GET PR%MMING

N

l' |

Nathan Youngman
Roger Peppé

Get Programming with Go

Get Programming with

Nathan Youngman
Roger Peppé

MANNING
Shelter Island

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity. For
more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road

PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

The Go Gopher is © 2009 Renée French and used under Creative Commons Attributions 3.0
license.

Original illustrations by Olga Shalakhina are © 2015 Olga Shalakhina and used by permission.
Original illustrations by Erick Zelaya are © 2018 Erick Zelaya and used by permission.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Acquisition editor: Michael Stephens

Development editors: Jenny Stout, Marina Michaels
Technical development editors: Matthew Merkes, Joel Kotarski
Review editor: Aleksandar Dragosavljevi¢

Project editor: David Novak

Copyeditor: Corbin Collins

Proofreaders: Melody Dolab, Elizabeth Martin
Technical proofreader: Christopher Haupt
Typesetter: Dottie Marsico

Graphics: Olga Shalakhina, Erick Zelaya, April Milne
Cover designer: Monica Kamsvaag

/I/l Manning Publications Co.
20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

ISBN 9781617293092
Printed in the United States of America

12345678910 -DP - 23222120 19 18

Contents

Preface vii
Acknowledgments viii
About this book x
About the authors xiii

Unit O

GETTING STARTED

Lesson 1 Get ready, get set, Go 3

Unit 1

IMPERATIVE PROGRAMMING

Lesson 2 A glorified calculator 13
Lesson 3 Loops and branches 23
Lesson 4 Variable scope 34

Lesson 5 Capstone: Ticket to Mars 41

Unit 2

TYPES

Lesson 6 Real numbers 45
Lesson 7 Whole numbers 53
Lesson 8 Big numbers 62

Lesson 9 Multilingual text 68
Lesson 10 Converting between types 79
Lesson 11 Capstone: The Vigenére cipher 88

Unit 3

BUILDING BLOCKS

Lesson 12 Functions 93
Lesson 13 Methods 101

Lesson 14 First-class functions 108
Lesson 15 Capstone: Temperature tables 117

Unit 4

COLLECTIONS

Lesson 16 Arrayed in splendor 121
Lesson 17 Slices: Windows into arrays 130
Lesson 18 A biggerslice 138

Lesson 19 The ever-versatile map 146
Lesson 20 Capstone: A slice of life 155

Unit 5

STATE AND BEHAVIOR

Lesson 21 Alittle structure 161

Lesson22 Go'sgotnoclass 170

Lesson 23 Composition and forwarding 177

Lesson 24 Interfaces 186

Lesson 25 Capstone: Martian animal
sanctuary 196

Unit 6

DOWN THE GOPHER HOLE

Lesson 26 A few pointers 201

Lesson 27 Much ado about nil 220
Lesson 28 Toerrishuman 230
Lesson 29 Capstone: Sudoku rules 248

Vi Contents

Unit 7

CONCURRENT PROGRAMMING

Lesson 30 Goroutines and concurrency 253
Lesson 31 Concurrent state 269
Lesson 32 Capstone: Life on Mars 282

Conclusion \Where to Go from here 285
Appendix Solutions 287
Index 339

Preface

Everything changes and nothing remains still.

—Heraclitus

While traveling Europe in 2005, Nathan heard rumblings of a new web framework
called Ruby on Rails. Returning to Alberta in time to celebrate Christmas, he found a
copy of Agile Web Development with Rails (Pragmatic Bookshelf, 2005) at the computer
bookstore downtown. Over the next two years, he transitioned his career from Cold-
Fusion to Ruby.

At university in York, England, Roger was introduced to the radical simplicity of Bell
Labs Research UNIX and the Plan 9 OS produced by the same group, which included
Go authors Rob Pike and Ken Thompson. Roger became a fan and later worked with the
Inferno system, which used its own language, Limbo, a close ancestor of Go.

In November 2009, Go was announced as an open source project. Roger immediately

saw its potential and started using it, making contributions to its standard library and
ecosystem. He remains delighted by Go’s success, now programs in Go full time, and
runs a local Go meetup.

Nathan watched Rob Pike’s tech talk announcing Go but didn’t give Go a serious look
until 2011. When a coworker spoke highly of Go, Nathan decided to read through a
rough cut of The Go Programming Language Phrasebook (Addison-Wesley Professional,
2012) over Christmas break. Over the next few years, he went from using Go on hobby
projects and blogging about Go (nathany.com) to organizing a local Go meetup
(edmontongo.org) and writing Go at work.

There’s no end to learning in the world of computer science, where the tools and tech-
niques are continuously changing and improving. Whether you have a degree in com-
puter science or are just starting out, teaching yourself new skills is important. We hope
this book serves you well as you learn the Go programming language.

vii

Acknowledgments

What a privilege it has been to write this book and help you learn Go. Thank you for
reading!

These pages represent the efforts of many individuals, not merely the authors on the
cover.

First and foremost, we would like to thank our editors Jennifer Stout and Marina
Michaels for providing valuable feedback and for continuing to push us little by little
over the finish line. Also, thank you to Joel Kotarski and Matt Merkes for your spot-on
technical editing, Christopher Haupt for technical proofing, and copyeditor Corbin
Collins for improving our grammar and style. Our thanks go to Bert Bates and to series
editors Dan Maharry and Elesha Hyde for the conversations and guidelines that helped
shape Get Programming with Go.

We would like to thank Olga Shalakhina and Erick Zelaya for the wonderful illustra-
tions, Monica Kamsvaag for the cover design, April Milne for sprucing up our figures,
and Renée French for giving Go the lighthearted mascot that we all love. A special
thank you goes to Dan Allen for creating AsciiDoctor, the tool used to write this book,
and for his ongoing support.

This book wouldn’t be a reality without Marjan Bace, Matko Hrvatin, Mehmed Pasic,
Rebecca Rinehart, Nicole Butterfield, Candace Gillhoolley, Ana Romac, Janet Vail,
David Novak, Dottie Marsico, Melody Dolab, Elizabeth Martin, and the whole crew at
Manning for getting Get Programming with Go into the hands of readers.

Thanks also to Aleksandar Dragosavljevi¢ for getting this book to reviewers, and to all
the reviewers for providing valuable feedback, including Brendan Ward, Charles Kevin,
Doug Sparling, Esther Tsai, Gianluigi Spagnuolo, Jeff Smith, John Guthrie, Luca Cam-
pobasso, Luis Gutierrez, Mario Carrion, Mikaél Dautrey, Nat Luengnaruemitchai,
Nathan Farr, Nicholas Boers, Nicholas Land, Nitin Gode, Orlando Sanchez, Philippe
Charriere, Rob Weber, Robin Percy, Steven Parr, Stuart Woodward, Tom Goodheard,

viii

Acknowledgments iX

Ulises Flynn, and William E. Wheeler. We’d also like to thank all the early access readers
who provided feedback through the forums.

Finally, we would like to thank Michael Stephens for suggesting the crazy idea of writ-
ing a book, and the Go community for creating a language and ecosystem that we’re
excited to write about!

Nathan Youngman

Naturally, I need to thank my parents, without whom I wouldn’t be here today. Both of
my parents encouraged me to pursue my interest in computer programming from an
early age, providing books and courses and access to computers.

In addition to the official reviewers, I would like to thank Matthias Stone for providing
feedback on early drafts, and Terry Youngman for helping me brainstorm ideas. I also
want to thank the Edmonton Go community for cheering me on, and my employer,
Mark Madsen, for providing the flexibility to make this endeavor feasible.

More than anyone else, I want to thank Roger Peppé for coming alongside me as
coauthor. He shortened the long road ahead by writing unit 7, and gave the project
a much needed bump in momentum.

Roger Peppé
Most of all, I'd like to thank my wife, Carmen, for her forbearance and support as I

worked on this book when we could have been out walking in the hills.

Many thanks also to Nathan Youngman and Manning for their trust in taking me on as
coauthor and for their patience during the final stages of this book.

Ahout this hook

Who should read this hook

Go is suitable for programmers with a wide range of skill levels —a necessity for any
large project. Being a relatively small language, with minimal syntax and few concep-
tual hurdles, Go could be the next great language for beginners.

Unfortunately, many resources for learning Go presume a working knowledge of the C
programming language. Get Programming with Go exists to fill the gap for scripters, hob-
byists, and newcomers looking for a direct path to Go. To make it easier to get started,
every code listing and exercise in this book can run inside the Go Playground (play
.golang.org), so there’s nothing to install!

If you've ever used a scripting language like JavaScript, Lua, PHP, Perl, Python, or Ruby,
you're ready to learn Go. If you've used Scratch or Excel formulas, or written HTML,
you're not alone in choosing Go as your first “real” programming language (see the
video “A Beginner’s Mind” featuring Audrey Lim at youtu.be/fZh8uCInEfw). Mastering
Go will take patience and effort, but we hope Get Programming with Go is a helpful
resource in your quest.

How this hook is organized: A roadmap

Get Programming with Go gradually explains the concepts needed to use Go effectively
and provides a plethora of exercises to hone your skills. This is a beginner’s guide to Go,
intended to be read from cover to cover, with each lesson building on the last. It isn't a
complete specification (golang.org/ref/spec) of every language feature, but it covers
most of the language and touches on advanced topics like object-oriented design and
concurrency.

Whether you go on to write massively concurrent web services or small scripts and sim-
ple tools, this book will help you establish a solid foundation.

About this book Xi

8%

r\M/ M.

)
Nero /3 D 7_\

Unit 1 brings together variables, loops, and branches to build tiny apps, from greet-

ings to rocket launches.

Unit 2 explores types for both text and numbers. Decode secret messages with
ROT13, investigate the destruction of the Arianne 5 rocket, and use big numbers
to calculate how long light takes to reach Andromeda.

Unit 3 uses functions and methods to build a fictional weather station on Mars with
sensor readouts and temperature conversions.

Unit 4 demonstrates how to use arrays and maps while terraforming the solar sys-
tem, tallying up temperatures, and simulating Conway’s Game of Life.

Unit 5 introduces concepts from object-oriented languages in a distinctly non-
object-oriented language. Use structures and methods to navigate the surface of
Mars, satisfy interfaces to improve output, and embed structures in one another to
create even bigger structures!

Unit 6 digs into the nitty-gritty. Here, you use pointers to enable mutation, over-
come the knights who say nil, and learn how to handle errors without panicking.
Unit 7 introduces Go’s concurrency primitives, enabling communication between
thousands of running tasks while constructing assembly lines in a gopher factory.
The appendix provides our solutions for the exercises, but coming up with your
own solutions is what makes programming fun!

Xii About this book

Ahout the code

All code is in a fixed-width font to separate it from ordinary text. Code annotations
accompany many of the listings, highlighting important concepts.

You can download the source code for all listings from the Manning website
(www.manning.com/books/get-programming-with-go). The download also includes
solutions for all the exercises in this book. If you prefer to browse the source code
online, you can find it in the GitHub repository at github.com/nathany/get-
programming-with-go.

Although you could copy and paste code from GitHub, we encourage you to type in the
examples yourself. You'll get more out of the book by typing the examples, fixing typos,
and experimenting with the code.

Book forum

The purchase of Get Programming with Go includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask tech-
nical questions, share your solutions to exercises, and receive help from the authors and
from other users. To access the forum and subscribe to it, point your web browser to
forums.manning.com/forums/get-programming-with-go. You can learn more about
Manning’s forums and the rules of conduct at forums.manning.com/ forums/about.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the authors can take place.
It’s not a commitment to any specific amount of participation on the part of the authors,
whose contribution to the forum remains voluntary (and unpaid). We suggest you try
asking the authors some challenging questions lest their interest stray! The forum and
the archives of previous discussions will be accessible from the publisher’s website as
long as the book is in print.

Ahout the authors

NATHAN YOUNGMAN is a self-taught web developer and lifelong
learner. He serves as organizer for the Edmonton Go meetup,
mentor with Canada Learning Code, and paparazzi of VIP gopher
plushies.

ROGER PEPPE is a Go contributor, maintains a number of open
source Go projects, runs the Newcastle upon Tyne Go meetup, and
currently works on Go cloud infrastructure software.

Xiii

Getting started

Traditionally, the first step to learning a new pro-
gramming language is to set up the tools and envi-
ronment to run a simple “Hello, world” application.
With the Go Playground, this age-old endeavor is
reduced to a single click.

With that out of the way, you can begin learning the
syntax and concepts needed to write and modify a
simple program.

LESSON

GET READY, GET SET,

After reading lesson 1, you'll be able to

= Know what sets Go apart
= Visit the Go Playground
= Print text to the screen

= Experiment with text in any natural language

Go is the contemporary programming language of cloud computing. Amazon, Apple,
Canonical, Chevron, Disney, Facebook, General Electric, Google, Heroku, Microsoft,
Twitch, Verizon, and Walmart are among the companies adopting Go for serious pro-
jects (see thenewstack.io/who-is-the-go-developer/ and golang.org/wiki/GoUsers).
Much of the infrastructure underlying the web is shifting to Go, driven by companies
like CloudFlare, Cockroach Labs, DigitalOcean, Docker, InfluxData, Iron.io, Let’s
Encrypt, Light Code Labs, Red Hat CoreOS, SendGrid, and organizations like the Cloud
Native Computing Foundation.

Go excels in the data center, but its adoption extends beyond the workplace. Ron Evans
and Adrian Zankich created Gobot (gobot.io), a library to control robots and hardware.
Alan Shreve created the development tool ngrok (ngrok.com) as a project to learn Go,
and has since turned it into a full-time business.

Get ready, get set, Go

The community of people who have adopted Go call themselves gophers, in honor of

Go’s lighthearted mascot (figure 1.1). Programming is challenging, but with Go and this

book, we hope you discover the joy of coding.

QL)

Figure 1.1 Go gopher mascot
designed by Renée French

In this lesson, you'll experiment with a Go program in your web browser.

‘IllllllllllIII'

+ IR EEREREERREEREREREREERREIR

Consider this If you tell a digital assistant, “Call me a cab,” does it dial a taxi com-
pany? Or does it assume you changed your name to a cab? Natural languages like
English are full of ambiguity.

Clarity is paramount in programming languages. If the language’s grammar or syntax
allows for ambiguity, the computer may not do what you say. That rather defeats the
point of writing a program.

Go isn’t a perfect language, but it strives for clarity more so than any other language
we've used. As you go through this lesson, there will be some abbreviations to learn and
jargon to overcome. Not everything will be clear at first glance, but take the time to
appreciate how Go works to reduce ambiguity.

dppr R R R R EEEEREEREEREREREREREREREREREREREREREREREROEROERORORORORONRS

YpprErEEEEEEEEEE R R R EEREONNS

What is Go? 5

11 What is Go?

=

B2

Go is a compiled programming language. Before you run a program, Go uses a compiler

to translate your code into the 1s and 0s that machines speak. It compiles all your code

into a single executable for you to run or distribute. During this process, the Go compiler
can catch typos and mistakes.

Not all programming languages employ this approach. Python, Ruby, and several other
popular languages use an interpreter to translate one statement at a time as a program is
running. That means bugs may be lurking down paths you haven't tested.

On the other hand, interpreters make the process of writing code fast and interactive,
with languages that are dynamic, carefree, and fun. Compiled languages have a reputa-
tion for being static, inflexible robots that programmers are forced to appease, and com-
pilers are derided for being slow. But does it need to be this way?

We wanted a language with the safety and performance of statically compiled languages such as

C++ and Java, but the lightness and fun of dynamically typed interpreted languages such as
Python.

—Rob Pike, Geek of the Week
(see mng.bz/jr8y)

Go is crafted with a great deal of consideration for the experience of writing software.
Large programs compile in seconds with a single command. The language omits fea-
tures that lead to ambiguity, encouraging code that is predictable and easily under-
stood. And Go provides a lightweight alternative to the rigid structure imposed by
classical languages like Java.
Java omits many rarely used, poorly understood, confusing features of C++ that in our experience
bring more grief than benefit.

—James Gosling, Java: an Overview

Each new programming language refines ideas of the past. In Go, using memory effi-
ciently is easier and less error-prone than earlier languages, and Go takes advantage of
every core on multicore machines. Success stories often cite improved efficiency as a
reason for switching to Go. Iron.io was able to replace 30 servers running Ruby with

2 servers using Go (see mng.bz/Wevx and mng.bz/8y02). Bitly has “seen consistent,
measurable performance gains” when rewriting Python apps in Go, and subsequently
replaced its C apps with a Go successor (see mng.bz/EnYl).

B Lesson 1 Get ready, get set, Go

Go provides the enjoyment and ease of interpreted languages, with a step up in effi-
ciency and reliability. As a small language, with only a few simple concepts, Go is rela-
tively quick to learn. These three tenets form the motto for Go:
Go is an open source programming language that enables the production of simple, efficient,
and reliable software at scale.
—Go Brand Book

TIP When searching the internet for topics related to Go, use the keyword golang, which
stands for Go language. The -lang suffix can be applied to other programming languages as
well: Ruby, Rust, and so on.

‘\“““““““‘““““““‘“““““““““““\

Quick check 1.1 What are two benefits of the Go compiler? \

4
\\‘“““““"‘“““““"‘““““““““““““

()
1.2 The Go Playground

The quickest way to get started with Go is to navigate to play.golang.org. At the Go
Playground (figure 1.2) you can edit, run, and experiment with Go without needing to
install anything. When you click the Run button, the playground will compile and exe-
cute your code on Google servers and display the result.

4 play gotang o

The Go Playground (20 D) (YD () 3

package main

import
L
1

func maini) {
y fat.Println{"Hello, playground")

Hello, playground

Figure 1.2 The Go Playground

If you click the Share button, you'll receive a link to come back to the code you wrote.
You can share the link with friends or bookmark it to save your work.

LS A A N A A O VNNV NN LN LA L L L. NN\ N N\)

QC 1.1 answer Large programs compile in seconds, and the Go compiler can catch typos and mis-
takes before running a program.

Packages and functions 7

NOTE You can use the Go Playground for every code listing and exercise in this book. Or, if
you’re already familiar with a text editor and the command line, you can download and install
Go on your computer from golang.org/dl/.

““““““““““‘““““““‘“““““““““\

\ Quick check 1.2 What does the Run button do in The Go Playground? N

AN S S O O S S A S S S A A N A A S S S S A S N SN N S S NS S SN SN SSSNSSSSNSSS\N N,

(e :
1.3 Packages and functions

When you visit the Go Playground, you'll see the following code, which is as good a

starting point as any.
Listing 1.1

package main 4\ Declares the package
this code belongs to

import (
fmt” ‘\ Makes the fmt (format)
) package available for use
func main() { <«—— Declares a function named main

fmt.Println("Hello, playground") 4\ Prints Hello, playground

to the screen

}

Though short, the preceding listing introduces three keywords: package, import, and func.
Each keyword is reserved for a special purpose.

The package keyword declares the package this code belongs to, in this case a package
named main. All code in Go is organized into packages. Go provides a standard library
comprised of packages for math, compression, cryptography, manipulating images, and
more. Each package corresponds to a single idea.

The next line uses the import keyword to specify packages this code will use. Packages
contain any number of functions. For example, the math package provides functions like
Sin, Cos, Tan, and Sqrt (square root). The fmt package used here provides functions for for-
matted input and output. Displaying text to the screen is a frequent operation, so this
package name is abbreviated fmt. Gophers pronounce fnt as “FOOMT!,” as though it
were written in the large explosive letters of a comic book.

(SN N 0 0 O N NN N LS AN NN NN LN NN AL N NN LN NN NN NN N N\ N

QC 1.2 answer The Run button will compile and then execute your code on Google servers.

8 Get ready, get set, Go

The func keyword declares a function, in this case a function named main. The body of
each function is enclosed in curly braces {}, which is how Go knows where each func-
tion begins and ends.

The main identifier is special. When you run a program written in Go, execution begins at
the main function in the main package. Without main, the Go compiler will report an error,
because it doesn’t know where the program should start.

Lux
. tax
&

Money

chest Cape

| — road

=S| s

To print a line of text, you can use the Println function (1n is an abbreviation for line).
Println is prefixed with fmt followed by a dot because it is provided by the fnt package.
Every time you use a function from an imported package, the function is prefixed with
the package name and a dot. When you read code written in Go, the package each func-
tion came from is immediately clear.

Run the program in the Go Playground to see the text Hello, playground. The text
enclosed in quotes is echoed to the screen. In English, a missing comma can change the
meaning of a sentence. Punctuation is important in programming languages too. Go
relies on quotes, parentheses, and braces to understand the code you write.

g
\
: 1 Where does a Go program start?

2 What does the fmt package provide?

NN AL L LLLLLLLLLLLLLSLLLLLL LN NLLSLNL LN LN NNLNNLNNNNNN NN\
*
&
*

A SSSSSSSSS S,

RS S S S S S SO O AN A S S A SN A O A NN S A A N N NSNS NN NSNS SN SN SCSNSNSNSCSSNSNSNSNSSNSNSNSNNN

1 A program starts at the main function in the main package.
2 The fmt package provides functions for formatted input and output.

The one true brace style 9

1.4 The one true hrace style

Go is picky about the placement of curly braces {}. In listing 1.1, the opening brace { is

on the same line as the func keyword, whereas the closing brace } is on its own line. This
is the one true brace style—there is no other way. See mng.bz/NdE2.

To understand why Go became so strict, you
need to travel back in time to the birth of Go.
In those early days, code was littered with
semicolons. Everywhere. There was no escap-
ing them; semicolons followed every single
statement like a lost puppy. For example:

fmt.Println("Hello, fire hydrant");

In December of 2009, a group of ninja gophers \
expelled semicolons from the language. Well,

not exactly. Actually, the Go compiler inserts
those adorable semicolons on your behalf,

and it works perfectly. Yes, perfectly, but in
exchange you must follow the one true brace
style.

If you put an opening brace on a separate line from the func keyword, the Go compiler
will report a syntax error:

func main() «——— missing function body

} <\ syntax error:unexpected semicolon or

newline before {

The compiler isn’t upset with you. A semicolon was inserted in the wrong place and it
got a little confused.

TIP As you work through this book, it's a good idea to type the code listings yourself. You
may see a syntax error if you mistype something, and that’s okay. Being able to read, under-
stand, and correct errors is an important skill, and perseverance is a valuable trait.

10 Lesson 1 Get ready, get set, Go

“\\\

(Quick check 1.4 Where must opening braces { be placed to avoid syntax errors? \
\

A SS S S S SSSSSSSSSN N

Summary

¢
(DA

= With the Go Playground you can start using Go without installing anything.

= Every Go program is made up of functions contained in packages.

= To print text on the screen, use the fmt package provided by the standard library.

= Punctuation is just as important in programming languages as it is in natural lan-
guages.

= You used 3 of the 25 Go keywords: package, import, and func.

Let’s see if you got this...

For the following exercise, modify the code in the Go Playground and click the Run but-
ton to see the result. If you get stuck, refresh your web browser to get back the original
code.

Experiment: playground.go

= Change the text printed to the screen by modifying what appears between
quotes. Have the computer greet you by name.

= Display two lines of text by writing a second line of code within the body {} of
the main function. For example:

fmt.Println("Hello, world")
fmt.Println("Hello, tH&")

= Go supports characters of every language. Print text in Chinese, Japanese, Rus-
sian, or Spanish. If you don’t speak those languages, you can use Google Trans-
late (translate.google.com) and copy/paste text into the Go Playground.

Use the Share button to get a link to your program and share it with other readers by
posting it on the Get Programming with Go forums (forums.manning.com/forums/get-
programming-with-go).

Compare your solution to the code listing in the appendix.

aAaaNaNN NN NSsNNNN NN N NN N NN NN NN NN N NN N N"N "N N“"N """ “"“"“"“"“"N“N“NN“NN“NN“NN“NT“NTS“NTT"NTT"TT"TT"TT".TTZ"."".Y§%Y
OC 1.4 answer An opening brace must be on the same line as func, rather than on an separate line.
This is the one true brace style.

Imperative programming

Most computer programs are a series of steps, like
the directions for your mom’s stroganoff. Tell a
computer precisely how to accomplish a task, and it
can do all sorts of things. Writing down these
instructions is known as imperative programming. If
only computers could cook!

In unit 1, you'll review Go fundamentals and start
learning the syntax Go uses to instruct your com-
puter. Each lesson builds up the knowledge you'll
need to tackle your first challenge: an app that lists
ticket prices for a vacation to Mars.

11

LESSON

A GLORIFIED CALCULATOR

After reading lesson 2, you'll be able to

= Teach a computer to do your math
= Declare variables and constants
= See how declaration and assignment differ

= Use the standard library to generate pseudorandom numbers

Computer programs are capable of a great many things. In this lesson you'll write pro-
grams to solve mathematical problems.

Consider this \/\Vhy write a program when you could just use a calculator?

Well, have you memorized the speed of light or how long it takes Mars to orbit the sun?
Code can be saved and read later, serving as both a calculator and a reference. A pro-
gram is an executable document that can be shared and maodified.

13

14 Lesson 2 A glorified calculator

2

= 2.1 Performing calculations

—

D

There are days when we think it would be
nice to be younger and weigh a little less.
In this regard, Mars has a lot to offer. Mars
takes 687 Earth days to travel around the
sun, and its weaker gravitational force
means everything weighs approximately
38% of what it does on Earth.

To calculate how young and light Nathan
would be on Mars, we wrote a small pro-
gram, shown in listing 2.1. Go provides the
same arithmetic operators as other pro-
gramming languages: +, -, *, /, and % for

addition, subtraction, multiplication, divi-
sion, and modulus respectively.

TIP The modulus operator (%) obtains the remainder of dividing two whole numbers (for
example, 42 % 10 is 2).

Listing 2.1

// My weight loss program. 4\ A comment for
package main human readers

import "“fmt" /

// main is the function where it all begins.
func main() {

fmt.Print("My weight on the surface of Mars is ")
fmt.Print(149.0 * 0.3783)

fmt.Print(" 1lbs, and I would be ") Prints 56.3667
fmt.Print(41 * 365 / 687) 4\

fmt.Print(" years old.") Prints 21

NOTE Though listing 2.1 displays weight in pounds, the chosen unit of measurement
doesn’t impact the weight calculation. Whichever unit you choose, the weight on Mars is
37.83% of the weight on Earth.

Formatted print 15

The code in the preceding listing begins with a comment. When Go sees a double slash
//, it ignores everything until the end of the line. Computer programming is all about
communication. Code communicates your instructions to a computer, and when writ-
ten well, it communicates your intentions to other people. Comments are just for us.
They don’t affect how a program runs.

The preceding listing calls the Print function several times to display a sentence on a sin-
gle line. Alternatively, you can pass a list of arguments separated by commas. An argu-
ment to Println can be text, a number, or a mathematical expression:

fmt.Println("My weight on the surface of Mars is", 149.0%*0.3783, "lbs, and
I would be", 41*365.2425/687, "years old.")
Prints My weight on the surface
of Mars is 56.3667 lbs, and |

would be 21.79758733624454
years old.

QP
N Quick check 2.1 Type and run listing 2.1 in the Go Playground at play.golang.org. How much
N\ would you weigh on Mars? How old would you be? Replace Nathan’s age (41] and weight (149.0)

N with your own.
\‘“““““““““"""‘““““““““““““

*
oy

TIP After modifying your code, click the Format button in the Go Playground. It will auto-
matically reformat the indentation and spacing of your code without changing what it does.

2.2 Formatted print

.

The Print and Println functions have a sibling that gives more control over output. By using
Printf, shown in the following listing, you can insert values anywhere in the text.

Printf: fmt.go

fmt.Printf("My weight on the surface of Mars is %v lbs,", 149.0%0.3783)
fmt.Printf(" and I would be %v years old.\n", 41%*365/687) A)

Prints My weight on the surface Prints and | would
of Mars is 56.3667 Ibs, be 21 years old.

SRR SRS SRS SRS SRS RS SRS SRS RS S SRR R R RS CR SRR RN R R R R R R R CR R RN RTRRTRTRTRTRRRWNW™

QC 2.1 answer That depends on your weight and age.

16 Lesson 2 A glorified calculator

Unlike Print and Println, the first argument to Printf is always text. The text contains the
format verb %v, which is substituted for the value of the expression provided by the sec-
ond argument.

NOTE \We'llintroduce more format verbs (other than %v) as needed in upcoming lessons.

For a complete reference, see the online documentation at golang.org,/ pkg,/fmt/.
The Println function automatically moves to the next line, but Printf and Print don't.
Whenever you want to move to a new line, place \n in the text.

If multiple format verbs are specified, the Printf function will substitute multiple values
in order:

fmt.Printf("My weight on the surface of %v is %v lbs.\n", "Earth", 149.0)

Prints My weight on the
surface of Earth is 149 |bs.

In addition to substituting values anywhere in a sentence, Printf can help you align text.
Specify a width as part of the format verb, such as %4v to pad a value to a width of 4 char-
acters. A positive number pads with spaces to the left, and a negative number pads with
spaces to the right:

fmt.Printf("%-15v S$%4v\n", "SpaceX", 94)
fmt.Printf("%-15v S%4v\n", "Virgin Galactic", 100)

The preceding code displays the following output:

SpaceX S 94
Virgin Galactic $ 100

A A2 R A A A A A A AN A2 2222 AL 2L LA L2222 202222 NN 222NN NN 2N N\ N
+' Quick check 2.2

: 1 How do you print a new line?

\ 2 What does Printf do when it encounters the %v format verb?

*

"ll/

*
\"""""""""""""‘““““““““““““

A S RN NN TR TNRTSRRNRRNRRNRNRRNRRNRNRRSNRRNRNRRNRNRNRRNRNRNRSNRNNSNNSNNSNNNCNN"NN"NCN"NNCNNCNNCNNCNNCNTCNNCNRTNTNTSNTLRTSTTS.TRTSTRETETRET.TWS.SW™
QC 2.2 answer

1 Use \n anywhere in the text you're printing to insert a new line or use fmt.Println().
2 The %v is substituted for a value from the following arguments.

Constants and variables 17

2.3 Constants and variahles

The calculations in listing 2.1 are performed on literal numbers. It isn’t clear what the

numbers mean, particularly values like 0.3783. Programmers sometimes refer to unclear
literal numbers as magic numbers. Constants and variables can help by providing
descriptive names.

After seeing the benefits of living on Mars, our next question is how long the trip will
take. Traveling at the speed of light would be ideal. Light travels at a constant speed in
the vacuum of space, which makes the math easy. On the other hand, the distance
between Earth and Mars varies significantly, depending on where the planets are in their
orbits around the Sun.

The following listing introduces two new keywords, const and var, for declaring con-
stants and variables respectively.

Listing 2.3

// How long does it take to get to Mars?
package main

import "“fmt"

func main() {
const lightSpeed = 299792 // km/s

var distance = 56000000 // km)
/ Prints 186 seconds

fmt.Println(distance/lightSpeed, "seconds") <

distance = 401000000

/ Prints 1337 seconds
fmt.Println(distance/lightSpeed, "seconds") <

}

Type listing 2.3 into the Go Playground and click Run. Light speed is pretty convenient;
you probably wouldn’t hear anyone asking, “Are we there yet?”

The first calculation is based on Mars and Earth being nearby, with distance declared and
assigned an initial value of 56,000,000 km. Then the distance variable is assigned a new
value of 401,000,000 km, with the planets on opposite sides of the Sun, though plotting a
course directly through the Sun could be problematic.

NOTE The lightSpeed constant can’t be changed. If you try to assign it a new value, the Go
compiler will report the error “cannot assign to lightSpeed.”

18 Lesson 2 A glorified calculator

NOTE Variables must be declared before you can use them. Go will report an error if you
assign a value to a variable that hasn’t been declared with var—for example, speed = 16. This
restriction can help catch mistakes, such as accidentally assigning a value to distence when
you intended to type distance.

‘\‘“"‘“"‘“""“"‘“‘“““““““““““‘\\
" Quick check 2.3 \
: 1 The SpaceX Interplanetary Transport System lacks a warp drive, but it will coast to Mars ~ \
\ at a respectable 100,800 km,/h. An ambitious launch date of January 2025 would place :
: Mars and Earth 96,300,000 km apart. How many days would it take to reach Mars? :

Modify listing 2.3 to find out.
\ \
: 2 There are 24 hours in one Earth day. To give 24 a descriptive name in your program, :
\ which keyword would you use? :
N .

\“"""“““"""‘“““‘“““““““““““

() :
2.4 Taking a shortcut

There may not be any shortcuts to visit Mars, but Go provides a few keystroke-saving

shortcuts.

241 Declare multiple variables at once
When you declare variables or constants, you can declare each one on its own line like
this:

var distance = 56000000
var speed = 100800

Or you can declare them as a group:

var (
distance = 56000000

speed = 100800

‘AN NSNS S NSNS NS S S SN SN SN N S S S SN NN NSRS SN SRS NSRS SRS R SRS CS SRR RLRTRRRRRRTWT

QcC 2.3 answer
1 Spaceships don't travel in a straight line, but as an approximation, the trip would take 39 days.

const hoursPerDay = 24
var speed = 100800 // km/h
var distance = 96300000 // km

fmt.Println(distance/speed/hoursPerDay, "days")

2 The const keyword because the value doesn’t change while the program is running.

Taking a shortcut 19

Yet another option is to declare multiple variables on a single line:

var distance, speed = 56000000, 100800

Before you declare multiple variables as a group or on a single line, consider whether or
not the variables are related. Always keep in mind the readability of your code.

‘\““"‘“““““"‘““““““““““““““\

*
+ Quick check 2.4 What single line of code would declare bath the number of hours in a day

and the minutes per hour?
AN

“l//

A S NS S S S SN SSSSSSSSSSNSSSS S,

24.2 Increment and assignment operators

There are a few shortcuts to perform assignment with other operations. The last two
lines of the following listing are equivalent.

Assignment operators: shortcut.go

var weight = 149.0
weight = weight * 0.3783
weight *= 0.3783

Incrementing by one has an additional shortcut, as shown in the following listing.

Increment operator

var age = 41

age = age + 1 <+— happy birthday!

age += 1

age++
You can decrement with count-- or shorten other operations like price /= 2 in the same
way.

NOTE In case you're wondering, Go does not support the prefix increment ++count like C
and Java.

AMaAaAaAN N AsNNsNN NN NN NN NSNS NN NN NN N NN N NN NN NNNCNN"NN"NC"NC“"C“"C“"C“"C“"C“"C“"C"NTC"NT"NT"TTTTTW™Y
QC 2.4 answer
const hoursPerDay, minutesPerHour = 24, 60

20 Lesson 2 A glorified calculator

‘\‘“““““““““‘““““““““‘“““““‘\
’ - . . .

+ Quick check 2.5 Write the shortest line of code to subtract two pounds from a variable N\

named weight.

A S NS S S S SN SSSSSSSSSSNSSSS S

e

N\

= 2.9 Think of a number

N

0o

Think of a number between 1 and 10.
Got it? Okay.

Now have your computer “think” of a number between 1 and 10. Your computer can
generate pseudorandom numbers using the rand package. They're called pseudorandom
because they’re more or less random, but not truly random.

The code in listing 2.6 will display two numbers between 1-10. Passing 10 to Intn returns
anumber from 0-9, to which you add 1 and assign the result to nun. The num variable can’t
be a Go constant because it’s the result of a function call.

NOTE If you forget to add 1, you'll get a number between O-3. Because we want a number
between 1-10, that's an example of an off-by-one error, a classic programming mistake.

Random numbers: rand.go

package main

import (
"t
"math/rand"

func main() {
var num = rand.Intn(10) + 1
fmt.Println(num)

num = rand.Intn(10) + 1
fmt.Println(num)

(S O 0 0 0 A . L A VN A VLA NN NN LA NN LN\ QNN N \

QC 2.5 answer
weight -= 2

Summary 21

The import path for the rand package is math/rand. The Intn function is prefixed with the
package name rand, but the import path is longer.

TIP To use a new package, it must be listed as an import. The Go Playground can add
import paths for you. First ensure the Imports checkbox is checked and then click the For-
mat button. The Go Playground will determine which packages are being used and update
your import paths.

NOTE Every time you run listing 2.6, the same two pseudorandom numbers are displayed.
It's rigged! In the Go Playground, time stands still and results are cached, but these num-
bers are good enough for our purposes.

“""""""""""""‘“““““““““““‘\
& . . q 9 q
Quick check 2.6 The distance between Earth and Mars varies from nearby to opposite sides

of the sun. Write a program that generates a random distance from 56,000,000 to
401,000,000 km.

:
\\“

""I/

(D Summary

= The Print, Println, and Printf functions display text and numbers on the screen.

= With Printf and the %v format verb, values can be placed anywhere in the dis-
played text.

= Constants are declared with the const keyword and can’t be changed.

= Variables are declared with var and can be assigned new values while a program
is running.

= The math/rand import path refers to the rand package.

= The Intn function in the rand package generates pseudorandom numbers.

= You used 5 of the 25 Go keywords: package, import, func, const, and var.

Let’s see if you got this...

Experiment: malacandra.go

Malacandra is much nearer than that: we shall make it in about twenty-eight days.
—C.S. Lewis, Out of the Silent Planet

IS S S S S S S SO S O SO SO SO SO SN SN S S S S S SN S SN S S A SN NSNS S SN SN SN SN SN NSNS SNSNSNSNSNSNSNSNSNSNSNNN]

QC 2.6 answer

// a random distance to Mars (km)
var distance = rand.Intn(345000001) + 56000000
fmt.Println(distance)

22 A glorified calculator

Malacandra is another name for Mars in The Space Trilogy by C. S. Lewis. Write a program
to determine how fast a ship would need to travel (in km/h) in order to reach Malacan-
dra in 28 days. Assume a distance of 56,000,000 km.

Compare your solution to the code listing in the appendix.

LESSON

LOOPS AND BRANCHES

After reading lesson 3, you'll be able to

= Have your computer make choices with if and switch
= Repeat code with for loops

= Use conditions for looping and branching

Computer programs rarely read from beginning to end like a novel. Programs are more
like Choose Your Own Adventure books or interactive fiction. They take different paths
under certain conditions or repeat the same steps until a condition is met.

If you're familiar with the if, else, and for keywords found in many programming lan-
guages, this lesson will serve as a speedy introduction to Go’s syntax.

Consider this \When Nathan was young, his family would play Twenty Questions to
pass the time on long trips. One person would think of something, and everyone else
tried to guess what it was. Questions could only be answered with yes or no. A question
like “How big is it?” would invite a blank stare. Instead, a common question was “Is it
larger than a toaster?”

Computer programs operate on yes/no questions. Given some condition (such as
larger than a toaster), a CPU can either continue down a path or jump [IMP] to some-
where else in the program. Complex decisions need to be broken down into smaller,
simpler conditions. i

23

24 Lesson 3 Loops and branches

<« R R R EREREREREREREEEREREREENEENERRNERERERRERENERRERRREREEREEREREEEERD
(continued)

Consider the clothes you're wearing today. How did you pick each article of clothing?
Which variables were involved, such as the weather forecast, planned activity, availabil-
ity, fashion, randomness, and so on? How would you teach a computer to get dressed
in the morning? Write down several questions with a yes or no answer.

Cysrsnnnnnnnn?

‘-Illllllllll'

Cp g pE R E R E R R EEREEEEEREEEREREEREREREREEEREREEERERERERERRERRERRRRRRRRnnt

3.1 True or false

.qI
A
W W

When you read Choose Your Own Adventure books, you’ll come across choices like this:

If you walk outside the cave, turn to page 21.
—Edward Packard, The Cave of Time

Do you walk outside the cave? In Go, your answer can be either true or false, two con-
stants that are already declared. You can use them like this:

var walkOutside = true
var takeTheBluePill = false

NOTE Some programming languages have a loose definition of truth. In Python and

JavaScript the absence of text (""]) is considered false, as is the number zero. In Ruby and
Elixir the same values are considered true. In Go, the only true value is true and the only
false value is false.

True and false are Boolean values, so named after 19th century mathematician George
Boole. Several functions in the standard library return a Boolean value. For example, the
following listing uses the Contains function from the strings package to ask if the command
variable contains the text “outside”. It does contain that text, so the result is true.

Listing 3.1
package main
import (
-
"strings"
)
func main() {
fmt.Println("You find yourself in a dimly lit cavern.")

Comparisons 25

var command = "walk outside"
var exit = strings.Contains(command, "outside")

fmt.Println("You leave the cave:", exit) Print You leave
1 the cave: true

““‘““‘““‘““‘““‘““‘““““““““““\\
Quick check 3.1
1 Emerging from the cave, your eyes meet the blinding midday sun. How do you declare a

’0
\
\
\ Boolean variable named wearShades?

: 2 There is a sign near the cave entrance. How can you determine if the command contains
\

the word “read”?

‘0
o s s s sy

\““"""‘“““"""‘“““““““““““““

3.2 Comparisons

Another way to arrive at a true or false value is by comparing two values. Go provides

the comparison operators shown in table 3.1.

Table 3.1 Comparison operators

== Equal I= Not equal
< Less than > Greater than
<= Less than or equal >= Greater than or equal

You can use the operators in table 3.1 to compare text or numbers, as shown in the fol-

lowing listing.

Comparing numbers: compare.go

fmt.Println("There is a sign near the entrance that reads 'No Minors'.")

var age = 41
var minor = age < 18

fmt.Printf("At age %v, am I a minor? %v\n", age, minor)

A S O O ANV AN NN A OO NN AN A O A A A A A A O O NN L L L AN\ N\ N\

QC 3.1 answer

1 var wearShades = true
2 var read = strings.Contains(command, "read")

26 Lesson 3 Loops and branches

The previous listing will produce this output:

There is a sign near the entrance that reads 'No Minors'.
At age 41, am I a minor? false

NOTE JavaScript and PHP have a special threequals operator for strict equality. In those
languages "1" == 1lis true (lax), but "1" === 1is false (strict). Go only has a single equality
operator, which doesn'’t allow direct comparison of text with numbers. Lesson 10 demon-
strates how to convert numbers to text and vice versa.

'S A A AL LA LN LA L L LLLLLLL LA LLNLL ... NN\ N NN N\

Y Quick check 3.2 Which is greater, an “apple” or a “banana”? N

A S SO A O A N A SN S NN N N N SN N N SN N N N N NN NN NN NN NN NN NN NN NN NSNS NN

3.3 Branching with if

4OV

Sy

A computer can use Boolean values or comparisons to choose between different paths
with an if statement, as shown in the following listing.

Branching: if.go

package main

import "fmt"
func main() { If command
var command = "go east" /!? equal to
go east o
if command == "go east" { Otherwise, if

command is
fmt.Println("You head further up tw equal to “go
} else if command == "go inside" { inside”

fmt.Println("You enter the cave where you live out the rest of your
life.")
} else { —

fmt.Println("Didn't quite get that.")

Or, if anything else

[a—

AN N NN NN NN NSNS NSNS NN NN NN N NN NN NN NS S S S S NSNS S SCN S S S S S CRCRTRTTTRTRTRTRTTRNNT

QC 3.2 answer The banana is clearly greater.

fmt.Println("apple” > "banana") <«—— Prints false

Logical operators 27

The previous listing will produce the following output:
You head further up the mountain.

Both else if and else are optional. When there are several paths to consider, you can
repeat else if as many times as needed.

NOTE Go reports an error if you accidentally use assignment (=) when equality (==) is
intended.

‘\"‘“"‘“"‘“"‘“"“‘“““““““““““‘\
Quick check 3.3 Adventure games are divided up into rooms. \Write a program that uses if
and else if to display a description for each of three rooms: cave, entrance, and mountain.

&
4
N
\
\ When writing your program, ensure the curly braces {} are placed according to the one true
\\ brace style as shown in listing 3.3.

”'III’/

\“"‘“““““"‘““““““““““““““““

P 3.4 Logical operators

f-\=ﬂ

In Go the logical operator || means or, and the logical operator &8 means and. Use logical
operators to check multiple conditions at once. See figures 3.1 and 3.2 for how these
operators are evaluated.

"aa S R S Ss NSNS NS SRS N NSRS SRR S RS RN RSR SRR R R R R R R RN NN R R TCRCRCRTRTRTRTRTRRRRWS

QC 3.3 answer
package main

import "fmt"

func main() {
var room = "cave"

if room == "cave"
fmt.Println("You find yourself in a dimly lit cavern.")
} else if room = "entrance" {
fmt.Println("There is a cavern entrance here and a path to the east.")
} else if room = "mountain" {
fmt.PrintIn("There is a cliff here. A path leads west down the mountain.")
1 else {

fmt.Println("Everything is white.")

28

Loops and branches

false true

false false true

true true true
false true
false false false
true false true

The code in listing 3.4 determines whether 2100
will be a leap year. The rules for determining a

leap year are as follows:

= Any year that is evenly divisible by 4 but

not evenly divisible by 100

= Or any year that is evenly divisible by 400

NOTE Recall that modulus (%) obtains the remain-
der of dividing two whole numbers. A remainder of
zero indicates that a number is evenly divisible by

another.

Listing 3.4

Figure 3.1 True if either
a || bistrue (or)

Figure 3.2 True if both
a && b are true [and)

fmt.Println("The year is 2100, should you leap?")

var year = 2100

var leap = year%400 == 0 || (year%4 == 0 && year%100 != 0)

if leap {

fmt.Println("Look before you leap!")

} else {

fmt.Println("Keep your feet on the ground.")

Logical operators 29

The previous listing will produce the following output:

The year is 2100, should you leap?
Keep your feet on the ground.

As with most programming languages, Go uses short-circuit logic. If the first condition is
true (the year is evenly divisible by 400), there’s no need to evaluate what follows the ||
operator, so it is ignored.

The 8& operator is just the opposite. The result is false unless both conditions are true. If
the year isn’t evenly divisible by 4, there’s no need to evaluate the next condition.

The not logical operator (!) flips a Boolean value from false to true or vice versa. The fol-
lowing listing displays a message if the player doesn’t have a torch or if the torch isn't lit.

Listing 3.5

var haveTorch = true
var litTorch = false

if !haveTorch IlitTorch Prints Nothing
. : . t __~ tosee here.
fmt.Println("Nothing to see here.") <

PR R R R R N e e e R R R R R R R R N N N

Quick check 3.4

’0
: 1 Using pen and paper, substitute 2000 into the leap year expression from listing 3.4. Evalu-
: ate all the modulus operators to find the remainders (use a calculator if need be). Then
: evaluate the == and != conditions to true or false. Finally, evaluate the logical operators
\ &&and then | |. Was 2000 a leap year?

: 2 Would you have saved time if you had used short-circuit logic to evaluate 2000%400 == 0 to
\ true first?

" /
ST T T T T T Iy

AN

AN SSS S S

QC 3.4 answer
1 Yes, the year 2000 was a leap year:
2000%400 == 0 || (2000%4 == 0 && 2000%100 !'= 0)
0==0|| (0=08&%0 !=0)
true || (true && false)
true || (false)
true

2 Yes, evaluating and writing down the later half of the equation did take time. Computers are
much faster, but short-circuit logic still saves time.

30 Lesson 3 Loops and branches

3.5 Branching with switch

When comparing one value to several others, Go provides the switch statement, which

you can see in the following listing.

The switch statement: concise-switch.go

fmt.Println("There is a cavern entrance here and a path to the east.")
var command = "go inside"

switch command { \ Compares cases
case "go east": to command
fmt.Println("You head further up the mountain.") A comma-
o separated list of
case "enter cave", "go inside": possible values

fmt.Println("You find yourself in a dimly lit cavern.")
case "read sign":

fmt.Println("The sign reads 'No Minors'.")
default:

fmt.Println("Didn't quite get that.")

}

The previous listing will produce the following output:

There is a cavern entrance here and a path to the east.
You find yourself in a dimly lit cavern.

NOTE You can also use the switch statement with numbers.

Or you can use the switch statement with conditions for each case, much like using
if.else. One unique feature of switch is the fallthrough keyword, which is used to execute
the body of the next case, as shown in the next listing.

The switch statement: switch.go

var room = "lake" .

Expressions are
switeh { / in each case.
case room == "cave":

fmt.Println("You find yourself in a dimly lit cavern.")
case room == "lake":
fmt.Println("The ice seems solid enough.")

fallthrough 4——\
case room == "underwater": Falls through to

the next case

Repetition with loops 31

fmt.Println("The water is freezing cold.")

}

The previous listing will produce the following output:

The ice seems solid enough.
The water is freezing cold.

NOTE Falling through happens by default in C, Java, and JavaScript, whereas Go takes a
safer approach, requiring an explicit fallthrough keyword.

“““"‘“““““"‘““““““““““““““\

N
¢ Quick check 3.5 Modify listing 3.7 to use the more concise form of switch, as

_ every comparison is with room.

AN \d
\“"""“““"""‘“““‘“““““““““““

e

O o
3.6 Repetition with loops

Rather than type the same code multiple times, the for

keyword repeats code for you. Listing 3.8 loops around
until count equals 0.

Before each iteration, the expression count > 0 is evalu-
ated to produce a Boolean value. If the value is false
(count =0), the loop terminates—otherwise, it runs the
body of the loop (the code between { and }).

SRR SRS SRS SRS SRS RS SRS SRS RS S SRR R R RS CR SRR RN R R R R R R R CR R RN RTRRTRTRTRTRRRWNW™

QC 3.5 answer

switch room {

case "cave":

fmt.Println("You find yourself in a dimly lit cavern.")
case "lake":

fmt.Println("The ice seems solid enough.")

fallthrough

case "underwater":
fmt.Println("The water is freezing cold.")

32 Lesson 3 Loops and branches

A countdown loop: countdown.go

package main
import (
n fmt "
"time"

)

func main() { Declares and initializes
var count = 10 <.//F

A condition
for count > 0 { /

fmt.Println(count)
time.Sleep(time.Second)

count--
} Decrements count;

otherwise it will
fmt.Println("Liftoff!") loop forever

An infinite loop doesn’t specify a for condition, but you can still break out of a loop at any
time. The following listing orbits a 360° circle and stops randomly.

To infinity and beyond: infinity.go

var degrees =0

for {
fmt.Println(degrees)

degrees++
if degrees >= 360 {
degrees =0
if rand.Intn(2) == 0 {
break

NOTE The for loop has other forms that will be introduced in lessons 4 and 9.

Summary 33

""‘“““"""‘“““"‘“““““““““““‘\

N\

&
¢ Quick checl 3.6 Not every launch goes smoothly. Implement a countdown where every sec- \
\Jnd there’s a 1 in 100 chance that the launch fails and the countdown stops. \

ASS NN SN S S S SN N S S NN S S NN S SN N S NN NSNS NSNS SN SNSSNSNSNSSSNSNSSSN\NS.

‘0

Summary

= Booleans are the only values that can be used in conditions.

= Go provides branching and repetition with if, switch, and for.

= You used 12 of the 25 Go keywords: package, import, func, var, if, else, switch, case,
default, fallthrough, for, and break.

Let’s see if you got this...

Experiment: guess.go

Write a guess-the-number program. Make the computer pick random numbers between
1-100 until it guesses your number, which you declare at the top of the program. Dis-
play each guess and whether it was too big or too small.

"aa S R S Ss NSNS NS SRS N NSRS SRR S RS RN RSR SRR R R R R R R RN NN R R TCRCRCRTRTRTRTRTRRRRWS

QC 3.6 answer
var count = 10

for count > 0 {
fmt.Println(count)
time.Sleep(time.Second)
if rand.Intn(100) == 0 {
break

}

count--

}

if count == 0 {
fmt.Println("Liftoff!")

} else {
fmt.Println("Launch failed.")

LESSON

VARIABLE SCOPE

After reading lesson 4, you'll be able to

= Know the benefits of variable scope
= Use a shorter way to declare variables
= See how variable scoping interacts with for, if, and switch

= Know when to use a wide or narrow scope

In the course of running a program, many variables are used briefly and then discarded.
This is facilitated by the scoping rules of the language.

Consider this How many things can you keep in your head at once?

It has been suggested that our short-term memory is limited to about seven items, with
a seven-digit phone number being an excellent example.

Computers can store many values in their shortterm or Random Access Memory
(RAM), but remember that code is read not only by computers, but also by humans. As
such, code should be kept as simple as possible.

If any variable in a program could change at any time, and be accessed from anywhere,
keeping track of everything in a large program could become quite hectic. Variable
scope helps by allowing you to focus on the relevant variables in a given function or por-
tion of code without concerning yourself with the rest.

34

Looking into scope 35

4.1 Looking into scope

When a variable is declared, it comes into

scope, or to put it another way, the variable
becomes visible. Your program can access the
variable so long as it’s in scope, but once a
variable is no longer in scope, attempts to
access it will report an error.

One benefit of variable scope is that you can
reuse the same name for different variables.
Can you imagine if every variable in your pro-
gram had to have a unique name? If so, try to
imagine a slightly bigger program.

Scoping also helps while reading through
code because you don’t need to keep all the

variables in your head. Once a variable goes
out of scope, you can stop thinking about that
variable.

In Go, scopes tend to begin and end along the lines of curly braces {}. In the following
listing, the main function begins a scope, and the for loop begins a nested scope.

Listing 4.1
package main

import (
"t
"math/rand"

)

func main() {

var count = 0 .
ya A new scope begins.
<

for count < 10 {
var num = rand.Intn(10) + 1
fmt.Println(num)

count-++ This scope ends.

36 Lesson 4 Variable scope

The count variable is declared within the function scope and is visible until the end of the
main function, whereas the num variable is declared within the scope of the for loop. After
the loop ends, the num variable goes out of scope.

The Go compiler will report an error for any attempt to access num after the loop. You can
access the count variable after the for loop ends because it’s declared outside of the loop,
though there really is no reason to. In order to confine count to the scope of a loop, you'll
need a different way to declare variables in Go.

‘\""""""""""""‘“““““““““““\\

’0

: Quick check 4.1

\ 1 How does variable scope benefit you?
\

\

2 What happens to a variable when it goes out of scope? Modify listing 4.1 to access num
after the loop and see what happens.

\ eI IV

A SN SSSS S8

4.2 Short declaration

g
N W

Short declaration provides an alternative syntax for the var keyword. The following two
lines are equivalent:

var count = 10
count := 10

It may not seem like much, but saving three characters makes short declaration far more
popular than var. More importantly, short declaration can go places where var can’t.

The following listing demonstrates a variant of the for loop that combines initialization,
a condition, and a post statement that decrements count. When using this form of for
loops, the provided order is significant: initialize, condition, post.

