Go, The Standard Library

Real Code. Real Productivity.
Master The Go Standard Library

Daniel Huckstep

Go, The Standard Library

Real Code. Real Productivity. Master The Go Standard
Library

Daniel Huckstep
This book is for sale at http://leanpub.com/go-thestdlib

This version was published on 2017-03-26

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2012 - 2017 Daniel Huckstep

http://leanpub.com/go-thestdlib
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!

Please help Daniel Huckstep by spreading the word about this book on Twitter!
The suggested hashtag for this book is #GoTheStdLib.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

https://twitter.com/search?q=#GoTheStdLib

http://twitter.com
https://twitter.com/search?q=%23GoTheStdLib
https://twitter.com/search?q=%23GoTheStdLib

Contents

Introduction e 1
Target Audience e i
HowToRead ThisBook ii
CodeInTheBook ii

Thanks e v

Credits e vi

archive e 1
Meet The Archive Package 1
Writingtar Files 1
Writing zip Files 4
ReadingtarFiles 7
Reading zip Files e 10
Caveats e e 11

bufio 13
Is That A Buffer In Your Pocket? 13
Reading e 14
Writing o e 17
SCannNINg e e e e 19

builtin e 28
BatteriesIncluded 28
Building Objects e 28
Maps, Slices, And Channels 30
AllThe Sizes o e e e e e e 34
Causing And Handling Panics 36
Complex Numbers e 38

bytes e 39
Bits and Bytes and Everything Nice 39

CompariSon e e e e e e e 39

CONTENTS

Searching 41
Manipulating e 45
Splitting and Joining 47
Case e e 48
Trimming e e e e 50
Buffer e 52
Reader e 57
COMPIESS . . . o vt vt e 60
Honey, I Shrunk TheKids 60
ALLTHECODE e e e e e e e e s e s 60
Accept-Encoding: gzip e 63
CONTAINEr e e e e e e 68
heap e 68
] 70
FINE . o o o e 72
Thread Pool Example 73
Round Robin Load Balancer Example 75
Priority Queue Load Balancer Example 77
CEYPLO e e e e e 82
Disclaimer e 82
Block Ciphers e 83
Digital Signatures. 90
Hashes e 96
HMAC . . e 97
RCA . . e 99
RSA . e 102
TLS/X509 . . . e 106
Random Numbers 110
Constant Time Functions 112
A Timing AttackInAction 113
BO.CTYPLO . .« o o o o e e e e e e e e e e e e e e 116
Final Warning e e 116
database 117
Open e e 117
EXeC . . . e 118
QUery. 118
Prepared Statements 118
Transactions e 119

Example e 119

CONTENTS

debug e 125
elf . . 125
macho 128
PE - e e e e e 134
BOSYIML . . v v vt e et e e e e e e e e e e e e e e e e e 136
dwarf e e 139

encoding e e e e e 141
asCli85 e e e e 141
asnl ..o e e 142
base32 144
baseb64 146
binary e 147
CSV o i e e e e e e 151
-0 153
hex . . e 155
JSOMU & v v e e e e e e e e e e e e e e 156
PEIM . . L e e 160
XML .o e 161

EITOLS o i ittt et e e e e e e e e e e e e e 166

EXPVAL o ot e 167

flag e 169
The BasicInterface 169
The *Var Interface 170
FlagSet e 171
Custom e e e e 172

It . . e e e 174
Printing e 174
Scanning e e e e e e 176
Printing Custom Types o i i 177
Scanning Custom Types e 180

B0 L e e e e e e e 182
CrossPlatform GoCode 182
Introspecting Packages 184
LexingGoCode e e 185
ParsingGoCode 187
Analyzing Go Code: Cyclomatic Complexity 188

Altering Go Code: Mutation Testing 190

CONTENTS

hash e 198
adler32 e 198
CIC32 . o v i e e e e e e e e e e e e e 199
Crcb4d . . . o e e e 202
NV e 204

html . . 207
Escape Artist e 207
Templating 209

IMAZE ot e e e e e e e e e e e 212
Converting imagesformats 212
Resizing e 214
Cropping o ot e e e e e 217
Compositing: Building images from other images 219
GOSAGramt i e 222

INdeX e e e e e e 229
suffixarray. o e e e 229

10 . e 232
Reading e 232
WIIting e e e 240
CoPY . o e e 241
PIpe . . e 243
10/10ULIL v v v vt e e e e e e e e e e e e e e e e 245

10g . . . e 247
BasicLogging 247
Syslog o e 248

math 251
Big Numbers 251
Random Numbers 254

MIMEe e e e e e e e e 256
Multipart Parsing e e e 256
Multipart Generation 259

net (WIp) e e e e e e 262
mail . . . e 262

OS . i e e e e e e e e e e e e e e 263

CONTENTS

Permissions e e e e e 264
String EXpansion e e 266
Moving Around the Environment 267
Inspecting the Environment 269
Creating and Removing Files and Directories 271
FileIO e 273
FILEINFO « v v v v v e 276
Process Creation, Management, and Signals 278
USEIS . . o o e e e e 282
path e 284
Pt v o e 284
path/filepath . . . v v v i e 285
5 1T 287
reflect (WIp) e 291
FEEEXP . . . v i i e 292
Matching e e e 292
Indexes. e e 293
Capture Groups and Submatches 295
Replace o o e 296
1o Y 297
runtime e e e e 299
Introspection e e e e 299
GOrOULINES ot e e e e e e e e e 300
MEMOTY . . . o o o e e e e e e e e e e 302
Callstack e e 304
TUNLIMe/debUg « « v v vt e 305
TUNLIME/PPTOT v v v v o e 307
SOIL e e e e e 309
Basic Sorting 309
Advanced Sorting e e e 311
Searching 314
SIFCONV e e e e e e e e e e e e e e e e e e 316
CONVErSIONS v vt e e e e e e e e e e e e e e e 316
Appending L e e e e 321
Quoting e 323
SIPINGS e e e e e 325

Querying Strings e e e e e e 325

CONTENTS

Intotheindex e 328
Hey, splititup! e 332
Building and altering strings 333
Upper andlowercase 335
Trimming e e e e 337
Reader e 339
SYIIC . . . o o v it e e e e e e e e e e e e e e e 341
ONnce e 341
MULEX . . . o e e e e e e 342
Cond e 344
WaltGroup o e e e e e e 353
PoOl . . . e 354
SYNC/AEOMIC v v v v v e 356
syscall(Wip) e 359
testing e 360
Testing. T . v v v v i e 360
Benchmarking e 362
Examples e 362
TeXt . . . e e e 364
Let'sbuildacalculator. 364
Pretty console output e 367
Templating e e 368
tIMe e e 374
Parsing and Formatting 374
Duration e e e e e 376
Math e 379
COmPpaAriSONS o it e e e e e e e e e e e e e e 380
Time.Timer . . . v v v v e 382
Frantic-tick-tick-tick-tick-tick-tick-tock: time. Ticker 384
Timezones e 385
unicode e e e e e e e e 388
QuUerIeS e e e e e e 388
Simple Conversion e e e 390

UTE-16 . . . o o e 392

Introduction

When I sit down to build a new piece of software in my favorite programming
language of the week, I open up my programmer’s toolbox. I can pull out a number
of things, like my knowledge of the language syntax and its quirks. It probably has
some sort of library packaging system (rubygems?! or python eggs?), and I have my
list of libraries for doing certain jobs. The language also has a standard library. All
of these tools combine to help solve difficult programming problems.

Right now, my programming language of choice is Go® and it has a wonderful
standard library. That standard library is what this book is about.

I wanted to take an in depth look at something which normally doesn’t get a lot of
press, and many developers overlook. The standard library usually has a number
of great solutions to problems that you might be using some other dependency for,
simply because you don’t know about them. It makes no sense for my application to
depend on an external library or program if the standard distribution of the language
has something built in.*

Learning the ins and outs of your favorite programming language’s standard library
can help make you a better programmer, and streamline your applications by
removing dependencies. If this sounds like something you’re interested in, keep
reading.

Target Audience

This book is for people that know how to program Go already. It’s definitely not an
intro. If you're completely new to Go, start with the documentation page® and the
reference page®. The language specification is quite readable and if you’re already
familiar with other programming languages you can probably absorb the language
from the spec.

If you know Go but want to step up your game and your usage of the standard
library, this book is for you.

1http://rubygems.org/

2http://pypi.python.org/pypi/

3http://golang.org/

4Not to mention, the library you are using might only work on one operating system, while the standard library should
work everywhere the language works.

5http://golang.org/doc/

6http://golang.org/ref/

http://rubygems.org/
http://pypi.python.org/pypi/
http://golang.org/
http://golang.org/doc/
http://golang.org/ref/
http://golang.org/ref/
http://rubygems.org/
http://pypi.python.org/pypi/
http://golang.org/
http://golang.org/doc/
http://golang.org/ref/

Introduction ii

How To Read This Book

My goal for this book is a readable reference. I do want you to read it, but I also
want you to be able to pull it off the electronic shelf and remind yourself of how
to do something, like writing a zip file. It’s not meant to be a replacement for the
package reference’ which is very useful to remember the details about a specific
method/function/type/interface.

So feel free to read from cover to cover, and in fact I recommend this approach.
If you see something that doesn’t quite work reading it this way, let me know.
Alternatively, try reading individual chapters when you start to deal with a given
package to get a feel for it, and come back to skim to refresh your memory.

Code In The Book

All the code listed in the book is available for download from Leanpub as an extra.
Visit your dashboard? for access to the archives.

Anything with a main package should be able to be executed with go run by Go
Version 1.2. If it’s not, please let me know, with as much error information as
possible.

Some code may depend on output from previously shown code in the same chapter.
For example, the tar archive reading code reads the tar created in the writing code.

Frequently I’ll use other packages to make my life easier when writing example
code. Don’t worry too much about it. If you’re confused about some use of a package
you’re not familiar with yet, either try to ignore the details and trust that I'll explain
it later, or jump ahead and choose your own adventure!

License

Code distributed as part of this book, either inline or with the above linked archive,
is licensed under the MIT license:

7http://golang.org/pkg/
8https://leampub.com/dashboard

http://golang.org/pkg/
http://golang.org/pkg/
https://leanpub.com/dashboard
http://golang.org/pkg/
https://leanpub.com/dashboard

0w N O O & W N =~

Y S YN
0 3 O O b WON =~ O

0 = O O b W N =~

SO =Y
N O O b WD =r OO O

Introduction

LICENSE

iii

Copyright (c) 2014 Daniel Huckstep

Permission is hereby granted, free of charge, to any person obtaining a copy of \
this software and associated documentation files (the "Software"), to deal in th\
e Software without restriction, including without limitation the rights to use, \
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the \
Software, and to permit persons to whom the Software is furnished to do so, subj\
ect to the following conditions:

The above copyright notice and this permission notice shall be included in all c\
opies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLI\
ED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR \
A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYR\
IGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN \
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WIT\
H THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Some code is taken directly from the Go source distribution. This code is licensed

under a BSD-style license by The Go Authors:

GOLICENSE

Copyright (c) 2012 The Go Authors. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

18
19
20
21
22
23
24
25
26
27

Introduction

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

iv

Thanks

Thanks for buying and checking out this book. As part of the lean publishing
philosophy, you’ll be able to interact with me as the book is completed. I'll be able
to change things, reorganize parts, and generally make a better book. I hope you
enjoy.

A big thanks goes out to all those who provided feedback during the writing process:

* Brad Fitzpatrick
* Mikhail Strebkov
e Kim Shrier

Credits

Cover photo by Sebastian Bergmann used under Attribution-ShareAlike 2.0 Generic
(CCBY-SA 2.0)°. Photo located at http://www.flickr.com/photos/sebastian_bergmann/202396633/

9http://creativecommons.org/licenses/by-sa/Z.O/deed.en

http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://creativecommons.org/licenses/by-sa/2.0/deed.en

archive

Meet The Archive Package

The archive package is used to read and write files in tar and zip format. Both
formats pack multiple files into one big file, the main difference being that zip
files support optional compression using the DEFLATE algorithm provided by the
compress/flate package.

Writing tar Files

Writing a tar file starts with Newwriter. It takes an io.writer type, which is just
something that has a method that looks like write([]byte) (int, error). This is nice
if you want to generate a tar file on the fly and write it out to an HTTP response,
or feed it through another writer like a gzip writer. You’ll see this just give me an
io.Writer pattern alot in the Go stdlib. In our case, I'm just going to write the archive
out to a file.

A Make sure to close the writer you pass in after you close the tar writer.
It writes 2 zero blocks to finish up the file, but ignores any errors during
this process. This trailer isn’t strictly required, but it’s good to have. If you

use defer in the natural order, you should be okay.

To add files to the new tar writer, use writeHeader. It needs a Header with all the
information about this entry in the archive, including its name, size, permissions,
user and group information, and all the other bits that get set when the tar file gets
unpacked. Straight from the Go documentation, the Header type looks like this:

[N

S © W0 I O O b W N =

archive

archive/tar_header.go

type Header struct {

Name
Mode

uid

Gid

Size
ModTime
Typeflag
Linkname
Uname
Gname
Devma jor

Devminor

string
int64
int
int
int64
time.Time
byte
string
string
string
int64
int64

// name of header file entry

// permission and mode bits

// user id of owner

// group id of owner

// length in bytes

// modified time

// type of header entry

// target name of link

// user name of owner

// group name of owner

// major number of character or block device
// minor number of character or block device

AccessTime time.Time // access time

ChangeTime time.Time // status change time

Some fields aren’t really required if you’re doing something quick and dirty, and
some only apply to certain types of entries (controlled by the Typefiag field). For
example, if you’re packaging a regular file, you don’t need to worry about Devmajor

and bDevminor.

Qc I found that on top of the obvious Name and size fields, I had to set the ModTime
on the Header. GNU tar would unpack the file fine, but running the read script
would throw the standard “archive/tar: invalid tar header” error back at

me.

Let’s see it all together:

archive/write_tar.go

package main

import (

"archive/tar"

”fmt"
||ion
"].og"

n "

os

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52

archive

var files = []string{"write_tar.go", "read_tar.go"}

func addFile(filename string, tw *tar.Writer) error {

file, err := os.Open(filename)
if err != nil {
return fmt.Errorf("failed opening %s: %s", filename, err)
}
defer file.Close()
stat, err := file.Stat()
if err != nil {
return fmt.Errorf("failed file stat for %s: %s", filename, err)
}
hdr := &tar.Header({
ModTime: stat.ModTime(),
Name: filename,
Size: stat.Size(),
Mode: int64(stat.Mode().Perm()),
}
if err := tw.WriteHeader(hdr); err != nil {
msg := "failed writing tar header for %s: %s"
return fmt.Errorf(msg, filename, err)
}
copied, err := io.Copy(tw, file)
if err != nil {
return fmt.Errorf("failed writing %s to tar: %s", filename, err)
}
// Check copied, since we have the file stat with its size
if copied < stat.Size() {
msg := "wrote %d bytes of %s, expected to write %d"
return fmt.Errorf(msg, copied, filename, stat.Size())
}
return nil
}
fune main() {

flags := 0s.0_WRONLY | os.0_CREATE | os.O_TRUNC

53
54
95
56
ST
o8
59
60
61
62
63
64
65
66
67

archive

file, err := os.OpenFile("go.tar", flags, 0644)
if err != nil {
log.Fatalf("failed opening tar for writing: %s", err)

1
defer file.Close()

tw = tar.NewWriter(file)
defer tw.Close()

for _, filename := range files {
if err := addFile(filename, tw); err != nil {
log.Fatalf("failed adding file %s to tar: %s", filename, err)

Remember to close the tar writer first, followed by the original io.writer. In the
example, I defer the calls to close. Because defer executes in a LIFO“ order, this is
exactly the order things get closed in. defer usually results in you not having to
think too hard in these situations, just use defer the way it should be used, and
everything should be fine.

ALast In First Out

Writing zip Files

Writing a zip file is similar to writing a tar file. There’s a Newwriter function that
takes an io.writer, So let’s use that.

The zip package has a handy helper to let you quickly write a file to the archive
without much cermony. We can use the create(name string) method on the zip writer
we got back from Newwriter to add an entry to the zip; no header information needed.
There is a Header type, which looks like this:

0 N O O & W N =

[¢
W N~ O

archive

archive/zip_header.go

type FileHeader struct {
Name
CreatorVersion
ReaderVersion
Flags
Method
ModifiedTime
ModifiedDate
CRC32
CompressedSize
UncompressedSize
CompressedSizet4
UncompressedSize64
Extra
ExternalAttrs
Comment

string
uint16
uint16
uint16
uinti6
uinti6
uint16
uint32
uint32
uint32
uint64
uint64
[]byte
uint32
string

// MS-DOS time
// MS-DOS date

// deprecated, use CompressedSize64

// deprecated, use UncompressedSizeb64

// Meaning depends on CreatorVersion

You can use CreateHeader if you need to do something special, but create creates a
basic header for us and gives us a writer back. We can now use this writer to write
the file into the zip archive.

Make sure to write the entire file before calling any of create, CreateHeader, OT Close.
You can only deal with one file at a time, and you certainly can’t deal with the zip

after you’ve closed it.

archive/write_zip.go

package main

import (
"archive/zip"
"fmt"
"ion
"log"

n "

os

var files = []string{"write_zip.go", "read_zip.go"}

func addFile(filename string, zw *zip.Writer) error {

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1

archive 6

file, err := os.Open(filename)
if err != nil {
return fmt.Errorf("failed opening %s: %s", filename, err)
}
defer file.Close()
wr, err := zw.Create(filename)
if err != nil {
msg := "failed creating entry for %s in zip file: %s"
return fmt.Errorf(msg, filename, err)
}
// Not checking how many bytes copied,
// since we don't know the file size without doing more work
if _, err := io.Copy(wr, file); err != nil {
return fmt.Errorf("failed writing %s to zip: %s", filename, err)
}
return nil
}
func main() {

flags := 0s.0_WRONLY | os.0_CREATE | os.O_TRUNC

file, err := os.OpenFile("go.zip", flags, 0644)

if err = nil {
log.Fatalf("failed opening zip for writing: %s", err)

}

defer file.Close()

zw := zip.NewWriter(file)

defer zw.Close()

for _, filename := range files {
if err := addFile(filename, zw); err != nil {

log.Fatalf("failed adding file %s to zip: %s", filename, err)

}

}

}

As with tar files, remember to Close the original io.writer and the zip writer (in that
order).

O© 00 9 O U b W N =

NN NN DNDDNDNRS B B 1 |l s sl
O Ol = WO N PO © 0010 O b WON=~O

archive 7

Reading tar Files

Reading tar files is pretty straight forward. You use NewReader to get a handle to a
Reader type. Like Newwriter taking an io.writer type, NewReader takes an io.Reader type,
in order to plug into other streams for reading tar files on the fly.

Once you have your rReader, you can iterate over the entries in the archive with the
Next method. It returns a Header and possibly an error. Remember to check the error
since it’s used to signal the end of the archive (with io.eoF) and other problems.
Always check those errors!

You can read out an entry by calling read on the reader you got back from NewReader,
or pass it to a utility function to read out the full contents of the entry. In the
example, I use io.ReadrFull to read out the appropriate number of bytes into a slice,
and can then print that to stdout.

archive/read_tar.go

package main

import (

"archive/tar"

"fmt"

"o

"log"

"os"

"text/template”
)
var HeaderTemplate = “tar header
Name: {{.Name}}
Mode: {{.Mode | printf "%o" }}
UID: {{.uid}}
GID: {{.Gid}}
Size: {{.Size}}
ModTime: {{.ModTime}}
Typeflag: {{.Typeflag | printf "%q" }}
Linkname: {{.Linkname}}
Uname: {{.Uname}}
Gname : {{.Gname}}
Devmajor : {{.Devmajor}}
Devminor : {{.Devminor}}

AccessTime: {{.AccessTime}}
ChangeTime: {{.ChangeTime}}

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
o5
o6
o7
o8
59
60
61
62
63
64
65
66
o7
68

archive 8

~

var CompiledHeaderTemplate *template.Template

func init() {

t := template.New("header")

CompiledHeaderTemplate = template.Must(t.Parse(HeaderTemplate))
}
func printHeader(hdr *tar.Header) {

CompiledHeaderTemplate.Execute(os.Stdout, hdr)

func printContents(tr io.Reader, size int64) {
contents := make([]byte, size)
read, err := io.ReadFull(tr, contents)

if err != nil {
log.Fatalf("failed reading tar entry: %s", err)

if int64(read) != size {
log.Fatalf("read %d bytes but expected to read %d", read, size)

fmt.Fprintf(os.Stdout, "Contents:\n\n%s", contents)

func main() {
file, err := os.0Open("go.tar")
if err != nil {
msg := "failed opening archive, run "go run write_tar.go” first: %s"
log.Fatalf(msg, err)

defer file.Close()

tr := tar.NewReader(file)
for {
hdr, err := tr.Next()
if err == io0.EOF {
break

69
70
71
T2
73
T4
75
76
7

0 = O O b W N =~

W N DN DNDNDDNDNDNDNDNDNDNA AP, S)
© © 00 N O Ol d W N O © 00 3O O N~ O O

archive

if err != nil {
log.Fatalf("failed getting next tar entry: %s", err)
}
printHeader (hdr)
printContents(tr, hdr.Size)
}
}
Output:

tar header
Name:
Mode:
UID:

GID:
Size:
ModTime:
Typeflag:
Linkname:
Uname:
Gname:
Devma jor:
Devminor:

AccessTime:
ChangeTime:

Contents:

write_tar.go

644

4]

%]

1441

2014-03-07 23:02:17 -0700 MST
'\x00'

%]
0
0001-01-01 00:00:00 +000 UTC
0001-01-01 00:00:00 +00O UTC

<snip contents of writer_tar.go>

tar header
Name:
Mode:
UID:

GID:
Size:
ModTime:
Typeflag:
Linkname:
Uname:
Gname:

Devmajor :

read_tar.go

644

9]

0

1484

2014-03-07 23:00:03 -0700 MST
"\x00'

31
32
33
34
35
36

0 N O O B~ W N -

NN NN NDNDNR B 1 s sl
O O b WO N O © 01O O b WO NN~ O O

archive 10

Devminor: %]

AccessTime: Q001-01-01 00:00:00 +0000Q UTC
ChangeTime: 0001-01-01 00:00:00 +000Q UTC
Contents:

<snip contents of read_tar.go>

Reading zip Files

Reading zip files is a walk in the park too. Start with openReader to getazip.ReadCloser.
It has a collection of File structs you can iterate through, each one with size and
other information, and an open method so you can get another ReadCloser to read
out that individual file. Simple!

archive/read_zip.go

package main

import (
"archive/zip"
"fmt"
"o
"log"
"os"
)
func printFile(file *zip.File) error {
frc, err := file.Open()
if err != nil {
msg := "failed opening zip entry %s for reading: %s"

return fmt.Errorf(msg, file.Name, err)

}

defer frc.Close()

fmt.Fprintf(os.Stdout, "Contents of %s:\n", file.Name)

copied, err := io.Copy(os.Stdout, frc)
if err != nil {
msg := "failed reading zip entry %s for reading: %s"

return fmt.Errorf(msg, file.Name, err)

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

O = W N =

archive

11

if uint64(copied) != file.UncompressedSize64 {
msg := "read %d bytes of %s but expected to read %d bytes"
return fmt.Errorf(msg, copied, file.UncompressedSize64)

fmt .Println()

return nil

}
func main() {
rc, err := zip.OpenReader("go.zip")
if err != nil {
msg := "failed opening archive, run "go run write_zip.go”™ first: %s"
log.Fatalf(msg, err)
}
defer rc.Close()
for _, file := range rc.File {
if err := printFile(file); err != nil {
log.Fatalf("failed reading %s from zip: %s", file.Name, err)
}
}
}
Output:

Contents of write_zip.go:

<snip contents of write_zip.go>

Contents of read_zip.go:

<snip contents of read_zip.go>

Remember toClose the first ReadCloser you get from openreader, as well as all the other
ones you get while reading files.

Caveats

ZIP64

You may have noticed the FileHeader has two pairs of numbers for the size of a

file in the archive. The Compressedsize and UncompressedSize are uint32 values. These

archive 12

are deprecated, but in the interest of backwards compatibility will still work for
regular zip files. If you’re working with ZIP64 files, you need to use the newer
CompressedSize64 and UncompressedSize64 uint64 values. These will be correct for all
files, so they are the preferred values to use.

© 00 N O U b W N =

S =Y
SO0 OB WD RO

bufio

Is That A Buffer In Your Pocket?

The bufio package pairs up with the io.Reader and io.writer interfaces to make life
a little faster by including a buffer. Buffered I0. The speed up comes from the fact
that when you call write on a buffered IO thing, it doesn’t necessarily write the data.
It might just store it in the buffer, and then when the buffer is full, it can write it out
in one big chunk, reducing the number of system calls. System calls involve going
from user space to kernel space, so they’re kind of slow.

Buffered IO is preferable to regular 10 for the increased speed, and the ability to
peek at and push back (some) data, but it has drawbacks too. The bufer takes up
memory (default of 4KB), which is the main kicker. Sometimes, you just can’t afford
that buffer size. The data is not always written right away either. Sometimes you
need it to be written immediately, and in those cases, unbuffered is the way to go.
In other situations, you could used buffered, but Fiush on a regular basis.

With regards to speed, let’s look at a little benchmark. Run this with go test -
test.bench ' . *'

bufio/bench/bufio_test.go

package main

import (
"bufio"
"o
"log"
"os"
"testing”

const str = "Go, The Standard Library"
const Times = 100

func openFile(name string) *os.File {
file, err := os.OpenFile(name, os.0_WRONLY|os.0O_CREATE|os.O_TRUNC, 0644)
if err != nil {
log.Fatalf("failed opening %s for writing: %s", name, err)

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

bufio 14

}

return file

func BenchmarkBufio(b *testing.B) ({
file := openFile(os.DevNull)
defer file.Close()

bufferedFile := bufio.NewWriter(file)

for i := 0; i < b.N; i++ {
if _, err := bufferedFile.WriteString(str); err != nil {
log.Fatalf("failed or short write: %s", err)

bufferedFile.Flush()

func BenchmarkIO(b *testing.B) {
file := openFile(os.DevNull)
defer file.Close()

for i := 0; i < b.N; i++ {

if err := io.WriteString(file, str); err != nil {

—7

log.Fatalf("failed or short write: %s", err)

On my machine I was getting about 50 nanoseconds per operation for buffered and
a whopping 1260 nanoseconds per operation for unbuffered. If you can spare the
memory, you probably want buffered IO.

Reading

Using bufio to read and write things looks just like anything else from the outside,
but the rReader and writer types have some handy extra methods on them. When it
comes to reading, you can read strings and runes. You can also unread individual
bytes (only the last read byte) and individual runes (only after a call to ReadrRune).
You can read entire lines too. If you don’t want to read just yet, you can peek.

0 N O O & W N =~

W W W W W W WwWwoWwWwWNDNDNDNDNDNDDNDNDNDDNDNDNDNDNNAESEAEPRrEPASEPS,EPS, S
© 00 9 O Ol b WO N~ O © 00 3O O b WONHPHO O W NO O b OWN -~ O O

bufio 15

Use the bufio.NewReader function to wrap you existing io.Reader interface to get back
your buffered io type.

bufio/reading.go

package main

import (
"bufio"
"log"
"ogh

)

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

}

func openFile(name string) *os.File {
file, err := os.Open(name)
if err != nil {

log.Fatalf("failed opening %s for writing: %s", name, err)

}

return file

func doPeek(r *bufio.Reader) {
normal := 4
huge := 5000

bytes, err := r.Peek(normal)
if err != nil {
log.Fatalf("Failed peeking: %s", err)

}
log.Printf("Peeked at the reader, saw: %s", bytes)

_, err = r.Peek(huge)
if err != nil {
log.Printf("Failed peeking at %d bytes: %s", huge, err)

func doStringRead(r *bufio.Reader) ({
word, err := r.ReadString(' ")

40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
959
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80
81

16

bufio
if err != nil {
log.Fatalf("failed reading string: %s", err)
}
log.Printf("Got first word: %s", word)
}
func doRuneRead(r *bufio.Reader) ({
ru, size, err := r.ReadRune()
if err != nil {
log.Fatalf("failed reading rune: %s", err)
}
log.Printf("Got rune %U of size %d (it looks like %qg in Go)", ru, size, ru)
log.Printf("Didn't mean to read that though, putting it back")
err = r.UnreadRune()
if err != nil {
log.Fatalf("failed unreading a rune: %s", err)
}
}
func doByteRead(r *bufio.Reader) {

b, err := r.ReadByte()
if err != nil {
log.Fatalf("failed reading a byte: %s", err)
}
log.Printf("Read a byte: %x", b)
log.Printf("Didn't mean to read that either, putting it back")
err = r.UnreadByte()
if err != nil {
log.Fatalf("failed urneading a byte: %s", err)
}
}
func doLineRead(r *bufio.Reader) {
line, prefix, err := r.ReadlLine()
if err != nil {

log.Fatalf("failed
}

reading a line: %s", err)

log.Printf("Got the rest of the line: %s", line)

if prefix {

bufio 17

82 log.Printf("Line too big for buffer, only first %d bytes returned", len(line))
83 } else {
84 log.Printf("Line fit in buffer, full line returned")
85 }
86
87 log.Printf("After all that, %d bytes are buffered", r.Buffered())
88 }
89
90 func main() {
91 file := openFile("reading.go")
92 defer file.Close()
93
94 br := bufio.NewReader(file)
95
96 doPeek (br)
a7 doStringRead(br)
08 doRuneRead(br)
99 doByteRead(br)
100 doLineRead(br)
101}
Output:

» Peeked at the reader, saw: pack

» Failed peeking at 5000 bytes: bufio: buffer full

» Got first word: package

» Got rune U+Q06D of size 1 (it looks like 'm' in Go)
» Didn't mean to read that though, putting it back
Read a byte: 6d

» Didn't mean to read that either, putting it back

» Got the rest of the line: main

» Line fit in buffer, full line returned

» After all that, 2023 bytes are buffered

© © 00 9 O O b W N =~

Y

Writing

On the writing side, you can write individual bytes, runes, and strings. Similar to
reading, use bufio.NewwWriter t0o wrap an io.writer and go to town.

0 N O O B~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

bufio

bufio/writing.go

18

package main

import (
"bufio"
"log"
"os"

)

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

func openFile(name string) *os.File {
file, err := os.OpenFile(name, os.0_WRONLY|os.O_CREATE|os.0O_TRUNC, 0644)
if err != nil {
log.Fatalf("failed opening %s for writing: %s", name, err)

}

return file

func doWriteByte(w *bufio.Writer) ({
if err := w.WriteByte('G'); err != nil {
log.Fatalf("failed writing a byte: %s", err)

func doWriteRune(w *bufio.Writer) {
if written, err := w.WriteRune(rune('o')); err != nil {
log.Fatalf("failed writing a rune: %s", err)
} else {
log.Printf("Wrote rune in %d bytes", written)

func doWriteString(w *bufio.Writer) {
written, err := w.WriteString(", The Standard Library\n")
if err != nil {
log.Fatalf("failed writing string: %s", err)

}
log.Printf("Wrote string in %d bytes", written)

42
43
44
45
46
47
48
49
S50
o1
52
53
54
95
56

O© 00 9 O O b W N =

bufio 19

func main() {
file := openFile("bufio.out")
defer file.Close()

bw := bufio.NewWriter(file)

// Remember to Flush!
defer bw.Flush()

doWriteByte(bw)
doWriteRune(bw)
doWriteString(bw)

Output:

» Wrote rune in 1 bytes
» Wrote string in 283 bytes

It’s all pretty straight forward stuff. Wrap it, write it and read it!

Scanning

In Go 1.1, the scanner type was added to the bufio package. It provides a simple
interface to read chunks of things. By default it will read lines (excluding the
terminator), but has support for custom split functions. It includes split functions to
scan individual bytes, words (split on spaces), and runes. We’ll look at the fun ones.

bufio/scanning.go

package main

import (
"bufio"
"log"
"og™
"strings"
"unicode/utf8"

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
90
o1

bufio

func init() {

log.SetFlags(9)
log.SetPrefix("» ")
}
func lines() {
f, _ := o0s.0Open("scanning.go")
defer f.Close()
s := bufio.NewScanner(f)
for s.Scan() {
log.Printf("line: %s", s.Text())
}
}
func words() {
r := strings.NewReader("I just wanna dance with somebody")
s := bufio.NewScanner(r)
s.Split(bufio.ScanWords)
for s.Scan() {
log.Printf("word: %s", s.Text())
}
}
func runes() {
r := strings.NewReader("I just wanna dance with somebody")
s := bufio.NewScanner(r)
s.Split(bufio.ScanRunes)
for s.Scan() {
log.Printf("rune: %s", s.Text())
}
}
// Basically the “ScanWords™ code, altered to split on periods.

func periods(data []byte, atEOF bool) (int, []byte, error) {
start (= 0
for width := 0; start < len(data); start += width {
var r rune
r, width = utf8.DecodeRune(data[start:])
ifr ="' {
break

20

52
53
o4
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
I
76
T
78
79
80
81

O 00 N O O & W N =

bufio 21
}
if atEOF && len(data) == 0 {
return 0, nil, nil
}
for width, i := 0, start; i < len(data); i += width {
var r rune
r, width = utf8.DecodeRune(datali:])
ifr == "'."{
return i + width, data[start:i], nil
}
}
return 0, nil, nil
}
func custom() {
f, _ := os.0Open("scanning.go")
defer f.Close()
s := bufio.NewScanner(f)
s.Split(periods)
for s.Scan() {
log.Printf("between periods: %s", s.Text())
}
}
func main() {
lines()
words()
runes()
custom()
}
Output:
» line: package main
» line:
» line: import (
» line: "bufio"
» line: "log"
» line: "os"
» line: "strings"
» line: "unicode/utf8"
» line:)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
90
o1

bufio

line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:

22

func init() {
log.SetFlags(Q)
log.SetPrefix("» ")

}

func lines() {
f, _ := o0s.0Open("scanning.go")
defer f.Close()
s := bufio.NewScanner(f)

for s.Scan() {
log.Printf("line: %s", s.Text())

}

}

func words() {
r := strings.NewReader("I just wanna dance with somebody")
s := bufio.NewScanner(r)

s.Split(bufio.ScanWords)
for s.Scan() {
log.Printf("word: %s", s.Text())

}

}

func runes() {
r := strings.NewReader("I just wanna dance with somebody")
s := bufio.NewScanner(r)

s.Split(bufio.ScanRunes)
for s.Scan() {
log.Printf("rune: %s", s.Text())

// Basically the “ScanWords™ code, altered to split on periods.
func periods(data []byte, atEOF bool) (int, []byte, error) {
start (= 0
for width := Q; start < len(data); start += width {
var r rune
r, width = utf8.DecodeRune(data[start:])
ifr ="' {

break

52
53
o4
55
56
o7
58
99
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
I
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

bufio

line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
line:
word:
word:
word:
word:
word:
word:
rune:
rune:
rune:
rune:
rune:

rune:

func cus

func mai

}
I

just
wanna
dance
with
somebody
I

t 0 < .

23

}
if atEOF && len(data) == 0 {

return 0, nil, nil
}
for width, i := @, start; i < len(data); i += width {
var r rune
r, width = utf8.DecodeRune(datali:])
ifr="'{
return i + width, data[start:i], nil

}

return @, nil, nil

tom() {
f, _ := os.0Open("scanning.go")
defer f.Close()
s := bufio.NewScanner(f)
s.Split(periods)
for s.Scan() {
log.Printf("between periods: %s", s.Text())

n() {

lines()
words()
runes()
custom()

bufio

94 » rune:

95 » rune: w
96 » rune: a
97 » rune: n
98 » rune: n
99 » rune: a
100 » rune:

101 » rune: d
102 » rune: a
103 » rune: n
104 » rune: ¢
105 » rune: e

106 » rune:
107 » rune: w

108 » rune: 1
109 » rune: t
110 » rune: h
111 » rune:

112 » rune: s
113 » rune: o
114 » rune: m
115 » rune: e
116 » rune: b
117 » rune: o
118 » rune: d

119 » rune: y

120 » between periods: package main
121

122 import (

123 "bufio"

124 "log"

125 "os"

126 "strings"

127 "unicode/utf8"
128)

129

130 func init() {

131 log

132 » between periods: SetFlags(@)
133 log

134 » between periods: SetPrefix("» ")
135 1}

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

bufio

func lines() {

v

>

»

»

f, _ = os
between periods: Open("scanning
between periods: go")
defer f
between periods: Close()
s := bufio
between periods: NewScanner(f)
for s
between periods: Scan() {
log
between periods: Printf("line: %s", s
between periods: Text())

}

func words()

M

>

r := strings
between periods: NewReader("I just wanna dance with somebody")
s := bufio
between periods: NewScanner(r)
s
between periods: Split(bufio
between periods: ScanWords)
for s
between periods: Scan() {
log
between periods: Printf("word: %s", s
between periods: Text())

}

func runes() {

»

v

>

r := strings
between periods: NewReader("I just wanna dance with somebody")
s := bufio
between periods: NewScanner(r)
s
between periods: Split(bufio
between periods: ScanRunes)
for s

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

bufio 26

» between periods: Scan() {

log
» between periods: Printf("rune: %s", s
» between periods: Text())

}

// Basically the “ScanWords™ code, altered to split on periods
» between periods:
func periods(data []byte, atEOF bool) (int, []byte, error) {
start := 0
for width := @; start < len(data); start += width {
var r rune
r, width = utf8
» between periods: DecodeRune(data[start:])
ifr I="
» between periods: ' {
break

}
if atEOF && len(data) == 0 {

return 0, nil, nil

}

for width, i := @, start; i < len(data); i += width {
var r rune

width = utf8

» between periods: DecodeRune(datali:])

I-/
ifr =1
» between periods: ' {
return i + width, data[start:i], nil

return @, nil, nil

func custom() {
f, _ = os
» between periods: Open("scanning
» between periods: go")
defer f
» between periods: Close()
s := bufio

220
221
222
223
224
225
226

bufio

v

>

M

>

»

»

between periods: NewScanner(f)
s
between periods: Split(periods)
for s
between periods: Scan() {
log
between periods: Printf("between periods: %s", s

builtin
Batteries Included

The builtin package isn’t a real package, it’s just here to document the builtin
functions that come with the language. Lower level than the standard library, these
things are just...there. The builtins let you do things with maps, slices, channels,
and imaginary numbers, cause and deal with panics, build objects, and get size
information about certain things. Honestly, most of this can be learned from the
spec, but I’'ve included it for completeness.

Building Objects

make

make is used to build the builtin types like slices, channels and maps. The first
argument is the type, and it can be one of those three types.

In the case of channels, there is an optional second integer parameter, the capacity.
If it’s zero (or not given), the channel is unbuffered. This means writes block until
there is a reader ready to receive the data, and reads block until there is a write
ready to give data. If the parameter is greater than zero, the channel is buffered
with the capacity specified. On these channels, reads block only when the channel
is empty, and writes block only when the channel is full.

In the case of maps, the second parameter is also optional, but is rarely used. It
controls the initial allocation, so if you know exactly how big your map has to be,
it can be helpful. cap (Which we’ll see later) doesn’t work on maps though, so you
can’t really examine the effects of this second parameter easily.

In the case of slices, the second parameter is not optional, and specifies the starting
length of the slice. Oh but the plot thickens! There is an optional third parameter,
which controls the starting capacity, and it can’t be smaller than the length.!? This
way, you can get really specific with your slice allocation and save subsequent
reallocations if you know exactly how much space you need it to take up.

10y¢ you specify a length greater than the capacity, youw’ll get a runtime panic.

0 N O O B~ W N -

NN NN N N B B 1 s s s s
O & 0O N~ O O 0N O O b W N~ O ©

builtin 29

builtin/make.go

package main
import "log"

func main() {

unbuffered := make(chan int)

log.Printf("unbuffered: %v, type: %T, len: %d, cap: %d", unbuffered, unbuffered\
, len(unbuffered), cap(unbuffered))

buffered := make(chan int, 10)
log.Printf("buffered: %v, type: %T, len: %d, cap: %d", buffered, buffered, len(\
buffered), cap(buffered))

m := make(map[string]int)
log.Printf("m: %v, len: %d", m, len(m))

// Would cause a compile error
// slice := make([]byte)

slice := make([]byte, 5)
log.Printf("slice: %v, len: %d, cap: %d", slice, len(slice), cap(slice))

slice2 := make([]byte, 0, 10)
log.Printf("slice: %v, len: %d, cap: %d", slice2, len(slice2), cap(slice2))

new

The new function allocates a new object of the type provided, and returns a pointer
to the new object. The object is allocated to be the zero value for the given type. It’s
not something you use terribly often, but it can be useful. If you’re making a new
struct, you probably want to use the composite literal syntax instead.

©O© 00 < O U b W N =

N B 1 1 |l |
© ©W 0 1 O O b W N~ 0O

builtin

builtin/new.go

30

package main
import "log"
type Actor struct {

Name string

type Movie struct {
Title string
Actors []*Actor

funec main() {
ip := new(int)

log.Printf("ip type: %T, ip: %v, *ip: %v

m := new(Movie)

log.Printf("m type: %T, m:

"

, ip, ip, *ip)

©%v", m, m, *m)

Maps, Slices, And Channels

You’ve got slices, maps and channels as some of the fundamental types that Go
provides. The functions delete, close, append, and copy all deal with these types to

do basic operations.

delete

delete removes elements from a map. If the key doesn’t exist in the map, nothing
happens, nothing to worry about. If the map itself is ni1 it still works, just nothing

happens.

©O© 00 < O U b W N =

NN N N P S s s s
W N, O © 000 O b W N -~ O

builtin 31

builtin/delete.go

package main
import "log"
func main() {
m := make(map[string]int)

log.Printin(m)

m["one"] =1
log.Println(m)

m["two"] = 2
log.Printin(m)

delete(m, "one"
log.Println(m)

delete(m, "one"
log.Printin(m)

m = nil
delete(m, "two")

close

close takes a writable channel and closes it. When I say writable, I mean either a
normal channel like var normal chan int or a write only channel like var writeonly
chan<- int. You can still receive from a closed channel, but you’ll get the zero value
of whatever the type is. If you want to check that you actually got a value and not
the zero value, use the comma ok pattern. Closing an already closed channel will
panic, so watch those double closes.

©O© 00 < O U b W N =

NN N N N S S L sy
B WO N 2O © 0010 O i O N~ O

builtin 32

builtin/close.go

package main

import "log"

func main() {
¢ := make(chan int, 1)
c <- 1

log.Println(<-c) // Prints 1

c <- 2
close(c)

log.Println(<-c) // Prints 2
log.Println(<-c) // Prints @

if i, ok := <-¢; ok {
log.Printf("Channel is open, got %d", i)
} else {
log.Printf("Channel is closed, got %d", i)

close(c) // Panics, channel is already closed

append

append tacks on elements to the end of a slice, exactly like it sounds. You need to keep
the return value around, since it’s the new slice with the extra data. It could return
the same slice if it has space for the data, but it might return something new if it
needed to allocate more memory. It takes a variable number of arguments, so if you
want to append an existing array, use ... to expand the array.

The idiomatic way to append to a slice is to assign the result to the same slice you’re
appending to. It’s probably what you want.

0 N O O B~ W N -

N RN NN NN NN & B 1 | 1 s sy
N O O » WO NP O © 003 O O b WO N~ O ©

builtin 33

builtin/append.go

package main

import "log"

func main() {
// Empty slice, with capacity of 10
ints := make([]int, 0, 10)
log.Printf("ints: %v", ints)

ints2 := append(ints, 1, 2, 3)

log.Printf("ints2: %v", ints2)
log.Printf("Slice was at %p, it's probably still at %p", ints, ints2)

morelnts := []int{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
ints3 := append(ints2, morelnts...)

log.Printf("ints3: %v", ints3)
log.Printf("Slice was at %p, and it moved to %p", ints2, ints3)

ints4 := []int{1, 2, 3}

log.Printf("ints4: %v", ints4)

// The idiomatic way to append to a slice,
// just assign to the same variable again
ints4 = append(ints4, 4, 5, 6)
log.Printf("ints4: %v", ints4)

copy

copy copies from one slice to another. It will also copy from a string, treating it as
a slice of bytes. It returns the number of bytes copied, which is the shorter of the
lengths of the two slices.

© 00 N O U b W N =

NN NN NN B B 1 s s
O b 0O N~ O O 0N O Ol b W N~ O

builtin 34

builtin/copy.go

package main
import "log"
func main() {
ints := []int{1, 2, 38, 4, 5, 6}

otherInts := []int{11, 12, 13, 14, 15, 16}

log.Printf("ints: %v", ints)
log.Printf("otherInts: %v", otherlnts)

copied := copy(ints[:3], otherlInts)
log.Printf("Copied %d ints from otherInts to ints", copied)

log.Printf("ints: %v", ints)
log.Printf("otherInts: %v", otherInts)

hello :
bytes :

"Hello, World!"
make([]byte, len(hello))

copy(bytes, hello)

log.Printf("bytes: %v", bytes)
log.Printf("hello: %s", hello)

All The Sizes

Alot of things have lengths and capacities. With 1en and cap, you can find out about
these values.

len

len tells you the actual length or size of something. In the case of slices, you get,
well, the length. In the case of strings, you get the number of bytes. For maps, you
get how many pairs are in the map. For channels, you get how many elements the
channel has buffered (only relevant for buffered channels).

You can also call 1en with a pointer, but only a pointer to an array. It’s the equivalent
of calling it on the dereferenced pointer. But, since it still has a type, it’s an array

O© 00 9 O O P W N =

NN N N P S s s sy s
W N O © 03O0 O b WODN~-O

builtin 35

and not a slice, and the type of an array includes the size, so it still works. The length
is part of the type.

builtin/len.go

package main
import "log"

func main() {
slice := make([]byte, 10)
log.Printf("slice: %d", len(slice))

str := "ye1a ocou kooue"
log.Printf("string: %d", len(str))

m := make(map[string]int)
m["hello"] = 1
log.Printf("map: %d", len(m))

channel := make(chan int, 5)
log.Printf("channel: %d", len(channel))
channel <- 1

log.Printf("channel: %d", len(channel))

var pointer *[5]byte
log.Printf("pointer: %d", len(pointer))

cap

cap tells you the capacity of something. It’s similar to 1en, except it doesn’t work on
maps or strings. With arrays, it’s the same as using len.

With slices, it returns the max size the slice can grow to when you append to it
before things are copied to a new backing array. This is why you have to save the
return value of append. If cap returns 5 and you append 6 things to your slice, it’s
going to return you a slice backed by a new array.

With channels, it returns the buffer capacity.

©O© 00 < O U b W N =

[Gy
D W N,

builtin 36

builtin/cap.go

package main
import "log"
func main() {
slice := make([]byte, 0, 5)

log.Printf("slice: %d", cap(slice))

channel := make(chan int, 10)
log.Printf("channel: %d", cap(channel))

var pointer *[15]byte
log.Printf("pointer: %d == %d", cap(pointer), len(pointer))

Causing And Handling Panics

panic and recover are typically used to deal with errors. These are errors where re-
turning an error in the comma err style don’t make sense. Things like programmer
error or things that are seriously broken. Usually.

If bad things are afoot, you can use panic to throw an error. You can pass it pretty
much any object, which gets carried up the stack. Deferred functions get executed,
and up the error goes. It works sort of like raise or throw in other languages.

You can use recover to, as the name says, recover from a panic. recover must
be excuted from within a deferred function, and not from within a function the
deferred function calls. It returns whatever panic was called with, you check for
nil and can then type cast it to something.

q& There are some creative uses!! for panic/recover beyond error handling, but
they should be confined to your own package. In Go, it’s not nice to let a
panic go outside your own little world. Better to handle the panic yourself
in a way you know how, and return an appropriate error. In some cases,

the panic makes sense. Err on the side of returning instead of panicking.

The example illustrates things much better.

11gee the code for the encoding/ json package on one of them.

0 N O O B~ W N -

W W W W W W WwWwWwwowNDNDNDNDNDMNNDNDNDNDNNAES =P,
© 00 9 O O b WWN~~A~O © 03O0 Ol WWN-»O © 0 3O Ol i OWN O O

builtin 37

builtin/panic_recover.go

package main

import (
"errors"

n logll

func handlePanic(f func()) {
defer func() {
if r := recover(); r != nil {
if str, ok := r.(string); ok {
log.Printf("got a string error: %s", str)

return
}
if err, ok := r.(error); ok {
log.Printf("got an error error: %s", err.Error())
return
}
log.Printf("got a different kind of error: %v", r)
}
1O
£()

func main() {
handlePanic(fune() {
panic("string error")

D)

handlePanic(func() {

panic(errors.New("error error"))

1))

handlePanic(func() {
panic(10)
)

© 00 N O U b W N =~

N N P | S s s sy
= O © 0 9 O O b W N~ O

builtin

Complex Numbers

Go supports complex numbers as a builtin type. You can define them with literal
syntax, or by using the builtin function compiex. If you want to build a complex
number from existing float values, you need to use the builtin function, and the
two arguments have to be of the same type (float32 or float64) and will produce
a complex type double the size (complex64 Or complex128). Once you have a complex
number, you can add, subtract, divide, and multiply values normally.

If you have a complex number and want to break it into the real and imaginary

parts, use the functions real and imag.

builtin/complex.go

package main

import "log'

func main()
cl
c2

log.

log

log.
log.
Printf("cl

log

log.
log.
log.
log.
log.

c3

log.

{

Printf("c1
Printf("c1

Printf("c1
Printf("c1
Printf("c1
Printf("c1
Printf("c1

= 1.5+ 0.51
;= complex(1.5, 0.
Printf("c1:
Printf("c2:

%",
%",
== c2:
real:
imag:
+ c2:
- c2:
* c2:
/ C2:
type:

5)
cl)
c2)

%", cl == ¢c2)

wv",
AVARS
%",
%*v",
%*v",
wv",

%T"

real(cl))
imag(cl))
cl+c2)
cl-c2)
c1*c2)
cl/c2)
cl)

;= complex(float32(1.5), float32(0.5))

Printf("c3 type: %T", c3)

bytes

Bits and Bytes and Everything Nice

The bytes package deals with, you guessed it, bytes. More specifically byte slices,
[1byte. You can do quite a bit with just a byte slice. You can compare and search
them. If they aren’t to your liking, you can change them. Splitting and joining
them is simple stuff. You can change the case of the contents, making it upper or
lowercase. Trimming contents from either end is also straightforward.

With the Buffer type, you can do some pretty sweet things too, like write anything
to memory (and get a string out of it).

The reader type lets you operate on a byte slice like various io package interfaces.

Comparison

Comparison of byte slices is pretty simple. compare gives you the industry standard
of -1/0/1 to denote less than/equal/greater than. equal gives you a bool and checks
for a simple byte for byte equality. EqualFold checks equality but ignores case. It’s
slightly more complicated than just ignoring case but that’s the basic idea.

bytes/comparison.go

package main

import (
"bytes"
"log"

)

func DemoCompare(a, b []byte) {
if ¢ := bytes.Compare(a, b); ¢ == -1 {
log.Printf("%s is less than %s", a, b)
} else if ¢ == 1 {
log.Printf("%s is greater than %s", a, b)
} else {
log.Printf("%s and %s are equal", a, b)

}

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

bytes

func DemoEqual(a, b []byte) {
if bytes.Equal(a, b) {
log.Printf("%s and
} else {
log.Printf("%s and

func DemoEqualFold(a, b []byte) {
if bytes.EqualFold(a, b) {
log.Printf("%s and
} else {
log.Printf("%s and

func main() {
golang := []byte("golang")
gOlaNg []byte("gOlaNg")
haskell := []byte("haskell"

DemoCompare(golang, golang)
DemoCompare(golang, haskell

%S

%S

%S

)

)

DemoCompare(haskell, golang)

DemoEqual(golang, golang)
DemoEqual (golang, haskell)

DemoEqualFold(golang, gOlaNg)

DemoEqualFold(golang, golang)

40

are equal", a, b)

are NOT equal", a, b)

are equal", a, b)

are NOT equal", a, b)

N O O B W N -

0 = O O b WO N =~

N N N . |l s |y s
N »,, © © 0 1O O b WO N~ O O

bytes 41

Output:

2014/08/21 18:02:13 golang and golang are equal
2014/08/21 18:02:13 golang is less than haskell
2014/08/21 18:02:13 haskell is greater than golang
2014/08/21 18:02:13 golang and golang are equal
2014/08/21 18:02:13 golang and haskell are NOT equal
2014/08/21 18:02:13 golang and gOlaNg are equal
2014/08/21 18:02:13 golang and golang are equal

Searching

If you’re got a slice full of stuff, you probably want to search it. Luckily, the bytes
package has everything you need. If you don’t want to deal with raw bytes, there
is probably some way of converting your slice of whatever to a slice of bytes. We’ll
see this a lot in the example below, in the form of the builtin type conversion going
from a string to a slice of bytes.

bytes/searching.go

package main

import (
"bytes"
"log"

func contains(s, sub []byte) {
if bytes.Contains(s, sub) {
log.Printf("%s contains %s", s, sub)
} else {
log.Printf("%s does NOT contain %s", s, sub)

func count(s, sep []byte) {
log.Printf("%s contains %d instance(s) of %s", s, bytes.Count(s, sep), sep)

func hasPrefix(s, prefix []byte) {
if bytes.HasPrefix(s, prefix) {
log.Printf("%s has the prefix %s", s, prefix)

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
o8
959
60
61
62
63
64

bytes 42

} else {
log.Printf("%s does NOT have the prefix %s", s, prefix)

func hasSuffix(s, suffix []byte) {
if bytes.HasSuffix(s, suffix) {
log.Printf("%s has the suffix %s", s, suffix)

} else {
log.Printf("%s does NOT have the suffix %s", s, suffix)
}
}
func index(s, sep []byte) {
if i := bytes.Index(s, sep); i == -1 {
log.Printf("%s does NOT appear in %s", sep, s)
} else {
log.Printf("%s appears at index %d in %s", sep, i, s)
}
}
func indexAny(s []byte, chars string) {
if i := bytes.IndexAny(s, chars); i == -1 {
log.Printf("No unicode characters in %q appear in %s", chars, s)
} else {
log.Printf("A unicode character in %qg appears at index %d in %s", chars, i, s)
}

func indexByte(s []byte, b byte) {
if i := bytes.IndexByte(s, b); i == -1 {
log.Printf("%g does NOT appear in %s", b, s)
} else {
log.Printf("%q appears at index %d in %s", b, i, s)

func indexFunc(s []byte, f func(rune) bool) ({
if i := bytes.IndexFunc(s, f); i == -1 {
log.Printf("Something controlled by %#v does NOT appear in %s", f, s)
} else {
log.Printf("Something controlled by %#v appears at index %d in %s", f, i, s)

bytes 43

65 }

66 }

67

68 func indexRune(s []byte, r rune) {

69 if i := bytes.IndexRune(s, r); i == -1 {

70 log.Printf("Rune %d does NOT appear in %s", r, s)

71 } else {

72 log.Printf("Rune %d appears at index %d in %s", r, i, s)
73 }

74}

75

76 func lastIndex(s, sep []byte) {

77 if i := bytes.lLastIndex(s, sep); i == -1 {

78 log.Printf("%s does NOT appear in %s", sep, s)

79 } else {

80 log.Printf("%s appears last at index %d in %s", sep, i, s)
81 }

82 }

83

84 func lastIndexAny(s []byte, chars string) {

85 if i := bytes.LastIndexAny(s, chars); i == -1 {

86 log.Printf("No unicode characters in %q appear in %s", chars, s)
87 } else {

88 log.Printf("A unicode character in %q appears last at index %d in %s", chars, \
89 i, s)

90 }

M}

92

93 func lastIndexFunc(s []byte, f func(rune) bool) {

94 if i := bytes.LastIndexFunc(s, f); i == -1 {

95 log.Printf("Something controlled by %#v does NOT appear in %s", f, s)
96 } else {

o7 log.Printf("Something controlled by %%v appears at index %d in %s", f, i, s)
08 }

99 }
100
101 func main() {
102 golang := []byte("golang")
103 haskell := []byte("haskell")
104 lang := []byte("lang")
105 gos := []byte("go")

106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

bytes

contains(golang, lang)
contains(golang, haskell)

count(golang, lang)
count(haskell, []byte("1"))

hasPrefix(golang, gos)
hasPrefix(haskell, gos)

hasSuffix(golang, lang)
hasSuffix(haskell, lang)

index(golang, lang)
index(golang, gos)
index(haskell, lang)

indexAny(golang, "lang")
indexAny(haskell, "lang")
indexAny(haskell, "go")

indexByte(golang, 'h')
indexByte(golang, '1')
indexByte(haskell, '1')

g := rune('g")
indexFunc(golang, func(r rune) bool { return r == g })
indexFunc(haskell, fune(r rune) bool { return r == g })

indexRune(golang, rune('o'))
indexRune(haskell, rune('l'))

lastIndex(golang, []byte("g"))
lastIndex(haskell, []byte("1"))

lastIndexAny(golang, "abcdefg")
lastIndexAny(haskell, "lmnop")

lastIndexFunc(golang, func(r rune) bool { return r == g })

lastIndexFunc(haskell, func(r rune) bool { return r ==

44

0 I O O b W N =

W W W W NDNDDNDNDNDNNMNNDNDNDNDNDND-S AP, 22,
W NSO O 00 N0 0l b WONAPAHO © 0 N0 O W N~ OO ©

bytes

Output:

45

2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21

18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:

02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

114
114
114
114
114
114
114
114
114
114
114
14
114
114
114
114
114
114

t index © in golang
2014/08/21 18:02:14

appear in haskell
18:
18:
18:
18:
18:

2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21
golang
2014/08/21
skell
2014/08/21

18:

18:

02
02
02
02
02

02

02

114
114
114
114
114

114

114

t index 5 in golang
2014/08/21 18:02:14

appear in haskell

golang contains lang

golang does NOT contain haskell

golang contains 1 instance(s) of lang

haskell contains 2 instance(s) of 1

golang has the prefix go

haskell does NOT have the prefix go

golang has the suffix lang

haskell does NOT have the suffix lang

lang appears at index 2 in golang

go appears at index @ in golang

lang does
A unicode
A unicode

NOT appear in haskell
character in "lang" appears at index © in golang
character in "lang" appears at index 1 in haskell

No unicode characters in "go" appear in haskell

'h' does NOT appear in golang

'"l' appears at index 2 in golang

'l1'" appears at index 5 in haskell

Something

Something

controlled by (func(int32) bool)(0x4680) appears a\

controlled by (func(int32) bool)(0x46a@) does NOT \

Rune 111 appears at index 1 in golang

Rune 108 appears at index 5 in haskell

g appears
1 appears
A unicode
A unicode

Something

Something

last at index 5 in golang
last at index 6 in haskell
character in "abcdefg" appears last at index 5 in \
character in "lmnop" appears last at index 6 in ha\

controlled by (func(int32) bool)(0x46c@) appears a\

controlled by (func(int32) bool)(0x46e@) does NOT \

Manipulating

Manipulating a bunch of bytes is a common task too, and naturally, it’s pretty easy
too. Map allows you to change individual runes (it treats the byte slice as a bunch
of bytes making up a “UTF-8-encoded Unicode code points”'?). Replace works by

12Prom the bytes package documentation.

