

Go, The Standard Library
Real Code. Real Productivity. Master The Go Standard
Library

Daniel Huckstep

This book is for sale at http://leanpub.com/go-thestdlib

This version was published on 2017-03-26

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2012 - 2017 Daniel Huckstep

http://leanpub.com/go-thestdlib
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Daniel Huckstep by spreading the word about this book on Twitter!

The suggested hashtag for this book is #GoTheStdLib.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

https://twitter.com/search?q=#GoTheStdLib

http://twitter.com
https://twitter.com/search?q=%23GoTheStdLib
https://twitter.com/search?q=%23GoTheStdLib

Contents

Introduction . i
Target Audience . i
How To Read This Book . ii
Code In The Book . ii

Thanks . v

Credits . vi

archive . 1
Meet The Archive Package . 1
Writing tar Files . 1
Writing zip Files . 4
Reading tar Files . 7
Reading zip Files . 10
Caveats . 11

bufio . 13
Is That A Buffer In Your Pocket? . 13
Reading . 14
Writing . 17
Scanning . 19

builtin . 28
Batteries Included . 28
Building Objects . 28
Maps, Slices, And Channels . 30
All The Sizes . 34
Causing And Handling Panics . 36
Complex Numbers . 38

bytes . 39
Bits and Bytes and Everything Nice . 39
Comparison . 39

CONTENTS

Searching . 41
Manipulating . 45
Splitting and Joining . 47
Case . 48
Trimming . 50
Buffer . 52
Reader . 57

compress . 60
Honey, I Shrunk The Kids . 60
ALL THE CODE . 60
Accept-Encoding: gzip . 63

container . 68
heap . 68
list . 70
ring . 72
Thread Pool Example . 73
Round Robin Load Balancer Example . 75
Priority Queue Load Balancer Example . 77

crypto . 82
Disclaimer . 82
Block Ciphers . 83
Digital Signatures . 90
Hashes . 96
HMAC . 97
RC4 . 99
RSA . 102
TLS/x509 . 106
Random Numbers . 110
Constant Time Functions . 112
A Timing Attack In Action . 113
go.crypto . 116
Final Warning . 116

database . 117
Open . 117
Exec . 118
Query . 118
Prepared Statements . 118
Transactions . 119
Example . 119

CONTENTS

debug . 125
elf . 125
macho . 128
pe . 134
gosym . 136
dwarf . 139

encoding . 141
ascii85 . 141
asn1 . 142
base32 . 144
base64 . 146
binary . 147
csv . 151
gob . 153
hex . 155
json . 156
pem . 160
xml . 161

errors . 166

expvar . 167

flag . 169
The Basic Interface . 169
The *Var Interface . 170
FlagSet . 171
Custom . 172

fmt . 174
Printing . 174
Scanning . 176
Printing Custom Types . 177
Scanning Custom Types . 180

go . 182
Cross Platform Go Code . 182
Introspecting Packages . 184
Lexing Go Code . 185
Parsing Go Code . 187
Analyzing Go Code: Cyclomatic Complexity 188
Altering Go Code: Mutation Testing . 190

CONTENTS

hash . 198
adler32 . 198
crc32 . 199
crc64 . 202
fnv . 204

html . 207
Escape Artist . 207
Templating . 209

image . 212
Converting images formats . 212
Resizing . 214
Cropping . 217
Compositing: Building images from other images 219
gostagram . 222

index . 229
suffixarray . 229

io . 232
Reading . 232
Writing . 240
Copy . 241
Pipe . 243
io/ioutil . 245

log . 247
Basic Logging . 247
Syslog . 248

math . 251
Big Numbers . 251
Random Numbers . 254

mime . 256
Multipart Parsing . 256
Multipart Generation . 259

net (wip) . 262
mail . 262

os . 263
stdio and DevNull . 263

CONTENTS

Permissions . 264
String Expansion . 266
Moving Around the Environment . 267
Inspecting the Environment . 269
Creating and Removing Files and Directories 271
File IO . 273
FileInfo . 276
Process Creation, Management, and Signals 278
Users . 282

path . 284
path . 284
path/filepath . 285
find . 287

reflect (wip) . 291

regexp . 292
Matching . 292
Indexes . 293
Capture Groups and Submatches . 295
Replace . 296
io . 297

runtime . 299
Introspection . 299
Goroutines . 300
Memory . 302
Callstack . 304
runtime/debug . 305
runtime/pprof . 307

sort . 309
Basic Sorting . 309
Advanced Sorting . 311
Searching . 314

strconv . 316
Conversions . 316
Appending . 321
Quoting . 323

strings . 325
Querying strings . 325

CONTENTS

Into the index . 328
Hey, split it up! . 332
Building and altering strings . 333
Upper and lower case . 335
Trimming . 337
Reader . 339

sync . 341
Once . 341
Mutex . 342
Cond . 344
WaitGroup . 353
Pool . 354
sync/atomic . 356

syscall (wip) . 359

testing . 360
testing.T . 360
Benchmarking . 362
Examples . 362

text . 364
Let’s build a calculator . 364
Pretty console output . 367
Templating . 368

time . 374
Parsing and Formatting . 374
Duration . 376
Math . 379
Comparisons . 380
time.Timer . 382
Frantic-tick-tick-tick-tick-tick-tick-tock: time.Ticker 384
Timezones . 385

unicode . 388
Queries . 388
Simple Conversion . 390
UTF-16 . 392

Introduction
When I sit down to build a new piece of software in my favorite programming
language of the week, I open up my programmer’s toolbox. I can pull out a number
of things, like my knowledge of the language syntax and its quirks. It probably has
some sort of library packaging system (rubygems1 or python eggs2), and I have my
list of libraries for doing certain jobs. The language also has a standard library. All
of these tools combine to help solve difficult programming problems.

Right now, my programming language of choice is Go3 and it has a wonderful
standard library. That standard library is what this book is about.

I wanted to take an in depth look at something which normally doesn’t get a lot of
press, and many developers overlook. The standard library usually has a number
of great solutions to problems that you might be using some other dependency for,
simply because you don’t know about them. It makes no sense for my application to
depend on an external library or program if the standard distribution of the language
has something built in.4

Learning the ins andouts of your favorite programming language’s standard library
can help make you a better programmer, and streamline your applications by
removing dependencies. If this sounds like something you’re interested in, keep
reading.

Target Audience

This book is for people that know how to program Go already. It’s definitely not an
intro. If you’re completely new to Go, start with the documentation page5 and the
reference page6. The language specification is quite readable and if you’re already
familiar with other programming languages you can probably absorb the language
from the spec.

If you know Go but want to step up your game and your usage of the standard
library, this book is for you.

1http://rubygems.org/
2http://pypi.python.org/pypi/
3http://golang.org/
4Not to mention, the library you are using might only work on one operating system, while the standard library should

work everywhere the language works.
5http://golang.org/doc/
6http://golang.org/ref/

http://rubygems.org/
http://pypi.python.org/pypi/
http://golang.org/
http://golang.org/doc/
http://golang.org/ref/
http://golang.org/ref/
http://rubygems.org/
http://pypi.python.org/pypi/
http://golang.org/
http://golang.org/doc/
http://golang.org/ref/

Introduction ii

How To Read This Book

My goal for this book is a readable reference. I do want you to read it, but I also
want you to be able to pull it off the electronic shelf and remind yourself of how
to do something, like writing a zip file. It’s not meant to be a replacement for the
package reference7 which is very useful to remember the details about a specific
method/function/type/interface.

So feel free to read from cover to cover, and in fact I recommend this approach.
If you see something that doesn’t quite work reading it this way, let me know.
Alternatively, try reading individual chapters when you start to deal with a given
package to get a feel for it, and come back to skim to refresh your memory.

Code In The Book

All the code listed in the book is available for download from Leanpub as an extra.
Visit your dashboard8 for access to the archives.

Anything with a main package should be able to be executed with go run by Go
Version 1.2. If it’s not, please let me know, with as much error information as
possible.

Some codemay depend on output frompreviously shown code in the same chapter.
For example, the tar archive reading code reads the tar created in the writing code.

Frequently I’ll use other packages to make my life easier when writing example
code. Don’t worry toomuch about it. If you’re confused about some use of a package
you’re not familiar with yet, either try to ignore the details and trust that I’ll explain
it later, or jump ahead and choose your own adventure!

License

Code distributed as part of this book, either inline or with the above linked archive,
is licensed under the MIT license:

7http://golang.org/pkg/
8https://leanpub.com/dashboard

http://golang.org/pkg/
http://golang.org/pkg/
https://leanpub.com/dashboard
http://golang.org/pkg/
https://leanpub.com/dashboard

Introduction iii

LICENSE

1 Copyright (c) 2014 Daniel Huckstep

2

3 Permission is hereby granted, free of charge, to any person obtaining a copy of \

4 this software and associated documentation files (the "Software"), to deal in th\

5 e Software without restriction, including without limitation the rights to use, \

6 copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the \

7 Software, and to permit persons to whom the Software is furnished to do so, subj\

8 ect to the following conditions:

9

10 The above copyright notice and this permission notice shall be included in all c\

11 opies or substantial portions of the Software.

12

13 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLI\

14 ED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR \

15 A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYR\

16 IGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN \

17 ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WIT\

18 H THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Some code is taken directly from the Go source distribution. This code is licensed
under a BSD-style license by The Go Authors:

GOLICENSE

1 Copyright (c) 2012 The Go Authors. All rights reserved.

2

3 Redistribution and use in source and binary forms, with or without

4 modification, are permitted provided that the following conditions are

5 met:

6

7 * Redistributions of source code must retain the above copyright

8 notice, this list of conditions and the following disclaimer.

9 * Redistributions in binary form must reproduce the above

10 copyright notice, this list of conditions and the following disclaimer

11 in the documentation and/or other materials provided with the

12 distribution.

13 * Neither the name of Google Inc. nor the names of its

14 contributors may be used to endorse or promote products derived from

15 this software without specific prior written permission.

16

17 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

Introduction iv

18 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

19 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

20 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

21 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

22 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

23 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

24 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

25 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

26 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

27 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Thanks
Thanks for buying and checking out this book. As part of the lean publishing
philosophy, you’ll be able to interact with me as the book is completed. I’ll be able
to change things, reorganize parts, and generally make a better book. I hope you
enjoy.

A big thanks goes out to all thosewhoprovided feedback during thewriting process:

• Brad Fitzpatrick
• Mikhail Strebkov
• Kim Shrier

Credits
Cover photo by Sebastian Bergmann used under Attribution-ShareAlike 2.0 Generic
(CCBY-SA2.0)9. Photo located at http://www.flickr.com/photos/sebastian_bergmann/202396633/

9http://creativecommons.org/licenses/by-sa/2.0/deed.en

http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://creativecommons.org/licenses/by-sa/2.0/deed.en

archive
Meet The Archive Package

The archive package is used to read and write files in tar and zip format. Both
formats pack multiple files into one big file, the main difference being that zip
files support optional compression using the DEFLATE algorithm provided by the
compress/flate package.

Writing tar Files

Writing a tar file starts with NewWriter. It takes an io.Writer type, which is just
something that has a method that looks like Write([]byte) (int, error). This is nice
if you want to generate a tar file on the fly and write it out to an HTTP response,
or feed it through another writer like a gzip writer. You’ll see this just give me an
io.Writer pattern a lot in the Go stdlib. In our case, I’m just going towrite the archive
out to a file.

Make sure to close the writer you pass in after you close the tar writer.
It writes 2 zero blocks to finish up the file, but ignores any errors during
this process. This trailer isn’t strictly required, but it’s good to have. If you
use defer in the natural order, you should be okay.

To add files to the new tar writer, use WriteHeader. It needs a Header with all the
information about this entry in the archive, including its name, size, permissions,
user and group information, and all the other bits that get set when the tar file gets
unpacked. Straight from the Go documentation, the Header type looks like this:

archive 2

archive/tar_header.go

1 type Header struct {

2 Name string // name of header file entry

3 Mode int64 // permission and mode bits

4 Uid int // user id of owner

5 Gid int // group id of owner

6 Size int64 // length in bytes

7 ModTime time.Time // modified time

8 Typeflag byte // type of header entry

9 Linkname string // target name of link

10 Uname string // user name of owner

11 Gname string // group name of owner

12 Devmajor int64 // major number of character or block device

13 Devminor int64 // minor number of character or block device

14 AccessTime time.Time // access time

15 ChangeTime time.Time // status change time

16 }

Some fields aren’t really required if you’re doing something quick and dirty, and
some only apply to certain types of entries (controlled by the Typeflag field). For
example, if you’re packaging a regular file, you don’t need to worry about Devmajor
and Devminor.

I found that on top of the obvious Name and Size fields, I had to set the ModTime

on the Header. GNU tarwould unpack the file fine, but running the read script
would throw the standard “archive/tar: invalid tar header” error back at
me.

Let’s see it all together:

archive/write_tar.go

1 package main

2

3 import (

4 "archive/tar"

5 "fmt"

6 "io"

7 "log"

8 "os"

9)

10

archive 3

11 var files = []string{"write_tar.go", "read_tar.go"}

12

13 func addFile(filename string, tw *tar.Writer) error {

14 file, err := os.Open(filename)

15 if err != nil {

16 return fmt.Errorf("failed opening %s: %s", filename, err)

17 }

18 defer file.Close()

19

20 stat, err := file.Stat()

21 if err != nil {

22 return fmt.Errorf("failed file stat for %s: %s", filename, err)

23 }

24

25 hdr := &tar.Header{

26 ModTime: stat.ModTime(),

27 Name: filename,

28 Size: stat.Size(),

29 Mode: int64(stat.Mode().Perm()),

30 }

31

32 if err := tw.WriteHeader(hdr); err != nil {

33 msg := "failed writing tar header for %s: %s"

34 return fmt.Errorf(msg, filename, err)

35 }

36

37 copied, err := io.Copy(tw, file)

38 if err != nil {

39 return fmt.Errorf("failed writing %s to tar: %s", filename, err)

40 }

41

42 // Check copied, since we have the file stat with its size

43 if copied < stat.Size() {

44 msg := "wrote %d bytes of %s, expected to write %d"

45 return fmt.Errorf(msg, copied, filename, stat.Size())

46 }

47

48 return nil

49 }

50

51 func main() {

52 flags := os.O_WRONLY | os.O_CREATE | os.O_TRUNC

archive 4

53 file, err := os.OpenFile("go.tar", flags, 0644)

54 if err != nil {

55 log.Fatalf("failed opening tar for writing: %s", err)

56 }

57 defer file.Close()

58

59 tw := tar.NewWriter(file)

60 defer tw.Close()

61

62 for _, filename := range files {

63 if err := addFile(filename, tw); err != nil {

64 log.Fatalf("failed adding file %s to tar: %s", filename, err)

65 }

66 }

67 }

Remember to Close the tar writer first, followed by the original io.Writer. In the
example, I defer the calls to Close. Because defer executes in a LIFOa order, this is
exactly the order things get closed in. defer usually results in you not having to
think too hard in these situations, just use defer the way it should be used, and
everything should be fine.

aLast In First Out

Writing zip Files

Writing a zip file is similar to writing a tar file. There’s a NewWriter function that
takes an io.Writer, so let’s use that.

The zip package has a handy helper to let you quickly write a file to the archive
withoutmuch cermony.We can use the Create(name string)method on the zipwriter
we got back from NewWriter to add an entry to the zip; no header informationneeded.
There is a Header type, which looks like this:

archive 5

archive/zip_header.go

1 type FileHeader struct {

2 Name string

3 CreatorVersion uint16

4 ReaderVersion uint16

5 Flags uint16

6 Method uint16

7 ModifiedTime uint16 // MS-DOS time

8 ModifiedDate uint16 // MS-DOS date

9 CRC32 uint32

10 CompressedSize uint32 // deprecated; use CompressedSize64

11 UncompressedSize uint32 // deprecated; use UncompressedSize64

12 CompressedSize64 uint64

13 UncompressedSize64 uint64

14 Extra []byte

15 ExternalAttrs uint32 // Meaning depends on CreatorVersion

16 Comment string

17 }

You can use CreateHeader if you need to do something special, but Create creates a
basic header for us and gives us a writer back. We can now use this writer to write
the file into the zip archive.

Make sure to write the entire file before calling any of Create, CreateHeader, or Close.
You can only deal with one file at a time, and you certainly can’t deal with the zip
after you’ve closed it.

archive/write_zip.go

1 package main

2

3 import (

4 "archive/zip"

5 "fmt"

6 "io"

7 "log"

8 "os"

9)

10

11 var files = []string{"write_zip.go", "read_zip.go"}

12

13 func addFile(filename string, zw *zip.Writer) error {

archive 6

14 file, err := os.Open(filename)

15 if err != nil {

16 return fmt.Errorf("failed opening %s: %s", filename, err)

17 }

18 defer file.Close()

19

20 wr, err := zw.Create(filename)

21 if err != nil {

22 msg := "failed creating entry for %s in zip file: %s"

23 return fmt.Errorf(msg, filename, err)

24 }

25

26 // Not checking how many bytes copied,

27 // since we don't know the file size without doing more work

28 if _, err := io.Copy(wr, file); err != nil {

29 return fmt.Errorf("failed writing %s to zip: %s", filename, err)

30 }

31

32 return nil

33 }

34

35 func main() {

36 flags := os.O_WRONLY | os.O_CREATE | os.O_TRUNC

37 file, err := os.OpenFile("go.zip", flags, 0644)

38 if err != nil {

39 log.Fatalf("failed opening zip for writing: %s", err)

40 }

41 defer file.Close()

42

43 zw := zip.NewWriter(file)

44 defer zw.Close()

45

46 for _, filename := range files {

47 if err := addFile(filename, zw); err != nil {

48 log.Fatalf("failed adding file %s to zip: %s", filename, err)

49 }

50 }

51 }

As with tar files, remember to Close the original io.Writer and the zip writer (in that
order).

archive 7

Reading tar Files

Reading tar files is pretty straight forward. You use NewReader to get a handle to a
Reader type. Like NewWriter taking an io.Writer type, NewReader takes an io.Reader type,
in order to plug into other streams for reading tar files on the fly.

Once you have your Reader, you can iterate over the entries in the archive with the
Nextmethod. It returns a Header and possibly an error. Remember to check the error
since it’s used to signal the end of the archive (with io.EOF) and other problems.
Always check those errors!

You can read out an entry by calling Read on the reader you got back from NewReader,
or pass it to a utility function to read out the full contents of the entry. In the
example, I use io.ReadFull to read out the appropriate number of bytes into a slice,
and can then print that to stdout.

archive/read_tar.go

1 package main

2

3 import (

4 "archive/tar"

5 "fmt"

6 "io"

7 "log"

8 "os"

9 "text/template"

10)

11

12 var HeaderTemplate = `tar header

13 Name: {{.Name}}

14 Mode: {{.Mode | printf "%o" }}

15 UID: {{.Uid}}

16 GID: {{.Gid}}

17 Size: {{.Size}}

18 ModTime: {{.ModTime}}

19 Typeflag: {{.Typeflag | printf "%q" }}

20 Linkname: {{.Linkname}}

21 Uname: {{.Uname}}

22 Gname: {{.Gname}}

23 Devmajor: {{.Devmajor}}

24 Devminor: {{.Devminor}}

25 AccessTime: {{.AccessTime}}

26 ChangeTime: {{.ChangeTime}}

archive 8

27 `

28 var CompiledHeaderTemplate *template.Template

29

30 func init() {

31 t := template.New("header")

32 CompiledHeaderTemplate = template.Must(t.Parse(HeaderTemplate))

33 }

34

35 func printHeader(hdr *tar.Header) {

36 CompiledHeaderTemplate.Execute(os.Stdout, hdr)

37 }

38

39 func printContents(tr io.Reader, size int64) {

40 contents := make([]byte, size)

41 read, err := io.ReadFull(tr, contents)

42

43 if err != nil {

44 log.Fatalf("failed reading tar entry: %s", err)

45 }

46

47 if int64(read) != size {

48 log.Fatalf("read %d bytes but expected to read %d", read, size)

49 }

50

51 fmt.Fprintf(os.Stdout, "Contents:\n\n%s", contents)

52 }

53

54 func main() {

55 file, err := os.Open("go.tar")

56 if err != nil {

57 msg := "failed opening archive, run `go run write_tar.go` first: %s"

58 log.Fatalf(msg, err)

59 }

60

61 defer file.Close()

62

63 tr := tar.NewReader(file)

64 for {

65 hdr, err := tr.Next()

66 if err == io.EOF {

67 break

68 }

archive 9

69

70 if err != nil {

71 log.Fatalf("failed getting next tar entry: %s", err)

72 }

73

74 printHeader(hdr)

75 printContents(tr, hdr.Size)

76 }

77 }

Output:

1 tar header

2 Name: write_tar.go

3 Mode: 644

4 UID: 0

5 GID: 0

6 Size: 1441

7 ModTime: 2014-03-07 23:02:17 -0700 MST

8 Typeflag: '\x00'

9 Linkname:

10 Uname:

11 Gname:

12 Devmajor: 0

13 Devminor: 0

14 AccessTime: 0001-01-01 00:00:00 +0000 UTC

15 ChangeTime: 0001-01-01 00:00:00 +0000 UTC

16 Contents:

17

18 <snip contents of writer_tar.go>

19 tar header

20 Name: read_tar.go

21 Mode: 644

22 UID: 0

23 GID: 0

24 Size: 1484

25 ModTime: 2014-03-07 23:00:03 -0700 MST

26 Typeflag: '\x00'

27 Linkname:

28 Uname:

29 Gname:

30 Devmajor: 0

archive 10

31 Devminor: 0

32 AccessTime: 0001-01-01 00:00:00 +0000 UTC

33 ChangeTime: 0001-01-01 00:00:00 +0000 UTC

34 Contents:

35

36 <snip contents of read_tar.go>

Reading zip Files

Reading zip files is awalk in the park too. Startwith OpenReader to get a zip.ReadCloser.
It has a collection of File structs you can iterate through, each one with size and
other information, and an Open method so you can get another ReadCloser to read
out that individual file. Simple!

archive/read_zip.go

1 package main

2

3 import (

4 "archive/zip"

5 "fmt"

6 "io"

7 "log"

8 "os"

9)

10

11 func printFile(file *zip.File) error {

12 frc, err := file.Open()

13 if err != nil {

14 msg := "failed opening zip entry %s for reading: %s"

15 return fmt.Errorf(msg, file.Name, err)

16 }

17 defer frc.Close()

18

19 fmt.Fprintf(os.Stdout, "Contents of %s:\n", file.Name)

20

21 copied, err := io.Copy(os.Stdout, frc)

22 if err != nil {

23 msg := "failed reading zip entry %s for reading: %s"

24 return fmt.Errorf(msg, file.Name, err)

25 }

26

archive 11

27 if uint64(copied) != file.UncompressedSize64 {

28 msg := "read %d bytes of %s but expected to read %d bytes"

29 return fmt.Errorf(msg, copied, file.UncompressedSize64)

30 }

31

32 fmt.Println()

33

34 return nil

35 }

36

37 func main() {

38 rc, err := zip.OpenReader("go.zip")

39 if err != nil {

40 msg := "failed opening archive, run `go run write_zip.go` first: %s"

41 log.Fatalf(msg, err)

42 }

43 defer rc.Close()

44

45 for _, file := range rc.File {

46 if err := printFile(file); err != nil {

47 log.Fatalf("failed reading %s from zip: %s", file.Name, err)

48 }

49 }

50 }

Output:
1 Contents of write_zip.go:

2 <snip contents of write_zip.go>

3

4 Contents of read_zip.go:

5 <snip contents of read_zip.go>

Remember to Close the first ReadCloser you get from OpenReader, aswell as all the other
ones you get while reading files.

Caveats

ZIP64

You may have noticed the FileHeader has two pairs of numbers for the size of a
file in the archive. The CompressedSize and UncompressedSize are uint32 values. These

archive 12

are deprecated, but in the interest of backwards compatibility will still work for
regular zip files. If you’re working with ZIP64 files, you need to use the newer
CompressedSize64 and UncompressedSize64 uint64 values. These will be correct for all
files, so they are the preferred values to use.

bufio
Is That A Buffer In Your Pocket?

The bufio package pairs up with the io.Reader and io.Writer interfaces to make life
a little faster by including a buffer. Buffered IO. The speed up comes from the fact
that when you call Write on a buffered IO thing, it doesn’t necessarily write the data.
It might just store it in the buffer, and thenwhen the buffer is full, it can write it out
in one big chunk, reducing the number of system calls. System calls involve going
from user space to kernel space, so they’re kind of slow.

Buffered IO is preferable to regular IO for the increased speed, and the ability to
peek at and push back (some) data, but it has drawbacks too. The bufer takes up
memory (default of 4KB), which is themain kicker. Sometimes, you just can’t afford
that buffer size. The data is not always written right away either. Sometimes you
need it to be written immediately, and in those cases, unbuffered is the way to go.
In other situations, you could used buffered, but Flush on a regular basis.

With regards to speed, let’s look at a little benchmark. Run this with go test -

test.bench '.*'

bufio/bench/bufio_test.go

1 package main

2

3 import (

4 "bufio"

5 "io"

6 "log"

7 "os"

8 "testing"

9)

10

11 const str = "Go, The Standard Library"

12 const Times = 100

13

14 func openFile(name string) *os.File {

15 file, err := os.OpenFile(name, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0644)

16 if err != nil {

17 log.Fatalf("failed opening %s for writing: %s", name, err)

bufio 14

18 }

19 return file

20 }

21

22 func BenchmarkBufio(b *testing.B) {

23 file := openFile(os.DevNull)

24 defer file.Close()

25

26 bufferedFile := bufio.NewWriter(file)

27

28 for i := 0; i < b.N; i++ {

29 if _, err := bufferedFile.WriteString(str); err != nil {

30 log.Fatalf("failed or short write: %s", err)

31 }

32 }

33

34 bufferedFile.Flush()

35 }

36

37 func BenchmarkIO(b *testing.B) {

38 file := openFile(os.DevNull)

39 defer file.Close()

40

41 for i := 0; i < b.N; i++ {

42 if _, err := io.WriteString(file, str); err != nil {

43 log.Fatalf("failed or short write: %s", err)

44 }

45 }

46 }

Onmymachine I was getting about 50 nanoseconds per operation for buffered and
a whopping 1260 nanoseconds per operation for unbuffered. If you can spare the
memory, you probably want buffered IO.

Reading

Using bufio to read and write things looks just like anything else from the outside,
but the Reader and Writer types have some handy extra methods on them. When it
comes to reading, you can read strings and runes. You can also unread individual
bytes (only the last read byte) and individual runes (only after a call to ReadRune).
You can read entire lines too. If you don’t want to read just yet, you can Peek.

bufio 15

Use the bufio.NewReader function to wrap you existing io.Reader interface to get back
your buffered io type.

bufio/reading.go

1 package main

2

3 import (

4 "bufio"

5 "log"

6 "os"

7)

8

9 func init() {

10 log.SetFlags(0)

11 log.SetPrefix("» ")

12 }

13

14 func openFile(name string) *os.File {

15 file, err := os.Open(name)

16 if err != nil {

17 log.Fatalf("failed opening %s for writing: %s", name, err)

18 }

19 return file

20 }

21

22 func doPeek(r *bufio.Reader) {

23 normal := 4

24 huge := 5000

25

26 bytes, err := r.Peek(normal)

27 if err != nil {

28 log.Fatalf("Failed peeking: %s", err)

29 }

30 log.Printf("Peeked at the reader, saw: %s", bytes)

31

32 _, err = r.Peek(huge)

33 if err != nil {

34 log.Printf("Failed peeking at %d bytes: %s", huge, err)

35 }

36 }

37

38 func doStringRead(r *bufio.Reader) {

39 word, err := r.ReadString(' ')

bufio 16

40 if err != nil {

41 log.Fatalf("failed reading string: %s", err)

42 }

43 log.Printf("Got first word: %s", word)

44 }

45

46 func doRuneRead(r *bufio.Reader) {

47 ru, size, err := r.ReadRune()

48 if err != nil {

49 log.Fatalf("failed reading rune: %s", err)

50 }

51 log.Printf("Got rune %U of size %d (it looks like %q in Go)", ru, size, ru)

52

53 log.Printf("Didn't mean to read that though, putting it back")

54 err = r.UnreadRune()

55 if err != nil {

56 log.Fatalf("failed unreading a rune: %s", err)

57 }

58 }

59

60 func doByteRead(r *bufio.Reader) {

61 b, err := r.ReadByte()

62 if err != nil {

63 log.Fatalf("failed reading a byte: %s", err)

64 }

65 log.Printf("Read a byte: %x", b)

66

67 log.Printf("Didn't mean to read that either, putting it back")

68 err = r.UnreadByte()

69 if err != nil {

70 log.Fatalf("failed urneading a byte: %s", err)

71 }

72 }

73

74 func doLineRead(r *bufio.Reader) {

75 line, prefix, err := r.ReadLine()

76 if err != nil {

77 log.Fatalf("failed reading a line: %s", err)

78 }

79 log.Printf("Got the rest of the line: %s", line)

80

81 if prefix {

bufio 17

82 log.Printf("Line too big for buffer, only first %d bytes returned", len(line))

83 } else {

84 log.Printf("Line fit in buffer, full line returned")

85 }

86

87 log.Printf("After all that, %d bytes are buffered", r.Buffered())

88 }

89

90 func main() {

91 file := openFile("reading.go")

92 defer file.Close()

93

94 br := bufio.NewReader(file)

95

96 doPeek(br)

97 doStringRead(br)

98 doRuneRead(br)

99 doByteRead(br)

100 doLineRead(br)

101 }

Output:

1 » Peeked at the reader, saw: pack

2 » Failed peeking at 5000 bytes: bufio: buffer full

3 » Got first word: package

4 » Got rune U+006D of size 1 (it looks like 'm' in Go)

5 » Didn't mean to read that though, putting it back

6 » Read a byte: 6d

7 » Didn't mean to read that either, putting it back

8 » Got the rest of the line: main

9 » Line fit in buffer, full line returned

10 » After all that, 2023 bytes are buffered

Writing

On the writing side, you can write individual bytes, runes, and strings. Similar to
reading, use bufio.NewWriter to wrap an io.Writer and go to town.

bufio 18

bufio/writing.go

1 package main

2

3 import (

4 "bufio"

5 "log"

6 "os"

7)

8

9 func init() {

10 log.SetFlags(0)

11 log.SetPrefix("» ")

12 }

13

14 func openFile(name string) *os.File {

15 file, err := os.OpenFile(name, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0644)

16 if err != nil {

17 log.Fatalf("failed opening %s for writing: %s", name, err)

18 }

19 return file

20 }

21

22 func doWriteByte(w *bufio.Writer) {

23 if err := w.WriteByte('G'); err != nil {

24 log.Fatalf("failed writing a byte: %s", err)

25 }

26 }

27

28 func doWriteRune(w *bufio.Writer) {

29 if written, err := w.WriteRune(rune('o')); err != nil {

30 log.Fatalf("failed writing a rune: %s", err)

31 } else {

32 log.Printf("Wrote rune in %d bytes", written)

33 }

34 }

35

36 func doWriteString(w *bufio.Writer) {

37 written, err := w.WriteString(", The Standard Library\n")

38 if err != nil {

39 log.Fatalf("failed writing string: %s", err)

40 }

41 log.Printf("Wrote string in %d bytes", written)

bufio 19

42 }

43

44 func main() {

45 file := openFile("bufio.out")

46 defer file.Close()

47

48 bw := bufio.NewWriter(file)

49

50 // Remember to Flush!

51 defer bw.Flush()

52

53 doWriteByte(bw)

54 doWriteRune(bw)

55 doWriteString(bw)

56 }

Output:

1 » Wrote rune in 1 bytes

2 » Wrote string in 23 bytes

It’s all pretty straight forward stuff. Wrap it, write it and read it!

Scanning

In Go 1.1, the Scanner type was added to the bufio package. It provides a simple
interface to read chunks of things. By default it will read lines (excluding the
terminator), but has support for custom split functions. It includes split functions to
scan individual bytes, words (split on spaces), and runes. We’ll look at the fun ones.

bufio/scanning.go

1 package main

2

3 import (

4 "bufio"

5 "log"

6 "os"

7 "strings"

8 "unicode/utf8"

9)

bufio 20

10

11 func init() {

12 log.SetFlags(0)

13 log.SetPrefix("» ")

14 }

15

16 func lines() {

17 f, _ := os.Open("scanning.go")

18 defer f.Close()

19 s := bufio.NewScanner(f)

20 for s.Scan() {

21 log.Printf("line: %s", s.Text())

22 }

23 }

24

25 func words() {

26 r := strings.NewReader("I just wanna dance with somebody")

27 s := bufio.NewScanner(r)

28 s.Split(bufio.ScanWords)

29 for s.Scan() {

30 log.Printf("word: %s", s.Text())

31 }

32 }

33

34 func runes() {

35 r := strings.NewReader("I just wanna dance with somebody")

36 s := bufio.NewScanner(r)

37 s.Split(bufio.ScanRunes)

38 for s.Scan() {

39 log.Printf("rune: %s", s.Text())

40 }

41 }

42

43 // Basically the `ScanWords` code, altered to split on periods.

44 func periods(data []byte, atEOF bool) (int, []byte, error) {

45 start := 0

46 for width := 0; start < len(data); start += width {

47 var r rune

48 r, width = utf8.DecodeRune(data[start:])

49 if r != '.' {

50 break

51 }

bufio 21

52 }

53 if atEOF && len(data) == 0 {

54 return 0, nil, nil

55 }

56 for width, i := 0, start; i < len(data); i += width {

57 var r rune

58 r, width = utf8.DecodeRune(data[i:])

59 if r == '.' {

60 return i + width, data[start:i], nil

61 }

62 }

63 return 0, nil, nil

64 }

65

66 func custom() {

67 f, _ := os.Open("scanning.go")

68 defer f.Close()

69 s := bufio.NewScanner(f)

70 s.Split(periods)

71 for s.Scan() {

72 log.Printf("between periods: %s", s.Text())

73 }

74 }

75

76 func main() {

77 lines()

78 words()

79 runes()

80 custom()

81 }

Output:

1 » line: package main

2 » line:

3 » line: import (

4 » line: "bufio"

5 » line: "log"

6 » line: "os"

7 » line: "strings"

8 » line: "unicode/utf8"

9 » line:)

bufio 22

10 » line:

11 » line: func init() {

12 » line: log.SetFlags(0)

13 » line: log.SetPrefix("» ")

14 » line: }

15 » line:

16 » line: func lines() {

17 » line: f, _ := os.Open("scanning.go")

18 » line: defer f.Close()

19 » line: s := bufio.NewScanner(f)

20 » line: for s.Scan() {

21 » line: log.Printf("line: %s", s.Text())

22 » line: }

23 » line: }

24 » line:

25 » line: func words() {

26 » line: r := strings.NewReader("I just wanna dance with somebody")

27 » line: s := bufio.NewScanner(r)

28 » line: s.Split(bufio.ScanWords)

29 » line: for s.Scan() {

30 » line: log.Printf("word: %s", s.Text())

31 » line: }

32 » line: }

33 » line:

34 » line: func runes() {

35 » line: r := strings.NewReader("I just wanna dance with somebody")

36 » line: s := bufio.NewScanner(r)

37 » line: s.Split(bufio.ScanRunes)

38 » line: for s.Scan() {

39 » line: log.Printf("rune: %s", s.Text())

40 » line: }

41 » line: }

42 » line:

43 » line: // Basically the `ScanWords` code, altered to split on periods.

44 » line: func periods(data []byte, atEOF bool) (int, []byte, error) {

45 » line: start := 0

46 » line: for width := 0; start < len(data); start += width {

47 » line: var r rune

48 » line: r, width = utf8.DecodeRune(data[start:])

49 » line: if r != '.' {

50 » line: break

51 » line: }

bufio 23

52 » line: }

53 » line: if atEOF && len(data) == 0 {

54 » line: return 0, nil, nil

55 » line: }

56 » line: for width, i := 0, start; i < len(data); i += width {

57 » line: var r rune

58 » line: r, width = utf8.DecodeRune(data[i:])

59 » line: if r == '.' {

60 » line: return i + width, data[start:i], nil

61 » line: }

62 » line: }

63 » line: return 0, nil, nil

64 » line: }

65 » line:

66 » line: func custom() {

67 » line: f, _ := os.Open("scanning.go")

68 » line: defer f.Close()

69 » line: s := bufio.NewScanner(f)

70 » line: s.Split(periods)

71 » line: for s.Scan() {

72 » line: log.Printf("between periods: %s", s.Text())

73 » line: }

74 » line: }

75 » line:

76 » line: func main() {

77 » line: lines()

78 » line: words()

79 » line: runes()

80 » line: custom()

81 » line: }

82 » word: I

83 » word: just

84 » word: wanna

85 » word: dance

86 » word: with

87 » word: somebody

88 » rune: I

89 » rune:

90 » rune: j

91 » rune: u

92 » rune: s

93 » rune: t

bufio 24

94 » rune:

95 » rune: w

96 » rune: a

97 » rune: n

98 » rune: n

99 » rune: a

100 » rune:

101 » rune: d

102 » rune: a

103 » rune: n

104 » rune: c

105 » rune: e

106 » rune:

107 » rune: w

108 » rune: i

109 » rune: t

110 » rune: h

111 » rune:

112 » rune: s

113 » rune: o

114 » rune: m

115 » rune: e

116 » rune: b

117 » rune: o

118 » rune: d

119 » rune: y

120 » between periods: package main

121

122 import (

123 "bufio"

124 "log"

125 "os"

126 "strings"

127 "unicode/utf8"

128)

129

130 func init() {

131 log

132 » between periods: SetFlags(0)

133 log

134 » between periods: SetPrefix("» ")

135 }

bufio 25

136

137 func lines() {

138 f, _ := os

139 » between periods: Open("scanning

140 » between periods: go")

141 defer f

142 » between periods: Close()

143 s := bufio

144 » between periods: NewScanner(f)

145 for s

146 » between periods: Scan() {

147 log

148 » between periods: Printf("line: %s", s

149 » between periods: Text())

150 }

151 }

152

153 func words() {

154 r := strings

155 » between periods: NewReader("I just wanna dance with somebody")

156 s := bufio

157 » between periods: NewScanner(r)

158 s

159 » between periods: Split(bufio

160 » between periods: ScanWords)

161 for s

162 » between periods: Scan() {

163 log

164 » between periods: Printf("word: %s", s

165 » between periods: Text())

166 }

167 }

168

169 func runes() {

170 r := strings

171 » between periods: NewReader("I just wanna dance with somebody")

172 s := bufio

173 » between periods: NewScanner(r)

174 s

175 » between periods: Split(bufio

176 » between periods: ScanRunes)

177 for s

bufio 26

178 » between periods: Scan() {

179 log

180 » between periods: Printf("rune: %s", s

181 » between periods: Text())

182 }

183 }

184

185 // Basically the `ScanWords` code, altered to split on periods

186 » between periods:

187 func periods(data []byte, atEOF bool) (int, []byte, error) {

188 start := 0

189 for width := 0; start < len(data); start += width {

190 var r rune

191 r, width = utf8

192 » between periods: DecodeRune(data[start:])

193 if r != '

194 » between periods: ' {

195 break

196 }

197 }

198 if atEOF && len(data) == 0 {

199 return 0, nil, nil

200 }

201 for width, i := 0, start; i < len(data); i += width {

202 var r rune

203 r, width = utf8

204 » between periods: DecodeRune(data[i:])

205 if r == '

206 » between periods: ' {

207 return i + width, data[start:i], nil

208 }

209 }

210 return 0, nil, nil

211 }

212

213 func custom() {

214 f, _ := os

215 » between periods: Open("scanning

216 » between periods: go")

217 defer f

218 » between periods: Close()

219 s := bufio

bufio 27

220 » between periods: NewScanner(f)

221 s

222 » between periods: Split(periods)

223 for s

224 » between periods: Scan() {

225 log

226 » between periods: Printf("between periods: %s", s

builtin
Batteries Included

The builtin package isn’t a real package, it’s just here to document the builtin
functions that comewith the language. Lower level than the standard library, these
things are just…there. The builtins let you do things with maps, slices, channels,
and imaginary numbers, cause and deal with panics, build objects, and get size
information about certain things. Honestly, most of this can be learned from the
spec, but I’ve included it for completeness.

Building Objects

make

make is used to build the builtin types like slices, channels and maps. The first
argument is the type, and it can be one of those three types.

In the case of channels, there is an optional second integer parameter, the capacity.
If it’s zero (or not given), the channel is unbuffered. This means writes block until
there is a reader ready to receive the data, and reads block until there is a write
ready to give data. If the parameter is greater than zero, the channel is buffered
with the capacity specified. On these channels, reads block only when the channel
is empty, and writes block only when the channel is full.

In the case of maps, the second parameter is also optional, but is rarely used. It
controls the initial allocation, so if you know exactly how big your map has to be,
it can be helpful. cap (which we’ll see later) doesn’t work on maps though, so you
can’t really examine the effects of this second parameter easily.

In the case of slices, the second parameter is not optional, and specifies the starting
length of the slice. Oh but the plot thickens! There is an optional third parameter,
which controls the starting capacity, and it can’t be smaller than the length.10 This
way, you can get really specific with your slice allocation and save subsequent
reallocations if you know exactly how much space you need it to take up.

10If you specify a length greater than the capacity, you’ll get a runtime panic.

builtin 29

builtin/make.go

1 package main

2

3 import "log"

4

5 func main() {

6 unbuffered := make(chan int)

7 log.Printf("unbuffered: %v, type: %T, len: %d, cap: %d", unbuffered, unbuffered\

8 , len(unbuffered), cap(unbuffered))

9

10 buffered := make(chan int, 10)

11 log.Printf("buffered: %v, type: %T, len: %d, cap: %d", buffered, buffered, len(\

12 buffered), cap(buffered))

13

14 m := make(map[string]int)

15 log.Printf("m: %v, len: %d", m, len(m))

16

17 // Would cause a compile error

18 // slice := make([]byte)

19

20 slice := make([]byte, 5)

21 log.Printf("slice: %v, len: %d, cap: %d", slice, len(slice), cap(slice))

22

23 slice2 := make([]byte, 0, 10)

24 log.Printf("slice: %v, len: %d, cap: %d", slice2, len(slice2), cap(slice2))

25 }

new

The new function allocates a new object of the type provided, and returns a pointer
to the new object. The object is allocated to be the zero value for the given type. It’s
not something you use terribly often, but it can be useful. If you’re making a new
struct, you probably want to use the composite literal syntax instead.

builtin 30

builtin/new.go

1 package main

2

3 import "log"

4

5 type Actor struct {

6 Name string

7 }

8

9 type Movie struct {

10 Title string

11 Actors []*Actor

12 }

13

14 func main() {

15 ip := new(int)

16 log.Printf("ip type: %T, ip: %v, *ip: %v", ip, ip, *ip)

17

18 m := new(Movie)

19 log.Printf("m type: %T, m: %v, *m: %v", m, m, *m)

20 }

Maps, Slices, And Channels

You’ve got slices, maps and channels as some of the fundamental types that Go
provides. The functions delete, close, append, and copy all deal with these types to
do basic operations.

delete

delete removes elements from a map. If the key doesn’t exist in the map, nothing
happens, nothing to worry about. If the map itself is nil it still works, just nothing
happens.

builtin 31

builtin/delete.go

1 package main

2

3 import "log"

4

5 func main() {

6 m := make(map[string]int)

7 log.Println(m)

8

9 m["one"] = 1

10 log.Println(m)

11

12 m["two"] = 2

13 log.Println(m)

14

15 delete(m, "one")

16 log.Println(m)

17

18 delete(m, "one")

19 log.Println(m)

20

21 m = nil

22 delete(m, "two")

23 }

close

close takes a writable channel and closes it. When I say writable, I mean either a
normal channel like var normal chan int or a write only channel like var writeOnly

chan<- int. You can still receive from a closed channel, but you’ll get the zero value
of whatever the type is. If you want to check that you actually got a value and not
the zero value, use the comma ok pattern. Closing an already closed channel will
panic, so watch those double closes.

builtin 32

builtin/close.go

1 package main

2

3 import "log"

4

5 func main() {

6 c := make(chan int, 1)

7 c <- 1

8

9 log.Println(<-c) // Prints 1

10

11 c <- 2

12 close(c)

13

14 log.Println(<-c) // Prints 2

15 log.Println(<-c) // Prints 0

16

17 if i, ok := <-c; ok {

18 log.Printf("Channel is open, got %d", i)

19 } else {

20 log.Printf("Channel is closed, got %d", i)

21 }

22

23 close(c) // Panics, channel is already closed

24 }

append

append tacks on elements to the end of a slice, exactly like it sounds. You need to keep
the return value around, since it’s the new slice with the extra data. It could return
the same slice if it has space for the data, but it might return something new if it
needed to allocatemorememory. It takes a variable number of arguments, so if you
want to append an existing array, use ... to expand the array.

The idiomatic way to append to a slice is to assign the result to the same slice you’re
appending to. It’s probably what you want.

builtin 33

builtin/append.go

1 package main

2

3 import "log"

4

5 func main() {

6 // Empty slice, with capacity of 10

7 ints := make([]int, 0, 10)

8 log.Printf("ints: %v", ints)

9

10 ints2 := append(ints, 1, 2, 3)

11

12 log.Printf("ints2: %v", ints2)

13 log.Printf("Slice was at %p, it's probably still at %p", ints, ints2)

14

15 moreInts := []int{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}

16 ints3 := append(ints2, moreInts...)

17

18 log.Printf("ints3: %v", ints3)

19 log.Printf("Slice was at %p, and it moved to %p", ints2, ints3)

20

21 ints4 := []int{1, 2, 3}

22 log.Printf("ints4: %v", ints4)

23 // The idiomatic way to append to a slice,

24 // just assign to the same variable again

25 ints4 = append(ints4, 4, 5, 6)

26 log.Printf("ints4: %v", ints4)

27 }

copy

copy copies from one slice to another. It will also copy from a string, treating it as
a slice of bytes. It returns the number of bytes copied, which is the shorter of the
lengths of the two slices.

builtin 34

builtin/copy.go

1 package main

2

3 import "log"

4

5 func main() {

6 ints := []int{1, 2, 3, 4, 5, 6}

7 otherInts := []int{11, 12, 13, 14, 15, 16}

8

9 log.Printf("ints: %v", ints)

10 log.Printf("otherInts: %v", otherInts)

11

12 copied := copy(ints[:3], otherInts)

13 log.Printf("Copied %d ints from otherInts to ints", copied)

14

15 log.Printf("ints: %v", ints)

16 log.Printf("otherInts: %v", otherInts)

17

18 hello := "Hello, World!"

19 bytes := make([]byte, len(hello))

20

21 copy(bytes, hello)

22

23 log.Printf("bytes: %v", bytes)

24 log.Printf("hello: %s", hello)

25 }

All The Sizes

A lot of things have lengths and capacities. With len and cap, you can find out about
these values.

len

len tells you the actual length or size of something. In the case of slices, you get,
well, the length. In the case of strings, you get the number of bytes. For maps, you
get how many pairs are in the map. For channels, you get how many elements the
channel has buffered (only relevant for buffered channels).

You can also call lenwith a pointer, but only a pointer to an array. It’s the equivalent
of calling it on the dereferenced pointer. But, since it still has a type, it’s an array

builtin 35

and not a slice, and the type of an array includes the size, so it still works. The length
is part of the type.

builtin/len.go

1 package main

2

3 import "log"

4

5 func main() {

6 slice := make([]byte, 10)

7 log.Printf("slice: %d", len(slice))

8

9 str := "γειά σου κόσμε"

10 log.Printf("string: %d", len(str))

11

12 m := make(map[string]int)

13 m["hello"] = 1

14 log.Printf("map: %d", len(m))

15

16 channel := make(chan int, 5)

17 log.Printf("channel: %d", len(channel))

18 channel <- 1

19 log.Printf("channel: %d", len(channel))

20

21 var pointer *[5]byte

22 log.Printf("pointer: %d", len(pointer))

23 }

cap

cap tells you the capacity of something. It’s similar to len, except it doesn’t work on
maps or strings. With arrays, it’s the same as using len.

With slices, it returns the max size the slice can grow to when you append to it
before things are copied to a new backing array. This is why you have to save the
return value of append. If cap returns 5 and you append 6 things to your slice, it’s
going to return you a slice backed by a new array.

With channels, it returns the buffer capacity.

builtin 36

builtin/cap.go

1 package main

2

3 import "log"

4

5 func main() {

6 slice := make([]byte, 0, 5)

7 log.Printf("slice: %d", cap(slice))

8

9 channel := make(chan int, 10)

10 log.Printf("channel: %d", cap(channel))

11

12 var pointer *[15]byte

13 log.Printf("pointer: %d == %d", cap(pointer), len(pointer))

14 }

Causing And Handling Panics

panic and recover are typically used to deal with errors. These are errors where re-
turning an error in the comma err style don’t make sense. Things like programmer
error or things that are seriously broken. Usually.

If bad things are afoot, you can use panic to throw an error. You can pass it pretty
much any object, which gets carried up the stack. Deferred functions get executed,
and up the error goes. It works sort of like raise or throw in other languages.

You can use recover to, as the name says, recover from a panic. recover must
be excuted from within a deferred function, and not from within a function the
deferred function calls. It returns whatever panic was called with, you check for
nil and can then type cast it to something.

There are some creative uses11 for panic/recover beyond error handling, but
they should be confined to your own package. In Go, it’s not nice to let a
panic go outside your own little world. Better to handle the panic yourself
in a way you know how, and return an appropriate error. In some cases,
the panic makes sense. Err on the side of returning instead of panicking.

The example illustrates things much better.

11See the code for the encoding/json package on one of them.

builtin 37

builtin/panic_recover.go

1 package main

2

3 import (

4 "errors"

5 "log"

6)

7

8 func handlePanic(f func()) {

9 defer func() {

10 if r := recover(); r != nil {

11 if str, ok := r.(string); ok {

12 log.Printf("got a string error: %s", str)

13 return

14 }

15

16 if err, ok := r.(error); ok {

17 log.Printf("got an error error: %s", err.Error())

18 return

19 }

20

21 log.Printf("got a different kind of error: %v", r)

22 }

23 }()

24 f()

25 }

26

27 func main() {

28 handlePanic(func() {

29 panic("string error")

30 })

31

32 handlePanic(func() {

33 panic(errors.New("error error"))

34 })

35

36 handlePanic(func() {

37 panic(10)

38 })

39 }

builtin 38

Complex Numbers

Go supports complex numbers as a builtin type. You can define them with literal
syntax, or by using the builtin function complex. If you want to build a complex
number from existing float values, you need to use the builtin function, and the
two arguments have to be of the same type (float32 or float64) and will produce
a complex type double the size (complex64 or complex128). Once you have a complex
number, you can add, subtract, divide, and multiply values normally.

If you have a complex number and want to break it into the real and imaginary
parts, use the functions real and imag.

builtin/complex.go

1 package main

2

3 import "log"

4

5 func main() {

6 c1 := 1.5 + 0.5i

7 c2 := complex(1.5, 0.5)

8 log.Printf("c1: %v", c1)

9 log.Printf("c2: %v", c2)

10 log.Printf("c1 == c2: %v", c1 == c2)

11 log.Printf("c1 real: %v", real(c1))

12 log.Printf("c1 imag: %v", imag(c1))

13 log.Printf("c1 + c2: %v", c1+c2)

14 log.Printf("c1 - c2: %v", c1-c2)

15 log.Printf("c1 * c2: %v", c1*c2)

16 log.Printf("c1 / c2: %v", c1/c2)

17 log.Printf("c1 type: %T", c1)

18

19 c3 := complex(float32(1.5), float32(0.5))

20 log.Printf("c3 type: %T", c3)

21 }

bytes
Bits and Bytes and Everything Nice

The bytes package deals with, you guessed it, bytes. More specifically byte slices,
[]byte. You can do quite a bit with just a byte slice. You can compare and search
them. If they aren’t to your liking, you can change them. Splitting and joining
them is simple stuff. You can change the case of the contents, making it upper or
lowercase. Trimming contents from either end is also straightforward.

With the Buffer type, you can do some pretty sweet things too, like write anything
to memory (and get a string out of it).

The Reader type lets you operate on a byte slice like various io package interfaces.

Comparison

Comparison of byte slices is pretty simple. Compare gives you the industry standard
of -1/0/1 to denote less than/equal/greater than. Equal gives you a bool and checks
for a simple byte for byte equality. EqualFold checks equality but ignores case. It’s
slightly more complicated than just ignoring case but that’s the basic idea.

bytes/comparison.go

1 package main

2

3 import (

4 "bytes"

5 "log"

6)

7

8 func DemoCompare(a, b []byte) {

9 if c := bytes.Compare(a, b); c == -1 {

10 log.Printf("%s is less than %s", a, b)

11 } else if c == 1 {

12 log.Printf("%s is greater than %s", a, b)

13 } else {

14 log.Printf("%s and %s are equal", a, b)

15 }

bytes 40

16 }

17

18 func DemoEqual(a, b []byte) {

19 if bytes.Equal(a, b) {

20 log.Printf("%s and %s are equal", a, b)

21 } else {

22 log.Printf("%s and %s are NOT equal", a, b)

23 }

24 }

25

26 func DemoEqualFold(a, b []byte) {

27 if bytes.EqualFold(a, b) {

28 log.Printf("%s and %s are equal", a, b)

29 } else {

30 log.Printf("%s and %s are NOT equal", a, b)

31 }

32 }

33

34 func main() {

35 golang := []byte("golang")

36 gOlaNg := []byte("gOlaNg")

37 haskell := []byte("haskell")

38

39 DemoCompare(golang, golang)

40 DemoCompare(golang, haskell)

41 DemoCompare(haskell, golang)

42

43 DemoEqual(golang, golang)

44 DemoEqual(golang, haskell)

45

46 DemoEqualFold(golang, gOlaNg)

47 DemoEqualFold(golang, golang)

48 }

bytes 41

Output:

1 2014/08/21 18:02:13 golang and golang are equal

2 2014/08/21 18:02:13 golang is less than haskell

3 2014/08/21 18:02:13 haskell is greater than golang

4 2014/08/21 18:02:13 golang and golang are equal

5 2014/08/21 18:02:13 golang and haskell are NOT equal

6 2014/08/21 18:02:13 golang and gOlaNg are equal

7 2014/08/21 18:02:13 golang and golang are equal

Searching

If you’re got a slice full of stuff, you probably want to search it. Luckily, the bytes

package has everything you need. If you don’t want to deal with raw bytes, there
is probably some way of converting your slice of whatever to a slice of bytes. We’ll
see this a lot in the example below, in the form of the builtin type conversion going
from a string to a slice of bytes.

bytes/searching.go

1 package main

2

3 import (

4 "bytes"

5 "log"

6)

7

8 func contains(s, sub []byte) {

9 if bytes.Contains(s, sub) {

10 log.Printf("%s contains %s", s, sub)

11 } else {

12 log.Printf("%s does NOT contain %s", s, sub)

13 }

14 }

15

16 func count(s, sep []byte) {

17 log.Printf("%s contains %d instance(s) of %s", s, bytes.Count(s, sep), sep)

18 }

19

20 func hasPrefix(s, prefix []byte) {

21 if bytes.HasPrefix(s, prefix) {

22 log.Printf("%s has the prefix %s", s, prefix)

bytes 42

23 } else {

24 log.Printf("%s does NOT have the prefix %s", s, prefix)

25 }

26 }

27

28 func hasSuffix(s, suffix []byte) {

29 if bytes.HasSuffix(s, suffix) {

30 log.Printf("%s has the suffix %s", s, suffix)

31 } else {

32 log.Printf("%s does NOT have the suffix %s", s, suffix)

33 }

34 }

35

36 func index(s, sep []byte) {

37 if i := bytes.Index(s, sep); i == -1 {

38 log.Printf("%s does NOT appear in %s", sep, s)

39 } else {

40 log.Printf("%s appears at index %d in %s", sep, i, s)

41 }

42 }

43

44 func indexAny(s []byte, chars string) {

45 if i := bytes.IndexAny(s, chars); i == -1 {

46 log.Printf("No unicode characters in %q appear in %s", chars, s)

47 } else {

48 log.Printf("A unicode character in %q appears at index %d in %s", chars, i, s)

49 }

50 }

51

52 func indexByte(s []byte, b byte) {

53 if i := bytes.IndexByte(s, b); i == -1 {

54 log.Printf("%q does NOT appear in %s", b, s)

55 } else {

56 log.Printf("%q appears at index %d in %s", b, i, s)

57 }

58 }

59

60 func indexFunc(s []byte, f func(rune) bool) {

61 if i := bytes.IndexFunc(s, f); i == -1 {

62 log.Printf("Something controlled by %#v does NOT appear in %s", f, s)

63 } else {

64 log.Printf("Something controlled by %#v appears at index %d in %s", f, i, s)

bytes 43

65 }

66 }

67

68 func indexRune(s []byte, r rune) {

69 if i := bytes.IndexRune(s, r); i == -1 {

70 log.Printf("Rune %d does NOT appear in %s", r, s)

71 } else {

72 log.Printf("Rune %d appears at index %d in %s", r, i, s)

73 }

74 }

75

76 func lastIndex(s, sep []byte) {

77 if i := bytes.LastIndex(s, sep); i == -1 {

78 log.Printf("%s does NOT appear in %s", sep, s)

79 } else {

80 log.Printf("%s appears last at index %d in %s", sep, i, s)

81 }

82 }

83

84 func lastIndexAny(s []byte, chars string) {

85 if i := bytes.LastIndexAny(s, chars); i == -1 {

86 log.Printf("No unicode characters in %q appear in %s", chars, s)

87 } else {

88 log.Printf("A unicode character in %q appears last at index %d in %s", chars, \

89 i, s)

90 }

91 }

92

93 func lastIndexFunc(s []byte, f func(rune) bool) {

94 if i := bytes.LastIndexFunc(s, f); i == -1 {

95 log.Printf("Something controlled by %#v does NOT appear in %s", f, s)

96 } else {

97 log.Printf("Something controlled by %#v appears at index %d in %s", f, i, s)

98 }

99 }

100

101 func main() {

102 golang := []byte("golang")

103 haskell := []byte("haskell")

104 lang := []byte("lang")

105 gos := []byte("go")

106

bytes 44

107 contains(golang, lang)

108 contains(golang, haskell)

109

110 count(golang, lang)

111 count(haskell, []byte("l"))

112

113 hasPrefix(golang, gos)

114 hasPrefix(haskell, gos)

115

116 hasSuffix(golang, lang)

117 hasSuffix(haskell, lang)

118

119 index(golang, lang)

120 index(golang, gos)

121 index(haskell, lang)

122

123 indexAny(golang, "lang")

124 indexAny(haskell, "lang")

125 indexAny(haskell, "go")

126

127 indexByte(golang, 'h')

128 indexByte(golang, 'l')

129 indexByte(haskell, 'l')

130

131 g := rune('g')

132 indexFunc(golang, func(r rune) bool { return r == g })

133 indexFunc(haskell, func(r rune) bool { return r == g })

134

135 indexRune(golang, rune('o'))

136 indexRune(haskell, rune('l'))

137

138 lastIndex(golang, []byte("g"))

139 lastIndex(haskell, []byte("l"))

140

141 lastIndexAny(golang, "abcdefg")

142 lastIndexAny(haskell, "lmnop")

143

144 lastIndexFunc(golang, func(r rune) bool { return r == g })

145 lastIndexFunc(haskell, func(r rune) bool { return r == g })

146 }

bytes 45

Output:
1 2014/08/21 18:02:14 golang contains lang

2 2014/08/21 18:02:14 golang does NOT contain haskell

3 2014/08/21 18:02:14 golang contains 1 instance(s) of lang

4 2014/08/21 18:02:14 haskell contains 2 instance(s) of l

5 2014/08/21 18:02:14 golang has the prefix go

6 2014/08/21 18:02:14 haskell does NOT have the prefix go

7 2014/08/21 18:02:14 golang has the suffix lang

8 2014/08/21 18:02:14 haskell does NOT have the suffix lang

9 2014/08/21 18:02:14 lang appears at index 2 in golang

10 2014/08/21 18:02:14 go appears at index 0 in golang

11 2014/08/21 18:02:14 lang does NOT appear in haskell

12 2014/08/21 18:02:14 A unicode character in "lang" appears at index 0 in golang

13 2014/08/21 18:02:14 A unicode character in "lang" appears at index 1 in haskell

14 2014/08/21 18:02:14 No unicode characters in "go" appear in haskell

15 2014/08/21 18:02:14 'h' does NOT appear in golang

16 2014/08/21 18:02:14 'l' appears at index 2 in golang

17 2014/08/21 18:02:14 'l' appears at index 5 in haskell

18 2014/08/21 18:02:14 Something controlled by (func(int32) bool)(0x4680) appears a\

19 t index 0 in golang

20 2014/08/21 18:02:14 Something controlled by (func(int32) bool)(0x46a0) does NOT \

21 appear in haskell

22 2014/08/21 18:02:14 Rune 111 appears at index 1 in golang

23 2014/08/21 18:02:14 Rune 108 appears at index 5 in haskell

24 2014/08/21 18:02:14 g appears last at index 5 in golang

25 2014/08/21 18:02:14 l appears last at index 6 in haskell

26 2014/08/21 18:02:14 A unicode character in "abcdefg" appears last at index 5 in \

27 golang

28 2014/08/21 18:02:14 A unicode character in "lmnop" appears last at index 6 in ha\

29 skell

30 2014/08/21 18:02:14 Something controlled by (func(int32) bool)(0x46c0) appears a\

31 t index 5 in golang

32 2014/08/21 18:02:14 Something controlled by (func(int32) bool)(0x46e0) does NOT \

33 appear in haskell

Manipulating

Manipulating a bunch of bytes is a common task too, and naturally, it’s pretty easy
too. Map allows you to change individual runes (it treats the byte slice as a bunch
of bytes making up a “UTF-8-encoded Unicode code points”12). Replace works by

12From the bytes package documentation.

bytes 46

replacing chunks with the chunk you specify. Runes converts the byte slice to a rune
slice, and Repeat gives you an easy way to build a byte slice prepopulate with default
values.

bytes/manipulating.go

1 package main

2

3 import (

4 "bytes"

5 "log"

6)

7

8 func asciiAlphaUpcase(r rune) rune {

9 return r - 32

10 }

11

12 func main() {

13 golang := []byte("golang")

14

15 // Map

16 loudGolang := bytes.Map(asciiAlphaUpcase, golang)

17 log.Printf("Turned %q into %q (ASCII alphabet upcase!)", golang, loudGolang)

18

19 // Repalce

20 original := []byte("go")

21 replacement := []byte("Google Go")

22 googleGolang := bytes.Replace(golang, original, replacement, -1)

23 log.Printf("Replaced %q in %q with %q to get %q", original, golang, replacement\

24 , googleGolang)

25

26 // Runes

27 runes := bytes.Runes(golang)

28 log.Printf("%q is made up of the following runes (in this case, ASCII codes): %\

29 v", golang, runes)

30

31 // Repeat

32 n := 8

33 na := []byte("Na")

34 batman := []byte(" Batman!")