Listing 4.2
var count = 0

for count = 10; count > 0; count-- {
fmt.Println(count)

} count remains

) in scope.
fmt.Println(count) <

(NS S S S SS S S S S S SO SN S S S S S S N SN S S S A SN S NS N S S NSNS SN S NSNS SNSNSSNSSNSSSSNSSN)

QC 4.1 answer
1 The same variable name can be used in multiple places without any conflicts. You only need to

think about the variables that are currently in scope.
2 The variable is no longer visible or accessible. The Go compiler reports an undefined: num error.

Short declaration 37

Without short declaration, the count variable must be declared outside of the loop, which
means it remains in scope after the loop ends.

By using short declaration, the count variable in the next listing is declared and initial-
ized as part of the for loop and falls out of scope once the loop ends. If count were
accessed outside of the loop, the Go compiler would report an undefined: count error.

Short declaration in a for loop: short-loop.go

for count := 10; count > 0; count-- {
fmt.Println(count)

} \ count is no

longer in scope.

TIP For the best readability, declare variables near where they are used.

Short declaration makes it possible to declare a new variable in an if statement. In the
following listing the num variable can be used in any branch of the if statement.

Short declaration in a if statement: short-if.go

if num := rand.Intn(3); num == 0 {
fmt.Println("Space Adventures")

} else if num == 1 {
fmt.Println("SpaceX")

} else {
fmt.Println("Virgin Galactic")

} \ num is no longer

in scope.

Short declaration can also be used as part of a switch statement, as the following listing
shows.

Short declaration in a switch statement: short-switch.go

switch num := rand.Intn(10); num {
case 0:

fmt.Println("Space Adventures")
case 1:

fmt.Println("SpaceX")
case 2:

fmt.Println("Virgin Galactic")
default:

fmt.Println("Random spaceline #", num)
}

38 Lesson 4 Variable scope

“"‘“““"""‘“““"‘“““““““““““‘\

' Quick check 4.2 How would the scope of num be affected if short declaration weren’t used in
\\Iistings 4.4 or 4.5?

AS S S S A S S S S S S SN N S NS A NS N SN S N SN SN S NSNS NSNS SN SN SN SNSNSNSNSNSSNSNSSS

* /
s

4.3 Narrow scope, wide scope

— W

S,

The code in the next listing generates and displays a random date—perhaps a departure
date to Mars. It also demonstrates several different scopes in Go and shows why consid-
ering scope when declaring variables is important.

Variable scoping rules: scope-rules.go

package main

import (
g
"math/rand"
) era is available throughout
the package.
var era = "AD" /
func main() { era and year

year := 2018 / are in scope.
era, year, and month
switch month := rand.Intn(12) + 1; month { / are in scope.

case 2: era, year, month, and
day := rand.Intn(28) + 1 <« day are in scope.
fmt.Println(era, year, month, day)
case 4, 6, 9, 11: s
oD It’s a new day.
day := rand.Intn(30) + 1 /

fmt.Println(era, year, month, day)

default:
day := rand.Intn(31) + 1
year is fmt.Println(era, year, month, day)

no longer
in sco%e. \ J \ month and day
} are out of scope.

S O O O O O O QAL L LA LLA LA A N S LA O OA A L O AN O L L LLLL NN\ N)
OC 4.2 answer It's not possible to declare a variable with var immediately after the if, switch, or
for keywords. Without short declaration, num would need to be declared before the if/switch statement,
so num would remain in scope beyond the end of 1f/switch.

Narrow scope, wide scope 39

The era variable is declared outside of the main function in the package scope. If there were
multiple functions in the main package, era would be visible from all of them.

NOTE Short declaration is not available for variables declared in the package scope, so

era can't be declared with era := "AD" at its current location.
The year variable is only visible within the main function. If there were other functions,
they could see era but not year. The function scope is narrower than the package scope. It
begins at the func keyword and ends with the terminating brace.

The month variable is visible anywhere within the switch statement, but once the switch
statement ends, month is no longer in scope. The scope begins at the switch keyword and
ends with the terminating brace for switch.

Each case has its own scope, so there are three independent day variables. As each case
ends, the day variable declared within that case goes out of a scope. This is the only situa-
tion where there are no braces to indicate scope.

The code in listing 4.6 is far from perfect. The narrow scope of month and day results in
code duplication (Println, Println, Println). When code is duplicated, someone may revise
the code in one place, but not the other (such as deciding not to print the era, but forget-
ting to change one case). Sometimes code duplication is justified, but it’s considered a
code smell, and should be looked at.

To remove the duplication and simplify the code, the variables in listing 4.6 should be
declared in the wider function scope, making them available after the switch statement
for later work. It’s time to refactor! Refactoring means modifying the code without modi-
tying the code’s behavior. The code in the following listing still displays a random date.

Listing 4.7
package main

import (
"fmt"
"math/rand"

)
var era = "AD"

func main() {
year := 2018
month := rand.Intn(12) + 1
daysInMonth := 31

40 Lesson 4 Variable scope

switch month {
case 2:
daysInMonth = 28
case 4, 6, 9, 11:
daysInMonth = 30

}

day := rand.Intn(daysInMonth) + 1
fmt.Println(era, year, month, day)

}

Though a narrower scope often reduces the mental overhead, listing 4.6 demonstrates
that constraining variables too tightly can result in less readable code. Take it on a case-
by-case basis, refactoring until you can’t improve the readability any further.

““““““““‘““““““‘“““““““““““\

(Quick checlk 4.2 What's one way to recognize that variables are scoped too tightly?
AN

S SN S SN SSSSSSSSS8

4

Summary

NS

= An opening curly brace { introduces a new scope that ends with a closing brace }.

= The case and default keywords also introduce a new scope even though no curly
braces are involved.

= The location where a variable is declared determines which scope it’s in.

= Not only is shortcut declaration shorter, you can take it places where var can’t go.

= Variables declared on the same line as a for, if, or switch are in scope until the end
of that statement.

= A wide scope is better than a narrow scope in some situations—and vice versa.

Let’s see if you got this...
Experiment: random-dates.go
Modify listing 4.7 to handle leap years:

= Generate a random year instead of always using 2018.
= For February, assign daysInMonth to 29 for leap years and 28 for other years.
Hint: you can put an if statement inside of a case block.

= Use a for loop to generate and display 10 random dates.

(S O 0 0 0 A . L A VN A VLA NN NN LA NN LN\ QNN N \

OC 4.3 answer If code is being duplicated due to where variables are declared.

LESSON

CAPSTONE: TICKET TO MARS

Welcome to the first challenge. It’s time to take everything covered in unit 1 and write
a program on your own. Your challenge is to write a ticket generator in the Go Play-
ground that makes use of variables, constants, switch, if, and for. It should also draw
on the fmt and math/rand packages to display and align text and to generate random
numbers.

When planning a trip to Mars, it would be handy to
have ticket pricing from multiple spacelines in one
place. Websites exist that aggregate ticket prices for
airlines, but so far nothing exists for spacelines.
That’s not a problem for you, though. You can use
Go to teach your computer to solve problems like
this.

Start by building a prototype that generates 10 ran-
dom tickets and displays them in a tabular format
with a nice header, as follows:

Spaceline Days Trip type Price

Virgin Galactic 23 Round-trip S 96
Virgin Galactic 39 One-way S 37

41

42 Capstone: Ticket to Mars

SpaceX 31 One-way S 41
Space Adventures 22 Round-trip $ 100
Space Adventures 22 One-way S 50
Virgin Galactic 30 Round-trip $ 84
Virgin Galactic 24 Round-trip $ 94
Space Adventures 27 One-way S 44
Space Adventures 28 Round-trip S 86
SpaceX 41 Round-trip § 72

The table should have four columns:

= The spaceline company providing the service

= The duration in days for the trip to Mars (one-way)
= Whether the price covers a return trip

= The price in millions of dollars ®

For each ticket, randomly select one of the following spacelines: Space Adventures,
SpaceX, or Virgin Galactic.

Use October 13, 2020 as the departure date for all tickets. Mars will be 62,100,000 km
away from Earth at the time.

Randomly choose the speed the ship will travel, from 16 to 30 km/s. This will determine
the duration for the trip to Mars and also the ticket price. Make faster ships more expen-
sive, ranging in price from $36 million to $50 million. Double the price for round trips.

When you're done, post your solution to the Get Programming with Go forums at
forums.manning.com/forums/get-programming-with-go. If you get stuck, feel free to
ask questions on the forums, or take a peek at the appendix for our solution.

Types

The text "Go" and the number 28487 are both repre-
sented with the same zeros and ones on an x86 com-
puter (0110111101000111). The type establishes what
those bits and bytes mean. One is a string of two
characters, the other is a 16-bit integer (2 bytes). The
string type is used for multilingual text, and 16-bit
integers are one of many numeric types.

Unit 2 covers the primitive types that Go provides
for text, characters, numbers, and other simple val-
ues. When appropriate, these lessons reveal the
benefits and drawbacks to help you select the most

appropriate type.

43

LESSON

REAL NUMBERS

After reading lesson 6, you'll be able to

= Use two types of real numbers
= Understand the memory-versus-precision trade-off

= Work around rounding errors in your piggy bank

Computers store and manipulate real numbers like 3.14159 using the IEEE-754 floating-
point standard. Floating-point numbers can be very large or incredibly small: think gal-
axies and atoms. With such versatility, programming languages like JavaScript and Lua
get by using floating-point numbers exclusively. Computers also support integers for
whole numbers, the subject of the next lesson.

Consider this |Imagine a carnival game with three cups. The nearest cup is worth
$0.10 to $1.00, the next is worth $1 to $10, and the farthest cup is worth $10 to
$100. Choose one cup and toss as many as 10 coins. If landing four coins in the middle
cup is worth $4, how would you win $1007?

To represent many possible real numbers with a fixed amount of space, a floating-point
number is like choosing 1 of 2,048 cups and placing anywhere from one to several tril-
lion coins in it. Some bits represent a cup or bucket, and other bits represent the coins

or offset within that bucket. N
1110

45

46 Lesson 6 Real numbers

<2 BB BN EREEEREEEEEEEREREEREEREEEEREEEREREEREE RN R R RN RN DR,
(continued)

One cup may represent very tiny numbers, and another represent huge numbers.
Though every cup fits the same number of coins, some cups represent a smaller range
of numbers more precisely than aothers, which represent a larger range of numbers
with less precision.

oM B NN EEEERREE,
Cygsnnnnnnnnn?®

CysssrrnEEEEEEEEEEE R R EEEREREEREEREREEREREREREREREEERERERERERERROEREOROERUEROERRUETRY

6.1 Declaring floating-point variahles

(E
Doy

0o

50

Every variable has a type. When you declare and initialize a variable with a real num-
ber, you're using a floating-point type. The following three lines of code are equivalent,
because the Go compiler will infer that days is a floaté4, even if you don’t specify it:

days := 365.2425 Short declaration
var days = 365.2425 \ (covered in lesson 4)

var days floaté4 = 365.2425

It's valuable to know that days has a floaté4 type, but it’s superfluous to specify float6s.
You, me, and the Go compiler can all infer the type of days by looking at the value to the
right. Whenever the value is a number with a decimal point, the type will be floaté.

TIP The golint tool provides hints for coding style. It discourages the clutter with the fol-
lowing message:

"should omit type float64 from declaration of var days;
it will be inferred from the right-hand side"

If you initialize a variable with a whole number, Go won’t know you want floating-point
unless you explicitly specify a floating-point type:

var answer floaté4d = 42

*>
\ Quick check 6.1 Whatt pe is inferred for answer := 42.0?
\]

N

&
A SSSSSSSSSSSS S,

““““‘““““““‘““““““‘““““““““\

LA A O O O A OOV OO NN NN\ N]

QC 6.1 answer Real numbers are inferred as float64.

Declaring floating-point variables 47

6.1.1 Single precision floating-point numbers

Go has two floating-point types. The default floating-point type is float6s4, a 64-bit
floating-point type that uses eight bytes of memory. Some languages use the term
double precision to describe the 64-bit floating-point type.

The float32 type uses half the memory of floatés but offers less precision. This type is
sometimes called single precision. To use float32, you must specify the type when declar-
ing a variable. The following listing shows float32 in use.

Listing 6.1

var pi64 = math.Pi

var pi32 float32 = math.Pi_ puincs 3.141592653589793
fmt.Println(pi6l) < Prints 3.1415927

fmt.Println(pi32) /

When working with a large amount of data, such as thousands of vertices in a 3D game,
it may make sense to sacrifice precision for memory savings by using float32.

TIP Functions in the math package operate on float64 types, so prefer float64 unless you
have a good reason to do otherwise.

‘\\

\ Quick check 6.2 How many bytes of memory does a single precision float32 use? \

S S S R SR S S S S S S S SS S SS S,

6.1.2 The zero value

In Go, each type has a default value, called the zero value. The default applies when you
declare a variable but don’t initialize it with a value, as you can see in the next listing.

Listing 6.2

var price floatés4 Prints O
fmt.Println(price) 4/

The previous listing declares price with no value, so Go initializes it with zero. To the
computer, it’s identical to the following;:

price := 0.0

(SN S S S S S S S S S S SN S S S S S SN SN SN S A A SN S S NS SN SN NSNS SN S S S SN SNSNSNSNSNSCNSNSNSNSNSNSSNSNN]

OC 6.2 answer A float32 uses 4 bytes (or 32 bits).

48 Lesson 6 Real numbers

To the programmer, the difference is subtle. When you declare price := 0.0, it’s like say-
ing the price is free. Not specifying a value for price, as in listing 6.2, hints that the real
value is yet to come.

““““““"‘“““““"‘““““““““““““

\ Quick check 6.3 What is the zero value for a float32? N

\d
h "t . 3 3 L L LE LE_EfECE L LS CECE S LR C R R AR R LR R SRR RR R RRnnnww®

-O-5.2 Displaying floating-poi
5.2 Displaying floating-point types

When using Print or Println with floating-point types, the default behavior is to display

as many digits as possible. If that's not what you want, you can use Printf with the %f for-
matting verb to specify the number of digits, as the following listing shows.

Formatted print for floating-point: third.go

third := 1.0 / 3

fmt.Println(third) <——— Prints 0.3333333333333333
fmt.Printf("%v\n", third) <~

fmt.Printf("%f\n", third) <——— Prints 0.333333
fmt.Printf("%.3f\n", third) <«——— Prints 0.333
fmt.Printf("%4.2f\n", third) <«——— Prints 0.33

width precision

The %f verb formats the value of third with a

width and with precision, as shown in figure 6.1. Figure 6.1
"%4.2f" The %f format verb

precision

Precision specifies how many digits should ’J_‘

appear after the decimal point; two digits for 0.33

%.2f, for example, as shown in figure 6.2. |—'—1 Figure 6.2 Output formatted
width with a width of 4, precision of 2

Width specifies the minimum number of characters to display, including the decimal
point and the digits before and after the decimal (for example, 0.33 has a width of 4). If
the width is larger than the number of characters needed, Printf will pad the left with

LA A O O O A OOV OO NN NN\ N]

OC 6.3 answer The default value is zero (0. 0).

Floating-point accuracy 49

spaces. If the width is unspecified, Printf will use the number of characters necessary to
display the value.

To left-pad with zeros instead of spaces, prefix the width with a zero, as in the following
listing.

Zero padding: third.go

fmt.Printf("%05.2f\n", third) <«——— Prints 00.33

““““"""‘“““"""“““““““““““‘\

Quick check 6.4

1 Type listing 6.3 into the body of a main function in the Go playground. Try different values
for the width and precision in the Printf statement.
2 What is the width and precision of 0015.1021?

\““"‘“““““"‘““““““““““““““‘“

\d
\
N
\
\
\
\

* /
o sy

6.3 Floating-point accuracy

.

In mathematics, some rational numbers can’t
be accurately represented in decimal form.
The number 0.33 is only an approximation of
5. Unsurprisingly, a calculation on approxi-
mate values has an approximate result:

B+ls+ls=1
0.33+0.33+0.33=0.99

Floating-point numbers suffer from rounding
errors too, except floating-point hardware uses
a binary representation (using only 0s and 1s)

LS A A O O OO OV VLN LN LL LAV L. LA\ N N\]

QC 6.4 answer
1 third :=1.0/ 3
fmt.Printf("%f\n", third) <«——— Prints 0.333333
fmt.Printf("%7.4f\n", third) <«——— Prints 0.3333
fmt.Printf("%06.2f\n", third) <«——— Prints 000.33

2 The width is 9 and the precision is 4, with zero padding "%09.4£f".

50 Lesson 6 Real numbers

instead of decimal (using 1-9). The consequence is that computers can accurately represent
5 but have rounding errors with other numbers, as the following listing illustrates.

Floating-point inaccuracies: float.go

third := 1.0 / 3.0
fmt.Println(third + third + third) <——— Prints 1

piggyBank := 0.1
piggyBank += 0.2
fmt.Println(piggyBank) <«——— Prints 0.30000000000000004

As you can see, floating-point isn’t the best choice for representing money. One alterna-
tive is to store the number of cents with an integer type, which is covered in the next
lesson.

On the other hand, even if your piggyBank were off by a penny, well, it isn’t mission criti-
cal. As long as you've saved enough for the trip to Mars, you're happy. To sweep the
rounding errors under the rug, you can use Printf with a precision of two digits.

To minimize rounding errors, we recommend that you perform multiplication before
division. The result tends to be more accurate that way, as demonstrated in the tempera-
ture conversion examples in the next two listings.

Division first: rounding-error.go

celsius := 21.0
fmt.Print((celsius/5.0%9.0)+32, "° F\n")
(

fmt.Print((9.0/5.0%celsius)+32, "° F\n")

Multiplication first: temperature.go

celsius := 21.0
fahrenheit := (celsius * 9.0 / 5.0) + 32.0

fmt.Print(fahrenheit, "° F") <«——— Prints 69.8°F

Prints 69.80000000000001° F

IS A A A A A A A RN A A AL AN N2 A A2 N2 22222220222 NN 0NN N\ N N

S
N\ Quick check 6.5 What is the best way to avoid rounding errors?

""“““"""‘“““""‘““““““““““““

LA O O O NN O VNN AL AN AN LN SN N8N\ N\]

OC 6.5 answer Don't use a floating-point.

Summary 51

6.4 Comparing floating-point numbers

.‘
ﬂ

In listing 6.5, the piggyBank contained 0.30000000000000004, rather than the desired 0.30.
Keep this in mind any time you need to compare floating-point numbers:

piggyBank := 0.1
piggyBank += 0.2
fmt.Println(piggyBank == 0.3) <——— Prints false

Instead of comparing floating-point numbers directly, determine the absolute difference
between two numbers and then ensure the difference isn’t too big. To take the absolute
value of a floatés, the math package provides an Abs function:

fmt.Println(math.Abs(piggyBank-0.3) < 0.0001) <«——— Prints true

TIP The upper bound for a floating-point error for a single operation is known as the
machine epsilon, which is 252 for float64 and 223 for float32. Unfortunately, floating-point
errors accumulate rather quickly. Add 11 dimes ($0.10 each) to a fresh piggyBank, and the
rounding errors exceed 22 when compared to $1.10. That means you're better off picking
a tolerance specific to your application—in this case, 0.0001.

“\"“““““"‘““““““““““““““““‘

" Quick check 6.6 I you add 11 dimes ($0.10 each) to an empty piggyBank of type float6k,

4
\ what is the final balance? K
“““““““"““““‘“““““““““““““

O Summary

R
=

s
ﬂ

= Go can infer types for you. In particular, Go will infer floaté4 for variables initial-
ized with real numbers.

= Floating-point types are versatile but not always accurate.

= You used 2 of Go’s 15 numeric types (floatés, float32).

"SR RS TRRSR NSRS RNR SRR RNR NSRS RSRRNRRSRRNRSRRSRCNRSRCNRNRRSRRCNRCRRCNRCNRRCRRCNRCRCNRCRRCRRCNRCRRNRTRRRRRRRRNWS
QC 6.6 answer
piggyBank := 0.0
for i :=0; i < 11; i++ {
piggyBank += 0.1 Prints
} 1.0999999999999999
fmt.Println(piggyBank) 4-/

52 Real numbers

Let’s see if you got this...

Experiment: piggy.go

Save some money to buy a gift for your friend. Write a program that randomly places
nickels ($0.05), dimes ($0.10), and quarters ($0.25) into an empty piggy bank until it con-

tains at least $20.00. Display the running balance of the piggy bank after each deposit,
formatting it with an appropriate width and precision.

LESSON

WHOLE NUMBERS

After reading lesson 7, you'll be able to

= Use 10 types of whole numbers
= Choose the right type
= Use hexadecimal and binary representations

Go offers 10 different types for whole numbers, collectively called integers. Integers
don’t suffer from the accuracy issues of floating-point types, but they can’t store frac-
tional numbers and they have a limited range. The integer type you choose will depend
on the range of values needed for a given situation.

Consider this How many numbers can you represent with two tokens?

If the tokens are individually identifiable by position, there are four possible permuta-
tions. Both tokens, neither token, one token, or the other token. You could represent
four numbers.

Computers are based on bits. A bit can either be off or on—0 or 1. Eight bits can repre-
sent 256 different values. How many bits would it take to represent the number
4,000,000,0007?

53

54 Lesson 7 Whole numbers

Q

= 1.1 Declaring integer variahles

—

o,

Five integer types are signed, meaning they can represent both positive and negative
whole numbers. The most common integer type is a signed integer abbreviated int:

var year int = 2018
The other five integer types are unsigned, meaning they’re for positive numbers only.
The abbreviation for unsigned integer is uint:

var month uint = 2
When using type inference, Go will always pick the int type for a literal whole number.

The following three lines are equivalent:

year := 2018
var year = 2018

var year int = 2018

TIP As with the floating-point types in lesson B, it's preferable to not specify the int type
when it can be inferred.

“"""""""""""""“““““““““““‘\

+' Quick check 7.1 I your glass is half full, which integer type would you use to represent the \

4

\number of milliliters of water in your glass? »
*

A S O S S S S S O SO SN S S S S S SNSSSSSSNSSNSSSSSN

711 Integer types for every occasion

Integers, whether signed or unsigned, come in a variety
of sizes. The size affects their minimum and maximum
values and how much memory they consume. There are
eight architecture-independent types suffixed with the
number of bits they need, as summarized in table 7.1.

(NSNS S S S S S SN S S S S S S S S NSNS SN S A SN S SN SN S S NS SN SN S S S SN SNSNSNSNSSSNSNSNSNSSSNSNN)

QC 7.1 answer The uint type (unsigned integer) is for positive integers only.

Declaring integer variables 55

Table 7.1 Architecture-independent integer types

Type Range Storage
int8 -128to 127
) 8-bit (one byte)

uint8 Oto 255
int16 -32,768 to 32,767)

16-bit (two bytes)
uint16 0 to 65535
int32 -2,147,483,648 to 2,147,483,647)

32-bit (four bytes)
uint32 0 to 4,294,967,295
int6s -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807 B64-bit (eight bytes)

uintés Oto 18,446,744,073,709,551,615

That's a lot of types to choose from! Later in this lesson, we’ll show some examples
where specific integer types make sense, along with what happens if your program
exceeds the available range.

There are two integer types not listed in table 7.1. The int and uint types are optimal for
the target device. The Go Playground, Raspberry Pi 2, and older mobile phones provide
a 32-bit environment where both int and uint are 32-bit values. Any recent computer
will provide a 64-bit environment where int and uint will be 64-bit values.

TIP If you're operating on numbers larger than two billion, and if the code could be run on
older 32-bit hardware, be sure to use int64 or uint64 instead of int and uint.

NOTE Although it's tempting to think of int as an int32 on some devices and an int64 on
other devices, these are three distinct types. The int type isn't an alias for another type.

‘\\\

Which integer types support the value -20,151,0217? N

A S S S O S S S S S S S S S S S N S S S S S S S S S S S S S S S S SNSSSSNSSSSSESN N,

\d
\J

71.2 Knowing your type

If you're ever curious about which type the Go compiler inferred, the Printf function
provides the %T format verb to display a variable’s type, as shown in the following
listing.

(SN S S S S S S S S S S SN S S S S S SN SN SN S A A SN S S NS SN SN NSNS SN S S S SN SNSNSNSNSNSCNSNSNSNSNSNSSNSNN]

The int32, inté4, and int types would work.

56 Lesson 7 Whole numbers

Inspect a variable’s type: inspect.go

year := 2018 Prints Typeint
fmt.Printf("Type %T for %v\n", year, year) / for 2018

Instead of repeating the variable twice, you can tell Printf to use the first argument [1]
for the second format verb:

days := 365.2425 Prints Type float64
fmt.Printf("Type %T for %[1]v\n", days) / for 365.2425

V' Quick check 7.2 Which types does Go infer for text between quates, a whole number, a rea

' number, and the word true (without quotes)? Expand listing 7.1 to declare variables with different
Values and run the program to see which types Go infers.

*
AN S A A NS A A NS S N N A N N N SN N N S N NN N NN NN SN NS NN N NSNS NSNS NN SN\

‘\""“““““"‘“““““““““““““““‘\

."l

1.2 The uint8 type for 8-hit colors

S
C

In Cascading Style Sheets (CSS), colors on screen are specified as a red, green, blue trip-
let, each with a range of 0-255. It’s the perfect situation to use the uint8 type, an 8-bit
unsigned integer able to represent values from 0-255:

var red, green, blue uint8 = 0, 141, 213
Here are the benefits of uint8 instead of a regular int for this case:
= With a uint8, the variables are restricted to the range of valid values, eliminating
over four billion incorrect possibilities compared to a 32-bit integer.

= If there are a lot of colors to store sequentially, such as in an uncompressed
image, you could achieve considerable memory savings by using 8-bit integers.

. 0 . . L O A A L L L LN AL L L L LN LS L LN L L LA NN LA L. LN NN N\ N

QC 7.3 answer

?m'::P;ﬁ:g(l“Type %T for %[1]v\n", a) <—/ Et["rl"n:; ‘;I(-)yr'pSEXt
lj?m:ljj:fntf(“Type %T for %[1]v\n", b) <—/ ::‘r‘;";g?" zge
gm:Pi.ili[t*f(”Type %T for %[1]v\n", ¢) <—/ ﬁgggg‘r}jg’?&"“
?m:PEEif(”Type %T for %[1]v\n", d) <—/ Eg:;‘lt]?o:\{;?‘ﬁe

The uint8 type for 8-bit colors

57

Hexadecimal in Go

Colors in CSS are specified in hexadecimal instead of decimal. Hexadecimal represents
numbers using B (hexa-) more digits than decimal’s 10. The first 10 digits are the same
O through 9, but they're followed by A through F. A in hexadecimal is equivalent to 10 in
decimal, Bto 11, and so on up to F, which is 15.

Decimal is a great system for 10-fingered organisms, but hexadecimal is better suited
to computers. A single hexadecimal digit consumes four bits, called a nibble. Two hexa-
decimal digits require precisely eight bits, or one byte, making hexadecimal a convenient
way to specify values for a uint8.

The following table shows some hexadecimal numbers and their equivalent numbers in
decimal.

Hexadecimal and decimal values

Hexadecimal Decimal
A 10

F 15

10 16

FF 255

To distinguish between decimal and hexadecimal, Go requires a 0x prefix for hexadeci-
mal. These two lines of code are equivalent:

var red, green, blue uint8 = 0, 141, 213
var red, green, blue uint8 0x00, 0x8d, 0xd5

To display numbers in hexadecimal, you can use the %x or %X format verbs with Printf:

fmt.Printf("%x %x %x", red, green, blue) < Prints O 8d d5

To output a color that would feel at home in a .css file, the hexadecimal values need some
padding. As with the %v and %f format verbs, you can specify a minimum number of digits
(2) and zero padding with %02x:

fmt.Printf("color: #%02x%02x%02x;", red, green, blue) 4\
Prints color
#008dd5;

58 Lesson 7 Whole numbers

eSS RN NN NN NN NN NSNS NN NN NN NSNS SN NSNS NN NN SN NN NN NN NN T " TR LTRRRRRNwNN

0 ; . ‘
Quick check 7.4 How many bytes are required to store a value of type uint8? N

AN SO A A A N S SN SN N SN N N N SN N N NN N NN N NN SN NS NN NN NN NSNS NSNS SNSNSNSNSNSNSNSN

1.3 Integers wrap around

D)
IS4GV

3

Integers are free of the rounding errors that make floating-point inaccurate, but all inte-
ger types have a different problem: a limited range. When that range is exceeded, inte-
ger types in Go wrap around.

An 8-bit unsigned integer (uint8) has a range of 0-255. Incrementing beyond 255 will
wrap back to 0. The following listing increments both signed and unsigned 8-bit inte-
gers, causing them to wrap around.

Integers wrap around: integers-wrap.go

var red uint8 = 255
red++

fmt.Println(red) <«——— Prints O

var number int8 = 127
number++
fmt.Println(number) <——— Prints -128

7.3.1 Looking at the bits

To understand why integers wrap, take a look at the bits. The %b format verb will show
you the bits for an integer value. Like other format verbs, % can be zero padded to a
minimum length, as you can see in this listing.

Display the bits: bits.go

var green uint8 = 3 Prints 00000011
fmt.Printf("%08b\n", green) /

green++ Prints 00000100

fmt.Printf("%08b\n", green)

A A A NN AN NN NN AN NN AN NN AN NN AN NN NN NN N

QC 7.4 answer An 8B-bit (unsigned) integer only requires a single byte.

Integers wrap around 59

"""‘“""""“"""‘“‘““““““““““‘\
* Quick check 7.5 Use the Go Playground to experiment with the wrapping behavior of
integers:

1 Inlisting 7.2, the code increments red and number by 1. What happens when you add a
larger number to either variable?

2 Go the other way. What happens if you decrement red when it's O or number when it's
equal to -128?

3 Werapping applies to 16-bit, 32-bit, and 64-bit integers too. \What happens if you declare
a uintl6 assigned to the maximum value of 5535 and then increment it by 17?

* o

*
"llllllllllI/

//l’l’l’l’l’

\"""""""""""""““““““““““““

TIP The math package defines math.MaxUint16 as 65535 and similar min/max constants
for each architecture-independent integer type. Remember that int and uint could be
either 32-bit or 64-bit, depending on the underlying hardware.

In listing 7.3, incrementing green causes the 1 11

to be carried, leaving zeros to the right. The 00000011

result is 00000100 in binary, or 4 in decimal, as +00000001 Figure 7.1 Carrying
shown in figure 7.1. 00000100 the 1 in binary addition

AS S S S S S O SO A SN S SN SN A SN S NN SN S N S SN NS S NN SN NN NSNS SN N NN NSNS SN N

QC 7.5 answer

1 // add a number larger than one
var red uint8 = 255
red += 2

fmt.Println(red) = Prints 1

var number int8 = 127

number += 3

fmt.Println(number) <«——— Prints -126
2 // wrap the other way

red = 0

red--

fmt.Println(red) = Prints 255

number = -128

number - -

fmt.Println(number) <«——— Prints 127

3 // wrapping with a 16-bit unsigned integer
var green uintlé = 65535
green++
fmt.Println(green) <——— Prints 0

60 Lesson 7 Whole numbers

The same thing happens when incrementing 255, with one critical difference: with only
eight bits available, the 1 that’s carried has nowhere to go, so the value of blue is left as 0,
as shown in the next listing and illustrated in figure 7.2.

Listing 7.4
var blue uint8 = 255 Prints 11111111
fmt.Printf("%08b\n", blue) </

blue++ Prints 00000000
fmt.Printf("%08b\n", blue) 4/

Wrapping may be what you want in some situa- 11111111

tions, but not always. The simplest way to avoid 11111111

wrapping is to use an integer type large enough +00000001 Figure 7.2 \Where
to hold the values you expect to store. 00000000 should the carry go?

‘\\

Quick check 7.6 Which format verb lets you look at the bits? \

:
\\\“

7.3.2 Avoid wrapping around time

On Unix-based operating systems, time is represented as the number of seconds since
January 1, 1970 UTC (Coordinated Universal Time). In the year 2038, the number of sec-
onds since January 1, 1970 will exceed two billion, the capacity of an int32.

Thankfully, inté4 can support dates well beyond 2038. This is a situation where int32 or
int simply won’t do. Only the int64 and uintés integer types are able to store numbers
well beyond two billion on all platforms.

The code in listing 7.5 uses the Unix function from the time package. It accepts two inté4
parameters, corresponding to the number of seconds and the number of nanoseconds
since January 1, 1970. Using a suitably large value (over 12 billion) demonstrates that
dates beyond 2038 work just fine in Go.

SRS S S S O O S S A O O O A A A S S A N S A A A S NS S SN S AN NSNS SR SRS S SSSSSSNSNSNSESNNY

OC 7.6 answer The %b format verb outputs integers in base 2.

Summary 61

64-hit integers: time.go

package main
import (
n fmt "
"time"
)

func main() { Prints 2370-01-01
00:00:00 +0000 UTC

future := time.Unix (12622780800, 0) in the Go Playground
fmt.Println(future) 4—/
}

’\‘“““““"‘“““““"“““““““““““‘\\

\ Quick checl 7.7 Which integer type should you choose to avoid wrapping? \

‘“““““"‘“““““"‘““““““““““““‘

°'@“ Summary

= The most common integer types are int and uint, but some situations call for
smaller or larger types.
= Integer types need to be chosen carefully to avoid wrapping around, unless
wrapping is what you want.
= You looked at 10 more of the 15 numeric types in Go (int, int8, intl6, int32, intés,
uint, uints, uintl6, uint32, uint6s).
Let’s see if you got this...
Experiment: piggy.go

Write a new piggy bank program that uses integers to track the number of cents rather
than dollars. Randomly place nickels (5¢), dimes (10¢), and quarters (25¢) into an empty
piggy bank until it contains at least $20.

Display the running balance of the piggy bank after each deposit in dollars (for exam-
ple, $1.05).

TIP If you need to find the remainder of dividing two numbers, use modulus (%).

AS ST T TR T T SRR R SRS RS R R RS R CR R R R RSN R SRR R R R SRS CRCRCRCCRCRCRCRCRRCRRTRTRTRTRRRRNW™

QC 7.7 answer Use an integer type large enough to hold the values you expect to store.

LESSON

BIG NUMBERS

After reading lesson 8, you'll be able to

= Save your zero key by specifying an exponent
= Use Go's big package for really big numbers
= Use big constants and literal values

Computer programming is full of trade-offs. Floating-point types can store numbers of
any size, but they lack precision and accuracy at times. Integers are accurate but have a
limited range. What if you need a really big, accurate number? This lesson explores two
alternatives to the native floaté4 and int types.

Consider this CPUs are optimized for integer and floating-point math, but other
numeric representations are possible. VWhen you need to go big, Go has you covered.

What are some situations where integers are too small, floating-point too imprecise, or
another numeric type would be more suitable?

62

Hitting the ceiling 63

8.1 Hitting the ceiling

—

o,

If you haven’t realized it yet, 64-bit integers are mind-bogglingly big—much bigger than
their 32-bit counterparts.

For some perspective, the nearest star, Alpha Centauri, is 41.3 trillion kilometers away.
A trillion: that’s one followed by 12 zeros, or 10'2. Rather than painstakingly typing
every zero, you can write such numbers in Go with an exponent, like so:

var distance int64 = 41.3el12

An int32 or uint32 can’t contain such a large number, but an inté4 doesn’t break a sweat.
Now you can go about your business, perhaps calculating how many days it would take
to travel to Alpha Centauri, a task tackled in the following listing.

Listing 8.1

const lightSpeed = 299792 // km/s Prints Alpha Centauri is

const secondsPerDay = 86400 41300000000000 km away

var distance int64 = 41.3el2) Prints That is
fmt.Println("Alpha Centauri is", distance, "km away.") <= 1594 days of

travel at light
days := distance / lightSpeed / secondsPerDay speed

fmt.Println("That is", days, "days of travel at light speed.")

As big as 64-bit integers are, there’s something bigger: space. The Andromeda Galaxy is
24 quintillion (10'®) kilometers away. Even the largest unsigned integer (uinté4) can only
contain numbers up to 18 quintillion. Attempting to declare a variable beyond 18 quin-
tillion reports an overflow error:

24000000_000000000000
var distance uinté4 = 24e18 overflows uint64

But don’t panic—there are still a few options. You could use floating-point math. That’s
not a bad idea, and you already know how floating-point works. But there’s another
way. The next section takes a look at Go’s big package.

NOTE If a variable doesn’t have an explicit type, Go will infer £loaté4 for numbers contain-
ing exponents.

64 Lesson 8 Big numbers

“““"‘“““““"‘““““““““““““““\

*
.’ Quick check 8.1 The distance between Mars and Earth ranges from 56,000,000 km to \
! L m. Express these two values as integers with the exponent (e] syntax.
401,000,000 km. E h I i ith th

s

N\ *
\""‘“““"""‘“““"““““““““““““

L -
8.2 The hig package

The big package provides three types:

= big.Int is for big integers, when 18 quintillion isn’t enough.
= big.Float is for arbitrary-precision floating-point numbers.

= big.Rat is for fractions like 5.

NOTE Your code can declare new types too, but we’ll come back to that in lesson 13.

The big.Int type can happily store and operate on the distance to Andromeda Galaxy, a
mere 24 quintillion kilometers.

Opting to use big.Int requires that you use it for everything in your equation, even the
constants you had before. The NewInt function takes an inté64 and returns a big. Int:
lightSpeed := big.NewInt(299792)
secondsPerDay := big.NewInt(86400)
NewInt isn’t going to help for a number like 24 quintillion. It won't fit in an inté4, so
instead you can create a big. Int from a string:

distance := new(big.Int)
distance.SetString("24000000000000000000", 10)

After creating a new big. Int, set its value to 24 quintillion by calling the SetString method.

The number 24 quintillion is in base 10 (decimal), so the second argument is 10.

NOTE Methods are similar to functions. You'll learn all about them in lesson 13. The new
built-in function is for pointers, which are covered in lesson 26.

With all the values in place, the Div method performs the necessary division so the result
can be displayed, as shown in the following listing.

A A M NS SA A A AN AN A OO AN NN OO NN NN AN NN L AN NN NN NN NN N

QC 8.1 answer

var distance int = 56e6
distance = 401e6

The big package 65

Days to Andromeda Galaxy: andromeda.go

package main
import (
n fmt "
"math/big"
)

func main() {

lightSpeed := big.NewInt(299792) Prints Andromeda Galaxy is
secondsPerDay := big.NewInt(86400) 24000000000000000000

km away.
distance := new(big.Int)
distance.SetString("24000000000000000000", 10)
fmt.Println("Andromeda Galaxy is", distance, "km away.")

seconds := new(big.Int) Prints That is 926568346
seconds.Div(distance, lightSpeed) days of travel at light speed.
days := new(big.Int)

days.Div(seconds, secondsPerDay)

fmt.Println("That is", days, "days of travel at light speed.")

}

As you can see, these big types are more cumbersome to work with than the native int
and floaté4 types. They’re also slower. Those are the trade-offs for being able to accu-
rately represent numbers of any size.

IS AR A A A A AR A A AR AL AL LA NN 2L AN N2 L2222 20NN N0 NN . N N

o
N\ Quick check 8.2 What are two ways to make a big. Int with the number 86,4007

""“““"""‘“““""‘“““““““““““"

(S 9 . . O O O O QLA LA L AL LA L N LA LALAAA AN LA LLAL A L N L N L N L N\ N\ N
QcC 8.2 answer
Construct a big. Int with the NewInt function:

secondsPerDay := big.NewInt(86400)
Or use the SetString method:

secondsPerDay := new(big.Int)
secondsPerDay.SetString("86400", 10)

66 Lesson 8 Big numbers

() 8.3 Constants of unusual size

Constants can be declared with a type, just like variables. And just like variables, a uintés

constant can’t possibly contain a number like 24 quintillion:

Constant

const distance uinté4 = 24000000000000000000 </ 24000000000000000000
overflows uint64

It gets interesting when you declare a constant
without a type. For variables, Go uses type infer-
ence to determine the type, and in the case of 24
quintillion, overflows the int type. Constants are
different. Rather than infer a type, constants can
be untyped. The following line doesn’t cause an
overflow error:

const distance = 24000000000000000000

Constants are declared with the const keyword, but
every literal value in your program is a constant
too. That means unusually sized numbers can be

used directly, as shown in the following listing.

Literals of unusual size: constant.go

fmt.Println("Andromeda Galaxy is", 24000000000000000000/299792/86400, "light days away.")

Prints Andromeda Galaxy is
926568346 light days away.

Calculations on constants and literals are performed during compilation rather than
while the program is running. The Go compiler is written in Go. Under the hood,
untyped numeric constants are backed by the big package, enabling all the usual opera-
tions with numbers well beyond 18 quintillion, as shown in the following listing.

Constants of unusual size: constant.go

const distance = 24000000000000000000 Prints Andromeda

const lightSpeed = 299792 Galaxy is 926568346
const secondsPerDay = 86400 light days away.

const days = distance / lightSpeed / secondsPerDay J
fmt.Println("Andromeda Galaxy is", days, "light days away.")

Summary 67

Constant values can be assigned to variables so long as they fit. An int can’t contain 24
quintillion, but 926,568,346 fits just fine:

km := distance
days := distance / lightSpeed / secondsPerDay
“_ 926568346

Constant
24000000000000000000
overflows int.

fits into an int.

There’s a caveat to constants of unusual size. Though the Go compiler utilizes the big
package for untyped numeric constants, constants and big. Int values aren’t interchange-
able. Listing 8.2 displayed a big. Int containing 24 quintillion, but you can’t display the
distance constant due to an overflow error :

fmt.Println("Andromeda Galaxy is", distance, "km away.") 4\

Constant
24000000000000000000
overflows int.

Very large constants are certainly useful, but they aren’t a replacement for the big
package.

&
\ Quick check 8.3 When are calculations on constants and literals performed? N

d
A A S S S S S S S A A S S S S S S S N N S A A NS S S S SN S S NSNS SN SN N S SSNSNSSSSNSN\N N,

“““““““““‘““““““‘“““““““““‘\

(e
Summary

= When the native types can’t go the distance, the big package has you covered.

= Big things are possible with constants that are untyped, and all numeric literals
are untyped constants too.

= Untyped constants must be converted to typed variables when passed to func-
tions.

Let’s see if you got this...

Experiment: canis.go

Canis Major Dwarf is the closest known galaxy to Earth at 236,000,000,000,000,000 km
from our Sun (though some dispute that it is a galaxy). Use constants to convert this dis-
tance to light years.

LA O O O NN O VNN AL AN AN LN SN N8N\ N\]

OC 8.3 answer The Go compiler simplifies equations containing constants and literals during compi-
lation.

LESSON

MULTILINGUAL TEXT

After reading lesson 9, you'll be able to

= Access and manipulate individual letters
= Cipher and decipher secret messages
= Write your programs for a multilingual world

From "Hello, playground" at the beginning, you've
been using text in your programs. The individual
letters, digits, and symbols are called characters.
When you string together characters and place them
between quotes, it’s called a literal string.

68

Declaring string variables 69

‘IIIIIIIllllllllIIIIIIIllllllllIIIIIIIllIIIIIIIIIIIIIIIIIIIIIII’

Consider this You know computers represent numbers with 1s and Os. If you were a
computer, how would you represent the alphabet and human language?

If you said with numbers, you're right. Characters of the alphabet have numeric values,
which means you can manipulate them like numbers.

It's not entirely straightforward, though. The characters from every written language
and countless emoji add up to thousands of characters. There are some tricks to rep-
resenting text in a space-efficient and flexible manner.

‘-IIIIIIIIIIIIIIII'
AR R EEEEEEEERERRERY

4y prrpEnEEEEEEEREEEEEEEEREEEREEEREEREREEREREREREEEREREREREREEREREREEREREREDRS

Q

9.1 Declaring string variahles

DN
(E
R84

Literal values wrapped in quotes are inferred to be of the type string, so the following
three lines are equivalent:

peace := "peace"
var peace = "peace"

var peace string = "peace"

If you declare a variable without providing a value, it will be initialized with the zero
value for its type. The zero value for the string type is an empty string (""):

var blank string

9.1.1 Raw string literals

String literals may contain escape sequences, such as the \n mentioned in lesson 2. To
avoid substituting \n for a new line, you can wrap text in backticks (") instead of quotes
("), as shown in the following listing. Backticks indicate a raw string literal.

Listing 9.1

fmt.Println("peace be upon you\nupon you be peace")
fmt.Println(strings can span multiple lines with the \n escape sequence’)

The previous listing displays this output:

peace be upon you
upon you be peace

strings can span multiple lines with the \n escape sequence

70 Lesson 9 Multilingual text

Unlike conventional string literals, raw string literals can span multiple lines of source
code, as shown in the next listing.

Multiple-line raw string literals: raw-lines.go

fmt.Println(”
peace be upon you

upon you be peace”)

Running listing 9.2 will produce the following output, including the tabs used for
indentation:

peace be upon you
upon you be peace

Literal strings and raw strings both result in strings, as the following listing shows.

String type: raw-type.go

fmt.Printf("%v is a %[1]T\n", "literal string") \ Prints literal string
fmt.Printf("%v is a %[1]T\n", “raw string literal’) <\isa string

Prints raw string
literal is a string

"""""“"""""""‘“““““““““““‘\
¢ Quick check 9.1 For the Windows file path C:\go, would you use a string literal or a raw
\string literal, and why?

AS S SO SO S S S S S N N S S N SN S NS S SN SN SN S NSNS SN SN NS SN SNSNSSNSNSNNN

ey

*

9.2 Characters, code points, runes, and hytes

SAQ

D

The Unicode Consortium assigns numeric values, called code points, to over one million
unique characters. For example, 65 is the code point for the capital letter A, and 128515
is a smiley face ©.

To represent a single Unicode code point, Go provides rune, which is an alias for the int32

type.

NAaA A AN AN AN NN NN NN NN NN NN NN NN NN NSNS NSNS NCNCNCNCSNCNCNCNCNCCNCCCTCTTLTLTTTTRTTRTWNT
0OC 9.1 answer Use a raw string literal "C:\go because "C:\go" fails with an unknown escape
Sequence error.

Characters, code points, runes, and bytes 71

A byte is an alias for the uint8 type. It's intended for binary data, though byte can be used
for English characters defined by ASCII, an older 128-character subset of Unicode.

~\
Type aliases

An alias is another name for the same type, so rune and int32 are interchangeable.
Though byte and rune have been in Go from the beginning, Go 1.9 introduced the ability
to declare your own type aliases. The syntax looks like this:

type byte = uint8
type rune = int32

J/

Both byte and rune behave like the integer types they are aliases for, as shown in the fol-
lowing listing.
Listing 9.4

var pi rune = 960
var alpha rune = 940

var omega rune = 969 Prints 960 940 969 33

var bang byte = 33 J
fmt.Printf("%v %v %v %v\n", pi, alpha, omega, bang) <

To display the characters rather than their numeric values, the %c format verb can be
used with Printf:

fmt.Printf("%c%c%c%c\n", pi, alpha, omega, bang) Prints maw!

TIP Any integer type will work with %c, but the rune alias indicates that the number 960
represents a character.
Rather than memorize Unicode code points, Go provides a character literal. Just enclose
a character in single quotes 'A'. If no type is specified, Go will infer a rune, so the follow-
ing three lines are equivalent:

grade := 'A’
var grade = 'A’
var grade rune = 'A’

The grade variable still contains a numeric value, in this case 65, the code point for a cap-
ital 'A'. Character literals can also be used with the byte alias:

Ly

var star byte =

72 Lesson 9 Multilingual text

‘\""""""""""""‘“““““““““““‘\
& .
N Quick check 9.2
: 1 How many characters does ASCIlI encode?
\ 2 What type is byte an alias for? What about rune?
\ 3 What are the code points for an asterisk [*], a smiley ©, and an acute é?

'lllll/

*
\“""“““““"‘““““““““““““““““

9.3 Pulling the strings

NSAON

I

A puppeteer manipulates a marionette by pulling on strings, but strings in Go aren’t
susceptible to manipulation. A variable can be assigned to a different string, but strings
themselves can’t be altered:

peace := "shalom"
peace = "salam"

Your program can access individual characters, but it can’t alter the characters of a

string. The following listing uses square brackets [] to specify an index into a string,
which accesses a single byte (ASCII character). The index starts from zero.

Indexing into a string: index.go

message := "shalom"
¢ := message[5]
fmt.Printf("%c\n", ¢) <——— Prints m

NS S S SNV A NN NN O N SN N AN NN NN SN N NN NN NN SN NN NN NN N NN NN NN NN NN
QcC 9.2 answer

1 128 characters.

2 Abyteis an alias for the uint8 type. A rune is an alias for the int32 type.
3 var star byte = '*

fmt.Printf("%c %[1]v\n", star) <«——— Prints * 42

smile := '©'

fmt.Printf("%c %[1]v\n", smile) <«——— Prints © 128515
acute := 'e'

fmt.Printf("%c %[1]v\n", acute) <«——— Prints é 233

Manipulating characters with Caesar cipher 73

Strings in Go are immutable, as they are in Python, Java, and JavaScript. Unlike strings in
Ruby and character arrays in C, you can’t modify a string in Go:

message[5] = 'd'’ <«——— Cannot assign to message[5]

"""“""“"‘“""“"“““““““““““‘\
<
< Quick check 9.3 Write a program to print each byte (ASCII character) of “shalom", one char- N\
acter per line.
*

AN S S S S S S S S S N S SN S S S S S S SN NN S S SN S S S NN NSNS SN SN SN SN SNSNSS

e

9.4 Manipulating characters with Caesar cipher

One effective method of sending secret messages in the
second century was to shift every letter, so 'a' becomes
'd", 'b' becomes 'e', and so on. The result might pass for
a foreign language:

L fdph, L vdz, L frqtxhuhg.
—Julius Caesar

It turns out that manipulating characters as numeric
values is really easy with computers, as shown in the

following listing.

Manipulate a single character: caesar.go

c:="'a
c=c+ 3
fmt.Printf("%c", ¢) <«——— Prints d

LS A A O O OO OV VLN LN LL LAV L. LA\ N N\]

QC 9.3 answer

message := "shalom"
for i :=0; i < 6; i++ {
¢ := message[i]

fmt.Printf("%c\n", c)

74 Lesson 9 Multilingual text

The code in listing 9.6 has one problem, though. It doesn’t account for all the messages
about xylophones, yaks, and zebras. To address this need, the original Caesar cipher
wraps around, so 'x' becomes 'a’, 'y' becomes 'b’', and 'z' becomes 'c¢'. With 26 charac-
ters in the English alphabet, it's a simple matter:
ife>'z' {
c=c- 26

}
To decipher this Caesar cipher, subtract 3 instead of adding 3. But then you need to
account for ¢ < 'a' by adding 26. What a pain.

IS S S S SO SO A S S S S A A A S S S S S AN S A S S SN NS S NSNS SN S SSNSSSSNSNSNSNSNSESSNSNSNSNN

! Quick check 9.4 What is the result of the expressionc = ¢ - 'a' + 'A' if cis alowercase 'g'? N

AN S S S O O O A A S A SN S N N SN A N N N N S N S N N AN N N NN NN N N NN SN SN SNSNNSNSNSNSNNNN,

941 A modern variant

ROT13 (rotate 13) is a 20th century variant of Caesar cipher. It has one difference: it adds
13 instead of 3. With ROT13, ciphering and deciphering are the same convenient opera-
tion.

Let’s suppose, while scanning the heavens for alien communications, the SETT Institute
received a transmission with the following message:
message := "uv vagreangvbany fcnpr fgngvba"

We suspect this message is actually English text that was ciphered with ROT13. Call it a
hunch. Before you can crack the code, there’s one more thing you need to know. This
message is 30 characters long, which can be determined with the built-in len function:

fmt.Println(len(message)) < Prints 30

NOTE Go has a handful of built-in functions that don’'t require an import statement. The
len function can determine the length for a variety of types. In this case, len returns the
length of a string in bytes.

T A aNMaNMNNN NN NS NSNS NN N N NN NN NN NNNNONONONONCNOCNOCNONCNOCNOCNONOCNOCNOC"NOC"NC"“"N"N"“"NN“N"“N"“NTC“NTCNT"NTTTSTTSTT"TTZET"TE"="TR"."TW""
OC 9.4 answer The letter is converted to uppercase:

c:=d
c=c- 'a" "+ 'A'
fmt.Printf("%c", c) <

Prints G

Decoding strings into runes 75

The following listing will decipher a message from space. Run it in the Go Playground
to find out what the aliens are saying.

ROT13 cipher: rot13.go

message := "uv vagreangvbany fcnpr fgngvba lterates through each

ASCII character
for i :=0; i < len(message); i++ {

¢ := message[i]

if c>='a' & c<="z"{ Leaves spaces
c=c+ 13 and punctuation
ifc> 'z as they are

c=2c - 26

}

fmt.Printf("%c", c)

}

Note that the ROT13 implementation in the previous listing is only intended for ASCII
characters (bytes). It will get confused by a message written in Spanish or Russian. The
next section looks at a solution for this issue.

eSS A NN NN NN NN NN NN N NN NR NN RN RSN RN SRR R RN R RN RRRNRNRRNRNRRRRRRRRRNW
Quick check 9.5

Q
\

: 1 What does the built-in len function do when passed a string?

\ 2 Type listing 9.7 into the Go Playground. \What does the message say?

A\

* /
Coss

\““"‘“““““"‘““““““““““““““‘"

9.5 Decoding strings into runes

g A
NS4V

Strings in Go are encoded with UTF-8, one of several encodings for Unicode code
points. UTF-8 is an efficient variable length encoding where a single code point may use
8 bits, 16 bits, or 32 bits. By using a variable length encoding, UTF-8 makes the transition
from ASCII straightforward, because ASCII characters are identical to their UTF-8
encoded counterparts.

A MM AR AsN NN NN NN NN NN NN NN NN NN NN NN NN N NN NCNCNCNCNC"NC"NC“"C“"C“"C“"C“"C"TCNTCNTNTTLTLTTTETETWT
QC 9.5 answer

1 The len function returns the length of a string in bytes.
2 hiinternational space station

786 Multilingual text

NOTE UTF8 is the dominant character encoding for the World Wide Web. It was
invented in 1992 by Ken Thompson, one of the designers of Go.
The ROT13 program in listing 9.7 accessed the individual bytes (8-bit) of the message
string without accounting for characters that are multiple bytes long (16-bit or 32-bit).
This is why it works fine for English characters (ASCII), but produces garbled results for
Russian and Spanish. You can do better, amigo.

