test.go scan_test.go stringer_test.go]

Sometimes an external test package may need privileged access to the internals of the package
under test, if for example a white-box test must live in a separate package to avoid an import
cycle. In such cases, we use a trick: we add declarations to an in-package _test.go file to
expose the necessary internals to the external test. This file thus offers the test a “back door”
to the package. If the source file exists only for this purpose and contains no tests itself, it is
often called export_test.go.

For example, the implementation of the fmt package needs the functionality of unicode.Is-
Space as part of fmt.Scanf. To avoid creating an undesirable dependency, fmt does not
import the unicode package and its large tables of data; instead, it contains a simpler imple-
mentation, which it calls isSpace.

To ensure that the behaviors of fmt.isSpace and unicode.IsSpace do not drift apart, fmt
prudently contains a test. It is an external test, and thus it cannot access isSpace directly, so
fmt opens a back door to it by declaring an exported variable that holds the internal isSpace
function. This is the entirety of the fmt package’s export_test.go file.

package fmt

var IsSpace = isSpace

This test file defines no tests; it just declares the exported symbol fmt.IsSpace for use by the
external test. This trick can also be used whenever an external test needs to use some of the
techniques of white-box testing.

www.it-ebooks.info

http://www.it-ebooks.info/

316 CHAPTER 11. TESTING

11.2.5. Writing Effective Tests

Many newcomers to Go are surprised by the minimalism of Go's testing framework. Other
languages’ frameworks provide mechanisms for identifying test functions (often using reflec-
tion or metadata), hooks for performing “setup” and “teardown” operations before and after
the tests run, and libraries of utility functions for asserting common predicates, comparing
values, formatting error messages, and aborting a failed test (often using exceptions).
Although these mechanisms can make tests very concise, the resulting tests often seem like
they are written in a foreign language. Furthermore, although they may report PASS or FAIL
correctly, their manner may be unfriendly to the unfortunate maintainer, with cryptic failure
messages like "assert: @ == 1" or page after page of stack traces.

Go’s attitude to testing stands in stark contrast. It expects test authors to do most of this work
themselves, defining functions to avoid repetition, just as they would for ordinary programs.
The process of testing is not one of rote form filling; a test has a user interface too, albeit one
whose only users are also its maintainers. A good test does not explode on failure but prints a
clear and succinct description of the symptom of the problem, and perhaps other relevant
facts about the context. Ideally, the maintainer should not need to read the source code to
decipher a test failure. A good test should not give up after one failure but should try to report
several errors in a single run, since the pattern of failures may itself be revealing.

The assertion function below compares two values, constructs a generic error message, and
stops the program. It’s easy to use and it’s correct, but when it fails, the error message is almost
useless. It does not solve the hard problem of providing a good user interface.

import (
"fmt"
"strings"
"testing"
)

// A poor assertion function.
func assertEqual(x, y int) {
if x =y {
panic(fmt.Sprintf("%d != %d", x, y))
}
}

func TestSplit(t *testing.T) {
words := strings.Split("a:b:c", ":")
assertEqual(len(words), 3)
/...

}

In this sense, assertion functions suffer from premature abstraction: by treating the failure of
this particular test as a mere difference of two integers, we forfeit the opportunity to provide
meaningful context. We can provide a better message by starting from the concrete details, as
in the example below. Only once repetitive patterns emerge in a given test suite is it time to
introduce abstractions.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 11.2. TEST FUNCTIONS 317

func TestSplit(t *testing.T) {
s, sep := "a:b:c", ":"
words := strings.Split(s, sep)
if got, want := len(words), 3; got != want {
t.Errorf("Split(%q, %q) returned %d words, want %d",
s, sep, got, want)
}
/] ...

}

Now the test reports the function that was called, its inputs, and the significance of the result;
it explicitly identifies the actual value and the expectation; and it continues to execute even if
this assertion should fail. Once we've written a test like this, the natural next step is often not
to define a function to replace the entire if statement, but to execute the test in a loop in
which s, sep, and want vary, like the table-driven test of IsPalindrome.

The previous example didn't need any utility functions, but of course that shouldn’t stop us
from introducing functions when they help make the code simpler. (We'll look at one such
utility function, reflect.DeepEqual, in Section 13.3.) The key to a good test is to start by
implementing the concrete behavior that you want and only then use functions to simplify the
code and eliminate repetition. Best results are rarely obtained by starting with a library of
abstract, generic testing functions.

Exercise 11.5: Extend TestSplit to use a table of inputs and expected outputs.

11.2.6. Avoiding Brittle Tests

An application that often fails when it encounters new but valid inputs is called buggy; a test
that spuriously fails when a sound change was made to the program is called brittle. Just as a
buggy program frustrates its users, a brittle test exasperates its maintainers. The most brittle
tests, which fail for almost any change to the production code, good or bad, are sometimes
called change detector or status quo tests, and the time spent dealing with them can quickly
deplete any benefit they once seemed to provide.

When a function under test produces a complex output such as a long string, an elaborate data
structure, or a file, it’s tempting to check that the output is exactly equal to some “golden” value
that was expected when the test was written. But as the program evolves, parts of the output
will likely change, probably in good ways, but change nonetheless. And it’s not just the output;
functions with complex inputs often break because the input used in a test is no longer valid.

The easiest way to avoid brittle tests is to check only the properties you care about. Test your
program’s simpler and more stable interfaces in preference to its internal functions. Be selec-
tive in your assertions. Don't check for exact string matches, for example, but look for relevant
substrings that will remain unchanged as the program evolves. Its often worth writing a
substantial function to distill a complex output down to its essence so that assertions will be
reliable. Even though that may seem like a lot of up-front effort, it can pay for itself quickly in
time that would otherwise be spent fixing spuriously failing tests.

www.it-ebooks.info

http://www.it-ebooks.info/

318 CHAPTER 11. TESTING

11.3. Coverage

By its nature, testing is never complete. As the influential computer scientist Edsger Dijkstra
put it, “Testing shows the presence, not the absence of bugs” No quantity of tests can ever
prove a package free of bugs. At best, they increase our confidence that the package works
well in a wide range of important scenarios.

The degree to which a test suite exercises the package under test is called the test’s coverage.
Coverage can’t be quantified directly—the dynamics of all but the most trivial programs are
beyond precise measurement—but there are heuristics that can help us direct our testing
efforts to where they are more likely to be useful.

Statement coverage is the simplest and most widely used of these heuristics. The statement
coverage of a test suite is the fraction of source statements that are executed at least once dur-
ing the test. In this section, we'll use Gos cover tool, which is integrated into go test, to
measure statement coverage and help identify obvious gaps in the tests.

The code below is a table-driven test for the expression evaluator we built back in Chapter 7:

gopl.io/ch7/eval

func TestCoverage(t *testing.T) {
var tests = []struct {
input string

env Env

want string // expected error from Parse/Check or result from Eval
H

{"x % 2", nil, "unexpected '%'"},

{"!true", nil, "unexpected '!'"},

{"log(10)", nil, “unknown function "log"'},
{"sqrt(1, 2)", nil, "call to sqrt has 2 args, want 1"},
{"sqrt(A / pi)", Env{"A": 87616, "pi": math.Pi}, "167"},
{"pow(x, 3) + pow(y, 3)", Env{"x": 9, "y": 10}, "1729"},
{"5 /9 * (F - 32)", Env{"F": -40}, "-40"},

}
for _, test := range tests {
expr, err := Parse(test.input)
if err == nil {
err = expr.Check(map[Var]bool{})
}
if err != nil {
if err.Error() != test.want {
t.Errorf("%s: got %q, want %q", test.input, err, test.want)
}
continue
}

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 11.3. COVERAGE 319

got := fmt.Sprintf("%.6g", expr.Eval(test.env))
if got != test.want {
t.Errorf("%s: %v => %s, want %s",
test.input, test.env, got, test.want)

}
First, let’s check that the test passes:

$ go test -v -run=Coverage gopl.io/ch7/eval
=== RUN TestCoverage

--- PASS: TestCoverage (0.00s)

PASS

ok gopl.io/ch7/eval 0.011s

This command displays the usage message of the coverage tool:

$ go tool cover

Usage of 'go tool cover':

Given a coverage profile produced by 'go test':
go test -coverprofile=c.out

Open a web browser displaying annotated source code:
go tool cover -html=c.out

The go tool command runs one of the executables from the Go toolchain. These programs
live in the directory $GOR0OOT/pkg/tool/${G00S}_${GOARCH}. Thanks to go build, we rarely
need to invoke them directly.

Now we run the test with the -coverprofile flag:

$ go test -run=Coverage -coverprofile=c.out gopl.io/ch7/eval
ok gopl.io/ch7/eval 0.032s coverage: 68.5% of statements

This flag enables the collection of coverage data by instrumenting the production code. That
is, it modifies a copy of the source code so that before each block of statements is executed, a
boolean variable is set, with one variable per block. Just before the modified program exits, it
writes the value of each variable to the specified log file c.out and prints a summary of the
fraction of statements that were executed. (If all you need is the summary, use
go test -cover.)

If go test is run with the -covermode=count flag, the instrumentation for each block incre-
ments a counter instead of setting a boolean. The resulting log of execution counts of each
block enables quantitative comparisons between “hotter” blocks, which are more frequently
executed, and “colder” ones.

Having gathered the data, we run the cover tool, which processes the log, generates an HTML
report, and opens it in a new browser window (Figure 11.3).

$ go tool cover -html=c.out

www.it-ebooks.info

http://www.it-ebooks.info/

320 CHAPTER 11. TESTING

coverage.html X

C n file:///home/gopher/gobook/coverage.html

gopl.io/ch7/eval/eval.go (58.8%) +| not tracked not covered covered

func (u unary) Eval(env Env) float64 {
switch u.op {
case '+':
return +u.x.Eval(env)
case '-':
return ~u.x.Eval(env)

}
panic(fmt.Sprintf("unsupported unary operator: %q", u.op))

}
func (b binary) Eval(env Env) float64 {

switch b.op {

return b.x.Eval(env) + b.y.Eval(env)
- retur Ev anv) 1

} . . .

panic(fmt.Sprintf("unsupported binary operator: %q", b.op))
}

Figure 11.3. A coverage report.

Each statement is colored green if it was covered or red if it was not covered. For clarity, we've
shaded the background of the red text. We can see immediately that none of our inputs exer-
cised the unary operator Eval method. If we add this new test case to the table and re-run the
previous two commands, the unary expression code becomes green:

{"-x * -x", eval.Env{"x": 2}, "4"}

The two panic statements remain red, however. This should not be surprising, because these
statements are supposed to be unreachable.

Achieving 100% statement coverage sounds like a noble goal, but it is not usually feasible in
practice, nor is it likely to be a good use of effort. Just because a statement is executed does
not mean it is bug-free; statements containing complex expressions must be executed many
times with different inputs to cover the interesting cases. Some statements, like the panic
statements above, can never be reached. Others, such as those that handle esoteric errors, are
hard to exercise but rarely reached in practice. Testing is fundamentally a pragmatic endeavor,
a trade-off between the cost of writing tests and the cost of failures that could have been
prevented by tests. Coverage tools can help identify the weakest spots, but devising good test
cases demands the same rigorous thinking as programming in general.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 11.4. BENCHMARK FUNCTIONS 321

11.4. Benchmark Functions

Benchmarking is the practice of measuring the performance of a program on a fixed
workload. In Go, a benchmark function looks like a test function, but with the Benchmark
prefix and a *testing.B parameter that provides most of the same methods as a *testing.T,
plus a few extra related to performance measurement. It also exposes an integer field N, which
specifies the number of times to perform the operation being measured.

Here’s a benchmark for IsPalindrome that calls it N times in a loop.
import "testing"

func BenchmarkIsPalindrome(b *testing.B) {
for i :=0; i < b.N; i++ {
IsPalindrome("A man, a plan, a canal: Panama")

}
}

We run it with the command below. Unlike tests, by default no benchmarks are run. The
argument to the -bench flag selects which benchmarks to run. It is a regular expression
matching the names of Benchmark functions, with a default value that matches none of them.
The “.” pattern causes it to match all benchmarks in the word package, but since there’s only
one, -bench=IsPalindrome would have been equivalent.

$ cd $GOPATH/src/gopl.io/chl1l/word2
$ go test -bench=.

PASS
BenchmarkIsPalindrome-8 1000000 1035 ns/op
ok gopl.io/chll/word2 2.179s

The benchmark name’s numeric suffix, 8 here, indicates the value of GOMAXPROCS, which is
important for concurrent benchmarks.

The report tells us that each call to IsPalindrome took about 1.035 microseconds, averaged
over 1,000,000 runs. Since the benchmark runner initially has no idea how long the operation
takes, it makes some initial measurements using small values of N and then extrapolates to a
value large enough for a stable timing measurement to be made.

The reason the loop is implemented by the benchmark function, and not by the calling code in
the test driver, is so that the benchmark function has the opportunity to execute any necessary
one-time setup code outside the loop without this adding to the measured time of each itera-
tion. If this setup code is still perturbing the results, the testing.B parameter provides meth-
ods to stop, resume, and reset the timer, but these are rarely needed.

Now that we have a benchmark and tests, it’s easy to try out ideas for making the program
faster. Perhaps the most obvious optimization is to make IsPalindrome’s second loop stop
checking at the midpoint, to avoid doing each comparison twice:

www.it-ebooks.info

http://www.it-ebooks.info/

322 CHAPTER 11. TESTING

n := len(letters)/2
for i :=0; i < n; i++ {
if letters[i] != letters[len(letters)-1-i] {
return false

}
}

return true

But as is often the case, an obvious optimization doesn’t always yield the expected benefit.
This one delivered a mere 4% improvement in one experiment.

$ go test -bench=.

PASS
BenchmarkIsPalindrome-8 1000000 992 ns/op
ok gopl.io/chll/word2 2.093s

Another idea is to pre-allocate a sufficiently large array for use by letters, rather than
expand it by successive calls to append. Declaring letters as an array of the right size, like
this,
letters := make([]rune, ©, len(s))
for _, r := range s {
if unicode.IsLetter(r) {
letters = append(letters, unicode.ToLower(r))

}
}

yields an improvement of nearly 35%, and the benchmark runner now reports the average
over 2,000,000 iterations.

$ go test -bench=.

PASS
BenchmarkIsPalindrome-8 2000000 697 ns/op
ok gopl.io/ch11l/word2 1.468s

As this example shows, the fastest program is often the one that makes the fewest memory
allocations. The -benchmem command-line flag will include memory allocation statistics in its
report. Here we compare the number of allocations before the optimization:

$ go test -bench=. -benchmem

PASS
BenchmarkIsPalindrome 1000000 1026 ns/op 304 B/op 4 allocs/op

and after it:

$ go test -bench=. -benchmem
PASS
BenchmarkIsPalindrome 2000000 807 ns/op 128 B/op 1 allocs/op

Consolidating the allocations in a single call to make eliminated 75% of the allocations and
halved the quantity of allocated memory.

Benchmarks like this tell us the absolute time required for a given operation, but in many set-
tings the interesting performance questions are about the relative timings of two different

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 11.5. PROFILING 323

operations. For example, if a function takes 1ms to process 1,000 elements, how long will it
take to process 10,000 or a million? Such comparisons reveal the asymptotic growth of the
running time of the function. Another example: what is the best size for an I/O buffer?
Benchmarks of application throughput over a range of sizes can help us choose the smallest
buffer that delivers satisfactory performance. A third example: which algorithm performs best
for a given job? Benchmarks that evaluate two different algorithms on the same input data
can often show the strengths and weaknesses of each one on important or representative
workloads.

Comparative benchmarks are just regular code. They typically take the form of a single
parameterized function, called from several Benchmark functions with different values, like
this:

func benchmark(b *testing.B, size int) { /* ... */ }

func Benchmarkl@(b *testing.B) { benchmark(b, 10) }

func Benchmarkl1ee(b *testing.B) { benchmark(b, 100) }
func Benchmark1eee(b *testing.B) { benchmark(b, 1000) }

The parameter size, which specifies the size of the input, varies across benchmarks but is
constant within each benchmark. Resist the temptation to use the parameter b.N as the input
size. Unless you interpret it as an iteration count for a fixed-size input, the results of your
benchmark will be meaningless.

Patterns revealed by comparative benchmarks are particularly useful during program design,
but we don’t throw the benchmarks away when the program is working. As the program
evolves, or its input grows, or it is deployed on new operating systems or processors with dif-
ferent characteristics, we can reuse those benchmarks to revisit design decisions.

Exercise 11.6: Write benchmarks to compare the PopCount implementation in Section 2.6.2
with your solutions to Exercise 2.4 and Exercise 2.5. At what point does the table-based
approach break even?

Exercise 11.7: Write benchmarks for Add, UnionWith, and other methods of *IntSet (§6.5)
using large pseudo-random inputs. How fast can you make these methods run? How does the
choice of word size affect performance? How fast is IntSet compared to a set implementation
based on the built-in map type?

11.5. Profiling

Benchmarks are useful for measuring the performance of specific operations, but when we're
trying to make a slow program faster, we often have no idea where to begin. Every program-
mer knows Donald Knuth’s aphorism about premature optimization, which appeared in
“Structured Programming with go to Statements” in 1974. Although often misinterpreted to
mean performance doesn’t matter, in its original context we can discern a different meaning:

There is no doubt that the grail of efficiency leads to abuse. Programmers waste
enormous amounts of time thinking about, or worrying about, the speed of noncritical

www.it-ebooks.info

http://www.it-ebooks.info/

324 CHAPTER 11. TESTING

parts of their programs, and these attempts at efficiency actually have a strong negative
impact when debugging and maintenance are considered. We should forget about
small efficiencies, say about 97% of the time: premature optimization is the root of all
evil.

Yet we should not pass up our opportunities in that critical 3%. A good programmer
will not be lulled into complacency by such reasoning, he will be wise to look carefully
at the critical code; but only after that code has been identified. It is often a mistake to
make a priori judgments about what parts of a program are really critical, since the
universal experience of programmers who have been using measurement tools has
been that their intuitive guesses fail.

When we wish to look carefully at the speed of our programs, the best technique for identify-
ing the critical code is profiling. Profiling is an automated approach to performance measure-
ment based on sampling a number of profile events during execution, then extrapolating from
them during a post-processing step; the resulting statistical summary is called a profile.

Go supports many kinds of profiling, each concerned with a different aspect of performance,
but all of them involve recording a sequence of events of interest, each of which has an accom-
panying stack trace—the stack of function calls active at the moment of the event. The
go test tool has built-in support for several kinds of profiling.

A CPU profile identifies the functions whose execution requires the most CPU time. The cur-
rently running thread on each CPU is interrupted periodically by the operating system every
few milliseconds, with each interruption recording one profile event before normal execution
resumes.

A heap profile identifies the statements responsible for allocating the most memory. The
profiling library samples calls to the internal memory allocation routines so that on average,
one profile event is recorded per 512KB of allocated memory.

A blocking profile identifies the operations responsible for blocking goroutines the longest,
such as system calls, channel sends and receives, and acquisitions of locks. The profiling
library records an event every time a goroutine is blocked by one of these operations.

Gathering a profile for code under test is as easy as enabling one of the flags below. Be careful
when using more than one flag at a time, however: the machinery for gathering one kind of
profile may skew the results of others.

$ go test -cpuprofile=cpu.out
$ go test -blockprofile=block.out
$ go test -memprofile=mem.out

Its easy to add profiling support to non-test programs too, though the details of how we do
that vary between short-lived command-line tools and long-running server applications.
Profiling is especially useful in long-running applications, so the Go runtime’s profiling
features can be enabled under programmer control using the runtime APL

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 11.5. PROFILING 325

Once we've gathered a profile, we need to analyze it using the pprof tool. This is a standard
part of the Go distribution, but since it’s not an everyday tool, it’s accessed indirectly using
go tool pprof. It has dozens of features and options, but basic use requires only two argu-
ments, the executable that produced the profile and the profile log.