35 log.Printf("Made %d copies of %q and appended %q to get %q", n, na, batman, app\

36 end(bytes.Repeat(na, n), batman...))

37 }

bytes 47

Output:

1 2014/08/21 18:02:13 Turned "golang" into "GOLANG" (ASCII alphabet upcase!)

2 2014/08/21 18:02:13 Replaced "go" in "golang" with "Google Go" to get "Google Go\

3 lang"

4 2014/08/21 18:02:13 "golang" is made up of the following runes (in this case, AS\

5 CII codes): [103 111 108 97 110 103]

6 2014/08/21 18:02:13 Made 8 copies of "Na" and appended " Batman!" to get "NaNaNa\

7 NaNaNaNaNa Batman!"

Splitting and Joining

Splitting and joining strings and slices is a quick way to parse and build bits
of information when a regex or a full lexer/parser would be overkill. The bytes
package provides a host of functions for splitting byte slices, as well as the standard
Join function.

bytes/splitjoin.go

1 package main

2

3 import (

4 "bytes"

5 "log"

6 "strings"

7)

8

9 func main() {

10 languages := []byte("golang haskell ruby python")

11

12 individualLanguages := bytes.Fields(languages)

13 log.Printf("Fields split %q on whitespace into %q", languages, individualLangua\

14 ges)

15

16 vowelsAndSpace := "aeiouy "

17 split := bytes.FieldsFunc(languages, func(r rune) bool {

18 return strings.ContainsRune(vowelsAndSpace, r)

19 })

20 log.Printf("FieldsFunc split %q on vowels and space into %q", languages, split)

21

22 space := []byte{' '}

23 splitLanguages := bytes.Split(languages, space)

bytes 48

24 log.Printf("Split split %q on a single space into %q", languages, splitLanguage\

25 s)

26

27 numberOfSubslices := 2 // Not number of splits

28 singleSplit := bytes.SplitN(languages, space, numberOfSubslices)

29 log.Printf("SplitN split %q on a single space into %d subslices: %q", languages\

30 , numberOfSubslices, singleSplit)

31

32 splitAfterLanguages := bytes.SplitAfter(languages, space)

33 log.Printf("SplitAfter split %q AFTER a single space (keeping the space) into %\

34 q", languages, splitAfterLanguages)

35

36 splitAfterNLanguages := bytes.SplitAfterN(languages, space, numberOfSubslices)

37 log.Printf("SplitAfterN split %q AFTER a single space (keeping the space) into \

38 %d subslices: %q", languages, numberOfSubslices, splitAfterNLanguages)

39

40 languagesBackTogether := bytes.Join(individualLanguages, space)

41 log.Printf("Languages are back togeher again! %q == %q? %v", languagesBackToget\

42 her, languages, bytes.Equal(languagesBackTogether, languages))

43 }

Output:
1 2014/08/21 18:02:14 Fields split "golang haskell ruby python" on whitespace into\

2 ["golang" "haskell" "ruby" "python"]

3 2014/08/21 18:02:14 FieldsFunc split "golang haskell ruby python" on vowels and \

4 space into ["g" "l" "ng" "h" "sk" "ll" "r" "b" "p" "th" "n"]

5 2014/08/21 18:02:14 Split split "golang haskell ruby python" on a single space i\

6 nto ["golang" "haskell" "ruby" "python"]

7 2014/08/21 18:02:14 SplitN split "golang haskell ruby python" on a single space \

8 into 2 subslices: ["golang" "haskell ruby python"]

9 2014/08/21 18:02:14 SplitAfter split "golang haskell ruby python" AFTER a single\

10 space (keeping the space) into ["golang " "haskell " "ruby " "python"]

11 2014/08/21 18:02:14 SplitAfterN split "golang haskell ruby python" AFTER a singl\

12 e space (keeping the space) into 2 subslices: ["golang " "haskell ruby python"]

13 2014/08/21 18:02:14 Languages are back togeher again! "golang haskell ruby pytho\

14 n" == "golang haskell ruby python"? true

Case

Frequently, you’ll have a byte slice that’s actually text. Maybe it’s ASCII, maybe
not. You might want to alter the slice with that in mind. We’ve already seen some

bytes 49

functions that assume the data is really, and deal with runes. The bytes package also
has 7 functions to deal with altering the case of the contained text. These include
title casing, lower and upper casing.

bytes/case.go

1 package main

2

3 import (

4 "bytes"

5 "log"

6 "unicode"

7)

8

9 func main() {

10 quickBrownFox := []byte("The quick brown fox jumped over the lazy dog")

11

12 title := bytes.Title(quickBrownFox)

13 log.Printf("Title turned %q into %q", quickBrownFox, title)

14

15 allTitle := bytes.ToTitle(quickBrownFox)

16 log.Printf("ToTitle turned %q to %q", quickBrownFox, allTitle)

17

18 allTitleTurkish := bytes.ToTitleSpecial(unicode.TurkishCase, quickBrownFox)

19 log.Printf("ToTitleSpecial turned %q into %q using the Turkish case rules", qui\

20 ckBrownFox, allTitleTurkish)

21

22 lower := bytes.ToLower(title)

23 log.Printf("ToLower turned %q into %q", title, lower)

24

25 turkishCapitalI := []byte("İ")

26 turkishLowerI := bytes.ToLowerSpecial(unicode.TurkishCase, turkishCapitalI)

27 log.Printf("ToLowerSpecial turned %q into %q using the Turkish case rules", tur\

28 kishCapitalI, turkishLowerI)

29

30 upper := bytes.ToUpper(quickBrownFox)

31 log.Printf("ToUpper turned %q to %q", quickBrownFox, upper)

32

33 upperSpecial := bytes.ToUpperSpecial(unicode.TurkishCase, quickBrownFox)

34 log.Printf("ToUpperSpecial turned %q into %q using the Turkish case rules", qui\

35 ckBrownFox, upperSpecial)

36 }

bytes 50

Output:

1 2014/08/21 18:02:13 Title turned "The quick brown fox jumped over the lazy dog" \

2 into "The Quick Brown Fox Jumped Over The Lazy Dog"

3 2014/08/21 18:02:13 ToTitle turned "The quick brown fox jumped over the lazy dog\

4 " to "THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG"

5 2014/08/21 18:02:13 ToTitleSpecial turned "The quick brown fox jumped over the l\

6 azy dog" into "THE QUİCK BROWN FOX JUMPED OVER THE LAZY DOG" using the Turkish c\

7 ase rules

8 2014/08/21 18:02:13 ToLower turned "The Quick Brown Fox Jumped Over The Lazy Dog\

9 " into "the quick brown fox jumped over the lazy dog"

10 2014/08/21 18:02:13 ToLowerSpecial turned "İ" into "i" using the Turkish case ru\

11 les

12 2014/08/21 18:02:13 ToUpper turned "The quick brown fox jumped over the lazy dog\

13 " to "THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG"

14 2014/08/21 18:02:13 ToUpperSpecial turned "The quick brown fox jumped over the l\

15 azy dog" into "THE QUİCK BROWN FOX JUMPED OVER THE LAZY DOG" using the Turkish c\

16 ase rules

Trimming

Lastly, trimming bytes from either end of a slice is a fairly common task. As is
common in this chapter, the bytes package takes care of business.

Of special interest is the TrimSpace function. It’s simple, but looking at the implemen-
tation gives you lots of other ideas. All it does it pass the unicode.IsSpace function to
TrimFunc. All TrimFunc needs is a function that takes a rune and returns a bool, and
the unicode package has plenty of those. You can trim digits, uppercase, lowercase,
symbols, punctuation, and awholemess of other things, by just combining the right
unicode package function with TrimFunc.

bytes/trimming.go

1 package main

2

3 import (

4 "bytes"

5 "log"

6)

7

8 func trimOdd(r rune) bool {

9 return r%2 == 1

10 }

bytes 51

11

12 func main() {

13 whitespace := " \t\r\n"

14

15 padded := []byte(" \t\r\n\r\n\r\n hello!!! \t\t\t\t")

16 trimmed := bytes.Trim(padded, whitespace)

17 log.Printf("Trim removed runes in %q from the ends of %q to produce %q", whites\

18 pace, padded, trimmed)

19

20 rhyme := []byte("aabbccddee")

21 trimFunced := bytes.TrimFunc(rhyme, trimOdd)

22 log.Printf("TrimFunc removed 'odd' runes from %q to produce %q", rhyme, trimFun\

23 ced)

24

25 leftTrimmed := bytes.TrimLeft(padded, whitespace)

26 log.Printf("TrimLeft removed runes in %q from the left side of %q to produce %q\

27 ", whitespace, padded, leftTrimmed)

28

29 leftTrimFunced := bytes.TrimLeftFunc(rhyme, trimOdd)

30 log.Printf("TrimLeftFunc removed 'odd' runes from the left side of %q to produc\

31 e %q", rhyme, leftTrimFunced)

32

33 rightTrimmed := bytes.TrimRight(padded, whitespace)

34 log.Printf("TrimRight removed runes in %q from the right side of %q to produce \

35 %q", whitespace, padded, rightTrimmed)

36

37 rightTrimFunced := bytes.TrimRightFunc(rhyme, trimOdd)

38 log.Printf("TrimRightFunc removed 'odd' runes from the right side of %q to prod\

39 uce %q", rhyme, rightTrimFunced)

40

41 spaceTrimmed := bytes.TrimSpace(padded)

42 log.Printf("TrimSpace trimmed all whitespace from the ends of %q to produce %q"\

43 , padded, spaceTrimmed)

44 }

bytes 52

Output:

1 2014/08/21 18:02:14 Trim removed runes in " \t\r\n" from the ends of " \t\r\n\r\

2 \n\r\n hello!!! \t\t\t\t" to produce "hello!!!"

3 2014/08/21 18:02:14 TrimFunc removed 'odd' runes from "aabbccddee" to produce "b\

4 bccdd"

5 2014/08/21 18:02:14 TrimLeft removed runes in " \t\r\n" from the left side of " \

6 \t\r\n\r\n\r\n hello!!! \t\t\t\t" to produce "hello!!! \t\t\t\t"

7 2014/08/21 18:02:14 TrimLeftFunc removed 'odd' runes from the left side of "aabb\

8 ccddee" to produce "bbccddee"

9 2014/08/21 18:02:14 TrimRight removed runes in " \t\r\n" from the right side of \

10 " \t\r\n\r\n\r\n hello!!! \t\t\t\t" to produce " \t\r\n\r\n\r\n hello!!!"

11 2014/08/21 18:02:14 TrimRightFunc removed 'odd' runes from the right side of "aa\

12 bbccddee" to produce "aabbccdd"

13 2014/08/21 18:02:14 TrimSpace trimmed all whitespace from the ends of " \t\r\n\\

14 r\n\r\n hello!!! \t\t\t\t" to produce "hello!!!"

Buffer

The Buffer type is my favorite from the bytes package. It’s your goto data structure
for doing things in memory. It follows many of the interfaces in the io package,
so it can be used any place that asks for those interfaces. Most importantly, it
implements the io.Reader and io.Writer interfaces, which are used most when
it comes to io operations. Run buffer.go will let you know all the interfaces it
implements.

Now, it is a buffer so it doesn’t implement the io.ReaderAt and io.WriterAt interfaces.
You put stuff in and take stuff out, like a little black box. That being said, it’s still a
very useful data structure, especially for doing anything in memory.

bytes/buffer.go

1 package main

2

3 import (

4 "bytes"

5 "io"

6 "log"

7 "os"

8)

9

10 const interfaceFormat = "%T is an %s"

11

bytes 53

12 func testInterfaces(buffer interface{}) {

13 if _, ok := buffer.(io.ByteReader); ok {

14 log.Printf(interfaceFormat, buffer, "io.ByteReader")

15 }

16 if _, ok := buffer.(io.ByteScanner); ok {

17 log.Printf(interfaceFormat, buffer, "io.ByteScanner")

18 }

19 if _, ok := buffer.(io.Closer); ok {

20 log.Printf(interfaceFormat, buffer, "io.Closer")

21 }

22 if _, ok := buffer.(io.LimitedReader); ok {

23 log.Printf(interfaceFormat, buffer, "io.LimitedReader")

24 }

25 if _, ok := buffer.(io.ReadCloser); ok {

26 log.Printf(interfaceFormat, buffer, "io.ReadCloser")

27 }

28 if _, ok := buffer.(io.ReadSeeker); ok {

29 log.Printf(interfaceFormat, buffer, "io.ReadSeeker")

30 }

31 if _, ok := buffer.(io.ReadWriteCloser); ok {

32 log.Printf(interfaceFormat, buffer, "io.ReadWriteCloser")

33 }

34 if _, ok := buffer.(io.ReadWriteSeeker); ok {

35 log.Printf(interfaceFormat, buffer, "io.ReadWriteSeeker")

36 }

37 if _, ok := buffer.(io.ReadWriter); ok {

38 log.Printf(interfaceFormat, buffer, "io.ReadWriter")

39 }

40 if _, ok := buffer.(io.Reader); ok {

41 log.Printf(interfaceFormat, buffer, "io.Reader")

42 }

43 if _, ok := buffer.(io.ReaderAt); ok {

44 log.Printf(interfaceFormat, buffer, "io.ReaderAt")

45 }

46 if _, ok := buffer.(io.ReaderFrom); ok {

47 log.Printf(interfaceFormat, buffer, "io.ReaderFrom")

48 }

49 if _, ok := buffer.(io.RuneReader); ok {

50 log.Printf(interfaceFormat, buffer, "io.RuneReader")

51 }

52 if _, ok := buffer.(io.RuneScanner); ok {

53 log.Printf(interfaceFormat, buffer, "io.RuneScanner")

bytes 54

54 }

55 if _, ok := buffer.(io.Seeker); ok {

56 log.Printf(interfaceFormat, buffer, "io.Seeker")

57 }

58 if _, ok := buffer.(io.WriteCloser); ok {

59 log.Printf(interfaceFormat, buffer, "io.WriteCloser")

60 }

61 if _, ok := buffer.(io.WriteSeeker); ok {

62 log.Printf(interfaceFormat, buffer, "io.WriteSeeker")

63 }

64 if _, ok := buffer.(io.Writer); ok {

65 log.Printf(interfaceFormat, buffer, "io.Writer")

66 }

67 if _, ok := buffer.(io.WriterAt); ok {

68 log.Printf(interfaceFormat, buffer, "io.WriterAt")

69 }

70 if _, ok := buffer.(io.WriterTo); ok {

71 log.Printf(interfaceFormat, buffer, "io.WriterTo")

72 }

73 }

74

75 func fileExample(wr io.Writer) {

76 log.Printf("wr is of type %T", wr)

77 file, err := os.Open("buffer.go")

78 if err != nil {

79 log.Fatalf("Failed opening file: %s", err)

80 }

81 defer file.Close()

82 io.Copy(wr, file)

83 }

84

85 func main() {

86 var buffer bytes.Buffer

87 testInterfaces(&buffer)

88 fileExample(&buffer)

89 log.Printf("Read %d byte file into buffer", buffer.Len())

90 log.Println(buffer.String())

91 buffer.Reset()

92 log.Printf("After reset buffer is %d bytes long", buffer.Len())

93 }

bytes 55

Output:

1 2014/08/21 18:02:13 *bytes.Buffer is an io.ByteReader

2 2014/08/21 18:02:13 *bytes.Buffer is an io.ByteScanner

3 2014/08/21 18:02:13 *bytes.Buffer is an io.ReadWriter

4 2014/08/21 18:02:13 *bytes.Buffer is an io.Reader

5 2014/08/21 18:02:13 *bytes.Buffer is an io.ReaderFrom

6 2014/08/21 18:02:13 *bytes.Buffer is an io.RuneReader

7 2014/08/21 18:02:13 *bytes.Buffer is an io.RuneScanner

8 2014/08/21 18:02:13 *bytes.Buffer is an io.Writer

9 2014/08/21 18:02:13 *bytes.Buffer is an io.WriterTo

10 2014/08/21 18:02:13 wr is of type *bytes.Buffer

11 2014/08/21 18:02:13 Read 2597 byte file into buffer

12 2014/08/21 18:02:13 package main

13

14 import (

15 "bytes"

16 "io"

17 "log"

18 "os"

19)

20

21 const interfaceFormat = "%T is an %s"

22

23 func testInterfaces(buffer interface{}) {

24 if _, ok := buffer.(io.ByteReader); ok {

25 log.Printf(interfaceFormat, buffer, "io.ByteReader")

26 }

27 if _, ok := buffer.(io.ByteScanner); ok {

28 log.Printf(interfaceFormat, buffer, "io.ByteScanner")

29 }

30 if _, ok := buffer.(io.Closer); ok {

31 log.Printf(interfaceFormat, buffer, "io.Closer")

32 }

33 if _, ok := buffer.(io.LimitedReader); ok {

34 log.Printf(interfaceFormat, buffer, "io.LimitedReader")

35 }

36 if _, ok := buffer.(io.ReadCloser); ok {

37 log.Printf(interfaceFormat, buffer, "io.ReadCloser")

38 }

39 if _, ok := buffer.(io.ReadSeeker); ok {

40 log.Printf(interfaceFormat, buffer, "io.ReadSeeker")

41 }

bytes 56

42 if _, ok := buffer.(io.ReadWriteCloser); ok {

43 log.Printf(interfaceFormat, buffer, "io.ReadWriteCloser")

44 }

45 if _, ok := buffer.(io.ReadWriteSeeker); ok {

46 log.Printf(interfaceFormat, buffer, "io.ReadWriteSeeker")

47 }

48 if _, ok := buffer.(io.ReadWriter); ok {

49 log.Printf(interfaceFormat, buffer, "io.ReadWriter")

50 }

51 if _, ok := buffer.(io.Reader); ok {

52 log.Printf(interfaceFormat, buffer, "io.Reader")

53 }

54 if _, ok := buffer.(io.ReaderAt); ok {

55 log.Printf(interfaceFormat, buffer, "io.ReaderAt")

56 }

57 if _, ok := buffer.(io.ReaderFrom); ok {

58 log.Printf(interfaceFormat, buffer, "io.ReaderFrom")

59 }

60 if _, ok := buffer.(io.RuneReader); ok {

61 log.Printf(interfaceFormat, buffer, "io.RuneReader")

62 }

63 if _, ok := buffer.(io.RuneScanner); ok {

64 log.Printf(interfaceFormat, buffer, "io.RuneScanner")

65 }

66 if _, ok := buffer.(io.Seeker); ok {

67 log.Printf(interfaceFormat, buffer, "io.Seeker")

68 }

69 if _, ok := buffer.(io.WriteCloser); ok {

70 log.Printf(interfaceFormat, buffer, "io.WriteCloser")

71 }

72 if _, ok := buffer.(io.WriteSeeker); ok {

73 log.Printf(interfaceFormat, buffer, "io.WriteSeeker")

74 }

75 if _, ok := buffer.(io.Writer); ok {

76 log.Printf(interfaceFormat, buffer, "io.Writer")

77 }

78 if _, ok := buffer.(io.WriterAt); ok {

79 log.Printf(interfaceFormat, buffer, "io.WriterAt")

80 }

81 if _, ok := buffer.(io.WriterTo); ok {

82 log.Printf(interfaceFormat, buffer, "io.WriterTo")

83 }

bytes 57

84 }

85

86 func fileExample(wr io.Writer) {

87 log.Printf("wr is of type %T", wr)

88 file, err := os.Open("buffer.go")

89 if err != nil {

90 log.Fatalf("Failed opening file: %s", err)

91 }

92 defer file.Close()

93 io.Copy(wr, file)

94 }

95

96 func main() {

97 var buffer bytes.Buffer

98 testInterfaces(&buffer)

99 fileExample(&buffer)

100 log.Printf("Read %d byte file into buffer", buffer.Len())

101 log.Println(buffer.String())

102 buffer.Reset()

103 log.Printf("After reset buffer is %d bytes long", buffer.Len())

104 }

105

106 2014/08/21 18:02:13 After reset buffer is 0 bytes long

Reader

The bytes.Reader gives you a way to wrap byte slices in a little structure implement-
ing 8 interfaces from the io package. If you have a byte slice, and you need to
read them, wrap it with the bytes.NewReader function and go to town. Running the
reader.go file shows all the interfaces the bytes.Reader type implements.

bytes/reader.go

1 package main

2

3 import (

4 "bytes"

5 "io"

6 "log"

7)

8

9 const interfaceFormat = "%T is an %s"

bytes 58

10

11 func testInterfaces(buffer interface{}) {

12 if _, ok := buffer.(io.ByteReader); ok {

13 log.Printf(interfaceFormat, buffer, "io.ByteReader")

14 }

15 if _, ok := buffer.(io.ByteScanner); ok {

16 log.Printf(interfaceFormat, buffer, "io.ByteScanner")

17 }

18 if _, ok := buffer.(io.Closer); ok {

19 log.Printf(interfaceFormat, buffer, "io.Closer")

20 }

21 if _, ok := buffer.(io.LimitedReader); ok {

22 log.Printf(interfaceFormat, buffer, "io.LimitedReader")

23 }

24 if _, ok := buffer.(io.ReadCloser); ok {

25 log.Printf(interfaceFormat, buffer, "io.ReadCloser")

26 }

27 if _, ok := buffer.(io.ReadSeeker); ok {

28 log.Printf(interfaceFormat, buffer, "io.ReadSeeker")

29 }

30 if _, ok := buffer.(io.ReadWriteCloser); ok {

31 log.Printf(interfaceFormat, buffer, "io.ReadWriteCloser")

32 }

33 if _, ok := buffer.(io.ReadWriteSeeker); ok {

34 log.Printf(interfaceFormat, buffer, "io.ReadWriteSeeker")

35 }

36 if _, ok := buffer.(io.ReadWriter); ok {

37 log.Printf(interfaceFormat, buffer, "io.ReadWriter")

38 }

39 if _, ok := buffer.(io.Reader); ok {

40 log.Printf(interfaceFormat, buffer, "io.Reader")

41 }

42 if _, ok := buffer.(io.ReaderAt); ok {

43 log.Printf(interfaceFormat, buffer, "io.ReaderAt")

44 }

45 if _, ok := buffer.(io.ReaderFrom); ok {

46 log.Printf(interfaceFormat, buffer, "io.ReaderFrom")

47 }

48 if _, ok := buffer.(io.RuneReader); ok {

49 log.Printf(interfaceFormat, buffer, "io.RuneReader")

50 }

51 if _, ok := buffer.(io.RuneScanner); ok {

bytes 59

52 log.Printf(interfaceFormat, buffer, "io.RuneScanner")

53 }

54 if _, ok := buffer.(io.Seeker); ok {

55 log.Printf(interfaceFormat, buffer, "io.Seeker")

56 }

57 if _, ok := buffer.(io.WriteCloser); ok {

58 log.Printf(interfaceFormat, buffer, "io.WriteCloser")

59 }

60 if _, ok := buffer.(io.WriteSeeker); ok {

61 log.Printf(interfaceFormat, buffer, "io.WriteSeeker")

62 }

63 if _, ok := buffer.(io.Writer); ok {

64 log.Printf(interfaceFormat, buffer, "io.Writer")

65 }

66 if _, ok := buffer.(io.WriterAt); ok {

67 log.Printf(interfaceFormat, buffer, "io.WriterAt")

68 }

69 if _, ok := buffer.(io.WriterTo); ok {

70 log.Printf(interfaceFormat, buffer, "io.WriterTo")

71 }

72 }

73

74 func main() {

75 golang := []byte("golang")

76 reader := bytes.NewReader(golang)

77 testInterfaces(reader)

78 }

Output:

1 2014/08/21 18:02:14 *bytes.Reader is an io.ByteReader

2 2014/08/21 18:02:14 *bytes.Reader is an io.ByteScanner

3 2014/08/21 18:02:14 *bytes.Reader is an io.ReadSeeker

4 2014/08/21 18:02:14 *bytes.Reader is an io.Reader

5 2014/08/21 18:02:14 *bytes.Reader is an io.ReaderAt

6 2014/08/21 18:02:14 *bytes.Reader is an io.RuneReader

7 2014/08/21 18:02:14 *bytes.Reader is an io.RuneScanner

8 2014/08/21 18:02:14 *bytes.Reader is an io.Seeker

9 2014/08/21 18:02:14 *bytes.Reader is an io.WriterTo

compress
Honey, I Shrunk The Kids

The compress package implements various compression algorithms. The bzip2 sub-
package is a bit of an odd child since it only implements a reader (decompression)
and not a writer (compression).

Each package works pretty much the same. You create either a reader13 or a
writer,14 maybe specifying some options like compression level, and use the object
like any other reader or writer. Not much more complicated than that.

ALL THE CODE

Since the code is all very similar, we’re just going to throw everything in one file,
and use the flag package to control what we’re doing.

compress/everything.go

1 package main

2

3 import (

4 "compress/bzip2"

5 "compress/flate"

6 "compress/gzip"

7 "compress/lzw"

8 "compress/zlib"

9 "flag"

10 "fmt"

11 "io"

12 "log"

13 "os"

14)

15

16 var (

17 compress = flag.Bool("compress", false, "Perform compression")

13Either an io.Reader or io.ReadCloser, or something that implements those interfaces.
14Either an io.Writer or io.WriteCloser, or something that implements those interfaces.

compress 61

18 decompress = flag.Bool("decompress", false, "Perform decompression")

19 algorithm = flag.String("algorithm", "", "The algorithm to use (one of bzip2, \

20 flate, gzip, lzw, zlib)")

21 input = flag.String("input", "", "The file to compress or decompress")

22)

23

24 func filename() string {

25 return fmt.Sprintf("%s.%s", *input, *algorithm)

26 }

27

28 func openOutputFile() *os.File {

29 file, err := os.OpenFile(filename(), os.O_WRONLY|os.O_CREATE, 0644)

30 if err != nil {

31 log.Fatalf("failed opening output file: %s", err)

32 }

33 return file

34 }

35

36 func openInputFile() *os.File {

37 file, err := os.Open(*input)

38 if err != nil {

39 log.Fatalf("failed opening input file: %s", err)

40 }

41 return file

42 }

43

44 func getCompressor(out io.Writer) io.WriteCloser {

45 switch *algorithm {

46 case "bzip2":

47 log.Fatalf("no compressor for bzip2. Try `bzip2 -c everything.go > everything.\

48 go.bzip2`")

49 case "flate":

50 compressor, err := flate.NewWriter(out, flate.BestCompression)

51 if err != nil {

52 log.Fatalf("failed making flate compressor: %s", err)

53 }

54 return compressor

55 case "gzip":

56 return gzip.NewWriter(out)

57 case "lzw":

58 // More specific uses of Order and litWidth are in the package docs

59 return lzw.NewWriter(out, lzw.MSB, 8)

compress 62

60 case "zlib":

61 return zlib.NewWriter(out)

62 default:

63 log.Fatalf("choose one of bzip2, flate, gzip, lzw, zlib with -algorithm")

64 }

65 panic("not reached")

66 }

67

68 func getDecompressor(in io.Reader) io.Reader {

69 switch *algorithm {

70 case "bzip2":

71 return bzip2.NewReader(in)

72 case "flate":

73 return flate.NewReader(in)

74 case "gzip":

75 decompressor, err := gzip.NewReader(in)

76 if err != nil {

77 log.Fatalf("failed making gzip decompressor")

78 }

79 return decompressor

80 case "lzw":

81 return lzw.NewReader(in, lzw.MSB, 8)

82 case "zlib":

83 decompressor, err := zlib.NewReader(in)

84 if err != nil {

85 log.Fatalf("failed making zlib decompressor")

86 }

87 return decompressor

88 }

89 panic("not reached")

90 }

91

92 func compression() {

93 output := openOutputFile()

94 defer output.Close()

95 compressor := getCompressor(output)

96 defer compressor.Close()

97 input := openInputFile()

98 defer input.Close()

99 io.Copy(compressor, input)

100 }

101

compress 63

102 func decompression() {

103 input := openInputFile()

104 defer input.Close()

105 decompressor := getDecompressor(input)

106 if c, ok := decompressor.(io.Closer); ok {

107 defer c.Close()

108 }

109 io.Copy(os.Stdout, decompressor)

110 }

111

112 func main() {

113 flag.Parse()

114 if *input == "" {

115 log.Fatalf("Please specify an input file with -input")

116 }

117 switch {

118 case *compress:

119 compression()

120 case *decompress:

121 decompression()

122 default:

123 log.Println("must specify one of -compress or -decompress")

124 }

125 }

Accept-Encoding: gzip

In the real world, we can do some fun things. For requests, the net/http package
handles compression for us. On the server side, you have to do things yourself.

You can decode a compressed body using a gzip.Reader, and you can send a com-
pressed body using a gzip.Writer.

compress 64

compress/http.go

1 package main

2

3 import (

4 "bytes"

5 "compress/gzip"

6 "flag"

7 "fmt"

8 "io"

9 "log"

10 "net/http"

11 "os"

12 "strings"

13)

14

15 var (

16 port = flag.Int("port", 8888, "The port to listen on")

17 compress = flag.Bool("compress", false, "Compress using gzip")

18 input = flag.String("input", "http.go", "The file to send to the echo")

19)

20

21 func compressor(enc string, wr io.Writer) (io.Writer, string) {

22 if strings.Contains(enc, "gzip") {

23 return gzip.NewWriter(wr), "gzip"

24 }

25 return wr, ""

26 }

27

28 func decompressor(enc string, rd io.Reader) io.Reader {

29 if strings.Contains(enc, "gzip") {

30 gz, err := gzip.NewReader(rd)

31 if err != nil {

32 log.Fatalf("Failed creating gzip decompressor: %s", err)

33 }

34 return gz

35 }

36 return rd

37 }

38

39 func readBody(enc string, rc io.ReadCloser) *bytes.Buffer {

40 var buffer bytes.Buffer

41 rd := decompressor(enc, rc)

compress 65

42 io.Copy(&buffer, rd)

43 if c, ok := rd.(io.Closer); ok {

44 c.Close()

45 }

46 rc.Close()

47 return &buffer

48 }

49

50 func echo(w http.ResponseWriter, req *http.Request) {

51 log.Printf("Request headers: %#v", req.Header)

52 body := readBody(req.Header.Get("Content-Encoding"), req.Body)

53

54 // Since we're echoing, just send the same Content-Type back

55 w.Header().Set("Content-Type", req.Header.Get("Content-Type"))

56

57 wr, enc := compressor(req.Header.Get("Accept-Encoding"), w)

58 if enc != "" {

59 w.Header().Set("Content-Encoding", enc)

60 }

61 if c, ok := wr.(io.Closer); ok {

62 defer c.Close()

63 }

64

65 io.Copy(wr, body)

66 }

67

68 func server() {

69 http.HandleFunc("/echo", echo)

70 log.Fatal(http.ListenAndServe(fmt.Sprintf(":%d", *port), nil))

71 }

72

73 func encoding() string {

74 if *compress {

75 return "gzip"

76 }

77 return ""

78 }

79

80 func bufferFile(name string) (*bytes.Buffer, string) {

81 var buffer bytes.Buffer

82 file, err := os.Open(name)

83 if err != nil {

compress 66

84 log.Fatalf("Failed opening file: %s", err)

85 }

86 defer file.Close()

87 wr, enc := compressor(encoding(), &buffer)

88 if c, ok := wr.(io.Closer); ok {

89 defer c.Close()

90 }

91 io.Copy(wr, file)

92 return &buffer, enc

93 }

94

95 func httpClient() *http.Client {

96 return &http.Client{

97 Transport: &http.Transport{

98 // The http client package handles gzip compression for us.

99 DisableCompression: !*compress,

100 },

101 }

102 }

103

104 func client() {

105 buffer, enc := bufferFile(*input)

106 url := fmt.Sprintf("http://localhost:%d/echo", *port)

107 req, err := http.NewRequest("POST", url, buffer)

108 if err != nil {

109 log.Fatalf("Failed creating request: %s", err)

110 }

111 req.Header.Set("Content-Type", "text/plain; charset=utf-8")

112

113 if enc != "" {

114 req.Header.Set("Content-Encoding", enc)

115 }

116

117 resp, err := httpClient().Do(req)

118 if err != nil {

119 log.Fatalf("Failed making HTTP request: %s", err)

120 }

121 defer resp.Body.Close()

122 log.Printf("Response headers: %#v", resp.Header)

123 io.Copy(os.Stdout, resp.Body)

124 }

125

compress 67

126 func main() {

127 flag.Parse()

128 go server()

129 client()

130 }

If the Content-Encoding is gzip, the decompressor function wraps the original reader
in a gzip.Reader. Otherwise, it returns the original io.Reader. The compressor function
does the same but with Accept-Encoding and gzip.Writer.

This simple wrapper let’s the handler function optionally decode compressed
request bodies, and optionally send compressed response bodies. The only thing
to watch for is that there might be two readers or writers, which may or may not
need closing.

container
The containerpackage consists of 3 sub-packages tomake you life a little easierwhen
dealing with some basic container types.

The list and ring packages implement their own types, providing a New() function
to create each structure. The heap package on the other hand, provides functions to
operate on an interface. All you need to do is define the methods on your type, and
away you go.

We’ll look at the sub-packages in order, starting with the heap package.

heap

Unlike the other two types in the container package (which implement their own
actual container type), the heap package is just a set of functions operating on an
interface.

This means you get to deal with your own datatype. Just implement sort.Interface
(three methods) and heap.Interface (two methods) and you can start dealing with
your container as a heap.

Keep in mind that when you print out the raw heap (if you base the heap off a slice
like I do) it won’t be sorted. A heap basically stores a tree structure in a slice, so it’s
sorted in a way the heap package understands. When you Pop items from the heap,
they come off in the correct order. The difference can be seen between the second
and third lines of the output.

We’ll see a cooler example using a heap later.

container/heap.go

1 package main

2

3 // Interfaces

4 //

5 // type heap.Interface interface {

6 // sort.Interface

7 // // add x as element Len()

8 // Push(x interface{})

9 // // remove and return element Len() - 1.

container 69

10 // Pop() interface{}

11 // }

12 //

13 // type sort.Interface interface {

14 // // Len is the number of elements in the collection.

15 // Len() int

16 // // Less returns whether the element with index i should sort

17 // // before the element with index j.

18 // Less(i, j int) bool

19 // // Swap swaps the elements with indexes i and j.

20 // Swap(i, j int)

21 // }

22

23 import (

24 "container/heap"

25 "log"

26 "math/rand"

27)

28

29 type IntHeap []int

30

31 func (h IntHeap) Len() int {

32 return len(h)

33 }

34

35 func (h IntHeap) Less(i, j int) bool {

36 return h[i] < h[j]

37 }

38

39 func (h IntHeap) Swap(i, j int) {

40 h[i], h[j] = h[j], h[i]

41 }

42

43 func (h *IntHeap) Push(v interface{}) {

44 a := *h

45 a = append(a, v.(int))

46 *h = a

47 }

48

49 func (h *IntHeap) Pop() interface{} {

50 a := *h

51 n := len(a)

container 70

52 v := a[n-1]

53 *h = a[0 : n-1]

54 return v

55 }

56

57 func main() {

58 h := make(IntHeap, 0)

59 log.Printf("%v", h)

60 for i := 0; i < 10; i++ {

61 heap.Push(&h, rand.Intn(25))

62 }

63 log.Printf("%v", h)

64

65 l := h.Len()

66 ints := make([]int, 0, l)

67 for i := 0; i < l; i++ {

68 ints = append(ints, heap.Pop(&h).(int))

69 }

70 log.Printf("%v", ints)

71 log.Printf("%v", h)

72 }

list

The list package implements, as the overview says, a doubly linked list. You’ll want
to start with list.New() to get yourself a new list, and use PushBack, PushBackList,
PushFront, and PushFrontList to add things to the list.

Once you have something built up, you can use Front and Back to get the beginning
or end of the list (in the form of a pointer to a list.Element struct). Now you can use
Next and Prev to advance through the list.

Once you have an Element you can use MoveToBack and MoveToFront to push the element
around, or you can use InsertAfter and InsertBefore to insert a new element in a
specific location. Removing an Element is easy once you have it aswell, just use Remove

on the list.

Unlike the ring package (which we’ll see next), list.List doesn’t have a Do method
for iterating over all the elements, so I’ve implemented one. It’s really simple, and
in your normal day of coding the regular for loopwould be preferred, but I’m doing
it as an example.

container 71

container/list.go

1 package main

2

3 import (

4 "container/list"

5 "log"

6)

7

8 const size = 5

9

10 func Do(l *list.List, f func(interface{})) {

11 // Standard list iterating straight from their example

12 for e := l.Front(); e != nil; e = e.Next() {

13 f(e.Value)

14 }

15 }

16

17 func printList(l *list.List) {

18 elements := make([]interface{}, 0, l.Len())

19 Do(l, func(i interface{}) {

20 elements = append(elements, i)

21 })

22 log.Printf("%v", elements)

23 }

24

25 func main() {

26 l := list.New()

27 printList(l) // []

28 for i := 0; i < size; i++ {

29 l.PushBack(i)

30 }

31 printList(l) // [0 1 2 3 4]

32

33 l = l.Init()

34 for i := 0; i < size; i++ {

35 l.PushFront(i)

36 }

37 printList(l) // [4 3 2 1 0]

38

39 f := l.Front()

40 e := f.Next().Next()

41 e = l.InsertAfter(10, e)

container 72

42 printList(l) // [4 3 2 10 1 0]

43 log.Println(l.Len()) // 6

44

45 l.Remove(e.Next())

46 printList(l) // [4 3 2 10 0]

47 log.Println(l.Len()) // 5

48 }

ring

The ring container is interesting. Much like a tree, the ring type is both the top level
container and an element in the container.15 It’s both the container, and what it
contains. Woah.

Anyway, you can make a ring using ring.New(n int) or just by allocating yourself a
new ring.Ring and going from there. After you’vemade a new Ring, you can add data
to it simply by setting the Value.

To load up a ring, make a new one, and set it’s Value. To add other values to the ring,
advance the ring (remembering to save the return value, like with append) and set
its Value. Rinse and repeat until the ring is full.

You could also use the Link method to add more nodes.

Once you have a ring, you can use the Next, Prev, Move, Unlink, and Do methods to
manipulate the ring. Next and Prev are pretty straightforward

container/ring.go

1 package main

2

3 import (

4 "container/ring"

5 "log"

6)

7

8 const size = 5

9

10 func printRing(r *ring.Ring) {

11 elements := make([]interface{}, 0, r.Len())

12 r.Do(func(i interface{}) {

13 elements = append(elements, i)

15In a tree, a node would have pointers to the left and right subtrees (which are just nodes), and to the element the node
holds. In the ring, it has the same pointers, except they are called prev and next.

container 73

14 })

15 log.Printf("%v", elements)

16 }

17

18 func buildRingFirstMethod() *ring.Ring {

19 r := ring.New(size)

20 printRing(r) // [<nil> <nil> <nil> <nil> <nil>]

21 for i := 0; i < size; i++ {

22 r.Value = i

23 r = r.Next()

24 }

25 return r

26 }

27

28 func buildRingSecondMethod() *ring.Ring {

29 r := &ring.Ring{Value: 0}

30 printRing(r) // [0]

31 for i := 1; i < size; i++ {

32 r.Prev().Link(&ring.Ring{Value: i})

33 }

34 return r

35 }

36

37 func main() {

38 r := buildRingFirstMethod()

39 printRing(r) // [0 1 2 3 4]

40

41 r2 := buildRingSecondMethod()

42 printRing(r2) // [0 1 2 3 4]

43 }

Thread Pool Example

In a language with raw threads (like Java or C#), you will typically see a ThreadPool

type. You make one of a certain size, and submit jobs to it, and they get pulled off
the queue in order. In Go, since goroutines aren’t threads (but are managed by a
thread pool which is in turn managed by the runtime), you typically don’t have to
do this, but we’ll implement a ThreadPool using the list container anyway. You know,
for fun.

It’s not the best chunk of code (for example, it could be rewritten without the locks
using channels, like the priority queue examplewe’ll see later), but it illustrates that

container 74

only up to 4 goroutines run at a time. You could do it with a simple slice too, instead
of the list package. Again, in Go, you really don’t need a ThreadPool.

container/thread_pool.go

1 package main

2

3 import (

4 "container/list"

5 "log"

6 "sync"

7 "time"

8)

9

10 type ThreadPool struct {

11 size, running int

12 list *list.List

13 m sync.Mutex

14 }

15

16 func NewThreadPool(size int) *ThreadPool {

17 tp := &ThreadPool{

18 size: size,

19 list: list.New(),

20 }

21 return tp

22 }

23

24 func (tp *ThreadPool) onStop() {

25 tp.m.Lock()

26 tp.running--

27 tp.m.Unlock()

28 tp.run()

29 }

30

31 func (tp *ThreadPool) run() {

32 tp.m.Lock()

33 defer tp.m.Unlock()

34 if tp.list.Len() > 0 && tp.running < tp.size {

35 f := tp.list.Remove(tp.list.Front()).(func())

36 tp.running++

37 go func() {

38 f()

39 tp.onStop()

container 75

40 }()

41 }

42 }

43

44 func (tp *ThreadPool) Submit(f func()) {

45 tp.list.PushBack(f)

46 tp.run()

47 }

48

49 func main() {

50 var wg sync.WaitGroup

51 tp := NewThreadPool(4)

52 for i := 0; i < 16; i++ {

53 wg.Add(1)

54 (func(id int) {

55 log.Printf("Subtmitted job %d", id)

56 tp.Submit(func() {

57 time.Sleep(3 * time.Second)

58 log.Printf("Hello from job %d", id)

59 wg.Done()

60 })

61 })(i)

62 }

63 wg.Wait()

64 }

Round Robin Load Balancer Example

Sometimes you want to get a few goroutines running and then submit a bunch of
jobs in a round robin fashion. Maybe start 4 goroutines, then submit a job which
goes to the first. Submit another which goes to the second, then the third, then the
fourth, and then the first again, back to the front.

We can use a ring for this. Again, probably not something you’d actually do in Go,
and not the prettiest code I’ve ever written, but it’s an example nonetheless.

container 76

container/round_robin.go

1 package main

2

3 import (

4 "container/ring"

5 "log"

6 "sync"

7 "time"

8)

9

10 type RoundRobin struct {

11 ring *ring.Ring

12 m sync.Mutex

13 }

14

15 func process(id int, funcs chan func()) {

16 for f := range funcs {

17 f()

18 log.Printf("Job finished in goroutine %d", id)

19 }

20 }

21

22 func NewRoundRobinScheduler(ringSize, channelSize int) *RoundRobin {

23 r := ring.New(ringSize)

24 for i := 0; i < ringSize; i++ {

25 c := make(chan func(), channelSize)

26 go process(i, c)

27 r.Value = c

28 r = r.Next()

29 }

30 return &RoundRobin{ring: r}

31 }

32

33 func (rr *RoundRobin) Submit(f func()) {

34 rr.m.Lock()

35 defer rr.m.Unlock()

36 c := rr.ring.Value.(chan func())

37 c <- f

38 rr.ring = rr.ring.Next()

39 }

40

41 func main() {

container 77

42 var wg sync.WaitGroup

43 rr := NewRoundRobinScheduler(4, 4)

44 for i := 0; i < 16; i++ {

45 wg.Add(1)

46 (func(id int) {

47 log.Printf("Submitted job %d", id)

48 rr.Submit(func() {

49 time.Sleep(3 * time.Second)

50 log.Printf("Hello from job %d", id)

51 wg.Done()

52 })

53 })(i)

54 }

55 wg.Wait()

56 }

Priority Queue Load Balancer Example

Since the heap package works on an interface, you can bend it to your will. In
this example, we’ll implement a priority queue based load balancer.16 You can
submit jobs to it, and it submits the job to the worker with the shortest queue. The
important parts are the methods implementing the heap.Interface interface.

Let it run for a bit and examine the log to see where requests are getting queued.

container/priority_queue.go

1 // Original code from http://golang.org/doc/talks/io2010/balance.go

2 //

3 // Copyright (c) 2012 The Go Authors. All rights reserved.

4 //

5 // Redistribution and use in source and binary forms, with or without

6 // modification, are permitted provided that the following conditions are

7 // met:

8 //

9 // * Redistributions of source code must retain the above copyright

10 // notice, this list of conditions and the following disclaimer.

11 // * Redistributions in binary form must reproduce the above

12 // copyright notice, this list of conditions and the following disclaimer

13 // in the documentation and/or other materials provided with the

16I’ve taken the code from a Google IO 2010 talk, and rewritten it a little bit for my purpose. The original code can be seen
here (http://golang.org/doc/talks/io2010/balance.go) and is licensed by the Golang BSD license.

http://golang.org/doc/talks/io2010/balance.go
http://golang.org/LICENSE

container 78

14 // distribution.

15 // * Neither the name of Google Inc. nor the names of its

16 // contributors may be used to endorse or promote products derived from

17 // this software without specific prior written permission.

18 //

19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

30

31 package main

32

33 import (

34 "container/heap"

35 "fmt"

36 "log"

37 "math/rand"

38 "time"

39)

40

41 const (

42 MaxQueueLength = 100

43 MaxRequesters = 10

44 Seconds = 2e9

45)

46

47 func requester(work chan Request) {

48 for {

49 time.Sleep(time.Duration(rand.Int63n(MaxRequesters * Seconds)))

50 work <- func() {

51 r := rand.Int63n(MaxRequesters*Seconds) + 10

52 time.Sleep(time.Duration(r))

53 }

54 }

55 }

container 79

56

57 type Request func()

58

59 type Worker struct {

60 id int

61 pending int

62 requests chan Request

63 index int

64 }

65

66 func (w *Worker) work(done chan *Worker) {

67 for {

68 req := <-w.requests

69 req()

70 done <- w

71 }

72 }

73

74 func (w *Worker) String() string {

75 return fmt.Sprintf("W%d{pending: %d}", w.id, w.pending)

76 }

77

78 type Pool []*Worker

79

80 func (p Pool) Len() int {

81 return len(p)

82 }

83

84 func (p Pool) Less(i, j int) bool {

85 return p[i].pending < p[j].pending

86 }

87

88 func (p *Pool) Swap(i, j int) {

89 a := *p

90 a[i], a[j] = a[j], a[i]

91 a[i].index = i

92 a[j].index = j

93 }

94

95 func (p *Pool) Push(i interface{}) {

96 w := i.(*Worker)

97 a := *p

container 80

98 n := len(a)

99 w.index = n

100 a = append(a, w)

101 *p = a

102 }

103

104 func (p *Pool) Pop() interface{} {

105 a := *p

106 n := len(a)

107 w := a[n-1]

108 w.index = -1

109 *p = a[0 : n-1]

110 return w

111 }

112

113 type Balancer struct {

114 pool Pool

115 done chan *Worker

116 }

117

118 func NewBalancer(size int) *Balancer {

119 done := make(chan *Worker, size)

120 b := &Balancer{

121 pool: make(Pool, 0, size),

122 done: done,

123 }

124 for i := 0; i < size; i++ {

125 w := &Worker{id: i, requests: make(chan Request, MaxQueueLength)}

126 heap.Push(&b.pool, w)

127 go w.work(done)

128 }

129 return b

130 }

131

132 func (b *Balancer) Balance(requests chan Request) {

133 for {

134 select {

135 case req := <-requests:

136 b.dispatch(req)

137 log.Printf("New request, %s", b.pool)

138 case w := <-b.done:

139 b.completed(w)

container 81

140 log.Printf("Request finished, %s", b.pool)

141 }

142 }

143 }

144

145 func (b *Balancer) dispatch(req Request) {

146 w := heap.Pop(&b.pool).(*Worker)

147 w.requests <- req

148 w.pending++

149 heap.Push(&b.pool, w)

150 }

151

152 func (b *Balancer) completed(w *Worker) {

153 w.pending--

154 heap.Remove(&b.pool, w.index)

155 heap.Push(&b.pool, w)

156 }

157

158 func main() {

159 requests := make(chan Request)

160 for i := 0; i < MaxRequesters; i++ {

161 go requester(requests)

162 }

163 NewBalancer(4).Balance(requests)

164 }

crypto
The crypto package is an umbrella for a wide variety of cryptographic related
packages.

crypto/aes and crypto/des handle the popular block ciphers.

Digital signatures are handled by crypto/ecdsa and crypto/dsa.

The standard array of hashes are included in cryto/{md5,sha1,sha256,sha512}, along
with crypto/hmac.

crypto/rc4 is included for goodmeasure. It’s most likely for compatibility with other
programs and languages, since in the documentation in the Bugs section discourages
using it for new things.

Handling secure TCP connections with TLS is a breeze with the crypto/tls and
crypto/x509 packages.

Other entertaining packages include crypto/rand for handling random number
generation in a cryptographically secure way, and the crypto/subtle package for
doing constant time operations.

Disclaimer

Cryptography is a tricky subject and doing it wrong is pretty easy. I am not a pro-
fessional cryptographer,17 so be sure to do your own research and reading (from
sources who are professional cryptographers) when doing anything cryptography
related. I’m just doing my best to show you how to use the crypto packages in the
Go Standard Library.

Do not copy any code from this book (or anywhere) and just paste it into
your application without understanding what it does. As the code license
says, I provide all the code without warranty of any kind.

17I don’t even play one on TV.

crypto 83

Block Ciphers

AES18 and DES19 are symmetric block ciphers20. They are symmetric because the
same key is used to both encrypt and decrypt. They are block ciphers because they
operate on blocks of a fixed size.

In these examples I’ve used the encoding/pem package to serialize the keys. We’ll look
at the encoding package in more detail in a later chapter.

AES

The crypto/aespackage implements the Advanced Encryption Standard21 algorithm.
Since it’s a block cipher, you work with the cipher.Block interface from the crypto/-

cipher package.

To start, aes.NewCipher returns a cipher.Block which has the ability to Encrypt and
Decrypt blocks of data. You probably don’t want to use this type and these methods
directly, since you have to work on individual blocks.

You might look at cipher.NewCBCDecrypter and cipher.NewCBCEncrypter, which allows
you to deal with all your data at once, but your source data must be a multiple
of the block size, 16 bytes.22 Since your data probably won’t be a nice multiple of
16, you’ll have to do some padding. There are nice algorithms to do this, but they
have their problems, and better methods have come along.

For a good look at a variety of block cipher modes, I’d recommended theWikipedia
page on the subject23. In Go, the fun parts are the CFB, OFB, and CTR modes.
They give you a cipher.Stream type which lets you pump plaintext bytes through the
stream and get ciphertext out the other side without worrying about padding. The
counter (CTR) method seems to be the better mode, so I’ve used it in the example.

The other nice thing about these modes is that encryption and decryption work the
same as far as the code is concerned. There is just the XORKeyStream(dst, src []byte)

method, and if dst is your ciphertext and src is your plaintext, it encryptes. If you flip
the two, your ciphertext gets decrypted. As the docs say, dst and src can also point to
the same piece of memory, so the algorithm can work in essentially constant space.

All you need to build your cipher.Stream is an initialization vector, or IV. It has to be
the same length as the block size, 16 in this case. The IV should be generated using a

18http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
19http://en.wikipedia.org/wiki/Data_Encryption_Standard
20http://en.wikipedia.org/wiki/Block_cipher
21http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
22See the aes.BlockSize constant.
23http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Block_cipher
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Block_cipher
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

crypto 84

secure randommethod (like crypto/rand) for each encryption, and you can then send
the IV along with the encrypted data. Simply concatenating the IV and encrypted
data is fine, as long as the IV is only ever used once (for that transmission) and is
generated securely. I’ve just hardcoded the IV for the purpose of the example, but
you could very easily (and should) use crypto/rand to generate one.

crypto/aes.go

1 package main

2

3 import (

4 "crypto/aes"

5 "crypto/cipher"

6 "crypto/rand"

7 "encoding/pem"

8 "flag"

9 "fmt"

10 "io/ioutil"

11 "log"

12)

13

14 const (

15 KeyFile = "aes.%d.key"

16 EncryptedFile = "aes.%d.enc"

17)

18

19 var (

20 IV = []byte("batman and robin") // 16 bytes

21 message = flag.String("message", "Batman is Bruce Wayne", "The message to encry\

22 pt")

23 keySize = flag.Int("keysize", 32, "The keysize in bytes to use: 16, 24, or 32 (\

24 default)")

25 do = flag.String("do", "encrypt", "The operation to perform: decrypt or en\

26 crypt (default) ")

27)

28

29 func MakeKey() []byte {

30 key := make([]byte, *keySize)

31 n, err := rand.Read(key)

32 if err != nil {

33 log.Fatalf("failed to read new random key: %s", err)

34 }

35 if n < *keySize {

36 log.Fatalf("failed to read entire key, only read %d out of %d", n, *keySize)

crypto 85

37 }

38 return key

39 }

40

41 func SaveKey(filename string, key []byte) {

42 block := &pem.Block{

43 Type: "AES KEY",

44 Bytes: key,

45 }

46 err := ioutil.WriteFile(filename, pem.EncodeToMemory(block), 0644)

47 if err != nil {

48 log.Fatalf("failed saving key to %s: %s", filename, err)

49 }

50 }

51

52 func ReadKey(filename string) ([]byte, error) {

53 key, err := ioutil.ReadFile(filename)

54 if err != nil {

55 return key, err

56 }

57 block, _ := pem.Decode(key)

58 return block.Bytes, nil

59 }

60

61 func Key() []byte {

62 file := fmt.Sprintf(KeyFile, *keySize)

63 key, err := ReadKey(file)

64 if err != nil {

65 log.Println("failed reading keyfile, making a new one...")

66 key = MakeKey()

67 SaveKey(file, key)

68 }

69 return key

70 }

71

72 func MakeCipher() cipher.Block {

73 c, err := aes.NewCipher(Key())

74 if err != nil {

75 log.Fatalf("failed making the AES cipher: %s", err)

76 }

77 return c

78 }

crypto 86

79

80 func Crypt(bytes []byte) []byte {

81 blockCipher := MakeCipher()

82 stream := cipher.NewCTR(blockCipher, IV)

83 stream.XORKeyStream(bytes, bytes)

84 return bytes

85 }

86

87 func Encrypt() {

88 encrypted := Crypt([]byte(*message))

89 err := ioutil.WriteFile(fmt.Sprintf(EncryptedFile, *keySize), encrypted, 0644)

90 if err != nil {

91 log.Fatalf("failed writing encrypted file: %s", err)

92 }

93 }

94

95 func Decrypt() {

96 bytes, err := ioutil.ReadFile(fmt.Sprintf(EncryptedFile, *keySize))

97 if err != nil {

98 log.Fatalf("failed reading encrypted file: %s", err)

99 }

100 plaintext := Crypt(bytes)

101 log.Printf("decrypted message: %s", plaintext)

102 }

103

104 func main() {

105 flag.Parse()

106

107 switch *keySize {

108 case 16, 24, 32:

109 // Keep calm and carry on...

110 default:

111 log.Fatalf("%d is not a valid keysize. Must be one of 16, 24, 32", *keySize)

112 }

113

114 switch *do {

115 case "encrypt":

116 Encrypt()

117 case "decrypt":

118 Decrypt()

119 default:

120 log.Fatalf("%s is not a valid operation. Must be one of encrypt or decrypt", *\

crypto 87

121 do)

122 }

123 }

DES/TripleDES

DES, like AES is a symmetric block cipher. As far as code is concerned, it works
exactly the same as AES. Generate a key, make the cipher, then use the crypto/cipher

types to simplify things a bit.

You should prefer AES over DES for new applications, since the small 56-bit key size
used by DES is just too small. A key can typically be cracked in a few days with good
hardware (or even just a bunch of money thrown at Amazon EC2).

Since the flow is almost exactly the same as AES, this code is basically just the AES
example with AES swapped out for DES.

Unlike the AES example, I don’t change the key and encrypted file names if you use
the -3 flag to use 3DES. Try running encryption without the flag, and decryption
with it.

crypto/des.go

1 package main

2

3 import (

4 "crypto/cipher"

5 "crypto/des"

6 "crypto/rand"

7 "encoding/pem"

8 "flag"

9 "io/ioutil"

10 "log"

11)

12

13 const (

14 KeyFile = "des.key"

15 EncryptedFile = "des.enc"

16)

17

18 var (

19 IV = []byte("superman") // 8 bytes

20 triple = flag.Bool("3", false, "Use 3DES")

21 message = flag.String("message", "Batman is Bruce Wayne", "The message to encry\

crypto 88

22 pt")

23 do = flag.String("do", "encrypt", "The operation to perform: decrypt or en\

24 crypt (default) ")

25)

26

27 func MakeKey() []byte {

28 size := 8

29 if *triple {

30 size *= 3

31 }

32 key := make([]byte, size)

33 n, err := rand.Read(key)

34 if err != nil {

35 log.Fatalf("failed to read new random key: %s", err)

36 }

37 if n < size {

38 log.Fatalf("failed to read entire key, only read %d out of %d", n, size)

39 }

40 return key

41 }

42

43 func SaveKey(filename string, key []byte) {

44 block := &pem.Block{

45 Type: "DES KEY",

46 Bytes: key,

47 }

48 err := ioutil.WriteFile(filename, pem.EncodeToMemory(block), 0644)

49 if err != nil {

50 log.Fatalf("failed saving key to %s: %s", filename, err)

51 }

52 }

53

54 func ReadKey(filename string) ([]byte, error) {

55 key, err := ioutil.ReadFile(filename)

56 if err != nil {

57 return key, err

58 }

59 block, _ := pem.Decode(key)

60 return block.Bytes, nil

61 }

62

63 func Key() []byte {

crypto 89

64 key, err := ReadKey(KeyFile)

65 if err != nil {

66 log.Println("failed reading keyfile, making a new one...")