The first step to supporting other languages is to decode characters to the rune type
before manipulating them. Fortunately, Go has functions and language features for
decoding UTF-8 encoded strings.

The utf8 package provides functions to determine the length of a string in runes rather
than bytes and to decode the first character of a string. The DecodeRuneInString function
returns the first character and the number of bytes the character consumed, as shown in
listing 9.8.

NOTE Unlike many programming languages, functions in Go can return multiple values.
Multiple return values are discussed in lesson 12.

Listing 9.8
package main
import (

"fmt"
"unicode/utf8"

)

func main() {
question := ";Como estas?"

fmt.Println(len(question), "bytes") <

Prints 15 bytes

fmt.Println(utf8.RuneCountInString(question), "runes"))
Prints 12

¢, size := utf8.DecodeRunelnString(question) runes

fmt.Printf("First rune: %c %v bytes", c, size) =]]
Prints First
} rune: ¢, 2 bytes
é vt

The Go language provides the range keyword to iterate over a variety of collections
(covered in unit 4). It can also decode UTF-8 encoded strings, as shown in the following
listing.

Summary 77

Decoding runes: spanish-range.go

question := ";Como estas?"

for i, c := range question {
fmt.Printf("%v %c\n", i, c)

}

On each iteration, the variables i and c are assigned to an index into the string and the
code point (rune) at that position.

If you don’t need the index, the blank identifier (an underscore) allows you to ignore it:

for _, c := range question {
fmt.Printf("%c ", ¢) «——— Prints ;Como estas?

““““"""‘“““"""“““““““““““‘\

" Quick check 9.6

1 How many runes are in the English alphabet "abcdefghijklmnopgrstuvwxyz"? How many
bytes?
2 How many bytes are in the rune ';'?

. /
C o sy

“““““"‘“““““"‘““““““““““““‘

= Escape sequences like \n are ignored in raw string literals ().
= Strings are immutable. Individual characters can be accessed but not altered.

= Strings use a variable length encoding called UTF-8, where each character con-
sumes 1-4 bytes.

= Abyteis an alias for the uint8 type, and rune is an alias for the int32 type.
= The range keyword can decode a UTF-8 encoded string into runes.

Let’s see if you got this...

A S O O ANV AN NN A OO NN AN A O A A A A A A O O NN L L L AN\ N\ N\

QC 9.6 answer

1 There are 26 runes and 26 bytes in the English alphabet.
2 There are 2 bytes inthe rune '; .

78 Multilingual text

Experiment: caesar.go

Decipher the quote from Julius Caesar:

L fdph, L vdz, L frqtxhuhg.
—Julius Caesar

Your program will need to shift uppercase and lowercase letters by —3. Remember that
‘a' becomes 'x', 'b' becomes 'y', and 'c¢' becomes 'z', and likewise for uppercase letters.

Experiment: international.go

Cipher the Spanish message “Hola Estacion Espacial Internacional” with ROT13. Mod-
ify listing 9.7 to use the range keyword. Now when you use ROT13 on Spanish text, char-
acters with accents are preserved.

LESSON

CONVERTING BETWEEN TYPES

After reading lesson 10, you'll be able to
= Convert between numeric, string, and Boolean types

Previous lessons covered Booleans, strings, and a dozen different numeric types. If you
have variables of different types, you must convert the values to the same type before
they can be used together.

Consider this Say you're at the grocery store with a shopping list from your spouse.
The first item is milk, but should you get cow’s milk, almond, or soy? Should it be
organic, skim, 1%, 2%, whole, evaporated, or condensed? How many gallons? Do you
call your spouse to ask or just pick something?

Your spouse may get annoyed if you keep calling to ask for each detail. Iceberg or
romaine lettuce? Russet or red potatoes? Oh, and was that 5 Ibs. or 10? On the other
hand, if you “think for yourself” and return with chocolate milk and french fries, that may
not go over so well.

If your spouse is a programmer and you're a compiler in this scenario, what do you
think Go’s approach would be?

79

80 Lesson 10 Converting between types

1ll.‘| Types don’t mix

A variable’s type establishes the behavior that’s appropriate for it. Numbers can be

added, strings can be joined. To join two strings together, use the plus operator:

countdown := "Launch in T minus " + "10 seconds."

If you try to join a number to a string, the Go compiler will report an error:

countdown := "Launch in T minus " + 10 + " seconds." Invalid operation:
mismatched types
string and int

()

Mixing types in other languages

When presented with two or more different types, some programming languages make
a best effort to guess the programmer’s intentions. Both JavaScript and PHP can sub-
tract 1 from the string "10":

"10" - 1 <«—— 9 in JavaScript and PHP

The Go compiler rejects "10" - 1 with a mismatched types error. In Go, you first need to
convert "10" to an integer. The Atoi function in the strconv package will do the conversion,
but it will return an error if the string doesn’t contain a valid number. By the time you
handle errors, the Go version is four lines long, which isn’t exactly convenient.

That said, if "10" is user input or came from an external source, the JavaScript and PHP
versions should check whether it's a valid number too.

In languages that coerce types, the code’s behavior is less predictable to anyone who
hasn’'t memorized a myriad of implicit behaviors. The plus operator (+) in both Java and
JavaScript coerces numbers to strings to be joined, whereas PHP coerces the values to
numbers and does the math:

"10" 4+ 2 . .
“102” in JavaScript

or Java, 12 in PHP

Once again, Go would report a mismatched types error.)

Another example of mismatched types occurs when attempting a calculation with a mix
of integer and floating-point types. Real numbers like 365.2425 are represented with a
floating-point type, and Go infers that whole numbers are integers:

Numeric type conversions 81

age := 41

marsDays := 687
earthDays := 365.2425
fmt.Println("I am", age*earthDays/marsDays, "years old on Mars.“i/:>

age and marsDays are integers.

earthDays is a Invalid operation:
floating point type. mismatched types

If all three variables were integers, the calculation would succeed, but then earthDays
would need to be 365 instead of the more accurate 365.2425. Alternatively, the calcula-
tion would succeed if age and marsbays were floating-point types (41.0 and 687.0 respec-
tively). Go doesn’t make assumptions about which you’d prefer, but you can explicitly
convert between types, which is covered in the next section.

(S S VOO LL L L L LNLNLLLLLNLNLN NN\ N\

Y Quick check 10.1 Whatis "10" - 1in Go? \
4

\““""“““““"‘“““““““““““““““

- : :
10.2 Numeric type conversions

Type conversion is straightforward. If you need the integer age to be a floating-point type

for a calculation, wrap the variable with the new type:

age := 41

marsAge := floaté4(age)
Variables of different types don’t mix, but with type conversion, the calculation in the
following listing works.

Mars age: mars-age.go

age := 41
marsAge := float64(age)

marsbays := 687.0 D1 787587336244543
earthDays := 365.2425 years old on Mars.

marsAge = marsAge * earthDays / marsDays /
fmt.Println("I am", marsAge, "years old on Mars.")

LA O O O NN O VNN AL AN AN LN SN N8N\ N\]

QC 10.1 answer A compiler error: invalid operation: "10" - 1 (mismatched types string and int)

82 Lesson 10 Converting between types

You can convert from a floating-point type to an integer as well, though the digits after
the decimal point will be truncated without any rounding:

fmt.Println(int(earthDays)) = Prints 365

Type conversions are required between unsigned and signed integer types, and
between types of different sizes. It's always safe to convert to a type with a larger range,
such as from an int8 to an int32. Other integer conversions come with some risks. A
uint32 could contain a value of 4 billion, but an int32 only supports numbers to just over
2 billion. Likewise, an int may contain a negative number, but a uint can’t.

There’s a reason why Go requires type conversions to be explicitly stated in the code.
Every time you use a type conversion, consider the possible consequences.

A2 S O O L O L L L8 L8N NN NN 8\
Quick check 10.2

1 What code would convert the variable red to an unsigned 8-bit integer?
\ 2 What is the result of the comparison age > marsAge?

*

*
\J
\
\
\

* /
oy

*
A S S S S O S O SO SO O S A S O A A A S S A S A S S S S AN S NS S AN S SC SN SSS SN SSNSSNSNSSNSN

10.3 Convert types with caution

S,
e
5

In 1996, the unmanned Arianne 5 rocket veered
off its flight path, broke up, and exploded just 40
seconds after launch. The reported cause was a
type conversion error from a floaté4 to an int16
with a value that exceeded 32,767 — the maxi-
mum value an int16 can hold. The unhandled
failure left the flight control system without ori-
entation data, causing it to veer off course, break
apart, and ultimately self-destruct.

We haven’t seen the Arianne 5 code, nor are we
rocket scientists, but let’s look at how Go handles
the same type conversion. If the value is in

range, as in the following listing, no problem.

RS S S S S S S O O O O O A O O A A A A S A A A A A A A AN NSNS S S SN SCSNSSSSNSNSENSNSSSNNNNSN

QC 10.2 answer

1 The type conversion would be uint8(red).
2 Mismatched types int and float64

Convert types with caution 83

Ariane type conversion: ariane.go

var bh floatés4 = 32767
var h = iﬂt16(bh) To-do: add
fmt.Println(h) rocket science

If the value of bh is 32,768, which is too big for an int16, the result is what we’ve come to
expect of integers in Go: it wraps around, becoming the lowest possible number for an
int16, —32768.

The Ada language used for the Arianne 5 behaves differently. The type conversion from
floatés to int16 with an out-of-range value caused a software exception. According to the
report, this particular calculation was only meaningful prior to liftoff, so Go’s approach
may have been better in this instance, but usually it’s best to avoid incorrect data.

To detect whether converting a type to int16 will result in an invalid value, the math pack-
age provides min/max constants:

if bh < math.MinInt16 || bh > math.MaxIntl16 {
// handle out of range value

NOTE These min/max constants are untyped, allowing the comparison of bh, a floating-
point value, to MaxInt16. Lesson 8 talks more about untyped constants.

*
< Quick check 10.2 What cade will determine if the variable v is within the range of an 8-bi

\unsigned integer?

““""“““““"‘““““““““““““““\\
A
&
‘0
AS S SO SC S SO SCC SN S S A SC NS SN NSNS SN N S NS N NN N S NN SN N NN N SNN N NN NN\

LS A A O O OO OV VLN LN LL LAV L. LA\ N N\]

QC 10.3 answer

vV oi= 42

if v >= 0 && v <= math.MaxUint8 { Prints
v8 := uint8(v) J converted: 42
fmt.Println("converted:", v8)

84 Lesson 10 Converting between types

10.4 String conversions

3

To convert a rune or byte to a string, you can use the same type conversion syntax as
numeric conversions, as shown in the next listing. This gives the same result using the %c
format verb introduced in lesson 9 to display runes and bytes as characters.

Converting rune to string: rune-convert.go

var pi rune = 960

var alpha rune = 940

var omega rune = 969

var bang byte = 33 Prints mic:!)

fmt.Print(string(pi), string(alpha), string(omega), string(bang))

Converting a numeric code point to a string works the same with any integer type. After
all, rune and byte are just aliases for int32 and uint8.

To convert digits to a string, each digit must be converted to a code point, starting at 48
for the 0 character, through 57 for the 9 character. Thankfully, the Itoa function in the
strconv (string conversion) package does this for you, as shown in the next listing.

Integer to ASCII: itoa.go

countdown := 10

str := "Launch in T minus " + strconv.Itoa(countdown) + " seconds."

fmt.Println(str) Prints Launch in T

minus 10 seconds.

NOTE Itoa is short for integer to ASCIl. Unicode is a superset of the old ASCIl standard.
The first 128 code points are the same, which includes digits (used here), English letters,
and common punctuation.

Another way to convert a number to a string is to use Sprintf, a cousin of Printf that
returns a string rather than displaying it:

countdown := 9
str := fmt.Sprintf("Launch in T minus %v seconds.", countdown)

fmt.Println(str) Prints Launch in T

minus 9 seconds.

String conversions 85

To go the other way, the strconv package provides the Atoi function (ASCII to integer).
Because a string may contain gibberish or a number that’s too big, the Atoi function may
return an error:

countdown, err := strconv.Atoi("10")
if err !=nil {
// oh no, something went wrong

}

fmt.Println(countdown) < Prints 10

A nil value for err indicates that no error occurred and everything is A-OK. Lesson 28
navigates the perilous topic of errors.

‘\""“““““"‘““““““““““““““““\\

\ Quick check 10.4 Name two functions that can convert an integer to a string. \

‘“““““"‘“““““"‘““““““““““““‘

()
Types are static
In Go, once a variable is declared, it has a type and the type cannot be changed. This is
known as static typing, which is easier for the compiler to optimize, so your programs
run fast. But attempting to use a variable with a value of a different type will cause the
Go compiler to report an error:

var countdown = 10

countdown = 0.5 Error: countdown
. . . can only store
countdown = fmt.Sprintf("%v seconds", countdown) integers.

Languages such as JavaScript, Python, and Ruby use dynamic typing instead of static
typing. In those languages, each value has an associated type, and variables can hold val-
ues of any type. They would allow the type of countdown to change as the program exe-
cutes.

Go does have an escape hatch for situations where the type is uncertain. For example,
the Println function will accept both strings and numeric types. Lesson 12 explores the
Println function in more detail.

(NN 0 0 O O NN 0 QNN NN LA LN NN\ N\ \

QC 10.4 answer Both Itoa and Sprintf will convert a whole number to a string.

86 Lesson 10 Converting between types

10.5 Converting Boolean values

%)
SAQY

3

The Print family of functions displays the Boolean values true and false as text. As such,
the next listing uses the Sprintf function to convert the Boolean variable launch to text. If
you want to convert to numeric values or different text, a humble if statement works
best.

Converting a Boolean to a string: launch.go

launch := false

launchText := fmt.Sprintf("%v", launch)
fmt.Println("Ready for launch:", launchText)
\ Prints Ready for

var yesNo string launch: false
if launch {
yesNo = "yes"
} else {
yesNo = "no"
1 Prints Ready for

launch: no
fmt.Println("Ready for launch:", yesNo) </

The inverse conversion requires less code because you can assign the result of a condi-
tion directly to a variable, as in the following listing.

Converting a string to a Boolean: tohool.go

yesNo := "no

launch := (yesNo == "yes") Prints Ready for

launch: false
fmt.Println("Ready for launch:", launch) /

The Go compiler will report an error if you attempt to convert a Boolean with
string(false), int(false), or similar, and likewise for bool(1) or bool("yes").

NOTE In programming languages without a dedicated bool type, the values 1 and O often
stand in for true and false, respectively. Booleans in Go don't have a numeric equivalent.

Summary 87

“"“"“‘“‘“"“‘“‘“"‘“““““““““““\\
« Quick check 10.5 How would you convert a Boolean to an integer, with 1 for true and O for \
\ false? N

N .

\""‘“““"""‘“““"““““““““““““

"~ Summary

.QI

= Conversion between types is explicit to avoid ambiguity.
= The strconv package provides functions for converting strings to and from other

types.
Let’s see if you got this...

Experiment: input.go
Write a program that converts strings to Booleans:
= The strings “true”, “yes”, or “1” are true.
= The strings “false”, “no”, or “0” are false.
= Display an error message for any other values.

TIP The switch statement accepts multiple values per case, as covered in lesson 3.

A O . A NSNS SN A AN A A A AN NN A A AN NN LA A LA NN LA NN NN N]

QC 10.5 answer With a humble if statement:
launch := true

var oneZero int

if launch {
oneZero =1

} else {
oneZero = 0

Prints Ready for

} launch: 1
fmt.Println("Ready for launch:", oneZero) 4-/

LESSON

CAPSTONE: THE VIGENERE CIPHER

The Vigenere cipher (see en.wikipedia.org/
wiki/Vigenere_cipher) is a 16th century vari-

ant of the Caesar cipher. For this challenge,

you will write a program to decipher text

using a keyword. @ ©
Before describing the Vigenere cipher, allow

us to reframe the Caesar cipher, which you've ="

already worked with. With the Caesar cipher, |¢

a plain text message is ciphered by shifting

.

each letter ahead by three. The direction is
reversed to decipher the resulting message.

Assign each English letter a numeric value, — -
where A =0, B =1, all the way to Z =25. With

this in mind, a shift by 3 can be represented by

the letter D (D = 3).

To decipher the text in table 11.1, start with the letter L and shift it by D. Because L =11
and D = 3, the result of 11-3 is 8, or the letter I. Should you need to decipher the letter A,
it should wrap around to become X, as you saw in lesson 9.

88

89

Table 11.1 Caesar cipher

L F b P H L V D zZ L F R Q@ T X H U H G
b0 bbb b b b b b b D D D D D D D D D

The Caesar cipher and ROT13 are susceptible to what's called frequency analysis. Letters
that occur frequently in the English language, such as E, will occur frequently in the
ciphered text as well. By looking for patterns in the ciphered text, the code can be cracked.

To thwart would-be code crackers, the Vigenere cipher shifts each letter based on a
repeating keyword, rather than a constant like 3 or 13. The keyword repeats until the
end of the message, as shown for the keyword GOLANG in table 11.2.

Now that you know what the Vigenere cipher is, you may notice that Vigenere with the
keyword D is equivalent to the Caesar cipher. Likewise, ROT13 has a keyword of N (N =
13). Longer keywords are needed to be of any benefit.

Table 11.2 Vigenére cipher

c s ol T E U I WU 1l Z N S R O C N K F D
G 0O L AANG G O L A NG G OL A NG G O L

Experiment: decipher.go

Write a program to decipher the ciphered text shown in table 11.2. To keep it simple, all
characters are uppercase English letters for both the text and keyword:

cipherText := "CSOITEUIWUIZNSROCNKFD"
keyword := "GOLANG"

= The strings.Repeat function may come in handy. Give it a try, but also complete
this exercise without importing any packages other than fmt to print the deci-
phered message.

= Try this exercise using range in a loop and again without it. Remember that the
range keyword splits a string into runes, whereas an index like keyword[0] results in
a byte.

TIP You can only perform operations on values of the same type, but you can convert one
type to the other (string, byte, rune).

= To wrap around at the edges of the alphabet, the Caesar cipher exercise made use of
a comparison. Solve this exercise without any if statements by using modulus (%).

a0 Capstone: The Vigenere cipher

TIP If you recall, modulus gives the remainder of dividing two numbers. For example, 27 % 26

is 1, keeping numbers within the 0-25 range. Be careful with negative numbers, though, as

-3 % 26 is still -3.
After you complete the exercise, take a look at our solution in the appendix. How do
they compare? Use the Go Playground’s Share button and post a link to your solution in
the Get Programming with Go forum.

Ciphering text with Vigenere isn’t any more difficult than deciphering text. Just add let-
ters of the keyword to letters of a plain text message instead of subtracting.
Experiment: cipher.go

To send ciphered messages, write a program that ciphers plain text using a keyword:

plainText := "your message goes here"
keyword := "GOLANG"

Bonus: rather than write your plain text message in uppercase letters with no spaces,
use the strings.Replace and strings.ToUpper functions to remove spaces and uppercase the
string before you cipher it.

Once you've ciphered a plain text message, check your work by deciphering the
ciphered text with the same keyword.

Use the keyword "GOLANG" to cipher a message and post it to the forums for Get Program-
ming with Go at forums.manning.com/forums/get-programming-with-go.

NOTE Disclaimer: Vigenere cipher is all in good fun, but don’t use it for important secrets.
There are more secure ways to send messages in the 21st century.

Building blocks

Programming is the breaking of one big impossible
task into several very small possible tasks.
—Jazzwant

Functions are the building blocks of computer pro-
grams. You can call on functions like Printf to for-

mat and display values. The pixels that end up on
your screen are delivered by layers of functions in
Go and your operating system.

You can write functions too. Functions help you
organize your code, reuse functionality, and think
about a problem in smaller pieces.

Not only that, by learning how to declare functions
and methods in Go, you'll be equipped to explore
the rich functionality provided by the standard
library and documented at golang.org/pkg.

91

LESSON

FUNCTIONS

After reading lesson 12, you'll be able to

= Identify the parts of a function declaration

= Write reusable functions to build up larger programs

This lesson begins by examining the

standard library documentation for 00 7
functions that were used in earlier

lessons.

Once you're familiar with the syntax

for declaring functions, you'll write 3
functions for a weather station pro- ’ N =
gram. The Rover Environmental
Monitoring Station (REMS) gathers
weather data on the surface of Mars. o>

You'll write functions that could con- e \ \°
ceivably be part of a REMS program, \ S,

such as converting temperatures. ° \

93

94 Functions

*
-

Consider this Make a sandwich. It sounds simple, but many steps are involved. Wash
the lettuce, slice a tomato, and so on. Maybe you go so far as to harvest the grain, grind
it into flour, and bake the bread, or maybe those functions are provided by a farmer and
a baker.

Break down the process with a function for each step. Then later, if you need tomato
slices for a pizza, that function can be reused.

What is something else from your daily life that you can break down into functions?

‘-Illlllllllllllll.
4 g EEE R E R R R R R R EORDS

Sy g np R R R R R R R EEEEEREEEEREREEEREEREREEREEREREREERREERRERRREERROERRORORORORORTORS

12.1 Function declarations

K
W= W

The Go package documentation at golang.org/pkg lists the functions that are declared
in every package of the standard library. There are a lot of handy functions—more than
this book can possibly cover.

To use these functions in your own project, you'll often need to read the function decla-
ration in the documentation to know how to call the function. After scrutinizing the dec-
larations for Intn, Unix, Atoi, Contains, and Println, you'll be able to apply your newfound
knowledge when exploring other functions on your own, and when writing functions
yourself.

You used the Intn function in lesson 2 to generate pseudorandom numbers. Navigate to
golang.org/pkg and the math/rand package to find the Intn function. You can also use the
search box to find Intn.

The declaration for Intn from the rand package looks like this:
func Intn(n int) int

As a refresher, here’s an example of using the Intn function:
num := rand.Intn(10)

In figure 12.1 the parts of the declaration are identified, as is the syntax to call the Intn
function. The func keyword lets Go know this is a function declaration. Then comes the
function name, Intn, which begins with a capital letter.

Function declarations 95

function function
keyword name parameter result package name argument
[|1 [T [|
func Intn(n int) int num := rand.Intn(10)
name type type

Figure 12.1 The Intn function declaration and calling the Intn function

In Go, the functions, variables, and other identifiers that begin with an uppercase
letter are exported and become available to other packages. The rand package contains
functions that begin with a lowercase letter too, but they’re not accessible from the main
package.

The Intn function accepts a single parameter, which is surrounded by parentheses. The
parameter is a variable name followed by a type, consistent with variable declarations:

var n int

When calling the Intn function, the integer 10 is passed as a single argument, also sur-
rounded by parentheses. The argument corresponds to the single parameter Intn
expects. If no argument is passed, or if the argument isn’t of type int, the Go compiler
reports an error.

TIP Parameter and argument are terms from mathematics, with a subtle distinction. A

function accepts parameters and is invoked with arguments, though at times people may

use the terms interchangeably.
The Intn function returns a single result, a pseudorandom integer of type int. The result
is passed back to the caller, where it’s used to initialize the newly declared variable num.

The Intn function only accepts a single parameter, but functions can accept multiple
parameters with a comma-separated list. If you recall from lesson 7, the Unix function
from the time package accepts two int64 parameters, corresponding to the number of sec-
onds and the number of nanoseconds since January 1, 1970. The declaration from the
documentation looks like this:

func Unix(sec int64, nsec inté4) Time

Here’s the example of calling the Unix function with two arguments, corresponding to
the sec and nsec parameters respectively:

future := time.Unix (12622780800, 0)

96 Functions

The result returned by Unix is of the type Time. Thanks to type inference, the code that
calls Unix doesn’t need to specify the result type, which would be more verbose.

NOTE Lesson 13 demonstrates how to declare new types like time.Time and big. Int.

The time package declares and exports the Time type, which begins with an uppercase let-
ter, just like the Unix function. By using capitalization to indicate what's exported, it’s
apparent that the Time type is accessible from other packages.

The Unix function accepts two parameters of the same type, documented as follows:

func Unix(sec int64, nsec inté4) Time
But when parameters are listed in a function declaration, you only need to specify the
type when it changes, so it could have been written like this:

func Unix(sec, nsec int64) Time
This shortcut is optional, but it’s used elsewhere, such as the Contains function in the
strings package, which accepts two parameters of type string:

func Contains(s, substr string) bool

TIP The documentation at golang.org/pkg sometimes has examples that can be
expanded, and you'll find additional examples at gobyexample.com. If you're forging ahead on
your own projects while learning Go, these examples can be invaluable.

Many programming languages have functions that accept multiple parameters, but Go
functions can also return multiple results. First shown in lesson 10, the Atoi function
converts a string to a number and returns two results, which are assigned to countdown
and err here:

countdown, err := strconv.Atoi("10")

The documentation for the strconv package declares Atoi like this:

func Atoi(s string) (i int, err error)

Two results are specified between parentheses, much like the parameter list, with a
name followed by a type for each result. In function declarations you can also list the
result types without names:

func Atoi(s string) (int, error)
NOTE The error type is a built-in type for errors, which lesson 28 covers in depth.

A function you’ve been using since the beginning of this book is Println. It’s a rather
unique function in that it can accept one parameter, or two, or more. It can also accept
parameters of different types, including integers and strings:

Function declarations 97

fmt.Println("Hello, playground")
fmt.Println(186, "seconds")

The function declaration in the documentation may look a bit strange, because it uses
features we haven't yet covered:

func Println(a ...interface{}) (n int, err error)

The Println function accepts a single parameter, a, but you've already seen that passing it
multiple arguments is possible. More specifically, you can pass the Println function a
variable number of arguments, a feature indicated by the ellipsis (..). There’s a special
term for this: Println is said to be a variadic function. The parameter a is a collection of the
arguments passed to the function. We'll return to variadic functions in lesson 18.

The type of the a parameter is interface{}, known as the empty interface type. We won't be
covering interfaces until lesson 24, but now you know that this special type is what
enables Println to accept an int, floaté4, string, time.Time, or any other type without the Go
compiler reporting an error.

The combination of variadic functions and the empty interface, written together as
.interface{}, means you can pass Println any number of arguments of any type. It does a
good job of displaying whatever you throw at it.

NOTE So far we've been ignoring the two results that Print1n returns, even though ignoring
errors is considered a bad practice. Good error-handling practices are covered in lesson 28.

*

NV AN LN AL LN LN LN LN LN LN LN LN LA LN LN LN NN LN\ NN\ N\
*

1 Do you call a function with arguments or parameters?
Does a function accept arguments or parameters?

3 How does a function with an uppercase first letter (Contains) differ from one with a lower-
case first letter (contains)?

4 \What does the ellipsis (..) in a function declaration indicate?

VY vV IYY Y
OV VI I I I 4

\
A SSSSSSSSS .

RS S S SO SO S S S SO O O A S S S A O A A S S A A A A NSNS S A SN NSNS S CNSNSSSESSCNSNSNSNSSSENNY

1 Arguments
Parameters

3 Lowercase indicates functions that can only be used by the package they are declared in,
whereas capitalized functions are exported for use anywhere.

4 The function is variadic. You can pass it a variable number of arguments.

98 Lesson 12 Functions

”'@"12 2 Writing a function
]

So far, the code in this book has been placed in the main function. When approaching
larger applications, such as an environmental monitoring program, splitting the prob-

lem into smaller pieces becomes valuable. Organizing your code into functions makes it
easier to understand, reuse, and maintain.

Temperature data from sensor readouts should be reported in units that are meaningful
to Earthlings. The sensors provide data on the Kelvin scale, where 0° K is absolute zero,
the lowest temperature possible. A function in the next listing converts temperatures to
Celsius. Once the conversion function is written, it can be reused whenever that tem-
perature conversion is needed.

Listing 12.1

package main .
Declares a function that

import "fmt" accepts one parameter
and returns one result
// kelvinToCelsius converts °K to °C /
func kelvinToCelsius(k floaté4) floatés { =
k -= 273.15
return k Calls the function
1 passing kelvin as
the first argument
func main() { . .
. Prints 294° K is
kelvin := 294.0 20.850000000000023° C
celsius := kelvinToCelsius(kelvin) <

fmt.Print(kelvin, "° K is ", celsius, "° C") <-/
}

The kelvinToCelsius function in listing 12.1 accepts one parameter with the name k and the
type floatés. Following Go conventions, the comment for kelvinToCelsius begins with the
function’s name, followed by what it does.

This function returns one value of type floatés. The result of the calculation is delivered
back to the caller with the return keyword, which is then used to initialize a new celsius
variable in the main function.

Notice that functions within the same package are invoked without specifying a pack-
age name.

Summary a9

\.

Isolation can be a good thing

The kelvinToCelsius function in listing 12.1 is isolated from other functions. Its only input
is the parameter it accepts, and its only output is the result it returns. It makes no mod-
ifications to external state. Such functions are side-effect-free and are the the easiest to
understand, test, and reuse.

The kelvinToCelsius function does modify the variable k, but k and kelvin are completely
independent variables, so assigning a new value to k inside the function has no impact
on the kelvin variable in main. This behavior is called pass by value, because the k param-
eter is initialized with the value of the kelvin argument. Pass by value facilitates the
boundary between functions, helping to isolate one function from anather.

We've given the variables different names, but pass by value applies even if arguments
and parameters have the same names.

Additionally, the variable named k in kelvinToCelsius is completely independent from any
variable named k in other functions, thanks to variable scope. Scope is covered in lesson
4, but to reiterate, the parameters in a function declaration and the variables declared
within a function body have function scope. Variables declared in different functions are
completely independent, even if they have the same name.

J/

*>

Q
\
N\

Quick checlk 12.2 What are some advantages of splitting code into functions?

= Functions are declared with a name, a list of parameters, and a list of results.
= Capitalized function names and types are made available to other packages.

= Each parameter or result is a name followed by a type, though types may be

‘\\\

\

A SSSSSSSSSSS S,

elided when multiple named parameters or results have the same type. Results

can also be listed as types without names.
= Function calls are prefixed with the name of the package where the function is
declared, unless the function is declared in the same package it’s called from.
= Functions are called with arguments that correspond to the parameters they
accept. Results are returned to the caller with the return keyword.

A S S S S S S SO SO SO N S A S S S S NSNS SN S S NSNS NSNS SN NSNS SN SN S NSNS SN SN SNSNSNSNSNSNSNSNSNN]

OC 12.2 answer Functions are reusable, they provide isolation for variables through function scope,
and they provide a name for the action they perform which makes code easier to follow and understand.

100 Functions

Let’s see if you got this...

Experiment: functions.go

Use the Go Playground at play.golang.org to type in listing 12.1 and declare additional
temperature conversion functions:

= Reuse the kelvinToCelsius function to convert 233° K to Celsius.

= Write and use a celsiusToFahrenheit temperature conversion function. Hint: the for-
mula for converting to Fahrenheit is: (c * 9.0 / 5.0) + 32.0.

= Write a kelvinToFahrenheit function and verify that it converts 0° K to approxi-
mately —459.67° F.

Did you use kelvinToCelsius and celsiusToFahrenheit in your new function or write an inde-
pendent function with a new formula? Both approaches are perfectly valid.

LESSON

METHODS

After reading lesson 13, you'll be able to

= Declare new types
= Rewrite functions as methods

Methods are like functions that enhance types with additional behavior. Before you can
declare a method, you need to declare a new type. This lesson takes the kelvinToCelsius
function from lesson 12 and transforms it into a type with methods.

At first it may look like methods are just a different syntax for doing what functions
already do, and you would be right. Methods provide another way to organize code, an
arguably nicer way for the examples in this lesson. Later lessons, those in unit 5 in par-
ticular, demonstrate how methods can be combined with other language features to
bring new capabilities.

101

102 Lesson 13 Methods

‘III.

-

Consider this \When you type numbers on a calculator versus a typewriter, the
expected behavior is quite different. Go has built-in functionality to operate on numbers
and text (+) in unique ways, as demonstrated in lesson 10.

What if you want to represent a new type of thing and bundle behaviors with it? A
floatés is too generic to adequately represent a thermometer, and a dog’s bark() is
entirely different from the bark of a tree. Functions have a place, but types and methods
provide another useful way to organize code and represent the world around you.

Before you start on this lesson, look around and consider the types around you and the
behaviors they each have.

‘-IIIIIIIIIIIIIIIIIIII'
A R EEEEEEEEEEEEEEEEEEER

4yprpEp R EE R EEEREEEEREREREEEEREEEREREREREREREREREREREREREREREREERERUES

(2131 Declaring new types

Go declares a number of types, many of which are covered in unit 2. Sometimes those
types don’t adequately describe the kind of values you want to hold.

A temperature isn’t a floatés, though that may be its underlying representation. Tem-
perature is a measurement in Celsius, Fahrenheit, or Kelvin. Declaring new types not
only makes code clearer, it can help prevent errors.

The type keyword declares a new type with a name and an underlying type, as shown in
the following listing.

Listing 13.1
type celsius float64

i \ The underlying type
var temperature celsius = 20 is floatB4.
fmt.Println(temperature) <«—— Prints 20

The numeric literal 20, like all numeric literals, is an untyped constant. It can be assigned
to a variable of type int, float6s, or any other numeric type. The celsius type is a new
numeric type with the same behavior and representation as a float64, so the assignment
in the previous listing works.

You can also add values to temperature and generally use it as though it were a floatés,
as shown in the next listing.

Declaring new types 103

A celsius type hehaves like a f1loatés: celsius-addition.go

type celsius float6L

const degrees = 20
var temperature celsius = degrees
temperature += 10

The celsius type is a unique type, not a type alias like those mentioned in lesson 9. If you
try to use it with a floatés4, you'll get a mismatched types error:

_ Invalid operation:
var warmUp float64 = 10 mismatched types

temperature += warmlp

To add warmUp, it must first be converted to the celsius type. This version works:
var warmUp float64 = 10
temperature += celsius(warmup)

Being able to define your own types can be incredibly useful for improving both read-
ability and reliability. The following listing demonstrates that celsius and fahrenheit
types can’t accidentally be compared or combined.

Types can’t be mixed

type celsius float64
type fahrenheit float6s4

var ¢ celsius = 20
var f fahrenheit = 20

if c==f{ Invalid operation:

1 mismatched types
celsius and fahrenheit

c += £ /

eSS RN NN NN RN NSRS N CRCR NSRS NSRS NS NSRS LR L LR LR LR R RwRRRNRNN
Quick check 13.1 What are some advantages of declaring new types, such as celsius and

*

0

\' fahrenheit? :
\d

\\"""""""""""""“““““““““““"

AN NN NN NS NN NN NN NN NS NN NN NN N S N NN NN NSNS S S N SN NSNS NSNS S S S SN CLTTRTRTRTRTTRTTRTWNT

QC 13.1 answer The new type can better describe the value it contains, such as celsius instead of
floaté4. Having unique types helps avoid silly mistakes, like adding a Fahrenheit value to a Celsius value.

104 Lesson 13 Methods

@ 13 2 Bring your own types

(i

The previous section declared new celsius and fahrenheit types, bringing the domain of
temperatures to the code, while de-emphasizing the underlying storage representation.
Whether a temperature is represented as a float64 or float32 says little about the value a
variable contains, whereas types like celsius, fahrenheit, and kelvin convey their purpose.

Once you declare a type, you can use it everywhere you would use a predeclared Go
type (int, floaté4, string, and so on), including function parameters and results, as shown
in the following listing.

Listing 13.4

package main
import "“fmt"
type celsius float64
type kelvin float6s4

// kelvinToCelsius converts °K to °C

func kelvinToCelsius(k kelvin) celsius | A type conversion

is necessary.

return celsius(k - 273.15) /

}
: The argument

func main() { must be of type

var k kelvin = 294.0 kelvin.

¢ := kelvinToCelsius (k)

fmt.Print(k, "o K is ", ¢, "° C”) Prints 294° K is
1 20.850000000000023° C

The kelvinToCelsius function will only accept an argument of the kelvin type, which can
prevent silly mistakes. It won’t accept an argument of the wrong type, such as fahrenheit,
kilometers, or even floaté4. Go is a pragmatic language, so it’s still possible to pass a literal
value or untyped constant. Rather than write kelvinToCelsius(kelvin(294)), you can write
kelvinToCelsius(294).

The result returned from kelvinToCelsius is of type celsius, not kelvin, so the type must be
converted to celsius before it can be returned.

Adding behavior to types with methods 105

‘““"""‘“““"""‘“““‘“““““““““\

:’ Quick check 13.2 Write a celsiusToKelvin function that uses the celsius and kelvin types

\ defined in listing 13.4. Use it to convert 127° C, the surface temperate of the sunlit moon, to

degrees Kelvin.
A S S S S NS S S S S S S S S S S S S S S S S S N S S S S S S S SSSSSSSSSSSSNSSSN S

""I/

13.3 Adding behavior to types with methods
RS
Though this be madness, yet there is method in ‘t.

—Shakespeare, Hamlet

For decades classical object-oriented languages
have taught that methods belong with classes.
Go is different. There are no classes or even
objects, really, yet Go has methods. That may
seem odd, maybe even a bit crazy, but methods
in Go are actually more flexible than in lan-
guages of the past.

Functions like kelvinToCelsius, celsiusToFahrenheit,
fahrenheitToCelsius, and celsiusToKelvin get the job
done, but we can do better. Declaring a few
methods in their place will make temperature-
conversion code nice and concise.

(S 0 0 . . . O O A A AN AL AL N NN L LA L NN LA NN NN LN N LN 8NN N\ N

QC 13.2 answer

func celsiusToKelvin(c celsius) kelvin {
return kelvin(c + 273.15)

}

func main() {
var ¢ celsius = 127.0 Prints 127° C

k := celsiusToKelvin(c) / is 400.15° K
fmt.Print(c, "° C is ", k, "° K") <

106 Lesson 13 Methods

You can associate methods with any type declared in the same package, but not with
predeclared types (int, float64, and so forth). You've already seen how to declare a type:

type kelvin float6s4

The kelvin type has the same behavior as its underlying type, a floaté64. You can add,
multiply, and perform other operations on kelvin values, just like floating-point num-
bers. Declaring a method to convert kelvin to celsius is as easy as declaring a function.
They both begin with the func keyword, and the function body is identical to the method
body:

kelvinToCelsius

func kelvinToCelsius(k kelvin) celsius { \
) function

return celsius(k - 273.15

}

func (k kelvin) celsius() celsius { < celsius method on

return celsius(k - 273.15) the kelvin type
}

The celsius method doesn’t accept any parameters, but it has something like a parameter
before the name. It’s called a receiver, as shown in figure 13.1. Methods and functions can
both accept multiple parameters, but methods must have exactly one receiver. Inside the
celsius method body, the receiver acts like any other parameter.

method
keyword receiver name result

func (k kelvin) celsius() celsius

LH I—y—l I—y—l Figure 13.1

name type type A method declaration

The syntax to use a method is different than calling a function:

var k kelvin = 294.0

var ¢ celsius Calls the kelvinToCelsius
/ function

¢ = kelvinToCelsius(k) <

c = k.celsius() «—— Calls the celsius method

Methods are called with dot notation, which looks like calling a function in another pack-
age. But in this case a variable of the correct type is followed by a dot and the method
name.

Summary 107

Now that temperature conversion is a method on the kelvin type, a name like kelvinToCel-
sius is superfluous. A package can only have a single function with a given name, and it
can’t be the same name as a type, so a celsius function that returns a celsius type isn’t
possible. But each temperature type can provide a celsius method, so for example, the
fahrenheit type can be enhanced as follows:

type fahrenheit float6s4

// celsius converts °F to °C
func (f fahrenheit) celsius() celsius {
return celsius((f - 32.0) * 5.0 / 9.0)

}

This creates a nice symmetry, where every type of temperature can have a celsius
method to convert to Celsius.

"‘“““"‘“““""““““““““““““““‘\
& -
4 Quick check 13.2 |dentify the receiver in this method declaration: func (f fahrenheit) \

\ . .
\celslus() celsius K
"“""‘“""‘“""‘“"““““““““““““

(e
Summary

= Declaring your own types can help with readability and reliability.

= Methods are like functions associated to a type by way of a receiver specified
before the method name. Methods can accept multiple parameters and return
multiple results, just like functions, but they must always have exactly one
receiver. Within the method body, the receiver behaves just like any other
parameter.

= The calling syntax for methods uses dot notation, with a variable of the appropri-
ate type followed by a dot, the method name, and any arguments.

Let’s see if you got this...

Experiment: methods.go

Write a program with celsius, fahrenheit, and kelvin types and methods to convert from
any temperature type to any other temperature type.

NS S S S A S O SO O A A A A A SN S A S SN N S S A A S NS S A A A NSNS S S A S NSNS NSNS SNSNSNSSESSNSSESSESNN

OC 13.3 answer The receiver is f of type fahrenheit.

LESSON

FIRST-CLASS FUNCTIONS

After reading lesson 14, you'll be able to

= Assign functions to variables
= Pass functions to functions

= Write functions that create functions

In Go you can assign functions to variables, pass functions to functions, and even write
functions that return functions. Functions are first-class—they work in all the places that
integers, strings, and other types work.

This lesson explores some potential uses of first-class functions as part of a theoretical
Rover Environmental Monitoring Station (REMS) program that reads from (fake) tem-
perature sensors.

Consider this A recipe for tacos calls for salsa. You can either turn to page 93 of the
cookbook to make homemade salsa or open a jar of salsa from the store.

First-class functions are like tacos that call for salsa. As code, the makeTacos function needs
to call a function for the salsa, whether that be makeSalsa or openSalsa. The salsa functions
could be used independently as well, but the tacos won't be complete without salsa.

Other than recipes and temperature sensors, what's another example of a function
that can be customized with a function?

108

Assigning functions to variables 109

14.1 Assigning functions to variahles

The weather station sensors provide an air temperature reading from 150-300° K. You

have functions to convert Kelvin to other temperature units once you have the data, but
unless you have a sensor attached to your computer (or Raspberry Pi), retrieving the
data is a bit problematic.

For now you can use a fake sensor that returns a pseudorandom number, but then you
need a way to use realSensor or fakeSensor interchangeably. The following listing does just
that. By designing the program this way, different real sensors could also be plugged in,
for example, to monitor both ground and air temperature.

Listing 14.1

package main
import (
" Emt
"math/rand"

)
type kelvin float6s4

func fakeSensor() kelvin {
return kelvin(rand.Intn(151) + 150)

}

func realSensor() kelvin {

return 0
] \ To-do: implement

a real sensor
func main() {

sensor := fakeSensor 4\ Nesi ;)
. ssigns a function
fmt.Println(sensoz()) to ag\llar'iable

sensor = realSensor
fmt.Println(sensoz())

}

In the previous listing, the sensor variable is assigned to the fakeSensor function itself, not
the result of calling the function. Function and method calls always have parentheses,
such as fakeSensor (), which isn’t the case here.

110 Lesson 14 First-class functions

Now calling sensor () will effectively call either realSensor or fakeSensor, depending on
which function sensor is assigned to.

The sensor variable is of type function, where the function accepts no parameters and
returns a kelvin result. When not relying on type inference, the sensor variable would be
declared like this:

var sensor func() kelvin

NOTE You can reassign sensor to realSensor in listing 14.1 because it matches the func-
tion signature of fakeSensor. Both functions have the same number and type of parameters
and return values.

“\\

:’ Quick check 14.1 N
\ 1 How can you distinguish between assigning a function to a variable versus assigning the ~ \
: result of calling the function? :
\ 2 |If there existed a groundSensor function that returned a celsius temperature, could it be \
\ assigned to the sensor in listing 14.17? :
At ttataatssesssssssssssssssssssssssssssssssssssss®

14.2 Passing functions to other functions

R
N=

Variables can refer to functions, and variables can be passed to functions, which means
Go allows you to pass functions to other functions.

To log temperature data every second, listing 14.2 declares a new measureTemperature func-
tion that accepts a sensor function as a parameter. It calls the sensor function periodi-
cally, whether it’s a fakeSensor or a realSensor.

The ability to pass functions around gives you a powerful way to split up your code.
If not for first-class functions, you would likely end up with measureRealTemperature and
measureFakeTemperature functions containing nearly identical code.

(NS S S S S S S SN SN S S SO SA S SN S SN S S A S SN SN S S N S A SN NS SN S SN S SN SN SN S SN SNSN NSNS SNSNSNSNNSNN)

QC 14.1 answer
1 Function and method calls always have parentheses [for example, £n()) whereas the function
itself can be assigned by specifying a function name without parentheses.
2 No. The parameters and return values must be of the same type to reassign the sensor vari-
able. The Go compiler will report an error: cannot use groundSensor in assignment.

Passing functions to other functions 111

A function as a parameter: function-parameter.go

package main

import (
“fmt"
"math/rand"
"time"

)

type kelvin floaté4

func measureTemperature(samples int, sensor func() kelvin) {

for i := 0; i < samples; i++ {
measureTemperature
k := sensor() accepts a function as
fmt.Printf("%v® K\n", k) the second parameter.

time.Sleep(time.Second)

}

func fakeSensor() kelvin {
return kelvin(rand.Intn(151) + 150)

}
Passes the name
func main() { of a function to a

measureTemperature(3, fakeSensor) 44//’ function
}

The measureTemperature function accepts two parameters, with the second parameter being
of type func() kelvin. This declaration looks like a variable declaration of the same type:

var sensor func() kelvin

The main function is able to pass the name of a function to measureTemperature.

‘\“““““"‘“““““"‘“““““““““““‘\

: Quick check 14.2 How is the ability to pass functions to other functions beneficial? \

‘“““““"‘“““““"‘““““““““““““’

A O . A NSNS SN A AN A A A AN NN A A AN NN LA A LA NN LA NN NN N]

OC 14.2 answer First-class functions provide another way to divide and reuse code.

112 Lesson 14 First-class functions

14.3 Declaring function types

g
W= W

It's possible to declare a new type for a function to condense and clarify the code that
refers to it. You used the kelvin type to convey a unit of temperature rather than the
underlying representation. The same can be done for functions that are being passed
around:

type sensor func() kelvin

Rather than a function that accepts no parameters and returns a kelvin value, the code is
about sensor functions. This type can be used to condense other code, so the declaration

func measureTemperature(samples int, s func() kelvin)
can now be written like this:
func measureTemperature(samples int, s sensor)

In this example, it may not seem like an improvement, as you now need to know what
sensor is when looking at this line of code. But if sensor were used in several places, or if
the function type had multiple parameters, using a type would significantly reduce the
clutter.

+* Quick check 14.3 Rewrite the following function signature to use a function type:
func drawTable(rows int, getRow func(row int) (string, string))
\d

ASS NSNS S S S S SN N S A NN S S NN S NN N S NN NSNS NN SSSNSNSSNSNSNSSSNSNSSN\NS,

“‘\\\“‘\\\\\\\\\\“‘\\\\\\\\\\“‘\\\\\\\\\\“‘\\\\
\J
&

14.4 Closures and anonymous functions

l-\=ﬂ

An anonymous function, also called a function literal in Go, is a function without a name.
Unlike regular functions, function literals are closures because they keep references to
variables in the surrounding scope.

A A M NS SA A A AN AN A OO AN NN OO NN NN AN NN L AN NN NN NN NN N

QC 14.3 answer
type getRowFn func(row int) (string, string)

func drawTable(rows int, getRow getRowFn)

Closures and anonymous functions 113

You can assign an anonymous function to a variable and then use that variable like any
other function, as shown in the following listing.

Anonymous function: masquerade.go

package main

import "fmt" Assigns an anonymous

function to a variable
var f = func() { /

fmt.Println("Dress up for the masquerade.")

}

Prints Dress up for
func main() { ;

the masquerade.
£() <a///
}

The variable you declare can be in the scope of the package or within a function, as
shown in the next listing.

Anonymous function: funcvar.go

package main

import "fmt"
Assigns an anonymous
func main() { g Y

function to a variable
f := func(message string) { 4/

fmt.Println(message)

114 Lesson 14 First-class functions

} Prints Go to the
party.
f("Go to the party.") /

}

You can even declare and invoke an anonymous function in one step, as shown in the
following listing.

Anonymous function: anonymous.go

package main

import "fmt Declares an

func main() { ?lrﬁc:;\i,cr)rrllous
func() { /

fmt.Println("Functions anonymous")

10
1 \ Invokes the function

Anonymous functions can come in handy whenever you need to create a function on
the fly. One such circumstance is when returning a function from another function.
Although it’s possible for a function to return an existing named function, declaring and
returning a new anonymous function is much more useful.

In listing 14.6 the calibrate function adjusts for errors in air temperature readings. Using
first-class functions, calibrate accepts a fake or real sensor as a parameter and returns a

replacement function. Whenever the new sensor function is called, the original function
is invoked, and the reading is adjusted by an offset.

Sensor calibration: calibrate.go

package main
import "fmt"
type kelvin float64

// sensor function type
type sensor func() kelvin

func realSensor() kelvin {
return 0 .
To-do: implement
} a real sensor

func calibrate(s sensor, offset kelvin) sensor {

Closures and anonymous functions 115

return func() kelvin { Declares and returns

return s() + offset an anonymous
1 function

}

func main() {
sensor := calibrate(realSensor, 5)
fmt.Println(sensor()) <——— Prints 5

}

The anonymous function in the preceding listing makes use of closures. It references the
s and offset variables that the calibrate function accepts as parameters. Even after the
calibrate function returns, the variables captured by the closure survive, so calls to sensor
still have access to those variables. The anonymous function encloses the variables in
scope, which explains the term closure.

Because a closure keeps a reference to surrounding variables rather than a copy of their
values, changes to those variables are reflected in calls to the anonymous function:

var k kelvin = 294.0

sensor := func() kelvin {
return K

}

fmt.Println(sensor()) <«——— Prints 294

k++

fmt.Println(sensor()) <«——— Prints 295

Keep this in mind, particularly when using closures inside for loops.

PO A A A A AN e e
>
< Quick check 14.4
\
\

1 What's another name for an anonymous function in Go?
\ 2 What do closures provide that regular functions don't?

AN S A A NS A A NS S N N A N N N SN N N S N NN N NN NN SN NS NN N NSNS NSNS NN SN\

/
"ll/

*

‘aa AN NS SN SN NSRS SN SN NS S SRS N NSNS NS NSNS NRSN SRR RS SRS CSRRS R RS CRCCRCRRRRRTRTRRRRRNW

QC 14.4 answer

1 An anonymous function is also called a function literal in Go.
2 Closures keep references to variables in the surrounding scope.

116 Lesson 14 First-class functions

= When functions are treated as first-class, they open up new possibilities for split-
ting up and reusing code.
= To create functions on the fly, use anonymous functions with closures.

Let’s see if you got this...

Experiment: calibrate.go

Type listing 14.6 into the Go Playground to see it in action:

= Rather than passing 5 as an argument to calibrate, declare and pass a variable.
Modify the variable and you'll notice that calls to sensor() still result in 5. That’s
because the offset parameter is a copy of the argument (pass by value).

= Use calibrate with the fakeSensor function from listing 14.2 to create a new sensor
function. Call the new sensor function multiple times and notice that the original
fakeSensor is still being called each time, resulting in random values.

LESSON

CAPSTONE: TEMPERATURE TABLES

Write a program that displays temperature conversion
tables. The tables should use equals signs (=) and pipes
(|) to draw lines, with a header section:

The program should draw two tables. The first table has
two columns, with °C in the first column and °F in the
second column. Loop from —40° C through 100° C in
steps of 5° using the temperature conversion methods

from lesson 13 to fill in both columns.

After completing one table, implement a second table with the columns reversed, con-
verting from °F to °C.

Drawing lines and padding values is code you can reuse for any data that needs to be
displayed in a two-column table. Use functions to separate the table drawing code from
the code that calculates the temperatures for each row.

117

118 Capstone: Temperature tables

Implement a drauTable function that takes a first-class function as a parameter and calls it
to get data for each row drawn. Passing a different function to drawTable should result in

different data being displayed.

Collections

Collections are just groups of things. You probably
have a music collection. Each album has a collection
of songs, and each song has a collection of musical
notes. If you want to build a music player, you'll be
happy to know that programming languages have
collections too.

In Go, you can use the primitive types covered in
unit 2 to compose more interesting composite types.
These composite types allow you to group values
together, providing new ways to collect and access
data.

119

LESSON

ARRAYED IN SPLENDOR

After reading lesson 16, you'll be able to

= Declare and initialize arrays
= Assign and access the elements of an array
= Jterate through arrays

Arrays are ordered collections of elements with a fixed length. This lesson uses arrays to
store the names of planets and dwarf planets in our solar system, but you can collect
anything you like.

Consider this Do you have a collection or did you in the past? Maybe stamps, coins,
stickers, books, shoes, trophies, movies, or something else?

Arrays are for collecting many of the same type of thing. What collections could you
represent with an array?

121

122 Lesson 16 Arrayed in splendor

O 16.1 Declaring arrays and accessing their elements

R
W=

The following planets array contains exactly eight elements:

var planets [8]string
Every element of an array has the same type. In this case, planets is an array of strings.

Individual elements of an array can be accessed by using square brackets [] with an
index that begins at 0, as illustrated in figure 16.1 and shown in listing 16.1.

Array of planets: array.go

var planets [8]string Assigns a planet

planets[o] = "Mercury" at index O

planets[1] = "Venus"
planets[2] = "Earth" Retrieves the

lanet at index 2
earth := planets[2] 4/ .

fmt.Println(earth) <——— Prints Earth

LAY

Figure 16.1 Planets with indices O through 7

Even though only three planets have been assigned, the planets array has eight elements.
The length of an array can be determined with the built-in len function. The other ele-
ments contain the zero value for their type, an empty string:

fmt.Println(len(planets)) <——— Prints 8
fmt.Println(planets[3] == "") <«——— Prints true

NOTE Go has a handful of built-in functions that don’t require an import statement. The
len function can determine the length for a variety of types. In this case it returns the size of
the array.

Don’t go out of bounds 123

‘\“"“““‘“““‘“““‘“““““““““““‘\
Quick check 16.1

1 How do you access the first element of the planets array?

&
g
\
\
\ 2 What is the default value for elements of a new array of integers?

"III/

\d
AS S S O S S S S S A N S A N NS A S SN S NSNS NSNS SN S S SN SNNSNSNSNSNSNSSNSNSNN

(e s
16.2 Don’t go out of hounds

An eight-element array has indices from 0 through 7. The Go compiler will report an
error when it detects access to an element outside of this range:

var planets [8]string
. . Invalid array index 8
planets[8] = "Pluto (out of bounds for

pluto := planets[8] 8-element array)

If the Go compiler is unable to detect the error, your program may panic while it’s run-
ning:

var planets [8]string

1:=38 Panic: runtime
planets[i] = "Pluto" error: index out
pluto := planets[i] of range

A panic will crash your program, which is still better than modifying memory that
doesn’t belong to the planets array, leading to unspecified behavior (as is the case with
the C programming language).