To make profiling efficient and to save space, the log does not include function names; instead,
functions are identified by their addresses. This means that pprof needs the executable in
order to make sense of the log. Although go test usually discards the test executable once the
test is complete, when profiling is enabled it saves the executable as foo.test, where foo is
the name of the tested package.

The commands below show how to gather and display a simple CPU profile. We've selected
one of the benchmarks from the net/http package. It is usually better to profile specific
benchmarks that have been constructed to be representative of workloads one cares about.
Benchmarking test cases is almost never representative, which is why we disabled them by
using the filter - run=NONE.

$ go test -run=NONE -bench=ClientServerParallelTLS64 \
-cpuprofile=cpu.log net/http

PASS

BenchmarkClientServerParallelTLS64-8 1000
3141325 ns/op 143010 B/op 1747 allocs/op

ok net/http 3.395s

$ go tool pprof -text -nodecount=10 ./http.test cpu.log
2570ms of 359@ms total (71.59%)
Dropped 129 nodes (cum <= 17.95ms)
Showing top 10 nodes out of 166 (cum >= 60ms)
flat flat% sum% cum cumk
1730ms 48.19% 48.19% 1750ms 48.75% crypto/elliptic.p256ReduceDegree

230ms 6.41% 54.60% 250ms 6.96% crypto/elliptic.p256Diff
120ms 3.34% 57.94% 120ms 3.34% math/big.addMulVViW
110ms 3.06% 61.00% 11@ms 3.06% syscall.Syscall

9oms 2.51% 63.51% 1130ms 31.48% crypto/elliptic.p256Square

70ms 1.95% 65.46% 120ms 3.34% runtime.scanobject

60ms 1.67% 67.13% 830ms 23.12% crypto/elliptic.p256Mul

60ms 1.67% 68.80% 190ms 5.29% math/big.nat.montgomery

S50ms 1.39% 70.19% 50ms 1.39% crypto/elliptic.p256ReduceCarry
S50ms 1.39% 71.59% 60ms 1.67% crypto/elliptic.p256Sum

The -text flag specifies the output format, in this case, a textual table with one row per func-
tion, sorted so the “hottest” functions—those that consume the most CPU cycles—appear
first. The -nodecount=10 flag limits the result to 10 rows. For gross performance problems,
this textual format may be enough to pinpoint the cause.

This profile tells us that elliptic-curve cryptography is important to the performance of this
particular HTTPS benchmark. By contrast, if a profile is dominated by memory allocation
functions from the runtime package, reducing memory consumption may be a worthwhile
optimization.

www.it-ebooks.info

http://www.it-ebooks.info/

326 CHAPTER 11. TESTING

For more subtle problems, you may be better off using one of pprof’s graphical displays.
These require GraphViz, which can be downloaded from www.graphviz.org. The -web flag
then renders a directed graph of the functions of the program, annotated by their CPU profile
numbers and colored to indicate the hottest functions.

We've only scratched the surface of Go’s profiling tools here. To find out more, read the
“Profiling Go Programs” article on the Go Blog.

11.6. Example Functions

The third kind of function treated specially by go test is an example function, one whose
name starts with Example. It has neither parameters nor results. Here’s an example function
for IsPalindrome:

func ExampleIsPalindrome() {
fmt.Println(IsPalindrome("A man, a plan, a canal: Panama"))
fmt.Println(IsPalindrome("palindrome"))
// Output:
// true
// false

Example functions serve three purposes. The primary one is documentation: a good example
can be a more succinct or intuitive way to convey the behavior of a library function than its
prose description, especially when used as a reminder or quick reference. An example can
also demonstrate the interaction between several types and functions belonging to one API,
whereas prose documentation must always be attached to one place, like a type or function
declaration or the package as a whole. And unlike examples within comments, example func-
tions are real Go code, subject to compile-time checking, so they don’t become stale as the
code evolves.

Based on the suffix of the Example function, the web-based documentation server godoc
associates example functions with the function or package they exemplify, so ExampleIs-
Palindrome would be shown with the documentation for the IsPalindrome function, and an
example function called just Example would be associated with the word package as a whole.

The second purpose is that examples are executable tests run by go test. If the example func-
tion contains a final // Output: comment like the one above, the test driver will execute the
function and check that what it printed to its standard output matches the text within the
comment.

The third purpose of an example is hands-on experimentation. The godoc server at
golang.org uses the Go Playground to let the user edit and run each example function from
within a web browser, as shown in Figure 11.4. This is often the fastest way to get a feel for a
particular function or language feature.

www.it-ebooks.info

http://www.graphviz.org
http://www.it-ebooks.info/

SECTION 11.6. EXAMPLE FUNCTIONS 327

func Join

func Join(a []lstring, sep string) string

Join concatenates the elements of a to create a single string. The separator string
sep is placed between elements in the resulting string.

v Example

package main

import (
" Fmt"
"strings"
)

func main() {
s := [Istring{"foo", "bar", "baz"}
fmt.Println(strings.Join(s, ", "))

foo, bar, baz

Program exited.

(e] [Pt e

Figure 11.4. An interactive example of strings.Join in godoc.

The final two chapters of the book examine the reflect and unsafe packages, which few Go
programmers regularly use—and even fewer need to use. If you haven't written any substantial
Go programs yet, now would be a good time to do that.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

12

Reflection

Go provides a mechanism to update variables and inspect their values at run time, to call their
methods, and to apply the operations intrinsic to their representation, all without knowing
their types at compile time. This mechanism is called reflection. Reflection also lets us treat
types themselves as first-class values.

In this chapter, we'll explore Go’s reflection features to see how they increase the expres-
siveness of the language, and in particular how they are crucial to the implementation of two
important APIs: string formatting provided by fmt, and protocol encoding provided by pack-
ages like encoding/json and encoding/xml. Reflection is also essential to the template
mechanism provided by the text/template and html/template packages we saw in
Section 4.6. However, reflection is complex to reason about and not for casual use, so
although these packages are implemented using reflection, they do not expose reflection in
their own APIs.

12.1. Why Reflection?

Sometimes we need to write a function capable of dealing uniformly with values of types that
don't satisfy a common interface, don’t have a known representation, or don’t exist at the time
we design the function—or even all three.

A familiar example is the formatting logic within fmt.Fprintf, which can usefully print an
arbitrary value of any type, even a user-defined one. Let’s try to implement a function like it
using what we know already. For simplicity, our function will accept one argument and will
return the result as a string like fmt . Sprint does, so we'll call it Sprint.

We start with a type switch that tests whether the argument defines a String method, and call
it if so. We then add switch cases that test the value’s dynamic type against each of the basic

329

www.it-ebooks.info

http://www.it-ebooks.info/

330 CHAPTER 12. REFLECTION

types—string, int, bool, and so on—and perform the appropriate formatting operation in
each case.

func Sprint(x interface{}) string {

type stringer interface {
String() string

}

switch x := x.(type) {

case stringer:
return x.String()

case string:

return x
case int:

return strconv.Itoa(x)
// ...similar cases for intl6, uint32, and so on...
case bool:

if x {

return "true"

¥

return "false"
default:

// array, chan, func, map, pointer, slice, struct
return "???"

}

But how do we deal with other types, like [[float64, map[string][]string, and so on? We
could add more cases, but the number of such types is infinite. And what about named types,
like url.values? Even if the type switch had a case for its underlying type
map[string][]string, it wouldn’t match url.values because the two types are not iden-
tical, and the type switch cannot include a case for each type like url.values because that
would require this library to depend upon its clients.

Without a way to inspect the representation of values of unknown types, we quickly get stuck.
What we need is reflection.

12.2. reflect.Type and reflect.Value

Reflection is provided by the reflect package. It defines two important types, Type and
Value. A Type represents a Go type. It is an interface with many methods for discriminating
among types and inspecting their components, like the fields of a struct or the parameters of a
function. The sole implementation of reflect.Type is the type descriptor (§7.5), the same
entity that identifies the dynamic type of an interface value.

The reflect.TypeOf function accepts any interface{} and returns its dynamic type as a
reflect.Type:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 12.2. REFLECTTYPE AND REFLECT.VALUE 331

t := reflect.TypeOf(3) // a reflect.Type
fmt.Println(t.String()) // "int"
fmt.Println(t) // "int"

The Type0Of(3) call above assigns the value 3 to the interface{} parameter. Recall from
Section 7.5 that an assignment from a concrete value to an interface type performs an implicit
interface conversion, which creates an interface value consisting of two components: its
dynamic type is the operand’s type (int) and its dynamic value is the operand’s value (3).

Because reflect.TypeOf returns an interface value’s dynamic type, it always returns a con-
crete type. So, for example, the code below prints "*os.File", not "io.Writer". Later, we
will see that reflect. Type is capable of representing interface types too.

var w io.Writer = os.Stdout
fmt.Println(reflect.TypeOf(w)) // "*os.File"

Notice that reflect.Type satisfies fmt.Stringer. Because printing the dynamic type of an
interface value is useful for debugging and logging, fmt.Printf provides a shorthand, %T, that
uses reflect. TypeOf internally:

fmt.Printf("%T\n", 3) // "int"

The other important type in the reflect package is Value. A reflect.Value can hold a
value of any type. The reflect.ValueOf function accepts any interface{} and returns a
reflect.Value containing the interface’s dynamic value. As with reflect.TypeOf, the
results of reflect.ValueOf are always concrete, but a reflect.Value can hold interface val-
ues too.

v := reflect.ValueOf(3) // a reflect.Value
fmt.Println(v) // "3"
fmt.Printf("%v\n", v) // "3"
fmt.Println(v.String()) // NOTE: "<int Value>"

Like reflect.Type, reflect.Value also satisfies fmt.Stringer, but unless the Value holds
a string, the result of the String method reveals only the type. Instead, use the fmt package’s
%v verb, which treats reflect.Values specially.

Calling the Type method on a Value returns its type as a reflect. Type:

t = v.Type() // a reflect.Type
fmt.Println(t.String()) // "int"

The inverse operation to reflect.ValueOf is the reflect.Value.Interface method. It
returns an interface{} holding the same concrete value as the reflect.Value:

v := reflect.ValueOf(3) // a reflect.Value
x := v.Interface() // an interface{}
i = x.(int) // an int
fmt.Printf("%d\n", i) // "3"

A reflect.Value and an interface{} can both hold arbitrary values. The difference is that
an empty interface hides the representation and intrinsic operations of the value it holds and
exposes none of its methods, so unless we know its dynamic type and use a type assertion to

www.it-ebooks.info

http://www.it-ebooks.info/

332 CHAPTER 12. REFLECTION

peer inside it (as we did above), there is little we can do to the value within. In contrast, a
Value has many methods for inspecting its contents, regardless of its type. Let’s use them for
our second attempt at a general formatting function, which we'll call format. Any.

Instead of a type switch, we use reflect.Value’s Kind method to discriminate the cases.
Although there are infinitely many types, there are only a finite number of kinds of type: the
basic types Bool, String, and all the numbers; the aggregate types Array and Struct; the ref-
erence types Chan, Func, Ptr, Slice, and Map; Interface types; and finally Invalid, meaning
no value at all. (The zero value of a reflect.Value has kind Invalid.)

gopl.io/chi2/format

package format

import (
"reflect”
"strconv"
)

// Any formats any value as a string.
func Any(value interface{}) string {

return formatAtom(reflect.ValueOf(value))
}

// formatAtom formats a value without inspecting its internal structure.
func formatAtom(v reflect.Value) string {
switch v.Kind() {
case reflect.Invalid:
return "invalid"
case reflect.Int, reflect.Int8, reflect.Intle,
reflect.Int32, reflect.Int64:
return strconv.FormatInt(v.Int(), 10)
case reflect.Uint, reflect.Uint8, reflect.Uintl6,
reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return strconv.FormatUint(v.Uint(), 10)
// ...floating-point and complex cases omitted for brevity...
case reflect.Bool:
return strconv.FormatBool(v.Bool())
case reflect.String:
return strconv.Quote(v.String())
case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Slice, reflect.Map:
return v.Type().String() + " ox" +
strconv.FormatUint(uint64(v.Pointer()), 16)
default: // reflect.Array, reflect.Struct, reflect.Interface
return v.Type().String() + " value"
}
}

So far, our function treats each value as an indivisible thing with no internal structure—hence
formatAtom. For aggregate types (structs and arrays) and interfaces it prints only the type of
the value, and for reference types (channels, functions, pointers, slices, and maps), it prints the
type and the reference address in hexadecimal. This is less than ideal but still a major

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 12.3. DISPLAY, A RECURSIVE VALUE PRINTER 333

improvement, and since Kind is concerned only with the underlying representation, for-
mat . Any works for named types too. For example:

var x inte4 =1
var d time.Duration = 1 * time.Nanosecond

fmt.Println(format.Any(x)) // "1t
fmt.Println(format.Any(d)) // "t
fmt.Println(format.Any([]int64{x})) // "[]int64 ©x8202b87b0"

fmt.Println(format.Any([]time.Duration{d})) // "[]time.Duration ©x8202b87e0"

12.3. Display, a Recursive Value Printer

Next we'll take a look at how to improve the display of composite types. Rather than try to
copy fmt.Sprint exactly, we'll build a debugging utility function called Display that, given
an arbitrarily complex value x, prints the complete structure of that value, labeling each ele-
ment with the path by which it was found. Let’s start with an example.

e, _ := eval.Parse("sqrt(A / pi)")
Display("e", e)

In the call above, the argument to Display is a syntax tree from the expression evaluator in
Section 7.9. The output of Display is shown below:

Display e (eval.call):

e.fn = "sqgrt"

e.args[0@].type = eval.binary
e.args[@].value.op = 47
e.args[@].value.x.type = eval.var
e.args[@].value.x.value = "A"
e.args[0@].value.y.type = eval.Var
e.args[@].value.y.value = "pi"

Where possible, you should avoid exposing reflection in the API of a package. We'll define an
unexported function display to do the real work of the recursion, and export Display, a sim-
ple wrapper around it that accepts an interface{} parameter:

gopl.io/chi2/display

func Display(name string, x interface{}) {
fmt.Printf("Display %s (%T):\n", name, x)
display(name, reflect.ValueOf(x))

}

In display, we'll use the formatAtom function we defined earlier to print elementary values—
basic types, functions, and channels—but well use the methods of reflect.Value to recur-
sively display each component of a more complex type. As the recursion descends, the path
string, which initially describes the starting value (for instance, "e"), will be augmented to
indicate how we reached the current value (for instance, "e.args[0].value").

www.it-ebooks.info

http://www.it-ebooks.info/

334 CHAPTER 12. REFLECTION

Since we're no longer pretending to implement fmt.Sprint, we will use the fmt package to
keep our example short.

func display(path string, v reflect.Value) {
switch v.Kind() {
case reflect.Invalid:
fmt.Printf("%s = invalid\n", path)
case reflect.Slice, reflect.Array:
for i :=0; i < v.Len(); i++ {
display(fmt.Sprintf("%s[%d]", path, i), v.Index(i))
}
case reflect.Struct:
for i := 0; i < v.NumField(); i++ {
fieldPath := fmt.Sprintf("%s.%s", path, v.Type().Field(i).Name)
display(fieldPath, v.Field(i))
}
case reflect.Map:
for _, key := range v.MapKeys() {
display(fmt.Sprintf("%s[%s]", path,
formatAtom(key)), v.MapIndex(key))
}
case reflect.Ptr:
if v.IsNil() {
fmt.Printf("%s = nil\n", path)
} else {
display(fmt.Sprintf("(*%s)", path), v.Elem())
}
case reflect.Interface:
if v.IsNil() {
fmt.Printf("%s = nil\n", path)
} else {
fmt.Printf("%s.type = %s\n", path, v.Elem().Type())
display(path+".value", v.Elem())
}
default: // basic types, channels, funcs
fmt.Printf("%s = %s\n", path, formatAtom(v))
}
}

Let’s discuss the cases in order.

Slices and arrays: The logic is the same for both. The Len method returns the number of ele-
ments of a slice or array value, and Index(i) retrieves the element at index i, also as a
reflect.Value; it panics if i is out of bounds. These are analogous to the built-in len(a)
and a[i] operations on sequences. The display function recursively invokes itself on each
element of the sequence, appending the subscript notation "[1]" to the path.

Although reflect.Value has many methods, only a few are safe to call on any given value.
For example, the Index method may be called on values of kind Slice, Array, or String, but
panics for any other kind.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 12.3. DISPLAY, A RECURSIVE VALUE PRINTER 335

Structs: The NumField method reports the number of fields in the struct, and Field(i)
returns the value of the i-th field as a reflect.value. The list of fields includes ones
promoted from anonymous fields. To append the field selector notation ".f" to the path, we
must obtain the reflect. Type of the struct and access the name of its i-th field.

Maps: The MapKeys method returns a slice of reflect.Values, one per map key. As usual
when iterating over a map, the order is undefined. MapIndex(key) returns the value cor-
responding to key. We append the subscript notation "[key]" to the path. (We're cutting a
corner here. The type of a map key isn’t restricted to the types formatAtom handles best;
arrays, structs, and interfaces can also be valid map keys. Extending this case to print the key
in full is Exercise 12.1.)

Pointers: The Elem method returns the variable pointed to by a pointer, again as a
reflect.Value. This operation would be safe even if the pointer value is nil, in which case
the result would have kind Invalid, but we use IsNil to detect nil pointers explicitly so we
can print a more appropriate message. We prefix the path with a "*" and parenthesize it to
avoid ambiguity.

Interfaces: Again, we use IsNil to test whether the interface is nil, and if not, we retrieve its
dynamic value using v.Elem() and print its type and value.

Now that our Display function is complete, let’s put it to work. The Movie type below is a
slight variation on the one in Section 4.5:

type Movie struct {
Title, Subtitle string

Year int

Color bool

Actor map[string]lstring

Oscars [Istring

Sequel *string

}
Let’s declare a value of this type and see what Display does with it:
strangelove := Movie{

Title: "Dr. Strangelove",

Subtitle: "How I Learned to Stop Worrying and Love the Bomb",

Year: 1964,

Color: false,

Actor: map[string]string{
"Dr. Strangelove": "Peter Sellers”,
"Grp. Capt. Lionel Mandrake": "Peter Sellers",
"Pres. Merkin Muffley": "Peter Sellers",
"Gen. Buck Turgidson": "George C. Scott",
"Brig. Gen. Jack D. Ripper": "Sterling Hayden",
"Maj. T.J. "King" Kong': "Slim Pickens",

3

www.it-ebooks.info

http://www.it-ebooks.info/

336

Oscars: []string{

"Best Actor (Nomin.)",

"Best Adapted Screenplay (Nomin.)",
"Best Director (Nomin.)",

"Best Picture (Nomin.)",

¥
}

The call Display("strangelove", strangelove) prints:

Display strangelove (display.Movie):

strangelove.

strangelove

strangelove.
strangelove.
strangelove.

strangelove

strangelove

strangelove.
strangelove.

strangelove

strangelove.

Title = "Dr. Strangelove"
Year = 1964
Color = false

CHAPTER 12. REFLECTION

.Subtitle = "How I Learned to Stop Worrying and Love the Bomb™
strangelove.
strangelove.
strangelove.

Actor["Gen. Buck Turgidson"] = "George C. Scott"
Actor["Brig. Gen. Jack D. Ripper"] = "Sterling Hayden"
Actor["Maj. T.J. \"King\" Kong"] = "Slim Pickens"
Actor["Dr. Strangelove"] = "Peter Sellers"

.Actor["Grp. Capt. Lionel Mandrake"] = "Peter Sellers"
strangelove.

Actor["Pres. Merkin Muffley"] = "Peter Sellers"
.Oscars[@] = "Best Actor (Nomin.)"