67 key = MakeKey()

68 SaveKey(KeyFile, key)

69 }

70 return key

71 }

72

73 func MakeCipher() cipher.Block {

74 var c cipher.Block

75 var err error

76 if *triple {

77 c, err = des.NewTripleDESCipher(Key())

78 } else {

79 c, err = des.NewCipher(Key())

80 }

81 if err != nil {

82 log.Fatalf("failed making the DES cipher: %s", err)

83 }

84 return c

85 }

86

87 func Crypt(bytes []byte) []byte {

88 blockCipher := MakeCipher()

89 stream := cipher.NewCTR(blockCipher, IV)

90 stream.XORKeyStream(bytes, bytes)

91 return bytes

92 }

93

94 func Encrypt() {

95 encrypted := Crypt([]byte(*message))

96 err := ioutil.WriteFile(EncryptedFile, encrypted, 0644)

97 if err != nil {

98 log.Fatalf("failed writing encrypted file: %s", err)

99 }

100 }

101

102 func Decrypt() {

103 bytes, err := ioutil.ReadFile(EncryptedFile)

104 if err != nil {

105 log.Fatalf("failed reading encrypted file: %s", err)

crypto 90

106 }

107 plaintext := Crypt(bytes)

108 log.Printf("decrypted message: %s", plaintext)

109 }

110

111 func main() {

112 flag.Parse()

113 switch *do {

114 case "encrypt":

115 Encrypt()

116 case "decrypt":

117 Decrypt()

118 default:

119 log.Fatalf("%s is not a valid operation. Must be one of encrypt or decrypt", *\

120 do)

121 }

122 }

Digital Signatures

Digital signature algorithms use asymmetric cryptography (with a public and pri-
vate key pair) to signmessages. They can ensure a message came from a particular
sender, and also ensure that a message was not tampered with. They also prevent
somebody from later claiming they didn’t sign a particular message.24

ECDSA

The crypto/ecdsa package handles the elliptic curve digital signature algorithm.

Cool story bro.

Anyway, it uses the crypto/elliptic package to do key generation. There’s a whole
whack of stuff behind it I’m not familiar with, so as with the other crypto things,
do your own research and gain your own understanding (or just get a professional)
before doing anything really interesting.

In a nutshell, you need to generate a key, which has both the public and private
parts built in, hash your message, then sign it. Once you have the signature, you
can verify a message using the public part of the key.

In this example, I’ve left out saving the key, because I’m unsure of the best way of
doing it. You need to save some numbers, but also which curve was used. I could

24http://en.wikipedia.org/wiki/Non-repudiation

crypto 91

dump this out to JSON for all I care, but I’m sure there is a better, more standard
way to do it.

crypto/ecdsa.go

1 package main

2

3 import (

4 "crypto/ecdsa"

5 "crypto/elliptic"

6 "crypto/rand"

7 "crypto/sha1"

8 "flag"

9 "io"

10 "log"

11)

12

13 var message = flag.String("message", "Nuke the site from orbit, it's the only wa\

14 y to be sure.", "The message to sign")

15

16 func HashMessage() []byte {

17 h := sha1.New()

18 _, err := io.WriteString(h, *message)

19 if err != nil {

20 log.Fatalf("failed to hash message: %s", err)

21 }

22 return h.Sum(nil)

23 }

24

25 func Key() *ecdsa.PrivateKey {

26 key, err := ecdsa.GenerateKey(elliptic.P521(), rand.Reader)

27 if err != nil {

28 log.Fatalf("failed to generate key: %s", err)

29 }

30 return key

31 }

32

33 func main() {

34 flag.Parse()

35

36 key := Key()

37 hash := HashMessage()

38 r, s, err := ecdsa.Sign(rand.Reader, key, hash)

39 if err != nil {

crypto 92

40 log.Fatalf("failed to sign message: %s", err)

41 }

42 log.Printf("r: %s", r)

43 log.Printf("s: %s", s)

44

45 if ecdsa.Verify(&key.PublicKey, hash, r, s) {

46 log.Println("message is valid!")

47 } else {

48 log.Println("message invalid :(")

49 }

50 }

DSA

crypto/dsa is very similar to crypto/ecdsa except that it has nothing to do with elliptic
curves. You have to generate some parameters before generating a key, which can
take a little while.25

The way I’ve done the key serialization (with encoding/{asn1,pem}) works with ssh-

keygen. If you do ssh-keygen -t dsa and copy your∼/.ssh/id_dsa file to dsa.key before
you run the file, it will use that key and merrily carry on.

crypto/dsa.go

1 package main

2

3 import (

4 "crypto/dsa"

5 "crypto/rand"

6 "crypto/sha1"

7 "encoding/asn1"

8 "encoding/pem"

9 "flag"

10 "io"

11 "io/ioutil"

12 "log"

13 "math/big"

14)

15

16 const (

17 KeyFile = "dsa.key"

18)

25According to the documentation, it can “[take] many seconds, even on fast machines.”

crypto 93

19

20 var (

21 message = flag.String("message", "Nuke the site from orbit, it's the only way t\

22 o be sure.", "The message to sign")

23 do = flag.String("do", "sign", "The operation to do, verify or sign (defau\

24 lt)")

25 rc = flag.String("r", "", "The r to use when verifying")

26 sc = flag.String("s", "", "The s to use when verifying")

27)

28

29 func HashMessage() []byte {

30 h := sha1.New()

31 _, err := io.WriteString(h, *message)

32 if err != nil {

33 log.Fatalf("failed to hash message: %s", err)

34 }

35 return h.Sum(nil)

36 }

37

38 type DsaKeyFormat struct {

39 Version int

40 P, Q, G, Y, X *big.Int

41 }

42

43 func SaveKey(key *dsa.PrivateKey) {

44 val := DsaKeyFormat{

45 P: key.P, Q: key.Q, G: key.G,

46 Y: key.Y, X: key.X,

47 }

48 bytes, err := asn1.Marshal(val)

49 if err != nil {

50 log.Fatalf("failed marshalling key to asn1: %s", err)

51 }

52 block := &pem.Block{

53 Type: "DSA PRIVATE KEY",

54 Bytes: bytes,

55 }

56 err = ioutil.WriteFile(KeyFile, pem.EncodeToMemory(block), 0644)

57 if err != nil {

58 log.Fatalf("failed saving key to file %s: %s", KeyFile, err)

59 }

60 }

crypto 94

61

62 func ReadKey() (*dsa.PrivateKey, error) {

63 bytes, err := ioutil.ReadFile(KeyFile)

64 if err != nil {

65 return nil, err

66 }

67 block, _ := pem.Decode(bytes)

68 val := new(DsaKeyFormat)

69 _, err = asn1.Unmarshal(block.Bytes, val)

70 if err != nil {

71 return nil, err

72 }

73 key := &dsa.PrivateKey{

74 PublicKey: dsa.PublicKey{

75 Parameters: dsa.Parameters{

76 P: val.P,

77 Q: val.Q,

78 G: val.G,

79 },

80 Y: val.Y,

81 },

82 X: val.X,

83 }

84 return key, nil

85 }

86

87 func MakeKey() *dsa.PrivateKey {

88 key := new(dsa.PrivateKey)

89 err := dsa.GenerateParameters(&key.Parameters, rand.Reader, dsa.L2048N256)

90 if err != nil {

91 log.Fatalf("failed to parameters: %s", err)

92 }

93 err = dsa.GenerateKey(key, rand.Reader)

94 if err != nil {

95 log.Fatalf("failed to generate key: %s", err)

96 }

97 return key

98 }

99

100 func Key() *dsa.PrivateKey {

101 key, err := ReadKey()

102 if err != nil {

crypto 95

103 log.Printf("failed reading keyfile, making a new one: %s", err)

104 key = MakeKey()

105 SaveKey(key)

106 }

107 return key

108 }

109

110 func Sign() {

111 key := Key()

112 hash := HashMessage()

113 r, s, err := dsa.Sign(rand.Reader, key, hash)

114 if err != nil {

115 log.Fatalf("failed to sign message: %s", err)

116 }

117 log.Printf("r: %v", r)

118 log.Printf("s: %v", s)

119 }

120

121 func Verify() {

122 r := big.NewInt(0)

123 r.SetString(*rc, 10)

124

125 s := big.NewInt(0)

126 s.SetString(*sc, 10)

127

128 hash := HashMessage()

129 key := Key()

130 if dsa.Verify(&key.PublicKey, hash, r, s) {

131 log.Println("message is valid!")

132 } else {

133 log.Println("message is invalid :(")

134 log.Println("did you use the -r and -s flags to pass the r and s values?")

135 }

136 }

137

138 func main() {

139 flag.Parse()

140 switch *do {

141 case "sign":

142 Sign()

143 case "verify":

144 Verify()

crypto 96

145 default:

146 log.Fatalf("%s is not a valid operation, must be one of sign or verify", *do)

147 }

148 }

Hashes

The hash functions provided by the crypto package are MD5, SHA1, SHA256, and
SHA512. They all operate exactly the same, since they all deal with the hash.Hash

interface. You create a new hash, write to it (hash.Hash implements io.Writer) and
then get the Sum of it. You can fmt.Sprintf this to get your your standard hash-looking
value. Pretty straightforward.

crypto/hash.go

1 package main

2

3 import (

4 "crypto/md5"

5 "crypto/sha1"

6 "crypto/sha256"

7 "crypto/sha512"

8 "flag"

9 "hash"

10 "io"

11 "log"

12)

13

14 var (

15 algorithm = flag.String("algorithm", "md5", "The algorithm to use. Must be one \

16 of {md5,sha1,sha256,sha512}")

17 message = flag.String("message", "Go, The Standard Library", "The message to \

18 hash")

19)

20

21 func GetHash() hash.Hash {

22 switch *algorithm {

23 case "md5":

24 return md5.New()

25 case "sha1":

26 return sha1.New()

27 case "sha256":

crypto 97

28 return sha256.New()

29 case "sha512":

30 return sha512.New()

31 default:

32 log.Fatalf("No hash algorithm %s found", *algorithm)

33 }

34 panic("unreachable")

35 }

36

37 func main() {

38 flag.Parse()

39 hash := GetHash()

40 io.WriteString(hash, *message)

41 log.Printf("%x", hash.Sum(nil))

42 }

HMAC

HMAC isn’t like the other hashes. You give it a hash function (a function that returns
a hash.Hash) and a key in the form of a byte slice. You can then hash a message and
send the result along with a message to somebody else. They can check that the
message was received intact by hashing what they got and comparing that value
with the one we sent.

The Crytpo Stack Overflow site has a good answer as to whether you do en-
crypt-then-mac or mac-then-encrypt: Should we MAC-then-encrypt or encrypt-
then-MAC?26 In my example, I use encrypt-then-mac as it’s generally the better way
to go.

Once you have your HMAC and encrypted data, get both of these pieces to the
other party, and they can perform the same operation to verify the integrity of the
encrypted data, and then decrypt the data.

I’ve seen other suggestions to not actually use the same key for the HMAC (just run
your normal key through a hash function), and to run the HMAC on the encrypted
data concatenated with the IV instead of the raw encrypted data. My gut tells me
these thingsmake sense, but I have no knowledge ormath to back that intuition up.
I haven’t done either in the example.

26http://crypto.stackexchange.com/questions/202/should-we-mac-then-encrypt-or-encrypt-then-mac

http://crypto.stackexchange.com/questions/202/should-we-mac-then-encrypt-or-encrypt-then-mac
http://crypto.stackexchange.com/questions/202/should-we-mac-then-encrypt-or-encrypt-then-mac
http://crypto.stackexchange.com/questions/202/should-we-mac-then-encrypt-or-encrypt-then-mac

crypto 98

crypto/hmac.go

1 package main

2

3 import (

4 "crypto/aes"

5 "crypto/cipher"

6 "crypto/hmac"

7 "crypto/sha256"

8 "flag"

9 "log"

10)

11

12 var (

13 // 32 byte key for AES256, made from crypto/rand

14 key = []byte{0x98, 0x39, 0xea, 0x42, 0xd0, 0x3e, 0x36, 0x6b, 0xe3, 0x7b, 0x\

15 91, 0x6, 0x50, 0x5b, 0x7f, 0xc9, 0x93, 0x56, 0xaa, 0xa8, 0x96, 0x33, 0x7, 0xd7, \

16 0xf7, 0x50, 0xa5, 0x3a, 0xdc, 0x8e, 0xe2, 0x9f}

17 iv = []byte("batman and robin") // 16 bytes

18 message = flag.String("message", "Batman and Robin are coming", "The message to\

19 use")

20)

21

22 func main() {

23 flag.Parse()

24 block, err := aes.NewCipher(key)

25 if err != nil {

26 log.Fatalf("failed making AES block cipher: %s", err)

27 }

28 bytes := []byte(*message)

29 stream := cipher.NewCTR(block, iv)

30 stream.XORKeyStream(bytes, bytes)

31 hash := hmac.New(sha256.New, key)

32 hash.Write(bytes)

33 log.Printf("message: %s", *message)

34 log.Printf("encrypted message (raw bytes): %v", bytes)

35 log.Printf("HMAC: %x", hash.Sum(nil))

36 }

crypto 99

RC4

RC4 is a widely used stream cipher algorithm.When I say widely used, I meanWEP,
WPA, SSL, RDP, BitTorrent, etc. It’s kind of a big deal. It does have problems though.
For more specifics on the algorithm, other uses, and problems, I’d recommend
starting with the Wikipedia page27.

The Go documentation points out that it’s a “poor choice to use for new protocols”.

It’s quite simple to use however. With your key of 10-256 bytes, simply make the
cipher and use the XORKeyStreammethod to encrypt/decrypt data. The documentation
suggests the src and dst shouldn’t overlap, but I tried in the example and it worked
pretty well.

crypto/rc4.go

1 package main

2

3 import (

4 "crypto/rand"

5 "crypto/rc4"

6 "encoding/pem"

7 "flag"

8 "io/ioutil"

9 "log"

10)

11

12 const (

13 EncryptedFile = "rc4.enc"

14 KeyFile = "rc4.key"

15)

16

17 var (

18 do = flag.String("do", "encrypt", "The operation to perform, decrypt or en\

19 crypt (default)")

20 message = flag.String("message", "Wolverines attack at dawn. Red Dawn.", "The m\

21 essage to encrypt")

22 keySize = flag.Int("keysize", 256, "Key size in bytes")

23)

24

25 func MakeKey() []byte {

26 key := make([]byte, *keySize)

27http://en.wikipedia.org/wiki/Rc4#RC4-based_cryptosystems

http://en.wikipedia.org/wiki/Rc4#RC4-based_cryptosystems
http://en.wikipedia.org/wiki/Rc4#RC4-based_cryptosystems

crypto 100

27 n, err := rand.Read(key)

28 if err != nil {

29 log.Fatalf("failed to read new random key: %s", err)

30 }

31 if n < *keySize {

32 log.Fatalf("failed to read entire key, only read %d out of %d", n, *keySize)

33 }

34 return key

35 }

36

37 func SaveKey(filename string, key []byte) {

38 block := &pem.Block{

39 Type: "RC4 KEY",

40 Bytes: key,

41 }

42 err := ioutil.WriteFile(filename, pem.EncodeToMemory(block), 0644)

43 if err != nil {

44 log.Fatalf("failed saving key to %s: %s", filename, err)

45 }

46 }

47

48 func ReadKey(filename string) ([]byte, error) {

49 key, err := ioutil.ReadFile(filename)

50 if err != nil {

51 return key, err

52 }

53 block, _ := pem.Decode(key)

54 return block.Bytes, nil

55 }

56

57 func Key() []byte {

58 key, err := ReadKey(KeyFile)

59 if err != nil {

60 log.Println("failed reading key, making a new one...")

61 key = MakeKey()

62 SaveKey(KeyFile, key)

63 }

64 return key

65 }

66

67 func Cipher() *rc4.Cipher {

68 key := Key()

crypto 101

69 cipher, err := rc4.NewCipher(key)

70 if err != nil {

71 log.Fatalf("failed to make RC4 cipher: %s", err)

72 }

73 return cipher

74 }

75

76 func Encrypt() {

77 cipher := Cipher()

78 text := []byte(*message)

79 cipher.XORKeyStream(text, text)

80 err := ioutil.WriteFile(EncryptedFile, text, 0644)

81 if err != nil {

82 log.Fatalf("failed to write encrypted file: %s", err)

83 }

84 }

85

86 func Decrypt() {

87 cipher := Cipher()

88 bytes, err := ioutil.ReadFile(EncryptedFile)

89 if err != nil {

90 log.Fatalf("failed to read encrypted file. Did you encrypt first? %s", err)

91 }

92 cipher.XORKeyStream(bytes, bytes)

93 log.Printf("decrypted message: %s", bytes)

94 }

95

96 func main() {

97 flag.Parse()

98 switch *do {

99 case "encrypt":

100 Encrypt()

101 case "decrypt":

102 Decrypt()

103 default:

104 log.Fatalf("%s not a valid operation. Must be one of encrypt or decrypt", *do)

105 }

106 }

crypto 102

RSA

RSA is a public key encryption algorithm. It can be used to encryptmessages, where
you can encrypt somethingwithmypublic key, and thenonly I can read themessage
by decrypting it with the private half of the key. It can also be used to signmessages
so that I can use your public key to be certain that the message did in fact come
from you.

As the documentation states, you should be using OAEP instead of PKCS1v15 for
new protocols.

Aswith the crypto/dsa example, you coulduse your existingRSAkey from∼/.ssh/id_-

rsa, just copy it to rsa.key.

crypto/rsa.go

1 package main

2

3 import (

4 "crypto"

5 "crypto/md5"

6 "crypto/rand"

7 "crypto/rsa"

8 "crypto/sha1"

9 "crypto/sha256"

10 "crypto/sha512"

11 "crypto/x509"

12 "encoding/pem"

13 "flag"

14 "hash"

15 "io/ioutil"

16 "log"

17)

18

19 const (

20 KeyFile = "rsa.key"

21 SignatureFile = "rsa.sig"

22 EncryptedFile = "rsa.enc"

23)

24

25 var (

26 keySize = flag.Int("keysize", 2048, "The size of the key in bits")

27 do = flag.String("do", "encrypt", "The operation to perform, decrypt\

28 or encrypt (default)")

crypto 103

29 message = flag.String("message", "The revolution has begun!", "The messag\

30 e to encrypt")

31 hashAlgorithm = flag.String("algorithm", "sha256", "The hash algorithm to use. \

32 Must be one of md5, sha1, sha256 (default), sha512")

33)

34

35 func MakeKey() *rsa.PrivateKey {

36 key, err := rsa.GenerateKey(rand.Reader, *keySize)

37 if err != nil {

38 log.Fatalf("failed to create RSA key: %s", err)

39 }

40 return key

41 }

42

43 func SaveKey(filename string, key *rsa.PrivateKey) {

44 block := &pem.Block{

45 Type: "RSA PRIVATE KEY",

46 Bytes: x509.MarshalPKCS1PrivateKey(key),

47 }

48 err := ioutil.WriteFile(filename, pem.EncodeToMemory(block), 0644)

49 if err != nil {

50 log.Fatalf("failed saving key to %s: %s", filename, err)

51 }

52 }

53

54 func ReadKey(filename string) (*rsa.PrivateKey, error) {

55 bytes, err := ioutil.ReadFile(filename)

56 if err != nil {

57 return nil, err

58 }

59 block, _ := pem.Decode(bytes)

60 key, err := x509.ParsePKCS1PrivateKey(block.Bytes)

61 if err != nil {

62 return nil, err

63 }

64 return key, nil

65 }

66

67 func Key() *rsa.PrivateKey {

68 key, err := ReadKey(KeyFile)

69 if err != nil {

70 log.Printf("failed to read key, creating a new one: %s", err)

crypto 104

71 key = MakeKey()

72 SaveKey(KeyFile, key)

73 }

74 return key

75 }

76

77 func HashAlgorithm() (hash.Hash, crypto.Hash) {

78 switch *hashAlgorithm {

79 case "md5":

80 return md5.New(), crypto.MD5

81 case "sha1":

82 return sha1.New(), crypto.SHA1

83 case "sha256":

84 return sha256.New(), crypto.SHA256

85 case "sha512":

86 return sha512.New(), crypto.SHA512

87 default:

88 log.Fatalf("%s is not a valid hash algorithm. Must be one of md5, sha1, sha256\

89 , sha512")

90 }

91 panic("not reachable")

92 }

93

94 func HashMessage(data []byte) []byte {

95 h, _ := HashAlgorithm()

96 h.Write(data)

97 return h.Sum(nil)

98 }

99

100 func Encrypt() {

101 h, ha := HashAlgorithm()

102 key := Key()

103 encrypted, err := rsa.EncryptOAEP(h, rand.Reader, &key.PublicKey, []byte(*messa\

104 ge), nil)

105 if err != nil {

106 log.Fatalf("encryption failed: %s", err)

107 }

108 signature, err := rsa.SignPKCS1v15(rand.Reader, key, ha, HashMessage(encrypted))

109 if err != nil {

110 log.Fatalf("signing failed; %s", err)

111 }

112 err = ioutil.WriteFile(EncryptedFile, encrypted, 0644)

crypto 105

113 if err != nil {

114 log.Fatalf("failed saving encrypted data: %s", err)

115 }

116 err = ioutil.WriteFile(SignatureFile, signature, 0644)

117 if err != nil {

118 log.Fatalf("failed saving signature data: %s", err)

119 }

120 }

121

122 func Decrypt() {

123 key := Key()

124 h, ha := HashAlgorithm()

125 encrypted, err := ioutil.ReadFile(EncryptedFile)

126 if err != nil {

127 log.Fatalf("failed reading encrypted data: %s", err)

128 }

129

130 signature, err := ioutil.ReadFile(SignatureFile)

131 if err != nil {

132 log.Fatalf("failed saving signature data: %s", err)

133 }

134

135 if err = rsa.VerifyPKCS1v15(&key.PublicKey, ha, HashMessage(encrypted), signatu\

136 re); err != nil {

137 log.Fatalf("message not valid: %s", err)

138 } else {

139 log.Printf("message is valid!")

140 }

141

142 plaintext, err := rsa.DecryptOAEP(h, rand.Reader, key, encrypted, nil)

143 if err != nil {

144 log.Fatalf("failed decrypting: %s", err)

145 }

146 log.Printf("decrypted message: %s", plaintext)

147 }

148

149 func main() {

150 flag.Parse()

151 switch *do {

152 case "encrypt":

153 Encrypt()

154 case "decrypt":

crypto 106

155 Decrypt()

156 default:

157 log.Fatalf("%s is not a valid operation. Must be one of encrypt or decrypt")

158 }

159 }

TLS/x509

The crypto/tls and crypto/x509 packages provide a lot of functionality surrounding
their respective topics. I’m not going to cover everything, but we’ll look at a few
basic things like generating, serializing and parsing certificates, and creating a
simple echo server.

After the server starts, connect with the command it gives and type into the console
and have it echoed back to you. Make sure to pass the -tls1 flag to the openssl s_-

client command.

crypto/tls_x509.go

1 package main

2

3 import (

4 "crypto/rand"

5 "crypto/rsa"

6 "crypto/tls"

7 "crypto/x509"

8 "crypto/x509/pkix"

9 "encoding/pem"

10 "flag"

11 "io"

12 "io/ioutil"

13 "log"

14 "math/big"

15 "net"

16 "time"

17)

18

19 const (

20 CertFile = "tls.crt"

21 KeyFile = "tls.key"

22)

23

crypto 107

24 var (

25 do = flag.String("do", "serve", "The operation to perform, key, cert, or s\

26 erve (default)")

27 keySize = flag.Int("keysize", 2048, "The RSA keysize to use")

28)

29

30 func MakeKey() *rsa.PrivateKey {

31 key, err := rsa.GenerateKey(rand.Reader, *keySize)

32 if err != nil {

33 log.Fatalf("failed to create RSA key: %s", err)

34 }

35 return key

36 }

37

38 func PemEncodeKey(key *rsa.PrivateKey) []byte {

39 block := &pem.Block{

40 Type: "RSA PRIVATE KEY",

41 Bytes: x509.MarshalPKCS1PrivateKey(key),

42 }

43 return pem.EncodeToMemory(block)

44 }

45

46 func SaveKey(filename string, key *rsa.PrivateKey) {

47 err := ioutil.WriteFile(filename, PemEncodeKey(key), 0644)

48 if err != nil {

49 log.Fatalf("failed saving key to %s: %s", filename, err)

50 }

51 }

52

53 func ReadKey(filename string) (*rsa.PrivateKey, error) {

54 bytes, err := ioutil.ReadFile(filename)

55 if err != nil {

56 return nil, err

57 }

58 block, _ := pem.Decode(bytes)

59 key, err := x509.ParsePKCS1PrivateKey(block.Bytes)

60 if err != nil {

61 return nil, err

62 }

63 return key, nil

64 }

65

crypto 108

66 func Key() *rsa.PrivateKey {

67 key, err := ReadKey(KeyFile)

68 if err != nil {

69 log.Printf("failed to read key, creating a new one: %s", err)

70 key = MakeKey()

71 SaveKey(KeyFile, key)

72 }

73 return key

74 }

75

76 func SaveCert(filename string, cert []byte) []byte {

77 block := &pem.Block{

78 Type: "CERTIFICATE",

79 Bytes: cert,

80 }

81 bytes := pem.EncodeToMemory(block)

82 err := ioutil.WriteFile(filename, bytes, 0644)

83 if err != nil {

84 log.Fatalf("failed saving cert to %s: %s", filename, err)

85 }

86 return bytes

87 }

88

89 func MakeCert() tls.Certificate {

90 key := Key()

91 now := time.Now()

92 template := &x509.Certificate{

93 SerialNumber: big.NewInt(1),

94 Subject: pkix.Name{

95 Country: []string{"CA"},

96 Province: []string{"Alberta"},

97 Locality: []string{"Edmonton"},

98 Organization: []string{"The Standard Library"},

99 OrganizationalUnit: []string{"Go, The Standard Library"},

100 CommonName: "localhost",

101 },

102 NotBefore: now,

103 NotAfter: now.Add(24 * 365 * time.Hour), // 1 year

104 KeyUsage: 0,

105 }

106 cert, err := x509.CreateCertificate(rand.Reader, template, template, &key.Publi\

107 cKey, key)

crypto 109

108 if err != nil {

109 log.Fatalf("failed creating certificate: %s", err)

110 }

111 cert = SaveCert(CertFile, cert)

112 c, err := tls.X509KeyPair(cert, PemEncodeKey(key))

113 if err != nil {

114 log.Fatalf("failed to load certificate: %s", err)

115 }

116 return c

117 }

118

119 func Cert() tls.Certificate {

120 cert, err := tls.LoadX509KeyPair(CertFile, KeyFile)

121 if err != nil {

122 log.Printf("failed loading certificate, generating a new one: %s", err)

123 cert = MakeCert()

124 }

125 return cert

126 }

127

128 func Config() *tls.Config {

129 return &tls.Config{

130 Certificates: []tls.Certificate{Cert()},

131 }

132 }

133

134 func Serve() {

135 addr := "localhost:4443"

136 conn, err := net.Listen("tcp", addr)

137 if err != nil {

138 log.Fatalf("failed to listen on %s: %s", addr, err)

139 }

140

141 config := Config()

142 listener := tls.NewListener(conn, config)

143 log.Printf("listening on %s, connect with 'openssl s_client -tls1 -connect %s'"\

144 , addr, addr)

145 for {

146 conn, err := listener.Accept()

147 if err != nil {

148 log.Fatalf("failed to accept: %s", err)

149 }

crypto 110

150 log.Printf("connection accepted from %s", conn.RemoteAddr())

151 go func(c net.Conn) {

152 _, err := io.Copy(c, c)

153 if err != nil {

154 log.Printf("error copying: %s", err)

155 }

156 log.Println("closing connection")

157 c.Close()

158 }(conn)

159 }

160 }

161

162 func main() {

163 flag.Parse()

164 switch *do {

165 case "serve":

166 Serve()

167 case "cert":

168 Cert()

169 case "key":

170 Key()

171 default:

172 log.Fatalf("%s is not a valid operation, must be one of serve, cert, or key", \

173 *do)

174 }

175 }

Random Numbers

You’ve already seen the crypto/rand package used in all the examples in this chapter.

The package only has 3methods and one variable. We’ve been using the rand.Reader

for pretty much everything. It gives you an io.Reader that reads from /dev/urandom or
the CryptGenRandom API depending on the platform.

The rand.Read function delegates to the rand.Reader variable.

rand.Int gives you a random int, in the form of a big.Int, and rand.Prime gives you a
random prime number.28

28Well, as the documentation says, “[it] returns a number, p, of the given size, such that p is prime with high probability.”

crypto 111

crypto/rand.go

1 package main

2

3 import (

4 "crypto/rand"

5 "flag"

6 "log"

7 "math/big"

8)

9

10 var (

11 iterations = flag.Int("iterations", 3, "The number of iterations to run on each\

12 thing")

13 bits = flag.Int("bits", 16, "The number of bits to use when generating a \

14 random prime")

15 max = flag.Int64("max", 256, "The max value to use when generating a ran\

16 dom int")

17)

18

19 func ShowInt() {

20 for i := 0; i < *iterations; i++ {

21 if n, err := rand.Int(rand.Reader, big.NewInt(*max)); err != nil {

22 log.Fatalf("failed to read random int: %s", err)

23 } else {

24 log.Printf("got random int: %s", n)

25 }

26 }

27 }

28

29 func ShowPrime() {

30 for i := 0; i < *iterations; i++ {

31 if p, err := rand.Prime(rand.Reader, *bits); err != nil {

32 log.Fatalf("failed to read random prime: %s", err)

33 } else {

34 log.Printf("got random prime: %s", p)

35 }

36 }

37 }

38

39 func ShowRead() {

40 for i := 0; i < *iterations; i++ {

41 bytes := make([]byte, 16)

crypto 112

42 if n, err := rand.Read(bytes); err != nil {

43 log.Printf("failed reading random bytes: %s", err)

44 } else {

45 log.Printf("read %d bytes: %v", n, bytes[0:n])

46 }

47 }

48 }

49

50 func main() {

51 flag.Parse()

52 ShowInt()

53 ShowPrime()

54 ShowRead()

55 }

Constant Time Functions

The crypto/subtle package gives you a few function to do operations in constant
time. Constant time comparisons are an important part of cryptography, as they
help prevent timing attacks29.

crypto/crypto.go

1 package main

2

3 import (

4 "crypto/subtle"

5 "log"

6)

7

8 func main() {

9 log.Printf("%d", subtle.ConstantTimeByteEq(43, 65))

10 log.Printf("%d", subtle.ConstantTimeCompare([]byte("batman"), []byte("robin ")))

11

12 bytes := make([]byte, 6)

13 subtle.ConstantTimeCopy(1, bytes, []byte("batman"))

14 log.Printf("%s", bytes)

15

16 log.Printf("%d", subtle.ConstantTimeEq(256, 255))

17 log.Printf("%d", subtle.ConstantTimeSelect(1, 2, 3))

29http://en.wikipedia.org/wiki/Timing_attack

http://en.wikipedia.org/wiki/Timing_attack
http://en.wikipedia.org/wiki/Timing_attack

crypto 113

18 log.Printf("%d", subtle.ConstantTimeSelect(0, 2, 3))

19 }

A Timing Attack In Action

This example shows how a timing attack could work. I’m just calling the function,
but that could easily be replaced with making a web request or something else.

If you run the file without any arguments you can see it run through possible
guesses for the password, where one letter takes a bit longer. Each letter that takes
a little bit longer than the others is the best guess for that index. The last letter is
trickier, but once you have the password solved except for that last letter, it’s not
a big deal to figure out that last letter. In the case of the example, it’s downright
obvious.

crypto/timing_attack.go

1 package main

2

3 import (

4 "container/heap"

5 "crypto/subtle"

6 "flag"

7 "log"

8 T "testing"

9 "time"

10)

11

12 var (

13 password = flag.String("password", "secret", "The password to try and guess")

14 characters = flag.String("characters", "abcdefghijklmnopqrstuvwxyz", "The set o\

15 f characters to use")

16 compare = flag.String("compare", "broken", "The comparison function to use. \

17 Must be one of constant or broken (default)")

18)

19

20 type TestRun struct {

21 Time int64

22 Byte byte

23 }

24

25 type Times []TestRun

crypto 114

26

27 func (t Times) Len() int { return len(t) }

28 func (t Times) Less(i, j int) bool { return t[i].Time > t[j].Time }

29 func (t Times) Swap(i, j int) { t[i], t[j] = t[j], t[i] }

30

31 func (t *Times) Push(v interface{}) {

32 *t = append(*t, v.(TestRun))

33 }

34

35 func (t *Times) Pop() interface{} {

36 a := *t

37 n := len(a)

38 v := a[n-1]

39 *t = a[0 : n-1]

40 return v

41 }

42

43 type Compare func(x, y []byte) int

44

45 func BrokenCompare(x, y []byte) int {

46 for i := range x {

47 if x[i] != y[i] {

48 return 0

49 }

50 }

51 return 1

52 }

53

54 func Crack(password []byte, comp Compare) []byte {

55 n := len(password)

56 guess := make([]byte, n)

57 for index := range password {

58 times := make(Times, 0)

59 for _, letter := range []byte(*characters) {

60 guess[index] = letter

61 result := T.Benchmark(func(b *T.B) {

62 for i := 0; i < b.N; i++ {

63 comp(password, guess)

64 }

65 })

66 heap.Push(×, TestRun{

67 Time: result.NsPerOp(),

crypto 115

68 Byte: letter,

69 })

70 log.Printf("took %s (%d ns/op) to try %q for index %d", result.T, result.NsPe\

71 rOp(), letter, index)

72 }

73 tr := heap.Pop(×).(TestRun)

74 guess[index] = tr.Byte

75 log.Printf("best guess is %q for index %d", tr.Byte, index)

76 log.Printf("guess is now: %s", guess)

77 }

78 return guess

79 }

80

81 func ConstantTimeCrack(pw []byte) []byte {

82 return Crack(pw, subtle.ConstantTimeCompare)

83 }

84

85 func BrokenCrack(pw []byte) []byte {

86 return Crack(pw, BrokenCompare)

87 }

88

89 func main() {

90 flag.Parse()

91 var guess []byte

92 pw := []byte(*password)

93 start := time.Now()

94 switch *compare {

95 case "broken":

96 log.Println("using broken compare function")

97 guess = BrokenCrack(pw)

98 case "constant":

99 log.Println("using constant time compare function")

100 guess = ConstantTimeCrack(pw)

101 default:

102 log.Fatalf("%s is not a valid compare function. Must be one of broken or const\

103 ant")

104 }

105 end := time.Now()

106 dur := end.Sub(start)

107 log.Printf("password guess after %s is: %s", dur, guess)

108 }

crypto 116

go.crypto

The go.crypto package contains packages that will most likely be in the standard
library at some point, but just aren’t quite finalized yet

It is ready to use however, andhas a number of great packages, a fewofmy favorites
being pbkdf2, bcrypt, blowfish, twofish, and openpgp.

You can use it with import "code.google.com/p/go.crypto"‘ and the documentation can
be found on GoPkgDoc30.

Final Warning

As I said before, I’m not a cryptographer. Don’t blame me if you copy and paste
something out of here and a script kiddy steals all your stuff. I believewhat I’ve said
to be accurate in the usage of the APIs provided by the Go programming language.
If you know better, please let me know so I can fix the contents of this book.

Writing this chapter has givenme a renewed interest in cryptography, so I think I’ll
dust off my copy of Applied Cryptography31.

30http://go.pkgdoc.org/code.google.com/p/go.crypto
31http://www.amazon.com/Applied-Cryptography-Protocols-Algorithms-ebook/dp/B000SEHPK6

http://go.pkgdoc.org/code.google.com/p/go.crypto
http://www.amazon.com/Applied-Cryptography-Protocols-Algorithms-ebook/dp/B000SEHPK6
http://go.pkgdoc.org/code.google.com/p/go.crypto
http://www.amazon.com/Applied-Cryptography-Protocols-Algorithms-ebook/dp/B000SEHPK6

database
The database package is for handling, well, database things. Right now, the only sub-
package is database/sql which provides a nice interface for dealing with relational
databases.

You can’t do anything with it on its own though, you need a driver. On the go-wiki,
they have a list of solid drivers for the database/sql.32

We’ll be using the sqlite3 driver at https://github.com/mattn/go-sqlite333 so before
running the examples, install it with go get github.com/mattn/go-sqlite3.

Some of the specifics are different between databases and drivers, so the
example might not work with another database or another driver.

Importing the driver is a little different than normal, since you just want to make
sure the driver’s init function is called to register the driver with the database/sql

package. You import it with an underscore, which forces the init function to run,
but doesn’t actually import the package into the namespace.

Open

All your database interactions start with using sql.Open to get a handle to the
database. As per the docs, you can share the handle between goroutines. Also as per
the docs, if the specific driver supports it, the database/sql can manage connections
and connection-state when it comes to transactions.

You may be thinking just open the database once and use that handle throughout
the lifetime of your application. Not so fast, sport! The problem you might run
into (again, depending on the driver) is that the connection is lost or times out, or
something along those lines. The next time you try to do something with it you’ll
get back an error and the handle will effectively be dead. You’ll have to get a new
handle with sql.Open again. You can test this by opening a connection, making a
query, then stopping and starting the database process, and trying another query.
It will probably fail.

32http://code.google.com/p/go-wiki/wiki/SQLDrivers
33https://github.com/mattn/go-sqlite3

http://code.google.com/p/go-wiki/wiki/SQLDrivers
http://code.google.com/p/go-wiki/wiki/SQLDrivers
https://github.com/mattn/go-sqlite3
http://code.google.com/p/go-wiki/wiki/SQLDrivers
https://github.com/mattn/go-sqlite3

database 118

Try using postgres as your database in the example, but add a sleep between
two of the main calls. It will fail, and the connection is effectively dead.

Keep this in mind. You may be better off opening and closing the handle to the
database.

Exec

Exec is for doing things that don’t really return anything, like inserting, deleting,
and doing schema changes. It returns a sql.Result and an error. The sql.Result type
can give you some basic information like RowsAffected and LastInsertId and the error

gives you, well, error information.

Query

Using DB.QueryRow and DB.Query you can pull out a single row, ormultiple rows.With a
single row, you can scandirectly into things (provided therewasno error), butwhen
querying multiple rows you have to iterate over the sql.Rows struct using Rows.Next

to get everything.

Don’t forget to check Rows.Err at the end to see if there were any problems
iterating.

Whenqueryingmultiple rows, you can also get the columnnamesusing Rows.Columns
method.

Note that the exact query syntax depends on the driver and the database. In the
sqlite example, I use ? to denote where an argument would go, while in the postgres
example I use $1 and $2 (and so on) to do the same thing. If you try to use question
marks in the postgres example, you’ll get an interesting error message.

Prepared Statements

Prepared statements allow you to make one statement and re-execute it with
different arguments. For example, you can make an INSERT statement, and iterate
over all the things you need to insert, just passing in the different values. You can
usually realize some performance improvements doing this.

Use DB.Stmt to create a sql.Stmt struct and then the normal QueryRow, Query, and Exec

methods to take care of business.

database 119

Transactions

You can start a transaction with DB.Begin. This gives you a sql.Tx struct, which has
the usual array of methods: Tx.Exec, Tx.QueryRow, Tx.Query, Tx.Prepare. It also has three
others.

Tx.Commit will cause the transaction to be committed. You might get an error back.
Tx.Rollback will cause the transaction to be aborted, causing no changes to the
database. It might also give you an error back.

Stmt takes a sql.Stmt and makes it specific to this transaction, giving you another
sql.Stmt. No big deal.

Example

Now, as the saying goes, let’s go for the gusto.

database/sql.go

1 package main

2

3 import (

4 "database/sql"

5 "flag"

6

7 _ "github.com/mattn/go-sqlite3"

8 // An example if you want to use Postgres

9 // _ "github.com/bmizerany/pq"

10 "log"

11)

12

13 var rollback = flag.Bool("rollback", false, "Rollback in the insert transaction")

14

15 func init() {

16 log.SetFlags(0)

17 log.SetPrefix("» ")

18 }

19

20 type Show struct {

21 Name, Country string

22 }

23

24 func openSqlite() (*sql.DB, error) {

database 120

25 return sql.Open("sqlite3", "go-thestdlib.db")

26 }

27

28 func openPostgres() (*sql.DB, error) {

29 return sql.Open("postgres", "user=bob password=secret host=1.2.3.4 port=5432 db\

30 name=mydb sslmode=verify-full")

31 }

32

33 func openDB() *sql.DB {

34 db, err := openSqlite()

35 // db, err := openPostgres()

36 if err != nil {

37 log.Fatalf("failed opening database: %s", err)

38 }

39 return db

40 }

41

42 func removeTable(db *sql.DB) {

43 _, err := db.Exec("DROP TABLE IF EXISTS shows")

44 if err != nil {

45 log.Fatalf("failed dropping table: %s", err)

46 } else {

47 log.Println("dropped table (if it existed) shows")

48 }

49 }

50

51 func createTable(db *sql.DB) {

52 _, err := db.Exec("CREATE TABLE shows (name TEXT, country TEXT)")

53 if err != nil {

54 log.Fatalf("failed creating table: %s", err)

55 } else {

56 log.Println("created table shows")

57 }

58 }

59

60 func insertRow(db *sql.DB) {

61 // For postgres we use $1 and $2 instead of ?

62 res, err := db.Exec("INSERT INTO shows (name, country) VALUES (?, ?)", "Nöjesma\

63 skinen", "SE")

64 if err != nil {

65 log.Fatalf("failed inserting Swedish show: %s", err)

66 } else {

database 121

67 log.Println("inserted 1 Swedish TV show")

68 }

69

70 if id, err := res.LastInsertId(); err != nil {

71 log.Printf("failed retrieving LastInsertId: %s", err)

72 } else {

73 log.Printf("LastInsertId: %d", id)

74 }

75

76 if n, err := res.RowsAffected(); err != nil {

77 log.Printf("failed retrieving RowsAffected: %s", err)

78 } else {

79 log.Printf("RowsAffected: %d", n)

80 }

81 }

82

83 func insertRows(db *sql.DB) {

84 tx, err := db.Begin()

85 if err != nil {

86 log.Fatalf("failed starting transaction: %s", err)

87 }

88

89 shows := []Show{

90 Show{"Top Gear", "UK"},

91 Show{"Wilfred", "AU"},

92 Show{"Top Gear", "US"},

93 Show{"Arctic Air", "CA"},

94 }

95

96 stmt, err := tx.Prepare("INSERT INTO shows (name, country) VALUES (?, ?)")

97 if err != nil {

98 log.Fatalf("failed preparing statement: %s", err)

99 }

100

101 for _, show := range shows {

102 _, err := stmt.Exec(show.Name, show.Country)

103 if err != nil {

104 log.Fatalf("failed insert show %s (%s): %s", show.Name, show.Country, err)

105 } else {

106 log.Printf("inserted show %#v for country %#v", show.Name, show.Country)

107 }

108 }

database 122

109

110 if *rollback {

111 if err := tx.Rollback(); err != nil {

112 log.Fatalf("failed rolling back transaction: %s", err)

113 } else {

114 log.Println("rolled back transaction, nothing inserted")

115 }

116 } else {

117 if err := tx.Commit(); err != nil {

118 log.Fatalf("failed committing transaction: %s", err)

119 } else {

120 log.Println("committed transaction, 4 new shows added")

121 }

122 }

123 }

124

125 func queryCount(db *sql.DB) {

126 row := db.QueryRow("SELECT COUNT(*) FROM shows")

127 var count int

128 if err := row.Scan(&count); err != nil {

129 log.Fatalf("failed getting count: %s", err)

130 }

131 log.Printf("there are %d TV shows in the database", count)

132 }

133

134 func queryRow(db *sql.DB) {

135 row := db.QueryRow("SELECT * FROM shows WHERE country = ? LIMIT 1", "CA")

136 show := Show{}

137 if err := row.Scan(&show.Name, &show.Country); err != nil {

138 log.Printf("failed scanning single row: %s", err)

139 } else {

140 log.Printf("Found 1 %s TV show: %s", show.Country, show.Name)

141 }

142 }

143

144 func queryRows(db *sql.DB) {

145 name := "Top Gear"

146 rows, err := db.Query("SELECT * FROM shows WHERE name = ?", name)

147 if err != nil {

148 log.Fatalf("failed querying multiple rows: %s", err)

149 }

150 shows := make([]Show, 0)

database 123

151 for rows.Next() {

152 show := Show{}

153 if err := rows.Scan(&show.Name, &show.Country); err != nil {

154 log.Fatalf("failed scanning row: %s", err)

155 }

156 shows = append(shows, show)

157 }

158 log.Printf("found %d shows named %#v", len(shows), name)

159 for _, show := range shows {

160 log.Printf("\t...in country %s", show.Country)

161 }

162 if err := rows.Err(); err != nil {

163 log.Fatalf("got unexpected error during iteration: %s", err)

164 }

165 }

166

167 func deleteRows(db *sql.DB) {

168 _, err := db.Exec("DELETE FROM shows")

169 if err != nil {

170 log.Fatalf("failed deleting rows: %s", err)

171 }

172 }

173

174 func main() {

175 flag.Parse()

176 db := openDB()

177 defer db.Close()

178

179 removeTable(db)

180 createTable(db)

181 insertRow(db)

182 insertRows(db)

183 queryCount(db)

184 queryRow(db)

185 // Sleep here...

186 queryRows(db)

187 deleteRows(db)

188 }

database 124

Output:

1 » dropped table (if it existed) shows

2 » created table shows

3 » inserted 1 Swedish TV show

4 » LastInsertId: 1

5 » RowsAffected: 1

6 » inserted show "Top Gear" for country "UK"

7 » inserted show "Wilfred" for country "AU"

8 » inserted show "Top Gear" for country "US"

9 » inserted show "Arctic Air" for country "CA"

10 » committed transaction, 4 new shows added

11 » there are 5 TV shows in the database

12 » Found 1 CA TV show: Arctic Air

13 » found 2 shows named "Top Gear"

14 » ...in country UK

15 » ...in country US

debug
The debug package is just a high level package holding other more useful subpack-
ages. Inside it you’ll find packages to deal with ELF34, Mach-O files35, and Windows
PE36 files.

On top of those 3 standards, you can of course look at Go files created by the
standard gc compiler.

Finally, you can extract and investigate DWARF37 debugging information.

elf

The debug/elf package lets you open up and play with ELF files. ELF, or the Exe-
cutable and Linkable Format, is “a common standard file format for executables,
object code, shared libraries, and core dumps.”38 The list of Machine constants in the
package gives you an idea of how many actual machine types run this format.

The example is fairly simple, though it does touch most of the file so you can see
what’s there. This isn’t a library that you’ll use daily, but if you do, I’m sure you’ll
know more about the ELF format than I do already. If that’s the case, you’ll know
what things to poke at.

debug/elf.go

1 package main

2

3 import (

4 "debug/elf"

5 "log"

6 "math/rand"

7 "time"

8)

9

10 func init() {

11 rand.Seed(time.Now().UnixNano())

34http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
35http://en.wikipedia.org/wiki/Mach-O
36http://en.wikipedia.org/wiki/Portable_Executable
37http://en.wikipedia.org/wiki/DWARF
38http://en.wikipedia.org/wiki/Executable_and_Linkable_Format

http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://en.wikipedia.org/wiki/Mach-O
http://en.wikipedia.org/wiki/Portable_Executable
http://en.wikipedia.org/wiki/Portable_Executable
http://en.wikipedia.org/wiki/DWARF
http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://en.wikipedia.org/wiki/Mach-O
http://en.wikipedia.org/wiki/Portable_Executable
http://en.wikipedia.org/wiki/DWARF
http://en.wikipedia.org/wiki/Executable_and_Linkable_Format

debug 126

12 }

13

14 func printHeader(fh *elf.FileHeader) {

15 log.Printf("fh.Class: %s", fh.Class)

16 log.Printf("fh.Data: %s", fh.Data)

17 log.Printf("fh.Version: %s", fh.Version)

18 log.Printf("fh.OSABI: %s", fh.OSABI)

19 log.Printf("fh.ABIVersion: %#x", fh.ABIVersion)

20 log.Printf("fh.ByteOrder: %s", fh.ByteOrder)

21 log.Printf("fh.Type: %s", fh.Type)

22 log.Printf("fh.Machine: %s", fh.Machine)

23 }

24

25 func printSection(s *elf.Section) {

26 log.Printf("section [Type: %s, Flags, %s, Addr: %#x, Offset: %#x, Size: %#x, Li\

27 nk: %#x, Info: %#x, Addralign: %#x, Entsize: %#x]", s.Type, s.Flags, s.Addr, s.O\

28 ffset, s.Size, s.Link, s.Info, s.Addralign, s.Entsize)

29 }

30

31 func printProgramHeader(p *elf.Prog) {

32 log.Printf("program header [Type: %s, Flags: %s, Off: %#x, Vaddr: %#x, Filesz: \

33 %#x, Memsz: %#x, Align: %#x]", p.Type, p.Flags, p.Off, p.Vaddr, p.Filesz, p.Mems\

34 z, p.Align)

35 }

36

37 func printSections(s []*elf.Section) {

38 log.Printf("file has %d sections", len(s))

39 for _, section := range s {

40 printSection(section)

41 }

42 }

43

44 func printProgs(p []*elf.Prog) {

45 log.Printf("file has %d program headers", len(p))

46 for _, prog := range p {

47 printProgramHeader(prog)

48 }

49 }

50

51 func printImportedLibraries(libs []string, err error) {

52 if err != nil {

53 log.Printf("failed getting imported libraries: %s", err)

debug 127

54 } else {

55 log.Printf("file imports %d libraries: %s", len(libs), libs)

56 }

57 }

58

59 func printSymbols(symbols []elf.Symbol, err error) {

60 if err != nil {

61 log.Printf("no symbols: %s", err)

62 } else {

63 // Grab about 1% of the symbols

64 symbolSelection := make([]string, 0, 20)

65 for _, symbol := range symbols {

66 if rand.Float32() <= 0.01 {

67 symbolSelection = append(symbolSelection, symbol.Name)

68 }

69 }

70 log.Printf("there are %d symbols, printing %d of them", len(symbols), len(symb\

71 olSelection))

72 log.Printf("a selection of symbols: %v", symbols)

73 }

74 }

75

76 func printImportedSymbols(importedSymbols []elf.ImportedSymbol, err error) {

77 if err != nil {

78 log.Printf("no imported symbols: %s", err)

79 } else {

80 importedSymbolSelection := make([]string, 0, 20)

81 for _, symbol := range importedSymbols {

82 if rand.Float32() <= 0.1 {

83 importedSymbolSelection = append(importedSymbolSelection, symbol.Name+" from\

84 "+symbol.Library+",")

85 }

86 }

87 log.Printf("there are %d imported symbols, printing %d of them", len(importedS\

88 ymbols), len(importedSymbolSelection))

89 log.Printf("a selection of imported symbols: %v", importedSymbolSelection)

90 }

91 }

92

93 func printFileInformation(f *elf.File) {

94 printHeader(&f.FileHeader)

95 printSections(f.Sections)

debug 128

96 printProgs(f.Progs)

97 printImportedLibraries(f.ImportedLibraries())

98 printSymbols(f.Symbols())

99 printImportedSymbols(f.ImportedSymbols())

100 }

101

102 func main() {

103 file, err := elf.Open("bash.elf")

104 if err != nil {

105 log.Fatalf("failed opening file: %s", err)

106 }

107 defer file.Close()

108 printFileInformation(file)

109 }

macho

The debug/macho package is used for dealing with, you guessed it, Mach-O you’d find
on your MacBook.

A limitation I found right away is that it doesn’t load universal binaries39
on its own. I tried to include and use the provided bash binary, but since it’s
universal it gave me errors right away. I had to use a single architecture
binary for this to work. Universal binaries are basically just the separate
binary blobs glued together in a special archive, so it shouldn’t be terribly
hard to read a file and pull out the individual parts.

In this packagewe start to see some discrepancies between the Go API andwhat the
Mach-O file format on the Apple developer website40. For example, in the Go code,
there are only two values for the macho.Type field in the FileHeader: executable and
object. The Apple doc lists 8 different values. Okay that’s fine, not a big deal, it just
means you have to do a bit more work to check the type of your file once it’s loaded
instead of using the macho.Type constants. The file will load just fine, you’ll just have
to make your own constants. No big deal.

Another point, the Flags field in the FileHeader doesn’t have any constants for it. If
you want to check specific flags, you’ll have to poke through loader.h in the macho
source and the Apple docs to see what values are what to figure out what you want

39http://en.wikipedia.org/wiki/Universal_binary
40https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/MachORuntime/Reference/

reference.html

http://en.wikipedia.org/wiki/Universal_binary
https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
http://en.wikipedia.org/wiki/Universal_binary
https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html

debug 129

to check for. I’ve done exactly that in the example (I copy/pasted directly from the
source, and modified slightly for Go).

Like the ELF example, this one isn’t as fully featured as some examples in previous
chapters, because you can do a lot with the information you get. You probablywon’t
need to use this library in your day to day usage of Go either, but it should be enough
to get you investigating the library if you have a specific use case.

debug/macho.go

1 package main

2

3 import (

4 "debug/macho"

5 "log"

6 "math/rand"

7)

8

9 const (

10 MH_NOUNDEFS uint32 = 1 << iota /* the object file has no undefined

11 references */

12 MH_INCRLINK /* the object file is the output of an

13 incremental link against a base file

14 and can't be link edited again */

15 MH_DYLDLINK /* the object file is input for the

16 dynamic linker and can't be staticly

17 link edited again */

18 MH_BINDATLOAD /* the object file's undefined

19 references are bound by the dynamic

20 linker when loaded. */

21 MH_PREBOUND /* the file has its dynamic undefined

22 references prebound. */

23 MH_SPLIT_SEGS /* the file has its read-only and

24 read-write segments split */

25 MH_LAZY_INIT /* the shared library init routine is

26 to be run lazily via catching memory

27 faults to its writeable segments

28 (obsolete) */

29 MH_TWOLEVEL /* the image is using two-level name

30 space bindings */

31 MH_FORCE_FLAT /* the executable is forcing all images

32 to use flat name space bindings */

33 MH_NOMULTIDEFS /* this umbrella guarantees no multiple

34 defintions of symbols in its

debug 130

35 sub-images so the two-level namespace

36 hints can always be used. */

37 MH_NOFIXPREBINDING /* do not have dyld notify the

38 prebinding agent about this

39 executable */

40 MH_PREBINDABLE /* the binary is not prebound but can

41 have its prebinding redone.

42 only used when MH_PREBOUND is not set. */

43 MH_ALLMODSBOUND /* indicates that this binary binds to

44 all two-level namespace modules of

45 its dependent libraries. only used

46 when MH_PREBINDABLE and MH_TWOLEVEL

47 are both set. */

48 MH_SUBSECTIONS_VIA_SYMBOLS /* safe to divide up the sections into

49 sub-sections via symbols for dead

50 code stripping */

51 MH_CANONICAL /* the binary has been canonicalized

52 via the unprebind operation */

53 MH_WEAK_DEFINES /* the final linked image contains

54 external weak symbols */

55 MH_BINDS_TO_WEAK /* the final linked image uses

56 weak symbols */

57 MH_ALLOW_STACK_EXECUTION /* When this bit is set, all stacks

58 in the task will be given stack

59 execution privilege. Only used in

60 MH_EXECUTE filetypes. */

61 MH_ROOT_SAFE /* When this bit is set, the binary

62 declares it is safe for use in

63 processes with uid zero */

64 MH_SETUID_SAFE /* When this bit is set, the binary

65 declares it is safe for use in

66 processes when issetugid() is true */

67 MH_NO_REEXPORTED_DYLIBS /* When this bit is set on a dylib,

68 the static linker does not need to

69 examine dependent dylibs to see

70 if any are re-exported */

71 MH_PIE /* When this bit is set, the OS will

72 load the main executable at a

73 random address. Only used in

74 MH_EXECUTE filetypes. */

75 MH_DEAD_STRIPPABLE_DYLIB /* Only for use on dylibs. When

76 linking against a dylib that

debug 131

77 has this bit set, the static linker

78 will automatically not create a

79 LC_LOAD_DYLIB load command to the

80 dylib if no symbols are being

81 referenced from the dylib. */

82 MH_HAS_TLV_DESCRIPTORS /* Contains a section of type

83 S_THREAD_LOCAL_VARIABLES */

84 MH_NO_HEAP_EXECUTION /* When this bit is set, the OS will

85 run the main executable with

86 a non-executable heap even on

87 platforms (e.g. i386) that don't

88 require it. Only used in MH_EXECUTE

89 filetypes. */

90)

91

92 func printHeader(fh *macho.FileHeader) {

93 log.Printf("fh.Magic: %#x", fh.Magic)

94 log.Printf("fh.CPU: %s", fh.Cpu)

95 log.Printf("fh.SubCPU: %#x", fh.SubCpu)

96

97 log.Printf("fh.Type: %#x", fh.Type)

98 switch fh.Type {

99 case macho.TypeExec:

100 log.Println("file is an executable")

101 case macho.TypeObj:

102 log.Println("file is an object")

103 default:

104 panic("not reachable")

105 }

106

107 log.Printf("fh.Ncmd: %d", fh.Ncmd)

108 log.Printf("fh.Cmdsz: %d", fh.Cmdsz)

109 log.Printf("fh.Flags: %#b", fh.Flags)

110

111 switch fh.Flags & MH_NOUNDEFS {

112 case 0:

113 log.Println("MH_NOUNDEFS flag is not set")

114 default:

115 log.Println("object has no undefined references")

116 }

117

118 switch fh.Flags & MH_INCRLINK {

debug 132

119 case 0:

120 log.Println("MH_INCRLINK flag is not set")

121 default:

122 log.Println("the object file is the output of an incremental link against a ba\

123 se file and can't be link edited again")

124 }

125

126 switch fh.Flags & MH_DYLDLINK {

127 case 0:

128 log.Println("MH_DYLDLINK flag is not set")

129 default:

130 log.Println("the object file is input for the dynamic linker and can't be stat\

131 icly link edited again")

132 }

133

134 switch fh.Flags & MH_SETUID_SAFE {

135 case 0:

136 log.Println("MH_SETUID_SAFE flag is not set")

137 default:

138 log.Println("executable is setuid safe")

139 }

140 }

141

142 func printSection(s *macho.Section) {

143 log.Printf("section %s", s.Name)

144 log.Printf("\tSeg %s", s.Seg)

145 log.Printf("\tAddr %#x", s.Addr)

146 log.Printf("\tSize %d", s.Size)

147 log.Printf("\tOffset %d", s.Offset)

148 log.Printf("\tAlign %d", s.Align)

149 log.Printf("\tReloff %s", s.Seg)

150 log.Printf("\tNreloc %d", s.Nreloc)

151 log.Printf("\tFlags %b", s.Flags)

152 }

153

154 func printSections(sections []*macho.Section) {

155 for _, section := range sections {

156 printSection(section)

157 }

158 }

159

160 func printSymtab(symtab *macho.Symtab) {

debug 133

161 if symtab == nil {

162 log.Println("no symbol table")

163 }

164

165 log.Printf("symtab.Cmd: %s", symtab.Cmd)

166 log.Printf("symtab.Len: %d", symtab.Len)

167 log.Printf("symtab.Symoff: %d", symtab.Symoff)

168 log.Printf("symtab.Nsyms: %d", symtab.Nsyms)

169 log.Printf("symtab.Stroff: %d", symtab.Stroff)

170 log.Printf("symtab.Strsize: %d", symtab.Strsize)

171 log.Printf("symtab has %d symbols", len(symtab.Syms))

172

173 // Grab about 2.5% of the symbols

174 symbols := make([]string, 0, len(symtab.Syms)/40)

175 for _, symbol := range symtab.Syms {

176 if rand.Float32() <= 0.025 {

177 symbols = append(symbols, symbol.Name)

178 }

179 }

180 log.Printf("a selection of the symbols: %v", symbols)

181 }

182

183 func printDysymtab(dysymtab *macho.Dysymtab) {

184 log.Printf("dysymtab.Cmd: %s", dysymtab.Cmd)

185 log.Printf("dysymtab.Len: %d", dysymtab.Len)

186 log.Printf("len(dysymtab.IndirectSyms): %d", len(dysymtab.IndirectSyms))

187 }

188

189 func printImportedLibraries(importedLibraries []string, err error) {

190 if err != nil {

191 log.Printf("failed getting imported libraries: %s", err)

192 return

193 }

194 log.Printf("file imports %d libraries: %s", len(importedLibraries), importedLib\

195 raries)

196 }

197

198 func printFileInformation(f *macho.File) {

199 log.Printf("ByteOrder: %s", f.ByteOrder)

200 printHeader(&f.FileHeader)

201

202 // Also f.FileHeader.Ncmd

debug 134

203 log.Printf("file has %d load commands", len(f.Loads))

204 log.Printf("file has %d sections", len(f.Sections))

205

206 printSections(f.Sections)

207 printSymtab(f.Symtab)

208 printDysymtab(f.Dysymtab)

209 printImportedLibraries(f.ImportedLibraries())

210 }

211

212 func main() {

213 file, err := macho.Open("bash.macho")

214 if err != nil {

215 log.Fatalf("failed opening file: %s", err)

216 }

217 defer file.Close()

218 printFileInformation(file)

219 }

pe

AWindows Portable Executable41 file the format used onWindows. It fills the same
gap as ELF and Mach-O, except it’s for Windows.