\ Quick check 16.2 Wil planets[11] cause an error at compile-time or a panic at runtime?)

‘“““"""‘“““"""‘“““‘“““““““““

A A N O O VNNV NN AN NNV NN N NN NN NN NN\ \]
QC 16.1 answer
1 planets[0]
2 Elements of an array are initially the zero value for the array’s type, which means 0 for integer
arrays.

A A O 0 O QAN NN NN LA NN L. AN LN NN NN\ NN\ N\]

QC 16.2 answer The Go compiler will detect an invalid array index.

124 Lesson 16 Arrayed in splendor

16.3 Initialize arrays with composite literals

%)
SAQY

3

A composite literal is a concise syntax to initialize any composite type with the values you
want. Rather than declare an array and assign elements one by one, Go’s composite lit-
eral syntax will declare and initialize an array in a single step, as shown in the following

listing.
Array of dwarf planets: dwarfs.go
dwarfs := [5]string{"Ceres", "Pluto", "Haumea", "Makemake", "Eris"}

The curly braces {} contain five comma-separated strings to populate elements of the
new array.

With larger arrays, breaking the composite literal across multiple lines can be more
readable. And as a convenience, you can ask the Go compiler to count the number of
elements in the composite literal by specifying the ellipsis .. instead of a number. The
planets array in the following listing still has a fixed length.

A full array of planets: composite.go

planets := [...]string{ The Go compiler

"Mercury", counts the
"Venus" elements.
"Earth",

"Mars",

"Jupiter",

"Saturn®, The trailing

"Uranus", comma is
"Neptune", / required.

eSS SN LCSNN NSNS LSS S SN LR LT LCRLRRRRR R RR RN

*
+ Quick check 16.3 How many planets are there in listing 16.3? Use the len built-in function
\\ to find out.

\d
\"“““"""‘“““"‘“““““““““““““

‘s

(NN 0 0 O O NN 0 QNN NN LA LN NN\ N\ \

OC 16.3 answer The planets array has eight elements (8).

Iterating through arrays 125

16.4 Iterating through arrays

Iterating through each element of an array is similar to iterating over each character of a

string in lesson 9, as shown in the following listing.

Looping through an array: array-loop.go

dwarfs := [5]string{"Ceres", "Pluto", "Haumea", "Makemake", "Eris"}
for i :=0; i < len(dwarfs); i++ {

dwarf := dwarfs[i]

fmt.Println(i, dwarf)

}

The range keyword provides an index and value for each element of an array with less
code and less chance for mistakes, as shown in the next listing.

Iterating through an array with range: array-range.go

dwarfs := [5]string{"Ceres", "Pluto", "Haumea", "Makemake", "Eris"}

for i, dwarf := range dwarfs {
fmt.Println(i, dwarf)

}

Both listings 16.4 and 16.5 produce the same output:

0 Ceres
1 Pluto

2 Haumea
3 Makemake
4 Eris

NOTE Remember that you can use the blank identifier (underscore] if you don’t need the
index variable provided by range.

126 Lesson 16 Arrayed in splendor

: Quick check 16.4
: 1 What mistakes can be avoided by using the range keyword to iterate over an array?
\ 2 When would it be appropriate to use a conventional for loop instead of range?

AN S S S S S S S S N N N N S S S NS S S N NN NS S SN S S S NN NSNS SSSSSSSNSNSNSSS,

Covsrs

@
‘IB 5 Arrays are copied

Assigning an array to a new variable or passing it to a function makes a complete copy
of its contents, as you can see in the following listing.

Arrays are values: array-value.go

planets := [...]string{
"Mercury",

"Venus",
"Earth",
"Mars",
"Jupiter",
"Saturn",
"Uranus"”,

"Neptune"

1 Makes way for an
interstellar bypass

Copies planets array

planetsMarkII := planets

_ o " Prints [Mercury Venus
planets[2] = "whoops <_/ whoops Mars Jupiter Saturn

fmt.Println(planets) Uranus Neptune]
fmt.Println(planetsMarkII)

Prints [Mercury Venus
Earth Mars Jupiter
Saturn Uranus Neptune]

TIP In the event that you escape the destruction of Earth, you will want Go installed on
your own computer. See the instructions at golang.org.

aSS S S Ssa NSNS SN NS NSNS NS NN NN SN NN NSNS SNNCNS"N NN """ """ C“TCT"T"TTLTLTLTTLTLNTN
QC 16.4 answer
1 With the range keyword, the loop is simpler and avoids mistakes like going out of bounds (for

example, i <= len(dwarfs)).
2 If you need something custom, like iterating in reverse or accessing every second element.

Arrays are copied 127

Arrays are values, and functions pass by value, which means the terraform function in
the following listing is completely ineffective.

Arrays pass by value: terraform.go

package main
import "fmt"

// terraform accomplishes nothing
func terraform(planets [8]string) {
for i := range planets {
planets[i] = "New

+ planets[i]

}

func main() {
planets := [...]string{

"Mercury",

"Venus",

"Earth",

"Mars",

“Jupiter",
“Saturn",

"Uranus",

"Neptune",

) Prints [Mercury Venus
terraform(planets) Earth Mars Jupiter

Saturn Uranus Neptune
fmt.Println(planets) / .]
}

The terraform function is operating on a copy of the planets array, so the modifications
don’t affect planets in the main function.

Also, it’s important to recognize that the length of an array is part of its type. The type
[8]string and type [5]string are both collections of strings, but they’re two different types.
The Go compiler will report an error when attempting to pass an array of a different
length:

dwarfs := [5]string{"Ceres", "Pluto", "Haumea", "Makemake", "Eris"}

terraform(dwarfs) 4\

Can’t use dwarfs (type
[S]string) as type [8]string
in argument to terraform

128 Lesson 16 Arrayed in splendor

For these reasons, arrays aren’t used as function parameters nearly as often as slices, cov-
ered in the next lesson.

& Quick check 16.5
\

\ 1 How did Earth survive in planetsMazkII of listing 16.67
\ 2 How could listing 16.7 be madified so that the planets array in main is changed?

<
AN S S S S S S S S N N N N S S S NS S S N NN NS S SN S S S NN NSNS SSSSSSSNSNSNSSS,

Covsrs

16.6 Arrays of arrays

%
SAQV

D

You've seen arrays of strings, but you can also have arrays of integers, arrays of floating-
point numbers, and even arrays of arrays. The 8 x 8 chessboard in the following listing is
an array of arrays of strings.

Chesshoard: chess.go

var board [8][8]strin
° \ An array of eight

board[0][0] = "r" arrays of eight strings
board[0][7] = "r" 4\

Places a rook at a
for column := range board[1] { [row][column] coordinate

board[1][column] = "p
}

fmt.Print(board)

A" A A AN R TR TN RSN SRR SNR NSRS NN NSNS RSN CNRCTRTRTRTRTLRTRTLRTRTRTRTRTRTTRTRSTWS
QC 16.5 answer

1 The planetsMarklII variable received a copy of the planets array, so modifications to either array
are independent of each other.

2 The terraform function could return the revised [8]string array, so that main could reassign
planets to the new value. Lesson 17 on slices and lesson 26 on pointers present other alterna-
tives.

Summary 129

“““““""“““““"‘““““““““““““\

Quick check 16.6 Consider the game of Sudoku. What would the declaration look like for a
9 x 9 grid of integers? ;

““““““““‘““““““‘““““““““““‘

/l'.

Summary

Arrays are ordered collections of elements with a fixed length.

Composite literals provide a convenient means to initialize arrays.

The range keyword can iterate over arrays.

When accessing elements of an array, you must stay inside its boundaries.

o
B
= = = = = D

Arrays are copied when assigned or passed to functions.
Let’s see if you got this...

Experiment: chess.go
= Extend listing 16.8 to display all the chess pieces at their starting positions using
the characters kqrbnp for black pieces along the top and uppercase KaRBNP for white
pieces on the bottom.
= Write a function that nicely displays the board.
= Instead of strings, use [8][8]rune to represent the board. Recall that rune literals are
surrounded with single quotes and can be printed with the %c format verb.

‘AN NSNS S NSNS NS S S SN SN SN N S S S SN NN NSRS SN SRS NSRS SRS R SRS CS SRR RLRTRRRRRRTWT

QAC 16.6 answer
var grid [9][9]int

LESSON

SLICES: WINDOWS INTO ARRAYS

After reading lesson 17, you'll be able to

= Use slices to view the solar system through a window
= Alphabetize slices with the standard library

The planets in our solar system are classified as terrestrial, gas giants, and ice giants, as
shown in figure 17.1. You can focus on the terrestrial ones by slicing the first four ele-
ments of the planets array with planets[0:4]. Slicing doesn’t alter the planets array. It just
creates a window or view into the array. This view is a type called a slice.

@ses-suo

terrestrial gasGiants iceGiants

Figure 17.1 Slicing the solar system

130

Slicing an array 131

<« ER R R R EEEERER NN EEEEREREENEEEERERERENEEERERRRR R RRR RN R R

Consider this If you have a collection, is it organized in a certain way? The books on a
library shelf may be ordered by the last name of the author, for example. This arrange-
ment allows you to focus in on other books they wrate.

JUBIIEEREEE,
Cygsnnnnnnnt

You can use slices to zero in on part of a collection in the same way.

Cpsr s EEEEEEEEEEREEEEEREREEREREEEEEREREEEEREREREREREEREREERRERERERRRROERROERORTRY

D171 Slici
17.1 Slicing an array

Slicing is expressed with a half-open range. For example, in the following listing,

planets[0:4] begins with the planet at index 0 and continues up to, but not including,
the planet at index 4.

Slicing an array: slicing.go

planets := [...]string{
"Mercury",

"Venus",
"Earth",
"Mars",
"Jupiter",
"Saturn",
"Uranus",
"Neptune",

}

terrestrial := planets[0:4]

gasGiants := planets[4:6] Prints [Mercury

iceGiants := planets[6:8] Eﬁinpl;:efg;EUM?rS]

fmt.Println(terrestrial, gasGiants, iceGiants) / [Uranus Neptune]

Though terrestrial, gasGiants, and iceGiants are slices, you can still index into slices like
arrays:

fmt.Println(gasGiants[0]) <«——— Prints Jupiter

You can also slice an array, and then slice the resulting slice:

132 Lesson 17 Slices: windows into arrays

giants := planets[4:8] Printe [Jupiter 5

- . rints [Jupiter Saturn
gas := glants[0:2] Uranus Neptune]
] [Jupiter Saturn]

[Uranus Neptune]

ice := giants[2:4

fmt.Println(giants, gas, ice)

The terrestrial, gasGiants, iceGiants, giants, gas, and ice slices are all views of the same plan-
ets array. Assigning a new value to an element of a slice modifies the underlying planets
array. The change will be visible through the other slices:

Copies the iceGiants
slice (a view of the
planets array)

iceGiantsMarkII := iceGiants Erir::t;]sl\lllmeraury'tvensui
L o S ar ars Jupiter Saturn
iceGiants[1] = Poseldo:—/ o B
fmt.Println(planets)

fmt.Println(iceGiants, iceGiantsMarkII, ice) Prints [Uranus Poseidon]
[Uranus Poseidon]

[Uranus Poseidon]

*

O
\
\
\

“""‘“"""“""‘“"“““““““““““‘\\
Quick check 17.1

1 What does slicing an array produce?
\ 2 When slicing with planets[4:6], how many elements are in the result?

“““""“““““"‘“““““““““““““"

*
\ V4

17.1.1 Default indices for slicing

When slicing an array, omitting the first index defaults to the beginning of the array.
Omitting the last index defaults to the length of the array. This allows the slicing from
listing 17.1 to be written as shown in the following listing.

Default indices: slicing-default.go

terrestrial := planets[:4]
gasGiants := planets[4:6]

iceGiants := planets[6:]

NOTE Slice indices may not be negative.

NS S S SN N SC SN AN SN A A AN A AN NN A A A NN AN A NN SN NN NN NN NN NN NN N NN N
QC 17.1 answer

1 Aslice.
2 Two.

Composite literals for slices 133

You can probably guess what omitting both indices does. The allPlanets variable is a

slice containing all eight planets:

allPlanets := planets[:]

Slicing strings
The slicing syntax for arrays also works on strings:

neptune := "Neptune"
tune := neptune[3:]

fmt.Println(tune) <«——— Prints tune

The result of slicing a string is another string. However, assigning a new value to neptune
won't change the value of tune or vice versa:

neptune = "Poseidon"
fmt.Println(tune) <——— Prints tune

Be aware that the indices indicate the number of bytes, not runes:

question := ";Como estas?"
fmt.Println(question[:6]) <——— Prints ¢;Com

J

\.

"\“““““"‘“““““‘“““““““““““‘\\

:‘ Quick check 17.2 If Earth and Mars were the only colonized planets, how could you derive \
4

\the slice colonized from terrestrial? |
*

AN S S S NS S S A N SN O O O A A O A O O A A A A N A A A A N A N A NN S NN N N SN AN NN

17.2 Composite literals for slices

¢
DA

Many functions in Go operate on slices rather than arrays. If you need a slice that
reveals every element of the underlying array, one option is to declare an array and then

slice it with [:], like this:
[...]string{"Ceres", "Pluto", "Haumea", "Makemake", "Eris"}
dwarfArray[:]

dwarfArray :=
dwarfSlice :

‘AN NSNS S NSNS NS S S SN SN SN N S S S SN NN NSRS SN SRS NSRS SRS R SRS CS SRR RLRTRRRRRRTWT

QC 17.2 answer

colonized := terrestrial[2:]

134 Lesson 17 Slices: windows into arrays

Slicing an array is one way to create a slice, but you can also declare a slice directly. A
slice of strings has the type []string, with no value between the brackets. This differs
from an array declaration, which always specifies a fixed length or ellipsis between the
brackets.

In the following listing, dwarfs is a slice initialized with the familiar composite literal syn-

tax.
Start with a slice: dwarf-slice.go

dwarfs := []string{"Ceres", "Pluto", "Haumea", "Makemake", "Eris"}

There is still an underlying array. Behind the scenes, Go declares a five-element array
and then makes a slice that views all of its elements.

>

:‘ Quick check 17.3 Use the %T format verb to compare the types of dwarfArray and the

‘\““““""“““““"““““““““““““\

. \
dwarfs slice. K

“““""“““““"‘““““““““““““““

= 17.3 The power of slices

i

Do
D

What if there were a way to fold
the fabric of space-time, bring-
ing worlds together for instanta-
neous travel? Using the Go
standard library and some inge-
nuity, the hyperspace function in
listing 17.4 modifies a slice of
worlds, removing the (white)

space between them.

A A M NS SA A A AN AN A OO AN NN OO NN NN AN NN L AN NN NN NN NN N

QC 17.3 answer

fmt.Printf("array %T\n", dwarfArray) <——— Prints array [S]string
fmt.Printf("slice %T\n", dwarfs) <«——— Prints slice [Istring

The power of slices 135

Bringing worlds together: hyperspace.go

package main
import (
“fmt"
"strings"
)
// hyperspace removes the space surrounding worlds

func hyperspace(worlds []string) { 4-\ This argument is a
for i := range worlds { slice, not an array.

worlds[i] = strings.TrimSpace(worlds[i])

}
1 Planets
_ surrounded
func main() { / by space
planets := []string{" Venus ", "Earth ", " Mars"}
hyperspace(planets)
fmt.Println(strings.Join(planets, "")) “~_ Prints
1 VenusEarthMars

Both worlds and planets are slices, and though worlds is a copy, they both point to the same
underlying array.

If hyperspace were to change where the worlds slice points, begins, or ends, those changes
would have no impact on the planets slice. But hyperspace is able to reach into the underly-
ing array that worlds points to and change its elements. Those changes are visible by
other slices (views) of the array.

Slices are more versatile than arrays in other ways too. Slices have a length, but unlike
arrays, the length isn’t part of the type. You can pass a slice of any size to the hyperspace
function:

dwarfs := []string{" Ceres ", " Pluto"}
hyperspace (dwarfs)

Arrays are rarely used directly. Gophers prefer slices for their versatility, especially
when passing arguments to functions.

136 Lesson 17 Slices: windows into arrays

‘\‘““““““““"‘““““““““““““““\
* o . L .
+ Quick check 17.4 Look up TrimSpace and Join in the Go documentation at golang.org,/pkg.
What functionality do they provide?

ASS NSNS S S S S SN N S S NN S SN N S SN N S NN NSNS NSNS SN NSNS SNSSSNSNSSSN\NS,

0."/

17.4 Slices with methods

’

In Go you can define a type with an underlying slice or array. Once you have a type, you
can attach methods to it. Go’s ability to declare methods on types proves more versatile
than the classes of other languages.

The sort package in the standard library declares a StringSlice type:

type StringSlice []string
Attached to StringSlice is a Sort method :

func (p StringSlice) Sort()

To alphabetize the planets, the following listing converts planets to the sort.StringSlice
type and then calls the Sort method.

Sorting a slice of strings: sort.go

package main

import (
-
"eort”

)

func main() {
planets := []string{
"Mercury", "Venus", "Earth", "Mars",
"Jupiter", "Saturn", "Uranus", "Neptune",

} Sorts
planets
sort.StringSlice(planets).Sort() </ alphabetically

fmt.Println(planets) Prints [Earth Jupiter Mars
} Mercury Neptune Saturn
Uranus Venus]

AN N NN NN NN NSNS NSNS NN NN NN N NN NN NN NS S S S S NSNS S SCN S S S S S CRCRTRTTTRTRTRTRTTRNNT

QC 17.4 answer

1a TrimSpace returns a slice with leading and trailing white space removed.
1b Join concatenates a slice of elements with a separator placed between them.

Summary 137

To make it even simpler, the sort package has a Strings helper function that performs the
type conversion and calls the Sort method for you:

sort.Strings(planets)

““““‘““““““‘““““““‘““““““““\

Quick check 17.5 What does sort.StringSlice(planets) do?

A SSSSSSSSSSSS S,

“e

Yot

Summar
.4|-r.= v

f-\=ﬂ

= Slices are windows or views into an array.

= The range keyword can iterate over slices.

= Slices share the same underlying data when assigned or passed to functions.
= Composite literals provide a convenient means to initialize slices.

= You can attach methods to slices.
Let’s see if you got this...

Experiment: terraform.go

Write a program to terraform a slice of strings by prepending each planet with "New
Use your program to terraform Mars, Uranus, and Neptune.

Your first iteration can use a terraform function, but your final implementation should
introduce a Planets type with a terraform method, similar to sort.StringSlice.

A S O N O ANV NN NN NN\ \N]

OC 17.5 answer The planets variable is converted from []string to the StringSlice type,
which is declared in the sort package.

LESSON

A BIGGER SLICE

After reading lesson 18, you'll be able to

= Append more elements to slices

= Investigate how length and capacity work

Arrays have a fixed number of elements, and slices are just views into those fixed-length
arrays. Programmers often need a variable-length array that grows as needed. By combin-
ing slices and a built-in function named append, Go provides the capabilities of variable-
length arrays. This lesson delves into how it works.

Consider this Have you ever had your books outgrow your shelves, or your family out-
grow your home or vehicle?

Like bookshelves, arrays have a certain capacity. A slice can focus on the portion of the
array where the books are, and grow to reach the capacity of the shelf. If the shelf is full,
you can replace the shelf with a larger one and move all the books over. Then point the
slice at the books on the new shelf with a greater capacity.

138

The append function 139

18.1 The append function

The International Astronomical Union (IAU) recognizes five dwarf planets in our solar

system, but there could be more. To add more elements to the dwarfs slice, use the built-in
append function as shown in the following listing.

More dwarf planets: append.go

dwarfs := []string{"Ceres", "Pluto", "Haumea", "Makemake", "Eris"}

dwarfs = append(dwarfs, "Orcus")

fmt.Println(dwarfs) Prints [Ceres Pluto
Haumea Makemake
Eris Orcus]

The append function is variadic, like Println, so you can pass multiple elements to append
in one go:

dwarfs = append(dwarfs, "Salacia", "Quaoar", "Sedna")

fmt.Println(dwarfs) \ Prints [Ceres Pluto Haumea
Makemake Eris Orcus

Salacia Quaoar Sednal

The duarfs slice began as a view into a five-element array, yet the preceding code
appends four more elements. How is that possible? To investigate, you'll first need to
understand capacity and the built-in function cap.

“"‘“““"""‘“““"‘“““““““““““‘\

' Quick check 18.1 How many dwarf planets are in listing 18.1? What function can be used
\\to determine this?

A S S S S A S S N S N S AN S SN SN A NS NN S NN NN S NS NN SN NN S NS NSNS SNSNSNSNNSNSS,

. /
0"

"SR RS TRRSR NSRS RNR SRR RNR NSRS RSRRNRRSRRNRSRRSRCNRSRCNRNRRSRRCNRCRRCNRCNRRCRRCNRCRCNRCRRCRRCNRCRRNRTRRRRRRRRNWS
OC 18.1 answer The slice contains nine dwarf planets, which can be determined with the len built-
in function:

fmt.Println(len(dwarfs)) <«——— Prints 9

140 Lesson 18 A bigger slice

°@" 18.2 Length and capacit
g pacity

The number of elements that are visible through a slice determines its length. If a slice
has an underlying array that is larger, the slice may still have capacity to grow.

The following listing declares a function to print out the length and capacity of a slice.

Len and cap: slice-dump.go

package main
import "fmt"

// dump slice length, capacity, and contents
func dump(label string, slice []string) {
fmt.Printf("%v: length %v, capacity %v %v\n", label, len(slice),
cap(slice), slice)

}
func main() {
dwarfs := []string{"Ceres", "Pluto", "Haumea", "Makemake", "Eris"}
dump("dwarfs", dwarfs)
dump("dwarfs[1:2]", dwarfs[1:2]) Prints dwarfs: length 5,
1 . capacity 5 [Ceres Pluto
Prints Haumea Makemake Eris]

dwarfs[1:2]: length 1,
capacity 4 [Pluto]

The slice created by duarfs[1:2] has a length of 1, but the capacity to hold 4 elements.

\" Quick check 18.2 Why does the dwarfs[1:2] slice have a capacity of 4?)
*

ASSSSSS A AL LN SO A N A A NN A A A AN A A A A AN L AN AN A L LA L LN N LN NN NN\ 2

. 0 . . L O A A L L L LN AL L L L LN LS L LN L L LA NN LA L. LN NN N\ N

OC 18.2 answer Pluto Haumea Makemake Eris provide a capacity of 4 even though the length is 1.

Investigating the append function 141

@183 Investigating the append function
gating pp

Using the dump function from listing 18.2, the next listing shows how append affects

capacity.

append to slice: slice-append.go

dwarfsl := []string{"Ceres", "Pluto", "Haumea", "Makemake", "Eris"} 4\

dwarfs2 := append(dwarfsl, "Orcus") Length 5,
dwarfs3 := append(dwarfs2, "Salacia", "Quaoar", "Sedna")) capacity 5
Length 6, capacity 10 Length 9, capacity 10

The array backing dwarfsl doesn’t have enough room (capacity) to append Orcus, so
append copies the contents of dwarfsl to a freshly allocated array with twice the capacity, as
illustrated in figure 18.1. The dwarfs2 slice points at the newly allocated array. The addi-
tional capacity happens to provide enough room for the next append.

dwarfs1

increased capacity

* copy ¢ copy ‘ copy ¢ c |

olelololololoe

* append ‘ append ‘ append ‘

Figure 18.1 append allocates a new array with increased capacity when necessary.

dwarfs2

dwarfs3

142 Lesson 18 A bigger slice

To demonstrate that dwarfs2 and dwarfs3 refer to a different array than dwarfsi, simply
modify an element and print out the three slices.
‘A AN A A A A A A A AN A AN AN A AN AN AN AN A AN AN N AN NN NN NN\ N\

< Quick check 18.3 If you modify an element of dwarfs3 in listing 18.3, will dwarfs2 or dwarfsl
N ?

\ Change®
\

\

dwarfs3[1] = "Pluto!"

“““""“““““"‘“““““““““““““"

*

*
Corsrs

18.4 Three-index slicing
F‘:‘!’:"‘
Go version 1.2 introduced three-index slicing to limit the capacity of the resulting slice. In
the next listing, terrestrial has a length and capacity of 4. Appending Ceres causes a new

array to be allocated, leaving the planets array unaltered.

Capacity after slicing: three-index-slicing.go

planets := []string{
"Mercury", "Venus", "Earth", "Mars",

"Jupiter", "Saturn", "Uranus", "Neptune",

! Length 4, capacity 4
terrestrial := planets[0:4:4] /

worlds := append(terrestrial, "Ceres")

fmt.Println(planets) Prints [Mercury Venus
Earth Mars Jupiter
Saturn Uranus Neptune]

If the third index isn’t specified, terrestrial will have a capacity of 8. Appending Ceres
doesn’t allocate a new array, but instead overwrites Jupiter:

Length 4, capacity 8
terrestrial = planets[0:4] /

worlds = append(terrestrial, "Ceres")

fmt.PrintIn(planets) Prints [Mercury Venus
Earth Mars Ceres Saturn
Uranus Neptune]

CAA AR ANASNNNSN RN NN N NN NS N NSNS NN NN NN NN RSNNNSSNRSNRSNCSCSCSNCSCSCSYCSRCSRTSRTSLRSTRSTRTRTRRTRNN
OC 18.3 answer dwarfs3 and dwarfs2 are changed, but dwarfsl remains the same because it
points to a different array.

Preallocate slices with make 143

Unless you want to overwrite Jupiter, you should default to three-index slicing when-
ever you take a slice.

o
N\ Quick check 18.4 When should three-index slicing be used?)

‘“““"""‘“““"""‘“““‘“““““““““

18.5 Preallocate slices with make

2\
IS4GV

.

When there isn’t enough capacity for append, Go must allocate a new array and copy the
contents of the old array. You can avoid extra allocations and copies by preallocating a
slice with the built-in make function.

The make function in the next listing specifies both the length (0) and capacity (10) of the
dwarfs slice. Up to 10 elements can be appended before dwarfs runs out of capacity, caus-
ing append to allocate a new array.

Make a slice: slice-make.go

dwarfs := make([]string, 0, 10)
dwarfs = append(dwarfs, "Ceres", "Pluto", "Haumea", "Makemake", "Eris")

The capacity argument is optional. To start with a length and capacity of 10, you can use
make([]string, 10). Each of the 10 elements will contain the zero value for their type, an
empty string in this case. The append built-in function would add the 11th element.

""""‘“““"""‘“““‘“““““““““““‘

! Quick check 18.5 What is the benefit of making slices with make?

A S SO S N S S S S SN S SN N SN A S A N S N N S N SN NS NSNS NSNS SN SN NSNS NSNS NS

oo/

(S S S S S L L L L L L L L L L L LA L L S LA L LN S AAL N SO NN L L L A A S NSNS LN NN
QC 18.4 answer When shouldn’t three-index slicing be used? Unless you specifically want to over-
write the elements of the underlying array, it's far safer to set the capacity with a three-index slice.

NAaA A AN NS AsN NN NS N NN NSNS NN NN NN NN N NN NN CNNCN NN CNCNCNC“"C"CC"CCCTCLTLTLTLTTTRTTRTWTY
QC 18.5 answer Preallocating with make can set an initial capacity, thereby avoiding additional allo-
cations and copies to enlarge the underlying array.

144 Lesson 18 A bigger slice

18.6 Declaring variadic functions

R
W=

Printf and append are variadic functions because they accept a variable number of argu-
ments. To declare a variadic function, use the ellipsis .. with the last parameter, as shown
in the following listing.

Vlariable arity functions: variadic.go

func terraform(prefix string, worlds ...string) []string {
newWorlds := make([]string, len(worlds))
Makes a new slice
for i := range worlds { rather than modifying
+ worlds[i] worlds directly

newWorlds[i] = prefix +

}
return newWorlds
}
The worlds parameter is a slice of strings that contains zero or more arguments passed to
terraform:
twoWorlds := terraform("New", "Venus", "Mars")
fmt.Println(twolWorlds) 4\ Prints [New Venus

New Mars]
To pass a slice instead of multiple arguments, expand the slice with an ellipsis:

planets := []string{"Venus", "Mars", "Jupiter"}
newPlanets := terraform("New", planets...)

fmt.Println(newPlanets)
Prints [New Venus New
Mars New Jupiter]

If terraform were to modify (or mutate) elements of the worlds parameter, the planets slice
would also see those changes. By using neullorlds, the terraform function avoids modifying
the passed arguments.

ISR AR A AN AN AN 2NN LN AN N NN 0NN 8NN N N

Y Quick check 18.6 What are three uses for the ellipsis ..? R

\""“““"""‘“““""‘“““““““““““"

\CASAa RSSO RNRSR NSRS NSNS RNRRN SN NNSRNSNNNSRNSRRSNSNRNRSNSNSNSCNCSRCSRCSRCSCNLCSRCSRCSRCSRCSRSRSRSRSTRTRRRRNWN
QC 18.6 answer

1 Have the Go compiler count the number of elements in a composite literal for an array.

2 Make the last parameter of a variadic function capture zero or more arguments as a slice.

3 Expand the elements of a slice into arguments passed to a function.

Summary 145

= Slices have a length and a capacity.

= When there isn’t enough capacity, the built-in append function will allocate a new
underlying array.

= You can use the make function to preallocate a slice.

= Variadic functions accept multiple arguments, which are placed in a slice.
Let’s see if you got this...
Experiment: capacity.go
Write a program that uses a loop to continuously append an element to a slice. Print out

the capacity of the slice whenever it changes. Does append always double the capacity
when the underlying array runs out of room?

LESSON

THE EVER-VERSATILE MAP

After reading lesson 19, you'll be able to

= Use maps as collections for unstructured data
= Declare, access, and iterate over maps

= Explore some uses of the versatile map type

Maps come in handy when you’re searching for something, and we’re not just talking
about Google Maps (www.google.com/mars/). Go provides a map collection with keys
that map to values. Whereas arrays and slices are indexed by sequential integers, map
keys can be nearly any type.

NOTE This collection goes by several different names: dictionaries in Python, hashes in

Ruby, and objects in JavaScript. Associative arrays in PHP and tables in Lua serve as both

maps and conventional arrays.
Maps are especially useful for unstructured data where the keys are determined while a
program is running. Programs written in scripting languages tend to use maps for struc-
tured data as well —data where the keys are known ahead of time. Lesson 21 covers Go’s
structure type, which is better suited for those cases.

146

Declaring a map 147

¢« R R EEREREREEEREERERERENEEERERRENEREEEREREREENEEEREREREEEERRERERERERERREDRIEIR,

Consider this Maps associate a key with a value, which is handy for an index. If you
know the title of a book, iterating through every book in an array could take some time,
just like looking through every shelf of every aisle of a library or bookstore. A map keyed
by book title is faster for that purpose.

Cyssnnnnnnnnnt

What are some other situations in which a map from keys to values could be useful?

‘-IIIIIIIIIII'

CpssErr R EEERE R R R R EEREEREEREREREREREREREREREEEREEERERERREERERERRERERROERORTRY

19.1 Declaring a map

NS

The keys of maps can be nearly any type, unlike arrays

and slices, which have sequential integers for keys. You map[stringlint

must specify a type for the keys and values in Go. To I_V_l I_V_l
declare a map with keys of type string and values of type keyltype value type
int, the syntax is map[string]int, as shown in figure 19.1. Figure 19.1 A map with
The temperature map declared in listing 19.1 contains aver- string keys and integer values
age temperatures from the Planetary Fact Sheet
(nssdc.gsfc.nasa.gov/planetary/factsheet/). You can declare and initialize maps with
composite literals, much like other collection types. For each element, specify a key and
value of the appropriate type. Use square brackets [] to look up values by key, to assign

over existing values, or to add values to the map.

Listing 19.1
temperature := map[stringlint{
"Earth”: 15, “~_ Composite literals
"Mars": -65, are key-value pairs
1 for maps.

" " Prints On average
temp := temperature["Earth"] / the Earth is 15° C.

fmt.Printf("On average the Earth is %v° C.\n", temp) <

temperature["Earth"] = 16 4\ A little climate
L6L change

fmt.Println(temperature) 4\ Prints map[Venus:464
Earth:16 Mars:-65]

temperature["Venus"]

148 Lesson 19 The ever-versatile map

If you access a key that doesn’t exist in the map, the result is the zero value for the
type (int):

moon := temperature[“Moon"l/ Prints O
fmt.Println(moon)

Go provides the comma, ok syntax, which you can use to distinguish between the "Moon"
not existing in the map versus being present in the map with a temperature of 0° C:

The comma,

] ok syntax
if moon, ok := temperature["Moon"]; ok {
fmt.Printf("On average the moon is %v° C.\n", moon)
} else {
fmt.Println("Where is the moon?") Prints Where
1 is the moon?

The moon variable will contain the value found at the "Moon" key or the zero value. The
additional ok variable will be true if the key is present, or false otherwise.

NOTE \When using the comma, ok syntax you can use any variable names you like:
temp, found := temperature["Venus"]

“"“““““"‘““““““““““““““““‘\
N

& Quick check 19.1

: 1 What type would you use to declare a map with 64-bit floating-point keys and integer values?
\ 2 If you modify listing 19.1 so that the "Moon" key is present with a value of 0, what's the
\ result of using the comma, ok syntax?

oy

4
>
AS S S S A S S S NN S S N NN N S NN N S NN NN N SN SN NSNS SN NSNS SN SNSNSNSNSNSNSSNSNSNNS

‘AN NSNS S NSNS NS S S SN SN SN N S S S SN NN NSRS SN SRS NSRS SRS R SRS CS SRR RLRTRRRRRRTWT

AC 19.1 answer

1 The map type is map[floatés]int.
2 The value of ok will be true:

temperature := map[string]lint{

"Earth": 15,
"Mars": -65,
"Moon": O, Prints On
] average the
moon is 0° C.
if moon, ok := temperature["Moon"]; ok {)
fmt.Printf("On average the moon is %v° C.\n", moon)
} else {

fmt.Println("Where is the moon?")

}

Maps aren’t copied 149

19.2 Maps aren’t copied

%)
SAQY

3

As you learned in lesson 16, arrays are copied when assigned to new variables or when
passed to functions or methods. The same is true for primitive types like int and float6s.

Maps behave differently. In the next listing, both planets and planetsMarkII share the same
underlying data. As you can see, changes to one impact the other. That’s a bit unfortu-
nate given the circumstances.

Pointing at the same data: whoops.go

planets := map[string]string{
"Earth": "Sector 779",

"Mars": "Sector 779",
}
planetsMarkII := planets
planets["Earth"] = "whoops" Prints map[Earth:whoops

Mars:Sector ZZ9]
fmt.Println(planets) /

fmt.Println(planetsMarkII) 4—/

delete(planets, "Earth")
Removes Earth

fmt.Println(planetsMarkII) D from the map

Prints
map[Mars:Sector ZZ9]

When the delete built-in function removes an element from the map, both planets and
planetsMarkII are impacted by the change. If you pass a map to a function or method, it
may alter the contents of the map. This behavior is similar to multiple slices that point to
the same underlying array.

eSS A NN NN NN NN NN NN N NN NR NN RN RSN RN SRR R RN R RN RRRNRNRRNRNRRRRRRRRRNW

Quick check 19.2

Q
3
: 1 Why are changes to planets also reflected in planetsMarkII in listing 19.2?
\ 2 What does the delete built-in function do?

“““““"‘“““““"“““““““““““““

A\

* /
4

AN N NN NN NN NSNS NSNS NN NN NN N NN NN NN NS S S S S NSNS S SCN S S S S S CRCRTRTTTRTRTRTRTTRNNT

QC 19.2 answer

1 The planetsMarkII variable points at the same underlying data as planets.
2 The delete function removes an element from a map.

150 Lesson 19 The ever-versatile map

L) - :
19.3 Preallocating maps with make

Maps are similar to slices in another way. Unless you initialize them with a composite
literal, maps need to be allocated with the make built-in function.

For maps, make only accepts one or two parameters. The second one preallocates space
for a number of keys, much like capacity for slices. A map’s initial length will always be
zero when using make:

temperature := make(map[floaté4]int, 8)

‘\“““““"‘“““““"‘“““““““““““‘\

: Quick check 19.3 What do you suppose is the benefit of preallocating a map with make? ‘\

‘“““““"‘“““““"‘““““““““““““‘

19.4 Using maps to count things

SN

The code in listing 19.3 determines the frequency of temperatures taken from the MAAS
API (github.com/ingenology/mars_weather_api). If frequency were a slice, the keys would
need to be integers, and the underlying array would need to reserve space to count tem-
peratures that never actually occur. A map is clearly a better choice in this case.

LS O O O O O VOO L L L L L O OO L L O OV O L O O O O L O O L O L A O L L O N]
OC 19.3 answer As with slices, specifying an initial size for a map can save the computer some
work later when the map gets bigger.

Grouping data with maps and slices 151

Frequency of temperatures: frequency.go

temperatures := []float64{
-28.0, 32.0, -31.0, -29.0, -23.0, -29.0, -28.0, -33.0,

}
frequency := make(map[floatés4]int) Iterates over a
slice (index, value)
for _, t := range temperatures {
frequency[t]++
} Iterates over a

map (key, value)
for t, num := range frequency { ey

fmt.Printf("%+.2f occurs %d times\n", t, num)
}

Iteration with the range keyword works similarly for slices, arrays, and maps. Rather
than an index and value, maps provide the key and value for each iteration. Be aware
that Go doesn’t guarantee the order of map keys, so the output may change from one
run to another.

““““““"‘“““““"‘““““““““““““

{ Quick checlk 19.4 When iterating over a map, what are the two variables populated with? \
N .

\“""“““““"‘““““““““““““““““

Q- | | |
19.5 Grouping data with maps and slices

Instead of determining the frequency of temperatures, let’s group temperatures together
in divisions of 10° each. To do that, the following listing maps from a group to a slice of
temperatures in that group.

A map of slices: group.go

temperatures := []float64{
-28.0, 32.0, -31.0, -29.0, -23.0, -29.0, -28.0, -33.0,

1
groups := make(map[floatés4][]floatéL)

A map with float64 keys
for _, t := range temperatures { and [JfloatB4 values

‘SN N NSRS NN NSNS RS NN N NSNS SRS N NSNS SRR RN RSN SR SRR R R RN CR RN RRRTRTRRRR™RNN

QC 19.4 answer The key and the value for each element in the map.

152 Lesson 19 The ever-versatile map

g := math.Trunc(t/10) * 10
Rounds temperatures down

groups[g] = append(groups[g], t) to -20, -30, and so on
1
for g, temperatures := range groups {
fmt.Printf("%v: %v\n", g, temperatures)
}
The previous listing produces output like this:
30: [32]
-30: [-31 -33]

-20: [-28 -29 -23 -29 -28]

“““"‘“““““"‘““““““““““““““\\

' Quick check 19.5 What is the type for the keys and values in the declaration var groups

~&nap[string] []int?
*

A S A O A A S A S N A S N N SN S N S S A N N N N NSNS NN NSNS SN SN SN

0"

19.6 Repurposing maps as sets

Dt
0

A set is a collection similar to an array, except that each element is guaranteed to occur

only once. Go doesn’t provide a set collection, but you can always improvise by using a
map, as shown in the following listing. The value isn’t important, but true is convenient
for checking set membership. If a temperature is present in the map and it has a value of

true, it's a member of the set.

A makeshift set: set.go

var temperatures = []floatés4{
-28.0, 32.0, -31.0, -29.0, -23.0, -29.0, -28.0, -33.0,

}
set := make(map[floaté4]bool))
Makes a map with
for _, t := range temperatures { Boolean values
set[t] = true
}

. 0 . . L O A A L L L LN AL L L L LN LS L LN L L LA NN LA L. LN NN N\ N

QC 19.5 answer The groups map has keys of type string and values that are a slice of integers.

Summary 153

if set[-28.0] {
fmt.Println("set member") <——— Prints set member

}

fmt.Println(set))
Prints map[-31:true -29:true

-23:true -33:true -28:true 32:true]

You can see that the map only contains one key for each temperature, with any dupli-
cates removed. But map keys have an arbitrary order in Go, so before they can be
sorted, the temperatures must be converted back to a slice:

unique := make([]floatés, 0, len(set))
for t := range set {

unique = append(unique, t)

}

sort.Floatés4s(unique)
fmt.Println(unique) <——— Prints [-33 -31 -29 -28 -23 32]

’\‘“““““"‘“““““"“““““““““““‘\\

\ Quick check 19.6 How would you check whether 32.0 is a member of set? \

‘“““““"‘“““““"‘““““““““““““‘

Summary

= Maps are versatile collections for unstructured data.

Composite literals provide a convenient means to initialize maps.

The range keyword can iterate over maps.

Maps share the same underlying data when assigned or passed to functions.
= Collections become more powerful when combined with each other.

‘CAaa N NN NN NSNS SN N NSNS S SN NN NN S NN NN NN SRS RN NSRS SRR RSRRCRRRRRTRTRRRRRNN

QC 19.6 answer

if set[32.0] {
// set member

}

154 The ever-versatile map

Let’s see if you got this...

Experiment: words.go

Write a function to count the frequency of words in a string of text and return a map

of words with their counts. The function should convert the text to lowercase, and
punctuation should be trimmed from words. The strings package contains several help-
ful functions for this task, including Fields, ToLower, and Trim.

Use your function to count the frequency of words in the following passage and then
display the count for any word that occurs more than once.

As far as eye could reach he saw nothing but the stems of the great plants about him
receding in the violet shade, and far overhead the multiple transparency of huge leaves
filtering the sunshine to the solemn splendour of twilight in which he walked. Whenever
he felt able he ran again; the ground continued soft and springy, covered with the same
resilient weed which was the first thing his hands had touched in Malacandra. Once or
twice a small red creature scuttled across his path, but otherwise there seemed to be no
life stirring in the wood; nothing to fear —except the fact of wandering unprovisioned
and alone in a forest of unknown vegetation thousands or millions of miles beyond the
reach or knowledge of man.

—C.S. Lewis, Out of the Silent Planet,
(see mng.bz/V7nO)

LESSON

CAPSTONE: A SLICE OF LIFE

For this challenge, you will build a simulation of underpopulation, overpopulation, and
reproduction called Conway’s Game of Life (see mng.bz/xOyY). The simulation is
played out on a two-dimensional grid of cells. As such, this challenge focuses on slices.

Each cell has eight adjacent cells in the horizontal, vertical, and diagonal directions. In
each generation, cells live or die based on the number of living neighbors.

155

156 Lesson 20 Capstone: A slice of life

20.1 A new universe

For your first implementation of the Game of Life, limit the universe to a fixed size.

Decide on the dimensions of the grid and define some constants:

const (
width = 80
height = 15

)

Next, define a Universe type to hold a two-dimensional field of cells. With a Boolean type,
each cell will be either dead (false) or alive (true):

type Universe [][]bool

Uses slices rather than arrays so that a universe can be shared with, and modified by,
functions or methods.

NOTE Lesson 26 introduces pointers, an alternative that allows you to directly share
arrays with functions and methods.

Write a NewUniverse function that uses make to allocate and return a Universe with height
rows and width columns per row:

func NewUniverse() Universe

Freshly allocated slices will default to the zero value, which is false, so the universe

begins empty.

20.1.1 Looking at the universe

Write a method to print a universe to the screen using the fmt package. Represent live
cells with an asterisk and dead cells with a space. Be sure to move to a new line after
printing each row:

func (u Universe) Show()

Write a main function to create a NewUniverse and Show it. Before continuing, be sure that you
can run your program, even though the universe is empty.

20.1.2 Seeding live cells
Write a Seed method that randomly sets approximately 25% of the cells to alive (true):

func (u Universe) Seed()

Implementing the game rules 157

Remember to import math/rand to use the Intn function. When you're done, update main to
populate the universe with Seed and display your handiwork with Show.

20.2 Implementing the game rules

2
W= W

The rules of Conway’s Game of Life are as follows:

= A live cell with less than two live neighbors dies.
= A live cell with two or three live neighbors lives on to the next generation.
= A live cell with more than three live neighbors dies.

= A dead cell with exactly three live neighbors becomes a live cell.

To implement the rules, break them down into three steps, each of which can be a
method:

= A way to determine whether a cell is alive

= The ability to count the number of live neighbors

= The logic to determine whether a cell should be alive or dead in the next
generation

20.2.1 Dead or alive?

It should be easy to determine whether a cell is dead or alive. Just look up a cell in the
Universe slice. If the Boolean is true, the cell is alive.

Write an Alive method on the Universe type with the following signature:

func (u Universe) Alive(x, y int) bool

A complication arises when the cell is outside of the universe. Is (-1,-1) dead or alive?
On an 80 x 15 grid, is (80,15) dead or alive?

To address this, make the universe wrap around. The neighbor above (0,0) will be (0,14)
instead of (0,—1), which can be calculated by adding height to y. If y exceeds the height of
the grid, you can turn to the modulus operator (%) that we used for leap year calcula-

tions. Use % to divide y by height and keep the remainder. The same goes for x and width.

20.2.2 Counting neighbors

Write a method to count the number of live neighbors for a given cell, from 0 to 8.
Rather than access the universe data directly, use the Alive method so that the universe
wraps around:

func (u Universe) Neighbors(x, y int) int

158 Capstone: A slice of life

Be sure to only count adjacent neighbors and not the cell in question.

20.2.3 The game logic

Now that you can determine whether a cell has two, three, or more neighbors, you can
implement the rules shown at the beginning of this section. Write a Next method to do
this:

func (u Universe) Next(x, y int) bool

Don’t modify the universe directly. Instead, return whether the cell should be dead or
alive in the next generation.

<> 90.3 Parallel universe

1| >

g
W= W

To complete the simulation, you need to step through each cell in the universe and
determine what its Next state should be.

There’s one catch. When counting neighbors, your count should be based on the previ-
ous state of the universe. If you modify the universe directly, those changes will influ-
ence the neighbor counts for the surrounding cells.

A simple solution is to create two universes of the same size. Read through universe A
while setting cells in universe B. Write a Step function to perform this operation:

func Step(a, b Universe)
Once universe B holds the next generation, you can swap universes and repeat:
a, b=~>b, a

To clear the screen before displaying a new generation, print "\x0c", which is a special
ANSI escape sequence. Then display the universe and use the Sleep function from the
time package to slow down the animation.

NOTE Outside of the Go Playground, you may need another mechanism to clear the
screen, such as "\033[H" on macOS.

Now you should have everything you need to write a complete Game of Life simulation
and run it in the Go Playground.

When you're done, share a Playground link to your solution in the Manning forums at
forums.manning.com/forums/get-programming-with-go.

State and behavior

In Go, values represent state, such as whether a
door is opened or closed. Functions and methods
define behavior —actions on state, such as opening a
door.

As programs grow larger, they become more diffi-
cult to manage and maintain, unless you have the
right tools.

If there are several doors that can independently be
opened or closed, it’s helpful to bundle the state and
behavior together. Programming languages also
allow you to express abstract ideas, such as things
that can be opened. Then on a hot summer day, you
can open everything that can be opened, whether
door or window.

There are a lot of big words to describe these ideas:
object-orientation, encapsulation, polymorphism,
and composition. The lessons in this unit aim to
demystify the concepts and demonstrate Go’s
rather unique approach to object-oriented design.

159

LESSON

A LITTLE STRUCTURE

After reading lesson 21, you'll be able to

= Give coordinates on Mars a little structure
= Encode structures to the popular JSON data format

A vehicle is made up of many parts, and those parts may have associated values (or
state). The engine is on, the wheels are turning, the battery is fully charged. Using a sep-
arate variable for each value is akin to the vehicle sitting in the shop disassembled. Like-
wise, a building may have windows that are open and a door that is unlocked. To
assemble the parts or construct a structure, Go provides a structure type.

Consider this \Whereas collections are of the same type, structures allow you to
group disparate things together. Take a look around. \What do you see that could be
represented with a structure?

161

162 Lesson 21 A little structure

21.1 Declaring a structure
A pair of coordinates are good candidates for adopting a little structure. Latitude and
longitude go everywhere together. In a world without structures, a function to calculate
the distance between two locations would need two pairs of coordinates:

func distance(latl, longl, lat2, long2 float64) float6h

Though this does work, passing independent coordinates around is prone to errors and
just plain tedious. Latitude and longitude are a single unit, and structures let you treat
them as such.

The curiosity structure in the next listing is declared with floating-point fields for lati-
tude and longitude. To assign a value to a field or access the value of a field, use dot nota-
tion with variable name dot field name, as shown.

Listing 21.1

var curiosity struct {
lat float6s4

long float6s4

}
curiosity.lat = -4.5895 tAostiggz\é?‘lgﬁg

curiosity.long = 137.4417 structure .
/ Prints -4.5895 137.4417
fmt.Println(curiosity.lat, curiosity.long) <

fmt.Printin(curiosity) <~_ piis (4.5895 137.4417)

NOTE The Print family of functions will display the contents of
structures for you.

The Mars Curiosity rover began its journey at Bradbury
Landing, located at 4°3522.2" S, 137°26'30.1" E. In listing

21.1 the latitude and longitude for Bradbury Landing are
expressed in decimal degrees, with positive latitudes to the
north and positive longitudes to the east, as illustrated in fig-
ure 21.1.

Figure 21.1 Latitude and
longitude in decimal degrees

Reusing structures with types 163

““"‘“““““"‘“““““““““““““““

* Quick check 21.1

1 What advantage do structures have over individual variables?

2 Bradbury Landing is about 4,400 meters below Martian “sea level.” If curiosity had an
altitude field, how would you assign it the value of -4400?

<
/

Vo vyl
"llll

/

*
AN S S S S S S SN SN S SN N NSNS SN S A NN SN S NN NSNS NSNS NSNS NS SN SN SNSNSNSNSNSNSNSNSN,

21.2 Reusing structures with types

0o

If you need multiple structures with the same fields, you can define a type, much like
the celsius type in lesson 13. The location type declared in the following listing is used to
place the Spirit rover at Columbia Memorial Station and the Opportunity rover at Chal-
lenger Memorial Station.

Location type: location.go

type location struct {
lat float6s4

long float6s4
}

var spirit location
spirit.lat = -14.5684 Reuses the
spirit.long = 175.472636 / location type

var opportunity location
opportunity.lat = -1.9462
PP / Prints

opportunity.long = 354.4734 {-14.5684 175.472636}

fmt.Println(spirit, opportunity) / t1.9462 354.4734}

LS O O O O O VOO L L L L L O OO L L O OV O L O O O O L O O L O L A O L L O N]
QcC 21.1 answer
1 Structures group related values together, making it simpler and less error-prone to pass them

around.
2 curiosity.altitude = -4400

164 Lesson 271 A little structure

""""‘“““““""""‘“““““““““““‘\
+ Quick check 271.2 How would you adapt the code from listing 21.1 to use the location type
for the Curiosity rover at Bradbury Landing?

*
ASS NN SS NS SN N NS S NN S S NN S SN NS SN NS SNSNSNSSSNSNSSSNSNSSSNSNSSN\NS,

e

21.3 Initialize structures with composite literals

f.\=ﬂ

Composite literals for initializing structures come in two different forms. In listing 21.3,
the opportunity and insight variables are initialized using field-value pairs. Fields may be
in any order, and fields that aren’t listed will retain the zero value for their type. This
form tolerates change and will continue to work correctly even if fields are added to the
structure or if fields are reordered. If location gained an altitude field, both opportunity
and insight would default to an altitude of zero.

Composite literal with field-value pairs: struct-literal.go

type location struct {
lat, long floaté64

}

opportunity := location{lat: -1.9462, long: 354.4734}
fmt.Println(opportunity) <~ pu e (1.9462 354.4734)
insight := location{lat: 4.5, long: 135.9}
fmt.Println(insight) <—_ Prints {4.5 135.9}

The composite literal in listing 21.4 doesn’t specify field names. Instead, a value must be
provided for each field in the same order in which they’re listed in the structure defini-
tion. This form works best for types that are stable and only have a few fields. If the loca-
tion type gains an altitude field, spirit must specify a value for altitude for the program
to compile. Mixing up the order of 1at and long won’t cause a compiler error, but the pro-
gram won’t produce correct results.

‘NS N NSNS SN NN NSNS SSR NN NSNS RS NN N NN NR NN NN NSRS SRRSO CNCS SRR RRRLRRRRRRRRRNW

QC 21.2 answer

var curiosity location
curiosity.lat = -4.5895
curiosity.long = 137.4417

Structures are copied 165

Composite literal with values only: struct-literal.go

spirit := location{-14.5684, 175.472636}
fmt.Println(spirit) <~ puints (-14.5684 175.472636}

No matter how you initialize a structure, you can modify the %v format verb with a plus
sign + to print out the field names, as shown in the next listing. This is especially useful
for inspecting large structures.

Printing keys of structures: struct-literal.go

curiosity := location{-4.5895, 137.4417}

fmt.Printf("%v\n", curiosity) <—_ Prints {-4.5895 137.4417}

fmt.Printf("%+v\n", curiosity) 4-\ Prints {lat:-4.5895
rints {lat:-4.
long:137.4417}

““““‘“““““““‘“““““““““““““\
¢ Quick check 21.2 In what ways is the field-value composite literal syntax preferable to the \
\\values-only form? N

*
AN S A A A A A SN A N A SN N N N SN N SN S SN NN N N SN SN NN N NSNS SN SN SN

21.4 Structures are copied

!-\=ﬂ

When the Curiosity rover heads east from Bradbury Landing to Yellowknife Bay, the
location of Bradbury Landing doesn’t change in real life, nor in the next listing. The
curiosity variable is initialized with a copy of the values contained in bradbury, so the
values change independently.

Assignment makes a copy: struct-value.go

bradbury := location{-4.5895, 137.4417}
curiosity := bradbury Heads east to
Yellowknife Bay
Prints {-4.5895 137.4417}
fmt.Println(bradbury, curiosity) 4/{'4-5895 137.4523}

curiosity.long += 0.0106

S S S S SOV C SO SCSCC A A A A A A A A A AN AN A SN AN AN NN NN NN NN NN NN
QC 21.3 answer

1 Fields may be listed in any order.
2 Fields are optional, taking on the zero value if not listed.
3 No changes are required when reordering or adding fields to the structure declaration.