Oscars[1] = "Best Adapted Screenplay (Nomin.)"
Oscars[2] = "Best Director (Nomin.)"

.Oscars[3] = "Best Picture (Nomin.)"

Sequel = nil

We can use Display to display the internals of library types, such as *os.File:

Display("os.Stderr", os.Stderr)
// Output:

// Display os.Stderr (*os.File):
// (*(*os.Stderr).file).fd = 2

// (*(*os.Stderr).file).name = "/dev/stderr"

// (*(*os.Stderr).file).nepipe = ©

Notice that even unexported fields are visible to reflection. Beware that the particular output
of this example may vary across platforms and may change over time as libraries evolve.
(Those fields are private for a reason!) We can even apply Display to a reflect.Value and
watch it traverse the internal representation of the type descriptor for *os.File. The output
of the call Display("rv", reflect.ValueOf(os.Stderr)) is shown below, though of course
your mileage may vary:

Display rV (reflect.Value):

(*rV.typ).size = 8
(*rV.typ).hash = 871609668
(*rV.typ).align = 8
(*rV.typ).fieldAlign = 8
(*rV.typ).kind = 22

(*(*rV.typ).string) = "*os.File"

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 12.3. DISPLAY, A RECURSIVE VALUE PRINTER 337

rV.typ).uncommonType).methods[@].name) = "Chdir"
(*rV.typ).uncommonType) .methods[@].mtyp).string) = "func() error"
(*rV.typ).uncommonType) .methods[@].typ).string) = "func(*os.File) error"

(x>
(RO (*
(FCe(*
Observe the difference between these two examples:

var i interface{} = 3

Display("i", i)

// Output:

// Display i (int):
//i=3
Display("&i", &i)
// Output:

// Display &i (*interface {}):
// (*&i).type = int
// (*&1).value = 3

In the first example, Display calls reflect.valueOf (i), which returns a value of kind Int.
As we mentioned in Section 12.2, reflect.ValueOf always returns a Value of a concrete type
since it extracts the contents of an interface value.

In the second example, Display calls reflect.ValueOf(&i), which returns a pointer to i, of
kind Ptr. The switch case for Ptr calls Elem on this value, which returns a Value representing
the variable i itself, of kind Interface. A Value obtained indirectly, like this one, may rep-
resent any value at all, including interfaces. The display function calls itself recursively and
this time, it prints separate components for the interface’s dynamic type and value.

As currently implemented, Display will never terminate if it encounters a cycle in the object
graph, such as this linked list that eats its own tail:

// a struct that points to itself

type Cycle struct{ Value int; Tail *Cycle }
var c Cycle

c = Cycle{42, &c}

Display("c", c)

Display prints this ever-growing expansion:

Display c¢ (display.Cycle):

c.Value = 42

(*c.Tail).value = 42
(*(*c.Tail).Tail).value = 42
(*(*(*c.Tail).Tail).Tail).vValue = 42
...ad infinitum...

Many Go programs contain at least some cyclic data. Making Display robust against such
cycles is tricky, requiring additional bookkeeping to record the set of references that have been
followed so far; it is costly too. A general solution requires unsafe language features, as we
will see in Section 13.3.

www.it-ebooks.info

http://www.it-ebooks.info/

338 CHAPTER 12. REFLECTION

Cycles pose less of a problem for fmt.Sprint because it rarely tries to print the complete
structure. For example, when it encounters a pointer, it breaks the recursion by printing the
pointer’s numeric value. It can get stuck trying to print a slice or map that contains itself as an
element, but such rare cases do not warrant the considerable extra trouble of handling cycles.

Exercise 12.1: Extend Display so that it can display maps whose keys are structs or arrays.

Exercise 12.2: Make display safe to use on cyclic data structures by bounding the number of
steps it takes before abandoning the recursion. (In Section 13.3, we'll see another way to
detect cycles.)

12.4. Example: Encoding S-Expressions

Display is a debugging routine for displaying structured data, but it’s not far short of being
able to encode or marshal arbitrary Go objects as messages in a portable notation suitable for
inter-process communication.

As we saw in Section 4.5, Go's standard library supports a variety of formats, including JSON,
XML, and ASN.1. Another notation that is still widely used is S-expressions, the syntax of
Lisp. Unlike the other notations, S-expressions are not supported by the Go standard library,
not least because they have no universally accepted definition, despite several attempts at stan-
dardization and the existence of many implementations.

In this section, we'll define a package that encodes arbitrary Go objects using an S-expression
notation that supports the following constructs:

42 integer

"hello" string (with Go-style quotation)

foo symbol (an unquoted name)

(12 3) list (zero or more items enclosed in parentheses)

Booleans are traditionally encoded using the symbol t for true, and the empty list () or the
symbol nil for false, but for simplicity, our implementation ignores them. It also ignores
channels and functions, since their state is opaque to reflection. And it ignores real and com-
plex floating-point numbers and interfaces. Adding support for them is Exercise 12.3.

We'll encode the types of Go using S-expressions as follows. Integers and strings are encoded
in the obvious way. Nil values are encoded as the symbol nil. Arrays and slices are encoded
using list notation.

Structs are encoded as a list of field bindings, each field binding being a two-element list
whose first element (a symbol) is the field name and whose second element is the field value.
Maps too are encoded as a list of pairs, with each pair being the key and value of one map
entry. Traditionally, S-expressions represent lists of key/value pairs using a single cons cell
(key . value) for each pair, rather than a two-element list, but to simplify the decoding we’ll
ignore dotted list notation.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 12.4. EXAMPLE: ENCODING S-EXPRESSIONS 339

Encoding is done by a single recursive function, encode, shown below. Its structure is essen-
tially the same as that of Display in the previous section:

gopl.io/chl12/sexpr

func encode(buf *bytes.Buffer, v reflect.Value) error {
switch v.Kind() {
case reflect.Invalid:
buf.WriteString("nil")

case reflect.Int, reflect.Int8, reflect.Intle,
reflect.Int32, reflect.Int64:
fmt.Fprintf(buf, "%d", v.Int())

case reflect.Uint, reflect.Uint8, reflect.Uintile6,
reflect.Uint32, reflect.Uint64, reflect.Uintptr:
fmt.Fprintf(buf, "%d", v.Uint())

case reflect.String:
fmt.Fprintf(buf, "%q", v.String())

case reflect.Ptr:
return encode(buf, v.Elem())

case reflect.Array, reflect.Slice: // (value ...)
buf.WriteByte(' (")
for i :=0; i < v.Len(); i++ {
ifi>0{
buf.WriteByte(' ')
}
if err := encode(buf, v.Index(i)); err != nil {
return err
}

}
buf.WriteByte(')")

case reflect.Struct: // ((name value) ...)
buf.WriteByte('(")
for i := 0; i < v.NumField(); i++ {
ifi>e{
buf.WriteByte(' ')
}
fmt.Fprintf(buf, "(%s ", v.Type().Field(i).Name)
if err := encode(buf, v.Field(i)); err != nil {
return err
}
buf.WriteByte(')")

}
buf.WriteByte(')")

www.it-ebooks.info

http://www.it-ebooks.info/

340 CHAPTER 12. REFLECTION

case reflect.Map: // ((key value) ...)
buf.WriteByte('(")
for i, key := range v.MapKeys() {
ifi>e{
buf.WriteByte(' ')

}

buf.WriteByte('(")

if err := encode(buf, key); err != nil {
return err

}

buf.WriteByte(' ")

if err := encode(buf, v.MapIndex(key)); err != nil {
return err

}

buf.WriteByte(')")

}
buf.WriteByte(')")

default: // float, complex, bool, chan, func, interface
return fmt.Errorf("unsupported type: %s", v.Type())

}

return nil

}

The Marshal function wraps the encoder in an API similar to those of the other encod-
ing/... packages:

// Marshal encodes a Go value in S-expression form.
func Marshal(v interface{}) ([]byte, error) {
var buf bytes.Buffer
if err := encode(&buf, reflect.ValueOf(v)); err != nil {
return nil, err

}
return buf.Bytes(), nil

}
Here’s the output of Marshal applied to the strangelove variable from Section 12.3:

((Title "Dr. Strangelove") (Subtitle "How I Learned to Stop Worrying and Lo
ve the Bomb") (Year 1964) (Actor (("Grp. Capt. Lionel Mandrake" "Peter Sell
ers") ("Pres. Merkin Muffley" "Peter Sellers") ("Gen. Buck Turgidson" "Geor
ge C. Scott") ("Brig. Gen. Jack D. Ripper" "Sterling Hayden") ("Maj. T.J. \
"King\" Kong" "Slim Pickens") ("Dr. Strangelove" "Peter Sellers"))) (Oscars
("Best Actor (Nomin.)" "Best Adapted Screenplay (Nomin.)" "Best Director (N
omin.)" "Best Picture (Nomin.)")) (Sequel nil))

The whole output appears on one long line with minimal spaces, making it hard to read.
Here’s the same output manually formatted according to S-expression conventions. Writing a
pretty-printer for S-expressions is left as a (challenging) exercise; the download from gopl.io
includes a simple version.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 12.5. SETTING VARIABLES WITH REFLECT.VALUE 341

((Title "Dr. Strangelove")

(Subtitle "How I Learned to Stop Worrying and Love the Bomb")

(Year 1964)

(Actor (("Grp. Capt. Lionel Mandrake" "Peter Sellers")
("Pres. Merkin Muffley" "Peter Sellers")
("Gen. Buck Turgidson" "George C. Scott")
("Brig. Gen. Jack D. Ripper" "Sterling Hayden")
("Maj. T.J. \"King\" Kong" "Slim Pickens")
("Dr. Strangelove" "Peter Sellers")))

(Oscars ("Best Actor (Nomin.)"
"Best Adapted Screenplay (Nomin.)"
"Best Director (Nomin.)"
"Best Picture (Nomin.)"))

(Sequel nil))

Like the fmt.Print, json.Marshal, and Display functions, sexpr.Marshal will loop forever
if called with cyclic data.

In Section 12.6, we'll sketch out the implementation of the corresponding S-expression decod-
ing function, but before we get there, we'll first need to understand how reflection can be used
to update program variables.

Exercise 12.3: Implement the missing cases of the encode function. Encode booleans as t and
nil, floating-point numbers using Gos notation, and complex numbers like 1+2i as
#C(1.0 2.0). Interfaces can be encoded as a pair of a type name and a value, for instance
("[1int" (1 2 3)), but beware that this notation is ambiguous: the reflect.Type.String
method may return the same string for different types.

Exercise 12.4: Modify encode to pretty-print the S-expression in the style shown above.

Exercise 12.5: Adapt encode to emit JSON instead of S-expressions. Test your encoder using
the standard decoder, json.Unmarshal.

Exercise 12.6: Adapt encode so that, as an optimization, it does not encode a field whose
value is the zero value of its type.

Exercise 12.7: Create a streaming API for the S-expression decoder, following the style of
json.Decoder (§4.5).

12.5. Setting Variables with reflect.Value

So far, reflection has only interpreted values in our program in various ways. The point of this
section, however, is to change them.

Recall that some Go expressions like x, x.f[1], and *p denote variables, but others like x + 1
and f(2) do not. A variable is an addressable storage location that contains a value, and its
value may be updated through that address.

www.it-ebooks.info

http://www.it-ebooks.info/

342 CHAPTER 12. REFLECTION

A similar distinction applies to reflect.Values. Some are addressable; others are not.
Consider the following declarations:

X 1= 2 // value type variable?
a := reflect.ValueOf(2) // 2 int no

b := reflect.ValueOf(x) // 2 int no

c := reflect.vValueOf(&x) // &x *int no

d := c.Elem() // 2 int yes (x)

The value within a is not addressable. It is merely a copy of the integer 2. The same is true of
b. The value within c is also non-addressable, being a copy of the pointer value &x. In fact, no
reflect.Value returned by reflect.vValueOf(x) is addressable. But d, derived from c by
dereferencing the pointer within it, refers to a variable and is thus addressable. We can use
this approach, calling reflect.valueOf(&x).Elem(), to obtain an addressable Value for any
variable x.

We can ask a reflect.Value whether it is addressable through its CanAddr method:

fmt.Println(a.CanAddr()) // "false"
fmt.Println(b.CanAddr()) // "false"
fmt.Println(c.CanAddr()) // "false"
fmt.Println(d.CanAddr()) // "true"

We obtain an addressable reflect.Value whenever we indirect through a pointer, even if we
started from a non-addressable Value. All the usual rules for addressability have analogs for
reflection. For example, since the slice indexing expression e[1] implicitly follows a pointer, it
is addressable even if the expression e is not. By analogy, reflect.ValueOf(e).Index(i)
refers to a variable, and is thus addressable even if reflect.ValueOf(e) is not.

To recover the variable from an addressable reflect.Value requires three steps. First, we call
Addr (), which returns a Value holding a pointer to the variable. Next, we call Interface()
on this Value, which returns an interface{} value containing the pointer. Finally, if we
know the type of the variable, we can use a type assertion to retrieve the contents of the inter-
face as an ordinary pointer. We can then update the variable through the pointer:

X 1= 2

d := reflect.ValueOf(&x).Elem() // d refers to the variable x
px := d.Addr().Interface().(*int) // px := &

*px = 3 // x =3

fmt.Println(x) // "3"

Or, we can update the variable referred to by an addressable reflect.Value directly, without
using a pointer, by calling the reflect.value.Set method:

d.Set(reflect.ValueOf(4))
fmt.Println(x) // "4"

The same checks for assignability that are ordinarily performed by the compiler are done at
run time by the Set methods. Above, the variable and the value both have type int, but if the
variable had been an int64, the program would panic, so it’s crucial to make sure the value is
assignable to the type of the variable:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 12.5. SETTING VARIABLES WITH REFLECT.VALUE 343

d.Set(reflect.ValueOf(int64(5))) // panic: int64 is not assignable to int

And of course calling Set on a non-addressable reflect.Value panics too:

X =2
b := reflect.ValueOf(x)
b.Set(reflect.ValueOf(3)) // panic: Set using unaddressable value

There are variants of Set specialized for certain groups of basic types: SetInt, SetUint, Set-
String, SetFloat, and so on:

d := reflect.ValueOf(&x).Elem()
d.SetInt(3)
fmt.Println(x) // "3"

In some ways these methods are more forgiving. SetInt, for example, will succeed so long as
the variable’s type is some kind of signed integer, or even a named type whose underlying type
is a signed integer, and if the value is too large it will be quietly truncated to fit. But tread care-
fully: calling SetInt on a reflect.Value that refers to an interface{} variable will panic,
even though Set would succeed.

x =1

rx := reflect.ValueOf(&x).Elem()

rx.SetInt(2) // OK, x = 2

rx.Set(reflect.valueOf(3)) // OK, x =3

rx.SetString("hello") // panic: string is not assignable to int

rx.Set(reflect.vValueOf("hello")) // panic: string is not assignable to int

var y interface{}
ry := reflect.ValueOf(&y).Elem()

ry.SetInt(2) // panic: SetInt called on interface Value
ry.Set(reflect.ValueOf(3)) // OK, y = int(3)
ry.SetString("hello") // panic: SetString called on interface Value

ry.Set(reflect.vValueOf("hello")) // OK, y = "hello"

When we applied Display to os.Stdout, we found that reflection can read the values of
unexported struct fields that are inaccessible according to the usual rules of the language, like
the fd int field of an os.File struct on a Unix-like platform. However, reflection cannot
update such values:

stdout := reflect.ValueOf(os.Stdout).Elem() // *os.Stdout, an os.File var
fmt.Println(stdout.Type()) // "os.File"

fd := stdout.FieldByName("fd")

fmt.Println(fd.Int()) // "1"

fd.SetInt(2) // panic: unexported field

An addressable reflect.Value records whether it was obtained by traversing an unexported
struct field and, if so, disallows modification. Consequently, CanAddr is not usually the right
check to use before setting a variable. The related method CanSet reports whether a
reflect.Value is addressable and settable:

fmt.Println(fd.CanAddr(), fd.CanSet()) // "true false"

www.it-ebooks.info

http://www.it-ebooks.info/

344 CHAPTER 12. REFLECTION

12.6. Example: Decoding S-Expressions

For each Marshal function provided by the standard library’s encoding/. .. packages, there is
a corresponding Unmarshal function that does decoding. For example, as we saw in
Section 4.5, given a byte slice containing JSON-encoded data for our Movie type (§12.3), we
can decode it like this:

data := []byte{/* ... */}

var movie Movie

err := json.Unmarshal(data, &movie)

The Unmarshal function uses reflection to modify the fields of the existing movie variable,
creating new maps, structs, and slices as determined by the type Movie and the content of the
incoming data.

Let’s now implement a simple Unmarshal function for S-expressions, analogous to the stan-
dard json.Unmarshal function used above, and the inverse of our earlier sexpr.Marshal.
We must caution you that a robust and general implementation requires substantially more
code than will comfortably fit in this example, which is already long, so we have taken many
shortcuts. We support only a limited subset of S-expressions and do not handle errors grace-
fully. The code is intended to illustrate reflection, not parsing.

The lexer uses the Scanner type from the text/scanner package to break an input stream
into a sequence of tokens such as comments, identifiers, string literals, and numeric literals.
The scanner’s Scan method advances the scanner and returns the kind of the next token,
which has type rune. Most tokens, like ' (', consist of a single rune, but the text/scanner
package represents the kinds of the multi-character tokens Ident, String, and Int using
small negative values of type rune. Following a call to Scan that returns one of these kinds of
token, the scanner’s TokenText method returns the text of the token.

Since a typical parser may need to inspect the current token several times, but the Scan
method advances the scanner, we wrap the scanner in a helper type called lexer that keeps
track of the token most recently returned by Scan.

gopl.io/chi2/sexpr

type lexer struct {
scan scanner.Scanner
token rune // the current token

}

func (lex *lexer) next() { lex.token = lex.scan.Scan() }
func (lex *lexer) text() string { return lex.scan.TokenText() }

func (lex *1lexer) consume(want rune) {
if lex.token != want { // NOTE: Not an example of good error handling.
panic(fmt.Sprintf("got %q, want %q", lex.text(), want))
}

lex.next()

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 12.6. EXAMPLE: DECODING S-EXPRESSIONS 345

Now let’s turn to the parser. It consists of two principal functions. The first of these, read,
reads the S-expression that starts with the current token and updates the variable referred to
by the addressable reflect.Value v.

func read(lex *lexer, v reflect.Value) {
switch lex.token {
case scanner.Ident:
// The only valid identifiers are
// "nil" and struct field names.
if lex.text() == "nil" {
v.Set(reflect.zero(v.Type()))
lex.next()
return
}
case scanner.String:
s, _ := strconv.Unquote(lex.text()) // NOTE: ignoring errors
v.SetString(s)
lex.next()
return
case scanner.Int:
i, _ := strconv.Atoi(lex.text()) // NOTE: ignoring errors
v.SetInt(int64(1i))
lex.next()
return
case '(':
lex.next()
readList(lex, v)
lex.next() // consume ')’
return
}
panic(fmt.Sprintf("unexpected token %q", lex.text()))

}

Our S-expressions use identifiers for two distinct purposes, struct field names and the nil
value for a pointer. The read function only handles the latter case. When it encounters the
scanner.Ident "nil", it sets v to the zero value of its type using the reflect.Zero function.
For any other identifier, it reports an error. The readList function, which we'll see in a
moment, handles identifiers used as struct field names.

A ' (' token indicates the start of a list. The second function, readList, decodes a list into a
variable of composite type—a map, struct, slice, or array—depending on what kind of Go
variable were currently populating. In each case, the loop keeps parsing items until it encoun-
ters the matching close parenthesis, ') ', as detected by the endList function.