I’ve made a simple Hello World application using C# and Mono42 to use with the
example. Who knows what the licensing problems would be distributing cmd.exe.

debug/pe.go

1 package main

2

3 import (

4 "debug/pe"

5 "log"

6)

7

8 func printFileHeader(fh pe.FileHeader) {

9 log.Printf("fh.Machine: %d", fh.Machine)

10 log.Printf("fh.NumberOfSections: %d", fh.NumberOfSections)

11 log.Printf("fh.TimeDateStamp: %d", fh.TimeDateStamp)

12 log.Printf("fh.PointerToSymbolTable: %#x", fh.PointerToSymbolTable)

41http://en.wikipedia.org/wiki/Portable_Executable
42http://www.mono-project.com/

http://en.wikipedia.org/wiki/Portable_Executable
http://www.mono-project.com/
http://en.wikipedia.org/wiki/Portable_Executable
http://www.mono-project.com/

debug 135

13 log.Printf("fh.NumberOfSymbols: %d", fh.NumberOfSymbols)

14 log.Printf("fh.SizeOfOptionalHeader: %d", fh.SizeOfOptionalHeader)

15 log.Printf("fh.Characteristics: %#x", fh.Characteristics)

16 }

17

18 func printSection(s *pe.Section) {

19 log.Printf("section %s", s.Name)

20 log.Printf("\tVirtualSize: %d", s.VirtualSize)

21 log.Printf("\tVirtualAddress: %d", s.VirtualAddress)

22 log.Printf("\tSize: %d", s.Size)

23 log.Printf("\tOffset: %d", s.Offset)

24 log.Printf("\tPointerToRelocations: %d", s.PointerToRelocations)

25 log.Printf("\tPointerToLineNumbers: %d", s.PointerToLineNumbers)

26 log.Printf("\tNumberOfRelocations: %d", s.NumberOfRelocations)

27 log.Printf("\tNumberOfLineNumbers: %d", s.NumberOfLineNumbers)

28 log.Printf("\tCharacteristics: %d", s.Characteristics)

29 }

30

31 func printSections(sections []*pe.Section) {

32 for _, section := range sections {

33 printSection(section)

34 }

35 }

36

37 func printImportedLibraries(importedLibraries []string, err error) {

38 if err != nil {

39 log.Printf("failed getting imported libraries: %s", err)

40 return

41 }

42 log.Printf("file imports %d libraries: %s", len(importedLibraries), importedLib\

43 raries)

44 }

45

46 func printImportedSymbols(importedSymbols []string, err error) {

47 if err != nil {

48 log.Printf("failed getting imported symbols: %s", err)

49 return

50 }

51 log.Printf("file imports %d symbols: %s", len(importedSymbols), importedSymbols)

52 }

53

54 func printFileInformation(f *pe.File) {

debug 136

55 printFileHeader(f.FileHeader)

56 printSections(f.Sections)

57 printImportedLibraries(f.ImportedLibraries())

58 printImportedSymbols(f.ImportedSymbols())

59 }

60

61 func main() {

62 file, err := pe.Open("Hello.exe")

63 if err != nil {

64 log.Fatalf("failed opening file: %s", err)

65 }

66 defer file.Close()

67 printFileInformation(file)

68 }

gosym

This package just wouldn’t be complete without the ability to look at Go specifc
information embedded by the gc family of compilers. The debug/gosym package lets
you do that.

You start off by using one of the previous 3 packages, use the debug/gosym package
to make a LineTable out of the TEXT segment. Then you can make a Table and start
poking around.

I could only get this working on ELF files. I’m working on a MacBook and
could not for the life of me get a Mach-O file to have the required sections.
Not sure if this is a limitation of current implementation or if I’m just doing
something wrong. That being said, when compiling an ELF file, you don’t
need to do anything special for the correct sections to be present. Since I
didn’t have Go setup on a Linux machine, I downloaded the doozerd binary
fromhttps://github.com/ha/doozerd43. It is licensed under theMIT license44.

43https://github.com/ha/doozerd
44https://github.com/ha/doozerd/blob/master/LICENSE

https://github.com/ha/doozerd
https://github.com/ha/doozerd/blob/master/LICENSE
https://github.com/ha/doozerd
https://github.com/ha/doozerd/blob/master/LICENSE

debug 137

debug/gosym.go

1 package main

2

3 import (

4 "debug/elf"

5 "debug/gosym"

6 "log"

7 "math/rand"

8 "time"

9)

10

11 func init() {

12 rand.Seed(time.Now().UnixNano())

13 }

14

15 func printSyms(syms []gosym.Sym) {

16 selection := make([]string, 0, 24)

17 for _, sym := range syms {

18 if sym.Name != "" {

19 if rand.Float32() <= 0.005 {

20 selection = append(selection, sym.Name)

21 }

22 }

23 }

24 log.Printf("there are %d symbols, printing %d of them", len(syms), len(selectio\

25 n))

26 log.Printf("a selection of symbols: %v", selection)

27 }

28

29 func printFuncs(funcs []gosym.Func) {

30 selection := make([]string, 0, 24)

31 for _, f := range funcs {

32 if rand.Float32() <= 0.005 {

33 selection = append(selection, f.Name)

34 }

35 }

36 log.Printf("there are %d functions, printing %d of them", len(funcs), len(selec\

37 tion))

38 log.Printf("a selection of functions: %v", selection)

39 }

40

41 func printFiles(files map[string]*gosym.Obj) {

debug 138

42 selection := make([]string, 0, 24)

43 for name := range files {

44 if rand.Float32() <= 0.02 {

45 selection = append(selection, name)

46 }

47 }

48 log.Printf("there are %d files, printing %d of them", len(files), len(selection\

49))

50 log.Printf("a selection of files: %v", selection)

51 }

52

53 func getSectionData(f *elf.File, name string) []byte {

54 section := f.Section(name)

55 if section == nil {

56 log.Fatalf("failed getting section %s", name)

57 }

58 data, err := section.Data()

59 if err != nil {

60 log.Fatalf("failed getting section %s data: %s", name, err)

61 }

62 return data

63 }

64

65 func processGoInformation(f *elf.File) {

66 gosymtab := getSectionData(f, ".gosymtab")

67 gopclntab := getSectionData(f, ".gopclntab")

68

69 lineTable := gosym.NewLineTable(gopclntab, f.Section(".text").Addr)

70 table, err := gosym.NewTable(gosymtab, lineTable)

71 if err != nil {

72 log.Fatalf("failed making table: %s", err)

73 }

74

75 printSyms(table.Syms)

76 printFuncs(table.Funcs)

77 printFiles(table.Files)

78 }

79

80 func main() {

81 file, err := elf.Open("doozerd")

82 if err != nil {

83 log.Fatalf("failed opening file: %s", err)

debug 139

84 }

85 defer file.Close()

86 processGoInformation(file)

87 }

dwarf

DWARF45 is a standardized file format for debugging information. You’ll find it in
Mach-O, ELF, and even Window Portable Executable files.

I’ve made a simple little program that prints Hello, World and also prints ARGV before
and after sorting.

I’ve compiled it on a Ubuntu 10.04 64-bit box with gcc -Wall -pedantic -O0 -g -ggdb

-arch x86_64 -m64 -march=core2 -arch x86_64 -m64 -march=core2 hello.c -o hello. We’ll
use this in the last example to look at the DWARF data inside the file.

As with the other examples, I’m only scratching the surface. If you’re needing to
play with DWARF info, you probably know more than I, and already have an idea
as to what you’re looking for.

debug/dwarf.go

1 package main

2

3 import (

4 "debug/elf"

5 "log"

6)

7

8 func printDwarfInformation(f *elf.File) {

9 dwarf, err := f.DWARF()

10 if err != nil {

11 log.Printf("failed getting DWARF info: %s", err)

12 return

13 }

14

15 rd := dwarf.Reader()

16 for {

17 entry, err := rd.Next()

18 if err != nil {

19 log.Printf("failed getting next DWARF entry: %s", err)

45http://en.wikipedia.org/wiki/DWARF

http://en.wikipedia.org/wiki/DWARF
http://en.wikipedia.org/wiki/DWARF

debug 140

20 return

21 }

22 if entry == nil {

23 // All done

24 return

25 }

26 log.Printf("got entry with tag: %s, and offset %d", entry.Tag, entry.Offset)

27 for _, field := range entry.Field {

28 log.Printf("\t%s: %v", field.Attr, field.Val)

29 }

30 }

31 }

32

33 func main() {

34 file, err := elf.Open("hello")

35 if err != nil {

36 log.Fatalf("failed opening file: %s", err)

37 }

38 defer file.Close()

39 printDwarfInformation(file)

40 }

encoding
The encodingpackage,much like the debugpackage, is a high level package containing
other packages where all the fun happens.

Can you guess what the encoding package does? I’ll wait.

Encode things of course! Well, it’ll decode too. This is where you get XML and JSON
encoding, CSV encoding, base64, base32, and hex encoding.

Those all make perfect sense, and you’ll probably use those regularly.

You also get ascii8546 to play with Adobe file formats, asn147 and pem48 to deal with
their respective formats, and a binary package to deal with, well, binary data. You
also get the gob package, which is a Go specific format.

We’ll go through them in order.

ascii85

The ascii85 example is quite terse, simply because there’s not a whole lot to cover.
There are two other package methods to Encode and Decode byte slices, but I’ve only
covered the Encoder and Decoder which work on streams by way of io.Writer and
io.Reader. If you have to choose between the twomethods, you should probably opt
for the stream based solution.

Don’t forget to close the ascii85.Encoder when you are done writing to it!

46http://en.wikipedia.org/wiki/Ascii85
47http://en.wikipedia.org/wiki/Asn1
48http://en.wikipedia.org/wiki/Privacy_Enhanced_Mail

http://en.wikipedia.org/wiki/Ascii85
http://en.wikipedia.org/wiki/Asn1
http://en.wikipedia.org/wiki/Privacy_Enhanced_Mail
http://en.wikipedia.org/wiki/Ascii85
http://en.wikipedia.org/wiki/Asn1
http://en.wikipedia.org/wiki/Privacy_Enhanced_Mail

encoding 142

encoding/ascii85.go

1 package main

2

3 import (

4 "bytes"

5 "encoding/ascii85"

6 "io"

7 "io/ioutil"

8 "log"

9 "os"

10)

11

12 func data() []byte {

13 data, err := ioutil.ReadFile("ascii85.go")

14 if err != nil {

15 log.Fatalf("failed reading file: %s", err)

16 }

17 return data

18 }

19

20 func main() {

21 var buffer bytes.Buffer

22 enc := ascii85.NewEncoder(io.MultiWriter(os.Stdout, &buffer))

23 log.Println("encoding to stdout")

24 _, err := enc.Write(data())

25 enc.Close()

26 if err != nil {

27 log.Fatalf("failed encoding: %s", err)

28 }

29 println()

30 dec := ascii85.NewDecoder(&buffer)

31 log.Println("decoding to stdout")

32 io.Copy(os.Stdout, dec)

33 }

asn1

ASN.149 is a standard format for encoding and transmitting data.What kind of data?
Well it doesn’t really matter, but it should have some sort of defined structure. It’s

49http://en.wikipedia.org/wiki/Asn1

http://en.wikipedia.org/wiki/Asn1
http://en.wikipedia.org/wiki/Asn1

encoding 143

more of a notation for describing the structure of the data. Even if you don’t use this
directly, youdo indirectly: RSAkeys are storedusingASN.1 (and thenPEMencoded).
We already saw ASN.1 used in the DSA example, and it’s also used under the hood
in the RSA example (by way of the x509 package).

The format (notation) for the RSA private key can be seen in RFC 344750

RSA Private Key ASN.1 Notation

If you need to use this package, you’ll probably have to refer back to the docs a bit
more carefully, and possibly consult ASN.1 references somewhere online. It can get
interesting. That being said, it’s still a fairly straightforward encoding, so you can
examine the byte slice and see how things are actually encoded.

For example, a 1 gets encoded as []byte{0x2, 0x1, 0x1}. The 0x2 is a tag to say that it’s
an INTEGER, then 0x1 is the length (number of bytes), and finally the value.

fizzbuzz encodes as []byte{0x13, 0x8, 0x66, 0x69, 0x7a, 0x7a, 0x62, 0x75, 0x7a, 0x7a}.
It follows the same structure: tag, length, data. 0x13 (or 19 in decimal) is for a
PrintableString, it’s 0x8 bytes long, and then the actual data follows.

In the IntRange example, you can probably follow along51. I can’t for the life of me
figure out where the first 0x30 comes from, but everything after that makes sense.

50http://tools.ietf.org/html/rfc3447
51http://luca.ntop.org/Teaching/Appunti/asn1.html

http://tools.ietf.org/html/rfc3447
http://luca.ntop.org/Teaching/Appunti/asn1.html
http://tools.ietf.org/html/rfc3447
http://luca.ntop.org/Teaching/Appunti/asn1.html

encoding 144

encoding/asn1.go

1 package main

2

3 import (

4 "encoding/asn1"

5 "log"

6)

7

8 type IntRange struct {

9 High, Low int

10 }

11

12 func encode(i interface{}) {

13 data, err := asn1.Marshal(i)

14 if err != nil {

15 log.Printf("failed asn1 marshalling %#v: %s", i, err)

16 } else {

17 log.Printf("%#v marshals to %#v", i, data)

18 }

19 }

20

21 func main() {

22 encode(1)

23 encode(1.5)

24 encode('a')

25 encode("fizzbuzz")

26 encode(IntRange{10, 5})

27 }

base32

The base32 package handles, of course, base32 based encoding. It actually does a
couple different encodings that are standards. From the docs:

StdEncoding is the standard base32 encoding, as defined in RFC 4648.
HexEncoding is the “Extended Hex Alphabet” defined in RFC 4648. It is
typically used in DNS.

When youmake your Decoder or Encoder, youmust pick one of these encodings to use,
and naturally you have to use the same encoding when performing the opposite
operation.

encoding 145

Run the example with and without the -hex flag to see the difference in the
encodings.

encoding/base32.go

1 package main

2

3 import (

4 "bytes"

5 "encoding/base32"

6 "flag"

7 "io"

8 "io/ioutil"

9 "log"

10 "os"

11)

12

13 var hex = flag.Bool("hex", false, "Use HexEncoding instead of StdEncoding")

14

15 func data() []byte {

16 data, err := ioutil.ReadFile("base32.go")

17 if err != nil {

18 log.Fatalf("failed reading file: %s", err)

19 }

20 return data

21 }

22

23 func encoding() *base32.Encoding {

24 if *hex {

25 return base32.HexEncoding

26 }

27 return base32.StdEncoding

28 }

29

30 func main() {

31 flag.Parse()

32 var buffer bytes.Buffer

33 enc := base32.NewEncoder(encoding(), io.MultiWriter(os.Stdout, &buffer))

34 log.Println("encoding to stdout")

35 _, err := enc.Write(data())

36 enc.Close()

37 if err != nil {

38 log.Fatalf("failed encoding: %s", err)

39 }

encoding 146

40 println()

41 dec := base32.NewDecoder(encoding(), &buffer)

42 log.Println("decoding to stdout")

43 io.Copy(os.Stdout, dec)

44 }

base64

Everybody knows base64! You’ve probably used it somewhere in your life.

The base64 package works exactly like the base32 package. You make an Encoder or
Decoder from one of the two available encodings it has, and go to town.

Your two options for encodings are the StdEncoding which you’re probably most
familiar with. It came from RFC464852 and is seen in MIME and PEM. The other
is URLEncoding which just replaces + and / with - and _ so it can be used safely in
URLs.

encoding/base64.go

1 package main

2

3 import (

4 "bytes"

5 "encoding/base64"

6 "flag"

7 "io"

8 "io/ioutil"

9 "log"

10 "os"

11)

12

13 var url = flag.Bool("url", false, "Use URLEncoding instead of StdEncoding")

14

15 func data() []byte {

16 data, err := ioutil.ReadFile("base64.go")

17 if err != nil {

18 log.Fatalf("failed reading file: %s", err)

19 }

20 return data

21 }

52http://datatracker.ietf.org/doc/rfc4648/

http://datatracker.ietf.org/doc/rfc4648/
http://datatracker.ietf.org/doc/rfc4648/

encoding 147

22

23 func encoding() *base64.Encoding {

24 if *url {

25 return base64.URLEncoding

26 }

27 return base64.StdEncoding

28 }

29

30 func main() {

31 flag.Parse()

32 var buffer bytes.Buffer

33 enc := base64.NewEncoder(encoding(), io.MultiWriter(os.Stdout, &buffer))

34 log.Println("encoding to stdout")

35 _, err := enc.Write(data())

36 enc.Close()

37 if err != nil {

38 log.Fatalf("failed encoding: %s", err)

39 }

40 println()

41 dec := base64.NewDecoder(encoding(), &buffer)

42 log.Println("decoding to stdout")

43 io.Copy(os.Stdout, dec)

44 }

binary

The binary package lets you deal with, holy popsicle sticks, deal with binary data.
The raw functions only let you deal with basic bytes and int type stuff, which is
pretty low level. The Read and Write functions give you a bit higher level wrapper
around those, and let you deal with structs.

First, I show a basic encoding and decoding of math.Pi, then a broken version
(encoding with one endianness53 and decoding with the other), and then we look at
the header for GIF files.

53http://en.wikipedia.org/wiki/Endianness

http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Endianness

encoding 148

encoding/binary.go

1 package main

2

3 import (

4 "bytes"

5 "encoding/binary"

6 "log"

7 "math"

8)

9

10 func simple() {

11 var buffer bytes.Buffer

12 binary.Write(&buffer, binary.LittleEndian, math.Pi)

13 log.Printf("encoded %#v, a %T, to %#v", math.Pi, math.Pi, buffer.Bytes())

14

15 var pi float64

16 binary.Read(&buffer, binary.LittleEndian, &pi)

17 log.Printf("decoded %#v (is it equal?: %v)", pi, pi == math.Pi)

18 }

19

20 func broken() {

21 var buffer bytes.Buffer

22 binary.Write(&buffer, binary.BigEndian, math.Pi)

23 log.Printf("encoded %#v, a %T, to %#v", math.Pi, math.Pi, buffer.Bytes())

24

25 var pi float64

26 binary.Read(&buffer, binary.LittleEndian, &pi)

27 log.Printf("decoded %#v (is it equal?: %v)", pi, pi == math.Pi)

28 }

29

30 func main() {

31 simple()

32 broken()

33 }

GIF

A GIF file is stored using the Little Endian byte ordering, and the GIF header54 looks
like this:

54http://www.onicos.com/staff/iz/formats/gif.html

http://www.onicos.com/staff/iz/formats/gif.html
http://www.onicos.com/staff/iz/formats/gif.html

encoding 149

GIF header structure

For this case, the raw functions are kind of gross honestly. I tried to make an
example with them, but they are kind of unwieldy. Maybe if things were nice 32/64-
bit values, but they aren’t.

We can, however, use a struct and get the binary package to handle all the hard
work. We’ll just do the version and dimensions to keep the code short.

Beforewe begine, let’s look at the GIF file in a hex editor to try andmake some sense
of it:

GIF header in HexFiend

Following the spec, the first three bytes 0x47 0x49 0x46 are the ASCII characters GIF.
The next 3 bytes 0x38 0x39 0x61 are the ASCII characters 89a. In order to decode into
a struct, we must use fixed-sized values inside that struct. We create a Version type
that is a 6 element byte array. We can tack a method onto it to make it a string, and
bam, there’s our version. The binary package will now decode the first 6 bytes into
that array, and we can print it out as GIF89a.

For the dimensions, I used a single uint32 since its size is 4 bytes, and the dimensions
are 4 bytes (2 for width, 2 for height).

The binary package has no problem pulling the next 4 bytes out into the Dimensions

value.

encoding 150

The 0x5e 0x01 and 0xc5 0x00 in the hex editor would probably normally be written
as 0x01 0x5e and 0x00 0xc5 but remember the GIF is little endian. This means when
it gets read out, things get flipped around. The width ends up in the lower half
of the uint32 value, even though it’s first in the file as far as the raw bytes are
concerned. This is because we read it out as part of a 32-bit value we are calling
the dimensions. This is why we have to do the shift in the Heightmethod instead of
the Width method.

encoding/gif.go

1 package main

2

3 import (

4 "encoding/binary"

5 "log"

6 "os"

7)

8

9 type Version [6]byte

10

11 func (v Version) String() string {

12 return string(v[:])

13 }

14

15 type Dimensions uint32

16

17 func (d Dimensions) Width() int {

18 return int(d) & 0xffff

19 }

20

21 func (d Dimensions) Height() int {

22 return int(d>>16) & 0xffff

23 }

24

25 type GifHeader struct {

26 Version Version

27 Dimensions Dimensions

28 }

29

30 func main() {

31 file, err := os.Open("animated.gif")

encoding 151

32 if err != nil {

33 log.Fatalf("failed opening gif: %s", err)

34 }

35 defer file.Close()

36 var header GifHeader

37 binary.Read(file, binary.LittleEndian, &header)

38 log.Printf("decoded a %s with width %dpx and height %dpx", header.Version, head\

39 er.Dimensions.Width(), header.Dimensions.Height())

40 }

csv

Just like base64, you’ve probably seen CSV encoding before. Comma Separated
Values is a nice way to encode tabular data, like say from a relational database.

The whole “comma separated” part is a bit of simplification, since you can
separate the values with whatever works for your data.

The csv.Reader type has a few more configuration options than the csv.Writer type,
which allows you to read a wider variety of files than you can write. Once you have
a reader, before you start reading, you can configure a few things. The important
ones are:

• Separator rune, defaults to comma.
• The comment rune. Lines starting with this rune will be ignored.
• Fields per record. Configures any checking/verification done on the number
of fields in each record. If you don’t change it, it ensures all the records have
the same number of fields as the first row.

The writer only allows you to configure the separator (defaults to a comma) and
whether to use \r\n instead of a plain \n.

The csv package doesn’t have any helpers around structs, so you have to do it
yourself (or write a reflect-based package and share it!)

encoding 152

encoding/csv.go

1 package main

2

3 import (

4 "bytes"

5 "encoding/csv"

6 "io"

7 "log"

8)

9

10 var records = [][]string{

11 {"Show", "Seasons", "Year Began", "Year End"},

12 {"The Simpsons", "24", "1989", ""},

13 {"Star Trek: The Next Generation", "7", "1987", "1994"},

14 {"Seinfeld", "9", "1989", "1998"},

15 {"Go, Diego, Go!", "5", "2005", "2011"},

16 }

17

18 func write(w io.Writer, sep rune, recs [][]string) error {

19 csvWriter := csv.NewWriter(w)

20 csvWriter.Comma = sep

21 return csvWriter.WriteAll(recs)

22 }

23

24 func read(r io.Reader, sep rune) ([][]string, error) {

25 csvReader := csv.NewReader(r)

26 csvReader.Comma = sep

27 return csvReader.ReadAll()

28 }

29

30 func main() {

31 var buffer bytes.Buffer

32 err := write(&buffer, ',', records)

33 if err != nil {

34 log.Fatalf("failed writing: %s", err)

35 }

36 log.Printf("wrote: %s", &buffer)

37 rs, err := read(&buffer, ',')

38 if err != nil {

39 log.Fatalf("failed reading: %s", err)

40 }

41 log.Printf("%v", rs)

encoding 153

42

43 buffer = bytes.Buffer{}

44 err = write(&buffer, '|', records)

45 if err != nil {

46 log.Fatalf("failed writing: %s", err)

47 }

48 log.Printf("wrote: %s", &buffer)

49 rs, err = read(&buffer, ',') // Will fail

50 if err != nil {

51 log.Fatalf("failed reading: %s", err)

52 }

53 panic("not reached")

54 }

gob

The gob package handles, you guessed it, gobs. Gobs are binary blobs that encode Go
types, complete with a description of the type. This means you can send something
across the wire to an application and when it decodes it it will just be the correct
type. If youwant to send a type as an interface implementation, you have to register
the type, so what you’ll frequently see is type definitions, and an init function to
register those types with the gob package.

encoding/gob.go

1 package main

2

3 import (

4 "encoding/gob"

5 "log"

6 "net"

7 "os"

8)

9

10 var sock = "gob.sock"

11

12 type IntRange struct {

13 High, Low int

14 }

15

16 func init() {

17 gob.Register(IntRange{})

encoding 154

18 }

19

20 func handle(c net.Conn) {

21 defer c.Close()

22 decoder := gob.NewDecoder(c)

23 var i interface{}

24 for {

25 err := decoder.Decode(&i)

26 if err != nil {

27 log.Printf("failed decoding value: %s", err)

28 break

29 }

30 log.Printf("decoded: %#v", i)

31 }

32 }

33

34 func server(sig chan bool) {

35 addr, err := net.ResolveUnixAddr("unix", sock)

36 if err != nil {

37 log.Fatalf("failed to resolve addr: %s", err)

38 }

39 defer os.RemoveAll(sock)

40

41 listener, err := net.ListenUnix("unix", addr)

42 if err != nil {

43 log.Fatalf("failed to listen: %s", err)

44 }

45 defer listener.Close()

46

47 sig <- true

48 conn, err := listener.Accept()

49 if err != nil {

50 log.Printf("failed accept: %s", err)

51 }

52 handle(conn)

53 sig <- true

54 }

55

56 func client() {

57 addr, err := net.ResolveUnixAddr("unix", sock)

58 if err != nil {

59 log.Fatalf("failed to resolve addr: %s", err)

encoding 155

60 }

61

62 conn, err := net.DialUnix("unix", nil, addr)

63 if err != nil {

64 log.Fatalf("failed dialing: %s", err)

65 }

66 defer conn.Close()

67

68 encoder := gob.NewEncoder(conn)

69 things := []interface{}{IntRange{5, 10}, 1, 1.5, "hello", 2 + 3i}

70 for _, thing := range things {

71 err = encoder.Encode(&thing)

72 if err != nil {

73 log.Printf("failed encoding: %s", err)

74 } else {

75 log.Printf("encoded: %#v", thing)

76 }

77 }

78 }

79

80 func main() {

81 sig := make(chan bool)

82 go server(sig)

83 <-sig

84 client()

85 <-sig

86 }

hex

The hex package deals with hexadecimal encoded data. It can encode and decode
byte slices, encode and decode to a string, and with a hex.Dumper it can also dump
something to the same format as hexdump -C.

encoding 156

encoding/hex.go

1 package main

2

3 import (

4 "encoding/hex"

5 "io/ioutil"

6 "log"

7 "os"

8)

9

10 func dumpFile() {

11 data, err := ioutil.ReadFile("hex.go")

12 if err != nil {

13 log.Fatalf("failed reading file: %s", err)

14 }

15 dumper := hex.Dumper(os.Stdout)

16 defer dumper.Close()

17 log.Println("dumping hex.go to stdout")

18 dumper.Write(data)

19 }

20

21 func main() {

22 hero := []byte("Batman and Robin")

23 log.Printf("hero: %s", hero)

24 encoded := hex.EncodeToString(hero)

25 log.Printf("encoded: %s", encoded)

26 decoded, _ := hex.DecodeString(encoded)

27 log.Printf("decoded: %s", decoded)

28

29 dumpFile()

30 }

json

Want to play with JSON? Use the json package. You can encode and decode simple
types and structs, encode and decode other types that obey the relevant interfaces,
and do all of that with readers andwriters. You can also pretty print with MarshalIn-

dent.

With the JSON package we also see use of field tags to control how the marshalling
of struct fields happens. You can set the name of the name if you don’t want it to get

encoding 157

marshalled as the uppercase field name. You can also tell it to not marshal the field
at all (even though it’s an exported field) by setting the field name to -. You can also
omit empty fields.

encoding/json.go

1 package main

2

3 import (

4 "bytes"

5 "encoding/json"

6 "fmt"

7 "io"

8 "log"

9 "os"

10)

11

12 type BlogPost struct {

13 // Marshal as "writer" instead of Author

14 Author string `json:"writer,omitempty"`

15 // Will get marshalled as "Title"

16 Title string

17 Body string `json:"body"`

18 // Don't marshal this field at all

19 Published bool `json:"-"`

20 }

21

22 // This would marshal just fine,

23 // but let's write out own marshaller.

24 type Pair struct {

25 X, Y int

26 }

27

28 func (p Pair) MarshalJSON() ([]byte, error) {

29 return []byte(fmt.Sprintf(`"%d|%d"`, p.X, p.Y)), nil

30 }

31

32 func (p *Pair) UnmarshalJSON(data []byte) error {

33 _, err := fmt.Sscanf(string(data), `"%d|%d"`, &p.X, &p.Y)

34 return err

35 }

36

37 func encodeTo(w io.Writer, i interface{}) {

38 encoder := json.NewEncoder(w)

encoding 158

39 if err := encoder.Encode(i); err != nil {

40 log.Fatalf("failed encoding to writer: %s", err)

41 }

42 }

43

44 func encode(i interface{}) []byte {

45 data, err := json.Marshal(i)

46 if err != nil {

47 log.Fatalf("failed encoding: %s", data)

48 }

49 return data

50 }

51

52 func decode(data string) interface{} {

53 var i interface{}

54 err := json.Unmarshal([]byte(data), &i)

55 if err != nil {

56 log.Fatalf("failed decoding: %s", err)

57 }

58 return i

59 }

60

61 func simple() {

62 log.Printf("encoded %d to %s", 1, encode(1))

63 log.Printf("encoded %f to %s", 1.5, encode(1.5))

64 log.Printf("encoded %s to %s", "Hello, World!", encode("Hello, World!"))

65

66 log.Printf("decoded %f from %s", decode("1"), "1")

67 log.Printf("decoded %v from %s", decode(`["foo","bar","baz"]`), `["foo","bar","\

68 baz"]`)

69 }

70

71 func custom() {

72 pair := Pair{5, 10}

73 encoded := encode(pair)

74 log.Printf("encoded %v to %s", pair, encoded)

75

76 var pair2 Pair

77 if err := json.Unmarshal(encoded, &pair2); err != nil {

78 log.Fatalf("failed decoding Pair: %s", err)

79 }

80 log.Printf("decoded %#v from %s", pair2, `"1|2"`)

encoding 159

81 }

82

83 func structExample() {

84 post := BlogPost{

85 // Since Author is empty, it won't be written out

86 Title: "Being Awesome At Go",

87 Body: "Read this book!",

88 Published: true,

89 }

90 encodeTo(os.Stdout, post)

91

92 post = BlogPost{

93 Author: "Daniel Huckstep",

94 Title: "Being Awesome At Go",

95 Body: "Read this book!",

96 Published: true,

97 }

98 encodeTo(os.Stdout, post)

99 }

100

101 func streamDecode() {

102 var buffer bytes.Buffer

103 post := BlogPost{

104 Author: "Daniel Huckstep",

105 Title: "Being Awesome At Go",

106 Body: "Read this book!",

107 Published: true,

108 }

109 encodeTo(&buffer, post)

110

111 decoder := json.NewDecoder(&buffer)

112 var newPost BlogPost

113 if err := decoder.Decode(&newPost); err != nil {

114 log.Printf("decoding failed: %s", err)

115 }

116 log.Printf("decoded %#v", newPost)

117 }

118

119 func pretty() {

120 post := BlogPost{

121 Author: "Daniel Huckstep",

122 Title: "Being Awesome At Go",

encoding 160

123 Body: "Read this book!",

124 Published: true,

125 }

126 data, err := json.MarshalIndent(post, "", "\t")

127 if err != nil {

128 log.Fatalf("failed marshal with indent: %s", err)

129 }

130 log.Printf("pretty print:\n%s", data)

131 }

132

133 func main() {

134 simple()

135 custom()

136 structExample()

137 streamDecode()

138 pretty()

139 }

pem

PEM encoding from Privacy Enhanced Mail55 is handled by the pem package. Where
do you use this you might ask? RSA keys and SSL certificates, that’s where!. Check
your ∼/.ssh directory, and that id_rsa file is in PEM format.

We already saw pem in action in the RSA example using x509.MarshalPKCS1PrivateKey

to get the Bytes for the pem.Block. This is a really simple example.

encoding/pem.go

1 package main

2

3 import (

4 "crypto/rand"

5 "encoding/pem"

6 "log"

7 "os"

8)

9

10 func main() {

11 bytes := make([]byte, 1024)

12 n, err := rand.Read(bytes)

55http://en.wikipedia.org/wiki/Privacy_Enhanced_Mail

http://en.wikipedia.org/wiki/Privacy_Enhanced_Mail
http://en.wikipedia.org/wiki/Privacy_Enhanced_Mail

encoding 161

13 if err != nil {

14 log.Fatalf("failed reading random data: %s", err)

15 }

16 if n != len(bytes) {

17 log.Fatalf("failed reading correct amount of random data. only read %d bytes",\

18 n)

19 }

20 block := pem.Block{

21 Type: "Example Data",

22 Bytes: bytes,

23 }

24 pem.Encode(os.Stdout, &block)

25 }

xml

The xml package handles going to and from XML. It’s similar to the json package in
that you can encode/decode to/from bytes, you can pretty print things, and you can
do things with io.Reader and io.Writer. You can also control the output/parsing with
tags.

Some extra things you can do when you’re dealing with structs include serializing
fields as attributes, include comments.

If you feel like it, you can even decode raw tokens.

In the example, pay attention to the tags in all the structs:

• And XMLName fieldwith a tag to control the element name the struct gets encoded
as.

• xml:"id,attr" on the Id field tomake it an attribute instead of a nested element,
and to change the attribute name to be lowercase instead of Id

• xml:",omitempty" on Subtitle to not include it if it’s empty.
• xml:"Tags>Tag" on Tags to nest each tag as a Tag element inside a main Tags

element.

encoding 162

encoding/xml.go

1 package main

2

3 import (

4 "bytes"

5 "encoding/xml"

6 "io"

7 "log"

8)

9

10 type Name struct {

11 First, Last string `xml:",omitempty"`

12 }

13

14 type Author struct {

15 Id int `xml:"id,attr"`

16 Name Name

17 }

18

19 type BlogPost struct {

20 XMLName xml.Name `xml:"Post"`

21 Id int `xml:"id,attr"`

22 Author Author

23 Title string

24 Subtitle string `xml:",omitempty"`

25 Tags []string `xml:"Tags>Tag"`

26 Body string `xml:"Content"`

27 Notes string `xml:",comment"`

28 }

29

30 func encode(w io.Writer) {

31 post := BlogPost{

32 Id: 10,

33 Author: Author{

34 Id: 5,

35 Name: Name{

36 First: "Alan",

37 Last: "Kay",

38 },

39 },

40 Title: "It's All About Messages",

41 Tags: []string{"object-oriented", "programming", "oop"},

encoding 163

42 Body: "It's not about objects, it's about messages",

43 Notes: "He's the boss",

44 }

45

46 encoder := xml.NewEncoder(w)

47 err := encoder.Encode(post)

48 if err != nil {

49 log.Fatalf("failed encoding to a stream: %s", err)

50 }

51 }

52

53 func decode(r io.Reader) {

54 var post BlogPost

55 decoder := xml.NewDecoder(r)

56 err := decoder.Decode(&post)

57 if err != nil {

58 log.Fatalf("failed decoding from stream: %s", err)

59 }

60 log.Printf("%#v", post)

61 }

62

63 func pretty() {

64 post := BlogPost{

65 Id: 5,

66 Author: Author{

67 Id: 2,

68 Name: Name{

69 First: "Daniel",

70 Last: "Huckstep",

71 },

72 },

73 Title: "Go, The Standard Library",

74 Tags: []string{"golang", "programming", "reference"},

75 Body: "I like programming Go, it's so much fun!",

76 Notes: "Need to write more often...",

77 }

78 data, err := xml.MarshalIndent(post, "", "\t")

79 if err != nil {

80 log.Fatalf("failed pretty printing: %s", err)

81 }

82 log.Printf("pretty print:%s", data)

83 }

encoding 164

84

85 func tokens() {

86 doc := []byte(`<post id="5"><title>Batman</title><author>Daniel Huckstep</autho\

87 r></post>`)

88 decoder := xml.NewDecoder(bytes.NewReader(doc))

89 for {

90 token, err := decoder.Token()

91 switch err {

92 case nil:

93 // Nothing to see here

94 case io.EOF:

95 log.Println("done parsing tokens")

96 return

97 default:

98 log.Fatalf("got error getting token: %s", err)

99 }

100

101 switch tok := token.(type) {

102 case xml.StartElement:

103 log.Printf("found start element: %s", tok.Name)

104 case xml.EndElement:

105 log.Printf("found end element: %s", tok.Name)

106 case xml.CharData:

107 log.Printf("found chardata element: %s", tok)

108 case xml.Comment:

109 log.Printf("found comment element: %s", tok)

110 case xml.ProcInst:

111 log.Printf("found processing instruction: %s", tok.Target)

112 case xml.Directive:

113 log.Printf("found directive: %s", tok)

114 default:

115 panic("not reached")

116 }

117 }

118 }

119

120 func main() {

121 pretty()

122 var buffer bytes.Buffer

123 encode(&buffer)

124 log.Printf("encoded post to %s", buffer.String())

125 decode(&buffer)

encoding 165

126 tokens()

127 }

errors
The errors package let’s you build an error. That’s it. It has one function, and there
is only one source file defining the entire package.

All you do is errors.New("My error message") and you’ve got yourself an error. More
likely, you’ll use the fmt package to build an error, but we’ll look at it in a few
chapters.

expvar
The expvar package is global variables done right.

It has helpers for Float, Int, Map, and String types, which are setup to be atomic.
Things are registered by a string name, the Key, and they map to a corresponding
Var, which is just an interface with a single method: String() string.

This simple interface allows you to use the more raw Publish method to register
more custom handlers in the form of a Func type. These are just functions which
takeno arguments and return an empty interface (which, in implementation should
probably be a string).

Examining the source for the package, you can see it uses this to register the
memstats variable. When you iterate through the variables and you call the String

method on the Var, the function runs to extract the memstats at that moment in
time.

It’s a pretty simple, but very powerful package. You can use it for metric type stuff,
or you can use it as a more traditional global variable system. It can do it all.

expvar/expvar.go

1 package main

2

3 import (

4 "expvar"

5 "flag"

6 "log"

7 "time"

8)

9

10 var (

11 times = flag.Int("times", 1, "times to say hello")

12 name = flag.String("name", "World", "thing to say hello to")

13 helloTimes = expvar.NewInt("hello")

14)

15

16 func init() {

17 expvar.Publish("time", expvar.Func(now))

18 }

19

expvar 168

20 func now() interface{} {

21 return time.Now().Format(time.RFC3339Nano)

22 }

23

24 func hello(times int, name string) {

25 helloTimes.Add(int64(times))

26 for i := 0; i < times; i++ {

27 log.Printf("Hello, %s!", name)

28 }

29 }

30

31 func printVars() {

32 log.Println("expvars:")

33 expvar.Do(func(kv expvar.KeyValue) {

34 switch kv.Key {

35 case "memstats":

36 // Do nothing, this is a big output.

37 default:

38 log.Printf("\t%s -> %s", kv.Key, kv.Value)

39 }

40 })

41 }

42

43 func main() {

44 flag.Parse()

45 printVars()

46 hello(*times, *name)

47 printVars()

48 hello(*times, *name)

49 printVars()

50 }

flag
The flag package is command line flag parsing in one tight package.

The basic usage consists of two APIs: the regular API, and the *Var API. The basic
API returns a pointer to the thing it’s handling, while the *Var API takes a pointer to
an already existing thing that it should handle.

There is also a FlagSet so you can split up groups of flags, say if you’re making
something like the go program. Its first argument is the name of a tool, and each
tool takes a different set of flags. You can organize these with a FlagSet.

You can also introspect the raw flags, see how many there are, and build your own
custom types. It even builds in the -h/-help/--help flags and outputs appropriate
help.

It supports both single and double dashes as the prefix, but if you want to support
a short form (single letter) as well, you have to dance around a little, and it proves
more work than it’s worth.

The Basic Interface

flag/basic.go

1 package main

2

3 import (

4 "flag"

5 "log"

6)

7

8 var (

9 count = flag.Int("count", 1, "number of times to say hello")

10 subject = flag.String("subject", "World", "subject to say hello to")

11)

12

13 func hello(s string, t int) {

14 for i := 0; i < t; i++ {

15 log.Printf("Hello, %s!", s)

16 }

flag 170

17 }

18

19 func main() {

20 flag.Parse()

21

22 hello(*subject, *count)

23

24 log.Printf("flag.NArg(): %d", flag.NArg())

25 log.Printf("flag.Args(): %s", flag.Args())

26 }

The *Var Interface

flag/var.go

1 package main

2

3 import (

4 "flag"

5 "log"

6)

7

8 var (

9 count int

10 subject string

11)

12

13 func init() {

14 flag.IntVar(&count, "count", 1, "number of times to say hello")

15 flag.StringVar(&subject, "subject", "World", "subject to say hello to")

16

17 flag.Parse()

18 }

19

20 func hello(s string, t int) {

21 for i := 0; i < t; i++ {

22 log.Printf("Hello, %s!", s)

23 }

24 }

25

26 func main() {

flag 171

27 hello(subject, count)

28 }

FlagSet

flag/flagset.go

1 package main

2

3 import (

4 "flag"

5 "log"

6 "strings"

7)

8

9 var (

10 cmdFlags = map[string]*flag.FlagSet{

11 "hello": flag.NewFlagSet("hello", flag.ExitOnError),

12 "goodbye": flag.NewFlagSet("goodbye", flag.ExitOnError),

13 }

14 subject = cmdFlags["hello"].String("subject", "World", "the subject to say hell\

15 o to")

16 dots = cmdFlags["goodbye"].Int("dots", 3, "How many dots to print")

17)

18

19 func hello(subject string) {

20 log.Printf("Hello, %s!", subject)

21 }

22

23 func goodbye(dots int) {

24 space := ", "

25 if dots > 0 {

26 space = strings.Repeat(".", dots)

27 }

28 log.Printf("Goodbye%scruel world!", space)

29 }

30

31 func main() {

32 flag.Parse()

33 for _, cmd := range flag.Args() {

34 flags, ok := cmdFlags[cmd]

flag 172

35 if !ok {

36 log.Fatalf("no command %q found", cmd)

37 }

38 flags.Parse(flag.Args()[1:])

39 switch cmd {

40 case "hello":

41 hello(*subject)

42 case "goodbye":

43 goodbye(*dots)

44 }

45 break

46 }

47 }

Custom

You can also implement an interface and parse custom types. Implement the two
methods from flag.Value, and you’re good to go.

flag/custom.go

1 package main

2

3 import (

4 "flag"

5 "fmt"

6 "log"

7)

8

9 type Point struct {

10 X, Y int

11 }

12

13 func (p *Point) String() string {

14 return fmt.Sprintf("%+d@%+d", p.X, p.Y)

15 }

16

17 func (p *Point) Set(s string) error {

18 _, err := fmt.Sscanf(s, "%d@%d", &p.X, &p.Y)

19 return err

20 }

21

flag 173

22 var point Point

23

24 func init() {

25 flag.Var(&point, "point", "point as X@Y")

26 }

27

28 func main() {

29 flag.Parse()

30 log.Printf("%#v", point)

31 }

fmt
The fmt package takes care of formatting things. It will either return a string, or
write to an io.Writer interface. There is also a conveniencemethod to print to stdout.
It can also scan things from a string or a io.Reader into various types.

I’m not going to cover the specific syntax for formatting certain values, since the
regular docs cover that quite well.

Printing

Printing is straightforward. It’s handled by all the functions with print in the name.

It’s in the docs, but a quirk with the Print function is that it only puts a space
between arguments when neither is a string. Println puts spaces between
all arguments.

fmt/printing.go

1 package main

2

3 import (

4 "fmt"

5 "log"

6 "os"

7)

8

9 var (

10 i = 221

11 b = false

12 f = 5.1

13 cn = 3 + 1i

14 s = "batman"

15 big = 13.8 * 100000

16 c = struct {

17 Count int

18 Debug bool

19 Notes string

fmt 175

20 }{8, true, "This is my boomstick!"}

21)

22

23 func stdout() {

24 fmt.Print("Print: ", c, i, b, f, cn, s, "\n")

25 fmt.Println("Println:", c, i, b, f, cn, s)

26 fmt.Printf("Printf: %#b %#x %t %v %T %e\n", i, i, true, c, c, big)

27

28 // Padding strings

29 fmt.Printf("%15s\n", "batman")

30 fmt.Printf("%15s\n", "wat")

31 fmt.Printf("%15s\n", "Bruce Wayne")

32 }

33

34 func writer() {

35 file, err := os.OpenFile("output.txt", os.O_WRONLY|os.O_CREATE, 0644)

36 if err != nil {

37 panic(err)

38 }

39 defer file.Close()

40

41 fmt.Fprint(file, "Fprint: ", c, i, b, f, cn, s)

42 fmt.Fprintln(file, "Fprintln:", c, 1, false, f, cn, s)

43 fmt.Fprintf(file, "Fprintf: %#b %#x %t %v %T %e\n", i, i, b, c, c, big)

44 }

45

46 func str() {

47 out := fmt.Sprintln(c, i, b, f, cn, s)

48 log.Printf("Sprintln: %s", out)

49

50 out = fmt.Sprintf("%#b %#x %t %v %T %e", i, i, b, c, c, big)

51 log.Printf("Sprintf: %s", out)

52 }

53

54 func main() {

55 stdout()

56 writer()

57 str()

58 }

fmt 176

You’ll notice I don’t check the return value of any of these functions. While
they do return the number of bytes written and a possible error, they are
some of the functions that you probably don’t need to bother checking
the return value of. If you’re writing to a file, the network, or something
else important, you probably want to check, but if you’re writing debug
information to stdout you probably don’t need to bother.

The example shows the use of the # flag, which prints things using an alternate for-
mat. In the example, this means printing binary with a leading 0b and hexadecimal
with a leading 0x. The documentation covers the other situations.

Scanning

Scanning is also quite simple. It’s handled by all the functionswith scan in the name.
Don’t forget to pass things as pointers!

To simplify things, I won’t bother with the functions that deal with stdin. Once you
see the othersworking, it’s pretty straight forward to use them. You could even used
the io.Reader based ones and pass in os.Stdin.

fmt/scanning.go

1 package main

2

3 import (

4 "fmt"

5 "log"

6 "os"

7)

8

9 func str() {

10 var a int

11 var b int

12

13 log.Printf("a: %d, b: %d", a, b)

14 fmt.Sscan("20\n20", &a, &b)

15 log.Printf("a: %d, b: %d", a, b)

16

17 fmt.Sscanf("(15, 30)", "(%d, %d)", &a, &b)

18 log.Printf("a: %d, b: %d", a, b)

19

20 // Will not go past the newline, only scans a

21 fmt.Sscanln("10\n10", &a, &b)

fmt 177

22 log.Printf("a: %d, b: %d", a, b)

23 }

24

25 func reader() {

26 file, err := os.Open("input.txt")

27 if err != nil {

28 panic(err)

29 }

30 defer file.Close()

31

32 var scan struct {

33 A, B float32

34 C bool

35 D string

36 }

37

38 log.Printf("scan: %v", scan)

39 fmt.Fscan(file, &scan.A, &scan.B)

40 log.Printf("scan: %v", scan)

41 fmt.Fscan(file, &scan.C, &scan.D)

42 log.Printf("scan: %v", scan)

43

44 fmt.Fscanln(file, &scan.A, &scan.B, &scan.C, &scan.D)

45 log.Printf("scan: %v", scan)

46

47 fmt.Fscanf(file, "The Green %s %f %t %f", &scan.D, &scan.B, &scan.C, &scan.A)

48 log.Printf("scan: %v", scan)

49 }

50

51 func main() {

52 str()

53 reader()

54 }

Printing Custom Types

Well thatwas fun! Actually not really. Formatting and scanning things? Yawn. It’s all
very straightforward and there’s nothingmissing from the standard documentation
for everyday use of the fmt package.

But you don’t have to live in the fmt walls, you can format your data anyway you
want! There are 3 ways the fmt provides to let you customize formatting.

fmt 178

Stringer Interface

The Stringer interface you see a lot in Go. Define a method called String that takes
no arguments and returns a string, and you’re set. You can then pass your type to
fmt and format it as a string with the %s verb and it will just work. Using the %v verb
will also use the Stringer interface.

If the thing implements the Error interface, it takes precedence over the
Stringer interface.

While I won’t repeat it here, make note of the recursion case in the documentation.
You can shoot yourself in the foot, but you have tests right?

fmt/stringer.go

1 package main

2

3 import (

4 "fmt"

5 "log"

6)

7

8 type Tuple struct {

9 Left, Right interface{}

10 }

11

12 func (t Tuple) String() string {

13 log.Printf("in Stringer interface method for Tuple")

14 return fmt.Sprintf("(%#v, %#v)", t.Left, t.Right)

15 }

16

17 type Tuple2 struct {

18 Left, Right interface{}

19 }

20

21 func (t Tuple2) Error() string {

22 log.Printf("in Error interface method for Tuple2")

23 return "lol it's an error!"

24 }

25

26 func (t Tuple2) String() string {

27 log.Printf("in Stringer interface method for Tuple2")

28 return fmt.Sprintf("(%#v, %#v)", t.Left, t.Right)

fmt 179

29 }

30

31 func main() {

32 fmt.Printf("%s\n", Tuple{1, 2})

33 fmt.Printf("%s\n", Tuple2{1.5, 2.1})

34 fmt.Printf("%v\n", Tuple{"Bruce Wayne", "Batman"})

35 }

GoStringer Interface

The GoStringer interface operates like the Stringer interface in that you return a
string, but is used with the %#v verb.

There’s no example for this, since you can take the previous example, change
String() to GoString() and %s to %#v, and you’re basically done.

I’m also a little unsure why you’d want to override the default implementation of
this, but you can. If you find a good example for this, please let me know!

Formatter Interface

For doing seriously custom formats, you can define Format(f State, c rune) on your
type to implement the Formatter interface. You can inspect the State passed in to
check for flags and other things. You can also see what the verb used is with the c

rune argument. In the example, I use the l, r, and P verbs to format my Tuple type.

fmt/formatter.go

1 package main

2

3 import (

4 "fmt"

5)

6

7 type Tuple struct {

8 Left, Right int

9 }

10

11 func (t Tuple) Format(f fmt.State, c rune) {

12 switch c {

13 case 'l':

14 fmt.Fprintf(f, "%v", t.Left)

15 case 'r':

fmt 180

16 fmt.Fprintf(f, "%v", t.Right)

17 case 'P', 's', 'v':

18 fmt.Fprintf(f, "(%#v, %#v)", t.Left, t.Right)

19 }

20 }

21

22 func main() {

23 t := Tuple{1, 2}

24 fmt.Printf("%l\n", t)

25 fmt.Printf("%r\n", t)

26 fmt.Printf("%P\n", t)

27 }

Scanning Custom Types

The Scanner interface lets you implement a custom scanner for your type. You get a
ScanState which is similar to State from the formatting example, and the verb used
as a rune. ScanState has the Token method, which is probably the most immediately
useful method, except for the fact that that ScanState is an io.Reader. This means we
can use other fmt functions like fmt.Fscanf to scan out a few things given a more
specific format. This is how I’ve done things in the example.

fmt/scanner.go

1 package main

2

3 import (

4 "fmt"

5)

6

7 type Tuple struct {

8 Left, Right int

9 }

10

11 func (t Tuple) Format(f fmt.State, c rune) {

12 switch c {

13 case 'P':

14 fmt.Fprintf(f, "(%#v, %#v)", t.Left, t.Right)

15 }

16 }

17

18 func (t *Tuple) Scan(state fmt.ScanState, verb rune) error {

fmt 181

19 switch verb {

20 case 'P':

21 n, err := fmt.Fscanf(state, "(%d, %d)", &t.Left, &t.Right)

22 if err != nil {

23 return err

24 }

25 if n != 2 {

26 return fmt.Errorf("scanned %d things, expected 2", n)

27 }

28 }

29 return nil

30 }

31

32 func main() {

33 var i int

34 var f float32

35 var t Tuple

36

37 fmt.Printf("%d %P %f\n", i, t, f)

38 fmt.Sscanf("5 (1, 2) 2.5", "%d %P %f", &i, &t, &f)

39 fmt.Printf("%d %P %f\n", i, t, f)

40 }

go
The gopackage,while not containing code itself and only other packages, is the place
for all the code related to, well, the Go language itself.

There are packages to deal with lexing and parsing Go code into an AST56, a package
to deal with that AST, and a package to print the code from an AST.

There is also a package to look at Go documentation, which the godoc binary uses
extensively.

The final package is the build package, which you probably don’t have a use for
normally, but the go tool builds your code given a few rules in the package.

Cross Platform Go Code

The go/build package is pretty simple, and most of it comes into play when you’re
trying to control what builds in what environment. Let’s look at a simple example
from the Go source code.

go/path_unix.go

1 // Copyright 2011 The Go Authors. All rights reserved.

2 // Use of this source code is governed by a BSD-style

3 // license that can be found in the LICENSE file.

4

5 // +build darwin freebsd linux netbsd openbsd

6

7 package os

8

9 const (

10 PathSeparator = '/' // OS-specific path separator

11 PathListSeparator = ':' // OS-specific path list separator

12)

13

14 // IsPathSeparator returns true if c is a directory separator character.

15 func IsPathSeparator(c uint8) bool {

16 return PathSeparator == c

17 }

56http://en.wikipedia.org/wiki/Abstract_syntax_tree

http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree

go 183

go/path_windows.go

1 // Copyright 2011 The Go Authors. All rights reserved.

2 // Use of this source code is governed by a BSD-style

3 // license that can be found in the LICENSE file.

4

5 package os

6

7 const (

8 PathSeparator = '\\' // OS-specific path separator

9 PathListSeparator = ';' // OS-specific path list separator

10)

11

12 // IsPathSeparator returns true if c is a directory separator character.

13 func IsPathSeparator(c uint8) bool {

14 // NOTE: Windows accept / as path separator.

15 return c == '\\' || c == '/'

16 }

Each of these files provides the PathSeparator and PathListSeparator constants, aswell
as the IsPathSeparator function in the os package. The key is in the naming.

Once is named path_unix.go and one is named path_windows.go. The former gets built
when you’re compiling for Linux, and the latter when compiling for Windows.

OS Specific

When specifying an operating system for the build package, it has to match some-
thing that runtime.GOOS likes. darwin, freebsd, netbsd, bsd, plan9, windows, linux, and unix

are all valid values. There are others, but you might have to dig a little or run
a simple println(runtime.GOOS) to see what the value should be for your specific
situation.

Some, like bsd, mean that the file would get compiled on FreeBSD and
NetBSD. If you specified freebsd, it would naturally only get compiled on
FreeBSD.

Architecture Specific

You can also specify a CPU architecture: 386, amd64, and arm are the possible values.
Your files would look like myfile_386.go or assembly_amd64.s.

go 184

All Together

You can even combine the two, listing the OS first and architecture second: myfile_-
linux_amd64.go. These conventions give you seriously easyways to have all your code
in one place and yet remain specific to different situations.

Build Constraints in Comments

If the file naming scheme doesn’t feel right to you, or you need even more control,
you can always use a comment. If you add a // +build comment at the top of your
file (preceded by only blank lines or other line comments), you can put constraints
in there. Simply specify all your conditions with spaces for AND and commas for OR.
You can negate things with !, and you can also control whether something is built
when cgo is used (or not) by using the cgo constraint.

Using the example from the documentation, // +build linux,386 darwin,!cgo would
build Linux 386 or OSX without CGO. It would not get included on Windows,
anything BSD, or Linux amd64.

Cool beans right? Check this out…

Custom Build Constraints

You can also use custom tags in your comments to control your build. If you pas
-tags foo to go build, go install, or any other command that accepts go build flags,
the foo build constraint is considered to bemet. This means you can have // +build

foo in your file and it will be built. If you have // +build !foo it will only be built if
you don’t specify the foo flag.

You could model --with-feature flags in your build this way. Say you have 4 files:
png.go, jpg.go, gif.go, and tiff.go. Each file has // +build <ext> at the top, where <ext>

is the file extension you’re dealingwith. Buildingwith -tags png,jpg,gifwould build
with PNG, JPG, and GIF support, but skip TIFF.

Introspecting Packages

You can also use the build package to introspect things in your Go environment. The
Import function gives you back a build.Package, which has a lot of information about
said package, including the files that make it up, what imports it uses, and other fun
things. Check out the full type description57 for all the good things.

Here’s some code to dump the imports and go files a given package uses.
57http://golang.org/pkg/go/build/#Package

http://golang.org/pkg/go/build/#Package
http://golang.org/pkg/go/build/#Package

go 185

go/package_info.go

1 package main

2

3 import (

4 "flag"

5 "go/build"

6 "log"

7)

8

9 var importPath = flag.String("path", "net", "The import path")

10

11 func main() {

12 flag.Parse()

13 pkg, err := build.Import(*importPath, "", 0)

14 if err != nil {

15 log.Fatalf("failed getting package: %s", err)

16 }

17 fmt := "package %s imports %d packages, has %d go files in %s"

18 log.Printf(fmt, pkg.Name, len(pkg.Imports), len(pkg.GoFiles), pkg.Dir)

19 log.Println("imports")

20 for _, imp := range pkg.Imports {

21 log.Printf("\t%s", imp)

22 }

23 log.Println("go files")

24 for _, file := range pkg.GoFiles {

25 log.Printf("\t%s", file)

26 }

27 }

Lexing Go Code

Lexing, or lexical analysis, is the process of turn a big blob of bytes (the file) into
tokens which can be used by something else (usually the parser). The tokens are
things like identifier, string, left curly brace, etc.

It’s pretty straight forward to deal do this, so let’s get right to it.

go 186

go/lexing.go

1 package main

2

3 import (

4 "go/scanner"

5 "go/token"

6 "io/ioutil"

7 "log"

8)

9

10 func main() {

11 src, err := ioutil.ReadFile("lexing.go") // This file!

12 if err != nil {

13 log.Fatalf("failed reading source file: %s", err)

14 }

15

16 fset := token.NewFileSet()

17 file := fset.AddFile("lexing.go", fset.Base(), len(src))

18 var s scanner.Scanner

19 format := "found a %s as %#v on line %d at column %d"

20 s.Init(file, src, nil, 0)

21 for {

22 pos, tok, lit := s.Scan()

23 if tok == token.EOF {

24 break

25 }

26 position := fset.Position(pos)

27 log.Printf(format, tok, lit, position.Line, position.Column)

28 }

29 }

There’s nothing too exciting going on, it’s fairly standard code for setting something
up and then grabbing piece after piece until it’s done. You can see in some cases lit
is an empty string because it wouldn’t hold anything relevant anyway. If the Token

is already identified as being }, we don’t need lit to be the string "}" as well.

It does let you see nice and clearly how semicolons work in Go. Not once in the file
did I use a semicolon, but they are coming out of the lexer. Give the section in the

go 187

spec on semicolonsa a read again to understand the specific rules behind this.
ahttp://golang.org/ref/spec#Semicolons

Parsing Go Code

Parsing is what happens after lexing. Parsing takes the tokens generated by the
lexer and builds an Abstract Syntax Tree.58

The go/parser package part of the picture, since it gives you things from the go/ast

package. You start with the parser package, but you’ll probably spend most of your
time dealing with things from the ast package.

You can parse a file, a directory of files, and even a simple expression. Once you
have an AST you can print it to see what it’s all about, or do other fun things, which
we’ll see later. Printing the tree is a good start, as it gives you a much better idea of
how Go is representing itself.

go/parsing.go

1 package main

2

3 import (

4 "go/ast"

5 "go/parser"

6 "go/token"

7 "log"

8)

9

10 func main() {

11 fset := token.NewFileSet()

12 f, err := parser.ParseFile(fset, "parsing.go", nil, 0)

13 if err != nil {

14 log.Fatalf("failed parsing file: %s", err)

15 }

16 ast.Print(fset, f)

17

18 expr, err := parser.ParseExpr(`foo.Bar(1, "argument", something())`)

19 if err != nil {

20 log.Fatal("failed parsing expression: %s", err)

58http://en.wikipedia.org/wiki/Abstract_syntax_tree

http://golang.org/ref/spec#Semicolons
http://golang.org/ref/spec#Semicolons
http://en.wikipedia.org/wiki/Abstract_syntax_tree

go 188

21 }

22 ast.Print(nil, expr)

23 }

Analyzing Go Code: Cyclomatic Complexity

Once you’ve parsed your code and get bored just printing things, you need to get to
some analyzing.We’re going to calculate the cyclomatic complexity of the functions
and methods defined in a file.