166 Lesson 271 A little structure

"““"“‘“‘“‘“"“‘“‘““““““““““““
v Quick check 21.4 If curiosity were passed to a function that manipulated lat or long, would
\\ the caller see those changes? :

\““““""“““““"‘““““““““““““‘

(e -
21.5 A slice of structures

A slice of structures, []struct is a collection of zero or more values (a slice) where each
value is based on a structure instead of a primitive type like floaté6s.

If a program needed a collection of landing sites for Mars rovers, the way not to do it would
be two separate slices for latitudes and longitudes, as shown in the following listing.

Two slices of floats: slice-struct.go

lats := []float64{-4.5895, -14.5684, -1.9462}

longs := []float64{137.4417, 175.472636, 354.4734}
This already looks bad, especially in light of the location structure introduced earlier in
this lesson. Now imagine more slices being added for altitude and so on. A mistake
when editing the previous listing could easily result in data misaligned across slices or
even slices of different lengths.

A better solution is to create a single slice where each value is a structure. Then each
location is a single unit, which you can extend with the name of the landing site or other
fields as needed, as shown in the next listing.

A slice of locations: slice-struct.go

type location struct {
name string

lat floatés
long float6s4

1
locations := []location{
{name: "Bradbury Landing", lat: -4.5895, long: 137.4417},
{name: "Columbia Memorial Station", lat: -14.5684, long: 175.472636},
{name: "Challenger Memorial Station", lat: -1.9462, long: 354.4734},
1

A S O N O ANV NN NN NN\ \N]

QC 21.4 answer No, the function would receive a copy of curiosity, as is the case with arrays.

Encoding structures to JSON 167

""""‘“““"""‘“““‘“““““““““““‘\

\ Quick check 21.5 Whatis the danger of using multiple interrelated slices? N
o

A S A O O A N A N A NN N N N N N N SN N N N N N N NN NN NN NN NN N NN N NN NN NN NN NN

(e :
21.6 Encoding structures to JSON

JavaScript Object Notation, or JSON (json.org), is a standard data format popularized by
Douglas Crockford. It's based on a subset of the JavaScript language but it's widely sup-

ported in other programming languages. JSON is commonly used for web APIs (Appli-
cation Programming Interfaces), including the MAAS API (github.com/ingenology/
mars_weather_api) that provides weather data from the Curiosity rover.

The Marshal function from the json package is used in listing 21.9 to encode the data in
location into JSON format. Marshal returns the JSON data as bytes, which can be sent over
the wire or converted to a string for display. It may also return an error, a topic that’s
covered in lesson 28.

Marshalling location: json.go

package main

import (
"encoding/json"
Ty

0sS
)

func main() {))
type location struct { Eﬁwsar?qs:;ebri%:ge

Lat, Long floaté6s4 letter.
}

curiosity := location{-4.5895, 137.4417}

bytes, err := json.Marshal(curiosity)

exitOnError(err) Prints

"Lat":-4.5895,
fmt.Println(string(bytes)) '{'Loig":’l 37.4417}

LS A A N A A O VNNV NN LN LA L L L. NN\ N N\)

OC 21.5 answer It's easy to end up with data misaligned across slices.

168 Lesson 271 A little structure

// exitOnError prints any errors and exits.
func exitOnError(err error) {

if err !=nil {
fmt.Println(err)
os.Exit(1)

}

}

Notice that the JSON keys match the field names of the location structure. For this to
work, the json package requires fields to be exported. If Lat and Long began with a lower-
case letter, the output would be {}.

IS A A A A A A A RN A AL AL AN N2 LA 22N AL 22222222 NN 2NN . N N

Quick check 21.6 What does the abbreviation JSON stand for?

ASS SN SO LA O L A O O NN O O N O AN O O N L LN A L LA O N L LA L L LA N NN\ |1

“ o

‘0

/

21.7 Customizing JSON with struct tags

o
B
DT

Go’s json package requires that fields have an initial uppercase letter and multiword
field names use CamelCase by convention. You may want JSON keys in snake_case, par-
ticularly when interoperating with Python or Ruby. The fields of a structure can be
tagged with the field names you want the json package to use.

The only change from listing 21.9 to listing 21.10 is the inclusion of struct tags that alter
the output of the Marshal function. Notice that the Lat and Long fields must still be
exported for the json package to see them.

Customizing location fields: json-tags.go

type location struct {

Lat floaté4 "json:"latitude"" Struct tags alter

Long floaté4 “json:"longitude"’ the output.
1
curiosity := location{-4.5895, 137.4417}
bytes, err := json.Marshal(curiosity)
exitOnError(err) Prints
)) {"latitude":-4.5895,
fmt.Println(string(bytes)) "longitude™:137.4417}

A S O O ANV AN NN A OO NN AN A O A A A A A A O O NN L L L AN\ N\ N\

OC 21.6 answer JSON stands for JavaScript Object Notation.

Summary 169

Struct tags are ordinary strings associated with the fields of a structure. Raw string liter-
als (") are preferable, because quotation marks don’t need to be escaped with a back-
slash, as in the less readable "json:\"latitude\"".

The struct tags are formatted as key: "value', where the key tends to be the name of a
package. To customize the Lat field for both JSON and XML, the struct tag would be

“json:"latitude" xml:"latitude" .

As the name implies, struct tags are only for the fields of structures, though json.Marshal
will encode other types.

PR A R R N e e e e e e e e e e e

:‘ Quick check 21.7 Why must the Lat and Long fields begin with an uppercase letter when \
encoding JSON? N

>
A A A A A A S S A S A A S N S S A A A A A S S S N NSNS S S NSNS SN

/

()
= Summary

¢ 2
DA

= Structures group values together into one unit.

= Structures are values that are copied when assigned or passed to functions.

= Composite literals provide a convenient means to initialize structures.

= Struct tags decorate exported fields with additional information that packages
can use.

= The json package utilizes struct tags to control the output of field names.

Let’s see if you got this...
Experiment: landing.go
Write a program that displays the JSON encoding of the three rover landing sites in list-

ing 21.8. The JSON should include the name of each landing site and use struct tags as
shown in listing 21.10.

To make the output friendlier, make use of the MarshalIndent function from the json
package.

[SS S S S S S S S S A SO O O S S A A A S S SN S S N A A A S A A A NN SN S S SN SNSNSSSNSNSSSNSNSSESNY

QC 21.7 answer Fields must be exported for the json package to see them.

LESSON

GO’S GOT NO CLASS

After reading lesson 22, you'll be able to

= Write methods that provide behavior to structured data
= Apply principles of object-oriented design

Go isn't like classical languages. It has no classes and no objects, and it omits features
like inheritance. Yet Go still provides what you need to apply ideas from object-oriented
design. This lesson explores the combination of structures with methods.

Consider this Synergy is a buzzword commonly heard in entrepreneurial circles. It
means "greater than the sum of its parts." The Go language has types, methods on
types, and structures. Together, these provide much of the functionality that classes do
for other languages, without needing to introduce a new concept into the language.

What other aspects of Go exhibit this property of combining to create something
greater?

170

Attaching methods to structures 171

;% 22.1 Attaching methods to structures

In lesson 13, you attached celsius and fahrenheit methods to the kelvin type to convert

temperatures. In the same way, methods can be attached to other types you declare. It
works the same whether the underlying type is a floatés or a struct.

To start, you need to declare a type, such as the coordinate structure in the following
listing.

The coordinate type: coordinate.go

// coordinate in degrees, minutes, seconds in a N/S/E/W hemisphere.
type coordinate struct {

d, m, s floatésL
h Iune

}

Bradbury Landing is located at 4°35'22.2" 5, 137°26'30.1" E in DMS format (degrees, min-
utes, seconds). There are 60 seconds (") in one minute, and 60 minutes (') in one degree,
but these minutes and seconds represent a location, not a time.

The decimal method in the following listing will convert a DMS coordinate to decimal
degrees.

The decimal method: coordinate.go

// decimal converts a d/m/s coordinate to decimal degrees.
func (c coordinate) decimal() float64 {

sign := 1.0

switch c.h {

case 'S', 'W', 's', 'w':
sign = -1

}

return sign * (c.d + c.m/60 + c.s/3600)

}

Now you can provide coordinates in the friendly DMS format and convert them to dec-
imal degrees to perform calculations:

// Bradbury Landing: 4°35'22.2" S, 137°26'30.1" E
lat := coordinate{4, 35, 22.2, 'S'}

172 Lesson 22 Go’s got no class

long := coordinate{137, 26, 30.12, 'E'} Prints -4.5895
137.4417
fmt.Println(lat.decimal(), long.decimal()) /

\d
\ Quick check 22.1 What s the receiver for the decimal method in listing 22.2?

4
S S S S A N S S N N S S N N N A SN SN S NS S NN NSNS S S NSNS SN NSNS NSSSSNSSSNSNN,

“““""“““““"‘““““““““““““““\

22.2 Constructor functions

%
SAQ

Dy

To construct a decimal degrees location from degrees, minutes, and seconds, you can
use the decimal method from listing 22.2 with a composite literal:

type location struct {
lat, long floaté64

}
curiosity := location{lat.decimal(), long.decimal()}

If you need a composite literal that’s anything more than a list of values, consider writ-
ing a constructor function. The following listing declares a constructor function named

newlLocation.

Construct a new location: construct.go

// newlLocation from latitude, longitude d/m/s coordinates.
func newlLocation(lat, long coordinate) location {

return location{lat.decimal(), long.decimal()}

}

Classical languages provide constructors as a special language feature to construct
objects. Python has _init_, Ruby has initialize, and PHP has _ construct(). Go doesn’t
have a language feature for constructors. Instead neuLocation is an ordinary function with
a name that follows a convention.

(NN 0 0 O O NN 0 QNN NN LA LN NN\ N\ \

QC 22.1 answer The receiver is ¢ of type coordinate.

Constructor functions 173

Functions in the form neuType or NeuType are used to construct a value of said type.
Whether you name it newLocation or NewLocation depends on whether the function is
exported for other packages to use, as covered in lesson 12. You use newLocation like any
other function:

curiosity := newlLocation(coordinate{s, 35, 22.2, 'S'},
coordinate{137, 26, 30.12, 'E'})
fmt.Println(curiosity) Prints {-4.5895
137.4417}

If you want to construct locations from a variety of inputs, just declare multiple func-
tions with suitable names—perhaps neuLocationDMS and newLocationDD for degrees, minutes,
and seconds and decimal degrees, respectively.

NOTE Sometimes constructor functions are named New, as is the case with the New func-
tion in the errors package. Because function calls are prefixed with the package they belong
to, naming the function NewError would be read as errors.NewError rather than the more
concise and preferable errors.New.

‘\“““"""‘“““"""“““““““““““‘\

+ Quick check 22.2 What would you name a function that constructs a variable of type

Qniverse? d
"""""""""""""‘“““““““““““"

aAaAAa NSNS NN NSNS NN NSNS NN NSNS NN NN NSNS CNCNCSNCNCNC"N NS CC"C"C"CCCTC"TCTLTLTLTLTTTLBTLY

OC 22.2 answer By convention the function would be named NewUniverse, or newUniverse if not
exported.

174 Lesson 22 Go’s got no class

22.3 The class alternative

Go doesn’t have the class of classical languages like Python, Ruby, and Java. Yet a struc-

ture with a few methods fulfills much of the same purpose. If you squint, they aren’t
that different.

To drive the point home, build a whole new world type from the ground up. It will have
a field for the radius of the planet, which you’ll use to calculate the distance between
two locations, as shown in the following listing.

Listing 22.4

type world struct {
radius float6s4

}

Mars has a volumetric mean radius of 3,389.5 kilometers. Rather than declare 3389.5 as a
constant, use the world type to declare Mars as one of many possible worlds:

var mars = world{radius: 3389.5}

Then a distance method is attached to the world type, giving it access to the radius field. It
accepts two parameters, both of type location, and will return a distance in kilometers:

func (w world) distance(pl, p2 location) floatési {

To-do: some math
} using w.radius

This is going to involve some math, so be sure to import the math package, as follows:
import "math"

The location type uses degrees for latitude and longitude, but the math functions in the
standard library use radians. Given that a circle has 360° or 2m radians, the following
function performs the necessary conversion:

// rad converts degrees to radians.
func rad(deg floatés) floatés {

return deg * math.Pi / 180

}

Now for the distance calculation. It uses a number of trigonometric functions including
sine, cosine, and arccosine. If you're a math geek, you can look up the formulas
(www.movable-type.co.uk/scripts/latlong.html) and research the Spherical Law of

The class alternative 175

Cosines to understand how this works. Mars isn’t a perfect sphere, but this formula
achieves a “good enough” approximation for our purposes:

// distance calculation using the Spherical Law of Cosines.
func (w world) distance(pl, p2 location) floatési {
sl, ¢l := math.Sincos(rad(pl.lat))
s2, c2 := math.Sincos(rad(p2.lat))
clong := math.Cos(rad(pl.long - p2.long)) Uses the world’s

ius fiel
return w.radius * math.Acos(s1*s2+c1*c2*clong) radius field

}

If your eyes just glazed over, don’t worry. The math is needed in a program that calcu-
lates distance, but as long as distance returns the correct results, fully understanding
how all the math works is optional (though a good idea).

Speaking of results, to see distance in action, declare some locations and use the mars vari-
able declared earlier:

spirit := location{-14.5684, 175.472636}
opportunity := location{-1.9462, 354.4734} Uses the distance

. method on mars
dist := mars.distance(spirit, opportunity)

fmt.Printf("%.2f km\n", dist) < Prints 9669.71 km

If you get a different result, go back to ensure the code is typed exactly as shown. One
missing rad will result in incorrect calculations. If all else fails, download the code from
github.com/nathany/get-programming-with-go and resign yourself to copy and paste.

The distance method was adopted from formulas for Earth, but using the radius of Mars.
By declaring distance as a method on the world type, you can calculate distance for other
worlds, such as Earth. The radius for each planet is found in table 22.2, as provided by

the Planetary Fact Sheet (nssdc.gsfc.nasa.gov/planetary/factsheet/).

“""""""""""""‘““““““““““““
J Quick check 22.3 How is it beneficial to declare a distance method on the world type com-
_ pared to a less object-oriented approach? :

>
\““““""“““““"‘““““““““““““‘

‘aa AN NS SN SN NSRS SN SN NS S SRS N NSNS NS NSNS NRSN SRR RS SRS CSRRS R RS CRCCRCRRRRRTRTRRRRRNW
OC 22.3 answer It provides a clean way to calculate distance for different worlds, and there’s no
need to pass the volumetric mean radius into the distance method, because it already has access to
w.radius.

176 Go’s got no class

= Combining methods and structures provides much of what classical languages
provide without introducing a new language feature.

= Constructor functions are ordinary functions.
Let’s see if you got this...
Experiment: landing.go

Use the code from listings 22.1, 22.2, and 22.3 to write a program that declares a location
for each location in table 22.1. Print out each of the locations in decimal degrees.

Experiment: distance.go

Use the distance method from listing 22.4 to write a program that determines the dis-
tance between each pair of landing sites in table 22.1.

Which two landing sites are the closest?
Which two are farthest apart?

To determine the distance between the following locations, you'll need to declare other
worlds based on table 22.2:

= Find the distance from London, England (51°30'N 0°08'W) to Paris, France
(48°51'N 2°21'E).
= Find the distance from your city to the capital of your country.

= Find the distance between Mount Sharp (5°4' 48"S, 137°51’E) and Olympus Mons
(18°39'N, 226°12’E) on Mars.

Table 22.1 Landing sites on Mars

Rover or lander Landing site Latitude Longitude
Spirit Columbia Memarial Station 14°34'6.2" S 175°28'21.5"E
Opportunity Challenger Memoarial Station 1°56'46.3" S 354°28242"E
Curiosity Bradbury Landing 4°35'22.2" S 137°26'30.1"E
InSight Elysium Planitia 4°30'0.0"N 135°54'0"E

Table 22.2 The volumetric mean radius of various planets

Planet Radius (km) Planet Radius (km)
Mercury 2439.7 Jupiter 69911
Venus 6051.8 Saturn 58232
Earth 6371.0 Uranus 25362
Mars 3389.5 Neptune 24622

LESSON

COMPOSITION AND FORWARDING

After reading lesson 23, you'll be able to

= Compose structures with composition
= Forward methods to other methods

= Forget about classical inheritance

When you look around the world, everything you see is made up of smaller parts. Peo-
ple tend to have bodies with limbs, which in turn have fingers or toes. Flowers have pet-
als and stems. Mars Rovers have wheels and treads and entire subsystems, like the
Rover Environmental Monitoring Station (REMS). Each part plays its role.

In the world of object-oriented programming, objects are composed of smaller objects in
the same way. Computer scientists call this object composition or simply composition.

Gophers use composition with structures, and Go provides a special language feature
called embedding to forward methods. This lesson demonstrates composition and
embedding with a fictional weather report from REMS.

177

178 Lesson 23 Composition and forwarding

o]

=
®<U‘D>® /W

5
==
~/

r @
Eil

¢« 1R R RERERERERERERNREERERNRERNEENERERNENEREENEENRERNERNEREREERERERRERERIETR,

Consider this Designing hierarchies can be difficult. A hierarchy of the animal king-
dom would attempt to group animals with the same behaviors. Some mammals walk on
land while others swim, yet blue whales also nurse their young. How would you organize
them? It can be difficult to change hierarchies too, as even a small change can have a
wide impact.

Compoasition is a far simpler and more flexible approach: implement walking, swimming,
nursing, and other behaviors and associate the appropriate ones with each animal.

I AR R R EEEE R R R EEEE RN

‘-IIIIIIIIIIIIIIIIII'

As a bonus, if you design a robot, the walking behavior can be reused.

Sy g nE s EE R R R R EEEEREEEEREEEREREEREREREREREREREEROERRRERRERRORRRRRRnnnt

Sx .
23.1 Composing structures

A weather report includes a variety of data, such as the high and low temperatures, cur-

rent day (sol), and location. A naive solution is to define all the necessary fields in a sin-
gle report structure like the following listing.

Listing 23.1

type report struct {
sol int

high, low float64
lat, long floaté4

Composing structures 179

Looking at listing 23.1, report is a mix of disparate data. It gets unwieldy when the report
grows to include even more data, such as wind speed and direction, pressure, humidity,
season, sunrise, and sunset.

Fortunately you can group related fields together with structures and composition. The
following listing defines a report structure composed of structures for temperature and
location.

Structs inside of structs: compose.go

type report struct {

sol int
temperature temperature
locati locati The temperature
ocation ocation field is a structure of
} type temperature.

type temperature struct {
high, low celsius

}

type location struct {
lat, long floaté4

}

type celsius floaté64

With these types defined, a weather report is built up from location and temperature
data as follows:

bradbury := location{-4.5895, 137.4417} Prints {sol:15

t := temperature{high: -1.0, low: -78.0} temperature:{high:-1 low:-78}

report := report{sol: 15, temperature: t, :gﬁgFllog;{lzlz-’???}BQS
location: bradbury}

fmt.Printf("%+v\n", report) Prints a balmy

fmt.Printf("a balmy %v° C\n", report.temperature.high) -1°C

Take another look at listing 23.2. Notice that high and low clearly refer to temperatures,
whereas the same fields in listing 23.1 are ambiguous.

180 Lesson 23 Composition and forwarding

By building a weather report out of smaller types, you can further organize your code
by hanging methods from each type. For example, to calculate the average temperature,
you can write a method like the one shown in the next listing.

Listing 23.3

func (t temperature) average() celsius {
return (t.high + t.low) / 2

}

The temperature type and average method can be used independently of the weather
report as follows:

-78.0} Prints average

t := temperaturefhigh: -1.0, low: 39.5° C

fmt.Printf("average %v°® C\n", t.average()) <
When you create a weather report, the average method is accessible by chaining off the
temperature field: Prints average

-39.5°C
report := report{sol: 15, temperature: t} 4)
fmt.Printf("average %v°® C\n", report.temperature.average())
If you want to expose the average temperature directly through the report type, there’s

no need to duplicate the logic in listing 23.3. Write a method that forwards to the real
implementation instead:

func (r report) average() celsius {
return r.temperature.average()

}

With a method to forward from report to temperature, you gain convenient access to
report.average() while still structuring your code around smaller types. The remainder of
this lesson examines a Go feature that promises to make method forwarding effortless.

‘\"""""""""""""‘“““““““““““\\

»
\ Quick check 23.1 Compare listings 23.1 to 23.2. Which code do you prefer and why?)

A S CS S

"SRR sNTNRSsRRNRNRSNRNSNNSN NSNS NNSNNSNNSNNSNNSNNNSNNNSNNNSNNNNCNCNC“"NC"NC“"C"C"C"TCNTCNTCNTCTTSTTSTTSTTSTLTSTRETRET.TWS.W"™
OC 23.1 answer The structures in listing 23.2 are more organized, by splitting out temperatures
and locations into separate reusable structures.

Forwarding methods 181

”'@" 23.2 Forwarding methods
!

Method forwarding can make it more convenient to use the methods. Imagine asking

Curiosity the weather on Mars. It could forward your request to the REMS system, which
in turn would forward your request to a thermometer to determine the air temperature.
With forwarding, you don’t need to know the path to the method —you just ask Curiosity.

What isn’t so convenient is manually writing methods to forward from one type to
another like in listing 23.3. Such repetitive code, called boilerplate, adds nothing but clutter.

Fortunately, Go will do method forwarding for you with struct embedding. To embed a type
in a structure, specify the type without a field name, as shown in the following listing.

Listing 23.4

type report struct {
sol i

temperature 4\
. A temperature type
location embedded into report

}

All the methods on the temperature type are automatically made accessible through the
report type:

report := report{
sol: 15,
location: location{-4.5895, 137.4417},

temperature: temperature{high: -1.0, low: -78.0},

} Prints average
fmt.Printf("average %v° C\n", report.average()) / -38.5

Though no field name was specified, a field still exists with the same name as the
embedded type. You can access the temperature field as follows:

fmt.Printf("average %v° C\n", report.temperature.average() \ Prints average
-39.5°C

Embedding doesn’t only forward methods. Fields of an inner structure are accessible
from the outer structure. In addition to report.temperature.high, you can access the high
temperature with report.high as follows:

182 Lesson 23 Composition and forwarding

fmt.Printf("%v°® C\n", report.high) <——— Prints-1°C

report.high = 32

fmt.Printf("%v® C\n", report.temperature.high) <«——— Prints 32°C
As you can see, changes to the report.high field are reflected in report. temperature.high. It’s
just another way to access the same data.

You can embed any type in a structure, not just structures. In the following listing, the
sol type has an underlying type of int, yet it's embedded just like the location and tempera-
ture structures.

Embedding other types: sol.go

type sol int

type report struct {
sol
location
temperature
}
Any methods declared on the sol type can be accessed through the sol field or through
the report type:
func (s sol) days(s2 sol) int {
days := int(s2 - s)
if days < 0 {
days = -days
}

return days
}

func main() {
report := report{sol: 15}

fmt.Println(report.sol.days(1446))
fmt.Println(report.days(1446))

Prints 1431

Name collisions 183

‘““"""‘“““"""‘“““‘“““““““““\ \

Quick check 23.2

1 Which types can be embedded into a structure?
\ 2 Isreport.lat valid? If so, which field does it refer to in listing 23.4?

AN S S S S S S S S S S S SN S S S S S NS S S SN SN S SSSNSNSNSSNSSSSSNSNSSNSSNSNSNSNSN

G
&
N
\
\

Cosss

*

23.3 Name collisions
The weather report works fine. Then someone wants to know the number of days it
takes for a rover to travel between two locations. The Curiosity rover drives approxi-
mately 200 meters per day, so you add a days method to the location type to do the math,

as shown in the next listing.

Listing 23.6

func (1 location) days(12 location) int {
// To-do: complicated distance calculation 4\
return 5 See lesson 22.

}

The report structure embeds both sol and location, two types with a method named days.

The good news is that if none of your code is using the days method on a report, every-
thing continues to work fine. The Go compiler is smart enough to only point out a name
collision if it's a problem.

If the days method on the report type is being used, the Go compiler doesn’t know if it should
forward the call to the method on sol or the method on location, so it reports an error:

Ambiguous selector
d := report.days(1446) /r‘eport.days

Resolving an ambiguous selector error is straightforward. If you implement the days
method on the report type, it will take precedence over the days methods from the
embedded types. You can manually forward to the embedded type of your choosing or
perform some other behavior:

func (r report) days(s2 sol) int {
return r.sol.days(s2)

RSSO OO SO SO O OO A A A A A A A AN AN AN
QC 23.2 answer

1 Any type can be embedded into a structure.
2 Yes, report.lat is equivalent to report.location. lat.

184 Composition and forwarding

This isn’t the inheritance you were looking for

Classical languages like C++, Java, PHP, Python, Ruby, and Swift can use compasition,
but they also supply a language feature called inheritance.

Inheritance is a different way of thinking about designing software. With inheritance, a
rover is a type of vehicle and thereby inherits the functionality that all vehicles share.

With composition, a rover has an engine and wheels and various other parts that pro-
vide the functionality a rover needs. A truck may reuse several of those parts, but there
is no vehicle type or hierarchy descending from it.

Composition is generally considered more flexible, allowing greater reuse and easier
changes than software built with inheritance. This isn't a new revelation, either—this
wisdom was published in 1994:

Favor object compasition over class inheritance.

—Gang of Four,
Design Patterns: Elements of Reusable
Object-Oriented Software

When people first see embedding, some initially think that it's the same as inheritance,
but it's not. Not only is it a different way of thinking about software design, there’s a sub-
tle technical difference.

The receiver of average() in listing 23.3 is always of type temperature, even when for-
warded through report. With delegation or inheritance, the receiver could be of type
report, but Go has neither delegation nor inheritance. That's okay, though, because inher-
itance isn't needed:

Use of classical inheritance is always optional; every problem that it solves can be
solved another way.
—Sandi Metz, Practical Object-Oriented Design in Ruby

Go is an independent new language that's able to shed the weight of antiquated para-
digms, and so it does.

& J

IS AL LRSS RL AL LLL AL NLNL AL LL LN AL AN AL LN L AL LNN NN NN NNNN N

*
,’ If multiple embedded types implement a method of the same name, does
\ the Go compiler report an error? :

A SSSSS S8 8

[SS S S S S S S S S A SO O O S S A A A S S SN S S N A A A S A A A NN SN S S SN SNSNSSSNSNSSSNSNSSESNY

The Go compiler only reports an error if the method is being used.

Summary 185

= Composition is a technique of breaking large structures down into small struc-
tures and putting them together.

= Embedding gives access to the fields of inner structures in the outer structure.

= Methods are automatically forwarded when you embed types in a structure.

= Go will inform you of name collisions caused by embedding, but only if those
methods are being used.

Let’s see if you got this...

Experiment: gps.go

Write a program with a gps structure for a Global Positioning System (GPS). This struct
should be composed of a current location, destination location, and a world.

Implement a description method for the location type that returns a string containing the
name, latitude, and longitude. The world type should implement a distance method
using the math from lesson 22.

Attach two methods to the gps type. First, attach a distance method that finds the distance
between the current and destination locations. Then implement a message method that
returns a string describing how many kilometers remain to the destination.

As a final step, create a rover structure that embeds the gps and write a main function to
test everything out. Initialize a GPS for Mars with a current location of Bradbury Land-
ing (-4.5895, 137.4417) and a destination of Elysium Planitia (4.5, 135.9). Then create a
curiosity rover and print out its message (which forwards to the gps).

LESSON

INTERFACES

After reading lesson 24, you'll be able to

= Get your types talking
= Discover interfaces as you go
= Explore interfaces in the standard library

= Save humanity from a Martian invasion

Pen and paper aren’t the only tools you could use to jot down your latest insight. A
nearby crayon and napkin can serve the purpose. Crayons, permanent markers, and
mechanical pencils can all satisfy your need to write a reminder in a notepad, a slogan
on construction paper, or an entry in a journal. Writing is very flexible.

The Go standard library has an interface for writing. It goes by the name of Writer, and
with it you can write text, images, comma-separated values (CSV), compressed
archives, and more. You can write to the screen, a file on disk, or a response to a web
request. With the help of a single interface, Go can write any number of things to any
number of places. Writer is very flexible.

A 0.5 mm ballpoint pen with blue ink is a concrete thing, whereas a writing instrument is
a fuzzier idea. With interfaces, code can express abstract concepts such as a thing that
writes. Think of what something can do, rather than what it is. This way of thinking, as
expressed through interfaces, will help your code to adapt to change.

186

The interface type 187

IIIIIlllllllIIIIIIIIIIIIIIIIIIIIIIIIIIIIllllllllllllllllllllll'

*

Consider this \What are some concrete things around you? What can you do with
them? Can you do the same thing with something else? What is the common behavior
or interface that they have?

JWmilEREEY
AR NN ERY

Sy s nrEEEEEEE R RN R R R EEEEEREREEREREREREREREREREREOROERERERENRONUORRORUOUUORNOHOTRY

24.1 The interface type

%
SAQ

;

The majority of types focus on the values they store: integers for whole numbers, strings
for text, and so on. The interface type is different. Interfaces are concerned with what a
type can do, not the value it holds.

Methods express the behavior a type provides, so interfaces are declared with a set of
methods that a type must satisfy. The following listing declares a variable with an inter-

face type.

A set of methods: talk.go

var t interface {
talk() string

}

The variable t can hold any value of any type that satisfies the interface. More specifi-
cally, a type will satisfy the interface if it declares a method named talk that accepts no
arguments and returns a string.

The following listing declares two types that meet these requirements.

Satisfying an interface: talk.go

type martian struct{}

func (m martian) talk() string {
return "nack nack"

}

type laser int

func (1 laser) talk() string {
return strings.Repeat("pew ", int(1))

188 Lesson 24 Interfaces

Though martian is a structure with no fields and laser is an integer, both types provide a
talk method and therefore can be assigned to t, as in the following listing.

Polymorphism: talk.go

var t interface {
talk() string

}

t = martian{}

Prints nack nack
fmt.Println(t.talk()) <«
t = laser(3) Prints pew pew pew
fmt.Println(t.talk()) <«

The shape-shifting variable t is able to take the form of a martian or laser. Computer sci-
entists say that interfaces provide polymorphism, which means “many shapes.”

NOTE Unlike Java, in Go martian and laser don’t explicitly declare that they implement an
interface. The benefit of this is covered later in the lesson.
Typically interfaces are declared as named types that can be reused. There’s a conven-
tion of naming interface types with an -er suffix: a talker is anything that talks, as shown
in the following listing.

A talker type: shout.go

type talker interface {
talk() string

}

The interface type 189

An interface type can be used anywhere other types are used. For example, the follow-
ing shout function has a parameter of type talker.

Shout what was spoken: shout.go

func shout(t talker) {
louder := strings.ToUpper(t.talk())

fmt.Println(louder)

}

You can use the shout function with any value that satisfies the talker interface, whether
martians or lasers, as shown in the next listing.

Shouting: shout.go

shout (martian{}) <——— Prints NACK NACK
shout(laser(2)) <——— Prints PEW PEW

The argument you pass to the shout function must satisfy the talker interface. For exam-
ple, the crater type doesn’t satisfy the talker interface, so if you expect a crater to shout,
Go refuses to compile your program:

type crater struct{} crater does not

/ implement talker

shout (crater{}) (missing talk methad)

Interfaces exhibit their flexibility when you need to change or extend code. When you
declare a new type with a talk method, the shout function will work with it. Any code

that only depends on the interface can remain the same, even as implementations are
added and modified.

It's worth noting that interfaces can be used with struct embedding, the language fea-
ture covered in lesson 23. For example, the following listing embeds laser in a starship.

Embedding satisfies interfaces: starship.go

type starship struct {
laser

}
s := starship{laser(3)}

fmt.Println(s.talk())
shout(s) <«——— Prints PEW PEW PEW

Prints pew pew pew

190 Lesson 24 Interfaces

When a starship talks, the laser does the talking. Embedding laser gives the starship a
talk method that forwards to the laser. Now the starship also satisfies the talker interface,
allowing it to be used with shout.

Used together, composition and interfaces make a very powerful design tool.
—Bill Venners, JavaWorld
(see mng.bz/B5eg)

"‘“““"‘“““"‘““““““““““““““‘\
N -
N Quick check 24.1
: 1 Modify the laser’s talk method in listing 24.4 to prevent the Martian guns from firing,
\ thus saving humanity from the invasion.
: 2 Expand listing 24.4 by declaring a new rover type with a talk method that returns “whir
\ whir”. Use the shout function with your new type.

*
"llllll/

\\“““‘““““““‘““““““‘““““““““’

24.2 Discovering the interface

W= W

With Go you can begin implementing your code and discover the interfaces as you go.
Any code can implement an interface, even code that already exists. This section walks

you through an example.

‘CAaa N NN NN NSNS SN N NSNS S SN NN NN S NN NN NN SRS RN NSRS SRR RSRRCRRRRRTRTRRRRRNN

QC 24.1 answer

1 func (1 laser) talk() string {
return strings.Repeat("toot ", int(1))

}

2 type rover string

func (r rover) talk() string {
return string(r)

}

func main() {
r := rover("whir whir")
shout(r) <«——— Prints WHIR WHIR

Discovering the interface 191

The following listing derives a fictional stardate from the day of the year and hour of the
day.

Stardate calculation: stardate.go

package main

import (
“fmt"
"time"
)
// stardate returns a fictional measure of time for a given date.
func stardate(t time.Time) floatés4 {
doy := float64(t.YearDay())
h := floaté4(t.Hour()) / 24.0

return 1000 + doy + h Prints 1219.2
Curiosity has

} landed
func main() {
day := time.Date(2012, 8, 6, 5, 17, 0, 0, time.UTC)
fmt.Printf("%.1f Curiosity has landed\n", stardate(day))

}

The stardate function in listing 24.8 is limited to Earth dates. To remedy this, the follow-
ing listing declares an interface for stardate to use.

Stardate interface: stardater.go

type stardater interface {
YearDay() int

Hour () int
}

// stardate returns a fictional measure of time.
func stardate(t stardater) floatés4 {

doy := float64(t.YearDay())

h := floaté4(t.Hour()) / 24.0

return 1000 + doy + h

}

The new stardate function in listing 24.9 continues to operate on Earth dates because the
time.Time type in the standard library satisfies the stardater interface. Interfaces in Go are

192 Lesson 24 Interfaces

satisfied implicitly, which is especially helpful when working with code you didn’t
write.

NOTE This wouldn’t be possible in a language like Java because java.time would need to
explicitly say that it implements stardater.

With the stardater interface in place, listing 24.9 can be expanded with a sol type that sat-
isfies the interface with methods for Yearday and Hour, as shown in the following listing.

Sol implementation: stardater.go

type sol int

func (s sol) YearDay() int { There are 668 sols in

return int(s % 668) a Martian year.
1
func (s sol) Hour() int {

return 0 <—— The hour is unknown.
1

Now the stardate function operates on both Earth dates and Martian sols, as shown in
the next listing.

In use: stardater.go

day := time.Date(2012, 8, 6, 5, 17, 0, 0, time.UTC)
fmt.Printf("%.1f Curiosity has landed\n", stardate(day))

Prints
s := sol(1422) éﬁ.:l.c?s.%y
fmt.Printf("%.1f Happy birthday\n", stardate(s)) ﬁ has landed

Prints 1086.0
Happy birthday

IS S S LA L LA L L L L LS. LN NN N\ N\
} Quick check 24.2 How is implicitly satisfying interfaces advantageous? N

&
A S A A O A N A SN S NN N N N N N N SN N N N N N N NN NN NN NN NN N NN N NN NSNS NN

s SaAAS RSSO RNSRNR NSNS SN NN NSNS NSRNRSNRNRRNRSNNRSNRSNRSNCNRCNSNCNRCNRCSCNRCSRCNRCNRCRRCNRCSRTRTRTRTRRTRRTRYWS
OC 24.2 answer You can declare an interface that's satisfied by code you didn't write, providing
more flexibility.

Satisfying interfaces 193

24.3 Satisfying interfaces

The standard library exports a number of single-method interfaces that you can imple-

ment in your code.

Go encourages composition over inheritance, using simple, often one-method interfaces ...
that serve as clean, comprehensible boundaries between components.

—Rob Pike,
“Go at Google: Language Design in the
Service of Software Engineering”
(see talks.golang.org/ 2012/splash.article)

As an example, the fmt package declares a Stringer interface as follows:

type Stringer interface {
String() string

}

If a type provides a String method, Println, Sprintf, and friends will use it. The following
listing provides a String method to control how the fmt package displays a location.

Satisfying stringer: stringer.go

package main
import "fmt"
// location with a latitude, longitude in decimal degrees.

type location struct {
lat, long floaté4

}

// String formats a location with latitude, longitude.
func (1 location) String() string {
return fmt.Sprintf("%v, %v", 1.lat, 1.long)

}

func main() {)
curiosity := location{-4.5895, 137.4417} ',Tg';tz;l‘,‘l'75895'

fmt.Println(curiosity) \J
}

In addition to fmt.Stringer, popular interfaces in the standard library include io.Reader,
io.Writer, and json.Marshaler.

194

Lesson 24 Interfaces

TIP The io.ReadWriter interface provides an example of interface embedding that looks
similar to struct embedding from lesson 23. Unlike structures, interfaces don't have fields

or attached methaods, so interface embedding saves some typing and little else.

““““"""‘“““"""“““““““““““‘\

" Quick check 24.3 Write a String method on the coordinate type and use it to display coordi-

-,

nates in a more readable format.

type coordinate struct {
d, m, s floatés
h Iune

}

\Your program should output: Elysium Planitia is at 4°30'0.0" N, 135°54'0.0" E

V O 0 OYYYYYyy4

A S O O O A O A A A N N A N N N A NN SN NN S SN SN SN NSNS SNSNSNSNSNSNSNSNN

"’l’l’l’l”/

%

(S 0 0 . . . O O A A AN AL AL N NN L LA L NN LA NN NN LN N LN 8NN N\ N

QC 24.3 answer

// String formats a DMS coordinate.
func (c coordinate) String() string {
return fmt.Sprintf("%v°%v'%.1f\" %c", c.d, c.m, c.s, c.h)

}

// location with a latitude, longitude in decimal degrees.
type location struct {
lat, long coordinate

}
// String formats a location with latitude, longitude.

func (1 location) String() string {
return fmt.Sprintf("%v, %v", 1l.lat, 1.long)

}
func main() {
elysium := location{
lat: coordinate{4, 30, 0.0, 'N'}, _)
long: coordinate{135, 54, 0.0, 'E'}, Prints Elysium
} Planitia is at
4°30'0.0" N,

fmt.Println("Elysium Planitia is at", elysium) / 135°54'0.0" E

i

Summary 195

24.4 Summary

Interface types specify required behaviors with a set of methods.
Interfaces are satisfied implicitly by new or existing code in any package.
A structure will satisfy the interfaces that embedded types satisfy.

Follow the example set by the standard library and strive to keep interfaces
small.

Let’s see if you got this...

Experiment: marshal.go

Write a program that outputs coordinates in JSON format, expanding on work done for
the preceding quick check. The JSON output should provide each coordinate in decimal
degrees (DD) as well as the degrees, minutes, seconds format:

{

}

"decimal": 135.9,

"dms": "135°54'0.0\" E",
"degrees": 135,
"minutes": 54,
"seconds": 0,
"hemisphere": "E"

This can be achieved without modifying the coordinate structure by satisfying the
json.Marshaler interface to customize the JSON. The Marshal]SON method you write may
make use of json.Marshal.

NOTE To calculate decimal degrees, you'll need the decimal method introduced in lesson 22.

LESSON

CAPSTONE: MARTIAN ANIMAL
SANCTUARY

In the distant future, humankind may be able to comfortably live on what is currently a
dusty red planet. Mars is farther from the Sun and therefore much colder. Warming up
the planet could be the first step in ferraforming the climate and surface of Mars. Once
water begins to flow and plants begin to grow, organisms can be introduced.
Tropical trees can be planted; insects and some small animals can be introduced. Humans will still
need gas masks to provide oxygen and prevent high levels of carbon dioxide in the lungs.

—Leonard David,
Mars: Our Future on the Red Planet

Right now the Martian atmosphere is approximately 96% carbon dioxide (see
en.wikipedia.org/wiki/Atmosphere_of_Mars). It could take a very, very long time
to change that. Mars will remain a different world.

Now it’s time to use your imagination. What do you think would happen if an ark full of
Earth animals were introduced to a terraformed Mars? What lifeforms might spring
forth as the climate adjusts to support life?

196

197

Your task is to create a simulation of the first animal sanctuary on Mars. Make a few
types of animals. Each animal should have a name and adhere to the Stringer interface to
return their name.

Every animal should have methods to move and eat. The move method should return a
description of the movement. The eat method should return the name of a random food
that the animal likes.

Implement a day/night cycle and run the simulation for three 24-hour sols (72 hours).
All the animals should sleep from sunset until sunrise. For every hour of the day, pick
an animal at random to perform a random action (move or eat). For every action, print
out a description of what the animal did.

Your implementation should make use of structures and interfaces.

Down the gopher hole

It’s time to get your hands dirty, delving deeper into
programming with Go.

You'll need to consider how memory is organized
and shared, bringing new levels of control and
responsibility. You'll learn how nil can be beneficial,
while avoiding the dreaded nil pointer dereference.
And you'll see how exercising diligence in error
handing can make your programs more reliable.

199

LESSON

A FEW POINTERS

After reading lesson 26, you'll be able to

= Declare and use pointers
= Understand the relationship between pointers and random access memory
(RAM)

= Know when to use—and not use—pointers

Walk around any neighbor-

hood and you'll likely O | | O

encounter homes with indi-

vidual addresses and street ||

signs to guide you on your I:I L

SORRY, WE'VE

way. You may happen upon a

closed-down shop with an MOVED! {ﬁ‘ /:
apologetic sign: “Sorry, we've < I \

moved!” Pointers are a bit -
like the sign in the store win- Il I:I I:I Ij

dow that directs you to a dif- 0
ferent address. / | \

201

202 A few pointers

A pointer is a variable that points to the address of another variable. In computer science,
pointers are a form of indirection, and indirection can be a powerful tool.

All problems in computer science can be solved by another level of indirection...
—David Wheeler

Pointers are quite useful, but over the years they’ve been associated with a great deal of
angst. Languages in the past—C in particular —had little emphasis on safety. Many
crashes and security vulnerabilities can be tied back to the misuse of pointers. This gave
rise to several languages that don’t expose pointers to programmers.

Go does have pointers, but with an emphasis on memory safety. Go isn’t plagued with
issues like dangling pointers. This would be like heading to the address for your favorite
shop, only to find it was accidentally replaced with the parking lot for a new casino.

If you’ve encountered pointers before, take a deep breath. This isn’t going to be so bad.
If this is your first encounter, relax. Go is a safe place to learn pointers.

“II.

-

Consider this Like the shop sign directing visitors to a new address, pointers direct a
computer where to look for a value. What's another situation where you're directed to
look somewhere else?

‘-Illll'
IS EEREEEEY

'III‘

26.1 The ampersand and the asterisk

R
DA

Pointers in Go adopt the well-established syntax used by C. There are two symbols to be
aware of, the ampersand (&) and the asterisk (*), though the asterisk serves a dual pur-
pose, as you'll soon see.

The address operator, represented by an ampersand, determines the address of a variable
in memory. Variables store their values in a computer’s RAM, and the location where a
value is stored is known as its memory address. The following listing prints a memory
address as a hexadecimal number, though the address on your computer will differ.

Listing 26.1

answer := 42
fmt.Println(&answer) <

Prints 0x1040c108

The ampersand and the asterisk 203

This is the location in memory where the computer stored 42. Thankfully, you can use
the variable name answer to retrieve the value, rather than the memory address your
computer uses.

NOTE You can'’t take the address of a literal string, number, or Boolean. The Go compiler

will report an error for &2 or &"another level of indirection".
The address operator (&) provides the memory address of a value. The reverse operation
is known as dereferencing, which provides the value that a memory address refers to. The
following listing dereferences the address variable by prefixing it with an asterisk (*).

Listing 26.2
answer := 42
fmt.Println(&nswer) <——— Prints Ox1040c108
address := &answer
fmt.Println(*address) <——— Prints 42

In the preceding listing and in figure 26.1, the address variable holds the memory address
of answer. It doesn’t hold the answer (42), but it knows where to find it.

NOTE Memory addresses in C can be manipulated with pointer arithmetic (for example
address++), but Go disallows unsafe operations.

address = 0x1040c108
answer = 42 Flgure 26.1 address
points to answer

Quick check 26.1

:‘
: 1 What does fmt.Println(*&answer) display for listing 26.2?
: 2 How might the Go compiler know the difference between dereferencing and

“\\\
’Q
\d

\ multiplication?
A S S S O SO S S S S S O A S S S S S S S S S S S S S AN S S S S S S S SN S SSSSSSSSSSNSSNSNN

NS S S S S O O S A O A A A S A S S S S S S N S S S S SN NN S S S S NN NSRS SN S SSSSSNSNSNSN

QC 26.1 answer
1 It prints 42 because the memory address (&) is dereferenced (*) back to the value.
2 Multiplication is an infix operator requiring two values, whereas dereferencing prefixes a single
variable.

204 Lesson 26 A few pointers

26.1.1 Pointer types

Pointers store memory addresses.

The address variable in listing 26.2 is a pointer of type *int, as the %T format verb reveals in
the following listing.

A pointer type: type.go

answer := 42

address := &answer

Prints address is a *int
fmt.Printf("address is a %T\n", address) 4—/

The asterisk in *int denotes that the type is a pointer. In this case, it can point to other
variables of type int.
Pointer types can appear anywhere types are used, including in variable declarations,

function parameters, return types, structure field types, and so on. In the following list-
ing, the asterisk (*) in the declaration of home indicates that it’s a pointer type.

Declaring a pointer: home.go

canada := "Canada"

.«)
var home “string Prints home is
fmt.Printf("home is a %T\n", home) <« a *string
home = &canada Prints Canada
fmt.Println(*home) <«

TIP An asterisk prefixing a type denotes a pointer type, whereas an asterisk prefixing a
variable name is used to dereference the value that variable points to.
The home variable in the previous listing can point at any variable of type string. How-
ever, the Go compiler won't allow home to point to a variable of any other type, such
as int.

NOTE The C type system is easily convinced that a memory address holds a different type.
That can be useful at times but, once again, Go avoids potentially unsafe operations.

Pointers are for pointing 205

“\“‘““‘“““‘“““‘“““““““““““““
¢ Quick check 26.2
: 1 What code would you use to declare a variable named address that can point to
\ integers?
: 2 How can you distinguish between the declaration of a pointer type and dereferencing a
\ pointer in listing 26.4?

’0
P Vo4

\““"‘“““““"‘““““““““““““““‘"

26.2 Pointers are for pointing

Charles Bolden became the administrator of NASA on July 17, 2009. He was preceded
by Christopher Scolese. By representing the administrator role with a pointer, the fol-
lowing listing can point administrator at whoever fills the role (see figure 26.2).

Administrator for NASA: nasa.go

var administrator *string

scolese := "Christopher J. Scolese"
administrator = &scolese

Prints Christopher J. Scolese
fmt.Println(*administrator) <« .

bolden := "Charles F. Bolden"

administrator = &bolden Prints Charles F. Bolden
fmt.Println(*administrator)

_ Christopher J.
scolese =
Scolese
administrator = 0xc42000e280
bolden = Charles F. Figure 26.2 administrator
Bolden points to bolden

s SaAAS RSSO RNSRNR NSNS SN NN NSNS NSRNRSNRNRRNRSNNRSNRSNRSNCNRCNSNCNRCNRCSCNRCSRCNRCNRCRRCNRCSRTRTRTRTRRTRRTRYWS
QcC 26.2 answer
1 var address *int
2 An asterisk prefixing a type denotes a pointer type, whereas an asterisk prefixing a variable
name is used to dereference the value that variable points to.

206 Lesson 26 A few pointers

Changes to the value of bolden can be made in one place, because the administrator vari-
able points to bolden rather than storing a copy:

bolden = "Charles Frank Bolden Jr."

fmt .Println(*administrator) Prints Charles Frank Bolden Jr.

It’s also possible to dereference administrator to change the value of bolden indirectly:

*administrator = "Maj. Gen. Charles Frank Bolden Jr."

fmt.Println(bolden)
\ Prints Maj. Gen. Charles Frank Bolden Jr.

Assigning major to administrator results in a new pointer that’s also pointing at the bolden

string (see figure 26.3):
major := administrator
*major = "Major General Charles Frank Bolden Jr."

fmt.Println(bolden) 4\

Prints Major General Charles Frank Bolden Jr.

_ Christopher J.
scolese =
Scolese
administrator = 0xc42000e280
_ Major General
bolden Charles Frank Bolden Jr.
major = 0xc42000e280 Figure 26.3 administrator
and major point to bolden

The major and administrator pointers both hold the same memory address and therefore
are equal:

fmt.Println(administrator == major) <— Prints true

Charles Bolden was succeeded by Robert M. Lightfoot Jr. on January 20, 2017. After
this change, administrator and major no longer point to the same memory address (see
figure 26.4):

lightfoot := "Robert M. Lightfoot Jr."
administrator = &lightfoot

fmt.Println(administrator == major) <—— Prints false

Pointers are for pointing 207

Christopher J.
scolese =
Scolese
administrator = 0xc42000e2d0 —
bolden = Major General
048N = | Charles Frank Bolden Jr.
major = 0xc42000e280
lightfoot = LR%k;fe"tt'V"J- Figure .26.4 administrator
'ghtioot - now points to lightfoot

Assigning the dereferenced value of major to another variable makes a copy of the string.
After the clone is made, direct and indirect modifications to bolden have no effect on the
value of charles, or vice versa:

charles := *major

*major = "Charles Bolden® Prints Major General Charles Frank Bolden Jr.

fmt.Println(charles) <
fmt.Println(bolden) <

Prints Charles Bolden

If two variables contain the same string, they’re considered equal, as with charles and
bolden in the following code. This is the case even though they have different memory
addresses:

charles = "Charles Bolden" Prints true
fmt.Println(charles == bolden) </

fmt.Println(&charles == &bolden) <

Prints false

In this section, the value of bolden was modified indirectly by dereferencing the adminis-
trator and major pointers. This demonstrates what pointers can do, though it would be
straightforward to assign values directly to bolden in this instance.

208 Lesson 26 A few pointers

““""‘“""‘“""‘“‘““““““““““““
Quick check 26.3

’0
\
: 1 What's the benefit of using a pointer in listing 26.5?

\ 2 Describe what the statements major := administrator and charles := *major do.
AN

oy

\“"‘“““““"‘““““““““““““““““

26.2.1 Pointing to structures

Pointers are frequently used with structures. As such, the Go language designers chose
to provide a few ergonomic amenities for pointers to structures.

Unlike strings and numbers, composite literals can be prefixed with an address opera-
tor. In the following listing, the timmy variable holds a memory address pointing to a
person structure.

Person structure: struct.go

type person struct {
name, superpower string

age int
}
timmy := &person{
name: "Timothy",
age: 10,
}

Furthermore, it isn’t necessary to dereference structures to access their fields. The fol-
lowing listing is preferable to writing (*timmy).superpower.

Composite literals: struct.go

timmy. superpower = "flying" Prints & name:Timothy

fmt.Printf("%+v\n", timmy) <« g;gg&;g&;wer:flymg

A MM AR AsN NN NN NN NN NN NN NN NN NN NN NN NN N NN NCNCNCNCNC"NC"NC“"C“"C“"C“"C“"C"TCNTCNTNTTLTLTTTETETWT
QC 26.3 answer

1 Changes can be made in one place, as the administrator variable points to a person rather than
storing a copy.

2 Thevariable major is a new *string pointer that holds the same memory address as administrator,
whereas charles is a string containing a copy of the value that major was pointing to.

Pointers are for pointing 209

IS AN A AN L LA L LA NN AL LN LN AN LA NN NN NN NN\ N

& Quick check 26.4

: 1 What are valid uses of the address operator? :
\ a Literal strings: &"Timothy" \
: b Literal integers: &10 :
: ¢ Composite literals: &person{name: "Timothy"} :
\ d All of the above \
\ 2 What's the difference between timmy. superpower and (*timmy).superpower? ;

>
A S S O SC S S S S S S S SSSSSSSSsSN

26.2.2 Pointing to arrays

As with structures, composite literals for arrays can be prefixed with the address opera-
tor (&) to create a new pointer to an array. Arrays also provide automatic dereferencing,
as shown in the following listing.

Listing 26.8
superpowers := &[3]string{"flight", "invisibility", "super strength"}
fmt.Println(superpowers[0]) “~_
fmt.Println(superpowers([1:2]) < Prints flight
"\~ Prints [invisibility]
The array in the previous listing is dereferenced automatically when indexing or slicing
it. There’s no need to write the more cumbersome (*superpowers)[0].

NOTE Unlike the C language, arrays and pointers in Go are completely independent types.

Composite literals for slices and maps can also be prefixed with the address operator (&),
but there’s no automatic dereferencing.

S S S S S S O SO A A A S S A A S S S S N S S S S S A N AN A SN A N NSNS NS S SN SNSNSS S SSNSSNSNSSESNN

QC 26.4 answer

1 The address operator is valid with variable names and composite literals, but not literal strings
or numbers.

2 There’s no functional difference because Go automatically dereferences pointers for fields, but
timmy.superpower is easier to read and is therefore preferable.

210 Lesson 26 A few pointers

“““"‘“““““"‘““““““““““““““\

&
.’ Quick check 26.5 What'’s another way to write (*superpowers)[2:] where superpowers is a N\
\ pointer to an array?

0"

\‘““““““‘““““““‘““““““““““““

(e : .
26.3 Enabling mutation

Pointers are used to enable mutation across function and method boundaries.

26.3.1 Pointers as parameters

Function and method parameters are passed by value in Go. That means functions
always operate on a copy of passed arguments. When a pointer is passed to a function,
the function receives a copy of the memory address. By dereferencing the memory
address, a function can mutate the value a pointer points to.

In listing 26.9 a birthday function is declared with one parameter of type *person. This
allows the function body to dereference the pointer and modify the value it points to. As
with listing 26.7, it isn’t necessary to explicitly dereference the p variable to access the age
field. The syntax in the following listing is preferable to (*p).age++.