0 N O O B~ W N -

W W W W W W W WNDNDNDNDNMNNDNDDNDNDNDNAPAA P, PSS, e
N O Ol WO NPT O O© 00N O0O O b 0ON-O© O 0 30 O i OWN O O

bytes

46

replacing chunks with the chunk you specify. runes converts the byte slice to a rune
slice, and rRepeat gives you an easy way to build a byte slice prepopulate with default

values.

bytes/manipulating.go

package

import (

main

"byteS"
n].Og"

func asciiAlphaUpcase(r rune) rune {

return r - 32

}
func main() {
golang := []byte("golang")
// Map
loudGolang := bytes.Map(asciiAlphaUpcase, golang)
log.Printf("Turned %q into %g (ASCII alphabet upcase!)", golang, loudGolang)
// Repalce
original := []byte("go")
replacement := []byte("Google Go")
googleGolang := bytes.Replace(golang, original, replacement, -1)
log.Printf("Replaced %q in %g with %g to get %q", original, golang, replacement\
, googleGolang)
// Runes
runes := bytes.Runes(golang)

"

\%

log.Printf("%q is made up of the following runes (in this case, ASCII codes): %\

, golang, runes)

// Repeat

n :=8

na := []byte("Na")

batman := []byte(" Batman!")

log.Printf("Made %d copies of %qg and appended %g to get %g", n, na, batman, app\

end(bytes.Repeat(na, n), batman...))

}

N O O & W N =

0 I O O b W N =~

NN N N B s
W NP O © 0010 O b WO O O

bytes 47

Output:

2014/08/21 18:02:13 Turned "golang" into "GOLANG" (ASCII alphabet upcase!)
2014/08/21 18:02:13 Replaced "go" in "golang" with "Google Go" to get "Google Go\
lang”

2014/08/21 18:02:13 "golang" is made up of the following runes (in this case, AS\
CII codes): [103 111 108 97 110 103]

2014/08/21 18:02:13 Made 8 copies of "Na" and appended " Batman!" to get "NaNaNa\
NaNaNaNaNa Batman!"

Splitting and Joining

Splitting and joining strings and slices is a quick way to parse and build bits
of information when a regex or a full lexer/parser would be overkill. The bytes
package provides a host of functions for splitting byte slices, as well as the standard
Join function.

bytes/splitjoin.go

package main

import (
"bytes"
"log"
"strings"
)

func main() {
languages := []byte("golang haskell ruby python")

individuallLanguages := bytes.Fields(languages)

log.Printf("Fields split %qg on whitespace into %q", languages, individuallangua\
ges)

vowelsAndSpace := "aeiouy "

split := bytes.FieldsFunc(languages, func(r rune) bool {

return strings.ContainsRune(vowelsAndSpace, 1)

1))

log.Printf("FieldsFunc split %g on vowels and space into %q", languages, split)

space := []byte{' '}
splitlLanguages := bytes.Split(languages, space)

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

0 N O O b W N =~

I U
B W N O O

bytes 48

log.Printf("Split split %q on a single space into %q", languages, splitlLanguage\
s)

numberOfSubslices := 2 // Not number of splits

singleSplit := bytes.SplitN(languages, space, numberOfSubslices)

log.Printf("SplitN split %g on a single space into %d subslices: %q", languages\
, numberOfSubslices, singleSplit)

splitAfterlLanguages := bytes.SplitAfter(languages, space)
log.Printf("SplitAfter split %g AFTER a single space (keeping the space) into %\
g", languages, splitAfterlLanguages)
splitAfterNLanguages := bytes.SplitAfterN(languages, space, numberOfSubslices)
log.Printf("SplitAfterN split %g AFTER a single space (keeping the space) into \
%d subslices: %q", languages, numberOfSubslices, splitAfterNLanguages)

languagesBackTogether := bytes.Join(individuallLanguages, space)
log.Printf("Languages are back togeher again! %q == %q? %v", languagesBackToget\
her, languages, bytes.Equal(languagesBackTogether, languages))
}

Output:
2014/08/21 18:02:14 Fields split "golang haskell ruby python" on whitespace into\

["golang" "haskell" "ruby" "python"]
2014/08/21 18:02:14 FieldsFunc split "golang haskell ruby python" on vowels and \
space into ["g" "1" "ng" "h" "sk" "11" "r" "b" "p" "th" "n"]
2014/08/21 18:02:14 Split split "golang haskell ruby python" on a single space i\
nto ["golang" "haskell" "ruby" "python"]
2014/08/21 18:02:14 SplitN split "golang haskell ruby python" on a single space \
into 2 subslices: ["golang" "haskell ruby python"]
2014/08/21 18:02:14 SplitAfter split "golang haskell ruby python" AFTER a single\
space (keeping the space) into ["golang " "haskell " "ruby " "python"]
2014/08/21 18:02:14 SplitAfterN split "golang haskell ruby python" AFTER a singl\
e space (keeping the space) into 2 subslices: ["golang " "haskell ruby python"]
2014/08/21 18:02:14 Languages are back togeher again! "golang haskell ruby pytho\

n" == "golang haskell ruby python"? true

Case

Frequently, you’ll have a byte slice that’s actually text. Maybe it’s ASCII, maybe
not. You might want to alter the slice with that in mind. We’ve already seen some

0 N O O & W N =~

W W W W W W WNDDNDDNDNDNNDMNDNDDNDDNDNDAES PP, 2 s
O Ol b WO NP O O 00 10 O i WONAPAO OO0 N0 Ok N~ ©

bytes 49

functions that assume the data is really, and deal with runes. The bytes package also
has 7 functions to deal with altering the case of the contained text. These include
title casing, lower and upper casing.

bytes/case.go

package main

import (
"bytes"
"log"
"unicode"
)

func main() {
quickBrownFox := []byte("The quick brown fox jumped over the lazy dog")

title := bytes.Title(quickBrownFox)
log.Printf("Title turned %g into %q", quickBrownFox, title)

allTitle := bytes.ToTitle(quickBrownFox)
log.Printf("ToTitle turned %g to %q", quickBrownFox, allTitle)

allTitleTurkish := bytes.ToTitleSpecial(unicode.TurkishCase, quickBrownFox)

log.Printf("ToTitleSpecial turned %q into %q using the Turkish case rules", qui\

ckBrownFox, allTitleTurkish)

lower := bytes.TolLower(title)
log.Printf("ToLower turned %q into %q", title, lower)

turkishCapitall := []byte("I")
turkishLowerI := bytes.TolLowerSpecial(unicode.TurkishCase, turkishCapitall)

log.Printf("ToLowerSpecial turned %q into %q using the Turkish case rules", tur\

kishCapitall, turkishLowerlI)

upper := bytes.ToUpper(quickBrownFox)
log.Printf("ToUpper turned %g to %q", quickBrownFox, upper)

upperSpecial := bytes.ToUpperSpecial(unicode.TurkishCase, quickBrownFox)

log.Printf("ToUpperSpecial turned %q into %q using the Turkish case rules", qui\

ckBrownFox, upperSpecial)

}

RN
S

N S G
g b W N -

Y
(@)

[N

0 I O O & W N =~

(]

© © 00 N O O b W N+~

bytes

Output:

50

2014/08/21 18:02:13 Title turned "The quick brown fox jumped over the lazy dog" \
into "The Quick Brown Fox Jumped Over The Lazy Dog"

2014/08/21 18:02:13 ToTitle turned "The quick brown fox jumped over the lazy dog\
" to "THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG"

2014/08/21 18:02:13 ToTitleSpecial turned "The quick brown fox jumped over the 1\
azy dog" into "THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG" using the Turkish c\
ase rules

2014/08/21 18:02:13 TolLower turned "The Quick Brown Fox Jumped Over The Lazy Dog\
" into "the quick brown fox jumped over the lazy dog"

2014/08/21 18:02:13 TolLowerSpecial turned "I" into "i" using the Turkish case ru\
les

2014/08/21 18:02:13 ToUpper turned "The quick brown fox jumped over the lazy dog\
" to "THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG"

2014/08/21 18:02:13 ToUpperSpecial turned "The quick brown fox jumped over the 1\
azy dog" into "THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG" using the Turkish c\
ase rules

Trimming

Lastly, trimming bytes from either end of a slice is a fairly common task. As is

common in this chapter, the bytes package takes care of business.

Of special interest is the Trimspace function. It’s simple, but looking at the implemen-
tation gives you lots of other ideas. All it does it pass the unicode. IsSpace function to
TrimFunc. All TrimFunc needs is a function that takes a rune and returns a bool, and
the unicode package has plenty of those. You can trim digits, uppercase, lowercase,
symbols, punctuation, and a whole mess of other things, by just combining the right

unicode package function with TrimFunc.

bytes/trimming.go

package main

import (
"bytes"
"log"

func trim0dd(r rune) bool {

return r%2 ==

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

bytes 51

func main() {
whitespace := " \t\r\n"

padded := []byte(" \t\r\n\r\n\r\n hello!!! ARANANANED]

trimmed := bytes.Trim(padded, whitespace)

log.Printf("Trim removed runes in %q from the ends of %q to produce %q", whites\
pace, padded, trimmed)

rhyme := []byte("aabbccddee")

trimFunced := bytes.TrimFunc(rhyme, trimOdd)

log.Printf("TrimFunc removed 'odd' runes from %q to produce %q", rhyme, trimFun\
ced)

leftTrimmed := bytes.TrimLeft(padded, whitespace)

log.Printf("TrimLeft removed runes in %qg from the left side of %q to produce %q\
", whitespace, padded, leftTrimmed)

leftTrimFunced := bytes.TrimLeftFunc(rhyme, trimQdd)

log.Printf("TrimLeftFunc removed 'odd' runes from the left side of %g to produc\
e %q", rhyme, leftTrimFunced)

rightTrimmed := bytes.TrimRight(padded, whitespace)
log.Printf("TrimRight removed runes in %q from the right side of %q to produce \
%q", whitespace, padded, rightTrimmed)

rightTrimFunced := bytes.TrimRightFunc(rhyme, trim0dd)
log.Printf("TrimRightFunc removed 'odd' runes from the right side of %g to prod\
uce %q", rhyme, rightTrimFunced)

spaceTrimmed := bytes.TrimSpace(padded)
log.Printf("TrimSpace trimmed all whitespace from the ends of %g to produce %g"\
, padded, spaceTrimmed)

}

O© 00 9 O O P W N =~

N S U
B W N =

© 00 N O U b W N =

(RSN
Ll)

bytes

Output:

52

2014/08/21 18:02:14 Trim removed runes in " \t\r\n" from the ends of " \t\r\n\r\
\n\r\n hello!!! \t\t\t\t" to produce "hello!!!"

2014/08/21 18:02:14 TrimFunc removed 'odd' runes from "aabbccddee" to produce "b\

bcedd"

2014/08/21 18:02:14 TrimLeft removed runes in " \t\r\n" from the left side of " \
\t\r\n\r\n\r\n hello!!! \t\t\t\t" to produce "hello!!! ANANAN AN A

2014/08/21 18:02:14 TrimLeftFunc removed 'odd' runes from the left side of "aabb\

ccddee" to produce "bbccddee"

2014/08/21 18:02:14 TrimRight removed runes in " \t\r\n" from the right side of \
" A\t\r\n\r\n\r\n hello!!! \t\t\t\t" to produce " \t\r\n\r\n\r\n hello!!!"

2014/08/21 18:02:14 TrimRightFunc removed 'odd' runes from the right side of "aa\

bbccddee" to produce "aabbccdd"

2014/08/21 18:02:14 TrimSpace trimmed all whitespace from the ends of " \t\r\n\\

r\n\r\n hello!!! \t\t\t\t" to produce "hello!!!"

Buffer

The Buffer type is my favorite from the bytes package. It’s your goto data structure
for doing things in memory. It follows many of the interfaces in the io package,
so it can be used any place that asks for those interfaces. Most importantly, it
implements the io.Reader and io.writer interfaces, which are used most when
it comes to io operations. Run buffer.go Will let you know all the interfaces it

implements.

Now, it is a buffer so it doesn’t implement the io.ReaderAt and io.writerAt interfaces.
You put stuff in and take stuff out, like a little black box. That being said, it’s still a

very useful data structure, especially for doing anything in memory.

bytes/buffer.go

package main

import (
"bytes"

10

"log"

" "

os

const interfaceFormat = "%T is an %s"

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
952
53

bytes

func testInterfaces(buffer interface{}) {
if _, ok := buffer.(io.ByteReader); ok {

log.

Printf(interfaceFormat, buffer,

buffer.(io.ByteScanner); ok {

.Printf(interfaceFormat, buffer,

buffer.(io.Closer); ok {

.Printf(interfaceFormat, buffer,

buffer.(io.LimitedReader); ok {

.Printf(interfaceFormat, buffer,

buffer.(io.ReadCloser); ok {

.Printf(interfaceFormat, buffer,

buffer.(io.ReadSeeker); ok {

.Printf(interfaceFormat, buffer,

buffer.(io.ReadWriteCloser); ok

.Printf(interfaceFormat, buffer,

buffer.(io.ReadWriteSeeker); ok

.Printf(interfaceFormat, buffer,

buffer.(io.ReadWriter); ok {

.Printf(interfaceFormat, buffer,

buffer.(io.Reader); ok {

.Printf(interfaceFormat, buffer,

buffer.(io.ReaderAt); ok {

.Printf(interfaceFormat, buffer,

buffer.(io.ReaderFrom); ok {

.Printf(interfaceFormat, buffer,

buffer.(io.RuneReader); ok {

.Printf(interfaceFormat, buffer,

buffer.(io.RuneScanner); ok {

.Printf(interfaceFormat, buffer,

io

10.

n

io

10.

io

"z

io.

io.

io.

io.

io.

io.

io.

io.

ByteReader")

.ByteScanner")

Closer")

LimitedReader")

ReadCloser")

ReadSeeker")

.ReadWriteCloser")

ReadWriteSeeker")

ReadWriter")

Reader")

ReaderAt")

.ReaderFrom")

RuneReader")

.RuneScanner")

53

54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

bytes

54

}

if _, ok := buffer.(io.Seeker); ok {
log.Printf(interfaceFormat, buffer, "io.Seeker")

1

if _, ok := buffer.(io.WriteCloser); ok {
log.Printf(interfaceFormat, buffer, "io.WriteCloser")

}

if _, ok := buffer.(io.WriteSeeker); ok {
log.Printf(interfaceFormat, buffer, "io.WriteSeeker")

}

if _, ok := buffer.(io.Writer); ok {
log.Printf(interfaceFormat, buffer, "io.Writer")

}

if _, ok := buffer.(io.WriterAt); ok {
log.Printf(interfaceFormat, buffer, "io.WriterAt")

}

if _, ok := buffer.(io.WriterTo); ok {
log.Printf(interfaceFormat, buffer, "io.WriterTo")

}

func fileExample(wr io.Writer) {

log.Printf("wr is of type %T", wr)
file, err := os.Open("buffer.go")
if err = nil {
log.Fatalf("Failed opening file: %s", err)
}
defer file.Close()
io.Copy(wr, file)

func main() {

var buffer bytes.Buffer

testInter faces(&buffer)

fileExample(&buffer)

log.Printf("Read %d byte file into buffer", buffer.Len())
log.Println(buffer.String())

buffer.Reset()

log.Printf("After reset buffer is %d bytes long", buffer.Len())

o I O O b W N =

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

bytes

Output:

35

2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21
2014/08/21

import (

18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:

02
02
02
02
02
02
02
02
02
02
02
02

n bytesn

llioll

" logll

const interfaceFormat = "%T is an %s"

os

:13
:13
:13
:13
:13
:13
:13
:13
:13
113
113
:13

*bytes.
*bytes.
*bytes.
*bytes.
*bytes.
*bytes.
*bytes.
*bytes.
*bytes.

Buffer
Buffer
Buffer
Buffer
Buffer
Buffer
Buffer
Buffer
Buffer

wr is of type
Read 2597 byte file into buffer
package main

is
is
is
is
is
is
is
is

is

an
an
an
an
an
an
an
an
an

io.
io.
io.
io.
io.
io.
io.
io.

io

ByteReader
ByteScanner
ReadWriter
Reader
ReaderFrom
RuneReader
RuneScanner
Writer

WriterTo

*bytes.Buffer

func testInterfaces(buffer interface{}) {
if _,

ok

log

buffer.(io.ByteReader);
.Printf(interfaceFormat,

ok {
buffer, "io.ByteReader")

buffer.(io.ByteScanner); ok {

.Printf(interfaceFormat, buffer, "io.ByteScanner")

buffer.(io.Closer); ok {

.Printf(interfaceFormat, buffer,

io.Closer")

buffer.(io.LimitedReader); ok {

.Printf(interfaceFormat, buffer,

buffer.(io.ReadCloser);
.Printf(interfaceFormat,

buffer.(io.ReadSeeker);
.Printf(interfaceFormat,

io.LimitedReader")

ok {
buffer, "io.ReadCloser")

ok {
buffer, "io.ReadSeeker")

42
43
44
45
46
47
48
49
S50
o1
52
53
o4
95
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
I
76
T
78
79
80
81
82
83

bytes

if

.Printf(interfaceFormat, buffer,

.Printf(interfaceFormat, buffer,

.Printf(interfaceFormat, buffer,

.Printf(interfaceFormat, buffer,

buffer.(io.ReadWriteCloser); ok {

.Printf(interfaceFormat, buffer, "io.

buffer.(io.ReadWriteSeeker); ok {

buffer.(io.ReadWriter); ok {

.Printf(interfaceFormat, buffer, "io.

buffer.(io.Reader); ok {

.Printf(interfaceFormat, buffer, "io.
buffer.(io.ReaderAt); ok {
.Printf(interfaceFormat, buffer, "io.

buffer.(io.ReaderFrom); ok {

buffer.(io.RuneReader); ok {

.Printf(interfaceFormat, buffer, "io.

buffer.(io.RuneScanner); ok {

.Printf(interfaceFormat, buffer, "io.

buffer.(io.Seeker); ok {

buffer.(io.WriteCloser); ok {

.Printf(interfaceFormat, buffer, "io.

buffer.(io.WriteSeeker); ok {

buffer.(io.Writer); ok {

.Printf(interfaceFormat, buffer, "io.
buffer.(io.WriterAt); ok {
.Printf(interfaceFormat, buffer, "io
buffer.(io.WriterTo); ok {
.Printf(interfaceFormat, buffer, "io.

io.

10.

io.

10.

ReadWriteCloser")

ReadWriteSeeker")

ReadWriter")

Reader")

ReaderAt")

ReaderFrom")

RuneReader")

RuneScanner")

Seeker")

WriteCloser")

WriteSeeker")

Writer")

WriterAt")

WriterTo")

84
85
86
87
88
89
90
91
92
93
94
95
96
o
98
99
100
101
102
103
104
105
106

O© 00 9 O O b W N =

bytes 57

func fileExample(wr io.Writer) {
log.Printf("wr is of type %T", wr)
file, err := os.Open("buffer.go")
if err != nil {
log.Fatalf("Failed opening file: %s", err)
}
defer file.Close()
io.Copy(wr, file)

func main() {
var buffer bytes.Buffer
testInterfaces(&buffer)
fileExample(&buffer)
log.Printf("Read %d byte file into buffer", buffer.Len())
log.Printin(buffer.String())
buffer.Reset()
log.Printf("After reset buffer is %d bytes long", buffer.Len())

2014/08/21 18:02:13 After reset buffer is 0 bytes long

Reader

The bytes.Reader gives you a way to wrap byte slices in a little structure implement-
ing 8 interfaces from the io package. If you have a byte slice, and you need to
read them, wrap it with the bytes.Newreader function and go to town. Running the
reader . go file shows all the interfaces the bytes.Reader type implements.

bytes/reader.go

package main

import (
"bytes"
n iO”

"log"

const interfacefFormat = "%T is an %s"

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
90
o1

bytes

func testInterfaces(buffer interface{}) {
if _, ok := buffer.(io.ByteReader); ok {

log.

Printf(interfaceFormat, buffer,

buffer.(io.ByteScanner); ok {

.Printf(interfaceFormat, buffer,

buffer.(io.Closer); ok {

.Printf(interfaceFormat, buffer,

buffer.(io.LimitedReader); ok {

.Printf(interfaceFormat, buffer,

buffer.(io.ReadCloser); ok {

.Printf(interfaceFormat, buffer,

buffer.(io.ReadSeeker); ok {

.Printf(interfaceFormat, buffer,

buffer.(io.ReadWriteCloser); ok

.Printf(interfaceFormat, buffer,

buffer.(io.ReadWriteSeeker); ok

.Printf(interfaceFormat, buffer,

buffer.(io.ReadWriter); ok {

.Printf(interfaceFormat, buffer,

buffer.(io.Reader); ok {

.Printf(interfaceFormat, buffer,

buffer.(io.ReaderAt); ok {

.Printf(interfaceFormat, buffer,

buffer.(io.ReaderFrom); ok {

.Printf(interfaceFormat, buffer,

buffer.(io.RuneReader); ok {

.Printf(interfaceFormat, buffer,

buffer.(io.RuneScanner); ok {

io

"z

n

io

io.

io.

io.

10.

io.

io.

io.

io.

io.

io.

io.

.ByteReader")

ByteScanner")

Closer")

LimitedReader")

ReadCloser")

ReadSeeker")

ReadWriteCloser")

ReadWriteSeeker")

ReadWriter")

Reader")

ReaderAt")

.ReaderFrom")

RuneReader")

58

52
53
o4
55
56
o7
58
99
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
I
76
T
78

© 00 39 O Ol & W N =~

bytes 59
log.Printf(interfaceFormat, buffer, "io.RuneScanner")
}
if _, ok := buffer.(io.Seeker); ok {
log.Printf(interfaceFormat, buffer, "io.Seeker")
}
if _, ok := buffer.(io.WriteCloser); ok {
log.Printf(interfaceFormat, buffer, "io.WriteCloser")
}
if _, ok := buffer.(io.WriteSeeker); ok {
log.Printf(interfaceFormat, buffer, "io.WriteSeeker")
}
if _, ok := buffer.(io.Writer); ok {
log.Printf(interfaceFormat, buffer, "io.Writer")
}
if _, ok := buffer.(io.WriterAt); ok {
log.Printf(interfaceFormat, buffer, "io.WriterAt")
}
if _, ok := buffer.(io.WriterTo); ok {
log.Printf(interfaceFormat, buffer, "io.WriterTo")
}
}
func main() {
golang := []byte("golang")
reader bytes.NewReader(golang)
testInter faces(reader)
}
Output:
2014/08/21 18:02:14 *bytes.Reader is an io.ByteReader
2014/08/21 18:02:14 *bytes.Reader is an io.ByteScanner
2014/08/21 18:02:14 *bytes.Reader is an io.ReadSeeker
2014/08/21 18:02:14 *bytes.Reader is an io.Reader
2014/08/21 18:02:14 *bytes.Reader is an io.ReaderAt
2014/08/21 18:02:14 *bytes.Reader is an io.RuneReader
2014/08/21 18:02:14 *bytes.Reader is an io.RuneScanner
2014/08/21 18:02:14 *bytes.Reader is an io.Seeker
2014/08/21 18:02:14 *bytes.Reader is an io.WriterTo

©O© 00 N O U b W N =

G =Y
G900 O W N,

compress

Honey, | Shrunk The Kids

The compress package implements various compression algorithms. The bzip2 sub-
package is a bit of an odd child since it only implements a reader (decompression)
and not a writer (compression).

Each package works pretty much the same. You create either a reader!® or a
writer,'* maybe specifying some options like compression level, and use the object
like any other reader or writer. Not much more complicated than that.

ALL THE CODE

Since the code is all very similar, we’re just going to throw everything in one file,
and use the f1ag package to control what we’re doing.

compress/everything.go

package main

import (
"compress/bzip2"
"compress/flate"

"compress/gzip"

"compress/lzw"

"compress/zlib"

"flag"

"fmt"

nmio_n

10
il

”].Og'

" "

os

var (
compress = flag.Bool("compress", false, "Perform compression")

I3Either an io.Reader OF io.ReadCloser, OF something that implements those interfaces.
14Either an io.Writer OF io.WriteCloser, OF something that implements those interfaces.

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
o8
59

compress

61

decompress = flag.Bool("decompress", false, "Perform decompression")

algor
flate, gzip,
input
)
func filename

ithm = flag.String("algorithm", "", "The algorithm to use (one of bzip2, \
lzw, zlib)")
= flag.String("input", "", "The file to compress or decompress")

() string {

return fmt.Sprintf("%s.%s", *input, *algorithm)

func openOutputFile() *os.File {

file, err := os.OpenFile(filename(), os.0O_WRONLY|os.O_CREATE, 0644)
if err != nil {
log.Fatalf("failed opening output file: %s", err)
}
return file
}
func openlnputFile() *os.File {
file, err := os.Open(*input)
if err != nil {
log.Fatalf("failed opening input file: %s", err)
}
return file
}
func getCompressor(out io.Writer) io.WriteCloser ({

switch *algorithm {

case

go.bzip2™")
case

case

case

"bzip2":
log.Fatalf("no compressor for bzip2. Try “bzip2 -c everything.go > everything.\

"flate":
compressor, err := flate.NewWriter(out, flate.BestCompression)
if err != nil {
log.Fatalf("failed making flate compressor: %s", err)
}
return compressor
"gzip":

return gzip.NewWriter(out)

"lzw":
// More specific uses of Order and litWidth are in the package docs
return lzw.NewWriter(out, 1zw.MSB, 8)

60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
5
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101

compress 62

case "zlib":
return zlib.NewWriter(out)
default:
log.Fatalf("choose one of bzip2, flate, gzip, lzw, zlib with -algorithm")
}
panic("not reached")
}
func getDecompressor(in io.Reader) io.Reader {

switch *algorithm {

case "bzip2":
return bzip2.NewReader(in)

case "flate":
return flate.NewReader(in)

case "gzip":
decompressor, err := gzip.NewReader(in)
if err != nil {

log.Fatalf("failed making gzip decompressor")

}
return decompressor

case "lzw":
return lzw.NewReader(in, 1zw.MSB, 8)

case "zlib":
decompressor, err := zlib.NewReader(in)
if err != nil {

log.Fatalf("failed making zlib decompressor")

}
return decompressor

}

panic("not reached")

}
func compression() {

output := openOutputFile()

defer output.Close()

compressor := getCompressor(output)
defer compressor.Close()

input := openlnputFile()

defer input.Close()
io.Copy(compressor, input)

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

compress 63

func decompression() {
input := openlnputFile()
defer input.Close()
decompressor := getDecompressor(input)
if ¢, ok := decompressor.(io.Closer); ok {
defer c.Close()

}

io.Copy(os.Stdout, decompressor)

func main() {
flag.Parse()
if *input == "" {
log.Fatalf("Please specify an input file with -input")
}
switch {
case *fcompress:
compression()
case *decompress:
decompression()
default:
log.Println("must specify one of -compress or -decompress")

Accept-Encoding: gzip

In the real world, we can do some fun things. For requests, the net/nttp package
handles compression for us. On the server side, you have to do things yourself.

You can decode a compressed body using a gzip.Reader, and you can send a com-
pressed body using a gzip.Writer.

0 N O O B~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

compress

compress/http.go

64

package main

import (
"bytes"
"compress/gzip"
"flag"
"fmt"
"io"
"log"
"net/http"

os

"strings"

var (
port = flag.Int("port", 8888, "The port to listen on")
compress = flag.Bool("compress", false, "Compress using gzip")

input flag.String("input", "http.go", "The file to send to the echo")

func compressor(enc string, wr io.Writer) (io.Writer, string) {
if strings.Contains(enc, "gzip") {
return gzip.NewWriter(wr), "gzip"

}

return wr,

func decompressor(enc string, rd io.Reader) io.Reader {
if strings.Contains(enc, "gzip") {

gz, err := gzip.NewReader(rd)
if err != nil {
log.Fatalf("Failed creating gzip decompressor: %s", err)
}
return gz
}
return rd

func readBody(enc string, rc io.ReadCloser) *bytes.Buffer {
var buffer bytes.Buffer
rd := decompressor(enc, rc)

42
43
44
45
46
47
48
49
90
o1
52
53
o4
55
56
o7
o8
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
I
76
T
78
79
80
81
82
83

compress 65

io.Copy(&buffer, rd)

if ¢, ok := rd.(io.Closer); ok {
c.Close()

}

rc.Close()
return &buffer

func echo(w http.ResponseWriter, req *http.Request) {

log.Printf("Request headers: %#v", req.Header)
body := readBody(req.Header.Get("Content-Encoding"), req.Body)
// Since we're echoing, just send the same Content-Type back
w.Header().Set("Content-Type", req.Header.Get("Content-Type"))
wr, enc := compressor(req.Header.Get("Accept-Encoding"), w)
if enc 1= "" {
w.Header().Set("Content-Encoding", enc)
}
if ¢, ok := wr.(io.Closer); ok {
defer c.Close()
}
io.Copy(wr, body)
}
func server() {

http.HandleFunc("/echo", echo)
log.Fatal(http.ListenAndServe(fmt.Sprintf(":%d", *port), nil))
}
func encoding() string {

if *compress {
return "gzip"
}
return ""
}
func bufferFile(name string) (*bytes.Buffer, string) ({

var buffer bytes.Buffer
file, err := os.Open(name)
if err != nil {

84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

compress
log.Fatalf("Failed opening file: %s", err)
}
defer file.Close()
wr, enc := compressor(encoding(), &buffer)
if ¢, ok := wr.(io.Closer); ok {
defer c.Close()
}

io.Copy(wr, file)

return &buffer, enc

func httpClient() *http.Client {
return &http.Client{

Transport: &http.Transport{

66

// The http client package handles gzip compression for us.

DisableCompression: !*compress,

func client() {
buffer, enc := bufferFile(*input)

url := fmt.Sprintf("http://localhost:%d/echo", *port)
req, err := http.NewRequest("POST", url, buffer)
if err != nil {
log.Fatalf("Failed creating request: %s", err)
}
req.Header .Set("Content-Type", "text/plain; charset=utf-8")
if enc 1= "" {
req.Header .Set("Content-Encoding", enc)
}
resp, err := httpClient().Do(req)
if err != nil {
log.Fatalf("Failed making HTTP request: %s", err)
}

defer resp.Body.Close()

log.Printf("Response headers: %#v", resp.Header)

io.Copy(os.Stdout, resp.Body)

126
127
128
129
130

compress 67

func main() {
flag.Parse()
go server()
client()

If the Content-Encoding 1S gzip, the decompressor function wraps the original reader
in a gzip.Reader. Otherwise, it returns the original io.Reader. The compressor function
does the same but with Accept-Encoding and gzip.writer.

This simple wrapper let’s the handler function optionally decode compressed
request bodies, and optionally send compressed response bodies. The only thing
to watch for is that there might be two readers or writers, which may or may not
need closing.

O© 00 9 O O b W N =~

container

The container package consists of 3 sub-packages to make you life a little easier when
dealing with some basic container types.

The 1ist and ring packages implement their own types, providing a New() function
to create each structure. The heap package on the other hand, provides functions to
operate on an interface. All you need to do is define the methods on your type, and
away you go.

We’ll look at the sub-packages in order, starting with the neap package.

heap

Unlike the other two types in the container package (which implement their own
actual container type), the nheap package is just a set of functions operating on an
interface.

This means you get to deal with your own datatype. Just implement sort. Inter face
(three methods) and heap. Interface (two methods) and you can start dealing with
your container as a heap.

Keep in mind that when you print out the raw heap (if you base the heap off a slice
like I do) it won’t be sorted. A heap basically stores a tree structure in a slice, so it’s
sorted in a way the heap package understands. When you pop items from the heap,
they come off in the correct order. The difference can be seen between the second
and third lines of the output.

We’ll see a cooler example using a heap later.

container/heap.go

package main

// Interfaces

//
// type heap.Interface interface {

// sort. Inter face
// // add x as element Len()
// Push(x interface{})

// // remove and return element Len() - 1.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
90
o1

container

//
/7 }
/7

// type sort.Interface interface {

/7
/7
/7
/7
/7
//
//
/71

import (

type IntHeap []int

func (h IntHeap) Len() int {
return len(h)

func

func

func

func

Pop() interface{}

// Len is the number of elements in the collection.

Len() int

// Less returns whether the element with index 1 should sort
// before the element with index j.

Less(i, j int) bool

// Swap swaps the elements with indexes i and j.

Swap(i, j int)

"container/heap"
n]_Og"
"math/rand"

IntHeap) Less(i, j int) bool ({
return h[i] < h[j]

IntHeap) Swap(i, j int) {
h(i], h[j] = h[j], h[i]

*IntH

*IntH

eap) Push(v interface{}) {

append(a, v.(int))

eap) Pop() interface{} {

52
53
o4
95
56
ST
58
59
60
61
62
63
64
65
66
67
68
69
%
71
T2

container 70

v := a[n-1]
*h = a[0 : n-1]
return v

func main() {
h := make(IntHeap, 0)
log.Printf("%v", h)
for i = 0; i < 10; i++ {
heap.Push(&h, rand.Intn(25))

}
log.Printf("%v", h)

1 := h.Len()
ints := make([]int, 0, 1)
for i :=0; 1 < 1; i++ {
ints = append(ints, heap.Pop(&h).(int))
}
log.Printf("%v", ints)
log.Printf("%v", h)

list

The 1ist package implements, as the overview says, a doubly linked list. You’ll want
to start with 1ist.New() to get yourself a new list, and use PushBack, PushBackList,
PushFront, and PushFrontList to add things to the list.

Once you have something built up, you can use Front and Back to get the beginning
or end of the list (in the form of a pointer to a 1ist.Element struct). Now you can use
Next and prev to advance through the list.

Once you have an Element you can use MoveToBack and MoveToFront to push the element
around, or you can use InsertAfter and InsertBefore t0 insert a new element in a
specificlocation. Removing an Element iS easy once you have it as well, just use Remove
on the list.

Unlike the ring package (which we’ll see next), 1ist.List doesn’t have a bo method
for iterating over all the elements, so I’'ve implemented one. It’s really simple, and
in your normal day of coding the regular for loop would be preferred, but I'm doing
it as an example.

0 N O O B~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

container

container/list.go

package main

import (
"container/list"
n]_Og"

const size = 5

func Do(l *list.List, f func(interface{})) {
// Standard list iterating straight from their example
for e := 1.Front(); e != nil; e = e.Next() {
f(e.Value)

func printList(1l *list.List) {
elements := make([]interface{}, 9, 1.Len())
Do(1, func(i interface{}) {
elements = append(elements, i)

1))

log.Printf("%v", elements)

func main() {
1 := list.New()
printList(1l) // []
for i := 0; i < size; i++ {
1.PushBack(1i)

}

printList(l) // [0 1 2 3 4]
1 = 1.Init()

for i := 0; i < size; i++ {

1.PushFront(i)

}
printList(l) // [4 3 2 1 0]

1.Front()
:= f.Next().Next()
= 1.InsertAfter(10, e)

® D +h
1

42
43
44
45
46
4’7
48

© 00 N O U b W N =

e
wWw N =~

container 72

printList(1) // [43210 1 0]
log.Println(l.Len()) // 6

1.Remove(e.Next())
printList(1l) // [4 32 10 0]
log.Println(l.Len()) // 5

ring

The ring container is interesting. Much like a tree, the ring type is both the top level
container and an element in the container.' It’s both the container, and what it
contains. Woah.

Anyway, you can make a ring using ring.New(n int) or just by allocating yourself a
newring.Ring and going from there. After you’ve made a new Ring, you can add data
to it simply by setting the value.

To load up a ring, make a new one, and set it’s value. To add other values to the ring,
advance the ring (remembering to save the return value, like with append) and set
its value. Rinse and repeat until the ring is full.

You could also use the Link method to add more nodes.

Once you have a ring, you can use the Next, Prev, Move, Unlink, and Do methods to
manipulate the ring. Next and prev are pretty straightforward

container/ring.go

package main

import (
"container/ring"
"log"

const size = 5

func printRing(r *ring.Ring) {
elements := make([]interface{}, 0, r.Len())
r.Do(func(i interface{}) {
elements = append(elements, i)

151n a tree, a node would have pointers to the left and right subtrees (which are just nodes), and to the element the node
holds. In the ring, it has the same pointers, except they are called prev and next.

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

container 73

1))

log.Printf("%v", elements)

func buildRingFirstMethod() *ring.Ring {

r := ring.New(size)
printRing(r) // [<nil> <nil> <nil> <nil> <nil>]
for i := 0; i < size; i++ {

r.Value = 1
r = r.Next()
}

return r

func buildRingSecondMethod() *ring.Ring {
r := &ring.Ring{Value: 0}
printRing(r) // [9]
for i :=1; i < size; i++ {
r.Prev().Link(&ring.Ring{Value: i})
}

return r

func main() {
r := buildRingFirstMethod()
printRing(r) // [0 1 2 3 4]

r2 := buildRingSecondMethod()
printRing(r2) // [0 1 2 3 4]

Thread Pool Example

In a language with raw threads (like Java or C#), you will typically see a Threadpool
type. You make one of a certain size, and submit jobs to it, and they get pulled off
the queue in order. In Go, since goroutines aren’t threads (but are managed by a
thread pool which is in turn managed by the runtime), you typically don’t have to
do this, but we’ll implement a ThreadPool using the 1ist container anyway. You know,
for fun.

It’s not the best chunk of code (for example, it could be rewritten without the locks
using channels, like the priority queue example we’ll see later), but it illustrates that

container 74

only up to 4 goroutines run at a time. You could do it with a simple slice too, instead
of the 1ist package. Again, in Go, you really don’t need a ThreadPool.

0 N O O & W N =~

W W W W W W WwWwoWwWwWNDNDNDNDNDNDDNDNDNDDNDNDNDNDNNAESEAEPRrEPASEPS,EPS, S
© 00 9 O Ol b WO N~ O © 00 3O O b WONHPHO O W NO O b OWN -~ O O

container/thread_pool.go

package main

import (
"container/list"
"log"
"sync"
"time"

)

type ThreadPool struct {
size, running int
list *list.List
m sync.Mutex

func NewThreadPool(size int) *ThreadPool ({
tp := &ThreadPool
size: size,
list: list.New(),
}

return tp

func (tp *ThreadPool) onStop() {
tp.m.Lock()
tp.running--
tp.m.Unlock()
tp.run()

func (tp *ThreadPool) run() {
tp.m.Lock()
defer tp.m.Unlock()
if tp.list.Len() > 0 && tp.running < tp.size {
f := tp.list.Remove(tp.list.Front()).(func())
tp.running++
go func() {
£()
tp.onStop()

40
41
42
43
44
45
46
47
48
49
50
51
52
93
o4
55
56
57
958
59
60
61
62
63
64

container 75

Q)

}

func (tp *ThreadPool) Submit(f func()) {
tp.list.PushBack(f)
tp.run()

}

func main() {
var wg sync.WaitGroup
tp := NewThreadPool(4)
for i :=0; i < 16; i++ {
wg.Add(1)
(func(id int) {
log.Printf("Subtmitted job %d", id)
tp.Submit(fune() {
time.Sleep(3 * time.Second)
log.Printf("Hello from job %d", id)
wg.Done()
)
(1)
}
wg.Wait()

Round Robin Load Balancer Example

Sometimes you want to get a few goroutines running and then submit a bunch of
jobs in a round robin fashion. Maybe start 4 goroutines, then submit a job which
goes to the first. Submit another which goes to the second, then the third, then the
fourth, and then the first again, back to the front.

We can use a ring for this. Again, probably not something you’d actually do in Go,
and not the prettiest code I’'ve ever written, but it’s an example nonetheless.

0 N O O B~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

container

container/round_robin.go

76

package main

import (
"container/ring"
"log"
"sync"
"time"

)

type RoundRobin struct {
ring *ring.Ring

log.Printf("Job finished in goroutine %d", id)

func NewRoundRobinScheduler(ringSize, channelSize int) *RoundRobin {

m sync.Mutex
}
func process(id int, funcs chan func()) {
for f := range funcs {
£(O)
}
}
r := ring.New(ringSize)
for i := 0; i < ringSize; i++ {

¢ := make(chan func(), channelSize)

go process(i, ¢)
r.Value = ¢
r = r.Next()

1

return &RoundRobin{ring: r}

func (rr *RoundRobin) Submit(f func()) {

rr.m.Lock()
defer rr.m.Unlock()

¢ := rr.ring.Value.(chan func())

c <- f

rr.ring = rr.ring.Next()

func main() {

42
43
44
45
46
47
48
49
90
o1
52
53
o4
55
56

O N O O & W N~

e
W N~ O

container 77

var wg sync.WaitGroup
rr := NewRoundRobinScheduler(4, 4)
for i = 0; i < 16; i++ {
wg.Add(1)
(func(id int) {
log.Printf("Submitted job %d", id)
rr.Submit(fune() {
time.Sleep(3 * time.Second)
log.Printf("Hello from job %d", id)
wg.Done()
)
(1)
}
wg.Wait()

Priority Queue Load Balancer Example

Since the heap package works on an interface, you can bend it to your will. In
this example, we’ll implement a priority queue based load balancer.'® You can
submit jobs to it, and it submits the job to the worker with the shortest queue. The
important parts are the methods implementing the heap. Inter face interface.

Let it run for a bit and examine the log to see where requests are getting queued.

container/priority_queue.go

// Original code from http://golang.org/doc/talks/i02010/balance.go

/7

// Copyright (c) 2012 The Go Authors. All rights reserved.

/s

// Redistribution and use in source and binary forms, with or without

// modification, are permitted provided that the following conditions are
// met:

/7

// * Redistributions of source code must retain the above copyright

// notice, this list of conditions and the following disclaimer.

// * Redistributions in binary form must reproduce the above

// copyright notice, this list of conditions and the following disclaimer

// 1In the documentation and/or other materials provided with the

16pve taken the code from a Google I0 2010 talk, and rewritten it a little bit for my purpose. The original code can be seen
here (http://golang.org/doc/talks/io2010/balance.go) and is licensed by the Golang BSD license.

http://golang.org/doc/talks/io2010/balance.go
http://golang.org/LICENSE

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55

container 78

// distribution.

// * Neither the name of Google Inc. nor the names of its

// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.

/7

// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

package main

import (
"container/heap"
"fmt"
"log"
"math/rand"
"time"

const (

100
10
Seconds = 2e9

MaxQueuelLength

MaxRequesters

func requester(work chan Request) ({
for {
time.Sleep(time.Duration(rand.Int63n(MaxRequesters * Seconds)))
work <- func() {
r := rand.Int63n(MaxRequesters*Seconds) + 10
time.Sleep(time.Duration(r))

56
o7
58
959
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
8T
88
89
90
91
92
93
94
95
96
o7

container

type Request func()

type Worker struct {

func

func

id

int

pending int

requests chan Request

index

(w *Worker)
for {

(w *Worker) String() string {
return fmt.Sprintf("W%d{pending: %d}", w.id, w.pending)

int

req := <-w.requests

req()
done <- w

type Pool []*Worker

func

func

func

func

(p Pool) Len() int {
return len(p)

(p Pool) Less(i, j int) bool {
return p[i].pending < p[j].pending

(p *Pool

ali], alj]
al[i].index
al[j].index

(p *Pool) Push(i interface{}) {
W

a

) Swap(i, j int) {
*p

I

= Q)
—
.
P—
~
Q
—
—
f—

I}
.

i.(*Worker)

*p

work(done chan *Worker) ({

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

(a)
=n
nd(a, w)

func (p *Pool) Pop() interface{} {

(a)
1]
= 1
n-1]

ruct {
1

done chan *Worker

func NewBalancer(size int) *Balancer (

container
n := len
w.index
a = appe
k p = a
}
a = *p
n := len
w := aln
w.index
*p = alo :
return w
}
type Balancer st
pool Poo
}
done :=
b := &Ba
}
for i
}
return b

make(chan *Worker, size)

lancer{

pool: make(Pool, 0, size),

done: done,
=0; i < size; i++ {

w := &Worker{id: i, requests: make(chan Request, MaxQueuelength)}
heap.Push(&b.pool, w)

go w.work(done)

func (b *Balancer) Balance(requests chan Request) {

for {

select
case req

case W

:= <{-requests:
b.dispatch(req)
log.Printf("New request, %s", b.pool)

;= <-b.done:

b.completed(w)

80

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

container

log.Printf("Request finished,

func (b *Balancer) dispatch(req Request) {
w := heap.Pop(&b.pool). (*Worker)
w.requests <- req
w.pending++
heap.Push(&b.pool, w)

func (b *Balancer) completed(w *Worker) {
w.pending- -
heap.Remove(&b.pool, w.index)
heap.Push(&b.pool, w)

}
func main() {
requests := make(chan Request)
for i := 0; i < MaxRequesters; i++ {

go requester(requests)

}

NewBalancer(4).Balance(requests)

%S

, b.pool)

81

crypto

The crypto package is an umbrella for a wide variety of cryptographic related
packages.

crypto/aes and crypto/des handle the popular block ciphers.
Digital signatures are handled by crypto/ecdsa and crypto/dsa.

The standard array of hashes are included in cryto/{md5, sha1,sha256,sha512}, along
with crypto/hmac.

crypto/rc4 is included for good measure. It’s most likely for compatibility with other
programs and languages, since in the documentation in the Bugs section discourages
using it for new things.

Handling secure TCP connections with TLS is a breeze with the crypto/tis and
crypto/x509 packages.

Other entertaining packages include crypto/rand for handling random number
generation in a cryptographically secure way, and the crypto/subtie package for
doing constant time operations.

Disclaimer

Cryptography is a tricky subject and doing it wrong is pretty easy. I am not a pro-
fessional cryptographer,!’ so be sure to do your own research and reading (from
sources who are professional cryptographers) when doing anything cryptography
related. ’'m just doing my best to show you how to use the crypto packages in the
Go Standard Library.

Do not copy any code from this book (or anywhere) and just paste it into
your application without understanding what it does. As the code license
says, I provide all the code without warranty of any kind.

171 don’t even play one on TV.

crypto 83

Block Ciphers

AES'® and DES'® are symmetric block ciphers?’. They are symmetric because the
same key is used to both encrypt and decrypt. They are block ciphers because they
operate on blocks of a fixed size.

In these examples I’'ve used the encoding/pem package to serialize the keys. We’ll look
at the encoding package in more detail in a later chapter.

AES

The crypto/aes package implements the Advanced Encryption Standard?! algorithm.
Since it’s a block cipher, you work with the cipher.Block interface from the crypto/-
cipher package.

To start, aes.NewCipher returns a cipher.Block which has the ability to Encrypt and
Decrypt blocks of data. You probably don’t want to use this type and these methods
directly, since you have to work on individual blocks.

You might look at cipher.NewCBCDecrypter and cipher.NewCBCEncrypter, Which allows
you to deal with all your data at once, but your source data must be a multiple
of the block size, 16 bytes.?? Since your data probably won’t be a nice multiple of
16, youw’ll have to do some padding. There are nice algorithms to do this, but they
have their problems, and better methods have come along.

For a good look at a variety of block cipher modes, I'd recommended the Wikipedia
page on the subject?. In Go, the fun parts are the CFB, OFB, and CTR modes.
They give you a cipher.Stream type which lets you pump plaintext bytes through the
stream and get ciphertext out the other side without worrying about padding. The
counter (CTR) method seems to be the better mode, so I’ve used it in the example.

The other nice thing about these modes is that encryption and decryption work the
same as far as the code is concerned. There is just the xORKeyStream(dst, src []byte)
method, and if dst is your ciphertext and src is your plaintext, it encryptes. If you flip
the two, your ciphertext gets decrypted. As the docs say, dst and src can also point to
the same piece of memory, so the algorithm can work in essentially constant space.

All you need to build your cipher . stream is an initialization vector, or IV. It has to be
the same length as the block size, 16 in this case. The IV should be generated using a

18http://en.wikipedia.org/wiki/Advanced_Encryption_Standalrd
19http://en.wikipedia.org/wiki/Data_Encryption_Standard
20http://en.wikipedial.org/wiki/Block_cipher
21ht'[p://en.wikipedia.org/wiki/Advanced_Encryption_Standard
2256 the aes. Blocksize constant.
2?’http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Block_cipher
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Block_cipher
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

0 N O O B~ W N -

W W W W W W WwNDNDNNDMDNDNDNDDNDDNDNDNAES-A PP,
O O WON-A,O O© 00 N0 Uk N © 0 N0 O N~ OO ©

crypto 84

secure random method (like crypto/rand) for each encryption, and you can then send
the IV along with the encrypted data. Simply concatenating the IV and encrypted
data is fine, as long as the IV is only ever used once (for that transmission) and is
generated securely. I've just hardcoded the IV for the purpose of the example, but
you could very easily (and should) use crypto/rand to generate one.

crypto/aes.go

package main

import (

"crypto/aes”

"crypto/cipher"

"crypto/rand"

"encoding/pem"

"flag"

"fmt"

"io/ioutil"

"log"
)
const (

KeyFile = "aes.%d.key"

EncryptedFile = "aes.%d.enc"
)
var (

IV = []byte("batman and robin") // 16 bytes

message = flag.String("message", "Batman is Bruce Wayne", "The message to encry\
pt")

keySize = flag.Int("keysize", 32, "The keysize in bytes to use: 16, 24, or 32 (\
default)")

do = flag.String("do", "encrypt", "The operation to perform: decrypt or en\
crypt (default) ")
)

func MakeKey() []byte {
key := make([]byte, *keySize)
n, err := rand.Read(key)
if err != nil {
log.Fatalf("failed to read new random key: %s", err)

}

if n < *keySize {

log.Fatalf("failed to read entire key, only read %d out of %d", n, *keySize)

37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
o4
o5
56
o7
o8
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
I
76
T
78

crypto

}
return key
}
func SaveKey(filename string, key []byte) {

block := &pem.Block({
Type: "AES KEY",
Bytes: key,

}

err := ioutil.WriteFile(filename, pem.EncodeToMemory(block), 0644)

if err != nil {

log.Fatalf("failed saving key to %s: %s", filename, err)

func ReadKey(filename string) ([]byte, error) {
key, err := ioutil.ReadFile(filename)
if err != nil {
return key, err
}
block, _ := pem.Decode(key)
return block.Bytes, nil

func Key() []byte {
file := fmt.Sprintf(KeyFile, *keySize)
key, err := ReadKey(file)
if err != nil {

log.Printin("failed reading keyfile, making a new one...")

key = MakeKey()
SaveKey(file, key)
}

return key

func MakeCipher() cipher.Block {
c, err := aes.NewCipher(Key())
if err != nil {
log.Fatalf("failed making the AES cipher: %s", err)
}

return c

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

crypto 86

func Crypt(bytes []byte) []byte {
blockCipher := MakeCipher()
stream := cipher.NewCTR(blockCipher, IV)
stream.XORKeyStream(bytes, bytes)
return bytes

func Encrypt() {
encrypted := Crypt([]byte(*message))
err := ioutil.WriteFile(fmt.Sprintf(EncryptedFile, *keySize), encrypted, 0644)
if err != nil {

log.Fatalf("failed writing encrypted file: %s", err)

func Decrypt() {
bytes, err := ioutil.ReadFile(fmt.Sprintf(EncryptedFile, *keySize))
if err != nil {
log.Fatalf("failed reading encrypted file: %s", err)
}
plaintext := Crypt(bytes)
log.Printf("decrypted message: %s", plaintext)

func main() {
flag.Parse()

switch *keySize {
case 16, 24, 32:

// Keep calm and carry on. ..
default:

log.Fatalf("%d is not a valid keysize. Must be one of 16, 24, 32", *keySize)

switch *do {

case "encrypt":
Encrypt()

case "decrypt":
Decrypt()

default:

log.Fatalf("%s is not a valid operation. Must be one of encrypt or decrypt", *\

crypto 87

121 do)

122 }

123}
DES/TripleDES

DES, like AES is a symmetric block cipher. As far as code is concerned, it works
exactly the same as AES. Generate a key, make the cipher, then use the crypto/cipher
types to simplify things a bit.

You should prefer AES over DES for new applications, since the small 56-bit key size
used by DES is just too small. A key can typically be cracked in a few days with good
hardware (or even just a bunch of money thrown at Amazon EC2).

Since the flow is almost exactly the same as AES, this code is basically just the AES
example with AES swapped out for DES.

Unlike the AES example, I don’t change the key and encrypted file names if you use
the -3 flag to use 3DES. Try running encryption without the flag, and decryption

with it.
crypto/des.go

1 package main

2

3 import (

4 "crypto/cipher"

5 "crypto/des”

6 "crypto/rand”

7 "encoding/pem"

8 "flag"

9 "io/ioutil"
10 "log"
11)
12
13 const (
14 KeyFile = "des.key"
15 EncryptedFile = "des.enc"
16)
17
18 wvar (
19 IV = []byte("superman") // 8 bytes
20 triple = flag.Bool("3", false, "Use 3DES")
21 message = flag.String("message", "Batman is Bruce Wayne", "The message to encry\

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

crypto 88
pt")

do = flag.String("do", "encrypt", "The operation to perform: decrypt or en\
crypt (default) ")
)
func MakeKey() []byte {

size = 8

if *triple {

size *= 3

}

key := make([]byte, size)

n, err := rand.Read(key)

if err != nil {

log.Fatalf("failed to read new random key: %s", err)

}

if n < size {

log.Fatalf("failed to read entire key, only read %d out of %d", n, size)

}

return key

func SaveKey(filename string, key []byte) {

44
45
46
47
48
49
50
51
52
53
54
o5
56
o7
o8
59
60
61
62
63

block := &pem.Block{
Type: "DES KEY",
Bytes: key,

}

err := ioutil.WriteFile(filename, pem.EncodeToMemory(block), 0644)

if err != nil {

log.Fatalf("failed saving key to ¥%s:

func ReadKey(filename string) ([]byte, error) {

key, err := ioutil.ReadFile(filename)
if err != nil {
return key, err
}
block, _ := pem.Decode(key)

return block.Bytes, nil

func Key() []byte {

%s", filename, err)

64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105

crypto

key, err := ReadKey(KeyFile)

if err != nil {
log.Printin("failed reading keyfile, making a new one...")
key = MakeKey()
SaveKey(KeyFile, key)

}

return key

func MakeCipher() cipher.Block {

var ¢ cipher.Block
var err error
if *triple {
c, err
} else {
c, err

des.NewTripleDESCipher(Key())

des.NewCipher (Key())
}

if err != nil {
log.Fatalf("failed making the DES cipher: %s", err)

}

return c

func Crypt(bytes []byte) []byte {

blockCipher := MakeCipher()

stream := cipher.NewCTR(blockCipher, IV)
stream.XORKeyStream(bytes, bytes)

return bytes

func Encrypt() {

encrypted := Crypt([]byte(*message))
err := ioutil.WriteFile(EncryptedFile, encrypted, 0644)
if err != nil {

log.Fatalf("failed writing encrypted file: %s", err)

func Decrypt() {

bytes, err := ioutil.ReadFile(EncryptedFile)
if err != nil {
log.Fatalf("failed reading encrypted file: %s", err)

crypto 90

106 }

107 plaintext := Crypt(bytes)

108 log.Printf("decrypted message: %s", plaintext)
109 }

110

111 fune main() {

112 flag.Parse()

113 switch *do {

114 case "encrypt":

115 Encrypt()

116 case "decrypt":

117 Decrypt()

118 default:

119 log.Fatalf("%s is not a valid operation. Must be one of encrypt or decrypt", *\
120 do)

121 }

122}

Digital Signatures

Digital signature algorithms use asymmetric cryptography (with a public and pri-
vate key pair) to sign messages. They can ensure a message came from a particular
sender, and also ensure that a message was not tampered with. They also prevent
somebody from later claiming they didn’t sign a particular message.*

ECDSA

The crypto/ecdsa package handles the elliptic curve digital signature algorithm.
Cool story bro.