Cyclomatic complexity is basically the number of decisions plus one. A decision is
an if statement, a case in a switch, a condition in a loop (infinite loops don’t count),
and the binary && and || ops. We’ll want to walk down the AST for each function
and method, and sum the number of these things we see.

Since you have a tree, there are many algorithms to walk down a tree and visit all
the nodes. Looking at the ast.File type you get back from the parser package, there
doesn’t seem to be any easily useable structure on it to walk down. Oh wait, there’s
a Walk function in the ast package! Let’s use that, to walk the tree and do something
useful.

In our example, we use two different Visitor implementations. The first walks over
the top level of a file, and finds all the function and method declarations. When it
finds one, it walks the nodewith another Visitor to do the actual calculation. It’s not
terribly long, so give it a good read.

go/analyzing.go

1 package main

2

3 import (

4 "bytes"

5 "flag"

6 "go/ast"

7 "go/parser"

8 "go/printer"

9 "go/token"

10 "log"

11)

12

13 var path = flag.String("path", "analyzing.go", "The path to the file to parse an\

14 d examine")

15

16 func funcDeclToString(decl *ast.FuncDecl) string {

go 189

17 var buffer bytes.Buffer

18 var body *ast.BlockStmt

19 body, decl.Body = decl.Body, nil

20 printer.Fprint(&buffer, token.NewFileSet(), decl)

21 decl.Body = body

22 return buffer.String()

23 }

24

25 type ComplexityCalculator struct {

26 Name string

27 Complexity int

28 }

29

30 func (cc *ComplexityCalculator) Visit(node ast.Node) ast.Visitor {

31 switch exp := node.(type) {

32 case *ast.IfStmt, *ast.CaseClause:

33 cc.Complexity++

34 case *ast.BinaryExpr:

35 switch exp.Op {

36 case token.LAND, token.LOR:

37 cc.Complexity++

38 }

39 case *ast.ForStmt:

40 if exp.Cond != nil {

41 cc.Complexity++

42 }

43 }

44 return cc

45 }

46

47 type FuncVisitor struct {

48 FuncComplexities []*ComplexityCalculator

49 }

50

51 func (mv *FuncVisitor) Visit(node ast.Node) ast.Visitor {

52 switch exp := node.(type) {

53 case *ast.FuncDecl:

54 cc := &ComplexityCalculator{

55 Name: funcDeclToString(exp),

56 Complexity: 1,

57 }

58 mv.FuncComplexities = append(mv.FuncComplexities, cc)

go 190

59 ast.Walk(cc, node)

60 return nil // Return nil to stop this walk.

61 }

62 return mv

63 }

64

65 func main() {

66 flag.Parse()

67 fset := token.NewFileSet()

68 f, err := parser.ParseFile(fset, *path, nil, 0)

69 if err != nil {

70 log.Fatalf("failed parsing file: %s", err)

71 }

72 var mv FuncVisitor

73 ast.Walk(&mv, f)

74 for _, mc := range mv.FuncComplexities {

75 log.Printf("%s has complexity %d", mc.Name, mc.Complexity)

76 }

77 }

Altering Go Code: Mutation Testing

As you walk down a tree, there is nothing stopping you from changing the nodes as
you go, pun intended. This is exactly what go fix does.

We’re going to look at using this to do mutation testing. Mutation testing is really
testing your tests. You go through your source code, and alter things. Things like
changing == to !=. You then run your tests, and something should fail. If nothing
fails, you’re missing some coverage with your tests.

When I set out towrite this chapter, I had this use case inmind. A quick Google lead
me to Kamil Kisiel’s mutatatora library he hacked up in response to a discussion
on the golang-nuts mailing listb. While I’m not using all of his code directly, I am
using it as a base for my example. I really like his use of an immediately executing
function in themeat of the program to change the token in the AST but also ensure
it gets set back.He gaveme the go ahead to use his code asmy inspiration, so thanks
to Kamil.

ahttps://github.com/kisielk/mutator
bhttps://groups.google.com/forum/?fromgroups#!forum/golang-nuts

https://github.com/kisielk/mutator
https://groups.google.com/forum/?fromgroups#!forum/golang-nuts
https://github.com/kisielk/mutator
https://groups.google.com/forum/?fromgroups#!forum/golang-nuts

go 191

So we’re going to build a mutation testing executable. You give it a package and an
operation to switch, it copies everything to a temporary directory, and runs through
all the possiblemutations, running tests for each, to see if the tests fail. All it has to do
to mutate is change the Op field of the ast.BinaryExpr and write out the AST using the
go/printer package. The defer inside the RunMutation function ensures the mutation
gets reversed so as to not taint the run for subsequent mutations.

go/altering.go

1 package main

2

3 import (

4 "bytes"

5 "flag"

6 "fmt"

7 "go/ast"

8 "go/build"

9 "go/parser"

10 "go/printer"

11 "go/token"

12 "io"

13 "io/ioutil"

14 "log"

15 "os"

16 "os/exec"

17 "path/filepath"

18)

19

20 var (

21 code = 0

22 name = flag.String("pkg", "crypto/sha256", "The package to mutate")

23 mutation = flag.String("mutation", "==", "The mutation")

24 list = flag.Bool("list", false, "Print available things to mutate")

25)

26

27 var operators = map[string]token.Token{

28 "==": token.EQL,

29 "!=": token.NEQ,

30 ">": token.GTR,

31 "<": token.LSS,

32 ">=": token.GEQ,

33 "<=": token.LEQ,

34 "&&": token.LAND,

35 "||": token.LOR,

go 192

36 "&": token.AND,

37 "|": token.OR,

38 }

39

40 var mutations = map[token.Token][]token.Token{

41 token.EQL: {token.NEQ},

42 token.NEQ: {token.EQL},

43 token.GTR: {token.LSS, token.GEQ, token.LEQ},

44 token.LSS: {token.GTR, token.LEQ, token.GEQ},

45 token.GEQ: {token.GTR, token.LEQ, token.LSS},

46 token.LEQ: {token.LSS, token.GEQ, token.GTR},

47 token.LOR: {token.LAND},

48 token.LAND: {token.LOR},

49 token.OR: {token.AND},

50 token.AND: {token.OR},

51 }

52

53 type ExpressionFinder struct {

54 Token token.Token

55 Exps []*ast.BinaryExpr

56 }

57

58 func (v *ExpressionFinder) Visit(node ast.Node) ast.Visitor {

59 if exp, ok := node.(*ast.BinaryExpr); ok {

60 if exp.Op == v.Token {

61 v.Exps = append(v.Exps, exp)

62 }

63 }

64 return v

65 }

66

67 func (v ExpressionFinder) Len() int {

68 return len(v.Exps)

69 }

70

71 func copyFile(src, dir string) error {

72 name := filepath.Base(src)

73 srcFile, err := os.Open(src)

74 if err != nil {

75 return err

76 }

77 defer srcFile.Close()

go 193

78

79 dstFile, err := os.Create(filepath.Join(dir, name))

80 if err != nil {

81 return err

82 }

83 defer dstFile.Close()

84

85 _, err = io.Copy(dstFile, srcFile)

86 return err

87 }

88

89 func copyFiles(src, dst string) {

90 contents, err := ioutil.ReadDir(src)

91 if err != nil {

92 log.Fatalf("failed reading directory: %s", err)

93 }

94 for _, f := range contents {

95 if f.Mode()&os.ModeType == 0 {

96 err := copyFile(filepath.Join(src, f.Name()), dst)

97 if err != nil {

98 log.Fatalf("failed copying %s: %s", f.Name(), err)

99 }

100 }

101 }

102 }

103

104 func RunMutation(index int, exp *ast.BinaryExpr, f, t token.Token, src string, f\

105 set *token.FileSet, file *ast.File) error {

106 exp.Op = t

107 defer func() {

108 exp.Op = f

109 }()

110

111 err := printFile(src, fset, file)

112 if err != nil {

113 return err

114 }

115

116 cmd := exec.Command("go", "test")

117 cmd.Dir = filepath.Dir(src)

118 output, err := cmd.CombinedOutput()

119 if err == nil {

go 194

120 code = 1

121 log.Printf("mutation %d failed to break any tests", index)

122 } else if _, ok := err.(*exec.ExitError); ok {

123 lines := bytes.Split(output, []byte("\n"))

124 lastLine := lines[len(lines)-2]

125 if bytes.HasPrefix(lastLine, []byte("FAIL")) {

126 log.Printf("mutation %d failed the tests properly", index)

127 } else {

128 log.Printf("mutation %d created an error: %s", index, lastLine)

129 }

130 } else {

131 return fmt.Errorf("mutation %d failed to run: %s", index, err)

132 }

133 return nil

134 }

135

136 func MutateFile(src string, f, t token.Token) error {

137 fset := token.NewFileSet()

138

139 file, err := parser.ParseFile(fset, src, nil, 0)

140 if err != nil {

141 return fmt.Errorf("failed to parse %s: %s", src, err)

142 }

143

144 ef := ExpressionFinder{Token: f}

145 ast.Walk(&ef, file)

146

147 filename := filepath.Base(src)

148 log.Printf("found %d occurrences of %s in %s", ef.Len(), f, filename)

149 for index, exp := range ef.Exps {

150 err := RunMutation(index, exp, f, t, src, fset, file)

151 if err != nil {

152 return err

153 }

154 }

155

156 // Restore the original file

157 err = printFile(src, fset, file)

158 if err != nil {

159 return err

160 }

161 return nil

go 195

162 }

163

164 func printFile(path string, fset *token.FileSet, node interface{}) error {

165 file, err := os.OpenFile(path, os.O_WRONLY|os.O_TRUNC, 0)

166 if err != nil {

167 return fmt.Errorf("failed to open output file: %s", err)

168 }

169 defer file.Close()

170

171 err = printer.Fprint(file, fset, node)

172 if err != nil {

173 return fmt.Errorf("failed to write AST to file: %s", err)

174 }

175 return nil

176 }

177

178 func main() {

179 flag.Parse()

180

181 if *list {

182 for thing, _ := range operators {

183 fmt.Printf("%s\n", thing)

184 }

185 os.Exit(0)

186 }

187

188 from, ok := operators[*mutation]

189 if !ok {

190 log.Fatalf("%#v is not a valid mutation", *mutation)

191 }

192

193 pkg, err := build.Import(*name, "", 0)

194 if err != nil {

195 log.Fatalf("failed to import package: %s", err)

196 }

197

198 tmp, err := ioutil.TempDir("", "mutation")

199 if err != nil {

200 log.Fatalf("failed to create tmp directory: %s", err)

201 }

202

203 log.Printf("mutating in %s", tmp)

go 196

204

205 copyFiles(pkg.Dir, tmp)

206

207 for _, f := range pkg.GoFiles {

208 src := filepath.Join(tmp, f)

209 for _, to := range mutations[from] {

210 log.Printf("mutating %s to %s in %s", from, to, f)

211 err := MutateFile(src, from, to)

212 if err != nil {

213 log.Fatalf("failed mutating file: %s", err)

214 }

215 }

216 }

217 os.Exit(code)

218 }

If we run this as go run altering.go -pkg "crypto/sha256"we see that it mutates the ==

operator to !=, and the tests break as they should. If we run it as go run altering.go

-pkg "crypto/sha256" -mutation "<" there is a mutation that doesn’t fail the tests.
Specifically, it’s the mutation of < to <= on line 147 of sha256.go: for i := uint(0);

i < 8; i++ {. Looking at the code, we can see it’s not a problem.

go/failed_mutation.txt

1 2013/03/09 22:28:23 mutating in /var/folders/t2/k4y07r396d5006j7y9w9zldc0000gn/T\

2 /mutation867582255

3 2013/03/09 22:28:23 mutating < to > in sha256.go

4 2013/03/09 22:28:23 found 3 occurrences of < in sha256.go

5 2013/03/09 22:28:23 mutation 0 failed the tests, as it should

6 2013/03/09 22:28:24 mutation 1 failed the tests, as it should

7 2013/03/09 22:28:24 mutation 2 failed the tests, as it should

8 2013/03/09 22:28:24 mutating < to <= in sha256.go

9 2013/03/09 22:28:24 found 3 occurrences of < in sha256.go

10 2013/03/09 22:28:24 mutation 0 failed the tests, as it should

11 2013/03/09 22:28:24 mutation 1 failed the tests, as it should

12 2013/03/09 22:28:25 mutation 2 failed to break any tests

13 2013/03/09 22:28:25 mutating < to >= in sha256.go

14 2013/03/09 22:28:25 found 3 occurrences of < in sha256.go

15 2013/03/09 22:28:25 mutation 0 failed the tests, as it should

16 2013/03/09 22:28:25 mutation 1 failed the tests, as it should

17 2013/03/09 22:28:25 mutation 2 failed the tests, as it should

18 2013/03/09 22:28:25 mutating < to > in sha256block.go

19 2013/03/09 22:28:25 found 3 occurrences of < in sha256block.go

go 197

20 2013/03/09 22:28:26 mutation 0 failed the tests, as it should

21 2013/03/09 22:28:26 mutation 1 failed the tests, as it should

22 2013/03/09 22:28:26 mutation 2 failed the tests, as it should

23 2013/03/09 22:28:26 mutating < to <= in sha256block.go

24 2013/03/09 22:28:26 found 3 occurrences of < in sha256block.go

25 2013/03/09 22:28:27 mutation 0 failed the tests, as it should

26 2013/03/09 22:28:27 mutation 1 failed the tests, as it should

27 2013/03/09 22:28:27 mutation 2 failed the tests, as it should

28 2013/03/09 22:28:27 mutating < to >= in sha256block.go

29 2013/03/09 22:28:27 found 3 occurrences of < in sha256block.go

30 2013/03/09 22:28:27 mutation 0 failed the tests, as it should

31 2013/03/09 22:28:28 mutation 1 failed the tests, as it should

32 2013/03/09 22:28:28 mutation 2 failed the tests, as it should

33 exit status 1

This example has a small subset of the possible mutations you can do. The simple
ones listed in the example include just change a basic binary operator. More
advanced ones include changing constants in the code: 0 to a 1, changing strings
to be nonsense, or just cut them in half. I’m sure your imagination can figure out a
few more diabolical mutations.

hash
The hash package contains the interface for all things hash related. The main
package provides the interface, including separate interfaces for 32 and 64-bit. The
4 sub-packages provide implementations for 3 different checksums (adler 32-bit and
crc in both 32 and 64-bit), and the fnv non-cryptographic hash.

We’ve already seen the cryptographic hashes and other things implementing the
hash interface in the crypto package: sha1, sha256, sha512, md5, and hmac. These operate
the same way as the things in the hash package, because they follow the same
interface.

While the algorithms in the hash package all follow the hash.Hash interface, they
sometimes have different ways of building that interface, so we’ll look at them
separately.

adler32

The adler32 package implements the Adler-32 checksum as defined in RFC-195059.
It provides the New() function to build a hash.Hash, and also a convenience Check-

sum([]byte]) function if all you have is a simple byte slice.

hash/adler32.go

1 package main

2

3 import (

4 "flag"

5 "hash/adler32"

6 "io"

7 "io/ioutil"

8 "log"

9 "os"

10)

11

12 var (

13 filename = flag.String("filename", "adler32.go", "The file to checksum")

14 streaming = flag.Bool("streaming", false, "Whether to stream the file instead o\

59http://www.ietf.org/rfc/rfc1950.txt

http://www.ietf.org/rfc/rfc1950.txt
http://www.ietf.org/rfc/rfc1950.txt

hash 199

15 f reading it all into memory")

16)

17

18 func stream(name string) uint32 {

19 h := adler32.New()

20 file, err := os.Open(name)

21 if err != nil {

22 log.Fatalf("failed opening %s: %s", name, err)

23 }

24 defer file.Close()

25 io.Copy(h, file)

26 return h.Sum32()

27 }

28

29 func simple(name string) uint32 {

30 data, err := ioutil.ReadFile(name)

31 if err != nil {

32 log.Fatalf("failed reading %s: %s", name, err)

33 }

34 return adler32.Checksum(data)

35 }

36

37 func main() {

38 flag.Parse()

39 var checksum uint32

40

41 if *streaming {

42 checksum = stream(*filename)

43 } else {

44 checksum = simple(*filename)

45 }

46

47 log.Printf("the file %s has checksum %#x", *filename, checksum)

48 }

crc32

The crc32 package implements 32-bit CRC. It supplies 3 different polynomials60 for
common use cases: the IEEE polynomial (most common) which is used in ethernet,

60http://en.wikipedia.org/wiki/Cyclic_redundancy_check#Designing_CRC_polynomials

http://en.wikipedia.org/wiki/Cyclic_redundancy_check#Designing_CRC_polynomials
http://en.wikipedia.org/wiki/Cyclic_redundancy_check#Designing_CRC_polynomials

hash 200

gzip, etc, Castagnoli’s which is used in iSCSI, and Koopman’s polynomial. Being so
common, there are convenience helpers for IEEE checksums.

hash/crc32.go

1 package main

2

3 import (

4 "flag"

5 "fmt"

6 "hash/crc32"

7 "io"

8 "io/ioutil"

9 "log"

10 "os"

11 "strings"

12)

13

14 type Polynomial struct {

15 U uint32

16 }

17

18 var polynomials = map[string]uint32{

19 "ieee": crc32.IEEE,

20 "castagnoli": crc32.Castagnoli,

21 "koopman": crc32.Koopman,

22 }

23

24 func (p *Polynomial) Set(s string) error {

25 switch s {

26 case "ieee", "castagnoli", "koopman":

27 p.U = polynomials[s]

28 default:

29 var values []string

30 for name, _ := range polynomials {

31 values = append(values, name)

32 }

33 return fmt.Errorf("valid values are %s", strings.Join(values, ", "))

34 }

35 return nil

36 }

37

38 func (p *Polynomial) String() string {

39 for name, value := range polynomials {

hash 201

40 if value == p.U {

41 return fmt.Sprintf("%s", name)

42 }

43 }

44 panic("not reached")

45 }

46

47 func (p *Polynomial) Table() *crc32.Table {

48 return crc32.MakeTable(p.U)

49 }

50

51 var (

52 filename = flag.String("filename", "crc32.go", "The file to checksum")

53 streaming = flag.Bool("streaming", false, "Whether to stream the file instead \

54 of reading it all into memory")

55 polynomial = &Polynomial{crc32.IEEE}

56)

57

58 func init() {

59 flag.Var(polynomial, "polynomial", "The polynomial to use")

60 flag.Parse()

61 }

62

63 func stream(name string) uint32 {

64 h := crc32.New(polynomial.Table())

65 file, err := os.Open(name)

66 if err != nil {

67 log.Fatalf("failed opening %s: %s", name, err)

68 }

69 defer file.Close()

70 io.Copy(h, file)

71 return h.Sum32()

72 }

73

74 func simple(name string) uint32 {

75 data, err := ioutil.ReadFile(name)

76 if err != nil {

77 log.Fatalf("failed reading %s: %s", name, err)

78 }

79 return crc32.Checksum(data, polynomial.Table())

80 }

81

hash 202

82 func main() {

83 var checksum uint32

84

85 if *streaming {

86 checksum = stream(*filename)

87 } else {

88 checksum = simple(*filename)

89 }

90

91 log.Printf("the file %s has checksum %#x", *filename, checksum)

92 }

crc64

As the named suggests, crc64 implements the 64-bit CRC. Like crc32 it provides
some predefined polynomials, but neither of the two provided are exciting enough
to warrant convenience helper functions. You have to build and use your own
crc64.Table as I did in the previous example using the polynomial constants pro-
vided (or your own value if you knowwhat you’re doing). Luckily there’s a function
to make the table from a given polynomial.

The example is identical to the crc32 example, except for the polynomial map, and
uint32 becomes uint64.

hash/crc64.go

1 package main

2

3 import (

4 "flag"

5 "fmt"

6 "hash/crc64"

7 "io"

8 "io/ioutil"

9 "log"

10 "os"

11 "strings"

12)

13

14 type Polynomial struct {

15 U uint64

16 }

hash 203

17

18 var polynomials = map[string]uint64{

19 "iso": crc64.ISO,

20 "ecma": crc64.ECMA,

21 }

22

23 func (p *Polynomial) Set(s string) error {

24 switch s {

25 case "iso", "ecma":

26 p.U = polynomials[s]

27 default:

28 var values []string

29 for name, _ := range polynomials {

30 values = append(values, name)

31 }

32 return fmt.Errorf("valid values are %s", strings.Join(values, ", "))

33 }

34 return nil

35 }

36

37 func (p *Polynomial) String() string {

38 for name, value := range polynomials {

39 if value == p.U {

40 return fmt.Sprintf("%s", name)

41 }

42 }

43 panic("not reached")

44 }

45

46 func (p *Polynomial) Table() *crc64.Table {

47 return crc64.MakeTable(p.U)

48 }

49

50 var (

51 filename = flag.String("filename", "crc64.go", "The file to checksum")

52 streaming = flag.Bool("streaming", false, "Whether to stream the file instead \

53 of reading it all into memory")

54 polynomial = &Polynomial{crc64.ISO}

55)

56

57 func init() {

58 flag.Var(polynomial, "polynomial", "The polynomial to use")

hash 204

59 flag.Parse()

60 }

61

62 func stream(name string) uint64 {

63 h := crc64.New(polynomial.Table())

64 file, err := os.Open(name)

65 if err != nil {

66 log.Fatalf("failed opening %s: %s", name, err)

67 }

68 defer file.Close()

69 io.Copy(h, file)

70 return h.Sum64()

71 }

72

73 func simple(name string) uint64 {

74 data, err := ioutil.ReadFile(name)

75 if err != nil {

76 log.Fatalf("failed reading %s: %s", name, err)

77 }

78 return crc64.Checksum(data, polynomial.Table())

79 }

80

81 func main() {

82 var checksum uint64

83

84 if *streaming {

85 checksum = stream(*filename)

86 } else {

87 checksum = simple(*filename)

88 }

89

90 log.Printf("the file %s has checksum %#x", *filename, checksum)

91 }

fnv

The fnv package implements the fnv hash61 and has no special convenience helper
functions. It simply provides a 32-bit and 64-bit hash.Hash implementation. This is a
hash algorithm as opposed to a checksum, so the Checksum([]byte) helpers functions
we saw before don’t make sense anyway.

61http://isthe.com/chongo/tech/comp/fnv/

http://isthe.com/chongo/tech/comp/fnv/
http://isthe.com/chongo/tech/comp/fnv/

hash 205

hash/fnv.go

1 package main

2

3 import (

4 "flag"

5 "hash/fnv"

6 "io"

7 "log"

8 "os"

9)

10

11 var (

12 filename = flag.String("filename", "fnv.go", "The file to checksum")

13 _64bit = flag.Bool("64", false, "Use the 64-bit interface")

14)

15

16 func runHash(name string, w io.Writer) {

17 file, err := os.Open(name)

18 if err != nil {

19 log.Fatalf("failed opening %s: %s", name, err)

20 }

21 defer file.Close()

22 io.Copy(w, file)

23 }

24

25 func hash64(name string) uint64 {

26 h := fnv.New64()

27 runHash(name, h)

28 return h.Sum64()

29 }

30

31 func hash32(name string) uint32 {

32 h := fnv.New32()

33 runHash(name, h)

34 return h.Sum32()

35 }

36

37 func main() {

38 flag.Parse()

39 if *_64bit {

40 h := hash64(*filename)

41 log.Printf("the file %s has hash %#x", *filename, h)

hash 206

42 } else {

43 h := hash32(*filename)

44 log.Printf("the file %s has hash %#x", *filename, h)

45 }

46 }

html
The html package on its own isn’t all that exciting. Two functions! Woohoo! Well,
they might not be exciting, but they are useful.

The real meat of the html package is the html/template package inside it. While that
package itself is really just an extension of the text/template package, it does some
fancy things to make your life easier, and keep your app safer, when rendering
HTML templates.

We’ll start off with a single example of the EscapeString and UnescapeString functions
from the base html package, but we’ll spend most of our time building templates.

Escape Artist

The two escaping functions are very easy to use, and very self explanatory.

EscapeString takes a string and escapes it for use in HTML. It only deals with 5
characters though: angle brackets, quotes (single and double), and the ampersand.
Really, these characters are the ones that will cause the most havoc.

UnescapeString takes an escaped string and reverses the process. It does a bit more
though. It can handle HTML entities, like converting á to á. For this reason, the
official package documentation provides the following caveat:

UnescapeString(EscapeString(s)) == s always holds, but the converse isn’t al-
ways true.

Let’s see some code.

html/escaping.go

1 package main

2

3 import (

4 "html"

5 "log"

6)

7

8 func init() {

html 208

9 log.SetFlags(0)

10 log.SetPrefix("")

11 }

12

13 func main() {

14 raw := []string{

15 "hello",

16 "<i>hello</i>",

17 "alert('hello');",

18 "foo & bar",

19 `"how are you?" he asked.`,

20 }

21

22 log.Println("html.EscapeString")

23 for _, s := range raw {

24 log.Printf("\t%s -> %s", s, html.EscapeString(s))

25 }

26

27 log.Println("html.UnescapeString(html.EscapeString)")

28 for _, s := range raw {

29 flipped := html.UnescapeString(html.EscapeString(s))

30 log.Printf("\t%s -> %s", s, flipped)

31 }

32

33 escaped := []string{

34 "á",

35 "»",

36 "·",

37 "<i>hello</i>",

38 }

39

40 log.Println("html.UnescapeString")

41 for _, s := range escaped {

42 log.Printf("\t%s -> %s", s, html.UnescapeString(s))

43 }

44 }

html 209

Output:

1 html.EscapeString

2 hello -> hello

3 <i>hello</i> -> <i>hello</i>

4 alert('hello'); -> alert('hello');

5 foo & bar -> foo & bar

6 "how are you?" he asked. -> "how are you?" he asked.

7 html.UnescapeString(html.EscapeString)

8 hello -> hello

9 <i>hello</i> -> <i>hello</i>

10 alert('hello'); -> alert('hello');

11 foo & bar -> foo & bar

12 "how are you?" he asked. -> "how are you?" he asked.

13 html.UnescapeString

14 á -> á

15 » -> »

16 · -> ·

17 <i>hello</i> -> <i>hello</i>

Templating

When you first look at the package documentation for the html/template package,
you might think, “cool story bro, but how do I actually use this?”

I know I did initially, but I just didn’t read hard enough.

Since the html/template package uses the same idea as the text/template package, you
should go read the documentation for that package to get an idea of the basic usage.
The html/template docs include things specific to it, like how things are escaped,
extra/special functions or helpers, and stuff like that.

Naturally, in our examples, we’ll only look at things specific to the html/template

package, and leave the basics for the text/template chapter.

Code time!

html 210

html/templating.go

1 package main

2

3 import (

4 T "html/template"

5 "os"

6)

7

8 const (

9 template = `<html>

10 <head>

11 <link href="http://fonts.googleapis.com/css?family={{.FontName}}" rel="style\

12 sheet" type="text/css">

13 </head>

14 <body>

15 {{.Script}}

16 {{.Safe}}

17 </body>

18 </html>

19 `

20)

21

22 func main() {

23 context := struct {

24 FontName string

25 Script string

26 Safe T.HTML

27 }{

28 "Pathway Gothic One",

29 "<script>alert('i haz ur cookies');</script>",

30 T.HTML("<script>console.log('generated by application')</script>"),

31 }

32

33 t := T.Must(T.New("thestdlib").Parse(template))

34 t.Execute(os.Stdout, context)

35 }

html 211

Output:

1 <html>

2 <head>

3 <link href="http://fonts.googleapis.com/css?family=Pathway%20Gothic%20One" r\

4 el="stylesheet" type="text/css">

5 </head>

6 <body>

7 <script>alert('i haz ur cookies');</script>

8 <script>console.log('generated by application')</script>

9 </body>

10 </html>

There are a few important parts in this example. First is how I use the FontName

attribute as a query value in a link tag. The html/template package knows the context,
and properly escapes the string in a way suitable for the context. A more complete
list of how things are escaped in various context is given in the package docs62 so I
won’t repeat them here. The point is, the package is pretty smart about how things
should be escaped, and they are escaped by default.

If you don’t want things escaped, we can use the template.HTML type (which really
just points at string). If you use something of this type in the appropriate context,
it won’t be escaped. There are similar types for JavaScript and CSS (template.JS and
templates.CSS) and HTML attributes (template.HTMLAttr).

We can see the difference between using a regular string to put a JavaScript tag to
the page vs using the template.HTML type. The former gets escaped, while the latter
goes in untouched.

That’s all there is to this templating system. It works just like text/template (which
we’ll see more completely later), but does some smart escaping.

If you’re generating HTML, you should be using this package.
62http://golang.org/pkg/html/template/

http://golang.org/pkg/html/template/
http://golang.org/pkg/html/template/

image
The image package, as you might expect, deals with 2-D images. It can handle
decoding gif, and can both encode and decode jpg and png images.

It also include a basic color library, as well as a library for compositing images.

No more installing PIL for you!

Typically, you’ll work with the image package to decode an image, and use the
image.Image interface. To enforce this, the only useful functions from the image/jpg

and image/png packages are the ones to encode an image.Image.

You’ll also work with the color.Color interface when dealing with pixels in the
image, using the At(x, y int) color.Color method.

Converting images formats

Ensuring all your images are in a certain format might be something you want to
do, so let’s try that first.

It’s pretty easy. Decode the image, then encode the image. Boom, done!

Since the image/gif package doesn’t have an Encode function, we just need to import
with anunderscore it to register the decoder. The image/jpeg and image/pngpackages
can both encode, so we import them normally.

image/convert.go

1 package main

2

3 import (

4 "flag"

5 "image"

6 _ "image/gif"

7 "image/jpeg"

8 "image/png"

9 "io"

10 "log"

image 213

11 "os"

12)

13

14 var (

15 jpgout = flag.String("jpg", "", "output to a jpg")

16 pngout = flag.String("png", "", "output to a png")

17 in = flag.String("in", "", "input file")

18)

19

20 type encf func(io.Writer, image.Image) error

21

22 func encode(encoder encf, img image.Image, filename string) {

23 file, err := os.OpenFile(filename, os.O_WRONLY|os.O_CREATE, 0644)

24 if err != nil {

25 log.Printf("failed opening %s: %s", filename, err)

26 return

27 }

28 defer file.Close()

29 err = encoder(file, img)

30 if err != nil {

31 log.Printf("failed encoding to %s: %s", filename, err)

32 }

33 }

34

35 func jpegEncode(w io.Writer, m image.Image) error {

36 return jpeg.Encode(w, m, &jpeg.Options{Quality: 80})

37 }

38

39 func decode(filename string) image.Image {

40 file, err := os.Open(filename)

41 if err != nil {

42 log.Fatalf("failed opening file: %s", err)

43 }

44 defer file.Close()

45

46 img, _, err := image.Decode(file)

47 if err != nil {

48 log.Fatalf("failed decoding image: %s", err)

49 }

50 return img

51 }

52

image 214

53 func main() {

54 flag.Parse()

55

56 img := decode(*in)

57

58 if *pngout != "" {

59 encode(png.Encode, img, *pngout)

60 }

61

62 if *jpgout != "" {

63 encode(jpegEncode, img, *jpgout)

64 }

65 }

Resizing

Resizing images and making thumbnails is a pretty common task too, so let’s try
that. I’ve used the simplest algorithm, nearest neighbour. You can replace the
part commented as // The important stuff with some other algorithm, like bilinear
interpolation.

image/resize.go

1 package main

2

3 import (

4 "flag"

5 "image"

6 "image/jpeg"

7 "image/png"

8 "io"

9 "log"

10 "os"

11)

12

13 var (

14 jpgout = flag.String("jpg", "", "output to a jpg")

15 pngout = flag.String("png", "", "output to a png")

16 in = flag.String("in", "", "input file")

17 size = flag.Int("size", 0, "the new max dimension")

18)

19

image 215

20 type encf func(io.Writer, image.Image) error

21

22 func encode(encoder encf, img image.Image, filename string) {

23 file, err := os.OpenFile(filename, os.O_WRONLY|os.O_CREATE, 0644)

24 if err != nil {

25 log.Printf("failed opening %s: %s", filename, err)

26 return

27 }

28 defer file.Close()

29 err = encoder(file, img)

30 if err != nil {

31 log.Printf("failed encoding to %s: %s", filename, err)

32 }

33 }

34

35 func jpegEncode(w io.Writer, m image.Image) error {

36 return jpeg.Encode(w, m, &jpeg.Options{Quality: 80})

37 }

38

39 func round(value float32) int {

40 if value < 0.0 {

41 value -= 0.5

42 } else {

43 value += 0.5

44 }

45 return int(value)

46 }

47

48 func scale(w, h, size int) (int, int, float32) {

49 var factor float32

50 width, height := float32(w), float32(h)

51 if width > height {

52 factor = float32(size) / width

53 } else {

54 factor = float32(size) / height

55 }

56 return round(factor * width), round(factor * height), factor

57 }

58

59 func resize(img image.Image, nsize int) image.Image {

60 osize := img.Bounds().Size()

61 nwidth, nheight, factor := scale(osize.X, osize.Y, nsize)

image 216

62 nimg := image.NewRGBA(image.Rect(0, 0, nwidth, nheight))

63 for y := 0; y < nheight; y++ {

64 for x := 0; x < nwidth; x++ {

65 // The important stuff

66 fx, fy := round(float32(x)/factor), round(float32(y)/factor)

67 nimg.Set(x, y, img.At(fx, fy))

68 }

69 }

70 return nimg

71 }

72

73 func decode(filename string) image.Image {

74 file, err := os.Open(filename)

75 if err != nil {

76 log.Fatalf("failed opening file: %s", err)

77 }

78 defer file.Close()

79

80 img, _, err := image.Decode(file)

81 if err != nil {

82 log.Fatalf("failed decoding image: %s", err)

83 }

84 return img

85 }

86

87 func main() {

88 flag.Parse()

89 if *size <= 0 {

90 log.Fatalln("size must be greater than 0")

91 }

92 img := decode(*in)

93 img = resize(img, *size)

94

95 if *pngout != "" {

96 encode(png.Encode, img, *pngout)

97 }

98

99 if *jpgout != "" {

100 encode(jpegEncode, img, *jpgout)

101 }

102 }

image 217

Cropping

Cropping an image, like grabbing the face from a larger image for thumbnail
purposes, is another of the basic things everybody does with images. Let’s see how
we can do that. This is our first look at the image/draw package.

The image/drawpackage,while very basic, is very powerful. It’smodeled after a paper
by Thomas Porter and Tom Duff and gives you the basic primitives to do anything.
Cropping is one of those basic primitives. It’s actually pretty simple, but it took me
a minute to sort it out.63

image/cropping.go

1 package main

2

3 import (

4 "flag"

5 "fmt"

6 "image"

7 "image/draw"

8 "image/jpeg"

9 "image/png"

10 "io"

11 "log"

12 "os"

13)

14

15 type Cropping struct {

16 Width, Height uint

17 X, Y int

18 }

19

20 func (c *Cropping) String() string {

21 return fmt.Sprintf("%dx%d%+d%+d", c.Width, c.Height, c.X, c.Y)

22 }

23

24 func (c *Cropping) Set(s string) error {

25 _, err := fmt.Sscanf(s, "%dx%d%d%d", &c.Width, &c.Height, &c.X, &c.Y)

26 return err

27 }

28

63I’m not familiar with the Porter-Duff compositing paper, maybe I should read it. Sort of like learning about category
theory so you can do IO in Haskell…

image 218

29 var (

30 jpgout = flag.String("jpg", "", "output to a jpg")

31 pngout = flag.String("png", "", "output to a png")

32 in = flag.String("in", "", "input file")

33 cropping = new(Cropping)

34)

35

36 func init() {

37 flag.Var(cropping, "crop", "crop to perform, like imagemagick WxH[-+]x[-+]y")

38 }

39

40 type encf func(io.Writer, image.Image) error

41

42 func encode(encoder encf, img image.Image, filename string) {

43 file, err := os.OpenFile(filename, os.O_WRONLY|os.O_CREATE, 0644)

44 if err != nil {

45 log.Printf("failed opening %s: %s", filename, err)

46 return

47 }

48 defer file.Close()

49 err = encoder(file, img)

50 if err != nil {

51 log.Printf("failed encoding to %s: %s", filename, err)

52 }

53 }

54

55 func jpegEncode(w io.Writer, m image.Image) error {

56 return jpeg.Encode(w, m, &jpeg.Options{Quality: 80})

57 }

58

59 func decode(filename string) image.Image {

60 file, err := os.Open(filename)

61 if err != nil {

62 log.Fatalf("failed opening file: %s", err)

63 }

64 defer file.Close()

65

66 img, _, err := image.Decode(file)

67 if err != nil {

68 log.Fatalf("failed decoding image: %s", err)

69 }

70 return img

image 219

71 }

72

73 func crop(img image.Image, c *Cropping) image.Image {

74 r := image.Rect(0, 0, int(c.Width), int(c.Height))

75 dst := image.NewRGBA(r)

76 draw.Draw(dst, r, img, image.Pt(c.X, c.Y), draw.Src)

77 return dst

78 }

79

80 func main() {

81 flag.Parse()

82

83 img := decode(*in)

84 img = crop(img, cropping)

85

86 if *pngout != "" {

87 encode(png.Encode, img, *pngout)

88 }

89

90 if *jpgout != "" {

91 encode(jpegEncode, img, *jpgout)

92 }

93 }

Compositing: Building images from other images

Combining two images is the final basic building block that will let us do all sorts of
fun things. We’ll write a little program to add a border to an image, which is really
just compositing one image on top of a slightly larger image of a solid color. This
uses the same technique as the previous cropping example, but we do a little more
work.

image/compositing.go

1 package main

2

3 import (

4 "flag"

5 "fmt"

6 "image"

7 "image/color"

8 "image/draw"

image 220

9 "image/jpeg"

10 "image/png"

11 "io"

12 "log"

13 "os"

14)

15

16 type Color struct {

17 RGBA uint32

18 }

19

20 func (c *Color) String() string {

21 return fmt.Sprintf("%#x", c.RGBA)

22 }

23

24 func (c *Color) Set(s string) error {

25 _, err := fmt.Sscanf(s, "%x", &c.RGBA)

26 return err

27 }

28

29 func (c *Color) ToRGBA() color.RGBA {

30 var mask uint32 = 0xff

31 return color.RGBA{

32 R: uint8((c.RGBA >> 24) & mask),

33 G: uint8((c.RGBA >> 16) & mask),

34 B: uint8((c.RGBA >> 8) & mask),

35 A: uint8(c.RGBA & mask),

36 }

37 }

38

39 var (

40 jpgout = flag.String("jpg", "", "output to a jpg")

41 pngout = flag.String("png", "", "output to a png")

42 in = flag.String("in", "", "input file")

43 width = flag.Int("width", 25, "width of the border")

44 borderColor = new(Color)

45)

46

47 func init() {

48 flag.Var(borderColor, "color", "the color of the border in RGBA")

49 }

50

image 221

51 type encf func(io.Writer, image.Image) error

52

53 func encode(encoder encf, img image.Image, filename string) {

54 file, err := os.OpenFile(filename, os.O_WRONLY|os.O_CREATE, 0644)

55 if err != nil {

56 log.Printf("failed opening %s: %s", filename, err)

57 return

58 }

59 defer file.Close()

60 err = encoder(file, img)

61 if err != nil {

62 log.Printf("failed encoding to %s: %s", filename, err)

63 }

64 }

65

66 func jpegEncode(w io.Writer, m image.Image) error {

67 return jpeg.Encode(w, m, &jpeg.Options{Quality: 80})

68 }

69

70 func decode(filename string) image.Image {

71 file, err := os.Open(filename)

72 if err != nil {

73 log.Fatalf("failed opening file: %s", err)

74 }

75 defer file.Close()

76

77 img, _, err := image.Decode(file)

78 if err != nil {

79 log.Fatalf("failed decoding image: %s", err)

80 }

81 return img

82 }

83

84 func applyBorder(img image.Image, c *Color, w int) image.Image {

85 // Make a new solid color image, slightly larger to form the border

86 r := image.Rect(0, 0, img.Bounds().Dx()+(2*w), img.Bounds().Dy()+(2*w))

87 dst := image.NewRGBA(r)

88 draw.Draw(dst, r, image.NewUniform(c.ToRGBA()), image.ZP, draw.Src)

89

90 // Draw the source image over the border image

91 draw.Draw(dst, r, img, image.Pt(-w, -w), draw.Src)

92 return dst

image 222

93 }

94

95 func main() {

96 flag.Parse()

97

98 img := decode(*in)

99 img = applyBorder(img, borderColor, *width)

100

101 if *pngout != "" {

102 encode(png.Encode, img, *pngout)

103 }

104

105 if *jpgout != "" {

106 encode(jpegEncode, img, *jpgout)

107 }

108 }

gostagram

Instagram isn’t a big deal right? I mean, you could totally build that in a weekend.64

Okay, well maybe not quite, but let’s see what Go can do, and build some image
filters. It’ll just be a command line application, but you could imaginehowyou could
use this and the rest of the code from this chapter to build a little web application
Instagram clone.

All I have are:

• Black and white
• Sepia
• Blur (It’s pretty slow for large radius values, and it doesn’t handle edge cases
properly)

• Borders (like in the previous example)

The black and white and sepia code is fine, though I wouldn’t use my blur code in
production.

64Or, if you’re a Jeff Atwood fan, 6-8 weeks.

image 223

image/gostagram.go

1 package main

2

3 import (

4 "flag"

5 "fmt"

6 "image"

7 "image/color"

8 "image/draw"

9 "image/jpeg"

10 "image/png"

11 "io"

12 "log"

13 "math"

14 "os"

15)

16

17 var (

18 jpgout = flag.String("jpg", "", "output to a jpg")

19 pngout = flag.String("png", "", "output to a png")

20 in = flag.String("in", "", "input file")

21 filter = flag.String("filter", "", "filter to apply")

22 borderWidth = flag.Int("border", 0, "border width, used in conjunction with -co\

23 lor")

24 borderColor = new(Color)

25 blur = flag.Int("blur", 0, "blur the image with a Gaussian blur (slow!)")

26)

27

28 func init() {

29 flag.Var(borderColor, "color", "the color of the border in RGBA")

30 }

31

32 type Gaussian struct {

33 kernel []float32

34 offsets []int

35 }

36

37 func (gaus *Gaussian) Blur(img image.Image, x, y int) color.Color {

38 colors := make([]color.Color, 0, len(gaus.kernel))

39 for _, yOffset := range gaus.offsets {

40 for _, xOffset := range gaus.offsets {

41 colors = append(colors, img.At(x+xOffset, y+yOffset))

image 224

42 }

43 }

44 var rsum, gsum, bsum, asum float32

45 for i, c := range colors {

46 rgba := color.RGBAModel.Convert(c).(color.RGBA)

47 factor := gaus.kernel[i]

48 rsum += factor * float32(rgba.R)

49 gsum += factor * float32(rgba.G)

50 bsum += factor * float32(rgba.B)

51 asum += factor * float32(rgba.A)

52 }

53 return color.RGBA{

54 R: min(255, rsum),

55 G: min(255, gsum),

56 B: min(255, bsum),

57 A: min(255, asum),

58 }

59 }

60

61 func normalize(kernel []float32) {

62 var sum float32

63 for _, f := range kernel {

64 sum += f

65 }

66 for i := range kernel {

67 kernel[i] = kernel[i] / sum

68 }

69 }

70

71 func spread(radius int) []int {

72 s := make([]int, 0, 2*radius+1)

73 low, high := -radius, radius

74 for i := low; i <= high; i++ {

75 s = append(s, i)

76 }

77 return s

78 }

79

80 func NewGaussian(radius int) *Gaussian {

81 sigmaSquared := math.Pow(float64(radius)/2, 2)

82 bottom := 2 * sigmaSquared

83 G := func(x, y int) float32 {

image 225

84 top := -(math.Pow(float64(x), 2) + math.Pow(float64(y), 2))

85 exp := math.Exp(top / bottom)

86 g := 1 / (2 * math.Pi * sigmaSquared) * exp

87 return float32(g)

88 }

89

90 d := radius*2 + 1

91 kernel := make([]float32, 0, d*d)

92 rng := spread(radius)

93 for _, y := range rng {

94 for _, x := range rng {

95 kernel = append(kernel, G(x, y))

96 }

97 }

98 normalize(kernel)

99 return &Gaussian{kernel, rng}

100 }

101

102 type Color struct {

103 RGBA uint32

104 }

105

106 func (c *Color) String() string {

107 return fmt.Sprintf("%#x", c.RGBA)

108 }

109

110 func (c *Color) Set(s string) error {

111 _, err := fmt.Sscanf(s, "%x", &c.RGBA)

112 return err

113 }

114

115 func (c *Color) ToRGBA() color.RGBA {

116 var mask uint32 = 0xff

117 return color.RGBA{

118 R: uint8((c.RGBA >> 24) & mask),

119 G: uint8((c.RGBA >> 16) & mask),

120 B: uint8((c.RGBA >> 8) & mask),

121 A: uint8(c.RGBA & mask),

122 }

123 }

124

125 type Sepia struct {

image 226

126 R, G, B float32

127 A uint8

128 }

129

130 func min(l, r float32) uint8 {

131 if r > l {

132 return uint8(l)

133 }

134 return uint8(r)

135 }

136

137 func (s *Sepia) RGBA() color.RGBA {

138 r := min(255, s.R*0.393+s.G*0.769+s.B*0.189)

139 g := min(255, s.R*0.349+s.G*0.686+s.B*0.168)

140 b := min(255, s.R*0.272+s.G*0.534+s.B*0.131)

141 return color.RGBA{r, g, b, s.A}

142 }

143

144 func NewSepia(c color.Color) *Sepia {

145 rgba := color.RGBAModel.Convert(c).(color.RGBA)

146 return &Sepia{float32(rgba.R), float32(rgba.G), float32(rgba.B), rgba.A}

147 }

148

149 type encf func(io.Writer, image.Image) error

150

151 func encode(encoder encf, img image.Image, filename string) {

152 file, err := os.OpenFile(filename, os.O_WRONLY|os.O_CREATE, 0644)

153 if err != nil {

154 log.Printf("failed opening %s: %s", filename, err)

155 return

156 }

157 defer file.Close()

158 err = encoder(file, img)

159 if err != nil {

160 log.Printf("failed encoding to %s: %s", filename, err)

161 }

162 }

163

164 func jpegEncode(w io.Writer, m image.Image) error {

165 return jpeg.Encode(w, m, &jpeg.Options{Quality: 80})

166 }

167

image 227

168 func decode(filename string) image.Image {

169 file, err := os.Open(filename)

170 if err != nil {

171 log.Fatalf("failed opening file: %s", err)

172 }

173 defer file.Close()

174

175 img, _, err := image.Decode(file)

176 if err != nil {

177 log.Fatalf("failed decoding image: %s", err)

178 }

179 return img

180 }

181

182 func doBlackAndWhite(img image.Image) image.Image {

183 r := img.Bounds()

184 dst := image.NewGray(r)

185 draw.Draw(dst, r, img, image.ZP, draw.Src)

186 return dst

187 }

188

189 func doSepia(img image.Image) image.Image {

190 r := img.Bounds()

191 dst := image.NewRGBA(r)

192 w, h := r.Dx(), r.Dy()

193 for y := 0; y < h; y++ {

194 for x := 0; x < w; x++ {

195 sepia := NewSepia(img.At(x, y)).RGBA()

196 dst.Set(x, y, sepia)

197 }

198 }

199 return dst

200 }

201

202 func doBorder(img image.Image, c *Color, w int) image.Image {

203 r := image.Rect(0, 0, img.Bounds().Dx()+(2*w), img.Bounds().Dy()+(2*w))

204 dst := image.NewRGBA(r)

205 draw.Draw(dst, r, image.NewUniform(c.ToRGBA()), image.ZP, draw.Src)

206 draw.Draw(dst, r, img, image.Pt(-w, -w), draw.Src)

207 return dst

208 }

209

image 228

210 func doBlur(img image.Image, radius int) image.Image {

211 g := NewGaussian(radius)

212 r := img.Bounds()

213 dst := image.NewRGBA(r)

214 w, h := r.Dx(), r.Dy()

215 for y := 0; y < h; y++ {

216 for x := 0; x < w; x++ {

217 dst.Set(x, y, g.Blur(img, x, y))

218 }

219 }

220 return dst

221 }

222

223 func main() {

224 flag.Parse()

225

226 img := decode(*in)

227

228 switch *filter {

229 case "bw":

230 img = doBlackAndWhite(img)

231 case "sepia":

232 img = doSepia(img)

233 }

234

235 if *blur > 0 {

236 img = doBlur(img, *blur)

237 }

238

239 if *borderWidth > 0 {

240 img = doBorder(img, borderColor, *borderWidth)

241 }

242

243 if *pngout != "" {

244 encode(png.Encode, img, *pngout)

245 }

246

247 if *jpgout != "" {

248 encode(jpegEncode, img, *jpgout)

249 }

250 }

index
The index package has nothing in it, except the index/suffixarray package.

This package lets you search for a sequence of bytes in a byte slice in logarithmic
time. You have to build the index index first, so there’s not only the time to build in
the index, but also the memory cost associated with storing the index. It’s not the
answer to all substring search problems, but if your situation warrants it, you can
get some nice speed improvements (at the cost of more memory).

suffixarray

We’ll look for a known popular text in a large piece of text, and compare that to less
fancy methods, like those in the bytes package.

index/suffixarray.go

1 package main

2

3 import (

4 "bytes"

5 "flag"

6 "index/suffixarray"

7 "io/ioutil"

8 "log"

9 T "testing"

10)

11

12 type Searcher struct {

13 index *suffixarray.Index

14 n, h []byte

15 }

16

17 func NewSearcher(n, h []byte) *Searcher {

18 return &Searcher{

19 n: n,

20 h: h,

21 index: suffixarray.New(h),

22 }

index 230

23 }

24

25 func (s *Searcher) SuffixarrayPrebuilt() int {

26 results := s.index.Lookup(s.n, 1)

27 if len(results) == 1 {

28 return results[0]

29 }

30 return -1

31 }

32

33 func (s *Searcher) Suffixarray() int {

34 index := suffixarray.New(s.h)

35 results := index.Lookup(s.n, 1)

36 if len(results) == 1 {

37 return results[0]

38 }

39 return -1

40 }

41

42 func (s *Searcher) BytesIndex() int {

43 return bytes.Index(s.h, s.n)

44 }

45

46 var (

47 needle = flag.String("needle", "O Romeo, Romeo! wherefore art thou Romeo?", "\

48 The string to search for")

49 haystack = flag.String("haystack", "romeo-and-juliet.txt", "The file to search \

50 through")

51)

52

53 func bench(name string, f func() int) {

54 index := 0

55 result := T.Benchmark(func(b *T.B) {

56 for i := 0; i < b.N; i++ {

57 index = f()

58 }

59 })

60 log.Printf("%s took %d ns/op to find %#v at index %d", name, result.NsPerOp(), \

61 *needle, index)

62 }

63

64 func main() {

index 231

65 flag.Parse()

66 h, err := ioutil.ReadFile(*haystack)

67 if err != nil {

68 log.Fatalf("failed to read haystack: %s", err)

69 }

70 s := NewSearcher([]byte(*needle), h)

71 bench("SuffixarrayPrebuilt", s.SuffixarrayPrebuilt)

72 bench("Suffixarray", s.Suffixarray)

73 bench("BytesIndex", s.BytesIndex)

74 }

Running the example,we get 3 lines from the logpackage. Onmymachine, using the
prebuilt suffixarray index I get about 800 ns/op. Building the index and doing the
search (which is the basic usage example of the package) in the Suffixarraymethod,
takes a very long time, on the order of 50million ns/op. Most of that time is building
the index. The bytes package doing a simple bytes.Index takes about an order of
magnitude longer than using the prebuilt suffixarray, coming in at around 7000
ns/op.

As you can see, if you’re doing a one-off search, the bytes package is fine. If you’re
searching the same body of text many times, and can afford to keep the index
around in memory, the suffixarray package is your friend.

io
The io package is probably one of the most important packages in the Go standard
library, but it’s also one of the most basic.

There are only 4 types which are structs, 2 of which are related (PipeReader and
PipeWriter). The other types are interfaces, and there’s a lot of them. You’ll see them
all over the place, and it’s usually just amatter of providing a type thatmatches that
interface.

The top level functions in the package take care of abstracting a few things away
from the lower level base interfaces. They also handle some basic common things,
along with the io/ioutil package.

If you’re reading this section thinking this is where file IO happens, you’re half
right. While the io package has all the interfaces and some helpers, the real file
IO happens in the os package package. That package allows you to open files and
read and write them using the os.File type.

Reading

Computers are no fun if your programs can’t talk to things outside themselves.
Reading data in is half of the IO fun, and allows you program to get data from the
outside world. The io.Reader type has a basic Read method to handle the most basic
of read tasks. The io package has some helpers to move up a level of abstraction.

There are also a variety of interface types that provide other higher level methods,
such as unreading data and reading runes.

With some of these IO things it’s important to pay attention to the errors returned.
With things like ReadAtLeast, it returns specific errors to signal specific cases when
the minimum couldn’t be read due to EOF.

ReadAtLeast

This function will read, big surprise, at least min bytes into the buffer, returning the
standard bytes read and any error.

io 233

io/read_at_least.go

1 package main

2

3 import (

4 "io"

5 "log"

6 "strings"

7)

8

9 const (

10 format = "len(buffer)=%d, min=%d, bytesRead=%d, err=%v, (%s)"

11)

12

13 func init() {

14 log.SetFlags(0)

15 log.SetPrefix("» ")

16 }

17

18 type Example struct {

19 BufferLength int

20 MinimumRead int

21 Message string

22 }

23

24 func ShowExample(ex Example) {

25 rd := strings.NewReader(ex.Message)

26 buffer := make([]byte, ex.BufferLength)

27 bytesRead, err := io.ReadAtLeast(rd, buffer, ex.MinimumRead)

28 log.Printf(format, ex.BufferLength, ex.MinimumRead, bytesRead, err, ex.Message)

29 }

30

31 func main() {

32 examples := []Example{

33 {10, 5, "OK; read less than buf can handle, plenty of data"},

34 {100, 75, "Unexpected EOF; buf has space, but ran out of data"},

35 {10, 15, "Short buffer; trying to read more than buf can handle"},

36 }

37 for _, ex := range examples {

38 ShowExample(ex)

39 }

40 }

io 234

Output:

1 » len(buffer)=10, min=5, bytesRead=10, err=<nil>, (OK; read less than buf can ha\

2 ndle, plenty of data)

3 » len(buffer)=100, min=75, bytesRead=50, err=unexpected EOF, (Unexpected EOF; bu\

4 f has space, but ran out of data)

5 » len(buffer)=10, min=15, bytesRead=0, err=short buffer, (Short buffer; trying t\

6 o read more than buf can handle)

ReadFull

Use ReadFull if you want to read an exact number of bytes from something. It will
return an error if it couldn’t read the given number of bytes. In the output I’m
showing the buffer as bytes to show that there are NULL bytes (the zeroes) in the
buffer when you get EOF errors.

io/read_full.go

1 package main

2

3 import (

4 "io"

5 "log"

6 "strings"

7)

8

9 const (

10 format = "len(buffer)=%d, bytesRead=%d, err=%v, (%s)"

11)

12

13 func init() {

14 log.SetFlags(0)

15 log.SetPrefix("» ")

16 }

17

18 type Example struct {

19 BufferLength int

20 Message string

21 }

22

23 func ShowExample(ex Example) {

24 rd := strings.NewReader(ex.Message)

25 buffer := make([]byte, ex.BufferLength)

io 235

26 bytesRead, err := io.ReadFull(rd, buffer)

27 log.Printf("%v", buffer)

28 log.Printf(format, ex.BufferLength, bytesRead, err, ex.Message)

29 }

30

31 func main() {

32 examples := []Example{

33 {10, "OK; filled up buf, plenty of data"},

34 {55, "Unexpected EOF; buf has space, but ran out of data"},

35 }

36 for _, ex := range examples {

37 ShowExample(ex)

38 }

39 }

Output:

1 » [79 75 59 32 102 105 108 108 101 100]

2 » len(buffer)=10, bytesRead=10, err=<nil>, (OK; filled up buf, plenty of data)

3 » [85 110 101 120 112 101 99 116 101 100 32 69 79 70 59 32 98 117 102 32 104 97 \

4 115 32 115 112 97 99 101 44 32 98 117 116 32 114 97 110 32 111 117 116 32 111 10\

5 2 32 100 97 116 97 0 0 0 0 0]

6 » len(buffer)=55, bytesRead=50, err=unexpected EOF, (Unexpected EOF; buf has spa\

7 ce, but ran out of data)

LimitedReader

A LimitedReader is for when you want to make sure to never read more than a
given amount from an io.Reader. If you’ve worked with Enumerable style methods
in something like Ruby, this is basically implementing take on io.Reader.

io/limited_reader.go

1 package main

2

3 import (

4 "io"

5 "log"

6 "strings"

7)

8

9 const (

io 236

10 example = "The quick brown fox, he likes jumping, you know."

11)

12

13 func init() {

14 log.SetFlags(0)

15 log.SetPrefix("» ")

16 }

17

18 func main() {

19 lr := io.LimitedReader{strings.NewReader(example), 20}

20 buffer := make([]byte, len(example))

21 bytesRead, err := lr.Read(buffer)

22

23 // Despite having space, only read 20 bytes

24 log.Printf("%s", buffer)

25 log.Printf("bytesRead=%d, err=%v", bytesRead, err)

26

27 // Try reading more, won't read anything.

28 bytesRead, err = lr.Read(buffer)

29 log.Printf("bytesRead=%d, err=%v", bytesRead, err)

30 }

Output:

1 » The quick brown fox,\\\\\\\\\\\\\\\\\\\\\\\\\\\\

2 » bytesRead=20, err=<nil>

3 » bytesRead=0, err=EOF

MultiReader

A MultiReader lets you read frommultiple readers, one after the other. If you open 3
files, make a MultiReader from them, and read until EOF, it would be the same as if
you’d concatenated the files into a new file, and read that file instead. It just reads
everything from everything in order.

An interesting point is that once a reader returns EOF, it will stop reading. You have
to start it up again to readmore. In our example we have to read 3 times to actually
read all the data. We could also ReadFull which we used a few pages ago.

Once again, we’ll look at the buffer as a byte slice to show the NULL values.

io 237

io/multi_reader.go

1 package main

2

3 import (

4 "io"

5 "log"

6 "strings"

7)

8

9 func init() {

10 log.SetFlags(0)

11 log.SetPrefix("» ")

12 }

13

14 func main() {

15 // Make our inputs

16 a := strings.NewReader(strings.Repeat("A", 5))

17 b := strings.NewReader(strings.Repeat("B", 5))

18 c := strings.NewReader(strings.Repeat("C", 5))

19

20 // Read ALL THE THINGS

21 mr := io.MultiReader(a, b, c)

22

23 // Read A

24 buffer := make([]byte, 20)

25 n1, err := mr.Read(buffer)

26 log.Printf("%v", buffer)

27 log.Printf("n1=%d, err=%v", n1, err)

28

29 // Read B

30 n2, err := mr.Read(buffer[n1:])

31 log.Printf("%v", buffer)

32 log.Printf("n2=%d, err=%v", n2, err)

33

34 // Read C

35 n3, err := mr.Read(buffer[(n1 + n2):])

36 log.Printf("%v", buffer)

37 log.Printf("n3=%d, err=%v", n3, err)

38

39 // EOF

40 n4, err := mr.Read(buffer[(n1 + n2 + n3):])

41 log.Printf("%v", buffer)

io 238

42 log.Printf("n4=%d, err=%v", n4, err)

43 }

Output:

1 » [65 65 65 65 65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

2 » n1=5, err=<nil>

3 » [65 65 65 65 65 66 66 66 66 66 0 0 0 0 0 0 0 0 0 0]

4 » n2=5, err=<nil>

5 » [65 65 65 65 65 66 66 66 66 66 67 67 67 67 67 0 0 0 0 0]

6 » n3=5, err=<nil>

7 » [65 65 65 65 65 66 66 66 66 66 67 67 67 67 67 0 0 0 0 0]

8 » n4=0, err=EOF

TeeReader

A TeeReader works a lot like the tee unix program. With the tee program, you read
some output, display it on STDOUT, and then also write it somewhere else. In
the case of TeeReader, you read from it, but it also writes to an io.Writer. Pretty
straightforward.

io/tee_reader.go

1 package main

2

3 import (

4 "bytes"

5 "io"

6 "log"

7 "strings"

8)

9

10 func init() {

11 log.SetFlags(0)

12 log.SetPrefix("» ")

13 }

14

15 func main() {

16 s := strings.NewReader("Get to the choppa!")