The interesting part is the recursion. The simplest case is an array. Until the closing ')" is
seen, we use Index to obtain the variable for each array element and make a recursive call to
read to populate it. As in many other error cases, if the input data causes the decoder to index
beyond the end of the array, the decoder panics. A similar approach is used for slices, except
we must create a new variable for each element, populate it, then append it to the slice.

www.it-ebooks.info

http://www.it-ebooks.info/

346 CHAPTER 12. REFLECTION

The loops for structs and maps must parse a (key value) sublist on each iteration. For
structs, the key is a symbol identifying the field. Analogous to the case for arrays, we obtain
the existing variable for the struct field using FieldByName and make a recursive call to
populate it. For maps, the key may be of any type, and analogous to the case for slices, we cre-
ate a new variable, recursively populate it, and finally insert the new key/value pair into the
map.

func readlList(lex *lexer, v reflect.Value) {
switch v.Kind() {
case reflect.Array: // (item ...)
for i := 0; lendList(lex); i++ {
read(lex, v.Index(i))

}

case reflect.Slice: // (item ...)
for lendList(lex) {
item := reflect.New(v.Type().Elem()).Elem()
read(lex, item)
v.Set(reflect.Append(v, item))
}

case reflect.Struct: // ((name value) ...)
for lendList(lex) {
lex.consume(' (")
if lex.token != scanner.Ident {
panic(fmt.Sprintf("got token %q, want field name", lex.text()))

}
name := lex.text()
lex.next()

read(lex, v.FieldByName(name))
lex.consume(')")

}

case reflect.Map: // ((key value) ...)
v.Set(reflect.MakeMap(v.Type()))
for lendList(lex) {
lex.consume('(")
key := reflect.New(v.Type().Key()).Elem()
read(lex, key)
value := reflect.New(v.Type().Elem()).Elem()
read(lex, value)
v.SetMapIndex(key, value)
lex.consume(')")

}

default:
panic(fmt.Sprintf("cannot decode list into %v", v.Type()))

}

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 12.6. EXAMPLE: DECODING S-EXPRESSIONS 347

func endList(lex *1lexer) bool {
switch lex.token {
case scanner.EOF:
panic("end of file")
case ')':
return true

}

return false

}

Finally, we wrap up the parser in an exported function Unmarshal, shown below, that hides
some of the rough edges of the implementation. Errors encountered during parsing result in a
panic, so Unmarshal uses a deferred call to recover from the panic (§5.10) and return an error
message instead.

// Unmarshal parses S-expression data and populates the variable
// whose address is in the non-nil pointer out.
func Unmarshal(data []byte, out interface{}) (err error) {
lex := &lexer{scan: scanner.Scanner{Mode: scanner.GoTokens}}
lex.scan.Init(bytes.NewReader(data))
lex.next() // get the first token
defer func() {
// NOTE: this is not an example of ideal error handling.
if x := recover(); x != nil {
err = fmt.Errorf("error at %s: %v", lex.scan.Position, x)

}
1O
read(lex, reflect.ValueOf(out).Elem())
return nil

}

A production-quality implementation should never panic for any input and should report an
informative error for every mishap, perhaps with a line number or offset. Nonetheless, we
hope this example conveys some idea of what’s happening under the hood of the packages like
encoding/json, and how you can use reflection to populate data structures.

Exercise 12.8: The sexpr.Unmarshal function, like json.Marshal, requires the complete
input in a byte slice before it can begin decoding. Define a sexpr.Decoder type that, like
json.Decoder, allows a sequence of values to be decoded from an io.Reader. Change
sexpr.Unmarshal to use this new type.

Exercise 12.9: Write a token-based API for decoding S-expressions, following the style of
xml.Decoder (§7.14). You will need five types of tokens: Symbol, String, Int, StartList,
and EndList.

Exercise 12.10: Extend sexpr.Unmarshal to handle the booleans, floating-point numbers,
and interfaces encoded by your solution to Exercise 12.3. (Hint: to decode interfaces, you will
need a mapping from the name of each supported type to its reflect. Type.)

www.it-ebooks.info

http://www.it-ebooks.info/

348 CHAPTER 12. REFLECTION

12.7. Accessing Struct Field Tags

In Section 4.5 we used struct field tags to modify the JSON encoding of Go struct values. The
json field tag lets us choose alternative field names and suppress the output of empty fields. In
this section, we'll see how to access field tags using reflection.

In a web server, the first thing most HTTP handler functions do is extract the request parame-
ters into local variables. We'll define a utility function, params.Unpack, that uses struct field
tags to make writing HTTP handlers (§7.7) more convenient.

First, we'll show how it’s used. The search function below is an HTTP handler. It defines a
variable called data of an anonymous struct type whose fields correspond to the HTTP
request parameters. The struct’s field tags specify the parameter names, which are often short
and cryptic since space is precious in a URL. The Unpack function populates the struct from
the request so that the parameters can be accessed conveniently and with an appropriate type.

gopl.io/chl2/search

import "gopl.io/chl2/params"

// search implements the /search URL endpoint.
func search(resp http.ResponselWriter, req *http.Request) {
var data struct {

Labels []string “http:"1"™"
MaxResults int “http:"max™"’
Exact bool “http:"x""

}

data.MaxResults = 10 // set default

if err := params.Unpack(req, &data); err != nil {
http.Error(resp, err.Error(), http.StatusBadRequest) // 400
return

}

// ...rest of handler...
fmt.Fprintf(resp, "Search: %+v\n", data)
}

The Unpack function below does three things. First, it calls req.ParseForm() to parse the
request. Thereafter, req.Form contains all the parameters, regardless of whether the HTTP
client used the GET or the POST request method.

Next, Unpack builds a mapping from the effective name of each field to the variable for that
field. The effective name may differ from the actual name if the field has a tag. The Field
method of reflect.Type returns a reflect.StructField that provides information about
the type of each field such as its name, type, and optional tag. The Tag field is a
reflect.StructTag, which is a string type that provides a Get method to parse and extract
the substring for a particular key, such as http:"..." in this case.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 12.7. ACCESSING STRUCT FIELD TAGS 349

gopl.io/chl2/params

// Unpack populates the fields of the struct pointed to by ptr
// from the HTTP request parameters in req.
func Unpack(req *http.Request, ptr interface{}) error {
if err := req.ParseForm(); err != nil {
return err

}

// Build map of fields keyed by effective name.
fields := make(map[string]reflect.Value)
v := reflect.ValueOf(ptr).Elem() // the struct variable

for i := 0; i < v.NumField(); i++ {
fieldInfo := v.Type().Field(i) // a reflect.StructField
tag := fieldInfo.Tag // a reflect.StructTag
name := tag.Get("http")
if name == "" {
name = strings.ToLower(fieldInfo.Name)
}
fields[name] = v.Field(i)
}
// Update struct field for each parameter in the request.
for name, values := range req.Form {
f := fields[name]
if If.Isvalid() {
continue // ignore unrecognized HTTP parameters
}
for _, value := range values {
if f.Kind() == reflect.Slice {
elem := reflect.New(f.Type().Elem()).Elem()
if err := populate(elem, value); err != nil {
return fmt.Errorf("%s: %v", name, err)
}
f.Set(reflect.Append(f, elem))
} else {
if err := populate(f, value); err != nil {
return fmt.Errorf("%s: %v", name, err)
}
}
}
}
return nil

}

Finally, Unpack iterates over the name/value pairs of the HTTP parameters and updates the
corresponding struct fields. Recall that the same parameter name may appear more than
once. If this happens, and the field is a slice, then all the values of that parameter are accumu-
lated into the slice. Otherwise, the field is repeatedly overwritten so that only the last value
has any effect.

www.it-ebooks.info

http://www.it-ebooks.info/

350 CHAPTER 12. REFLECTION

The populate function takes care of setting a single field v (or a single element of a slice field)
from a parameter value. For now, it supports only strings, signed integers, and booleans.
Supporting other types is left as an exercise.

func populate(v reflect.Value, value string) error {
switch v.Kind() {
case reflect.String:
v.SetString(value)

case reflect.Int:
i, err := strconv.Parselnt(value, 10, 64)
if err != nil {
return err

}
v.SetInt(i)

case reflect.Bool:

b, err := strconv.ParseBool(value)
if err != nil {
return err

}

v.SetBool(b)
default:

return fmt.Errorf("unsupported kind %s", v.Type())
}
return nil

}

If we add the server handler to a web server, this might be a typical session:

$ go build gopl
$./search &

$./fetch 'http://localhost:12345/search’

Search: {Labels:[] MaxResults:10 Exact:false}

$./fetch 'http://localhost:12345/search?l=golang&l=programming’
Search: {Labels:[golang programming] MaxResults:10 Exact:false}

.io0/chl12/search

$./fetch 'http:
Search: {lLabels:
$./fetch 'http:

Search: {Labels

$./fetch 'http:

//localhost:12345/search?1l=golang&l=programming&max=100"
[golang programming] MaxResults:100 Exact:false}
//localhost:12345/search?x=true&l=golang&l=programming’
:[golang programming] MaxResults:10 Exact:true}
//localhost:12345/search?gq=hello&x=123"

x: strconv.ParseBool: parsing "123": invalid syntax
$./fetch 'http://localhost:12345/search?q=hello&max=1ots’
max: strconv.ParseInt: parsing "lots": invalid syntax

Exercise 12.11: Write the corresponding Pack function. Given a struct value, Pack should
return a URL incorporating the parameter values from the struct.

Exercise 12.12: Extend the field tag notation to express parameter validity requirements. For
example, a string might need to be a valid email address or credit-card number, and an integer
might need to be a valid US ZIP code. Modify Unpack to check these requirements.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 12.8. DISPLAYING THE METHODS OF A TYPE 351

Exercise 12.13: Modify the S-expression encoder (§12.4) and decoder (§12.6) so that they
honor the sexpr:"..." field tag in a similar manner to encoding/json (§4.5).

12.8. Displaying the Methods of a Type

Our final example of reflection uses reflect.Type to print the type of an arbitrary value and
enumerate its methods:

gopl.io/chl12/methods

// Print prints the method set of the value x.
func Print(x interface{}) {

v := reflect.ValueOf(x)

t 1= v.Type()

fmt.Printf("type %s\n", t)

for i := 0; i < v.NumMethod(); i++ {
methType := v.Method(i).Type()
fmt.Printf("func (%s) %s%s\n", t, t.Method(i).Name,
strings.TrimPrefix(methType.String(), "func"))

}

Both reflect.Type and reflect.Value have a method called Method. Each t.Method (i)
call returns an instance of reflect.Method, a struct type that describes the name and type of
a single method. Each v.Method(i) call returns a reflect.Value representing a method
value (§6.4), that is, a method bound to its receiver. Using the reflect.Value.Call method
(which we don’t have space to show here), it’s possible to call Values of kind Func like this one,
but this program needs only its Type.

Here are the methods belonging to two types, time.Duration and *strings.Replacer:

methods.Print(time.Hour)

// Output:

// type time.Duration

// func (time.Duration) Hours() float64

// func (time.Duration) Minutes() float64
// func (time.Duration) Nanoseconds() inté4
// func (time.Duration) Seconds() float64
// func (time.Duration) String() string

methods.Print(new(strings.Replacer))

// Output:

// type *strings.Replacer

// func (*strings.Replacer) Replace(string) string

// func (*strings.Replacer) WriteString(io.Writer, string) (int, error)

www.it-ebooks.info

http://www.it-ebooks.info/

352 CHAPTER 12. REFLECTION

12.9. A Word of Caution

There is a lot more to the reflection API than we have space to show, but the preceding exam-
ples give an idea of what is possible. Reflection is a powerful and expressive tool, but it should
be used with care, for three reasons.

The first reason is that reflection-based code can be fragile. For every mistake that would
cause a compiler to report a type error, there is a corresponding way to misuse reflection, but
whereas the compiler reports the mistake at build time, a reflection error is reported during
execution as a panic, possibly long after the program was written or even long after it has
started running.

If the readList function (§12.6), for example, should read a string from the input while
populating a variable of type int, the call to reflect.Value.SetString will panic. Most
programs that use reflection have similar hazards, and considerable care is required to keep
track of the type, addressability, and settability of each reflect.Value.

The best way to avoid this fragility is to ensure that the use of reflection is fully encapsulated
within your package and, if possible, avoid reflect.Value in favor of specific types in your
package’s API, to restrict inputs to legal values. If this is not possible, perform additional
dynamic checks before each risky operation. As an example from the standard library, when
fmt.Printf applies a verb to an inappropriate operand, it does not panic mysteriously but
prints an informative error message. The program still has a bug, but it is easier to diagnose.

fmt.Printf("%d %s\n", "hello", 42) // "%!d(string=hello) %!s(int=42)"

Reflection also reduces the safety and accuracy of automated refactoring and analysis tools,
because they can’t determine or rely on type information.

The second reason to avoid reflection is that since types serve as a form of documentation and
the operations of reflection cannot be subject to static type checking, heavily reflective code is
often hard to understand. Always carefully document the expected types and other invariants
of functions that accept an interface{} or a reflect.value.

The third reason is that reflection-based functions may be one or two orders of magnitude
slower than code specialized for a particular type. In a typical program, the majority of func-
tions are not relevant to the overall performance, so it’s fine to use reflection when it makes the
program clearer. Testing is a particularly good fit for reflection since most tests use small data
sets. But for functions on the critical path, reflection is best avoided.

www.it-ebooks.info

http://www.it-ebooks.info/

13

Low-Level Programming

The design of Go guarantees a number of safety properties that limit the ways in which a Go
program can “go wrong” During compilation, type checking detects most attempts to apply
an operation to a value that is inappropriate for its type, for instance, subtracting one string
from another. Strict rules for type conversions prevent direct access to the internals of built-in
types like strings, maps, slices, and channels.

For errors that cannot be detected statically, such as out-of-bounds array accesses or nil
pointer dereferences, dynamic checks ensure that the program immediately terminates with
an informative error whenever a forbidden operation occurs. Automatic memory manage-
ment (garbage collection) eliminates “use after free” bugs, as well as most memory leaks.

Many implementation details are inaccessible to Go programs. There is no way to discover
the memory layout of an aggregate type like a struct, or the machine code for a function, or
the identity of the operating system thread on which the current goroutine is running.
Indeed, the Go scheduler freely moves goroutines from one thread to another. A pointer iden-
tifies a variable without revealing the variable’s numeric address. Addresses may change as the
garbage collector moves variables; pointers are transparently updated.

Together, these features make Go programs, especially failing ones, more predictable and less
mysterious than programs in C, the quintessential low-level language. By hiding the under-
lying details, they also make Go programs highly portable, since the language semantics are
largely independent of any particular compiler, operating system, or CPU architecture. (Not
entirely independent: some details leak through, such as the word size of the processor, the
order of evaluation of certain expressions, and the set of implementation restrictions imposed
by the compiler.)

Occasionally, we may choose to forfeit some of these helpful guarantees to achieve the highest
possible performance, to interoperate with libraries written in other languages, or to imple-
ment a function that cannot be expressed in pure Go.

353

www.it-ebooks.info

http://www.it-ebooks.info/

354 CHAPTER 13. LOW-LEVEL PROGRAMMING

In this chapter, we'll see how the unsafe package lets us step outside the usual rules, and how
to use the cgo tool to create Go bindings for C libraries and operating system calls.

The approaches described in this chapter should not be used frivolously. Without careful
attention to detail, they may cause the kinds of unpredictable, inscrutable, non-local failures
with which C programmers are unhappily acquainted. Use of unsafe also voids Go’s warranty
of compatibility with future releases, since, whether intended or inadvertent, it is easy to
depend on unspecified implementation details that may change unexpectedly.

The unsafe package is rather magical. Although it appears to be a regular package and is
imported in the usual way, it is actually implemented by the compiler. It provides access to a
number of built-in language features that are not ordinarily available because they expose
details of Go’s memory layout. Presenting these features as a separate package makes the rare
occasions on which they are needed more conspicuous. Also, some environments may restrict
the use of the unsafe package for security reasons.

Package unsafe is used extensively within low-level packages like runtime, os, syscall, and
net that interact with the operating system, but is almost never needed by ordinary programs.

13.1. unsafe.Sizeof, Alignof, and Offsetof

The unsafe.Sizeof function reports the size in bytes of the representation of its operand,
which may be an expression of any type; the expression is not evaluated. A call to Sizeofisa
constant expression of type uintptr, so the result may be used as the dimension of an array
type, or to compute other constants.

import "unsafe"

fmt.Println(unsafe.Sizeof(float64(0))) // "8"

Sizeof reports only the size of the fixed part of each data structure, like the pointer and length
of a string, but not indirect parts like the contents of the string. Typical sizes for all non-
aggregate Go types are shown below, though the exact sizes may vary by toolchain. For
portability, we've given the sizes of reference types (or types containing references) in terms of
words, where a word is 4 bytes on a 32-bit platform and 8 bytes on a 64-bit platform.

Computers load and store values from memory most efficiently when those values are
properly aligned. For example, the address of a value of a two-byte type such as int16 should
be an even number, the address of a four-byte value such as a rune should be a multiple of
four, and the address of an eight-byte value such as a float64, uint64, or 64-bit pointer
should be a multiple of eight. Alignment requirements of higher multiples are unusual, even
for larger data types such as complex128.

For this reason, the size of a value of an aggregate type (a struct or array) is at least the sum of
the sizes of its fields or elements but may be greater due to the presence of “holes” Holes are
unused spaces added by the compiler to ensure that the following field or element is properly
aligned relative to the start of the struct or array.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 13.1. UNSAFE.SIZEOF, ALIGNOF, AND OFFSETOF 355

Type Size

bool 1 byte

intN, uintn, floatN, complexN N/ 8 bytes (for example, float64 is 8 bytes)
int, uint, uintptr 1 word

*T 1 word

string 2 words (data, len)

[T 3 words (data, len, cap)
map 1 word

func 1 word

chan 1 word

interface 2 words (type, value)

The language specification does not guarantee that the order in which fields are declared is the
order in which they are laid out in memory, so in theory a compiler is free to rearrange them,
although as we write this, none do. If the types of a struct’s fields are of different sizes, it may
be more space-efficient to declare the fields in an order that packs them as tightly as possible.
The three structs below have the same fields, but the first requires up to 50% more memory
than the other two:

// 64-bit 32-bit
struct{ bool; float64; intlé6 } // 3 words 4 words
struct{ float64; intl6; bool } // 2 words 3 words
struct{ bool; int16; float64 } // 2 words 3 words

The details of the alignment algorithm are beyond the scope of this book, and it’s certainly not
worth worrying about every struct, but efficient packing may make frequently allocated data
structures more compact and therefore faster.

The unsafe.Alignof function reports the required alignment of its argument’s type. Like
Sizeof, it may be applied to an expression of any type, and it yields a constant. Typically,
boolean and numeric types are aligned to their size (up to a maximum of 8 bytes) and all other
types are word-aligned.

The unsafe.0ffsetof function, whose operand must be a field selector x.f, computes the
offset of field f relative to the start of its enclosing struct x, accounting for holes, if any.

Figure 13.1 shows a struct variable x and its memory layout on typical 32- and 64-bit Go
implementations. The gray regions are holes.

var x struct {
a bool
b inti16
c []int

The table below shows the results of applying the three unsafe functions to x itself and to each
of its three fields:

www.it-ebooks.info

http://www.it-ebooks.info/

356 CHAPTER 13. LOW-LEVEL PROGRAMMING

a b a b
c (data) c (data)
c(len) c(len)
c (cap) c(cap)
(32-bit) (64-bit)

Figure 13.1. Holes in a struct.