Anyway, it uses the crypto/elliptic package to do key generation. There’s a whole
whack of stuff behind it I'm not familiar with, so as with the other crypto things,
do your own research and gain your own understanding (or just get a professional)
before doing anything really interesting.

In a nutshell, you need to generate a key, which has both the public and private
parts built in, hash your message, then sign it. Once you have the signature, you
can verify a message using the public part of the key.

In this example, I've left out saving the key, because I'm unsure of the best way of
doing it. You need to save some numbers, but also which curve was used. I could

24http://en.wikipedia.org/wikj/Non—repudiation

0 N O O & W N =~

W W W W W W WwWwoWwWwWNDNDNDNDNDNDDNDNDNDDNDNDNDNDNNAESEAEPRrEPASEPS,EPS, S
© 00 9 O Ol b WO N~ O © 00 3O O b WONHPHO O W NO O b OWN -~ O O

crypto 91

dump this out to JSON for all I care, but I’'m sure there is a better, more standard
way to do it.

crypto/ecdsa.go

package main

import (
"crypto/ecdsa"
"crypto/elliptic”
"crypto/rand”
"crypto/shal”
"flag"
"io"

"log"

var message = flag.String("message", "Nuke the site from orbit, it's the only wa\
y to be sure.", "The message to sign")

func HashMessage() []byte {
h := shal.New()
_, err := io.WriteString(h, *message)
if err != nil {
log.Fatalf("failed to hash message: %s", err)

}

return h.Sum(nil)

func Key() *ecdsa.PrivateKey {
key, err := ecdsa.GenerateKey(elliptic.P521(), rand.Reader)
if err != nil {
log.Fatalf("failed to generate key: %s", err)
}

return key

func main() {
flag.Parse()

key := Key()
hash := HashMessage()
r, s, err := ecdsa.Sign(rand.Reader, key, hash)

if err != nil {

40
41
42
43
44
45
46
47
48
49
50

0 N O O & W N -

O

10
11
12
13
14
15
16
17
18

crypto 92

log.Fatalf("failed to sign message: %s", err)
}
log.Printf("r: %s", r)
log.Printf("s: %s", s)

if ecdsa.Verify(&key.PublicKey, hash, r, s) {
log.Println("message is valid!")

} else {
log.Printin("message invalid :(")

DSA

crypto/dsa 1S very similar to crypto/ecdsa except that it has nothing to do with elliptic
curves. You have to generate some parameters before generating a key, which can
take a little while.?’

The way I've done the key serialization (with encoding/{asn1,pem}) works with ssh-
keygen. If you do ssh-keygen -t dsa and copy your ~/.ssh/id_dsa file to dsa.key before
you run the file, it will use that key and merrily carry on.

crypto/dsa.go

package main

import (
"crypto/dsa"
"crypto/rand”
"crypto/shal"
"encoding/asnl"
"encoding/pem"
"flag"
"io"
"io/ioutil™
"log"
"math/big"

const (
KeyFile = "dsa.key"

25According to the documentation, it can “[take] many seconds, even on fast machines.”

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
959
60

crypto

var (

message = flag.String("message", "Nuke the site from orbit, it's the only way t\

o be sure.", "The message to sign")

1t)")

do = flag.String("do", "sign", "The operation to do, verify or sign (defau\
rc = flag.String("r", "", "The r to use when verifying")
sc = flag.String("s", "", "The s to use when verifying")

func HashMessage() []byte {

h := shal.New()
_, err := io.WriteString(h, *message)
if err != nil {
log.Fatalf("failed to hash message: %s", err)

}

return h.Sum(nil)

type DsaKeyFormat struct {

Version int
P, Q, G, Y, X *big.Int

func SaveKey(key *dsa.PrivateKey) ({

val := DsaKeyFormat{
P: key.P, Q: key.Q, G: key.G,
Y: key.Y, X: key.X,

}
bytes, err := asni.Marshal(val)
if err != nil {
log.Fatalf("failed marshalling key to asni: %s", err)
}

block := &pem.Block{
Type: "DSA PRIVATE KEY",
Bytes: bytes,
}
err = ioutil.WriteFile(KeyFile, pem.EncodeToMemory(block), 0644)
if err != nil {
log.Fatalf("failed saving key to file %s: %s", KeyFile, err)

61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
6
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102

crypto

func ReadKey() (*dsa.PrivateKey, error) {
bytes, err := ioutil.ReadFile(KeyFile)
if err != nil {
return nil, err

block, _ := pem.Decode(bytes)
val := new(DsaKeyFormat)

_, err = asni.Unmarshal(block.Bytes, val)
if err != nil {

return nil, err

key := &dsa.PrivateKey({
PublicKey: dsa.PublicKey({
Parameters: dsa.Parameters{
P: val.P,
Q: val.q,
G: val.G,
},
Y: val.y,
},
X: val.X,

}

return key, nil

func MakeKey() *dsa.PrivateKey {
key := new(dsa.PrivateKey)
err := dsa.GenerateParameters(&key.Parameters, rand.Reader, dsa.L2048N256)
if err != nil {
log.Fatalf("failed to parameters: %s", err)
}
err = dsa.GenerateKey(key, rand.Reader)
if err != nil {
log.Fatalf("failed to generate key: %s", err)
}

return key

func Key() *dsa.PrivateKey {
key, err := ReadKey()
if err != nil {

94

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

crypto 95

log.Printf("failed reading keyfile, making a new one: %s", err)
key = MakeKey()
SaveKey(key)

}

return key

func Sign() {
key := Key()
hash := HashMessage()
r, s, err := dsa.Sign(rand.Reader, key, hash)
if err != nil {
log.Fatalf("failed to sign message: %s", err)
}
log.Printf("r: %v", r)
log.Printf("s: %v", s)

func Verify() {
r := big.NewInt(Q)
r.SetString(*rc, 10)

s := big.NewInt(@)
s.SetString(*sc, 10)

hash := HashMessage()
key := Key()
if dsa.Verify(&key.PublicKey, hash, r, s) {
log.Printin("message is valid!")
} else {
log.Println("message is invalid :(")
log.Println("did you use the -r and -s flags to pass the r and s values?")

func main() {
flag.Parse()
switch *do {
case "sign":
Sign()
case "verify":
Verify()

145
146
147
148

0 N O O B W N~

NN NN NN NN P B 1 | 1 s s
N O O b WO N O © 03O0 O b WO N O O

crypto 96

default:
log.Fatalf("%s is not a valid operation, must be one of sign or verify", *do)
}
}
Hashes

The hash functions provided by the crypto package are MD5, SHA1, SHA256, and
SHAS512. They all operate exactly the same, since they all deal with the hash.Hash
interface. You create a new hash, write to it (hash.Hash implements io.writer) and
then get the sum of it. You can fmt.sprintf this to get your your standard hash-looking
value. Pretty straightforward.

crypto/hash.go

package main

import (
"crypto/md5"
"crypto/shal”
"crypto/sha256"
"crypto/shab12"
"flag"
"hash"
"io"
"log"

var (

algorithm = flag.String("algorithm", "md5", "The algorithm to use. Must be one \
of {md5,shal,sha256,sha512}")

message = flag.String("message", "Go, The Standard Library", "The message to \
hash")

)

func GetHash() hash.Hash {
switch *algorithm {
case "md5":
return md5.New()
case "shal":
return shail.New()
case "sha2b6":

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

crypto 97

return sha256.New()
case "shab12":

return sha512.New()
default:

log.Fatalf("No hash algorithm %s found", *algorithm)
}

panic("unreachable")

}

func main() {
flag.Parse()
hash := GetHash()
io.WriteString(hash, *message)
log.Printf("%x", hash.Sum(nil))

HMAC

HMAC isn’t like the other hashes. You give it a hash function (a function that returns
a hash.Hash) and a key in the form of a byte slice. You can then hash a message and
send the result along with a message to somebody else. They can check that the
message was received intact by hashing what they got and comparing that value
with the one we sent.

The Crytpo Stack Overflow site has a good answer as to whether you do en-
crypt-then-mac or mac-then-encrypt: Should we MAC-then-encrypt or encrypt-
then-MAC?%¢ In my example, I use encrypt-then-mac as it’s generally the better way
to go.

Once you have your HMAC and encrypted data, get both of these pieces to the
other party, and they can perform the same operation to verify the integrity of the
encrypted data, and then decrypt the data.

I’'ve seen other suggestions to not actually use the same key for the HMAC (just run
your normal key through a hash function), and to run the HMAC on the encrypted
data concatenated with the IV instead of the raw encrypted data. My gut tells me
these things make sense, but I have no knowledge or math to back that intuition up.
[haven’t done either in the example.

26http://crypto.s’[ackexchange.com/questions/z02/should—we—mac—then—encrypt—or—encrypt—then—mac

http://crypto.stackexchange.com/questions/202/should-we-mac-then-encrypt-or-encrypt-then-mac
http://crypto.stackexchange.com/questions/202/should-we-mac-then-encrypt-or-encrypt-then-mac
http://crypto.stackexchange.com/questions/202/should-we-mac-then-encrypt-or-encrypt-then-mac

0 N O O B~ W N -

W W W W W W WwNDNDNDNDMDNDNDNDDNDDNDNDNAES AP,
O O b WONPA,OO O 00 N0 Uk WONA-AOO O© 0 N0 O N~ OO ©

crypto

98

crypto/hmac.go

package main

import (

var (

"crypto/aes”
"crypto/cipher"
"crypto/hmac"
"crypto/sha256"
"flag"

"log"

// 32 byte key for AES256, made from crypto/rand
key = []byte{0x98, 0x39, Oxea, 0x42, 0xd0, 0x3e, 0x36, 0x6b, 0xe3, OxTb, 0Ox\

91, 0x6, 0x50, 0xbb, 0x7f, 0xc9, 0x93, 0x56, Oxaa, 0xa8, 0x96, 0x33, 0x7, 0xd7, \
0xf7, 0x50, Oxab5, 0x3a, Oxdc, 0x8e, 0xe2, 0x9f}

use"

iv = []byte("batman and robin") // 16 bytes
message = flag.String("message", "Batman and Robin are coming", "The message to\

func main() {

flag.Parse()
block, err := aes.NewCipher(key)
if err != nil {

log.Fatalf("failed making AES block cipher: %s", err)
}
bytes := []byte(*message)
stream := cipher.NewCTR(block, iv)
stream.XORKeyStream(bytes, bytes)
hash := hmac.New(sha256.New, key)
hash.Write(bytes)
log.Printf("message: %s", *message)
log.Printf("encrypted message (raw bytes): %v", bytes)
log.Printf("HMAC: %x", hash.Sum(nil))

© 00 39 O O b W N =

NN NN DNNDDNES B B 1 | s s s
O Ol b O N PO O 0010 O b WO N =~

crypto 99

RC4

RC4 is a widely used stream cipher algorithm. When I say widely used, I mean WEP,
WPA, SSL, RDP, BitTorrent, etc. It’s kind of a big deal. It does have problems though.
For more specifics on the algorithm, other uses, and problems, I'd recommend
starting with the Wikipedia page?’.

The Go documentation points out that it’s a “poor choice to use for new protocols”.

It’s quite simple to use however. With your key of 10-256 bytes, simply make the
cipher and use the xorkeystream method to encrypt/decrypt data. The documentation
suggests the src and dst shouldn’t overlap, but I tried in the example and it worked
pretty well.

crypto/rc4.go

package main

import (
"crypto/rand”
"crypto/rc4"
"encoding/pem"
"flag"
"io/ioutil"
"log"
)
const (
EncryptedFile = "rc4.enc"
KeyFile = "rc4.key"
)
var (
do = flag.String("do", "encrypt", "The operation to perform, decrypt or en\
crypt (default)")
message = flag.String("message", "Wolverines attack at dawn. Red Dawn.", "The m\

essage to encrypt")
keySize = flag.Int("keysize", 256, "Key size in bytes")

func MakeKey() []byte {
key := make([]byte, *keySize)

27http://en.wikipedia.org/wiki/Rcél#RCél—based_cryptosystems

http://en.wikipedia.org/wiki/Rc4#RC4-based_cryptosystems
http://en.wikipedia.org/wiki/Rc4#RC4-based_cryptosystems

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
o5
o6
o7
o8
59
60
61
62
63
64
65
66
o7
68

crypto

n, err := rand.Read(key)
if err != nil {

log.Fatalf("failed to read new random key: %s", err)
1

if n < *keySize {

log.Fatalf("failed to read entire key, only read %d out of %d", n, *keySize)

}

return key

func SaveKey(filename string, key []byte) {

block := &pem.Block({
Type: "RC4 KEY",
Bytes: key,
}
err := ioutil.WriteFile(filename, pem.EncodeToMemory(block), 0644)
if err != nil {
log.Fatalf("failed saving key to %s: %s", filename, err)

func ReadKey(filename string) ([]byte, error) {

key, err := ioutil.ReadFile(filename)
if err != nil {
return key, err
}
block, _ := pem.Decode(key)

return block.Bytes, nil

func Key() []byte {

key, err := ReadKey(KeyFile)

if err != nil {
log.Println("failed reading key, making a new one...")
key = MakeKey()
SaveKey(KeyFile, key)

}

return key

func Cipher() *rc4.Cipher {

key := Key()

69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

crypto

cipher
if err

}

return

func Encrypt()
cipher
text
cipher
err .=
if err

func Decrypt()
cipher
bytes,
if err

}
cipher
log.Pr

func main() {
flag.P
switch

case "

case "

defaul

101

, err := rc4.NewCipher(key)
1= nil {
log.Fatalf("failed to make RC4 cipher: %s", err)

cipher

{
:= Cipher()

.= []byte(*message)

.XORKeyStream(text, text)
ioutil.WriteFile(EncryptedFile, text, 0644)

= nil {

log.Fatalf("failed to write encrypted file: %s", err)

{

;= Cipher()

err := ioutil.ReadFile(EncryptedFile)
1= nil {

log.Fatalf("failed to read encrypted file. Did you encrypt first? %s", err)

.XORKeyStream(bytes, bytes)
intf("decrypted message: %s", bytes)

arse()

*do {
encrypt":

Encrypt()
decrypt":

Decrypt()
t:

log.Fatalf("%s not a valid operation. Must be one of encrypt or decrypt", *do)

© 00 39 O O b W N =

NN NN DNNDDNDDNDN S B B 1 | s s
O N O O b WO NP O O 0N O O b W N~ O

crypto 102

RSA

RSA is a public key encryption algorithm. It can be used to encrypt messages, where
you can encrypt something with my public key, and then only I can read the message
by decrypting it with the private half of the key. It can also be used to sign messages
so that I can use your public key to be certain that the message did in fact come
from you.

As the documentation states, you should be using OAEP instead of PKCS1v15 for
new protocols.

Aswith the crypto/dsa example, you could use your existing RSA key from ~/.ssh/id_-
rsa, Just copy it to rsa.key.

crypto/rsa.go

package main

import (
"crypto"
"crypto/mds"
"crypto/rand”
"crypto/rsa"
"crypto/shal”
"crypto/sha256"
"crypto/shab12"
"crypto/x509"
"encoding/pem"
"flag"
"hash"
"io/ioutil"
"log"

const (
KeyFile = "rsa.key

n CRS 1]

SignaturefFile = "rsa.sig

n

EncryptedFile rsa.enc

var (
keySize = flag.Int("keysize", 2048, "The size of the key in bits")

do = flag.String("do", "encrypt", "The operation to perform, decrypt\

or encrypt (default)")

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
o8
959
60
61
62
63
64
65
66
67
68
69
70

crypto 103

message flag.String("message", "The revolution has begun!", "The messag\

e to encrypt")

hashAlgorithm = flag.String("algorithm", "sha256", "The hash algorithm to use. \
Must be one of md5, shal, sha256 (default), sha512")
)
func MakeKey() *rsa.PrivateKey {
key, err := rsa.GenerateKey(rand.Reader, *keySize)
if err != nil {
log.Fatalf("failed to create RSA key: %s", err)
}
return key
}
func SaveKey(filename string, key *rsa.PrivateKey) {

block := &pem.Block({
Type: "RSA PRIVATE KEY",
Bytes: x509.MarshalPKCS1PrivateKey(key),
}
err := ioutil.WriteFile(filename, pem.EncodeToMemory(block), 0644)
if err != nil {
log.Fatalf("failed saving key to %s: %s", filename, err)
}
}
func ReadKey(filename string) (*rsa.PrivateKey, error) {
bytes, err := ioutil.ReadFile(filename)
if err != nil {
return nil, err
}
block, _ := pem.Decode(bytes)
key, err := x509.ParsePKCS1PrivateKey(block.Bytes)
if err != nil {
return nil, err
}
return key, nil
}
func Key() *rsa.PrivateKey {

key, err := ReadKey(KeyFile)
if err != nil {
log.Printf("failed to read key, creating a new one: %s", err)

71
T2
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

crypto 104

key = MakeKey()
SaveKey(KeyFile, key)
}
return key
}
func HashAlgorithm() (hash.Hash, crypto.Hash) {

switch *hashAlgorithm {
case "mdbS":

return md5.New(), crypto.MD5
case "shal":

return shal.New(), crypto.SHA1
case "sha256":

return sha256.New(), crypto.SHA256
case "shab12":

return shab512.New(), crypto.SHA512
default:

log.Fatalf("%s is not a valid hash algorithm. Must be one of md5, shal, sha256\

, sha512")

}

panic("not reachable")

func HashMessage(data []byte) []byte {

h, _ := HashAlgorithm()
h.Write(data)
return h.Sum(nil)

}

func Encrypt() {

h, ha := HashAlgorithm()

key := Key()
encrypted, err := rsa.EncryptOAEP(h, rand.Reader, &key.PublicKey, []byte(*messa\
ge), nil)
if err !'= nil {
log.Fatalf("encryption failed: %s", err)
}
signhature, err := rsa.SignPKCS1vi5(rand.Reader, key, ha, HashMessage(encrypted))
if err != nil {
log.Fatalf("signing failed; %s", err)
}

err = ioutil.WriteFile(EncryptedFile, encrypted, 0644)

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

crypto 105

if err != nil {
log.Fatalf("failed saving encrypted data: %s", err)
}
err = ioutil.WriteFile(SignatureFile, signature, 0644)
if err != nil {
log.Fatalf("failed saving signature data: %s", err)

func Decrypt() {
key := Key()
h, ha := HashAlgorithm()
encrypted, err := ioutil.ReadFile(EncryptedFile)

if err != nil {
log.Fatalf("failed reading encrypted data: %s", err)
}
signature, err := ioutil.ReadFile(SignatureFile)
if err != nil {
log.Fatalf("failed saving signature data: %s", err)
}
if err = rsa.VerifyPKCS1vi5(&key.PublicKey, ha, HashMessage(encrypted), signatu\
re); err != nil {
log.Fatalf("message not valid: %s", err)
} else {
log.Printf("message is valid!")
}

plaintext, err := rsa.DecryptOAEP(h, rand.Reader, key, encrypted, nil)
if err != nil {
log.Fatalf("failed decrypting: %s", err)

}
log.Printf("decrypted message: %s", plaintext)

func main() {
flag.Parse()
switch *do {
case "encrypt":
Encrypt()
case "decrypt":

155
156
157
158
159

© 00 39 O O b W N =

NN N N P S s s sy s
W N O © 03O0 O WO~

crypto 106

Decrypt()
default:
log.Fatalf("%s is not a valid operation. Must be one of encrypt or decrypt")

TLS/x509

The crypto/tls and crypto/x509 packages provide a lot of functionality surrounding
their respective topics. I'm not going to cover everything, but we’ll look at a few
basic things like generating, serializing and parsing certificates, and creating a
simple echo server.

After the server starts, connect with the command it gives and type into the console
and have it echoed back to you. Make sure to pass the -t1s1 flag to the openss1 s_-
client command.

crypto/tls_x509.go

package main

import (
"crypto/rand"
"crypto/rsa"
"crypto/tls”
"crypto/x509"
"crypto/x509/pkix"
"encoding/pem"
"flag"

n "

io
"io/ioutil"
"log"
"math/big"
"net"

"time"

const (
CertFile = "tls.crt"
KeyFile = "tls.key"

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
o3
54
55
56
o
58
959
60
61
62
63
64
65

crypto

var (

do = flag.String("do", "serve", "The operation to perform, key, cert, or s\

erve (default)")

keySize = flag.Int("keysize", 2048, "The RSA keysize to use")
)
func MakeKey() *rsa.PrivateKey {

key, err := rsa.GenerateKey(rand.Reader, *keySize)

if err != nil {

log.Fatalf("failed to create RSA key: %s", err)

}

return key
}
func PemEncodeKey(key *rsa.PrivateKey) []byte {

block := &pem.Block({
Type: "RSA PRIVATE KEY",
Bytes: x509.MarshalPKCS1PrivateKey(key),
}
return pem.EncodeToMemory(block)
}
func SaveKey(filename string, key *rsa.PrivateKey) {

err := ioutil.WriteFile(filename, PemEncodeKey(key), 0644)
if err = nil {
log.Fatalf("failed saving key to %s: %s", filename, err)
}
}
func ReadKey(filename string) (*rsa.PrivateKey, error) {
bytes, err := ioutil.ReadFile(filename)
if err != nil {
return nil, err
}
block, _ := pem.Decode(bytes)
key, err := x509.ParsePKCS1PrivateKey(block.Bytes)
if err != nil {
return nil, err
}
return key, nil
}

107

crypto 108

66 func Key() *rsa.PrivateKey {

67 key, err := ReadKey(KeyFile)

68 if err != nil {

69 log.Printf("failed to read key, creating a new one: %s", err)
70 key = MakeKey()

71 SaveKey(KeyFile, key)

72 }

73 return key

74}

75

76 func SaveCert(filename string, cert []byte) []byte {

7 block := &pem.Block({

78 Type: "CERTIFICATE",

79 Bytes: cert,

80 }

81 bytes := pem.EncodeToMemory(block)

82 err := ioutil.WriteFile(filename, bytes, 0644)

83 if err != nil {

84 log.Fatalf("failed saving cert to %s: %s", filename, err)

85 }

86 return bytes

87}

88

89 func MakeCert() tls.Certificate {

920 key := Key()

91 now := time.Now()

92 template := &x509.Certificate{

93 SerialNumber: big.NewInt(1),

94 Subject: pkix.Name{

95 Country: []string{"CA"},

96 Province: []string{"Alberta"},

97 Locality: []string{"Edmonton"},

98 Organization: []string{"The Standard Library"},
99 OrganizationalUnit: []string{"Go, The Standard Library"},
100 CommonName : "localhost",

101 },

102 NotBefore: now,

103 NotAfter: now.Add(24 * 365 * time.Hour), // 1 year

104 KeyUsage: 0,

105 }

106 cert, err := x509.CreateCertificate(rand.Reader, template, template, &key.Publi\

107 cKey, key)

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

crypto 109

if err != nil {

log.Fatalf("failed creating certificate: %s", err)

cert = SaveCert(CertFile, cert)
c, err := tls.X509KeyPair(cert, PemEncodeKey(key))

if err != nil {

log.Fatalf("failed to load certificate: %s", err)
}
return c

func Cert() tls.Certificate {
cert, err := tls.LoadX509KeyPair(CertFile, KeyFile)
if err != nil {
log.Printf("failed loading certificate, generating a new one: %s", err)
cert = MakeCert()
}

return cert

func Config() *tls.Config {
return &tls.Config{
Certificates: []tls.Certificate{Cert()},

}
}
func Serve() {
addr := "localhost:4443"
conn, err := net.Listen("tcp", addr)
if err != nil {
log.Fatalf("failed to listen on %s: %s", addr, err)
}
config := Config()
listener := tls.NewListener(conn, config)
log.Printf("listening on %s, connect with 'openssl s_client -tlsl1 -connect %s'"\
, addr, addr)
for {
conn, err := listener.Accept()
if err != nil {

log.Fatalf("failed to accept: %s", err)

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

crypto 110

log.Printf("connection accepted from %s", conn.RemoteAddr())
go func(c net.Conn) {

_, err := io.Copy(c, c)

if err != nil {

log.Printf("error copying: %s", err)

}

log.Println("closing connection™)

c.Close()
}(conn)

func main() {
flag.Parse()
switch *do {
case "serve'":
Serve()
case '"cert":
Cert()
case "key":
Key ()
default:
log.Fatalf("%s is not a valid operation, must be one of serve, cert, or key", \
*do)

Random Numbers

You’ve already seen the crypto/rand package used in all the examples in this chapter.

The package only has 3 methods and one variable. We’ve been using the rand.Reader
for pretty much everything. It gives you an io.Reader that reads from /dev/urandom or
the cryptGenRandom API depending on the platform.

The rand.RrRead function delegates to the rand.Reader variable.

rand. Int gives you a random int, in the form of abig. Int, and rand.Prime gives you a
random prime number.?®

28Well, as the documentation says, “[it] returns a number, p, of the given size, such that p is prime with high probability.”

0 N O O B~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

crypto 111

crypto/rand.go

package main

import (
"crypto/rand”
"flag"
"log"
"math/big"
)
var (
iterations = flag.Int("iterations", 3, "The number of iterations to run on each\
thing")
bits = flag.Int("bits", 16, "The number of bits to use when generating a \

random prime")

max = flag.Int64("max", 256, "The max value to use when generating a ran\
dom int")
)
func ShowInt() {
for i := 0; i < *iterations; i++ {
if n, err := rand.Int(rand.Reader, big.NewInt(*max)); err != nil {

log.Fatalf("failed to read random int: %s", err)
} else {
log.Printf("got random int: %s", n)

}
}
}
func ShowPrime()
for i := 0; i < *iterations; i++ {
if p, err := rand.Prime(rand.Reader, *bits); err != nil {

log.Fatalf("failed to read random prime: %s", err)
} else {
log.Printf("got random prime: %s", p)

func ShowRead() ({
for i := 0; 1 < *iterations; i++ {

bytes := make([]byte, 16)

42
43
44
45
46
47
48
49
S50
o1
52
53
o4
95

0 N O Ol & W N =

B) S sy s
<N O O b W0ON -~ OO O

crypto 112

if n, err := rand.Read(bytes); err != nil {
log.Printf("failed reading random bytes: %s", err)
} else {
log.Printf("read %d bytes: %v", n, bytes[0:n])

func main() {
flag.Parse()
ShowInt()
ShowPrime()
ShowRead()

Constant Time Functions

The crypto/subtle package gives you a few function to do operations in constant
time. Constant time comparisons are an important part of cryptography, as they
help prevent timing attacks?®.

crypto/crypto.go

package main

import (
"crypto/subtle"
n logll

func main() {
log.Printf("%d", subtle.ConstantTimeByteEq(43, 65))
log.Printf("%d", subtle.ConstantTimeCompare([]byte("batman"), []byte("robin ")))

bytes := make([]byte, 6)
subtle.ConstantTimeCopy(1, bytes, []byte("batman"))
log.Printf("%s", bytes)

log.Printf("%d", subtle.ConstantTimeEq(256, 255))
log.Printf("%d", subtle.ConstantTimeSelect(1, 2, 3))

29http://en.wikipedia.org/wiki/Timing_attack

http://en.wikipedia.org/wiki/Timing_attack
http://en.wikipedia.org/wiki/Timing_attack

18
19

©O© 00 N O U b W N =

NN NN N N P 1 sy s
O b 0O N~ O O 0N O Ol b W N~ O

crypto 113

log.Printf("%d", subtle.ConstantTimeSelect(Q, 2, 3))

A Timing Attack In Action

This example shows how a timing attack could work. I'm just calling the function,
but that could easily be replaced with making a web request or something else.

If you run the file without any arguments you can see it run through possible
guesses for the password, where one letter takes a bit longer. Each letter that takes
a little bit longer than the others is the best guess for that index. The last letter is
trickier, but once you have the password solved except for that last letter, it’s not
a big deal to figure out that last letter. In the case of the example, it’s downright
obvious.

crypto/timing_attack.go

package main

import (
"container/heap"”
"crypto/subtle"
"flag"
"log"
T "testing"
"time"
)
var (
password = flag.String("password", "secret", "The password to try and guess")
characters = flag.String("characters", "abcdefghijklmnopgrstuvwxyz", "The set o\

f characters to use")
compare = flag.String("compare", "broken", "The comparison function to use. \
Must be one of constant or broken (default)")

)

type TestRun struct {
Time int64
Byte byte

type Times []TestRun

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
90
o1
52
53
o4
o5
56
o7
o8
59
60
61
62
63
64
65
66
67

crypto

fune (t Times) Len() int
func (t Times) Less(i, j int) bool { return t[i].Time > t[j].Time }

{ return len(t) }

func (t Times) Swap(i, j int) { t[i], t[j] = t[j], tli] }

func (t *Times) Push(v interface{}) {
*t = append(*t, v.(TestRun))

}

func (t *Times) Pop() interface{} {
a = *t
n := len(a)
v := a[n-1]

*t = a[0 : n-1]

return v

type Compare func(x, y []byte) int

func BrokenCompare(x, y []byte) int {

for i := range x {
if x[i] != y[i] {
return 0
}
}
return 1

func Crack(password []byte, comp Compare) []byte {

n := len(password)

guess := make([]byte, n)

for index :=
times
for

range password {

—7

.= make(Times, 0)

letter := range []byte(*characters) ({
guess[index] = letter
result := T.Benchmark(func(b *T.B) {
for i := 0; i < b.N; i++ {
comp(password, guess)

)
heap.Push(×, TestRun{

Time: result.NsPerOp(),

114

68
69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108

crypto 115

Byte: letter,
1))
log.Printf("took %s (%d ns/op) to try %qg for index %d", result.T, result.l
rOp(), letter, index)

}
tr := heap.Pop(×).(TestRun)
guess[index] = tr.Byte
log.Printf("best guess is %qg for index %d", tr.Byte, index)
log.Printf("guess is now: %s", guess)

}

return guess

func ConstantTimeCrack(pw []byte) []byte {
return Crack(pw, subtle.ConstantTimeCompare)

func BrokenCrack(pw []byte) []byte {
return Crack(pw, BrokenCompare)

func main() {

flag.Parse()

var guess []byte

pw := []byte(*password)

start := time.Now()

switch *compare {

case '"broken":
log.Printin("using broken compare function")
guess = BrokenCrack(pw)

case "constant":
log.Println("using constant time compare function™)
guess = ConstantTimeCrack(pw)

default:
log.Fatalf("%s is not a valid compare function. Must be one of broken or const\
ant")
}
end := time.Now()
dur := end.Sub(start)

log.Printf("password guess after %s is: %s", dur, guess)

crypto 116

go.crypto

The go.crypto package contains packages that will most likely be in the standard
library at some point, but just aren’t quite finalized yet

Itisready to use however, and has anumber of great packages, a few of my favorites
being pbkdf2, bcrypt, blowfish, twofish, and openpgp.

You can use it with import "code.google.com/p/go.crypto”‘and the documentation can
be found on GoPkgDoc*’.

Final Warning

As I said before, I'm not a cryptographer. Don’t blame me if you copy and paste
something out of here and a script kiddy steals all your stuff. I believe what I’'ve said
to be accurate in the usage of the APIs provided by the Go programming language.
If you know better, please let me know so I can fix the contents of this book.

Writing this chapter has given me a renewed interest in cryptography, so I think I'll
dust off my copy of Applied Cryptography3!.

30http://go.pkgdoc.org/code.google.com/p/go.crypto
31http://www.amazon.com/Applied-Cryptography—Protocols-Algorithms-ebook/dp/BOOOSEHPKG

http://go.pkgdoc.org/code.google.com/p/go.crypto
http://www.amazon.com/Applied-Cryptography-Protocols-Algorithms-ebook/dp/B000SEHPK6
http://go.pkgdoc.org/code.google.com/p/go.crypto
http://www.amazon.com/Applied-Cryptography-Protocols-Algorithms-ebook/dp/B000SEHPK6

database

The database package is for handling, well, database things. Right now, the only sub-
package is database/sql which provides a nice interface for dealing with relational
databases.

You can’t do anything with it on its own though, you need a driver. On the go-wiki,
they have a list of solid drivers for the database/sq1.%?

We’ll be using the sq1ite3 driver at https://github.com/mattn/go-sqlite33? so before
running the examples, install it with go get github.com/mattn/go-sqlite3.

Some of the specifics are different between databases and drivers, so the
example might not work with another database or another driver.

Importing the driver is a little different than normal, since you just want to make
sure the driver’s init function is called to register the driver with the database/sql
package. You import it with an underscore, which forces the init function to run,
but doesn’t actually import the package into the namespace.

Open

All your database interactions start with using sql.open to get a handle to the
database. As per the docs, you can share the handle between goroutines. Also as per
the docs, if the specific driver supports it, the database/sql can manage connections
and connection-state when it comes to transactions.

You may be thinking just open the database once and use that handle throughout
the lifetime of your application. Not so fast, sport! The problem you might run
into (again, depending on the driver) is that the connection is lost or times out, or
something along those lines. The next time you try to do something with it you’ll
get back an error and the handle will effectively be dead. You’ll have to get a new
handle with sq1.0pen again. You can test this by opening a connection, making a
query, then stopping and starting the database process, and trying another query.
It will probably fail.

32http://code.google.corn/p/go-wiki/wiki/SQLDrivers
3?’https: //github.com/mattn/go-sqlite3

http://code.google.com/p/go-wiki/wiki/SQLDrivers
http://code.google.com/p/go-wiki/wiki/SQLDrivers
https://github.com/mattn/go-sqlite3
http://code.google.com/p/go-wiki/wiki/SQLDrivers
https://github.com/mattn/go-sqlite3

database 118

Try using postgres as your database in the example, but add a sleep between
two of the main calls. It will fail, and the connection is effectively dead.

Keep this in mind. You may be better off opening and closing the handle to the
database.

Exec

Exec 1S for doing things that don’t really return anything, like inserting, deleting,
and doing schema changes. It returns a sql.Result and an error. The sql.Result type
can give you some basic information like RowsAffected and LastInsertld and the error
gives you, well, error information.

Query

Using DB. QueryRow and DB.Query you can pull out a single row, or multiple rows. With a
single row, you can scan directly into things (provided there was no error), but when
querying multiple rows you have to iterate over the sql.Rows Struct using Rows.Next
to get everything.

Don’t forget to check rows.Err at the end to see if there were any problems
iterating.

When querying multiple rows, you can also get the column names using Rows . Columns
method.

Note that the exact query syntax depends on the driver and the database. In the
sqlite example, I use 2 to denote where an argument would go, while in the postgres
example I use $1 and $2 (and so on) to do the same thing. If you try to use question
marks in the postgres example, you’ll get an interesting error message.

Prepared Statements

Prepared statements allow you to make one statement and re-execute it with
different arguments. For example, you can make an INSERT statement, and iterate
over all the things you need to insert, just passing in the different values. You can
usually realize some performance improvements doing this.

Use DB.Stmt to create a sql.stmt struct and then the normal QueryRow, Query, and Exec
methods to take care of business.

O© 00 9 O O b W N =

NN NN N A B R 1 |l s s s
B WO N A, O O 00 O b N~

database 119

Transactions

You can start a transaction with ps.Begin. This gives you a sql.Tx struct, which has
the usual array of methods: Tx.Exec, Tx.QueryRow, Tx.Query, Tx.Prepare. It also has three
others.

Tx.Commit Will cause the transaction to be committed. You might get an error back.
Tx.Rollback Will cause the transaction to be aborted, causing no changes to the
database. It might also give you an error back.

stmt takes a sql.stmt and makes it specific to this transaction, giving you another
sql.stmt. No big deal.

Example

Now, as the saying goes, let’s go for the gusto.

database/sql.go

package main

import (
"database/sql"
|lflagll

_ "github.com/mattn/go-sqlite3"

// An example i1f you want to use Postgres
// _ "github.com/bmizerany/pq"

"log"

var rollback = flag.Bool("rollback", false, "Rollback in the insert transaction")
func init() {

log.SetFlags(9)
log.SetPrefix("» ")

type Show struct
Name, Country string

func openSqlite() (*sql.DB, error) {

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66

database 120

return sql.Open("sqlite3", "go-thestdlib.db")

func openPostgres() (*sql.DB, error) {
return sql.Open("postgres", "user=bob password=secret host=1.2.3.4 port=5432 db\
name=mydb sslmode=verify-full")

}

func openDB() *sql.DB {
db, err := openSqglite()
// db, err := openPostgres()

if err != nil {

log.Fatalf("failed opening database: %s", err)
}
return db

func removeTable(db *sql.DB) {
_, err := db.Exec("DROP TABLE IF EXISTS shows")
if err != nil {
log.Fatalf("failed dropping table: %s", err)
} else {
log.Println("dropped table (if it existed) shows")

func createTable(db *sgl.DB) {
_, err := db.Exec("CREATE TABLE shows (name TEXT, country TEXT)")
if err = nil {
log.Fatalf("failed creating table: %s", err)
} else {
log.Println("created table shows")

func insertRow(db *sql.DB) {
// For postgres we use $1 and $2 instead of ?
res, err := db.Exec("INSERT INTO shows (name, country) VALUES (?, ?)", "Ndjesma\
skinen", "SE")
if err != nil {
log.Fatalf("failed inserting Swedish show: %s", err)
} else {

67
68
69
70
71
T2
73
T4
75
6
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108

database 121
log.Println("inserted 1 Swedish TV show")
}
if id, err := res.LastInsertId(); err != nil {
log.Printf("failed retrieving LastInsertId: %s", err)
} else {
log.Printf("LastInsertId: %d", id)
}
if n, err := res.RowsAffected(); err != nil {
log.Printf("failed retrieving RowsAffected: %s", err)
} else {
log.Printf("RowsAffected: %d", n)
}
}

func insertRows(db *sql.

DB) {

tx, err := db.Begin()

if err != nil {

log.Fatalf("failed starting transaction: %s", err)
}
shows := []Show{

Show{"Top Gear", "UK"},

Show{"Wilfred", "AU"},

Show{"Top Gear", "US"},

Show{"Arctic Air", "CA"},
}
stmt, err := tx.Prepare("INSERT INTO shows (name, country) VALUES (?, ?)")
if err != nil {

log.Fatalf("failed preparing statement: %s", err)
}
for _, show := range shows {

_, err := stmt.Exec(show.Name, show.Country)

if err != nil {

} else {

log.Fatalf("failed insert show %s (%s): %s", show.Name, show.Country, err

log.Printf("inserted show %#v for country %#v", show.Name, show.Country)

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

database 122

if *rollback {
if err := tx.Rollback(); err != nil {
log.Fatalf("failed rolling back transaction: %s", err)
} else {
log.Printin("rolled back transaction, nothing inserted")

} else {
if err := tx.Commit(); err != nil {
log.Fatalf("failed committing transaction: %s", err)
} else {
log.PrintIn("committed transaction, 4 new shows added")

func queryCount(db *sqgl.DB) {
row := db.QueryRow("SELECT COUNT(*) FROM shows™")
var count int
if err := row.Scan(&count); err != nil {
log.Fatalf("failed getting count: %s", err)
}

log.Printf("there are %d TV shows in the database", count)

func queryRow(db *sql.DB) {
row := db.QueryRow("SELECT * FROM shows WHERE country = ? LIMIT 1", "CA")
show := Show{}
if err := row.Scan(&show.Name, &show.Country); err != nil {
log.Printf("failed scanning single row: %s", err)
} else {
log.Printf("Found 1 %s TV show: %s", show.Country, show.Name)

}
}
func queryRows(db *sql.DB) {
name := "Top Gear"
rows, err := db.Query("SELECT * FROM shows WHERE name = ?", name)
if err != nil {

log.Fatalf("failed querying multiple rows: %s", err)

}
shows := make([]Show, 0)

database 123

151 for rows.Next() {

152 show := Show{}

153 if err := rows.Scan(&show.Name, &show.Country); err != nil {
154 log.Fatalf("failed scanning row: %s", err)
155 }

156 shows = append(shows, show)

157 }

158 log.Printf("found %d shows named %#v", len(shows), name)
159 for _, show := range shows {

160 log.Printf("\t...in country %s", show.Country)
161 }

162 if err := rows.Err(); err != nil {

163 log.Fatalf("got unexpected error during iteration: %s", err)
164 }

165 }

166

167 func deleteRows(db *sql.DB)

168 _, err := db.Exec("DELETE FROM shows")

169 if err != nil {

170 log.Fatalf("failed deleting rows: %s", err)

171 }

172}

173

174 func main() {

175 flag.Parse()

176 db := openDB()

177 defer db.Close()

178

179 removeTable(db)

180 createTable(db)

181 insertRow(db)

182 insertRows(db)

183 queryCount(db)

184 queryRow(db)

185 // Sleep here. ..

186 queryRows (db)

187 deleteRows(db)

188 }

0 I O O b W N =

B s
O P W N =~ O ©

database

Output:

dropped table (if it existed) shows
created table shows
inserted 1 Swedish TV show
LastInsertlId: 1
RowsAffected: 1
inserted show "Top Gear" for country "UK"
inserted show "Wilfred" for country "AU"
inserted show "Top Gear" for country "US"
inserted show "Arctic Air" for country "CA"
committed transaction, 4 new shows added
there are 5 TV shows in the database
Found 1 CA TV show: Arctic Air
found 2 shows named "Top Gear"

...1in country UK

...1in country US

© 00 N O U b W N =

[EEY
= o

debug

The debug package is just a high level package holding other more useful subpack-
ages. Inside it yowll find packages to deal with ELF3*, Mach-O files®*>, and Windows
PE3S files.

On top of those 3 standards, you can of course look at Go files created by the
standard gc compiler.

Finally, you can extract and investigate DWARF?’ debugging information.

elf

The debug/elf package lets you open up and play with ELF files. ELF, or the Exe-
cutable and Linkable Format, is “a common standard file format for executables,
object code, shared libraries, and core dumps.”3® The list of Machine constants in the
package gives you an idea of how many actual machine types run this format.

The example is fairly simple, though it does touch most of the file so you can see
what’s there. This isn’t a library that youw’ll use daily, but if you do, ’'m sure you’ll
know more about the ELF format than I do already. If that’s the case, youw’ll know
what things to poke at.

debug/elf.go

package main

import (
"debug/el f"
"log"
"math/rand"
"time"

)

func init() {
rand.Seed(time.Now().UnixNano())

34http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
35 http://en.wikipedia.org/wiki/Mach-O
36http://en.wikipedia.org/wiki/Portable_Execu’[able
37http://en.wikipedia.org/wiki/DWARF
3f‘z'http://en.wikipedia.org/wiki/Executable_and_Linkable_Format

http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://en.wikipedia.org/wiki/Mach-O
http://en.wikipedia.org/wiki/Portable_Executable
http://en.wikipedia.org/wiki/Portable_Executable
http://en.wikipedia.org/wiki/DWARF
http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://en.wikipedia.org/wiki/Mach-O
http://en.wikipedia.org/wiki/Portable_Executable
http://en.wikipedia.org/wiki/DWARF
http://en.wikipedia.org/wiki/Executable_and_Linkable_Format

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
952
53

debug 126

func printHeader(fh *elf.FileHeader) {

log.Printf("fh.Class: %s", fh.Class)
log.Printf("fh.Data: %s", fh.Data)
log.Printf("fh.Version: %s", fh.Version)
log.Printf("fh.0SABI: %s", fh.OSABI)
log.Printf("fh.ABIVersion: %#x", fh.ABIVersion)
log.Printf("fh.ByteOrder: %s", fh.ByteOrder)
log.Printf("fh.Type: %s", fh.Type)
log.Printf("fh.Machine: %s", fh.Machine)

}

func printSection(s *elf.Section) ({

log.Printf("section [Type: %s, Flags, %s, Addr: %#x, Offset: %*x, Size: %*x, Li\
nk: %#%x, Info: %#%x, Addralign: %%x, Entsize: %#x]", s.Type, s.Flags, s.Addr, s.0O\
ffset, s.Size, s.Link, s.Info, s.Addralign, s.Entsize)

}

func printProgramHeader(p *elf.Prog) {
log.Printf("program header [Type: %s, Flags: %s, Off: %#x, Vaddr: %#x, Filesz: \
%¥x, Memsz: %%x, Align: %#x]", p.Type, p.Flags, p.Off, p.Vaddr, p.Filesz, p.Mems\
Z, p.Align)
}

func printSections(s []*elf.Section) {

log.Printf("file has %d sections", len(s))
for _, section := range s {
printSection(section)
}
}
func printProgs(p []*elf.Prog) {

log.Printf("file has %d program headers", len(p))
for _, prog := range p {
printProgramHeader (prog)
}
}
func printImportedLibraries(libs []string, err error) {

if err != nil {
log.Printf("failed getting imported libraries: %s", err)

54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

debug 127

} else {
log.Printf("file imports %d libraries: %s", len(libs), libs)
}
}
func printSymbols(symbols []elf.Symbol, err error) ({
if err != nil {
log.Printf("no symbols: %s", err)
} else {
// Grab about 1% of the symbols
symbolSelection := make([]string, @, 20)
for _, symbol := range symbols {
if rand.Float32() <= 0.01 {
symbolSelection = append(symbolSelection, symbol.Name)
}
}
log.Printf("there are %d symbols, printing %d of them", len(symbols), len(symb\
olSelection))
log.Printf("a selection of symbols: %v", symbols)
}
}
func printImportedSymbols(importedSymbols []elf.ImportedSymbol, err error) {

if err != nil {

log.Printf("no imported symbols: %s", err)
} else {

importedSymbolSelection := make([]string, @, 20)

for _, symbol := range importedSymbols {

if rand.Float32() <= 0.1 {
importedSymbolSelection = append(importedSymbolSelection, symbol.l
"+symbol .Library+",")

}

log.Printf("there are %d imported symbols, printing %d of them", len(importedS\
ymbols), len(importedSymbolSelection))

log.Printf("a selection of imported symbols: %v", importedSymbolSelection)

func printFileInformation(f *elf.File) {
printHeader (&f.FileHeader)
printSections(f.Sections)

96

o7

98

99
100
101
102
103
104
105
106
107
108
109

debug 128

printProgs(f.Progs)
printImportedLibraries(f.ImportedLibraries())
printSymbols(f.Symbols())
printImportedSymbols(f.ImportedSymbols())

func main() {
file, err := elf.Open("bash.elf")
if err != nil {
log.Fatalf("failed opening file: %s", err)
}
defer file.Close()
printFileInformation(file)

macho

The debug/macho package is used for dealing with, you guessed it, Mach-O you’d find
on your MacBook.

A limitation I found right away is that it doesn’t load universal binaries®’
on its own. I tried to include and use the provided bash binary, but since it’s
universal it gave me errors right away. I had to use a single architecture
binary for this to work. Universal binaries are basically just the separate
binary blobs glued together in a special archive, so it shouldn’t be terribly
hard to read a file and pull out the individual parts.

In this package we start to see some discrepancies between the Go API and what the
Mach-O file format on the Apple developer website’. For example, in the Go code,
there are only two values for the macho.Type field in the FileHeader: executable and
object. The Apple doc lists 8 different values. Okay that’s fine, not a big deal, it just
means you have to do a bit more work to check the type of your file once it’s loaded
instead of using the macho.Type constants. The file will load just fine, you’ll just have
to make your own constants. No big deal.

Another point, the F1ags field in the FileHeader doesn’t have any constants for it. If
you want to check specific flags, you’ll have to poke through 1oader.n in the macho
source and the Apple docs to see what values are what to figure out what you want

39http://en.wikipedia.org/wiki/Universal_binary
40 https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/MachORuntime/Reference/
reference.html

http://en.wikipedia.org/wiki/Universal_binary
https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
http://en.wikipedia.org/wiki/Universal_binary
https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html

debug 129

to check for. I’'ve done exactly that in the example (I copy/pasted directly from the
source, and modified slightly for Go).

Like the ELF example, this one isn’t as fully featured as some examples in previous
chapters, because you can do a lot with the information you get. You probably won’t
need to use thislibrary in your day to day usage of Go either, but it should be enough
to get you investigating the library if you have a specific use case.

debug/macho.go

package main

0 N O O B~ W N -

W W W W WM DNDDNDDDNDDNDDNDDNDNDDNAS A A 2 2 2 2 s
B O NSO O 00 N0 0k WONAEOO © 0 N0 O b W N~ OO ©

import (
"debug/macho"
"log"
"math/rand"

)

const (

MH_NOUNDEFS uint32 = 1 << iota /* the object file has no undefined

references */

MH_INCRLINK /* the object file is the output of an

incremental link against a base file
and can't be link edited again */

MH_DYLDLINK /* the object file is input for the

dynamic linker and can't be staticly
link edited again */

MH_BINDATLOAD /* the object file's undefined

references are bound by the dynamic
linker when loaded. */

MH_PREBOUND /* the file has its dynamic undefined

references prebound. */

MH_SPLIT_SEGS /* the file has its read-only and

read-write segments split */

MH_LAZY_INIT /* the shared library init routine is

to be run lazily via catching memory
faults to its writeable segments
(obsolete) */

MH_TWOLEVEL /* the image is using two-level name

space bindings */

MH_FORCE_FLAT /* the executable is forcing all images

to use flat name space bindings */

MH_NOMULTIDEFS /* this umbrella guarantees no multiple

defintions of symbols in its

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
4
5
6

debug

sub-images so the two-level namespace
hints can always be used. */

MH_NOFIXPREBINDING /* do not have dyld notify the
prebinding agent about this
executable */

MH_PREBINDABLE /* the binary is not prebound but can
have its prebinding redone.
only used when MH_PREBOUND is not set. */

MH_ALLMODSBOUND /* indicates that this binary binds to

all two-level namespace modules of
its dependent libraries. only used
when MH_PREBINDABLE and MH_TWOLEVEL
are both set. */

MH_SUBSECTIONS_VIA_SYMBOLS /* safe to divide up the sections into

sub-sections via symbols for dead
code stripping */

MH_CANONICAL /* the binary has been canonicalized
via the unprebind operation */

MH_WEAK_DEFINES /* the final linked image contains
external weak symbols */

MH_BINDS_TO_WEAK /* the final linked image uses
weak symbols */

MH_ALLOW_STACK_EXECUTION /* When this bit is set, all stacks

in the task will be given stack
execution privilege. Only used in
MH_EXECUTE filetypes. */
MH_ROOT_SAFE /* When this bit is set, the binary
declares it is safe for use in
processes with uid zero */
MH_SETUID_SAFE /* When this bit is set, the binary
declares it is safe for use in
processes when issetugid() is true */

MH_NO_REEXPORTED_DYLIBS /* When this bit is set on a dylib,

the static linker does not need to

examine dependent dylibs to see

if any are re-exported */
MH_PIE /* When this bit is set, the 0S will

load the main executable at a

random address. Only used in

MH_EXECUTE filetypes. */
MH_DEAD_STRIPPABLE_DYLIB /* Only for use on dylibs.

linking against a dylib that

When

130

T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

debug

has this bit set, the static linker

will automatically not create a

LC_LOAD_DYLIB load command to the

dylib if no symbols are being

referenced from the dylib. */
MH_HAS_TLV_DESCRIPTORS /* Contains a section of type

S_THREAD_LOCAL_VARIABLES */
MH_NO_HEAP_EXECUTION /* When this bit is set, the 0S will

run the main executable with

a non-executable heap even on

platforms (e.g. i386) that don't

require it. Only used in MH_EXECUTE

filetypes. */

func printHeader(fh *macho.FileHeader) ({
log.Printf("fh.Magic: %#x", fh.Magic)
log.Printf("fh.CPU: %s", fh.Cpu)
log.Printf("fh.SubCPU: %#x", fh.SubCpu)

log.Printf("fh.Type: %#x", fh.Type)
switeh fh.Type {
case macho.TypeExec:

log.Printin("file is an executable")
case macho.TypeObj:

log.Println("file is an object")
default:

panic("not reachable")

log.Printf("fh.Ncmd: %d", fh.Ncmd)
log.Printf("fh.Cmdsz: %d", fh.Cmdsz)
log.Printf("fh.Flags: %#b", fh.Flags)

switch fh.Flags & MH_NOUNDEFS {

case 0:

log.Println("MH_NOUNDEFS flag is not set")
default:

log.Println("object has no undefined references")
}

switch fh.Flags & MH_INCRLINK {

131

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

debug 132

case O:
log.Println("MH_INCRLINK flag is not set")
default:
log.PrintIn("the object file is the output of an incremental link against a ba\
se file and can't be link edited again")

}
switeh fh.Flags & MH_DYLDLINK {
case O:
log.PrintIn("MH_DYLDLINK flag is not set")
default:

log.Println("the object file is input for the dynamic linker and can't be stat\
icly link edited again")

}
switch fh.Flags & MH_SETUID_SAFE ({
case O:
log.PrintIn("MH_SETUID_SAFE flag is not set")
default:
log.Println("executable is setuid safe")
}

func printSection(s *macho.Section) {
log.Printf("section %s", s.Name)
log.Printf("\tSeg %s", s.Seg)
log.Printf("\tAddr %#x", s.Addr)
log.Printf("\tSize %d", s.Size)
log.Printf("\tOffset %d", s.0ffset)
log.Printf("\tAlign %d", s.Align)
log.Printf("\tReloff %s", s.Seg)
log.Printf("\tNreloc %d", s.Nreloc)
log.Printf("\tFlags %b", s.Flags)

}
func printSections(sections []*macho.Section) ({
for _, section := range sections {
printSection(section)
}

func printSymtab(symtab *macho.Symtab) {

debug 133

161 if symtab == nil {

162 log.Println("no symbol table")

163 }

164

165 log.Printf("symtab.Cmd: %s", symtab.Cmd)

166 log.Printf("symtab.Len: %d", symtab.Len)

167 log.Printf("symtab.Symoff: %d", symtab.Symoff)

168 log.Printf("symtab.Nsyms: %d", symtab.Nsyms)

169 log.Printf("symtab.Stroff: %d", symtab.Stroff)

170 log.Printf("symtab.Strsize: %d", symtab.Strsize)

171 log.Printf("symtab has %d symbols", len(symtab.Syms))
172

173 // Grab about 2.5% of the symbols

174 symbols := make([]string, @, len(symtab.Syms)/40)

175 for _, symbol := range symtab.Syms {

176 if rand.Float32() <= 0.025 {

177 symbols = append(symbols, symbol.Name)
178 }

179 }

180 log.Printf("a selection of the symbols: %v", symbols)
181 }

182

183 fune printDysymtab(dysymtab *macho.Dysymtab) {

184 log.Printf("dysymtab.Cmd: %s", dysymtab.Cmd)

185 log.Printf("dysymtab.Len: %d", dysymtab.lLen)

186 log.Printf("len(dysymtab.IndirectSyms): %d", len(dysymtab.IndirectSyms))
187 '}

188

189 funec printImportedLibraries(importedLibraries []string, err error) ({
190 if err != nil {

191 log.Printf("failed getting imported libraries: %s", err)
192 return

193 }

194 log.Printf("file imports %d libraries: %s", len(importedlLibraries), importedLib\
195 raries)

196 }

197

198 funec printFileInformation(f *macho.File) {

199 log.Printf("ByteOrder: %s", f.ByteOrder)

200 printHeader (&f.FileHeader)

201

202 // Also f.FileHeader.Ncmd

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

0 I O O b W N =~

(RGN
N O O

debug 134

log.Printf("file has %d load commands", len(f.Loads))
log.Printf("file has %d sections", len(f.Sections))

printSections(f.Sections)
printSymtab(f.Symtab)
printDysymtab(f.Dysymtab)
printImportedLibraries(f.ImportedLibraries())

}

func main() {
file, err := macho.Open("bash.macho")
if err != nil {

log.Fatalf("failed opening file: %s", err)

1
defer file.Close()

printFileInformation(file)

pe

A Windows Portable Executable®! file the format used on Windows. It fills the same
gap as ELF and Mach-O, except it’s for Windows.