17 var buf bytes.Buffer

18 tr := io.TeeReader(s, &buf)

19 b := make([]byte, s.Len())

io 239

20 n, err := tr.Read(b)

21 log.Printf("buf: %s", &buf)

22 log.Printf(" b: %s", b)

23 log.Printf("n=%d, err=%v", n, err)

24 }

Output:

1 » buf: Get to the choppa!

2 » b: Get to the choppa!

3 » n=18, err=<nil>

SectionReader

The last thing we’ll demo here is the SectionReader. It’s sort of like LimitedReader but
for specific sections of something. You need an io.ReaderAt, so you can’t pass just
anything into it. We’re using a bytes.Reader, but os.File works as well.

io/section_reader.go

1 package main

2

3 import (

4 "bytes"

5 "io"

6 "log"

7)

8

9 var (

10 s = "The quick brown fox, he likes jumping, you know."

11)

12

13 func init() {

14 log.SetFlags(0)

15 log.SetPrefix("» ")

16 }

17

18 func main() {

19 // Build the block of data

20 data := make([]byte, 0, 30)

21 data = append(data, bytes.Repeat([]byte{'A'}, 10)...)

22 data = append(data, bytes.Repeat([]byte{'B'}, 10)...)

io 240

23 data = append(data, bytes.Repeat([]byte{'C'}, 10)...)

24

25 // Create some SectionReaders to read the 3 sections

26 r := bytes.NewReader(data)

27 ar := io.NewSectionReader(r, 0, 10)

28 br := io.NewSectionReader(r, 10, 10)

29 cr := io.NewSectionReader(r, 20, 10)

30

31 buf := make([]byte, 10)

32

33 // Read the A section

34 n, err := ar.Read(buf)

35 log.Printf("buf: %s", buf)

36 log.Printf("n=%d, err=%v", n, err)

37

38 // Read the B section

39 n, err = br.Read(buf)

40 log.Printf("buf: %s", buf)

41 log.Printf("n=%d, err=%v", n, err)

42

43 // Read the C section

44 n, err = cr.Read(buf)

45 log.Printf("buf: %s", buf)

46 log.Printf("n=%d, err=%v", n, err)

47 }

Output:

1 » buf: AAAAAAAAAA

2 » n=10, err=<nil>

3 » buf: BBBBBBBBBB

4 » n=10, err=<nil>

5 » buf: CCCCCCCCCC

6 » n=10, err=<nil>

Writing

Writing is the other half of the IO coin. Sending data outside your program, or
within it, is essential to getting things done. Your basic io.Writer interface supports
writing bytes, but we can alsowrite strings, andwrite tomultiple things at the same
time.

io 241

io/writing.go

1 package main

2

3 import (

4 "io"

5 "log"

6 "os"

7)

8

9 func init() {

10 log.SetFlags(0)

11 log.SetPrefix("» ")

12 }

13

14 func main() {

15 w := io.MultiWriter(os.Stdout, os.Stderr)

16 io.WriteString(w, "Hello, twice!!\n")

17 }

Output:

1 Hello, twice!!

2 Hello, twice!!

Copy

Copying data from one place to another is a pretty basic IO related task. Want to
build a TCP load balancer? All you need is io.Copy65.

The two copy methods block until they reach an error. If that error is EOF, it’s
silenced, and a nil error is returned. If you just want to copy and not worry about
the errors, just run the call in a goroutine.

65https://github.com/darkhelmet/balance/blob/master/tcp.go

https://github.com/darkhelmet/balance/blob/master/tcp.go
https://github.com/darkhelmet/balance/blob/master/tcp.go

io 242

io/copy.go

1 package main

2

3 import (

4 "bytes"

5 "io"

6 "log"

7 "os"

8)

9

10 func init() {

11 log.SetFlags(0)

12 log.SetPrefix("» ")

13 }

14

15 func buffer() *bytes.Buffer {

16 var buf bytes.Buffer

17 buf.WriteString("I'm writing ")

18 buf.WriteString("strings ")

19 buf.WriteString("to this buffer ")

20 buf.WriteString("and we'll copy it to os.Stdout.\n")

21 return &buf

22 }

23

24 func DemoCopy() {

25 buf := buffer()

26 log.Printf("copying %d bytes to os.Stdout", buf.Len())

27 io.Copy(os.Stdout, buf)

28 }

29

30 func DemoCopyN() {

31 buf := buffer()

32 n := int64(32)

33 log.Printf("have %d bytes, only copying %d to os.Stdout", buf.Len(), n)

34 io.CopyN(os.Stdout, buf, n)

35 os.Stdout.Write([]byte{'\n'})

36 }

37

38 func BufferFun() {

39 buf := buffer()

40 n, _ := io.CopyN(os.Stdout, buf, 32)

41 nn, _ := io.Copy(os.Stdout, buf)

io 243

42 log.Printf("copied %d and then %d bytes to os.Stdout", n, nn)

43 }

44

45 func main() {

46 DemoCopy()

47 DemoCopyN()

48 BufferFun()

49 }

Output:

1 » copying 67 bytes to os.Stdout

2 I'm writing strings to this buffer and we'll copy it to os.Stdout.

3 » have 67 bytes, only copying 32 to os.Stdout

4 I'm writing strings to this buff

5 I'm writing strings to this buffer and we'll copy it to os.Stdout.

6 » copied 32 and then 35 bytes to os.Stdout

Pipe

If youwant to pipe data between two things, you have a couple options. You can use
bytes.Buffer, which will buffer data, or you can use io.Pipe, which does no buffering
and instead does synchronous piping of data.

In this example, note the partial reads, where it reads the remainder of a sentence.
This is because the write on the other end isn’t finished yet. It writes part of the
sentence straight through, and then has towait while the reading endwrites out the
log, and the loop starts over to read another chunk. Then thewrite call can continue
and write the rest of the sentence, while the reading end reads it. The writing loop
starts over and tries to write another sentence.

io/pipe.go

1 package main

2

3 import (

4 "io"

5 "log"

6 "runtime"

7)

8

9 func init() {

io 244

10 log.SetFlags(0)

11 log.SetPrefix("» ")

12 runtime.GOMAXPROCS(8)

13 }

14

15 func Write(wr io.WriteCloser) {

16 lyrics := []string{

17 "I come home in the morning light",

18 "My mother says when you gonna live your life right",

19 "Oh mother dear we're not the fortunate ones",

20 "And girls they want to have fun",

21 "Oh girls just want to have fun",

22 }

23

24 for _, line := range lyrics {

25 io.WriteString(wr, line)

26 }

27 wr.Close() // We're done, signal EOF

28 }

29

30 func main() {

31 rd, wr := io.Pipe()

32 go Write(wr)

33 for {

34 buf := make([]byte, 32)

35 n, err := rd.Read(buf)

36 log.Printf("buf: %s", buf)

37 log.Printf("n=%d, err=%v", n, err)

38 if err == io.EOF {

39 break

40 }

41 }

42 }

io 245

Output:

1 » buf: I come home in the morning light

2 » n=32, err=<nil>

3 » buf: My mother says when you gonna li

4 » n=32, err=<nil>

5 » buf: ve your life right\\\\\\\\\\\\\\

6 » n=18, err=<nil>

7 » buf: Oh mother dear we're not the for

8 » n=32, err=<nil>

9 » buf: tunate ones\\\\\\\\\\\\\\\\\\\\\

10 » n=11, err=<nil>

11 » buf: And girls they want to have fun\

12 » n=31, err=<nil>

13 » buf: Oh girls just want to have fun\\

14 » n=30, err=<nil>

15 » buf: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

16 » n=0, err=EOF

io/ioutil

The io/ioutil package includes a selection of top level functions to assist in common
IO tasks. They are all very simple and self explanatory, so we’ll demo a few of the
functions but not all.

io/ioutil.go

1 package main

2

3 import (

4 "io/ioutil"

5 "log"

6 "os"

7)

8

9 func init() {

10 log.SetFlags(0)

11 log.SetPrefix("» ")

12 }

13

14 func DemoReadAll() {

15 file, err := os.Open("ioutil.go")

io 246

16 if err != nil {

17 log.Panicf("failed opening file: %s", err)

18 }

19 defer file.Close()

20 log.Println(`reading file "ioutil.go"`)

21 data, err := ioutil.ReadAll(file)

22 log.Printf("read %d bytes with err %v", len(data), err)

23 }

24

25 func DemoReadDir() {

26 entries, err := ioutil.ReadDir(".")

27 if err != nil {

28 log.Panicf("failed reading directory: %s", err)

29 }

30 log.Printf("found %d files in the current directory", len(entries))

31 }

32

33 func DemoReadFile() {

34 data, err := ioutil.ReadFile("ioutil.go")

35 log.Printf("read %d bytes with err %v", len(data), err)

36 }

37

38 func main() {

39 DemoReadAll()

40 DemoReadDir()

41 DemoReadFile()

42 }

Output:

1 » reading file "ioutil.go"

2 » read 772 bytes with err <nil>

3 » found 11 files in the current directory

4 » read 772 bytes with err <nil>

log
The log package is used to handle logging in your application. It has a basic logging
package, and a syslog package.

Basic Logging

There are two ways to use the basic logging functionality.

1. Use the package level functions to access the global logger.
2. Build a new *log.Logger instance and use that.

Using the package level functions is easy and useful when you’re dealing with a
proper application. If you build a package to be used in an application, you probably
shouldn’t be using the package level functions and instead require the user of your
package to pass in a *log.Logger.

In prettymuch every example so far, I’ve used the package level functions to handle
output. There are functions to print a string, print a formatted string, panic, and
exit. You can also change where the output goes, change the format of messages
(using the the flags), and change the prefix.

In the example, we won’t use the package level functions, and just build our own
instance.

log/log.go

1 package main

2

3 import (

4 "log"

5 "os"

6 "time"

7)

8

9 func main() {

10 logger := log.New(os.Stdout, "", log.LstdFlags)

11

12 defer func() {

log 248

13 logger.SetFlags(log.LstdFlags)

14 if err := recover(); err != nil {

15 logger.Fatalf("recovered: %s", err)

16 }

17 }()

18

19 logger.Println("just a string")

20 logger.SetPrefix("[go-thestdlib] ")

21 logger.Printf("the time is %s", time.Now())

22 logger.SetFlags(log.Lshortfile)

23 logger.Println("see, the format changed?")

24 logger.Panicf("don't worry, we'll handle this")

25 }

Syslog

There are a couple ways to use the log/syslog package.

You can build a *log.Logger at a certain syslog priority. This has the advantage of
using the same interface as the main package, but all your log messages are at the
same priority level.

The other way is to create a *syslog.Writer. This has the advantage of being able to
write log messages at different priority levels, but you lose the consistent interface.
None of the *syslog.Writermethods support formatting things either, so you’ll have
to do that elsewhere. We’ll look at both examples, and build a little struct to give
you both the nice easy interface as well as logging multiple priorities.

When running this example,make sure to tail -f /var/log/system.log if you’re on a
Mac or tail -f /var/log/syslog if you’re on Linux in order to see the log messages.

log 249

log/syslog.go

1 package main

2

3 import (

4 "log"

5 "log/syslog"

6)

7

8 func MustSyslog(p syslog.Priority, flags int) *log.Logger {

9 logger, err := syslog.NewLogger(p, flags)

10 if err != nil {

11 panic(err)

12 }

13 return logger

14 }

15

16 type Logger struct {

17 Alert, Crit, Debug, Emerg, Err, Info, Notice, Warning *log.Logger

18 }

19

20 func NewLogger(flags int) *Logger {

21 return &Logger{

22 Alert: MustSyslog(syslog.LOG_ALERT, flags),

23 Crit: MustSyslog(syslog.LOG_CRIT, flags),

24 Debug: MustSyslog(syslog.LOG_DEBUG, flags),

25 Emerg: MustSyslog(syslog.LOG_EMERG, flags),

26 Err: MustSyslog(syslog.LOG_ERR, flags),

27 Info: MustSyslog(syslog.LOG_INFO, flags),

28 Notice: MustSyslog(syslog.LOG_NOTICE, flags),

29 Warning: MustSyslog(syslog.LOG_WARNING, flags),

30 }

31 }

32

33 func basic() {

34 logger, err := syslog.NewLogger(syslog.LOG_WARNING, log.Lshortfile)

35 if err != nil {

36 log.Fatalf("failed to make syslogger: %s", err)

37 }

38 logger.Println("hello, world")

39 }

40

41 func levels() {

log 250

42 logger := NewLogger(log.Lshortfile)

43 logger.Crit.Println("oh noes!")

44 logger.Warning.Println("just a warning")

45 logger.Alert.Println("alert time!")

46 }

47

48 func writer() {

49 logger, err := syslog.New(syslog.LOG_WARNING, "go-thestdlib")

50 if err != nil {

51 log.Fatalf("failed to make a syslogger: %s", err)

52 }

53 logger.Warning("just a message...")

54 }

55

56 func main() {

57 basic()

58 levels()

59 writer()

60 }

math
The math package, does all the math you could possibly want. The basics anyway.
For the top level package, there is no value in an example file, because it’s all very
straightforward. Youneed sin? Call math.Sin. The functions are appropriately named
so it should be easy to find what you’re looking for. Typically everything deals with
float64 values.

The fun starts with the subpackages. There is the math/big package for dealing with
big numbers, both rational and integers.

math/cmplxhas functions similar to those in the toplevel mathpackage but for complex
numbers. I’ll skip the example for that package because, like the math package, it’s
not very interesting. If youneed to performmath on complexnumbers, that’swhere
you need to look.

If you need pseudo-randomnumbers, look at the math/rand package. It has functions
to get all the different types of random data. You can also create a rand.Rand with a
specific seed to get a reproducible sequence.

Big Numbers

The math/big package has two types: big.Int and big.Rat. big.Int deals with signed
integers, and big.Rat deals with rational numbers. The APIs follow the same pattern
where results get stored in the receiver and also returned.66

math/big.go

1 package main

2

3 import (

4 "log"

5 "math/big"

6)

7

8 func bigPrime() {

9 p := big.NewInt(2)

10 p.Exp(p, big.NewInt(1398269), nil)

11 p.Sub(p, big.NewInt(1))

66Honestly, the API is slightly awkward, but I think it’s in the interest in saving memory.

math 252

12 // Get ready to scroll

13 log.Printf("a big prime number is %s", p)

14 // Takes a while

15 // log.Printf("2^1,398,269-1 is probably prime: %t", p.ProbablyPrime(1))

16 }

17

18 func ScientificNotation(coefficient, exponent int64) *big.Int {

19 exp := big.NewInt(10)

20 exp = exp.Exp(exp, big.NewInt(exponent), nil)

21 coeff := big.NewInt(coefficient)

22 return coeff.Mul(coeff, exp)

23 }

24

25 func astrophysics() {

26 age := ScientificNotation(43, 16)

27 log.Printf("the universe is about %s seconds old", age)

28 size := ScientificNotation(88, 25)

29 log.Printf("the universe is about %s light years across", size)

30 stars := ScientificNotation(5, 22)

31 log.Printf("the universe has about %s stars", stars)

32 galaxies := ScientificNotation(125, 9)

33 log.Printf("the universe has about %s galaxies", galaxies)

34 }

35

36 func primeList() {

37 var primesFound int

38 two := big.NewInt(2)

39 p := big.NewInt(3)

40 for {

41 if p.ProbablyPrime(1) {

42 primesFound++

43 log.Printf("%s is a prime number", p)

44 }

45

46 if primesFound > 100 {

47 break

48 }

49

50 p.Add(p, two)

51 }

52 }

53

math 253

54 func mul() {

55 x, _ := new(big.Int).SetString("7612058254738945", 10)

56 y, _ := new(big.Int).SetString("9263591128439081", 10)

57 z := new(big.Int).Mul(x, y)

58 log.Printf("%s x %s = %s", x, y, z)

59 }

60

61 func gcd() {

62 a, _ := new(big.Int).SetString("7612058254738945", 10)

63 b, _ := new(big.Int).SetString("9263591128439081", 10)

64 z := new(big.Int).GCD(nil, nil, a, b)

65 log.Printf("the GCD of %s and %s is %s", a, b, z)

66 }

67

68 var one = big.NewRat(1, 1)

69

70 func f(i *big.Rat, depth uint64) *big.Rat {

71 if depth == 0 {

72 return one

73 }

74

75 // Doing this is slightly faster

76 // than the recursive version.

77 c := make(chan *big.Rat, 1)

78 go func() {

79 n := new(big.Rat).Set(i)

80 c <- f(n.Add(n, one), depth-1)

81 }()

82

83 num := new(big.Rat).Set(i)

84 denom := big.NewRat(2, 1)

85 denom = denom.Mul(denom, num)

86 denom = denom.Add(denom, one)

87

88 rest := new(big.Rat)

89 rest = rest.Mul(num, denom.Inv(denom))

90 rest = rest.Mul(rest, <-c)

91

92 ret := big.NewRat(1, 1)

93 return ret.Add(ret, rest)

94 }

95

math 254

96 func pi() {

97 value := f(big.NewRat(1, 1), 500)

98 value.Mul(value, big.NewRat(2, 1))

99 log.Printf("pi is %s", value.FloatString(100))

100 }

101

102 func main() {

103 bigPrime()

104 astrophysics()

105 primeList()

106 mul()

107 gcd()

108 pi()

109 }

There are a lot more operations available than in the example, but if you need to
deal with big numbers, you get the idea.67

Random Numbers

The math/rand package generates pseudo-random numbers for you, but in a semi-
predictable fashion. If you build a math.Sourcewith a certain seed value, the math.Rand

that you build from it will produce the same sequence of numbers every time. For
more secure randomness, use cryto/rand. If you need predictable random numbers,
use math/rand.

The math/rand package has top level functions that work with a “global” math.Rand

instance. You can also build your own, and work with that. In the example we’ll do
that.

math/rand.go

1 package main

2

3 import (

4 "log"

5 "math/rand"

6)

7

8 func example(seed int64) {

9 s := rand.NewSource(seed)

67That being said, if you have some nice ideas for other examples, please let me know.

math 255

10 r := rand.New(s)

11 log.Printf("ExpFloat64: %f", r.ExpFloat64())

12 log.Printf("Float32: %f", r.Float32())

13 log.Printf("Float64: %f", r.Float64())

14 log.Printf("Int: %d", r.Int())

15 log.Printf("Int31: %d", r.Int31())

16 log.Printf("Int31n: %d", r.Int31n(10))

17 log.Printf("Int63: %d", r.Int63())

18 log.Printf("Int63n: %d", r.Int63n(15))

19 log.Printf("Intn: %d", r.Intn(25))

20 log.Printf("NormFloat64: %f", r.NormFloat64())

21 log.Printf("Perm: %v", r.Perm(10))

22 log.Printf("Uint32: %d", r.Uint32())

23 }

24

25 func main() {

26 example(64)

27 // Will print the same as above

28 example(64)

29 example(1)

30 }

mime
The toplevel mime package isn’t that exciting.

Use TypeByExtension to turn a file extension, like .htmlor .pdf into text/html; charset=utf-

8 and application/pdf. Use AddExtensionType to add your own mapping.

With the functions ParseMediaType and FormatMediaType you can, as their names sug-
gest, parse and format mime types. ParseMediaType can turn text/html; charset=utf-8

into the string text/html and the map map[string]string{"charset": "utf-8"}. Format-
MediaType does the inverse.

Exciting, amiright?

Let’s look at the mime/multipart instead, shall we?

Multipart Parsing

The mime/multipart package is used for, you guessed it, parsing and generating
multipart things.

I sent a test email and pulled out the body. Parsing the whole email can be done
with the net/mail package, but we’re only concerned with the multipart body.

I use a hardcoded boundary value. If you parse an entire message, the net/mail

package’s Message type gives you the headers, which would included the content
type indicating that it’smultipart, andwould also include the boundary value. This
is where ParseMediaType would come in, and you can parse the content type to get
the boundary value.

Each part of the body is separated by the boundary, and the multipart.Reader takes
care of giving us each part. The first part is a multipart/alternate block, which has
its own set of headers with a new boundary. This provides the body of the email in
both text/plain and text/html content types. In the second part is a file attachment,
Base64 encoded.

In this case, you’d parse the email, get the headers and body, see that it’s amultipart
message, parse the body as multipart, then see that one of the parse is again
multipart, parse that, etc, etc. You end up with a bit of recursion, but at the same

mime 257

time, I can’t see why you’d have to go much further than the two levels. That
being said, I’m not aware of anything saying you couldn’t “infinitely” nestmultipart
things, but I haven’t read the whole spec.

mime/parse.go

1 package main

2

3 import (

4 "bytes"

5 "encoding/base64"

6 "io"

7 "io/ioutil"

8 "log"

9 "mime"

10 "mime/multipart"

11 "os"

12)

13

14 type Part struct {

15 *multipart.Part

16 Body []byte

17 }

18

19 func (p *Part) Reader() io.Reader {

20 return bytes.NewReader(p.Body)

21 }

22

23 func ReadMultipartFile(path, boundary string) (parts []*Part) {

24 file, err := os.Open(path)

25 if err != nil {

26 log.Fatalf("failed opening %s: %s", path, err)

27 }

28 defer file.Close()

29 return ReadMultipart(file, boundary)

30 }

31

32 func ReadMultipart(r io.Reader, boundary string) (parts []*Part) {

33 mr := multipart.NewReader(r, boundary)

34 for {

35 part, err := mr.NextPart()

36 if err != nil {

37 if err == io.EOF {

38 break

mime 258

39 }

40 log.Fatalf("failed reading part: %s", err)

41 }

42 body, err := ioutil.ReadAll(part)

43 if err != nil {

44 log.Fatalf("failed reading part: %s", err)

45 }

46 parts = append(parts, &Part{part, body})

47 part.Close()

48 }

49 return parts

50 }

51

52 func DecodeBody(r io.Reader, encoding string) []byte {

53 switch encoding {

54 case "base64":

55 dec := base64.NewDecoder(base64.StdEncoding, r)

56 data, err := ioutil.ReadAll(dec)

57 if err != nil {

58 log.Fatalf("failed decoding: %s", err)

59 }

60 return data

61 default:

62 log.Fatalf("can't decode %s", encoding)

63 }

64 panic("not reached")

65 }

66

67 func DumpParts(parts []*Part, prefix string) {

68 log.Printf("found %d parts", len(parts))

69 for i, part := range parts {

70 ctype := part.Header.Get("Content-Type")

71 log.Printf(prefix+"part %d has Content-Type: %s", i+1, ctype)

72 mtype, params, err := mime.ParseMediaType(ctype)

73 if err != nil {

74 log.Fatalf("failed parsing media type %s: %s", ctype, err)

75 }

76 switch mtype {

77 case "text/plain", "text/html":

78 log.Printf(prefix+"content: %s", part.Body)

79 case "application/octet-stream":

80 body := DecodeBody(part.Reader(), part.Header.Get("Content-Transfer-Encoding"\

mime 259

81))

82 log.Printf(prefix+"decoded attachment with contents: %s", body)

83 case "multipart/alternative":

84 altParts := ReadMultipart(part.Reader(), params["boundary"])

85 DumpParts(altParts, prefix+"\t")

86 }

87 }

88 }

89

90 func main() {

91 parts := ReadMultipartFile("body", "047d7bae420e40e18a04e7e1ead4")

92 DumpParts(parts, "")

93 }

Multipart Generation

The other fun part of multipart things is generating them. When you upload a
file in an HTML form, you have to mark the form as multipart/form-data. With the
mime/multipart package you can therefore generate the body for an HTTP request
where a file is sent along.

Using requestb.in68 and jsfiddle69, you can see that a form like this would produce
a multipart body that looks like what the example produces.

mime/form.html

1 <form method="POST" enctype="multipart/form-data" action="/server">

2 <input type="text" name="book" />

3 <input type="text" name="chapter" />

4 <input type="text" name="examples" />

5 <input type="file" name="uploaded" />

6 <input type="submit" value="Submit" />

7 </form>

On with the example!

68http://requestb.in/
69http://jsfiddle.net/

http://requestb.in/
http://jsfiddle.net/
http://requestb.in/
http://jsfiddle.net/

mime 260

mime/generate.go

1 package main

2

3 import (

4 "bytes"

5 "io"

6 "log"

7 "mime/multipart"

8 "os"

9)

10

11 func Must(err error) {

12 if err != nil {

13 log.Fatalf("WriteField failed: %s", err)

14 }

15 }

16

17 func WriteFile(w io.Writer, filename string) {

18 file, err := os.Open(filename)

19 if err != nil {

20 log.Fatalf("failed opening file: %s", err)

21 }

22 defer file.Close()

23

24 _, err = io.Copy(w, file)

25 if err != nil {

26 log.Fatalf("failed writing file: %s", err)

27 }

28 }

29

30 func Generate(w io.Writer) string {

31 wr := multipart.NewWriter(w)

32 defer wr.Close()

33 Must(wr.WriteField("book", "Go, The Standard Library"))

34 Must(wr.WriteField("chapter", "mime"))

35 Must(wr.WriteField("examples", "2"))

36 ff, err := wr.CreateFormFile("uploaded", "generate.go")

37 if err != nil {

38 log.Fatalf("failed creating form file: %s", err)

39 }

40 WriteFile(ff, "generate.go")

41 return wr.Boundary()

mime 261

42 }

43

44 func Parse(r io.Reader, boundary string) {

45 rd := multipart.NewReader(r, boundary)

46 form, err := rd.ReadForm(1024 * 1024 * 1024)

47 if err != nil {

48 log.Fatalf("failed reading form: %s", err)

49 }

50

51 for name, value := range form.Value {

52 log.Printf("got form data %s: %s", name, value)

53 }

54

55 for name, fhs := range form.File {

56 for _, fh := range fhs {

57 log.Printf("got form file %s: %s", name, fh.Filename)

58 }

59 }

60 }

61

62 func main() {

63 var buffer bytes.Buffer

64 boundary := Generate(&buffer)

65 log.Println(buffer.String())

66 Parse(&buffer, boundary)

67 }

net (wip)
mail

os
The os package is a package you’ll use fairly often, but probably just for the file
IO and and maybe pulling things from the environment. If you’re building some
system utility, you’ll be using a lot more of this package.

With the os package we have access to our 3 basic IO pipes, stdin, stdout, and stderr.
We also get access to a null device, basically a place we canwrite data we don’t care
about.

We can change permissions on files, inspect the environment, and create and
remove files. We can read and write files too, and inspect their metadata.

We can start other processes and provide input to them and read their output. We
can also respond to incoming signals and make raw syscalls.

The os package is an important one, and provides the hooks into the operating
system to get real work done. It should be every gopher’s goal to learn it front and
back. As a result, there are a lot of examples in this chapter.

stdio and DevNull

The 3 basic IO pipes every process has are stdin, stdout, and stderr. stdin allows the
process to read data from outside itself. stdout is the main place the process can
write output. stderr is where the process should write error information.

We also have a null device, which is essentially a black hole for writing data. It
writes, but goes nowhere.

Run this program by piping in some data: echo data | go run stdio.go.

os/stdio.go

1 package main

2

3 import (

4 "io"

5 "io/ioutil"

6 "log"

7 "os"

8)

9

os 264

10 func init() {

11 log.SetFlags(0)

12 log.SetPrefix("» ")

13 }

14

15 func DemoStdin() {

16 input, err := ioutil.ReadAll(os.Stdin)

17 if err != nil {

18 log.Fatalf("failed reading stdin: %s", err)

19 }

20 log.Printf("read %d from stdin: %s", len(input), input)

21 }

22

23 func DemoDevNull() {

24 devNull, err := os.Open(os.DevNull)

25 if err != nil {

26 log.Fatalf("failed opening null device: %s", err)

27 }

28 defer devNull.Close()

29 io.WriteString(devNull, "This is going nowhere\n")

30 }

31

32 func main() {

33 io.WriteString(os.Stdout, "This is stdout\n")

34 io.WriteString(os.Stderr, "This is stderr\n")

35 DemoDevNull()

36 DemoStdin()

37 }

Output:

1 This is stdout

2 This is stderr

3 » read 25 from stdin: This data going on stdin

Permissions

Sometimes, file permissions just aren’t correct. Sometimes, you need to set specific
permissions on files you create. You can change two kinds of permissions: themode
of the file, and the owner (user and group). You could do thiswith bash, orwhatever

os 265

your preferred shell is, but sometimes you need to manipulate permissions as part
of a larger program where bash isn’t appropriate.

You can also change the access andmodified times of a file, if youwant to get sneaky
like that.

You might be looking at this example and wondering where the os.Chown example
is. Well, the annoying part is that function works with uid and gid and not names.
There also aren’t any places to convert names to ids. Yes, you could probably write
some syscalls for it, or even parse /etc/group. I’ll leave this as an exercise for the
reader.

os/permissions.go

1 package main

2

3 import (

4 "flag"

5 "log"

6 "os"

7 "strconv"

8)

9

10 var (

11 chmod = flag.String("chmod", "", "the file to chmod")

12 mode = flag.String("mode", "", "the mode to set")

13)

14

15 func init() {

16 log.SetFlags(0)

17 log.SetPrefix("» ")

18 flag.Parse()

19 }

20

21 func main() {

22 fileMode, err := strconv.ParseUint(*mode, 8, 32)

23 if err != nil {

24 log.Fatalf("invalid mode: %s", err)

25 }

26

27 err = os.Chmod(*chmod, os.FileMode(fileMode))

28 if err != nil {

os 266

29 log.Fatalf("failed chmod: %s", err)

30 }

31 }

String Expansion

A common task when writing system utilities is expanding string values using the
environment variables. Luckily the os package has what we need in the form of the
ExpandEnv function. It also has abstracted the pattern to Expand so you can provide
your own function to retrieve values. As the documentation points out, ExpandEnv(s
string) is just Expand(s string, os.Getenv). We’ll look at both of these functions.

os/expand.go

1 package main

2

3 import (

4 "flag"

5 "log"

6 "os"

7)

8

9 type expandable map[string]string

10

11 func (e expandable) Expand(s string) string {

12 return e[s]

13 }

14

15 func init() {

16 log.SetFlags(0)

17 log.SetPrefix("» ")

18 flag.Parse()

19 }

20

21 func DemoExpandEnv() {

22 log.Println(os.ExpandEnv("$HOME"))

23 log.Println(os.ExpandEnv("$PWD"))

24 }

25

26 func DemoExpand() {

27 exp := expandable(map[string]string{

28 "name": "Superman",

os 267

29 "alter": "Clark Kent",

30 })

31 log.Println(os.Expand("${name} is really ${alter}", exp.Expand))

32 }

33

34 func main() {

35 DemoExpandEnv()

36 DemoExpand()

37 }

Output:

1 » /Users/darkhelmet

2 » /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscript/code/os

3 » Superman is really Clark Kent

Moving Around the Environment

Frequently you need to move around the filesystem to get your work done. Some-
times you need want to switch into a specific directory to simply make life easier.
Luckily moving around is dead simple given two simple functions provided by the
os package: Chdir and Getwd.

The important stuff happens in the RunInDir function. We use Getwd to figure out
where we are, so we can return to it using defer (not strictly required, but it’s good
to “clean up”). We then use Chdir to do the actual moving around.

os/moving.go

1 package main

2

3 import (

4 "flag"

5 "io/ioutil"

6 "log"

7 "os"

8 "path/filepath"

9)

10

11 func init() {

12 log.SetFlags(0)

13 log.SetPrefix("» ")

os 268

14 flag.Parse()

15 }

16

17 func RunInDir(dir string, f func(string)) {

18 dir, err := filepath.Abs(dir)

19 if err != nil {

20 log.Fatalf("failed getting absolute directory path: %s", err)

21 }

22

23 cwd, err := os.Getwd()

24 if err != nil {

25 log.Fatalf("failed to get working directory: %s", err)

26 }

27

28 os.Chdir(dir)

29 defer os.Chdir(cwd)

30 f(dir)

31 }

32

33 func Dir() []os.FileInfo {

34 files, err := ioutil.ReadDir(".")

35 if err != nil {

36 log.Fatalf("failed reading directory: %s", err)

37 }

38 return files

39 }

40

41 func main() {

42 f := func(cwd string) {

43 files, err := ioutil.ReadDir(".")

44 if err != nil {

45 log.Fatalf("failed reading directory: %s", err)

46 }

47 log.Printf("found %d files in %s", len(files), cwd)

48 }

49

50 RunInDir(".", f)

51 RunInDir("..", f)

52 RunInDir("../..", f)

53 RunInDir("../log", f)

54 RunInDir("../../..", f)

55 }

os 269

Output:

1 » found 8 files in /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscri\

2 pt/code/os

3 » found 38 files in /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscr\

4 ipt/code

5 » found 15 files in /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscr\

6 ipt

7 » found 2 files in /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscri\

8 pt/code/log

9 » found 4 files in /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib

Inspecting the Environment

Another important task is inspecting the environment a process is running in, and
inspecting the process itself. Getting environment variables, the process ID, and
information about the running user are all common tasks. Naturally, the os package
provides some simple functions to take care of this business.

This example is more interesting if you compile it and do some permission
munging before hand. Compile with go build inspecting.go. Then sudo chown root

inspecting and sudo chmod u+s inspecting. Now, when you run the program with
./inspecting, you should see that the user id is your user’s id, but the effective user
id, is 0, that of the root user. This way, you can get the id of the user actually
running the program, but also inspect the effective id. The effective ids are used
when it comes to checking permissions.

os/inspecting.go

1 package main

2

3 import (

4 "flag"

5 "log"

6 "os"

7)

8

9 func init() {

10 log.SetFlags(0)

11 log.SetPrefix("» ")

os 270

12 flag.Parse()

13 }

14

15 func DemoProcessIds() {

16 log.Printf("process id: %d", os.Getpid())

17 log.Printf("parent process id: %d", os.Getppid())

18 }

19

20 func DemoUserInfo() {

21 // actually running the program

22 log.Printf("user id: %d", os.Getuid())

23 log.Printf("group id: %d", os.Getgid())

24

25 // permissions

26 log.Printf("effective user id: %d", os.Geteuid())

27 log.Printf("effective group id: %d", os.Getegid())

28

29 groups, err := os.Getgroups()

30 if err != nil {

31 log.Fatalf("failed getting groups: %s", err)

32 }

33 log.Printf("groups you belong to: %d", groups)

34 }

35

36 func DemoExtra() {

37 log.Printf("$GOPATH: %s", os.Getenv("GOPATH"))

38 log.Printf("$TMPDIR: %s", os.Getenv("TMPDIR"))

39

40 log.Printf("pagesize: %d bytes", os.Getpagesize())

41

42 hostname, err := os.Hostname()

43 if err != nil {

44 log.Fatalf("failed getting hostname: %s", err)

45 }

46 log.Printf("hostname: %s", hostname)

47 }

48

49 func main() {

50 DemoProcessIds()

51 DemoUserInfo()

52 DemoExtra()

53 }

os 271

Output:

1 » process id: 26500

2 » parent process id: 26499

3 » user id: 501

4 » group id: 20

5 » effective user id: 0

6 » effective group id: 20

7 » groups you belong to: [20 503 501 12 61 79 80 81 98 399 502 402 33 100 204 398]

8 » $GOPATH: /Users/darkhelmet/dev/go

9 » $TMPDIR: /var/folders/t2/k4y07r396d5006j7y9w9zldc0000gn/T/

10 » pagesize: 4096 bytes

11 » hostname: ada.local

Creating and Removing Files and Directories

Creating directories, removing them, renaming things, and managing links are all
common tasks when dealing with an operating system. Luckily the os package has
you covered. You can make & remove directories, remove files, rename things,
manage links, and even change the size of files.

You can run this example, but it will cleanup everything it does. You might want
to comment out a bunch of lines, mainly cleanup, and see how the filesystem
changes. Clean things up yourself, then uncomment things, rinse and repeat until
you understand all the changes.

os/managing_files.go

1 package main

2

3 import (

4 "flag"

5 "log"

6 "os"

7)

8

9 func init() {

10 log.SetFlags(0)

11 log.SetPrefix("» ")

12 flag.Parse()

os 272

13 }

14

15 func must(err error) {

16 if err != nil {

17 log.Fatalf("failed operation: %s", err)

18 }

19 }

20

21 func DemoMkdir() {

22 must(os.MkdirAll("foo/bar/baz", 0755))

23 must(os.Mkdir("example", 0755))

24 }

25

26 func CleanupDir() {

27 must(os.RemoveAll("foo"))

28 must(os.Remove("example"))

29 }

30

31 func DemoLink() {

32 must(os.Symlink("Makefile", "Makefile-symlink"))

33 must(os.Link("Makefile", "Makefile-link"))

34 }

35

36 func CleanupLink() {

37 must(os.Remove("Makefile-symlink"))

38 must(os.Remove("Makefile-link"))

39 }

40

41 func DemoRename() {

42 must(os.Rename("Makefile", "makefile"))

43 }

44

45 func CleanupRename() {

46 must(os.Rename("makefile", "Makefile"))

47 }

48

49 func DemoTruncate() {

50 // Look at the size of Makefile after this

51 // Content hasn't changed, but it's magically 1kb

52 must(os.Truncate("Makefile", 1024))

53 }

54

os 273

55 func CleanupTruncate() {

56 must(os.Truncate("Makefile", 315))

57 }

58

59 func main() {

60 DemoMkdir()

61 CleanupDir()

62 DemoLink()

63 CleanupLink()

64 DemoRename()

65 CleanupRename()

66 DemoTruncate()

67 CleanupTruncate()

68 }

File IO

File IO is of course another big important task when writing system software, or
frankly any software. Need to read a configuration file? File IO.Want to talk to your
database via a UNIX socket? That’s file IO.Writing some fancyNoSQL database? You
better believe that’s file IO.

The os package has the File type, and functions like Create, NewFile, Open, and OpenFile

to help do all the file IO things you could want. The actually os.File type is a struct
that has a variety of basicmethods, but it also abides by various interface types, such
as io.Reader, io.Writer, and others. Thismeans if the file doesn’t have themethod you
want, you can probably dive into the io package for help.

os/file_io.go

1 package main

2

3 import (

4 "io/ioutil"

5 "log"

6 "os"

7)

8

9 func init() {

10 log.SetFlags(0)

11 log.SetPrefix("» ")

12 }

os 274

13

14 func DemoCreate() {

15 f, err := os.Create("demo.txt") // Truncates if file already exists, be careful!

16 if err != nil {

17 log.Fatalf("failed creating file: %s", err)

18 }

19 defer f.Close() // Make sure to close the file when you're done

20

21 n, err := f.WriteString(`"And live from New York, it's Saturday Night!" - Cast \

22 of SNL`)

23

24 if err != nil {

25 log.Fatalf("failed writing to file: %s", err)

26 }

27 log.Printf("wrote %d bytes to %s", n, f.Name())

28 }

29

30 func DemoOpenFile() {

31 // OpenFile lets you customize whether the file is truncated, must exist, or mu\

32 st not exist, etc

33 // Open is your basic way to open a file for reading, but we need to write.

34 f, err := os.OpenFile("demo.txt", os.O_WRONLY|os.O_APPEND, 0644)

35 if err != nil {

36 log.Fatalf("failed opening file: %s", err)

37 }

38 defer f.Close()

39

40 n, err := f.WriteString("\nSince 1985\n")

41 if err != nil {

42 log.Fatalf("failed writing to file: %s", err)

43 }

44 log.Printf("wrote another %d bytes to %s", n, f.Name())

45 }

46

47 func DemoWriteAt() {

48 // In DemoOpenFile, we wrote the wrong date, let's fix that

49 f, err := os.OpenFile("demo.txt", os.O_RDWR, 0644)

50 if err != nil {

51 log.Fatalf("failed opening file: %s", err)

52 }

53 defer f.Close()

54

os 275

55 n, err := f.WriteAt([]byte{'7'}, 69)

56 if err != nil {

57 log.Fatalf("failed writing to file: %s", err)

58 }

59 log.Printf("wrote another %d bytes to %s", n, f.Name())

60 }

61

62 func DemoRead() {

63 f, err := os.Open("demo.txt")

64 if err != nil {

65 log.Fatalf("failed opening file: %s", err)

66 }

67 defer f.Close()

68

69 data, err := ioutil.ReadAll(f)

70 if err != nil {

71 log.Fatalf("failed reading %s: %s", f.Name(), err)

72 }

73 log.Printf("contents:\n%s", data)

74 }

75

76 func main() {

77 DemoCreate()

78 DemoRead()

79 DemoOpenFile()

80 DemoRead()

81 DemoWriteAt()

82 DemoRead()

83 }

Output:
1 » wrote 60 bytes to demo.txt

2 » contents:

3 "And live from New York, it's Saturday Night!" - Cast of SNL

4 » wrote another 12 bytes to demo.txt

5 » contents:

6 "And live from New York, it's Saturday Night!" - Cast of SNL

7 Since 1985

8 » wrote another 1 bytes to demo.txt

9 » contents:

10 "And live from New York, it's Saturday Night!" - Cast of SNL

11 Since 1975

os 276

FileInfo

Of course, since directories are just files, you can do fun things with directories
as well, like read their contents. If you open a directory, you can use methods like
Readdir and Readdirnames to read all the entries.

os/file_info.go

1 package main

2

3 import (

4 "log"

5 "os"

6)

7

8 func init() {

9 log.SetFlags(0)

10 log.SetPrefix("» ")

11 }

12

13 func DemoReaddir() {

14 f, err := os.Open(".")

15 if err != nil {

16 log.Fatalf("failed opening directory: %s", err)

17 }

18 defer f.Close()

19

20 fileInfos, err := f.Readdir(0)

21 if err != nil {

22 log.Fatalf("failed reading directory: %s", err)

23 }

24

25 for _, finfo := range fileInfos {

26 log.Printf("Name: %s, Size: %db", finfo.Name(), finfo.Size())

27 }

28 }

29

30 func DemoReaddirnames() {

31 f, err := os.Open(".")

32 if err != nil {

33 log.Fatalf("failed opening directory: %s", err)

34 }

35 defer f.Close()

os 277

36

37 names, err := f.Readdirnames(0)

38 if err != nil {

39 log.Fatalf("failed reading directory: %s", err)

40 }

41

42 for _, name := range names {

43 log.Println(name)

44 }

45 }

46

47 func main() {

48 DemoReaddir()

49 DemoReaddirnames()

50 }

Output:

1 » Name: .gitignore, Size: 20b

2 » Name: demo.txt, Size: 72b

3 » Name: expand.go, Size: 537b

4 » Name: expand.txt, Size: 129b

5 » Name: file_info.go, Size: 785b

6 » Name: file_info.txt, Size: 0b

7 » Name: file_io.go, Size: 1824b

8 » Name: file_io.txt, Size: 349b

9 » Name: inspecting, Size: 2081952b

10 » Name: inspecting.go, Size: 1018b

11 » Name: inspecting.txt, Size: 360b

12 » Name: Makefile, Size: 315b

13 » Name: managing_files.go, Size: 1076b

14 » Name: moving.go, Size: 920b

15 » Name: moving.txt, Size: 433b

16 » Name: permissions.go, Size: 474b

17 » Name: stdio.go, Size: 645b

18 » Name: stdio.txt, Size: 78b

19 » .gitignore

20 » demo.txt

21 » expand.go

22 » expand.txt

23 » file_info.go

24 » file_info.txt

os 278

25 » file_io.go

26 » file_io.txt

27 » inspecting

28 » inspecting.go

29 » inspecting.txt

30 » Makefile

31 » managing_files.go

32 » moving.go

33 » moving.txt

34 » permissions.go

35 » stdio.go

36 » stdio.txt

Process Creation, Management, and Signals

The os package has a few different ways to deal with processes. You can create new
processes, provide them input and capture their output. You can manage existing
processes, sending them signals, and you can wait on them to finish. All pretty
standard stuff.

Let’s look at os/exec first. This is your basic use case, running an external process,
maybe providing some input, and reading the output.

os/exec.go

1 package main

2

3 import (

4 "io"

5 "log"

6 "os/exec"

7)

8

9 func init() {

10 log.SetFlags(0)

11 log.SetPrefix("» ")

12 }

13

14 func DemoExec() {

15 cmd := exec.Command("date", "-u")

16 out, err := cmd.Output()

17 if err != nil {

18 log.Printf("failed running command: %s", err)

os 279

19 }

20 log.Printf("date -u: %s", out)

21 }

22

23 func DemoExecInput() {

24 cmd := exec.Command("ruby", "-r", "active_support/all")

25

26 wr, err := cmd.StdinPipe()

27 if err != nil {

28 log.Fatalf("failed getting stdin: %s", err)

29 }

30

31 rd, _ := cmd.StdoutPipe()

32 if err != nil {

33 log.Fatalf("failed getting stdout: %s", err)

34 }

35

36 err = cmd.Start()

37 if err != nil {

38 log.Fatalf("failed starting command: %s", err)

39 }

40 defer cmd.Wait()

41

42 io.WriteString(wr, "puts 1.hour;")

43 io.WriteString(wr, "puts 1.day;")

44 wr.Close()

45

46 hour := make([]byte, 5)

47 rd.Read(hour)

48 log.Printf("1.hour: %s", hour)

49

50 day := make([]byte, 6)

51 rd.Read(day)

52 log.Printf("1.hour: %s", day)

53 }

54

55 func main() {

56 DemoExec()

57 DemoExecInput()

58 }

os 280

Output:

1 » date -u: Tue 24 Nov 2015 14:00:59 UTC

2 » 1.hour: 3600

3 » 1.hour: 86400

Other things can be done with the API found in the base os package. It’s more
tailored to dealing with existing processes versus starting new ones. For example,
if you wanted to build your own htop clone, you’ll want use the functions exposed
in os.

We’ll look at using signals to control the process as well. When handling signals,
there are 3 steps:

1. Make a channel of os.Signal
2. Call signal.Notify with your channel the signals you care about
3. Start a goroutine which pulls from the channel and deals with the signals

Using a single channel and goroutine with a switch statement is a simple under-
standable way to process the signals.

os/processes.go

1 package main

2

3 import (

4 "log"

5 "os"

6 "os/signal"

7 "sync/atomic"

8 "syscall"

9 "time"

10)

11

12 var (

13 signals = make(chan os.Signal, 1)

14 val int32

15)

16

17 func init() {

18 log.SetFlags(0)

19 log.SetPrefix("» ")

20

os 281

21 signal.Notify(signals, syscall.SIGUSR1, syscall.SIGUSR2)

22 go handleSignals()

23 }

24

25 func handleSignals() {

26 for signal := range signals {

27 switch signal {

28 case syscall.SIGUSR1:

29 log.Println("got USR1, adding 2")

30 atomic.AddInt32(&val, 2)

31 case syscall.SIGUSR2:

32 log.Println("got USR2, subtracting 1")

33 atomic.AddInt32(&val, -1)

34 }

35 log.Printf("val: %d", val)

36 }

37 }

38

39 func main() {

40 os.Getpid()

41 p, _ := os.FindProcess(os.Getpid())

42

43 ticker := time.Tick(1 * time.Second)

44 for now := range ticker {

45 switch {

46 case val > 5:

47 p.Kill()

48 case now.Second()%2 == 0: // even

49 p.Signal(syscall.SIGUSR1)

50 case now.Second()%2 == 1: // odd

51 p.Signal(syscall.SIGUSR2)

52 }

53 }

54 }

os 282

Output:

1 » got USR1, adding 2

2 » val: 2

3 » got USR2, subtracting 1

4 » val: 1

5 » got USR1, adding 2

6 » val: 3

7 » got USR2, subtracting 1

8 » val: 2

9 » got USR1, adding 2

10 » val: 4

11 » got USR2, subtracting 1

12 » val: 3

13 » got USR1, adding 2

14 » val: 5

15 » got USR2, subtracting 1

16 » val: 4

17 » got USR1, adding 2

18 » val: 6

19 signal: killed

Users

Finally, we’ll look at the os/user package, which lets you query the system about the
users on it. You can lookup users by name or id, or just get the current user. It’s
nothing to spectacular, but it’s functionality you can use, so let’s check it out.

os/user.go

1 package main

2

3 import (

4 "log"

5 "os/user"

6)

7

8 func init() {

9 log.SetFlags(0)

10 log.SetPrefix("» ")

11 }

12

os 283

13 func DemoCurrent() {

14 u, _ := user.Current()

15 log.Printf("%#v", u)

16 }

17

18 func DemoLookup() {

19 u, _ := user.Lookup("nobody")

20 log.Printf("%#v", u)

21 }

22

23 func DemoLookupId() {

24 u, _ := user.LookupId("1")

25 log.Printf("%#v", u)

26 }

27

28 func main() {

29 DemoCurrent()

30 DemoLookup()

31 DemoLookupId()

32 }

Output:

1 » &user.User{Uid:"501", Gid:"20", Username:"darkhelmet", Name:"Daniel Huckstep",\

2 HomeDir:"/Users/darkhelmet"}

3 » &user.User{Uid:"4294967294", Gid:"4294967294", Username:"nobody", Name:"Unpriv\

4 ileged User", HomeDir:"/var/empty"}

5 » &user.User{Uid:"1", Gid:"1", Username:"daemon", Name:"System Services", HomeDi\

6 r:"/var/root"}

path
The pathpackage is used for dealingwith strings representing slash separated paths.

Okay, so why is there path/filepath as well? path assumes a forward slash (/) as the
separator and doesn’t make any other assumptions, like what is used to separate
lists of paths. The path/filepath package deals with different separators for different
operating systems. For example, Windows uses the backslash, where the rest of the
world uses a forward slash.

It can also deal with lists of paths and their operating system specific separators,
and has a way to recursively walk a directory structure.

The APIs are very straightforward, so let’s dive right in.

path

path/path.go

1 package main

2

3 import (

4 "flag"

5 "log"

6 "path"

7)

8

9 func main() {

10 var p string

11 flag.StringVar(&p, "path", "./foo/../baz.gif", "the path to examine")

12 flag.Parse()

13

14 log.Printf("p: %s", p)

15 log.Printf("Base(p): %s", path.Base(p))

16 log.Printf("Clean(p): %s", path.Clean(p))

17 log.Printf("Dir(p): %s", path.Dir(p))

18 log.Printf("Ext(p): %s", path.Ext(p))

19 log.Printf("IsAbs(p): %t", path.IsAbs(p))

20 log.Printf("Join(\"/fizz/bin\", p): %s", path.Join("/fizz/bin", p))

21

path 285

22 matched, err := path.Match("/*/bin/*.gif", p)

23 log.Printf("Match(\"/*/bin/*.gif\", p): %t, %v", matched, err)

24

25 matched, err = path.Match("/*/bin/*.gif", path.Join("/fizz/bin", p))

26 log.Printf("Match(\"/*/bin/*.gif\", Join(\"/fizz/bin\", p)): %t, %v", matched, \

27 err)

28

29 dir, file := path.Split(p)

30 log.Printf("Split(p): %s, %s", dir, file)

31 }

Pretty easy right? Try running itwith different arguments for -path to seewhat some
of the results are.

path/filepath

Howabout path/filepath?Again, run thiswith different arguments for -path, as some
operations need a file to actually exist, like EvalSymlinks.

path/filepath.go

1 package main

2

3 import (

4 "flag"

5 "log"

6 "os"

7 "path/filepath"

8)

9

10 var (

11 p string

12 walk string

13 ignore string

14 ignoreList []string

15)

16

17 type Walker struct {

18 NumDirs int

19 NumFiles int

20 }

21

path 286

22 func (w *Walker) Visit(path string, info os.FileInfo, err error) error {

23 if info.IsDir() {

24 base := filepath.Base(path)

25 for _, dir := range ignoreList {

26 if base == dir {

27 return filepath.SkipDir

28 }

29 }

30 w.NumDirs++

31 } else {

32 w.NumFiles++

33 }

34 return nil

35 }

36

37 func init() {

38 flag.StringVar(&p, "path", "./foo/../baz.gif", "the path to examine")

39 flag.StringVar(&walk, "walk", "..", "the path to walk")

40 flag.StringVar(&ignore, "ignore", ".git:.hg", "directories to ignore")

41 flag.Parse()

42

43 ignoreList = filepath.SplitList(ignore)

44 }

45

46 func main() {

47 log.Printf("p: %s", p)

48

49 abs, err := filepath.Abs(p)

50 log.Printf("Abs(p): %s, %v", abs, err)

51 log.Printf("Base(p): %s", filepath.Base(p))

52 log.Printf("Clean(p): %s", filepath.Clean(p))

53 log.Printf("Dir(p): %s", filepath.Dir(p))

54

55 sym, err := filepath.EvalSymlinks(p)

56 log.Printf("EvalSymlinks(p): %s, %v", sym, err)

57 log.Printf("Ext(p): %s", filepath.Ext(p))

58 log.Printf("FromSlash(p): %s", filepath.FromSlash(p))

59

60 glob, err := filepath.Glob("*.go")

61 log.Printf("Glob(\"*.go\"): %s, %v", glob, err)

62 log.Printf("IsAbs(p): %t", filepath.IsAbs(p))

63 log.Printf("Join(\"/fizz/bin\", p): %s", filepath.Join("/fizz/bin", p))

path 287

64

65 matched, err := filepath.Match("/*/bin/*.gif", p)

66 log.Printf("Match(\"/*/bin/*.gif\", p): %t, %v", matched, err)

67

68 matched, err = filepath.Match("/*/bin/*.gif", filepath.Join("/fizz/bin", p))

69 log.Printf("Match(\"/*/bin/*.gif\", Join(\"/fizz/bin\", p)): %t, %v", matched, \

70 err)

71

72 rel, err := filepath.Rel("/batman", "/path/file.go")

73 log.Printf("Rel(\"/batman\", \"/path/file.go\"): %s, %v", rel, err)

74

75 dir, file := filepath.Split(p)

76 log.Printf("Split(p): %s, %s", dir, file)

77

78 list := filepath.SplitList("/foo.go:/bar.go:/baz.go")

79 log.Printf("SplitList(\"/foo.go:/bar.go:/baz.go\"): %s", list)

80

81 var w Walker

82 filepath.Walk("..", (&w).Visit)

83 log.Printf("found %d directories and %d files", w.NumDirs, w.NumFiles)

84 }

find

Using filepath.Walk, and of course some other packages, we can replicate the
functionality of the UNIX find utility. It’s far from perfect, not exact, and obviously
doesn’t cover everything that find has to offer, but it’s a start and you can see how
you could implement the rest.

path/find.go

1 package main

2

3 import (

4 "flag"

5 "fmt"

6 "os"

7 "path/filepath"

8)

9

10 type FilterFunc func(path string, info os.FileInfo, err error) bool

11 type FilterChain []FilterFunc

path 288

12

13 var (

14 root string

15 ftype, name string

16 printNewline, print0 bool

17 filters FilterChain

18

19 output = func(s string) {}

20)

21

22 func init() {

23 flag.StringVar(&ftype, "type", "", "f for file, d for directory")

24 flag.StringVar(&name, "name", "", "find files/directories that match")

25 flag.BoolVar(&printNewline, "print", false, "print elements to stdout with newl\

26 ines separators")

27 flag.BoolVar(&print0, "print0", false, "print elements to stdout with NULL sepa\

28 rators")

29 flag.Parse()

30 root = flag.Arg(0)

31 if root == "" {

32 root = "."

33 }

34 }

35

36 func setupPrinting() {

37 if printNewline {

38 output = func(s string) { fmt.Println(s) }

39 } else if print0 {

40 output = func(s string) { fmt.Printf("%s\x00", s) }

41 } else {

42 output = func(s string) { fmt.Println(s) }

43 }

44 }

45

46 func nameFilter(path string, info os.FileInfo, err error) bool {

47 matched, err := filepath.Match(name, filepath.Base(path))

48 if err != nil {

49 fmt.Printf("failed matching: %s", err)

50 os.Exit(1)

51 }

52 return matched

53 }

path 289

54

55 func fileFilter(path string, info os.FileInfo, err error) bool {

56 return !info.IsDir()

57 }

58

59 func directoryFilter(path string, info os.FileInfo, err error) bool {

60 return info.IsDir()

61 }

62

63 func ok(path string, info os.FileInfo, err error) bool {

64 return true

65 }

66

67 func setupFilters() {

68 switch ftype {

69 case "f":

70 filters = append(filters, fileFilter)

71 case "d":

72 filters = append(filters, directoryFilter)

73 }

74

75 if name != "" {

76 filters = append(filters, nameFilter)

77 }

78

79 if len(filters) == 0 {

80 filters = append(filters, ok)

81 }

82 }

83

84 func walker(path string, info os.FileInfo, err error) error {

85 for _, filter := range filters {

86 if !filter(path, info, err) {

87 return nil

88 }

89 }

90 output(path)

91 return nil

92 }

93

94 func main() {

95 setupPrinting()

path 290

96 setupFilters()

97 filepath.Walk(root, walker)

98 }

reflect (wip)

regexp
The regexp package deals with, you guessed it, regular expressions.

First, you must compile an expression. You’ll probably want to compile a package
level variable using regexp.MustCompile, which will panic immediately at runtime.
This ensures that you’re only compiling the regexp once, and you avoid checking
the compile error every time.

Once you have your compiled expression, there are a whole slew of methods
following a pattern. They all start with Find. Find on its own works on bytes and
finds the first occurrence.

• Methods with All return all matching things instead of just the first.
• Methods with String work on string inputs and return string matches.
• Methods with Index returns indexes of matches.
• Methods with Submatch gives you information about capture groups in the
regexp.

There are alsomethods to replacematches, work on io.RuneReaders, and split strings.

The syntax is generally compatible with other languages like Ruby, Python, and
Perl, but not 100%. It gives up some things in favor of safe/predictable performance
characteristics. The regexp engine is based around re270 and more information
about the performance bits can be found here71. For full syntax, look at the
regexp/syntax package. You can optionally work with the POSIX compatible syntax
subset by compiling your regexp with CompilePOSIX.

The regexp/syntax package also provides ways to work with the regexp parse tree.

Matching

Matching is the basic thing everybody does with regular expressions, and it’s super
simple, so naturally the example is short.

70http://swtch.com/~rsc/regexp/regexp1.html
71http://swtch.com/~rsc/regexp/regexp1.html

http://swtch.com/~rsc/regexp/regexp1.html
http://swtch.com/~rsc/regexp/regexp1.html
http://swtch.com/~rsc/regexp/regexp1.html
http://swtch.com/~rsc/regexp/regexp1.html

regexp 293

regexp/matching.go

1 package main

2

3 import (

4 "bytes"

5 "log"

6 "regexp"

7)

8

9 var (

10 universes = regexp.MustCompile(`(batman and robin)|(thor and loki)`)

11 heroes = "batman and robin"

12)

13

14 func main() {

15 log.Println(universes.MatchString(heroes))

16 log.Println(universes.Match([]byte(heroes)))

17 rr := bytes.NewBufferString(heroes)

18 log.Println(universes.MatchReader(rr))

19

20 log.Println(universes.MatchString("batman and loki"))

21 }

Output:

1 2014/01/13 21:06:31 true

2 2014/01/13 21:06:31 true

3 2014/01/13 21:06:31 true

4 2014/01/13 21:06:31 false

Indexes

There’s only so far you can getwith knowing onlywhether the entire stringmatches
the regexp. The next step is finding the indexes of matches.