Listing 26.9

type person struct {
name, superpower string

age int

}

func birthday(p *person) {
p.age++

}

The birthday function requires the caller to pass a pointer to a person, as shown in the fol-
lowing listing.

aSaa S NN NSNS NSNS NS NSNS NSNS NSNS NS NNNSNNSNN NN NCSNNC"N """ """ TTCTTNLTLTLTTLTLYN
0OC 26.5 answer Writing superpowers[2:] is the same, thanks to automatic dereferencing for
arrays.

Enabling mutation 211

Function arguments: hirthday.go

rebecca := person{
name: "Rebecca",
superpower: "imagination",
age: 14,

1

birthday(&rebecca) Prints {name:Rebecca
superpower:imagination
fmt.Printf("%+v\n", rebecca) <« age:15}

eSS A NN NN NN NN NN N NNR NN N NN NN RNRN RSN RNRS RN RRNRNRNRRNRRRNRNRRRRRRRRRNW™
Y Quick check 26.6
1 What code would return Timothy 11? Refer to listing 26.6.
a birthday(&timmy)
b birthday(timmy)
¢ birthday(*timmy)
2 What age would Rebecca be if the birthday(p person) function didn’t use a pointer?

"l’l’l’l/

Ty
*

R4

A S O O O O O A A A N N A N N N AN NS NN S NS NSNS NN SN NSNS SNSNSNSNSNSNSNSNN

26.3.2 Pointer receivers

Method receivers are similar to parameters. The birthday method in the next listing uses
a pointer for the receiver, which allows the method to mutate a person’s attributes. This
behavior is just like the birthday function in listing 26.9.

Pointer receiver: method.go

type person struct {
name string

age 1int

}

func (p *person) birthday() {
p.age++

}

‘CAaa N NN NN NSNS SN N NSNS S SN NN NN S NN NN NN SRS RN NSRS SRR RSRRCRRRRRTRTRRRRRNN

QC 26.6 answer
1 The timmy variable is a pointer already, so the correct answer is b. birthday (timmy).
2 Rebecca would forever remain 14 if birthday didn’t utilize a pointer.

212 Lesson 26 A few pointers

In the following listing, declaring a pointer and calling the birthday method increments
Terry’s age.

Method call with a pointer: method.go

terry := &person{
name: "Terry",
age: 15,

}

terry.birthday() Prints &{name:Terry
fmt.Printf("%~\n", terry) <~ age:16}

Alternatively, the method call in the next listing doesn’t use a pointer, yet it still works.

Go will automatically determine the address of (&) a variable when calling methods with
dot notation, so you don’t need to write (&nathan).birthday().

Method call without a pointer: method.go

nathan := person{
name: "Nathan",

age: 17,
}

nathan.birthday () Prints {name:Nathan
fmt.Printf("%+v\n", nathan) <« age:18}

Whether called with a pointer or not, the birthday method declared in listing 26.11 must
specify a pointer receiver —otherwise, age wouldn’t increment.

Structures are frequently passed around with pointers. It makes sense for the birthday
method to mutate a person’s attributes rather than create a whole new person. That said,
not every structure should be mutated. The standard library provides a great example
in the time package. The methods of the time.Time type never use a pointer receiver, pre-
ferring to return a new time instead, as shown in the next listing. After all, tomorrow is
anew day.

Tomorrow is a new day: day.go

const layout = "Mon, Jan 2, 2006"
day := time.Now()
tomorrow := day.Add(24 * time.Hour)

fmt.Println(day.Format(layout)) <«
fmt.Println(tomorrow.Format(layout))

Prints Tue, Nov 10, 2009

" prints Wed, Nov 11, 2009

Enabling mutation 213

TIP You should use pointer receivers consistently. If some methods need pointer receiv-
ers, use pointer receivers for all methods of the type (see golang.org/doc/fag#methods_
on_values_or_pointers).

‘\""“““““"‘““““““““““““““““\\

\ Quick check 26.7 How do you know that time.Time never uses a pointer receiver?)

‘“““““"‘“““““"‘““““““““““““’

26.3.3 Interior pointers

Go provides a handy feature called interior pointers, used to determine the memory
address of a field inside of a structure. The levelUp function in the following listing
mutates a stats structure and therefore requires a pointer.

The levelUp function: interior.go

type stats struct {

level int
endurance, health int
1
func levelUp(s *stats) {
s.level++
s.endurance = 42 + (14 * s.level)
s.health = 5 * s.endurance
}

The address operator in Go can be used to point to a field within a structure, as shown
in the next listing.

Interior pointers: interior.go

type character struct {
name string

stats stats
}

player := character{name: "Matthias"}

(S S S L O L L L L L L L L L L L AL S L L L L A A S AN N SN L L S A A S N SN L NS A NN
OC 26.7 answer The code in listing 26.14 doesn’t reveal whether or not the Add method uses a
pointer receiver because dot notation is the same either way. It's best to look at the documentation for
the methods of time.Time (see golang.org/pkg/time/#Time].

214 Lesson 26 A few pointers

levelUp(&player.stats) Prints {level:1
endurance:56

fmt.Printf("%+v\n", player.stats) <« health:280}
The character type doesn’t have any pointers in the structure definition, yet you can take
the memory address of any field when the need arises. The code &player.stats provides a
pointer to the interior of the structure.

’\‘“““““"‘“““““"“““““““““““‘\\

\ Quick check 26.8 What's an interior pointer? \

‘“““““"‘“““““"‘““““““““““““‘

26.3.4 Mutating arrays

Though slices tend to be preferred over arrays, using arrays can be appropriate when
there’s no need to change their length. The chessboard from lesson 16 is such an exam-
ple. The following listing demonstrates how pointers allow functions to mutate ele-
ments of the array.

Resetting the chesshoard: array.go

func reset(board *[8][8]rune) {
board[0][0] = 'r'
/o

}

func main() {
var board [8][8]rune
reset (&board)

fmt.Printf("%c", board[0][0]) <—— Prints r

}

In lesson 20, the suggested implementation for Conway’s Game of Life makes use of
slices even though the world is a fixed size. Armed with pointers, you could rewrite the
Game of Life to use arrays.

aSS S S S NSNS NN SN SN NN NN NN NN NN NN NN NN NN NN """ """ """ LTLTLTRTRTRNTNTN
OC 26.8 answer A pointer that points at a field inside a structure. This is achieved by using the
address operator on a field of a structure, such as &player.stats.

Pointers in disguise 215

\d
\ Quick check 26.9 Whenisit appropriate to use a pointer to an array? N
&

A S A O O A N A N A NN N N N N N N SN N N N N N N NN NN NN NN NN N NN N NN NN NN NN NN

‘\""‘“““"""‘“““‘““““““““““““\

26.4 Pointers in disguise

.ql
W= W

Not all mutations require explicit use of a pointer. Go uses pointers behind the scenes
for some of the built-in collections.

26.4.1 Maps are pointers

Lesson 19 states that maps aren’t copied when assigned or passed as arguments. Maps
are pointers in disguise, so pointing to a map is redundant. Don’t do this:

func demolish(planets *map[string]string) <——— Unnecessary pointer

It's perfectly fine for the key or value of a map to be a pointer type, but there’s rarely a
reason to point to a map.

PR A A A . 0 AL NLNL N LN L. LN LN LA LLNLNNNNN 8NN\

Y Quick check 26.10 Is a map a pointer? \

\""“““““"‘“““““‘“““““““““““"

26.4.2 Slices point at arrays

Lesson 17 describes a slice as a window into an array. To point at an element of the array,
slices use a pointer.

A slice is represented internally as a structure with three elements: a pointer to an array,
the capacity of the slice, and the length. The internal pointer allows the underlying data
to be mutated when a slice is passed directly to a function or method.

NMAMaAaAa NSNS NN NSNS NN NN NN NN NN NN NN NN NN CNCNCNCNCNCNCNCNCNCNCNCNCNCCTCTLTLTLTRTRTTTRTWNTY
OC 26.9 answer Arrays are appropriate for data with fixed dimensions, such as a chess-

board. Arrays are copied when passed to functions or methods unless a pointer is used, which

enables mutation.

T A ANM AN AN RSN sN NN NN NN N NSNS NN NN NN NN NN NCNCNCNCNCNCNCNCNCNCNCNCNCCCNCTCTLTLTTLTRTRTTWNT
OC 26.10 answer Yes, even though maps don’t resemble pointers syntactically, they are in fact
pointers. There’s no way to use a map that isn't a pointer.

2186 Lesson 26 A few pointers

An explicit pointer to a slice is only useful when modifying the slice itself: the length,
capacity, or starting offset. In the following listing, the reclassify function modifies the
length of the planets slice. The calling function (main) wouldn't see this change if reclassify
didn’t utilize a pointer.

Modifying a slice: slice.go

func reclassify(planets *[]string) {
*planets = (*planets)[0:8]

}

func main() {
planets := []string{

"Mercury", "Venus", "Earth", "Mars",
"Jupiter", "Saturn", "Uranus", "Neptune",
"Pluto",

1

reclassify(8&planets) Prints [Mercury Venus

Earth Mars Jupiter
fmt.Println(planets) 4—/ Saturn Uranus Neptune]

}

Instead of mutating the passed slice as in listing 26.18, an arguably cleaner approach is
to write the reclassify function to return a new slice.

‘\""“““““"‘“““““““““““““““‘\

Quick check 26.11 Functions and methods wanting to mutate the data they receive will '\
require a pointer for which two data types?

0"

s

“““““"‘“““““"“““““““““““““

Q

= 26.5 Pointers and interfaces

i

S

e,

The following listing demonstrates that both martian and a pointer to martian satisfy the
talker interface.

(S 0 0 . . . O O A A AN AL AL N NN L LA L NN LA NN NN LN N LN 8NN N\ N

OC 26.11 answer Structures and arrays.

Pointers and interfaces 217

Pointers and interfaces: martian.go

type talker interface {
talk() string

}

func shout(t talker) {
louder := strings.ToUpper(t.talk())
fmt.Println(louder)

}

type martian struct{}

func (m martian) talk() string {
return "nack nack"

}
func main() {

shout (martian{}) | Prints

shout (&martian{}) NACK NACK
}

It's different when methods use pointer receivers, as shown in the following listing.

Pointers and interfaces: interface.go

type laser int

func (1 *laser) talk() string {
return strings.Repeat("pew ", int(*1))

}

func main() {

pew := laser(2) _ prints PEW PEW
shout (&pew)
}

In the preceding listing, &pew is of type *laser, which satisfies the talker interface that shout
requires. But shout (pew) doesn’t work because laser doesn’t satisfy the interface in this
case.

218 Lesson 26 A few pointers

“ AN R . N VNNV LN LN LN NN NN NN N NN\ N\

} Quick check 26.12 When does a pointer satisfy an interface? N

4
ST .1l I 1 I 11 - I L L L L L L L L CE L L LE L C AL LR LR LR LR LR RR SRR R RN R RRRR®

26.6 Use pointers wisely

R
W= W

Pointers can be useful, but they also add complexity. It can be more difficult to follow
code when values could be changed from multiple places.

Use pointers when it makes sense, but don’t overuse them. Programming languages
that don’t expose pointers often use them behind the scenes, such as when composing a
class of several objects. With Go you decide when to use pointers and when to not use
them.

PSR A AL LA LN LLNL L. LL LA LL LA LS . LLN NN\ N NN N\

S
Y Quick check 26.13 Why shouldn’t pointers be overused? N

4
S S S S N S S A N N S S N S N A NS S SN NS S NN NSNS NSNS NSNS SN NSNS SNSSSSNSSNN N,

= Pointers store memory addresses.

= The address operator (&) provides the memory address of a variable.

= A pointer can be dereferenced (*) to access or modify the value it points to.

= Pointers are types declared with a preceding asterisk, such as *int.

= Use pointers to mutate values across function and method boundaries.

= Pointers are most useful with structures and arrays.

= Maps and slices use pointers behind the scenes.

= Interior pointers can point at fields inside structures without declaring those
fields as pointers.

= Use pointers when it makes sense but don’t overuse them.

A A S AR RS RNRS RN RS NSRS RN NSNS RSRRN SR RNRSNCSRRSNCSCNCNRCRRCNRCNRCNCNCNRCNLCNRCNLCNCNRCNLCCRCRTCTRCTRTRTRTRTRTRTTRRSTWS
QC 26.12 answer A pointer to a value satisfies all the interfaces that the non-pointer version of the
type satisfies.

(S 0 0 . . . O O A A AN AL AL N NN L LA L NN LA NN NN LN N LN 8NN N\ N

OC 26.13 answer Code that doesn't use pointers may be simpler to understand.

Summary 219

Let’s see if you got this...

Experiment: turtle.go

Write a program with a turtle that can move up, down, left, or right. The turtle should
store an (X, y) location where positive values go down and to the right. Use methods to
increment/decrement the appropriate variable. A main function should exercise the
methods you’'ve written and print the final location.

TIP Method receivers will need to use pointers in order to manipulate the x and y values.

LESSON

MUCH ADO ABOUT NIL

After reading lesson 27, you'll be able to

= Do something with nothing
= Understand the trouble with nil

= See how Go improves on nil’s story

The word #il is a noun that means nothing or zero. In the Go programming language,
nil is a zero value. Recall from unit 2 that an integer declared without a value will
default to 0. An empty string is the zero value for strings, and so on. A pointer with
nowhere to point has the value nil. And the nil identifier is the zero value for slices,
maps, and interfaces too.

Many programming languages incorporate the concept of nil, though they may call it
NULL, null, or None. In 2009, prior to the release of Go, language designer Tony Hoare
gave a presentation titled “Null References: The Billion Dollar Mistake.” In his talk (see
mng.bz/dNzX), Hoare claims responsibility for inventing the null reference in 1965 and
suggests that pointers to nowhere weren’t one of his brightest ideas.

NOTE Tony Hoare went on to invent communicating sequential processes (CSP) in 1978.
His ideas are the basis for concurrency in Go, the topic of unit 7.

Nil is somewhat friendlier in Go, and less prevalent than in past languages, but there
are still caveats to be aware of. Nil has some unexpected uses too, which Francesc Cam-

220

Nil leads to panic 221

poy talked about in his presentation at GopherCon 2016 (see www.youtube.com/
watch?v=ynoY2xz-F8s), providing inspiration for this lesson.

*»
-

Consider this Consider representing a constellation, where each star contains a
pointer to its nearest neighboring star. After the math is done, every star will point
somewhere, and finding the nearest star becomes a quick pointer dereference away.

But until all the calculations are done, where should the pointers point? This is one situ-
ation where nil comes in handy. Nil can stand in for the nearest star until it's known.

What is anather situation where a pointer to nowhere could be useful?

‘-Illllllllllllll
A R R R R R R R R E R

Cgspp s E R EEEEE R EEREEEREREREREREEERRERREERRERERERORRERERERERERROEREREROREREROROROUODROROORY

27.1 Nil leads to panic

s
SN

If a pointer isn’t pointing anywhere, attempting to dereference the pointer won’t work,
as listing 27.1 demonstrates. Dereference a nil pointer, and the program will crash. As a
rule, people tend to dislike apps that crash.

I call it my billion-dollar mistake.

—Tony Hoare

Listing 27.1

var nowhere *int

Prints <nil>
fmt.Println(nouhere) <« o

Panic: nil pointer
fmt.Println(*nowhere) <« dereference

Avoiding panic is fairly straightforward. It's a matter of guarding against a nil pointer
dereference with an if statement, as shown in the following listing.

Listing 27.2

var nowhere *int

if nowhere != nil {
fmt.Println(*nowhere)

}

To be fair, programs can crash for many reasons, not only because of nil pointer derefer-
ences. For example, divide by zero also causes a panic, and the remedy is similar. Even

222 Lesson 27 Much ado about nil

so, considering all the software written in the past 50 years, the number of accidental nil
pointer dereferences could be fairly costly for users and programmers alike. The exis-
tence of nil does burden the programmer with more decisions. Should the code check
for nil, and if so, where should the check be? What should the code do if a value is nil?
Does all this make nil a bad word?

“We shall say nil to you ... if you do not appease us.”—The Knights Who Say nil

There’s no need to cover your ears or avoid nil altogether. In truth, nil can be quite use-
ful, as the remainder of this lesson demonstrates. Additionally, nil pointers in Go are
less prevalent than null pointers are in some other languages, and there are ways to
avoid their use when appropriate.

‘\"""""""""""""“““““““““““‘\\

: Quick check 27.1 What's the zero value for the type *string?)

A S CS S

(NSNS S S S S S SN S S S S S S S S NSNS SN S A SN S SN SN S S NS SN SN S S S SN SNSNSNSNSSSNSNSNSNSSSNSNN)

QC 27.1 answer The zero value for a pointer is nil.

Guarding your methods 223

27.2 Guarding your methods

Methods frequently receive a pointer to a structure, which means the receiver could be

nil, as shown in the following listing. Whether a pointer is dereferenced explicitly (*p) or
implicitly by accessing a field of the struct (p.age), a nil value will panic.

Nil receivers: method.go

type person struct {
age int

}
func (p *person) birthday() {

p-agew \ nil pointer
} dereference

func main() {
var nobody *person

fmt.Println(nobody)
\ Prints <nil>
nobody.birthday()

}

A key observation is that the panic is caused when the p.age++ line executes. Remove that
line, and the program will run.

NOTE Contrast this to the equivalent program in Java, where a null receiver will crash the
program immediately when a method is called.

Go will happily call methods even when the receiver has a nil value. A nil receiver
behaves no differently than a nil parameter. This means methods can guard against nil
values, as shown in the following listing.

Guard clause: guard.go

func (p *person) birthday() {

if p == nil {
return

}

p.age++

224 Lesson 27 Much ado about nil

Rather than check for nil before every call to the birthday method, the preceding listing
guards against nil receivers inside the method.

NOTE In Objective-C, invoking a method on nil doesn’t crash, but rather than call the
method, it returns a zero value.
You decide how to handle nil in Go. Your methods can return zero values, or return an
error, or let it crash.

A 22 S A A VLN NN LA NN NN NN LN ... NN N\ N

\ Quick check 27.2 What does accessing a field (p.age) do if p is nil?

A S S S O A S S A N S S A N S A SN S S AN S AN S S AN SN NSNS S NS SNSSSSNSSESN N,

4

27.3 Nil function values

%
SAQ

Dy

When a variable is declared as a function type, its value is nil by default. In the follow-
ing listing, fn has the type of a function, but it isn’t assigned to any specific function.

Function types that are nil: fn.go

var fn func(a, b int) int Prints true

fmt.Println(fn == nil)
If the preceding listing were to call fn(1, 2), the program would panic with a nil pointer
dereference, because there’s no function assigned to fn.

It’s possible to check whether a function value is nil and provide default behavior. In the
next listing, sort.Slice is used to sort a slice of strings with a first-class less function. If nil
is passed for the less argument, it defaults to a function that sorts alphabetically.

A default function: sort.go

package main

import (
"t
Ilsort”

CAaAAa AN SRS NS NSNS NSNS NN NSNS NN NSNS NN SNNSSNSNSCNSCSNCSNCSCNLCSCSCSLCSYCSLRTSLRTSLRTLRTSTRTRTRRZTRDEN
QC 27.2 answer It panics, crashing the program, unless the code checks for nil before the field
access.

Nil slices 225

func sortStrings(s []string, less func(i, j int) bool) {
if less == nil {
less = func(i, j int) bool { return s[i] < s[j] }

}
sort.Slice(s, less)
}
func main() {
food := []string{"onion", "carrot", "celery"}
sortStrings(food nil)
fmt.Println(food) 44\\\~ Prints [carrot
1 celery onion]

*
' Quick check 27.3 Write a line of code to sort food from the shortest to longest string in list:

““""“““““"‘““““““““““““““‘\

\\”9 7
""“"‘“"‘“""“"‘“‘“““““““““““

“@" 27.4 Nil slices

'-
ﬂ

)".

A slice that’s declared without a composite literal or the make built-in will have a value of
nil. Fortunately, the range keyword, len built-in, and append built-in all work with nil
slices, as shown in the following listing.

Growing a slice: slice.go

var soup []string Prints true

fmt.Println(soup == nil) 4—/

for _, ingredient := range soup {
fmt.Println(ingredient)

}
Prints O
fmt.Println(len(soup)) <-/

soup = append(soup, "onion", "carrot", "celery")

fmt.Println(soup) 4\ Prints [onion
carrot celery]

A S O O ANV AN NN A OO NN AN A O A A A A A A O O NN L L L AN\ N\ N\

QC 27.3 answer
sortStrings(food, func(i, j int) bool { return len(food[i]) < len(food[j]) })

226 Lesson 27 Much ado about nil

An empty slice and a nil slice aren’t equivalent, but they can often be used interchange-
ably. The following listing passes nil to a function that accepts a slice, skipping the step
of making an empty slice.

Start with nil: mirepoix.go

func main() {
soup := mirepoix(nil) Prints [onion
fmt.Println(soup) /carr'otcelery]
1

func mirepoix(ingredients []string) []string {
return append(ingredients, "onion", "carrot", "celery")

}

Whenever you write a function that accepts a slice, ensure that a nil slice has the same
behavior as an empty slice.

“““""“““““"‘““““““““““““““\\

(Quick check 27.4 Which actions are safe to perform on a nil slice? \
AN

&
‘“““““"‘“““““"‘““““““““““““‘

(2 27.5 Nil maps

As with slices, a map declared without a composite literal or the make built-in has a value
of nil. Maps can be read even when nil, as shown in the following listing, though writ-
ing to a nil map will panic.

var soup map[stringlint Prints true
fmt.Println(soup == nil) <—/
measurement, ok := soup["onion"]

if ok {

fmt.Println(measurement)

(S 9. S S O S L S L VNS LS LN L LSS AL AN A AN AN A A A L L AL N A N NN NSNS\ Y
QC 27.4 answer The builtins len, cap, and append are safe to use with a nil slice, as is the range key-
word. As with an empty slice, directly accessing an element of a nil slice (soup[0]) will panic with index out
of range.

Nil interfaces 227

for ingredient, measurement := range soup {
fmt.Println(ingredient, measurement)

}

If a function only reads from a map, it’s fine to pass the function nil instead of making
an empty map.

eSS N NN NN NN NN NN NN NN NN NN NSNS SN NN SN NN NSNS NN NN NN SN C NN " TR LTRLRRRRRNwNN

v Quick check 27.5 What action on a nil map will cause a panic? N

A S A A O A N A SN S NN N N N SN N N S N N N N NN NN NN NN NN NN N NN N NN NSNS NN

97.6 Nil interfaces

%)
SAQV

S,

When a variable is declared to be an interface type without an assignment, the zero
value is nil. The following listing demonstrates that the interface type and value are
both nil, and the variable compares as equal to nil.

Interfaces can he nil: interface.go

var v interface{}

Prints <nil> <nil> true
fmt.Printf("%T %v %v\n", v, v, v == nil) 4—/

When a variable with an interface type is assigned a value, the interface internally
points to the type and value of that variable. This leads to the rather surprising behavior
of a nil value that doesn’t compare as equal to nil. Both the interface type and value
need to be nil for the variable to equal nil, as shown in the following listing.

WWat?: interface.go

var p *int
vV =0p

Prints *int <nil> false
fmt.Printf("%T %v %v\n", v, v, v == nil) <-/

The %tv format verb is shorthand to see both type and value, also revealing that the vari-
able contains (*int) (nil) rather than just <nil>, as shown in listing 27.12.

CAaAAa AN SRS NS NSNS NSNS NN NSNS NN NSNS NN SNNSSNSNSCNSCSNCSNCSCNLCSCSCSLCSYCSLRTSLRTSLRTLRTSTRTRTRRZTRDEN
0OC 27.5 answer Writing to a nil map (soup["onion"] = 1) will panic with: assignment to entry in nil
map.

228 Lesson 27 Much ado about nil

Inspecting the Go representation: interface.go

fmt.Printf("%#v\n", v) <——— Prints (*int)(nil)

To avoid surprises when comparing interfaces to nil, it’s best to use the nil identifier
explicitly, rather than pointing to a variable that contains a nil.

"“““""“““““"‘“““““““““““““‘

\ Quick check 27.6 What's the value of s when declared as var s fmt.Stringer?

A S SO S N S S S S SN S SN N SN A S A N S N N S N SN NS NSNS NSNS SN SN NSNS NSNS NS

’l/

21.7 An alternative to nil

2
W

.

It can be tempting to adopt nil whenever a value can be nothing. For example, a pointer
to an integer (*int) can represent both zero and nil. Pointers are intended for pointing, so
using a pointer just to provide a nil value isn’t necessarily the best option.

Instead of using a pointer, one alternative is to declare a small structure with a few
methods. It requires a little more code, but it doesn’t require a pointer or nil, as shown in
the following listing.

Number is set: valid.go

type number struct {
value int

valid bool
}

func newNumber (v int) number {
return number{value: v, valid: true}

}
func (n number) String() string {
if In.valid {
return "not set"
}
return fmt.Sprintf("%d", n.value)
}

CAaAAa AN SRS NS NSNS NSNS NN NSNS NN NSNS NN SNNSSNSNSCNSCSNCSNCSCNLCSCSCSLCSYCSLRTSLRTSLRTLRTSTRTRTRRZTRDEN
QC 27.6 answer The value is nil because fmt.Stringer is an interface and the zero value for inter-
facesis nil.

Summary 229

func main() {

n := newNumber (42)

fmt.Println(n) < Prints 42

e := number{}

fmt.Println(e) < Prints not set

“""“““"""‘“““"‘““““““““““““

:\Guick check 27.7 What are some advantages to the approach taken in listing 27.137? N

\d
AN N SN S S N SN SN NN SN NSNS S N A N N NN S N A N N SN N N N NN N S NSNS N NN NN NN

(e
Summary

= Nil pointer dereferences will crash your program.

= Methods can guard against receiving nil values.

= Default behavior can be provided for functions passed as arguments.

= A nil slice is often interchangeable with an empty slice.

= A nil map can be read from but not written to.

= If an interface looks like it’s nil, be sure both the type and value are nil.
= Nil isn’t the only way to represent nothing.

Let’s see if you got this...

Experiment: knights.go

A knight blocks Arthur’s path. Our hero is empty-handed, represented by a nil value for
leftHand *item. Implement a character struct with methods such as pickup(i *item) and
give(to *character). Then use what you’'ve learned in this lesson to write a script that has
Arthur pick up an item and give it to the knight, displaying an appropriate description
for each action.

‘NS N NSNS SN NN NSNS SSR NN NSNS RS NN N NN NR NN NN NSRS SRRSO CNCS SRR RRRLRRRRRRRRRNW
QC 27.7 answer It completely avoids nil pointer dereferences by not having pointers or nil values.
The valid Boolean has a clear intention, whereas the meaning of nil is less clear.

LESSON

TO ERR IS HUMAN

After reading lesson 28, you'll be able to

= Write files and handle failure

= Handle errors with a flair of creativity
= Make and identify specific errors

= Keep calm and carry on

The sirens sound. Students and teachers shuffle out of classrooms to the nearest exit and
congregate at the muster point. There’s no danger in sight and nothing is on fire. It's
another routine fire drill. Everyone is better prepared in the event of a real emergency.

File not found, invalid format, the server is unreachable. What does software do when
something goes wrong? Maybe the problem can be extinguished, allowing operations to
carry on as usual. Perhaps the best course of action is to exit safely, closing doors on the
way out—or crash through a fourth story window as a last resort.

It’s important to have a plan. Consider the errors that could occur, how to communicate
those errors, and the steps to handle them. Go keeps error handling front and center,
encouraging you to think about failure and how to handle it. Like the tenth fire drill,
error handling can feel mundane at times, but it ultimately leads to reliable software.

230

Handling errors 231

This lesson explores a few ways to handle errors and delves into how errors are made.
It closes by contrasting Go’s style of error handling with that of other programming
languages.

‘III.

-

Consider this In the early 18th century, Alexander Pope penned a poem containing a
now well-known phrase: to err is human. Take a moment to consider this phrase and
how it might relate to computer programming.

To err is human; to forgive, divine.
—Alexander Pope, “An Essay on Criticism: Part 2”

Here's our take: everyone makes mistakes. Systems fail. Errors happen all the time.
Errors aren’t exceptional, so you should expect that things could go wrong. What's
important is how you choose to respond. Acknowledge errors, don't ignore them. \Work
to resolve issues and move on.

"W R EERRERRERRERRERRERRRRERR
AR R R R EE R EEEEE R R EEEERY

*
Sy EEEEEEEEEEEEEEEE R R EREREREREEREERERERRERRRRRERERERERNENERNENRNRRERERBS

28.1 Handling errors

¢
(DA

In programming languages of the past, the limitation of a single return value made error
handling somewhat obscure. Functions would overload the same return value to indi-
cate both an error or a successful value, or require a side channel to communicate the
error, such as a global errno variable. Worse still, the mechanism to communicate errors
was inconsistent from function to function.

Go has multiple return values, as mentioned in lesson 12. Though not specific to error
handling, multiple return values provide a simple and consistent mechanism to return
errors to calling functions. If a function can return an error, the convention is to use the
last return value for errors. The caller should check if an error occurred immediately after
calling a function. If no errors occurred, the error value will be nil.

To demonstrate error handling, listing 28.1 calls the ReadDir function. If an error occurs,
the err variable won’t be nil, causing the program to print the error and exit immedi-
ately. The nonzero value passed to os.Exit informs the operating system that an error
occurred.

If ReadDir is successful, files will be assigned to a slice of os.FileInfo, providing informa-
tion on the files and directories at the specified path. In this case, a dot is specified for
the path, indicating the current directory.

232 Lesson 28 To err is human

files, err := ioutil.ReadDir(".")
if err !=nil {

fmt.Println(err)

0s.Exit(1)

}

for _, file := range files {
fmt.Println(file.Name())

NOTE \When an error occurs, the other return values generally shouldn’t be relied on.
They may be set to the zero values for their type, but some functions may return partial data
or something else entirely.

If you run listing 28.1 in the Go Playground, it will output a list of directories:

dev
etc

tmp
ust

To list the contents of a different directory, replace the current directory (".") in listing
28.1 with the name of another directory, such as "etc". The list may contain both files and
directories. You can use file.IsDir() to distinguish between the two.

“““""“““““"‘“““““““““““““‘\\

' Quick check 28.1

1 Reuvise listing 28.1 to read a make-believe directory, such as "unicorns". What error
message is displayed?

2 What error message is displayed if you use ReadDir on a file, such as "/etc/hosts”,

\ rather than a directory?

Ty
.'lllll’

\d
AN S S S S S S S S S N S NS S S S S S S N NN S S S SN S S S NN NSNS SSSSSSSNSNSNSNSS

‘CAaa N NN NN NSNS SN N NSNS S SN NN NN S NN NN NN SRS RN NSRS SRR RSRRCRRRRRTRTRRRRRNN

QC 28.1 answer

1 open unicorns: No such file or directory
2 readdirent: Invalid argument

Elegant error handling 233

@ 28.2 Elegant error handlin
]]

Gophers are encouraged to consider and handle any errors that functions return. The
amount of code dedicated to handling errors can quickly add up. Fortunately, there are
several ways to reduce the amount of error-handling code without sacrificing reliability.

Some functions perform equations, data transformations, and other logic without ever
needing to return an error. Then there are functions that communicate with files, databases,
and servers. Communication is messy and can fail. One strategy to reduce error-handling
code is to isolate an error-free subset of a program from the inherently error-prone code.

But what about code that does return errors? We can’t remove the errors, but we can
work to simplify the error-handling code. To demonstrate, we’ll make a small program
that writes the following Go Proverbs to a file and then improve the error handling until
the code becomes palatable.

Errors are values.
Don’t just check errors, handle them gracefully.

Don’t panic.

Make the zero value useful.

The bigger the interface, the weaker the abstraction.

interface{} says nothing.

Gofmt’s style is no one’s favorite, yet gofmt is everyone’s favorite.
Documentation is for users.

A little copying is better than a little dependency.

Clear is better than clever.

Concurrency is not parallelism.

Don’t communicate by sharing memory, share memory by communicating.

Channels orchestrate; mutexes serialize.

—Rob Pike, Go Proverbs
(see go-proverbs.github.io)

28.2.1 Writing a file

Any number of things can go wrong when writing a file. If the path is invalid or there’s
an issue with permissions, creating the file may fail before we even start writing. Once
writing, the device could run out of disk space or be unplugged. In addition, a file must
be closed when done, both to ensure it is successfully flushed to disk, and to avoid leak-
ing resources.

234 Lesson 28 To err is human

NOTE Operating systems can only have so many files open at once, so every open file cuts

into that limit. When a file is unintentionally left open, the waste of that resource is an exam-

ple of a leak.
The main function in listing 28.2 calls proverbs to create a file and handles any error by
displaying it and exiting. A different implementation could handle errors differently,
perhaps prompting the user for a different path and filename. Though the proverbs func-
tion could have been written to exit on errors, it’s useful to let the caller decide how to
handle errors.

Calling proverbs: proverhs.go

err := proverbs("proverbs.txt")
if err !=nil {
fmt.Println(err)
0s.Exit(1)
1

The proverbs function may return an error, which is a special built-in type for errors. The
function attempts to create a file. If an error occurs at this point, there’s no need to close
the file, so it aborts immediately. The remainder of the function writes lines out to the
file and ensures that the file is closed whether it succeeds or fails, as shown in the fol-
lowing listing.

Writing Go Proverhs: proverbs.go

func proverbs(name string) error {
f, err := os.Create(name)

if err !=nil {
return err

_, err = fmt.Fprintln(f, "Errors are values.")
if err !=nil {

f.Close()

return err

_, err = fmt.Fprintln(f, "Don’t just check errors, handle them gracefully.")
f.Close()
return err

Elegant error handling 235

There’s a fair amount of error-handling code in the previous listing—so much so, that
writing out all the Go Proverbs could become quite tedious.

On the positive side, the code that handles errors is consistently indented, which makes
it easier to scan through the code without reading all the repetitive error handling.
Indenting errors in this way is a common pattern in the Go community, but we can
improve on this implementation.

ISS S S S S S S S A A AN NS A S AN NS S S SN SNSNSSSSSNSNSNSNSNSNSNSNSNSNSNSSNNN

V' Quick check 28.2 Why should functions return an error instead of exiting the program? N

AN S S S O S O O S A A S S A N S S A A SN N S N S N A A NN S SN NS N S S NSNS NSNS

28.2.2 The defer keyword

To ensure that that the file is closed correctly, you can make use of the defer keyword. Go
ensures that all deferred actions take place before the containing function returns. In the
following listing, every return statement that follows defer will result in the £f.Close()
method being called.

Listing 28.4

func proverbs(name string) error {
f, err := os.Create(name)

if err !=nil {
return err

}
defer f.Close()

_, err = fmt.Fprintln(f, "Errors are values.")
if err !=nil {

return err
}
_, err = fmt.Fprintln(f, "Don’t just check errors, handle them gracefully.")
return err

NOTE The behavior of the preceding listing is identical to that of listing 28.3. Changing the
code without changing its behavior is called refactoring. Much like polishing the first draft of
an essay, refactoring is an important skill for writing better code.

NaAaNaNN NN NSNS NN NN NN N NN NN NN NN N NN """ C"N """ """ “""“"“"“N“NN“NN“NN“NNT"“NTNT"“NTTSTT"TT"TT"TE"T"T"W™"(£
OC 28.2 answer Returning an error gives the caller a chance to decide how to handle the error.
For example, the program may decide to retry rather than exit.

236 Lesson 28 To err is human

You can defer any function or method, and like multiple return values, defer isn’t specif-
ically for error handling. It does improve error handling by removing the burden of
always having to remember to clean up. Thanks to defer, the code that handles errors
can focus on the error at hand, and nothing more.

The defer keyword has made things a little better, but checking for errors after writing
each line is still a pain. It’s time to get creative!

ISS S S S S S S S A A AN NS A S AN NS S S SN SNSNSSSSSNSNSNSNSNSNSNSNSNSNSNSSNNN

Y Quick check 28.2 When will the deferred action be called? N

AN S S S O S O O S A A S S A N S S A A SN N S N S N A A NN S SN NS N S S NSNS NSNS

28.2.3 Creative error handling

In January 2015, a marvelous article on error handling was published on the Go blog
(blog.golang.org/errors-are-values). The article describes a simple way to write to a file
without repeating the same error-handling code after every line.

To apply this technique, you need to declare a new type, which we call safeWriter in list-
ing 28.5. If an error occurs while safelriter is writing to a file, it stores the error instead
of returning it. Subsequent attempts to write to the same file will be skipped if writeln
sees that an error occurred previously.

Listing 28.5

type safeWriter struct {

w o lo.Writer A place to store the

err error first error
func (sw *safeWriter) writeln(s string) {
if sw.err != nil {
return Skips the write if an error
1 occurred previously

_, sw.err = fmt.Fprintln(sw.w, s) <
] N~ Writes a line and
store any error

NS S S S A S O SO O A A A A A SN S A S SN N S S A A S NS S A A A NSNS S S A S NSNS NSNS SNSNSNSSESSNSSESSESNN

OC 28.3 answer Defer will be called when returning from the function.

Elegant error handling 237

Using safelriter, the following listing writes several lines without repetitive error han-
dling, yet still returns any errors that occur.

The road to proverbs: writer.go

func proverbs(name string) error {
f, err := os.Create(name)

if err != nil {
return err

}
defer f.Close()

sw := safeWriter{w: f}
sw.writeln("Errors are values.")

sw.writeln("Don't just check errors, handle them gracefully.")

sw.writeln("Don't panic.")

sw.writeln("Make the zero value useful.")

sw.writeln("The bigger the interface, the weaker the abstraction.")

sw.writeln("interface{} says nothing.")

sw.writeln("Gofmt's style is no one's favorite, yet gofmt is everyone's
favorite.")

sw.writeln("Documentation is for users.")

sw.writeln("Clear is better than clever.")

(
sw.writeln("A little copying is better than a little dependency.")
(
("Concurrency is not parallelism.")

sw.writeln("
sw.writeln("Don’t communicate by sharing memory, share memory by
communicating.")
sw.writeln("Channels orchestrate; mutexes serialize.")

return sw.err
\ Returns an error,

} if one occurred

This is a far cleaner way to write a text file, but that isn’t the point. The same technique
can be applied to creating zip files or to completely different tasks, and the big idea is
even greater than a single technique:
...errors are values, and the full power of the Go programming language is available for
processing them.

—Rob Pike, “Errors are values”
(see blog.golang.org/errors-are-values)

Elegant error handling is within your grasp.

238 Lesson 28 To err is human

‘\""“““““"‘“““““““““““““““‘\

* - . . e , .
+ Quick check 28.4 If an error occurred while listing 28.6 was writing “Clear is better than
\ clever.” to a file, what sequence of events would follow?

4

\d
\““"‘“““““"‘““““““““““““““‘“

28.3 New errors

2
SSAGV

.

If a function receives parameters that are incorrect, or if something else goes wrong, you
can create and return new error values to inform the caller of the problem.

To demonstrate new errors, listing 28.7 builds the foundation for a Sudoku logic puzzle,
which takes place on a 9 x 9 grid. Each square on the grid may contain a digit from 1 to
9. This implementation will use a fixed-size array, and the number zero will indicate an
empty square.

Sudoku grid: sudoku1.go

const rows, columns =9, 9

// Grid is a Sudoku grid
type Grid [rows][columns]int8

The errors package (see golang.org/pkg/errors/) contains a constructor function that
accepts a string for an error message. Using it, the Set method in listing 28.8 may create
and return an “out of bounds” error.

TIP Validating parameters at the beginning of a method guards the remainder of the
method from worrying about bad input.

Vlalidate parameters: sudoku1.go

func (g *Grid) Set(row, column int, digit int8) error {
if linBounds(row, column) {
return errors.New("out of bounds")

AR M M aN s SsSs TSNS NSNS NS NN NN NN NSNS NN NN NNCN NN N NN TNTNTNTNTSTTSTLTRTTNT™NS
QC 28.4 answer
1 The erroris stored in the sw structure.
2 The writeln function will be called three more times, but it will see the stored error and not
attempt to write to the file.
3 The stored error will be returned, and defer will try to close the file.

New errors 239

glrow][column] = digit
return nil

}

The inBounds function in the next listing ensures that row and column are inside the grid
boundaries. It keeps the Set method from becoming weighed down in details.

Helper function: sudoku1.go

func inBounds(row, column int) bool {

if row < 0 || row >= rows {
return false

}

if column < 0 || column >= columns {
return false

}

return true

}

Finally, the main function in the next listing creates a grid and displays any error result-
ing from an invalid placement.

Set a digit: sudoku1.go

func main() {

var g Grid
err := g.Set(10, 0, 5)
if err != nil {

fmt.Printf("An error occurred: %v.\n", err)
0s.Exit(1)

TIP It’s common to use partial sentences for error messages so that the message can be
augmented with additional text before it’'s displayed.
Always take the time to write informative error messages. Think of error messages as
part of the user interface for your program, whether for end users or other software
developers. The phrase “out of bounds” is okay, but “outside of grid boundaries” may
be better. A message like “error 37” isn’t very helpful at all.

240 Lesson 28 To err is human

*
' Quick check 28.5 How is it beneficial to guard against bad input at the beginning of a

“"“““““"‘““““““““““““““““\\

o

function?
‘Q
aAaA A N aN SN sSNNSNSN N NN NN NN NN NN " """ """ “"“"“"“"“"“"“"“"“"“"“"C“""“"T“"T"NTTNTTNTTTL.AT

28.3.1 Which error is which

Many Go packages declare and export variables for the errors that they could return. To
apply this to the Sudoku grid, the next listing declares the two error variables at the
package level.

Declare error variables: sudoku2.go

var (
ErrBounds = errors.New("out of bounds")

ErrDigit = errors.New("invalid digit")

NOTE By convention, error messages are assigned to variables that begin with the word
Err.

With ErrBounds declared, you can revise the Set method to return it instead of creating a
new error, as shown in the following listing.

Return the error: sudoku2.go

if !inBounds(row, column) {
return ErrBounds

}

If the Set method returns an error, the caller can distinguish between possible errors and
handle specific errors differently, as shown in the following listing. You can compare the
error returned with error variables using == or a switch statement.

Which error in main: sudoku2.go

var g Grid
err := g.Set(0, 0, 15)
if err 1= nil {

"SR RS TRRSR NSRS RNR SRR RNR NSRS RSRRNRRSRRNRSRRSRCNRSRCNRNRRSRRCNRCRRCNRCNRRCRRCNRCRCNRCRRCRRCNRCRRNRTRRRRRRRRNWS
OC 28.5 answer The remainder of the function doesn’t need to consider bad input because it has
already been checked. Instead of letting it fail (for example, “runtime error: index out of range”) a friendly
message can be returned.

New errors 241

switch err {
case ErrBounds, ErrDigit:

fmt.Println("Les erreurs de paramétres hors limites.")
default:

fmt.Println(err)

}

0s.Exit(1)

NOTE The errors.New constructor is implemented using a pointer, so the switch state-
ment in preceding listing is comparing memory addresses, not the text contained in the

error message.

“""""‘““""""‘““‘““““““““““‘\

:’ Quick check 28.6 Whrite a validDigit function and use it to ensure that the Set method only\

\\accepts digits between 1 and 9. N
&

<
AN S S S S S S S S N N N N S S S NS S S N NN NS S SN S S S NN NSNS SSSSSSSNSNSNSSS,

28.3.2 Custom error types
As helpful as errors.New is, there are times when it’s desirable to represent errors with
more than a simple message. Go gives you the freedom to do this.

The error type is a built-in interface, as shown in the following listing. Any type that
implements an Error() method that returns a string will implicitly satisfy the error inter-
face. As an interface, it’s possible to create new error types.

The error interface

type error interface {
Error() string

(S 0 0 . . . O O A A AN AL AL N NN L LA L NN LA NN NN LN N LN 8NN N\ N

QC 28.6 answer
func validDigit(digit int8) bool {
return digit >= 1 && digit <= 9
}
The Set method should contain this additional check:

if lvalidDigit(digit) {
return ErrDigit

}

242 Lesson 28 To err is human

Multiple errors

There could be several reasons why a digit can’t be placed at a particular location in
Sudoku. The preceding section established two rules: that the row and column are
within the grid, and that the digit is between 1 and 9. What if the caller passes multiple
invalid arguments?

Rather than return one error at a time, the Set method could perform multiple valida-
tions and return all the errors at once. The SudokuError type in listing 28.15 is a slice of
error. It satisfies the error interface with a method that joins multiple errors together into
one string.

NOTE By convention, custom error types like SudokuError end with the word Error. Some-
times they’re just the word Error, such as url.Error from the url package.

Custom error type: sudoku3.go

type SudokuError [Jerror

// Error returns one or more errors separated by commas.
func (se SudokuError) Error() string {
var s []string

for _, err := range se {

s = append(s, err.Error()) “_ Converts the errors
1 to strings
return strings.Join(s, ", ")

}

To make use of SudokuError, the Set method can be modified to validate both the boundar-
ies and digit, returning both errors at once, as shown in the following listing.

Appending errors: sudoku3.go

func (g *Grid) Set(row, column int, digit int8) error { “~_ Returns type
var errs SudokuError is error

if linBounds(row, column) {

errs = append(errs, ErrBounds)
}
if lvalidDigit(digit) {

errs = append(errs, ErrDigit)
}

if len(errs) > 0 {

New errors 243

return errs
}
glrow][column] = digit
return nil <

Returns nil

}

If no errors occur, the Set method returns nil. This hasn’t changed from listing 28.8, but
it’s important to highlight that it doesn’t return an empty errs slice. Review nil interfaces
in the preceding lesson if you're not sure why.

The method signature for Set also hasn’t changed from listing 28.8. Always use the error
interface type when returning errors, not concrete types like Sudokutrror.

NS S L L LN LS SESNSESESESNSCSNSNSNSNSCSNSNSCNSCSNSNSNSCSNSNSNSNSNSNSNSNSNSNSNSNSNSNSNSNNN

Y Quick check 28.7 What happens if the Set method returns an empty errs slice on success?

\d
AN S S S SO O A SO A O SO O N N N A SN A A N NN SN A A A A N N N NSNS NN N SN SN SN SS NSNS

Type assertions

Because listing 28.16 converts SudokuError to an error interface type before it’s returned,
you may wonder how to access the individual errors. The answer is with type assertions.
Using a type assertion, you can convert an interface to the underlying concrete type.

The type assertion in listing 28.17 asserts that err is of type SudokuError with the code
err. (SudokuError). If it is, ok will be true, and errs will be a SudokuError, giving access to the
slice of errors in this case. Remember that the individual errors appended to SudokuError
are the variables ErrBounds and ErrDigit, which allow comparisons if desired.

Listing 28.17
var g Grid
err := g.Set(10, 0, 15)
if err !=nil {
if errs, ok := err.(SudokuError); ok {

fmt.Printf("%d error(s) occurred:\n", len(errs))
for _, e := range errs {
fmt.Printf("- %v\n", e)

RS S S S O SO SO SO S S S A A S S SN S S S S S SN SN S S S SN N SN NS S NSNS SNSSSNSSSNSSSSSESSNSNSNSNS

QC 28.7 answer The error interface that’'s returned won’t be nil. Even though the slice of errors is
empty, the caller will think there was an error.

244 Lesson 28 To err is human

0s.Exit(1)

}

The preceding listing will output the following errors:

2 error(s) occurred:
- out of bounds

- invalid digit
NOTE If a type satisfies multiple interfaces, type assertions can also convert from one

interface to another.

““““‘““““““‘““““““‘““““““““\

Quick check 28.8 What does the type assertion err. (SudokuError) do?

A SSSSSSSSSSSS S,

e

§
\
N

28.4 Don’t panic

g o
N W

Several languages rely heavily on exceptions for communicating and handling errors. Go
doesn’t have exceptions, but it does have a similar mechanism called panic. When a panic
occurs, the program will crash, as is the case with unhandled exceptions in other lan-

guages.

‘NS N NSNS SN NN NSNS SSR NN NSNS RS NN N NN NR NN NN NSRS SRRSO CNCS SRR RRRLRRRRRRRRRNW

OC 28.8 answer It attempts to convert the err value from the error interface type to the concrete

SudokuError type.

Don’t panic 245

28.4.1 Exceptions in other languages

Exceptions differ significantly from Go’s error values in both behavior and implementa-

tion.

If a function throws an exception and no one is around to catch it, the exception will
bubble up to the calling function, and the caller of that function, and so on, until it
reaches the top of the call stack (for example, the main function).

Exceptions are a style of error handling that can be considered opt-in. It often takes no
code to opt out of handling exceptions, whereas opting in to exception handling may
involve a fair amount of specialized code. This is because instead of using existing lan-
guage features, exceptions tend to have special keywords, such as try, catch, throw, finally,
raise, rescue, except, and so on.

Error values in Go provide a simple, flexible alternative to exceptions that can help you
build reliable software. Ignoring error values in Go is a conscious decision that is plainly
evident to anyone reading the resulting code.

ARASRSS AL L LALLM A AR RN AN AL AR N N N

g . , .
\ What are two benefits of Go’s error values as compared to exceptions? :
\

A SNSS S8 N

28.4.2 How to panic
As mentioned, Go does have a mechanism similar to exceptions: panic. Whereas an
invalid digit in Sudoku may be cause for an exception in another language, panic in Go is

rare.

If the world is about to end, and you forgot your trusty towel back on Earth, then per-
haps panic is warranted. The argument passed to panic can be any type, not only strings
as shown here:

panic("I forgot my towel")

NOTE Though error values are generally preferable to panic, panic is often better than
0s.Exit in that panic will run any deferred functions, whereas 0s.Exit does nat.

There are some situations where Go will panic instead of providing an error value, such
as when dividing by zero:

o T e e e e e . e . . .

Go pushes developers to consider errars, which can result in more reliable soft-
ware, whereas exceptions tend to be ignored by default. Error values don’t require specialized keywords,
making them simpler, while also being more flexible.

246 Lesson 28 To err is human

var zero int Runtime error: integer
- 42 / 7010 < divide by zero

““““"‘“““““"‘““““““““““““““\

(Quick check 28.10 When should your program panic?
AN

\“""“““““"‘““““““““““““““““

28.4.3 Keep calm and carry on

To keep panic from crashing your program, Go provides a recover function, shown in list-
ing 28.18.

Deferred functions are executed before a function returns, even in the case of panic.

If a deferred function calls recover, the panic will stop, and the program will continue
running. As such, recover serves a similar purpose to catch, except, and rescue in other

languages.

Keep calm and carry on: panic.go

defer func() { Recovers from panic
if e := recover(); e !=nil { <—/ .

fmt.Println(e)
\ Prints | forgot my towel

1)
Causes panic
panic("I forgot my towel") <«

NOTE The preceding listing uses an anonymous function, a topic covered in lesson 14.

ISR AR A AN N AN AN AN AN AN AN AN SN NN NN NN 2NN 2NN NN N N

O
N Quick check 28.11 Where can the recover builtin function be used? R
\‘“““‘“‘“““‘“““‘“““““““““““““'

AS ST T TR T T SRR R SRS RS R R RS R CR R R R RSN R SRR R R R SRS CRCRCRCCRCRCRCRCRRCRRTRTRTRTRRRRNW™

QC 28.10 answer Panic should be rare.

(S O 0 0 0 A . L A VN A VLA NN NN LA NN LN\ QNN N \

QC 28.11 answer Only deferred functions can make use of recover.

Summary 247

= Errors are values that interoperate with multiple return values and the rest of the
Go language.

= There is a great deal of flexibility in handling errors if you're willing to get cre-
ative.

= Custom error types are possible by satisfying the error interface.

= The defer keyword helps clean up before a function returns.

= Type assertions can convert an interface to a concrete type or another interface.

= Don’t panic—return an error instead.

Let’s see if you got this...

Experiment: url.go

In the Go standard library, there’s a function to parse web addresses (see golang.org/
pkg/net/url/#Parse). Display the error that occurs when url.Parse is used with an invalid
web address, such as one containing a space: https://a b.com/.

Use the %#v format verb with Printf to learn more about the error. Then perform a
*url.Error type assertion to access and print the fields of the underlying structure.

NOTE A URL, or Uniform Resource Locator, is the address of a page on the World Wide
Web.

CAPSTONE: SUDOKU RULES

Sudoku is a logic puzzle that takes place on a

9 x 9 grid (see en.wikipedia.org/wiki/Sudoku).
Each square can contain a digit from 1 through
9. The number zero indicates an empty square.

The grid is divided into nine subregions that
are 3 x 3 each. When placing a digit, it must
adhere to certain constraints. The digit being
placed may not already appear in any of the
following:

= The horizontal row it’s placed in
= The vertical column it’s placed in
= The 3 x 3 subregion it’s placed in

LESSON

Use a fixed-size (9 x 9) array to hold the Sudoku grid. If a function or method needs to

modify the array, remember that you need to pass the array with a pointer.

Implement a method to set a digit at a specific location. This method should return an

error if placing the digit breaks one of the rules.

Also implement a method to clear a digit from a square. This method need not adhere to

these constraints, as several squares may be empty (zero).

248

249

Sudoku puzzles begin with some digits already set. Write a constructor function to pre-

pare the Sudoku puzzle, and use a composite literal to specify the initial values. Here’s

an example:

s := NewSudoku([rows

{5, 3,
{6,
{0,
{8,
{4,
{7,
{o,
{o,
{0,

O O OO O O Vv o

1)

O O O O O O wuw o o

(

0,
1,
0,
0,
8,
0,
0,
4,
0

’

W B O N O O O OV N

]

0,
5,
0,
0,
3,
0,
0,
9,
0

’

[c

O O N O O O O o oo

Or

~N O 00 O O O O O

lumns]int8{

0},
0},
0},
3},
1},
6},
0},
5},
9},

The starting digits are fixed in place and may not be overwritten or cleared. Modify

your program so that it can identify which digits are fixed and which are penciled in.

Add a validation that causes set and clear to return an error for any of the fixed digits.

The digits that are initially zero may be set, overwritten, and cleared.

You don’t need to write a Sudoku solver for this exercise, but be sure to test that all the

rules are implemented correctly.

Concurrent programming

Computers are excellent at doing many things at
the same time. You might want the computer to
speed up a calculation, download many web pages
simultaneously, or control different parts of a robot
independently. This ability to deal with several
things at once is called concurrency.

Go has a different approach to concurrency than
most other programming languages. Any Go code
can be made concurrent by starting it in a goroutine.
Goroutines use channels for communication and
coordination, making it straightforward to have
multiple concurrent tasks working toward the
same end.