I’ve made a simple Hello World application using C# and Mono*? to use with the
example. Who knows what the licensing problems would be distributing cmd. exe.

debug/pe.go

package main

import (
"debug/pe"
"log"

func printFileHeader(fh pe.FileHeader) ({
log.Printf("fh.Machine: %d", fh.Machine)
log.Printf("fh.NumberOfSections: %d", fh.NumberOfSections)
log.Printf("fh.TimeDateStamp: %d", fh.TimeDateStamp)
log.Printf("fh.PointerToSymbolTable: %#x", fh.PointerToSymbolTable)

41 http://en.wikipedia.org/wiki/Portable_Executable
42http://www.mono-project.com/

http://en.wikipedia.org/wiki/Portable_Executable
http://www.mono-project.com/
http://en.wikipedia.org/wiki/Portable_Executable
http://www.mono-project.com/

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54

debug 135

log.Printf("fh.NumberOfSymbols: %d", fh.NumberOfSymbols)
log.Printf("fh.SizeOfOptionalHeader: %d", fh.SizeOfOptionalHeader)
log.Printf("fh.Characteristics: %#x", fh.Characteristics)

}

func printSection(s *pe.Section) {

log.Printf("section %s", s.Name)
log.Printf("\tVirtualSize: %d", s.VirtualSize)
log.Printf("\tVirtualAddress: %d", s.VirtualAddress)
log.Printf("\tSize: %d", s.Size)
log.Printf("\tOffset: %d", s.Offset)
log.Printf("\tPointerToRelocations: %d", s.PointerToRelocations)
log.Printf("\tPointerTolLineNumbers: %d", s.PointerTolLineNumbers)
log.Printf("\tNumberOfRelocations: %d", s.NumberOfRelocations)
log.Printf("\tNumberOfLineNumbers: %d", s.NumberOfLineNumbers)
log.Printf("\tCharacteristics: %d", s.Characteristics)
}
func printSections(sections []*pe.Section) {
for _, section := range sections {
printSection(section)
}
}
func printImportedLibraries(importedLibraries []string, err error) {
if err != nil {
log.Printf("failed getting imported libraries: %s", err)
return
}
log.Printf("file imports %d libraries: %s", len(importedLibraries), importedLib\
raries)
}
func printImportedSymbols(importedSymbols []string, err error) {
if err !'= nil {
log.Printf("failed getting imported symbols: %s", err)
return
}
log.Printf("file imports %d symbols: %s", len(importedSymbols), importedSymbols)
}
func printFileInformation(f *pe.File) {

55
56
o7
58
59
60
61
62
63
64
65
66
67
68

debug 136

printFileHeader(f.FileHeader)
printSections(f.Sections)
printImportedLibraries(f.ImportedLibraries())
printImportedSymbols(f.ImportedSymbols())

}

func main() {
file, err := pe.Open("Hello.exe")
if err != nil {

log.Fatalf("failed opening file: %s", err)

}
defer file.Close()

printFileInformation(file)

gosym

This package just wouldn’t be complete without the ability to look at Go specifc
information embedded by the gc family of compilers. The debug/gosym package lets
you do that.

You start off by using one of the previous 3 packages, use the debug/gosym package
to make a LineTable out of the TExT segment. Then you can make a Table and start
poking around.

A I could only get this working on ELF files. I'm working on a MacBook and
could not for the life of me get a Mach-O file to have the required sections.
Not sure if this is a limitation of current implementation or if ’'m just doing
something wrong. That being said, when compiling an ELF file, you don’t

need to do anything special for the correct sections to be present. Since I

didn’t have Go setup on a Linux machine, I downloaded the doozerd binary

from https://github.com/ha/doozerd3. Itis licensed under the MIT license*4.

43https://github.com/ha/doozerd
44https://github.com/ha/doozerd/blob/master/LICENSE

https://github.com/ha/doozerd
https://github.com/ha/doozerd/blob/master/LICENSE
https://github.com/ha/doozerd
https://github.com/ha/doozerd/blob/master/LICENSE

0 N O O B~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

debug

debug/gosym.go

137

package main

import (
"debug/elf"
"debug/gosym"
"log"
"math/rand"
"time"

)

func init() {
rand.Seed(time.Now().UnixNano())

}
func printSyms(syms []gosym.Sym) {
selection := make([]string, 0, 24)
for _, sym := range syms ({
if sym.Name != "" {

if rand.Float32() <= 0.005 {

selection = append(selection, sym.Name)

}
}

}

log.Printf("there are %d symbols, printing %d of them", len(syms), len(selectio\
n))

log.Printf("a selection of symbols: %v'", selection)
}
func printFuncs(funcs []gosym.Func) ({

selection := make([]string, 0, 24)

for _, f := range funcs ({

if rand.Float32() <= 0.005 {
selection = append(selection, f.Name)

}
}
log.Printf("there are %d functions, printing %d of them", len(funcs), len(selec\
tion))
log.Printf("a selection of functions: %v", selection)
}

func printFiles(files map[string]*gosym.0bj) {

42
43
44
45
46
47
48
49
90
o1
52
53
o4
55
56
o7
o8
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
I
76
T
78
79
80
81
82
83

debug

))

138

selection := make([]string, 0, 24)
for name := range files {
if rand.Float32() <= 0.02 {
selection = append(selection, name)

}
log.Printf("there are %d files, printing %d of them", len(files), len(selection\

log.Printf("a selection of files: %v", selection)

func getSectionData(f *elf.File, name string) []byte {

section := f.Section(name)
if section == nil {
log.Fatalf("failed getting section %s", name)
}
data, err := section.Data()
if err != nil {
log.Fatalf("failed getting section %s data: %s", name, err)

}

return data

func processGolnformation(f *elf.File) {

gosymtab := getSectionData(f, ".gosymtab")
gopclntab := getSectionData(f, ".gopclntab™")

lineTable := gosym.NewlLineTable(gopclntab, f.Section(".text").Addr)
table, err := gosym.NewTable(gosymtab, lineTable)
if err != nil {

log.Fatalf("failed making table: %s", err)

printSyms(table.Syms)
printFuncs(table.Funcs)
printFiles(table.Files)

func main() {

file, err := elf.Open("doozerd")
if err != nil {
log.Fatalf("failed opening file: %s", err)

84
85
86
87

© 00 N O U b W N =

B S s s sy
O 00 3 O O b W N~

debug 139

}
defer file.Close()

processGoInformation(file)

dwarf

DWARF# is a standardized file format for debugging information. Yowll find it in
Mach-O, ELF, and even Window Portable Executable files.

I’'ve made a simple little program that printsHello, wor1d and also prints ArRGv before
and after sorting.

I’'ve compiled it on a Ubuntu 10.04 64-bit box with gcc -Wall -pedantic -00 -g -ggdb
-arch x86_64 -m64 -march=core2 -arch x86_64 -m64 -march=core2 hello.c -o hello. We’ll
use this in the last example to look at the DWARF data inside the file.

As with the other examples, I'm only scratching the surface. If you’re needing to
play with DWARF info, you probably know more than I, and already have an idea
as to what you’re looking for.

debug/dwarf.go

package main

import (
"debug/el f"
"log"

func printDwarfInformation(f *elf.File) {
dwarf, err := f.DWARF()
if err != nil {
log.Printf("failed getting DWARF info: %s", err)

return

rd := dwarf.Reader()
for {
entry, err := rd.Next()
if err != nil {
log.Printf("failed getting next DWARF entry: %s", err)

4Shttp://en.wikipedia.org/wiki/DWARF

http://en.wikipedia.org/wiki/DWARF
http://en.wikipedia.org/wiki/DWARF

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

debug 140

return

}

if entry == nil {
// All done
return

}

log.Printf("got entry with tag: %s, and offset %d", entry.Tag, entry.Offset)
for _, field := range entry.Field {
log.Printf("\t%s: %v", field.Attr, field.Val)

func main() {
file, err := elf.Open("hello")
if err != nil {
log.Fatalf("failed opening file: %s", err)
}
defer file.Close()
printDwar fInformation(file)

encoding

The encoding package, much like the debug package, is a high level package containing
other packages where all the fun happens.

Can you guess what the encoding package does? I'll wait.

Encode things of course! Well, it’ll decode too. This is where you get XML and JSON
encoding, CSV encoding, base64, base32, and hex encoding.

Those all make perfect sense, and you’ll probably use those regularly.

You also get ascii85%6 to play with Adobe file formats, asn1*’ and pem*® to deal with
their respective formats, and a binary package to deal with, well, binary data. You
also get the gob package, which is a Go specific format.

We’ll go through them in order.
ascii85

The asciigs example is quite terse, simply because there’s not a whole lot to cover.
There are two other package methods to Encode and Decode byte slices, but I've only
covered the Encoder and Decoder which work on streams by way of io.writer and
io.Reader. If you have to choose between the two methods, you should probably opt
for the stream based solution.

9 Don’t forget to close the ascii85.Encoder when you are done writing to it!

46http://en.wikipedia.org/wiki/AsciiSS
47ht'[p://en.wikipedia.org/wiki/Asnl
48http://en.wikipedia.org/wiki/Privalcy_Enhanced_Mail

http://en.wikipedia.org/wiki/Ascii85
http://en.wikipedia.org/wiki/Asn1
http://en.wikipedia.org/wiki/Privacy_Enhanced_Mail
http://en.wikipedia.org/wiki/Ascii85
http://en.wikipedia.org/wiki/Asn1
http://en.wikipedia.org/wiki/Privacy_Enhanced_Mail

0 N O O & W N =

W W W W N DNDNDNDDNDNDNDDNNNDMNNASE -SSP s
W N PO O 00 O O i WOWNPO O 00N O O i W N - O O

encoding

142

encoding/ascii85.go

package

import (

func dat

func mai

main

"bytes"
"encoding/ascii85"
"io"

"io/ioutil"

"log"

n "

os

a() []byte {
data, err := ioutil.ReadFile("ascii85.go")
if err != nil {
log.Fatalf("failed reading file: %s", err)
}

return data

n() {
var buffer bytes.Buffer

enc := ascii85.NewEncoder(io.MultiWriter(os.Stdout, &buffer))
log.PrintIn("encoding to stdout")
_, err := enc.Write(data())
enc.Close()
if err != nil {

log.Fatalf("failed encoding: %s", err)
}
println()
dec := ascii85.NewDecoder (&buffer)
log.Println("decoding to stdout™")
io.Copy(os.Stdout, dec)

asni

ASN.1%

is a standard format for encoding and transmitting data. What kind of data?

Well it doesn’t really matter, but it should have some sort of defined structure. It’s

Dnttp://

en.wikipedia.org/wiki/Asn1

http://en.wikipedia.org/wiki/Asn1
http://en.wikipedia.org/wiki/Asn1

encoding 143

more of a notation for describing the structure of the data. Even if you don’t use this
directly, you do indirectly: RSA keys are stored using ASN.1 (and then PEM encoded).
We already saw ASN.1 used in the DSA example, and it’s also used under the hood
in the RSA example (by way of the x509 package).

The format (notation) for the RSA private key can be seen in RFC 3447°

RSAPrivateKey ::= SEQUENCE {
version Version,
modulus INTEGER, -- n
publicExponent INTEGER, -- e
privateExponent INTEGER, --d
primel INTEGER, -- p
prime2 INTEGER, -- (g
exponentl INTEGER, -- d mod (p-1)
exponent2 INTEGER, -- d mod (g-1)
coefficient INTEGER, -- (inverse of g) mod p

otherPrimeInfos OtherPrimeInfos OPTIONAL

RSA Private Key ASN.1 Notation

If you need to use this package, yow’ll probably have to refer back to the docs a bit
more carefully, and possibly consult ASN.1 references somewhere online. It can get
interesting. That being said, it’s still a fairly straightforward encoding, so you can
examine the byte slice and see how things are actually encoded.

For example, a 1 gets encoded as []byte{0ox2, ox1, ox1}.Theox2 is atagto say thatit’s
an INTEGER, then ox1 is the length (number of bytes), and finally the value.

fizzbuzz encodes as []byte{0x13, 0x8, 0x66, 0x69, Ox7a, OxT7a, 0x62, 0xT75, OxTa, Ox7a}.
It follows the same structure: tag, length, data. ex13 (or 19 in decimal) is for a
PrintableString, it’s oxg8 bytes long, and then the actual data follows.

In the 1ntRange example, you can probably follow along®. I can’t for the life of me
figure out where the first ox3e comes from, but everything after that makes sense.

SOhttp://tools.ietf.org/html/rfc3447
51 http://luca.ntop.org/Teaching/Appunti/asnl.html

http://tools.ietf.org/html/rfc3447
http://luca.ntop.org/Teaching/Appunti/asn1.html
http://tools.ietf.org/html/rfc3447
http://luca.ntop.org/Teaching/Appunti/asn1.html

O© 00 9 O O b W N =

NN NN DNNDDNDNN S B 1 | 1 s sy s
N O O » WO N O © 00 3O O b WO N~

encoding 144

encoding/asnl.go

package main

import (
"encoding/asnl"
n]_Og"

type IntRange struct {
High, Low int

}

func encode(i interface{}) {
data, err := asni.Marshal(i)
if err != nil {

log.Printf("failed asn1 marshalling %#%v: %s", i, err)
} else {
log.Printf("%#%v marshals to %#v", i, data)

func main() {
encode(1)
encode(1.5)
encode('a')
encode(" fizzbuzz")
encode(IntRange{10, 5})

base32

The base32 package handles, of course, base32 based encoding. It actually does a
couple different encodings that are standards. From the docs:

StdEncoding is the standard base32 encoding, as defined in RFC 4648.
HexEncoding is the “Extended Hex Alphabet” defined in RFC 4648. It is
typically used in DNS.

When you make your Decoder Or Encoder, you must pick one of these encodings to use,
and naturally you have to use the same encoding when performing the opposite
operation.

0 N O O & W N =~

W W W W W W WwWwoWwWwWNDNDNDNDNDNDDNDNDNDDNDNDNDNDNNAESEAEPRrEPASEPS,EPS, S
© 00 9 O Ol b WO N~ O © 00 3O O b WONHPHO O W NO O b OWN -~ O O

encoding

145

Run the example with and without the -nhex flag to see the difference in the

encodings.

encoding/base32.go

package main

import (
"bytes"
"encoding/base32"
"flag"
"io"
"io/ioutil"
"log"

" "

os

var hex = flag.Bool("hex", false, "Use HexEncoding instead of StdEncoding")

func data() []byte {
data, err := ioutil.ReadFile("base32.go")
if err != nil {
log.Fatalf("failed reading file: %s", err)
}

return data

func encoding() *base32.Encoding {
if *hex {
return base32.HexEncoding

}
return base32.StdEncoding

func main() {
flag.Parse()
var buffer bytes.Buffer
enc := base32.NewEncoder(encoding(), io.MultiWriter(os.Stdout, &buffer))
log.Println("encoding to stdout™)
_, err := enc.Write(data())
enc.Close()
if err !'= nil {
log.Fatalf("failed encoding: %s", err)

40
41
42
43
44

O© 00 9 O O P W N =

N N P S s sl
, O O 00 9 O O b W N = O

encoding 146

println()

dec := base32.NewDecoder(encoding(), &buffer)
log.Printin("decoding to stdout")
io.Copy(os.Stdout, dec)

base64

Everybody knows base64! You’ve probably used it somewhere in your life.

The base64 package works exactly like the base32 package. You make an Encoder or
Decoder from one of the two available encodings it has, and go to town.

Your two options for encodings are the Stdencoding which you’re probably most
familiar with. It came from RFC4648°2 and is seen in MIME and PEM. The other
IS URLEncoding Which just replaces + and / with - and _ so it can be used safely in
URLs.

encoding/base64.go

package main

import (
"bytes"
"encoding/base64"
"flag"

io"
"io/ioutil"
"log"

" "

os

var url = flag.Bool("url", false, "Use URLEncoding instead of StdEncoding")

func data() []byte {
data, err := ioutil.ReadFile("base64.go")
if err != nil {
log.Fatalf("failed reading file: %s", err)
}

return data

52http://datatralcker.ietf.org/doc/rfc4648/

http://datatracker.ietf.org/doc/rfc4648/
http://datatracker.ietf.org/doc/rfc4648/

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

encoding 147

func encoding() *base64.Encoding {
if *url {
return base64.URLEncoding

}
return base64.StdEncoding

func main() {
flag.Parse()
var buffer bytes.Buffer
enc := base64.NewEncoder(encoding(), io.MultiWriter(os.Stdout, &buffer))
log.Printin("encoding to stdout")
_, err := enc.Write(data())
enc.Close()
if err != nil {
log.Fatalf("failed encoding: %s", err)
}
printlin()
dec := base64.NewDecoder(encoding(), &buffer)
log.Println("decoding to stdout")
io.Copy(os.Stdout, dec)

binary

The binary package lets you deal with, holy popsicle sticks, deal with binary data.
The raw functions only let you deal with basic bytes and int type stuff, which is
pretty low level. The read and write functions give you a bit higher level wrapper
around those, and let you deal with structs.

First, I show a basic encoding and decoding of math.Pi, then a broken version
(encoding with one endianness®® and decoding with the other), and then we look at
the header for GIF files.

53http://en.wikipedia.org/wiki/Endianness

http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Endianness

0 N O O B~ W N -

W W W W NDNDNDNDNDDNDMNDNDNDNDNNNDMNAS PSS
W N0 O 03O0 O b OO O 00 OO O i WOWN O O

encoding 148

encoding/binary.go

package main

import (
"bytes"
"encoding/binary"
"log"
"math"

)

func simple() {
var buffer bytes.Buffer
binary.Write(&buffer, binary.LittleEndian, math.Pi)
log.Printf("encoded %*v, a %T, to %#v", math.Pi, math.Pi, buffer.Bytes())

var pi float64
binary.Read(&buffer, binary.LittleEndian, &pi)
log.Printf("decoded %*v (is it equal?: %v)", pi, pi == math.Pi)

func broken() {
var buffer bytes.Buffer
binary.Write(&buffer, binary.BigEndian, math.Pi)
log.Printf("encoded %*v, a %T, to %#v", math.Pi, math.Pi, buffer.Bytes())

var pi float64
binary.Read(&buffer, binary.LittleEndian, &pi)
log.Printf("decoded %#*v (is it equal?: %v)", pi, pi == math.Pi)

}

func main() {
simple()
broken()

}

GIF

A GIF file is stored using the Little Endian byte ordering, and the GIF header>* looks
like this:

54http://www.onicos.com/staff/iz/formats/gif.html

http://www.onicos.com/staff/iz/formats/gif.html
http://www.onicos.com/staff/iz/formats/gif.html

encoding 149

GIF Header

Offset Length Contents
0 bytes "GIF"
3 bytes "87a" or "89a"
6 bytes <Logical Screen Width>
8 bytes <Logical Screen Height>
10 byte bit 0: Global Color Table Flag (GCTF)
bit 1..3: Color Resolution
bit 4: Sort Flag to Global Color Table
bit 5..7: Size of Global Color Table: 2" (1l+n)
byte <Background Color Index>
byte <Pixel Aspect Ratio>
bytes <Global Color Table(0..255 x 3 bytes) if GCTF is one>
bytes <Blocks>
bytes <Trailer> (0x3b)

NN WW

11
12
13

SRS IV

GIF header structure

For this case, the raw functions are kind of gross honestly. I tried to make an
example with them, but they are kind of unwieldy. Maybe if things were nice 32/64-
bit values, but they aren’t.

We can, however, use a struct and get the binary package to handle all the hard
work. We’ll just do the version and dimensions to keep the code short.

Before we begine, let’s look at the GIF file in a hex editor to try and make some sense
of it:

047 49 46 38 39 61 5E 01 C5 @0 F7

NI~ ™~ ™mn | gl o) 7~ ™ ™M™ ' & S | — -3 ~ ™ —_—
GIF header in HexFiend

Following the spec, the first three bytes ox47 ox49 ox46 are the ASCII characters GIF.
The next 3 bytes ox38 0x39 ox61 are the ASCII characters 89a. In order to decode into
a struct, we must use fixed-sized values inside that struct. We create a version type
that is a 6 element byte array. We can tack a method onto it to make it a string, and
bam, there’s our version. The binary package will now decode the first 6 bytes into
that array, and we can print it out as GIFgoa.

For the dimensions, I used a single uint32 since its size is 4 bytes, and the dimensions
are 4 bytes (2 for width, 2 for height).

The binary package has no problem pulling the next 4 bytes out into the Dimensions
value.

0 N O O & W N =

W W N DNDNDNDDNDMNDNDMNDNNNDNASAAS PP, s
O O 0 N O O b W N O O 00 N O O b WN -~ O O

encoding

150

The ox5e ox01 and oxc5 0xo0 in the hex editor would probably normally be written
asoxo1 ox5e and ox0e oxcs5 but remember the GIF is little endian. This means when
it gets read out, things get flipped around. The width ends up in the lower half
of the uint32 value, even though it’s first in the file as far as the raw bytes are
concerned. This is because we read it out as part of a 32-bit value we are calling
the dimensions. This is why we have to do the shift in the Height method instead of

the width method.

encoding/gif.go

package main

import (
"encoding/binary"
n logll
"os"

)

type Version [6]byte

fune (v Version) String() string {
return string(v[:])

}

type Dimensions uint32

func (d Dimensions) Width() int {
return int(d) & Oxffff

}

func (d Dimensions) Height() int {
return int(d>>16) & Oxffff

}

type GifHeader struct {

func

Version Version

Dimensions Dimensions

main() {

file, err := os.Open("animated.gif")

32
33
34
35
36
37
38
39
40

encoding 151

if err != nil {
log.Fatalf("failed opening gif: %s", err)

}

defer file.Close()

var header GifHeader

binary.Read(file, binary.LittleEndian, &header)

log.Printf("decoded a %s with width %dpx and height %dpx", header.Version, head\
er.Dimensions.Width(), header.Dimensions.Height())

}

Csv

Just like base64, you’ve probably seen CSV encoding before. Comma Separated
Values is a nice way to encode tabular data, like say from a relational database.

The whole “comma separated” part is a bit of simplification, since you can
separate the values with whatever works for your data.

The csv.Reader type has a few more configuration options than the csv.writer type,
which allows you to read a wider variety of files than you can write. Once you have
a reader, before you start reading, you can configure a few things. The important
ones are:

» Separator rune, defaults to comma.

* The comment rune. Lines starting with this rune will be ignored.

* Fields per record. Configures any checking/verification done on the number
of fields in each record. If you don’t change it, it ensures all the records have
the same number of fields as the first row.

The writer only allows you to configure the separator (defaults to a comma) and
whether to use \r\n instead of a plain \n.

The csv package doesn’t have any helpers around structs, so you have to do it
yourself (or write a reflect-based package and share it!)

0 N O O B~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

encoding 152

encoding/csv.go

package main

import (
"bytes"
"encoding/csv"
"io"
"log"

)

var records = [][]string{
{"Show", "Seasons", "Year Began", "Year End"},
{"The Simpsons", "24", "1989", ""},
{"Star Trek: The Next Generation", "T7", "1987", "1994"},
{"Seinfeld", "9", "1989", "1998"},
{"Go, Diego, Go!", "5", "2005", "2011"},

func write(w io.Writer, sep rune, recs [][]string) error ({
csvWriter := csv.NewWriter(w)
csvWriter.Comma = sep
return csvWriter.WriteAll(recs)

func read(r io.Reader, sep rune) ([][]string, error) {
csvReader := csv.NewReader(r)
csvReader .Comma = sep
return csvReader.ReadAll()

func main() {
var buffer bytes.Buffer

err := write(&buffer, ',', records)
if err != nil {
log.Fatalf("failed writing: %s", err)
}
log.Printf("wrote: %s", &buffer)
rs, err := read(&buffer, ',")
if err != nil {
log.Fatalf("failed reading: %s", err)
}

log.Printf("%v", rs)

42
43
44
45
46
47
48
49
S50
o1
52
53
o4

© 00 N O U b W N =~

SO =Y
N O O b WO N~

encoding 153

buffer = bytes.Buffer{}

err = write(&buffer, '|', records)
if err != nil {
log.Fatalf("failed writing: %s", err)
}
log.Printf("wrote: %s", &buffer)
rs, err = read(&buffer, ',') // Will fail
if err != nil {
log.Fatalf("failed reading: %s", err)
}
panic("not reached")
}
gob

The gob package handles, you guessed it, gobs. Gobs are binary blobs that encode Go
types, complete with a description of the type. This means you can send something
across the wire to an application and when it decodes it it will just be the correct
type. If you want to send a type as an interface implementation, you have to register
the type, so what you’ll frequently see is type definitions, and an init function to
register those types with the gob package.

encoding/gob.go

package main

import (
"encoding/gob"
"log"
"net"

n "

oS

var sock = "gob.sock"
type IntRange struct {

High, Low int

func init() {
gob.Register(IntRange{})

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o
o8
59

encoding

func handle(c net.Conn) {

defer c.Close()

decoder := gob.NewDecoder(c)

var i
for {

interface{}

err := decoder.Decode(&i)
if err != nil {

log.Printf("failed decoding value: %s", err)

break

}
log.Printf("decoded: %#v", i)

func server(sig chan bool) {

addr,

err := net.ResolveUnixAddr("unix", sock)

if err != nil {

}

log.Fatalf("failed to resolve addr: %s", err)

defer os.RemoveAll(sock)

listener, err := net.ListenUnix("unix", addr)

if err = nil {

}

log.Fatalf("failed to listen: %s", err)

defer listener.Close()

sig <- true

conn,

err := listener.Accept()

if err != nil {

}

log.Printf("failed accept: %s", err)

handle(conn)

sig <- true

func client()
addr,

{

err := net.ResolveUnixAddr("unix", sock)

if err != nil {

log.Fatalf("failed to resolve addr: ¥%s", err)

154

60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
5
76
T
78
79
80
81
82
83
84
85
86

encoding 155

}
conn, err := net.DialUnix("unix", nil, addr)
if err != nil {

log.Fatalf("failed dialing: %s", err)
}

defer conn.Close()

encoder := gob.NewEncoder(conn)
things := []interface{}{IntRange{5, 10}, 1, 1.5, "hello", 2 + 3i}
for _, thing := range things {
err = encoder .Encode(&thing)
if err != nil {
log.Printf("failed encoding: %s", err)
} else {
log.Printf("encoded: %*v", thing)

}
}
}
func main() {
sig := make(chan bool)

go server(sig)

<-sig
client()
<-sig

}

hex

The nex package deals with hexadecimal encoded data. It can encode and decode
byte slices, encode and decode to a string, and with a hex.bumper it can also dump
something to the same format as hexdump -C.

0 N O O & W N =

W N DN DNDNDDNDNDNDDNDDNDNNDNAS-S PP,
S © 00 9 O Ol b W N~ O © 00 O O b WOWN-~ O O

encoding 156

encoding/hex.go

package main

import (
"encoding/hex"
"io/ioutil"
"log"

n "

os

func dumpFile() {
data, err := ioutil.ReadFile("hex.go")
if err != nil {
log.Fatalf("failed reading file: %s", err)
}
dumper := hex.Dumper (os.Stdout)
defer dumper.Close()
log.PrintIn("dumping hex.go to stdout")
dumper .Write(data)

func main() {
hero := []byte("Batman and Robin")
log.Printf("hero: %s", hero)
encoded := hex.EncodeToString(hero)
log.Printf("encoded: %s", encoded)
decoded, _ := hex.DecodeString(encoded)
log.Printf("decoded: %s", decoded)

dumpFile()

json

Want to play with JSON? Use the json package. You can encode and decode simple
types and structs, encode and decode other types that obey the relevant interfaces,
and do all of that with readers and writers. You can also pretty print with Marshalin-
dent.

With the JSON package we also see use of field tags to control how the marshalling
of struct fields happens. You can set the name of the name if you don’t want it to get

0 N O O b W N =~

W W W W W W WwwWwWwNNDNDNDDNDNDNDDNDDNNDNNASRAEPRrEPSEPS,EP PSS s
0 N O Ol & WDN-O O© 00 30 Ol WON=-O © 03O0 O WD~ ©

encoding 157

marshalled as the uppercase field name. You can also tell it to not marshal the field
at all (even though it’s an exported field) by setting the field name to -. You can also
omit empty fields.

encoding/json.go

package main

import (
"bytes"
"encoding/ json"
"fmt"
"io"
"log"
"og"

)

type BlogPost struct {
// Marshal as "writer" instead of Author
Author string " json:"writer,omitempty"’
// Will get marshalled as "Title"
Title string
Body string " json:"body""
// Don't marshal this field at all

"o~

Published bool " json:

// This would marshal just fine,
// but let's write out own marshaller.
type Pair struct {

X, Y int

func (p Pair) MarshalJSON() ([]byte, error) {
return []byte(fmt.Sprintf("%d|%d"", p.X, p.Y)), nil

func (p *Pair) UnmarshalJSON(data []byte) error {
_, err := fmt.Sscanf(string(data), ~"%d|%d">, &p.X, &p.Y)

return err

func encodeTo(w io.Writer, i interface{}) {
encoder := json.NewEncoder(w)

39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80

encoding 158

if err := encoder.Encode(i); err != nil {
log.Fatalf("failed encoding to writer: %s", err)
}
}
func encode(i interface{}) []byte {
data, err := json.Marshal(i)
if err != nil {

log.Fatalf("failed encoding: %s", data)
}

return data

func decode(data string) interface{} {

var i interface{}
err := json.Unmarshal([]byte(data), &i)
if err != nil {
log.Fatalf("failed decoding: %s", err)
}
return i
}
func simple() {

log.Printf("encoded %d to %s", 1, encode(1))
log.Printf("encoded %f to %s", 1.5, encode(1.5))
log.Printf("encoded %s to %s", "Hello, World!", encode("Hello, World!"))
log.Printf("decoded %f from %s", decode("1"), "1")
log.Printf("decoded %v from %s", decode(["foo","bar",6 "baz"]"), ~["foo","bar",6"\
baz"] ")
}
func custom() {

pair := Pair{5, 10}
encoded := encode(pair)
log.Printf("encoded %v to %s", pair, encoded)

var pair2 Pair
if err := json.Unmarshal(encoded, &pair2); err != nil {
log.Fatalf("failed decoding Pair: %s", err)

}
log.Printf("decoded %#v from %s", pair2, ~"1[2"")

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

encoding

func structExa
post

}

mple() {

.= BlogPost{

// Since Author is empty, it won't be written out

Title:
Body:
Published:

"Being Awesome At Go",
"Read this book!",
true,

encodeTo(os.Stdout, post)

post =

}

BlogPost{
Author :
Title:
Body:
Published:

"Daniel Huckstep",
"Being Awesome At Go",
"Read this book!",
true,

encodeTo(os.Stdout, post)

func streamDec

ode() {

var buffer bytes.Buffer

post

}

;= BlogPost({

Author :
Title:
Body:
Published:

"Daniel Huckstep",
"Being Awesome At Go",
"Read this book!",
true,

encodeTo(&buffer, post)

decode

r := json.NewDecoder (&buffer)

var newPost BlogPost

if err

}

:= decoder .Decode(&newPost); err != nil {

log.Printf("decoding failed: %s", err)

log.Printf("decoded %*v", newPost)

func pretty()
post

{

.= BlogPost{

Author:
Title:

"Daniel Huckstep",
"Being Awesome At Go",

159

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

W N O O & W N =~

TN
N »~ O ©

encoding 160

Body: "Read this book!",
Published: true,
}
data, err := json.Marshallndent(post, "", "\t")
if err != nil {
log.Fatalf("failed marshal with indent: %s", err)
}
log.Printf("pretty print:\n%s", data)
}
func main() {
simple()
custom()
structExample()
streamDecode()
pretty()
}
pem

PEM encoding from Privacy Enhanced Mail*> is handled by the pen package. Where
do you use this you might ask? RSA keys and SSL certificates, that’s where!. Check
your ~/.ssh directory, and that id_rsa file is in PEM format.

We already saw pem in action in the RSA example using x509.MarshalPKCS1PrivateKey
to get the Bytes for the pem.Block. This is a really simple example.

encoding/pem.go

package main

import (
"crypto/rand"
"encoding/pem"
"log"
"og™

)

func main() {
bytes := make([]byte, 1024)
n, err := rand.Read(bytes)

55 http://en.wikipedia.org/wiki/Privacy_Enhanced_Mail

http://en.wikipedia.org/wiki/Privacy_Enhanced_Mail
http://en.wikipedia.org/wiki/Privacy_Enhanced_Mail

13
14
15
16
17
18
19
20
21
22
23
24
25

encoding 161

if err != nil {
log.Fatalf("failed reading random data: %s", err)
}
if n != len(bytes) {
log.Fatalf("failed reading correct amount of random data. only read %d bytes",\

n)
}
block := pem.Block{
Type: "Example Data",
Bytes: bytes,
}
pem.Encode(os.Stdout, &block)
}
xml

The xm1 package handles going to and from XML. It’s similar to the json package in
that you can encode/decode to/from bytes, you can pretty print things, and you can
do things with io.Reader and io.writer. You can also control the output/parsing with
tags.

Some extra things you can do when you’re dealing with structs include serializing
fields as attributes, include comments.

If you feel like it, you can even decode raw tokens.

In the example, pay attention to the tags in all the structs:

* And xmLname field with a tag to control the element name the struct gets encoded
as.

* xml:"id,attr" on the Id field to make it an attribute instead of a nested element,
and to change the attribute name to be lowercase instead of 1d

* xml:", omitempty" ON Subtitle to not include it if it’s empty.

* xml:"Tags>Tag" ON Tags t0 nest each tag as a Tag element inside a main Tags
element.

0 N O O B~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

encoding

encoding/xml.go

162

package main

import (
"bytes"
"encoding/xml"
nigh
"log"

)

type Name struct {
First, Last string “xml

type Author struct {
Id int “xml:"id,attr"
Name Name

type BlogPost struct {
XMLName xml.Name “xml:
Id int “xml :
Author Author
Title string
Subtitle string “xml

Tags [Istring “xml:
Body string “xml:
Notes string “xml:

func encode(w io.Writer) {
post := BlogPost{
Id: 10,
Author: Author{
Id: 5,

;" ,omitempty

"ne

;" ,omitempty

~

"Post""®
"id,attr"”

ne

"~

"Tags>Tag
"Content""

", comment"”

Name: Name({

}/

1
Title: "It's Al

Tags: []string{"object-oriented", "programming"

First: "Alan",

Last: "Kay",

1 About Messages",

, "OOp"},

42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
o8
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83

163

encoding
Body: "It's not about objects, it's about messages"”,
Notes: "He's the boss",
}
encoder := xml.NewEncoder(w)
err := encoder.Encode(post)
if err != nil {
log.Fatalf("failed encoding to a stream: %s", err)
}
}

func decode(r io.Reader) ({

var post BlogPost
decoder := xml.NewDecoder(r)
err := decoder.Decode(&post)
if err != nil {
log.Fatalf("failed decoding from stream: %s", err)
}
log.Printf("%#v", post)
}
func pretty() {

post := BlogPost{

Id: 5,
Author: Author{
Id: 2,
Name: Name{
First: "Daniel",
Last: "Huckstep",
},
4
Title: "Go, The Standard Library",
Tags: []string{"golang", "programming", "reference"},
Body: "I like programming Go, it's so much fun!",

Notes: "Need to write more often..."

!

}
data, err := xml.Marshallndent(post, "", "\t")

if err != nil {
log.Fatalf("failed pretty printing: %s", err)

1
log.Printf("pretty print:%s", data)

84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

encoding 164

func tokens() {
doc := []byte(<post id="5"><title>Batman</title><author>Daniel Huckstep</autho\
r></post>")
decoder := xml.NewDecoder(bytes.NewReader (doc))
for {
token, err := decoder.Token()
switch err {
case nil:
// Nothing to see here
case 10.EOF:
log.Println("done parsing tokens")
return
default:
log.Fatalf("got error getting token: %s", err)

switch tok := token.(type) {
case xml.StartElement:

log.Printf("found start element: %s", tok.Name)
case xml.EndElement:

log.Printf("found end element: %s", tok.Name)
case xml.CharData:

log.Printf("found chardata element: %s", tok)
case xml.Comment:

log.Printf("found comment element: %s", tok)
case xml.Proclnst:

log.Printf("found processing instruction: %s", tok.Target)
case xml.Directive:

log.Printf("found directive: %s", tok)
default:

panic("not reached")

func main() {
pretty()
var buffer bytes.Buffer
encode(&buffer)
log.Printf("encoded post to %s", buffer.String())
decode(&buffer)

encoding 165

126 tokens()
127 '}

errors

The errors package let’s you build an error. That’s it. It has one function, and there
is only one source file defining the entire package.

All you do iS errors.New("My error message") and you’ve got yourself an error. More
likely, you’ll use the fmt package to build an error, but we’ll look at it in a few

chapters.

O© 00 9 O O b W N =

U S
O© 00 9 O O b W N~ O

expvar

The expvar package is global variables done right.

It has helpers for Fioat, Int, Map, and string types, which are setup to be atomic.
Things are registered by a string name, the key, and they map to a corresponding
var, which is just an interface with a single method: string() string.

This simple interface allows you to use the more raw publish method to register
more custom handlers in the form of a Func type. These are just functions which
take no arguments and return an empty interface (which, in implementation should
probably be a string).

Examining the source for the package, you can see it uses this to register the
memstats variable. When you iterate through the variables and you call the string
method on the var, the function runs to extract the memstats at that moment in
time.

It’s a pretty simple, but very powerful package. You can use it for metric type stuff,
Or you can use it as a more traditional global variable system. It can do it all.

expvar/expvar.go

package main

import (
"expvar"
"flag"
"log"
"time"
)
var (
times = flag.Int("times", 1, "times to say hello")

name flag.String("name", "World", "thing to say hello to")

helloTimes = expvar.NewInt("hello")

)

func init() {
expvar .Publish("time", expvar.Func(now))

}

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

expvar

func now() interface{} {
return time.Now().Format(time.RFC3339Nano)

func hello(times int, name string) ({

helloTimes.Add(int64(times))
for i := 0; i < times; i++ {
log.Printf("Hello, %s!", name)
}
}

func printVars() {

log.Printin("expvars:")
expvar .Do(func(kv expvar.KeyValue) {
switch kv.Key {
case "memstats":
// Do nothing, this is a big output.
default:
log.Printf("\t%s -> %s", kv.Key, kv.Value)
}
P
}
func main() {

flag.Parse()
printVars()
hello(*times, *name)
printVars()
hello(*times, *name)
printVars()

168

O© 00 9 O O b W N =

[UGN
O O b W N =

flag

The f1ag package is command line flag parsing in one tight package.

The basic usage consists of two APIs: the regular API, and the *var API. The basic
APIreturns a pointer to the thing it’s handling, while the *var API takes a pointer to
an already existing thing that it should handle.

There is also a Flagset so you can split up groups of flags, say if you’re making
something like the go program. Its first argument is the name of a tool, and each
tool takes a different set of flags. You can organize these with a F1agset.

You can also introspect the raw flags, see how many there are, and build your own
custom types. It even builds in the -h/-nhelp/--help flags and outputs appropriate
help.

It supports both single and double dashes as the prefix, but if you want to support
a short form (single letter) as well, you have to dance around a little, and it proves
more work than it’s worth.

The Basic Interface

flag/basic.go

package main

import (
"flag"
"log"
)
var (
count = flag.Int("count", 1, "number of times to say hello")
subject = flag.String("subject", "World", "subject to say hello to")

)

func hello(s string, t int) {
for i :=0; i < t; i++ {
log.Printf("Hello, %s!", s)

17
18
19
20
21
22
23
24
25
26

0 N O O & W N =

NN NN NN N P R S L s sy
O O b O NP O O 00 N0 0 N~ ©

flag

func main() {
flag.Parse()

hello(*subject, *count)

log.Printf("flag.NArg(): %d", flag.NArg())
log.Printf("flag.Args(): %s", flag.Args())

The *Var Interface

flag/var.go

package main

import (
llflag”
"log"

)

var (

count int
subject string

func init() {

flag.IntVar(&count, "count", 1, "number of times to say hello")
flag.StringVar(&subject, "subject", "World", "subject to say hello to")

flag.Parse()

func hello(s string, t int) {

for i :=0; i < t; i++ {
log.Printf("Hello, %s!", s)

func main() {

27
28

O N O O & W N~

W W W W WNDNDDNDDDDNDNNDDNDDNDNDDNDSS A 2~ 2 2 2 2
B O NP2 O 00 N0 0k WA O N0 O N~ ©

flag

hello(subject, count)

171

FlagSet

flag/flagset.go

package main

import (
"flag"
"log"
"strings"

)

var (

cmdFlags = map[string]*flag.FlagSet{

}
subject
o to")
dots
)

"hello":

= cmdFlags["goodbye"].Int("dots", 3, "How many dots to print")

flag.NewFlagSet("hello", flag.ExitOnError),
"goodbye": flag.NewFlagSet("goodbye", flag.ExitOnError),

func hello(subject string) {
log.Printf("Hello, %s!", subject)

func goodbye(dots int) {

space :=

" "
’

if dots > 0 {

}

log.Printf("Goodbye%scruel world!", space)

func main() {

space = strings.Repeat(".

flag.Parse()

for

—

non

emd := range flag.Args() {

flags, ok

:= cmdF lags[cemd]

, dots)

= cmdFlags["hello"].String("subject", "World", "the subject to say hell\

35
36
37
38
39
40
41
42
43
44
45
46
47

0 N O O B~ W N -

N N B s s s s
, O O 0 O O b W N~ O O

flag

if lok {
log.Fatalf("no command %q found", cmd)
}
flags.Parse(flag.Args()[1:])
switch cmd {
case "hello":
hello(*subject)
case "goodbye":
goodbye (*dots)

break

172

Custom

You can also implement an interface and parse custom types. Implement the two
methods from fiag.value, and you’re good to go.

flag/custom.go

package

import (

type Poi

fune (p

fune (p

main

" flagn
”fmt"
n logll

nt struct {
X, Y int

*Point) String() string {
return fmt.Sprintf("%+dez+d", p.X, p.Y)

*Point) Set(s string) error {
_, err := fmt.Sscanf(s, "%dexd", &p.X, &p.Y)
return err

22
23
24
25
26
27
28
29
30
31

flag

var point Point

func init() {
flag.Var(&point, "point", "point as X@Y")

func main() {
flag.Parse()
log.Printf("%#v", point)

173

©O© 00 = O U b W N =

B S s s s
O 00 3 O O b W N~ O

fmt

The tmt package takes care of formatting things. It will either return a string, or
write to anio.writer interface. There is also a convenience method to print to stdout.
It can also scan things from a string or a io.Reader into various types.

I’'m not going to cover the specific syntax for formatting certain values, since the
regular docs cover that quite well.

Printing
Printing is straightforward. It’s handled by all the functions with print in the name.

It’s in the docs, but a quirk with the print function is that it only puts a space
between arguments when neither is a string. println puts spaces between
all arguments.

fmt/printing.go

package main

import (
"fmt"
"log"
"og™
)
var (
i = 221
b = false
f =5.1
cn =3 + 11
s = "batman"
big = 13.8 * 100000
¢ = struet {
Count int
Debug bool

Notes string

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58

fmt

}{8, true, "This is my boomstick!"}

fune stdout() {
fmt .Print("Print: ", ¢, i, b, f, cn, s, "\n")
fmt.Println("Println:", ¢, i, b, f, cn, s)
fmt .Printf("Printf: %#b %%x %t %v %T %e\n", i, i, true, ¢, c, big)

// Padding strings

fmt . Printf("%15s\n", "batman")

fmt . Printf("%15s\n", "wat")

fmt . Printf("%15s\n", "Bruce Wayne")

func writer() {
file, err := os.OpenFile("output.txt", os.0O_WRONLY|os.O_CREATE, 0644)
if err != nil {
panic(err)
}
defer file.Close()

fmt.Fprint(file, "Fprint: ", ¢, i, b, f, cn, s)
fmt.Fprintln(file, "Fprintln:", ¢, 1, false, f, cn, s)
fmt.Fprintf(file, "Fprintf: %®b %#x %t %v %T %e\n", i, i, b, ¢, ¢, big)

func str() {
out := fmt.Sprintln(c, i, b, f, cn, s)
log.Printf("Sprintln: %s", out)

out = fmt.Sprintf("%#*b %#*x %t %v %T %e", i, i, b, ¢, ¢, big)
log.Printf("Sprintf: %s", out)

}

func main() {
stdout()
writer()
str()

175

©O© 00 N O U b W N =

N N B s s s s
=, O O 00 3 0O O b W N =~ O

fmt 176

0 You’ll notice I don’t check the return value of any of these functions. While

they do return the number of bytes written and a possible error, they are

some of the functions that you probably don’t need to bother checking

the return value of. If you’re writing to a file, the network, or something

else important, you probably want to check, but if you’re writing debug
information to stdout you probably don’t need to bother.

The example shows the use of the # flag, which prints things using an alternate for-
mat. In the example, this means printing binary with a leading ob and hexadecimal
with a leading ox. The documentation covers the other situations.

Scanning

Scanning is also quite simple. It’s handled by all the functions with scan in the name.
Don’t forget to pass things as pointers!

To simplify things, I won’t bother with the functions that deal with stdin. Once you
see the others working, it’s pretty straight forward to use them. You could even used
the io.Reader based ones and pass in os.Stdin.

fmt/scanning.go

package main

import (
"t
"log"

n "

os

func str() {
var a int

var b int

log.Printf("a: %d, b: %d", a, b)
fmt.Sscan("20\n20", &a, &b)
log.Printf("a: %d, b: %d", a, b)

fmt.Sscanf(" (15, 30)", "(%d, %d)", &a, &b)
log.Printf("a: %d, b: %d", a, b)

// Will not go past the newline, only scans a
fmt.Sscanln("10\n10", &a, &b)

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54

fmt 177

log.Printf("a: %d, b: %d", a, b)

func reader() {
file, err := os.Open("input.txt")
if err != nil {
panic(err)
}
defer file.Close()

var scan struct {

A, B float32
C bool
D string

log.Printf("scan: %v", scan)
fmt.Fscan(file, &scan.A, &scan.B)
log.Printf("scan: %v", scan)
fmt.Fscan(file, &scan.C, &scan.D)
log.Printf("scan: %v", scan)

fmt.Fscanlin(file, &scan.A, &scan.B, &scan.C, &scan.D)
log.Printf("scan: %v", scan)

fmt.Fscanf(file, "The Green %s %f %t %f", &scan.D, &scan.B, &scan.C, &scan.A)
log.Printf("scan: %v", scan)

}

func main() {
str()
reader()

Printing Custom Types

Well that was fun! Actually not really. Formatting and scanning things? Yawn. It’s all
very straightforward and there’s nothing missing from the standard documentation
for everyday use of the fmt package.

But you don’t have to live in the fmt walls, you can format your data anyway you
want! There are 3 ways the fmt provides to let you customize formatting.

0 = O O b W N =~

NN NN NDNDNDNDDN A B 1 s s s
0O N O O b WO N~ OO O 03O0 O b W NN~ ©

fmt 178

Stringer Interface

The stringer interface you see a lot in Go. Define a method called string that takes
no arguments and returns a string, and you’re set. You can then pass your type to
fmt and format it as a string with the %s verb and it will just work. Using the %v verb
will also use the stringer interface.

0 If the thing implements the error interface, it takes precedence over the
Stringer interface.

While I won’t repeat it here, make note of the recursion case in the documentation.
You can shoot yourself in the foot, but you have tests right?

fmt/stringer.go

package main

import (
n fmt n
"log"

type Tuple struct {
Left, Right interface{}

func (t Tuple) String() string {
log.Printf("in Stringer interface method for Tuple")
return fmt.Sprintf("(%%*v, %%v)", t.Left, t.Right)

type Tuple2 struct {
Left, Right interface{}

func (t Tuple2) Error() string {
log.Printf("in Error interface method for Tuple2")
return "lol it's an error!"

funce (t Tuple2) String() string {
log.Printf("in Stringer interface method for Tuple2")
return fmt.Sprintf("(%*v, %%v)", t.Left, t.Right)

29
30
31
32
33
34
35

© 00 N O U b W N =

[Y
O & 0N -~ O

fmt 179

}

func main() {
fmt.Printf("%s\n", Tuple{1, 2})
fmt.Printf("%s\n", Tuple2{1.5, 2.1})
fmt .Printf("%v\n", Tuple{"Bruce Wayne", "Batman"})

GoStringer Interface

The Gostringer interface operates like the stringer interface in that you return a
string, but is used with the %#v verb.

There’s no example for this, since you can take the previous example, change
String() to Gostring() and %s to %#v, and you’re basically done.

I’'m also a little unsure why you’d want to override the default implementation of
this, but you can. If you find a good example for this, please let me know!

Formatter Interface

For doing seriously custom formats, you can define Format(f State, ¢ rune) On your
type to implement the Formatter interface. You can inspect the state passed in to
check for flags and other things. You can also see what the verb used is with the c
rune argument. In the example, I use the 1, r, and p verbs to format my Tup1e type.

fmt/formatter.go

package main

import (
n fmt n
)

type Tuple struct {
Left, Right int
}

func (t Tuple) Format(f fmt.State, ¢ rune) {
switch ¢ {
case 'l':
fmt.Fprintf(f, "%v", t.Left)
case 'r':

16
17
18
19
20
21
22
23
24
25
26
27

O© 00 9 O O b W N =

U S YN
00 I O O b 0ON =~

fmt 180

fmt.Fprintf(f, "%v", t.Right)

1 [' 1

case 'P', 's', 'v':
fmt . Fprintf(f, "(%#*v, %#v)", t.Left, t.Right)

func main() {
t := Tuple{1, 2}
fmt.Printf("%1\n", t)
fmt.Printf("%r\n", t)
fmt.Printf("%P\n", t)

Scanning Custom Types

The scanner interface lets you implement a custom scanner for your type. You get a
ScanState which is similar to state from the formatting example, and the verb used
as a rune. ScanState has the Token method, which is probably the most immediately
useful method, except for the fact that that ScanState is an io.Reader. This means we
can use other fmt functions like fmt.Fscanf to scan out a few things given a more
specific format. This is how I’'ve done things in the example.

fmt/scanner.go

package main

import (
n fmt n

type Tuple struct {
Left, Right int

func (t Tuple) Format(f fmt.State, ¢ rune) {
switch ¢ {
case 'P':
fmt.Fprintf(f, "(%#v, %#v)", t.Left, t.Right)

func (t *Tuple) Scan(state fmt.ScanState, verb rune) error {

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

fmt

swit
case

}

retu

func main()
var
var

var

fmt
fmt.
fmt.

ch verb {
'P':
n, err := fmt.Fscanf(state, "(%d, %d)", &t.Left, &t.Right)
if err != nil {
return err
}
ifn =2 {
return fmt.Errorf("scanned %d things, expected 2", n)
}
rn nil
{
i int
f float32
t Tuple

Printf("%d %P %f\n", i, t, f)

Sscanf("5 (1, 2) 2.5", "%d %P %f", &i, &t, &f)
Printf("%d %P %f\n", i, t, f)

© 00 N O U b W N =

=Y
N O O b W N~ O

g0

The go package, while not containing code itself and only other packages, is the place
for all the code related to, well, the Go language itself.

There are packages to deal with lexing and parsing Go code into an AST®%, a package
to deal with that AST, and a package to print the code from an AST.

There is also a package to look at Go documentation, which the godoc binary uses
extensively.

The final package is the bui1d package, which you probably don’t have a use for
normally, but the go tool builds your code given a few rules in the package.

Cross Platform Go Code

The go/build package is pretty simple, and most of it comes into play when you’re
trying to control what builds in what environment. Let’s look at a simple example
from the Go source code.

go/path_unix.go

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// +build darwin freebsd linux netbsd openbsd

package os

const (

'/" // OS-specific path separator

1

PathSeparator

PathListSeparator 2" // 0S-specific path list separator

// IsPathSeparator returns true if c¢ is a directory separator character.
func IsPathSeparator(c uint8) bool ({
return PathSeparator ==

56http://en.wikipedial.org/wiki/Abstract_syntax_tree

http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree

©O© 00 = O U b W N =

SR s s s
O O b WN -~

go 183

go/path_windows.go

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package os

const (

PathSeparator "\\' // OS-specific path separator

1 1

PathListSeparator = '; // O0S-specific path list separator

// IsPathSeparator returns true if c¢ is a directory separator character.
func IsPathSeparator(c uint8) bool

// NOTE: Windows accept / as path separator.

return ¢ == "\\' || ¢ = '/"

Each of these files provides the PathSeparator and PathListSeparator constants, as well
as the 1sPathseparator function in the os package. The key is in the naming.

Once is named path_unix.go and one is named path_windows .go. The former gets built
when you’re compiling for Linux, and the latter when compiling for Windows.

OS Specific

When specifying an operating system for the build package, it has to match some-
thing that runtime.G00s likes. darwin, freebsd, netbsd, bsd, plan9, windows, linux, and unix
are all valid values. There are others, but you might have to dig a little or run
a simple printin(runtime.G00S) to see what the value should be for your specific
situation.

Some, like bsd, mean that the file would get compiled on FreeBSD and

NetBSD. If you specified freebsd, it would naturally only get compiled on
FreeBSD.

Architecture Specific

You can also specify a CPU architecture: 386, and64, and arm are the possible values.
Your files would look like myfile_386.go Or assembly_amd64.s.

go 184

All Together

You can even combine the two, listing the OS first and architecture second: myfile_-
linux_amd64.go. These conventions give you seriously easy ways to have all your code
in one place and yet remain specific to different situations.

Build Constraints in Comments

If the file naming scheme doesn’t feel right to you, or you need even more control,
you can always use a comment. If you add a // +build comment at the top of your
file (preceded by only blank lines or other line comments), you can put constraints
in there. Simply specify all your conditions with spaces for anp and commas for or.
You can negate things with !, and you can also control whether something is built
when cgo is used (or not) by using the cgo constraint.

Using the example from the documentation, // +build linux,386 darwin,!cgo would
build Linux 386 or OSX without CGO. It would not get included on Windows,
anything BSD, or Linux amd64.

Cool beans right? Check this out...

Custom Build Constraints

You can also use custom tags in your comments to control your build. If you pas
-tags foo t0 go build, go install, or any other command that accepts go build flags,
the foo build constraint is considered to be met. This means you can have // +build
foo in your file and it will be built. If you have // +build ! foo it will only be built if
you don’t specify the foo flag.

You could model --with-feature flags in your build this way. Say you have 4 files:
png.go, jpg.go,gif.go, and tiff.go. Each file has// +build <ext> at the top, where <ext>
is the file extension you’re dealing with. Building with -tags png, jpg, gif would build
with PNG, JPG, and GIF support, but skip TIFF.

Introspecting Packages

You can also use the bui1d package to introspect things in your Go environment. The
Import function gives you back a build.Package, Which has a lot of information about
said package, including the files that make it up, what imports it uses, and other fun
things. Check out the full type description®’ for all the good things.

Here’s some code to dump the imports and go files a given package uses.

57http: //golang.org/pkg/go/build/#Package

http://golang.org/pkg/go/build/#Package
http://golang.org/pkg/go/build/#Package

0 N O O B~ W N -

N RN NN NN NN & B 1 | 1 s sy
N O O » WO NP O © 003 O O b WO N~ O ©

go 185

go/package_info.go

package main

import (
"flag"
"go/build"
"log"

)

var importPath = flag.String("path", "net", "The import path")

func main() {
flag.Parse()

pkg, err := build.Import(*importPath, "", @)
if err != nil {
log.Fatalf("failed getting package: %s", err)
}
fmt := "package %s imports %d packages, has %d go files in %s"

log.Printf(fmt, pkg.Name, len(pkg.Imports), len(pkg.GoFiles), pkg.Dir)
log.PrintIn("imports")

for _, imp := range pkg.Imports {
log.Printf("\t%s", imp)

}

log.Printin("go files")

for _, file := range pkg.GoFiles {
log.Printf("\t%s", file)

}

Lexing Go Code

Lexing, or lexical analysis, is the process of turn a big blob of bytes (the file) into
tokens which can be used by something else (usually the parser). The tokens are
things like identifier, string, left curly brace, etc.

It’s pretty straight forward to deal do this, so let’s get right to it.

0 I O O b W N =

N NN DNDDNDNDDNDDNDDNDDNRS -~ B B)y
© 00 9 O O & W DN~~~ O 03O0 G bk NN~ O

go 186

go/lexing.go

package main

import (
"go/scanner"
"go/token"
"io/ioutil"
"log"

)

func main() {
src, err := ioutil.ReadFile("lexing.go") // This file!
if err != nil {

log.Fatalf("failed reading source file: %s", err)

fset := token.NewFileSet()
file := fset.AddFile("lexing.go", fset.Base(), len(src))

var s scanner.Scanner

format := "found a %s as %*v on line %d at column %d"
s.Init(file, src, nil, 0)

for {

pos, tok, lit := s.Scan()

if tok == token.EOF {

break

}

position := fset.Position(pos)

log.Printf(format, tok, lit, position.Line, position.Column)
}

There’s nothing too exciting going on, it’s fairly standard code for setting something
up and then grabbing piece after piece until it’s done. You can see in some cases 1it
is an empty string because it wouldn’t hold anything relevant anyway. If the Token
is already identified as being }, we don’t need 1it to be the string "}" as well.

It does let you see nice and clearly how semicolons work in Go. Not once in the file
did I use a semicolon, but they are coming out of the lexer. Give the section in the

O© 00 9 O O P W N =

N B 1 |l sl s
S ©W 0 J O O b W N~ O

go 187

spec on semicolons? a read again to understand the specific rules behind this.