I won’t bother showing the non-string functions, since they operate the same as the
ones using strings, they just use byte slices.

regexp 294

regexp/indexes.go

1 package main

2

3 import (

4 "log"

5 "regexp"

6)

7

8 var (

9 eqn = "3x * 2y - 9 / 3 / 5 * 5"

10 mul = regexp.MustCompile(`\w+ * \w+`)

11 div = regexp.MustCompile(`\w+ / \w+`)

12)

13

14 func main() {

15 fmul := mul.FindStringIndex(eqn)

16 log.Println(fmul, eqn[fmul[0]:fmul[1]])

17

18 divs := div.FindAllStringIndex(eqn, -1)

19 log.Println("divs", divs)

20 for index, pair := range divs {

21 log.Printf("match %d: %s", index, eqn[pair[0]:pair[1]])

22 }

23 }

Output:

1 2014/01/13 21:06:17 [0 7] 3x * 2y

2 2014/01/13 21:06:17 divs [[10 15]]

3 2014/01/13 21:06:17 match 0: 9 / 3

In this example, note that FindAllStringIndex with the div regexp only matches 1
thing despite there being two division operations in the equation. This is because
the twooperations overlapwith the 3. It gets pickedup as part of the first operation,
but then the regexp starts reading at the space after 3 and can’t match a full
division, so you only get one match.

regexp 295

Capture Groups and Submatches

Submatches are the way to extract capture groups out of a string given a regexp.
We’ll parse an nginx log line.

regexp/submatches.go

1 package main

2

3 import (

4 "log"

5 "regexp"

6)

7

8 type Matcher struct {

9 *regexp.Regexp

10 }

11

12 func (m *Matcher) FindAllStringSubmatchMap(s string) map[string]string {

13 pairs := make(map[string]string)

14

15 // Ignore the first one, it's the "whole" match

16 subexpNames := m.SubexpNames()[1:]

17 submatches := m.FindAllStringSubmatch(s, -1)

18 if submatches == nil {

19 return pairs

20 }

21

22 // Ignore the first one, it's the "whole" match

23 for index, submatch := range submatches[0][1:] {

24 name := subexpNames[index]

25 pairs[name] = submatch

26 }

27 return pairs

28 }

29

30 var (

31 nginxLogFormat = &Matcher{regexp.MustCompile(`(?P<RemoteAddr>\S+) (?P<Host>\S+)\

32 - \[(?P<Time>[^\]]+)\] "(?P<Method>\S+) (?P<Path>\S+) [^"]+" (?P<Status>\d+) (?\

33 P<Bytes>\d+) "(?P<UserAgent>[^"]+)" "(?P<Referer>[^"]+)" (?P<RequestTime>\d+\.\d\

34 +)`)}

35 // log_format timed_combined '$remote_addr $host $remote_user [$time_local] "$r\

36 equest" $status $body_bytes_sent "$http_referer" "$http_user_agent" $request_tim\

regexp 296

37 e';

38 logLine = `74.86.158.107 example.com - [01/Dec/2013:18:07:26 -0700] "GET /en/la\

39 nding HTTP/1.1" 302 108 "-" "Mozilla/5.0+(compatible; UptimeRobot/2.0; http://ww\

40 w.uptimerobot.com/)" 0.087`

41)

42

43 func main() {

44 log.Printf("NumSubexp: %d", nginxLogFormat.NumSubexp())

45 subexpNames := nginxLogFormat.SubexpNames()

46 log.Printf("SubexpNames: %v", subexpNames)

47 submatches := nginxLogFormat.FindAllStringSubmatch(logLine, -1)

48 log.Println(submatches)

49 log.Println(nginxLogFormat.FindAllStringSubmatchMap(logLine))

50 }

Output:

1 2014/01/13 21:06:02 NumSubexp: 10

2 2014/01/13 21:06:02 SubexpNames: [RemoteAddr Host Time Method Path Status Bytes\

3 UserAgent Referer RequestTime]

4 2014/01/13 21:06:02 [[74.86.158.107 example.com - [01/Dec/2013:18:07:26 -0700] "\

5 GET /en/landing HTTP/1.1" 302 108 "-" "Mozilla/5.0+(compatible; UptimeRobot/2.0;\

6 http://www.uptimerobot.com/)" 0.087 74.86.158.107 example.com 01/Dec/2013:18:07\

7 :26 -0700 GET /en/landing 302 108 - Mozilla/5.0+(compatible; UptimeRobot/2.0; ht\

8 tp://www.uptimerobot.com/) 0.087]]

9 2014/01/13 21:06:02 map[Host:example.com Path:/en/landing Referer:Mozilla/5.0+(c\

10 ompatible; UptimeRobot/2.0; http://www.uptimerobot.com/) RemoteAddr:74.86.158.10\

11 7 Time:01/Dec/2013:18:07:26 -0700 Method:GET Status:302 Bytes:108 UserAgent:- Re\

12 questTime:0.087]

Replace

Replacing things in text is something everybody does with regular expressions, so
let’s look at that.

regexp 297

regexp/replace.go

1 package main

2

3 import (

4 "log"

5 "regexp"

6 "strings"

7)

8

9 var (

10 redaction = regexp.MustCompile(`(password|token)=(\w+)`)

11 pairs = regexp.MustCompile(`(\w+)=`)

12 logLine = `2013-12-02T02:40:57.049407+00:00 app: at=info method=POST path=/lo\

13 gin token=secret host=example.com password=sekrit connect=1ms service=82ms statu\

14 s=200 bytes=809`

15)

16

17 func main() {

18 log.Println(redaction.ReplaceAllString(logLine, "$1=[REDACTED]"))

19 log.Println(pairs.ReplaceAllStringFunc(logLine, strings.ToUpper))

20 }

Output:

1 2014/01/13 21:05:08 2013-12-02T02:40:57.049407+00:00 app: at=info method=POST pa\

2 th=/login token=[REDACTED] host=example.com password=[REDACTED] connect=1ms serv\

3 ice=82ms status=200 bytes=809

4 2014/01/13 21:05:08 2013-12-02T02:40:57.049407+00:00 app: AT=info METHOD=POST PA\

5 TH=/login TOKEN=secret HOST=example.com PASSWORD=sekrit CONNECT=1ms SERVICE=82ms\

6 STATUS=200 BYTES=809

io

The regexp package can also dealwith io things directly, specifically the io.RuneReader

interface. There are problems with this, in that it obviously has to read data, which
changes the state of the reader. If that’s not a problem for you and using the reader
makes sense, continue on. There is a limited set of methods, but they can be useful.

regexp 298

regexp/reader.go

1 package main

2

3 import (

4 "bufio"

5 "log"

6 "os"

7 "regexp"

8)

9

10 var (

11 function = regexp.MustCompile(`func (\w+)`)

12)

13

14 func main() {

15 file, err := os.Open("reader.go")

16 if err != nil {

17 log.Fatalf("failed opening file: %s", err)

18 }

19 defer file.Close()

20 rr := bufio.NewReader(file)

21 log.Println(function.MatchReader(rr))

22 }

Output:

1 2014/01/13 21:17:59 true

runtime
The runtime package is your window into the Go runtime. Yes, even though it’s a
compiled language, there’s still a runtime under the covers.

The big thing the runtime controls is the goroutines, so a lot of the functions deal
with that. It also keeps track of some metrics, can give you information about
memory usage, and a few other little things.

Some of the functions aren’t really supposed to be used by you, the average non-Go
runtime programmer, and are commented as such.

While not really specific to the runtime package, there are also a few environment
variables that you can use to control the runtime itself. Some of them do have
functions to set values while your program is running. The package docs do a good
job of covering their use, and you probably won’t need to use them unless you hit
a specific situation. If you find yourself in one of those fun debugging scenarios,
check the package docs.

Some of these are difficult to demo, but they are equally rarely used. You’ll probably
run into a problem and know the feature you need to fix it. In that case, check the
runtime package.

There are a few sub-packages as well to solve more specific problems: runtime/debug
and runtime/pprof.

Introspection

You can learn a few things about your program, like the compiler, language version,
GOOS, GOARCH, and GOROOT.

runtime 300

runtime/introspection.go

1 package main

2

3 import (

4 "log"

5 "runtime"

6)

7

8 func init() {

9 log.SetFlags(0)

10 log.SetPrefix("» ")

11 }

12

13 func main() {

14 log.Printf("GOOS:\t%s", runtime.GOOS)

15 log.Printf("GOARCH:\t%s", runtime.GOARCH)

16 log.Printf("GOROOT:\t%s", runtime.GOROOT())

17 log.Printf("Compiler:\t%s", runtime.Compiler)

18 log.Printf("Version:\t%s", runtime.Version())

19 }

Output:

1 » GOOS: darwin

2 » GOARCH: amd64

3 » GOROOT: /Users/darkhelmet/local/go

4 » Compiler: gc

5 » Version: go1.3

Goroutines

Need a goroutine to stay on one CPU? Need to exit from a goroutine immediately?
Need to see how many goroutines are running right now? The runtime package can
do that.

LockOSThread is useful if you’re interfacing with a C library that requires you stay
on the same thread, like the VLC library. Keep in mind this isn’t the same as CPU
affinity.

runtime 301

runtime/goroutines.go

1 package main

2

3 import (

4 "log"

5 "runtime"

6)

7

8 func init() {

9 log.SetFlags(0)

10 log.SetPrefix("» ")

11 }

12

13 func main() {

14 log.Printf("GOMAXPROCS: %d", runtime.GOMAXPROCS(0))

15 runtime.GOMAXPROCS(runtime.NumCPU()) // Use the whole CPU

16 log.Printf("GOMAXPROCS: %d", runtime.GOMAXPROCS(0))

17

18 log.Printf("There are %d goroutines running", runtime.NumGoroutine())

19

20 done := make(chan bool)

21 go func() {

22 log.Println("in the goroutine")

23

24 runtime.LockOSThread()

25 log.Println("locked to this OS thread")

26 runtime.Gosched() // Let the CPU go

27

28 runtime.UnlockOSThread()

29 log.Println("unlocked")

30 runtime.Gosched() // Let the CPU go

31

32 // runtime.Goexit() // Will cause a deadlock

33

34 done <- true

35 }()

36

37 log.Printf("There are %d goroutines running", runtime.NumGoroutine())

38 <-done

39 }

runtime 302

Output:

1 » GOMAXPROCS: 1

2 » GOMAXPROCS: 8

3 » There are 4 goroutines running

4 » There are 5 goroutines running

5 » in the goroutine

6 » locked to this OS thread

7 » unlocked

Memory

If you need to see the current state of memory, Go lets you get at that. You can also
force a GC run or set a finalizer on something.

Run this example a number of times to watch the runtime.MemStats values change.

runtime/memory.go

1 package main

2

3 import (

4 "fmt"

5 "log"

6 "runtime"

7)

8

9 func init() {

10 log.SetFlags(0)

11 log.SetPrefix("» ")

12 }

13

14 type movie struct {

15 Title string

16 }

17

18 func (m *movie) String() string {

19 return fmt.Sprintf("Movie{%s}", m.Title)

20 }

21

runtime 303

22 func DemoFinalizers() {

23 logging := make(chan string)

24

25 rockOfAges := &movie{"Rock of Ages"}

26 runtime.SetFinalizer(rockOfAges, func(m *movie) {

27 logging <- fmt.Sprintf("%s is being cleaned up", m)

28 close(logging)

29 })

30

31 rockOfAges = nil

32 runtime.GC() // Force a GC so the finalizer runs

33

34 for msg := range logging {

35 log.Println(msg)

36 }

37 }

38

39 func DemoMemstats() {

40 var ms runtime.MemStats

41 runtime.ReadMemStats(&ms)

42 log.Printf("Alloc:\t%db", ms.Alloc)

43 log.Printf("TotalAlloc:\t%db", ms.TotalAlloc)

44 log.Printf("Mallocs:\t%d", ms.Mallocs)

45 log.Printf("Frees:\t%d", ms.Frees)

46 log.Printf("PauseTotalNs:\t%dns", ms.PauseTotalNs)

47 }

48

49 func main() {

50 DemoFinalizers()

51 DemoMemstats()

52 }

Output:

1 » Movie{Rock of Ages} is being cleaned up

2 » Alloc: 126920b

3 » TotalAlloc: 131240b

4 » Mallocs: 108

5 » Frees: 20

6 » PauseTotalNs: 159355ns

runtime 304

Callstack

If you want to inspect the callstack, runtime can make that happen.

runtime/callstack.go

1 package main

2

3 import (

4 "log"

5 "runtime"

6)

7

8 func init() {

9 log.SetFlags(0)

10 log.SetPrefix("» ")

11 }

12

13 func PrintStack() {

14 stack := make([]byte, 1024)

15 i := runtime.Stack(stack, false)

16 log.Printf("%s", stack[0:i])

17 }

18

19 func C() {

20 for i := 0; i < 6; i++ {

21 log.Println(runtime.Caller(i))

22 }

23 }

24

25 func B() {

26 C()

27 }

28

29 func A() {

30 B()

31 }

32

33 func main() {

34 PrintStack()

35 A()

36 }

runtime 305

Output:

1 » goroutine 16 [running]:

2 main.PrintStack()

3 /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscript/code/runtime/ca\

4 llstack.go:15 +0x76

5 main.main()

6 /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscript/code/runtime/ca\

7 llstack.go:34 +0x1a

8 » 8681 /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscript/code/runt\

9 ime/callstack.go 21 true

10 » 9034 /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscript/code/runt\

11 ime/callstack.go 26 true

12 » 9066 /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscript/code/runt\

13 ime/callstack.go 30 true

14 » 9103 /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscript/code/runt\

15 ime/callstack.go 35 true

16 » 73850 /Users/darkhelmet/local/go/src/pkg/runtime/proc.c 247 true

17 » 84032 /Users/darkhelmet/local/go/src/pkg/runtime/proc.c 1445 true

runtime/debug

This package has some utility functions to make your life easier when debugging
interesting things. It also has some functions to change parts of the runtime that
should probably only be used when you are debugging something or if you really
knowwhat you’re doing. You can changewhen the GC runs for example, which isn’t
something you normally want to mess with.

As with the other examples, this is pretty simple, and there’s other things you can
do, but you really need a reason to be poking around in here. It’s not a package
you’ll be in a lot.

runtime/debug.go

1 package main

2

3 import (

4 "flag"

5 "log"

6 "runtime/debug"

7)

8

9 var (

runtime 306

10 gcPercent = flag.Int("gc", 100, "garbage collection target percentage")

11)

12

13 func init() {

14 log.SetFlags(0)

15 log.SetPrefix("» ")

16 }

17

18 func C() {

19 debug.PrintStack()

20 }

21

22 func B() {

23 C()

24 }

25

26 func A() {

27 B()

28 }

29

30 func DemoGCStats() {

31 var gc debug.GCStats

32 debug.ReadGCStats(&gc)

33 log.Printf("LastGC:\t%s", gc.LastGC)

34 log.Printf("PauseTotal:\t%s", gc.PauseTotal)

35 log.Printf("NumGC:\t%d", gc.NumGC)

36 log.Printf("Pause:\t%s", gc.Pause)

37 }

38

39 func main() {

40 flag.Parse()

41 debug.SetGCPercent(*gcPercent)

42 A()

43 DemoGCStats()

44 }

runtime 307

Output:

1 /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscript/code/runtime/deb\

2 ug.go:19 (0x206a)

3 C: debug.PrintStack()

4 /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscript/code/runtime/deb\

5 ug.go:23 (0x208a)

6 B: C()

7 /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscript/code/runtime/deb\

8 ug.go:27 (0x20aa)

9 A: B()

10 /Users/darkhelmet/dev/github/darkhelmet/go-thestdlib/manuscript/code/runtime/deb\

11 ug.go:42 (0x2367)

12 main: A()

13 /Users/darkhelmet/local/go/src/pkg/runtime/proc.c:247 (0x1209a)

14 main: main·main();

15 /Users/darkhelmet/local/go/src/pkg/runtime/proc.c:1445 (0x14860)

16 goexit: runtime·goexit(void)

17 » LastGC: 2014-07-01 23:39:07.601611649 -0600 MDT

18 » PauseTotal: 189.501us

19 » NumGC: 3

20 » Pause: [51.426us 45.349us 92.726us]

runtime/pprof

This package can do performance tracing, and write it out so that the pprof tool can
read it.

As per the docs, this is pretty much useless on OSX, so run it on Linux if you can.
It’s also not a very exciting program, so the profiles are similarly unexciting.

runtime 308

runtime/pprof.go

1 package main

2

3 import (

4 "log"

5 "os"

6 "runtime/pprof"

7)

8

9 const Flags = os.O_CREATE | os.O_TRUNC | os.O_WRONLY

10

11 func DumpHeap(name string) {

12 file, err := os.OpenFile(name, Flags, 0644)

13 if err != nil {

14 log.Fatalln(err)

15 }

16 defer file.Close()

17 pprof.Lookup("heap").WriteTo(file, 0)

18 }

19

20 func main() {

21 file, err := os.OpenFile("cpu.prof", Flags, 0644)

22 if err != nil {

23 log.Fatalln(err)

24 }

25 defer file.Close()

26 err = pprof.StartCPUProfile(file)

27 if err != nil {

28 log.Fatalln(err)

29 }

30 defer pprof.StopCPUProfile()

31

32 DumpHeap("before.heap")

33

34 fib := []int{0, 1}

35 for i := 0; i < 1000000; i++ {

36 fib = append(fib, fib[i]+fib[i+1])

37 }

38

39 DumpHeap("after.heap")

40 }

sort
The sort package handles, you guessed it, sorting things. It can sort anything that
follows the interface it defines, which is a simple 3 method interface. All it needs
are:

• Len() int to provide the number of elements in the collection
• Less(i, j int) bool to return true if you want the element at index i to appear
before the element at index j.

• Swap(i, j int) naturally swaps the elements at the given indexes.

Normally you’d have to define thesemethods yourself on your own data structures,
but the sort package provides some helpers to sort slices of float64, int, and string

values.

It can also easily sort in reverse order, do a stable sort,72 and also implements a
generic binary search function, as well as binary sort functions for float64, int, and
string slices.

One last important note, is that the sorting happens in place. Copy your data if you
need to preserve the original order.

Basic Sorting

We’ll first look at using the builtin helpers for the 3 simple types, and then building
your own data structure which implements the interface.

sort/basic_sorting.go

1 package main

2

3 import (

4 "log"

5 "sort"

6)

7

8 type Question struct {

72http://en.wikipedia.org/wiki/Sorting_algorithm#Stability

http://en.wikipedia.org/wiki/Sorting_algorithm#Stability

sort 310

9 Q, A string

10 PositionOnExam int

11 }

12

13 type Exam []Question

14

15 func (e Exam) Len() int {

16 return len(e)

17 }

18

19 func (e Exam) Less(i, j int) bool {

20 return e[i].PositionOnExam < e[j].PositionOnExam

21 }

22

23 func (e Exam) Swap(i, j int) {

24 e[i], e[j] = e[j], e[i]

25 }

26

27 func sortInts() {

28 i := []int{5, 2, 9, 8, 7}

29 log.Println(i, sort.IntsAreSorted(i))

30 sort.Ints(i)

31 log.Println(i, sort.IntsAreSorted(i))

32 }

33

34 func sortStrings() {

35 s := []string{"robin", "batman", "thor", "loki", "captain america"}

36 log.Println(s, sort.StringsAreSorted(s))

37 sort.Strings(s)

38 log.Println(s, sort.StringsAreSorted(s))

39 }

40

41 func sortFloats() {

42 f := []float64{1.5, 2.3, 0.5, 0.4}

43 log.Println(f, sort.Float64sAreSorted(f))

44 sort.Float64s(f)

45 log.Println(f, sort.Float64sAreSorted(f))

46 }

47

48 func sortCustomCollection() {

49 exam := Exam{

50 {Q: "How much wood...", A: "A lot", PositionOnExam: 4},

sort 311

51 {Q: "When did WWII start?", A: "1939", PositionOnExam: 5},

52 {Q: "What color is the sky?", A: "Blue", PositionOnExam: 2},

53 {Q: "Who builds the iPhone?", A: "Apple", PositionOnExam: 1},

54 {Q: "Why is Go awesome?", A: "Lots of reasons", PositionOnExam: 3},

55 }

56 log.Println(exam, sort.IsSorted(exam))

57 sort.Sort(exam)

58 log.Println(exam, sort.IsSorted(exam))

59 }

60

61 func main() {

62 sortInts()

63 sortStrings()

64 sortFloats()

65 sortCustomCollection()

66 }

Output:

1 2014/01/13 23:36:09 [5 2 9 8 7] false

2 2014/01/13 23:36:09 [2 5 7 8 9] true

3 2014/01/13 23:36:09 [robin batman thor loki captain america] false

4 2014/01/13 23:36:09 [batman captain america loki robin thor] true

5 2014/01/13 23:36:09 [1.5 2.3 0.5 0.4] false

6 2014/01/13 23:36:09 [0.4 0.5 1.5 2.3] true

7 2014/01/13 23:36:09 [{How much wood... A lot 4} {When did WWII start? 1939 5} {W\

8 hat color is the sky? Blue 2} {Who builds the iPhone? Apple 1} {Why is Go awesom\

9 e? Lots of reasons 3}] false

10 2014/01/13 23:36:09 [{Who builds the iPhone? Apple 1} {What color is the sky? Bl\

11 ue 2} {Why is Go awesome? Lots of reasons 3} {How much wood... A lot 4} {When di\

12 d WWII start? 1939 5}] true

Advanced Sorting

When I sat down to write this example, I started to go ahead with an idea I had
awhile ago, then quickly realized one of the examples that comeswith the Go source
distribution is exactly what I wanted. So let’s just use that instead.

sort 312

As per the introduction, this code is licensed differently than the other code I’ve
written myself. That being said, this code isn’t exact, I’ve modified it to fit my go

run file.go style of examples.

In their example, an API is designed which does two things:

• Makes reading the code incredibly easy. It’s obviouswhat By(name).Sort(planets)
• Reduces the amount of code you have to write, by requiring only the com-
parison Less(i, j int) bool function to be implemented to change the sorting
behaviour.

It’s a pretty slick solution, and I’ve seen other things floating around the community
as examples, and it’s essentially what I wanted to showcase.

sort/advanced_sorting.go

1 // Copyright 2013 The Go Authors. All rights reserved.

2 // Use of this source code is governed by a BSD-style

3 // license that can be found in the LICENSE file.

4

5 package main

6

7 import (

8 "log"

9 "sort"

10)

11

12 type earthMass float64

13 type au float64

14

15 type Planet struct {

16 name string

17 mass earthMass

18 distance au

19 }

20

21 type By func(p1, p2 *Planet) bool

22

23 func (by By) Sort(planets []Planet) {

24 ps := &planetSorter{

sort 313

25 planets: planets,

26 by: by,

27 }

28 sort.Sort(ps)

29 }

30

31 type planetSorter struct {

32 planets []Planet

33 by By

34 }

35

36 func (s *planetSorter) Len() int {

37 return len(s.planets)

38 }

39

40 func (s *planetSorter) Swap(i, j int) {

41 s.planets[i], s.planets[j] = s.planets[j], s.planets[i]

42 }

43

44 func (s *planetSorter) Less(i, j int) bool {

45 return s.by(&s.planets[i], &s.planets[j])

46 }

47

48 var planets = []Planet{

49 {"Mercury", 0.055, 0.4},

50 {"Venus", 0.815, 0.7},

51 {"Earth", 1.0, 1.0},

52 {"Mars", 0.107, 1.5},

53 }

54

55 func main() {

56 // Closures that order the Planet structure.

57 name := func(p1, p2 *Planet) bool {

58 return p1.name < p2.name

59 }

60 mass := func(p1, p2 *Planet) bool {

61 return p1.mass < p2.mass

62 }

63 distance := func(p1, p2 *Planet) bool {

64 return p1.distance < p2.distance

65 }

66 decreasingDistance := func(p1, p2 *Planet) bool {

sort 314

67 return !distance(p1, p2)

68 }

69

70 // Sort the planets by the various criteria.

71 By(name).Sort(planets)

72 log.Println("By name:", planets)

73

74 By(mass).Sort(planets)

75 log.Println("By mass:", planets)

76

77 By(distance).Sort(planets)

78 log.Println("By distance:", planets)

79

80 By(decreasingDistance).Sort(planets)

81 log.Println("By decreasing distance:", planets)

82 }

Output:

1 2014/01/13 23:36:09 By name: [{Earth 1 1} {Mars 0.107 1.5} {Mercury 0.055 0.4} {\

2 Venus 0.815 0.7}]

3 2014/01/13 23:36:09 By mass: [{Mercury 0.055 0.4} {Mars 0.107 1.5} {Venus 0.815 \

4 0.7} {Earth 1 1}]

5 2014/01/13 23:36:09 By distance: [{Mercury 0.055 0.4} {Venus 0.815 0.7} {Earth 1\

6 1} {Mars 0.107 1.5}]

7 2014/01/13 23:36:09 By decreasing distance: [{Mars 0.107 1.5} {Earth 1 1} {Venus\

8 0.815 0.7} {Mercury 0.055 0.4}]

Searching

The search API is a little weird, since you call a function that seemingly has nothing
to do with the data structure you’re trying to search. The key is in the second
argument to the search function, which you use to dig into your data structure. The
structure must already be sorted, since it uses a binary search under the covers.

It’s alsomore than just searching in the traditional sense of “find this thing in here”.
It gives you the first index atwhich the function returns true, or n, its first argument,
if no index returns true. You also need to follow the contract that if f(i) is true, then
f(i + 1) is true. This means you can’t really use ==. In the example, I have to use >=

which means it finds 11 at index 5 even though it’s not in the collection.

sort 315

sort/searching.go

1 package main

2

3 import (

4 "log"

5 "sort"

6)

7

8 func searchInts(needle int) {

9 haystack := []int{1, 4, 7, 9, 10, 66}

10 n := len(haystack)

11 index := sort.Search(n, func(i int) bool {

12 return haystack[i] >= needle

13 })

14 if index == n {

15 log.Printf("didn't find %d", needle)

16 } else {

17 log.Printf("maybe found %d at index %d", needle, index)

18 }

19 }

20

21 func main() {

22 searchInts(9)

23 searchInts(11)

24 searchInts(70)

25 }

Output:

1 2014/01/13 23:36:09 maybe found 9 at index 3

2 2014/01/13 23:36:09 maybe found 11 at index 5

3 2014/01/13 23:36:09 didn't find 70

strconv
The strconv package gives you all the tools you need to convert between strings,
integers, floats, bools. Along with these, there is a set of functions to combine the
conversions and append to build up byte slices.

It also gives you some functions to deal with quoting strings and handling escaping
things.

We’ll look at the basic conversion functions first, and then quote all the things.

Conversions

The conversion functions consist of those named FormatThing and ParseThing, where
Thing is one of Bool, Float, Int, and Uint. There are also the two oddballs Atoi and Itoa.

I won’t actually use Atoi and Itoa since they are just wrappers around ParseInt

and FormatIntwith sane default values for base and bitSize. We’ll also skip the uint

functions since they’re the same as the int ones.

Because things can fail, all the parsing functions return the value and an error.
If you want to live on the edge it’s trivial to write a small wrapper package to
either panic on the errors with MustParseBool et al, or return a default on error with
ParseBoolWithDefault and friends.

Let’s get to the code.

strconv/conversion.go

1 package main

2

3 import (

4 "log"

5 "strconv"

6)

7

8 func init() {

9 log.SetFlags(0)

strconv 317

10 log.SetPrefix("» ")

11 }

12

13 func parseBools(strings ...string) {

14 for _, s := range strings {

15 b, err := strconv.ParseBool(s)

16 log.Printf("%t, %s", b, err)

17 }

18 }

19

20 func printBool(bools ...bool) {

21 for _, b := range bools {

22 log.Println(strconv.FormatBool(b))

23 }

24 }

25

26 func parseFloats(bitSize int, strings ...string) {

27 for _, s := range strings {

28 f, err := strconv.ParseFloat(s, bitSize)

29 log.Printf("bitSize: %d, %#v => %f, %s", bitSize, s, f, err)

30 }

31 }

32

33 func printFloat(f float64, fmt byte, prec, bitSize int) {

34 s := strconv.FormatFloat(f, fmt, prec, bitSize)

35 lfmt := "fmt: %q, prec: %2d, bitSize: %d => %s"

36 log.Printf(lfmt, fmt, prec, bitSize, s)

37 }

38

39 var bitSizes = []int{32, 64}

40 var formats = []byte("efg")

41 var precisions = []int{5, 10, 15}

42

43 func printFloats(fs ...float64) {

44 for _, f := range fs {

45 for _, fmt := range formats {

46 for _, prec := range precisions {

47 for _, bitSize := range bitSizes {

48 printFloat(f, fmt, prec, bitSize)

49 }

50 }

51 }

strconv 318

52 }

53 }

54

55 func parseInts(base, bitSize int, ss ...string) {

56 for _, s := range ss {

57 i, err := strconv.ParseInt(s, base, bitSize)

58 fmt := "base: %2d, bitSize: %2d, %#v => %d, %s"

59 log.Printf(fmt, base, bitSize, s, i, err)

60 }

61 }

62

63 func printInts(base int, is ...int64) {

64 for _, i := range is {

65 s := strconv.FormatInt(i, base)

66 log.Printf("base: %2d, %d => %#v", base, i, s)

67 }

68 }

69

70 func DemoBool() {

71 log.Println("DemoBool")

72

73 parseBools("true", "1", "f", "wat")

74 printBool(true, false)

75 }

76

77 func DemoFloat() {

78 log.Println("DemoFloat")

79

80 parseFloats(32, "1.0", "-1.5", "1e10", "wat", "4e38")

81 parseFloats(64, "4e38")

82

83 printFloats(1.1234567, 4e38)

84 }

85

86 func DemoInt() {

87 log.Println("DemoInt")

88

89 big := "10"

90 parseInts(2, 32, "101101010", "10", "8", big)

91 parseInts(2, 64, big)

92 parseInts(8, 8, "12345", "7")

93 parseInts(10, 32, "12345", "7")

strconv 319

94 parseInts(16, 32, "abcdef")

95 // Detect base based on prefix

96 parseInts(0, 32, "0xff", "0644", "255")

97

98 printInts(2, 100)

99 printInts(3, 100)

100 printInts(4, 100)

101 printInts(5, -100)

102 printInts(10, 100)

103 printInts(16, 1250)

104 }

105

106 func main() {

107 DemoBool()

108 DemoFloat()

109 DemoInt()

110 }

Output:

1 » DemoBool

2 » true, %!s(<nil>)

3 » true, %!s(<nil>)

4 » false, %!s(<nil>)

5 » false, strconv.ParseBool: parsing "wat": invalid syntax

6 » true

7 » false

8 » DemoFloat

9 » bitSize: 32, "1.0" => 1.000000, %!s(<nil>)

10 » bitSize: 32, "-1.5" => -1.500000, %!s(<nil>)

11 » bitSize: 32, "1e10" => 10000000000.000000, %!s(<nil>)

12 » bitSize: 32, "wat" => 0.000000, strconv.ParseFloat: parsing "wat": invalid syn\

13 tax

14 » bitSize: 32, "4e38" => +Inf, strconv.ParseFloat: parsing "4e38": value out of \

15 range

16 » bitSize: 64, "4e38" => 399999999999999990995239293824136118272.000000, %!s(<ni\

17 l>)

18 » fmt: 'e', prec: 5, bitSize: 32 => 1.12346e+00

19 » fmt: 'e', prec: 5, bitSize: 64 => 1.12346e+00

20 » fmt: 'e', prec: 10, bitSize: 32 => 1.1234567165e+00

21 » fmt: 'e', prec: 10, bitSize: 64 => 1.1234567000e+00

22 » fmt: 'e', prec: 15, bitSize: 32 => 1.123456716537476e+00

strconv 320

23 » fmt: 'e', prec: 15, bitSize: 64 => 1.123456700000000e+00

24 » fmt: 'f', prec: 5, bitSize: 32 => 1.12346

25 » fmt: 'f', prec: 5, bitSize: 64 => 1.12346

26 » fmt: 'f', prec: 10, bitSize: 32 => 1.1234567165

27 » fmt: 'f', prec: 10, bitSize: 64 => 1.1234567000

28 » fmt: 'f', prec: 15, bitSize: 32 => 1.123456716537476

29 » fmt: 'f', prec: 15, bitSize: 64 => 1.123456700000000

30 » fmt: 'g', prec: 5, bitSize: 32 => 1.1235

31 » fmt: 'g', prec: 5, bitSize: 64 => 1.1235

32 » fmt: 'g', prec: 10, bitSize: 32 => 1.123456717

33 » fmt: 'g', prec: 10, bitSize: 64 => 1.1234567

34 » fmt: 'g', prec: 15, bitSize: 32 => 1.12345671653748

35 » fmt: 'g', prec: 15, bitSize: 64 => 1.1234567

36 » fmt: 'e', prec: 5, bitSize: 32 => +Inf

37 » fmt: 'e', prec: 5, bitSize: 64 => 4.00000e+38

38 » fmt: 'e', prec: 10, bitSize: 32 => +Inf

39 » fmt: 'e', prec: 10, bitSize: 64 => 4.0000000000e+38

40 » fmt: 'e', prec: 15, bitSize: 32 => +Inf

41 » fmt: 'e', prec: 15, bitSize: 64 => 4.000000000000000e+38

42 » fmt: 'f', prec: 5, bitSize: 32 => +Inf

43 » fmt: 'f', prec: 5, bitSize: 64 => 399999999999999990995239293824136118272.000\

44 00

45 » fmt: 'f', prec: 10, bitSize: 32 => +Inf

46 » fmt: 'f', prec: 10, bitSize: 64 => 399999999999999990995239293824136118272.000\

47 0000000

48 » fmt: 'f', prec: 15, bitSize: 32 => +Inf

49 » fmt: 'f', prec: 15, bitSize: 64 => 399999999999999990995239293824136118272.000\

50 000000000000

51 » fmt: 'g', prec: 5, bitSize: 32 => +Inf

52 » fmt: 'g', prec: 5, bitSize: 64 => 4e+38

53 » fmt: 'g', prec: 10, bitSize: 32 => +Inf

54 » fmt: 'g', prec: 10, bitSize: 64 => 4e+38

55 » fmt: 'g', prec: 15, bitSize: 32 => +Inf

56 » fmt: 'g', prec: 15, bitSize: 64 => 4e+38

57 » DemoInt

58 » base: 2, bitSize: 32, "101101010" => 362, %!s(<nil>)

59 » base: 2, bitSize: 32, "10" => 2, %!s(<nil>)

60 » base: 2, bitSize: 32, "8" => 0, strconv.ParseInt: parsing "8": invalid syntax

61 » base: 2, bitSize: 32, "10" => 214748364\

62 7, strconv.ParseInt: parsing "10": value o\

63 ut of range

64 » base: 2, bitSize: 64, "10" => 733007751\

strconv 321

65 850, %!s(<nil>)

66 » base: 8, bitSize: 8, "12345" => 127, strconv.ParseInt: parsing "12345": valu\

67 e out of range

68 » base: 8, bitSize: 8, "7" => 7, %!s(<nil>)

69 » base: 10, bitSize: 32, "12345" => 12345, %!s(<nil>)

70 » base: 10, bitSize: 32, "7" => 7, %!s(<nil>)

71 » base: 16, bitSize: 32, "abcdef" => 11259375, %!s(<nil>)

72 » base: 0, bitSize: 32, "0xff" => 255, %!s(<nil>)

73 » base: 0, bitSize: 32, "0644" => 420, %!s(<nil>)

74 » base: 0, bitSize: 32, "255" => 255, %!s(<nil>)

75 » base: 2, 100 => "1100100"

76 » base: 3, 100 => "10201"

77 » base: 4, 100 => "1210"

78 » base: 5, -100 => "-400"

79 » base: 10, 100 => "100"

80 » base: 16, 1250 => "4e2"

Appending

The append related functions do all the same things as the formatting functions,
except they append the result to a byte slice. It’s sort of like a string builder, except
not.

strconv/appending.go

1 package main

2

3 import (

4 "log"

5 "math"

6 "strconv"

7)

8

9 func init() {

10 log.SetFlags(0)

11 log.SetPrefix("» ")

12 }

13

14 func main() {

15 var data []byte

16 data = strconv.AppendBool(data, true)

17 log.Printf("%s", data)

strconv 322

18

19 data = append(data, ',', ' ')

20 data = strconv.AppendFloat(data, math.Pi, 'e', 2, 32)

21 log.Printf("%s", data)

22

23 data = append(data, ',', ' ')

24 data = strconv.AppendInt(data, 42, 8)

25 log.Printf("%s", data)

26

27 data = append(data, ',', ' ')

28 data = strconv.AppendQuote(data, `bat"man`)

29 log.Printf("%s", data)

30

31 data = append(data, ',', ' ')

32 data = strconv.AppendQuoteRune(data, 0x30f0)

33 log.Printf("%s", data)

34

35 data = append(data, ',', ' ')

36 data = strconv.AppendQuoteRuneToASCII(data, 0x30f0)

37 log.Printf("%s", data)

38

39 data = append(data, ',', ' ')

40 data = strconv.AppendQuoteToASCII(data, "��")

41 log.Printf("%s", data)

42

43 data = append(data, ',', ' ')

44 data = strconv.AppendUint(data, 10, 2)

45 log.Printf("%s", data)

46 }

Output:

1 » true

2 » true, 3.14e+00

3 » true, 3.14e+00, 52

4 » true, 3.14e+00, 52, "bat\"man"

5 » true, 3.14e+00, 52, "bat\"man", '�'

6 » true, 3.14e+00, 52, "bat\"man", '�', '\u30f0'

7 » true, 3.14e+00, 52, "bat\"man", '�', '\u30f0', "\u30f0\u30f1"

8 » true, 3.14e+00, 52, "bat\"man", '�', '\u30f0', "\u30f0\u30f1", 1010

strconv 323

Quoting

Quoting is taking those things that you normally can’t represent in a string like
newlines and double quotes, and escaping them so that they can be represented
in a double quoted string. The most obvious example is the first one. There’s a
multiline string literal, and we end up with single line double quoted string with
the whitespace escaped. Check it out.

strconv/quoting.go

1 package main

2

3 import (

4 "log"

5 "strconv"

6)

7

8 func init() {

9 log.SetFlags(0)

10 log.SetPrefix("» ")

11 }

12

13 func main() {

14 str := `

15

16 "wat"

17

18 `

19 log.Println(strconv.Quote(str))

20 log.Println(strconv.QuoteRune(7)) // ASCII bell

21 log.Println(strconv.QuoteRuneToASCII(0x30f0)) // �

22 log.Println(strconv.QuoteToASCII("�"))

23 log.Println(strconv.Unquote(`\n\r\t`)) // invalid due to lack of quotes

24 log.Println(strconv.Unquote(`"\n\r\t"`))

25 }

strconv 324

Output:

1 » "\n\n \"wat\"\n\n"

2 » '\a'

3 » '\u30f0'

4 » "\u30f0"

5 » invalid syntax

6 »

7

8 <nil>

strings
The strings package deals with, you guessed it, strings.

It has quite a few functions and a couple types, so we’ll groups things so that they
make sense.

This package is very similar to the [bytes]{#bytes}

Querying strings

This covers functions like Contains and HasSuffix. Query functions give you informa-
tion about the string and its contents.

strings/querying.go

1 package main

2

3 import (

4 "log"

5 "strings"

6)

7

8 var s = "Go, The Standard Library"

9

10 func init() {

11 log.SetFlags(0)

12 log.SetPrefix("» ")

13 }

14

15 // Look for exact matches

16 func DemoContains() {

17 needles := []string{"Library", "standard", "Standard"}

18 for _, needle := range needles {

19 found := strings.Contains(s, needle)

20 log.Printf("Contains(%#v) %t", needle, found)

21 }

22 }

23

24 // Look for any of the unicode code points

strings 326

25 func DemoContainsAny() {

26 sets := []string{"aeiou", "zyx", "\t\r"}

27 for _, set := range sets {

28 found := strings.ContainsAny(s, set)

29 log.Printf("ContainsAny(%#v) %t", set, found)

30 }

31 }

32

33 func DemoContainsRune() {

34 runes := []rune{'a', ' ', '.'}

35 for _, rune := range runes {

36 found := strings.ContainsRune(s, rune)

37 log.Printf("ContainsRune(%q) %t", rune, found)

38 }

39 }

40

41 // Count substrings

42 func DemoCount() {

43 needles := []string{"", "a", ", "}

44 for _, needle := range needles {

45 count := strings.Count(s, needle)

46 log.Printf("Count(%#v) %d", needle, count)

47 }

48 }

49

50 // Is it equal ignoring unicode case

51 func DemoEqualFold() {

52 ts := []string{s, strings.ToUpper(s), strings.ToLower(s)}

53 for _, t := range ts {

54 equal := strings.EqualFold(s, t)

55 log.Printf("EqualFold(%#v) %t", t, equal)

56 }

57 }

58

59 // Check for prefixes

60 func DemoHasPrefix() {

61 prefixes := []string{"Go", "GO", "Go, "}

62 for _, prefix := range prefixes {

63 has := strings.HasPrefix(s, prefix)

64 log.Printf("HasPrefix(%#v) %t", prefix, has)

65 }

66 }

strings 327

67

68 // Check for suffixes

69 func DemoHasSuffix() {

70 suffixes := []string{"Library", "", "Standard"}

71 for _, suffix := range suffixes {

72 has := strings.HasSuffix(s, suffix)

73 log.Printf("HasSuffix(%#v) %t", suffix, has)

74 }

75 }

76

77 func main() {

78 log.Printf("haystack: %#v", s)

79

80 DemoContains()

81 DemoContainsAny()

82 DemoContainsRune()

83 DemoCount()

84 DemoEqualFold()

85 DemoHasPrefix()

86 DemoHasSuffix()

87 }

Output:

1 » haystack: "Go, The Standard Library"

2 » Contains("Library") true

3 » Contains("standard") false

4 » Contains("Standard") true

5 » ContainsAny("aeiou") true

6 » ContainsAny("zyx") true

7 » ContainsAny("\t\r") false

8 » ContainsRune('a') true

9 » ContainsRune(' ') true

10 » ContainsRune('.') false

11 » Count("") 25

12 » Count("a") 3

13 » Count(", ") 1

14 » EqualFold("Go, The Standard Library") true

15 » EqualFold("GO, THE STANDARD LIBRARY") true

16 » EqualFold("go, the standard library") true

17 » HasPrefix("Go") true

18 » HasPrefix("GO") false

strings 328

19 » HasPrefix("Go, ") true

20 » HasSuffix("Library") true

21 » HasSuffix("") true

22 » HasSuffix("Standard") false

Into the index

All the index related functions search the string for something and return the index
into the string where that thing was found. This can be referred to as needle in the
haystack. The needle might be another string, a byte, or a function that checks an
individual rune.

strings/index.go

1 package main

2

3 import (

4 "log"

5 "strings"

6 "unicode"

7)

8

9 func init() {

10 log.SetFlags(0)

11 log.SetPrefix("» ")

12 }

13

14 var s = "Go, The Standard Library"

15

16 // Find specific things

17 func DemoIndex() {

18 needles := []string{",", "t", "The", "x"}

19 for _, needle := range needles {

20 index := strings.Index(s, needle)

21 log.Printf("Index(%#v) %d", needle, index)

22 }

23 }

24

25 // Search for any unicode code points

26 func DemoIndexAny() {

27 needles := []string{",thx", "ray"}

28 for _, needle := range needles {

strings 329

29 index := strings.IndexAny(s, needle)

30 log.Printf("IndexAny(%#v) %d", needle, index)

31 }

32 }

33

34 // Search for a specific byte

35 func DemoIndexByte() {

36 needles := []byte{',', 'y'}

37 for _, needle := range needles {

38 index := strings.IndexByte(s, needle)

39 log.Printf("IndexByte(%q) %d", needle, index)

40 }

41 }

42

43 func nonAlphaNumeric(r rune) bool {

44 switch {

45 case 48 <= r && r <= 57: // numbers

46 return false

47 case 97 <= r && r <= 122: // lowercase

48 return false

49 case 65 <= r && r <= 90: // uppercase

50 return false

51 }

52 return true

53 }

54

55 // Use a function

56 func DemoIndexFunc() {

57 funcs := []struct {

58 name string

59 f func(rune) bool

60 }{

61 {"nonAlphaNumeric", nonAlphaNumeric},

62 {"unicode.IsLower", unicode.IsDigit},

63 {"unicode.IsLower", unicode.IsLower},

64 }

65 for _, f := range funcs {

66 index := strings.IndexFunc(s, f.f)

67 log.Printf("IndexFunc(%#v) %d", f.name, index)

68 }

69 }

70

strings 330

71 // Find a specific rune

72 func DemoIndexRune() {

73 runes := []rune{'a', ' ', '.'}

74 for _, r := range runes {

75 index := strings.IndexRune(s, r)

76 log.Printf("IndexRune(%q) %d", r, index)

77 }

78 }

79

80 // Find the last index of a substring

81 func DemoLastIndex() {

82 needles := []string{"a", "r", "y", "\t"}

83 for _, needle := range needles {

84 index := strings.LastIndex(s, needle)

85 log.Printf("LastIndex(%#v) %d", needle, index)

86 }

87 }

88

89 // Find the last index of any of the given unicode code points

90 func DemoLastIndexAny() {

91 needles := []string{",thx", "ray"}

92 for _, needle := range needles {

93 index := strings.LastIndexAny(s, needle)

94 log.Printf("LastIndexAny(%#v) %d", needle, index)

95 }

96 }

97

98 // Use a func to find the last index of something

99 func DemoLastIndexFunc() {

100 funcs := []struct {

101 name string

102 f func(rune) bool

103 }{

104 {"nonAlphaNumeric", nonAlphaNumeric},

105 {"unicode.IsLower", unicode.IsDigit},

106 {"unicode.IsLower", unicode.IsLower},

107 }

108 for _, f := range funcs {

109 index := strings.LastIndexFunc(s, f.f)

110 log.Printf("LastIndexFunc(%#v) %d", f.name, index)

111 }

112 }

strings 331

113

114 func main() {

115 log.Printf("haystack: %#v", s)

116

117 DemoIndex()

118 DemoIndexAny()

119 DemoIndexByte()

120 DemoIndexFunc()

121 DemoIndexRune()

122 DemoLastIndex()

123 DemoLastIndexAny()

124 DemoLastIndexFunc()

125 }

Output:

1 » haystack: "Go, The Standard Library"

2 » Index(",") 2

3 » Index("t") 9

4 » Index("The") 4

5 » Index("x") -1

6 » IndexAny(",thx") 2

7 » IndexAny("ray") 10

8 » IndexByte(',') 2

9 » IndexByte('y') 23

10 » IndexFunc("nonAlphaNumeric") 2

11 » IndexFunc("unicode.IsLower") -1

12 » IndexFunc("unicode.IsLower") 1

13 » IndexRune('a') 10

14 » IndexRune(' ') 3

15 » IndexRune('.') -1

16 » LastIndex("a") 21

17 » LastIndex("r") 22

18 » LastIndex("y") 23

19 » LastIndex("\t") -1

20 » LastIndexAny(",thx") 9

21 » LastIndexAny("ray") 23

22 » LastIndexFunc("nonAlphaNumeric") 16

23 » LastIndexFunc("unicode.IsLower") -1

24 » LastIndexFunc("unicode.IsLower") 23

strings 332

Hey, split it up!

Strings getting you down, fighting all the time? Split them up! With the Split

functions and their friends the Fields functions, you can take a string and chop it
up.

strings/split.go

1 package main

2

3 import (

4 "log"

5 "strings"

6 "unicode"

7)

8

9 var s = "who,what,when,where,why"

10

11 func init() {

12 log.SetFlags(0)

13 log.SetPrefix("» ")

14 }

15

16 func dump(i interface{}) {

17 log.Printf("%#v", i)

18 }

19

20 func DemoSplit() {

21 dump(strings.Split(s, ","))

22 dump(strings.SplitN(s, ",", 2))

23 }

24

25 func DemoSplitAfter() {

26 dump(strings.SplitAfter(s, ","))

27 dump(strings.SplitAfterN(s, ",", 3))

28 }

29

30 func DemoFields() {

31 fox := " The quick brown Fox jumps over the lazy Dog."

32 dump(strings.Fields(fox))

33 dump(strings.FieldsFunc(fox, unicode.IsUpper))

34 }

35

strings 333

36 func main() {

37 DemoSplit()

38 DemoSplitAfter()

39 DemoFields()

40 }

Output:

1 » []string{"who", "what", "when", "where", "why"}

2 » []string{"who", "what,when,where,why"}

3 » []string{"who,", "what,", "when,", "where,", "why"}

4 » []string{"who,", "what,", "when,where,why"}

5 » []string{"The", "quick", "brown", "Fox", "jumps", "over", "the", "lazy", "Dog.\

6 "}

7 » []string{" ", "he quick brown ", "ox jumps over the lazy ", "og."}

Building and altering strings

Strings are fun and all, but sometimes you need to change them. These functions
can build new strings, and change the contents of existing strings.

Okay, you can’t actually change the contents of a string since strings are im-
mutable. The functions that change strings actually return a new version. This is
important to know because if you don’t care about the previous version, you’re
creating garbage. You might be better off dealing with a []byte, which can be
altered in place, but that might not be practical either. Measure your code, and
if creating garbage strings is slowing things down, then worry about optimizing.

strings/altering.go

1 package main

2

3 import (

4 "log"

5 "os"

6 "strings"

7 "unicode"

8)

9

strings 334

10 func init() {

11 log.SetFlags(0)

12 log.SetPrefix("» ")

13 }

14

15 var s = "red green blue"

16

17 func DemoJoin() {

18 fields := strings.Fields(s)

19 log.Println(strings.Join(fields, ","))

20 log.Println(strings.Join(fields, ":"))

21 log.Println(strings.Join(fields, ""))

22 }

23

24 func rot13(r rune) rune {

25 switch {

26 case 65 <= r && r <= 90:

27 return 65 + ((r-65)+13)%26

28 case 97 <= r && r <= 122:

29 return 97 + ((r-97)+13)%26

30 default:

31 return r

32 }

33 }

34

35 func DemoMap() {

36 log.Println(strings.Map(unicode.ToUpper, s))

37 mapped := strings.Map(func(r rune) rune {

38 switch r {

39 case 'e':

40 return -1

41 default:

42 return r + 1

43 }

44 }, s)

45 log.Println(mapped)

46 log.Println(strings.Map(rot13, s))

47 }

48

49 func DemoRepeat() {

50 log.Println(strings.Repeat("-", len(s)))

51 }

strings 335

52

53 func DemoReplace() {

54 log.Println(strings.Replace(s, "e", "!", 1))

55 log.Println(strings.Replace(s, "e", "!", -1))

56 }

57

58 func DemoReplacer() {

59 r := strings.NewReplacer("e", "E")

60 log.Println(r.Replace(s))

61 r.WriteString(os.Stdout, s)

62 }

63

64 func main() {

65 DemoJoin()

66 DemoMap()

67 DemoRepeat()

68 DemoReplace()

69 DemoReplacer()

70 }

Output:

1 » red,green,blue

2 » red:green:blue

3 » redgreenblue

4 » RED GREEN BLUE

5 » se!hso!cmv

6 » erq terra oyhr

7 » --------------

8 » r!d green blue

9 » r!d gr!!n blu!

10 » rEd grEEn bluE

11 rEd grEEn bluE

Upper and lower case

Sometimes you just need to convert a string to upper or lower case, or maybe even
title case. These next functions do exactly that.

strings 336

strings/case.go

1 package main

2

3 import (

4 "log"

5 "strings"

6)

7

8 func init() {

9 log.SetFlags(0)

10 log.SetPrefix("» ")

11 }

12

13 var s = "The quick brown Fox jumps over the lazy Dog."

14

15 func DemoTitle() {

16 log.Println(strings.Title(s))

17 log.Println(strings.ToTitle(s))

18 }

19

20 func DemoLower() {

21 log.Println(strings.ToLower(s))

22 }

23

24 func DemoUpper() {

25 log.Println(strings.ToUpper(s))

26 }

27

28 func main() {

29 DemoTitle()

30 DemoLower()

31 DemoUpper()

32 }

strings 337

Output:

1 » The Quick Brown Fox Jumps Over The Lazy Dog.

2 » THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.

3 » the quick brown fox jumps over the lazy dog.

4 » THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.

Trimming

Sometimes you want to make a specific change to a string, and a very common
specific change is trimming from the right or left. It’s also usually whitespace you’re
trimming. Luckily we have functions to do all this for us.

strings/trimming.go

1 package main

2

3 import (

4 "log"

5 "strings"

6)

7

8 func init() {

9 log.SetFlags(0)

10 log.SetPrefix("» ")

11 }

12

13 var s = " \n all the spaces \t "

14

15 func dump(i interface{}) {

16 log.Printf("%#v", i)

17 }

18

19 func DemoTrim() {

20 cutset := " \t\n"

21 dump(strings.Trim(s, cutset))

22 dump(strings.TrimLeft(s, cutset))

23 dump(strings.TrimRight(s, cutset))

24 dump(strings.TrimSpace(s))

25 }

26

27 func DemoPrefixSuffix() {

strings 338

28 s2 := "The Go Programming Language"

29 dump(s2)

30 s2 = strings.TrimPrefix(s2, "The Go ")

31 dump(s2)

32 s2 = strings.TrimSuffix(s2, " Language")

33 dump(s2)

34 }

35

36 func onlySpaces(r rune) bool {

37 return r == ' '

38 }

39

40 func DemoTrimFunc() {

41 dump(strings.TrimFunc(s, onlySpaces))

42 dump(strings.TrimLeftFunc(s, onlySpaces))

43 dump(strings.TrimRightFunc(s, onlySpaces))

44 }

45

46 func main() {

47 dump(s)

48 DemoTrim()

49 DemoPrefixSuffix()

50 DemoTrimFunc()

51 }

Output:

1 » " \n all the spaces \t "

2 » "all the spaces"

3 » "all the spaces \t "

4 » " \n all the spaces"

5 » "all the spaces"

6 » "The Go Programming Language"

7 » "Programming Language"

8 » "Programming"

9 » "\n all the spaces \t"

10 » "\n all the spaces \t "

11 » " \n all the spaces \t"

strings 339

Reader

We can also treat a string as an io.Reader (and other io interfaces). It’s really easy,
just make a new strings.Reader!

strings/reader.go

1 package main

2

3 import (

4 "log"

5 "os"

6 "strings"

7)

8

9 var s = "All your base are belong to us!"

10

11 func init() {

12 log.SetFlags(0)

13 log.SetPrefix("» ")

14 }

15

16 func main() {

17 r := strings.NewReader(s)

18 log.Println(r.Len())

19 r.WriteTo(os.Stdout)

20 log.Println(r.Len())

21 r.WriteTo(os.Stdout) // It's empty, nothing prints

22 r = strings.NewReader(s)

23

24 chunk := make([]byte, 10)

25 r.Read(chunk)

26 log.Printf("%s", chunk)

27

28 r = strings.NewReader(s)

29 // Read a single byte

30 b, err := r.ReadByte()

31 log.Println(b, err)

32 log.Println(r.Len())

33

34 // Nevermind

35 r.UnreadByte()

36 log.Println(r.Len())

strings 340

37 b, err = r.ReadByte()

38 log.Println(b, err)

39 }

Output:

1 » 31

2 All your base are belong to us!» 0

3 » All your b

4 » 65 <nil>

5 » 30

6 » 31

7 » 65 <nil>

sync
The sync package is to handle all those cases where you need thread safety. Sure,
we have channels and the select statement to deal with the builtin features that
make Go so nice to use, but sometimes that’s not the best way to solve the problem.
Sometimes, you need the old familiar constructs to ensure thread safety.

We’ll look at the tools the sync package provides to help solve these problems.
Hopefully you can avoid these things and use higher level features, but sometimes
that’s not the best way to solve the problem.

Once

Once, as the name suggests, lets you run a function once. This is useful for setup
functions that should only be ran once, but that you want to try to run multiple
times to keep the code pretty and coherent.

In the example, note that there is only one logmessage, despite there being two calls
to once.Do.

sync/once.go

1 package main

2

3 import (

4 "log"

5 "runtime"

6 "sync"

7)

8

9 var once sync.Once

10

11 func init() {

12 log.SetFlags(0)

13 log.SetPrefix("» ")

14 runtime.GOMAXPROCS(8)

15 }

16

17 func main() {

18 f := func() {

sync 342

19 log.Println("Hello!")

20 }

21 once.Do(f) // Called

22 once.Do(f) // Not called

23 }

Output:

1 » Hello!

Mutex

Mutex and RWMutex are your basic mutual exclusion locks. You can find them in pretty
much every programmung language. When using mutexes it’s very important to
orchestrate your unlocking, so that you don’t end upwith deadlocks. defer is helpful
in this situation, though it does have a performance overhead.

The RWMutex is special in that you can differentiate between reading and writing.
Multiple things can read, but only 1 thing can write.

This example doesn’t involve any fancy goroutines, it just shows the pattern for
using the Mutex. The usage is the basically the same each time, so remember the
pattern.

sync/mutex.go

1 package main

2

3 import (

4 "log"

5 "runtime"

6 "sync"

7)

8

9 // Regular Mutex

10 type Lockable struct {

11 m sync.Mutex

12 n int

13 }

14

15 func (l *Lockable) Set(i int) {

16 l.m.Lock()

17 defer l.m.Unlock()

sync 343

18 l.n = i

19 }

20

21 func (l *Lockable) Get() int {

22 l.m.Lock()

23 defer l.m.Unlock()

24 return l.n

25 }

26

27 // RWMutex

28 type RWLockable struct {

29 m sync.RWMutex

30 n int

31 }

32

33 func (l *RWLockable) Set(i int) {

34 l.m.Lock()

35 defer l.m.Unlock()

36 l.n = i

37 }

38

39 func (l *RWLockable) Get() int {

40 l.m.RLock()

41 defer l.m.RUnlock()

42 return l.n

43 }

44

45 func init() {

46 log.SetFlags(0)

47 log.SetPrefix("» ")

48 runtime.GOMAXPROCS(8)

49 }

50

51 func main() {

52 l := &Lockable{}

53 l.Set(10)

54 log.Println(l.Get())

55

56 rwl := &RWLockable{}

57 rwl.Set(5)

58 log.Println(rwl.Get())

59 }

sync 344

Output:

1 » 10

2 » 5

Cond

The Cond struct implements a condition variable. I don’t know about you, but I’ve
never actually had to use one before as far as I can recall. I’ve done multithreaded
programming before, in a variety of languages, but I always try to keep things as
simple as possible, and look for other solutions when it starts to get out of hand. It’s
really easy to break things in a confusing manner when you have multiple threads
and shared resources flying around, so the simpler the better.

Condition variables seem to fit a certain type of problem. I’m not sure I can
accurately describe that problem in words, but I can provide a couple examples.

First, we have the io.PipeReader and io.PipeWriter structs returned from io.Pipe().
It has to coordinate between readers and writers within the read() and write()

methods.

type pipe struct

This is the basic underlying struct:

sync/pipe_struct.go

1 // Copyright 2009 The Go Authors. All rights reserved.

2 // Use of this source code is governed by a BSD-style

3 // license that can be found in the LICENSE file.

4

5 type pipe struct {

6 rl sync.Mutex // gates readers one at a time

7 wl sync.Mutex // gates writers one at a time

8 l sync.Mutex // protects remaining fields

9 data []byte // data remaining in pending write

10 rwait sync.Cond // waiting reader

11 wwait sync.Cond // waiting writer

12 rerr error // if reader closed, error to give writes

13 werr error // if writer closed, error to give reads

14 }

sync 345

There are 2 mutexes, rl and wl, to ensure there is only 1 reader and 1 writer at
a time. They protect access to the struct itself. The other mutex, l, is used on the
condition variables rwait and wwait, and protects access to the other internal struct
fields so that either only the reader or writer is accessing them.

PipeReader

When we want to read, we lock rl and l. The pattern for using condition variables
is to lock, and check the conditions in a loop where you wait at the end of the loop.
We’ve already locked l, so in an infinite loop we check for read and write errors,
and if there is any data. If there are errors, return those. If we don’t have data yet,
we rwait.Wait(). When we are woken up by a rwait.Signal(), we check everything
again. Ifwe have data,we can do the read. In this case it’s just copying data fromone
slice to another, and shortening the buffer (that’s not really a buffer) so reflect that
we’ve read data from it. When we have read all the data, we clear out the internal
data and call wwait.Signal() to tell the writer it can continue.

sync/pipe_reader.go

1 // Copyright 2009 The Go Authors. All rights reserved.

2 // Use of this source code is governed by a BSD-style

3 // license that can be found in the LICENSE file.

4

5 func (p *pipe) read(b []byte) (n int, err error) {

6 // One reader at a time.

7 p.rl.Lock()

8 defer p.rl.Unlock()

9

10 p.l.Lock()

11 defer p.l.Unlock()

12 for {

13 if p.rerr != nil {

14 return 0, ErrClosedPipe

15 }

16 if p.data != nil {

17 break

18 }

19 if p.werr != nil {

20 return 0, p.werr

21 }

22 p.rwait.Wait()

23 }

24 n = copy(b, p.data)

sync 346

25 p.data = p.data[n:]

26 if len(p.data) == 0 {

27 p.data = nil

28 p.wwait.Signal()

29 }

30 return

31 }

PipeWriter

When we want to write, we lock wl and l. If we have a werr, return that and do
nothing. Otherwise, we save the data and rwait.Signal() to let the reader know they
can wake up and read data. Now the writer can go into its loop to check and wait.
If the data is nil (because the reader read everything and cleared it), everything
is fine, and break. If we got a rerr, make sure to return that, and break. If we have
a werr, make sure we return the ErrClosedPipe. If we’ve broken out of the loop, we
make sure to return a sane n value, and clear out data.

sync/pipe_writer.go

1 // Copyright 2009 The Go Authors. All rights reserved.