251

LESSON

GOROUTINES AND CONCURRENCY

After reading lesson 30, you'll be able to

= Start a goroutine
= Use channels to communicate

= Understand channel pipelines

Look, it's a gopher factory! All the

gophers are busy building things. Well,
almost all. Over in the corner is a sleep-

ing gopher —or maybe he’s deep in

thought. Here’s an important gopher: ® @
she’s giving orders to other gophers. C@

They run around and do her bidding,

tell others what to do, and eventually

report back their findings to her. Some = [ﬁ

gophers are sending things from the

factory. Others are receiving things ~ T /H C
sent from outside.

Until now, all the Go we’ve written has - |~

been like a single gopher in this factory,

253

254 Goroutines and concurrency

busy with her own tasks and not bothering with anyone else’s. Go programs are more
often like a whole factory, with many independent tasks all doing their own thing, but
communicating with each other towards some common goal. These concurrent tasks
might include fetching data from a web server, computing millions of digits of pi, or
controlling a robot arm.

In Go, an independently running task is known as a goroutine. In this lesson, you'll learn
how to start as many goroutines as you like and communicate between them with chan-
nels. Goroutines are similar to coroutines, fibers, processes, or threads in other languages,
although they’re not quite the same as any of those. They're very efficient to create, and
Go makes it straightforward to coordinate many concurrent operations.

‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIllllllllllllllllllllllll

>

Consider this Consider writing a program that performs a sequence of actions. Each
action might take a long time and could involve waiting for something to happen before
it's done. It could be written as straightforward, sequential code. But what if you want to
do two or more of those sequences at the same time?

For example, you might want one part of your program to go through a list of email
addresses and send an email for each one, while another task waits for incoming email
and stores them in a database. How would you write that?

In some languages, you would need to change the code quite a bit. But in Go, you can
use exactly the same kind of code for each independent task. Goroutines enable you to
run any number of actions at the same time.

‘-IIIIIIIIIIIIIIIIIIIIII'
4 g g EE R R R R R R R R R R RO OO

dysspnE R EEEE R EEEEREEREERREREREREREENERREREROERERERERERRERRERERRERRERERROROROROROROROTORY

(2 30.1 Starting a goroutine

SR
W= W

Starting a goroutine is as easy as calling a function. All you need is the go keyword in
front of the call.

The goroutine in listing 30.1 is similar to our sleepy gopher in the corner of the factory.
He doesn’t do much, though where that Sleep statement is, he could be doing some seri-
ous thought (computation) instead. When the main function returns, all the goroutines in
the program are immediately stopped, so we need to wait long enough to see the sleepy
gopher print his “... snore ...” message. We’ll wait for a little bit longer than necessary
just to make sure.

255

Starting a goroutine

Sleepy gopher: sleepygopher.go

package main

import (
-
"time’ The goroutine is
) started.
func main() {
go sleepyGopher() Waiting for the
time.Sleep(4 * time.Second) <~ 9opher to snore
I e—
When we get here, all the
func sleepyGopher() { goroutines are stopped.
time.Sleep(3 * time.Second) 4-\
fmt.Println("... snore ...") The gopher sleeps.
}

"\‘“""""""‘“""""“““““““““““\\
J Quick check 30.1
: 1 What would you use in Go if you wanted to do more than one thing at the same time?
\ 2 What keyword is used to start a new independently running task?
A\

\‘“““"""‘“““""“““““““““““““

*
CovoT

SRR SRS SRS SRS SRS RS SRS SRS RS S SRR R R RS CR SRR RN R R R R R R R CR R RN RTRRTRTRTRTRRRWNW™

QC 30.1 answer
1 A goroutine.
2 gqo.

256 Lesson 30 Goroutines and concurrency

30.2 More than one goroutine

R A
S

Each time we use the go keyword, a new goroutine is started. All goroutines appear to
run at the same time. They might not technically run at the same time, though, because
computers only have a limited number of processing units.

In fact, these processors usually spend some time on one goroutine before proceeding to
another, using a technique known as time sharing. Exactly how this happens is a dark
secret known only to the Go runtime and the operating system and processor you're
using. It's best always to assume that the operations in different goroutines may run in
any order.

The main function in listing 30.2 starts five sleepyGopher goroutines. They all sleep for three
seconds and then print the same thing.

Listing 30.2

package main

import (
-
"time"

)

func main() {
for i :=0; i <5; i++ {
go sleepyGopher()
}
time.Sleep(4 * time.Second)

}

func sleepyGopher() {
time.Sleep(3 * time.Second)

fmt.Println("... snore ...")
}

We can find out which ones finish first by passing an argument to each goroutine. Pass-
ing an argument to a goroutine is like passing an argument to any function: the value is
copied and passed as a parameter.

Channels 257

When you run the next listing, you should see that even though we started all the gor-
outines in order from zero to nine, they all finished at different times. If you run this
outside the Go playground, you’'ll see a different order every time.

Listing 30.3

func main() {
for i :=0; i <5; i++ {
go sleepyGopher (i)
}

time.Sleep(4 * time.Second)

}

func sleepyGopher(id int) {
time.Sleep(3 * time.Second)
fmt.Println("... ", id, " snore ...")

}

There’s a problem with this code. It's waiting for four seconds when it only needs to wait
for just over three seconds. More importantly, if the goroutines are doing more than just
sleeping, we won’t know how long they’re going to take to do their work. We need some
way for the code to know when all the goroutines have finished. Fortunately Go pro-
vides us with exactly what we need: channels.

"\“““"‘“““““"‘“““““““““““““‘\

\ Quick check 30.2 What order do different goroutines run in? N
\d

A S SO S N S S S S SN S SN N SN A S A N S N N S N SN NS NSNS NSNS SN SN NSNS NSNS NS

30.3 Channels

A channel can be used to send values safely from one goroutine to another. Think of a

channel as one of those pneumatic tube systems in old offices that passed around mail.
If you put an object into it, it zips to the other end of the tube and can be taken out by
someone else.

Like any other Go type, channels can be used as variables, passed to functions, stored in
a structure, and do almost anything else you want them to do.

LS A A O O OO OV VLN LN LL LAV L. LA\ N N\]

OC 30.2 answer Any order.

258 Goroutines and concurrency

To create a channel, use make, the same built-in function used to make maps and slices.
Channels have a type that’s specified when you make them. The following channel can
only send and receive integer values:

c := make(chan int)

Once you have a channel, you can send values to it and receive the values sent to it. You
send or receive values on a channel with the left arrow operator (<-).

To send a value, point the arrow toward the channel expression, as if the arrow were
telling the value on the right to flow into the channel. The send operation will wait until
something (in another goroutine) tries to receive on the same channel. While it’s wait-
ing, the sender can’t do anything else, although all other goroutines will continue run-
ning freely (assuming they’re not waiting on channel operations too). The following
sends the value 99:

c <- 99

To receive a value from a channel, the arrow points away from the channel (it’s to the
left of the channel). In the following code, we receive a value from channel ¢ and assign
it to variable r. Similarly to sending on a channel, the receiver will wait until another
goroutine tries to send on the same channel:

r := <-C

NOTE Although it's common to use a channel receive operation on its own line, that's not

required. The channel receive operation can be used anywhere any other expression can be

used.
The code in listing 30.4 makes a channel and passes it to five sleepy gopher goroutines.
Then it waits to receive five messages, one for each goroutine that’s been started. Each
goroutine sleeps and then sends a value identifying itself. When execution reaches the
end of the main function, we know for sure that all the gophers will have finished sleep-
ing, and it can return without disturbing any gopher’s sleep. For example, say we have a
program that saves the results of some number-crunching computation to online stor-
age. It might save several things at the same time, and we don’t want to quit before all
the results have been successfully saved.

Listing 30.4

func main() {

¢ := make(chan int) \ Makes the channel to

for i :=0; i <5; i++ { communicate over
go sleepyGopher(i, c)

Channels 259

}
for i :=0; i < 5; i++ { Receives a value from
gopherID := <-c a channel
fmt.Println("gopher ", gopherID, " has finished sleeping")
}
} Declares the channel

func sleepyGopher(id int, c chan int) { <~ as an argument
time.Sleep(3 * time.Second)

fmt.Println("... ", id, " snore ...")
¢ < id \ Sends a value
} back to main

The square boxes in figure 30.1 represent goroutines, and the circle represents a chan-
nel. A link from a goroutine to a channel is labeled with the name of the variable that
refers to the channel; the arrow direction represents the way the goroutine is using the
channel. When an arrow points towards a goroutine, the goroutine is reading from the

channel.

sleepyGopher
A
e N\
id=0 id=1 id=2 id=3 id=4
C (4 [o] C [

[
. Figure 30.1 How the

main

gophers look together

‘“""“““““"‘“““““““““““““““\

e
< Quick check 30.3

: 1 What statement would you use to send the string "hello world" on a channel named c?
\ 2 How would you receive that value and assign it to a variable?
A\

\““"""‘“““"""‘“““““““““““““

\

\

\
»

‘CAaa N NN NN NSNS SN N NSNS S SN NN NN S NN NN NN SRS RN NSRS SRR RSRRCRRRRRTRTRRRRRNN

QC 30.3 answer

1 ¢ <- "hello world"
2 v =<-C

260 Lesson 30 Goroutines and concurrency

30.4 Channel surfing with select

In the preceding example, we used a single channel to wait for many goroutines. That

works well when all the goroutines are producing the same type of value, but that’s not
always the case. Often we’ll want to wait for two or more different kinds of values.

One example of this is when we’re waiting for some values over a channel but we want
to avoid waiting too long. Perhaps we're a little impatient with our sleepy gophers, and
our patience runs out after a time. Or we may want to time out a network request after a
few seconds rather than several minutes.

Fortunately, the Go standard library provides a nice function, time.After, to help. It
returns a channel that receives a value after some time has passed (the goroutine that
sends the value is part of the Go runtime).

We want to continue receiving values from the sleepy gophers until either they’ve all
finished sleeping or our patience runs out. That means we need to wait on both the
timer channel and the other channel at the same time. The select statement allows us to
do this.

The select statement looks like the switch statement covered in lesson 3. Each case inside
a select holds a channel receive or send. select waits until one case is ready and then
runs it and its associated case statement. It's as if select is looking at both channels at
once and takes action when it sees something happen on either of them.

The following listing uses time.After to make a timeout channel and then uses select to
wait for the channel from the sleepy gophers and the timeout channel.

Listing 30.5
timeout := time.After(2 * time.Second)
for i :=0; 1 <5; i++ {

The select statement
select { «—

Waits for a gopher to wake u
— gop P

case gopherlID := <-c: <
fmt.Println("gopher ", gopherID, " has finished sleeping")
case <-timeout: <—
. " . " Waits for time
fmt.Println("my patience ran out") to Fun out
return <
] N~ Gives up and returns

Channel surfing with select 261

TIP When there are no cases in the select statement, it will wait forever. That might be
useful to stop the main function returning when you've started some goroutines that you
want to leave running indefinitely.
This isn’t very interesting when all the gophers are sleeping for exactly three seconds,
because our patience always runs out before any gophers wake up. The gophers in the
next listing sleep for a random amount of time. When you run this, you'll find that some
gophers wake up in time, but others don’t.

Listing 30.6

func sleepyGopher(id int, ¢ chan int) {
time.Sleep(time.Duration(rand.Intn(4000)) * time.Millisecond)

c <- id
}

TIP This pattern is useful whenever you want to limit the amount of time spent doing
something. By putting the action inside a goroutine and sending on a channel when it com-
pletes, anything in Go can be timed out.
NOTE Although we've stopped waiting for the goroutines, if we haven't returned from the
main function, they'll still be sitting around using up memory. It's good practice to tell them to
finish, if possible.

()

Nil channels do nothing

Because you need to create channels explicitly with make, you may wonder what happens
if you use channel values that haven’t been “made.” As with maps, slices, and pointers,
channels can be nil. In fact, nil is their default zero value.

If you try to use a nil channel, it won't panic—instead, the operation (send or receive] will
block forever, like a channel that nothing ever receives from or sends to. The exception
to this is close (covered later in this lesson). If you try to close a nil channel, it will panic.

At first glance, that may not seem very useful, but it can be surprisingly helpful. Consider
a loop containing a select statement. VWe may not want to wait for all the channels men-
tioned in the select every time through the loop. For example, we might only try to send
on a channel when we have a value ready to send. We can do that by using a channel
variable that's only non-nil when we want to send a value.

J

So far, all has been well. When our main function received on the channel, it found a
gopher sending a value on the channel. But what would happen if we accidentally tried
to read when there were no goroutines left to send? Or if we tried to send on a channel
instead of receive?

262 Lesson 30 Goroutines and concurrency

“"""‘“"""""‘“""‘“““““““““““\\
J Quick check 30.4
: 1 What kind of value does time.After return?
\ 2 What happens if you send or receive on a nil channel?
\ 3 What does each case in a select statement have in it?

v T

*
\\“

Sx -
30.5 Blocking and deadlock

When a goroutine is waiting to send or receive on a channel, we say that it’s blocked. This

might sound the same as if we’d written some code with a loop that spins around for-
ever doing nothing, and on the face of it they look exactly the same. But if you run an
infinite loop in a program on your laptop, you may find that the fan starts to whir and
the computer gets hot because it's doing a lot of work. By contrast, a blocked goroutine
takes no resources (other than a small amount of memory used by the goroutine itself).
It’s parked itself quietly, waiting for whatever is blocking it to stop blocking it.

When one or more goroutines end up blocked for something that can never happen, it’s
called deadlock, and your program will generally crash or hang up. Deadlocks can be
caused by something as simple as this:

func main() {
¢ := make(chan int)
<-c

}

In large programs, deadlocks can involve an intricate series of dependencies between
goroutines.

Although theoretically hard to guard against, in practice, by sticking to a few simple
guidelines (covered soon), it's not hard to make deadlock-free programs. When you do
find a deadlock, Go can show you the state of all the goroutines, so it’s often easy to find
out what’s going on.

aasa NN N TN N S " """ """ "N NN """ """ "“"“"“"“"“"“"“"“"“"“"“"“"“"“"“"“““T“N“““““““““T“"““T™“.C8-“".CT“"-
QC 30.4 answer

1 A channel.

2 It will block forever.

3 A channel operation.

A gopher assembly line 263

“\\

\ Quick check 30.5 What does a blocked goroutine do? N

<
AN S S S O O O A A S A SN S N N A A N N N N A N S N N A NN NN SN SN N N NSNS SNSNSNSNNNN,

30.6 A gopher assembly line

R
SN

So far, our gophers have been pretty sleepy. They just sleep for a while and then wake
up and send a single value on their channel. But not all gophers in this factory are like
that. Some are industriously working on an assembly line, receiving an item from a
gopher earlier in the line, doing some work on it, then sending it on to the next gopher
in the line. Although the work done by each gopher is simple, the assembly line can pro-
duce surprisingly sophisticated results.

This technique, known as a pipeline, is useful for processing large streams of data without
using large quantities of memory. Although each goroutine might hold only a single value
at a time, it may process millions of values over time. A pipeline is also useful because you
can use it as a “thought tool” to help solve some kinds of problems more easily.

We already have all the tools we need to assemble goroutines into a pipeline. Go values
flow down the pipeline, handed from one goroutine to the next. A worker in the pipe-
line repeatedly receives a value from its upstream neighbor, does something with it, and
sends the result downstream.

Let’s build an assembly line of workers that process string values. The gopher at the
start of the assembly line is shown in listing 30.7 —the source of the stream. This gopher
doesn’t read values, but only sends them. In another program, this might involve read-
ing data from a file, a database, or the network, but here we'll just send a few arbitrary
values. To tell the downstream gophers that there are no more values, the source sends a
sentinel value, the empty string, to indicate when it’s done.

Listing 30.7

func sourceGopher(downstream chan string) {
for _, v := range []string{"hello world", "a bad apple", "goodbye all"}

downstream <- v

}

downstream <-

AS S S S S O A O O O S S A A S O SN N SN S N S AN N A N N SN N NN NSNS SN SN SN SNSNSNSSSNSNSNSSNSESNNN

QC 30.5 answer It does nothing at all.

264 Goroutines and concurrency

The gopher in listing 30.8 filters out anything bad from the assembly line. It reads an item
from its upstream channel and only sends it on the downstream channel if the value
doesn’t have the string "bad" in it. When it sees the final empty string, the filter gopher
quits, making sure to send the empty string to the next gopher down the line too.

Listing 30.8

func filterGopher(upstream, downstream chan string) {

for {
item := <-upstream
if item = "" {
downstream <-

return

}

if Istrings.Contains(item, "bad") {
downstream <- item

}

The gopher that sits at the end of the assembly line—the print gopher —is shown in list-
ing 30.9. This gopher doesn’t have anything downstream. In another program, it might
save the results to a file or a database, or print a summary of the values it’s seen. Here
the print gopher prints all the values it sees.

Listing 30.9

func printGopher(upstream chan string) {
for {

vV = <-upstream
lf Vv == nn {
return

}

fmt.Println(v)

}

Let’s put our gopher workers together. We’ve got three stages in the pipeline (source, fil-
ter, print) but only two channels. We don’t need to start a new goroutine for the last

gopher because we want to wait for it to finish before exiting the whole program. When
the printGopher function returns, we know that the two other goroutines have done their

A gopher assembly line 265

work, and we can return from main, finishing the whole program, as shown in the fol-
lowing listing and illustrated in figure 30.2.

Listing 30.10

func main() {
c0 := make(chan string)

cl := make(chan string)
go sourceGopher(c0)

go filterGopher(c0, c1)
printGopher(c1)

upstream downstream) upstream downstream .
sourceGopher 4>O—> filterGopher 4>O—> printGopher

Figure 30.2 Gopher pipeline

There’s an issue with the pipeline code we have so far. We're using the empty string a
way to signify that there aren’t any more values to process, but what if we want to pro-
cess an empty string as if it were any other value? Instead of strings, we could send a
struct value containing both the string we want and a Boolean field saying whether it’s
the last value.

But there’s a better way. Go lets us close a channel to signify that no more values will be
sent, like so:

close(c)

When a channel is closed, you can’t write any more values to it (you’ll get a panic if you
try), and any read will return immediately with the zero value for the type (the empty
string in this case).

NOTE Be careful! If you read from a closed channel in a loop without checking whether it's

closed, the loop will spin forever, burning lots of CPU time. Make sure you know which chan-
nels may be closed and check accordingly.

How do we tell whether the channel has been closed? Like this:

When we assign the result to two variables, the second variable will tell us whether
we’ve successfully read from the channel. It’s false when the channel has been closed.

266 Lesson 30 Goroutines and concurrency

With these new tools, we can easily close down the whole pipeline. The following listing
shows the source goroutine at the head of the pipeline.

Assembly: pipeline2.go

func sourceGopher (downstream chan string) {
for _, v := range []string{"hello world", "a bad apple", "goodbye all"}

- {
downstream <- v

}

close(downstream)

}

The next listing shows how the filter goroutine now looks.

Assembly: pipeline2.go

func filterGopher(upstream, downstream chan string) {

for {
item, ok := <-upstream
if lok {
close(downstream)
return
}

if Istrings.Contains(item, "bad") {
downstream <- item

}

This pattern of reading from a channel until it’s closed is common enough that Go pro-
vides a shortcut. If we use a channel in a range statement, it will read values from the
channel until the channel is closed.

This means our code can be rewritten more simply with a range loop. The following list-
ing accomplishes the same thing as before.

Assembly: pipeline2.go

func filterGopher(upstream, downstream chan string) {
for item := range upstream {

if Istrings.Contains(item, "bad") {

Summary 267

downstream <- item

}

close(downstream)
}

The final gopher on the assembly line reads all the messages and prints one after
another, as shown in the next listing.

Assembly: pipeline2.go

func printGopher(upstream chan string) {
for v := range upstream {

fmt.Println(v)

1SS A AN LR AN LNL NN NN NL NN LA LN NN ... NN\ NN\ N

Quick check 30.6

4
4
\
\ 1 What value do you see when you read from a closed channel?
\ 2 How do you check whether a channel has been closed?

*

* /
Cors

\““"‘“““““"‘““““““““““““““‘“

()
S Summary

.‘I
=

= The go statement starts a new goroutine, running concurrently.

= Channels are used to send values between goroutines.

= A channel is created with make(chan string).

= The <- operator receives from a channel (when used before a channel value).

= The <- operator sends to a channel (when placed between the channel value and
the value to be sent).

= The close function closes a channel.

» The range statement reads all the values from a channel until it’s closed.

LS A A O O OO OV VLN LN LL LAV L. LA\ N N\]
QC 30.6 answer
1 The zero value for the channel’s type.
2 Use a two-valued assignment statement:
v, ok := <-c

268 Goroutines and concurrency

Let’s see if you got this...

Experiment: remove-identical.go

It’s boring to see the same line repeated over and over again. Write a pipeline element (a
goroutine) that remembers the previous value and only sends the value to the next stage
of the pipeline if it’s different from the one that came before. To make things a little sim-
pler, you may assume that the first value is never the empty string.

Experiment: split-words.go

Sometimes it’s easier to operate on words than on sentences. Write a pipeline element
that takes strings, splits them up into words (you can use the Fields function from the
strings package), and sends all the words, one by one, to the next pipeline stage.

LESSON

CONCURRENT STATE

After reading lesson 31, you'll be able to

= Keep state safe
= Use mutexes and reply channels

= Employ service loops

Here we are back in the gopher factory. The busy gophers are still building things, but
several of the production lines are running low on stock, so they need to order more.

Unfortunately, this is an old-fashioned factory that only has a single shared phone land-
line to the outside world. All the production lines have their own handset, though. A
gopher picks up the phone to place an order, but as she starts speaking, another gopher
picks up another handset and starts dialing, interfering with the first gopher. Then
another does the same thing and they all get very confused and none of them manage to
place any order at all. If only they could agree to use the phone one at time!

Shared values in a Go programs are a bit like this shared phone. If two or more gorou-
tines try to use a shared value at the same time, things can go wrong. It might turn out
okay. Perhaps no two gophers will ever try to use the phone at the same time. But things
can go wrong in all kinds of ways.

269

270 Concurrent state

Perhaps two gophers talking at the same time confuse the seller at the other end of the
line, and they end up ordering the wrong things, or the wrong quantity of things, or
something else about the order goes wrong. There’s no way to know —all bets are off.

That's the problem with shared Go values. Unless we explicitly know that it’s okay to
use the specific kind of value in question concurrently, we must assume that it’s not
okay. This kind of situation is known as a race condition because it’s as if the goroutines
are racing to use the value.

NOTE The Go compiler includes functionality that tries to find race conditions in your
code. It's well worth using, and it's always worth fixing your code if it reports a race. See
golang.org/doc/ articles/ race_detector.ntml.

NOTE It's okay if two goroutines read from the same thing at the same time, but if you
read or write at the same time as another write, you'll get undefined behavior.

‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIllllllllllllllllllllllllll

>

Consider this Say we have a bunch of goroutines working away, crawling the web
and scraping web pages. We might want to keep track of which web pages have
already been visited. Let's say we want to keep track of the number of web links to each
page (Google does something similar to this in order to rank web pages in its search
results).

It seems like we could use a map shared between the goroutines that holds the link
count for each web page. When a goroutine processes a web page, it would increment
the entry in the map for that page.

However, doing that is a mistake because all the goroutines are updating the map at
the same time, and that produces race conditions. \We need some way of getting
around that. Enter mutexes.

¥ I NI EREERREREEREREREREERRERER Iy
YpprrrEEEEEEEEEEEEEEEEEENOENS

4ppsssEEEEEEEEEEEEEEEEEEEEEREEREEREEREEREERERERERERERERERERERERRERROERRORONUORS

Sx
31.1 Mutexes

Back in the gopher factory, one clever gopher has a bright idea. She puts a glass jar in the

middle of the factory floor that holds a single metal token. When a gopher needs to use
the phone, they take the token out of the jar and keep it until the phone call has finished.
Then they return the token to the jar. If there’s no token in the jar when a gopher wants
to make a call, they have to wait until the token is returned.

Mutexes 271

Note that there’s nothing that
physically stops a gopher from

/1]

using the phone without taking
the token. But if they do, there may
be unintended consequences from
two gophers talking over one

another on the phone. Also, con-
sider what happens if the gopher

with the token forgets to return it:

no other gopher will be able to use
the phone until they remember to

return it.

In a Go program, the equivalent of

that glass jar is called a mutex. The word mutex is short for mutual exclusion. Goroutines

can use a mutex to exclude each other from doing something at the same time. The some-
thing in question is up to the programmer to decide. Like the jar in the factory, the only
“mutual exclusion” properties of a mutex come from the fact that we’re careful to use it
whenever we access the thing we’re guarding with it.

Mutexes have two methods: Lock and Unlock. Calling Lock is like taking the token from the
jar. We put the token back in the jar by calling Unlock. If any goroutine calls Lock while the
mutex is locked, it'll wait until it's unlocked before locking it again.

To use the mutex properly, we need to make sure that any code accessing the shared val-
ues locks the mutex first, does whatever it needs to, then unlocks the mutex. If any code
doesn’t follow this pattern, we can end up with a race condition. Because of this,
mutexes are almost always kept internal to a package. The package knows what things
the mutex guards, but the Lock and Unlock calls are nicely hidden behind methods or
functions.

Unlike channels, Go mutexes aren’t built into the language itself. Rather, they’re available
in the sync package. Listing 31.1 is a complete program that locks and unlocks a global
mutex value. We don’t need to initialize the mutex before using it—the zero value is an
unlocked mutex.

The defer keyword introduced in lesson 28 can help with mutexes too. Even if there are
many lines of code in a function, the Unlock call stays next to the Lock call.

272 Lesson 31 Concurrent state

Locking and unlocking a mutex: mutex.go

package main Imports the
import "sync" < Sync package

var mu sync.Mutex <+—— Declares the mutex

func main() { Locks the mutex
mu.Lock () / Unlocks the mutex
defer mu.Unlock() / before returning

// The lock is held until we return from the function.

NOTE The defer statement is particularly useful when there are multiple return state-
ments. Without defer, we’'d need a call to Unlock just before every return statement, and it
would be very easy to forget one of those.
Let’s implement a type that a web crawler can use to keep track of link counts to visited
web pages. We'll store a map holding the URL of the web page and guard it with a
mutex. The sync.Mutex in listing 31.2 is a member of a struct type, a very common pattern.

TIP It's good practice to keep a mutex definition immediately above the variables that it's
guarding, and include a comment so the association is clear.

Page reference map: scrape.go

// Visited tracks whether web pages have been visited.
// Its methods may be used concurrently from multiple goroutines.

type Visited struct {
// mu guards the visited map. Declare a mutex
mu sync.Mutex /

visited map[stringlint Declare a map from
1 URL (string) keys to
integer values

NOTE In Go, you should assume that no method is safe to use concurrently unless it's
explicitly documented, as we've done here.

The code in the next listing defines a VisitLink method to be called when a link has been
encountered; it returns the number of times that link has been encountered before.

Wisit link: scrape.go

// Visitlink tracks that the page with the given URL has
// been visited, and returns the updated link count.

Mutexes 273

func (v *Visited) VisitLink(url string) int {

v.mu.Lock() < Locks the mutex

<
defer v.mu.Unlock() Ensures that the
count := v.visited[url] mutex is unlocked
count++

v.visited[url] = count 4\
return count Updates the map

}

The Go playground isn’t a good place to experiment with race conditions because it’s
kept deliberately deterministic and race-free. But you can experiment by inserting calls
to time.Sleep between statements.

Try modifying listing 31.3 to use the techniques introduced at the beginning of lesson 30
to start several goroutines that all call VisitLink with different values and experiment
with inserting Sleep statements in different places. Also try deleting the Lock and Unlock
calls to see what happens.

With a small and well-defined piece of state to guard, a mutex is quite straightforward
to use and is an essential tool when writing methods that you want to be usable from
multiple goroutines at once.

"\""""""""""""“““““““““““‘\

' Quick check 31.1

1 What might happen if two goroutines try to change the same value at the same time?
2 What happens if you try to lock the mutex again before unlocking it?

3 What happens if you unlock it without locking it?

4 |s it safe to call methods on the same type from different goroutines at the same time?

ST T,y

., /
"””’

\\“

31.1.1 Mutex pitfalls

In listing 31.2, when the mutex is locked, we only do a very simple thing: we update a
map. The more we do while the lock is held, the more we need to be careful. If we block
to wait for something when we’ve locked the mutex, we may be locking others out for a

AS S S O S S SO S SO O A SN S S S A N SN SN S S S S NN SN SN NS S N NSNS SN S NN NSNS SNSNSNSNSNSNSNSNSNNN]

QC 31.1 answer
1 It’s undefined. The program may crash or anything else may happen.
2 It will block forever.
3 It will panic: unlock of unlocked mutex.
4 No, not unless specifically documented as such.

274 Lesson 31 Concurrent state

long time. Worse, if we somehow try to lock the same mutex, we’ll deadlock—the Lock call
will block forever because we’re never going to give up the lock while we’re waiting to
acquire it!

To keep on the safe side, follow these guidelines:

= Try to keep the code within the mutex simple.

= Only have one mutex for a given piece of shared state.

A mutex is good to use for simple shared state, but it's not uncommon to want some-
thing more. In the gopher factory of lesson 30, we might want gophers that act inde-
pendently, responding to requests from other gophers but also doing their own thing
over time. Unlike the gophers on the assembly line, gophers like this don’t respond
entirely to messages from other gophers, but can decide to do things on their own
behalf.

NS S S SO SO A S S S S A A A S S S S S AN S A S SN NS S NSNS SN S SSNSSSNSNSNSNSNSSNSNSNSNN

! Quick check 31.2 What are two potential problems with locking a mutex? N

&
AN S S S A O O A A S A S O N N SN A N N N N S N S N N AN N NN NN SN N N NN SN SNSNNSNSNSNSNNNN,

(2 31.2 Long-lived workers

< 903
5|

R
SO

Consider the task of driving a rover around the surface of Mars. The software on the
Curiosity Mars rover is structured as a set of independent modules that communicate
by passing each other messages (see mng.bz/Z7Xa), much like Go’s goroutines.

The rover’s modules are responsible for different aspects of the rover’s behavior. Let’s
try to write some Go code that drives a (highly simplified) rover around a virtual Mars.
Because we don’t have a real engine to drive, we’ll make do by updating a variable that
holds the coordinates of the rover. We want the rover to be controllable from Earth, so it
needs to be responsive to external commands.

NOTE The code structure we're building here can be used for any kind of long-lived task

that does things independently, such as a website poller or a hardware device controller.
To drive the rover, we'll start a goroutine that will be responsible for controlling its posi-
tion. The goroutine is started when the rover software starts and stays around until it’s

RS S S SO SO S S S SO O O A S S S A O A A S S A A A A NSNS S A SN NSNS S CNSNSSSESSCNSNSNSNSSSENNY

OC 31.2 answer It might block other goroutines that are also trying to lock the mutex; it could lead
to deadlock.

Long-lived workers 275

shut down. Because it stays around and operates independently, we’ll call this gorou-
tine a worker.

A worker is often written as a for loop containing a select statement. The loop runs for as
long as the worker is alive; the select waits for something of interest to happen. In this
case, the “something of interest” might be a command from outside. Remember,
although the worker is operating independently, we still want to be able to control it. Or
it could be a timer event telling the worker that it's time to move the rover.

Here’s a skeleton worker function that does nothing:

func worker() {

for {
select {
// Wait for channels here.
1

1

}

We can start such a worker exactly as we’ve started goroutines in previous examples:

go worker ()

Event loops and goroutines

Some other programming languages use an event loop —a central loop that waits for
events and calls registered functions when they occur. By providing goroutines as a core
concept, Go avoids the need for a central event loop. Any worker goroutine can be con-
sidered an event loop in its own right.

We want our Mars rover to update its position periodically. For this, we want the worker
goroutine that’s driving it to wake up every so often to do the update. We can use
time.After for this (discussed in lesson 30), which provides a channel that will receive a
value after a given duration.

The worker in listing 31.4 prints a value every second. For the time being, instead of
updating a position, we just increment a number. When we receive a timer event, we
call After again so that the next time around the loop, we’ll be waiting on a fresh timer
channel.

276 Lesson 31 Concurrent state

Number printing worker: printworker.go

func worker() {

n:=0 Makes initial
next := time.After(time.Second) <—/ timer channel
for {
select { Waits for the
case <-next: <« timer to fire
N++
fmt.Println(n) <——— Prints the number
next = time.After(time.Second) 4-\ Makes another timer
1 channel for another
] event

NOTE \We don't need to use a select statement in this example. A select with only one

case is the same as using the channel operation on its own. But we're using select here

because later in this lesson, we'll change the code to wait for more than just a timer. Other-

wise, we could avoid the After call entirely and use time.Sleep.
Now that we’ve got a worker that can act of its own accord, let’s make it a little more
rover-like by updating a position instead of a number. Conveniently, Go’s image package
provides a Point type that we can use to represent the rover’s current position and direc-
tion. A Point is a structure holding X and Y coordinates with appropriate methods. For
example, the Add method adds one point to another.

Let’s use the X axis to represent east-west and the Y axis to represent north-south. To use
Point, we must first import the image package:

import "image"

Every time we receive a value on the timer channel, we add the point representing the
current direction to the current position, as shown in the next listing. Right now, the
rover will always start at the same place [10, 10] and proceed East, but we’ll address that
shortly.

Position updating worker: positionworker.go

func worker() { The current position
pos := image.Point{X: 10, Y: 10} <« (initially [10, 101])

direction := image.Point{X: 1, Y: 0} “~_ The current direction
next := time.After(time.Second) (initially [1, O],
for { traveling east)

Long-lived workers 277

select {
case <-next:
pos = pos.Add(direction) Prints the
fmt.Println("current position is ", pos) 4—//’ current
. . position
next = time.After(time.Second)

}

It’s not much good if a Mars rover can only move in a straight line. We’d like to be able
to control the rover to make it go in different directions, or stop it, or make it go faster.
We'll need another channel we can use to send commands to the worker. When the
worker receives a value on the command channel, it can act on the command. In Go, it’s
usual to hide channels like this behind methods because channels are considered an
implementation detail.

The RoverDriver type in the following listing holds the channel that we’ll use to send com-
mands to the worker. We’ll use a conmand type that will hold the commands sent.

RoverDriver type: rover.go

// RoverDriver drives a rover around the surface of Mars.
type RoverDriver struct {

commandc chan command

}

We can wrap the logic that creates the channel and starts the worker inside a NewRover-
Driver function, shown in the next listing. We're going to define a drive method to imple-
ment our worker logic. Although it's a method, it will function the same as the worker
functions from earlier in this chapter. As a method, it has access to any values in the
RoverDriver structure.

Create: rover.go

func NewRoverDriver() *RoverDriver {
I := 8RoverDriver{

commandc: make(chan command),
}
go r.drive()
return r

278 Lesson 31 Concurrent state

Now we need to decide which commands we’d like to be able to send the rover. To keep
things simple, let’s only allow two commands: “turn 90° left” and “turn 90° right,” as
shown in the following listing.

Command type: rover.go

type command int

const (
right = command(0)
left = command(1)

NOTE A channel can be any Go type; the command type could be a struct type holding

arbitrarily complex commands.
Now that we’ve defined the RoverDriver type and a function to create an instance of it, we
need the drive method (the worker that will control the rover), which listing 31.9 pro-
vides. It’s almost the the same as the position updater worker we saw earlier except that
it waits on the command channel too. When it receives a command, it decides what to
do by switching on the command value. To see what’s going on, we log changes as they
happen.

RoverDriver worker: rover.go

// drive is responsible for driving the rover. It
// 1is expected to be started in a goroutine.

func (r *RoverDriver) drive() {
pos := image.Point{X: 0, Y: 0}
direction := image.Point{X: 1, Y: 0}
updateInterval := 250 * time.Millisecond
nextMove := time.After(updatelnterval)
for {

select { Waits for commands
on the command

case ¢ := <-r.commandc: < channel

switch ¢ {
case right: <«— Turns right
direction = image.Point{
X: -direction.Y,
Y: direction.X,

Long-lived workers 279

case left: <

Turns left
direction = image.Point{

X: direction.Y,

Y: -direction.X,

}

log.Printf("new direction %v", direction)
case <-nextMove:

pos = pos.Add(direction)

log.Printf("moved to %v", pos)

nextMove = time.After(updatelnterval)

}

Now we can complete the RoverDriver type by adding methods to control the rover, as
shown in listing 31.10. We'll declare two methods, one for each command. Each method
sends the correct command on the commande channel. For example, if we call the Left
method, it will send a left command value, which the worker will receive and change
the direction of the worker.

NOTE Although these methods are controlling the direction of the rover, they don't have
direct access to the direction value, so there’s no danger that they can change it concur-
rently and risk a race condition. This means we don’t need a mutex, because channels allow
communication with the rover’s goroutine without changing any of its values directly.

Listing 31.10

// Left turns the rover left (90° counterclockwise).
func (r *RoverDriver) Left() {

r.commandc <- left

}

// Right turns the rover right (90° clockwise).
func (r *RoverDriver) Right() {
r.commandc <- right

}

Now that we have a fully functional RoverDriver type, listing 31.11 creates a rover and
sends it some commands. It's now free to rove!

280 Lesson 31 Concurrent state

Let it go!: rover.go

func main() {
r := NewRoverDriver()

time.Sleep(3 * time.Second)
r.Left()
time.Sleep(3 * time.Second)
r.Right()
time.Sleep(3 * time.Second)

}

Try experimenting with the RoverDriver type by using different timings and sending dif-
ferent commands to it.

Although we’ve focused on one specific example here, this worker pattern can be useful
in many different situations where you need to have some long-lived goroutine con-
trolling something while remaining responsive to external control itself.

eSS RN NN NN NN RN RN SRR RS RN RSRNRS NSRS RNR RS RNRNRRNRRNRRNRRRRRRRRRRRRRYW

Quick check 31.3

1 What is used instead of an event loop in Go?

What Go standard library package provides a Point data type?

What Go statements might you use to implement a long-lived worker goroutine?
How are internal details of channel use hidden?

O
§
\
\
\
\
\
\
What Go values can be sent down a channel?

o b~

. /
VIV VIV IY4

A S S S S NS NS S NS SSSSSSSSSSSNSSSN 8

AN N NN NN NN NSNS NSNS NN NN NN N NN NN NN NS S S S S NSNS S SCN S S S S S CRCRTRTTTRTRTRTRTTRNNT

QC 31.3 answer

1 Aloop in a goroutine.

The image package.

The for statement and the select statement.
Behind method calls.

Any value can be sent down a channel.

a b wn

Summary 281

= Never access state from more than one goroutine at the same time unless it’s
explicitly marked as okay to do so.

= Use a mutex to make sure only one goroutine is accessing something at a time.

= Use a mutex to guard one piece of state only.

= Do as little as possible with the mutex held.

= You can write a long-lived goroutine as a worker with a select loop.

= Hide worker details behind methods.

Let’s see if you got this...

Experiment: positionworker.go

Using listing 31.5 as a starting point, change the code so that the delay time gets a half a
second longer with each move.

Experiment: rover.go

Using the RoverDriver type as a starting point, define Start and Stop methods and associ-
ated commands and make the rover obey them.

LESSON

CAPSTONE: LIFE ON MARS

32.1 A grid to rove on

R !
DA

Make a grid that the rover can drive around on by implementing a MarsGrid type. You'll
need to use a mutex to make it safe for use by multiple goroutines at once. It should look
something like the following:

// MarsGrid represents a grid of some of the surface
// of Mars. It may be used concurrently by different

// goroutines.

type MarsGrid struct {
// To be done.

1

// Occupy occupies a cell at the given point in the grid. It

// returns nil if the point is already occupied or the point is
// outside the grid. Otherwise it returns a value that can be
// used to move to different places on the grid.

func (g *MarsGrid) Occupy(p image.Point) *Occupier

// Occupier represents an occupied cell in the grid.
// 1t may be used concurrently by different goroutines.
type Occupier struct {

282

Reporting discoveries 283

// To be done.
}

// Move moves the occupier to a different cell in the grid.

// 1t reports whether the move was successful

// 1t might fail because it was trying to move outside

// the grid or because the cell it's trying to move into

// is occupied. If it fails, the occupier remains in the same place.
func (g *Occupier) Move(p image.Point) bool

Now change the rover example from lesson 31 so that instead of only updating its coor-
dinates locally, the rover uses a MarsGrid object passed into the NewRoverDriver function. If it
hits the edge of the grid or an obstacle, it should turn and go in another random direction.

=L

—

Now you can start several rovers by calling NewRoverDriver and see them drive around
together on the grid.

=l 32.2 Reporting discoveries

f-\=ﬂ

We want to find life on Mars, so we’ll send several rovers down to search for it, but we
need to know when life is found. In every cell in the grid, assign some likelihood of life,
a random number between 0 and 1000. If a rover finds a cell with a life value above 900,
it may have found life and it must send a radio message back to Earth.

Unfortunately, it's not always possible to send a message immediately because the relay
satellite is not always above the horizon. Implement a buffer goroutine that receives

284 Capstone: Life on Mars

messages sent from the rover and buffers them into a slice until they can be sent back to
Earth.

Implement Earth as a goroutine that receives messages only occasionally (in reality for a
couple of hours every day, but you might want to make the interval a little shorter than
that). Each message should contain the coordinates of the cell where the life might have
been found, and the life value itself.

You may also want to give a name to each of your rovers and include that in the mes-
sage so you can see which rover sent it. It's also helpful to include the name in the log
messages printed by the rovers so you can track the progress of each one.

Set your rovers free to search and see what they come up with!

WHERE TO GO FROM HERE

This concludes Get Programming with Go, but it’s not the end of your journey. We hope your

mind is full of ideas and a desire to keep learning and building. Thanks for joining us.

Under the radar

Gois a relatively small language, and you've already learned most of it. There are a few

edges that Get Programming with Go doesn’t cover in this edition:

It doesn’t cover declaring sequential constants with the handy iota identifier.

It doesn’t mention bit shifting (<< and >>) and bitwise operators (& and |).

Lesson 3 covers loops but skips the continue keyword and jumps over the goto key-
word and labels.

Lesson 4 covers scope but not shadow variables—those shadowy characters.
Lessons 6 through 8 crunch floating-point, integer, and big numbers but not com-
plex or imaginary numbers.

Lesson 12 shows the return keyword, but not bare returns —modesty is a virtue.
Lesson 12 mentions the empty interface{}, but only briefly.

Lesson 13 introduces methods but not method values.

285

286 Conclusion Where to Go from here

= Lesson 28 mentions type assertions but not type switches.

= Lesson 30 doesn’t mention directional channels.

= [t doesn’t explain initialization with init, a special function like main.

=]t doesn’t detail every built-in function, such as new for pointers and copy for slices
(see golang.org/pkg/builtin/).

=]t doesn’t demonstrate writing new packages to organize code or to share with
others.

Beyond the playground

If you're new to computer programming, you may have appreciated the web-based Go
Playground, but the playground has some limitations.

To break free of the Playground constraints and build the next cool thing, you’ll need to
install Go on your computer (see golang.org/dl/). Launching the terminal or command

prompt is a bit like hopping into a time machine. Learn to navigate your computer and
run programs like it’s 1995!

You’ll also need a text editor. The authors of this book use Sublime Text and Acme, but
there are many editors with good support for Go (see golang.org/doc/editors.html).
Sooner or later, you'll want a version control tool like git—which is a time machine,
though only for code and other files.

And much more

Go is much more than a programming language. There’s a rich ecosystem of tools and
libraries to be discovered.

Everything you need for automated testing, debugging, benchmarking, and much more
is available. The standard library has many more packages to explore, and if you run
out, the community of gophers has been busy making a huge assortment of third-party
packages for any need (see godoc.org).

There are many online resources (see golang.org/wiki) to help you continue your jour-
ney, and dozens of gopher-friendly books, including Go in Practice, Go Web Programming,
and Go in Action (see golang.org/wiki/Books).

There’s always more to learn, so join in the fun! The Go community welcomes you.

Appendix

SOLUTIONS

This appendix provides our solutions for the end-of-lesson exercises and capstone proj-
ects. Please keep in mind that there is more than one solution for any problem.

NOTE You can download these solutions and the rest of the source code from the Man-
ning website at www.manning.com/books/ get-programming-with-go or browse the source
code online at github.com/ nathany/ get-programming-with-go.

Unit 0

Lesson 1

Experiment: playground.go

package main

import (
"t

)

func main() {
fmt.Println("Hello, Nathan")

288 Appendix Solutions

fmt.Println("fR&F Z A/IZ 5 (& 3apascTByiiTe hola")
}

Unit 1

Lesson 2

Experiment: malacandra.go

package main
import "fmt"

func main() {
const hoursPerDay = 24

var days = 28
var distance = 56000000 // km

fmt.Println(distance/(days*hoursPerDay), "km/h")

Lesson 3

Experiment: guess.go

package main

import (
n fmt "
"math/rand"
)

func main() {
var number = 42

for {
var n = rand.Intn(100) + 1
if n < number {
fmt.Printf("%v is too small.\n", n)
1 else if n > number {
fmt.Printf("%v is too big.\n", n)

Unit 1 289

1 else {
fmt.Printf("You got it! %v\n", n)
break
}
}
1
Lesson 4

Experiment: random-dates.go

package main

import (
1" fmt "
"math/rand"
)
var era = "AD"

func main() {
for count := 0; count < 10; count++ {
year := 2018 + rand.Intn(10)
leap := year%400 == 0 || (year%4 == 0 && year%100 != 0)
month := rand.Intn(12) + 1

daysInMonth := 31

switch month {

case 2:
daysInMonth = 28
if leap {

daysInMonth = 29

}

case 4, 6, 9, 11:
daysInMonth = 30

}

day := rand.Intn(daysInMonth) + 1
fmt.Println(era, year, month, day)

290 Appendix Solutions

Capstone 5

Experiment: tickets.go

package main

import (
n fmt "
"math/rand"

)
const secondsPerDay = 86400

func main() {
distance := 62100000

company :=
trip = ""
fmt.Println("Spaceline Days Trip type Price")
fmt.Println(" ")
for count := 0; count < 10; count++ {
switch rand.Intn(3) {
case 0:
company = "Space Adventures"
case 1:
company = "SpaceX"
case 2:
company = "Virgin Galactic"
}
speed := rand.Intn(15) + 16 // 16-30 km/s
duration := distance / speed / secondsPerDay // days
price := 20.0 + speed // millions

if rand.Intn(2) == 1 {
trip = "Round-trip"
price = price * 2

1 else {
trip = "One-way"

Unit 2 291

fmt.Printf("%-16v %4v %-10v S%4v\n", company, duration, trip, price)

}
Unit 2

Lesson 6

Experiment: piggy.go

package main

import (
"t
"math/rand"
)

func main() {
piggyBank := 0.0

for piggyBank < 20.00 {
switch rand.Intn(3) {
case 0:
piggyBank += 0.05

case 1:
piggyBank += 0.10

case 2:
piggyBank += 0.25

}

fmt.Printf("$%5.2f\n", piggyBank)

}
}
Lesson 7

Experiment: piggy.go

package main

import (
n fmt "

292 Appendix Solutions

"math/rand"

)

func main() {
piggyBank := 0

for piggyBank < 2000 {

switch rand.Intn(3) {
case 0:

piggyBank += 5
case 1:

piggyBank += 10
case 2:

piggyBank += 25
}

dollars := piggyBank / 100
cents := piggyBank % 100
fmt.Printf("$%d.%02d\n", dollars, cents)

Lesson 8

Experiment: canis.go
package main

import (
n fmt "

)

func main() {
const distance = 236000000000000000

const lightSpeed = 299792 Prints Canis Major Dwarf
Galaxy is 24962 light
const secondsPerDay = 86400 years away.

const daysPerYear = 365
const years = distance / lightSpeed / secondsPerDay / daysPerYear

fmt.Println("Canis Major Dwarf Galaxy is", years, "light years away.")