%http://golang.org/ref/spec#Semicolons

Parsing Go Code

Parsing is what happens after lexing. Parsing takes the tokens generated by the
lexer and builds an Abstract Syntax Tree.>®

The go/parser package part of the picture, since it gives you things from the go/ast
package. You start with the parser package, but yow’ll probably spend most of your
time dealing with things from the ast package.

You can parse a file, a directory of files, and even a simple expression. Once you
have an AST you can print it to see what it’s all about, or do other fun things, which
we’ll see later. Printing the tree is a good start, as it gives you a much better idea of
how Go is representing itself.

go/parsing.go

package main

import (
"go/ast"
"go/parser"
"go/token"
"log"

)

func main() {
fset := token.NewFileSet()

f, err := parser.ParseFile(fset, "parsing.go", nil, 0)
if err != nil {
log.Fatalf("failed parsing file: %s", err)
}
ast.Print(fset, f)
expr, err := parser.ParseExpr(foo.Bar(1, "argument", something())")
if err != nil {

log.Fatal("failed parsing expression: %s", err)

58ht'[p://en.wikipedial.org/wiki/Abstralct_syntax_tree

http://golang.org/ref/spec#Semicolons
http://golang.org/ref/spec#Semicolons
http://en.wikipedia.org/wiki/Abstract_syntax_tree

21
22
23

© 00 N O U b W N =

SR R s s s
O O b WN =~

go 188

}

ast.Print(nil, expr)

Analyzing Go Code: Cyclomatic Complexity

Once you’ve parsed your code and get bored just printing things, you need to get to
some analyzing. We’re going to calculate the cyclomatic complexity of the functions
and methods defined in a file.

Cyclomatic complexity is basically the number of decisions plus one. A decision is
an if statement, a case in a switch, a condition in a loop (infinite loops don’t count),
and the binary && and || ops. We’ll want to walk down the AST for each function
and method, and sum the number of these things we see.

Since you have a tree, there are many algorithms to walk down a tree and visit all
the nodes. Looking at the ast.File type you get back from the parser package, there
doesn’t seem to be any easily useable structure on it to walk down. Oh wait, there’s
awalk function in the ast package! Let’s use that, to walk the tree and do something
useful.

In our example, we use two different visitor implementations. The first walks over
the top level of a file, and finds all the function and method declarations. When it
finds one, it walks the node with another visitor to do the actual calculation. It’s not
terribly long, so give it a good read.

go/analyzing.go

package main

import (
"bytes"
"flag"
"go/ast"
"go/parser"
"go/printer"
"go/token"
"log"

)

var path = flag.String("path", "analyzing.go", "The path to the file to parse an\

d examine")

func funcDeclToString(decl *ast.FuncDecl) string {

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
o5
56
o7
o8

go
var buffer bytes.Buffer
var body *ast.BlockStmt
body, decl.Body = decl.Body, nil
printer.Fprint(&buffer, token.NewFileSet(), decl)
decl.Body = body
return buffer.String()
}
type ComplexityCalculator struct {
Name string
Complexity int
}
func (cc *ComplexityCalculator) Visit(node ast.Node) ast.Visitor {

switch exp := node.(type) {
case *ast.IfStmt, *ast.CaseClause:
cc.Complexity++
case *ast.BinaryExpr:
switch exp.Op {
case token.LAND, token.LOR:
cc.Complexity++
}
case *ast.ForStmt:
if exp.Cond !'= nil {
cc.Complexity++

}

return cc

type FuncVisitor struct {
FuncComplexities []*ComplexityCalculator

func (mv *FuncVisitor) Visit(node ast.Node) ast.Visitor {
switch exp := node.(type) {
case *ast.FuncDecl:
cc := & ComplexityCalculator{

Name : funcDeclToString(exp),

Complexity: 1,
}

mv.FuncComplexities = append(mv.FuncComplexities, cc)

189

59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T

go 190

ast.Walk(cc, node)
return nil // Return nil to stop this walk.

}

return mv

func main() {
flag.Parse()
fset := token.NewFileSet()
f, err := parser.ParseFile(fset, *path, nil, 0)
if err != nil {
log.Fatalf("failed parsing file: %s", err)

}
var mv FuncVisitor
ast.Walk(&mv, f)
for _, mc := range mv.FuncComplexities {

log.Printf("%s has complexity %d", mc.Name, mc.Complexity)

Altering Go Code: Mutation Testing

As you walk down a tree, there is nothing stopping you from changing the nodes as
you go, pun intended. This is exactly what go fix does.

We’re going to look at using this to do mutation testing. Mutation testing is really
testing your tests. You go through your source code, and alter things. Things like
changing == to !=. You then run your tests, and something should fail. If nothing
fails, you’re missing some coverage with your tests.

When I set out to write this chapter, I had this use case in mind. A quick Google lead
me to Kamil Kisiel’s mutatator? library he hacked up in response to a discussion
on the golang-nuts mailing list?. While I’'m not using all of his code directly, I am
using it as a base for my example. I really like his use of an immediately executing
function in the meat of the program to change the token in the AST but also ensure
it gets set back. He gave me the go ahead to use his code as my inspiration, so thanks
to Kamil.

%https://github.com/kisielk/mutator
b https://groups.google.com/forum/?fromgroups#!forum/golang-nuts

https://github.com/kisielk/mutator
https://groups.google.com/forum/?fromgroups#!forum/golang-nuts
https://github.com/kisielk/mutator
https://groups.google.com/forum/?fromgroups#!forum/golang-nuts

0 N O O & W N =

W W W W W WNDNDNDNDNDNDNNDMNDNDDNDDNDDNDAES =P,
O & O N 0 © 00 O Ok N~ © 0 N0 Ol d N~ OO ©

g0 191

So we’re going to build a mutation testing executable. You give it a package and an
operation to switch, it copies everything to a temporary directory, and runs through
all the possible mutations, running tests for each, to see if the tests fail. All it has to do
to mutate is change the op field of the ast.Binaryexpr and write out the AST using the
go/printer package. The defer inside the RunMutation function ensures the mutation
gets reversed so as to not taint the run for subsequent mutations.

go/altering.go

package main

import (
"bytes"
"flag"
"fmt"
"go/ast"
"go/build"
"go/parser”
"go/printer"
"go/token"
"io"
"io/ioutil"
"log"
P
"os/exec"
"path/filepath"

var (

9]
flag.String("pkg", "crypto/sha256", "The package to mutate")

code

name

mutation
list

flag.String("mutation", "==", "The mutation")

flag.Bool("list", false, "Print available things to mutate")

var operators = map[string]token.Token{
"==": token.EQL,
"1=": token.NEQ,
">": token.GTR,
"¢": token.LSS,
">=": token.GEQ,
"<=": token.LEQ,
"&&": token.LAND,
"||": token.LOR,

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
o4
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
)
76
T

go

"&": token.AND,
"]": token.OR,

var mutations = map[token.Token][]token.Token{

token.EQL: {token.NEQ},
token.NEQ: {token.EQL},
token.GTR: {token.LSS, token.GEQ, token.LEQ},
token.LSS: {token.GTR, token.LEQ, token.GEQ},
token.GEQ: {token.GTR, token.LEQ, token.LSS},
token.LEQ: {token.LSS, token.GEQ, token.GTR},
token.LOR: {token.LAND},
token.LAND: {token.LOR},
token.OR: {token.AND},
token.AND: {token.OR},

}

type ExpressionFinder struct {

Token token.Token
Exps []*ast.BinaryExpr
}
func (v *ExpressionFinder) Visit(node ast.Node) ast.Visitor {

if exp, ok := node.(*ast.BinaryExpr); ok {
if exp.Op == v.Token {
v.Exps = append(v.Exps, exp)
}
}
return v
}
func (v ExpressionFinder) Len() int {

return len(v.Exps)

}

func copyFile(src, dir string) error
name := filepath.Base(src)
srcFile, err := os.Open(src)
if err != nil {

return err

}

defer srcFile.Close()

192

go 193

78

79 dstFile, err := os.Create(filepath.Join(dir, name))
80 if err != nil {

81 return err

82 }

83 defer dstFile.Close()

84
85
86 return err

87 }

88

89 func copyFiles(src, dst string) {

_, err = io.Copy(dstFile, srcFile)

90 contents, err := ioutil.ReadDir(src)

91 if err != nil {

92 log.Fatalf("failed reading directory: %s", err)

03 }

94 for _, f := range contents {

95 if f.Mode()&os.ModeType == 0 {

96 err := copyFile(filepath.Join(src, f.Name()), dst)

97 if err != nil {

o8 log.Fatalf("failed copying %s: %s", f.Name(), err)
99 }

100 }

101 }

102 '}

103

104 func RunMutation(index int, exp *ast.BinaryExpr, f, t token.Token, src string, f\
105 set *token.FileSet, file *ast.File) error {

106 exp.Op = t

107 defer func() {

108 exp.0Op = f

109 1O

110

111 err := printFile(src, fset, file)
112 if err !'= nil {

113 return err

114 }

115

116 cmd = exec.Command("go", "test")
117 cmd.Dir = filepath.Dir(src)

118 output, err := cmd.CombinedOutput()

119 if err == nil {

g0 194

120 code =1

121 log.Printf("mutation %d failed to break any tests", index)
122 } else if _, ok := err.(*exec.ExitError); ok {

123 lines := bytes.Split(output, []byte("\n"))

124 lastlLine := lines[len(lines)-2]

125 if bytes.HasPrefix(lastlLine, []byte("FAIL")) {

126 log.Printf("mutation %d failed the tests properly", index)
127 } else {

128 log.Printf("mutation %d created an error: %s", index, lastLine)
129 }

130 } else {

131 return fmt.Errorf("mutation %d failed to run: %s", index, err)
132 }

133 return nil

134)

135

136 func MutateFile(src string, f, t token.Token) error {

137 fset := token.NewFileSet()

138

139 file, err := parser.ParseFile(fset, src, nil, 0)

140 if err != nil {

141 return fmt.Errorf("failed to parse %s: %s", src, err)

142 }

143

144 ef := ExpressionFinder{Token: f}

145 ast.Walk(&ef, file)

146

147 filename := filepath.Base(src)

148 log.Printf("found %d occurrences of %s in %s", ef.Len(), f, filename)
149 for index, exp := range ef.Exps {

150 err := RunMutation(index, exp, f, t, src, fset, file)

151 if err != nil {

152 return err

153 }

154 }

155

156 // Restore the original file

157 err = printFile(src, fset, file)

158 if err != nil {

159 return err

160 }

161 return nil

162
163
164
165
166
167
168
169
170
17
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

195

func printFile(path string, fset *token.FileSet, node interface{}) error {

file, err := os.OpenFile(path, os.0_WRONLY|os.O_TRUNC, 0)
if err != nil {

return fmt.Errorf("failed to open output file: %s", err)

}
defer file.Close()

err = printer.Fprint(file, fset, node)
if err != nil {
return fmt.Errorf("failed to write AST to file: %s", err)

}

return nil

func main() {

flag.Parse()

if *list {
for thing, _ := range operators {
fmt.Printf("%s\n", thing)

}
os.Exit(0)

from, ok := operators[*mutation]
if lok {
log.Fatalf("%#v is not a valid mutation", *mutation)

pkg, err := build.Import(*name, "", @)
if err != nil {
log.Fatalf("failed to import package: %s", err)

tmp, err := ioutil.TempDir("", "mutation")
if err != nil {

log.Fatalf("failed to create tmp directory: ¥%s", err)

log.Printf("mutating in %s", tmp)

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

o < O O P W N =

S
O© 00 3 O O b W N -~ O O

go 196

copyFiles(pkg.Dir, tmp)

for _, f := range pkg.GoFiles {
src := filepath.Join(tmp, f)
for _, to := range mutations[from] {
log.Printf("mutating %s to %s in %s", from, to, f)
err := MutateFile(src, from, to)
if err != nil {
log.Fatalf("failed mutating file: %s", err)
}
}
}

os.Exit(code)

If we run this asgo run altering.go -pkg "crypto/sha256" we see that it mutates the ==
operator to !=, and the tests break as they should. If we run it as go run altering.go
-pkg "crypto/sha256" -mutation "<" there is a mutation that doesn’t fail the tests.
Specifically, it’s the mutation of < to <= on line 147 of sha256.go: for i := uint(Q);
i < 8; i++ {.Looking at the code, we can see it’s not a problem.

go/failed_mutation.txt

2013/03/09 22:28:23 mutating in /var/folders/t2/k4yQ@7r396d5006 j7y9w9z1dc@@0dgn/T\
/mutation867582255

2013/03/09 22:28:23 mutating < to > in sha256.go

2013/03/09 22:28:23 found 3 occurrences of < in sha256.go
2013/03/09 22:28:23 mutation @ failed the tests, as it should
2013/03/09 22:28:24 mutation 1 failed the tests, as it should
2013/03/09 22:28:24 mutation 2 failed the tests, as it should
2013/03/09 22:28:24 mutating < to <= in sha256.go

2013/03/09 22:28:24 found 3 occurrences of < in sha256.go
2013/03/09 22:28:24 mutation @ failed the tests, as it should
2013/03/09 22:28:24 mutation 1 failed the tests, as it should
2013/03/09 22:28:25 mutation 2 failed to break any tests
2013/03/09 22:28:25 mutating < to >= in sha256.go

2013/03/09 22:28:25 found 3 occurrences of < in sha256.go
2013/03/09 22:28:25 mutation @ failed the tests, as it should
2013/03/09 22:28:25 mutation 1 failed the tests, as it should
2013/03/09 22:28:25 mutation 2 failed the tests, as it should
2013/03/09 22:28:25 mutating < to > in sha256block.go
2013/03/09 22:28:25 found 3 occurrences of < in sha256block.go

20
21
22
23
24
25
26
27
28
29
30
31
32
33

go 197

2013/03/09 22:28:26 mutation @ failed the tests, as it should
2013/03/09 22:28:26 mutation 1 failed the tests, as it should
2013/03/09 22:28:26 mutation 2 failed the tests, as it should
2013/03/09 22:28:26 mutating < to <= in sha256block.go
2013/03/09 22:28:26 found 3 occurrences of < in sha256block.go
2013/03/09 22:28:27 mutation @ failed the tests, as it should
2013/03/09 22:28:27 mutation 1 failed the tests, as it should
2013/03/09 22:28:2T7 mutation 2 failed the tests, as it should
2013/03/09 22:28:27 mutating < to >= in sha256block.go
2013/03/09 22:28:27 found 3 occurrences of < in sha256block.go
2013/03/09 22:28:27 mutation @ failed the tests, as it should
2013/03/09 22:28:28 mutation 1 failed the tests, as it should
2013/03/09 22:28:28 mutation 2 failed the tests, as it should
exit status 1

This example has a small subset of the possible mutations you can do. The simple
ones listed in the example include just change a basic binary operator. More
advanced ones include changing constants in the code: 0 to a 1, changing strings
to be nonsense, or just cut them in half. 'm sure your imagination can figure out a
few more diabolical mutations.

© 00 9 O U b W N =

N G
D W N~

hash

The hash package contains the interface for all things hash related. The main
package provides the interface, including separate interfaces for 32 and 64-bit. The
4 sub-packages provide implementations for 3 different checksums (adier 32-bit and
crc in both 32 and 64-bit), and the fnv non-cryptographic hash.

We’ve already seen the cryptographic hashes and other things implementing the
hash interface in the crypto package: shat, sha256, sha512, md5, and hmac. These operate
the same way as the things in the nash package, because they follow the same
interface.

While the algorithms in the nash package all follow the hash.Hash interface, they
sometimes have different ways of building that interface, so we’ll look at them
separately.

adler32

The adier32 package implements the Adler-32 checksum as defined in RFC-1950>.
It provides the New() function to build a hash.Hash, and also a convenience Check-
sum([]byte]) function if all you have is a simple byte slice.

hash/adler32.go

package main

import (
"flag"
"hash/adler32"
"io"
"io/ioutil"
"log"
P
)
var (
filename = flag.String("filename", "adler32.go", "The file to checksum")

streaming = flag.Bool("streaming", false, "Whether to stream the file instead o\

59http://www.ietf.org/rfc/rfc1950.txt

http://www.ietf.org/rfc/rfc1950.txt
http://www.ietf.org/rfc/rfc1950.txt

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

hash 199

f reading it all into memory")

)

func stream(name string) uint32 {
h := adler32.New()
file, err := os.Open(name)
if err != nil {
log.Fatalf("failed opening %s: %s", name, err)
1
defer file.Close()
io.Copy(h, file)
return h.Sum32()

}

func simple(name string) uint32 {
data, err := ioutil.ReadFile(name)
if err != nil {

log.Fatalf("failed reading %s: %s", name, err)

}
return adler32.Checksum(data)

func main() {
flag.Parse()
var checksum uint32

if *streaming {
checksum = stream(*filename)

} else {
checksum = simple(*filename)
}
log.Printf("the file %s has checksum %#x", *filename, checksum)
}
crc32

The crc32 package implements 32-bit CRC. It supplies 3 different polynomials®® for
common use cases: the IEEE polynomial (most common) which is used in ethernet,

60http://en.wikipedia.org/wiki/Cyclic_redundamc:y_check#Designimg_CRC_polynomials

http://en.wikipedia.org/wiki/Cyclic_redundancy_check#Designing_CRC_polynomials
http://en.wikipedia.org/wiki/Cyclic_redundancy_check#Designing_CRC_polynomials

0 N O O & W N =~

W W W W W W WwWwoWwWwWNDNDNDNDNDNDDNDNDNDDNDNDNDNDNNAESEAEPRrEPASEPS,EPS, S
© 00 9 O Ol b WO N~ O © 00 3O O b WONHPHO O W NO O b OWN -~ O O

hash 200

gzip, etc, Castagnoli’s which is used in iSCSI, and Koopman’s polynomial. Being so
common, there are convenience helpers for IEEE checksums.

hash/crc32.go

package main

import (
"flag"
"fmt"
"hash/crc32"
"io"
"io/ioutil"
"log"

" "

os
"strings"

type Polynomial struct {
U uint32

var polynomials = map[stringluint32{
"ieee": crc32. IEEE,
"castagnoli": crc32.Castagnoli,
"koopman" : crc32.Koopman,

func (p *Polynomial) Set(s string) error {
switch s {
case "ieee", "castagnoli", "koopman":
p.U = polynomials[s]

default:
var values []string
for name, _ := range polynomials ({
values = append(values, name)
}
return fmt.Errorf("valid values are %s", strings.Join(values, ", "))
}

return nil

func (p *Polynomial) String() string {
for name, value := range polynomials {

40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o
58
959
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
5
76
T
78
79
80
81

hash 201

if value == p.U {
return fmt.Sprintf("%s", name)
}
}
panic("not reached")
}
func (p *Polynomial) Table() *crc32.Table {

return crc32.MakeTable(p.U)
}
var (
filename = flag.String("filename", "crc32.go", "The file to checksum")
streaming = flag.Bool("streaming", false, "Whether to stream the file instead \
of reading it all into memory")

polynomial = &Polynomial{crc32.IEEE}

)

func init() {
flag.Var(polynomial, "polynomial", "The polynomial to use")
flag.Parse()

}

func stream(name string) uint32 {

h := crc32.New(polynomial.Table())
file, err := os.Open(name)
if err != nil {
log.Fatalf("failed opening %s: %s", name, err)
}
defer file.Close()
io.Copy(h, file)
return h.Sum32()

}

func simple(name string) uint32 {
data, err := ioutil.ReadFile(name)
if err != nil {

log.Fatalf("failed reading %s: %s", name, err)

}
return crc32.Checksum(data, polynomial.Table())

82
83
84
85
86
87
88
89
90
91
92

O© 00 9 O U b W N =

[S G N
O O b WD~

hash 202

func main() {
var checksum uint32

if *streaming {

checksum = stream(*filename)
} else {

checksum = simple(*filename)

log.Printf("the file %s has checksum %#x", *filename, checksum)

crc64d

As the named suggests, crce4 implements the 64-bit CRC. Like crc32 it provides
some predefined polynomials, but neither of the two provided are exciting enough
to warrant convenience helper functions. You have to build and use your own
crc64.Table as I did in the previous example using the polynomial constants pro-
vided (or your own value if you know what you’re doing). Luckily there’s a function
to make the table from a given polynomial.

The example is identical to the crc32 example, except for the polynomial map, and
uint32 becomes uint64.

hash/crc64.go

package main

import (
"flag"
"fmt"
"hash/crc64"

n "

io
"io/ioutil"
"log"

os

"strings"

type Polynomial struct {
U uint64

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
o5
56
o7
o8

hash 203

var polynomials = map[string]uint64{

"iso": crc64.I1S0,
"ecma": crc64.ECMA,
}
func (p *Polynomial) Set(s string) error {

switch s {
case "iso", "ecma":
p.U = polynomials[s]
default:
var values []string
for name, _ := range polynomials ({
values = append(values, name)
}
return fmt.Errorf("valid values are %s", strings.Join(values, ", "))
}
return nil
}
func (p *Polynomial) String() string {
for name, value := range polynomials {
if value == p.U {
return fmt.Sprintf("%s", name)
}
}
panic("not reached")
}
func (p *Polynomial) Table() *crc64.Table {

return crc64.MakeTable(p.U)
}
var (
filename = flag.String("filename", "crc64.go", "The file to checksum")
streaming = flag.Bool("streaming", false, "Whether to stream the file instead \
of reading it all into memory")

polynomial = &Polynomial{crc64.1S0}

func init() {
flag.Var(polynomial, "polynomial", "The polynomial to use")

59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91

hash

204

flag.Parse()

func stream(name string) uint64 {

h := crc64.New(polynomial.Table())
file, err := os.Open(name)
if err != nil {
log.Fatalf("failed opening %s: %s", name, err)
}
defer file.Close()
io.Copy(h, file)
return h.Sum64()

func simple(name string) uint64 {

data, err := ioutil.ReadFile(name)
if err != nil {
log.Fatalf("failed reading %s: %s", name, err)

}
return crc64.Checksum(data, polynomial.Table())

func main() {

var checksum uint64

if *streaming {

checksum = stream(*filename)
} else {

checksum = simple(*filename)

log.Printf("the file %s has checksum %#x", *filename, checksum)

fnv

The tnv package implements the fnv hash®! and has no special convenience helper
functions. It simply provides a 32-bit and 64-bit hash.Hash implementation. This is a
hash algorithm as opposed to a checksum, so the checksum([]byte) helpers functions
we saw before don’t make sense anyway.

61 http://isthe.com/chongo/tech/comp/fnv/

http://isthe.com/chongo/tech/comp/fnv/
http://isthe.com/chongo/tech/comp/fnv/

0 N O O B~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

hash

hash/fnv.go

205

package main

import (

var (

"flag"
"hash/fnv"
"io"

"log"

n "

os

filename = flag.String("filename", "fnv.go", "The file to checksum")

_64bit

flag.Bool("64", false, "Use the 64-bit interface")

func runHash(name string, w io.Writer) ({

file, err := os.Open(name)
if err != nil {
log.Fatalf("failed opening %s: %s", name, err)
}
defer file.Close()
io.Copy(w, file)

func hash64(name string) uint64 {

h := fnv.New64()
runHash(name, h)
return h.Sum64()

func hash32(name string) uint32 {

h := fnv.New32()
runHash(name, h)
return h.Sum32()

func main() {

flag.Parse()
if *_64bit {
h := hash64(*filename)
log.Printf("the file %s has hash %#x", *filename, h)

42
43
44
45
46

hash

} else {

h := hash32(*filename)
log.Printf("the file %s has hash %#x", *filename, h)

206

0 N O O & W N =~

html

The ntm1 package on its own isn’t all that exciting. Two functions! Woohoo! Well,
they might not be exciting, but they are useful.

The real meat of the htm1 package is the ntmi/template package inside it. While that
package itself is really just an extension of the text/template package, it does some
fancy things to make your life easier, and keep your app safer, when rendering
HTML templates.

We’ll start off with a single example of the EscapeString and UnescapeString functions
from the base nhtm1 package, but we’ll spend most of our time building templates.

Escape Artist

The two escaping functions are very easy to use, and very self explanatory.

EscapeString takes a string and escapes it for use in HTML. It only deals with 5
characters though: angle brackets, quotes (single and double), and the ampersand.
Really, these characters are the ones that will cause the most havoc.

UnescapeString takes an escaped string and reverses the process. It does a bit more
though. It can handle HTML entities, like converting á to 4. For this reason, the
official package documentation provides the following caveat:

UnescapeString(EscapeString(s)) == s always holds, but the converse isn’t al-
ways true.

Let’s see some code.

html/escaping.go

package main

import (
"html"
"“log"
)

func init() {

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

html
log.SetFlags(Q)
log.SetPrefix("")
}
func main() {
raw := []string{
"hello",
"<i>hello</i>",
"alert('hello');",
"foo & bar",
“"how are you?" he asked.,
}
log.PrintIn("html.EscapeString")
for _, s := range raw {
log.Printf("\t%s -> %s", s, html.EscapeString(s))
}
log.PrintIn("html.UnescapeString(html.EscapeString)")
for _, s := range raw {
flipped := html.UnescapeString(html.EscapeString(s))
log.Printf("\t%s -> %s", s, flipped)
}
escaped := []string({
"&H#H225;",
"» ",
"· ",
"&1t;i>hello</i> ",
}
log.PrintIn("html.UnescapeString")
for _, s := range escaped {
log.Printf("\t%s -> %s", s, html.UnescapeString(s))
}

208

©O© 00 < O U b W N =

Y
SO0 0N WD RO

html 209

Output:

html.EscapeString

hello -> hello

<i>hello</i> -> <i>hello</i>

alert('hello'); -> alert('hello');

foo & bar -> foo & bar

"how are you?" he asked. -> "how are you?&*%#34; he asked.
html.UnescapeString(html.EscapeString)

hello -> hello

<i>hello</i> -> <i>hello</i>

alert('hello'); -»> alert('hello');

foo & bar -> foo & bar

"how are you?" he asked. -> "how are you?" he asked.
html .UnescapeString

á -> &
» -> »
· ->

&1t;i>hello</i> -> <i>hello</i>

Templating

When you first look at the package documentation for the nhtml/template package,
you might think, “cool story bro, but how do I actually use this?”

I know I did initially, but I just didn’t read hard enough.

Since the html/template package uses the same idea as the text/template package, you
should go read the documentation for that package to get an idea of the basic usage.
The ntmi/template docs include things specific to it, like how things are escaped,
extra/special functions or helpers, and stuff like that.

Naturally, in our examples, we’ll only look at things specific to the nhtml/template
package, and leave the basics for the text/template chapter.

Code time!

0 N O O B~ W N -

W W W W W WNDNDDNDNDNDDNNDMNDNDNDNDNDNDDNDAES AP 2 2 s
O & O NP OO0 O 00 N O Ok WONAPA,OO © 0 N0 O d N~ OO ©

html

html/templating.go

package main

import (
T "html/

os

const (
template
<head>
<link href="
sheet" type="tex
</head>
<body>
{{.Script}}
{{.Safe}}
</body>
</html>

~

)

func main() {
context

H

t =T.M
t.Execut

template”

= “<html>

http://fonts.googleapis.com/css?family={{.FontName}}" rel="style\

t/css">

;= struct {
FontName string
Script
Safe

string
T.HTML

"Pathway Gothic One",
"<scriptralert('i haz ur cookies');</script>",
T.HTML("<script>console.log('generated by application')</script>"),

ust(T.New("thestdlib").Parse(template))
e(os.Stdout, context)

©O© 00 < O U b W N =

[N
(]

html 211

Output:

<html>
<head>
<link href="http://fonts.googleapis.com/css?family=Pathway%20Gothic%200ne" r\
el="stylesheet" type="text/css">
</head>
<body>
<script>alert(&*#39;i haz ur cookies');&1t;/script>
<script>console.log('generated by application')</script>
</body>
</html>

There are a few important parts in this example. First is how I use the FontName
attribute as a query value in a link tag. The html/template package knows the context,
and properly escapes the string in a way suitable for the context. A more complete
list of how things are escaped in various context is given in the package docs®? so I
won’t repeat them here. The point is, the package is pretty smart about how things
should be escaped, and they are escaped by default.

If you don’t want things escaped, we can use the template.HTML type (which really
just points at string). If you use something of this type in the appropriate context,
it won’t be escaped. There are similar types for JavaScript and CSS (template.Js and
templates.css) and HTML attributes (template.HTMLAttr).

We can see the difference between using a regular string to put a JavaScript tag to
the page vs using the template.HTML type. The former gets escaped, while the latter
goes in untouched.

That’s all there is to this templating system. It works just like text/template (Which
we’ll see more completely later), but does some smart escaping.

If you’re generating HTML, you should be using this package.

62 http://golang.org/pkg/html/template/

http://golang.org/pkg/html/template/
http://golang.org/pkg/html/template/

O© 00 9 O O b W N =~

KN
(]

image

The image package, as you might expect, deals with 2-D images. It can handle
decoding gif, and can both encode and decode jpg and png images.

It also include a basic color library, as well as a library for compositing images.
No more installing PIL for you!

Typically, yow’ll work with the image package to decode an image, and use the
image . Image interface. To enforce this, the only useful functions from the image/jpg
and image/png packages are the ones to encode an image . Image.

You’ll also work with the color.Color interface when dealing with pixels in the
image, using the At(x, y int) color.Color method.

Converting images formats

Ensuring all your images are in a certain format might be something you want to
do, so let’s try that first.

It’s pretty easy. Decode the image, then encode the image. Boom, done!

Since the image/gi f package doesn’t have an encode function, we just need to import
with an underscore it to register the decoder. The image/ jpeg and image/png packages
can both encode, so we import them normally.

image/convert.go

package main

import (
"flag"
"image"
_ "image/gif"
"image/ jpeg"
"image/png"
"ig"

"log"

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52

image
n OS n

)

var (
jpgout = flag.String("jpg", "", "output to a jpg")
pngout = flag.String("png", "", "output to a png")
in = flag.String("in", "", "input file")

)

type encf func(io.Writer, image.Image) error

func encode(encoder encf, img image.Image, filename string) {

file, err := os.OpenFile(filename, os.0_WRONLY|os.O_CREATE, 0644)
if err != nil {
log.Printf("failed opening %s: %s", filename, err)
return
}
defer file.Close()
err = encoder(file, img)
if err != nil {
log.Printf("failed encoding to %s: %s", filename, err)
}
}

func jpegEncode(w io.Writer, m image.Image) error {

return jpeg.Encode(w, m, &jpeg.Options{Quality: 80})
}
func decode(filename string) image.Image {
file, err := os.Open(filename)
if err != nil {
log.Fatalf("failed opening file: %s", err)
}
defer file.Close()
img, _, err := image.Decode(file)
if err != nil {
log.Fatalf("failed decoding image: %s", err)
}
return img
}

213

53
54
95
56
o7
o8
59
60
61
62
63
64
65

0 N O O & W N =

RN
N »~ O ©

13
14
15
16
17
18
19

image 214

func main() {
flag.Parse()

img := decode(*in)
if *pngout != "" {

encode(png.Encode, img, *pngout)

if *jpgout 1= "" {
encode(jpegEncode, img, *jpgout)

Resizing

Resizing images and making thumbnails is a pretty common task too, so let’s try
that. ’'ve used the simplest algorithm, nearest neighbour. You can replace the
part commented as // The important stuff with some other algorithm, like bilinear
interpolation.

image/resize.go

package main

import (
"flag"
"image"
"image/ jpeg"
"image/png"
"io"
"log"

" "

os

var (

nwn

jpgout = flag.String("jpg", "output to a jpg")

pngout = flag.String("png",

nwn

, "output to a png")

nn

flag.String("in", "input file")

in

size flag.Int("size", 0, "the new max dimension")

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
o4
55
56
o7
58
59
60
61

image 215

type encf func(io.Writer, image.Image) error

func encode(encoder encf, img image.Image, filename string) {

file, err := os.OpenFile(filename, os.0O_WRONLY|os.O_CREATE, 0644)
if err != nil {
log.Printf("failed opening %s: %s", filename, err)
return
}
defer file.Close()
err = encoder(file, img)
if err != nil {
log.Printf("failed encoding to %s: %s", filename, err)
}
}
func jpegEncode(w io.Writer, m image.Image) error {

return jpeg.Encode(w, m, &jpeg.Options{Quality: 80})

func round(value float32) int {

if value < 0.0 {
value -= 0.5
} else {
value += 0.5
1
return int(value)
}
func scale(w, h, size int) (int, int, float32) {

var factor float32
width, height := float32(w), float32(h)
if width > height {

factor = float32(size) / width
} else {

factor = float32(size) / height
}

return round(factor * width), round(factor * height), factor

func resize(img image.Image, nsize int) image.Image {
osize := img.Bounds().Size()
nwidth, nheight, factor := scale(osize.X, osize.Y, nsize)

62
63
64
65
66
67
68
69
70
71
T2
73
T4
)
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102

image

216

nimg := image.NewRGBA(image.Rect(@, @, nwidth, nheight))
for y := 0; y < nheight; y++ {
for x := 0; x < nwidth; x++ {
// The important stuff
fx, fy := round(float32(x)/factor), round(float32(y)/factor)
nimg.Set(x, y, img.At(fx, fy))

}

return nimg

func decode(filename string) image.Image {

file, err := os.Open(filename)
if err != nil {
log.Fatalf("failed opening file: %s", err)
}
defer file.Close()
img, _, err := image.Decode(file)
if err != nil {

log.Fatalf("failed decoding image: %s", err)

}

return img

func main() {

flag.Parse()
if *size <= 0 {
log.Fatalln("size must be greater than 0")
}
img := decode(*in)
img = resize(img, *size)

if *pngout != "" {

encode(png.Encode, img, *pngout)

if *jpgout != "" {
encode(jpegEncode, img, *jpgout)

0 < O O & W N =~

NN NN NN NN N B 1 1 b 1 s s
0 N1 O O b WO NP, O O 00 N0 O d W N~ ©

image 217
Cropping

Cropping an image, like grabbing the face from a larger image for thumbnail
purposes, is another of the basic things everybody does with images. Let’s see how
we can do that. This is our first look at the image/draw package.

The image/draw package, while very basic, is very powerful. It’s modeled after a paper
by Thomas Porter and Tom Duff and gives you the basic primitives to do anything.
Cropping is one of those basic primitives. It’s actually pretty simple, but it took me
a minute to sort it out.®3

image/cropping.go

package main

import (
"flag"
"fmt"
"image"
"image/draw"
"image/ jpeg"
"image/png"
"ig"
"log"

n "

os

type Cropping struct {
Width, Height uint
X, Y int

func (¢ *Cropping) String() string {
return fmt.Sprintf("%dx%d%+d%+d", c.Width, c.Height, c.X, c.Y)

func (¢ *Cropping) Set(s string) error {
_, err := fmt.Sscanf(s, "%dx%d%d%d", &c.Width, &c.Height, &c.X, &c.Y)

return err

63Pm not familiar with the Porter-Duff compositing paper, maybe I should read it. Sort of like learning about category
theory so you can do I0 in Haskell...

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
o8
959
60
61
62
63
64
65
66
67
68
69
70

image 218

var (
jpgout = flag.String("jpg", "", "output to a jpg")
pngout = flag.String("png", "", "output to a png")
in = flag.String("in", "", "input file")
cropping = new(Cropping)
)
func init() {
flag.Var(cropping, "crop", "crop to perform, like imagemagick WxH[-+]x[-+]y")
}

type encf func(io.Writer, image.Image) error

func encode(encoder encf, img image.Image, filename string) {

file, err := os.OpenFile(filename, os.0_WRONLY|os.O_CREATE, 0644)
if err != nil {
log.Printf("failed opening %s: %s", filename, err)
return
}
defer file.Close()
err = encoder(file, img)
if err != nil {
log.Printf("failed encoding to %s: %s", filename, err)
}
}
func jpegEncode(w io.Writer, m image.Image) error {

return jpeg.Encode(w, m, &jpeg.Options{Quality: 80})

func decode(filename string) image.Image {
file, err := os.Open(filename)
if err != nil {
log.Fatalf("failed opening file: %s", err)

}
defer file.Close()

img, _, err := image.Decode(file)
if err != nil {
log.Fatalf("failed decoding image: %s", err)

}

return img

71
T2
73
T4
)
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

0w N O O B W N =~

image

func crop(img image.Image, c¢ *Cropping) image.Image {
r := image.Rect(0, 0, int(c.Width), int(c.Height))
dst := image.NewRGBA(r)
draw.Draw(dst, r, img, image.Pt(c.X, c.Y), draw.Src)
return dst

func main() {
flag.Parse()

img := decode(*in)
img = crop(img, cropping)

if *pngout != "" {

encode(png.Encode, img, *pngout)

if *jpgout != "" {
encode(jpegEncode, img, *jpgout)

219

Compositing: Building images from other images

Combining two images is the final basic building block that will let us do all sorts of
fun things. We’ll write a little program to add a border to an image, which is really
just compositing one image on top of a slightly larger image of a solid color. This
uses the same technique as the previous cropping example, but we do a little more

work.

image/compositing.go

package main

import (
"flag"
"fmt"
"image"

"image/color’
"image/draw"

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

image

type

func

func

func

var (

"image/ jpeg"
"image/png"
"io"
"log"

os

Color struct {

(c

(c

(c

RGBA uint32

*Color) String() string {
return fmt.Sprintf("%#x", c.RGBA)

*Color) Set(s string) error {
_, err := fmt.Sscanf(s, "%x", &c.RGBA)
return err

*Color) ToRGBA() color.RGBA {
var mask uint32 = Oxff
return color.RGBA{
R: uint8((c.RGBA >> 24) & mask),

G: uint8((c.RGBA »>> 16) & mask),

B: uint8((c.RGBA >> 8) & mask),

A: uint8(c.RGBA & mask),
}
jpgout = flag.String("jpg", "", "output to a jpg")
pngout = flag.String("png", "", "output to a png")
in = flag.String("in", "", "input file")
width = flag.Int("width", 25, "width of the border")
borderColor = new(Color)

func init() {

flag.Var(borderColor, "color", "the color of the border in RGBA")

220

image 221

51 type encf func(io.Writer, image.Image) error

52

53 func encode(encoder encf, img image.Image, filename string) ({

54 file, err := os.OpenFile(filename, os.0O_WRONLY|os.O_CREATE, 0644)
55 if err != nil {

56 log.Printf("failed opening %s: %s", filename, err)

o7 return

58 }

59 defer file.Close()

60 err = encoder(file, img)

61 if err != nil {

62 log.Printf("failed encoding to %s: %s", filename, err)

63 }

64 }

65

66 func jpegEncode(w io.Writer, m image.Image) error {

67 return jpeg.Encode(w, m, &jpeg.Options{Quality: 80})

68 }

69

70 func decode(filename string) image.Image {

71 file, err := os.Open(filename)

72 if err != nil {

73 log.Fatalf("failed opening file: %s", err)

74 }

75 defer file.Close()

76

7 img, _, err := image.Decode(file)

78 if err != nil {

79 log.Fatalf("failed decoding image: %s", err)

80 }

81 return img

82 }

83

84 func applyBorder(img image.Image, ¢ *Color, w int) image.Image {

85 // Make a new solid color image, slightly larger to form the border
86 r := image.Rect(@, 0, img.Bounds().Dx()+(2*w), img.Bounds().Dy()+(2*w))
87 dst := image.NewRGBA(r)

88 draw.Draw(dst, r, image.NewUniform(c.ToRGBA()), image.ZP, draw.Src)
89

90 // Draw the source image over the border image

91 draw.Draw(dst, r, img, image.Pt(-w, -w), draw.Src)

92 return dst

93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108

image 222

}

func main() {
flag.Parse()

img := decode(*in)
img = applyBorder(img, borderColor, *width)

if *pngout != "" {
encode(png.Encode, img, *pngout)

}

if *jpgout != "" {
encode(jpegEncode, img, *jpgout)
}

gostagram

Instagram isn’t a big deal right? I mean, you could totally build that in a weekend.®*

Okay, well maybe not quite, but let’s see what Go can do, and build some image
filters. It'll just be a command line application, but you could imagine how you could
use this and the rest of the code from this chapter to build a little web application
Instagram clone.

All T have are:

» Black and white

» Sepia

 Blur (It’s pretty slow for large radius values, and it doesn’t handle edge cases
properly)

» Borders (like in the previous example)

The black and white and sepia code is fine, though I wouldn’t use my blur code in
production.

64Or, if you're a Jeff Atwood fan, 6-8 weeks.

0 N O O B~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

image

image/gostagram.go

223

package main

import (
n flag"
n fmt"

”image"

"image/color"

"image/draw’
"image/ jpeg'

"image/png"
"io"

"log"
"math"

os

var (
Jpgout
pngout
in
filter
borderWidth
lor")
borderColor
blur

func init() {

flag.String("jpg", , "output to a jpg")

flag.String("png", , "output to a png")
flag.String("in", "", "input file")
flag.String("filter", "", "filter to apply")

flag.Int("border", @, "border width, used in conjunction with -co\

new(Color)
flag.Int("blur", 0, "blur the image with a Gaussian blur (slow!)")

flag.Var(borderColor, "color", "the color of the border in RGBA")

type Gaussian struct {

kernel []float32
offsets []int

func (gaus *Gaussian) Blur(img image.Image, x, y int) color.Color ({

colors := make([]color.Color, 0, len(gaus.kernel))

for _, yOffset
for _

.= range gaus.offsets {
xOffset := range gaus.offsets {
colors = append(colors, img.At(x+x0ffset, y+yOffset))

42
43
44
45
46
47
48
49
90
o1
52
53
o4
55
56
o7
o8
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
I
76
T
78
79
80
81
82
83

image

}
}
var rsum, gsum, bsum, asum float32
for i, ¢ := range colors {
rgba := color.RGBAModel.Convert(c).(color.RGBA)
factor := gaus.kernel[i]
rsum += factor * float32(rgba
gsum += factor * float32(rgba
bsum += factor * float32(rgba
asum += factor * float32(rgba
}
return color.RGBA{
R: min(255, rsum),
G: min(255, gsum),
B: min(255, bsum),
A: min(255, asum),
}
}
func normalize(kernel []float32) {

var sum float32

for _, f := range kernel ({

sum += f

}

for i := range kernel {

kernel[i] = kernel[i] / sum

func spread(radius int) []int {

s := make([]int, 0, 2*radius+1)

low, high := -radius, radius

for i := low; i <= high; i++ {

s = append(s, i

}

return s

)

func NewGaussian(radius int) *Gaussian {

sigmaSquared := math.Pow(float64(radius)/2, 2)

bottom := 2 * sigmaSquared
G := func(x, y int) float32 {

R)
.G)
.B)
A)

84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

image

top := -(math.Pow(float64(x), 2) + math.Pow(float64(y), 2))

exp := math.Exp(top / bottom)
g : =1/ (2 * math.Pi * sigmaSquared) * exp
return float32(g)

}
d := radius*2 + 1
kernel := make([]float32, 0, d*d)
rng := spread(radius)
for _, y := range rng {
for _, x := range rng {
kernel = append(kernel, G(x, y))
}
}

normalize(kernel)
return &Gaussian{kernel, rng}

type Color struct {

func

func

func

(c

(c

(c

RGBA uint32

*Color) String() string {
return fmt.Sprintf("%#x", c.RGBA)

*Color) Set(s string) error {
_, err := fmt.Sscanf(s, "%x", &c.RGBA)

return err

*Color) ToRGBA() color.RGBA {

var mask uint32 = Oxff

return color.RGBA{
R: uint8((c.RGBA >> 24) & mask),
G: uint8((c.RGBA >> 16) & mask),
B: uint8((c.RGBA >> 8) & mask),
A: uint8(c.RGBA & mask),

type Sepia struct {

225

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

image
R, G, B float32
A uint8
}
func min(1l, r float32) uint8 {

func

func

type

func

func

ifro> 1 {
return uint8(1)
}

return uint8(r)

(s *Sepia) RGBA() color.RGBA {
r := min(255, s.R*0.393+s.G*0.769+s.B*0.189)
g min(255, s.R*0.349+s.G*0.686+s.B*0.168)
b := min(255, s.R*0.272+s.G*0.534+s.B*0.131)
return color.RGBA{r, g, b, s.A}

NewSepia(c color.Color) *Sepia {
rgba := color.RGBAModel.Convert(c).(color.RGBA)
return &Sepiaf{float32(rgba.R), float32(rgba.G), float32(rgba.B), rgba.A}

encf func(io.Writer, image.Image) error

encode(encoder encf, img image.Image, filename string) {
file, err := os.OpenFile(filename, os.0_WRONLY|os.O_CREATE, 0644)
if err != nil {
log.Printf("failed opening %s: %s", filename, err)
return
}
defer file.Close()
err = encoder(file, img)
if err != nil {
log.Printf("failed encoding to %s: %s", filename, err)

jpegEncode(w io.Writer, m image.Image) error {
return jpeg.Encode(w, m, &jpeg.Options{Quality: 80})

226

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

image

func decode(filename string) image.Image {

}

file, err := os.Open(filename)
if err != nil {
log.Fatalf("failed opening file: %s", err)
}
defer file.Close()
img, _, err := image.Decode(file)
if err != nil {

log.Fatalf("failed decoding image: %s", err)

}

return img

func doBlackAndwhite(img image.Image) image.Image {

r := img.Bounds()

dst := image.NewGray(r)

draw.Draw(dst, r, img, image.ZP, draw.Src)
return dst

func doSepia(img image.Image) image.Image {

}

r := img.Bounds()
dst := image.NewRGBA(r)
w, h := r.Dx(), r.Dy()
for y := 0; y < h; y++ {
for x := 0; x < w; x++ {
sepia := NewSepia(img.At(x, y)).RGBA()
dst.Set(x, y, sepia)

}

return dst

func doBorder(img image.Image, ¢ *Color, w int) image.Image {

r := image.Rect(@, 0, img.Bounds().Dx()+(2*w), img.Bounds().Dy()+(2*w))
dst := image.NewRGBA(r)

draw.Draw(dst, r, image.NewUniform(c.ToRGBA()), image.ZP, draw.Src)
draw.Draw(dst, r, img, image.Pt(-w, -w), draw.Src)

return dst

227

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

image

func doBlur

g
r

dst

w

4

for

}

ret
func main()
fla
img

swi

cas

cas

if

if

if

if

(img image.Image, radius int) image.Image {

:= NewGaussian(radius)
:= img.Bounds()

:= image.NewRGBA(r)
h := r.Dx(), r.Dy()
y :=0; y <h; y++ {
for x := 0; x < w; x++ {

dst.Set(x, y, g.Blur(img, x, y))

urn dst

{
g.Parse()

:= decode(*in)

tch *filter {
e "bw":

img = doBlackAndWhite(img)
e "sepia":

img = doSepia(img)
*plur > 0 {

img = doBlur(img, *blur)
*borderWidth > 0 {

img = doBorder(img, borderColor, *borderWidth)

*pngout = "" {
encode(png.Encode, img, *pngout)

*jpgout = "" {
encode(jpegEncode, img, *jpgout)

228

© 00 N O U b W N =

N N N P | | sl |l s
N »~ O O 0 1 0 O b WO N~ O

index

The index package has nothing in it, except the index/suffixarray package.

This package lets you search for a sequence of bytes in a byte slice in logarithmic
time. You have to build the index index first, so there’s not only the time to build in
the index, but also the memory cost associated with storing the index. It’s not the
answer to all substring search problems, but if your situation warrants it, you can
get some nice speed improvements (at the cost of more memory).

suffixarray

We’ll look for a known popular text in a large piece of text, and compare that to less
fancy methods, like those in the bytes package.

index/suffixarray.go

package main

import (
"bytes"
"flag"
"index/suffixarray"
"io/ioutil™
"log"
T "testing"

)

type Searcher struct {
index *suffixarray.Index
n, h []byte

}

func NewSearcher(n, h []byte) *Searcher {
return &Searcher({
n: n,
h: h,

index: suffixarray.New(h),

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
o8
959
60
61
62
63
64

index
}
func (s *Searcher) SuffixarrayPrebuilt() int {
results := s.index.Lookup(s.n, 1)
if len(results) == 1 {
return results[0]
}
return -1
}
func (s *Searcher) Suffixarray() int {
index := suffixarray.New(s.h)
results := index.Lookup(s.n, 1)
if len(results) == 1 {
return results[0]
}
return -1
}
func (s *Searcher) BytesIndex() int {

needle = flag.String("needle", "O Romeo, Romeo! wherefore art thou Romeo?", "\

return bytes.Index(s.h, s.n)
}
var (
The string to search for")

haystack = flag.String("haystack", "romeo-and-juliet.txt", "The file to search \

through")
)
func bench(name string, f func() int) {
index := 0
result := T.Benchmark(func(b *T.B) {
for i := 0; 1 < b.N; i++ {
index = f()
}

1))

log.Printf("%s took %d ns/op to find %#*v at index %d", name, result.NsPerOp(), \

*needle, index)

}

func main() {

230

65
66
67
68
69
70
71
T2
73
T4

index

flag.Parse()
h
if err != nil {

log.Fatalf("failed to read haystack: %s", err)

err := ioutil.ReadFile(*haystack)

7

}
s := NewSearcher([]byte(*needle), h)

bench("SuffixarrayPrebuilt", s.SuffixarrayPrebuilt)
bench("Suffixarray", s.Suffixarray)
bench("BytesIndex", s.BytesIndex)

231

Running the example, we get 3 lines from the 10g package. On my machine, using the
prebuilt suffixarray index I get about 800 ns/op. Building the index and doing the
search (which is the basic usage example of the package) in the suffixarray method,
takes a very long time, on the order of 50 million ns/op. Most of that time is building
the index. The bytes package doing a simple bytes.Index takes about an order of
magnitude longer than using the prebuilt suffixarray, coming in at around 7000

ns/op.

As you can see, if you're doing a one-off search, the bytes package is fine. If you’re
searching the same body of text many times, and can afford to keep the index
around in memory, the suffixarray package is your friend.

io

The io package is probably one of the most important packages in the Go standard
library, but it’s also one of the most basic.

There are only 4 types which are structs, 2 of which are related (PipeReader and
Pipewriter). The other types are interfaces, and there’s a lot of them. Youw’ll see them
all over the place, and it’s usually just a matter of providing a type that matches that
interface.

The top level functions in the package take care of abstracting a few things away
from the lower level base interfaces. They also handle some basic common things,
along with the io/iouti1 package.

If you’re reading this section thinking this is where file I0 happens, you’re half
right. While the io package has all the interfaces and some helpers, the real file
IO happens in the os package package. That package allows you to open files and
read and write them using the os.File type.

Reading

Computers are no fun if your programs can’t talk to things outside themselves.
Reading data in is half of the IO fun, and allows you program to get data from the
outside world. The io.Reader type has a basic read method to handle the most basic
of read tasks. The io package has some helpers to move up a level of abstraction.

There are also a variety of interface types that provide other higher level methods,
such as unreading data and reading runes.

With some of these 10 things it’s important to pay attention to the errors returned.
With things like readAtLeast, it returns specific errors to signal specific cases when
the minimum couldn’t be read due to EOF.

ReadAtLeast

This function will read, big surprise, at least min bytes into the buffer, returning the
standard bytes read and any error.

0 N O O B~ W N -

DWW W W W W W W WwWNDNDDNDDNDDNNDNDNDNDNDNDDNDAESE AP, 2 s s
© © 00 9 O Ol b W N O O© W 3O O b OO O 03O0 O b OWN O O

io

io/read_at_least.go

233

package main

import (
"o
"log"
"strings"

)

const (

format = "len(buffer)=%d, min=%d, bytesRead=%d, err=%v, (%s)"

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

type Example struct {
BufferLength int
MinimumRead int
Message string

func ShowExample(ex Example) {
rd := strings.NewReader(ex.Message)
buffer := make([]byte, ex.BufferlLength)

bytesRead, err := io.ReadAtlLeast(rd, buffer, ex.MinimumRead)
log.Printf(format, ex.BufferlLength, ex.MinimumRead, bytesRead, err, ex.Message)

func main() {
examples := []Example{

{10, 5, "OK; read less than buf can handle, plenty of data"},
{100, 75, "Unexpected EOF; buf has space, but ran out of data"},

{10, 15, "Short buffer; trying to read more than buf can handle"},

}

for _, ex := range examples {
ShowExample(ex)

}

O O b W N

o I O O P W N =

NN NN NN B B |l s s s
O & O N~ O O 0N O O d W N~ O ©

io 234

Output:

» len(buffer)=10, min=5, bytesRead=10@, err=<nil>, (OK; read less than buf can ha\
ndle, plenty of data)

» len(buffer)=100, min=75, bytesRead=50, err=unexpected EOF, (Unexpected EOF; bu\
f has space, but ran out of data)

» len(buffer)=10, min=15, bytesRead=0, err=short buffer, (Short buffer; trying t\
o read more than buf can handle)

ReadFull

Use ReadFull if you want to read an exact number of bytes from something. It will
return an error if it couldn’t read the given number of bytes. In the output 'm
showing the buffer as bytes to show that there are nuLL bytes (the zeroes) in the
buffer when you get EOF errors.

io/read_full.go

package main

import (
"o
"log"
"strings"
)
const (
format = "len(buffer)=%d, bytesRead=%d, err=%v, (%s)"
)

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

type Example struct {
BufferLength int
Message string

func ShowExample(ex Example) {
rd := strings.NewReader(ex.Message)
buffer := make([]byte, ex.BufferLength)

26
27
28
29
30
31
32
33
34
35
36
37
38
39

N O O B W N =

O© 00 9 O O b W N =

io 235

bytesRead, err := io.ReadFull(rd, buffer)
log.Printf("%v", buffer)
log.Printf(format, ex.BufferLength, bytesRead, err, ex.Message)

func main() {
examples := []Example{
{10, "OK; filled up buf, plenty of data"},
{55, "Unexpected EOF; buf has space, but ran out of data"},

}
for _, ex := range examples {
ShowExample(ex)
}
}
Output:

» [79 75 59 32 102 105 108 108 101 100]

» len(buffer)=10, bytesRead=10, err=<nil>, (OK; filled up buf, plenty of data)

» [85 110 101 120 112 101 99 116 101 100 32 69 79 70 59 32 98 117 102 32 104 97 \
115 32 115 112 97 99 101 44 32 98 117 116 32 114 97 110 32 111 117 116 32 111 10\
2 32 100 97 116 97 0 0 @ © 0]

» len(buffer)=55, bytesRead=50, err=unexpected EOF, (Unexpected EOF; buf has spa\
ce, but ran out of data)

LimitedReader

A LimitedReader is for when you want to make sure to never read more than a
given amount from an io.Reader. If you’ve worked with Enumerable style methods
in something like Ruby, this is basically implementing take on io.Reader.

io/limited_reader.go

package main

import (
"o
"log"
"strings"

const (

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

io 236

example = "The quick brown fox, he likes jumping, you know."

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

func main() {
lr := io.LimitedReader{strings.NewReader (example), 20}
buffer := make([]byte, len(example))
bytesRead, err := lr.Read(buffer)

// Despite having space, only read 20 bytes
log.Printf("%s", buffer)
log.Printf("bytesRead=%d, err=%v", bytesRead, err)

// Try reading more, won't read anything.
bytesRead, err = lr.Read(buffer)
log.Printf("bytesRead=%d, err=%v", bytesRead, err)

Output:

» The quick brown fox, 11 TTTILTITILLLVLTVVANN
» bytesRead=20, err=<nil>
» bytesRead=0, err=EOF

MultiReader

A MultiReader lets you read from multiple readers, one after the other. If you open 3
files, make a MultiReader from them, and read until EOF, it would be the same as if
youw’d concatenated the files into a new file, and read that file instead. It just reads
everything from everything in order.

An interesting point is that once a reader returns EOF, it will stop reading. You have
to start it up again to read more. In our example we have to read 3 times to actually
read all the data. We could also rReadrul1 which we used a few pages ago.

Once again, we’ll look at the buffer as a byte slice to show the nuLL values.