2 // Use of this source code is governed by a BSD-style

3 // license that can be found in the LICENSE file.

4

5 var zero [0]byte

6

7 func (p *pipe) write(b []byte) (n int, err error) {

8 // pipe uses nil to mean not available

9 if b == nil {

10 b = zero[:]

11 }

12

13 // One writer at a time.

14 p.wl.Lock()

15 defer p.wl.Unlock()

16

17 p.l.Lock()

18 defer p.l.Unlock()

19 if p.werr != nil {

20 err = ErrClosedPipe

21 return

22 }

sync 347

23 p.data = b

24 p.rwait.Signal()

25 for {

26 if p.data == nil {

27 break

28 }

29 if p.rerr != nil {

30 err = p.rerr

31 break

32 }

33 if p.werr != nil {

34 err = ErrClosedPipe

35 }

36 p.wwait.Wait()

37 }

38 n = len(b) - len(p.data)

39 p.data = nil // in case of rerr or werr

40 return

41 }

If you follow the calls to rwait.Signal(), rwait.Wait(), wwait.Signal(), and wwait.Wait(),
you can trace the program flow and see that it allows both a read and write to start,
in either order, but the write obviously has to produce data before the read can
read it, and the read returns before the write returns.

Cache

Another examplewhichwas givenon StackOverflow,was that of a cache: http://stackoverflow.com/a/2476820/465773.
The example was psuedo code, and I’ve implemented it here as best I can. I think
it’s correct. At least the race detector doesn’t complain complain.

I took it a little farther and used a RWMutex to protect themain cache, so you can have
mulitple readers, and each key is protected individually as well, so getting one key
doesn’t block getting another.

73http://stackoverflow.com/a/2476820/4657

http://stackoverflow.com/a/2476820/4657
http://stackoverflow.com/a/2476820/4657

sync 348

sync/cond.go

1 package main

2

3 import (

4 "fmt"

5 "log"

6 "runtime"

7 "sync"

8 "time"

9)

10

11 func init() {

12 runtime.GOMAXPROCS(8)

13 }

14

15 type Status int

16

17 const (

18 Absent Status = iota

19 InProgress

20 Complete

21)

22

23 func getData(key string) []byte {

24 // Do some work

25 time.Sleep(3 * time.Second)

26 return []byte(fmt.Sprintf("getData: %v", key))

27 }

28

29 type CacheEntry struct {

30 sync.Mutex

31 C *sync.Cond

32 Status Status

33 Data []byte

34 }

35

36 func (ce *CacheEntry) SetComplete(data []byte) {

37 ce.Lock()

38 defer ce.Unlock()

39 ce.Data = data

40 ce.Status = Complete

41 }

sync 349

42

43 func (ce *CacheEntry) Wait() []byte {

44 ce.Lock()

45 defer ce.Unlock()

46 for {

47 if ce.Status == Complete {

48 break

49 }

50 ce.C.Wait()

51 }

52 return ce.Data

53 }

54

55 type Cache struct {

56 sync.RWMutex

57 statuses map[string]Status

58 data map[string]*CacheEntry

59 }

60

61 func NewCache() *Cache {

62 return &Cache{

63 statuses: make(map[string]Status),

64 data: make(map[string]*CacheEntry),

65 }

66 }

67

68 func (c *Cache) setComplete(key string) {

69 c.Lock()

70 defer c.Unlock()

71 c.statuses[key] = Complete

72 }

73

74 func (c *Cache) setInProgress(key string) (*CacheEntry, bool) {

75 c.Lock()

76 defer c.Unlock()

77

78 // Check again, maybe another thread go to this first

79 // in between the c.RUnlock() and c.Lock()

80 if c.statuses[key] != Absent {

81 return c.data[key], false

82 }

83

sync 350

84 c.statuses[key] = InProgress

85 entry := &CacheEntry{Status: InProgress}

86 entry.C = sync.NewCond(entry)

87 c.data[key] = entry

88 return entry, true

89 }

90

91 func (c *Cache) Get(key string) []byte {

92 c.RLock()

93

94 status := c.statuses[key]

95 switch status {

96 case Absent:

97 c.RUnlock() // We'll take a write lock right away.

98

99 entry, ok := c.setInProgress(key)

100 if !ok {

101 // Missed our chance, just wait.

102 return entry.Wait()

103 }

104

105 data := getData(key)

106 entry.SetComplete(data)

107 c.setComplete(key)

108

109 // Wake up everybody, not just a single goroutine

110 entry.C.Broadcast()

111

112 return data

113 case InProgress:

114 entry := c.data[key]

115 c.RUnlock()

116 return entry.Wait()

117 case Complete:

118 entry := c.data[key]

119 c.RUnlock()

120 return entry.Data

121 }

122 panic("not reached")

123 }

124

125 func main() {

sync 351

126 log.Println("starting")

127

128 c := NewCache()

129 var wg sync.WaitGroup

130 wg.Add(5)

131 for i := 0; i < 5; i++ {

132 go func() {

133 log.Printf("%s", c.Get("Batman"))

134 log.Printf("%s", c.Get("Robin"))

135 wg.Done()

136 }()

137 }

138 wg.Wait()

139 // These print right away, already in cache.

140 log.Printf("%s", c.Get("Batman"))

141 log.Printf("%s", c.Get("Robin"))

142

143 wg.Add(5)

144 for i := 0; i < 5; i++ {

145 go func() {

146 log.Printf("%s", c.Get("Captain America"))

147 log.Printf("%s", c.Get("Thor"))

148 wg.Done()

149 }()

150 }

151 time.Sleep(time.Second)

152 // These print right away, already in cache, not blocked by

153 // other goroutines trying to read "captain america" and "thor"

154 log.Printf("%s", c.Get("Batman"))

155 log.Printf("%s", c.Get("Robin"))

156 wg.Wait()

157 }

sync 352

Output:

1 2014/09/13 21:54:32 starting

2 2014/09/13 21:54:35 getData: Batman

3 2014/09/13 21:54:35 getData: Batman

4 2014/09/13 21:54:35 getData: Batman

5 2014/09/13 21:54:35 getData: Batman

6 2014/09/13 21:54:35 getData: Batman

7 2014/09/13 21:54:38 getData: Robin

8 2014/09/13 21:54:38 getData: Robin

9 2014/09/13 21:54:38 getData: Robin

10 2014/09/13 21:54:38 getData: Robin

11 2014/09/13 21:54:38 getData: Robin

12 2014/09/13 21:54:38 getData: Batman

13 2014/09/13 21:54:38 getData: Robin

14 2014/09/13 21:54:39 getData: Batman

15 2014/09/13 21:54:39 getData: Robin

16 2014/09/13 21:54:41 getData: Captain America

17 2014/09/13 21:54:41 getData: Captain America

18 2014/09/13 21:54:41 getData: Captain America

19 2014/09/13 21:54:41 getData: Captain America

20 2014/09/13 21:54:41 getData: Captain America

21 2014/09/13 21:54:44 getData: Thor

22 2014/09/13 21:54:44 getData: Thor

23 2014/09/13 21:54:44 getData: Thor

24 2014/09/13 21:54:44 getData: Thor

25 2014/09/13 21:54:44 getData: Thor

What’s important is the timing in the output. It starts, and after 3 seconds you get
the 5 lines of Batman. The 3 seconds is from the time.Sleep(3 * time.Second) in the
getData(key) function. They all print because when the first goroutine finishes, it
broadcasts to the other goroutines, and they all wake up and can return the data.
Then another 3 seconds pass and we get 5 lines of Robin. Then no seconds pass and
we get another 2 lines of Batman and Robin. This is because they are already in the
cache at that point, so there’s no waiting.

Thenwe start another batch of 5 calls to Getwith new keys that are not in the cache.
We sleep for a second and again Get Batman and Robin, which happen immediately
because they aren’t blocked by the calls getting Captain America and Thor. Another 2
seconds pass, and we get our 5 lines of Captain America and 5 lines of Thor.

sync 353

WaitGroup

A WaitGroup is used to wait until an expected number of things finish. This is useful
when you aren’t using channels and therefore don’t have a channel to close.
The example seems trivial, but I find when I run into a problem where a WaitGroup

would work well, it’s fairly obvious.

sync/wait_group.go

1 package main

2

3 import (

4 "log"

5 "runtime"

6 "sync"

7 "time"

8)

9

10 var n = 5

11

12 func init() {

13 log.SetFlags(0)

14 log.SetPrefix("» ")

15 runtime.GOMAXPROCS(8)

16 }

17

18 func Run(id int, wg *sync.WaitGroup) {

19 for i := 0; i < n; i++ {

20 time.Sleep(time.Second)

21 wg.Done()

22 log.Printf("%d is done", id)

23 }

24 }

25

26 func main() {

27 var wg sync.WaitGroup

28 for i := 0; i < 3; i++ {

29 wg.Add(n)

30 go Run(i, &wg)

31 }

32 wg.Wait()

33 log.Println("all done")

34 }

sync 354

Output:

1 » 2 is done

2 » 0 is done

3 » 1 is done

4 » 2 is done

5 » 0 is done

6 » 1 is done

7 » 2 is done

8 » 0 is done

9 » 1 is done

10 » 2 is done

11 » 0 is done

12 » 1 is done

13 » 2 is done

14 » 0 is done

15 » 1 is done

16 » all done

Pool

A Pool is used to to prevent GC thrash by allowing you to reused allocated objects.
The idea is that you have a bunch of goroutines that are all doing the same thing,
and hence will all need the same type of data structure.

Maybe you run an animated gif website, and you want to know the dimensions of
all the images you host. Since the size information is at the beginning of the file, you
only need to read in a few bytes to find out what you want to know. Using a Pool,
you can allocate and reused your []byte instead of makeing a new one each time. If
you’re reading a few images, maybe this doesn’t matter. If you’re reading millions,
it probably will.

In this example, the New function we create the Pool with just returns a struct that
includes an int that increases on every call to New. Even though there are 20 calls
to pool.Get(), the number only goes up to about 4 or 5. This is because at any given
time there should only be a maximum of 4 Things out in the wild, and they get put
back, and hence reused.

sync 355

sync/pool.go

1 package main

2

3 import (

4 "log"

5 "runtime"

6 "sync"

7 "time"

8)

9

10 var n int

11

12 type Thing struct {

13 N int

14 }

15

16 func init() {

17 log.SetFlags(0)

18 log.SetPrefix("» ")

19 runtime.GOMAXPROCS(8)

20 }

21

22 func Run(pool *sync.Pool) {

23 for i := 0; i < 5; i++ {

24 thing := pool.Get().(*Thing)

25 log.Println(thing.N)

26 pool.Put(thing)

27 }

28 }

29

30 func main() {

31 pool := &sync.Pool{

32 New: func() interface{} {

33 n += 1

34 return &Thing{n}

35 },

36 }

37

38 go Run(pool)

39 go Run(pool)

40 go Run(pool)

41 go Run(pool)

sync 356

42 go Run(pool)

43

44 time.Sleep(time.Second)

45 }

Output:
1 » 3

2 » 5

3 » 5

4 » 5

5 » 5

6 » 5

7 » 3

8 » 3

9 » 3

10 » 3

11 » 1

12 » 5

13 » 4

14 » 4

15 » 3

16 » 3

17 » 3

18 » 3

19 » 4

20 » 5

21 » 3

22 » 3

23 » 3

24 » 5

25 » 3

sync/atomic

The sync/atomic package contains a wholemess of functions to do atomic operations
with integers. You can add a delta to them, swap them, compare and swap, load and
store. These are mostly low level primitives, but sometimes they’re just what the
doctor ordered.
In the example, the code is the same, except for the single line that modifies n.
Using n++ doesn’t result in the correct value because it reads old values. Using
atomic.AddInt32 gives the correct answer.

sync 357

sync/atomic.go

1 package main

2

3 import (

4 "log"

5 "runtime"

6 "sync"

7 "sync/atomic"

8)

9

10 var (

11 expected int32 = 1000 * 1000

12)

13

14 func init() {

15 log.SetFlags(0)

16 log.SetPrefix("» ")

17 runtime.GOMAXPROCS(8)

18 }

19

20 func DemoBroken() {

21 var n int32

22 var wg sync.WaitGroup

23 wg.Add(1000)

24 for i := 0; i < 1000; i++ {

25 go func() {

26 for j := 0; j < 1000; j++ {

27 n++

28 }

29 wg.Done()

30 }()

31 }

32 wg.Wait()

33 log.Printf("got %d, expected %d", n, expected)

34 }

35

36 func DemoAtomic() {

37 var n int32

38 var wg sync.WaitGroup

39 wg.Add(1000)

40 for i := 0; i < 1000; i++ {

41 go func() {

sync 358

42 for j := 0; j < 1000; j++ {

43 atomic.AddInt32(&n, 1)

44 }

45 wg.Done()

46 }()

47 }

48 wg.Wait()

49 log.Printf("got %d, expected %d", n, expected)

50 }

51

52 func main() {

53 DemoBroken()

54 DemoAtomic()

55 }

Output:

1 » got 378537, expected 1000000

2 » got 1000000, expected 1000000

syscall (wip)

testing
The testing package contains functions and structures useful when testing Go
applications and libraries. You don’t normally need these things whenwriting your
application or library (unless you’re writing something to interact or help with
testing), but they are your world when you’re writing tests for your library or
application.

The basic way to test your go code is to start out with a *_test.go file. Say you have
a math library, bookmath, and you have math_int.go to handle doing math with ints. It
has a function SumInts. You write tests for that file in math_int_test.go. Now you can
run go test and go will run your tests. Great!

Now, write a function TestSumInts, or whatever, as long as it starts with Test. This
function takes a *testing.T argument, and you’re off to the races!

testing.T

Themain thing you interactwith is this testing.T type. There are a bunch ofmethods
hanging off of it, but they all revolve around logging things, failing the current test,
or skipping the current test. There is actually nobuilt in assert like you’d see inmany
other testing libraries. If youwant to assert something, you can use an if statement.
The testing package is about having a toolbox of very basic tools, and building from
those. This is one of the places in the standard library I like using an external library
to layer onto the testing functionality to make things a bit smoother, but it’s fine if
you don’t.

Let’s look at an example.

testing/src/bookmath/math_int.go

1 package bookmath

2

3 // SumInts adds up a bunch of ints

4 func SumInts(values ...int) (sum int64) {

5 for _, value := range values {

6 sum += int64(value)

7 }

8 return sum

9 }

testing 361

testing/src/bookmath/math_int_test.go

1 package bookmath_test

2

3 import (

4 "bookmath"

5 "testing"

6)

7

8 func TestSumInts(t *testing.T) {

9 tests := []struct {

10 values []int

11 expected int64

12 }{

13 {[]int{1, 2, 3}, 6},

14 {[]int{1, -1, 0}, 0},

15 }

16

17 for _, testCase := range tests {

18 sum := bookmath.SumInts(testCase.values...)

19 if sum != testCase.expected {

20 t.Error("SumInts(%v), expected=%d, actual=%d", testCase.values, testCase.expe\

21 cted, sum)

22 }

23 }

24 }

You have to run these with a bit more finesse because we’re outside GOPATH. When
you’re in the testing directory, run GOPATH="$PWD":$GOPATH go test ./... and it’ll do
the right thing.

Now we have some super simple output that looks like this:

ok bookmath 0.005s

That’s basically all you need for testing go things. It’s just simple programming.
Nothing fancy to learn. There are more fun things we can do, so let’s check them
out.

testing 362

Benchmarking

You’ll maybe want to benchmark your code, so that when you run tests you can
spot regressions in performance. The go team does this all the time, and naturally
it’s built into the testing package.

Towrite benchmark tests, youwant towrite functions prefixedwith Benchmark. Then
you can run go test -bench . and it’ll go to town.

testing/src/bookmath/math_int_benchmark_test.go

1 package bookmath_test

2

3 import (

4 "bookmath"

5 "testing"

6)

7

8 func BenchmarkSumInts(b *testing.B) {

9 for i := 0; i < b.N; i++ {

10 bookmath.SumInts(1, 2, 3, 4, 5, 6, 7, 8, 9)

11 }

12 }

These use a different struct, testing.B. There’s an N attribute on it which has the
number of times you should call your function, so naturally, we use a for loop.

Now we see an output like this:

BenchmarkSumInts-8 200000000 9.76 ns/op

So out SumInts function ran pretty fast.

Examples

You can alsowrite examples in the tests. Thesewill fail the tests if the output doesn’t
matchwhat you said the output should be. They are kind of like unit tests that serve
as, well, examples for other people when they need to figure out how to use your
code. Sometimes looking at test code isn’t very useful, and examples can help with
that.

testing 363

testing/src/bookmath/math_int_example_test.go

1 package bookmath_test

2

3 import (

4 "bookmath"

5 "fmt"

6)

7

8 func ExampleSumInts() {

9 fmt.Println(bookmath.SumInts(1, 2, 3, 4, 5))

10 // Output: 15

11 }

Just prefix a function with Example. These take no arguments, and should output
to STDOUT using fmt.Println. Then, under your fmt.Println(...), write a comment
showing what the output should be: // Output: <thing>. In our case, it’s // Output:

55

If the example fails, you’ll see something like this:

--- FAIL: ExampleSumInts (0.00s) got: 15 want: 1 FAIL

text
The text package doesn’t do anything other than hold other packages. There are
things for scanning text, which is basically reading the “pieces” of it (so you can
build compilers and stuff). There are things towrite text, specifically tabbed column
output, which is pretty cool. We also have a generic version of the html/template

package, which lets us build and evaluate arbitrary templates.

So naturally, let’s build a compiler first.

Let’s build a calculator

Let’s look at the text/scanner package first. We can use it to parse an expression for a
Reverse Polish Notation calculator, and then evaluate the expression. We can build
our own HP calculator.

With our RPN calculator, we’ll have something like 1 1 +. This basically says, put 1
on the stack, put 1 on the stack, pop 2 things off the stack and add them, and put
that on the stack. Then we can print the last thing on the stack as our answer.

This code is actually mostly not related to text/scanner, but that’s the beauty of it.
You don’t have to write a bunch of junk to handle reading and parsing the text, you
can concentrate on the actual problem at hand. Try adding sqrt to this example, or
adding custom values like pi and e.

text/calculator.go

1 package main

2

3 import (

4 "flag"

5 "log"

6 "regexp"

7 "strconv"

8 "strings"

9 "text/scanner"

10)

11

12 var (

13 equation string

text 365

14 numberRe = regexp.MustCompile(`-?[1-9][0-9]*(\.[0-9]+)?`)

15)

16

17 func fn(num float64) string {

18 return strconv.FormatFloat(num, 'f', -1, 64)

19 }

20

21 func show(l, r, value float64, operand string) {

22 log.Printf("pushing %s %s %s => %s", fn(l), operand, fn(r), fn(value))

23 }

24

25 type Stack struct {

26 data []string

27 }

28

29 func (s Stack) IsEmpty() bool {

30 return len(s.data) == 0

31 }

32

33 func (s *Stack) Push(value string) {

34 s.data = append(s.data, value)

35 }

36

37 func (s *Stack) PushNumber(num float64) {

38 s.Push(fn(num))

39 }

40

41 func (s *Stack) Pop() string {

42 if s.IsEmpty() {

43 return ""

44 }

45 value, data := s.data[len(s.data)-1], s.data[:len(s.data)-1]

46 s.data = data

47 return value

48 }

49

50 func (s *Stack) PopNumber() float64 {

51 value := s.Pop()

52 num, err := strconv.ParseFloat(value, 64)

53 if err != nil {

54 log.Fatalf("failed parsing number: %s", err)

55 }

text 366

56 return num

57 }

58

59 func (s *Stack) PopOperands() (float64, float64) {

60 r, l := s.PopNumber(), s.PopNumber()

61 return l, r

62 }

63

64 func init() {

65 log.SetFlags(0)

66 log.SetPrefix("» ")

67

68 flag.StringVar(&equation, "rpn", "1 2 + 3 * 2 / 10 -", "the equation to evaluat\

69 e")

70 flag.Parse()

71 }

72

73 func main() {

74 var s scanner.Scanner

75 s.Filename = "equation"

76 s.Init(strings.NewReader(equation))

77

78 stack := Stack{}

79 for {

80 // Using Scan() we skip whitespace

81 tok := s.Scan()

82 if tok == scanner.EOF {

83 break

84 }

85 text := s.TokenText()

86 switch tok {

87 case '+':

88 l, r := stack.PopOperands()

89 value := l + r

90 show(l, r, value, "+")

91 stack.PushNumber(value)

92 case '-':

93 l, r := stack.PopOperands()

94 value := l - r

95 show(l, r, value, "-")

96 stack.PushNumber(value)

97 case '*':

text 367

98 l, r := stack.PopOperands()

99 value := l * r

100 show(l, r, value, "*")

101 stack.PushNumber(value)

102 case '/':

103 l, r := stack.PopOperands()

104 value := l / r

105 show(l, r, value, "/")

106 stack.PushNumber(value)

107 default:

108 switch {

109 case numberRe.MatchString(text):

110 log.Printf("pushing %s", text)

111 stack.Push(text)

112 }

113 }

114 }

115 log.Printf("=> %s", stack.Pop())

116 }

Output:

1 » pushing 1

2 » pushing 2

3 » pushing 1 + 2 => 3

4 » pushing 3

5 » pushing 3 * 3 => 9

6 » pushing 2

7 » pushing 9 / 2 => 4.5

8 » pushing 10

9 » pushing 4.5 - 10 => -5.5

10 » => -5.5

Pretty console output

Something else the text package lets us do is write pretty tab separated columns
so we can output data in tables. Like most great things in the Go standard library,
this works with io.Writer, so we can basically write to anything. We’ll be writing to
os.Stdout in our example.

It’s a pretty straightforward package, and the example is short, but it’s useful.

text 368

text/tabwriter.go

1 package main

2

3 import (

4 "os"

5 "strings"

6 "text/tabwriter"

7)

8

9 func main() {

10 data := [][]string{

11 {"Continent", "Country", "Nationality"},

12 {"North America", "Canada", "Canadian"},

13 {"Europe", "France", "French"},

14 }

15

16 writer := tabwriter.NewWriter(os.Stdout, 0, 8, 4, ' ', 0)

17 defer writer.Flush() // Make sure to Flush the writer when you're done

18

19 for _, tuple := range data {

20 writer.Write([]byte(strings.Join(tuple, "\t")))

21 writer.Write([]byte{'\n'})

22 }

23 }

Output:

1 Continent Country Nationality

2 North America Canada Canadian

3 Europe France French

Templating

Finally, the text package lets us make arbitrary templates and evaluate those
templates given a context. If you’ve used Ruby, this is basically like ERB. While you
normally see ERB used to generate HTML, it just generates a text file given some
other ruby code, and this is really no different.

text 369

text/template.go

1 package main

2

3 import (

4 "html/template"

5 "os"

6)

7

8 var (

9 todoItems = []string{

10 "cut the grass",

11 "pick up milk",

12 "feed the dog",

13 }

14)

15

16 func main() {

17 t := template.Must(template.New("todos").Parse(`TODO:

18 {{ range $index, $item := . }}

19 {{ $index }}: {{ . }}{{ end }}

20 `))

21

22 t.Execute(os.Stdout, todoItems)

23 }

Output:

1 TODO:

2

3 0: cut the grass

4 1: pick up milk

5 2: feed the dog

In that example, we iterate over our TODO items and make a list. When we have {{

range $index, $item := . }}, it’s saying:

Iterate over the current thing, and assignme an index and the item. Also,
if you could start your range variables with a $, that’d be just great…

text 370

That . on the right side of := is what you’re iterating over, which is the current thing.
Since at that point it’s at the top level of the context, and we passed in our slice of
TODO items, . is the slice of TODO items.

In the range body, we can output {{ . }}, and because we’re in a range body, . is the
element we’re iterating over. The Go templates assume youwant to iterate over the
things in the slice. In normal go if you did thing := range things, thing would be the
index, but in the templates so you simply {{ range . }} and . inside the range block
would be the element, and not the index.

Functions in templates

The output is less than ideal, since it starts numbering at 0. Go doesn’t allow
completely arbitrary code in the template tags, so we can’t just $index + 1. We need
to write a function and add that to the template as a FuncMap.

text/template_funcs.go

1 package main

2

3 import (

4 "html/template"

5 "os"

6)

7

8 var (

9 todoItems = []string{

10 "cut the grass",

11 "pick up milk",

12 "feed the dog",

13 }

14)

15

16 func main() {

17 tmpl := template.New("todos")

18 tmpl.Funcs(map[string]interface{}{

19 "inc": func(a, b int) int {

20 return a + b

21 },

22 })

23 t := template.Must(tmpl.Parse(`TODO:

24 {{ range $index, $item := . }}

25 {{ inc $index 1 }}: {{ $item }}{{ end }}

text 371

26 `))

27

28 t.Execute(os.Stdout, todoItems)

29 }

Output:

1 TODO:

2

3 1: cut the grass

4 2: pick up milk

5 3: feed the dog

We define a function that take 2 integers and adds them together and returns the
result. Nowwe can call the func in the template as {{ inc $index 1 }}. We don’t have
to use parens or commas, it works fine like that.

Notice we have to call the Funcs method before we parse the template. These
templates give you all the glorious benefits of types Go has to offer, so if you try to
use a function in your template you haven’t defined, Go throws an error compiling
the template.

Inline templates

Sometimes you want to define a quick template inline in the event you need to use
it in multiple places. We don’t really need to, but we can change our TODO example
to use an inline template to render the TODO item.

text/template_inline.go

1 package main

2

3 import (

4 "html/template"

5 "os"

6)

7

8 var (

9 todoItems = []string{

10 "cut the grass",

11 "pick up milk",

12 "feed the dog",

text 372

13 }

14)

15

16 func main() {

17 tmpl := template.New("todos")

18 t := template.Must(tmpl.Parse(`{{ define "todo" }}- {{ . }}{{ end }}TODO:

19 {{ range $index, $item := . }}

20 {{ template "todo" $item }}{{ end }}

21 `))

22

23 t.Execute(os.Stdout, todoItems)

24 }

Output:

1 TODO:

2

3 - cut the grass

4 - pick up milk

5 - feed the dog

Template files

In any normal application, you’ll probably have the templates in separate files, and
we can use those just fine. You canwrite out a number templates, load them all, and
execute the one you want.

text/header.tmpl

1 You have {{ len . }} TODOs today:

<<text/todo.tmpl74

text/todos.tmpl

1 {{ template "header.tmpl" . }}

2 {{ range $index, $item := . }}

3 {{ template "item.tmpl" $item }}{{ end }}

74code/text/todo.tmpl

code/text/todo.tmpl
code/text/todo.tmpl

text 373

text/template_files.go

1 package main

2

3 import (

4 "html/template"

5 "log"

6 "os"

7)

8

9 var (

10 todoItems = []string{

11 "cut the grass",

12 "pick up milk",

13 "feed the dog",

14 }

15)

16

17 func main() {

18 t := template.Must(template.ParseGlob("*.tmpl"))

19 err := t.ExecuteTemplate(os.Stdout, "todos.tmpl", todoItems)

20 if err != nil {

21 log.Fatalf("failed executing template: %s", err)

22 }

23 }

Output:

1 You have 3 TODOs today:

2

3 - cut the grass

4 - pick up milk

5 - feed the dog

time
The time package, if you can believe it, deals with time. You can parse time, format
a time to a string, compare times, and add and subtract times. It will also deal with
timezone stuff.

You can also create timers and tickers for handling timeouts and sleeping.

There are a few main types in the time package: time.Time is the main type that
represents a point in time. time.Duration represents a change in time, like 4minutes.
time.Location is where the timezone support comes from. time.Ticker will tick on
a channel, and time.Timer, which sends the current time on a channel after the
specified Duration.

Let’s play around. I think I’ll skip some of the really basicmethods, like func (t Time)

Minute() int. I think you can figure out what those do.

Parsing and Formatting

Parsing time and formatting it back to a string is one of the basic andmost common
tasks you’ll do with time. Everything you need to know is listed in the package docs
in the first constant section. It’s a bit of a non-standard way to represent the string
you are to parse in, but it’s more readable than the % stuff you’re used to dealing
with.

While you can build your own layouts, if you’re moving times between systems,
you’re probably better off using any of the preset constants that come in the time
package. RFC822 and RFC3339 are a couple that come to mind. If you’re displaying
times, then you probably want to build your own.

Just remember to handle parsing errors, and not ignore them like I did.

time 375

time/parsing_formatting.go

1 package main

2

3 import (

4 "log"

5 "time"

6)

7

8 var (

9 layouts = []string{

10 time.RFC822,

11 time.RFC3339,

12 time.Kitchen,

13 time.RubyDate,

14 "2006-01-_2", // _ to not display leading zeroes

15 }

16 times = make(chan string, len(layouts))

17)

18

19 func init() {

20 log.SetFlags(0)

21 log.SetPrefix("» ")

22 }

23

24 func DemoFormat() {

25 now := time.Now()

26 for _, layout := range layouts {

27 formatted := now.Format(layout)

28 times <- formatted

29 log.Printf("%s + %#v = %#v", now, layout, formatted)

30 }

31 close(times)

32 }

33

34 func DemoParse() {

35 for _, layout := range layouts {

36 t := <-times

37 parsed, _ := time.Parse(layout, t)

38 log.Printf("%#v + %#v = %s", t, layout, parsed)

39 }

40 }

41

time 376

42 func main() {

43 DemoFormat()

44 DemoParse()

45 }

Output:

1 » 2014-08-13 21:49:39.694096285 -0600 MDT + "02 Jan 06 15:04 MST" = "13 Aug 14 2\

2 1:49 MDT"

3 » 2014-08-13 21:49:39.694096285 -0600 MDT + "2006-01-02T15:04:05Z07:00" = "2014-\

4 08-13T21:49:39-06:00"

5 » 2014-08-13 21:49:39.694096285 -0600 MDT + "3:04PM" = "9:49PM"

6 » 2014-08-13 21:49:39.694096285 -0600 MDT + "Mon Jan 02 15:04:05 -0700 2006" = "\

7 Wed Aug 13 21:49:39 -0600 2014"

8 » 2014-08-13 21:49:39.694096285 -0600 MDT + "2006-01-_2" = "2014-08-13"

9 » "13 Aug 14 21:49 MDT" + "02 Jan 06 15:04 MST" = 2014-08-13 21:49:00 -0600 MDT

10 » "2014-08-13T21:49:39-06:00" + "2006-01-02T15:04:05Z07:00" = 2014-08-13 21:49:3\

11 9 -0600 MDT

12 » "9:49PM" + "3:04PM" = 0000-01-01 21:49:00 +0000 UTC

13 » "Wed Aug 13 21:49:39 -0600 2014" + "Mon Jan 02 15:04:05 -0700 2006" = 2014-08-\

14 13 21:49:39 -0600 MDT

15 » "2014-08-13" + "2006-01-_2" = 2014-08-13 00:00:00 +0000 UTC

Duration

Duration is something like 5h or 2m30s. You can add durations to a time to get a new
time. You can also use durations to sleep or wait a certain amount of time. They are
pretty straightforward to use, and the flag package can even parse them without
any fuss. You can even round a time using the duration constants.

Along with Round there is also Truncate. The former is for, uh, rounding, and the
latter is like the mathematical floor function, forcing the time to round down.

The easiest way to get a duration from a constant is to multiply the constant by the
unit you want from the time package.

It goes up to hours, because anything past that gets really scary when you have to
deal with timezones, daylight savings time, and the fact that a day isn’t really 24
hours. Okay, that last one probably isn’t that big of a deal, but it’s interesting to
think about.

time 377

time/duration.go

1 package main

2

3 import (

4 "log"

5 "time"

6)

7

8 var (

9 moon = time.Date(1969, time.July, 20, 20, 18, 4, 0, time.UTC)

10)

11

12 func init() {

13 log.SetFlags(0)

14 log.SetPrefix("» ")

15 }

16

17 func DemoConstants() {

18 log.Println("DemoConstants")

19 log.Println(5 * time.Nanosecond)

20 log.Println(5 * time.Microsecond)

21 log.Println(5 * time.Millisecond)

22 log.Println(5 * time.Second)

23 log.Println(5 * time.Minute)

24 log.Println(5 * time.Hour)

25 }

26

27 func DemoParsing() {

28 log.Println("DemoParsing")

29 d, _ := time.ParseDuration("5h2m55s10us5ns")

30 log.Println(d)

31 log.Printf("%fh == %fm == %fs", d.Hours(), d.Minutes(), d.Seconds())

32 }

33

34 func DemoRound() {

35 log.Println("DemoRound")

36 log.Println(moon)

37 log.Println(moon.Round(time.Minute))

38 log.Println(moon.Round(time.Hour))

39 }

40

41 func DemoTruncate() {

time 378

42 // Ignore this math until the next demo

43 laterMoon := moon.Add(30 * time.Minute)

44 log.Println("DemoTruncate")

45 log.Println(laterMoon)

46 log.Println(laterMoon.Truncate(time.Hour))

47 // See how Round goes up and Truncate goes down?

48 log.Println(laterMoon.Round(time.Hour))

49 }

50

51 func DemoSince() {

52 log.Println("DemoSince")

53 log.Printf("%s since %s", time.Since(moon), moon)

54 }

55

56 func main() {

57 DemoConstants()

58 DemoParsing()

59 DemoRound()

60 DemoTruncate()

61 DemoSince()

62 }

Output:

1 » DemoConstants

2 » 5ns

3 » 5us

4 » 5ms

5 » 5s

6 » 5m0s

7 » 5h0m0s

8 » DemoParsing

9 » 5h2m55.000010005s

10 » 5.048611h == 302.916667m == 18175.000010s

11 » DemoRound

12 » 1969-07-20 20:18:04 +0000 UTC

13 » 1969-07-20 20:18:00 +0000 UTC

14 » 1969-07-20 20:00:00 +0000 UTC

15 » DemoTruncate

16 » 1969-07-20 20:48:04 +0000 UTC

17 » 1969-07-20 20:00:00 +0000 UTC

18 » 1969-07-20 21:00:00 +0000 UTC

time 379

19 » DemoSince

20 » 395189h47m26.171405848s since 1969-07-20 20:18:04 +0000 UTC

Math

Doing math on time is pretty straightforward. Sort of. You can:

• Add a Duration to get a new Time.
• Sub a Time to get a Duration.
• AddDate(years, months, days) to get a Time.

time/math.go

1 package main

2

3 import (

4 "log"

5 "time"

6)

7

8 var (

9 moon = time.Date(1969, time.July, 20, 20, 18, 4, 0, time.UTC)

10 now = time.Now()

11)

12

13 func init() {

14 log.SetFlags(0)

15 log.SetPrefix("» ")

16 }

17

18 func DemoAdd() {

19 log.Println("DemoAdd")

20 log.Println(moon.Add(4 * time.Hour))

21

22 log.Println(now)

23 // 24 hours from now

24 log.Println(now.Add(24 * time.Hour))

25 // 24 hours ago, you can add a negative duration

26 log.Println(now.Add(-24 * time.Hour))

27 }

28

time 380

29 func DemoSub() {

30 log.Println("DemoSub")

31 log.Println(moon.Sub(time.Now()))

32 }

33

34 func DemoAddDate() {

35 log.Println("DemoAddDate")

36 log.Println(moon.AddDate(45, 0, 0))

37 }

38

39 func main() {

40 log.Println(moon)

41 DemoAdd()

42 DemoSub()

43 DemoAddDate()

44 }

Output:

1 » 1969-07-20 20:18:04 +0000 UTC

2 » DemoAdd

3 » 1969-07-21 00:18:04 +0000 UTC

4 » 2014-08-19 20:20:12.205032905 -0600 MDT

5 » 2014-08-20 20:20:12.205032905 -0600 MDT

6 » 2014-08-18 20:20:12.205032905 -0600 MDT

7 » DemoSub

8 » -395190h2m8.205453284s

9 » DemoAddDate

10 » 2014-07-20 20:18:04 +0000 UTC

Comparisons

Comparing time is pretty easy too. Like most other types in Go, you can’t just throw
< and > around and have it work. You have Before, After, and Eqaul, and they all work
as you’d expect.

time 381

time/comparisons.go

1 package main

2

3 import (

4 "log"

5 "time"

6)

7

8 var (

9 utcPlusOne = time.FixedZone("UTC+1", 3600)

10 moon = time.Date(1969, time.July, 20, 20, 18, 4, 0, time.UTC)

11 moonAlso = time.Date(1969, time.July, 20, 21, 18, 4, 0, utcPlusOne)

12 now = time.Now()

13)

14

15 func init() {

16 log.SetFlags(0)

17 log.SetPrefix("» ")

18 }

19

20 func DemoBefore() {

21 log.Println("DemoBefore")

22 log.Printf("moon before now? %t", moon.Before(now))

23 }

24

25 func DemoAfter() {

26 log.Println("DemoAfter")

27 log.Printf("moon after now? %t", moon.After(now))

28 }

29

30 func DemoEqual() {

31 log.Println("DemoEqual")

32 log.Printf("moon equal now? %t", moon.Equal(now))

33 log.Printf("moon equal moon? %t", moon.Equal(moon))

34

35 log.Printf("moon: %s", moon)

36 log.Printf("moonAlso: %s", moonAlso)

37 log.Printf("moon equal moonAlso? %t", moon.Equal(moonAlso))

38 }

39

40 func main() {

41 DemoBefore()

time 382

42 DemoAfter()

43 DemoEqual()

44 }

Output:

1 » DemoBefore

2 » moon before now? true

3 » DemoAfter

4 » moon after now? false

5 » DemoEqual

6 » moon equal now? false

7 » moon equal moon? true

8 » moon: 1969-07-20 20:18:04 +0000 UTC

9 » moonAlso: 1969-07-20 21:18:04 +0100 UTC+1

10 » moon equal moonAlso? true

time.Timer

If you want to be notified after a certain amount of time, you want a Timer. You can
work with timers in a few different ways. There are the package level After and
AfterFunc functions. You’ll commonly see After being used as the idiomatic way to
timeout receiving from a channel. You can also build your own timer, stop it, and
reset it.

This example includes Sleep because it doesn’t really fit anywhere else.

time/timer.go

1 package main

2

3 import (

4 "log"

5 "time"

6)

7

8 var (

9 fiveSeconds = 5 * time.Second

10)

11

12 func init() {

13 log.SetFlags(0)

time 383

14 log.SetPrefix("» ")

15 }

16

17 func DemoTimer() {

18 log.Printf("before NewTimer: %s", time.Now())

19 t := time.NewTimer(fiveSeconds)

20 time.Sleep(3 * time.Second)

21 t.Reset(fiveSeconds)

22 <-t.C

23 // Should be at least 8 seconds later

24 log.Printf(" after NewTimer: %s", time.Now())

25 }

26

27 func DemoSleep() {

28 log.Printf("before Sleep: %s", time.Now())

29 time.Sleep(fiveSeconds)

30 // Five seconds later

31 log.Printf(" after Sleep: %s", time.Now())

32 }

33

34 func DemoAfter() {

35 log.Printf("before After: %s", time.Now())

36 now := <-time.After(fiveSeconds)

37 // Five seconds later

38 log.Printf(" after After: %s", now)

39 }

40

41 func DemoAfterFunc() {

42 c := make(chan time.Time)

43 log.Printf("before AfterFunc: %s", time.Now())

44 time.AfterFunc(fiveSeconds, func() {

45 // Otherwise, the program would

46 // end without this getting called

47 c <- time.Now()

48 })

49 // Five seconds later

50 log.Printf(" after AfterFunc: %s", <-c)

51 }

52

53 func main() {

54 DemoTimer()

55 DemoSleep()

time 384

56 DemoAfter()

57 DemoAfterFunc()

58 }

Output:

1 » before NewTimer: 2014-08-21 18:53:47.948734117 -0600 MDT

2 » after NewTimer: 2014-08-21 18:53:55.950396133 -0600 MDT

3 » before Sleep: 2014-08-21 18:53:55.950453419 -0600 MDT

4 » after Sleep: 2014-08-21 18:54:00.951471835 -0600 MDT

5 » before After: 2014-08-21 18:54:00.951513969 -0600 MDT

6 » after After: 2014-08-21 18:54:05.952094974 -0600 MDT

7 » before AfterFunc: 2014-08-21 18:54:05.952147241 -0600 MDT

8 » after AfterFunc: 2014-08-21 18:54:10.952484904 -0600 MDT

Frantic-tick-tick-tick-tick-tick-tick-tock: time.Ticker

That was a pretty terrible Metallica album…

A ticker is like a timer, except that it keeps happening. It ticks. You could use this
to implement your own cron implementation, for example, since cron is basically
“run X every Y duration”.

It’s very simple. You make a ticker, and receive on the channel in a loop. Boom.

Oh wait.

I’m not sure why they did this, but channel you have access to a receive only
channel, and you can’t close it. If you want to be stopping tickers, you probably
want to hold on to a stop channel and select on it and the ticker channel.

time/ticker.go

1 package main

2

3 import (

4 "log"

5 "time"

6)

7

8 func init() {

9 log.SetFlags(0)

10 log.SetPrefix("» ")

11 }

time 385

12

13 func main() {

14 stop := make(chan bool)

15 ticker := time.NewTicker(time.Second)

16 time.AfterFunc(5*time.Second, func() {

17 ticker.Stop()

18 stop <- true

19 })

20

21 for {

22 select {

23 case now := <-ticker.C:

24 log.Println(now)

25 case <-stop:

26 log.Println("stopped")

27 return

28 }

29 }

30 }

Output:

1 » 2014-08-21 19:41:57.521759536 -0600 MDT

2 » 2014-08-21 19:41:58.521761552 -0600 MDT

3 » 2014-08-21 19:41:59.521565763 -0600 MDT

4 » 2014-08-21 19:42:00.521819833 -0600 MDT

5 » 2014-08-21 19:42:01.520993048 -0600 MDT

6 » stopped

Timezones

Timezones are actually pretty easy in go. It knows about all the normal ones, or if
you don’t like those you can make your own. You can parse times in specific zones,
or convert times to be in a zone.

time 386

time/timezones.go

1 package main

2

3 import (

4 "log"

5 "time"

6)

7

8 var (

9 utcPlusOne = time.FixedZone("UTC+1", 3600)

10 layout = "Jan _2 15:04:05 2006"

11 moon = "Jul 20 20:18:04 1969"

12)

13

14 func init() {

15 log.SetFlags(0)

16 log.SetPrefix("» ")

17 }

18

19 func main() {

20 log.Println(time.LoadLocation("Canada/Mountain"))

21

22 moonTime, err := time.Parse(layout, moon)

23 // Defaults to UTC, kind of wish it defaulted to local

24 log.Println(moonTime, err)

25

26 // Same time, different timezone

27 moonTime, err = time.ParseInLocation(layout, "Jul 20 21:18:04 1969", utcPlusOne)

28 log.Println(moonTime, err)

29 log.Println(moonTime.In(time.UTC))

30

31 now := time.Now()

32 log.Println(now)

33 log.Println(now.In(utcPlusOne))

34 log.Println(now.In(time.UTC))

35 }

time 387

Output:

1 » Canada/Mountain <nil>

2 » 1969-07-20 20:18:04 +0000 UTC <nil>

3 » 1969-07-20 21:18:04 +0100 UTC+1 <nil>

4 » 1969-07-20 20:18:04 +0000 UTC

5 » 2014-08-21 20:07:31.199496356 -0600 MDT

6 » 2014-08-22 03:07:31.199496356 +0100 UTC+1

7 » 2014-08-22 02:07:31.199496356 +0000 UTC

unicode
There are a lot of written languages out there, did you know that? Turns out, there
are WAY too many characters to express using a single byte like with ASCII, so we
have all these other encodings. Mostly what you’ll today to do this is UTF-8, which
uses anywhere from 1 to 4 bytes to encode stuff. You should be using UTF-8 for
anything new you build.

The unicode package lets you query these unicode characters to find out what they
are. Are they a number or a letter? A graphic? Lowercase or uppercase? It’s not
quite as simple as ASCII.

There are also functions to convert things to upper and lower case, again, because
it’s not trivial. For example, make Mýrdalsjökull uppercase, I dare you. Okay it’s
not that hard. In fact, we already did this in the strings package, but guess what
functions that package uses to get the job done? The ones in the unicode package!
These deal with individual runes, so they are less exciting, but are the necessary
building blocks to handle all the world’s languages.

Queries

First we’ll look at figuring out what a specific character is. We can ask all sort
of questions, like whether something is upper or lower case, if it’s a symbol or
punctuation, and a whole bunch more. We won’t cover them all, because they all
share the same function signature so they all operate the same way.

Unicode also has a bunch of categories so we can group like runes together. For
example, Number, Decimal Digit has 550 characters, because beyond the regular
ASCII 0-9, there are Arabic, Extended Arabic, Thai, Tibetan, and the list goes on!

And because various languages have their own characters that don’t appear in
other languages (or maybe they do), you can check if a rune appears in various
ranges of runes.

unicode 389

unicode/queries.go

1 package main

2

3 import (

4 "fmt"

5 "log"

6 "unicode"

7)

8

9 var (

10 thai = "�������/��������������" // I will be right back. http://www.linguanaut.\

11 com/english_thai.htm

12)

13

14 func init() {

15 log.SetFlags(0)

16 log.SetPrefix("» ")

17 }

18

19 func DemoThai() {

20 for _, r := range thai {

21 fmt.Printf("%c (%U): ", r, r)

22

23 // Query individual runes

24 if unicode.IsLetter(r) {

25 fmt.Print("IsLetter")

26 } else if unicode.IsPunct(r) {

27 fmt.Print("IsPunct")

28 } else if unicode.IsMark(r) {

29 fmt.Print("IsMark")

30 }

31

32 // Check if a rune appears in a single range

33 fmt.Printf(", Thai?: %t", unicode.Is(unicode.Thai, r))

34

35 // Check if a run appears in multiple ranges (ANY)

36 fmt.Printf(", Thai AND Tibetan?: %t", unicode.In(r, unicode.Thai, unicode.Tibe\

37 tan))

38

39 // Check multiple ranges again (ANY)

40 // unicode.In is preferred, because, c'mon, look at that code vs this code.

41 // thaiOrTibetan := []*unicode.RangeTable{unicode.Thai, unicode.Tibetan}

unicode 390

42 // fmt.Printf(", Thai or Tibetan?: %t", unicode.IsOneOf(thaiOrTibetan, r))

43

44 fmt.Println()

45 }

46 }

47

48 func main() {

49 DemoThai()

50 }

Output:

1 � (U+0E41): IsLetter, Thai?: true, Thai AND Tibetan?: true

2 � (U+0E25): IsLetter, Thai?: true, Thai AND Tibetan?: true

3 � (U+0E49): IsMark, Thai?: true, Thai AND Tibetan?: true

4 � (U+0E27): IsLetter, Thai?: true, Thai AND Tibetan?: true

5 � (U+0E09): IsLetter, Thai?: true, Thai AND Tibetan?: true

6 � (U+0E31): IsMark, Thai?: true, Thai AND Tibetan?: true

7 � (U+0E19): IsLetter, Thai?: true, Thai AND Tibetan?: true

8 / (U+002F): IsPunct, Thai?: false, Thai AND Tibetan?: false

9 � (U+0E1C): IsLetter, Thai?: true, Thai AND Tibetan?: true

10 � (U+0E21): IsLetter, Thai?: true, Thai AND Tibetan?: true

11 � (U+0E08): IsLetter, Thai?: true, Thai AND Tibetan?: true

12 � (U+0E30): IsLetter, Thai?: true, Thai AND Tibetan?: true

13 � (U+0E01): IsLetter, Thai?: true, Thai AND Tibetan?: true

14 � (U+0E25): IsLetter, Thai?: true, Thai AND Tibetan?: true

15 � (U+0E31): IsMark, Thai?: true, Thai AND Tibetan?: true

16 � (U+0E1A): IsLetter, Thai?: true, Thai AND Tibetan?: true

17 � (U+0E21): IsLetter, Thai?: true, Thai AND Tibetan?: true

18 � (U+0E32): IsLetter, Thai?: true, Thai AND Tibetan?: true

19 � (U+0E43): IsLetter, Thai?: true, Thai AND Tibetan?: true

20 � (U+0E2B): IsLetter, Thai?: true, Thai AND Tibetan?: true

21 � (U+0E21): IsLetter, Thai?: true, Thai AND Tibetan?: true

22 � (U+0E48): IsMark, Thai?: true, Thai AND Tibetan?: true

Simple Conversion

With ASCII, it’s really easy to tell what something is, lowercase letters are 97 to
122, uppercase are 65 to 90, and to convert between the two, you can just add or
subtract 32. Super easy. Other languages, those expressed via the full power of
unicode, aren’t so easy. Luckily, the unicode package provides helpers to convert

unicode 391

runes between upper and lower case, so you don’t have to know the specifics about
how to convert some interesting Swedish letters to the case you need.

unicode/conversion.go

1 package main

2

3 import (

4 "flag"

5 "fmt"

6 "log"

7 "unicode"

8)

9

10 var (

11 toggle string

12)

13

14 func init() {

15 log.SetFlags(0)

16 log.SetPrefix("» ")

17

18 flag.StringVar(&toggle, "toggle", "MýrDalSjökuLL", "toggle the case of each uni\

19 code rune")

20 flag.Parse()

21 }

22

23 func main() {

24 toggled := make([]rune, len(toggle))

25 for index, r := range toggle {

26 if unicode.IsUpper(r) {

27 toggled[index] = unicode.ToLower(r)

28 } else {

29 toggled[index] = unicode.ToUpper(r)

30 }

31 }

32 fmt.Printf("original: %s\ntoggled: %s\n", toggle, string(toggled))

33 }

unicode 392

Output:

1 original: MýrDalSjökuLL

2 toggled: mÝ\RdALsJÖ\KUll

UTF-16

The unicode/utf16 is mainly used for two things. First, you can convert something
into UTF-16 if that’s what it needs to be in. Maybe you’re generating a CSV file for
Excel so that it opens nicely. If you’ve ever done that, you have probably ended up
with a TSV75 file in UTF-16. Because that makes sense. Anyway…

Writing

Let’s write out an Excel friendly TSV file.

unicode/utf16_writing.go

1 package main

2

3 import (

4 "bytes"

5 "encoding/binary"

6 "encoding/csv"

7 "errors"

8 "io"

9 "log"

10 "os"

11 "unicode"

12 "unicode/utf16"

13)

14

15 var (

16 proverb = "Alla är vi barn i början."

17)

18

19 func init() {

20 log.SetFlags(0)

21 log.SetPrefix("» ")

22 }

75Tab Separated Values

unicode 393

23

24 type UTF16Writer struct {

25 out io.Writer

26 bom bool

27 started bool

28 buf *bytes.Buffer

29 }

30

31 func NewUTF16Writer(out io.Writer, bom bool) *UTF16Writer {

32 return &UTF16Writer{

33 out: out,

34 bom: bom,

35 buf: new(bytes.Buffer),

36 }

37 }

38

39 func (w *UTF16Writer) Write(p []byte) (int, error) {

40 if !w.started {

41 if w.bom {

42 // We're assuming little endian, since that's what Excel wants,

43 // but you could easily pass in a endianess.

44 _, err := w.out.Write([]byte{'\xff', '\xfe'})

45 if err != nil {

46 return 0, err

47 }

48 }

49 w.started = true

50 }

51

52 _, err := w.buf.Write(p)

53 if err != nil {

54 return 0, err

55 }

56

57 // omg such a hack

58 for {

59 r, s, err := w.buf.ReadRune()

60 if err != nil {

61 if err == io.EOF {

62 return len(p), nil

63 }

64 return 0, err

unicode 394

65 }

66

67 // The lazy hack

68 if r == unicode.ReplacementChar && s == 1 {

69 return 0, errors.New("incomplete rune")

70 }

71

72 err = binary.Write(w.out, binary.LittleEndian, utf16.Encode([]rune{r}))

73 if err != nil {

74 return 0, err

75 }

76 }

77 }

78

79 func main() {

80 proverbs := [][]string{

81 {"Language", "Proverb"},

82 {"sv", "Alla är vi barn i början."},

83 {"zh", "�����������"},

84 }

85 csvWriter := csv.NewWriter(NewUTF16Writer(os.Stdout, true))

86 csvWriter.Comma = '\t'

87 err := csvWriter.WriteAll(proverbs)

88 if err != nil {

89 log.Fatalf("failed writing: %s", err)

90 }

91 }

Now, this TSV example comes with quite the caveat. That caveat is you probably
shouldn’t use it. It works, but I would question its stability in a production system.

To take a byte slice (like the io.Write method expects) and convert it to UTF-16
properly is quite a process, mainly because you need to handle a rune being split
between two calls to themethod. If you could rely on complete runes being written,
that would be nice. That’s sort of what we’re trying to do by using bytes.Buffer by
writing in all the raw bytes and then trying to read runes. The “lazy hack” line deals
with failing to read a rune, possibly because we’ve hit the middle of a one.

I basically searched through the standard library (a theme in this book…) to find
something that would let me write bytes and read runes, and landed on the
bytes.Buffer type. Now we can use the unicode/utf16 package to encode the rune,
and then use the binary package to write the encoded uint16 values to the actual
output.

unicode 395

We had to do this exact thing in a ruby application, but the class is 34 only lines
long. It was easy, but that’s becausewe pulled in an external library to do the gnarly
conversion.

Go doesn’t have a one-line solution to this in the included standard library, but
it does have https://godoc.org/golang.org/x/text/encoding, which is the next best
thing. Those golang.org/x packages are sort of the standard library companion, a
supplemental resource if you will. The developers can mess around a bit more and
try things out before possibly adding them to the standard library in the case of
golang.org/x/exp. Alternatively, they are just Go Project sanctioned libraries that
the teamdoesn’t feel the need to packagewith the standard distribution. This is also
where someof the go tools are, like go vet, godoc, and others. Find all the golang.org/x
packages on the wiki: https://github.com/golang/go/wiki/SubRepositories

Sowe’re sort of breaking the rules by leaving the proper standard library, but we’re
not going too far to do it correctly. Encoding can be tricky, and in this case I’d
recommend pulling in the golang.org/x package.

Anyway, what we came up with without leaving the standard library did an okay
job:

Proverbs opened in Excel

Reading

The second thing you’ll do is convert content fromUTF-16, because let’s face it, that’s
not a lot of fun to deal with.

Let’s run this example by piping in the output from the previous writing example:
go run utf16_writing.go | go run utf16_reading.go

unicode 396

unicode/utf16_reading.go

1 package main

2

3 import (

4 "bytes"

5 "encoding/binary"

6 "io"

7 "io/ioutil"

8 "log"

9 "os"

10 "unicode/utf16"

11)

12

13 func init() {

14 log.SetFlags(0)

15 log.SetPrefix("» ")

16 }

17

18 type UTF16Reader struct {

19 in io.Reader

20 bom bool

21 started bool

22 }

23

24 func NewUTF16Reader(in io.Reader, bom bool) *UTF16Reader {

25 return &UTF16Reader{

26 in: in,

27 bom: bom,

28 }

29 }

30

31 func (r *UTF16Reader) Read(p []byte) (int, error) {

32 if !r.started {

33 if r.bom {

34 // We're assuming little endian, since we used it in the previous example

35 bom := make([]byte, 2)

36 n, err := r.in.Read(bom)

37 if err != nil || n != 2 {

38 return n, err

39 }

40 }

41 r.started = true

unicode 397

42 }

43

44 // Read some data, deal with the ErrUnexpectedEOF here

45 b1 := make([]byte, len(p)/4*4) // We have to read in multiples of 4 bytes

46 n, err := io.ReadFull(r.in, b1)

47 if err != nil && err != io.ErrUnexpectedEOF {

48 return n, err

49 }

50

51 // binary.Read some data, make sure it doesn't return ErrUnexpectedEOF, because\

52 then it just stops

53 b2 := make([]uint16, n/2) // This always rounds down

54 err = binary.Read(bytes.NewReader(b1), binary.LittleEndian, b2)

55 if err != nil {

56 return 0, err

57 }

58

59 runes := utf16.Decode(b2)

60 bs := []byte(string(runes))

61 n = copy(p, bs)

62 return n, nil

63 }

64

65 func main() {

66 r := NewUTF16Reader(os.Stdin, true)

67 data, err := ioutil.ReadAll(r)

68 if err != nil {

69 log.Fatalf("failed reading: %s", err)

70 }

71 os.Stdout.Write(data)

72 }

Once again, this has some less than ideal code, and I wouldn’t trust it in production.
I’d use the x/text/encoding package we talked about earlier. This does get across
the point that you can do some UTF16 magic with only the standard library. An
annoying part is I had to call io.ReadFull myself and make sure binary.Read got
exactly what it needed. This is because the binary.Read function just returns on
any error from io.ReadFull before doing anything, so even if it’s fine that we hit
an “unexpected EOF”, it doesn’t know or care that everything is fine.

	Table of Contents
	Introduction
	Target Audience
	How To Read This Book
	Code In The Book

	Thanks
	Credits
	archive
	Meet The Archive Package
	Writing tar Files
	Writing zip Files
	Reading tar Files
	Reading zip Files
	Caveats

	bufio
	Is That A Buffer In Your Pocket?
	Reading
	Writing
	Scanning

	builtin
	Batteries Included
	Building Objects
	Maps, Slices, And Channels
	All The Sizes
	Causing And Handling Panics
	Complex Numbers

	bytes
	Bits and Bytes and Everything Nice
	Comparison
	Searching
	Manipulating
	Splitting and Joining
	Case
	Trimming
	Buffer
	Reader

	compress
	Honey, I Shrunk The Kids
	ALL THE CODE
	Accept-Encoding: gzip

	container
	heap
	list
	ring
	Thread Pool Example
	Round Robin Load Balancer Example
	Priority Queue Load Balancer Example

	crypto
	Disclaimer
	Block Ciphers
	Digital Signatures
	Hashes
	HMAC
	RC4
	RSA
	TLS/x509
	Random Numbers
	Constant Time Functions
	A Timing Attack In Action
	go.crypto
	Final Warning

	database
	Open
	Exec
	Query
	Prepared Statements
	Transactions
	Example

	debug
	elf
	macho
	pe
	gosym
	dwarf

	encoding
	ascii85
	asn1
	base32
	base64
	binary
	csv
	gob
	hex
	json
	pem
	xml

	errors
	expvar
	flag
	The Basic Interface
	The *Var Interface
	FlagSet
	Custom

	fmt
	Printing
	Scanning
	Printing Custom Types
	Scanning Custom Types

	go
	Cross Platform Go Code
	Introspecting Packages
	Lexing Go Code
	Parsing Go Code
	Analyzing Go Code: Cyclomatic Complexity
	Altering Go Code: Mutation Testing

	hash
	adler32
	crc32
	crc64
	fnv

	html
	Escape Artist
	Templating

	image
	Converting images formats
	Resizing
	Cropping
	Compositing: Building images from other images
	gostagram

	index
	suffixarray

	io
	Reading
	Writing
	Copy
	Pipe
	io/ioutil

	log
	Basic Logging
	Syslog

	math
	Big Numbers
	Random Numbers

	mime
	Multipart Parsing
	Multipart Generation

	net (wip)
	mail

	os
	stdio and DevNull
	Permissions
	String Expansion
	Moving Around the Environment
	Inspecting the Environment
	Creating and Removing Files and Directories
	File IO
	FileInfo
	Process Creation, Management, and Signals
	Users

	path
	path
	path/filepath
	find

	reflect (wip)
	regexp
	Matching
	Indexes
	Capture Groups and Submatches
	Replace
	io

	runtime
	Introspection
	Goroutines
	Memory
	Callstack
	runtime/debug
	runtime/pprof

	sort
	Basic Sorting
	Advanced Sorting
	Searching

	strconv
	Conversions
	Appending
	Quoting

	strings
	Querying strings
	Into the index
	Hey, split it up!
	Building and altering strings
	Upper and lower case
	Trimming
	Reader

	sync
	Once
	Mutex
	Cond
	WaitGroup
	Pool
	sync/atomic

	syscall (wip)
	testing
	testing.T
	Benchmarking
	Examples

	text
	Let's build a calculator
	Pretty console output
	Templating

	time
	Parsing and Formatting
	Duration
	Math
	Comparisons
	time.Timer
	Frantic-tick-tick-tick-tick-tick-tick-tock: time.Ticker
	Timezones

	unicode
	Queries
	Simple Conversion
	UTF-16