Unit 2 293

Lesson 9

Experiment: caesar.go

message := "L fdph, L vdz, L frgtxhuhg."

for i := 0; i < len(message); i++ {
c := message[i]
if c>= 'a'" & c <= 'z' {
c-=3
if c < 'a' {
c += 26
}
} else if ¢ >= 'A' && c <= 'Z' {
c-=3
if ¢ < 'A" |
c += 26
}
}

fmt.Printf("%c", c)

Experiment: international.go

message := "Hola Estacion Espacial Internacional"

for _, c := range message {
if c>='a' & c<="z' {

c=c+ 13
if¢c>'z" {
c=2c- 26
}
} else if c >= 'A" 8& c <= '7' {
c=c+ 13
ifc>'2" {
c=2c- 26
}

294 Appendix Solutions

fmt.Printf("%c", c)

Lesson 10

Experiment: input.go

yesNo := "1"
var launch bool

switch yesNo {
case "true", "yes", "1":
launch = true
case "false", "no", "0":
launch = false
default:
fmt.Println(yesNo, "is not valid")

J Prints Ready for
fmt.Println("Ready for launch:", launch) launch: true

Capstone 11

Experiment: decipher.go

cipherText := "CSOITEUIWUIZNSROCNKFD"
keyword := "GOLANG"

message :=

keyIndex := 0

for i :=0; i < len(cipherText); i++ {
// A=0, B=1, ... 7Z=25

cipherText[i] - 'A’
keyword[keyIndex] - 'A'

// cipher letter - key letter
c = (c-k+26)%26 + 'A’
message += string(c)

// increment keyIndex
keyIndex++

Unit 2 295

keyIndex %= len(keyword)
}

fmt.Println(message)

Experiment: cipher.go

message := "your message goes here"
keyword := "golang"
keyIndex := 0
cipherText := ""
message = strings.ToUpper(strings.Replace(message, " ", "", -1))
keyword = strings.ToUpper(strings.Replace(keyword, " ", "", -1))
for i :=0; i < len(message); i++ {
¢ := message[i]
if c>='A" 8& c <= '7' {
// A=0, B=1, ... Z=25
c -="A"

k := keyword[keyIndex] - 'A'

// cipher letter + key letter
c = (c+k)%26 + 'A'

// increment keyIndex
keyIndex++
keyIndex %= len(keyword)
1
cipherText += string(c)

}

fmt.Println(cipherText)

296 Appendix Solutions

Unit 3

Lesson 12

Experiment: functions.go

package main
import "fmt"

func kelvinToCelsius(k floaté4) floatés4 {
return k - 273.15

}

func celsiusToFahrenheit(c floaté4) floatés4 {
return (c * 9.0 / 5.0) + 32.0

}

func kelvinToFahrenheit(k floaté4) float6h {
return celsiusToFahrenheit(kelvinToCelsius(k))

}

func main() {
fmt.Printf("233° K is %.2f° C\n", kelvinToCelsius(233))
fmt.Printf("0° K is %.2f° F\n", kelvinToFahrenheit(0))

Lesson 13

Experiment: methods.go

package main
import "fmt"
type celsius float64

func (c celsius) fahrenheit() fahrenheit {
return fahrenheit((c * 9.0 / 5.0) + 32.0)
}

func (c celsius) kelvin() kelvin {
return kelvin(c + 273.15)

Unit 3

type fahrenheit floatés4

func (f fahrenheit) celsius() celsius {
return celsius((f - 32.0) * 5.0 / 9.0)
}

func (f fahrenheit) kelvin() kelvin {
return f.celsius().kelvin()

}
type kelvin float64

func (k kelvin) celsius() celsius {
return celsius(k - 273.15)

}

func (k kelvin) fahrenheit() fahrenheit {
return k.celsius().fahrenheit()

}

func main() {
var k kelvin = 294.0
c := k.celsius()
fmt.Print(k, "° K is ", c, "° C")

Lesson 14

297

Experiment: calibrate.go

package main

import (
"t
"math/rand"

)

type kelvin float64
type sensor func() kelvin

func fakeSensor() kelvin {
return kelvin(rand.Intn(151) + 150)

298 Appendix Solutions

func calibrate(s sensor, offset kelvin) sensor {
return func() kelvin {
return s() + offset

}

func main() {
var offset kelvin =5

sensor := calibrate(fakeSensor, offset)
for count := 0; count < 10; count++ {
fmt.Println(sensor())
}
}
Capstone 15

Experiment: tables.go

package main

import (
n fmt "

)

type celsius float6L

func (c celsius) fahrenheit() fahrenheit {
return fahrenheit((c * 9.0 / 5.0) + 32.0)
}

type fahrenheit floatés4

func (f fahrenheit) celsius() celsius {
return celsius((f - 32.0) * 5.0 / 9.0)

}

const (
line =" '
rowFormat ="| %8s | %8s |\n"

o 1f"

numberFormat

Unit 3 299

type getRowFn func(row int) (string, string)

// drawTable draws a two column table.
func drawTable(hdrl, hdr2 string, rows int, getRow getRowFn) {
fmt.Println(line)
fmt.Printf(rowFormat, hdrl, hdr2)
fmt.Println(line)
for row := 0; row < TOwS; Iow++ {
celll, cell2 := getRow(row)
fmt.Printf(rowFormat, celll, cell2)
}
fmt.Println(line)

}

func ctof(row int) (string, string) {
c := celsius(row*5 - 40)
f := c.fahrenheit()
celll := fmt.Sprintf(numberFormat, c)
cell2 := fmt.Sprintf(numberFormat, f)
return celll, cell2

}

func ftoc(row int) (string, string) {
f := fahrenheit(row*5 - 40)
c := f.celsius()
celll := fmt.Sprintf(numberFormat, f)
cell2 := fmt.Sprintf(numberFormat, c)
return celll, cell2

}

func main() {
drawTable("°C", "°F", 29, ctof)
fmt.Println()
drawTable("°F", "°C", 29, ftoc)

300 Appendix Solutions

Unit 4

Lesson 16

Experiment: chess.go

package main
import "fmt"

func display(board [8][8]rune) {
for _, row := range board {
for _, column := range row {
if column == 0 {
fmt.Print(" ")
} else {
fmt.Printf("%c ", column)

}

fmt.Println()

}

func main() {
var board [8][8]rune

// black pieces

board[0][0] = 'r'

board[0][1] = 'n'

board[0][2] = 'b'

board[0][3] = 'q"

board[0][4] = 'k'

board[0][5] = 'b'

board[0][6] = 'n'

board[0][7] = '’

// pauwns

for column := range board[1] {

board[1][column] = 'p
board[6][column] = 'P'

Unit 4 301

// white pieces

o
o
Q
=
a

—
~

i
o

=

|

Il
xZUUXC;UUZ:U

~
e e O
I

[7]
[7]
[7]
board[7]
[7]
[7]
[7]
display(board)

Lesson 17

Experiment: terraform.go

package main
import "fmt"

// Planets attaches methods to []string.
type Planets []string

func (planets Planets) terraform() {
for i := range planets {

planets[i] = "New " + planets[i]

}

func main() {
planets := []string{
"Mercury", "Venus", "Earth", "Mars",
"Jupiter", "Saturn", "Uranus", "Neptune",

}

Planets(planets[3:4]).terraform() Prints [Mercury Venus
Earth New Mars

Planets(planets[6:]).terraform() Jupiter Saturn New

fmt.Println(planets) Uranus New Neptune]

302 Appendix Solutions

Lesson 18

Experiment: capacity.go

s := []string{}
lastCap := cap(s)
for i := 0; i < 10000; i++ {
s = append(s, "An element")
if cap(s) != lastCap {
fmt.Println(cap(s))
lastCap = cap(s)

Lesson 19

Experiment: words.go

package main

import (
" fmt "
“strings”
)

func countWords(text string) map[stringlint {
words := strings.Fields(strings.TolLower (text))
frequency := make(map[string]lint, len(words))

for _, word := range words {
word = strings.Trim(word, ~.,"-")
frequency[word]++
1
return frequency
1
func main() {

text := "As far as eye could reach he saw nothing but the stems of the
great plants about him receding in the violet shade, and far overhead
the multiple transparency of huge leaves filtering the sunshine to the
solemn splendour of twilight in which he walked. Whenever he felt able

Unit 4 303

he ran again; the ground continued soft and springy, covered with the
same resilient weed which was the first thing his hands had touched in
Malacandra. Once or twice a small red creature scuttled across his
path, but otherwise there seemed to be no life stirring in the wood;
nothing to fear -- except the fact of wandering unprovisioned and alone
in a forest of unknown vegetation thousands or millions of miles

beyond the reach or knowledge of man."

frequency := countWords (text)
for word, count := range frequency {
if count > 1 {
fmt.Printf("%d %v\n", count, word)

Capstone 20

Experiment: life.go

package main

import (
“fmt"
"math/rand"
"time"

)

const (
width = 80
height = 15

)

// Universe is a two-dimensional field of cells.
type Universe [][]bool

// NewUniverse returns an empty universe.
func NewUniverse() Universe {
u := make(Universe, height)
for i := range u {
uli] = make([]bool, width)

304 Appendix Solutions

}

return u

}

// Seed random live cells into the universe.
func (u Universe) Seed() {
for i := 0; i < (width * height / 4); i++ {
u.Set(rand.Intn(width), rand.Intn(height), true)

}

// Set the state of the specified cell.

func (u Universe) Set(x, y int, b bool) {
ulyl[x] = b

}

// Alive reports whether the specified cell is alive.
// 1f the coordinates are outside of the universe, they wrap around.
func (u Universe) Alive(x, y int) bool {

x = (x + width) % width

y = (y + height) % height

return uly][x]

}

// Neighbors counts the adjacent cells that are alive.
func (u Universe) Neighbors(x, y int) int {
n:=0
for v := -1; v <= 1; v++ {
for h := -1; h <=1; h++ {
if (v ==108&& h == 0) & u.Alive(x+h, y+v) {
n++

}

return n

}

// Next returns the state of the specified cell at the next step.
func (u Universe) Next(x, y int) bool {
n := u.Neighbors(x, vy)

Unit 4 305

return n == 3 || n == 2 && u.Alive(x, vy)

}

// String returns the universe as a string.
func (u Universe) String() string {

var b byte

buf := make([]byte, 0, (width+1)*height)

for y := 0; y < height; y++ {
for x := 0; x < width; x++ {
b=t
if ulyllx] {
b

L

1
buf = append(buf, b)
1
buf = append(buf, '\n')
}

return string(buf)

}

// Show clears the screen and displays the universe.
func (u Universe) Show() {
fmt.Print("\x0c", u.String())

}

// Step updates the state of the next universe (b) from
// the current universe (a).
func Step(a, b Universe) {
for y := 0; y < height; y++ {
for x := 0; x < width; x++ {
b.Set(x, vy, a.Next(x, y))

}

func main() {
a, b := NewUniverse(), NewUniverse()
a.Seed()

308 Appendix Solutions

for i :=0; i < 300; i++ {
Step(a, b)
a.Show()
time.Sleep(time.Second / 30)
a, b =b, a// Swap universes

}
Unit 5

Lesson 21

Experiment: landing.go

type location struct {
Name string ~json:'"name""

Lat float64 " json:"latitude"’
Long float64 " json:"longitude""

}
locations := []location{
{Name: "Bradbury Landing", Lat: -4.5895, Long: 137..4417},
{Name: "Columbia Memorial Station", Lat: -14.5684, Long: 175.472636},
{Name: "Challenger Memorial Station", Lat: -1.9462, Long: 354.4734},
}
bytes, err := json.Marshallndent(locations, "", " ")
if err 1= nil {
fmt.Println(err)
0s.Exit(1)
}

fmt.Println(string(bytes))

Lesson 22

Experiment: landing.go

package main

import "fmt"

Unit 5 307

// location with a latitude, longitude.
type location struct {

lat, long floaté64
1

// coordinate in degrees, minutes, seconds in a N/S/E/W hemisphere.
type coordinate struct {

d, m, s floaté6sL

h rune

}

// newlLocation from latitude, longitude d/m/s coordinates.
func newlLocation(lat, long coordinate) location {
return location{lat.decimal(), long.decimal()}

}

// decimal converts a d/m/s coordinate to decimal degrees.
func (c coordinate) decimal() float64 {

sign := 1.0

switch c.h {

case 'S', 'W', 's', 'w':

sign = -1
}
return sign * (c.d + c.m/60 + c.s/3600)

}

func main() {

spirit := newlLocation(coordinate{l4, 34, 6.2, 'S'}, coordinate{175, 28,
21.5, 'E'})

opportunity := newlLocation(coordinate{1, 56, 46.3, 'S'}, coordinate{354,
28, 24.2, 'E'})

curiosity := newlLocation(coordinate{4, 35, 22.2, 'S'}, coordinate{137,
26, 30.12, 'E'})

insight := newlLocation(coordinate{4, 30, 0.0, 'N'}, coordinate{135, 54,
0, 'E'})

fmt.Println("Spirit", spirit)

fmt.Println("Opportunity", opportunity)

fmt.Println("Curiosity", curiosity)

fmt.Println("InSight", insight)

308 Appendix Solutions

Experiment: distance.go

package main

import (
-
"math”

)

// location with a latitude, longitude.
type location struct {
lat, long floaté4

}

// coordinate in degrees, minutes, seconds in a N/S/E/W hemisphere.
type coordinate struct {

d, m, s floatés

h rune

}

// newLocation from latitude, longitude d/m/s coordinates.
func newlLocation(lat, long coordinate) location {
return location{lat.decimal(), long.decimal()}

}

// decimal converts a d/m/s coordinate to decimal degrees.
func (c coordinate) decimal() floaté4 {
sign := 1.0
switch c.h {
case 'S', 'W', 's', 'w':
sign = -1
1

return sign * (c.d + c.m/60 + c.s/3600)

}

// world with a volumetric mean radius in kilometers
type world struct {
radius floatés

}

// distance calculation using the Spherical Law of Cosines.

Unit 5 309

func (w world) distance(pl, p2 location) floatés {
sl, ¢l := math.Sincos(rad(pl.lat))
s2, c2 := math.Sincos(rad(p2.1at))
clong := math.Cos(rad(pl.long - p2.long))
return w.radius * math.Acos(s1*s2+c1*c2*clong)

}

// tad converts degrees to radians.
func rad(deg floatés) floatés {
return deg * math.Pi / 180

}

var (
mars = world{radius: 3389.5}

earth = world{radius: 6371}

)

func main() {

spirit := newlLocation(coordinate{l4, 34, 6.2, 'S'}, coordinate{175, 28,
21.5, 'E'})

opportunity := newLocation(coordinate{l, 56, 46.3, 'S'}, coordinate{354,
28, 24.2, 'E'})

curiosity := newLocation(coordinate{s4, 35, 22.2, 'S'}, coordinate{137,
26, 30.12, 'E'})

insight := newlLocation(coordinate{4, 30, 0.0, 'N'}, coordinate{135, 54,
0.0, 'E'})

fmt.Printf("Spirit to Opportunity %.2f km\n", mars.distance(spirit,
opportunity))

fmt.Printf("Spirit to Curiosity %.2f km\n", mars.distance(spirit,
curiosity))

fmt.Printf("Spirit to InSight %.2f km\n", mars.distance(spirit, insight))

fmt.Printf("Opportunity to Curiosity %.2f km\n", mars.distance(opportunity,
curiosity))

fmt.Printf("Opportunity to InSight %.2f km\n", mars.distance(opportunity,
insight))

fmt.Printf("Curiosity to InSight %.2f km\n", mars.distance(curiosity,
insight))

london := newlLocation(coordinate{51, 30, 0, 'N'}, coordinate{0, 8, 0, 'W'})

310 Appendix Solutions

paris := newlLocation(coordinate{48, 51, 0, 'N'}, coordinate{2, 21, 0, 'E'})
fmt.Printf("London to Paris %.2f km\n", earth.distance(london, paris))

edmonton := newlocation(coordinate{53, 32, 0, 'N'}, coordinate{113, 30, 0,
- W'}

ottawa := newlLocation(coordinate{s5, 25, 0, 'N'}, coordinate{75, 41, 0,
- 'W'})

fmt.Printf("Hometown to Capital %.2f km\n", earth.distance(edmonton,
wottawa))

mountSharp := newlLocation(coordinate{5, &, 48, 'S'}, coordinate{137, 51, 0,
- 'E'})

olympusMons := newlLocation(coordinate{18, 39, 0, 'N'}, coordinate{226, 12,
=0, 'E'})

fmt.Printf("Mount Sharp to Olympus Mons %.2f km\n",
w-mars.distance(mountSharp, olympusMons))

}

Lesson 23

Experiment: gps.go

package main

import (
-
”math”

)

type world struct {
radius float6s4

}

type location struct {
name string
lat, long floaté64

}

func (1 location) description() string {
return fmt.Sprintf("%v (%.1f°, %.1f°)", l.name, 1.lat, 1.long)

Unit 5

type gps struct {
world world
current location
destination location

}

func (g gps) distance() floatés4 {
return g.world.distance(g.current, g.destination)

}

func (g gps) message() string {
return fmt.Sprintf("%.1f km to %v", g.distance(),
g.destination.description())

}

func (w world) distance(pl, p2 location) floatési {
sl, cl := math.Sincos(rad(pl.lat))
s2, c2 := math.Sincos(rad(p2.lat))
clong := math.Cos(rad(pl.long - p2.long))
return w.radius * math.Acos(s1*s2+c1*c2*clong)

}

func rad(deg floatés) floatés {
return deg * math.Pi / 180

1

type rover struct {
gps

1

func main() {
mars := world{radius: 3389.5}
bradbury := location{"Bradbury Landing", -4.5895, 137.4417}
elysium := location{"Elysium Planitia", 4.5, 135.9}

gps := gpsf{
world: mars,
current: bradbury,

destination: elysium,

}

curiosity := rover{

311

312 Appendix Solutions

apseops Prints 545.4 km
} to Elysium
) . Planitia (4.5°,
fmt.Println(curiosity.message()) 135.9°)
1
Lesson 24

Experiment: marshal.go

package main

import (
"encoding/json"
Ty

0sS

)

// coordinate in degrees, minutes, seconds in a N/S/E/W hemisphere.
type coordinate struct {

d, m, s floatésL

h rune

}

// String formats a DMS coordinate.
func (c coordinate) String() string {
return fmt.Sprintf("%v°%v'%.1f\" %c", c.d, c.m, c.s, c.h)

}

// decimal converts a d/m/s coordinate to decimal degrees.
func (c coordinate) decimal() floaté4 {

sign := 1.0

switch c.h {

case 'S', W', 's', 'w':
sign = -1

}

return sign * (c.d + c.m/60 + c.s/3600)

}

func (c coordinate) MarshalJSON() ([]byte, error) {
return json.Marshal(struct {

Unit 5

DD float64 “json:'"decimal"®
DMS string “json:"dms"®

D floaté64 "json:"degrees""

M float64 “json:"minutes"®

S floatés “json:"seconds"®

H string ~json:"hemisphere"’

H
DD: c.decimal()
DMS: c.String(),
D: c.d,
M: c.m,
S: c.s,
H: string(c.h),
3]

}

// location with a latitude, longitude in decimal degrees.

type location struct {
Name string
Lat coordinate "json:"latitude""

“json:"name"”

Long coordinate "json:"longitude""

}

func main() {
elysium := location{
Name: "Elysium Planitia",
Lat: coordinate{s, 30, 0.0, 'N'},
Long: coordinate{135, 54, 0.0, 'E'},

}

bytes, err := json.Marshallndent(elysium,
if err 1= nil {

fmt.Println(err)

0s.Exit(1)

}

fmt.Println(string(bytes))

313

314 Appendix Solutions

Capstone 25

Experiment: animals.go

package main

import (
1" fmt "
"math/rand"
"time"

)

type honeyBee struct {
name string

}

func (hb honeyBee) String() string {
return hb.name

}

func (hb honeyBee) move() string {
switch rand.Intn(2) {
case 0:
return "buzzes about"
default:
return "flies to infinity and beyond"

}

func (hb honeyBee) eat() string {
switch rand.Intn(2) {
case 0:
return "pollen”
default:
return "nectar"

}

type gopher struct {
name string

Unit 5

func (g gopher) String() string {
return g.name

}

func (g gopher) move() string {
switch rand.Intn(2) {
case 0:
return "scurries along the ground"
default:
return "burrows in the sand"

}

func (g gopher) eat() string {

switch rand.Intn(5) {
case 0:

return "carrot"
case 1:

return "lettuce"
case 2:

return "radish"
case 3:

return "corn"
default:

return "root"

}

type animal interface {
move() string
eat() string

}

func step(a animal) {
switch rand.Intn(2) {
case 0:
fmt.Printf("%v %v.\n", a, a.move())
default:
fmt.Printf("%v eats the %v.\n", a, a.eat())

3186 Appendix Solutions

}
const sunrise, sunset = 8, 18

func main() {
rand.Seed(time.Now().UnixNano())

animals := [J]animal{
honeyBee{name: "Bzzz Lightyear"},
gopher{name: "Go gopher"},

1
var sol, hour int
for {
fmt.Printf("%2d:00 ", hour)
if hour < sunrise || hour >= sunset {
fmt.Println("The animals are sleeping.")
} else {
i := rand.Intn(len(animals))
step(animals[i])
1
time.Sleep(500 * time.Millisecond)
hour++
if hour >= 24 {
hour = 0
sol++
if sol >=3{
break
1
1

Unit 6 317

Unit 6

Lesson 26

Experiment: turtle.go

package main
import "fmt"

type turtle struct {

X, y int

}

func (t *turtle) up() {
t.y--

}

func (t *turtle) down() {
t.y++

}

func (t *turtle) left() {
t.X--

}

func (t *turtle) right() {
t.Xx++

}

func main() {
var t turtle
t.up()

t.up()
t.left()

t.left() Prints {-2 -2}
fmt.Println(t) 44//’

t.down()
t.down()
t.right()

t.right() Prints {0 O}
fmt.Println(t) <«//’

318 Appendix Solutions

Lesson 27

Experiment: knights.go

package main

import (
n fmt "

)

type item struct {
name string

1
type character struct {
name string
leftHand *item
1
func (c *character) pickup(i *item) {
if ¢ == nil || i == nil {
return
}

fmt.Printf("%v picks up a %v\n", c.name, i.name)
c.leftHand = 1

}
func (c *character) give(to *character) {
if ¢ == nil || to == nil {
return
}

if c.leftHand == nil {
fmt.Printf("%v has nothing to give\n", c.name)
return

1

if to.leftHand != nil {
fmt.Printf("%v's hands are full\n", to.name)
return

}

to.leftHand = c.leftHand

c.leftHand = nil

fmt.Printf("%v gives %v a %v\n", c.name, to.name, to.leftHand.name)

}

Unit 6 319

func (c character) String() string {

}

if c.leftHand == nil {
return fmt.Sprintf("%v is carrying nothing", c.name)

}

return fmt.Sprintf("%v is carrying a %v", c.name, c.leftHand.name)

func main() {

arthur := &character{name: "Arthur"}

shrubbery := &item{name: "shrubbery"} Prints Arthur picks
arthur.pickup(shrubbery) up a shrubbery

knight := &character{name: "Knight"}

arthur.give(knight) <——— Prints Arthur gives Knight a shrubbery
fmt.Println(arthur) <—— Prints Arthur is carrying nothing
fmt.Println(knight) “~_ Prints Knight is
} carrying a shrubbery
Lesson 28

Experiment: url.go

u, err := url.Parse("https://a b.com/")
if err I=nil { Prints parse https://a b.com/: invalid
fmt.Println(err) / character " " in host name
fmt.Printf ("¥#vin®, err) Prints &url.Error{Op:"parse”,
if e, ok := err.(*url.Error); ok { URL:"https://a b.com/", Err:" "}
fmt.Println("Op:", e.0p) <«—— Prints Op: parse
fmt.Println("URL:", e.URL) «—
fmt.Println("Err:", e.Err))
Prints URL:
} https://a b.com/
0s.Exit(1) Prints Err: invalid
1 character " " in
host name

fmt.Println(u)

320 Appendix Solutions

Capstone 29

Experiment: sudoku.go

package main

import (
"errors"
"t

0s

)

const (
rows, columns 9, 9
empty

Il
o

)

// Cell is a square on the Sudoku grid.
type Cell struct {

digit int8

fixed bool
}

// Grid is a Sudoku grid.
type Grid [rows][columns]Cell

// Errors that could occur.

var (
ErrBounds = errors.New("out of bounds")
ErrDigit = errors.New("invalid digit")
ErrInRow = errors.New("digit already present in this row")
ErrInColumn = errors.New("digit already present in this column")
ErrInRegion = errors.New("digit already present in this region")
(

ErrFixedDigit = errors.New("initial digits cannot be overwritten")

)

// NewSudoku makes a new Sudoku grid.
func NewSudoku(digits [rows][columns]int8) *Grid {
var grid Grid
for r :=0; r < rows; r++ {
for ¢ := 0; ¢ < columns; c++ {

Unit 6 321

d := digits[z][c]

if d != empty {
grid[r][c].digit
grid[r][c].fixed

Il
o

true

}

return &grid

}

// Set a digit on a Sudoku grid.
func (g *Grid) Set(row, column int, digit int8) error {
switch {
case !inBounds(row, column):
return ErrBounds
case !validDigit(digit):
return ErrDigit
case g.isFixed(row, column):
return ErrFixedDigit
case g.inRow(row, digit):
return ErrInRow
case g.inColumn(column, digit):
return ErrInColumn
case g.inRegion(row, column, digit):
return ErrInRegion

}

glrow][column].digit = digit
return nil

}

// Clear a cell from the Sudoku grid.
func (g *Grid) Clear(row, column int) error {
switch {
case !inBounds(row, column):
return ErrBounds
case g.isFixed(row, column):
return ErrFixedDigit

322 Appendix Solutions

g[row][column].digit = empty
return nil

}

func inBounds(row, column int) bool {
if row < 0 || row >= rows || column < 0 || column >= columns {
return false

}

return true

}

func validDigit(digit int8) bool {
return digit >= 1 & digit <= 9

}

func (g *Grid) inRow(row int, digit int8) bool {
for ¢ := 0; c < columns; c++ {
if g[row][c].digit == digit {
return true

1
1
return false
1
func (g *Grid) inColumn(column int, digit int8) bool {
for r :=0; I < rows; I++ {
if g[r][column].digit == digit {
return true
1
}
return false
}
func (g *Grid) inRegion(row, column int, digit int8) bool {
startRow, startColumn := row/3*3, column/3*3
for r := startRow; r < startRow+3; r++ {
for c := startColumn; c < startColumn+3; c++ {

if g[r][c].digit == digit {
return true

Unit 6 323

}

return false

}

func (g *Grid) isFixed(row, column int) bool {
return g[row][column].fixed

}
func main() {

s := NewSudoku([rows][columns]int8{
{5, 3, 0,0, 7, 0, 0, 0, 0},
{6, 0, 0, 1, 9, 5, 0, 0, 0},
{o, 9, 8, 0, 0, 0, 0, 6, 0},
{8, 0, 0, 0, 6, 0, 0, 0, 3},
{4, 0, 0, 8, 0, 3, 0, 0, 1},
{7, 0, 0, 0, 2, 0, 0, O, 6},
{o, 6, 0, 0, 0, 0, 2, 8, 0},
{o, o, 0, 4, 1, 9, 0, 0, 5},
{o, o, 0, 0, 8, 0, 0, 7, 9},

9]

err := s.Set(1, 1, 4)

if err !=nil {
fmt.Println(err)
os.Exit(1)

}

for _, row := range s {
fmt.Println(row)

}

324 Appendix Solutions

Unit 7

Lesson 30

Experiment: remove-identical.go

package main

import (
-

)

func main() {
c0 := make(chan string)
cl := make(chan string)
go sourceGopher(c0)
go removeDuplicates(c0, c1)
printGopher(c1)

}

func sourceGopher (downstream chan string) {
fOI .,V o= Iange []St]fing{"a", "b", ”b”, ”C", IIdII’ "d”, ”d”, "e"} {
downstream <- v

}

close(downstream)

}

func removeDuplicates(upstream, downstream chan string) {
prev := ""
for v := range upstream {
if v I= prev {
downstream <- v
prev = v

}

close(downstream)

}

func printGopher(upstream chan string) {
for v := range upstream {

Unit 7 325

fmt.Println(v)

Experiment: split-words.go

package main

import (
n fmt "
"strings"
)

func main() {
c0 := make(chan string)
cl := make(chan string)
go sourceGopher(c0)
go splitWords(c0, c1)
printGopher(c1)

1

func sourceGopher (downstream chan string) {
for _, v := range []string{"hello world", "a bad apple", "goodbye all"}

- {
downstream <- v
1
close(downstream)
1
func splitWords(upstream, downstream chan string) {
for v := range upstream {
for _, word := range strings.Fields(v) {
downstream <- word
}
}
close(downstream)
1

func printGopher(upstream chan string) {

326 Appendix Solutions

for v := range upstream {
fmt.Println(v)
}
}
Lesson 31

Experiment: positionworker.go

package main

import (
“fmt"
"image"
"time"
)

func main() {
go worker ()
time.Sleep(5 * time.Second)

}

func worker() {
pos := image.Point{X: 10, Y: 10}
direction := image.Point{X: 1, Y: 0}

delay := time.Second
next := time.After(delay)
for {

select {

case <-next:
pos = pos.Add(direction)
fmt.Println("current position is
delay += time.Second / 2
next = time.After(delay)

, pos)

Unit 7 327

Experiment: rover.go

package main

import (
"image"
"log
"time"

)

func main() {
r := NewRoverDriver()
time.Sleep(3 * time.Second)
r.left()
time.Sleep(3 * time.Second)
r.Right()
time.Sleep(3 * time.Second)
r.Stop()
time.Sleep(3 * time.Second)
r.Start()
time.Sleep(3 * time.Second)

}

// RoverDriver drives a rover around the surface of Mars.
type RoverDriver struct {
commandc chan command

}

// NewRoverDriver starts a new RoverDriver and returns it.
func NewRoverDriver() *RoverDriver {
r := &RoverDriver{
commandc: make(chan command),
}
go r.drive()
return r

}
type command int

const (

328 Appendix Solutions

right = command(0)
left command (1)
(2)
(3)

start = command

stop command

)

// drive is responsible for driving the rover. It
// 1s expected to be started in a goroutine.
func (r *RoverDriver) drive() {
pos := image.Point{X: 0, Y: 0}
direction := image.Point{X: 1, Y: 0}
updateInterval := 250 * time.Millisecond
nextMove := time.After(updatelnterval)
speed :=1
for {
select {
case ¢ := <-r.commandc:
switch ¢ {
case right:
direction = image.Point{
X: -direction.Y,
Y: direction.X,
}
case left:
direction = image.Point{
X: direction.V,
Y: -direction.X,

}
case stop:
speed = 0
case start:
speed =1

}

log.Printf("new direction %v; speed %d", direction, speed)
case <-nextMove:

pos = pos.Add(direction.Mul(speed))

log.Printf("moved to %v", pos)

nextMove = time.After(updatelnterval)

Unit 7 329

}

// Left turns the rover left (90° counterclockwise).
func (r *RoverDriver) Left() {
r.commandc <- left

}

// Right turns the rover right (90° clockwise).
func (r *RoverDriver) Right() {
r.commandc <- right

}

// Stop halts the rover.
func (r *RoverDriver) Stop() {
r.commandc <- stop

}

// Start gets the rover moving.
func (r *RoverDriver) Start() {
r.commandc <- start

Capstone 32

Experiment: lifeonmars.go

package main

import (
"fmt"
"image"
"Tog"
"math/rand"
"sync"
"time"

)

func main() {
marsToEarth := make(chan []Message)

330 Appendix Solutions

go earthReceiver(marsToEarth)

gridSize := image.Point{X: 20, Y: 10}
grid := NewMarsGrid(gridSize)
rover := make([]*RoverDriver, 5)
for i := range rover {
rover[i] = startDriver(fmt.Sprint("rover", i), grid, marsToEarth)
}

time.Sleep(60 * time.Second)

}

// Message holds a message as sent from Mars to Earth.
type Message struct {

Pos image.Point

LifeSigns int

Rover string

}

const (
// The length of a Mars day.
dayLength = 24 * time.Second
// The length of time per day during which
// messages can be transmitted from a rover to Earth.
receiveTimePerDay = 2 * time.Second

)

// earthReceiver receives messages sent from Mars.
// As connectivity is limited, it only receives messages
// for some time every Mars day.
func earthReceiver(msgc chan []Message) {
for {
time.Sleep(daylLength - receiveTimePerDay)
receiveMarsMessages(msgc)

}

// receiveMarsMessages receives messages sent from Mars

// for the given duration.

func receiveMarsMessages(msgc chan []Message) {
finished := time.After(receiveTimePerDay)

Unit 7 331

for {
select {
case <-finished:
return
case ms := <-msgc:
for _, m := range ms {
log.Printf("earth received report of life sign level %d from
%s at %v", m.LifeSigns, m.Rover, m.Pos)

}

}

func startDriver(name string, grid *MarsGrid, marsToEarth chan []Message)
*RoverDriver {
var o *Occupier
// Try a random point; continue until we've found one that's
// not currently occupied.
for o == nil {
startPoint := image.Point{X: rand.Intn(grid.Size().X), Y: rand.Intn(
grid.Size().Y)}
o = grid.Occupy(startPoint)

}

return NewRoverDriver(name, o, marsToEarth)

}

// Radio represents a radio transmitter that can send
// message to Earth.
type Radio struct {

fromRover chan Message

}

// SendToEarth sends a message to Earth. It always

// succeeds immediately - the actual message

// may be buffered and actually transmitted later.

func (r *Radio) SendToEarth(m Message) {
r.fromRover <- m

}

// NewRadio returns a new Radio instance that sends

332 Appendix Solutions

// messages on the toEarth channel.
func NewRadio(toEarth chan []Message) *Radio {
I := &Radio{
fromRover: make(chan Message),
}
go r.run(toEarth)
return

}

// run buffers messages sent by a rover until they
// can be sent to Earth.
func (r *Radio) run(toEarth chan []Message) {
var buffered []Message
for {
toEarthl := toEarth
if len(buffered) == 0 {
tokEarthl = nil
1
select {
case m := <-r.fromRover:
buffered = append(buffered, m)
case toEarthl <- buffered:
buffered = nil

}

// RoverDriver drives a rover around the surface of Mars.
type RoverDriver struct {

commandc chan command

occupier *Occupier

name string

radio *Radio

}

// NewRoverDriver starts a new RoverDriver and returns it.
func NewRoverDriver(

name string,

occupier *Occupier,

Unit 7 333

marsToEarth chan []Message,
) *RoverDriver {
r := &RoverDriver{
commandc: make(chan command),
occupier: occupier,

name: name,

radio: NewRadio(marsToEarth),
}
go r.drive()
return

}
type command int

const (
right command

1]
= o

left command =

)

// drive is responsible for driving the rover. It
// 1s expected to be started in a goroutine.
func (r *RoverDriver) drive() {
log.Printf("%s initial position %v", r.name, r.occupier.Pos())
direction := image.Point{X: 1, Y: 0}
updateInterval := 250 * time.Millisecond
nextMove := time.After(updatelnterval)
for {
select {
case c := <-r.commandc:
switch ¢ {
case right:
direction = image.Point{
X: -direction.Y,
Y: direction.X,
}
case left:
direction = image.Point{
X: direction.Y,
Y: -direction.X,

334 Appendix Solutions

}
log.Printf("%s new direction %v", r.name, direction)
case <-nextMove:
nextMove = time.After(updatelnterval)
newPos := r.occupier.Pos().Add(direction)
if r.occupier.MoveTo(newPos) {
log.Printf("%s moved to %v", r.name, newPos)
r.checkForLife()
break
}
log.Printf("%s blocked trying to move from %v to %v", I.name,
r.occupier.Pos(), newPos)
// Pick one of the other directions randomly.
// Next time round, we'll try to move in the new
// direction.
dir := rand.Intn(3) + 1
for i :=0; i < dir; i++ {
direction = image.Point{
X: -direction.Y,
Y: direction.X,

}

log.Printf("%s new random direction %v", r.name, direction)

}

func (r *RoverDriver) checkForLife() {
// Successfully moved to new position.

sensorData := r.occupier.Sense()

if sensorData.LifeSigns < 900 {
return

}

r.radio.SendToEarth(Messagef
Pos: r.occupier.Pos()
LifeSigns: sensorData.lLifeSigns,
Rover: I.name,

Unit 7 335

1y
}

// Left turns the rover left (90° counterclockwise).
func (r *RoverDriver) Left() {
r.commandc <- left

}

// Right turns the rover right (90° clockwise).
func (r *RoverDriver) Right() {
r.commandc <- right

}

// MarsGrid represents a grid of some of the surface
// of Mars. It may be used concurrently by different
// goroutines.
type MarsGrid struct {

bounds image.Rectangle

mu sync.Mutex

cells [][]cell
}

// SensorData holds information about what's in
// a point in the grid.
type SensorData struct {

LifeSigns int

}

type cell struct {
groundData SensorData
occupier *Occupier

}

// NewMarsGrid returns a new MarsGrid of the
// given size.
func NewMarsGrid(size image.Point) *MarsGrid {
grid := &MarsGrid{
bounds: image.Rectangle{
Max: size,
1,
cells: make([][]cell, size.Y),

336 Appendix Solutions

}
for y := range grid.cells {
grid.cells[y] = make([]cell, size.X)
for x := range grid.cells[y] {
cell := &grid.cells[y][x]
cell.groundData.LifeSigns = rand.Intn(1000)

}

return grid

}

// Size returns a Point representing the size of the grid.
func (g *MarsGrid) Size() image.Point {
return g.bounds.Max

}

// Occupy occupies a cell at the given point in the grid. It
// returns nil if the point is already occupied or the point is outside
// the grid. Otherwise it returns a value that can be used
// to move to different places on the grid.
func (g *MarsGrid) Occupy(p image.Point) *Occupier {
g.mu.Lock()
defer g.mu.Unlock()
cell := g.cell(p)

if cell == nil || cell.occupier != nil {
return nil

}

cell.occupier = &0ccupier{
grid: g,
pos: p,

}

return cell.occupier

}

func (g *MarsGrid) cell(p image.Point) *cell {
if Ip.In(g.bounds) {
return nil

}
return &g.cells[p.Y][p.X]

Unit 7 337

}

// Occupier represents an occupied cell in the grid.
type Occupier struct {

grid *MarsGrid

pos 1image.Point

}

// MoveTo moves the occupier to a different cell in the grid.
// 1t reports whether the move was successful
// It might fail because it was trying to move outside
// the grid or because the cell it's trying to move into
// is occupied. If it fails, the occupier remains in the same place.
func (o *Occupier) MoveTo(p image.Point) bool {

o.grid.mu.Lock()

defer o.grid.mu.Unlock()

newCell := o.grid.cell(p)

if newCell == nil || newCell.occupier != nil {

return false

}

0.grid.cell(o.pos).occupier = nil

newCell.occupier = o

0.pos = p

return true

}

// Sense returns sensory data from the current cell.
func (o *Occupier) Sense() SensorData {
0.grid.mu.Lock()
defer o.grid.mu.Unlock()
return o.grid.cell(o.pos).groundData

}

// Pos returns the current grid position of the occupier.
func (o *Occupier) Pos() image.Point {
return o.pos

INDEX

Symbols

_ (blank identifier) 77, 125

! (not operator) 29-30

""(runes) 70-71

[] (square brackets) 122, 147

{ } (curly braces) 89,27, 124

* (dereference operator) 202-203

* (pointers) 204

& (address operator) 202-203, 208
&& operator 29

% (modulus operator) 14, 28, 89

%D format verb (binary) 58

%c format verb (character) 71

%f format verb (floating-point) 48-49
%T format verb (type) 55

%v format verb (value) 15-16, 165, 227
%x format verb (hexadecimal) 57

" (raw string literals) 69-70

+ (plus sign) 14, 80

<- channel operator 258, 267

A

. __|
address operator (&) 202-203, 208
After function 260, 275
ambiguous selector 183
anonymous functions (function literals) 112,
115
APIs (Application Programming
Interfaces) 167
append function 138-139, 141-142
arguments 15, 95
arrays
accessing elements of 122-123
arrays of arrays 128
copying 126-127
declaring 122, 124
iterating through 125-126

339

maps vs. 149
mutating 214
out-of-range elements 123
pointing to 209-210
pointing to with slices 215-216
slicing 131-133
assignment operator 19-20, 27
associative arrays 146
Atoi function 85

.|
backticks (" *) 69-70
big numbers
big package 64
big.Int type 64
constants 66
blank identifier (_) 77, 125
boilerplate 181
Boolean values 24-26, 29, 31-33
converting 86
branching
with if statement 26-27
with switch statement 30-31
bytes 70-72

C

I ——
call stack 245
capacity of slices 140
append function and 141-142
Cascading Style Sheets. See CSS
case keyword 30, 40
channels
<- operator 258, 267
general discussion 257-259
select statement 260-262
characters 68
manipulating with Caesar cipher 73-74

340

characters (continued)
manipulating with ROT13 74-75
overview 70-72
ciphering text 90
closures 112-115
cloud computing 3
code duplication 39
code points 70-72
code smell 39
coerce types 80
communicating sequential processes. See CSP
comparison operators 25
composite literals
for arrays 124
for maps 147
for slices 133-134
for structures 164-165
composition, composing structures with
178-180
concurrency 253-254
concurrent state
long-lived tasks 274-280
mutexes 270-274
constants
const keyword 17-18, 21, 66
large numbers 66
constructor functions 172-173, 249
Contains function 96
CSP (communicating sequential
processes) 220
CSS (Cascading Style Sheets) 56-57
curly braces ({ }) 8-9,27,124

I ——
dangling pointers 202

deadlocks 262-263, 274

decimal degrees 162

DecodeRunelnString function 76

default keyword 30

defer keyword 235-236, 272

delegation 184

delete function 149

dereference operator (*) 202-203
dictionaries (maps) 146

dot notation 106, 162

double precision floating-point numbers 47
duplicated code 39

dynamic typing 85

Index

ellipsis (...) 97, 144
embedding 177
empty interfacef{} 97
equality operator 27
Error() method 241
errors
creating new error values 238-244
and type assertions 243-244
distinguishing between errors 240-241
multiple errors 242-243
file writing errors 233-235
and defer keyword 235-236
graceful error handling 236-238
handling 231-238
panic mechanism 244-246
exceptions in other languages 245
recover 246
errors package 173, 238
New constructor 241
escape sequences 69
event loops 275

F

|
fallthrough keyword 30
false constant 24-25
Fields function 268
file.Close() method 235
file.IsDir() function 232
floating-point numbers 45, 49
accuracy of 49
converting 82
declaring 46
float32 type (single precision) 47
zero value 47
displaying 48-49
fmt (format) package 7, 41, 156, 193
Print function 15
Printf function 15-16, 57
Println function 1, 15, 97
Sprintf function 84
for loop
for keyword 31
range keyword 76, 89, 125, 128, 137, 151
format verbs 16, 48, 55-57, 71, 165, 227
forwarding methods 181-183
functions
anonymous 112-115
assigning to variables 109-110
declaring 7, 94-97

Index

functions (continued)
declaring function types 112
func keyword 7-8, 94
literal 112
nil function values 224-225
passing to other functions 110-111
scope 36, 99
signature 110

G
L
Go Playground
limitations of 286
overview 6
Go Proverbs 233
golang 6, 89
golint tool 46
gophers 4
goroutines
blocked 262-263
channels
general discussion 257-259
select statement 260-262
deadlocked 262-263
multiple 256257
pipelines 263-267
starting 254-255

H
L
half-open range 131

hashes 146

hexadecimal 57

1
I ——
if statements 26-27, 37, 89
image package 276
immutable strings 73
import keyword 7
import path 21
increment operator (++) 19-20
indirection 202
inheritance 184
integers 45, 53
declaring 54
architecture-independent types 54
displaying types 55
displaying bits 58
int type 55
Unix time 60
wrapping 58

interfaces
discovering later 190-192
interface embedding 194
interface type 187-190
nil 227-228
pointers and 216-218
satisfying 193-194
interior pointers 213-214
interpreter 5
Intn function 94, 157
io package
Reader interface 193
ReadWriter interface 193
Writer interface 193, 236
ioutil package
ReadDir 231
Itoa function 84

J

I ——

JSON (JavaScript Object Notation)
customizing with struct tags 168-169
encoding structures to 167-168

L
I ——
leaking resources 233
len function 74, 122
literal numbers 17
literal values
bytes 70-72
characters 70-72
manipulating with Caesar cipher 73-75
manipulating with ROT13 74-75
code points 70-72
runes
decoding strings into 75-77
general discussion 70-72
string variables
declaring 69-70
decoding strings into runes 75-77
immutable nature of 72-87
raw string literals 69-70
Lock method (mutexes) 271
logical operators 27-29
loops, repetition with 31-33

M
L
magic numbers 17

main function 35, 98, 156, 239, 258

main package 7

342

make function 145
channels 257-259
general discussion 143
preallocating maps with 150
preallocating slices with 143
maps
arrays vs. 149
as pointers 215
declaring 147-148
grouping data with 151-152
keys 146
nil 226-227
preallocating 150
repurposing as sets 152-153
using to count things 150-151
Marshal function 167
Marshal]SON method 195
math calculations
assignment operator 19-20
constants 17-18
increment operator (++) 19-20
performing 14-15
pseudorandom number generation 20-21
variables
declaring multiple 18-19
overview 17-18
math package 7, 41, 83
Abs function 51
Acos function 174-175
Cos function 7-8, 174-175
MaxInt16 constant 82-83
MaxUint16 constant 58-60
MaxUint8 constant 82-83
MinIntl6 constant 82-83
Pi constant 47, 174-175
Sin function 7-8
Sincos function 174-175
Sqrt function 7-8
Tan function 7-8
Trunc function 151-152
memory address 202
methods 64
adding behavior to types with 105-107
attaching to slices 136-137
attaching to structures 171-172
forwarding 181-183
guarding against nil values with 223-224
types as alternative to classes 174-175
modulus operator (%) 14, 89
mutations 210-215
mutating arrays 214-215
pointer receivers 211-213

Index

pointers as parameters 210-211

with interior pointers 213-214
mutexes 270-274

mutual exclusion 271

name collisions (embedding) 183-184
new lines 69
nibbles 57
nil
guarding against
overview 221-222
with methods 223-224
nil function values 224-225
nil interfaces 227-228
nil maps 226-227
nil slices 225-226
nil value 85
not operator (!) 29
numeric types, converting 81-82

o)

object composition 177
overflow error 67

P
I ——
package keyword 7
packages
declaring 7
documentation 94-97
panic mechanism 244-246
exceptions in other languages 245
passing arguments to 245-246
recover function 246
parameters
overview 95
pointers as 210-211
pipelines 263-267
plus operator (+) 80
pointers (*) 72, 202-204
address operator (&) 202-203
declaring 203-205
dereference operator (*) 202-203
enabling mutation 210-215
interior pointers 213-214
mutating arrays 214-215
pointer receivers 211-213
pointers as parameters 210-211

Index

pointers (*) (continued)
interfaces and 216-218
maps as 215
overusing 218
pointer arithmetic 203
pointer receivers 211-213
pointing to arrays 209-210
pointing to structures 208-209
slices point at arrays 215-216
polymorphism 188
precision 48
Print function 15
Printf function 15-16, 55
Println function 8, 15, 97
pseudorandom numbers 20-21

. __|
race condition 270
RAM (random access memory) 34, 201
rand package 21, 41, 95
Intn function 94, 156
random numbers 20
Seed function 156
range keyword 76, 89, 125, 129, 137, 151, 246,
266
raw string literals 69-70
ReadDir function 231
ReadWriter interface 194
receiver (methods) 106
recover function (panic) 246
refactoring 39, 235
REMS (Rover Environmental Monitoring
Station) 93, 108, 177
Repeat function 89
return keyword 99
ROT13 cipher 74-75
rounding errors 49
Rover Environmental Monitoring Station.
See REMS
runes
decoding strings into 75-77
general discussion 70-72

.|
Seed method 156
select statement 260, 275-276
channels and 260-262
semicolons (;) 9
sentinel value 263

343

sets
repurposing maps as 152-153
set membership 152
shared values 269
short declaration 36
side effect free functions 99
signed integer types 54
single precision floating-point numbers 47
single quotes (') 71
Sleep function 158, 254
slices
appending elements to 139, 141-142, 145
attaching methods 136-137
capacity of 140
composite literals for 133-134
declaring variadic functions 144
grouping data with 151-152
length of 140
nil 225-226
pointing to arrays 215-216
preallocating 143
slicing arrays 131-133
three-index slicing 142-143
with structures 166-167
snake_case 168
sort package 136
Float64s function 152-153
Slice function 224-225
Sort method 136
Strings function 136
StringSlice type 136
Sprintf function 86
square brackets ([]) 122, 147
static typing 85
strconv (string conversion) package 84
Atoi function 85, 96
Itoa function 84
String method 193
string variables
converting 84-85
declaring 69-70
decoding strings into runes 75-77
immutable nature of 72-87
raw string literals 69-70
Stringer interface 197
strings package 268
Contains function 24-25, 95, 263
Fields function 153, 267-268
Join function 134-135, 238-239
Repeat function 89
Replace function 88-90
ToUpper function 88, 90, 187-190, 216-217
TrimSpace function 134-135

344

structures
as alternative to classes 174-175
attaching methods to 171-172
composing with composition 178-180
copying 165-166
customizing JSON with struct tags 168-169
declaring 162-163
encoding to JSON 167-168
initializing with composite literals 164-165
pointing to 208-209
reusing with types 163-164
struct embedding 181
struct tags 168-169
with slices 166-167
switch statement 30, 37
sync package, Mutex type 272
syntax errors 10

T

e
three-index slicing 142-143
threequals operator 26
time package 158
After function 260, 275
Date function 190-192
Duration function 260-261
Hour constant 211-212
Millisecond constant 260-261, 274-280
Now function 211-213
Second constant 31-32, 110-111, 254,
256-257, 260, 274
Sleep function 31, 110, 158, 254, 256-257,
260, 270, 274
Unix function 60, 95
UTC constant 190
time sharing 256
Time type 212
ToUpper function 90
true constant 24-25
type assertions 243-244
type behavior, adding with methods 105-107
type conversion
Boolean values 86
caution regarding 82
mismatched types 80-81
numeric types 81-82
strings 84-85, 87
type declaration
declaring new types 102-103
using types 104-105
type keyword 102

Index

u

I
uint type 55
uint16 type 56
uint64 type 56

and constants 66
uint8 type 56, 71
Unix function (time) 60, 95
Unlock method (mutexes) 271
unsigned integer types 54
untyped constants 66, 102
url package 242

Error type 247

Parse method 247

)
I ——
validating parameters 238
var keyword 17-18
variable scope
narrow vs. wide scope 38
overview 35-49
short declaration 36
variables 17-18
assigning functions to 109-110
declaring multiple 18-19
floating-point 46
displaying 48-49
single precision 47
zero value 47
integer 54
architecture-independent types 54
displaying types 55
string
declaring 69-70
decoding strings into runes 75-77
immutable nature of 72-87
raw string literals 69-70
variadic functions, declaring 144

W
L
worker functions 277

wrapping (integers) 58

Writer interface 193

y 4
|
zero value 47, 69

SOFTWARE DEVELOPMENT

GET PROGRAMMING ‘wima: 0

Nathan Younqman | Roger Peppé

FREE £BOOK

See first page

Go is a small programming language designed by Google to tackle big Perfectly organized for
problems. Large projects mean large teams with people of varying learning Go quickly;
levels of experience. Go offers a small, yet capable, language that can especially useful

be understood and used by anyone, no matter their experience. for inexperienced
Hobbyists, newcomers, and professionals alike can benefit from programmers.”

a fast, modern language; all you need is the right resource! —MARIO CARRION

Get Programming with Go provides a hands-on introduction to e

Go language fundamentals, serving as a solid foundation for your
future programming projects. You'll master Go syntax, work with
types and functions, and explore bigger ideas like state and
concurrency, with plenty of exercises to lock in what you learn.

Learn by doing! Plenty

of examples will help

you learn the core of the

e Language concepts like slices, interfaces, pointers, language and expose you
and concurrency to common Go idioms.”

. . . —ULISES FLYNN, NAV
® Seven capstone projects featuring spacefaring

gophers, Mars rovers, ciphers, and simulations

e All examples run in the Go Playground — A great book about Go.
no installation required! Written for beginners
but useful for seasoned
This book is for anyone familiar with computer programming, as well developers too.”

as anyone with the desire to learn. —MIKAEL DAUTREY, ISITIX

Nathan Youngman organizes the Edmonton Go meetup and is a
mentor with Canada Learning Code. Roger Peppé contributes to Go

The first rung on
and runs the Newcastle upon Tyne Go meetup.

successfully climbing
the Go ladder.”
—JEFF SMITH, AGILIFY

To download theirfree eBook in PDF, ePUb, and ISBN-13: 978-1-b17-29309-2
Kindle formats, owners of this book should visit ISBN-10: 1-b17-29309-1

manning.com/books/get-programming-with-go “ ““ ‘ “53499

	Get Programming with Go
	Contents
	Preface
	Acknowledgments
	About this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	Book forum

	About the authors
	Unit 0 Getting started
	Lesson 1 Get ready, get set, Go
	1.1 What is Go?
	1.2 The Go Playground
	1.3 Packages and functions
	1.4 The one true brace style
	Summary

	Unit 1 Imperative programming
	Lesson 2 A glorified calculator
	2.1 Performing calculations
	2.2 Formatted print
	2.3 Constants and variables
	2.4 Taking a shortcut
	2.4.1 Declare multiple variables at once
	2.4.2 Increment and assignment operators

	2.5 Think of a number
	Summary

	Lesson 3 Loops and branches
	3.1 True or false
	3.2 Comparisons
	3.3 Branching with if
	3.4 Logical operators
	3.5 Branching with switch
	3.6 Repetition with loops
	Summary

	Lesson 4 Variable scope
	4.1 Looking into scope
	4.2 Short declaration
	4.3 Narrow scope, wide scope
	Summary

	Lesson 5 Capstone: Ticket to Mars

	Unit 2 Types
	Lesson 6 Real numbers
	6.1 Declaring floating-point variables
	6.1.1 Single precision floating-point numbers
	6.1.2 The zero value

	6.2 Displaying floating-point types
	6.3 Floating-point accuracy
	6.4 Comparing floating-point numbers
	Summary

	Lesson 7 Whole numbers
	7.1 Declaring integer variables
	7.1.1 Integer types for every occasion
	7.1.2 Knowing your type

	7.2 The uint8 type for 8-bit colors
	7.3 Integers wrap around
	7.3.1 Looking at the bits
	7.3.2 Avoid wrapping around time

	Summary

	Lesson 8 Big numbers
	8.1 Hitting the ceiling
	8.2 The big package
	8.3 Constants of unusual size
	Summary

	Lesson 9 Multilingual text
	9.1 Declaring string variables
	9.1.1 Raw string literals

	9.2 Characters, code points, runes, and bytes
	9.3 Pulling the strings
	9.4 Manipulating characters with Caesar cipher
	9.4.1 A modern variant

	9.5 Decoding strings into runes
	Summary

	Lesson 10 Converting between types
	10.1 Types don?t mix
	10.2 Numeric type conversions
	10.3 Convert types with caution
	10.4 String conversions
	10.5 Converting Boolean values
	Summary

	Lesson 11 Capstone: The Vigen?re cipher

	Unit 3 Building blocks
	Lesson 12 Functions
	12.1 Function declarations
	12.2 Writing a function
	Summary

	Lesson 13 Methods
	13.1 Declaring new types
	13.2 Bring your own types
	13.3 Adding behavior to types with methods
	Summary

	Lesson 14 First-class functions
	14.1 Assigning functions to variables
	14.2 Passing functions to other functions
	14.3 Declaring function types
	14.4 Closures and anonymous functions
	Summary

	Lesson 15 Capstone: Temperature tables

	Unit 4 Collections
	Lesson 16 Arrayed in splendor
	16.1 Declaring arrays and accessing their elements
	16.2 Don?t go out of bounds
	16.3 Initialize arrays with composite literals
	16.4 Iterating through arrays
	16.5 Arrays are copied
	16.6 Arrays of arrays
	Summary

	Lesson 17 Slices: windows into arrays
	17.1 Slicing an array
	17.1.1 Default indices for slicing

	17.2 Composite literals for slices
	17.3 The power of slices
	17.4 Slices with methods
	Summary

	Lesson 18 A bigger slice
	18.1 The append function
	18.2 Length and capacity
	18.3 Investigating the append function
	18.4 Three-index slicing
	18.5 Preallocate slices with make
	18.6 Declaring variadic functions
	Summary

	Lesson 19 The ever-versatile map
	19.1 Declaring a map
	19.2 Maps aren?t copied
	19.3 Preallocating maps with make
	19.4 Using maps to count things
	19.5 Grouping data with maps and slices
	19.6 Repurposing maps as sets
	Summary

	Lesson 20 Capstone: A slice of life
	20.1 A new universe
	20.1.1 Looking at the universe
	20.1.2 Seeding live cells

	20.2 Implementing the game rules
	20.2.1 Dead or alive?
	20.2.2 Counting neighbors
	20.2.3 The game logic

	20.3 Parallel universe

	Unit 5 State and behavior
	Lesson 21 A little structure
	21.1 Declaring a structure
	21.2 Reusing structures with types
	21.3 Initialize structures with composite literals
	21.4 Structures are copied
	21.5 A slice of structures
	21.6 Encoding structures to JSON
	21.7 Customizing JSON with struct tags
	Summary

	Lesson 22 Go?s got no class
	22.1 Attaching methods to structures
	22.2 Constructor functions
	22.3 The class alternative
	Summary

	Lesson 23 Composition and forwarding
	23.1 Composing structures
	23.2 Forwarding methods
	23.3 Name collisions
	Summary

	Lesson 24 Interfaces
	24.1 The interface type
	24.2 Discovering the interface
	24.3 Satisfying interfaces
	24.4 Summary

	Lesson 25 Capstone: Martian animal sanctuary

	Unit 6 Down the gopher hole
	Lesson 26 A few pointers
	26.1 The ampersand and the asterisk
	26.1.1 Pointer types

	26.2 Pointers are for pointing
	26.2.1 Pointing to structures
	26.2.2 Pointing to arrays

	26.3 Enabling mutation
	26.3.1 Pointers as parameters
	26.3.2 Pointer receivers
	26.3.3 Interior pointers
	26.3.4 Mutating arrays

	26.4 Pointers in disguise
	26.4.1 Maps are pointers
	26.4.2 Slices point at arrays

	26.5 Pointers and interfaces
	26.6 Use pointers wisely
	Summary

	Lesson 27 Much ado about nil
	27.1 Nil leads to panic
	27.2 Guarding your methods
	27.3 Nil function values
	27.4 Nil slices
	27.5 Nil maps
	27.6 Nil interfaces
	27.7 An alternative to nil
	Summary

	Lesson 28 To err is human
	28.1 Handling errors
	28.2 Elegant error handling
	28.2.1 Writing a file
	28.2.2 The defer keyword
	28.2.3 Creative error handling

	28.3 New errors
	28.3.1 Which error is which
	28.3.2 Custom error types

	28.4 Don?t panic
	28.4.1 Exceptions in other languages
	28.4.2 How to panic
	28.4.3 Keep calm and carry on

	Summary

	Lesson 29 Capstone: Sudoku rules

	Unit 7 Concurrent programming
	Lesson 30 Goroutines and concurrency
	30.1 Starting a goroutine
	30.2 More than one goroutine
	30.3 Channels
	30.4 Channel surfing with select
	30.5 Blocking and deadlock
	30.6 A gopher assembly line
	Summary

	Lesson 31 Concurrent state
	31.1 Mutexes
	31.1.1 Mutex pitfalls

	31.2 Long-lived workers
	Summary

	Lesson 32 Capstone: Life on Mars
	32.1 A grid to rove on
	32.2 Reporting discoveries

	Where to Go from here
	Under the radar
	Beyond the playground
	And much more

	Solutions
	Unit 0
	Lesson 1

	Unit 1
	Lesson 2
	Lesson 3
	Lesson 4
	Capstone 5

	Unit 2
	Lesson 6
	Lesson 7
	Lesson 8
	Lesson 9
	Lesson 10
	Capstone 11

	Unit 3
	Lesson 12
	Lesson 13
	Lesson 14
	Capstone 15

	Unit 4
	Lesson 16
	Lesson 17
	Lesson 18
	Lesson 19
	Capstone 20

	Unit 5
	Lesson 21
	Lesson 22
	Lesson 23
	Lesson 24
	Capstone 25

	Unit 6
	Lesson 26
	Lesson 27
	Lesson 28
	Capstone 29

	Unit 7
	Lesson 30
	Lesson 31
	Capstone 32

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