0 N O O B~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

io

io/multi_reader.go

237

package main

import (
nigh
"log"
"strings"
)

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

func main() {
// Make our inputs
:= strings.NewReader (strings.Repeat("A", 5))
:= strings.NewReader(strings.Repeat("B", 5))
¢ := strings.NewReader(strings.Repeat("C", 5))

// Read ALL THE THINGS

mr := io.MultiReader(a, b, c¢)
// Read A

buffer := make([]byte, 20)
nl, err := mr.Read(buffer)

log.Printf("%v", buffer)
log.Printf("n1=%d, err=%v", ni, err)

// Read B

n2, err := mr.Read(buffer[ni:])
log.Printf("%v", buffer)
log.Printf("n2=%d, err=%v", n2, err)

// Read C

n3, err := mr.Read(buffer[(n1 + n2):])
log.Printf("%v", buffer)
log.Printf("n3=%d, err=%v", n3, err)

// EOF
n4d, err := mr.Read(buffer[(n1 + n2 + n3):])
log.Printf("%v", buffer)

42
43

O N O O s~ W N -

o < O O P W N =

S
O© 00 3 O O b W N -~ O O

io 238

log.Printf("n4=%d, err=%v", n4, err)

Output:

» [65 65 65 65 65 0 0 0 0 O 0 00 0 0 0 0 0 0 Q]

» n1=5, err=<nil>

» [65 65 65 65 65 66 66 66 66 66 0 0 0 © @ 0 © @ @ Q]

» nN2=5, err=<nil>

» [65 65 65 65 65 66 66 66 66 66 67 67 67 67 67 0 @ @ @ Q]
» n3=5, err=<nil>

» [65 65 65 65 65 66 66 66 66 66 67 67 67 67 67 @ 0 0 @ Q]
» n4=0, err=EOF

TeeReader

A TeeReader works a lot like the tee unix program. With the tee program, you read
some output, display it on STDOUT, and then also write it somewhere else. In
the case of TeeReader, you read from it, but it also writes to an io.writer. Pretty
straightforward.

io/tee_reader.go

package main

import (
"bytes"
"ig"
"log"
"strings"
)

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

func main() {
s := strings.NewReader("Get to the choppa!")
var buf bytes.Buffer
tr := io.TeeReader(s, &buf)
b := make([]byte, s.Len())

20
21
22
23
24

0 = O O b WO N =~

N N N . |l s |y s
N »~ O O 0 1 O O b 0N~ O O

io 239

n, err := tr.Read(b)
log.Printf("buf: %s", &buf)
log.Printf(" b: %s", b)
log.Printf("n=%d, err=%v", n, err)

Output:

» buf: Get to the choppa!
» b: Get to the choppa!
» n=18, err=<nil>

SectionReader

The last thing we’ll demo here is the SectionReader. It’s sort of like LimitedReader but
for specific sections of something. You need an io.ReaderAt, SO you can’t pass just
anything into it. We’re using a bytes.Reader, but os.File works as well.

io/section_reader.go

package main

import (
"bytes"
"io"
"log"
)
var (
s = "The quick brown fox, he likes jumping, you know."
)

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

func main() {
// Build the block of data
data := make([]byte, 0, 30)
data = append(data, bytes.Repeat([]byte{'A'}, 10)...)
data = append(data, bytes.Repeat([]byte{'B'}, 10)...)

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

O Ol B W N -

io

data = append(data, bytes.Repeat([]byte{'C'}, 10)...

// Create some SectionReaders to read the 3 sections
r := bytes.NewReader(data)

ar := io.NewSectionReader(r, 0, 10)
br := io.NewSectionReader(r, 10, 10)
cr := io.NewSectionReader(r, 20, 10)

buf := make([]byte, 10)

// Read the A section

n, err := ar.Read(buf)
log.Printf("buf: %s", buf)
log.Printf("n=%d, err=%v", n, err)

// Read the B section

n, err = br.Read(buf)
log.Printf("buf: %s", buf)
log.Printf("n=%d, err=%v", n, err)

// Read the C section

n, err = cr.Read(buf)
log.Printf("buf: %s", buf)
log.Printf("n=%d, err=%v", n, err)

)

240

Output:

» buf: AAAAAAAAAA
» n=10, err=<nil>
» buf: BBBBBBBBBB
» n=10, err=<nil>
» buf: CCCCCCCCCC

» n=10, err=<nil>

Writing

Writing is the other half of the IO coin. Sending data outside your program, or
within it, is essential to getting things done. Your basic io.writer interface supports
writing bytes, but we can also write strings, and write to multiple things at the same

time.

©O© 00 < O U b W N =

Y
G0 O W N,

io 241

io/writing.go

package main

import (

n "

io
”]_Og”

" "

os

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

funec main() {
w := io.MultiWriter(os.Stdout, os.Stderr)
io.WriteString(w, "Hello, twice!!\n")

Output:

Hello, twice!!
Hello, twice!!

Copy

Copying data from one place to another is a pretty basic IO related task. Want to
build a TCP load balancer? All you need is io.Copy®®.

The two copy methods block until they reach an error. If that error is EOF, it’s
silenced, and a ni1 error is returned. If you just want to copy and not worry about
the errors, just run the call in a goroutine.

65https://github.com/dalrkhelmet/balance/blob/master/tcp. g0

https://github.com/darkhelmet/balance/blob/master/tcp.go
https://github.com/darkhelmet/balance/blob/master/tcp.go

0 N O O B~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

io

io/copy.go

242

package main

import (
"bytes"
"o
"log"
"og"

)

func init() {
log.SetFlags(Q)
log.SetPrefix("» ")

func buffer() *bytes.Buffer {
var buf bytes.Buffer
buf.WriteString("I'm writing ")
buf.WriteString("strings ")
buf .WriteString("to this buffer ")
buf.WriteString("and we'll copy it to os.Stdout.\n")
return &buf

func DemoCopy() {
buf := buffer()
log.Printf("copying %d bytes to os.Stdout", buf.Len())
io.Copy(os.Stdout, buf)

func DemoCopyN() {
buf := buffer()
n := int64(32)
log.Printf("have %d bytes, only copying %d to os.Stdout", buf.Len(), n)
io.CopyN(os.Stdout, buf, n)
os.Stdout .Write([]byte{'\n'})

func BufferFun() {
buf := buffer()
n, _ := io.CopyN(os.Stdout, buf, 32)
nn, _ := io.Copy(os.Stdout, buf)

42
43
44
45
46
4’7
48
49

O O b W N =

O© 00 9 O O b W N =

io 243

log.Printf("copied %d and then %d bytes to os.Stdout", n, nn)

func main() {
DemoCopy ()
DemoCopyN()
BufferFun()

Output:

» copying 67 bytes to os.Stdout

I'm writing strings to this buffer and we'll copy it to os.Stdout.
» have 67 bytes, only copying 32 to os.Stdout

I'm writing strings to this buff

I'm writing strings to this buffer and we'll copy it to os.Stdout.
» copied 32 and then 35 bytes to os.Stdout

Pipe

If you want to pipe data between two things, you have a couple options. You can use
bytes.Buffer, which will buffer data, or you can use io.Pipe, which does no buffering
and instead does synchronous piping of data.

In this example, note the partial reads, where it reads the remainder of a sentence.
This is because the write on the other end isn’t finished yet. It writes part of the
sentence straight through, and then has to wait while the reading end writes out the
log, and the loop starts over to read another chunk. Then the write call can continue
and write the rest of the sentence, while the reading end reads it. The writing loop
starts over and tries to write another sentence.

io/pipe.go

package main

import (
"o
|llogll

"runtime"

func init() {

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

log.SetFlags(9)
log.SetPrefix("» ")
runtime.GOMAXPROCS(8)

func Write(wr io.WriteCloser) ({

;= []string{

"I come home in the morning light",

"My mother says when you gonna live your life right",
"Oh mother dear we're not the fortunate ones",

"And girls they want to have fun",

"Oh girls just want to have fun",

line := range lyrics {
io.WriteString(wr, line)

wr.Close() // We're done, signal EOF

= io.Pipe()

go Write(wr)

io

}
lyrics
}
for _,
}

}

func main() {
rd, wr
for {
}

buf := make([]byte, 32)
n, err := rd.Read(buf)
log.Printf("buf: %s", buf)
log.Printf("n=%d, err=%v", n, err)
if err == io.EOF {

break

244

0 = O O b W N =

B R R s s
O O b W N~ OO O

io

Output:

buf: I come home in the morning light
n=32, err=<nil>

buf: My mother says when you gonna 1li
n=32, err=<nil>

buf: ve your life right\\\\\\\\\NNNNN
n=18, err=<nil>

buf: Oh mother dear we're not the for
n=32, err=<nil>

buf: tunate ones\\\VVVAMVAMNNNTVNNN
n=11, err=<nil>

buf: And girls they want to have fun\
n=31, err=<nil>

buf: Oh girls just want to have fun\\
n=30, err=<nil>

BUTT ATV
n=0, err=EOF

io/ioutil

The io/ioutil package includes a selection of top level functions to assist in common
IO tasks. They are all very simple and self explanatory, so we’ll demo a few of the

o I O O P W N =

[G
O » W N =~ O ©

functions but not all.

io/ioutil.go

package main

import (
"io/ioutil"
"log"
"os"

)

func init() {
log.SetFlags(Q)

log.SetPrefix("» ")

func DemoReadAll() {

file, err := os.Open("ioutil.go")

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

B W N -

io 246

if err != nil {
log.Panicf("failed opening file: %s", err)
}
defer file.Close()
log.Printin(reading file "ioutil.go")
data, err := ioutil.ReadAll(file)
log.Printf("read %d bytes with err %v", len(data), err)
}
func DemoReadDir() {
entries, err := ioutil.ReadDir(".")
if err != nil {
log.Panicf("failed reading directory: %s", err)
}
log.Printf("found %d files in the current directory", len(entries))
}
func DemoReadFile() {
data, err := ioutil.ReadFile("ioutil.go")
log.Printf("read %d bytes with err %v", len(data), err)
}
func main() {
DemoReadAl1()
DemoReadDir ()
DemoReadFile()
}
Output:
» reading file "ioutil.go"
» read 772 bytes with err <nil>
» found 11 files in the current directory
» read 772 bytes with err <nil>

O 00 9 O O b W N =~

(AN
N =~ O

log

The 10g package is used to handle logging in your application. It has a basic logging
package, and a syslog package.

Basic Logging
There are two ways to use the basic logging functionality.

1. Use the package level functions to access the global logger.
2. Build a new *1og.Logger instance and use that.

Using the package level functions is easy and useful when you’re dealing with a
proper application. If you build a package to be used in an application, you probably
shouldn’t be using the package level functions and instead require the user of your
package to pass in a *log.Logger.

In pretty much every example so far, I've used the package level functions to handle
output. There are functions to print a string, print a formatted string, panic, and
exit. You can also change where the output goes, change the format of messages
(using the the flags), and change the prefix.

In the example, we won’t use the package level functions, and just build our own
instance.

log/log.go

package main

import (
"log"
"os"
"time"

)

func main() {
logger := log.New(os.Stdout, "", log.LstdFlags)

defer func() {

13
14
15
16
17
18
19
20
21
22
23
24
25

log

Q)

logger.
logger.
logger.
logger.
logger.
logger.

248

logger.SetFlags(log.LstdFlags)
if err := recover(); err != nil {
logger .Fatalf("recovered: ¥%s", err)

Println("just a string")
SetPrefix("[go-thestdlib] ")

Printf("the time is %s", time.Now())
SetFlags(log.Lshortfile)

Println("see, the format changed?")
Panicf("don't worry, we'll handle this")

Syslog

There are a couple ways to use the 10g/syslog package.

You can build a *1og.Logger at a certain syslog priority. This has the advantage of
using the same interface as the main package, but all your log messages are at the
same priority level.

The other way is to create a *syslog.writer. This has the advantage of being able to
write log messages at different priority levels, but you lose the consistent interface.
None of the *sysiog.writer methods support formatting things either, so you’ll have
to do that elsewhere. We’ll look at both examples, and build a little struct to give
you both the nice easy interface as well as logging multiple priorities.

When running this example, make suretotail -f /var/log/system.logif you’re ona
Macortail -f /var/log/syslog if you’re on Linux in order to see the log messages.

0 N O O B~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

log 249

log/syslog.go

package main

import (
n]_Og"
"log/syslog"

func MustSyslog(p syslog.Priority, flags int) *log.Logger {
logger, err := syslog.NewLogger(p, flags)
if err != nil {
panic(err)
}

return logger

type Logger struct {
Alert, Crit, Debug, Emerg, Err, Info, Notice, Warning *log.Logger

func NewLogger(flags int) *Logger ({
return &Logger {

Alert: MustSyslog(syslog.LOG_ALERT, flags),
Crit: MustSyslog(syslog.LOG_CRIT, flags),
Debug: MustSyslog(syslog.LOG_DEBUG, flags),
Emerg: MustSyslog(syslog.LOG_EMERG, flags),
Err: MustSyslog(syslog.LOG_ERR, flags),
Info: MustSyslog(syslog.LOG_INFO, flags),
Notice: MustSyslog(syslog.LOG_NOTICE, flags),
Warning: MustSyslog(syslog.LOG_WARNING, flags),

func basic() {
logger, err := syslog.NewLogger(syslog.LOG_WARNING, log.Lshortfile)
if err != nil {
log.Fatalf("failed to make syslogger: %s", err)
}

logger.Println("hello, world")

func levels() {

42
43
44
45
46
47
48
49
90
o1
52
53
o4
55
56
o7
o8
59
60

log
logger := NewlLogger(log.Lshortfile)
logger.Crit.Println("oh noes!")
logger .Warning.PrintIn("just a warning")
logger.Alert.Println("alert time!")

}

func writer() {
logger, err := syslog.New(syslog.LOG_WARNING, "go-thestdlib")
if err != nil {
log.Fatalf("failed to make a syslogger: %s", err)

}

logger .Warning(" just a message...")

func main() {
basic()
levels()
writer()

250

O© 00 9 O O P W N =~

RGN
= o

math

The math package, does all the math you could possibly want. The basics anyway.
For the top level package, there is no value in an example file, because it’s all very
straightforward. Youneedsin? Callmath.sin. The functions are appropriately named
so it should be easy to find what you’re looking for. Typically everything deals with
float64 values.

The fun starts with the subpackages. There is the math/big package for dealing with
big numbers, both rational and integers.

math/cmplx has functions similar to those in the toplevel math package but for complex
numbers. I'll skip the example for that package because, like the math package, it’s
not very interesting. If you need to perform math on complex numbers, that’s where
you need to look.

If you need pseudo-random numbers, look at the math/rand package. It has functions
to get all the different types of random data. You can also create a rand.Rand with a
specific seed to get a reproducible sequence.

Big Numbers

The math/big package has two types: big.Int and big.Rat. big.Int deals with signed
integers, and big.Rat deals with rational numbers. The APIs follow the same pattern
where results get stored in the receiver and also returned.®®

math/big.go

package main

import (
"log"
"math/big"
)

func bigPrime() {
p := big.NewInt(2)
p.Exp(p, big.NewInt(1398269), nil)
p.Sub(p, big.NewInt(1))

66H0nestly, the API is slightly awkward, but I think it’s in the interest in saving memory.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

math

252

// Get ready to scroll

log.Printf("a big prime number is %s", p)

// Takes a while

// log.Printf("2"1,398,269-1 is probably prime: %t", p.ProbablyPrime(1))

func ScientificNotation(coefficient, exponent int64) *big.Int {

exp := big.NewInt(10)

exp = exp.Exp(exp, big.NewInt(exponent), nil)
coeff := big.NewInt(coefficient)

return coeff.Mul(coeff, exp)

func astrophysics() {

age := ScientificNotation(43, 16)

log.Printf("the universe is about %s seconds old", age)

size := ScientificNotation(88, 25)

log.Printf("the universe is about %s light years across", size)
stars := ScientificNotation(5, 22)

log.Printf("the universe has about %s stars", stars)

galaxies := ScientificNotation(125, 9)

log.Printf("the universe has about %s galaxies", galaxies)

func primeList() {

var primesFound int
two := big.NewInt(2)
p := big.NewInt(3)

for {
if p.ProbablyPrime(1) {
primesFound++
log.Printf("%s is a prime number", p)
}
if primesFound > 100 {
break
}
p.Add(p, two)
}

54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

math

—~

func mul()
x, _ := new(big.Int).SetString("7612058254738945",
y, _ := new(big.Int).SetString("9263591128439081",
Z new(big.Int) . Mul(x, vy)
log.Printf("%s x %s = %s", X, y, 2z)

}

func ged() {
a, _ = new(big.Int).SetString("7612058254738945",
b, _ := new(big.Int).SetString("9263591128439081",

z = new(big.Int).GCD(nil, nil, a, b)
log.Printf("the GCD of %s and %s is %s", a, b, z)

var one = big.NewRat(1, 1)

func f(i *big.Rat, depth uint64) *big.Rat {
if depth == 0 {

return one

// Doing this is slightly faster
// than the recursive version.
¢ := make(chan *big.Rat, 1)
go func() {
n := new(big.Rat).Set(i)
c <- f(n.Add(n, one), depth-1)
10O

num := new(big.Rat).Set(i)
denom := big.NewRat(2, 1)
denom = denom.Mul(denom, num)

denom = denom.Add(denom, one)

rest := new(big.Rat)

rest = rest.Mul(num, denom.Inv(denom))

rest = rest.Mul(rest, <-c)

big.NewRat(1, 1)
return ret.Add(ret, rest)

ret :

10)
10)

10)
10)

253

96

o7

98

99
100
101
102
103
104
105
106
107
108
109

©O© 00 < O U b W N =

math 254

func pi() {
value := f(big.NewRat(1, 1), 500)
value.Mul(value, big.NewRat(2, 1))
log.Printf("pi is %s", value.FloatString(100))

func main() {
bigPrime()
astrophysics()
primeList()
mul()
ged()
pi()

There are a lot more operations available than in the example, but if you need to
deal with big numbers, you get the idea.®’

Random Numbers

The math/rand package generates pseudo-random numbers for you, but in a semi-
predictable fashion. If you build a math. Source with a certain seed value, the math.Rand
that you build from it will produce the same sequence of numbers every time. For
more secure randomness, use cryto/rand. If you need predictable random numbers,
usSe math/rand.

The math/rand package has top level functions that work with a “global” math.Rand
instance. You can also build your own, and work with that. In the example we’ll do
that.

math/rand.go

package main

import (
"log"
"math/rand"

func example(seed int64) ({
s := rand.NewSource(seed)

67 That being said, if you have some nice ideas for other examples, please let me know.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

r .

log.
log.
log.
log.
log.
log.
LPrintf("Int63: %d", r.Int63())

log

log.
log.
log.
log.
log.

rand.New(s)

Printf("ExpFloat64: %f", r.ExpFloat64())
Printf("Float32: %f", r.Float32())
Printf("Float64: %f", r.Float64())
Printf("Int: %d", r.Int())
Printf("Int31: %d", r.Int31())
Printf("Int31n: %d", r.Int31n(10))

Printf("Int63n: %d", r.Int63n(15))
Printf("Intn: %d", r.Intn(25))
Printf("NormFloat64: %f", r.NormFloat64())
Printf("Perm: %v", r.Perm(10))
Printf("Uint32: %d", r.Uint32())

func main() {

example(64)

// Will print the same as above

example(64)

example(1)

mime

The toplevel mime package isn’t that exciting.

Use TypeByExtension to turn a file extension, like . htm1 or .pdf into text/html; charset=utf-
8 and application/pdf. USe AddExtensionType t0 add your own mapping.

With the functions ParseMediaType and FormatMediaType yOu can, as their names sug-
gest, parse and format mime types. ParseMediaType Can turn text/html; charset=utf-8
into the string text/ntml and the map map[string]string{"charset": "utf-8"}. Format-
MediaType does the inverse.

Exciting, amiright?

Let’s look at the mime/multipart instead, shall we?

Multipart Parsing

The mime/multipart package is used for, you guessed it, parsing and generating
multipart things.

I sent a test email and pulled out the body. Parsing the whole email can be done
with the net/mai1 package, but we’re only concerned with the multipart body.

I use a hardcoded boundary value. If you parse an entire message, the net/mail
package’s Message type gives you the headers, which would included the content
type indicating that it’s multipart, and would also include the boundary value. This
is where ParseMediaType wWould come in, and you can parse the content type to get
the boundary value.

Each part of the body is separated by the boundary, and the muitipart.Reader takes
care of giving us each part. The first part is a multipart/alternate block, which has
its own set of headers with a new boundary. This provides the body of the email in
both text/p1lain and text/html content types. In the second part is a file attachment,
Base64 encoded.

In this case, you’d parse the email, get the headers and body, see that it’s a multipart
message, parse the body as multipart, then see that one of the parse is again
multipart, parse that, etc, etc. You end up with a bit of recursion, but at the same

0 N O O b W N =~

W W W W W W WwwWwWwNNDNDNDDNDNDNDDNDDNNDNNASRAEPRrEPSEPS,EP PSS s
0 N O Ol & WDN-O O© 00 30 Ol WON=-O © 03O0 O WD~ ©

mime 257

time, I can’t see why you’d have to go much further than the two levels. That
being said, I'm not aware of anything saying you couldn’t “infinitely” nest multipart
things, but I haven’t read the whole spec.

mime/parse.go

package main

import (
"bytes"
"encoding/base64"
"io"
"io/ioutil"
"log"
"mime"

"mime/multipart"”

n "

os

type Part struct {
*multipart.Part
Body []byte

func (p *Part) Reader() io.Reader ({
return bytes.NewReader (p.Body)

func ReadMultipartFile(path, boundary string) (parts []*Part) {
file, err := os.Open(path)
if err != nil {
log.Fatalf("failed opening %s: %s", path, err)
}
defer file.Close()
return ReadMultipart(file, boundary)

}
func ReadMultipart(r io.Reader, boundary string) (parts []*Part) {
mr := multipart.NewReader(r, boundary)
for {
part, err := mr.NextPart()
if err != nil {

if err == io0.EOF {
break

39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80

mime

258

}
log.Fatalf("failed reading part: %s", err)

}
body, err := ioutil.ReadAll(part)
if err != nil {
log.Fatalf("failed reading part: %s", err)
}
parts = append(parts, &Part{part, body})
part.Close()
}

return parts

func DecodeBody(r io.Reader, encoding string) []byte {

switch encoding {

case "baset4":
dec := base64.NewDecoder(base64.StdEncoding, r)
data, err := ioutil.ReadAll(dec)

if err != nil {

log.Fatalf("failed decoding: %s", err)
}
return data

default:
log.Fatalf("can't decode %s", encoding)

}

panic("not reached")

func DumpParts(parts []*Part, prefix string) {

log.Printf("found %d parts", len(parts))
for i, part := range parts {
ctype := part.Header.Get("Content-Type")
log.Printf(prefix+"part %d has Content-Type: %s", i+1, ctype)
mtype, params, err := mime.ParseMediaType(ctype)
if err != nil {
log.Fatalf("failed parsing media type %s: %s", ctype, err)
}
switch mtype {
case "text/plain", "text/html":
log.Printf(prefix+"content: %s", part.Body)
case "application/octet-stream":

body := DecodeBody(part.Reader(), part.Header.Get("Content-Transfer-Encod:

81
82
83
84
85
86
87
88
89
90
91
92
93

N O O B~ W N -

mime 259

))
log.Printf(prefix+"decoded attachment with contents: %s", body)
case "multipart/alternative":
altParts := ReadMultipart(part.Reader(), params]["boundary"])
DumpParts(altParts, prefix+"\t")
}
}
}

func main() {
parts := ReadMultipartFile("body", "047d7bae420e4Qel18a04eTelead4")
DumpParts(parts, "")

Multipart Generation

The other fun part of multipart things is generating them. When you upload a
file in an HTML form, you have to mark the form as multipart/form-data. With the
mime/multipart package you can therefore generate the body for an HTTP request
where a file is sent along.

Using requestb.in® and jsfiddle®’, you can see that a form like this would produce
a multipart body that looks like what the example produces.

mime/form.html

<form method="POST" enctype="multipart/form-data" action="/server">
<input type="text" name="book" />
<input type="text" name="chapter" />
<input type="text" name="examples" />
<input type="file" name="uploaded" />
<input type="submit" value="Submit" />
</form>

On with the example!

68http://requestb.in/
69nttp:/jjstiddle.net/

http://requestb.in/
http://jsfiddle.net/
http://requestb.in/
http://jsfiddle.net/

0 N O O B~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

mime 260

mime/generate.go

package main

import (
"bytes"
"o
"log"
"mime/multipart"”
"os"
)
func Must(err error) {
if err != nil {
log.Fatalf("WriteField failed: %s", err)
}
}
func WriteFile(w io.Writer, filename string) {
file, err := os.Open(filename)
if err != nil {

log.Fatalf("failed opening file: %s", err)

}
defer file.Close()

_, err = io.Copy(w, file)
if err != nil {
log.Fatalf("failed writing file: %s", err)

func Generate(w io.Writer) string {
wr := multipart.NewWriter(w)
defer wr.Close()
Must(wr.WriteField("book", "Go, The Standard Library"))
Must(wr.WriteField("chapter", "mime"))
Must(wr.WriteField("examples", "2"))
ff, err := wr.CreateFormFile("uploaded", "generate.go")
if err != nil {
log.Fatalf("failed creating form file: %s", err)
}
WriteFile(ff, "generate.go")
return wr.Boundary()

42
43
44
45
46
47
48
49
90
o1
52
53
o4
55
56
o7
o8
59
60
61
62
63
64
65
66
67

mime
}
func Parse(r io.Reader, boundary string) {
rd := multipart.NewReader(r, boundary)
form, err := rd.ReadForm(1024 * 1024 * 1024)
if err != nil {
log.Fatalf("failed reading form: %s", err)
}
for name, value := range form.Value ({
log.Printf("got form data %s: %s", name, value)
}
for name, fhs := range form.File {
for _, fh := range fhs {
log.Printf("got form file %s: %s", name, fh.Filename)
}
}
}
func main() {

var buffer bytes.Buffer
boundary := Generate(&buffer)
log.Printin(buffer.String())
Parse(&buffer, boundary)

261

net (wip)

mail

O© 00 9 O O b W N =

0S

The os package is a package you’ll use fairly often, but probably just for the file
IO and and maybe pulling things from the environment. If you’re building some
system utility, yow’ll be using a lot more of this package.

With the os package we have access to our 3 basic 10 pipes, stdin, stdout, and stderr.
We also get access to a null device, basically a place we can write data we don’t care
about.

We can change permissions on files, inspect the environment, and create and
remove files. We can read and write files too, and inspect their metadata.

We can start other processes and provide input to them and read their output. We
can also respond to incoming signals and make raw syscalls.

The os package is an important one, and provides the hooks into the operating
system to get real work done. It should be every gopher’s goal to learn it front and
back. As a result, there are a lot of examples in this chapter.

stdio and DevNull

The 3 basic IO pipes every process has are stdin, stdout, and stderr. stdin allows the
process to read data from outside itself. stdout is the main place the process can
write output. stderr is where the process should write error information.

We also have a null device, which is essentially a black hole for writing data. It
writes, but goes nowhere.

Run this program by piping in some data: echo data | go run stdio.go.

os/stdio.go

package main

import (
"o
"io/ioutil"
"log"
"os"

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

0s

func init() {

log.SetFlags(Q)
log.SetPrefix("» ")

func DemoStdin() {

input, err := ioutil.ReadAll(os.Stdin)
if err != nil {
log.Fatalf("failed reading stdin: %s", err)

}
log.Printf("read %d from stdin: %s", len(input), input)

func DemoDevNull() {

devNull, err := os.Open(os.DevNull)
if err != nil {
log.Fatalf("failed opening null device: %s", err)
}
defer devNull.Close()
io.WriteString(devNull, "This is going nowhere\n")

func main() {

io.WriteString(os.Stdout, "This is stdout\n")
io.WriteString(os.Stderr, "This is stderr\n")
DemoDevNull()

DemoStdin()

264

Output:

This is
This is

stdout
stderr

» read 25 from stdin: This data going on stdin

Permissions

Sometimes, file permissions just aren’t correct. Sometimes, you need to set specific
permissions on files you create. You can change two kinds of permissions: the mode
of the file, and the owner (user and group). You could do this with bash, or whatever

0 N O O B W N =~

NN NN DNDNDDNDNDN B 1 1 1 s s s
O 1 O Ol b WO NP O O 0 N0 O d W N~ ©

0s 265

your preferred shell is, but sometimes you need to manipulate permissions as part
of a larger program where bash isn’t appropriate.

You can also change the access and modified times of a file, if you want to get sneaky
like that.

You might be looking at this example and wondering where the os.Cchown example
is. Well, the annoying part is that function works with uid and gid and not names.
There also aren’t any places to convert names to ids. Yes, you could probably write
some syscalls for it, or even parse /etc/group. I'll leave this as an exercise for the
reader.

os/permissions.go

package main

import (
"flag"
"log"
"os"
"strconv"
)
var (
chmod = flag.String("chmod", "", "the file to chmod")
mode = flag.String("mode", "", "the mode to set")
)

func init() {
log.SetFlags(9)

log.SetPrefix("» ")
flag.Parse()
}
func main() {
fileMode, err := strconv.ParseUint(*mode, 8, 32)
if err != nil {

log.Fatalf("invalid mode: %s", err)

err = os.Chmod(*chmod, os.FileMode(fileMode))

if err != nil {

29
30
31

O 00 9 O O b W N =~

NN NN NDNDNDNDDN A B 1 s s s
0O N 0O O b WO N~ O© 00 N0 O b WD~

0s 266

log.Fatalf("failed chmod: %s", err)

String Expansion

A common task when writing system utilities is expanding string values using the
environment variables. Luckily the os package has what we need in the form of the
Expandenv function. It also has abstracted the pattern to expand s0 you can provide
your own function to retrieve values. As the documentation points out, Expandenv(s
string) 1S just Expand(s string, os.Getenv). We’ll look at both of these functions.

os/expand.go

package main

import (
"flag"
"log"
"og"

)

type expandable map[string]string

func (e expandable) Expand(s string) string {
return e[s]

func init() {
log.SetFlags(9)
log.SetPrefix("» ")
flag.Parse()

func DemoExpandEnv() {
log.Println(os.ExpandEnv("$HOME"))
log.Println(os.ExpandEnv("$PWD"))

func DemoExpand() ({
exp := expandable(map[string]string{
"name": "Superman",

29
30
31
32
33
34
35
36
37

O© 00 9 O O b W N =

S s e
W N =~

0s 267

"alter": "Clark Kent",

1}
log.Printin(os.Expand("${name} is really ${alter}", exp.Expand))

func main() {
DemoExpandEnv ()
DemoExpand()

Output:

» /Users/darkhelmet
» /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscript/code/os
» Superman is really Clark Kent

Moving Around the Environment

Frequently you need to move around the filesystem to get your work done. Some-
times you need want to switch into a specific directory to simply make life easier.
Luckily moving around is dead simple given two simple functions provided by the
os package: chdir and Getwd.

The important stuff happens in the runindir function. We use Getwd to figure out
where we are, So we can return to it using defer (not strictly required, but it’s good
to “clean up”). We then use chdir to do the actual moving around.

os/moving.go

package main

import (
"flag"
"io/ioutil"
"log"
"os"
"path/filepath"
)

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55

0s
flag.Parse

}

func RunInDir(dir
dir, err
if err !=

log.Fatalf("failed getting absolute directory path: %s", err)

cwd, err
if err =

Q)

string, f func(string)) {

:= filepath.Abs(dir)

nil {

;= 0s.Getwd()

nil {

log.Fatalf("failed to get working directory: %s", err)

os.Chdir(d
defer os.C
f(dir)

fune Dir() [Jos.Fi
files, err
if err =

ir)
hdir(cwd)

leInfo {
;= ioutil.ReadDir(".")
nil {

log.Fatalf("failed reading directory: %s", err)

}

return fil

func main() {
f := func(
fi
if

}

log.Printf("found %d files in %s", len(files), cwd)

RunInDir("

RunInDir(".
RunInDir(".

RunInDir("
RunInDir("

es

cwd string) {
les, err := ioutil.ReadDir(".")
err != nil {

log.Fatalf("failed reading directory: %s",

", f)

", f)
ot f)
../log", f)
S)

err)

268

©O© 00 < O U b W N =

© 00 N O U b W N =

(AN
= o

0s 269

Output:

» found 8 files in /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscri\
pt/code/os

» found 38 files in /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscr\
ipt/code

» found 15 files in /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscr\
ipt

» found 2 files in /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscri\
pt/code/log

» found 4 files in /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib

Inspecting the Environment

Another important task is inspecting the environment a process is running in, and
inspecting the process itself. Getting environment variables, the process ID, and
information about the running user are all common tasks. Naturally, the os package
provides some simple functions to take care of this business.

This example is more interesting if you compile it and do some permission
munging before hand. Compile with go build inspecting.go. Then sudo chown root
inspecting and sudo chmod u+s inspecting. Now, when you run the program with
./inspecting, you should see that the user id is your user’s id, but the effective user
id, is 0, that of the root user. This way, you can get the id of the user actually
running the program, but also inspect the effective id. The effective ids are used
when it comes to checking permissions.

os/inspecting.go

package main

import (
|lf1agll
"log"

n "

os

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

0s 270

flag.Parse()

func DemoProcessIds() {
log.Printf("process id: %d", os.Getpid())
log.Printf("parent process id: %d", os.Getppid())

func DemoUserInfo() {
// actually running the program
log.Printf("user id: %d", os.Getuid())
log.Printf("group id: %d", os.Getgid())

// permissions
log.Printf("effective user id: %d", os.Geteuid())
log.Printf("effective group id: %d", os.Getegid())

groups, err := os.Getgroups()
if err != nil {
log.Fatalf("failed getting groups: %s", err)

}
log.Printf("groups you belong to: %d", groups)

func DemoExtra() {
log.Printf("$GOPATH: %s", os.Getenv("GOPATH"))
log.Printf("$TMPDIR: %s", os.Getenv("TMPDIR"))

log.Printf("pagesize: %d bytes", os.Getpagesize())

hostname, err := os.Hostname()
if err != nil {

log.Fatalf("failed getting hostname: %s", err)
}

log.Printf("hostname: %s", hostname)

func main() {
DemoProcessIds()
DemoUserInfo()
DemoExtra()

O© 00 9 O O P W N =

RGN
Ll]

O 00 9 O O b W N =~

(AN
N =~ O

0s

271

Output:

process id: 26500

parent process id: 26499

user id: 501

group id: 20

effective user id: 0

effective group id: 20

groups you belong to: [20 503 501 12 61 79 80 81 98 399 502 402 33 100 204 398]
$GOPATH: /Users/darkhelmet/dev/go

$TMPDIR: /var/folders/t2/k4yQ7r396d5006 j7y9w9z1dc@o0ogn/T/
pagesize: 4096 bytes

hostname: ada.local

Creating and Removing Files and Directories

Creating directories, removing them, renaming things, and managing links are all
common tasks when dealing with an operating system. Luckily the os package has
you covered. You can make & remove directories, remove files, rename things,
manage links, and even change the size of files.

You can run this example, but it will cleanup everything it does. You might want
to comment out a bunch of lines, mainly cleanup, and see how the filesystem
changes. Clean things up yourself, then uncomment things, rinse and repeat until
you understand all the changes.

os/managing_files.go

package main

import (

uflagn
ulogn

n "

os

func init() {

log.SetFlags(9)
log.SetPrefix("» ")
flag.Parse()

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54

0s

func

func

func

func

func

func

func

func

must(err error) {
if err != nil {
log.Fatalf("failed operation: %s", err)

DemoMkdir() ({
must(os.MkdirAll(" foo/bar/baz", 0755))
must(os.Mkdir("example", @755))

CleanupDir() {
must(os.RemoveAll("foo"))
must(os.Remove("example"))

DemoLink() {
must(os.Symlink("Makefile", "Makefile-symlink"))
must(os.Link("Makefile", "Makefile-1link"))

CleanupLink() {
must(os.Remove("Makefile-symlink"))
must(os.Remove("Makefile-1ink"))

DemoRename()
must(os.Rename("Makefile", "makefile"))

CleanupRename()
must(os.Rename("makefile", "Makefile"))

DemoTruncate() {
// Look at the size of Makefile after this
// Content hasn't changed, but it's magically 1kb
must(os.Truncate("Makefile", 1024))

272

55
56
o7
58
59
60
61
62
63
64
65
66
67
68

O© 00 9 O O b W N =

TN
N =~ O

0s 273

func CleanupTruncate() {
must(os.Truncate("Makefile", 315))

}

func main() {
DemoMkdir ()
CleanupDir()
DemoLink()
CleanupLink()
DemoRename ()
CleanupRename()
DemoTruncate()
CleanupTruncate()

File 10

File IO is of course another big important task when writing system software, or
frankly any software. Need to read a configuration file? File I0. Want to talk to your
database via a UNIX socket? That’s file I0. Writing some fancy NoSQL database? You
better believe that’s file IO.

The os package has theFile type, and functions like Create, NewFile, Open, and OpenFile
to help do all the file IO things you could want. The actually os.File type is a struct
that has a variety of basic methods, but it also abides by various interface types, such
asio.Reader, io.Writer, and others. This means if the file doesn’t have the method you
want, you can probably dive into the io package for help.

os/file_io.go

package main

import (
"io/ioutil"
"log"
"og"

)

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54

0s 274

func DemoCreate() {

f, err := os.Create("demo.txt") // Truncates if file already exists, be careful!
if err != nil {
log.Fatalf("failed creating file: %s", err)
}
defer f.Close() // Make sure to close the file when you're done
n, err := f.WriteString("And live from New York, it's Saturday Night!" - Cast \
of SNL“)
if err != nil {
log.Fatalf("failed writing to file: %s", err)
}
log.Printf("wrote %d bytes to %s", n, f.Name())
}
func DemoOpenFile() {

// OpenFile lets you customize whether the file is truncated, must exist, or mu\
st not exist, etc

// Open 1is your basic way to open a file for reading, but we need to write.
f, err := os.OpenFile("demo.txt", os.0_WRONLY|os.O_APPEND, 0644)
if err != nil {
log.Fatalf("failed opening file: %s", err)
}
defer f.Close()
n, err := f.WriteString("\nSince 1985\n")
if err = nil {
log.Fatalf("failed writing to file: %s", err)
}
log.Printf("wrote another %d bytes to %s", n, f.Name())
}
func DemoWriteAt() {

// In DemoOpenFile, we wrote the wrong date, let's fix that
f, err := os.OpenFile("demo.txt", os.0_RDWR, 0644)
if err != nil {

log.Fatalf("failed opening file: %s", err)

1
defer f.Close()

55
56
o
o8
959
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
5
76
T
78
79
80
81
82
83

, O O 0 N O O b W N =

RGN

0s

275

n, err := f.WriteAt([]byte{'7'}, 69)
if err != nil {

log.Fatalf("failed writing to file: %s", err)
}

log.Printf("wrote another %d bytes to %s", n, f.Name())

func DemoRead() ({

f, err := os.Open("demo.txt")
if err != nil {
log.Fatalf("failed opening file: %s", err)

}
defer f.Close()

data, err := ioutil.ReadAll(f)
if err != nil {
log.Fatalf("failed reading %s: %s", f.Name(), err)

}
log.Printf("contents:\n%s", data)

func main() {

DemoCreate()
DemoRead ()
DemoOpenFile()
DemoRead ()
DemoWriteAt()
DemoRead ()

Output:

» Wrote

60 bytes to demo.txt

» contents:
"And live from New York, it's Saturday Night!" - Cast of SNL

» wrote

another 12 bytes to demo.txt

» contents:
"And live from New York, it's Saturday Night!" - Cast of SNL

» wrote

Since 1985

another 1 bytes to demo.txt

» contents:
"And live from New York, it's Saturday Night!" - Cast of SNL

Since 1975

0 N O O & W N =

W W W W W WNDNDNDNDNDNDNNDMNDNDDNDDNDDNDAES =P,
O & O N 0 © 00 O Ok N~ © 0 N0 Ol d N~ OO ©

0s 276

FileInfo

Of course, since directories are just files, you can do fun things with directories
as well, like read their contents. If you open a directory, you can use methods like
Readdir and Readdirnames to read all the entries.

os/file_info.go

package main

import (
n]_Og"

" "

os

func init() {
log.SetFlags(Q)
log.SetPrefix("» ")

}

func DemoReaddir() {
f/ err .= OS.Open("_")
if err != nil {

log.Fatalf("failed opening directory: %s", err)

}
defer f.Close()

fileInfos, err := f.Readdir(Q)
if err != nil {

log.Fatalf("failed reading directory: %s", err)

}
for _, finfo := range filelnfos {
log.Printf("Name: %s, Size: %db", finfo.Name(), finfo.Size())
}
}
func DemoReaddirnames() ({
f, err := os.0Open(".")
if err != nil {

log.Fatalf("failed opening directory: %s", err)

1
defer f.Close()

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

0 N O O B W N~

NN N N N F S S s s
B WON 2O © 03O0 O b WO N O O

0s
names, err := f.Readdirnames(Q)
if err != nil {
log.Fatalf("failed reading directory:
}
for _, name := range names {
log.Printin(name)
}
}

func main() {

%s", err)

277

DemoReaddir ()
DemoReaddirnames()
}
Output:
» Name: .gitignore, Size: 20b
» Name: demo.txt, Size: 72b
» Name: expand.go, Size: 537b
» Name: expand.txt, Size: 1209b
» Name: file_info.go, Size: 785b
» Name: file_info.txt, Size: @b
» Name: file_io.go, Size: 1824b
» Name: file_io.txt, Size: 349b

» Name: inspecting, Size: 2081952b
» Name: inspecting.go, Size: 1018b
» Name: inspecting.txt, Size: 360@b
» Name: Makefile, Size: 315b

» Name: managing_files.go, Size: 1076b
» Name: moving.go, Size: 920b

» Name: moving.txt, Size: 433b

» Name: permissions.go, Size: 474b
» Name: stdio.go, Size: 645b

» Name: stdio.txt, Size: 78b

» .gitignore

» demo.txt

» expand.go

» expand.txt

» file_info.go

» file_info.txt

25
26
27
28
29
30
31
32
33
34
35
36

0 < O O & W N =~

U S YN
0 3 O O b ON~=~~ O O

0s 278

» file_io.go

» file_io.txt

» inspecting

» inspecting.go
» inspecting.txt
» Makefile

» managing_files.go
» moving.go

» moving.txt

» permissions.go
» stdio.go

» stdio.txt

Process Creation, Management, and Signals

The os package has a few different ways to deal with processes. You can create new
processes, provide them input and capture their output. You can manage existing
processes, sending them signals, and you can wait on them to finish. All pretty
standard stuff.

Let’s look at os/exec first. This is your basic use case, running an external process,
maybe providing some input, and reading the output.

os/exec.go

package main

import (
"ion
"log"
"os/exec"

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

func DemoExec() {
cmd = exec.Command("date", "-u")
out, err := cmd.Output()
if err != nil {
log.Printf("failed running command: %s", err)

0s 279

19 }

20 log.Printf("date -u: %s", out)
21}

22

23 func DemoExecInput() {

24 emd := exec.Command("ruby", "-r", "active_support/all")
25

26 wr, err := cmd.StdinPipe()

27 if err != nil {

28 log.Fatalf("failed getting stdin: %s", err)
29 }

30

31 rd, _ := cmd.StdoutPipe()

32 if err != nil {

33 log.Fatalf("failed getting stdout: %s", err)
34 }

35

36 err = cmd.Start()

37 if err != nil {

38 log.Fatalf("failed starting command: %s", err)
39 }

40 defer cmd.Wait()

41

42 io.WriteString(wr, "puts 1.hour;")

43 io.WriteString(wr, "puts 1.day;")

44 wr.Close()

45

46 hour := make([]byte, 5)

47 rd.Read(hour)

48 log.Printf("41.hour: %s", hour)

49

50 day := make([]byte, 6)

51 rd.Read(day)

52 log.Printf("1.hour: %s", day)

53}

54

55 func main() {

56 DemoExec ()

57 DemoExecInput()

58 '}

© 00 9 O U b W N =

N B 1l sl sy
© ©W 0O 1 O O b W N~ 0O

0s 280

Output:

» date -u: Tue 24 Nov 2015 14:00:59 UTC
» 1 .hour: 3600
» 1.hour: 86400

Other things can be done with the API found in the base os package. It’s more
tailored to dealing with existing processes versus starting new ones. For example,
if you wanted to build your own htop clone, youw’ll want use the functions exposed
in os.

We’ll look at using signals to control the process as well. When handling signals,
there are 3 steps:

1. Make a channel of os.signal
2. Call signal.Notify with your channel the signals you care about
3. Start a goroutine which pulls from the channel and deals with the signals

Using a single channel and goroutine with a switch statement is a simple under-
standable way to process the signals.

os/processes.go

package main

import (
"log"
"og"
"os/signal"
"sync/atomic"
"syscall"
"time"

)

var (

sighals = make(chan os.Signal, 1)
val int32

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
90
o1
52
53
o4

0s

signal .Notify(signals, syscall.SIGUSR1, syscall.SIGUSR2)

go handleSignals()

func handleSignals() {

for signal := range signals {

func main() {

switech signal {

case syscall.SIGUSR1:
log.Println("got USR1, adding 2")
atomic.AddInt32(&val, 2)

case syscall.SIGUSR2:
log.Printin("got USR2, subtracting 1")
atomic.AddInt32(&val, -1)

}
log.Printf("val: %d", val)

o0s.Getpid()

P, — =

ticker
for now

os.FindProcess(os.Getpid())

= time.Tick(1 * time.Second)

.= range ticker {

switch {

case val > 5:
p.Kill()

case now.Second()%2 == Q: // even
p.Signal(syscall.SIGUSR1)

case now.Second()%2 == 1: // odd
p.Signal(syscall.SIGUSR2)

281

0 = O O b W N =~

B | S s sy s
O 00 3 O O b W DN~ O

0 I O O b W N =~

(AN
N O O

0s 282

Output:

» got USR1, adding 2

» val: 2

» got USR2, subtracting 1
» val: 1

» got USR1, adding 2

» val: 3

» got USR2, subtracting 1
» val: 2

» got USR1, adding 2

» val: 4

» got USR2, subtracting 1
» val: 3

» got USR1, adding 2

» val: b

» got USR2, subtracting 1
» val: 4

» got USR1, adding 2

» val: 6

signal: killed

Users

Finally, we’ll look at the os/user package, which lets you query the system about the
users on it. You can lookup users by name or id, or just get the current user. It’s
nothing to spectacular, but it’s functionality you can use, so let’s check it out.

os/user.go

package main

import (
"log"

"os/user"”

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

O O B W N~

0s

func DemoCurrent() {
u, _ := user.Current()
log.Printf("%#*v", u)

func DemolLookup() {
u, _ := user.Lookup("nobody")
log.Printf("%#v", u)

func DemolLookupId() {
u, _ := user.LookupId("1")
log.Printf("%#v", u)

func main() {

283

DemoCurrent()
DemolLookup()
DemoLookupId()
}
Output:
» &user .User{Uid:"501", Gid:"20", Username:"darkhelmet", Name:"Daniel Huckstep",\
HomeDir:"/Users/darkhelmet"}
» &user.User{Uid:"4294067294", Gid:"4294967294", Username:"nobody", Name:"Unpriv\
ileged User", HomeDir:"/var/empty"}
» &user .User{Uid:"1", Gid:"1", Username:"daemon", Name:"System Services", HomeDi\
r:"/var/root"}

©O© 00 N O U b W N =

N N B s s s s
=, O O 00 3 0O O b W N =~ O

path

The path package is used for dealing with strings representing slash separated paths.

Okay, so why is there path/filepath as well? path assumes a forward slash (/) as the
separator and doesn’t make any other assumptions, like what is used to separate
lists of paths. The path/filepath package deals with different separators for different
operating systems. For example, Windows uses the backslash, where the rest of the
world uses a forward slash.

It can also deal with lists of paths and their operating system specific separators,
and has a way to recursively walk a directory structure.

The APIs are very straightforward, so let’s dive right in.

path

path/path.go

package main

import (
"flag"
"log"
"path"
)

func main() {
var p string
flag.StringVar(&p, "path", "./foo/../baz.gif", "the path to examine")
flag.Parse()

log.Printf("p: %s", p)

log.Printf("Base(p): %s", path.Base(p))

log.Printf("Clean(p): %s", path.Clean(p))

log.Printf("Dir(p): %s", path.Dir(p))

log.Printf("Ext(p): %s", path.Ext(p))

log.Printf("IsAbs(p): %t", path.IsAbs(p))
log.Printf("Join(\"/fizz/bin\", p): %s", path.Join("/fizz/bin", p))

22
23
24
25
26
27
28
29
30
31

0 N O O B~ W N -

N N B s s s s
, O O 0 O O b W N~ O O

path 285

matched, err := path.Match("/*/bin/*.gif", p)
log.Printf("Match(\"/*/bin/*.gif\", p): %t, %v", matched, err)
matched, err = path.Match("/*/bin/*.gif", path.Join("/fizz/bin", p))
log.Printf("Match(\"/*/bin/*.gif\", Join(\"/fizz/bin\", p)): %t, %v", matched, \
err)
dir, file := path.Split(p)
log.Printf("Split(p): %s, %s", dir, file)
}

Pretty easy right? Try running it with different arguments for -path to see what some
of the results are.

path/filepath

How aboutpath/filepath? Again, run this with different arguments for -path, as some
operations need a file to actually exist, like EvalSymlinks.

path/filepath.go

package main

import (
"flag"
"log"
"og™
"path/filepath"
)
var (
p string
walk string
ignore string
ignoreList []string
)

type Walker struct {
NumDirs int

NumFiles int

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
o5
56
o7
o8
59
60
61
62
63

path 286

func (w *Walker) Visit(path string, info os.Filelnfo, err error) error ({
if info.IsDir() {
base := filepath.Base(path)

for _, dir := range ignorelList {
if base == dir {
return filepath.SkipDir
}
}
w.NumDirs++
} else {
w.NumFiles++
}
return nil
}
func init() {
flag.StringVar(&p, "path", "./foo/../baz.gif", "the path to examine")
flag.StringVar(&walk, "walk", "..", "the path to walk")
flag.StringVar(&ignore, "ignore", ".git:.hg", "directories to ignore")

flag.Parse()

ignoreList = filepath.SplitList(ignore)

func main() {
log.Printf("p: %s", p)

abs, err := filepath.Abs(p)
log.Printf("Abs(p): %s, %v", abs, err)
log.Printf("Base(p): %s", filepath.Base(p))
log.Printf("Clean(p): %s", filepath.Clean(p))
log.Printf("Dir(p): %s", filepath.Dir(p))

sym, err := filepath.EvalSymlinks(p)
log.Printf("EvalSymlinks(p): %s, %v", sym, err)
log.Printf("Ext(p): %s", filepath.Ext(p))
log.Printf("FromSlash(p): %s", filepath.FromSlash(p))

glob, err := filepath.Glob("*.go")

log.Printf("Glob(\"*.go\"): %s, %v", glob, err)

log.Printf("IsAbs(p): %t", filepath.IsAbs(p))
log.Printf("Join(\"/fizz/bin\", p): %s", filepath.Join("/fizz/bin", p))

64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84

, O O 00 9 O O b W N+~

(RSN

path

matched, err := filepath.Match("/*/bin/*.gif", p)
log.Printf("Match(\"/*/bin/*.gif\", p): %t, %v", matched, err)

287

matched, err = filepath.Match("/*/bin/*.gif", filepath.Join("/fizz/bin", p))

log.Printf("Match(\"/*/bin/*.gif\", Join(\"/fizz/bin\", p)): %t,

err)

rel, err := filepath.Rel("/batman", "/path/file.go")
log.Printf("Rel(\"/batman\", \"/path/file.go\"): %s, %v", rel, err)

dir, file := filepath.Split(p)
log.Printf("Split(p): %s, %s", dir, file)

list := filepath.SplitList("/foo.go:/bar.go:/baz.go")
log.Printf("SplitList(\"/foo.go:/bar.go:/baz.go\"): %s", list)

var w Walker

filepath.Walk("..", (&w).Visit)
log.Printf("found %d directories and %d files", w.NumDirs, w.NumFiles)

%v'", matched, \

find

Using filepath.walk, and of course some other packages, we can replicate the
functionality of the UNIX find utility. It’s far from perfect, not exact, and obviously
doesn’t cover everything that find has to offer, but it’s a start and you can see how

you could implement the rest.

path/find.go

package main

import (
"flag"
"fmt"
"og"
"path/filepath"
)

type FilterFunc func(path string,
type FilterChain []FilterFunc

info os.Filelnfo, err error) bool

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
952
53

path 288

var (
root string
ftype, name string
printNewline, print@ bool
filters FilterChain
output = func(s string) {}

)

func init() {

flag.StringVar(&ftype, "type", , "f for file, d for directory")
flag.StringVar(&name, "name", "", "find files/directories that match")
flag.BoolVar(&printNewline, "print", false, "print elements to stdout with newl\

ines separators")

flag.BoolVar(&print@, "print@", false, "print elements to stdout with NULL sepa\
rators")

flag.Parse()

root = flag.Arg(Q)

if root == "" {

root = "."

}

}

func setupPrinting() {

if printNewline ({
output = func(s string) { fmt.Println(s) }
} else if printo {
output = func(s string) { fmt.Printf("%s\x00", s) }
} else {
output = func(s string) { fmt.Println(s) }
}
}
func nameFilter(path string, info os.FileInfo, err error) bool {

matched, err := filepath.Match(name, filepath.Base(path))
if err != nil {

fmt.Printf("failed matching: %s", err)

os.Exit(1)
}

return matched

54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

path

func fileFilter(path string, info os.FileInfo, err error) bool {

return !info.IsDir()

func directoryFilter(path string, info os.Filelnfo, err error) bool {

return info.IsDir()

func ok(path string, info os.Filelnfo, err error) bool {
return true

func setupFilters() {

switch ftype {
case "f":
filters = append(filters, fileFilter)
case "d":
filters = append(filters, directoryFilter)
}
if name != "" {
filters = append(filters, nameFilter)
}
if len(filters) == 0 {
filters = append(filters, ok)
}
}
func walker(path string, info os.Filelnfo, err error) error {
for _, filter := range filters {
if !filter(path, info, err) {
return nil
}
}
output(path)
return nil
}
fune main() {

setupPrinting()

96
o7
98

path

setupFilters()
filepath.Walk(root, walker)

290

reflect (wip)

regexp

The regexp package deals with, you guessed it, regular expressions.

First, you must compile an expression. You’ll probably want to compile a package
level variable using regexp.MustCompile, Which will panic immediately at runtime.
This ensures that you’re only compiling the regexp once, and you avoid checking
the compile error every time.

Once you have your compiled expression, there are a whole slew of methods
following a pattern. They all start with Find. Find on its own works on bytes and
finds the first occurrence.

» Methods with A11 return all matching things instead of just the first.
* Methods with string work on string inputs and return string matches.
* Methods with 1ndex returns indexes of matches.

* Methods with submatch gives you information about capture groups in the
regexp.

There are also methods to replace matches, work on io.RuneReaders, and split strings.

The syntax is generally compatible with other languages like Ruby, Python, and
Perl, but not 100%. It gives up some things in favor of safe/predictable performance
characteristics. The regexp engine is based around re2’° and more information
about the performance bits can be found here’'. For full syntax, look at the
regexp/syntax package. You can optionally work with the POSIX compatible syntax
subset by compiling your regexp with compilePoSIX.

The regexp/syntax package also provides ways to work with the regexp parse tree.

Matching

Matching is the basic thing everybody does with regular expressions, and it’s super
simple, so naturally the example is short.

70http://swtch.c0m/~1rsc/regexp/regexp1.html
71http://swtch.com/~rsc/regexp/regexp1.html

http://swtch.com/~rsc/regexp/regexp1.html
http://swtch.com/~rsc/regexp/regexp1.html
http://swtch.com/~rsc/regexp/regexp1.html
http://swtch.com/~rsc/regexp/regexp1.html

0 I O O b W N =

OIS T S G G i G G
, O O 00 9 0O O b W N~ OO O

B W N -

regexp 293

regexp/matching.go

package main

import (
"bytes"
"log"
"regexp"

)

var (

universes = regexp.MustCompile((batman and robin)|(thor and loki)™)

heroes = "batman and robin"

funec main() {
log.Println(universes.MatchString(heroes))
log.Println(universes.Match([]byte(heroes)))
rr := bytes.NewBufferString(heroes)
log.Printin(universes.MatchReader(rr))

log.Println(universes.MatchString("batman and loki"))

Output:

2014/01/13 21:06:31 true
2014/01/13 21:06:31 true
2014/01/13 21:06:31 true
2014/01/13 21:06:31 false

Indexes

There’s only so far you can get with knowing only whether the entire string matches
the regexp. The next step is finding the indexes of matches.

I won’t bother showing the non-string functions, since they operate the same as the
ones using strings, they just use byte slices.

0 I O O b W N =

NN N N P S s s s
W N, O © 03O0 O b W NN~ OO O

regexp 294

regexp/indexes.go

package main

import (
"log"
||I_egexpll
)
var (

eqgn = "8x * 2y - 9 /3 / 5 * 5"
regexp.MustCompile(~\w+ * \w+")

mul

div = regexp.MustCompile(\w+ / \w+")

funec main() {
fmul := mul.FindStringIndex(egn)
log.PrintIn(fmul, egn{fmul[Q]:fmul[1]])

divs := div.FindAllStringIndex(egn, -1)
log.Println("divs", divs)
for index, pair := range divs {
log.Printf("match %d: %s", index, egn[pair[0@]:pair[1]])

Output:

2014/01/13 21:06:17 [@ 7] 3x * 2y
2014/01/13 21:06:17 divs [[10 15]]
2014/01/13 21:06:17 match @: 9 / 3

In this example, note that FindA11StringIndex with the div regexp only matches 1
thing despite there being two division operations in the equation. This is because
the two operations overlap with the 3. It gets picked up as part of the first operation,
but then the regexp starts reading at the space after 3 and can’t match a full
division, so you only get one match.