Typical 32-bit platform:

Sizeof(x) = 16 Alignof(x) =4

Sizeof(x.a) = 1 Alignof(x.a) = 1 Offsetof(x.a) =0
Sizeof(x.b) = 2 Alignof(x.b) = 2 Offsetof(x.b) = 2
Sizeof(x.c) = 12 Alignof(x.c) = 4 Offsetof(x.c) = 4
Typical 64-bit platform:

Sizeof(x) = 32 Alignof(x) =8

Sizeof(x.a) = 1 Alignof(x.a) = 1 Offsetof(x.a) =0
Sizeof(x.b) = 2 Alignof(x.b) = 2 Offsetof(x.b) = 2
Sizeof(x.c) = 24 Alignof(x.c) = 8 Offsetof(x.c) = 8

Despite their names, these functions are not in fact unsafe, and they may be helpful for under-
standing the layout of raw memory in a program when optimizing for space.

13.2. unsafe.Pointer

Most pointer types are written *T, meaning “a pointer to a variable of type T The
unsafe.Pointer type is a special kind of pointer that can hold the address of any variable. Of
course, we can't indirect through an unsafe.Pointer using *p because we don't know what
type that expression should have. Like ordinary pointers, unsafe.Pointers are comparable
and may be compared with nil, which is the zero value of the type.

An ordinary *T pointer may be converted to an unsafe.Pointer, and an unsafe.Pointer
may be converted back to an ordinary pointer, not necessarily of the same type *T. By con-
verting a *float64 pointer to a *uint64, for instance, we can inspect the bit pattern of a float-
ing-point variable:

package math
func Float64bits(f float64) uinté4 { return *(*uint64)(unsafe.Pointer(&f)) }

fmt.Printf("%#016x\n", Float64bits(1.9)) // "©x3ff0000000000000"

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 13.2. UNSAFE.POINTER 357

Through the resulting pointer, we can update the bit pattern too. This is harmless for a float-
ing-point variable since any bit pattern is legal, but in general, unsafe.Pointer conversions
let us write arbitrary values to memory and thus subvert the type system.

An unsafe.Pointer may also be converted to a uintptr that holds the pointer’s numeric
value, letting us perform arithmetic on addresses. (Recall from Chapter 3 that a uintptr is an
unsigned integer wide enough to represent an address.) This conversion too may be applied
in reverse, but again, converting from a uintptr to an unsafe.Pointer may subvert the type
system since not all numbers are valid addresses.

Many unsafe.Pointer values are thus intermediaries for converting ordinary pointers to raw
numeric addresses and back again. The example below takes the address of variable x, adds
the offset of its b field, converts the resulting address to *int16, and through that pointer
updates x. b:

gopl.io/chi3/unsafeptr

var x struct {
a bool
b intil6
c []int

}

// equivalent to pb := &x.b

pb := (*int16)(unsafe.Pointer(
uintptr(unsafe.Pointer(&x)) + unsafe.Offsetof(x.b)))

* =

pb = 42

fmt.Println(x.b) // "42"

Although the syntax is cumbersome—perhaps no bad thing since these features should be
used sparingly—do not be tempted to introduce temporary variables of type uintptr to break
the lines. This code is incorrect:

// NOTE: subtly incorrect!

tmp := uintptr(unsafe.Pointer(&x)) + unsafe.Offsetof(x.b)
pb := (*int16)(unsafe.Pointer(tmp))

*pb = 42

The reason is very subtle. Some garbage collectors move variables around in memory to
reduce fragmentation or bookkeeping. Garbage collectors of this kind are known as moving
GCs. When a variable is moved, all pointers that hold the address of the old location must be
updated to point to the new one. From the perspective of the garbage collector, an
unsafe.Pointer is a pointer and thus its value must change as the variable moves, but a
uintptr is just a number so its value must not change. The incorrect code above hides a
pointer from the garbage collector in the non-pointer variable tmp. By the time the second
statement executes, the variable x could have moved and the number in tmp would no longer
be the address &x.b. The third statement clobbers an arbitrary memory location with the
value 42.

www.it-ebooks.info

http://www.it-ebooks.info/

358 CHAPTER 13. LOW-LEVEL PROGRAMMING

There are myriad pathological variations on this theme. After this statement has executed:

pT := uintptr(unsafe.Pointer(new(T))) // NOTE: wrong!

there are no pointers that refer to the variable created by new, so the garbage collector is
entitled to recycle its storage when this statement completes, after which pT contains the
address where the variable was but is no longer.

No current Go implementation uses a moving garbage collector (though future implemen-
tations might), but this is no reason for complacency: current versions of Go do move some
variables around in memory. Recall from Section 5.2 that goroutine stacks grow as needed.
When this happens, all variables on the old stack may be relocated to a new, larger stack, so we
cannot rely on the numeric value of a variable’s address remaining unchanged throughout its
lifetime.

At the time of writing, there is little clear guidance on what Go programmers may rely upon
after an unsafe.Pointer to uintptr conversion (see Go issue 7192), so we strongly recom-
mend that you assume the bare minimum. Treat all uintptr values as if they contain the
former address of a variable, and minimize the number of operations between converting an
unsafe.Pointer to a uintptr and using that uintptr. In our first example above, the three
operations—conversion to a uintptr, addition of the field offset, conversion back—all
appeared within a single expression.

When calling a library function that returns a uintptr, such as those below from the reflect
package, the result should be immediately converted to an unsafe.Pointer to ensure that it
continues to point to the same variable.

package reflect

func (Value) Pointer() uintptr
func (Value) UnsafeAddr() uintptr
func (Value) InterfaceData() [2]uintptr // (index 1)

13.3. Example: Deep Equivalence

The DeepEqual function from the reflect package reports whether two values are “deeply”
equal. DeepEqual compares basic values as if by the built-in == operator; for composite val-
ues, it traverses them recursively, comparing corresponding elements. Because it works for
any pair of values, even ones that are not comparable with ==, it finds widespread use in tests.
The following test uses DeepEqual to compare two []string values:

func TestSplit(t *testing.T) {
got := strings.Split("a:b:c", ":")
want := []string{"a", "b", "c"};
if !reflect.DeepEqual(got, want) { /* ... */ }

}

Although DeepEqual is convenient, its distinctions can seem arbitrary. For example, it doesn't
consider a nil map equal to a non-nil empty map, nor a nil slice equal to a non-nil empty one:

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 13.3. EXAMPLE: DEEP EQUIVALENCE 359

var a, b []string = nil, []string{}
fmt.Println(reflect.DeepEqual(a, b)) // "false"

var ¢, d map[string]int = nil, make(map[string]int)
fmt.Println(reflect.DeepEqual(c, d)) // "false"

In this section we'll define a function Equal that compares arbitrary values. Like DeepEqual,
it compares slices and maps based on their elements, but unlike DeepEqual, it considers a nil
slice (or map) equal to a non-nil empty one. The basic recursion over the arguments can be
done with reflection, using a similar approach to the Display program we saw in Section 12.3.
As usual, we define an unexported function, equal, for the recursion. Don’t worry about the
seen parameter just yet. For each pair of values x and y to be compared, equal checks that
both (or neither) are valid and checks that they have the same type. The result of the function
is defined as a set of switch cases that compare two values of the same type. For reasons of
space, we've omitted several cases since the pattern should be familiar by now.

gopl.io/chi3/equal

func equal(x, y reflect.Value, seen map[comparison]bool) bool {
if Ix.Isvalid() || !y.Isvalid() {
return x.IsValid() == y.IsValid()
}
if x.Type() != y.Type() {
return false
}

// ...cycle check omitted (shown later)...

switch x.Kind() {
case reflect.Bool:
return x.Bool() == y.Bool()

case reflect.String:
return x.String() == y.String()

// ...numeric cases omitted for brevity...

case reflect.Chan, reflect.UnsafePointer, reflect.Func:
return x.Pointer() == y.Pointer()

case reflect.Ptr, reflect.Interface:
return equal(x.Elem(), y.Elem(), seen)

case reflect.Array, reflect.Slice:
if x.Len() !'= y.Len() {
return false

}
for i :=0; i < x.Len(); i++ {
if lequal(x.Index(i), y.Index(i), seen) {
return false
}
}

return true

www.it-ebooks.info

http://www.it-ebooks.info/

360 CHAPTER 13. LOW-LEVEL PROGRAMMING

// ...struct and map cases omitted for brevity...

}

panic("unreachable")

}

As usual, we don't expose the use of reflection in the API, so the exported function Equal
must call reflect.ValueOf on its arguments:

// Equal reports whether x and y are deeply equal.
func Equal(x, y interface{}) bool {

seen := make(map[comparison]bool)

return equal(reflect.ValueOf(x), reflect.ValueOf(y), seen)
}

type comparison struct {
X, y unsafe.Pointer
t reflect.Type

}

To ensure that the algorithm terminates even for cyclic data structures, it must record which
pairs of variables it has already compared and avoid comparing them a second time. Equal
allocates a set of comparison structs, each holding the address of two variables (represented as
unsafe.Pointer values) and the type of the comparison. We need to record the type in addi-
tion to the addresses because different variables can have the same address. For example, if x
and y are both arrays, x and x[@] have the same address, as do y and y[0], and it is important
to distinguish whether we have compared x and y or x[@] and y[@].

Once equal has established that its arguments have the same type, and before it executes the
switch, it checks whether it is comparing two variables it has already seen and, if so, terminates
the recursion.

// cycle check
if x.CanAddr() && y.CanAddr() {
xptr := unsafe.Pointer(x.UnsafeAddr())
yptr := unsafe.Pointer(y.UnsafeAddr())
if xptr == yptr {
return true // identical references
}
c := comparison{xptr, yptr, x.Type()}
if seen[c] {
return true // already seen

}
seen[c] = true
}
Here’s our Equal function in action:
fmt.Println(Equal([]int{1, 2, 3}, [lint{1, 2, 3})) // “"true"
fmt.Println(Equal([]string{"foo"}, [Istring{"bar"})) // "false"
fmt.Println(Equal([]string(nil), []string{})) // "true"

fmt.Println(Equal(map[stringlint(nil), map[string]int{})) // "true"

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 13.4. CALLING C CODE WITH CGO 361

It even works on cyclic inputs similar to the one that caused the Display function from
Section 12.3 to get stuck in a loop:
// Circular linked lists a -> b -> a and ¢ -> c.
type link struct {
value string
tail *1link
}
a, b, c := &link{value: "a"}, &link{value: "b"}, &link{value: "c"}
a.tail, b.tail, c.tail = b, a, ¢
fmt.Println(Equal(a, a)) // "true"
fmt.Println(Equal(b, b)) // "true"
fmt.Println(Equal(c, c)) // "true"
fmt.Println(Equal(a, b)) // "false"
fmt.Println(Equal(a, c)) // "false"

Exercise 13.1: Define a deep comparison function that considers numbers (of any type) equal
if they differ by less than one part in a billion.

Exercise 13.2: Write a function that reports whether its argument is a cyclic data structure.

13.4. Calling C Code with cgo

A Go program might need to use a hardware driver implemented in C, query an embedded
database implemented in C++, or use some linear algebra routines implemented in Fortran. C
has long been the lingua franca of programming, so many packages intended for widespread
use export a C-compatible API, regardless of the language of their implementation.

In this section, we’ll build a simple data compression program that uses cgo, a tool that creates
Go bindings for C functions. Such tools are called foreign-function interfaces (FFIs), and cgo is
not the only one for Go programs. SWIG (swig.org) is another; it provides more complex
features for integrating with C++ classes, but we won't show it here.

The compress/. .. subtree of the standard library provides compressors and decompressors
for popular compression algorithms, including LZW (used by the Unix compress command)
and DEFLATE (used by the GNU gzip command). The APIs of these packages vary slightly
in details, but they all provide a wrapper for an io.Writer that compresses the data written to
it, and a wrapper for an io.Reader that decompresses the data read from it. For example:

package gzip // compress/gzip
func NewWriter(w io.Writer) io.WriteCloser

func NewReader(r io.Reader) (io.ReadCloser, error)

The bzip2 algorithm, which is based on the elegant Burrows-Wheeler transform, runs slower
than gzip but yields significantly better compression. The compress/bzip2 package provides
a decompressor for bzip2, but at the moment the package provides no compressor. Building
one from scratch is a substantial undertaking, but there is a well-documented and high-per-
formance open-source C implementation, the 1ibbzip2 package from bzip.org.

www.it-ebooks.info

http://www.it-ebooks.info/

362 CHAPTER 13. LOW-LEVEL PROGRAMMING

If the C library were small, we would just port it to pure Go, and if its performance were not
critical for our purposes, we would be better off invoking a C program as a helper subprocess
using the os/exec package. It’s when you need to use a complex, performance-critical library
with a narrow C API that it may make sense to wrap it using cgo. For the rest of this chapter,
we'll work through an example.

From the 1ibbzip2 C package, we need the bz_stream struct type, which holds the input and
output buffers, and three C functions: BzZ2_bzCompressInit, which allocates the stream’s
buffers; BZ2_bzCompress, which compresses data from the input buffer to the output buffer;
and BZ2_bzCompressEnd, which releases the buffers. (Don’t worry about the mechanics of the
1ibbzip2 package; the purpose of this example is to show how the parts fit together.)

We'll call the BZ2_bzCompressInit and Bz2_bzCompressknd C functions directly from Go,
but for BZ2_bzCompress, we'll define a wrapper function in C, to show how it's done. The C
source file below lives alongside the Go code in our package:

gopl.io/chl13/bzip
/* This file is gopl.io/chl13/bzip/bzip2.c, */
/* a simple wrapper for libbzip2 suitable for cgo. */
#include <bzlib.h>

int bz2compress(bz_stream *s, int action,
char *in, unsigned *inlen, char *out, unsigned *outlen) {
s->next_in = in;
s->avail_in = *inlen;
s->next_out = out;
s->avail_out = *outlen;
int r = BZ2_bzCompress(s, action);

*inlen -= s-»avail_in;
*outlen -= s->avail out;
return r;

}

Now let’s turn to the Go code, the first part of which is shown below. The import "C" declara-
tion is special. There is no package C, but this import causes go build to preprocess the file
using the cgo tool before the Go compiler sees it.

// Package bzip provides a writer that uses bzip2 compression (bzip.org).
package bzip

/*
#cgo CFLAGS: -I/usr/include
#cgo LDFLAGS: -L/usr/1lib -1bz2
#include <bzlib.h>
int bz2compress(bz_stream *s, int action,
char *in, unsigned *inlen, char *out, unsigned *outlen);
*/

import "C"

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 13.4. CALLING C CODE WITH CGO 363

import (

io
"unsafe"

)

type writer struct {
w io.Writer // underlying output stream
stream *C.bz_stream
outbuf [64 * 1024]byte

}

// NewWriter returns a writer for bzip2-compressed streams.
func NewWriter(out io.Writer) io.WriteCloser {

const (

blockSize =9

verbosity = 0

workFactor = 30
)
w := &uriter{w: out, stream: new(C.bz_stream)}
C.BZ2_bzCompressInit(w.stream, blockSize, verbosity, workFactor)
return w

}

During preprocessing, cgo generates a temporary package that contains Go declarations cor-
responding to all the C functions and types used by the file, such as C.bz_stream and
C.Bz2_bzCompressInit. The cgo tool discovers these types by invoking the C compiler in a
special way on the contents of the comment that precedes the import declaration.

The comment may also contain #cgo directives that specify extra options to the C toolchain.
The CFLAGS and LDFLAGS values contribute extra arguments to the compiler and linker com-
mands so that they can locate the bz1ib.h header file and the 1ibbz2.a archive library. The
example assumes that these are installed beneath /usr on your system. You may need to alter
or delete these flags for your installation.

NewWriter makes a call to the C function BZ2_bzCompressInit to initialize the buffers for
the stream. The writer type includes another buffer that will be used to drain the decom-
pressor’s output buffer.

The Write method, shown below, feeds the uncompressed data to the compressor, calling the
function bz2compress in a loop until all the data has been consumed. Observe that the Go
program may access C types like bz_stream, char, and uint, C functions like bz2compress,
and even object-like C preprocessor macros such as BZ_RUN, all through the C.x notation. The
C.uint type is distinct from Go’s uint type, even if both have the same width.

func (w *writer) Write(data []byte) (int, error) {
if w.stream == nil {
panic("closed")

}

var total int // uncompressed bytes written

www.it-ebooks.info

http://www.it-ebooks.info/

364 CHAPTER 13. LOW-LEVEL PROGRAMMING

for len(data) > @ {
inlen, outlen := C.uint(len(data)), C.uint(cap(w.outbuf))
C.bz2compress(w.stream, C.BZ_RUN,
(*C.char)(unsafe.Pointer(&data[@])), &inlen,
(*C.char)(unsafe.Pointer(&w.outbuf)), &outlen)
total += int(inlen)
data = data[inlen:]
if _, err := w.w.Write(w.outbuf[:outlen]); err != nil {
return total, err
}
}

return total, nil

}

Each iteration of the loop passes bz2compress the address and length of the remaining
portion of data, and the address and capacity of w.outbuf. The two length variables are
passed by their addresses, not their values, so that the C function can update them to indicate
how much uncompressed data was consumed and how much compressed data was produced.
Each chunk of compressed data is then written to the underlying io.Writer.

The Close method has a similar structure to Write, using a loop to flush out any remaining
compressed data from the stream’s output buffer.

// Close flushes the compressed data and closes the stream.
// It does not close the underlying io.Writer.
func (w *writer) Close() error {
if w.stream == nil {
panic("closed")
}
defer func() {
C.BZ2_bzCompressEnd(w.stream)
w.stream = nil

10
for {
inlen, outlen := C.uint(®), C.uint(cap(w.outbuf))
r := C.bz2compress(w.stream, C.BZ_FINISH, nil, &inlen,
(*C.char)(unsafe.Pointer(&w.outbuf)), &outlen)
if _, err := w.w.Write(w.outbuf[:outlen]); err != nil {
return err
}
if r == C.BZ_STREAM_END {
return nil
}
}

}

Upon completion, Close calls C.BZ2_bzCompressEnd to release the stream buffers, using
defer to ensure that this happens on all return paths. At this point the w. stream pointer is
no longer safe to dereference. To be defensive, we set it to nil, and add explicit nil checks to
each method, so that the program panics if the user mistakenly calls a method after Close.

www.it-ebooks.info

http://www.it-ebooks.info/

SECTION 13.4. CALLING C CODE WITH CGO 365

Not only is writer not concurrency-safe, but concurrent calls to Close and Write could cause
the program to crash in C code. Fixing this is Exercise 13.3.

The program below, bzipper, is a bzip2 compressor command that uses our new package. It
behaves like the bzip2 command present on many Unix systems.

gopl.io/chi3/bzipper

// Bzipper reads input, bzip2-compresses it, and writes it out.
package main

import (
"io"
"log"

os

"gopl.io/ch13/bzip"
)

func main() {
W := bzip.NewWriter(os.Stdout)
if _, err := io.Copy(w, os.Stdin); err != nil {
log.Fatalf("bzipper: %v\n", err)

}

if err := w.Close(); err != nil {
log.Fatalf("bzipper: close: %v\n", err)

}

}

In the session below, we use bzipper to compress /usr/share/dict/words, the system dic-
tionary, from 938,848 bytes to 335,405 bytes—about a third of its original size—then uncom-
press it with the system bunzip2 command. The SHA256 hash is the same before and after,
giving us confidence that the compressor is working correctly. (If you don't have sha256sum
on your system, use your solution to Exercise 4.2.)