0 N O O B~ W N -

W W W W W W WwNDNDNNDMDNDNDNDDNDDNDNDNAES-A PP,
O O WON-A,O O© 00 N0 Uk N © 0 N0 O N~ OO ©

regexp 295

Capture Groups and Submatches

Submatches are the way to extract capture groups out of a string given a regexp.
We’ll parse an nginx log line.

regexp/submatches.go

package main

import (
"log"
||regexp||

type Matcher struct {
*regexp .Regexp

func (m *Matcher) FindAllStringSubmatchMap(s string) map[string]string {
pairs := make(map[string]string)

// Ignore the first one, it's the "whole" match
subexpNames := m.SubexpNames()[1:]
submatches := m.FindAllStringSubmatch(s, -1)
if submatches == nil {
return pairs

// Ignore the first one, it's the "whole" match
for index, submatch := range submatches[0][1:] {
name := subexpNames[index]
pairs[name] = submatch

}

return pairs

var (
nginxLogFormat = &Matcher{regexp.MustCompile((?P<RemoteAddr>\S+) (?P<Host>\S+)\
- \[(?P<Time> [A\]]+)\] "(?P<Method>\S+) (?P<Path>\S+) [A"]+" (?P<Status>\d+) (?\
P<Bytes>\d+) "(?P<UserAgent>[A"]+)" "(?P<Referer>[A"]+)" (?P<RequestTime>\d+\.\d\
+))}
// log_format timed_combined '$remote_addr $host $remote_user [$time_local] "$r\
equest" $status $body_bytes_sent "$http_referer" "$http_user_agent" $request_tim\

37
38
39
40
41
42
43
44
45
46
47
48
49
950

0 I O O b W N =~

(AN
N O O

regexp 296

logLine = “74.86.158.107 example.com - [01/Dec/2013:18:07:26 -0700] "GET /en/la\

nding HTTP/1.1" 302 108 "-" "Mozilla/5.0+(compatible; UptimeRobot/2.0; http://ww\
w.uptimerobot.com/)" 0.087"
)

func main() {
log.Printf("NumSubexp: %d", nginxLogFormat.NumSubexp())
subexpNames := nginxlLogFormat.SubexpNames()
log.Printf("SubexpNames: %v", subexpNames)
submatches := nginxlLogFormat.FindAl1StringSubmatch(logLine, -1)
log.Println(submatches)
log.Println(nginxLogFormat.FindAllStringSubmatchMap(logLine))

Output:

2014/01/13 21:06:02 NumSubexp: 10

2014/01/13 21:06:02 SubexpNames: [RemoteAddr Host Time Method Path Status Bytes\
UserAgent Referer RequestTime]

2014/01/13 21:06:02 [[74.86.158.107 example.com - [Q1/Dec/2013:18:07:26 -0700] "\

GET /en/landing HTTP/1.1" 302 108 "-" "Mozilla/5.0+(compatible; UptimeRobot/2.0;\
http://www.uptimerobot.com/)" ©.087 T74.86.158.107 example.com @1/Dec/2013:18:07\
:26 -QT00 GET /en/landing 302 108 - Mozilla/5.0+(compatible; UptimeRobot/2.0; ht\

tp://www.uptimerobot.com/) 0.087]]

2014/01/13 21:06:02 map[Host:example.com Path:/en/landing Referer:Mozilla/5.0+(c\

ompatible; UptimeRobot/2.0; http://www.uptimerobot.com/) RemoteAddr:74.86.158.10\

T Time:01/Dec/2013:18:07:26 -0700 Method:GET Status:302 Bytes:108 UserAgent:- Re\

questTime:0.087]

Replace

Replacing things in text is something everybody does with regular expressions, so

let’s look at that.

0 I O O b W N =

N B 1 1 |l |
© ©W 0O 1 O O b W N~ O O

O O b W N =~

regexp 297

regexp/replace.go

package main

import (
"log"
"regexp"
"strings"
)
var (
redaction = regexp.MustCompile((password|token)=(\w+)")
pairs = regexp.MustCompile((\w+)=")
loglLine = "2013-12-02T02:40:57.049407+00:00 app: at=info method=POST path=/lo\

gin token=secret host=example.com password=sekrit connect=1ms service=82ms statu\
s=200 bytes=809"
)

func main() {
log.Printin(redaction.ReplaceAllString(logLine, "$1=[REDACTED]"))
log.Printin(pairs.ReplaceAllStringFunc(loglLine, strings.ToUpper))

Output:

2014/01/13 21:05:08 2013-12-02T02:40:57.049407+00:00 app: at=info method=POST pa\

th=/login token=[REDACTED] host=example.com password=[REDACTED] connect=1ms serv\
ice=82ms status=200 bytes=809

2014/01/13 21:05:08 2013-12-02T02:40:57.049407+00:00 app: AT=info METHOD=POST PA\

TH=/1login TOKEN=secret HOST=example.com PASSWORD=sekrit CONNECT=1ms SERVICE=82ms\
STATUS=200 BYTES=809

io

The regexp package can also deal with io things directly, specifically the io.RuneReader
interface. There are problems with this, in that it obviously has to read data, which
changes the state of the reader. If that’s not a problem for you and using the reader
makes sense, continue on. There is a limited set of methods, but they can be useful.

0 N O O B~ W N -

NN N B 1 1 |l s |l
N P, © © 0 10O Ol b WO N~ O ©

regexp

regexp/reader.go

298

package main

import (
"bufio"
"log"
"os"
"regexp"
)
var (
function = regexp.MustCompile(func (\w+))
)
funec main() {
file, err := os.Open("reader.go")
if err != nil {
log.Fatalf("failed opening file: %s", err)
}
defer file.Close()
rr := bufio.NewReader(file)
log.Println(function.MatchReader(rr))
}
Output:

2014/01/13 21:17:59 true

runtime

The runtime package is your window into the Go runtime. Yes, even though it’s a
compiled language, there’s still a runtime under the covers.

The big thing the runtime controls is the goroutines, so a lot of the functions deal
with that. It also keeps track of some metrics, can give you information about
memory usage, and a few other little things.

Some of the functions aren’t really supposed to be used by you, the average non-Go
runtime programmer, and are commented as such.

While not really specific to the runtime package, there are also a few environment
variables that you can use to control the runtime itself. Some of them do have
functions to set values while your program is running. The package docs do a good
job of covering their use, and you probably won’t need to use them unless you hit
a specific situation. If you find yourself in one of those fun debugging scenarios,
check the package docs.

Some of these are difficult to demo, but they are equally rarely used. Youw’ll probably
run into a problem and know the feature you need to fix it. In that case, check the
runtime package.

There are a few sub-packages as well to solve more specific problems: runtime/debug
and runtime/pprof.

Introspection

You can learn a few things about your program, like the compiler, language version,
GOOS, GOARCH, and GOROOT.

0 I O O b W N =

B) S | s s sl
O 00 3 O O b W N ~=~ O O

O = W N =

runtime

runtime/introspection.go

300

package main

import (
"log"
"runtime"

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

func main() {
log.Printf("GO0S:\t%s", runtime.GOOS)
log.Printf("GOARCH:\t%s", runtime.GOARCH)
log.Printf("GOROOT :\t%s", runtime.GOROOT())
log.Printf("Compiler:\t%s", runtime.Compiler)
log.Printf("Version:\t%s", runtime.Version())

}

Output:

» GOOS: darwin

» GOARCH: amd64

» GOROOT : /Users/darkhelmet/local/go
» Compiler: gc

» Version: gol.3

Goroutines

Need a goroutine to stay on one CPU? Need to exit from a goroutine immediately?
Need to see how many goroutines are running right now? The runtime package can

do that.

LockOSThread is useful if you’re interfacing with a C library that requires you stay
on the same thread, like the VLC library. Keep in mind this isn’t the same as CPU

affinity.

0 N O O B~ W N -

W W W W W W WwWwWwwowNDNDNDNDNDMNNDNDNDNDNNAES =P,
© 00 9 O O b WWN~~A~O © 03O0 Ol WWN-»O © 0 3O Ol i OWN O O

runtime

runtime/goroutines.go

301

package main

import (
"log"
"runtime"

fune init() {
log.SetFlags(9)
log.SetPrefix("» ")

func main() {
log.Printf("GOMAXPROCS: %d", runtime.GOMAXPROCS(0))
runtime.GOMAXPROCS (runtime.NumCPU()) // Use the whole CPU
log.Printf("GOMAXPROCS: %d", runtime.GOMAXPROCS(Q))

log.Printf("There are %d goroutines running", runtime.NumGoroutine())

done := make(chan bool)
go func() {
log.Println("in the goroutine")

runtime.LockOSThread()
log.Printin("locked to this 0S thread")
runtime.Gosched() // Let the CPU go

runtime.UnlockOSThread()
log.PrintIn("unlocked")
runtime.Gosched() // Let the CPU go

// runtime.Goexit() // Will cause a deadlock

done <- true

Q)

log.Printf("There are %d goroutines running", runtime.NumGoroutine())
<-done

N O O B W N =

0 N O O b W N =

N N B s s s s
, O O 00 39 0O O b W N~ OO O

runtime

Output:

302

» GOMAXPROCS: 1
» GOMAXPROCS: 8

» There are 4 goroutines running
» There are 5 goroutines running

» in the goroutine

» locked to this 0OS thread

» unlocked

Memory

If you need to see the current state of memory, Go lets you get at that. You can also

force a GC run or set a finalizer on something.

Run this example a number of times to watch the runtime.MemStats values change.

runtime/memory.go

package main

import (
"fmt"
"log"
"runtime"
)

func init() {
log.SetFlags(9)

log.SetPrefix("» ")

type movie struct {
Title string

func (m *movie) String() string {
return fmt.Sprintf("Movie{%s}", m.Title)

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52

O O B W N -

runtime

func DemoFinalizers() {

logging := make(chan string)

rockOfAges := &movie{"Rock of Ages"}
runtime.SetFinalizer(rockOfAges, func(m *movie) {

logging <- fmt.Sprintf("%s is being cleaned up", m)

close(logging)
1)

rockOfAges = nil
runtime.GC() // Force a GC so the finalizer runs

for msg := range logging {
log.PrintIn(msg)

func DemoMemstats() {

var ms runtime.MemStats

runtime.ReadMemStats(&ms)
log.Printf("Alloc:\t%db", ms.Alloc)
log.Printf("TotalAlloc:\t%db", ms.TotalAlloc)
log.Printf("Mallocs:\t%d", ms.Mallocs)
log.Printf("Frees:\t%d", ms.Frees)
log.Printf("PauseTotalNs:\t%dns", ms.PauseTotalNs)

func main() {

DemoFinalizers()
DemoMemstats()

303

Output:

Movie{Rock of Ages} is being cleaned up
Alloc: 126920b

TotalAlloc: 131240b

Mallocs: 108

Frees: 20

PauseTotalNs: 159355ns

0 = O O & W N =~

W W W W W W WHNDDNDDNDNDNNDMNDNDDNDDNDNDAES AP P s
O O b O N PO O 00 N0 0 WONAO O N0 Ok N~ ©

runtime

Callstack

If you want to inspect the callstack, runtime can make that happen.

runtime/callstack.go

package main

import (

func

func

func

func

func

func

"log"
"runtime"

init() {
log.SetFlags(9)
log.SetPrefix("» ")

PrintStack() {
stack := make([]byte, 1024)
i := runtime.Stack(stack, false)
log.Printf("%s", stack[0:i])

cO {
for i :=0; i < 6; i++ {

log.Printin(runtime.Caller(i))

BO) {
cO)

AQ)
B()

main() {
PrintStack()

AQ)

o N O O P+ W N =

B) S s s
<N O O WO N =~ OO ©

O© 00 9 O O b W N =

runtime 305

Output:

» goroutine 16 [running]:

main.PrintStack()
/Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscript/code/runtime/ca\

llstack.go:15 +0x76

main.main()
/Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscript/code/runtime/ca\

llstack.go:34 +0xla

» 8681 /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscript/code/runt\

ime/callstack.go 21 true

» 9034 /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscript/code/runt\

ime/callstack.go 26 true

» 9066 /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscript/code/runt\

ime/callstack.go 30 true

» 9103 /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscript/code/runt\

ime/callstack.go 35 true

» 73850 /Users/darkhelmet/local/go/src/pkg/runtime/proc.c 247 true

» 84032 /Users/darkhelmet/local/go/src/pkg/runtime/proc.c 1445 true

runtime/debug

This package has some utility functions to make your life easier when debugging
interesting things. It also has some functions to change parts of the runtime that
should probably only be used when you are debugging something or if you really
know what you’re doing. You can change when the GC runs for example, which isn’t
something you normally want to mess with.

As with the other examples, this is pretty simple, and there’s other things you can
do, but you really need a reason to be poking around in here. It’s not a package
yowll be in a lot.

runtime/debug.go

package main

import (
"flag"
"log"
"runtime/debug"

var (

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

runtime

gcPercent = flag.Int('"gc", 100, "garbage collection target percentage")

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

}
func C() {
debug.PrintStack()
}
func B() {
c()
}
funec A() {
B()
}

func DemoGCStats() {
var gc debug.GCStats
debug.ReadGCStats(&ge)
log.Printf("LastGC:\t%s", gc.LastGC)
log.Printf("PauseTotal: \t%s", gc.PauseTotal)
log.Printf("NumGC:\t%d", gc.NumGC)
log.Printf("Pause:\t%s", gc.Pause)

func main() {
flag.Parse()
debug.SetGCPercent (*gcPercent)

AC)
DemoGCStats()

306

0 I O O b W N =

N B 1 1 |l |
© ©W 0O 1 O O b W N~ O O

runtime 307

Output:

/Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscript/code/runtime/deb\
ug.go:19 (0x206a)

C: debug.PrintStack()
/Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscript/code/runtime/deb\
ug.go:23 (0x208a)

B: C()
/Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscript/code/runtime/deb\
ug.go:27 (0x20aa)

A: B()
/Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscript/code/runtime/deb\
ug.go:42 (0x2367)

main: A()

/Users/darkhelmet/local/go/src/pkg/runtime/proc.c:247 (0x1209a)
main: main-main();

/Users/darkhelmet/local/go/src/pkg/runtime/proc.c:1445 (0x14860)
goexit: runtime-goexit(void)

» LastGC: 2014-07-01 23:39:07.601611649 -0600 MDT
» PauseTotal: 189.501us

» NumGC: 3

» Pause: [51.426us 45.349us 92.726us]
runtime/pprof

This package can do performance tracing, and write it out so that the pprof tool can
read it.

As per the docs, this is pretty much useless on OSX, so run it on Linux if you can.
It’s also not a very exciting program, so the profiles are similarly unexciting.

0 N O O B~ W N -

DWW W W W W W W WwWNDNDDNDDNDDNNDNDNDNDNDNDDNDAESE AP, 2 s s
© © 00 9 O Ol b W N O O© W 3O O b OO O 03O0 O b OWN O O

runtime

runtime/pprof.go

308

package main

import (
"log"
"og"
"runtime/pprof"
)

const Flags = 0s.0_CREATE | os.O_TRUNC | os.O_WRONLY

func DumpHeap(name string) {
file, err := os.OpenFile(name, Flags, 0644)
if err != nil {
log.Fatalln(err)
}
defer file.Close()
pprof.Lookup("heap").WriteTo(file, Q)

func main() {
file, err := os.OpenFile("cpu.prof", Flags, 0644)
if err != nil {
log.Fatalln(err)
}
defer file.Close()
err = pprof.StartCPUProfile(file)
if err != nil {
log.Fatalln(err)

}
defer pprof.StopCPUProfile()

DumpHeap("before.heap")
fib = []int{0, 1}

for i := 0; i < 1000000; i++ {
fib = append(fib, fib[i]+fib[i+1])

DumpHeap("after.heap")

0 I O O b W N =~

sort

The sort package handles, you guessed it, sorting things. It can sort anything that
follows the interface it defines, which is a simple 3 method interface. All it needs
are:

* Len() int to provide the number of elements in the collection

* Less(i, j int) bool to return true if you want the element at index i to appear
before the element at index j.

* swap(i, j int) naturally swaps the elements at the given indexes.

Normally you’d have to define these methods yourself on your own data structures,
but the sort package provides some helpers to sort slices of float64, int, and string
values.

It can also easily sort in reverse order, do a stable sort,”> and also implements a
generic binary search function, as well as binary sort functions for fioat64, int, and
string slices.

One last important note, is that the sorting happens in place. Copy your data if you
need to preserve the original order.

Basic Sorting

We’ll first look at using the builtin helpers for the 3 simple types, and then building
your own data structure which implements the interface.

sort/basic_sorting.go

package main

import (
"log"
"eort"

)

type Question struct {

72 http://en.wikipedia.org/wiki/Sorting_algorithm#Stability

http://en.wikipedia.org/wiki/Sorting_algorithm#Stability

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

sort

Q, A string
PositionOnExam int

type Exam []Question

func (e Exam) Len() int {
return len(e)

func (e Exam) Less(i, j int) bool ({
return e[i] .PositionOnExam < e[j].PositionOnExam

func (e Exam) Swap(i, j int) {
e[i], e[j] = e[j], eli]

func sortInts() {
i := []int{5, 2, 9, 8, T}
log.Println(i, sort.IntsAreSorted(i))
sort.Ints(i)
log.Println(i, sort.IntsAreSorted(i))

func sortStrings() {

s := []string{"robin", "batman", "thor", "loki", "captain america"}

log.Println(s, sort.StringsAreSorted(s))
sort.Strings(s)
log.Printin(s, sort.StringsAreSorted(s))

func sortFloats() {
f := []float64{1.5, 2.3, 0.5, 0.4}
log.Printin(f, sort.Float64sAreSorted(f))
sort.Float64s(f)
log.Println(f, sort.Float64sAreSorted(f))

func sortCustomCollection() {
exam := Exam{

{Q: "How much wood...", A: "A lot", PositionOnExam: 4},

51
52
33
o4
55
56
S7
58
959
60
61
62
63
64
65
66

0 I O O b W N =

(AN
N »~ O ©

sort 311

{Q: "When did WWII start?", A: "1939", PositionOnExam: 5},
{Q: "What color is the sky?", A: "Blue", PositionOnExam: 2},
{Q: "Who builds the iPhone?", A: "Apple", PositionOnExam: 1},
{Q: "Why is Go awesome?", A: "Lots of reasons", PositionOnExam: 3},
}
log.Println(exam, sort.IsSorted(exam))
sort.Sort(exam)
log.Printin(exam, sort.IsSorted(exam))

func main() {
sortInts()

sortStrings()
sortFloats()
sortCustomCollection()
}
Output:

2014/01/13 23:36:09
2014/01/13 23:36:09
2014/01/13 23:36:09 [robin batman thor loki captain america] false

[5 298 7] false
[
[
2014/01/13 23:36:09 [batman captain america loki robin thor] true
[
[

257 8 9] true

2014/01/13 23:36:09 [1.5 2.3 0.5 0.4] false

2014/01/13 23:36:09 [0.4 ©.5 1.5 2.3] true

2014/01/13 23:36:09 [{How much wood... A lot 4} {When did WWII start? 1939 5} {Ww\
hat color is the sky? Blue 2} {Who builds the iPhone? Apple 1} {Why is Go awesom\
e? Lots of reasons 3}] false

2014/01/13 23:36:09 [{Who builds the iPhone? Apple 1} {What color is the sky? BI1\
ue 2} {Why is Go awesome? Lots of reasons 3} {How much wood... A lot 4} {When di\
d WWII start? 1939 5}] true

Advanced Sorting

When I sat down to write this example, I started to go ahead with an idea I had
awhile ago, then quickly realized one of the examples that comes with the Go source
distribution is exactly what I wanted. So let’s just use that instead.

© 00 9 O U b W N =

NN N N N S RS S L sy
B WO N 2O © 0010 O i O N O

sort 312

As per the introduction, this code is licensed differently than the other code I've
written myself. That being said, this code isn’t exact, I’'ve modified it to fit my go
run file.go Style of examples.

In their example, an API is designed which does two things:

* Makesreading the code incredibly easy. It’s obvious what By (name) . Sort(planets)

* Reduces the amount of code you have to write, by requiring only the com-
parison Less(i, j int) bool function to be implemented to change the sorting
behaviour.

It’s a pretty slick solution, and I’'ve seen other things floating around the community
as examples, and it’s essentially what I wanted to showcase.

sort/advanced_sorting.go

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package main

import (
"log"
"eort"

type earthMass float64
type au float64

type Planet struct {
name string
mass earthMass
distance au

type By func(pil, p2 *Planet) bool

func (by By) Sort(planets []Planet) {
ps := &planetSorter{

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
o4
55
56
o7
58
59
60
61
62
63
64
65
66

sort
planets: planets,
by: by,
}
sort.Sort(ps)
}

type planetSorter struct {
planets []Planet

by By

func (s *planetSorter) Len() int {

return len(s.planets)

func (s *planetSorter) Swap(i, j int) {

s.planets[i], s.planets[j] = s.planets[j], s.planets[i]

func (s *planetSorter) Less(i, j int) bool {

return s.by(&s.planets[i], &s.planets[j])

var planets = []Planet({

{"Mercury", ©0.055, 0.4},
{"Venus", ©0.815, 0.7},
{"Earth", 1.0, 1.0},
{"Mars", ©.107, 1.5},

}

func main() {

// Closures that order the Planet structure.

name := func(pl, p2

*Planet) bool

return p1l.name < p2.name

}
mass := func(pl, p2

*Planet) bool {

return pl.mass < p2.mass

}

distance := func(p1,

p2 *Planet) bool {

return p1l.distance < p2.distance

}

decreasingDistance

:= func(pl, p2 *Planet) bool {

313

67
68
69
70
71
T2
73
T4
)
76
T
78
79
80
81
82

0 N O O B~ W N -

sort 314

return !distance(pl, p2)

// Sort the planets by the various criteria.
By(name).Sort(planets)
log.Println("By name:", planets)

By(mass).Sort(planets)
log.PrintIn("By mass:", planets)

By(distance).Sort(planets)
log.Println("By distance:", planets)

By(decreasingDistance).Sort(planets)
log.Println("By decreasing distance:", planets)

Output:

2014/01/13 23:36:09 By name: [{Earth 1 1} {Mars 0.107 1.5} {Mercury 0.055 ©.4} {\
Venus ©.815 0.7}]
2014/01/13 23:36:09 By mass: [{Mercury 0.055 0.4} {Mars ©.107 1.5} {Venus ©.815 \
0.7} {Earth 1 1}]
2014/01/13 23:36:09 By distance: [{Mercury ©.055 0.4} {Venus ©.815 @.7} {Earth 1\
1} {Mars ©.107 1.5}]
2014/01/13 23:36:09 By decreasing distance: [{Mars ©.107 1.5} {Earth 1 1} {Venus\
0.815 0.7} {Mercury 0.055 0.4}]

Searching

The search API is a little weird, since you call a function that seemingly has nothing
to do with the data structure you’re trying to search. The key is in the second
argument to the search function, which you use to dig into your data structure. The
structure must already be sorted, since it uses a binary search under the covers.

It’s also more than just searching in the traditional sense of “find this thing in here”.
It gives you the first index at which the function returns true, or n, its first argument,
if no index returns true. You also need to follow the contract that if £(i) is true, then
f(i + 1) 1S true. This means you can’t really use ==. In the example, I have to use >=
which means it finds 11 at index 5 even though it’s not in the collection.

0 N O O B~ W N -

NN NN N N B B 1 s s s s
O & 0O N~ O O 0N O O b W N~ O ©

sort

sort/searching.go

315

package main

import (
"log"
"sort"

func searchInts(needle int) {
haystack := []int{1, 4, 7, 9, 10, 66}
n := len(haystack)

index := sort.Search(n, func(i int) bool {
return haystack[i] >= needle
})
if index == n {
log.Printf("didn't find %d", needle)
} else {
log.Printf("maybe found %d at index %d", needle, index)
}
}
func main() {
searchInts(9)
searchInts(11)
searchInts(70)
}
Output:

2014/01/13 23:36:09 maybe found 9 at index 3
2014/01/13 23:36:09 maybe found 11 at index 5
2014/01/13 23:36:09 didn't find 70

© 00 N O U b W N =

strconv

The strconv package gives you all the tools you need to convert between strings,
integers, floats, bools. Along with these, there is a set of functions to combine the
conversions and append to build up byte slices.

It also gives you some functions to deal with quoting strings and handling escaping
things.

We’ll look at the basic conversion functions first, and then quote all the things.

Conversions

The conversion functions consist of those named FormatThing and ParseThing, where
Thing is one of Bool, Float, Int, and Uint. There are also the two oddballs Atoi and Itoa.

I won’t actually use Atoi and Itoa since they are just wrappers around Parselnt
and FormatInt with sane default values for base and bitsize. We’ll also skip the uint
functions since they’re the same as the int ones.

Because things can fail, all the parsing functions return the value and an error.
If you want to live on the edge it’s trivial to write a small wrapper package to
either panic on the errors with MustParseBool et al, or return a default on error with
ParseBoolWithDefault and friends.

Let’s get to the code.

strconv/conversion.go

package main

import (
"log"
"strconv"

func init() {
log.SetFlags(9)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
90
o1

strconv

log.SetPrefix("» ")
}
func parseBools(strings ...string) {
for _, s := range strings {
b, err := strconv.ParseBool(s)
log.Printf("%t, %s", b, err)
}
}
func printBool(bools ...bool) {
for _, b := range bools {
log.Printin(strconv.FormatBool(b))
}
}
func parsefFloats(bitSize int, strings ...string) {
for _, s := range strings {
f, err := strconv.ParseFloat(s, bitSize)
log.Printf("bitSize: %d, %#v => %f, %s", bitSize, s, f, err)
}
}
func printFloat(f float64, fmt byte, prec, bitSize int) {
s := strconv.FormatFloat(f, fmt, prec, bitSize)
1fmt := "fmt: %q, prec: %2d, bitSize: %d => %s"
log.Printf(1fmt, fmt, prec, bitSize, s)
}
var bitSizes = []int{32, 64}

[]
var formats = []byte("efg")

var precisions [lint{5, 10, 15}

func printFloats(fs ...float64) {

for _, f := range fs {
for _, fmt := range formats {
for _, prec := range precisions {
for _, bitSize := range bitSizes {
printFloat(f, fmt, prec, bitSize)
}
}

52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

strconv
}
}
func parselnts(base, bitSize int, ss ...string) {
for _, s := range ss {
i, err := strconv.Parselnt(s, base, bitSize)
fmt := "base: %2d, bitSize: %2d, %¥*v => %d, %s"
log.Printf(fmt, base, bitSize, s, i, err)
}
}
func printInts(base int, is ...int64) {
for _, i := range is {
s := strconv.FormatInt(i, base)

log.Printf("base: %2d, %d => %%v", base, i, s)

func DemoBool() {
log.PrintIln("DemoBool")

parseBools("true", "4", "f", "wat")
printBool (true, false)

func DemoFloat() {
log.Println("DemoFloat™)

parseFloats(32, "1.0", "-1.5", "1el1Q", "wat", "4e38")
parseFloats(64, "4e38")

printFloats(1.1234567, 4e38)

func DemoInt() {
log.PrintIn("DemoInt")

big := "10"
parselnts(2, 32, "101101010", "10", "8", big)
parselnts(2, 64, big)

parselnts(8, 8, "12345", "7")

parselnts(10, 32, "12345", "7")

318

94
95
96
o
98
99
100
101
102
103
104
105
106
107
108
109
110

0 N O O B W N -

NN N B | 1 | |l s |
N ,~, © © 0 0O O b W N~ OO O

strconv

parselnts(16, 32, "abcdef")

// Detect base based on prefix

319

parselnts(0, 32, "Oxff", "0644", "255")

printInts(2,

printInts(3,
printInts(4,
printInts(5,
printInts(10, 100)
printInts(16, 1250)

func main() {
DemoBool ()
DemoF loat ()
DemoInt()

100)
100)
100)
-100)

Output:

» DemoBool

» true, %!s(<nil>)
» true, %!s(<nil»>)
» false, %!s(<nil>)
» false, strconv.ParseBool: parsing "wat": invalid syntax

» true

» false

» DemoFloat

» bitSize:
» bitSize:
» bitSize:
» bitSize:
tax

» bitSize:
range

» bitSize:
1>)

» fmt: 'e
» fmt: 'e
» fmt: 'e
» fmt: 'e
» fmt: 'e

"1.0" => 1.000000, %!'s(<nil>)

=> -1.500000, %!s(<nil>)

=> 10000000000 .000000, %!s(<nil>)

=> 0.000000, strconv.ParseFloat: parsing "wat": invalid syn\

32,

32, "-1.5"
32, "1etl0"
32, "wat"
32, "4e38"

64, "4e38"
prec: 5,
prec: 5,
prec: 10,
prec: 10,

prec: 15,

=> +Inf, strconv.ParsefFloat: parsing "4e38": value out of \

=> 399999999999999990995239293824136118272.000000, %!s(<ni\

bitSize:
bitSize:
bitSize:
bitSize:
bitSize:

32 =
64 =>
32 =>
64 =>
32 =>

(G

.12346e+00
.12346e+00
.1234567165e+00
.1234567000e+00
.123456716537476e+00

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
92
53
54
55
56
o
58
959
60
61
62
63
64

strconv

» fmt: 'e', prec: 15,

» fmt: 'f', prec:
» fmt: 'f', prec:

» fmt: 'f', prec: 10,
» fmt: 'f', prec: 10
» fmt: 'f', prec: 15,

» fmt: 'f', prec: 15,
» fmt: 'g', prec:

» fmt: 'g', prec:

» fmt: 'g', prec: 10
» fmt: 'g', prec: 10,
» fmt: 'g', prec: 15,
» fmt: 'g', prec: 15,
» fmt: 'e', prec:

» fmt: 'e', prec:

» fmt: 'e', prec: 10,
» fmt: 'e', prec: 10,
» fmt: 'e', prec: 15,
» fmt: 'e', prec: 15,
» fmt: 'f', prec:

» fmt: 'f', prec:

0

» fmt: 'f', prec: 10,
» fmt: 'f', prec: 10,

(616161616155

» fmt: 'f', prec: 15
» fmt: 'f', prec: 15,

91616161616151414[4.614]

» fmt: 'g', prec:
» fmt:
» fmt: !
» fmt: !

g', prec:

» fmt: '
» DemoInt
» base: 2

4

» base: 2, bitSize:
» base: 2, bitSize:

7, strconv.Parselnt:

ut of range

» base: 2, bitSize:

g', prec: 10
g', prec: 10,
» fmt: 'g', prec: 15,
g', prec: 15,

bitSize:
» base: 2, bitSize:

320

bitSize: 64 => 1.123456700000000e+00
bitSize: 32 => 1.12346

bitSize: 64 => 1.12346

bitSize: 32 => 1.1234567165
bitSize: 64 => 1.1234567000
bitSize: 32 => 1.123456716537476
bitSize: 64 => 1.123456700000000
bitSize: 32 => 1.1235

bitSize: 64 => 1.1235

bitSize: 32 => 1.123456717
bitSize: 64 => 1.1234567
bitSize: 32 => 1.12345671653748
bitSize: 64 => 1.1234567

bitSize: 32 => +Inf

bitSize: 64 => 4.00000e+38

bitSize: 32 => +Inf

bitSize: 64 => 4.0000000000e+38

bitSize: 32 => +Inf

bitSize: 64 => 4.00000000000VVYYYe+38

bitSize: 32 => +Inf

bitSize: 64 => 399999999999999990995239293824136118272.000\

bitSize: 32 => +Inf
bitSize: 64 => 399999999999999990995239293824136118272.000\

bitSize: 32 => +Inf
bitSize: 64 => 399999999999999990995239293824136118272.000\

bitSize: 32 => +Inf
bitSize: 64 => 4e+38
bitSize: 32 => +Inf
bitSize: 64 => 4e+38
bitSize: 32 => +Inf
bitSize: 64 => 4e+38

32, "101101010" => 362, %!s(<nil>)

32, "10" => 2, %!s(<nil>)

32, "8" => 0, strconv.Parselnt: parsing "8": invalid syntax
32, "10" => 214748364\
parsing "10": value o\

64, "10" => 733007751\

65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80

0 = O O b W N =~

SO =Y
N O O b WD =r OO O

strconv

850, %!s(<ni
» base: 8,

e out of ran
» base: 8,

» base: 10
» base: 10,
» base: 1

~

» base:

~

» base:

~

» base:
» base:

~

» base:

~

» base:

~

a b W N0 OO O

~

» base:

-
S

~

» base:

[N
(@]

~

» base:

1>)

bitSize: 8, "12345" => 127, strconv.Parselnt:

ge

bitSize: 8, "7T" => 7, %!s(<nil>)
bitSize: 32, "12345" => 12345, %!s(<nil>)
bitSize: 32, "7" => T, %!s(<nil>)
bitSize: 32, "abcdef" => 11259375, %!s(<nil>)
bitSize: 32, "Oxff" => 255, %!s(<nil>)
bitSize: 32, "0644" => 420, %!s(<nil>)
bitSize: 32, "255" => 255, %!s(<nil»>)

100 => "1100100"

100 => "10201"

100 => "1210"

-100 => "-400"

100 => "100"

1250 => "4e2"

321

parsing "12345": valu\

Append

ing

The append related functions do all the same things as the formatting functions,
except they append the result to a byte slice. It’s sort of like a string builder, except

not.

strconv/appending.go

package main

import (
"log
"mat
"str

)

func init()
log.
log.

}

func main()
var
data

log.

"

h

conv"

{
SetFlags(0)
SetPrefix("» ")

{
data []byte

= strconv.AppendBool (data, true)
Printf("%s", data)

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

0 N O O & W N =~

strconv

data
data

1 1

append(data, ',"',

log.Printf("%s", data)

1 1

data = append(data, ',',
data = strconv.AppendInt(data, 42, 8)
log.Printf("%s", data)

1 1

data = append(data, ',',

")

")

")

strconv.AppendFloat(data, math.Pi,

e, 2, 32)

data = strconv.AppendQuote(data, “bat"man)
log.Printf("%s", data)

data

1 1

append(data, ',',

)

data = strconv.AppendQuoteRune(data, 0x30f0)
log.Printf("%s", data)

data

1 [

append(data, ',"',

")

data = strconv.AppendQuoteRuneToASCII(data, 0x30f0)
log.Printf("%s", data)

1 1

data = append(data, ',',
data = strconv.AppendQuoteToASCII(data, "OO")
log.Printf("%s", data)

1 1

data = append(data, ',',
data = strconv.AppendUint(data, 10, 2)
log.Printf("%s", data)

")

")

322

}

Output:

» true

» true, 3.14e+00

» true, 3.14e+00, 52

» true, 3.14e+00, 52, "bat\"man"

» true, 3.14e+00, 52, "bat\"man", 'O’

» true, 3.14e+00, 52, "bat\"man", 'O', '\u30fQ'

» true, 3.14et00, 52, "bat\"man", 'O', '\u30f0@', "\u30fO\u30f1"

» true, 3.14e+00, 52, "bat\"man", 'O', "\u30f@', "\u30f0\u30f1", 1010

© 00 N O U b W N =~

NN NN NN B B 1l s s
O b 0O N~ O O 0N O O kb W N~ O

strconv 323
Quoting

Quoting is taking those things that you normally can’t represent in a string like
newlines and double quotes, and escaping them so that they can be represented
in a double quoted string. The most obvious example is the first one. There’s a
multiline string literal, and we end up with single line double quoted string with
the whitespace escaped. Check it out.

strconv/quoting.go

package main

import (
"log"
"strconv"

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

func main() {
str =

"wat"

log.Printin(strconv.Quote(str))

log.Println(strconv.QuoteRune(7)) // ASCII bell
log.Println(strconv.QuoteRuneToASCII(0x30fQ)) // [
log.PrintIn(strconv.QuoteToASCII("0O"))
log.Println(strconv.Unquote("\n\r\t")) // invalid due to lack of quotes
log.Println(strconv.Unquote("\n\r\t" "))

0 N O O B~ W N -

strconv

Output:

324

» "\n\n \"wat\"\n\n"
» "\a'

» '"\u30f0'

» "\u30fQ"

» invalid syntax

<nil>

strings

The strings package deals with, you guessed it, strings.

It has quite a few functions and a couple types, so we’ll groups things so that they

o I O O P W N =

NN NN N A B R 1 |l s s s
B WO, O O© 03O0 0 b W NN~ O O

make sense.

This package is very similar to the [bytes]{#bytes}

Querying strings

This covers functions like contains and HasSuffix. Query functions give you informa-

tion about the string and its contents.

strings/querying.go

package main

import (
n]_Og"
"strings"
)
var s = "Go, The Standard Library"

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

// Look for exact matches

func DemoContains() {

needles := []string{"Library", "standard", "Standard"}
for _, needle := range needles {
found := strings.Contains(s, needle)

log.Printf("Contains(%#v) %t", needle, found)

// Look for any of the unicode code points

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
o4
55
56
o7
58
59
60
61
62
63
64
65
66

strings 326

func DemoContainsAny() {

sets := []string{"aeiou", "zyx", "\t\r"}
for _, set := range sets {
found := strings.ContainsAny(s, set)
log.Printf("ContainsAny(%#v) %t", set, found)
}
}
func DemoContainsRune() {
runes := [Jrune{'a', ' ', '.'}
for _, rune := range runes {
found := strings.ContainsRune(s, rune)
log.Printf("ContainsRune(%q) %t", rune, found)
}
}
// Count substrings

func DemoCount() {

needles := []string{"", "a", ", "}
for _, needle := range needles {
count := strings.Count(s, needle)
log.Printf("Count(%#v) %d", needle, count)
}
}
// Is it equal ignoring unicode case

func DemoEqualFold() ({

ts := []string{s, strings.ToUpper(s), strings.TolLower(s)}
for _, t := range ts {
equal := strings.EqualFold(s, t)
log.Printf("EqualFold(%#v) %t", t, equal)
}
}
// Check for prefixes

func DemoHasPrefix() {
prefixes := []string{"Go", "GO", "Go, "}
for _, prefix := range prefixes {
has := strings.HasPrefix(s, prefix)
log.Printf("HasPrefix(%#v) %t", prefix, has)

67
68
69
70
71
T2
73
T4
)
6
T
78
79
80
81
82
83
84
85
86
87

0 N O O B~ W N -

B) s s
0 0 O b WON -~ O

strings 327

// Check for suffixes
func DemoHasSuffix() {

suffixes := []string{"Library", "", "Standard"}
for _, suffix := range suffixes {
has := strings.HasSuffix(s, suffix)
log.Printf("HasSuffix(%#v) %t", suffix, has)
}
}
func main() {

log.Printf("haystack: %#v", s)

DemoContains()
DemoContainsAny ()
DemoContainsRune()
DemoCount ()
DemoEqualFold()
DemoHasPrefix()
DemoHasSuffix()

Output:

» haystack: "Go, The Standard Library"

» Contains("Library") true

» Contains("standard") false

» Contains("Standard") true

» ContainsAny("aeiou") true

» ContainsAny("zyx") true

» ContainsAny("\t\r") false

» ContainsRune('a') true

» ContainsRune(' ') true

» ContainsRune('.') false

» Count("") 25

» Count("a") 3

» Count(", ") 1

» EqualFold("Go, The Standard Library") true
» EqualFold("GO, THE STANDARD LIBRARY") true
» EqualFold("go, the standard library") true
» HasPrefix("Go") true

» HasPrefix("GO") false

19
20
21
22

0 = O O b W N =~

NN NN NDNDNDNDDN A B 1 s s s
0O N O O b WO N~ OO O 03O0 O b W NN~ ©

strings 328

» HasPrefix("Go, ") true

v

» HasSuffix("Library") true
HasSuffix("") true
HasSuffix("Standard") false

M

M

M

Into the index

All the index related functions search the string for something and return the index
into the string where that thing was found. This can be referred to as needle in the
haystack. The needle might be another string, a byte, or a function that checks an
individual rune.

strings/index.go

package main

import (
"log"
"strings"
"unicode™
)

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

var s = "Go, The Standard Library"

// Find specific things
func Demolndex() {

needles := []string{",", "t", "The", "x"}
for _, needle := range needles {
index := strings.Index(s, needle)

log.Printf("Index(%#*v) %d", needle, index)

// Search for any unicode code points
func DemoIndexAny() {
needles := []string{",thx", "ray"}

for _, needle := range needles {

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
959
60
61
62
63
64
65
66
67
68
69
70

strings

index := strings.IndexAny(s, needle)
log.Printf("IndexAny(%*v) %d", needle, index)
}
}
// Search for a specific byte

func DemoIndexByte() {
needles := []byte{',', 'y'}

for _, needle := range needles {
index := strings.IndexByte(s, needle)
log.Printf("IndexByte(%q) %d", needle, index)
}
}
func nonAlphaNumeric(r rune) bool ({

switch {
case 48 <=1 && r <= 0B7T: // numbers
return false
case 97 <=1 && 1 <= 122: // lowercase
return false
case 65 <=1 && r <= 90: // uppercase
return false
}
return true
}
// Use a function

func DemoIndexFunc() {

funcs := []struct {
name string
f func(rune) bool
H
{"nonAlphaNumeric", nonAlphaNumeric},
{"unicode.IsLower", unicode.IsDigit},
{"unicode.IslLower", unicode.IslLower},
}
for _, f := range funcs ({
index := strings.IndexFunc(s, f.f)
log.Printf("IndexFunc(%#*v) %d", f.name, index)
}
}

71
T2
73
4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

strings 330

// Find a specific rune
func DemoIndexRune() {

runes := [Jrune{'a', ' ', '.'}
for _, r := range runes ({
index := strings.IndexRune(s, r)
log.Printf("IndexRune(%q) %d", r, index)
}
}
// Find the last index of a substring

func DemolLastIndex() {

needles := []string{"a", "r", "y", "\t"}
for _, needle := range needles {
index := strings.LastIndex(s, needle)
log.Printf("LastIndex(%%v) %d", needle, index)
}
}
// Find the last index of any of the given unicode code points

func DemolLastIndexAny() {
needles := []string{",thx", "ray"}

for _, needle := range needles {
index := strings.LastIndexAny(s, needle)
log.Printf("LastIndexAny(%#v) %d", needle, index)
}
}
// Use a func to find the last index of something

func DemolLastIndexFunc() ({

funcs := []struct {
name string
f func(rune) bool
H
{"nonAlphaNumeric", nonAlphaNumeric},
{"unicode.IslLower", unicode.lIsDigit},
{"unicode.IslLower", unicode.IslLower},
}
for _, f := range funcs {
index := strings.LastIndexFunc(s, f.f)
log.Printf("LastIndexFunc(%#*v) %d", f.name, index)
}

113
114
115
116
117
118
119
120
121
122
123
124
125

0 N O O & W N =~

NN NN N B B 1 |l s s s
B WO N A, O O© 03O0 O b W NN O O

strings

func main() {

log.Printf("haystack: %#v", s)

DemoIndex()
DemoIndexAny ()
DemoIndexByte()
DemoIndexFunc()
DemoIndexRune()
DemoLastIndex()
DemoLastIndexAny ()
DemoLastIndexFunc()

331

Output:

haystack: "Go, The Standard Library"
Index(",") 2

Index("t") 9

Index("The") 4

Index("x") -1

IndexAny(",thx") 2

IndexAny("ray") 10

IndexByte(',"') 2

IndexByte('y') 23
IndexFunc("nonAlphaNumeric") 2
IndexFunc("unicode. IsLower") -1
IndexFunc("unicode.IsLower") 1
IndexRune('a') 10

IndexRune(" ') 3

IndexRune('.') -1

LastIndex("a") 21

LastIndex("r") 22

LastIndex("y") 23

LastIndex("\t") -1
LastIndexAny(",thx") 9
LastIndexAny("ray") 23
LastIndexFunc("nonAlphaNumeric") 16
LastIndexFunc("unicode.IsLower") -1
LastIndexFunc("unicode.IsLower") 23

0 N O O & W N =

W W W W W WNDNDNDNDNDNDNNDMNDNDDNDDNDDNDAES =P,
O & O N 0 © 00 O Ok N~ © 0 N0 Ol d N~ OO ©

strings

Hey, split it up!

Strings getting you down, fighting all the time? Split them up! With the sp1it
functions and their friends the Fields functions, you can take a string and chop it

up.

strings/split.go

package main

import (

n]_Og"
"strings"

"unicode"

var s = "who,what,when,where,why"

func

func

func

func

func

init() {
log.SetFlags(9)
log.SetPrefix("» ")

dump(i interface{}) {
log.Printf("%#v", i)

DemoSplit() {
dump(strings.Split(s, ","))
dump(strings.SplitN(s, ",", 2))

DemoSplitAfter() {
dump(strings.SplitAfter(s, ","))
dump(strings.SplitAfterN(s, ",", 3))

DemoFields() {
fox =" The quick brown Fox jumps over the lazy Dog."
dump(strings.Fields(fox))

dump(strings.FieldsFunc(fox, unicode.IsUpper))

36
37
38
39
40

N O O & W N -

©O© 00 N O U b W N =

strings 333

func main() {
DemoSplit()
DemoSplitAfter()
DemoFields()

}

Output:

» []string{"who", "what", "when", "where", "why"}

» []string{"who", "what,when,where,why"}

» []string{"who,", "what,", "when,", "where,", "why"}

» []string{"who,", "what,", "when,where,why"}

» []string{"The", "quick", "brown", "Fox", "jumps", "over", "the", "lazy", "Dog.\
n }

» []string{" ", "he quick brown ", "ox jumps over the lazy ", "og."}

Building and altering strings

Strings are fun and all, but sometimes you need to change them. These functions
can build new strings, and change the contents of existing strings.

Okay, you can’t actually change the contents of a string since strings are im-
mutable. The functions that change strings actually return a new version. This is
important to know because if you don’t care about the previous version, you're
creating garbage. You might be better off dealing with a []byte, which can be
altered in place, but that might not be practical either. Measure your code, and
if creating garbage strings is slowing things down, then worry about optimizing.

strings/altering.go

package main

import (
"log"

n "

os
"strings"

"unicode"

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
90
o1

strings

func init() {
log.SetFlags(Q)
log.SetPrefix("» ")

var s = "red green blue"

func DemoJoin() {
fields := strings.Fields(s)
log.Printin(strings.Join(fields, ","))
log.Println(strings.Join(fields, ":"))
log.Println(strings.Join(fields, ""))

func rot13(r rune) rune {
switch {
case 65 <=1 && r <= 90:
return 65 + ((r-65)+13)%26
case 97 <=1 && r <= 122:
return 97 + ((r-97)+13)%26
default:
return r

func DemoMap() {
log.Println(strings.Map(unicode.ToUpper, s))
mapped := strings.Map(func(r rune) rune {
switch r {
case 'e':
return -1
default:

return r + 1

},os)
log.Println(mapped)
log.Println(strings.Map(roti13, s))

func DemoRepeat() {
log.Printin(strings.Repeat("-", len(s)))

334

52
53
o4
95
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
%

R O © 0 N O O b W N =

NN

strings

func DemoReplace() {

log.Printin(strings.Replace(s, "e",
log.Printin(strings.Replace(s, "e",

func DemoReplacer() {
r := strings.NewReplacer("e", "E")
log.Printin(r.Replace(s))
r.WriteString(os.Stdout, s)

func main() {
DemoJoin()
DemoMap ()
DemoRepeat ()
DemoReplace()
DemoReplacer ()

)
mrr-1))

335

Output:

» red,green,blue
» red:green:blue
» redgreenblue

» RED GREEN BLUE
» selhsolcmv

» erq terra oyhr

» r!d green blue
» rld gr!!in blu!
» rEd grEEn bluE
rEd grEEn bluE

Upper and lower case

Sometimes you just need to convert a string to upper or lower case, or maybe even
title case. These next functions do exactly that.

0 1 O U W N R

W W W N DNDNDNDDNDNDNNNDMNDNDNASAPA PP s
N », © O 0 9 O O b WO NP0 O 00 N0 0 b WOWN~O ©

strings

strings/case.go

package main

import (
"log"
"strings"

func init() {
log.SetFlags(Q)
log.SetPrefix("» ")

var s = "The quick brown Fox jumps over the lazy Dog."

func DemoTitle() {
log.Println(strings
log.Println(strings

func DemoLower () {
log.Println(strings

func DemoUpper() {
log.Println(strings

func main() {
DemoTitle()
DemoLower ()
DemoUpper ()

.Title(s))
.ToTitle(s))

.ToLower(s))

.ToUpper(s))

W N -

0 N O O b W N =~

NN NN NN NN P B 1 | 1 s s
N O O b WO N O © 03O0 O b WO~ O O

strings 337

Output:

» The Quick Brown Fox Jumps Over The Lazy Dog.
» THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.
» the quick brown fox jumps over the lazy dog.
» THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.

Trimming

Sometimes you want to make a specific change to a string, and a very common
specific change is trimming from the right or left. It’s also usually whitespace you’re
trimming. Luckily we have functions to do all this for us.

strings/trimming.go

package main

import (
"log"
"strings"

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

var s = \n all the spaces \t "
func dump(i interface{}) {
log.Printf("%#v", i)

func DemoTrim() {
cutset = " \t\n"
dump(strings.Trim(s, cutset))
dump(strings.TrimLeft(s, cutset))
dump(strings.TrimRight(s, cutset))
dump(strings.TrimSpace(s))

func DemoPrefixSuffix() {

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1

O O 0 N O O b W N =~

RGN

strings
s2 := "The Go Programming Language"
dump(s2)
s2 = strings.TrimPrefix(s2, "The Go ")
dump(s2)
s2 = strings.TrimSuffix(s2, " Language")
dump(s2)

}

func onlySpaces(r rune) bool {
return r == ' '

}

func DemoTrimFunc() {

338

dump(strings.TrimFunc(s, onlySpaces))
dump(strings.TrimLeftFunc(s, onlySpaces))
dump(strings.TrimRightFunc(s, onlySpaces))
}
func main() {
dump(s)
DemoTrim()
DemoPrefixSuffix()
DemoTrimFunc()
}
Output:
» " \n all the spaces \t "
» "all the spaces”
» "all the spaces \t "
» " \n all the spaces"
» "all the spaces”
» "The Go Programming Language"
» "Programming Language"
» "Programming"
» "\n all the spaces \t"
» "\n all the spaces \t "
» " \n all the spaces \t"

0 N O O B~ W N -

W W W W W W WwNDNDNNDMDNDNDNDDNDDNDNDNAES-A PP,
O O WON-A,O O© 00 N0 Uk N © 0 N0 O N~ OO ©

strings

Reader

339

We can also treat a string as an io.Reader (and other io interfaces). It’s really easy,

just make a new strings.Reader!

strings/reader.go

package main

import (
"log"
"og"
"strings"
)
var s = "All your base are belong to us!"

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

func main() {
r := strings.NewReader(s)
log.Printin(r.Len())
r.WriteTo(os.Stdout)
log.Printin(r.Len())

r.WriteTo(os.Stdout) // It's empty, nothing prints

r = strings.NewReader(s)

chunk := make([]byte, 10)
r .Read(chunk)
log.Printf("%s", chunk)

r = strings.NewReader(s)
// Read a single byte

b, err := r.ReadByte()
log.Println(b, err)
log.Println(r.Len())

// Nevermind
r.UnreadByte()
log.Printin(r.Len())

37
38
39

<N O O & W N

strings 340

b, err = r.ReadByte()
log.Println(b, err)

Output:

» 31

All your base are belong to us!» @
» All your b

» 65 <nil>

» 30

» 31

» 65 <nil>

O© 00 9 O O b W N =

U S YN
00 I O O b 0ON =~

sync

The sync package is to handle all those cases where you need thread safety. Sure,
we have channels and the select statement to deal with the builtin features that
make Go so nice to use, but sometimes that’s not the best way to solve the problem.
Sometimes, you need the old familiar constructs to ensure thread safety.

We’ll look at the tools the sync package provides to help solve these problems.
Hopefully you can avoid these things and use higher level features, but sometimes
that’s not the best way to solve the problem.

Once

Once, as the name suggests, lets you run a function once. This is useful for setup
functions that should only be ran once, but that you want to try to run multiple
times to keep the code pretty and coherent.

In the example, note that there is only one log message, despite there being two calls
10 once. Do.

sync/once.go

package main

import (
"log"
"runtime"

”sync”

var once sync.0Once

func init() {
log.SetFlags(9)
log.SetPrefix("» ")
runtime.GOMAXPROCS(8)
}

func main() {
f := func() {

19
20
21
22
23

© 00 N O U b W N =~

=t
N O O b WO N~

sync 342

log.PrintIn("Hello!")
}
once.Do(f) // Called
once.Do(f) // Not called

Output:

» Hello!

Mutex

Mutex and RwMutex are your basic mutual exclusion locks. You can find them in pretty
much every programmung language. When using mutexes it’s very important to
orchestrate your unlocking, so that you don’t end up with deadlocks. defer is helpful
in this situation, though it does have a performance overhead.

The rwmutex is special in that you can differentiate between reading and writing.
Multiple things can read, but only 1 thing can write.

This example doesn’t involve any fancy goroutines, it just shows the pattern for
using the mutex. The usage is the basically the same each time, so remember the
pattern.

sync/mutex.go

package main

import (
"log"
"runtime"

”SyﬂC"

// Regular Mutex

type Lockable struct {
m sync.Mutex
n int

func (1 *Lockable) Set(i int) {
1.m.Lock()
defer 1.m.Unlock()

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o
o8
59

sync

func

(1 *Lockable) Get() int {
1.m.Lock()
defer 1.m.Unlock()

return 1.n

}

// RWMutex

type RWLockable struct {
m sync.RWMutex
n int

}

func (1 *RWLockable) Set(i int) {
1.m.Lock()
defer 1.m.Unlock()
l.n=1

}

func (1 *RWLockable) Get() int {
1.m.RLock()
defer 1.m.RUnlock()
return 1l.n

}

func init() {
log.SetFlags(9)
log.SetPrefix("» ")
runtime.GOMAXPROCS(8)

}

func main() {
1 := &Lockable{}
1.Set(10)

log.Println(l.Get())

rwl := &RWLockable{}
rwl.Set(5)
log.Printin(rwl.Get())

343

© 00 N O U b W N =

S G
D W N »,

sync 344

Output:

» 10
» 5

Cond

The cond struct implements a condition variable. I don’t know about you, but I've
never actually had to use one before as far as I can recall. 've done multithreaded
programming before, in a variety of languages, but I always try to keep things as
simple as possible, and look for other solutions when it starts to get out of hand. It’s
really easy to break things in a confusing manner when you have multiple threads
and shared resources flying around, so the simpler the better.

Condition variables seem to fit a certain type of problem. 'm not sure I can
accurately describe that problem in words, but I can provide a couple examples.

First, we have the io.PipeReader and io.PipeWriter structs returned from io.Pipe().
It has to coordinate between readers and writers within the read() and write()
methods.

type pipe struct

This is the basic underlying struct:

sync/pipe_struct.go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

type pipe struct {

rl sync.Mutex // gates readers one at a time

wl sync.Mutex // gates writers one at a time

1 sync.Mutex // protects remaining fields

data []byte // data remaining in pending write

rwait sync.Cond // waiting reader
wwait sync.Cond // waiting writer
rerr error // 1f reader closed, error to give writes

werr error // 1f writer closed, error to give reads

O© 00 9 O O b W N =

NN NN N A B R 1 |l s s s
B WO N A, O O 00 O b N~

sync 345

There are 2 mutexes, r1 and w1, to ensure there is only 1 reader and 1 writer at
a time. They protect access to the struct itself. The other mutex, 1, is used on the
condition variables rwait and wwait, and protects access to the other internal struct
fields so that either only the reader or writer is accessing them.

PipeReader

When we want to read, we lock r1 and 1. The pattern for using condition variables
is to lock, and check the conditions in a loop where you wait at the end of the loop.
We’ve already locked 1, so in an infinite loop we check for read and write errors,
and if there is any data. If there are errors, return those. If we don’t have data yet,
we rwait.wait(). When we are woken up by a rwait.signal(), we check everything
again. If we have data, we can do the read. In this case it’s just copying data from one
slice to another, and shortening the buffer (that’s not really a buffer) so reflect that
we’ve read data from it. When we have read all the data, we clear out the internal
data and call wait.Signal() to tell the writer it can continue.

sync/pipe_reader.go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

func (p *pipe) read(b []byte) (n int, err error) {
// One reader at a time.
p.rl.Lock()
defer p.rl.Unlock()

p.1l.Lock()
defer p.1.Unlock()
for {
if p.rerr != nil {
return 0, ErrClosedPipe
}
if p.data != nil {
break
}
if p.werr != nil {
return 0, p.werr
}
p.rwait.Wait()
}
n = copy(b, p.data)

25
26
27
28
29
30
31

0 N O O & W N -

NN N P Pl 1 | sl | |
N ~, © © 0 O Ol b WO N~ O O

sync 346

p.data = p.data[n:]

if len(p.data) == 0 {
p.data = nil
p.wwait.Signal()

return

PipeWriter

When we want to write, we lock w1 and 1. If we have a werr, return that and do
nothing. Otherwise, we save the data and rwait.Signal() to let the reader know they
can wake up and read data. Now the writer can go into its loop to check and wait.
If the data is ni1 (because the reader read everything and cleared it), everything
is fine, and break. If we got a rerr, make sure to return that, and break. If we have
a werr, make sure we return the errClosedripe. If we’ve broken out of the loop, we
make sure to return a sane n value, and clear out data.

sync/pipe_writer.go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

var zero [Q]byte

func (p *pipe) write(b []byte) (n int, err error) {
// pipe uses nil to mean not available
if b == nil {
b = zero[:]

// One writer at a time.
p.wl.Lock()
defer p.wl.Unlock()

p.1l.Lock()
defer p.1.Unlock()
if p.werr != nil {

err = ErrClosedPipe
return

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

sync 347

p.data = b
p.rwait.Signal()
for {
if p.data == nil {
break
}
if p.rerr != nil {

err = p.rerr
break

}

if p.werr != nil {
err = ErrClosedPipe

}
p.wwait.Wait()

}
n = len(b) - len(p.data)
p.data = nil // in case of rerr or werr

return

If you follow the calls to rwait.Signal(), rwait.Wait(),wwait.Signal(), andwwait.wait(),
you can trace the program flow and see that it allows both a read and write to start,
in either order, but the write obviously has to produce data before the read can
read it, and the read returns before the write returns.