$ go build gopl.io/ch13/bzipper

$ wc -c < /usr/share/dict/words

938848

$ sha256sum < /usr/share/dict/words
126a4e138493313edc50b86190dfdat7c59ec6c948451eac228f2f3a8ablabed -
$./bzipper < /usr/share/dict/words | wc -c

335405

$./bzipper < /usr/share/dict/words | bunzip2 | sha256sum
126a4ef38493313edc50b86190dfdat7c59ec6c948451eac228f2f3a8ablabed -

We've demonstrated linking a C library into a Go program. Going in the other direction, it’s
also possible to compile a Go program as a static archive that can be linked into a C program
or as a shared library that can be dynamically loaded by a C program. We've only scratched
the surface of cgo here, and there is much more to say about memory management, pointers,
callbacks, signal handling, strings, errno, finalizers, and the relationship between goroutines
and operating system threads, much of it very subtle. In particular, the rules for correctly
passing pointers from Go to C or vice versa are complex, for reasons similar to those we

www.it-ebooks.info

http://www.it-ebooks.info/

366 CHAPTER 13. LOW-LEVEL PROGRAMMING

discussed in Section 13.2, and not yet authoritatively specified. For further reading, start with
https://golang.org/cmd/cgo.

Exercise 13.3: Use sync.Mutex to make bzip2.writer safe for concurrent use by multiple
goroutines.

Exercise 13.4: Depending on C libraries has its drawbacks. Provide an alternative pure-Go
implementation of bzip.NewWriter that uses the os/exec package to run /bin/bzip2 as a
subprocess.

13.5. Another Word of Caution

We ended the previous chapter with a warning about the downsides of the reflection interface.
That warning applies with even more force to the unsafe package described in this chapter.

High-level languages insulate programs and programmers not only from the arcane specifics
of individual computer instruction sets, but from dependence on irrelevancies like where in
memory a variable lives, how big a data type is, the details of structure layout, and a host of
other implementation details. Because of that insulating layer, it’s possible to write programs
that are safe and robust and that will run on any operating system without change.

The unsafe package lets programmers reach through the insulation to use some crucial but
otherwise inaccessible feature, or perhaps to achieve higher performance. The cost is usually
to portability and safety, so one uses unsafe at one’s peril. Our advice on how and when to
use unsafe parallels Knuths comments on premature optimization, which we quoted in
Section 11.5. Most programmers will never need to use unsafe at all. Nevertheless, there will
occasionally be situations where some critical piece of code can be best written using unsafe.
If careful study and measurement indicates that unsafe really is the best approach, restrict it
to as small a region as possible, so that most of the program is oblivious to its use.

For now, put the last two chapters in the back of your mind. Write some substantial Go
programs. Avoid reflect and unsafe; come back to these chapters only if you must.

Meanwhile, happy Go programming. We hope you enjoy writing Go as much as we do.

www.it-ebooks.info

http://www.it-ebooks.info/

!, negation operator 63

%, remainder operator 52, 166

&8, short-circuit AND operator 63

&, address-of operator 24, 32, 94,
158, 167

&, implicit 158, 167

&*, AND-NOT operator 53

&*, bit-clear operator 53

' quote character 56

* indirection operator 24, 32

++, increment statement 5, 37, 94

+, string concatenation operator 5,
65

+, unary operator 53

+=, -=, etc,, assignment operator 5

-, unary operator 53

- -, decrement statement 5, 37

... argument 139, 142

... array length 82

... parameter 91, 142, 143,172

... path 292,299

/*...*/ comment 5,25

// comment 5, 25

:= short variable declaration 5, 31,
49

<<, left shift operator 54

==, comparison operator 40, 63

>>, right shift operator 54

A, bitwise complement operator 53

A, exclusive OR operator 53

_, blank identifier 7, 38, 95, 120, 126,
287

* backquote character 66

| in template 113

|, bitwise OR operator 166, 167

| I, short-circuit OR operator 63

Abstract Syntax Notation One
(ASN.1) 107
abstract type 24, 171
abstraction, premature 216, 316, 317
ad hoc polymorphism 211
address of local variable 32, 36
address of struct literal 103
addressable expression 159, 341
addressable value 32
address-of operator & 24, 32, 94,
158, 167
aggregate type 81,99
Alef programming language xiii
algorithm
breadth-first search 139, 239
depth-first search 136
Fibonacci 37, 218
GCD 37
insertion sort 101
Lissajous 15
slice rotation 86
topological sort 136
aliasing, pointer 33
alignment 354
allocation
heap 36
memory 36, 71, 89, 169, 209, 322
stack 36
anchor element, HTML 122
AND operator &&, short-circuit 63
AND-NOT operator & 53
animation, GIF 13
anonymous
function 22, 135, 236
function, defer 146
function, recursive 137

367

www.it-ebooks.info

Index

struct field 104, 105, 106, 162
API
encoding 213, 340
error 127,152
package 284, 296, 311, 333, 352
runtime 324
SQL 211
system call 196
template 115
token-based decoder 213, 215,
347
APL programming language xiii
append built-in function 88, 90, 91
appendInt example 88
argument
. 139,142
command-line 4, 18, 33, 43, 179,
180, 290, 313
function 119
pointer 33, 83
slice 86
arithmetic expression evaluator 197
array
comparison 83
length, ... 82
literal 82, 84
type 81
underlying 84, 88, 91, 187
zero value 82
ASCII 56, 64, 66, 67, 305
ASN.1 (Abstract Syntax Notation
One) 107
assembly line, cake 234
assertion
function 316
interface type 208, 210

http://www.it-ebooks.info/

368

test 306

type 205, 211
assignability 38,175
assignability, interface 175
assignment

implicit 38

multiple-value 37

operator +=, -=, etc. 5

operators 36, 52

statement 5, 7, 36, 52, 94, 173

tuple 31,37
associativity, operator 52
atomic operation 264
attack, HTML injection 115
attack, SQL injection 211
autoescape example 117

back-door, package 315
back-off, exponential 130
backquote character, ~ 66
bank example package 258, 261, 263
bare return 126
basename example 72
behavior, undefined 260
Benchmark function 302, 321
bidirectional to unidirectional
channel conversion 231
binary
operators, table of 52
semaphore 262
tree 102
bit vector 165
bit-clear operator & 53
bit-set data type 77
bitwise
complement operator A 53
operators, table of 53
OR operator | 166, 167
black-box test 310
blank identifier _ 7, 38, 95, 120, 126,
287
blank import 287
block
file 46
lexical 46, 120, 135, 141, 212
local 46
package 46
universe 46
blocking profile 324
Blog, Go xvi, 326
boiling example 29
bool type 63
boolean
constant, false 63
constant, true 63
zero value 30
breadthFirst function 139
breadth-first search algorithm 139,
239

break statement 24, 46
break statement, labeled 249
brittle test 317
broadcast 251, 254, 276
Brooks, Fred xiv
btoi function 64
buffered channel 226, 231
bufio package 9
bufio.NewReader function 98
bufio.NewScanner function 9
(*bufio.Reader).ReadRune
method 98
bufio.Scanner type 9
(*bufio.Scanner).Err method 97
(*bufio.Scanner).Scan method 9
(*bufio.Scanner).Split method
99
bufio.ScanWords function 99
+build comments 296
build constraints 296
build tags 296
building packages 293
built-in function
append 88, 90, 91
cap 84,232
close 226, 228, 251
complex 61
copy 89
delete 94
imag 61
len 4, 54, 64, 65, 81, 84, 233
make 9, 18, 88, 94, 225
new 34
panic 148, 149
real 61
recover 152
built-in interface, error 196
built-in type, error 11, 128, 149,
196
byte slice to string conversion 73
byte type 52
ByteCounter example 173
bytes package 71,73
bytes.Buffer type 74,169, 172, 185
(*bytes.Buffer).Grow method
169
(*bytes.Buffer).WriteByte
method 74
(*bytes.Buffer).WriteRune
method 74
(*bytes.Buffer).WriteString
method 74
bytes.Equal function 86
bzip C code 362
bzip example package 363
bzipper example 365

C++ programming language xiv, xv,
361

www.it-ebooks.info

INDEX

C programming language xii, xv, 1,
6, 52, 260, 361
cache, concurrent non-blocking 272
cache, non-blocking 275
cake assembly line 234
call
by reference 83
by value 83,120, 158
interface method 182
ok value from function 128
calling C from Go 361
camel case 28
cancellation 251, 252
cancellation of HT TP request 253
cap built-in function 84, 232
capacity, channel 226, 232, 233
capacity, slice 88, 89
capturing iteration variable 140
capturing loop variable 141, 236,
240
case in type switch 212
case, select 245
Celsius type 39
CelsiusFlag function 181
cf example 43
cgo tool 361, 362
<-ch, channel receive 18, 225, 232
ch<-, channel send 18, 225, 232
chaining, method 114
chan type 225
channel
buffered 226, 231
capacity 226, 232, 233
close 228,251
closing a 225
communication 225, 245
comparison 225
conversion, bidirectional to
unidirectional 231
draining a 229, 252
make 18,225
nil 246, 249
polling 246
range over 229
receive <-ch 18, 225, 232
receive, non-blocking 246
receive, ok value from 229
send ch<- 18,225,232
synchronous 226
type 18
type <-chan T, receive-only 230
type chan<- T, send-only 230
type, unidirectional 230, 231
unbuffered 226
zero value 225, 246
character conversion 71
character test 71
charcount example 98
chat example 254

http://www.it-ebooks.info/

INDEX

chat server 253
CheckQuota function 312,313
client, email 312
client, SMTP 312
clock example 220, 222
clock server, concurrent 219
close built-in function 226, 228,
251
close, channel 228, 251
closer goroutine 238, 250
closing a channel 225
closure, lexical 136
cmplx.Sqrt function 61
code
format 3, 6,9, 48
point, Unicode 67
production 301
ColoredPoint example 161
comma example 73
command, testing a 308
command-line argument 4, 18, 33,
43,179, 180, 290, 313
comment
/*...%/ 5,25
// 5,25
doc 42,296
// Output 326
comments, +build 296
communicating sequential processes
(CSP) xiii, 217
communication, channel 225, 245
comparability 9, 38, 40, 53, 86, 93,
97, 104
comparison
array 83
channel 225
function 133
interface 184
map 96
operator == 40, 63
operators 40, 93
operators, table of 53
slice 87
string 65
struct 104
compilation, separate 284
complement operator #, bitwise 53
complex built-in function 61
complex type 61
composite literal 14
composite type xv, 14, 81
composition, parallel 224
composition, type xv, 107, 162, 189
compress/bzip2 package 361
compression 361
conceptual integrity xiv
concrete type 24,171, 211, 214
concurrency 17,217,257
excessive 241,242

safe 275

safety 256,257,272, 365

with shared variables 257
concurrent

clock server 219

directory traversal 247

echo server 222

non-blocking cache 272

web crawler 239
confinement, serial 262
confinement, variable 261
consistency, sequential 268, 269
const declaration 14, 75
constant

false boolean 63

generator, iota xiii, 77

time.Minute 76

time.Second 164

true boolean 63

types, untyped 78
constants, precision of 78
constraints, build 296
contention, lock 267, 272
context switch 280
continue statement 24, 46
continue statement, labeled 249
contracts, interfaces as 171
control flow 46
conversion

bidirectional to unidirectional

channel 231

byte slice to string 73

character 71

implicit 79

narrowing 40, 55

numeric 79

operation 40, 55, 64, 71, 78, 79,

173, 187, 194, 208, 231, 353, 358

rune slice to string 71

rune to string 71

string 71

string to byte slice 40, 73

string to rune slice 71, 88

unsafe.Pointer 356
copy built-in function 89
countdown example 244, 245, 246
counting semaphore 241
coverage, statement 318, 320
coverage, test 318
coverage_test example 319
CPU profile 324
crawl example 240, 242, 243
crawler, concurrent web 239
crawler, web 119
critical section 263, 270, 275
cross-compilation 295
cryptography 55, 83, 121, 325
crypto/sha256 package 83
customSort example 190

www.it-ebooks.info

369

cyclic data structure 337
cyclic test dependency 314

data

race 259, 267,275

structure, cyclic 337

structure, recursive 101, 102, 107

type, bit-set 77
database driver, MySQL 284
database/sql package 211, 288
daysAgo function 114
deadbeef 55, 80
deadlock 233, 240, 265
declaration

const 14,75

func 3,29,119

import 3,28, 42, 284, 285, 362

method 40, 155

package 2,28, 41,285

package-level 28

scope 45,137

shadowing 46, 49, 206, 212

short variable 5,7, 30, 31

statement, short variable 7

struct 99

type 39

var 5,30
declarations, order of 48
decode example, S-expression 347
decoder API, token-based 213, 215,

347

decoding, S-expression 344
decoding, XML 213
decrement statement -- 5, 37
dedup example 97
deep equivalence 87,317, 358
default case in select 246
default case in switch 23
default case in type switch 212
defer anonymous function 146
defer example 150, 151
defer statement 144, 150, 264
deferred function call 144
delete built-in function 94
depth-first search algorithm 136
dereference, implicit 159
diagram

helloworld substring 69

pipeline 228

slice capacity growth 90

slice of months 84

string sharing 65

struct hole 355

thumbnail sequence 238
digital artifact example 178
Dijkstra, Edsger 318
Dilbert 100
directed acyclic graph 136, 284
directory traversal, concurrent 247

http://www.it-ebooks.info/

370

discriminated union 211, 213, 214
Display function 333

display example 333

display function 334
displaying methods of a type 351
Distance function 156

doc comment 42, 296

doc.go doc comment file 42, 296
documentation, package 296
domain name, import path 284
dot . in template 113
downloading packages 292

Dr. Strangelove 336

draining a channel 229, 252

du example 247, 249, 250

dup example 9, 11,12

duplicate suppression 276
dynamic dispatch 183

dynamic type, interface 181

echo example 5, 7, 34, 309
echo test 309
echo server, concurrent 222
echo_test.go 310
effective tests, writing 316, 317
email client 312
embarrassingly parallel 235
embedded struct field 161
embedding, interface 174
embedding, struct 104, 161
Employee struct 100
empty

interface type 176

select statement 245

string 5,7, 30

struct 102
encapsulation 168, 284
encoding API 213, 340
encoding, S-expression 338
encoding/json package 107
encoding/xml package 107,213
end of file (EOF) 131
enum 77
environment variable

GOARCH 292, 295

GOMAXPROCS 281, 321

GOOS 292, 295

GOPATH xvi, 291, 295

GOROOT 292
equal function 87, 96
equality, pointer 32
equivalence, deep 87,317, 358
error built-in interface 196
error built-in type 11, 128, 149, 196
error API 127,152
error.Error method 196
errorf function 143
error-handling strategies 128, 152,

310, 316

errors package 196
errors.New function 196
escape
hexadecimal 66
HTML 116
octal 66
sequence 10
sequences, table of 66
Unicode 68, 107
URL 111
escaping variables 36
eval example 198
event multiplexing 244
events 227, 244
Example function 302, 326
example
autoescape 117
basename 72
boiling 29
ByteCounter 173
bzipper 365
cf 43
charcount 98
chat 254
clock 220,222
ColoredPoint 161
comma 73
countdown 244, 245, 246
coverage_test 319
crawl 240, 242, 243
customSort 190
dedup 97
defer 150, 151
digital artifact 178
display 333
du 247, 249, 250
dup 9,11,12
echo 5,7, 34, 309
eval 198
fetch 16, 148
fetchall 18
findlinks 122,125,139
ftoc 29
github 110, 111
graph 99
helloworld 1,2
http 192, 194, 195
intset 166
issues 112
issueshtml 115
issuesreport 114
jpeg 287
lissajous 14, 22,35
mandelbrot 62
memo 275, 276, 277,278,279
methods 351
movie 108,110
netcat 221, 223,227
netflag 78

www.it-ebooks.info

INDEX

nonempty 92

outline 123,133

package, bank 258, 261, 263

package, bzip 363

package, format 332

package, geometry 156

package, http 192

package, 1inks 138

package, memo 273

package, params 348

package, storage 312,313

package, tempconv 42

package, thumbnail 235

palindrome 303, 305, 308

params 348

Parse 152

pipeline 228,230, 231

playlist 187

rev 86

reverb 223,224

server 19,21

sexpr 340

S-expression decode 347

sha256 83

sleep 179

spinner 218

squares 135

sum 142

surface 59,203

tempconv 39, 180, 289

temperature conversion 29

tempflag 181

test of word 303

thumbnail 236,237,238

title 153

topoSort 136

trace 146

treesort 102

urlvalues 160

wait 130

word 303, 305, 308

xmlselect 215

appendInt 88
exception 128, 149
excessive concurrency 241, 242
exclusion, mutual 262, 267
exclusive lock 263, 266, 270
exclusive OR operator * 53
exponential back-off 130
export of struct field 101, 106, 109,

110, 168

export_test.go file 315
Expr.Check method 202
expression

addressable 159, 341

evaluator 197

method 164

receive 225
Expr.Eval method 199

http://www.it-ebooks.info/

INDEX

extending a slice 86

Extensible Markup Language (XML)
107

external test package 285,314

Fahrenheit type 39
failure message, test 306
fallthrough statement 23,212
false boolean constant 63
fetch example 16, 148
fetchall example 18
fib function 37,218
Fibonacci algorithm 37,218
field

anonymous struct 104, 105, 106,

162
embedded struct 161
export of struct 101, 106, 109,
110, 168

order, struct 101, 355

selector 156

struct 15,99

tag, omitempty 109

tag, struct 109, 348
figure

Lissajous 13

Mandelbrot 63

3-D surface 58,203
File Transfer Protocol (FTP) 222
file

block 46

export_test.go 315

name, Microsoft Windows 72

name, POSIX 72

_test.go 285, 302, 303
findlinks example 122, 125, 139
fixed-size stack 124
flag package 33,179
flag

go tool -bench 321

go tool -benchmem 322

go tool -covermode 319

go tool -coverprofile 319

go tool -cpuprofile 324

go tool -nodecount 325

go tool -text 325

go tool -web 326

godoc -analysis 176

go list -f 315

go -race 271

go test -race 274

go test -run 305

go test -v 304
flag.Args function 34
flag.Bool function 34
flag.Duration function 179
flag.Parse function 34
flag.String function 34
flag.Value interface 179, 180

floating-point
number 56
precision 56, 57, 63,78
truncation 40, 55
fmt package 2
fmt.Errorf function 129, 196
fmt.Fprintf function 172
fmt.Printf function 10
fmt.Println function 2
fmt.Scanf function 75
fmt.Sscanf function 180
fmt.Stringer interface 180,210
for scope 47
for statement 6
forEachNode function 133
foreign-function interface (FFI) 361
format, code 3, 6,9, 48
format example package 332
formatAtom function 332
framework, web 193
ftoc example 29
func declaration 3,29, 119
function
anonymous 22, 135, 236
append built-in 88, 90, 91
argument 119
assertion 316
Benchmark 302, 321
body, missing 121
breadthFirst 139
btoi 64
bufio.NewReader 98
bufio.NewScanner 9
bufio.ScanWords 99
bytes.Equal 86
call, deferred 144
call, ok value from 128
cap built-in 84, 232
CelsiusFlag 181
CheckQuota 312,313
close built-in 226, 228, 251
cmplx.Sqrt 61
comparison 133
complex built-in 61
copy built-in 89
daysAgo 114
delete built-in 94
Display 333
display 334
Distance 156
equal 87,96
errorf 143
errors.New 196
Example 302, 326
fib 37,218
flag.Args 34
flag.Bool 34
flag.Duration 179
flag.Parse 34

www.it-ebooks.info

371

flag.String 34

fmt.Errorf 129, 196

fmt.Fprintf 172

fmt.Printf 10

fmt.Println 2

fmt.Scanf 75

fmt.Sscanf 180

forEachNode 133

formatAtom 332

ged 37

handler 19, 21, 152, 191, 194, 195,
348

html.Parse 121,125

http.DefaultServeMux 195

http.Error 193

http.Get 16,18

http.Handle 195

http.HandleFunc 19,22, 195

http.ListenAndServe 19, 191

http.NewRequest 253

http.ServeMux 193

hypot 120

imag built-in 61

image.Decode 288

image.RegisterFormat 288

incr 33

init 44,49

intsToString 74

io.Copy 17,18

ioutil.ReadAll 16,272

ioutil.ReadDir 247

ioutil.ReadFile 12,145

io.WriteString 209

itob 64

json.Marshal 108

json.MarshalIndent 108

json.NewDecoder 111

json.NewEncoder 111

json.Unmarshal 110, 114

len built-in 4, 54, 64, 65, 81, 84,
233

links.Extract 138

literal 22, 135, 227

log.Fatalf 49, 130

main 2,310

make built-in 9, 18, 88, 94, 225

math.Hypot 156

math.Inf 57

math.IsInf 57

math.IsNaN 57

math.NaN 57

multi-valued 11, 30, 37, 96, 125,
126

mustCopy 221

net.Dial 220

net.Listen 220

new built-in 34

nil 132

os.Close 11

http://www.it-ebooks.info/

372

os.Exit 16, 34, 48
os.Getwd 48
os.IsExist 207
os.IsNotExist 207
os.IsPermission 207
0s.0pen 11

os.Stat 247

panic built-in 148, 149
parameter 119
params.Unpack 349
png.Encode 62
PopCount 45

real built-in 61

recover built-in 152
recursive anonymous 137
reflect.TypeOf 330
reflect.valueOf 331, 337
reflect.Zero 345
regexp.Compile 149
regexp.MustCompile 149
result list 119
runtime.Stack 151
SearchIssues 111
sexpr.Marshal 340
sexpr.readlList 347
sexpr.Unmarshal 347
signature 120
sort.Float64s 191
sort.Ints 191
sort.IntsAreSorted 191
sort.Reverse 189
sort.Strings 95, 137, 191
Sprint 330

sqlQuote 211,212
strconv.Atoi 22,75
strconv.FormatInt 75
strconv.Itoa 75
strconv.ParseInt 75
strconv.ParseUint 75
strings.Contains 69
strings.HasPrefix 69
strings.HasSuffix 69
strings.Index 289
strings.Join 7,12
strings.Map 133
strings.NewReader 289
strings.NewReplacer 289
strings.Split 12
strings.ToLower 72
strings.ToUpper 72
template.Must 114
template.New 114

Test 302

time.After 245
time.AfterFunc 164
time.Now 220
time.Parse 220
time.Since 114
time.Tick 244, 246

title 144, 145

type 119, 120
unicode.IsDigit 71
unicode.IsLetter 71
unicode.IsLower 71
unicode.IsSpace 93
unicode.IsUpper 71
unsafe.AlignOf 355
unsafe.Offsetof 355
unsafe.Sizeof 354
url.QueryEscape 111
utf8.DecodeRuneInString 69
utf8.RuneCountInString 69
value 132

variadic 142, 172

visit 122

WaitForServer 130

walkDir 247

zero value 132

garbage collection xi, xiii, 7, 35, 230,
353, 357
garbage collector, moving 357
GCD algorithm 37
gcd function 37
geometry example package 156
geometry.Point.Distance method
156
getter method 169
GIF animation 13
GitHub issue tracker 110
github example 110, 111
Go
Playground xvi, 326
Blog xvi, 326
issue 110, 112, 358
go tool 2,42, 44,290
go tool -bench flag 321
go tool -benchmem flag 322
go tool -covermode flag 319
go tool -coverprofile flag 319
go tool -cpuprofile flag 324
go tool -nodecount flag 325
go tool pprof 325
go tool -text flag 325
go tool -web flag 326
go tool cover 318,319
go doc tool 25
go statement 18, 218
GOARCH environment variable 292,
295
go build 2, 286, 293, 294
go doc 296
godoc -analysis flag 176
godoc tool xvi, 25,297, 326
go env 292
gofmt tool 3, 4, 44, 286
go get xvi, 2,292,293
go help 290

www.it-ebooks.info

INDEX

goimports tool 3,44, 286
go install 295
golang.org/x/net/html package
122
golint tool 292
go list 298, 315
go list -f flag 315
GOMAXPROCS environment variable
281, 321
GOOS environment variable 292, 295
GOPATH environment variable xvi,
291, 295
gopl.io repository xvi
go -race flag 271
GOROOT environment variable 292
goroutine 18, 217, 233, 235
closer 238,250
identity 282
leak 233,236, 246
monitor 261, 277
multiplexing 281
vs. OS thread 280
go run 2,294
go test 301, 302, 304
go test -race flag 274
go test -run flag 305
go test -v flag 304
goto statement 24
graph example 99
GraphViz 326
Griesemer, Robert xi
growth, stack 124, 280, 358
guarding mutex 263

half-open interval 4
handler function 19, 21, 152, 191,
194, 195, 348
“happens before” relation 226, 257,
261,277
“has a” relationship 162
hash table 9,93
Haskell programming language xiv
heap
allocation 36
profile 324
variable 36
helloworld example 1,2
helloworld substring diagram 69
hexadecimal escape 66
hexadecimal literal 55
hidden pointer 357
Hoare, Tony xiii
hole, struct 354
HTML
anchor element 122
escape 116
injection attack 115
metacharacter 116
parser 121

http://www.it-ebooks.info/

INDEX

html.Parse function 121, 125
html/template package 113,115
HTTP
GET request 21, 127, 272, 348
POST request 348
request, cancellation of 253
request multiplexer 193
http example 192, 194, 195
http example package 192
(*http.Client).Do method 253
http.DefaultClient variable 253
http.DefaultServeMux function
195
http.Error function 193
http.Get function 16, 18
http.Handle function 195
http.HandleFunc function 19, 22,
195
http.Handler interface 191, 193
http.HandlerFunc type 194,203
http.ListenAndServe function 19,
191
http.NewRequest function 253
http.Request type 21,253
(*http.Request).ParseForm
method 22, 348
http.ResponseWriter type 19, 22,
191, 193
http.ServeMux function 193
hypot function 120

identifier _, blank 7, 38, 95, 120, 126,
287
identifier, qualified 41, 43
identity, goroutine 282
IEEE 754 standard 56, 57
if, initialization statement in 22,
206
if-else scope 47
if-else statement 9, 22,47
imag built-in function 61
image manipulation 121
image package 62,287
image/color package 14
image.Decode function 288
image/png package 288
image.RegisterFormat function
288
imaginary literal 61
immutability 261
immutability, string 65, 73
implementation with slice, stack 92,
215
implicit
& 158,167
assignment 38
conversion 79
dereference 159
import declaration 3, 28, 42, 284,

285, 362

import

blank 287

path 284

path domain name 284

renaming 286
incr function 33
increment statement ++ 5, 37, 94
index operation, string 64
indirection operator * 24, 32
infinite loop 6, 120, 228
information hiding 168, 284
init function 44, 49
initialization

lazy 268

package 44

statement in if 22,206

statement in switch 24
initializer list 30
injection attack, HTML 115
injection attack, SQL 211
in-place slice techniques 91
insertion sort algorithm 101
int type 52
integer

literal 55

overflow 53,113

signed 52, 54

unsigned 52, 54
integration test 314
interface

assignability 175

comparison 184

dynamic type 181

embedding 174

error built-in 196

flag.Value 179, 180

fmt.Stringer 180, 210

http.Handler 191, 193

io.Closer 174

io.Reader 174

io.Writer 15,22,172, 174, 186,

208, 209, 309

JSON 110

method call 182

nil 182

pitfall 184

ReadWriteCloser 174

ReadWriter 174

satisfaction 171, 175

sort.Interface 186

type 171, 174
interface{} type 143, 176, 331
interface

type assertion 208, 210

type, empty 176

value 181

with nil pointer 184

zero value 182

www.it-ebooks.info

373

interfaces as contracts 171

internal package 298

intset example 166

intsToString function 74

invariants 159, 169, 170, 265, 284,
311, 352

io package 174

io.Closer interface 174

io.Copy function 17, 18

io.Discard stream 22

io.Discard variable 18

io.EOF variable 132

io/ioutil package 16, 145

io.Reader interface 174

iota constant generator xiii, 77

ioutil.ReadAll function 16,272

ioutil.ReadDir function 247

ioutil.ReadFile function 12, 145

io.Writer interface 15,22,172,
174, 186, 208, 209, 309

io.WriteString function 209

“is a” relationship 162, 175

issue, Go 110, 112, 358

issue tracker, GitHub 110

issues example 112

issueshtml example 115

issuesreport example 114

iteration order, map 95

iteration variable, capturing 140

itob function 64

Java programming language xv
JavaScript Object Notation (JSON)
107, 338
JavaScript programming language
xv, 107
jpeg example 287
JSON
interface 110
interface, Open Movie Database
113
interface, xkcd 113
marshaling 108
unmarshaling 110
json.Decoder type 111
json.Encoder type 111
json.Marshal function 108
json.MarshalIndent function 108
json.NewDecoder function 111
json.NewEncoder function 111
json.Unmarshal function 110, 114

keyword, type 212
keywords, table of 27
Knuth, Donald 323

label scope 46
label, statement 46
labeled

http://www.it-ebooks.info/

374

break statement 249
continue statement 249
statement 46
layout, memory 354, 355
lazy initialization 268
leak, goroutine 233, 236, 246
left shift operator << 54
len built-in function 4, 54, 64, 65,
81, 84,233
lexical block 46, 120, 135, 141, 212
lexical closure 136
lifetime, variable 35, 46, 135
links example package 138
links.Extract function 138
Lisp programming language 338
Lissajous algorithm 15
Lissajous figure 13
lissajous example 14, 22,35
list, initializer 30
literal
array 82,84
composite 14
function 22, 135, 227
hexadecimal 55
imaginary 61
integer 55
map 94
octal 55
raw string 66
rune 56
slice 38, 86
string 65
struct 15, 102, 106
local
block 46
variable 29, 141
variable, address of 32, 36
variable scope 135
locating packages 291
lock
contention 267, 272
exclusive 263, 266, 270
mutex 102, 263, 264, 324
non-reentrant 265
readers 266
shared 266
writer 266
log package 49, 130, 170
log.Fatalf function 49, 130
lookup m[key], map 94
lookup, ok value from map 96
loop
infinite 6, 120, 228
range 6,9
variable, capturing 141, 236, 240
variable scope 141, 236
while 6

main function 2,310

main, package 2,285, 310
make built-in function 9, 18, 88, 94,
225
make channel 18, 225
make map 9, 18, 94
make slice 88,322
Mandelbrot figure 63
Mandelbrot set 61
mandelbrot example 62
map
as set 96, 202
comparison 96
element, nonexistent 94, 95
iteration order 95
literal 94
lookup m[key] 94
lookup, ok value from 96
make 9, 18, 94
nil 95
range over 94
type 9,93
with slice key 97
zero value 95
marshaling JSON 108
math package 14, 56
math/big package 63
math/cmplx package 61
math.Hypot function 156
math. Inf function 57
math.IsInf function 57
math.IsNaN function 57
math.NaN function 57
math/rand package 285,308
memo example 275, 276, 277, 278,
279
memo example package 273
memoization 272
memory allocation 36, 71, 89, 169,
209, 322
memory layout 354, 355
metacharacter, HTML 116
method
(*bufio.Reader).ReadRune 98
(*bufio.Scanner).Err 97
(*bufio.Scanner).Scan 9
(*bufio.Scanner).Split 99
(*bytes.Buffer).Grow 169
(*bytes.Buffer).WriteByte 74
(*bytes.Buffer).WriteRune 74
(*bytes.Buffer).WriteString
74
call, interface 182
chaining 114
declaration 40, 155
error.Error 196
Expr.Check 202
expression 164
Expr.Eval 199
geometry.Point.Distance 156

www.it-ebooks.info

INDEX

getter 169
(*http.Client).Do 253
(*http.Request).ParseForm 22
348
name 156
net.Conn.Close 220
net.Listener.Accept 220
(*os.File).Write 183
path.Distance 157
promotion 161
receiver name 157
receiver parameter 156
receiver type 157
reflect.Type.Field 348
reflect.value.Addr 342
reflect.Value.CanAddr 342
reflect.value.Interface 331,
342
reflect.value.Kind 332
selector 156
setter 169
String 40, 166, 329
(*sync.Mutex).Lock 21, 146, 263
(*sync.Mutex).Unlock 21, 146,
263
(*sync.Once).Do 270
(*sync.RWMutex) .RLock 266
(*sync.RWMutex) .RUnlock 266
(*sync.WaitGroup).Add 238
(*sync.WaitGroup).Done 238
template.Funcs 114
template.Parse 114
(*testing.T).Errorf 200, 304,
306
(*testing.T).Fatal 306
time.Time.Format 220
value 164
(*xml.Decoder).Token 213
methods example 351
methods of a type, displaying 351
Microsoft Windows file name 72
missing function body 121
m[key], map lookup 94
mobile platforms 121
Modula-2 programming language
xiii
modularity 283
monitor 264, 275
monitor goroutine 261, 277
movie example 108, 110
moving garbage collector 357
multimap 160, 193
multiple-value assignment 37
multiplexer, HTTP request 193
multiplexing, event 244
multiplexing, goroutine 281
multithreading, shared-memory
217,257
multi-valued function 11, 30, 37, 96,

http://www.it-ebooks.info/

INDEX

125, 126

mustCopy function 221
mutex 145, 163, 256, 269

guarding 263

lock 102,263, 264, 324

read/write 266, 267
mutual exclusion 262, 267
MySQL database driver 284

name

method 156

method receiver 157

package 28,43

parameter 120

space 41, 156, 283
named

result 120, 126

result zero value 120, 127

type 24, 39, 40, 105, 157
naming convention 28, 169, 174,

289

naming, package 289
NaN (not a number) 57, 93
narrowing conversion 40, 55
negation operator ! 63
net package 219
netcat example 221,223, 227
net.Conn type 220
net.Conn.Close method 220
net.Dial function 220
netflag example 78
net/http package 16, 191
net.Listen function 220
net.Listener type 220

net.Listener.Accept method 220

net/smtp package 312
net/url package 160
networking 121, 219
new built-in function 34
new, redefining 35
nil
channel 246, 249
function 132
interface 182
map 95
pointer 32
pointer, interface with 184
receiver 159, 185
slice 87
non-blocking
cache 275
cache, concurrent 272
channel receive 246
select 246
nonempty example 92
nonexistent map element 94, 95
non-reentrant lock 265
non-standard package 121
number, floating-point 56

number zero value 5, 30
numeric
conversion 79
precision 55, 78
type 51

Oberon programming language xiii
object 156
object-oriented programming
(OOP) 155,168
octal escape 66
octal literal 55
ok value 37
ok value from channel receive 229
ok value from function call 128
ok value from map lookup 96
ok value from type assertion 206
omitempty field tag 109
Open Movie Database JSON
interface 113
operation, atomic 264
operation, conversion 40, 55, 64, 71,
78,79, 173, 187, 194, 208, 231,
353,358
operator
+=, -=, etc., assignment 5
&, address-of 24, 32, 94, 158, 167
&", AND-NOT 53
&*, bit-clear 53
A, bitwise complement 53
|, bitwise OR 166, 167
==, comparison 40, 63
~, exclusive OR 53
* indirection 24, 32
<«, left shift 54
!, negation 63
%, remainder 52, 166
>>, right shift 54
&8, short-circuit AND 63
| |, short-circuit OR 63
+, string concatenation 5, 65
-, unary 53
+, unary 53
associativity 52
precedence 52,63
s[i:j], slice 84, 86
s[i:3], substring 65, 86
operators
assignment 36, 52
comparison 40, 93
table of binary 52
table of bitwise 53
table of comparison 53
optimization 264, 321, 323
optimization, premature 324
OR operator | |, short-circuit 63
order of declarations 48
order, struct field 101, 355
organization, workspace 291

www.it-ebooks.info

375

OS thread vs. goroutine 280
os package 4,206
os.Args variable 4
os.Close function 11
os.Exit function 16, 34, 48
*os.File type 11, 13,172,175, 185,
336
os.FileInfo type 247
(*os.File).Write method 183
os.Getwd function 48
os.IsExist function 207
os.IsNotExist function 207
os.IsPermission function 207
os.LinkError type 207
o0s.0pen function 11
os.PathError type 207
os.Stat function 247
outline example 123,133
// Output comment 326
overflow, integer 53, 113
overflow, stack 124

package declaration 2, 28, 41, 285
package
API 284, 296, 311, 333, 352
back-door 315
bank example 258, 261, 263
block 46
bufio 9
bytes 71,73
bzip example 363
compress/bzip2 361
crypto/sha256 83
database/sql 211, 288
documentation 296
encoding/json 107
encoding/xml 107,213
errors 196
external test 285, 314
flag 33,179
fmt 2
format example 332
geometry example 156
golang.org/x/net/html 122
html/template 113,115
http example 192
image 62,287
image/color 14
image/png 288
initialization 44
internal 298
io 174
io/ioutil 16, 145
links example 138
log 49,130, 170
main 2,285,310
math 14, 56
math/big 63
math/cmplx 61

http://www.it-ebooks.info/

376

math/rand 285, 308
memo example 273
name 28, 43
naming 289
net 219
net/http 16, 191
net/smtp 312
net/url 160
non-standard 121
os 4,206
params example 348
path 72
path/filepath 72
reflect 330
regexp 149
runtime 151
sort 95,186, 189
storage example 312, 313
strconv 22,71,75
strings 7,71,72,289
sync 237,263
syscall 196, 208
tempconv example 42
testing 285, 302
text/scanner 344
text/tabwriter 188
text/template 113, 300
thumbnail example 235
time 18,77,183
unicode 71
unicode/utf8 69
unsafe 354
package-level declaration 28
packages
building 293
downloading 292
locating 291
querying 298
palindrome 191
palindrome example 303, 305, 308
panic 64, 152, 253
panic built-in function 148, 149
paradoxical race 267
parallel composition 224
parallel, embarrassingly 235
parallelism 217
parameter
. 91,142,143,172
function 119
method receiver 156
name 120
passing 120
unused 120
params example 348
params example package 348
params.Unpack function 349
parentheses 4,6,9,52,63,119, 146,
158, 285, 335, 345
Parse example 152

parser, HTML 121
Pascal programming language xiii
path, ... 292,299
path package 72
path.Distance method 157
path/filepath package 72
Pike, Rob xi, xiii, 67, 107
pipeline example 228,230, 231
pipeline 227
pipeline diagram 228
pitfall, interface 184
pitfall, scope 140
platforms, mobile 121
Playground, Go xvi, 326
playlist example 187
png.Encode function 62
pointer 24, 32, 34

aliasing 33

argument 33, 83

equality 32

hidden 357

nil 32

receiver 158, 167

to struct 100, 103

zero value 32
polling channel 246
polymorphism, ad hoc 211
polymorphism, subtype 211
PopCount function 45
Portable Network Graphics (PNG)

62

POSIX file name 72
POSIX standard xi, 55, 72, 197
precedence, operator 52, 63
precision

floating-point 56, 57, 63, 78

numeric 55,78

of constants 78
predeclared names, table of 28

premature abstraction 216,316,317

premature optimization 324
Printf %% 10

Printf verbs, table of 10
Printf %b 10, 54, 75
Printf %c 10, 56

Printf %d 10, 55

Printf %e 10,57

Printf %f 10, 57

Printf %g 10,57

Printf %[n] 56

Printf %o 10, 55

Printf %q 10, 56, 97
Printf %s 10

Printf %*s 134

Printf %T 10, 80, 83, 184, 331
Printf %t 10, 83

Printf %#v 106, 207
Printf %v 10,11

Printf % x 71

www.it-ebooks.info

INDEX

Printf %#x 56
Printf %x 10, 55, 83
production code 301
profile

blocking 324

CPU 324

heap 324
profiling 324
programming language

Alef xiii

APL xiii

C++ xiv, xv, 361

C xii, xv, 1, 6, 52, 260, 361

Haskell xiv

Java xv

JavaScript xv, 107

Lisp 338

Modula-2 xiii

Oberon xiii

Pascal xiii

Python xv, 193

Ruby xv, 193

Scheme xiii

Squeak, Newsqueak xiii
promotion, method 161
protocol buffers 107
Python programming language xv,