Cache

Another example which was given on Stack Overflow, was that of a cache: http://stackoverflow.co
The example was psuedo code, and I’ve implemented it here as best I can. I think
it’s correct. At least the race detector doesn’t complain complain.

[took it a little farther and used a rRuMmutex to protect the main cache, so you can have
mulitple readers, and each key is protected individually as well, so getting one key
doesn’t block getting another.

73ht'[p://stackoverﬂow.com/.":|/2476820/4657

http://stackoverflow.com/a/2476820/4657
http://stackoverflow.com/a/2476820/4657

0 N O O B~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

sync

sync/cond.go

348

package main

import (
"fmt"
"log"
"runtime"
"sync"
"time"

)

func init() {
runtime.GOMAXPROCS(8)

type Status int

const (
Absent Status = iota
InProgress
Complete

)

func getData(key string) []byte {
// Do some work
time.Sleep(3 * time.Second)

return []byte(fmt.Sprintf("getData:

type CacheEntry struct {
sync.Mutex
C *sync.Cond
Status Status
Data [1byte

%", key))

func (ce *CacheEntry) SetComplete(data []byte) {

ce.Lock()

defer ce.Unlock()
ce.Data = data
ce.Status = Complete

42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
o8
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83

sync

func (ce *CacheEntry) Wait() []byte {

ce.Lock()
defer ce.Unlock()
for {
if ce.Status == Complete {
break

}
ce.C.Wait()

}

return ce.Data

type Cache struct {

func

func

func

sync.RWMutex
statuses map[string]Status
data map [string]*CacheEntry

NewCache() *Cache {

(c

(c

return &Cache({
statuses: make(map[string]Status),
data: make(map [string]*CacheEntry),

*Cache) setComplete(key string) {
c.Lock()

defer c.Unlock()

c.statuses[key] = Complete

*Cache) setInProgress(key string) (*CacheEntry, bool) {
c.Lock()
defer c.Unlock()

// Check again, maybe another thread go to this first
// in between the c.RUnlock() and c.Lock()
if c.statuses[key] != Absent {

return c.datal[key], false

349

84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

sync

c.statuses[key] = InProgress

entry := &CacheEntry{Status: InProgress}
entry.C = sync.NewCond(entry)
c.datal[key] = entry

return entry, true

func (¢ *Cache) Get(key string) []byte {
c.RLock()

status := c.statuses[key]
switch status {
case Absent:
c.RUnlock() // We'll take a write lock right away.

entry, ok := c.setInProgress(key)

if lok {
// Missed our chance, just wait.
return entry.Wait()

data := getData(key)
entry.SetComplete(data)
c.setComplete(key)

// Wake up everybody, not just a single goroutine
entry.C.Broadcast()

return data
case InProgress:
entry := c.datalkey]
c.RUnlock()
return entry.Wait()
case Complete:
entry := c.datalkey]
c.RUnlock()
return entry.Data

}

panic("not reached")

func main() {

350

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

sync

log.Println("starting")

¢ := NewCache()
var wg sync.WaitGroup

wg.Add(5)
for i :=0; 1 < 5; i++ {
go func() {
log.Printf("%s", c.Get("Batman"))
log.Printf("%s", c.Get("Robin"))
wg.Done()
1O
}
wg.Wait()

// These print right away, already in cache.
log.Printf("%s", c.Get("Batman"))
log.Printf("%s", c.Get("Robin"))

wg.Add(5)
for i :=0; i <5; i++ {
go func() {
log.Printf("%s", c.Get("Captain America"))
log.Printf("%s", c.Get("Thor"))
wg.Done()
1O
}

time.Sleep(time.Second)

// These print right away, already in cache, not blocked by

// other goroutines trying to read "captain america" and "thor"
log.Printf("%s", c.Get("Batman"))

log.Printf("%s", c.Get("Robin"))

wg.Wait()

351

0 I O O b W N =

NN NN N N P B 1 S s s s s
O & 0O N~ O O 0N O O b W N~ O ©

sync 352

Output:

2014/09/13 21:54:32 starting

2014/09/13 21:54:35 getData: Batman
2014/09/13 21:54:35 getData: Batman
2014/09/13 21:54:35 getData: Batman
2014/09/13 21:54:35 getData: Batman
2014/09/13 21:54:35 getData: Batman
2014/09/13 21:54:38 getData: Robin
2014/09/13 21:54:38 getData: Robin
2014/09/13 21:54:38 getData: Robin
2014/09/13 21:54:38 getData: Robin
2014/09/13 21:54:38 getData: Robin
2014/09/13 21:54:38 getData: Batman
2014/09/13 21:54:38 getData: Robin
2014/09/13 21:54:39 getData: Batman
2014/09/13 21:54:39 getData: Robin
2014/09/13 21:54:41 getData: Captain America
2014/09/13 21:54:41 getData: Captain America
2014/09/13 21:54:41 getData: Captain America
2014/09/13 21:54:41 getData: Captain America
2014/09/13 21:54:41 getData: Captain America
2014/09/13 21:54:44 getData: Thor

2014/09/13 21:54:44 getData: Thor

2014/09/13 21:54:44 getData: Thor

2014/09/13 21:54:44 getData: Thor

2014/09/13 21:54:44 getData: Thor

What’s important is the timing in the output. It starts, and after 3 seconds you get
the 5 lines of Batman. The 3 seconds is from the time.Sleep(3 * time.Second) in the
getData(key) function. They all print because when the first goroutine finishes, it
broadcasts to the other goroutines, and they all wake up and can return the data.
Then another 3 seconds pass and we get 5 lines of rRobin. Then no seconds pass and
we get another 2 lines of Batman and robin. This is because they are already in the
cache at that point, so there’s no waiting.

Then we start another batch of 5 calls to et with new keys that are not in the cache.
We sleep for a second and again Get Batman and Robin, which happen immediately
because they aren’t blocked by the calls getting captain America and Thor. Another 2
seconds pass, and we get our 5 lines of captain America and 5 lines of Thor.

sync 353

WaitGroup

A waitGroup is used to wait until an expected number of things finish. This is useful
when you aren’t using channels and therefore don’t have a channel to close.

The example seems trivial, but I find when I run into a problem where a waitGroup

0 N O O & W N =~

W W W W WM NDDNDNDDNDNDDNDNDNDDND A 1 R 1 1 1y s vy sy
B O NSO O W 30 0 d WNRAROO O W0 0 b WD ~r O O

would work well, it’s fairly obvious.

sync/wait_group.go

package main

import (
"log"
"runtime"
"sync"
"time"

)

var n = 5

fune init() {
log.SetFlags(Q)
log.SetPrefix("» ")
runtime.GOMAXPROCS(8)

func Run(id int, wg *sync.WaitGroup) {

for i :=0; i < n; i++ {
time.Sleep(time.Second)
wg.Done()

log.Printf("%d is done", id)

func main() {
var wg sync.WaitGroup

for i :=0; 1 < 3; i++ {
wg.Add(n)
go Run(i, &wg)

}

wg.Wait()

log.PrintIn("all done")

© 00 9 O U b W N =

[G N
O Ol b WO N~ O

sync 354

Output:

is done
is done
is done
is done
is done
is done
is done
is done
is done
is done
is done
is done
is done
is done

B, O NP, O NPT O NHPHO NP ON

is done
» all done

Pool

A Pool is used to to prevent GC thrash by allowing you to reused allocated objects.
The idea is that you have a bunch of goroutines that are all doing the same thing,
and hence will all need the same type of data structure.

Maybe you run an animated gif website, and you want to know the dimensions of
all the images you host. Since the size information is at the beginning of the file, you
only need to read in a few bytes to find out what you want to know. Using a pool,
you can allocate and reused your []byte instead of makeing a new one each time. If
you’re reading a few images, maybe this doesn’t matter. If you’re reading millions,
it probably will.

In this example, the New function we create the poo1 with just returns a struct that
includes an int that increases on every call to New. Even though there are 20 calls
to pool.Get(), the number only goes up to about 4 or 5. This is because at any given
time there should only be a maximum of 4 Things out in the wild, and they get put
back, and hence reused.

0 N O O B~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

sync

sync/pool.go

355

package main

import (
"log"
"runtime"
"sync"
"time"

)

var n int

type Thing struct {
N int

func init() {
log.SetFlags(Q)
log.SetPrefix("» ")
runtime.GOMAXPROCS(8)

func Run(pool *sync.Pool) {
for i :=0; i <5; i++ {
thing := pool.Get().(*Thing)
log.Println(thing.N)
pool .Put(thing)

func main() {
pool := &sync.Pool{
New: func() interface{} {
n +=1

return &Thing{n}

go Run(pool)
go Run(pool)
go Run(pool)
go Run(pool)

42
43
44
45

O© 00 9 O O b W N =

NN NN NN B B | s s s
O b O NN O O 0O O b W NN~ O

sync 356

go Run(pool)

time.Sleep(time.Second)

W Ol W W WUl d W wWwwwhsd o~ W0 wwowo o o o o

sync/atomic

The sync/atomic package contains a whole mess of functions to do atomic operations
with integers. You can add a delta to them, swap them, compare and swap, load and
store. These are mostly low level primitives, but sometimes they’re just what the
doctor ordered.

In the example, the code is the same, except for the single line that modifies n.
Using n++ doesn’t result in the correct value because it reads old values. Using
atomic.AddInt32 gives the correct answer.

0 N O O B~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

sync

sync/atomic.go

357

package main

import (
"log"
"runtime"
"sync"
"sync/atomic"

)

var (

expected int32 = 1000 * 1000

func init() {
log.SetFlags(Q)
log.SetPrefix("» ")
runtime.GOMAXPROCS(8)

func DemoBroken() {
var n int32
var wg sync.WaitGroup
wg.Add(1000)
for i :=0; 1 < 1000; i++ {

go func() {
for j := Q; j < 1000; j++ {
n++
}
wg.Done()
O
}
wg.Wait()

log.Printf("got %d, expected %d", n, expected)

func DemoAtomic() {
var n int32
var wg sync.WaitGroup
wg.Add(1000)
for i :=0; 1 < 1000; i++ {
go func() {

42
43
44
45
46
47
48
49
90
o1
52
53
o4
55

sync
for j := 0; j < 1000; j++ {
atomic.AddInt32(&n, 1)
}
wg.Done()
1O
}
wg.Wait()
log.Printf("got %d, expected %d", n, expected)
}

func main() {
DemoBroken()
DemoAtomic()

358

Output:

» got 378537, expected 1000000
» got 1000000, expected 1000000

syscall (wip)

O© 00 9 O O b W N =

testing

The testing package contains functions and structures useful when testing Go
applications and libraries. You don’t normally need these things when writing your
application or library (unless you’re writing something to interact or help with
testing), but they are your world when you’re writing tests for your library or
application.

The basic way to test your go code is to start out with a *_test.go file. Say you have
a math library, bookmath, and you have math_int.go to handle doing math with ints. It
has a function sumints. You write tests for that file in math_int_test.go. Now you can
run go test and go will run your tests. Great!

Now, write a function Testsumints, or whatever, as long as it starts with Test. This
function takes a *testing.T argument, and you’re off to the races!

testing.T

The main thing you interact with is this testing.T type. There are a bunch of methods
hanging off of it, but they all revolve around logging things, failing the current test,
or skipping the current test. There is actually no builtin assert like you’d see in many
other testing libraries. If you want to assert something, you can use an i f statement.
The testing package is about having a toolbox of very basic tools, and building from
those. This is one of the places in the standard library I like using an external library
to layer onto the testing functionality to make things a bit smoother, but it’s fine if
you don’t.

Let’s look at an example.

testing/src/bookmath/math_int.go

package bookmath

// SumInts adds up a bunch of ints
func Sumlnts(values ...int) (sum int64) {
for _, value := range values {
sum += int64(value)

}

return sum

0 I O O b W N =

NN N N N S S L sy
B WO NP0 © 0030 O b O NN O O

testing 361

testing/src/bookmath/math_int_test.go

package bookmath_test

import (
"bookmath"
"testing"
)
func TestSumInts(t *testing.T) {
tests := []struct {
values [lint
expected int64
H
{[1int{1, 2, 3}, 6},
{[lint{1, -1, 0}, 0},
}
for _, testCase := range tests {
sum := bookmath.SumInts(testCase.values...)
if sum != testCase.expected {

t.Error("SumInts(%v), expected=%d, actual=%d", testCase.values, testCase.
cted, sum)

You have to run these with a bit more finesse because we’re outside GopATH. When
you’re in the testing directory, run GOPATH="$PWD" : $GOPATH go test ./... and it’ll do
the right thing.

Now we have some super simple output that looks like this:

ok bookmath ©.005s

That’s basically all you need for testing go things. It’s just simple programming.
Nothing fancy to learn. There are more fun things we can do, so let’s check them
out.

O 00 9 O O b W N =~

(RGN
N =~ O

testing 362

Benchmarking

Youw’ll maybe want to benchmark your code, so that when you run tests you can
spot regressions in performance. The go team does this all the time, and naturally
it’s built into the testing package.

To write benchmark tests, you want to write functions prefixed with Benchmark. Then
you can run go test -bench . and it’ll go to town.

testing/src/bookmath/math_int_benchmark_test.go

package bookmath_test

import (
"bookmath"
"testing"
)

func BenchmarkSumInts(b *testing.B) {
for i := 0; i < b.N; i++ {
bookmath.SumInts(1, 2, 3, 4, 5, 6, 7, 8, 9)

These use a different struct, testing.B. There’s an N attribute on it which has the
number of times you should call your function, so naturally, we use a for loop.

Now we see an output like this:
BenchmarkSumInts-8 200000000 9.76 ns/op

So out sumints function ran pretty fast.

Examples

You can also write examples in the tests. These will fail the tests if the output doesn’t
match what you said the output should be. They are kind of like unit tests that serve
as, well, examples for other people when they need to figure out how to use your
code. Sometimes looking at test code isn’t very useful, and examples can help with
that.

©O© 00 < O U b W N =

RGN
= o

testing 363

testing/src/bookmath/math_int_example_test.go

package bookmath_test

import (
"bookmath"
n fmt "

func ExampleSumInts() {
fmt.Println(bookmath.SumInts(1, 2, 3, 4, 5))
// Output: 15

Just prefix a function with exampie. These take no arguments, and should output
to sToout using fmt.Println. Then, under your fmt.Println(...), write a comment
showing what the output should be: // output: <thing>. In our case, it’s // Output:
55

If the example fails, you’ll see something like this:

--- FAIL: ExampleSumInts (0.00s) got: 15 want: 1 FAIL

© 00 J O U b W N =

[Y
W N =~

text

The text package doesn’t do anything other than hold other packages. There are
things for scanning text, which is basically reading the “pieces” of it (so you can
build compilers and stuff). There are things to write text, specifically tabbed column
output, which is pretty cool. We also have a generic version of the ntmi/template
package, which lets us build and evaluate arbitrary templates.

So naturally, let’s build a compiler first.

Let’s build a calculator

Let’s look at the text/scanner package first. We can use it to parse an expression for a
Reverse Polish Notation calculator, and then evaluate the expression. We can build
our own HP calculator.

With our RPN calculator, we’ll have something like 1 1 +. This basically says, put 1
on the stack, put 1 on the stack, pop 2 things off the stack and add them, and put
that on the stack. Then we can print the last thing on the stack as our answer.

This code is actually mostly not related to text/scanner, but that’s the beauty of it.
You don’t have to write a bunch of junk to handle reading and parsing the text, you
can concentrate on the actual problem at hand. Try adding sqrt to this example, or
adding custom values like pi and e.

text/calculator.go

package main

import (
"flag"
"log"
"regexp"
"strconv"
"strings"
"text/scanner"

)

var (

equation string

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55

text

numberRe = regexp.MustCompile(-?[1-9][0-9]*(\.[0-9]+)?")

func fn(num float64) string {

return strconv.FormatFloat(num, 'f', -1, 64)

func show(1l, r, value float64, operand string) ({

log.Printf("pushing %s %s %s => %s", fn(l), operand, fn(r), fn(value))

type Stack struct {

func (s

func (s

func (s

func (s

func (s

data []string

Stack) IsEmpty() bool {
return len(s.data) ==

*Stack) Push(value string) {
s.data = append(s.data, value)

*Stack) PushNumber(num float64)
s.Push(fn(num))

*Stack) Pop() string {
if s.IsEmpty() {

return

}

value, data := s.data[len(s.data)-1], s.data[:len(s.data)-1]

s.data = data

return value

*Stack) PopNumber() float64 {

value := s.Pop()

num, err := strconv.ParseFloat(value, 64)
if err != nil {

log.Fatalf("failed parsing number: %s", err)

365

56
o7
58
959
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
8T
88
89
90
91
92
93
94
95
96
o7

text

return num

func (s *Stack) PopOperands() (float64, float64)

r, 1 := s.PopNumber(), s.PopNumber()
return 1, r

}

func init() {

log.SetFlags(9)

log.SetPrefix("» ")

flag.StringVar(&equation, "rpn", "1 2 + 3 * 2 / 10 -",
ell)

flag.Parse()
}
func main() {

var s scanner.Scanner
s.Filename = "equation"
s.Init(strings.NewReader(equation))

stack := Stack{}
for {
// Using Scan() we skip whitespace
tok := s.Scan()
if tok == scanner.EOF {
break
}
text := s.TokenText()
switch tok {

case '+':
1, r := stack.PopOperands()
value (=1 +r
show(1l, r, value, "+")
stack .PushNumber (value)
case '-':
1, r := stack.PopOperands()
value (=1 - r
show(1l, r, value, "-")
stack .PushNumber (value)
case '*':

366

"the equation to evaluat\

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

S © 0 9 O O b W N+~

KN

text 367
1, r := stack.PopOperands()
value (=1 *r
show(1l, r, value, "*"
stack .PushNumber (value)
case '/':
1, r := stack.PopOperands()
value =1 /r
show(1l, r, value, "/")
stack .PushNumber (value)
default:
switch {
case numberRe.MatchString(text):
log.Printf("pushing %s", text)
stack.Push(text)
}
}
}
log.Printf("=> %s", stack.Pop())
}
Output:
» pushing 1
» pushing 2
» pushing 1 + 2 => 3
» pushing 3
» pushing 3 * 3 => 9
» pushing 2
» pushing 9 / 2 => 4.5
» pushing 10
» pushing 4.5 - 10 => -5.5
» => -5.5

Pretty console output

Something else the text package lets us do is write pretty tab separated columns
so we can output data in tables. Like most great things in the Go standard library,
this works with io.writer, SO we can basically write to anything. We’ll be writing to
os.Stdout In our example.

It’s a pretty straightforward package, and the example is short, but it’s useful.

0 I O O b W N =

NN N N P S s s s
W N, O © 03O0 O b W NN~ OO O

text 368

text/tabwriter.go

package main

import (
"og"
"strings"
"text/tabwriter"
)

func main() {
data := [][]string{
{"Continent", "Country", "Nationality"},

{"North America", "Canada", "Canadian"},
{"Europe", "France", "French"},

}

writer := tabwriter.NewWriter(os.Stdout, 0, 8, 4, ' ', 0)

defer writer.Flush() // Make sure to Flush the writer when you're done

for _, tuple := range data {
writer .Write([]byte(strings.Join(tuple, "\t")))
writer.Write([]byte{'\n'})

}
}
Output:
Continent Country Nationality
North America Canada Canadian
Europe France French
Templating

Finally, the text package lets us make arbitrary templates and evaluate those
templates given a context. If you’ve used Ruby, this is basically like ERB. While you
normally see ERB used to generate HTML, it just generates a text file given some
other ruby code, and this is really no different.

©O© 00 < O U b W N =

NN N N P S s s s
W N, O © 000 O b W N -~ O

O b W N =

text 369

text/template.go

package main

import (
"html/template™
|IOS n

)

var (

todoltems = []string{
"cut the grass",
"pick up milk",
"feed the dog",

func main() {
t := template.Must(template.New("todos").Parse(TODO:
{{ range $index, $item := . }}
{{ $index }}: {{ . }}{{ end }}
"))

t.Execute(os.Stdout, todoltems)

Output:

TODO:

@: cut the grass
1: pick up milk
2: feed the dog

In that example, we iterate over our TODO items and make a list. When we have {{
range $index, $item := . }},it’s saying:

Iterate over the current thing, and assign me an index and the item. Also,
if you could start your range variables with a $, that’d be just great...

© 00 N O U b W N =

NN NN N N B 1 sy s
O b 0O N~ O O 0N O Ol b W N~ O

text 370

That . on the right side of :=is what you’re iterating over, which is the current thing.
Since at that point it’s at the top level of the context, and we passed in our slice of
TODO items, . is the slice of TODO item:s.

In the range body, we can output {{ . }}, and because we’re in a range body, . is the
element we’re iterating over. The Go templates assume you want to iterate over the
things in the slice. In normal go if you did thing := range things, thing would be the
index, but in the templates so you simply {{ range . }} and . inside the range block
would be the element, and not the index.

Functions in templates

The output is less than ideal, since it starts numbering at 0. Go doesn’t allow
completely arbitrary code in the template tags, so we can’t just $index + 1. We need
to write a function and add that to the template as a FuncMap.

text/template_funcs.go

package main

import (
"html/template”
P

)

var (
todoltems = []string{
"cut the grass",
"pick up milk",
"feed the dog",

)

func main() {
tmpl := template.New('"todos")
tmpl.Funcs(map[string]interface{}{
"inc": func(a, b int) int {
return a + b
1,
b
t := template.Must(tmpl.Parse(TODO:
{{ range $index, $item := . }}
{{ inc $index 1 }}: {{ $item }}{{ end }}

26
27
28
29

O = W N -

O© 00 9 O O b W N =

RN
N =~ O

text 371

)

t.Execute(os.Stdout, todoltems)

Output:

TODO:

1: cut the grass
2: pick up milk
3: feed the dog

We define a function that take 2 integers and adds them together and returns the
result. Now we can call the func in the template as {{ inc $index 1 }}. We don’t have
to use parens or commas, it works fine like that.

Notice we have to call the Funcs method before we parse the template. These
templates give you all the glorious benefits of types Go has to offer, so if you try to
use a function in your template you haven’t defined, Go throws an error compiling
the template.

Inline templates

Sometimes you want to define a quick template inline in the event you need to use
it in multiple places. We don’t really need to, but we can change our TODO example
to use an inline template to render the TODO item.

text/template_inline.go

package main

import (
"html/template"
"og™

)

var (
todoltems = []string{
"cut the grass",
"pick up milk",
"feed the dog",

13
14
15
16
17
18
19
20
21
22
23
24

O &= W N =

text 372

func main() {
tmpl := template.New("todos")
t := template.Must(tmpl.Parse({{ define "todo" }}- {{ . }}{{ end }}TODO:
{{ range $index, $item := . }}
{{ template "todo" $item }}{{ end }}
"))

t.Execute(os.Stdout, todoltems)

Output:

TODO:

- cut the grass
- pick up milk
- feed the dog

Template files

In any normal application, yow’ll probably have the templates in separate files, and
we can use those just fine. You can write out a number templates, load them all, and
execute the one you want.

text/header.tmpl

You have {{ len . }} TODOs today:

<<text/todo.tmpl’*

text/todos.tmpl

{{ template "header.tmpl" . }}
{{ range $index, $item := . }}
{{ template "item.tmpl" $item }}{{ end }}

74code/text/todo .tmpl

code/text/todo.tmpl
code/text/todo.tmpl

0 N O O B~ W N -

NN N N P S s s s
W N, O © 03O0 O b W NN~ OO O

O b W N =

text

text/template_files.go

373

package main

import (
"html/template™
"log"
"ogh

)

var (

todoltems = []string{
"cut the grass",
"pick up milk",
"feed the dog",

func main() {
t := template.Must(template.ParseGlob("*.tmpl"))
err := t.ExecuteTemplate(os.Stdout, "todos.tmpl", todoltems)
if err != nil {
log.Fatalf("failed executing template: %s", err)

Output:

You have 3 TODOs today:

- cut the grass
- pick up milk
- feed the dog

time

The time package, if you can believe it, deals with time. You can parse time, format
a time to a string, compare times, and add and subtract times. It will also deal with
timezone stuff.

You can also create timers and tickers for handling timeouts and sleeping.

There are a few main types in the time package: time.Time is the main type that
represents a point in time. time.Duration represents a change in time, like 4 minutes.
time.Location is where the timezone support comes from. time.Ticker Will tick on
a channel, and time.Timer, which sends the current time on a channel after the
specified buration.

Let’s play around. I think I’ll skip some of the really basic methods, like func (t Time)
Minute() int. I think you can figure out what those do.

Parsing and Formatting

Parsing time and formatting it back to a string is one of the basic and most common
tasks youw’ll do with time. Everything you need to know is listed in the package docs
in the first constant section. It’s a bit of a non-standard way to represent the string
you are to parse in, but it’s more readable than the % stuff you’re used to dealing
with.

While you can build your own layouts, if you’re moving times between systems,
you’re probably better off using any of the preset constants that come in the time
package. RFC822 and RFC3339 are a couple that come to mind. If you’re displaying
times, then you probably want to build your own.

9 Just remember to handle parsing errors, and not ignore them like I did.

0 N O O B~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

time

time/parsing_formatting.go

package main

import (
n]_Og"
"time"
)
var (
layouts
}
times =
)

fune init() {

= []string{

time.RFC822,

time.RFC3339,

time.Kitchen,

time.RubyDate,

"2006-01-_2", // _ to not display leading zeroes

make(chan string, len(layouts))

log.SetFlags(Q)
log.SetPrefix("» ")

}
func DemoFormat() {
now := time.Now()
for _, layout := range layouts {
formatted := now.Format(layout)

times <- formatted

log.Printf("%s + %#*v = %#v", now, layout, formatted)

}
close(times)
}
func DemoParse() ({
for _, layout := range layouts {
t = <-times
parsed, _ := time.Parse(layout, t)
log.Printf("%#v + %#v = %s", t, layout, parsed)
}

42
43
44
45

© 00 N O U b W N =

[U
O & 0N -~ O

time 376

func main() {
DemoFormat ()
DemoParse()

Output:

» 2014-08-13 21:49:39.694096285 -0600 MDT + "02 Jan ©6 15:04 MST" = "13 Aug 14 2\
1:49 MDT"

» 2014-08-13 21:49:39.694096285 -0600 MDT + "2006-01-02T15:04:05707:00" = "2014-\
©08-13T21:49:39-06:00"

» 2014-08-13 21:49:39.694096285 -0600 MDT + "3:04PM" = "9:49PM"

» 2014-08-13 21:49:39.694096285 -0600 MDT + "Mon Jan ©2 15:04:05 -Q700 2006" = "\

Wed Aug 13 21:49:39 -0000 2014"

» 2014-08-13 21:49:39.694096285 -0600 MDT + "2006-01-_2" = "2014-08-13"

» "13 Aug 14 21:49 MDT" + "02 Jan 06 15:04 MST" = 2014-08-13 21:49:00 -0600 MDT

» "2014-08-13T21:49:39-06:00" + "2006-01-02T15:04:05Z07:00" = 2014-08-13 21:49:3\
9 -0600 MDT

» "O:49PM" + "3:04PM" = 0000-01-01 21:49:00 +0000 UTC

» "Wed Aug 13 21:49:39 -0600 2014" + "Mon Jan 02 15:04:05 -Q700 2006" = 2014-08-\
13 21:49:39 -0600 MDT

» "2014-08-13" + "2006-01-_2" = 2014-08-13 00:00:00 +000 UTC

Duration

Duration is something like s5n or 2m3es. You can add durations to a time to get a new
time. You can also use durations to sleep or wait a certain amount of time. They are
pretty straightforward to use, and the f1ag package can even parse them without
any fuss. You can even round a time using the duration constants.

Along with round there is also Truncate. The former is for, uh, rounding, and the
latter is like the mathematical f1oor function, forcing the time to round down.

The easiest way to get a duration from a constant is to multiply the constant by the
unit you want from the time package.

It goes up to hours, because anything past that gets really scary when you have to
deal with timezones, daylight savings time, and the fact that a day isn’t really 24
hours. Okay, that last one probably isn’t that big of a deal, but it’s interesting to
think about.

0 N O O B~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

time

time/duration.go

377

package main

import (
n]_Og"
"time"
)
var (

moon = time.Date(1969, time.July, 20, 20, 18, 4, 0, time.UTC)

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

func DemoConstants() {

log.PrintIn("DemoConstants")
log.Println(5 * time.Nanosecond)
log.Println(5 * time.Microsecond)
log.Println(5 *
log.Println(5 * time.Second)
log.PrintIn(5 * time.Minute)
log.Println(5 *

time.Millisecond)

time.Hour)

func DemoParsing() {
log.PrintIn("DemoParsing")
d, _ := time.ParseDuration("5h2m55s10usb5ns")
log.Printin(d)
log.Printf("%fh == %fm == %fs", d.Hours(), d.Minutes(), d.Seconds())

func DemoRound() {
log.Println("DemoRound")
log.Println(moon)
log.Println(moon.Round(time.Minute))
log.Println(moon.Round(time.Hour))

func DemoTruncate() {

42
43
44
45
46
47
48
49
90
o1
52
53
o4
55
56
o7
o8
99
60
61
62

0 N O O B~ W N -

B) s s
0 0 O b WON -~ O

time

// Ignore this math until the next demo
moon.Add(30 * time.Minute)

laterMoon :=

log.PrintIn("DemoTruncate")

log.Printin(laterMoon)

log.Println(laterMoon.Truncate(time.Hour))
// See how Round goes up and Truncate goes down?
log.Println(laterMoon.Round(time.Hour))

func DemoSince() {

log.PrintIn("DemoSince")
log.Printf("%s since %s", time.Since(moon), moon)

func main() {

DemoConstants()

DemoParsing()
DemoRound ()

DemoTruncate()

DemoSince()

378

Output:

»

DemoConstants
5ns

Sus

5ms

5s

5mos

5h@m@s
DemoParsing

5h2mb55 . 000010005s

5.048611h ==
DemoRound

1969-07-20 20:
1969-07-20 20:
1969-07-20 20:

DemoTruncate

1969-07-20 20:
1969-07-20 20:
100:00

1969-07-20 21

18:04
18:00
00:00

48:04
00:00

302.916667Tm

+0000
+0000
+0000

+0000
+0000
+0000

UTC
UTC
UTC

UTC
UTC
UTC

18175.000010s

19
20

0 = O O b W N =~

NN NN NDNDNDNDDN A B 1 s s s
0O N O O b WO N~ OO O 03O0 O b W NN~ ©

time

» DemoSince
» 395189h4Tm26.171405848s since 1969-07-20 20:18:04 +0000 UTC

379

Math

Doing math on time is pretty straightforward. Sort of. You can:
* Add a Duration tO get a New Time.

* Sub a Time tO get a Duration.
* AddDate(years, months, days) tO geta Time.

time/math.go

package main

import (
"log"
"time"
)
var (
moon = time.Date(1969, time.July, 20, 20, 18, 4, 0, time.UTC)
now = time.Now()
)

func init() {
log.SetFlags(Q)
log.SetPrefix("» ")

func DemoAdd() ({
log.Println("DemoAdd")
log.Printin(moon.Add(4 * time.Hour))

log.PrintIn(now)

// 24 hours from now

log.Println(now.Add(24 * time.Hour))

// 24 hours ago, you can add a negative duration
log.Printin(now.Add(-24 * time.Hour))

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

© © 00 N O O b W N+~

Y

time

func

func

func

DemoSub() {
log.Println("DemoSub")
log.PrintIn(moon.Sub(time.Now()))

DemoAddDate() {
log.Println("DemoAddDate")
log.Printin(moon.AddDate(45, 0, 0))

main() {
log.Println(moon)
DemoAdd()
DemoSub ()
DemoAddDate()

380

Output:

» 1969-07-20 20:18:04 +0000 UTC

» DemoAdd

» 1969-07-21 00:18:04 +0000 UTC

» 2014-08-19 20:20:12.205032905 -0600 MDT
» 2014-08-20 20:20:12.205032905 -0600 MDT
» 2014-08-18 20:20:12.205032905 -0600 MDT
» DemoSub

» -395190h2m8.205453284s

» DemoAddDate

» 2014-07-20 20:18:04 +0000 UTC

Comparisons

Comparing time is pretty easy too. Like most other types in Go, you can’t just throw
<and > around and have it work. You have Before, After, and eqaul, and they all work
as you’d expect.

0 N O O B~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

time 381

time/comparisons.go

package main

import (
"log"
"time"

)

var (
utcPlusOne = time.FixedZone("UTC+1", 3600)
moon = time.Date(1969, time.July, 20, 20, 18, 4, 0, time.UTC)
moonAlso = time.Date(1969, time.July, 20, 21, 18, 4, O, utcPlusOne)
now = time.Now()

)

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

func DemoBefore() {
log.Println("DemoBefore")
log.Printf("moon before now? %t", moon.Before(now))

func DemoAfter() {
log.Println("DemoAfter™)
log.Printf("moon after now? %t", moon.After(now))

func DemoEqual() {
log.Println("DemoEqual™)
log.Printf("moon equal now? %t", moon.Equal(now))
log.Printf("moon equal moon? %t", moon.Equal(moon))

log.Printf("moon: %s", moon)
log.Printf("moonAlso: %s", moonAlso)
log.Printf("moon equal moonAlso? %t", moon.Equal(moonAlso))

func main() {
DemoBefore()

42
43
44

© © 00 N O U b W N =~

N

0w N O O & W N =~

S s e
W N~ OO O

time 382

DemoAfter()
DemoEqual()

Output:

» DemoBefore

» moon before now? true

» DemoAfter

» moon after now? false

» DemoEqual

» moon equal now? false

» moon equal moon? true

» moon: 1969-07-20 20:18:04 +0000 UTC

» moonAlso: 1969-07-20 21:18:04 +0100 UTC+1
» moon equal moonAlso? true

time.Timer

If you want to be notified after a certain amount of time, you want a Timer. You can
work with timers in a few different ways. There are the package level After and
AfterFunc functions. Youw’ll commonly see After being used as the idiomatic way to
timeout receiving from a channel. You can also build your own timer, stop it, and
reset it.

This example includes sieep because it doesn’t really fit anywhere else.

time/timer.go

package main

import (
n logll
"time"

var (
fiveSeconds = 5 * time.Second

func init() {
log.SetFlags(9)

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55

time

log.SetPrefix("» ")

func DemoTimer()
log.Printf("before NewTimer: %s", time.Now())
t := time.NewTimer (fiveSeconds)
time.Sleep(3 * time.Second)
t.Reset(fiveSeconds)
<-t.C
// Should be at least 8 seconds later
log.Printf(" after NewTimer: %s", time.Now())

func DemoSleep() {
log.Printf("before Sleep: %s", time.Now())
time.Sleep(fiveSeconds)
// Five seconds later
log.Printf(" after Sleep: %s", time.Now())

func DemoAfter() {
log.Printf("before After: %s", time.Now())
now := <-time.After(fiveSeconds)
// Five seconds later
log.Printf(" after After: %s", now)

func DemoAfterFunc() {
¢ := make(chan time.Time)
log.Printf("before AfterFunc: %s", time.Now())
time.AfterFunc(fiveSeconds, func() {
// Otherwise, the program would
// end without this getting called
c <- time.Now()
|9
// Five seconds later
log.Printf(" after AfterFunc: %s", <-c)

func main() {
DemoTimer ()
DemoSleep()

383

56
ST
o8

0 N O O B~ W N -

© 00 N O U b W N =

(RSN
Ll)

time

DemoAfter()
DemoAfterFunc()

384

Output:

» before NewTimer: 2014-08-21
» after NewTimer: 2014-08-21
» before Sleep: 2014-08-21 18:
» after Sleep: 2014-08-21 18:
» before After: 2014-08-21 18:
» after After: 2014-08-21 18:

18:
18:
53:
54:
54:
54:

53
53
55

@5

:47.948734117 -0600 MDT
:55.950396133 -0600 MDT
.950453419 -060@ MDT

00 .
00 .
.952094974 -0600 MDT

951471835 -0600 MDT
951513969 -060@ MDT

» before AfterFunc: 2014-08-21 18:54:05.952147241 -0600 MDT
» after AfterFunc: 2014-08-21 18:54:10.952484904 -0600 MDT

Frantic-tick-tick-tick-tick-tick-tick-tock: time.Ticker

That was a pretty terrible Metallica album...

A ticker is like a timer, except that it keeps happening. It ticks. You could use this
to implement your own cron implementation, for example, since cron is basically

“run X every Y duration”.

It’s very simple. You make a ticker, and receive on the channel in a loop. Boom.

Oh wait.

I’'m not sure why they did this, but channel you have access to a receive only
channel, and you can’t close it. If you want to be stopping tickers, you probably

want to hold on to a stop channel and select on it and the ticker channel.

time/ticker.go

package main

import (
"log"
"time"

func init() {
log.SetFlags(9)

log.SetPrefix("» ")

time 385

12
13 func main() {
14 stop := make(chan bool)
15 ticker := time.NewTicker(time.Second)
16 time.AfterFunc(5*time.Second, func() {
17 ticker.Stop()
18 stop <- true
19 })
20
21 for {
22 select {
23 case now := <-ticker.C:
24 log.PrintIn(now)
25 case <-stop:
26 log.Printin("stopped")
27 return
28 }
29 }
30 }
Output:
1 » 2014-08-21 19:41:57.521759536 -0600 MDT
2 » 2014-08-21 19:41:58.521761552 -0600 MDT
3 » 2014-08-21 19:41:59.521565763 -0600 MDT
4 » 2014-08-21 19:42:00.521819833 -0600 MDT
5 » 2014-08-21 19:42:01.520993048 -060@ MDT
6 » stopped
Timezones

Timezones are actually pretty easy in go. It knows about all the normal ones, or if
you don’t like those you can make your own. You can parse times in specific zones,
or convert times to be in a zone.

0 N O O B~ W N -

W W W W W WNDNDDNDNDNDDNNDMNDNDNDNDNDNDDNDAES AP 2 2 s
O & O NP OO0 O 00 N O Ok WONAPA,OO © 0 N0 O d N~ OO ©

time 386

time/timezones.go

package main

import (
"log"
||time”
)
var (

utcPlusOne = time.FixedZone("UTC+1", 3600)
layout = "Jan _2 15:04:05 2006"
"Jul 20 20:18:04 1969"

moon

fune init() {
log.SetFlags(Q)
log.SetPrefix("» ")

funec main() {
log.Println(time.LoadlLocation("Canada/Mountain"))

moonTime, err := time.Parse(layout, moon)
// Defaults to UTC, kind of wish it defaulted to local
log.Println(moonTime, err)

// Same time, different timezone

moonTime, err = time.ParselnLocation(layout, "Jul 20 21:18:04 1969", utcPlusOne)
log.Println(moonTime, err)

log.Printin(moonTime.In(time.UTC))

now := time.Now()
log.Println(now)
log.Printin(now.In(utcPlusOne))
log.Printin(now.In(time.UTC))

N O O & W N =

time

Output:

387

» Canada/Mountain <nil>

» 1969-07-20
» 1969-07-20
» 1969-07-20
» 2014-08-21
» 2014-08-22
» 2014-08-22

20:
21:
20:
20:
03:

02

18
18
18

QT :
QT :
107

104
104
104
31.
31.
31.

+0000 UTC <nil>

+0100 UTC+1 <nil>
+0000 UTC

199496356 -0600 MDT
199496356 +0100 UTC+1
199496356 +00YQY UTC

unicode

There are a lot of written languages out there, did you know that? Turns out, there
are WAY too many characters to express using a single byte like with ASCII, so we
have all these other encodings. Mostly what you’ll today to do this is UTF-8, which
uses anywhere from 1 to 4 bytes to encode stuff. You should be using UTF-8 for
anything new you build.

The unicode package lets you query these unicode characters to find out what they
are. Are they a number or a letter? A graphic? Lowercase or uppercase? It’s not
quite as simple as ASCII.

There are also functions to convert things to upper and lower case, again, because
it’s not trivial. For example, make Myrdalsjokull uppercase, I dare you. Okay it’s
not that hard. In fact, we already did this in the strings package, but guess what
functions that package uses to get the job done? The ones in the unicode package!
These deal with individual runes, so they are less exciting, but are the necessary
building blocks to handle all the world’s languages.

Queries

First we’ll look at figuring out what a specific character is. We can ask all sort
of questions, like whether something is upper or lower case, if it’s a symbol or
punctuation, and a whole bunch more. We won’t cover them all, because they all
share the same function signature so they all operate the same way.

Unicode also has a bunch of categories so we can group like runes together. For
example, Number, Decimal Digit has 550 characters, because beyond the regular
ASCII 0-9, there are Arabic, Extended Arabic, Thai, Tibetan, and the list goes on!

And because various languages have their own characters that don’t appear in
other languages (or maybe they do), you can check if a rune appears in various
ranges of runes.

0 N O O B~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

unicode

389

unicode/queries.go

package main

import (

var (

)

" fmt"
"].Og"

"unicode"

thai = "O000OO/000000000000" // I will be right back. http://www.linguanaut. \
com/english_thai.htm

func init() {
log.SetFlags(Q)
log.SetPrefix("» ")

func DemoThai() {

tan))

for

—

r

:= range thai ({
fmt .Printf("%c (%U): ", r, r)

// Query individual runes

if unicode.IslLetter(r) {
fmt.Print("IsLetter")

} else if unicode.IsPunct(r) {
fmt . Print("IsPunct")

} else if unicode.IsMark(r) {
fmt .Print("IsMark")

// Check if a rune appears in a single range
fmt.Printf(", Thai?: %t", unicode.Is(unicode.Thai, r))

// Check if a run appears in multiple ranges (ANY)
fmt.Printf(", Thai AND Tibetan?: %t", unicode.In(r, unicode.Thai, unicode.Tibe\

// Check multiple ranges again (ANY)
// unicode.In is preferred, because, c'mon, look at that code vs this code.
// thaiOrTibetan := []*unicode.RangeTable{unicode.Thai, unicode.Tibetan}

42
43
44
45
46
4’7
48
49
o0

0w N O O B W N =~

N S U
B W N O O

15
16
17
18
19
20
21
22

unicode 390

// fmt.Printf(", Thai or Tibetan?: %t", unicode.IsOneOf(thaiOrTibetan, r))

fmt.Printin()

func main() {
DemoThai()

Output:

0 (U+QE41): IslLetter, Thai?: true, Thai AND Tibetan?: true

0 (U+QE25): IslLetter, Thai?: true, Thai AND Tibetan?: true
0 (U+QE49): IsMark, Thai?: true, Thai AND Tibetan?: true

O (U+QE2T7): IsLetter, Thai?: true, Thai AND Tibetan?: true

O (U+QEQQ): IslLetter, Thai?: true, Thai AND Tibetan?: true
0 (U+QE31): IsMark, Thai?: true, Thai AND Tibetan?: true
(U+QE19): IsLetter, Thai?: true, Thai AND Tibetan?: true
(U+Q02F) : IsPunct, Thai?: false, Thai AND Tibetan?: false
(U+QE1C): IsLetter, Thai?: true, Thai AND Tibetan?: true
(U+QE21): IslLetter, Thai?: true, Thai AND Tibetan?: true
(U+QEQ@8): IslLetter, Thai?: true, Thai AND Tibetan?: true
(U+QE3Q): IslLetter, Thai?: true, Thai AND Tibetan?: true
(U+QE@1): IsLetter, Thai?: true, Thai AND Tibetan?: true
(U+QE25): IslLetter, Thai?: true, Thai AND Tibetan?: true
0 (U+QE31): IsMark, Thai?: true, Thai AND Tibetan?: true
(U+QE1A): IslLetter, Thai?: true, Thai AND Tibetan?: true
(U+QE21): IslLetter, Thai?: true, Thai AND Tibetan?: true
(U+QE32): IslLetter, Thai?: true, Thai AND Tibetan?: true
(U+QE43): IsLetter, Thai?: true, Thai AND Tibetan?: true
(U+QE2B): IsLetter, Thai?: true, Thai AND Tibetan?: true
(U+QE21): IslLetter, Thai?: true, Thai AND Tibetan?: true
0 (U+QE48): IsMark, Thai?: true, Thai AND Tibetan?: true

OO0 oOoo0ooOo s O

O 0o o oo g

Simple Conversion

With ASCII, it’s really easy to tell what something is, lowercase letters are 97 to
122, uppercase are 65 to 90, and to convert between the two, you can just add or
subtract 32. Super easy. Other languages, those expressed via the full power of
unicode, aren’t so easy. Luckily, the unicode package provides helpers to convert

0 N O O & W N =

W W W W N DNDNDNDNDDNDNDNDNNNNDNAS AP, s
W NP O O 00 O O b WONPHO O 00N O O W N~ O O

unicode 391

runes between upper and lower case, so you don’t have to know the specifics about
how to convert some interesting Swedish letters to the case you need.

unicode/conversion.go

package main

import (
"flag"
"fmt"
"log"
"unicode"

)

var (

toggle string

func init() {
log.SetFlags(Q)
log.SetPrefix("» ")

flag.StringVar(&toggle, "toggle", "MyrDalSjokuLL", "toggle the case of each uni\
code rune")
flag.Parse()

func main() {
toggled := make([]rune, len(toggle))
for index, r := range toggle {
if unicode.IsUpper(r) {
toggled[index] = unicode.TolLower(r)
} else {
toggled[index] = unicode.ToUpper(r)

}
fmt.Printf("original: %s\ntoggled: %s\n", toggle, string(toggled))

© 00 N O U b W N =

N N N B 1 |l s s s
N »~ © O 0 1 0 O b WO N~ O

unicode 392

Output:

original: MyrDalSjokulLL
toggled: m¥\RAALsJO\KU11

UTF-16

The unicode/utf16 is mainly used for two things. First, you can convert something
into UTF-16 if that’s what it needs to be in. Maybe you’re generating a CSV file for
Excel so that it opens nicely. If you’ve ever done that, you have probably ended up
with a TSV file in UTF-16. Because that makes sense. Anyway...

Writing

Let’s write out an Excel friendly TSV file.

unicode/utf16_writing.go

package main

import (
"bytes"
"encoding/binary"
"encoding/csv"
"errors"
"io"
"log"
"og"
"unicode"

"unicode/utf16"

var (
proverb = "Alla ar vi barn i boérjan."

func init() {
log.SetFlags(9)
log.SetPrefix("» ")

75Tab Separated Values

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
o8
959
60
61
62
63
64

unicode 393

type UTF16Writer struct {

out io.Writer

bom bool

started bool

buf *bytes.Buffer

func NewUTF16Writer(out io.Writer, bom bool) *UTF16Writer {
return &UTF16Writer(
out: out,
bom: bom,
buf: new(bytes.Buffer),

func (w *UTF16Writer) Write(p []byte) (int, error) ({
if !w.started {
if w.bom {
// We're assuming little endian, since that's what Excel wants,
// but you could easily pass in a endianess.
_, err := w.out.Write([]byte{ ' \xff', '\xfe'})

if err != nil {
return 0, err
}
}
w.started = true
}
_, err := w.buf.Write(p)
if err != nil {
return 0, err
}
// omg such a hack
for {
r, s, err := w.buf.ReadRune()
if err != nil {

if err == io0.EOF {
return len(p), nil

}

return 0, err

unicode 394

65 }

66

o7 // The lazy hack

68 if r == unicode.ReplacementChar && s == 1 {

69 return 0, errors.New("incomplete rune")
70 }

71

72 err = binary.Write(w.out, binary.LittleEndian, utf16.Encode([]rune{r}))
73 if err != nil {

T4 return 0, err

75 }

76 }

77}

78

79 func main() {

80 proverbs := [][]string{

81 {"Language", "Proverb"},

82 {"sv", "Alla &r vi barn i bérjan."},

83 {"zh", "00000000OO0"},

84 }

85 csvWriter := csv.NewWriter(NewUTF16Writer(os.Stdout, true))
86 csvWriter.Comma = '"\t'

87 err := csvWriter.WriteAll(proverbs)

88 if err != nil {

89 log.Fatalf("failed writing: %s", err)

20 }

91 }

Now, this TSV example comes with quite the caveat. That caveat is you probably
shouldn’t use it. It works, but I would question its stability in a production system.

To take a byte slice (like the io.write method expects) and convert it to UTF-16
properly is quite a process, mainly because you need to handle a rune being split
between two calls to the method. If you could rely on complete runes being written,
that would be nice. That’s sort of what we’re trying to do by using bytes.Buffer by
writing in all the raw bytes and then trying to read runes. The “lazy hack” line deals
with failing to read a rune, possibly because we’ve hit the middle of a one.

I basically searched through the standard library (a theme in this book...) to find
something that would let me write bytes and read runes, and landed on the
bytes.Buffer type. Now we can use the unicode/utfi6 package to encode the rune,
and then use the binary package to write the encoded uint16 values to the actual
output.

unicode 395

We had to do this exact thing in a ruby application, but the class is 34 only lines
long. It was easy, but that’s because we pulled in an external library to do the gnarly
conversion.

Go doesn’t have a one-line solution to this in the included standard library, but
it does have https://godoc.org/golang.org/x/text/encoding, which is the next best
thing. Those golang.org/x packages are sort of the standard library companion, a
supplemental resource if you will. The developers can mess around a bit more and
try things out before possibly adding them to the standard library in the case of
golang.org/x/exp. Alternatively, they are just Go Project sanctioned libraries that
the team doesn’t feel the need to package with the standard distribution. This is also
where some of the go tools are, like go vet, godoc, and others. Find all the golang.org/x
packages on the wiki: https://github.com/golang/go/wiki/SubRepositories

So we’re sort of breaking the rules by leaving the proper standard library, but we’re
not going too far to do it correctly. Encoding can be tricky, and in this case I'd
recommend pulling in the golang.org/x package.

Anyway, what we came up with without leaving the standard library did an okay
job:

B3 = Sx | wsa AR —RETE
_ A | B | C | D |
{ 1 |Language |Prowverb
| FAEAT Alla r vi barn i bérjan.
Bl [EEaEE —ETE]
4
Proverbs opened in Excel
Reading

The second thing yow’ll do is convert content from UTF-16, because let’s face it, that’s
not a lot of fun to deal with.

Let’s run this example by piping in the output from the previous writing example:
go run utfi16_writing.go | go run utf16_reading.go

0 N O O B~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDMNDNDNDNDNNNDNNDNASEAEPA,PSPS P2
O O 0 9 O O i WO NP O O 00N O O i WNPHO O OWWNO Ok WOWN A~ O

unicode 396

unicode/utfl6_reading.go

package main

import (
"bytes"
"encoding/binary"
"io"
"io/ioutil"
"log"

0s
"unicode/utf16"

fune init() {
log.SetFlags(9)
log.SetPrefix("» ")

}

type UTF16Reader struct {
in io.Reader
bom bool

started bool

func NewUTF16Reader(in io.Reader, bom bool) *UTF16Reader ({
return &UTF16Reader{
in: 1in,
bom: bom,

func (r *UTF16Reader) Read(p []byte) (int, error) {
if !r.started {
if r.bom {
// We're assuming little endian, since we used it in the previous example
bom := make([]byte, 2)
n, err := r.in.Read(bom)
if err '=nil || n =2 {

return n, err

}

r.started = true

42
43
44
45
46
47
48
49
90
o1
52
53
o4
55
56
o7
58
99
60
61
62
63
64
65
66
67
68
69
70
71
T2

unicode

397

// Read some data, deal with the ErrUnexpectedEOF here
bl := make([]byte, len(p)/4*4) // We have to read in multiples of 4 bytes

n, err := io.ReadFull(r.in, b1)

7

if err != nil && err != io.ErrUnexpectedEOF ({

return n, err

// binary.Read some data, make sure it doesn't return ErrUnexpectedEOF, because\

then it just stops

b2 := make([]Juinti6, n/2) // This always rounds down
err = binary.Read(bytes.NewReader(b1), binary.LittleEndian, b2)
if err != nil {

return 0, err

runes := utf16.Decode(b2)
bs := []byte(string(runes))
n = copy(p, bs)

return n, nil

func main() {

r := NewUTF16Reader(os.Stdin, true)
data, err := ioutil.ReadAll(r)
if err != nil {
log.Fatalf("failed reading: %s", err)

}
os.Stdout .Write(data)

Once again, this has some less than ideal code, and I wouldn’t trust it in production.
I’d use the x/text/encoding package we talked about earlier. This does get across
the point that you can do some UTF16 magic with only the standard library. An
annoying part is I had to call io.ReadFull myself and make sure binary.Read got
exactly what it needed. This is because the binary.Read function just returns on
any error from io.ReadFull before doing anything, so even if it’s fine that we hit
an “unexpected EOF”, it doesn’t know or care that everything is fine.

	Table of Contents
	Introduction
	Target Audience
	How To Read This Book
	Code In The Book

	Thanks
	Credits
	archive
	Meet The Archive Package
	Writing tar Files
	Writing zip Files
	Reading tar Files
	Reading zip Files
	Caveats

	bufio
	Is That A Buffer In Your Pocket?
	Reading
	Writing
	Scanning

	builtin
	Batteries Included
	Building Objects
	Maps, Slices, And Channels
	All The Sizes
	Causing And Handling Panics
	Complex Numbers

	bytes
	Bits and Bytes and Everything Nice
	Comparison
	Searching
	Manipulating
	Splitting and Joining
	Case
	Trimming
	Buffer
	Reader

	compress
	Honey, I Shrunk The Kids
	ALL THE CODE
	Accept-Encoding: gzip

	container
	heap
	list
	ring
	Thread Pool Example
	Round Robin Load Balancer Example
	Priority Queue Load Balancer Example

	crypto
	Disclaimer
	Block Ciphers
	Digital Signatures
	Hashes
	HMAC
	RC4
	RSA
	TLS/x509
	Random Numbers
	Constant Time Functions
	A Timing Attack In Action
	go.crypto
	Final Warning

	database
	Open
	Exec
	Query
	Prepared Statements
	Transactions
	Example

	debug
	elf
	macho
	pe
	gosym
	dwarf

	encoding
	ascii85
	asn1
	base32
	base64
	binary
	csv
	gob
	hex
	json
	pem
	xml

	errors
	expvar
	flag
	The Basic Interface
	The *Var Interface
	FlagSet
	Custom

	fmt
	Printing
	Scanning
	Printing Custom Types
	Scanning Custom Types

	go
	Cross Platform Go Code
	Introspecting Packages
	Lexing Go Code
	Parsing Go Code
	Analyzing Go Code: Cyclomatic Complexity
	Altering Go Code: Mutation Testing

	hash
	adler32
	crc32
	crc64
	fnv

	html
	Escape Artist
	Templating

	image
	Converting images formats
	Resizing
	Cropping
	Compositing: Building images from other images
	gostagram

	index
	suffixarray

	io
	Reading
	Writing
	Copy
	Pipe
	io/ioutil

	log
	Basic Logging
	Syslog

	math
	Big Numbers
	Random Numbers

	mime
	Multipart Parsing
	Multipart Generation

	net (wip)
	mail

	os
	stdio and DevNull
	Permissions
	String Expansion
	Moving Around the Environment
	Inspecting the Environment
	Creating and Removing Files and Directories
	File IO
	FileInfo
	Process Creation, Management, and Signals
	Users

	path
	path
	path/filepath
	find

	reflect (wip)
	regexp
	Matching
	Indexes
	Capture Groups and Submatches
	Replace
	io

	runtime
	Introspection
	Goroutines
	Memory
	Callstack
	runtime/debug
	runtime/pprof

	sort
	Basic Sorting
	Advanced Sorting
	Searching

	strconv
	Conversions
	Appending
	Quoting

	strings
	Querying strings
	Into the index
	Hey, split it up!
	Building and altering strings
	Upper and lower case
	Trimming
	Reader

	sync
	Once
	Mutex
	Cond
	WaitGroup
	Pool
	sync/atomic

	syscall (wip)
	testing
	testing.T
	Benchmarking
	Examples

	text
	Let's build a calculator
	Pretty console output
	Templating

	time
	Parsing and Formatting
	Duration
	Math
	Comparisons
	time.Timer
	Frantic-tick-tick-tick-tick-tick-tick-tock: time.Ticker
	Timezones

	unicode
	Queries
	Simple Conversion
	UTF-16