93

qualified identifier 41, 43
querying packages 298
quote character, ' 56

race
condition 21, 257, 258, 259
detector 271,274
paradoxical 267
randomized testing 307
range loop 6,9
range over channel 229
range over map 94
range over string 69, 88
{{range}} template action 113
raw string literal 66
reachability 36
read, stale 268
readers lock 266
read/write mutex 266, 267
ReadWriteCloser interface 174
ReadWriter interface 174
real built-in function 61
receive
<-ch, channel 18, 225, 232
expression 225
non-blocking channel 246
ok value from channel 229
receive-only channel type <-chan T
230
receiver

http://www.it-ebooks.info/

INDEX

name, method 157
nil 159, 185
parameter, method 156
pointer 158, 167
type, method 157
recover built-in function 152
recursion 121, 124, 247, 333, 339,
345, 359
recursive
anonymous function 137
data structure 101, 102, 107
type 48
redefining new 35
reference
call by 83
identity 87
type 9,12,93,120
reflect package 330
reflection 329, 352, 359
reflect.StructTag type 348
reflect.Type type 330
reflect.Type.Field method 348
reflect.TypeOf function 330
reflect.Value type 331, 342
reflect.Value zero value 332
reflect.Value.Addr method 342
reflect.Value.CanAddr method
342
reflect.Value.Interface method
331, 342
reflect.Value.Kind method 332
reflect.ValueOf function 331, 337
reflect.Zero function 345
regexp package 149
regexp.Compile function 149
regexp.MustCompile function 149
regular expression 66, 149, 305, 321
relation, “happens before” 226, 257,
261, 277
relationship, “hasa” 162
relationship, “isa” 162, 175
remainder operator % 52, 166
renaming import 286
rendezvous 234
replacement character &, Unicode
70, 98
repository, gopl.io xvi
request
HTTP GET 21, 127, 272, 348
HTTP POST 348
multiplexer, HTTP 193
result list, function 119
result, named 120, 126
return, bare 126
return statement 29, 120, 125
rev example 86
reverb example 223,224
right shift operator >> 54
Ruby programming language xv,

193
rune literal 56
rune type 52, 67
rune slice to string conversion 71
rune to string conversion 71
runtime package 151
runtime API 324
runtime scheduler 281
runtime.Stack function 151

satisfaction, interface 171, 175
Scalable Vector Graphics (SVG) 58
scheduler, runtime 281
Scheme programming language xiii
scope
declaration 45, 137
for 47
if-else 47
label 46
local variable 135
loop variable 141, 236
pitfall 140
short variable declaration 22, 48
switch 47
search algorithm, breadth-first 139,
239
search algorithm, depth-first 136
SearchIssues function 111
select case 245
select, default case in 246
select, non-blocking 246
select statement 244, 245
select{} statement 245
selective recovery 152
selector, field 156
selector, method 156
semaphore, binary 262
semaphore, counting 241
semicolon 3, 6
send ch<-, channel 18,225, 232
send statement 225
send-only channel type chan<- T
230
separate compilation 284
sequence diagram, thumbnail 238
sequential consistency 268, 269
serial confinement 262
server example 19, 21
server
chat 253
concurrent clock 219
concurrent echo 222
set, map as 96, 202
setter method 169
sexpr example 340
S-expression
decode example 347
decoding 344
encoding 338

www.it-ebooks.info

377

sexpr.Marshal function 340
sexpr.readList function 347
sexpr.Unmarshal function 347
SHA256 message digest 83
sha256 example 83
shadowing declaration 46, 49, 206,
212

shared

lock 266

variables 257

variables, concurrency with 257
shared-memory multithreading 217,

257

shift operator <<, left 54
shift operator >>, right 54
short

variable declaration 5, 7, 30, 31

variable declaration scope 22, 48

variable declaration statement 7
short-circuit

AND operator && 63

evaluation 63

OR operator || 63
signature, function 120
signed integer 52, 54
s[i:3], slice operator 84, 86
s[i:J], substring operator 65, 86
simple statement 6, 22
Sizeof table 354
sleep example 179
slice 4

argument 86

capacity 88, 89

capacity growth diagram 90

comparison 87

extendinga 86

key, map with 97

literal 38, 86

make 88,322

nil 87

of months diagram 84

operator s[i:j] 84, 86

rotation algorithm 86

techniques, in-place 91

type 84

used as stack 123

zero length 87

zero value 74, 87
SMTP client 312
socket

TCP 219

UDP 219

Unix domain 219
sort algorithm, topological 136
sort package 95, 186, 189
sort.Float64s function 191
sort.Interface interface 186
sort.Ints function 191
sort.IntsAreSorted function 191

http://www.it-ebooks.info/

378

sort.IntSlice type 191
sort.Reverse function 189
sort.Strings function 95, 137, 191
spinner example 218
Sprint function 330
SQL API 211
SQL injection attack 211
sqlQuote function 211,212
squares example 135
Squeak, Newsqueak programming
language xiii
stack
allocation 36
fixed-size 124
growth 124, 280, 358
implementation with slice 92, 215
overflow 124
slice used as 123
trace 149, 253
variable 36
variable-size 124
stale read 268
standard
IEEE 754 56, 57
POSIX xi, 55, 72, 197
Unicode 2,27, 52, 66, 67, 69, 97
statement
--, decrement 5, 37
++, increment 5, 37, 94
assignment 5, 7, 36, 52, 94, 173
break 24, 46
continue 24, 46
coverage 318, 320
defer 144, 150, 264
fallthrough 23,212
for 6
go 18,218
goto 24
if-else 9,22,47
label 46
labeled 46
return 29, 120, 125
select{} 245
select 244,245
send 225
short variable declaration 7
simple 6, 22
switch 23,47
tagless switch 24
type switch 210, 212, 214, 329
unreachable 120
storage example package 312, 313
Strangelove, Dr. 336
strategies, error-handling 128, 152,
310, 316
strconv package 22,71, 75
strconv.Atoi function 22,75
strconv.FormatInt function 75
strconv.Itoa function 75

strconv.ParselInt function 75
strconv.ParseUint function 75
stream, io.Discard 22
String method 40, 166, 329
string

concatenation operator + 5, 65

conversion 71

immutability 65,73

index operation 64

literal 65

literal, raw 66

range over 69, 88

sharing diagram 65

test 71

to byte slice conversion 40, 73

to rune slice conversion 71, 88

zero value 5,7, 30

comparison 65
strings package 7,71, 72, 289
strings.Contains function 69
strings.HasPrefix function 69
strings.HasSuffix function 69
strings.Index function 289
strings.Join function 7,12
strings.Map function 133
strings.NewReader function 289
strings.NewReplacer function 289
strings.Reader type 289
strings.Replacer type 289
strings.Split function 12
strings.TolLower function 72
strings.ToUpper function 72
struct declaration 99
struct

comparison 104

embedding 104, 161

Employee 100

empty 102

field 15,99

field, anonymous 104, 105, 106,

162
field, embedded 161
field, export of 101, 106, 109, 110,
168

field order 101, 355

field tag 109, 348

hole 354

hole diagram 355

literal 15, 102, 106

literal, address of 103

pointer to 100, 103

type 15,24, 99
struct{} type 227, 241,250
struct type, unnamed 163
struct zero value 102
substitutability 193
substring operator s[i:j] 65,86
subtype polymorphism 211
sum example 142

www.it-ebooks.info

INDEX

surface example 59, 203

surface figure, 3-D 58, 203

SVG 58

SWIG 361

Swiss army knife 290

switch, default case in 23

switch, initialization statement in
24

switch scope 47

switch statement 23, 47

switch statement, tagless 24

switch statement, type 210, 212,
214, 329

switch, context 280

sync package 237,263

synchronous channel 226

sync.Mutex type 263, 269

(*sync.Mutex).Lock method 21,
146, 263

(*sync.Mutex).Unlock method 21,
146, 263

sync.Once type 270

(*sync.0Once).Do method 270

sync.RWMutex type 266, 270

(*sync.RWMutex).RLock method
266

(*sync.RWMutex) .RUnlock method
266

sync.WaitGroup type 237, 250, 274

(*sync.WaitGroup).Add method
238

(*sync.WaitGroup).Done method
238

syscall package 196, 208

syscall.Errno type 196, 197

system call API 196

table of
binary operators 52
bitwise operators 53
comparison operators 53
escape sequences 66
keywords 27
predeclared names 28
Printf verbs 10
UTEF-8 encodings 67
table, Sizeof 354
table-driven testing 200, 306, 319
tag, struct field 109, 348
tagless switch statement 24
tags, build 296
TCP socket 219
techniques, in-place slice 91
tempconv example 39, 180, 289
tempconv example package 42
temperature conversion example 29
tempflag example 181
template API 115
template

http://www.it-ebooks.info/

INDEX

| in 113

action, {{range}} 113

dot . in 113
template.Funcs method 114
template.HTML type 116
template.Must function 114
template.New function 114
template.Parse method 114
Test function 302
test

black-box 310

brittle 317

character 71

coverage 318

dependency;, cyclic 314

echo 309

failure message 306

integration 314

of word example 303

package, external 285, 314

string 71

white-box 311

assertion 306
_test.go file 285, 302, 303
testing package 285, 302
testing

a command 308

randomized 307

table-driven 200, 306, 319
testing.B type 321
testing.T type 302
(*testing.T).Errorf method 200,

304, 306

(*testing.T).Fatal method 306
tests, writing effective 316, 317
text/scanner package 344
text/tabwriter package 188
text/template package 113, 300
Thompson, Ken xi, 67
thread 218, 280
thread-local storage 282
3-D surface figure 58,203
thumbnail example 236, 237, 238
thumbnail example package 235
thumbnail sequence diagram 238
time package 18,77, 183
time.After function 245
time.AfterFunc function 164
time.Duration type 76, 179
time.Minute constant 76
time.Now function 220
time.Parse function 220
time.Second constant 164
time.Since function 114
time.Tick function 244, 246
time.Time type 114
time.Time.Format method 220
title example 153
title function 144, 145

token-based decoder API 213, 215,
347
token-based XML decoding 213
tool
cgo 361,362
go 2,42,44,290
go doc 25
godoc xvi, 25,297, 326
gofmt 3, 4, 44, 286
goimports 3,44, 286
golint 292
topological sort algorithm 136
topoSort example 136
trace example 146
trace, stack 149, 253
tree, binary 102
treesort example 102
true boolean constant 63
truncation, floating-point 40, 55
tuple assignment 31, 37
type declaration 39
type keyword 212
type
abstract 24,171
aggregate 81, 99
array 81
assertion 205,211
assertion, interface 208, 210
assertion, ok value from 206
bool 63
bufio.Scanner 9
byte 52
bytes.Buffer 74,169, 172, 185
Celsius 39
chan 225
channel 18
<-chan T, receive-only channel
230
chan<- T, send-only channel 230
complex 61
composite xv, 14, 81
composition xv, 107, 162, 189
concrete 24,171,211, 214
displaying methods of a 351
empty interface 176
error built-in 11, 128, 149, 196
Fahrenheit 39
function 119, 120
http.HandlerFunc 194, 203
http.Request 21, 253
http.ResponseWriter 19,22,
191, 193
int 52
interface{} 143,176, 331
interface 171, 174
interface dynamic 181
json.Decoder 111
json.Encoder 111
map 9,93

www.it-ebooks.info

379

method receiver 157
mismatch 55
named 24, 39, 40, 105, 157
net.Conn 220
net.Listener 220
numeric 51
*os.File 11, 13,172,175, 185,
336
os.FileInfo 247
os.LinkError 207
os.PathError 207
recursive 48
reference 9, 12, 93, 120
reflect.StructTag 348
reflect.Type 330
reflect.value 331, 342
rune 52,67
slice 84
sort.IntSlice 191
strings.Reader 289
strings.Replacer 289
struct{} 227,241,250
struct 15, 24,99
switch, casein 212
switch, default casein 212
switch statement 210, 212, 214,
329

sync.Mutex 263,269
sync.Once 270
sync.RWMutex 266, 270
sync.WaitGroup 237,250, 274
syscall.Errno 196, 197
template.HTML 116
testing.B 321
testing.T 302
time.Duration 76, 179
time.Time 114
uint 52
uintptr 52,354, 357
underlying 39
unidirectional channel 230, 231
unnamed struct 163
unsafe.Pointer 356
url.URL 193

types, untyped constant 78

UDP socket 219
uint type 52
uintptr type 52, 354, 357
unary operator + 53
unary operator - 53
unbuffered channel 226
undefined behavior 260
underlying array 84, 88,91, 187
underlying type 39
Unicode

code point 67

escape 68, 107

replacement character ¢ 70, 98

http://www.it-ebooks.info/

380

standard 2, 27, 52, 66, 67, 69, 97
unicode package 71
unicode.IsDigit function 71
unicode.IsLetter function 71
unicode.IsLower function 71
unicode.IsSpace function 93
unicode.IsUpper function 71
unicode/utf8 package 69
unidirectional channel type 230, 231
union, discriminated 211, 213, 214
universe block 46
Unix domain socket 219
unmarshaling JSON 110
unnamed struct type 163
unnamed variable 34, 88
unreachable statement 120
unsafe package 354
unsafe.AlignOf function 355
unsafe.Offsetof function 355
unsafe.Pointer conversion 356
unsafe.Pointer type 356
unsafe.Pointer zero value 356
unsafe.Sizeof function 354
unsigned integer 52, 54
untyped constant types 78
unused parameter 120
URL 123
URL escape 111
url.QueryEscape function 111
url.URL type 193
urlvalues example 160
UTF-8 66, 67, 98
UTF-8 encodings, table of 67
utf8.DecodeRuneInString function
69

utf8.RuneCountInString function
69

utf8.UTFMax value 98

value
addressable 32
Cdlby 83,120, 158
function 132
interface 181
method 164
utf8.UTFMax 98
var declaration 5, 30
variable
confinement 261
heap 36
http.DefaultClient 253
io.Discard 18
io.EOF 132
lifetime 35, 46, 135
local 29, 141
0s.Args 4
stack 36
unnamed 34, 88
variables, escaping 36

INDEX

variables, shared 257
variable-size stack 124
variadic function 142, 172
vector, bit 165

vendoring 293

visibility 28, 29, 41, 168, 297
visit function 122

wait example 130
WaitForServer function 130
walkDir function 247
web
crawler 119
crawler, concurrent 239
framework 193
while loop 6
white-box test 311
Wilkes, Maurice 301
Wirth, Niklaus xiii
word example 303, 305, 308
word example, test of 303
workspace organization 291
writer lock 266
writing effective tests 316, 317

xkcd JSON interface 113

XML decoding 213

XML (Extensible Markup Language)
107

(*xml.Decoder).Token method
213

xmlselect example 215

zero length slice 87
zero value
array 82
boolean 30
channel 225, 246
function 132
interface 182
map 95
named result 120, 127
number 5, 30
pointer 32
reflect.value 332
slice 74, 87
string 5, 7, 30
struct 102
unsafe.Pointer 356

www.it-ebooks.info

http://www.it-ebooks.info/

and you love to
share them with your colleagues and friends...why
not earn some $$ doing it!

If you have a website, blog, or even a Facebook
page, you can start earning money by putting
InformIT links on your page.

Whenever a visitor clicks on these links and makes
a purchase on informit.com, you earn commissions*
on all sales!

Every sale you bring to our site will earn you a
commission. All you have to do is post the links to
the titles you want, as many as you want, and we'll
take care of the rest.

It's quick and easy to apply.
To learn more go to:
http://www.informit.com/affiliates/

*Valid for all books, eBooks and video sales at www.informit.com

Addison

ey evree SAMS "

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents
	Preface
	The Origins of Go
	The Go Project
	Organization of the Book
	Where to Find More Information
	Acknowledgments
	1. Tutorial
	1.1. Hello, World
	1.2. Command-Line Arguments
	1.3. Finding Duplicate Lines
	1.4. Animated GIFs
	1.5. Fetching a URL
	1.6. Fetching URLs Concurrently
	1.7. A Web Server
	1.8. Loose Ends

	2. Program Structure
	2.1. Names
	2.2. Declarations
	2.3. Variables
	2.4. Assignments
	2.5. Type Declarations
	2.6. Packages and Files
	2.7. Scope

	3. Basic Data Types
	3.1. Integers
	3.2. Floating-Point Numbers
	3.3. Complex Numbers
	3.4. Booleans
	3.5. Strings
	3.6. Constants

	4. Composite Types
	4.1. Arrays
	4.2. Slices
	4.3. Maps
	4.4. Structs
	4.5. JSON
	4.6. Text and HTML Templates

	5. Functions
	5.1. Function Declarations
	5.2. Recursion
	5.3. Multiple Return Values
	5.4. Errors
	5.5. Function Values
	5.6. Anonymous Functions
	5.7. Variadic Functions
	5.8. Deferred Function Calls
	5.9. Panic
	5.10. Recover

	6. Methods
	6.1. Method Declarations
	6.2. Methods with a Pointer Receiver
	6.3. Composing Types by Struct Embedding
	6.4. Method Values and Expressions
	6.5. Example: Bit Vector Type
	6.6. Encapsulation

	7. Interfaces
	7.1. Interfaces as Contracts
	7.2. Interface Types
	7.3. Interface Satisfaction
	7.4. Parsing Flags with flag. Value
	7.5. Interface Values
	7.6. Sorting with sort. Interface
	7.7. The http. Handler Interface
	7.8. The error Interface
	7.9. Example: Expression Evaluator
	7.10. Type Assertions
	7.11. Discriminating Errors with Type Assertions
	7.12. Querying Behaviors with Interface Type Assertions
	7.13. Type Switches
	7.14. Example: Token-Based XML Decoding
	7.15. A Few Words of Advice

	8. Goroutines and Channels
	8.1. Goroutines
	8.2. Example: Concurrent Clock Server
	8.3. Example: Concurrent Echo Server
	8.4. Channels
	8.5. Looping in Paralle
	8.6. Example: Concurrent Web Crawler
	8.7. Multiplexing with select
	8.8. Example: Concurrent Directory Traversal
	8 9 Cancellation
	8.10. Example: Chat Server

	9. Concurrency with Shared Variables
	9.1. Race Conditions
	9.2. Mutual Exclusion: sync. Mutex
	9.3. Read/Write Mutexes: sync. RWMutex
	9.4. Memory Synchronization
	9.5. Lazy Initialization: sync.Once
	9.6. The Race Detector
	9.7. Example: Concurrent Non-Blocking Cache
	9.8. Goroutinesand Threads

	10. Packages and the Go Tool
	10.1. Introduction
	10.2. Import Paths
	10.3. The Package Declaration
	10.4. Import Declarations
	10.5. Blank Imports
	10.6. Packages and Naming
	10.7. The Go Tool

	11. Testing
	11.1. The go test Tool
	11.2. Test Functions
	11.3. Coverage
	11.4. Benchmark Functions
	11.5. Profiling
	11.6. Example Functions

	12. Reflection
	12.1. Why Reflection?
	12.2. reflect. Type and reflect. Value
	12.3. Display, a Recursive Value Printer
	12.4. Example: Encoding S-Expressions
	12.5. Setting Variables with reflect.Value
	12.6. Example: Decoding S-Expressions
	12.7. Accessing Struct Field Tags
	12.8. Displaying the Methods of a Type
	12.9. A Word of Caution

	13. Low-Level Programming
	13.1. unsafe. Sizeof, Alignof,and Offsetof
	13.2. unsafe. Pointer
	13.3. Example: Deep Equivalence
	13.4. Calling C Code with cgo
	13.5. Another Word of Caution

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

